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Abstract

Association mining, the discovery of interesting inferences from within a dataset,
is ultimately subjective as only the user can assess the practical usefulness of
an inference. To this effect, an association mining system harnesses the user’s
perceptual capabilities and the computer’s processing power to improve the qual-
ity of a set of inferences. Although current association mining systems tightly
involve the user within the pre-processing and presentation stages, the analy-
sis stage of the association mining process remains relatively autonomous and
opaque. This lack of user involvement constrains domain space exploration and
subsequent inference derivation, potentially reducing inference quality, due to the

lack of user-computer synergy.

The theory of guided association mining and its realisation represents a timely
and logical step in the progression of association mining research. Early research
focused upon algorithmic efficiency, addressing issues such as I/O reduction and
scalability, however this seems to have reached a point of diminishing return.
The research focus has therefore shifted to improving result quality, or improv-
ing inference interest, rather than the speed at which the results are generated,
including areas of research such as measures of interestingness and semantic in-
clusion. However, these areas of research which attempt to incorporate domain
knowledge within analysis, fall short of providing user-computer synergy as the
specified constraints are statically included within an automated process. Given
this static constraint inclusion, the derivation of quality inferences often requires
an iterative analysis process, whereby a set of quality inferences is converged upon

through iterative constraint refinement.



i

This thesis argues that by maintaining the user-computer synergy during anal-
ysis, the quality of discovered inferences can be improved. This is achieved
by opening the opaque “black box” analysis process and providing functional-
ity through which the user can interact, and subsequently guide, domain space
exploration. Thus by enabling the user to dynamically focus exploration upon
concept areas of specific interest, the quality of the derived inferences will im-

prove.

This thesis addresses the next step in providing analysis synergy by enabling
the user to dynamically refine constraints during analysis instead of between
analysis iterations. To this end a guided mining architecture is proposed that
merges the currently accepted knowledge discovery architecture with the model-
view-controller architecture, enabling analysis synergy through the provision of
a transparent and interactive analysis environment. Furthermore this thesis also
makes novel contributions to the foundation fields of analysis and rule presenta-
tion, by way of an incremental closed-set association mining algorithm and an

association visualisation technique that accommodates hierarchical semantics.
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Preface

This thesis presents a guided knowledge discovery architecture that facilitates en-
hanced user-computer synergy within knowledge discovery analysis by providing
an interactive analysis environment. Although this architecture has generic con-
notations, as it is designed to be applicable to all explorative knowledge discovery
tasks, the research has been undertaken in the context of association mining, ef-
fectively enabling the guidance of association analysis through dynamic constraint
refinement. To this end, the thesis builds towards the proposed guided architec-
ture through significant research into the critical foundation areas of analysis and
presentation, which has resulted in additional contributions to these areas. The
thesis is presented in five logical parts: 1)introduction, 2) association mining, 3)
rule presentation, 4) guided association mining and 5) conclusion. Furthermore,
for example purposes the thesis uses the simple concept hierarchy presented in

Figure 1.

Part I introduces the thesis by providing the problem statement and thesis
hypothesis, which is supported by recent statements by prominent researchers
regarding the need for further research into interactive analysis. The major areas
in which this thesis aims to contribute are then introduced, namely knowledge
discovery and association mining, as well as a section that introduces the possible
effects of user participation based upon research in the fields of psychology and
Human Computer Interaction. The introduction concludes by presenting the

general approach of this thesis and addressing issues of terminology.

The next three parts present the thesis contributions, each of which contains a
review of the pertinent area and a contribution. Parts II and III present research

into the foundation fields of association analysis and rule presentation, while Part
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Figure 1: Simple Concept Hierarchy

IV culminates in the presentation of the guided association architecture.

Part IT discusses association analysis and is divided into two chapters. The first
chapter presents a comprehensive review of current techniques used in the discov-
ery of inferences, focusing upon data structures, traversal strategies and semantic
inclusion. The second chapter presents a novel closed set incremental association
mining algorithm, MCL, that improves on the state-of-the-art in incremental as-
sociation mining through the maintenance of a smaller concise representation of
the data based upon the concept of closed-sets, defined in Section 1.3.1. Given
that knowledge discovery is user centric, reducing the size of the maintained struc-
ture facilitates user interpretation. MCL also creates a closed-set representation
of the increment dataset, providing the user with insight to the increment’s effect
upon the maintained lattice and an effective means of incorporating windowing

functionality.

Part III discusses the presentation of association rules or inferences and is
divided into two chapters. The first presents a review of current presentation
techniques, with a focus on graphical visualisation. The second chapter presents
CARV, a novel visualisation technique that enables the presentation of inferences

within a hierarchical context.

Part IV presents the culmination of this thesis over four chapters, the first two
chapters of which are surveys. The first chapter discusses methods by which ex-

ploration is constrained within association analysis, presenting a review of current
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techniques and identifying the different types of constraints that need to be im-
plemented to realise a holistic guided association analysis environment. The sec-
ond chapter reviews the current techniques used to enable constraint refinement
within a knowledge discovery session, which falls into iterative and interactive
refinement. Iterative refinement is discussed in relation to association analysis
only, while interactive refinement (or guidance), being central to this thesis, is
discussed in relation to the knowledge discovery process itself and in regard to

the exploratory tasks of clustering, classification and association mining.

The third chapter of Part IV presents the proposed guided architecture, dis-
cussing the role of each architectural component in facilitating user interaction.
The final chapter presents GAM, a proof-of-concept tool that, based upon the
proposed architecture, provides a guided association mining system that dynam-
ically incorporates the refinement of an example constraint for each constraint
class identified (see Chapter 5). The thesis concludes in Part V with a discussion

of the thesis contributions, areas of further work and a conclusion.
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