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Abstract

Association mining, the discovery of interesting inferences from within a dataset,

is ultimately subjective as only the user can assess the practical usefulness of

an inference. To this effect, an association mining system harnesses the user’s

perceptual capabilities and the computer’s processing power to improve the qual-

ity of a set of inferences. Although current association mining systems tightly

involve the user within the pre-processing and presentation stages, the analy-

sis stage of the association mining process remains relatively autonomous and

opaque. This lack of user involvement constrains domain space exploration and

subsequent inference derivation, potentially reducing inference quality, due to the

lack of user-computer synergy.

The theory of guided association mining and its realisation represents a timely

and logical step in the progression of association mining research. Early research

focused upon algorithmic efficiency, addressing issues such as I/O reduction and

scalability, however this seems to have reached a point of diminishing return.

The research focus has therefore shifted to improving result quality, or improv-

ing inference interest, rather than the speed at which the results are generated,

including areas of research such as measures of interestingness and semantic in-

clusion. However, these areas of research which attempt to incorporate domain

knowledge within analysis, fall short of providing user-computer synergy as the

specified constraints are statically included within an automated process. Given

this static constraint inclusion, the derivation of quality inferences often requires

an iterative analysis process, whereby a set of quality inferences is converged upon

through iterative constraint refinement.
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This thesis argues that by maintaining the user-computer synergy during anal-

ysis, the quality of discovered inferences can be improved. This is achieved

by opening the opaque “black box” analysis process and providing functional-

ity through which the user can interact, and subsequently guide, domain space

exploration. Thus by enabling the user to dynamically focus exploration upon

concept areas of specific interest, the quality of the derived inferences will im-

prove.

This thesis addresses the next step in providing analysis synergy by enabling

the user to dynamically refine constraints during analysis instead of between

analysis iterations. To this end a guided mining architecture is proposed that

merges the currently accepted knowledge discovery architecture with the model-

view-controller architecture, enabling analysis synergy through the provision of

a transparent and interactive analysis environment. Furthermore this thesis also

makes novel contributions to the foundation fields of analysis and rule presenta-

tion, by way of an incremental closed-set association mining algorithm and an

association visualisation technique that accommodates hierarchical semantics.
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Preface

This thesis presents a guided knowledge discovery architecture that facilitates en-

hanced user-computer synergy within knowledge discovery analysis by providing

an interactive analysis environment. Although this architecture has generic con-

notations, as it is designed to be applicable to all explorative knowledge discovery

tasks, the research has been undertaken in the context of association mining, ef-

fectively enabling the guidance of association analysis through dynamic constraint

refinement. To this end, the thesis builds towards the proposed guided architec-

ture through significant research into the critical foundation areas of analysis and

presentation, which has resulted in additional contributions to these areas. The

thesis is presented in five logical parts: 1)introduction, 2) association mining, 3)

rule presentation, 4) guided association mining and 5) conclusion. Furthermore,

for example purposes the thesis uses the simple concept hierarchy presented in

Figure 1.

Part I introduces the thesis by providing the problem statement and thesis

hypothesis, which is supported by recent statements by prominent researchers

regarding the need for further research into interactive analysis. The major areas

in which this thesis aims to contribute are then introduced, namely knowledge

discovery and association mining, as well as a section that introduces the possible

effects of user participation based upon research in the fields of psychology and

Human Computer Interaction. The introduction concludes by presenting the

general approach of this thesis and addressing issues of terminology.

The next three parts present the thesis contributions, each of which contains a

review of the pertinent area and a contribution. Parts II and III present research

into the foundation fields of association analysis and rule presentation, while Part
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Figure 1: Simple Concept Hierarchy

IV culminates in the presentation of the guided association architecture.

Part II discusses association analysis and is divided into two chapters. The first

chapter presents a comprehensive review of current techniques used in the discov-

ery of inferences, focusing upon data structures, traversal strategies and semantic

inclusion. The second chapter presents a novel closed set incremental association

mining algorithm, MCL, that improves on the state-of-the-art in incremental as-

sociation mining through the maintenance of a smaller concise representation of

the data based upon the concept of closed-sets, defined in Section 1.3.1. Given

that knowledge discovery is user centric, reducing the size of the maintained struc-

ture facilitates user interpretation. MCL also creates a closed-set representation

of the increment dataset, providing the user with insight to the increment’s effect

upon the maintained lattice and an effective means of incorporating windowing

functionality.

Part III discusses the presentation of association rules or inferences and is

divided into two chapters. The first presents a review of current presentation

techniques, with a focus on graphical visualisation. The second chapter presents

CARV, a novel visualisation technique that enables the presentation of inferences

within a hierarchical context.

Part IV presents the culmination of this thesis over four chapters, the first two

chapters of which are surveys. The first chapter discusses methods by which ex-

ploration is constrained within association analysis, presenting a review of current
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techniques and identifying the different types of constraints that need to be im-

plemented to realise a holistic guided association analysis environment. The sec-

ond chapter reviews the current techniques used to enable constraint refinement

within a knowledge discovery session, which falls into iterative and interactive

refinement. Iterative refinement is discussed in relation to association analysis

only, while interactive refinement (or guidance), being central to this thesis, is

discussed in relation to the knowledge discovery process itself and in regard to

the exploratory tasks of clustering, classification and association mining.

The third chapter of Part IV presents the proposed guided architecture, dis-

cussing the role of each architectural component in facilitating user interaction.

The final chapter presents GAM, a proof-of-concept tool that, based upon the

proposed architecture, provides a guided association mining system that dynam-

ically incorporates the refinement of an example constraint for each constraint

class identified (see Chapter 5). The thesis concludes in Part V with a discussion

of the thesis contributions, areas of further work and a conclusion.
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Part I

Introduction

Instead of allowing an automated data

mining process to iterate in a

trial-and-error manner, a natural but

neglected way to enhance the process is to

support human involvement.

Mihael Ankerst, 2002
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This thesis argues that current association mining analysis techniques, being

autonomous and opaque, are inefficient as they fail to directly involve the user in

dataset exploration. The lack of synergy between the user and computer during

analysis degrades inference quality, as given a statically constrained search space,

many of the derived inferences are of no interest to the user. Interest is thus

defined as a subjective quality based upon the practical usefulness of an inference.

This thesis therefore discusses the theory, techniques and practice of “guided

data mining” a techniques that embeds the user within the analysis stage of the

knowledge discovery process in the same way that direct manipulation embeds

the user within a graphical user interface.

Hypothesis statement

Maintaining synergy between the user and the computer during

association mining analysis can improve result quality.

The need for interactive analysis was first formally presented in a position pa-

per by Mihael Ankerst in 2001 (Ankerst 2001), in which he discussed the advan-

tages of involving the user in the broader context of knowledge discovery analysis,

of which association mining is an important task. In particular Ankerst focused

upon the associated task of classification analysis or the interactive construction

of decision tree classifiers. In the following year Ankerst organised a panel of

four leading researchers to discuss the issue of automated vs interactive analysis

(Ankerst 2002). The general concensus was that the provision of a flexible inter-

active analysis environment is an important area of further research within which

more work is required. The following quotes are taken from the panel discussion

as presented by Ankerst, additional motivating quotes from this discussion are

also presented at the beginning of each part of this thesis.

Current state of the art data mining tools are automated, but the

perfect data mining tool is interactive and highly participatory.

Georges Grinstein, 2002
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Data selection and viewing of mining results should be fully interac-

tive, the mining process should be more interactive than the current

state of the art and embedded applications should be fairly automated.

Jiawei Han, 2002

As an introduction, this chapter presents the motivation behind the research

and introduces the domain of research exploration. To this end, the following

sections introduce the domain of knowledge discovery and the task of association

mining. A section on user involvement follows, providing further motivation

toward the need for interactive or guided analysis. This part then concludes with

a discussion about the general approach used within this thesis and issues of

terminology.

I.1 Knowledge Discovery

Knowledge Discovery is the non-trivial process of eliciting interesting knowledge

from potentially very large data repositories. The field draws upon the related

computer science disciplines of statistics, artificial intelligence, databases and

visualisation. A knowledge discovery system combines human perceptual and

knowledge-base capabilities with the computational capabilities of computers to

discover patterns within datasets that are of practical use. The inclusion of the

the user is integral to any knowledge discovery system as it is ultimately the user

who decides upon the interestingness, or usefulness of a pattern.

The commonly accepted knowledge discovery architecture is presented in Fig-

ure I.2. It can be seen that the user is actively involved in the knowledge discovery

session, at a high level, through the specification of data sources and the selection

of components (or tools) to be used at the different knowledge discovery stages.

While user involvement within each component is dependant upon the nature of

the tool selected, in current practice the user is tightly integrated in all but the

analysis stage, which to date remains relatively autonomous and opaque.

The current architecture follows a typical waterfall model, involving a series

of independent steps that may be repeated, allowing constraint refinement, if the
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user is unsatisfied with a particular tool’s outcome. A knowledge discovery ses-

sion is instigated through the collection of data, from possibly multiple sources,

and the pre-processing of this into a form acceptable for analysis. The dataset is

subsequently analysed, discovering patterns (or general descriptions of the data)

within the dataset, dependant upon the nature of the knowledge discovery task.

These are then presented to the user using either textual or graphical represen-

tations for subsequent interpretation by the user. Depending upon the extent to

which these results satisfy the user’s goals, refinement and re-processing may be

required, from previous process stages.

Figure I.2: Knowledge Discovery Architecture
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Knowledge discovery functionalities (or tasks) can be classified into two cat-

egories - descriptive and predictive - where descriptive techniques characterise

general dataset properties, while predictive techniques perform inference upon

the dataset to make predictions. Descriptive techniques explore the dataset,

generating descriptions through the construction of a model that elicits dataset

characteristics depending upon the specific task. Given its basis in artificial intel-

ligence techniques, model construction can be either supervised or unsupervised

dependant upon the nature of the task. Association mining, clustering and clas-

sification are the three main descriptive tasks within knowledge discovery. While

association mining and clustering tasks are unsupervised due to the lack of direc-

tion in regard to the nature of outcomes, classification is supervised through the

presence of a set of classification labels, the absence of which effectively reduces

classification to clustering. For example, within clustering the algorithm derives

its own classes, or clusters, while in classification the classes are provided and

the task centers upon providing descriptions for the specified classes from the

dataset.

Predictive tasks are generally associated with a descriptive task, in that a

model of the dataset is first built using a descriptive task that is then used for

inference purposes to predict the outcome of a variable given new data based

upon the knowledge within the constructed model. The most common example

of this is classification, which builds a descriptive model of the dataset, that is

then used for predictive purposes.

It is the class of explorative (or descriptive) knowledge discovery tasks that

can significantly benefit from the inclusion of guidance during model creation (or

analysis), as through guidance, exploration can be dynamically constrained to

suit the user’s objectives. A review of current techniques that incorporate the

the user within exploratory knowledge discovery tasks are presented in Chapter

5. This thesis focuses upon the guidance of association mining analysis, an area

in which little research to date has been conducted.



INTRODUCTION 6

I.2 Association Mining

Association mining is a descriptive knowledge discovery task that discovers in-

ferences of interest that exist within objects within a given dataset. The classic

use of association mining is in market basket analysis, in which purchasing habits

are analysed by discovering the inferences between the different items (or ele-

ments) in a person’s shopping transaction (or dataset). For example, it may be

discovered that people who purchase coffee are 80% likely to also purchase sugar,

generally denoted as coffee ⇒ sugar (80%). The discovery of such inferences pro-

vides an insight into which items are purchased together and therefore facilitate

marketing strategies, such as product placement. Association mining has been

applied to many different domains including risk analysis, epidemiology, clinical

medicine, fluid dynamics, astrophysics and counter-terrorism, all areas in which

the elicitation of inferences between elements within objects is useful.

Association mining is a user-centric process. Its goal is the elicitation of inter-

esting dataset inferences, where interestingness is a subjective quality ultimately

defined by the user. The literature suggests many characteristics that comprise

an interesting inference, including: novelty, significance, unexpectedness, non-

triviality and actionability (Bayardo & Agrawal 1999, Freitas 1999, Sahar 1999,

Silberschatz & Tuzhilin 1996), however these measures can be distilled to one

essential characteristic, the practical usefulness of the inference.

Given its user-centric nature, the computer’s role is to provide computational

power to explore the dataset, or more accurately the element search space, from

which the inferences are derived. To facilitate the discovery of interesting infer-

ences, exploration is restricted through the inclusion of functional and domain-

based constraints (see chapter 5). The main research issues within association

mining relate to efficient inference discovery and maximising the quality of the

resulting inference set as measured by the user. In this regard, quality is viewed

as the number of interesting inferences discovered as a proportion of the number

of inferences discovered.

Inference Result Set Quality =
# interesting inferences

# inferences
(I.1)
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Initial research into association mining analysis focused upon efficient inference

discovery through investigation into I/O optimisation and efficient data struc-

tures. However, the literature indicates that benefit from these aspects of anal-

ysis research is diminishing. This is evident by the apparent change in research

focus towards 1) improving inference result quality through the development of

specialist algorithms and 2) investigation into constraints and different measures

of interestingness that can be included within analysis. This material is covered

in depth in Chapter 1.

Measures of interest were initially incorporated as simple heuristics, the most

prominent being support (σ), which indicates a concept’s level of dataset presence,

and confidence (γ), which indicates the strength of an inference. Such measures

due to their reflexive nature (see Chapter 1) have been found effective in reducing

the exploration space and improving the quality of results. Typically constraints

are included as static parameters within an automated and opaque analysis pro-

cess. This often leads to repeated exploration with refined constraints, as the user

seeks to obtain a result set of satisfactory quality. Chapter 5 provides a detailed

discussion about association analysis constraint.

I.3 User inclusion

The concept of knowledge-based architectures from HCI and psychology research

further motivates the inclusion of the user within analysis. The explorative nature

of association mining analysis implies that no hypothesis regarding the inferences

contained within the dataset exists prior to analysis. Therefore the initial analysis

constraint is based upon, at best, an educated guess, as the user initially has

a limited knowledge base regarding the nature of the dataset inferences. The

concept of knowledge-based architectures implies that by involving the user in the

knowledge discovery process, an implicit communication channel is established.

This provides the computer with knowledge of the problem domain and user

objectives (see Figure I.3).

Current association analysis techniques are automated and opaque, with in-

ferences being presented to the user upon analysis completion. Through user
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Figure I.3: Knowledge Based HCI

interpretation, semantic understanding of the presented inferences is provided by

using the perceptual capabilities of the user, enabling the user to comprehend

data semantics and relate them to the current problem, resulting in knowledge-

base evolution. If the user is not satisfied with the quality of the discovered

inferences, the user can refine constraints and re-instigate analysis, as indicated

in Figure I.2, in an attempt to derive an improved inference set.

This current technique is often regarded as a trial-and-error based approach,

although each iteration provides opportunity for refinement (not random con-

straint selection) and should therefore eventually produce a result set of satisfac-

tory quality.

By incorporating the user within the analysis process, knowledge-base evolu-

tion becomes finer grained, enabling the semantic understanding of results during

analysis which can then be used to guide subsequent analysis to areas of interest.

Therefore by enabling guided association mining, the computer’s inability to in-

corporate knowledge about intangible measures such as domain knowledge and

data semantics during analysis can be overcome. Theoretically this should not

only facilitate the production of higher quality inferences, but also reduce anal-

ysis time for two reasons. Firstly, analysis guidance can reduce the exploration

space by discarding areas that are of no interest. Secondly, given the current it-

erative refinement process, guidance through improving result quality will result

in reduced iterations and hence reduced analysis time.

Furthermore, psychological research has identified a relevant phenomena

known as the Hawthorn Effect, that states that “people tend to work harder

when they sense that they are participating in something new, or in something
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in which they have more control” (Mayo, 1945). This indicates that the inclu-

sion of the user within analysis will promote better work ethics, as the user feels

in control of the process. It is also likely that the user will develop a better

understanding and a higher level of trust in the resultant inferences due to this

increased control.

I.4 Approach

It is the proposition of this thesis that by allowing the user to guide exploration

of the search space through the dynamic refinement of constraints, that analysis

time will be reduced. The basis of this thesis relies upon the subjective inclusion

of the user within association mining analysis resulting in a qualitative analysis of

the hypothesis, as the effect of the user’s inclusion cannot be quantified. There-

fore the approach taken is to present an architecture that facilitates guidance

and to provide a proof-of-concept tool, GAM, that uses this guidance enabled

architecture to provide an interactive analysis environment (see Chapter 8).

Such architecture requires an increased coupling of the analysis and presenta-

tion stages of the Knowledge Discovery process in order to allow for the creation

of analysis interfaces. Through these interfaces the exploration process is dy-

namically presented to the user and by feeding the user’s interactions with the

interface back into analysis, guidance is provided. The provision of this function-

ality will effectively “open up” the traditionally automated and opaque analysis

process, and provide a semi-automated, transparent analysis environment with

which the user can interact.

It is the intention of this thesis that the proposed guided architecture be generic

in its applicability to all descriptive knowledge discovery tasks, such as clustering

and classification.

It is not the intention of this thesis to provide quantitative proof of the ef-

fectiveness of guided association mining. In fact, due to its subjective premise

and the exploratory nature of the algorithm, effective quantitative proof of the

hypothesis is not achievable, due to subjective variation and the requirement in

association mining for an initial null hypothesis. This thesis however does provide
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strong evidence regarding the benefit of guidance inclusion within an association

mining framework.

I.5 Notation

The foundation of association mining in the domain of market basket analysis

is still evident in current research through the continued use of domain specific

terminology. This thesis adopts a more generic terminology to provide a domain

independent discussion. Although the adoption of generic terminology is gaining

favour in more recent publications, the adopted terms are presented here for

clarification.

In the domain of market basket analysis, each customer purchase is repre-

sented as a transaction that consists of multiple itemsets. Therefore association

analysis explores the item space, incorporating the frequency metric, support, as

a constraint (see Chapter 1) discovering the frequent itemsets, from which the

association rules are subsequently derived. Although representative of market

basket analysis, association mining has outgrown this single domain application.

It is now used in the generic discovery of inferences in any domain, from medical

to fluid dynamics, within which this terminology is illogical.

The intuitive replacement for transaction is the term object, while element

and elementset replace item and itemset, due to their common use within set

theory and their generic applicability. The term frequent is specific to the sup-

port constraint and therefore has been replaced with the constraint independent

term valid, which relates to the validity of the rule according to the specified

constraints.

Furthermore it is commonly regarded that the result of association mining is

the derivation of association rules, however a more applicable term is “inferences”

which better describes the nature of the resultant artefacts and which has been

adopted within this thesis. Exceptions are made to this terminological replace-

ment in Chapter 1, where the original terminology has been kept in some cases

for purposes of clarity and accuracy in presenting previous research.
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The issue of terminology may be regarded as trivial, however from a broad per-

spective, especially from an external viewpoint, naming facilitates understanding,

and hence the use of correct terminology is important.



Part II

Association Mining

My view of an attractive data mining

(analysis) tool is not a fully automated one,

but a user friendly, interactive one, using a

high-level graphical user interface to specify

and control mining primitives as well as

various kinds of visualisation tools.

Jiawei Han 2002



Chapter 1

Association Mining Analysis

Review

A decade on from the seminal work of Agrawal, Imielinski and Swami (1993)

association mining analysis has become a mature field of research. This survey

provides insight to the significant contributions within this field, highlighting

the maturity of the fundamental principles within elementset identification and

inference generation. Furthermore it provides additional investigation into other

established areas of specialisation such as condensed representation, incomplete

sets and semantic inclusion.

The fundamentals of association mining are now well established and there

appears little current research involving the performance optimisation of classic

elementset identification or inference generation in regard to novel exploration

techniques. Exceptions to this closure of classic association mining analysis ap-

pears to be the adaptation of Inductive Logic Programming (ILP) (Deshaspe &

Toivonen 1998) techniques to the field of association mining and the development

of parallel and distributed variations of established elementset identification al-

gorithms (Zaki 1999). This survey thus investigates the fundamental principles

of association mining analysis.

The majority of current related research involves the specialisation of the fun-

damental association mining algorithms, while many of these are covered within

this review, some specialisations that are still emerging are not presented. These
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include areas such as quantitative mining, disassociation mining and higher-order

mining. Further research is devoted to user involvement within the analysis pro-

cess, which is the focus of Part III and the foundation of this thesis.

Association mining analysis is a two part process; 1) the identification of sets

of elements or elementsets within the dataset and 2) the subsequent derivation

of inferences from these elementsets. The majority of related research to date

has focused upon the efficient discovery of elementsets, as its level of complexity

is significantly greater than that of inference generation. Given E distinct ele-

ments within the search space, there are 2|E| possible combinations of elements

to explore, given that |E| is often large, naive exploration techniques are often

intractable.

To date relevant research has focused upon exploration constraint, I/O reduc-

tion and the creation of useful data structures to make analysis more tractable.

Exploration constraint has been pursued through the development and incorpora-

tion of measures of interest (MOI) and efficient pruning strategies. I/O reduction

has been facilitated recently through hardware advances, enabling large datasets

to become memory resident. Despite this performance still remains an issue for

very large datasets, however techniques such as intelligent sampling are being

researched to address this issue (see section 1.3.2). Data structure research, ini-

tially driven by the need to reduce I/O, has resulted in an evolution of structures

to efficiently represent the exploration space. Another line of research involves

the production of condensed inference sets from which the entire result set may

be inferred, reducing storage and facilitating user interpretation.

Over the past decade a variety of algorithms have been developed that address

these issues through the refinement of search strategies, pruning techniques, data

structures and the use of alternative dataset organisations. While most algo-

rithms focus upon the explicit discovery of all inferences for a given dataset,

increasing consideration is being given to specialised algorithms, that attempt to

improve processing time or facilitate user interpretation by reducing result sets

and incorporating domain knowledge.
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Figure 1.1: Search space lattice

This chapter presents a comprehensive survey of current association mining

analysis algorithms organised in the following way. As the majority of research to

date has focused upon the identification of elementsets, which are valid in respect

to specified constraints, it forms the bulk of the review and has been separated

into three sections. The first, elementset identification, Section 1.1, provides

the foundation for the review introducing general concepts, presenting common

notation and discussing dataset organisation. This is followed by a comprehensive

survey of classic algorithms in Section 1.2 and a survey of specialised algorithms

in Section 1.3. Each main section is accompanied by an algorithm summarisation

table. Section 1.4 completes the survey with a discussion on the derivation of

inferences from the identified valid elementsets, including techniques regarding

rule inferencing.

1.1 Elementset Identification

The identification of valid elementsets is computationally expensive, requiring the

consideration of all combinations of E, or 2|E| subsets, resulting in exponential

search space growth as |E| increases linearly. This is illustrated in Figure 1.1,

which shows the search space lattice resulting from E = {a, b, c, d}. Further-
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more it is the consideration of this lattice in the presence of a specific dataset

D that results in an often intractable analysis scenario due to the size of the re-

quired structures and the fine grained exploration required. Therefore elementset

research focuses upon reducing dataset I/O and exploration constraint to opti-

mise analysis. There are four applicable classes of I/O reduction suggested in

the literature: projection, partitioning, pruning and access reduction (presented

below).

Projection The projection of D onto an equivalent condensed representation

reduces storage requirements possibly enabling memory residency and may

also result in computation optimisation through algorithmic exploitation

of this new representation. For example, the projection of a corpus into

integer or binary representation may result in improved processing time as

numeric comparison is computationally faster than string comparison.

Partitioning Dataset partitioning minimises I/O costs by enabling the memory

resident processing of large datasets, reducing costly disk access.

Pruning Dataset pruning techniques dynamically reduce the dataset during pro-

cessing, discarding unnecessary elements or objects, this results in a reduc-

tion of D, possibly to the point at which D can achieve memory residency,

further reducing processing time.

Access Reduction Reduction in the number of times that disk resident datasets

need to be accessed to identify all elementsets, reducing processing time.

Constraint of the search space through user specified heuristic and domain

constraints can significantly reduce exploration while improving the quality or

interest of the resultant inferences. A detailed review and discussion of constraint

inclusion is provided in Chapter 5. The most common constraint used to reduce

exploration during elementset identification is support (σ) which denotes the

degree of presence of an elementset, (e) within D (such that e ⊂ E), above

which the elementset is considered significant and below which the elementset is

removed from consideration. This effectively reduces elementset identification to

the discovery of only those elementsets that exceed a specified presence within

D, or the discovery of valid elementsets.
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Figure 1.2: Bounded search space lattice

If a constraint is reflexive, or directed, its inclusion can provide significant

optimisation due to the definition of a boundary within the search space lattice,

above or below which exploration is not required (shown in Figure 1.2). In rela-

tion to elementset identification, a reflexive constraint is therefore one that never

decreases (monotonic) or increases (non-monotonic) as the number of elements

within an elementset increases (see section 5.1 for formal definition). Reflexive

constraint inclusion can therefore result in rapid search space reduction by effec-

tively eliminating all supersets or subsets of an invalid elementset. For example,

the heuristic constraint support is non-monotonic as given an invalid elementset,

σ(e) < minsup, then all supersets of e can be eliminated from consideration.

With respect to support in particular, this reflexive effect was first introduced as

the Apriori heuristic, due to its initial inclusion within the Apriori analysis al-

gorithm (see Section 1.2) and is also commonly known as the Downward Closure

Principle (DCP). While Chapter 5 discusses various constraint types, this review

typifies constraint inclusion through the use of support, as it is the concept of

constraint inclusion not its actual nature that is of interest here. A more for-

mal description of these common measures of interest used in association mining

analysis are presented in the following subsection.
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1.1.1 Notation

Let U =
〈

O, E, D
〉

be the universal association mining context, where O and E

are finite sets of objects and elements respectively and E is distinct. D ⊆ O×E,

is a binary relation, commonly referred to as the dataset, such that the existence

of the couple < o, e > |o ∈ O ∧ e ∈ E denotes that e is related to o. Given the

sets x, y ⊆ E, commonly called elementsets, then let t(x) be the subset of O

containing x, and k = |x|. An inference R is of the form x ⇒ y such that

x, y ⊂ E ∧ x ∩ y = ∅ ∧ x, y 6= ∅.

Given that the algorithm incorporates the fundamental quality heuristics of

support and confidence. Then support σ(x) is defined as the fraction of objects O

that contain elementset x with respect to D (σ(x) = |t(x)|/|D|), while confidence

γ(x), or inference strength, is the frequency of O containing x that also contains

y (γ(x ⇒ y) = σ(x ∪ y)/σ(x)). Alternatively confidence can be represented

as γ(x → y) = P (y|x), where P is the conditional probability. Therefore the

support of an inference is the fraction of O that contains either x and y, σ(x ⇒

y) = |t(x) ∩ t(y)|/|D|.

Taking these quality heuristics into account results in constraining elementset

identification to the discovery of all valid elementsets V such that V =
⋃

i{x|x ⊆

E|σ(x) ≥ minsup}, where minsup is the specified minimum support threshold

above which an elementset is considered frequent. The inferences are then derived

from partitions based upon the permutations of each Vi such that the inference

x ⇒ y satisfies the conditions x ∪ y = Vi, x ∩ y = ∅, ∅ 6= x 6= y, γ(Vi) ≥ minconf .

1.1.2 Dataset Organisation

Association mining data is generally obtained from databases created for other

uses and ‘massaged’ into a suitable representation, through pre-processing tech-

niques. The resulting dataset is expressed as either a sparse vector matrix or a set

of enumerations and can be organised either in regard to the objects or elements

that they contain.

Within the vector matrix, each cell represents the existence or absence of an

element (binary) within a particular object, while an enumerated format is a
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condensed representation containing only elements positively associated with an

object. The preferred format to use is largely dependant upon dataset density as

although the vector format is computationally faster, as combinational processing

is reduced to logic operators, the enumerated format becomes more viable as the

dataset density decreases. For example, given a dataset in which |E| is large

and each object only contains a few elements, the enumerated format will require

significantly less space and smaller combinatoric operations during elementset

identification. Additionally the enumerated format can be constrained to a binary

representation consisting of ordered enumerated pairings of object and element

identifiers, hence if horizontally organised an object will be represented over a

number of rows.

Dataset organisation is typically horizontal as each row contains an object,

while vertical organisation refers to the representation of objects as columns and

therefore each row within the dataset represents an element. Since a dataset

is normally processed on a row by row basis, horizontal organisation is said to

maintain an object focus, while vertical organisation maintains an element focus.

Both organisations can be represented using either an enumerated or vector for-

mat, where they are referred to as Tidlists and Tidsets respectively when using

vertical organisation. Where the Transaction Identifier (Tid) refers to the con-

tents of each row. Previous research has shown that the vertical organisation

can lead to more efficient algorithms as the search for element based inferences

is better served by an element focused layout. This was summarised by Shenoy

et al. (2000) who describe four advantages of the vertical organisation over the

horizontal organisation, presented on the following page.

Recent attention has been given to the optimisation of the vertical vector repre-

sentation in the case of sparse matrices through projection, reducing storage and

processing. Burdick et al. (2001) propose a technique whereby vector reduction

is achieved by projecting onto a smaller vector, consisting of positive associations

only, when an elementset’s support reaches a defined rebuilding threshold. The

new vector is then used to calculate the support for the elementset’s supersets

by applying the new projection, optimising support calculation through vector

reduction. Shenoy et al. (2000) introduce compressed vertical bitmaps or snakes

that reduce the vertical representation in comparison to the equivalent horizontal
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• Improved elementset validation. Elementset validation is computa-

tionally faster in a vertical layout due to its element focus. For example,

using support the validation of ab using vertical organisation is achieved

by finding the size of the intersection of two elements a and b, Equation

1.1. Using a horizontal organisation, validation becomes the sum of those

objects that contain both a and b, requiring a full scan as the elements are

scattered throughout O, Equation 1.2.

σ(ab) = |t(a) ∩ t(b)| (1.1)

σ(ab) = |{d | a ∈ o ∧ b ∈ o ∧ ∀o ∈ O}| (1.2)

• Automatic dataset reduction. Given non-monotonic constraint inclu-

sion elements can be easily removed from the dataset, reducing its size.

• Improved vector compression. Vector compression is greater in larger

datasets and hence better in a vertical layout as typically the number of

objects exceeds the number of elements.

• Asynchronous computation. Given non-monotonic constraint inclu-

sion, vertical organisation allows the computation of an elementset once

its subsets have been deemed valid. Whereas using horizontal layout all

elementsets must be computed before any supersets are considered.

representation. Additionally their proposed algorithm VIPER uses a combina-

tion of horizontal and vertical layouts during processing. Zaki & Gouda (2001)

introduce the concept of diffsets that only keep track of the differences in the

Tidlists of an elementset from its generating valid elementsets. This technique is

particularly efficient when dealing with dense datasets as the difference between

the Tidlist of an elementset and that of its direct superset is often significantly

smaller than the Tidlist itself.

Dataset organisation also influences the type of lattice traversal strategy used

to explore the search space. Given the two options of either breadth or depth first,

BFT and DFT respectively, BFT traversals can use either organisation format,
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however DFT is optimised through the use of a vertical organisation. BFT strate-

gies generate all valid elementsets of size κ, Vκ before generating Vκ. Therefore

only a single scan of D is required for each κ using BFT and both organisation

formats are acceptable. However using DFT and a horizontal organisation a scan

of D is required for each recursive call during the traversal to validate the can-

didate elementsets, resulting in large processing overheads to validate a small

number of elementsets. Whereas in using a vertical organisation a full scan of D

is not required.

1.2 Classic Algorithms

This section discusses the classic elementset identification algorithms, which are

regarded as those that discover all distinct valid elementsets within a dataset.

Participant algorithms can be separated into two classes, candidate generation

and pattern growth, within which further division is based upon traversal and

underlying data structures. The majority of classic algorithms are candidate gen-

eration, where candidate elementsets are constructed and then validated. Pat-

tern growth techniques however, eliminate the need for candidate generation by

constructing complex hyper-structures that contain representations of the ele-

mentsets within the dataset.

1.2.1 Candidate Generation Algorithms

Candidate generation algorithms identify candidate elementsets before validating

them with respect to incorporated constraints, where the generation of candidates

is based upon previously identified valid itemsets. The core algorithm of this genre

is Apriori upon which many later algorithms are based.

This section provides a comprehensive survey of candidate generation algo-

rithms providing a detailed description of the core algorithms and highlighting

the significant contributions of others. Firstly, there is a short discussion on

the common data structures used within candidate generation algorithms. The

following survey is then split into merge and extension based algorithms that
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roughly correlate to BFT and DFT. Finally there is a section relating to hybrid

algorithms that attempt to provide further optimisations by switching between

traversal and accrual methods during processing.

Tree Data structures

Candidate generation algorithms generally use tree based data structures of which

there are three common types: 1) hash trees, 2) enumeration-set trees and 3)

prefix trees.

Hash-trees, a combination of b-tree and hashtable structures, was introduced

by Agrawal & Srikant (1994) as an effective candidate elementset storage struc-

ture. The structure is effectively a b-tree for which every internal node is a

hashtable and every leaf node or bucket contains a set of elementsets. When a

bucket reaches its quota of elementsets, the hash-tree extends by replacing the

bucket with a new hashtable into whose buckets the elementsets are placed.

The enumeration-set tree (Rymon 1992), is an ordered tree where each node

n represents an elementset, e ∈ V , and an edge represents a single element

extension of that elementset. Therefore each tree level contains elementsets of

the same length. For example third level nodes contain valid elementsets of length

three (V3).

An enumeration-set tree evolves through the single element extension of leaf

nodes, each resulting in a new child node. This process is ordered and typically

constrained so that, given a particular element ordering, only those elements

occurring after the last element of the current element set are considered during

extension of the current elementset. Given this subset of possible extensions the

process is typically further constrained so that only new valid elementsets are

inserted into the tree. The presence of reflexive constraints, in this case non-

monotonic constraints, further reduces the set of possible element extensions to

those elements that resulted in valid extensions of its direct ancestor (parent

node).

For example, given a node n and an ordered element set E, then n’s exten-

sion set, next consists of all e ∈ E that occur after ei where n = {e1, e2 . . . ei}.
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Figure 1.3: Common storage structures

This process is illustrated in Figure 1.3(a) for the element set E = {a, b, c, d}.

Furthermore if the process is non-monotonically constrained then next is further

constrained to those valid extensions of its parent p.

Prefix trees, also known as tries, (Figure 1.3(b)) although fundamentally equiv-

alent, differ from the enumeration-set tree in that each node specifies the pro-

jected prefix element for a particular sub-tree, instead of the entire prefix. This

is evident within Figure 1.3 where the two trees are structurally equivalent, the

difference being that while within the enumeration-set tree all elementset infor-

mation is contained at the node, within the prefix tree the same information is

accrued during traversal to the node (elementset) in question.

Merge Algorithms

The fundamental merge algorithm is Apriori (Agrawal & Srikant 1994), com-

monly regarded as the classic association mining algorithm, which introduced

reflexive constraint inclusion, namely support, to reduce exploration. The al-

gorithm derives candidate elementsets Cκ from Vκ−1 | κ > 1 incorporating sup-

port to reduce |Cκ|. From this Vκ is derived through a scan of the dataset,

accruing counts for each c ∈ Cκ. Therefore given a support threshold minsup,

Vκ = {Cκ : σ(Cκ) ≥ minsup}.

Algorithm 1.1 presents the iterative Apriori algorithm that requires a dataset

for each κ. The algorithm has two main parts: 1)candidate generation and 2)

validation. The set of candidates is formed by the set of elements, E, given κ = 1,
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Algorithm 1.1 Apriori Elementset Generation

Apriori Elementset Generation

1: κ = 0

2: repeat

3: κ++

4: if κ > 1 then

5: {Cκ = generate candidates(Vκ−1)}

6: else

7: {C1 = E}

8: end if

9: for all O do

10: Co = {c | c ⊆ o ∧ c ∈ Cκ ∧ o ∈ O}

11: for all Co do

12: Ci
κ.count++ | Co ∈ Cκ

13: end for

14: end for

15: Lκ = {Cκ | Ci
κ.count ≥ minsup}

16: until Vκ = ∅

17: return L =
n
⋃

k=o

Lκ

otherwise it is based upon a merge function involving members of Vκ−1. Subse-

quent accrual determines the candidate elementset support and those meeting

the nominated threshold minsup are appended to the valid set Vκ. Therefore

V1 = {e | e ∈ E ∧ σ(e) ≥ minsup}.

Subsequent Lκ | κ > 1 is based upon Vκ−1, given the inclusion of support, so

that an elementset can only be valid if all subsets are valid. For example given a

valid elementset a | a ∈ V then all subsets of a also exist in V . Given this, Cκ is

constructed from the constrained merge of Vκ−1 pairs, where the pairs only differ

by a single element and all other κ − 1 permutations of the new elementset also

exist in Vκ−1.

For example, given two elementsets a = {a1, a2...an} and b = {b1, b2...bn} a

merge only occurs if a and b’s last elements differ (Equation 1.3). The newly

created candidate elementset c | c = {a ∪ b}, |c| = k is then appended to the set

of candidate items Cκ if all subsets of length k − 1 exist in Vκ−1. Given that
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V3 = {abc, bdg, abf} then since abc and abf differ by only their last element a

new elementset abcf is constructed. However since not all V3 subsets of abcf in

Vκ−1 exist (e.g. bcf), abcf is not appended to Cκ as it cannot be valid due to the

reflexive support constraint.

Once the set of candidates, Cκ, has been constructed, accrual is undertaken to

find the valid candidates to be appended to Vκ, using the same accrual technique

as for V1. This process repeats, with elementset length incrementing, until the

newly generated Vκ is empty.

c = {a ∪ b|a, b ∈ Vκ−1 ∧ {a1...an−1} = {b1...bn−1} ∧ an 6= bn} (1.3)

Independent association mining research occurring at the same time (Mannila,

Toivonen & Verkamo 1994), also came to the same conclusion as Agrawal &

Srikant in regard to the reflexive constraint inclusion. However this implemen-

tation, Offline Candidate Determination (OCD), is less efficient as the join con-

ditions are not as tightly constrained, resulting in superfluous sets. Two join

operations were devised, the first variant (Equation 1.4) specifies that any but

only two members could differ while the second variant (Equation 1.5) extended

each member of Vκ−1 with every member in V1.

c = {a ∪ b|a, b ∈ Vκ−1 ∧ |a ∩ b| = k − 2} (1.4)

c = {a ∪ b|a ∈ Vκ−1 ∧ b ∈ V1 ∧ b 6⊆ a} (1.5)

The realisation of reflexive constraints enabled Apriori to surpass earlier fre-

quent elementset algorithms, namely AIS and SETM. AIS (Agrawal, Imielinski

& Swami 1993) creates Vκ from Vκ−1 by scanning D and for each elementset

a | a ⊂ o ∧ o ∈ O ∧ a ∈ Vκ−1, a new group of candidate elementsets are con-

sidered by extending a with each element in o that lexicographically occurs af-

ter the last element of a. If the new elementset already exists then its count

is incremented else it is appended to Cκ with a count of 1. After parsing O,

Vκ ⊂ Cκ | Ci
κ.count ≥ minsup.

SETM (Houtsma & Swami 1993), also generates candidate elementsets on

the fly, however the need to iterate through an object’s Vκ−1 permutations to
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find elementsets is alleviated by separating the algorithm’s candidate generation

and counting functions. During candidate generation the algorithm stores each

candidate elementset and its object identifier in an array based structure Aκ.

Once the dataset scan is complete, candidate validity is determined by sorting and

aggregating Aκ, removing any Ai
κ, that do not meet the criteria. The subsequent

generation of Aκ+1 is facilitated by Aκ as all valid κ permutations of o ∈ O are

readily available.

The advent of Apriori and the reflexive constraint inclusion provided the stan-

dard pruning or search space reduction technique, mainly through the use of

the quality heuristic support. Subsequent research in analysis optimisation fo-

cused upon reducing I/O through condensed representations, dataset partition-

ing, dataset pruning and dataset access reduction.

AprioriTID (Agrawal & Srikant 1994) extends Apriori by eliminating multiple

scans of D through the construction of a counting-base set C̄κ, during construction

of V1. The counting base is of the form < Tid, Ci
κ > where Tid is the object

identifier and Ci
κ denotes the set of Cκ present in an object o ∈ O. For example,

if o = {a, b, d, f} then equivalently C̄i
1 = {{a}, {b}, {d}, {f}}, however C̄i

2 contains

all potential V2 within the object o hence C̄i
2 = {{ab}, {ad}, {bd}, {bf}, {df}}. It

is apparent from this example that C̄κ may potentially be larger than D for small

κ > 1 however this is quickly reduced as κ increases as if o does not contain a Cκ

then C̄κ will not have an entry for that object, in effect incorporating a form of

dataset pruning.

Another Apriori extension proposed by Agrawal & Srikant (1994) is delayed

accrual (or pass bundling (Mueller 1995)), which is based upon the observation

that any σ(Ci) | |Ci| = {κ+1, .., 2κ} can be represented as the union of some pair

of Vκ elementsets. Therefore from a single scan of D the support of all candidates

of length κ+1...2κ can be computed. A trade-off exists however between the time

saved by reducing the dataset access and the number of false positives generated

through the projection of Cκ instead of Vκ.
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Dynamic Itemset Counting (DIC) (Brin, Motwani, Ullman & Tsur 1997) re-

duce I/O by enabling the calculation of Vκ elementsets during earlier scans, ≤ κ,

through dataset partitioning and the use of checkpoints. If during processing all

immediate κ − 1 subsets of a larger elementset a ∈ Ci
κ have been determined

valid at a checkpoint (end of a dataset partition) then the calculation of σ(a) can

begin and will terminate when it reaches the same checkpoint during the next

dataset iteration. This reduces dataset access, as within a single scan elementsets

of differing lengths can be counted, where the length of the active elementsets is

always ≥ the current scan number.

Dataset-global pruning is based upon the premise that if an element partici-

pates in V i
κ then it must participate in |κ− 1| Vκ−1 elementsets. Therefore

any e that does not appear in at least |κ − 1| Vκ−1 elementsets can be re-

moved from o. If this process subsequently results in |o| < |κ| then o is

removed from D.

Dataset-local pruning, also used in DHP, is applied to each object during

subset counting. The premise of which states that an element e can only

participate in an elementset V i
κ+1 if e exists in |κ|Vκ subsets within o. How-

ever since Vκ is unknown and since Cκ ⊇ Vκ then Cκ is used instead. Hence

given c | c ∈ Cκ then any element e such that |e ∈ c| < κ is removed from

the object.

Direct Hashing and Pruning (DHP) (Park, Chen & Yu 1997), introduces the

concept of possible frequent itemsets C ′
κ to optimise the generation of candidate

elementsets and to also provide a novel dataset trimming technique. The possi-

ble frequent elementset C ′
κ+1 accrues the count of each possible Cκ+1 elementset

within each o ∈ O for which all κ subsets exist in C ′
κ during the construction

of Vκ. This in effect accumulates information about Ck+1 in advance so that all

possible Ck+1 elementsets are encoded within the C ′
k+1 hashtable and results in

the production of a significantly smaller but accurate candidate set Cκ. However,

because of the possible collisions on C ′
k+1 entries, each derived Ci

κ still needs to be

checked for minsup. The algorithm also incorporates progressive dataset prun-
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ing to discard elements and objects that are of no further use. The two pruning

techniques - dataset-global and dataset-local (presented above) - are incorporated

during accrual to reduce |D| during each scan .

DHP also incorporates the concept of delayed accrual, discussed earlier. The

incorporation of progressive trimming, delayed accrual and the identification of

C ′
κ results in significant speedup over Apriori for small κ due in main to the

reduced size of Cκ.

Perfect Hashing and Pruning (PHP) (Ozel & Guvenir 2001) proposes an op-

timisation to DHP by using perfect hashing in the creation of the hash table

for C ′
κ+1. This effectively eliminates the hash table collisions that were apparent

in DHP and hence C ′
κ+1 will contain the actual counts of the Cκ+1 elementsets

alleviating the need to re-count the occurrence of Cκ+1 elementsets in D.

Direct Count and Prune (DCP) (Orlando, Palmerini & Perego 2001b) attempts

to optimise elementset discovery by incorporating the dataset pruning techniques

introduced in DHP and through using direct counting in the validation of can-

didates. Instead of the usual hash-tree structure to perform accrual, DCP uses

a direct counting method, as for small κ the hash-tree structure is ineffective as

Cκ is generally large and because tree depth is based on κ only a few partitions

will be created. The direct count method is a generalisation of Apriori’s accrual

technique, differing for κ ≥ 2.

V2 generation, based upon V1, uses a vector Counts to accrue each Ci
2 candidate

pair, in lexicographical order, using a perfect hash function, shown in Figure

1.4(a). The counting of subsequent Cκ is accomplished by extending Counts

to create a directly accessible prefix tree, of shared 2-prefix. This allows direct

access to the subset of candidates specified by their 2-prefix. This structure

exploits spatial locality in that once a prefix {ai1, ai2} | ai1 < ai2 is selected the

possible κ completions to the prefix existing in o will be found in the subsequent

contiguous section of Cκ.

The Partition algorithm (Savasere, Omiecinski & Navathe 1995) discovers all

valid elementsets in two dataset scans. This is accomplished by partitioning the

dataset, each of which fits into memory, and then finding the valid elementsets

that exist in each partition p. The theory being that any globally valid elementset
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Figure 1.4: DCP: Data Structures

Ve must be valid within at least one partition V p. During the first dataset scan

all valid elementsets for each partition V p are generated using AprioriTid, the

vertical organisation of which is constructed during the generation of V p
1 . This

is achievable as each partition can fit in memory and hence D is only scanned

once during the generation of Vp. Based upon this the global set of candidates

C is derived from the union of V p
κ (Equation 1.6). The second dataset parse

determines V from C through accrual of each Ci within each partition.

C =

n
⋃

κ=1

cκ | Cκ =

n
⋃

p=1

V p
κ (1.6)

SPINC and AS-CPA algorithms provide optimizations to the Partition algo-

rithm. SPINC (Mueller 1995) reduces process time by incrementally constructing

C, adding V p
κ to C whenever it is available, instead of waiting until the end of the

first scan as in Partition. This allows SPINC to start global occurrence accrual

for each Ci during the first scan, potentially resulting in scan reduction. AS-CPA

(Lin & Dunham 1998) attempts to eliminate any data skew apparent in Parti-

tion’s results. Data skew refers to the irregularity of data distribution over D

that may cause the generation of false candidates. For example, seasonal trends,

in which a product’s sales are high for a short period of time only, may only

meet a support threshold for a particular temporal partition but not globally.

AS-CPA achieves skew reduction by introducing early local pruning and through

two global anti-skew techniques. Early local pruning is based upon better local

valid elementsets Bp
κ, where Bp

1 is derived from V p
1 ∩ V 2...p

1 and used to construct
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the local set of valid elementsets (Bp
κ) using regular Apriori. Since Bp

1 ⊆ V p
1

generally |Bp
κ| < |V p

κ | results in reduced processing. The two global anti-skew

techniques refer to the first and second dataset scans and assume the incorpora-

tion of SPINC’s incremental C construction within the algorithm. They are based

upon the premise that if an elementset is not valid over a number of partitions

then it should be removed from consideration. If, during further processing, the

same elementset is found to be valid within a partition it can again be considered

potentially valid (see (Mueller 1995) for a full discourse).

Hierarchical Bit Maps (HBM) (Gardarin, Pucheral & Wu 1998) uses a verti-

cally organised vector format, calculating support efficiently by performing 2-way

intersections of relevant bitmaps. The algorithm encodes the bitmap into an un-

signed short by creating groups of 16 bits upon which the subsequent intersection

is performed. It was realised however, that in a typical mining run many shorts

were empty due to sparsity, hence performing the intersection calculation was

inefficient. To alleviate this, a second level of bitmap indexing was created, in

which each bit represents whether or not a short is empty. Hence when calculat-

ing the support of two elementsets, an intersection of the second level indexing

is done first, providing a list of the non-zero shorts to consider further. Prior to

HBM, Gardarin et al. developed NBM which used the same format however did

not make use of the second level of indexing.

ColumnWise (Dunkel & Soparkar 1999) uses a column based, instead of row

based, iteration of D, hence although d remains horizontally organised it uses

intersections in the construction of Cκ. The actual processing is similar to Apriori

using a horizontal bit vector layout and intersection accrual. If the results of prior

(κ − n : n > 1) joining operations are preserved, σ(Ci
κ) is the intersection of 2

immediate subsets of Ci
κ, otherwise a κ-way join of each participant element is

required.

DLG (Yen & Chen 1996) is a novel graph-based technique based upon a lexico-

graphically ordered vertical bit vector layout. Through bit vector summation all

infrequent elements are removed resulting in V1, from which the association graph

is constructed. The algorithm constructs an edge between any two elements a

and b such that a < b, |a ∩ b| ≥ minsup, effectively resulting in the identification
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of V2. Subsequent Vκ generation where κ > 2 is based upon direct extension,

where the edges from the last node of V i
κ , are used to create Cκ+1. If no edges

exist, then no κ + 1 elementsets based upon it can exist. For example, given a

valid Vκ elementset a = {a1, a2..an}, if no additional directed edges from an exist,

apart from an−1, then no Vκ+1 that are supersets of a can exist. Therefore for

all directed edges from an, a Cκ+1 is generated, the actual support for which is

calculated through the κ-way intersection of participants.

Extension Algorithms

Extension algorithms rely upon the single element extension of valid elementsets

to derive new candidate elementsets. This section discusses the contributions of

various extension based algorithms, organised in relation to contribution, provid-

ing a detailed discussion of core algorithms and summarising the contribution of

other algorithms that extend these core algorithms.

Tree Projection (Agrawal, Aggrawal & Prasad 1999), discovers valid element-

sets through the construction of an enumeration-set tree and by incorporating

object projection and matrix based accrual techniques. The enumeration-set tree

is built in the typical DFT manner described in Section 1.2.1. Matrix based

accrual is facilitated through object projection, where only objects relevant to a

node’s elementset are projected to the node.

Tree Projection is initiated by the regular BFT generation of V1, which forms

the basis of the enumeration-set tree and the initial extension set of the root

node <ext. From this the frequency matrix <freq is constructed and populated

by <project, which is a projection of D containing only those elements in <ext.

Object projection is progressive so that nfreq is based upon nproject which has been

derived from n̄project and filtered to only those elements in next. The technique

of projecting the relevant object information at each node significantly reduces

processing through object reduction.

Subsequently the calculation of a node’s extension set next is derived from its

parent’s frequency matrix n̄freq, within which, each cell contains the co-occurrence

frequency of the intersecting elements within n̄project. Given minsup = 2, Figure

1.5 presents a set of related matrices for {r, a, ab}. From which it can be seen that
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Figure 1.5: Tree Projection: Matrices

the extension set of a (aext = {b, d, e}) is derived from rows in column a of <freq

that are greater than or equal to minsup and which lexicographically occur after

element a. From which the projected dataset aproject is derived and subsequently

afreq constructed. This recursive process continues until xext = ∅. The resulting

constructed enumeration-set tree uniquely identifies all valid elementsets, where

validity (based upon frequency) is derived from projected matrices.

The authors additionally propose different tree construction techniques based

upon BFT and DFT. Using BFT all next
κ are found before next

κ+1 by re-initiating

the object projection process for each subsequent level of the tree. Each object

<project is in turn recursively projected to all nκ−1 matrices. Using DFT the

projected datasets are maintained for all nodes and their siblings on the path

from the root node to the node currently being extended. Hence matrix creation

becomes an independent problem with a significantly reduced dataset. The choice

of strategy relates to a trade-off between I/O and processing, BFT requires more

processing as each object must be re-projected for each successive tree level,

while DFT requires that all projected datasets be maintained. While BFT is

more efficient in the discovery of short elementsets, DFT is better for finding

long elementsets. A hybrid technique is also suggested that uses BFT until each

projected dataset for a tree level can be held in memory. At which point each

projected dataset is saved to a separate file, sequentially read into memory and

independently processed using DFT, discovering all descendants.

In the pursuit of optimising long elementset discovery, the same authors de-

veloped Depth Project (Agrawal, Aggrawal & Prasad 2000). The algorithm has

similar foundations in its reliance upon the enumeration-set tree and a DFT

strategy, however it differs in regard to dataset projection occurrence and ac-
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crual. The algorithm uses a bit-vector structure in which each bit represents a

projected object to provide efficient accrual, if a node’s value or elementset is a

subset of an object the relevant bit is turned on. A node’s bit-vector is derived

from its parent’s bit vector by turning off all objects that do not contain the

extension element. This structure is ineffective where |E| is much larger than the

average number of elements within an object as most bit’s will be off. However

it becomes efficient due to the re-projection of the objects when a minimum on

threshold is reached that results in the derivation of a new, reduced vector with

all element bits on.

Furthermore Depth Project proposes the generation of the extension set next

that is similarly derived from n̄ext, without using projected matrices. The pro-

jected dataset nproject is first filtered so only valid n̄ext’s objects remain. If there

exists a large number of distinct projected objects at n, accrual is through byte

counting of a | a ∈ n̄project. If the distinct projected set is small, typically at

lower tree levels, the repetitiveness is exploited through a novel bucketing tech-

nique that counts the entire sub-tree in a single projected dataset scan.

Apriori-DF (Pijls & Bioch 1999) propose a novel trie extension technique in

which the valid subtree of V i
1 used to calculate the valid subtree of V i−1

1 . The

algorithm constructs V1 in regular Apriori fashion and stores them in order of

ascending frequency. Subsequent processing is undertaken from most to least fre-

quent (left to right), with a dataset scan required for each V1 member, therefore

a total of V1−1 scans of the dataset are required. This process, given the ordered

set V1={A,B,C,E,F} , is highlighted in Figure 1.6(from (Kosters & Pijls 2003)),

showing the replication of V n
1 ’s subtree under V n−1

1 , which provides the candidate

set based upon V n−1
1 . Any invalid nodes are then removed from this subtree, by

performing dataset accrual. A subsequent implementation described in (Kosters

& Pijls 2003) claims to further optimise the algorithm through memory manage-

ment by undertaking accrual in the subtree before appending it to V n−1
1 , thereby

alleviating the need to delete invalid elementsets.

Eclat and Clique (Zaki 2000b) are similar techniques that improve valid ele-

mentset discovery by recursively decomposing an association lattice into disjoint

subsets, until each can be independently solved in memory, reducing I/O. Both
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Figure 1.6: Apriori-df trie construction with invalid candidates highlighted

algorithms use the association lattice, BFT traversal and the same accrual tech-

nique, however they differ in regard to the method of decomposition.

The association lattice used by these algorithms is derived from V2, which is

constructed using a classical Apriori approach. Within the association lattice,

each element is represented by a node and edges between nodes represent the

presence of an association within V2 (Figure 1.8(a)). Typical organisation is ver-

tical and hence accrual is based upon Tidlist intersections for each sub-lattice

constructed. The authors also introduce a variation (AprClique) that uses a hor-

izontal dataset organisation, and hence uses counting instead of accrual. Further-

more, Eclat’s accrual is undertaken in reverse lexicographical order to optimise

pruning.
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Figure 1.7: Eclat: Equivalence classes

Eclat decomposes the search space lattice using the concept of prefix-based

equivalence relations, where members of a relation share the same κ-prefix. For

example, given V2 = {ab, ad, bc, bd, cd} the resulting equivalence classes are [a] =

{b, d}, [b] = {c, d}, [c] = {d}. Furthermore each equivalence class is a lattice in

its own right and can undergo recursive decomposition until each sub-lattice fits

into memory. Figure 1.7 illustrates the search space lattice presented in Figure

1.1 segregated into equivalence classes.

Once decomposed, all valid elementsets are then discovered in each class us-

ing a BFT Tidlist intersection strategy incorporating support. In addition, it is

apparent from Figure 1.7 that dependencies exist between the classes, i.e. acd

is dependant upon cd as well as subsets from within its own class. By solving

the classes in the reverse order to which they were created all subset information

required for effective pruning is available.

Clique decomposes the search space using the concept of maximal cliques. A

clique is a complete lattice, where completeness is denoted by an edge between

all pairs of vertices. A maximal clique set is then the set of cliques that represent

the search space lattice within which no clique is a superset of any other. This



REVIEW: ASSOCIATION ANALYSIS 36

technique uses additional information to form smaller sub-lattices than Eclat’s

prefix-based approach and hence is often more effective as less accrual is required.

Maximal clique enumeration is based upon finding the covering elements of a

class, each of which is said to cover a subset of the class. Given a class [x], where

y ∈ [x], then y is said to cover the subset of [x] given by cov(y) = [x]∩ [y]. From

the covering set of a class (given in Equation 1.7) the maximal cliques for that

class are derived by recursively discovering the maximal cliques of each covering

set element. The maximal clique set of [x] is then each covering set element’s

maximal clique set intersected with [x] and prefixed with [x]’s class identifier.

[x]cov = {y : y ∈ [x] ∧ cov(y) 6= ∅ ∧ cov(y) 6⊆ cov(z)∀z : z ∈ [x] ∧ z < y} (1.7)

This process is illustrated in Figure 1.8, in which Figure 1.8(a) and Figure

1.8(c) present the association lattice derived from V2 = {ab, ac, ae, bd, cd, ce, de}

and the associated prefix classes. The cliques, presented in Figure 1.8(c), are

then found by recursively calculating cover sets for each prefix class, from which

the maximal clique sets in Figure 1.8(d) are derived.

a

c

e

b

d

(a) V2 Association Lattice

[d] = e
[c] = d,e

[a] = b,c,e
[b] = d

(b) Prefix classes

[d] = de
[c] = cde
[b] =
[a] = ace

φ

(c) Class cliques

a

c e c

d

e

(d) Derived Maximal Cliques

Figure 1.8: Maximal Clique Derivation from: V2 = {ab, ac, ae, bd, cd, ce, de}
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The decision between using Eclat or Clique is based upon the nature of the

dataset as the enumeration of maximal cliques can be computationally expen-

sive for dense datasets. As density increases prefix-based decomposition, Eclat

becomes more competitive. An extension to Eclat (dEclat) was subsequently pro-

posed by Zaki & Gouda (2001) that used the concept of diffsets (see Section 1.1.2)

to reduce memory requirements by only storing the differences in the tidList of

a candidate elementset from its generating elementset.

Partial Support Tree (Goulbourne, Coenen & Leng 2000) requires only a single

pass of a horizontally organised dataset, during which an enumeration-set tree

is dynamically constructed and support counts are partially calculated. Support

calculation is then completed using DFT. This algorithm is effective for tasks in

which |E| is small or where many duplicate objects exist. The tree is constructed

during the dataset scan by creating new nodes, in the appropriate location, for

each unique object. Dummy nodes are also inserted as required to maintain an

enumeration-set tree structure. During this process interim node counts are in-

cremented, resulting in a partial support calculation of each node σ̄(n) (Equation

1.8), where do is the support in D of the unique object o and the tree’s ordering is

lexicographic. Based upon σ̄(n) it becomes possible to compute support σ(n) by

appending to σ̄(n) the count of n’s participation within nodes lexicographically

proceeding n in the enumeration-set tree by using DFT (Equation 1.9).

σ̄(n) =
∑

do{∀o : o ⊆ n, o follows n} (1.8)

σ(n) = σ̄(n) +
∑

do{∀o : o ⊂ n, o precedes n} (1.9)

Hybrid Algorithms

Hybrid algorithms, those that combine both counting and intersection accrual

strategies, are based upon the premise that although counting is more effective

than intersection calculation for small κ, as κ increases intersection techniques

become more viable. This occurs as the cost of finding and accruing small κ

elementsets is less, in a hash-tree, than the cost of calculating the intersection of



REVIEW: ASSOCIATION ANALYSIS 38

large elementsets (i.e. if κ is small then generally |a.tidList| is large). However as

κ increases, hash-tree location becomes more expensive and intersection becomes

faster.

Based upon this premise (Agrawal & Srikant 1994) developed the first hybrid

approach, AprioriHybrid, which switches from counting to intersection accrual

when |Cκ| << |O|, using Apriori for counting accrual and AprioriTid for inter-

section accrual. This algorithm was subsequently optimised by Hipp, Guntzer &

Nakhaeizadeh (2000) and by Bodon (2003). Hipp et al. eliminating the need to

build a new structure upon organisation change. This was achieved by using a

hash-tree like structure containing pointers to tidList sets instead of counters, that

could then be used for both accrual techniques. While Bodon developed Apriori-

Brave, in which both delayed accrual and organisation switching are based upon

memory usage, furthermore the algorithm implements dataset pruning removing

invalid elements from the dataset.

Dynamic Counting & Intersect (DCI) (Orlando, Palmerini & Perego 2001a)

is an extension of DCP that switches to intersection accrual, from DCP’s direct

counting method, when the dataset is able to fit into memory. The technique

then transforms the dataset into vertical organisation and uses a κ-way intersec-

tion of the elementset’s participants to calculate elementset support. This was

adopted to reduce memory usage, as it requires the maintenance of V1 only, in-

stead of all Vκ−1 elementsets, which can require orders of magnitude more mem-

ory. From a processing perspective the κ-way intersection technique is more

expensive than 2-way intersection technique. This led to the development of the

set of computation optimisations, presented on the next page, that have shown

to be of significant benefit when many complex patterns are being discovered

due to inherent overheads. Therefore these optimisations are introduced only if

|Cκ| � |Ē| | Ē = E ∈ Cκ.

kDCI (Lucchese, Orlando, Palmerini, Perego & Silvestri 2003) subsequently

extends DCI by using density heuristics and efficient data structures in order

to adapt algorithm behaviour based upon dataset characteristics. Furthermore

a novel counting inference strategy is proposed based upon the concept of key

patterns, discussed in Section 1.3.1, through which an elementset’s support can be
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• Since Cκ is lexicographically ordered the number of intersections required

is reduced by caching intermediate intersections.

• As bit vectors are relatively sparse, speed up is achieved by skipping the runs

of 0’s, so that only vector segments containing 1’s are actually intersected

(similar to HBM).

• Dataset object pruning (column removal) is conducted when none of its

elements participate in Vκ, this is achieved by maintaining a bit vector

initialised to 0’s that is OR’ed with every discovered valid elementset. At

the end of the scan any element’s containing a 0 are deleted.

• When the vertical layout is created it is organised in increasing order of

support as the higher the frequency the greater the likelihood of the element

participating in Vκ where κ is large. Therefore as the section of the dataset

accessed shrinks, spatial locality is enhanced.

• During pruning the columns are re-ordered to increase the length of runs

of 0’s and 1’s to facilitate pruning based upon runs of 0’s.

inferred, alleviating accrual of some elementsets. The effectiveness of this strategy

is based upon the ratio of valid elementsets to key patterns a fact only known upon

computation completion. However the authors discovered that this effectiveness

metric can be derived from the average element support (after the first dataset

scan), providing early justification as to the benefit of applying counting inference.

VIPER (Shenoy et al. 2000) uses accrual to calculate V1 and V2, then changes

to an intersection based technique, storing elementsets in a compressed bit-vector

format called Snakes to minimise storage costs. Candidate generation is optimised

by incorporating equivalence-class concepts, grouping together all Vκ with a com-

mon κ − 1 prefix, from which Cκ+1 will be derived. By taking advantage of the

spatial locality of elementsets this technique allows simultaneous subset search,

reducing processing time. The accrual process incorporates delayed accrual by

creating a tree structure with leaf nodes Vκ and internal nodes containing super-

sets of these leaf elementsets. This structure is then used to propagate accrual,
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bottom-up, starting from the leaf elements to all relevant supersets in a single

dataset scan. Once complete, nodes with a count exceeding minsup are appended

to the relevant V . Furthermore the algorithm introduces techniques to minimise

the number and size of Snakes required and also deletes all Snakes created in

previous scans that are no longer required for future computation.

1.2.2 Pattern Growth Algorithms

In contrast to the more prolific candidate generation techniques, pattern growth

algorithms eliminate the need for candidate generation through the creation of

complex hyper-structures. Hyper-structure is a term used to describe the general

data storage structure used in pattern growth algorithms. The structure is com-

prised of two linked structures a pattern-frame and an element-list, which together

provide a concise representation of the relevant information contained within D.

The first stage of analysis populates the hyper-structure and, so long as the rep-

resentation can be maintained in memory, further dataset access is not required.

Subsequent mining involves DFT analysis of the pattern-frame, accessed through

the element-list. Figure 1.9 presents a sample tree form of hyper-structure, from

the FP-growth algorithm, illustrating the linkage between the element list and

pattern frame. However the nature of the hyper-structure is algorithm dependant,

varying in relation to the sub-structures and the underlying semantics.

c:1

Root

d:2

c:2

e:1

d
c
e

2
3
1

element list

pattern frame

Figure 1.9: Example Hyper-structure
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The fundamental pattern growth algorithm FP-Growth was proposed by Han

and Pei (2000) and uses a tree based pattern-frame (FP-Tree) and an associated

link structure (FP-Link) within the analysis process. FP-Tree construction begins

with the classic BFT calculation of V1, the contents of which are sorted in order

of descending support. A second dataset scan then reduces and reorders each

object to comply with the ordering of V1 and is inserted into the hyper-structure

(FP-structure) the result of which is presented in Figure 1.10.

Given a reduced and ordered object ō = {e1, e2, ..., en} its insertion into FP-

structure is recursive requiring a search and update process within FP-Tree and

then an update of FP-Link for each element in ō. FP-Tree insertion starts with

< being the active node and proceeds by checking the object’s first element (e1)

against the existing first level FP-nodes. If e1 does not exist, a new first level

FP-Tree node is created for e1, with a count of 1, else the existing nodes count is

incremented. The element e1, is then inserted into FP-Link in a similar manner,

creating if it does not exist and incrementing if it does. Finally a reference, if the

FP-tree node is new, is established between it and the FP-Link entry. Therefore

FP-Link maintains the total support of an element, and an FP-Tree maintains

the support of an element in a particular sequence.

The insertion recursively continues inserting each element from ō into the FP-

structure in a similar manner. This is achieved by removing e1 from ō and making

it the active node, thereby progressing down a level of the FP-Tree structure for

each element in ō until ō = ∅. This process is undertaken for each reduced and

ordered object, resulting in an effective representation through the common path

sharing of multiple objects. Due to path sharing within FP-Tree, the FP-structure

representation typically becomes more compressed (and therefore optimised) as

dataset density increases.

The subsequent mining process recursively constrains the FP-structure until

the resultant constrained FP-Tree contains a single path, at which point valid

elementsets are generated from the combinations of the set of participant ele-

ments. Each elementset’s support being that of the least frequent element in that

combination.
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Figure 1.10: FP-Growth: FP-Tree and FP-Link

Given a branched FP-Tree, a set of constrained FP-Trees are generated for

each participant elements, represented within FP-Link and processed from least

to most frequent. For each element a conditional pattern base is derived that

contains the prefix patterns of the specific element within the current FP-Tree.

This pattern base then replaces the current object set (ō) as the data source

for the constrained FP-structure. Subsequently the new FP-structures are built

from the conditional pattern base and then pruned removing any elements with

insufficient support.

For example, the FP-Tree in Figure 1.10 consists of many paths and therefore

conditional FP-structures are required to derived the valid elementsets. By pro-

cessing the FP-Link bottom-up the algorithm first generates the a-constrained

FP-structure, or a-struct (illustrated in Figure 1.11(a)). The conditional pattern

base of a-struct is based upon a’s prefix patterns in FP-Tree, {(dce : 1), (dc :

1), (c : 1)}, where the count relates to the co-occurrence of a with these ele-

mentsets within FP-Tree. After construction a-struct is pruned, removing all

elements with insufficient support, resulting in Figure 1.11(b).

As a-Tree is still branched, the constraint processes repeats. Starting with

element d, this results in an empty conditional pattern base and the derivation

of the elementset ad : 2. The next element, c is then processed resulting the

conditional pattern base {(d : 2)} and the elementset ac : 3. The ac-struct is then

generated resulting in ac-Tree that consists of a single node (d : 2). Since ac-Tree

has a single path, further constraint is not required and valid elementsets are

derived from all path combinations in union with the constraint set ac, resulting
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Figure 1.11: a-constrained FP-structures

in the generation of the elementset acd : 2. The valid elementsets therefore

generated in relation to a are {(a : 3), (ad : 3), (ac : 3), (acd : 2)}. The algorithm

recursively continues until FP-Link has been traversed.

FP-Growth has been shown to be effective in the mining of dense datasets

as the FP-structure concisely encapsulates valid element information. However

as the number of different elements, |E|, increases linearly, the size of FP-Tree

typically expands exponentially due to the reduced sharing of common prefixes,

reducing efficiency. To address this FP-growth* was proposed by Grahne & Zhu

(2003), which uses an additional array based structure to reduce the number

of tree traversals required during analysis. This array based structure saves on

general traversal times and enables the direct initialisation of the next level of

FP-Trees. However its instantiation is generally not warranted in dense datasets

or in the first levels of recursively constructed FP-Trees from sparse datasets as

they are based upon the most common prefixes available. Therefore a density

heuristic was devised to determine the benefit of constructing the array.

A top-down variation of FP-Growth (TD-FP-Growth) is proposed by Wang

et al. (2002) that alleviates the need to generate conditional pattern bases and

physical projections of the trie. The algorithm constructs the trie in a similar

fashion to FP-Growth, however it then processes the FP-List top-down, mining

through the recursive creation of conditional FP-Lists, which all refer to the global

FP-Tree.

H-Mine (Pei, Han & Lakshmanan 2001) extends the pattern growth concepts

introduced in FP-Growth, however an array based hyper-structure is used. Pop-

ulation of the hyper-structure occurs in a similar manner to FP-Growth with the
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first scan identifying V1 and the second creating the H-struct hyper-structure from

it. However if the constructed H-struct cannot fit into memory, D is partitioned,

in a similar manner to the Partition Algorithm, each of which is individually

analysed and subsequently consolidated.

The two parts of H-struct are the linked projected object set P and header

table H , relating to the pattern-frame and element-list respectively. Each p ∈ P

contains the valid elements of an object, derived from V1. The header table H

contains a list of the valid elements F and their counts. During construction all

P that begin with the same element are linked together in a queue, the head of

which resides in the header table H (Figure 1.12(a)).

Analysis is conducted through a traversal of H creating conditional H-structs

for each header element that is a queue head within P . This process is recursive,

progressively creating further constrained H-struct until it is empty. This process

is effectively the same as the DFT of an enumeration-set structure, where all Vκ

are identified at that level of constraint through analysis of the header table. This

analysis process is illustrated in Figure 1.12, with Figure 1.12(a) illustrating a

populated initial H-struct and Figure 1.12(b) presenting its constraint in relation

to element a.
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Figure 1.12: H-Mine data structure

From this the advantage of H-Mine over FP-Growth is apparent as the same

pattern-frame structure is used with semantics being changed through pointer

manipulation, rather than the creation of new constrained FP-structures required

in FP-Growth. Figure 1.12(b) presents a-struct from which valid elementsets
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containing a of length 2 are represented in H , resulting in ab : 3, ac : 2, ad : 2.

Analysis proceeds in this manner until all of H has been processed resulting in

the identification of V .

ITL-Mine (Gopalan & Sucahyo 2002) optimises H-Mine by requiring only a

single dataset scan, reducing I/O, and through the maintenance of a static set

of links in the hyper-structure. The single scan of D creates the underlying

structures, that are similar to H-struct, except that the header tables maintain

all elements not just those that occur first in any p ∈ P . This additional linkage

avoids the progressive recalculation of linkages during processing that is apparent

in H-Mine. After the first pass V1 is derived from the header counts and the

associated list structure is reduced by removing the invalid elements.

Subsequent analysis is recursive, for κ = 2 the analysis is prefix based, involv-

ing a traversal of P , during which a temporary structure, ITL-List, is created and

subsequently used in κ > 2 analysis. ITL-List initially contains those elements

that co-occur with the specified prefix element, their co-occurrence count and

relevant tidList. After generating V2 the tidLists of each elementset are available

in the temporary structure and hence, Vκ | κ > 2, that extend the designated

prefix can be recursively generated using intersection and ITL-List.

CT-ITL (Sucahyo & Gopalan 2003) extends ITL-mine by using a compressed

pattern framework structure to reduce storage space and traversal overheads,

although requiring two dataset scans it has shown to become more scalable than

ITL-Mine as dataset size increases. Based upon a reordered header structure built

during the first pass, the algorithm creates a compressed prefix tree, containing all

possible elementsets, based upon V1. This structure compresses the regular prefix

tree structure (Figure 1.3(b)) by storing identical sub-trees within a single set of

nodes and storing the additional required information within a node associated

array.

Given E = abcd, Figure 1.13 illustrates the resulting prefix structure. The

figure’s array structure (annotated with dashed structures to facilitate under-

standing) shows that each node array element maintains the count for a unique

elementset, with the array index specifying the tree level at which accrual for that

particular elementset begins. For example, given the node abc, the array consists
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Figure 1.13: CT-ITL compressed tree structure

of three elements indicating the counts for the elementsets abc, bc and c respec-

tively. The resulting compressed prefix structure is then populated by scanning

D and inserting all objects, which have been pruned so that all invalid elements

are removed, resulting in D̄. The tree then represents an object summary that is

used to create a similarly compressed projected object list structure.

Instead of representing each object as a row within P , as in H-Mine, com-

pressed ITL, derived from the compressed prefix-tree structure, is comprised of

the set of Maximal Object Sets (MOS) that encapsulate the required object infor-

mation. In a similar manner to the compressed tree, an associated array maintains

each MOS’s subset count, thereby maintaining the count of each unique object.

In this way the array index specifies the MOS element from which accrual oc-

curs, in order to produce the elementset to which the specific count refers. For

example, given the MOS abd the count associated with the second array element

refers to |o| | o = {b, d} ∧ o ∈ D̄. Subsequent mining is recursive and similar

to ITL-mine, however the temporary structure used and the intersection method

are slightly modified to accommodate summarised objects.

Opportunistic Projection (Liu, Pan, Wang & Han 2002) is a hybrid pattern

growth algorithm that extends the authors prior work, namely FP-Growth and

H-Mine. Mining occurs through the construction of FIST, a prefix tree with

associated counts. The algorithm constructs the tree using classical BFT and
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dataset reduction techniques until the data structures required for further mining

can be held in memory, from which point memory resident projection based

techniques are used.

Processing is based upon FP-Tree or H-struct, depending upon the density

of the projected transaction set PTS. For small κ, the PTS elements have less

chance of prefix sharing and hence relative support and density is low, however

as κ increases the size of PTS decreases and relative support increases. As noted

by the authors, FP-Tree compresses poorly in low relative support situations and

therefore is used for high κ, whilst H-struct, which has a linear growth, is a better

choice for small κ. PTS elements reduce quickly for small κ and therefore H-mine

filtering is incorporated whilst using H-struct. However PTS reduction slows as

κ increases, reducing the filtering benefit and making the creation of conditional

FP-Trees unwarranted. To reduce FP-Tree filtering costs, the algorithm intro-

duces the concept of Pseudo Projections, whereby the reduction factor can be

determined and only if warranted will a conditional FP-Tree be created.

COFI proposed by Osmar and El-Hajj (2003) uses the concept of Co-Occurrence

Frequent Item trees to provide an efficient pattern growth algorithm that uses

a top-down non-recursive technique. The algorithm first constructs structures

similar to FP-Growth, except that the FP-Tree is double-linked allowing for fast

traversal without recursion. Mining proceeds through the construction and analy-

sis of COFI trees, each of which is based upon a valid FP-Link element (processed

in order of ascending frequency). Each COFI tree is then mined independently,

without recursively building further constrained subtrees.

A COFI tree, based upon an element x, is constructed by traversing FP-Tree

for each element occurring after x in FP-Link, finding their level of co-occurrence

with x. If locally valid with respect to a the element is subsequently used in the

construction of x-COFI. Given the FP-Tree illustrated in Figure 1.10, subsequent

analysis (given a support of 4) results in the COFI trees presented in Figure

1.14, from which the similarity to constrained FP-Trees is evident. Each COFI

node consists of an element its occurrence in relation to the base element and a

participatory count used in subsequent mining.
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Each COFI tree is sequentially constructed, mined if locally valid elements

exist and discarded before the invocation of the next COFI tree, minimising

memory usage. This mining process is discussed in respect to Figure 1.15, which

is based upon e-COFI (Figure 1.14(c)). Processing occurs in descending FP-Link

frequency order, where each element’s link list is traversed and each participant

branch analysed separately. The first step (Figure 1.15(a)) therefore involves

analysis of the branch ECD from element D, where the frequency of a branch

is the frequency value less the participation of the specific element, therefore the

frequency of ECD is 3. The participation values of all nodes in the branch are

incremented by 3 and all sub-patterns of the branch are generated with the same

frequency value.
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Figure 1.14: COFI trees based upon FP-Tree in Figure 1.10
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Figure 1.15: COFI tree mining based upon e-COFI in Figure 1.14

In Figure 1.15(b) the branch ED is analysed, as this elementset already exists,

it’s count is consequently updated (ED : 5) and the participation count of D in

branch ED updated. Figure 1.15(c) presents the analysis of branch EC which

has a frequency value of 1 and already exists, resulting in EC = 4. e-COFI is then

complete resulting in the generation of the elementsets {ECD : 3, EC : 4 ED : 5}

and the next COFI tree can then be constructed and mined. COFI results in the
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accurate generation of all valid elementsets, while using less memory than FP-

Growth due to it’s non-recursive analysis process.

PatriciaMine (Pietracaprina & Zandolin 2003) proposes the use of a com-

pressed trie, known as a Patricia trie, to alleviate the need to swap between

trie and array based data structures based upon dataset density as proposed in

H-mine and Opportunistic Projection. This single structure maintenance elim-

inates the need to switch between structures significantly reducing processing

overheads. Furthermore, it is claimed that the compression technique used re-

sults in a structure comparable (with regard to size) with array based structures

in the presence of sparse datasets.
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Figure 1.16: Patricia Trie example from Pietracaprina & Zandolin (2003)

A Patricia trie is a modification of a regular trie in which each maximal chain

of nodes that have a common count (support) are coalesced into a single node

that inherits the count and stores the elements in the same sequence, Figure 1.16

illustrates this through a common dataset representation using both a regular

and Patricia trie.

The implementation of PatriciaMine also incorporates the constraint of phys-

ical projections in a similar manner to Opportunistic Projection and uses novel

mechanisms to directly generate groups of elementsets supported by the same

transaction subset.
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Table 1.1: Summary of Classic Algorithms

Name Author Year Org. Structure Scans Contribution

Candidate generation algorithms: Merge based or BFT

AIS Agrawal 1993 HL - k First association mining algorithm

SETM Houtsma & Swami 1993 HL - k Merge & count

Apriori Agrawal & Srikant 1994 HL Hashtree k DCP

OCD Mannila etal. 1994 HL Hashtree k Merge operators

ApriorTID Agrawal & Srikant 1994 VL Hashtree 1 TID

Apriori ext Agrawal & Srikant 1994 HL Hashtree ≤ k Delayed accrual

Partition Savasere et al. 1995 VL Hashtree ≤ 2 Partitioning

SPINC Mueller 1995 - - ≤ 2 Partitioning & Incremental candidate con-

struction optimisation

DLG Yen & Chen 1996 VV Graph ≤ k Association graph

DIC Brin et al. 1997 HL Hashtree ≤ k Partitioning & checkpoints

DHP Park et al. 1997 HL Hashtree k Possible frequent elementsets & delayed

accrual

AS-CPA Lin & Dunham 1998 - - ≤ 2 Partitioning & Anti-skew

NBM Gardarin et al. 1998 VV - k Indexing

HBM Gardarin et al. 1998 VV - k Second level indexing

ColumnWise Dunkel & Soparker 1999 HV - k Column based intersections

PHP Ozel & Guvenir 2001 HL Hashtree k Perfect hashing

DCP Orlando et al. 2001 HL Hyper k Dataset pruning
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Table 1.1: Summary of Classic Algorithms (continued)

Name Author Year Org. Structure Scans Contribution

Candidate generation algorithms: Extension based or DFT

Eclat Zaki 1997 VV Lattice 2 Prefix-based equivalence relations

Clique Zaki 1997 VV Lattice 2 Maximal cliques

AprClique Zaki 1997 HV Lattice 2 Maximal cliques

Tree Projection Agrawal et al. 1999 HL Trie 1 Projection, matrix accrual & BFT and Hy-

brid versions.

Apriori-df Pijls 1999 VV Trie V1 − 1 DFT trie construction

Depth Project Agrawal et al. 2000 VV Trie 1 Novel accrual techniques

Part. Sup. Tree Goulbourne et al. 2000 HL Trie 1 Novel accrual

dEclat Zaki & Gouda 2001 VV Lattice 2 Inclusion of diffsets

Candidate generation algorithms: Hybrid

AprioriHybrid Agrawal & Srikant 1994 HL⇒VL Hashtree < k

Hybrid Hipp et al. 2000 HL Hashtree < k Improved strategy switching

VIPER Shenoy et al. 2000 HL⇒VV Hyper < k Compression

DCI Orlando et al. 2001 HL⇒VV Hyper < k Reduced memory useage

kDCI Lucchese et al. 2003 HL⇒VV Hyper < k Adaptive algorithm behaviour

Apriori-Brave Bodon 2003 HL⇒VL Trie < k Reduced Storage & memory management
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Table 1.1: Summary of Classic Algorithms (continued)

Name Author Year Org. Structure Scans Contribution

Pattern Growth Algorithms

FP-Growth Han & Pe 2000 HL Hyper 2 Trie based

H-Mine Pei et al. 2001 HL Hyper 2 Array based & partitioning

TD-FP-Growth Wang et al 2002 HL Hyper 2 Top down processing

ITL-Mine Gopalan & Sucahyo 2002 HL Hyper 1

Opp. Projection Liu et al. 2002 HL Hyper 2 Hybrid: FP-growth & H-Mine

FP-Growth* Grahne & Zhu 2003 HL Hyper 2 Traversal reduction for sparse datasets

CT-ITL Gopalan & Sucahyo 2003 HL Hyper 2 Compressed structures

COFI Osmar & El-Hajj 2003 HL Hyper 2 Co-occurence Frequent Itemset trees

PatriciaMine Pietracaprina & Zandolin 2003 HL Hyper 2 Patricia trie
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1.3 Specialised Algorithms

In conjunction with classic elementset identification algorithms, significant re-

search has been undertaken into variations that attempt to improve the quality

of results either by facilitating user interpretation or by incorporating domain

knowledge. There are four prominent areas of specialisation research that this

section provides a survey of: 1) condensed representations, 2) incomplete sets, 3)

semantic inclusion and 4) incremental mining.

Condensed representation and incomplete set algorithms improve mining time

and reduce result set size improving usability. Condensed representation algo-

rithms produce a reduced result set from which the complete set of valid ele-

mentsets can be derived. Incomplete set algorithms produce a reduced result set

that can provide useful (although incomplete) information about dataset infer-

ences. Semantic inclusion focuses upon incorporating domain knowledge within

the analysis process to improve the result usefulness.

1.3.1 Condensed Representation Algorithms

Condensed representation algorithms produce a reduced result set from which

all valid elementsets can be derived. There are four techniques used to produce

condensed representations: closed sets, counting inference, deduction rules and

freesets.

Closed Elementset Algorithms

Closed elementset algorithms identify a subset of valid elementsets from which

all valid elementsets can be derived without further mining. The theoretical

foundation of closed elementset algorithms is based upon the closure of the Galois

connection (Ganter & Wille 1999), in which a closed pattern is the largest pattern

common to a set of objects within D. All non-closed patterns have the same

critical properties (in this case support) as its closure, which is the smallest closed

pattern containing it.
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The closure of an elementset a, denoted cl(a) is then the smallest closed pattern

containing a. Given that g(o) is the set of elements common to all object in

o | o ⊂ O and f(a) is the tidList of all elements in a. The closure of any elementset

a is then found by constructing the set of objects in which the elementset a

appears in f(a) and from this calculating the set of elements ā that are common

to all objects in f(a) by applying g(f(a)). From this ā must be the closure of a

as g(f(a)) = ā = cl(a), as it identifies the set of elements that always occur with

a, hence ā ⊇ a and σ(ā) = σ(a).

The following algorithms discover the closed set of valid elementsets, Cl within

D using a variety of techniques, from which V can be derived. The inclusion of

closure constraints optimise analysis through search space reduction, especially

for highly correlated datasets.

The derivation of V from Cl is simple, however since Cl implies V the genera-

tion and presentation of closed rules may facilitate user interpretation due to the

reduced number. Closed rules, proposed independantly by (Pasquier, Bastide,

Taouil & Lakhal 1999b) and (Zaki & Ogihara 1998), are a reduced set of infer-

ences derived from Cl, where given a closed elementset a, an inference r is of the

form x ⇒ a−x | x ⊂ a ∧ a ∈ Cl ∧ x ∈ Cl the confidence of which, γ(σ(a)/σ(x)),

is available.

A-Close (Pasquier et al. 1999b) uses a candidate generation BFT approach

consisting of two stages, generator set discovery and closed set derivation. The

generator set (G) is constructed in regular Apriori fashion however it incorporates

additional pruning such that if a Gi
κ+1 has the same support as any of its κ subsets,

then based upon the Galois connection it has the same closure and is removed

from Gκ+1. Therefore G contains all locally closed sets.

The second stage calculates the global closure of each generator by performing

an intersection of all objects in which the generator occurs. Figure 1.17 illustrates

the identification of G1 and G2 with pruned elementsets, due to infrequency and

subset support equivalency, crossed out. The rightmost table presents the final

closed set Cl that identifies all global closed elementsets.
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A preceding algorithm Close (Pasquier, Bastide, Taouil & Lakhal 1999c) iden-

tifies the closed elementset for each generator as it is discovered, instead separat-

ing out global identification. However apparently A-Close is more efficient upon

dense datasets.
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Figure 1.17: A-Close Process diagram (Pasquier et al. 1999b)

CLOSET (Pei, Han & Mao 2000) is based upon pattern growth concepts and

uses similar data structures and processes as described in FP-Growth, however it

uses introduces additional pruning techniques to discover only the set of closed

elementsets (CL). This subsumption testing ensures that a new valid elementset

is only appended to Cl if it is not subsumed by an existing member, while candi-

dates cannot subsume existing members due to the bottom-up order of processing

implemented within FP-Growth. Furthermore CLOSET facilitates closed set dis-

covery through the inclusion of two process reduction techniques that result in

search space reduction based upon closed set characteristics, presented below.

• Given a (a)-constrained dataset Da, if an element or elementset ,b, appears

in all Da objects then the closure of a ∪ b will subsume the closure of a.

Therefore b is removed from Da and appended to the constraint, therefore

Da becomes Da∪b.

• Given a valid closed set a and the subsequent discovery of a closed ele-

mentset b such that a subsumes b then Db is not processed as any resultant

closed elementsets will be subsumed by a.
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Subsequent extensions to CLOSET have been proposed in CLOSET+ (Wang,

Han & Pei 2003) and FPClose (Grahne & Zhu 2003a). CLOSET+ introduces

a hybrid tree projection method, incorporates item (or element) skipping and

proposes two efficient subset-checking structures. The hybrid tree projection

method proposes the use of a top-down pseudo-projection technique in the case

of sparse datasets, through which the FP-Tree is not physically replicated for

each conditional base. Item skipping prunes the search space by recognising

that if an element has the same support in different conditional FP-Lists then

that element can be removed from consideration in the higher level FP-Lists.

FPClose extends CLOSET through the creation of a local Closed Frequent Set

trees (CFI-tree) for each conditional FP-Tree. Therefore instead of performing

global subset checking, local checking is performed first, significantly reducing

subset testing in large datasets (see FPMax*, Section 1.3.2).

1. If o(a) = o(b) | a ∩ b = ∅ then cl(a) = cl(b) = cl(a ∪ b). This implies that

all occurrences of a can be replaced with a ∪ b and b can be removed from

further consideration as its closure cl(b) = cl(a ∪ b).

2. If o(a) ⊂ o(b) then cl(a) 6= cl(b) but cl(a) = cl(a ∪ b) implies similar

replacement, however as cl(b) 6= cl(a), b cannot be removed from further

consideration.

3. If o(a) ⊃ o(b) then cl(a) 6= cl(b) but cl(b) = cl(a∪b), the inverse of Property

2 is true in which b is replaced by a ∪ b instead of a, but a is not removed

from consideration.

4. If o(a) 6= o(b) then cl(a) 6= cl(b) 6= cl(a ∪ b), indicates that both a and b

lead to different closures and hence no replacement occurs.

CHARM (Zaki & Hsiao 2002) is similar to CLOSET in its general approach,

however it uses an enumeration-set tree and the concept of equivalence classes

introduced in Eclat (Section 1.2.1). Where two elementsets belong to the same

κ equivalence class if they share a common |κ| prefix. CHARM extends Eclat to

discover only closed elementsets, through the introduction of a set of closure prop-
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erties that are presented above where o(a) indicates the set of objects containing

elementset a. Where properties 1 and 2 result in equivalence class reduction and

hence facilitate closed-set convergence, whilst 3 and 4 result in new equivalence

class information that generally requires additional processing. The inclusion of

these properties within Eclat based processing occurs after the discovery of a new

valid elementset a, whereby the closure properties are then applied to control a’s

influence upon the generation of the closed-set equivalence class lattice.

Counting Inference

Counting inference (Bastide, Taouil, Pasquier, Stumme & Lakhal 2000) (imple-

mented as PASCAL, an Apriori extension) is based upon the observation that

elementsets can be considered equivalent if they are included in the same set of

objects, referred to as a class. Mining can then be reduced to the identification

and validation (support) of the set of Key Patterns, where a Key Pattern is a

minimal elementset within a class from which the validity (support) of all other

elementsets can be inferred. A pattern can only be a Key Pattern if all its sub-

sets are Key Patterns, that is, no subset belongs to the same equivalence class.

This theory leads to two analysis optimisations, especially in highly correlated

datasets (presented below).

• Only the Key Patterns need to be considered during each dataset scan as

non-key elementset support is equal to the minimum support of its κ − 1

subsets.

• The number of dataset scans will often be reduced because the set of Key

Patterns is often found before the last iteration because if a single κ − 1

subset of a candidate elementset is non-key then the elementset is non-key,

hence from a certain level all elementsets may be known to be non-key and

therefore can be derived from subsets without requiring another dataset

scan.
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Deduction Rules

Calders and Goethals (2002) concisely represent the set of valid elementsets

through a set of deduction rules using the mathematical inclusion-exclusion prin-

ciple. The rules are used to derive tight bounds on the support of an elementset

given that the support of its subsets are known. The concise representation used

is the set of valid elementsets whose support cannot be derived, the set of non-

derivable elementsets, from the deductive rules. All other rules can be derived

from these without scanning the dataset.

The implementation used extends Apriori, incorporating deductive rules to

eliminate from consideration those elementsets whose support can be deduced,

resulting in less mining time and a more concise result set of all non-derivable

elementsets. From this result set, the support of all other valid elementsets can

be found by using deductive rules. The algorithm also includes optimisations to

calculate the complete set of valid elementsets.

Free-sets

Disjunction free-sets (Bykowski & Rigotti 2001) is a condensed representation

based upon the theory of disjunction. A disjunctive rule is founded upon the

concept that given elementset A = {abcd}, then σ(A) can be derived from σ(ab),

σ(a, b, c) and σ(abd) as the sum of σ(A) and σ(ab) is equal to the sum of σ(abc) and

σ(abd), given that ab does not exist in D without either c or d. The calculation

of σ(a) can therefore be derived from the support of these particular subsets,

given the presence constraint, without scanning D, and is thus referred to as a

non-disjunction free-set as it can be calculated from disjunctions. Hence mining

is reduced to discovery of the set of disjunction free-sets within the search space,

where disjunction free-sets also display non-monotonicity in that if an elementset

is a not disjunction free then no superset of it will be either.

By using the discovered disjunction-free sets in conjunction with the nega-

tive border set, which consists of the smallest elementsets that are not valid

disjunction-freesets, the validity of any elementset can be derived without scan-

ning the dataset. The authors implement both DFT and BFT implementations

of the algorithm and claim it superior to closed-sets.
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δ-Freesets (Boulicant, Bykowski & Rigotti 2001) provide a condensed repre-

sentation from which the support of any valid elementset can be closely approx-

imated. The level of approximation is shown to be acceptable for many mining

tasks and the trade-off against mining time advantageous. A δ-Freeset is an ele-

mentset such that its participant elements cannot be used to form a strong rule,

where strength is a user defined metric (δ). For example, given elementset abc if

ab ⇒ c is a strong rule (it holds with less than δ exceptions), then σ(abc) can be

approximated using σ(ab). δ-Freesets are also anti-monotonic as if an elementset

A is not a δ-Freeset then B is not either given that B ⊃ A.

The implementation, MineEx, is an Apriori based extension, constraining re-

sults to those elementsets that are δ-Free. Once analysis is complete any ele-

mentset’s validity can be approximated by finding the smallest support amongst

its valid δ-free subsets.

1.3.2 Incomplete Set Algorithms

Incomplete set algorithms reduce analysis by only discovering incomplete informa-

tion about the complete set of valid itemsets within D. There are two significant

types of incomplete set algorithms: sampling and maximal valid sets. Sampling

algorithms analyse only a portion of the dataset and Maximal Frequent Set algo-

rithms (MFS) identify only those valid elementsets, for which no valid supersets

exist. Therefore sampling works by reducing |D| and MFS works through the

introduction of new pruning strategies. 1

Maximal Frequent Set Algorithms

Maximal Frequent Set (MFS) algorithms identify all elementsets within D for

which no valid supersets exist. Therefore although the result set implies all valid

1While MFS relates to the inclusion of the support heuristic (Frequent), the pruning strate-

gies employed are generically applicable to any analysis that incorporates non-monotonic heuris-

tics. However due to general usage this algorithmic group will be referred to as MFS instead

of maximal valid sets, which is more correct given the broader range on heuristics that can

actually be applied.
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Upward Closure Principle (UCP) (Bayardo 1998) Given a valid element-

set A with a set of possible extensions B, if the elementset C | C = A ∪ B

is valid then C becomes the terminal MFS of A and no further exploration

of A’s supersets is required.

Superset Checking (Bayardo 1998) An extension of UCP that avoids direct

counting of A, by checking if A is subsumed by or is a subset of an existing

MFS, if so no further exploration of A’s supersets is required.

Parent Equivalence Pruning (Burdick, Calimlim & Gehrke 2001)

Given an extension based analysis algorithm incorporating dataset projec-

tion, then for each child elementset generated in the enumeration-set tree,

the projected object set is compared with that of its parent. If they match,

the child can replace the parent node.

elementsets through the identification of the search space boundary, the actual

support and hence inference strength of internal elementsets (those within the

search space boundary) remain unknown. The implementation of MFS algorithms

result in reduced analysis time because MFS properties enable the inclusion of

additional pruning strategies (presented on the next page) that facilitate search

space reduction.

Maxminer (Bayardo 1998) extends Apriori through the inclusion of UCP and

subsumption testing to derive the set of maximal frequent sets. Furthermore

MaxMiner is underpinned by an an enumeration-set tree instead of a hash-tree,

within which elements are dynamically sorted in order of increasing support.

Pincer Search (Lin & Kedem 1998) also extends Apriori through the intro-

duction of a bi-directional search that has proven efficient in the discovery of

long maximal valid elementsets. The algorithm uses a typical Apriori bottom-up

search, but extends it by incorporating additional pruning through the use of

a Maximal Frequent Candidate Sets (MFCS) that approaches the valid search

space border and hence the discovery of MFS from the top-down.
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Given that initially MFCS contains a single elementset of the union of all

elements, analysis proceeds by iteratively generating the next bottom-up valid

set Vκ, refining MFCS and then pruning Vκ, or Vκ+1 candidates, based upon

those members of MFCS determined valid. For example, given E = {a, b, c, d, e}

and V1 = {a, b, d, e} then MFCS is refined, ensuring that no member of MFCS

is a superset of an invalid elementset, which is provided by V̄κ | V̄κ = Cκ − Vκ.

Therefore MFCS1 = {abde} as element c is determined invalid. The refined

members of MFCS are then validated, those found valid are MFS and all subsets

within Cκ+1 are removed from further consideration. Therefore if {abde} is found

valid, then through pruning V1 = ∅ and {abde} is identified as the only MFS.

This process of MFCS refinement and Cκ+1 pruning greatly reduces |C| and

facilitates MFS convergence, however in some cases it can be pre-emptive and

recovery of some candidates may be required. The recovery process is achieved

by creating additional Cκ+1’s for each MFCS member, where it is a superset of

the κ − 1 prefix of a V i
κ . Given this, a new candidate is created by merging each

element in the MFCS that occurs after the last element of the κ−1 prefix with the

κ − 1 prefix. Once recovery has been undertaken regular Pincer Search analysis

continues with the derivation of Vκ+1.

Max-Eclat and Max-Clique (Zaki, Parthasarathy, Ogihara & Li 1997, Zaki

2000b) are based upon the Eclat and Clique algorithms (Section 1.2.1), however,

by using either a DFT or hybrid, DFT-BFT, approach, all MFS are efficiently

identified. Using DFT, processing of each decomposed lattice begins with the

identified potential maximal elementset, whose validity (support) is determined

from tidList intersection. If valid, the processing of that lattice is complete,

otherwise each lattice subset is checked at the next level of decomposition until all

maximal valid elementsets have been identified. The benefit of Max-Clique over

Max-Eclat is that the identified potential maximal elementsets are more refined,

as maximal cliques identify smaller sub-lattices than the equivalence class method

used within Eclat. Hence less traversal is often required to discover all MFS using

Max-Clique.

The Hybrid traversal search is based upon the concept that the greater the

support of a valid elementset the more likely it is to be part of a longer valid
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elementset. The sub-lattice elementsets are placed in descending frequency order,

the hybrid phase then intersects the elementsets individually, stopping when an

extension becomes invalid, identifying that sub-lattice’s MFS. The benefit of this

technique is that each extension only requires a two-way Tidlist intersection.

However in both techniques the search space is not global and hence some of the

discovered MFS may not be globally maximal; hence some post-processing may

be required.

All-MFS (Gunopulos, Mannila & Saluja 1997) performs random walks within

an enumeration-set tree to discover MFS. A walk starts with an initial elementset

and subsequently extends using random element selection from those elements

that lexicographically occur after the previously selected (extension) element.

Each extension is subsequently validated using Tidlist intersection and, if invalid,

a MFS has been discovered.

Analysis proceeds by deriving V1 and removing from D all invalid elements.

After a specified number of walks All-MFS calculates the set of Minimal Orthog-

onal Elements (MOE) or those elements that are not subsets of discovered MFS.

MOE’s are then used as the starting points for a set of random walks. Although

All-MFS cannot guarantee the discovery of all MFS it does find a large portion

of them.

Mafia (Burdick et al. 2001) extends DepthProject (Agrawal et al. 2000) (see

Section 1.2.1) through the use of Superset Checking and Parent Equivalency Prun-

ing to discover the set of MFI’s. While GenMax (Gouda & Zaki 2001) takes a

novel approach to maximality testing denoted progressive focusing where valid el-

ementsets are first tested against a locally maintained set of MFI’s (LMFI). Most

non-maximal valid elementsets are discovered using the local testing therefore

reducing the number of subset tests required. Furthermore GenMax also uses

diffsets (See Section 1.1.2), which become more effective as density increases.

FPMax (Grahne & Zhu 2003b) provides an MFI version of FP-Growth, which

uses superset checking to construct a axillary MFI-Tree. The algorithm proceeds

in a similar fashion to FP-Growth beginning with the initial construction of a

FP-Tree and FP-List, however subsequent conditional FP-Tree processing is only

conducted where the conditional head together with all valid elements in the head-
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conditional pattern base (tail) is not a subset of an existing MFI, stored within

MFI-Tree. If it is not subsumed the conditional FP-Tree is constructed and if

only consisting of a single path is appended to MFI-Tree. Analysis proceeds

as for FP-Tree, incorporating superset checking optimisations based upon FP-

structure and processing idiosyncrasies with the final set of MFI’s represented in

the MFI-Tree.

FPMax* (Grahne & Zhu 2003a) extends FPMax through the inclusion of pro-

gressive focusing (as introduced in GenMax) resulting in the maintenance of local

MFI-Tree’s and reducing subset testing in large datasets. Furthermore, additional

subset testing and processing optimisations are implemented based upon the na-

ture of the conditional-base tail.

Sampling Based Algorithms

Sampling based algorithms are based upon the premise that approximate answers

often suffice and therefore adequate answers can be obtained by mining a lossy

compressed representation of the data. The sampling approach addresses the

issue of scalability by only analysing a representative subset of D. Work in the

associated field of approximate aggregation (Gibbons 2001, Choudhuri, Datar,

Motwani & Narasayya 2001) has shown that the benefits of sampling are improved

when the sample selection is guided by the user, hence improving its relevancy

to the current problem.

The main issue in developing sampling techniques is to maximise the extent

to which the sample reflects the generic characteristics of D while maintaining

efficiency through sample size constraint. A trade-off is therefore apparent be-

tween accuracy and efficiency in naive sampling, a formal discussion of which is

presented in (Kivinen & Mannila 1994). Both OCD (Mannila et al. 1994) and

AS-CPA (Lin & Dunham 1998) (see Section 1.2.1) propose naive sampling exten-

sions to their classic algorithms. However the following algorithms go further by

attempting to reduce the errors resulting from naive sample selection.

Toivonen (1996) introduces a sample based analysis technique that typically

only requires a single scan of D to discover all elementsets. The algorithm first

uses a random sample and a reduced validity threshold in an attempt to calculate
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the superset of valid elementsets within D. Based upon this, the subsequent

completion of the D scan is used to discover the true set of valid elementsets.

The FAST sampling algorithm (Chen, Haas & Scheuermann 2002), attempts

to reduce sampling errors by introducing a two-stage sampling technique. The

first stage quickly estimates the validity of each element within D through the

use of a large initial sample. The second stage derives from this a smaller sample

set, within which each element’s validity closely represents its validity within D.

By calculating element validity based upon a large sample size in the first stage,

it is proposed that the derived valid elementsets in the second stage will be close

to the actual set of valid elementsets.
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Table 1.2: Summary of Condensed Representation & Incomplete Algorithms

Name Author Year Base Principle Contribution

Condensed Representation Algorithms

Close Pasquier et al. 1999 Apriori Closed Sets Galois Connection

A-Close Pasquier et al. 1999 Close Closed Set

CLOSET Pei et al. 2000 FP-Growth Closed Set

PASCAL Bastide et al. 2000 Apriori Counting Inference

MinEx Boulicant et al. 2001 Apriori δ-free sets

HLinEx Bykowski & Rigotti 2001 Apriori Disjunction free sets

VLinEx Bykowski & Rigotti 2001 Depth Project Disjunction free sets

CHARM Zaki & Hsiao 2002 Eclat Closed Set

NDI Calders & Goethals 2002 Apriori Deduction rules

CLOSET+ Wang et al. 2003 CLOSET Closed Set Hybrid tree projection, item skip-

ping & efficient subset-checking

structures

FPClose Grahne & Zhu 2003 CLOSET Closed Set Optimised subset testing
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Table 1.2: Summary of Condensed Representation & Incomplete Algorithms (continued).

Name Author Year Base Principle Contribution

Incomplete Set Algorithms

OCD Mannila et al. 1994 OCD Sampling Naive extension

- Toivonen 1996 Partition Sampling Negative border

All-MFS Gunopulos et al 1997 Depth Project MFS Random walks

MaxMiner Bayardo 1998 Apriori MFS Upward Closure Principle

Pincer Search Lin & Kedem 1998 Apriori MFS Bi-directional search

A-CPA Lin & Dunham 1998 AS-CPA sampling Naive extension

Max-eclat Zaki et al. 2000 Eclat MFS

Max-clique Zaki et al. 2000 Clique MFS

MAFIA Burdick et al. 2001 Depth Project MFS Accrual optimisation

GenMax Gouda & Zaki 2001 Depth Project MFS Progressive focusing & diffsets

FAST Chen et al. 2002 - sampling Two-phase sampling technique

FPMax Grahne & Zhu 2003 FP-Growth MFS

FPMax* Grahne & Zhu 2003 FPMax FP-Growth Progressive focusing & Optimised

subset testing
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1.3.3 Accommodating Domain Knowledge

The incorporation of domain knowledge or semantic information within valid ele-

mentset identification can significantly improve the quality of results through the

supplement of pertinent information. There are four common types of semantics

embedded within association analysis that are discussed within this review; hi-

erarchical, temporal, spatial and privacy. While privacy semantics are generally

incorporated within the dataset at a pre-processing stage, the other types require

the inclusion of additional datasets or semantically supplemented datasets within

analysis.

Hierarchical

The inclusion of hierarchical semantics within elementset identification enables

the discovery of the inferences at different levels of concept abstraction as supplied

by a defined concept hierarchy. A concept hierarchy provides a representation of

a hierarchical grouping of items within a system. For example, according to the

example hierarchy shown in Figure 1, Whiskey is a child of Alcohol, which in turn

is classified as a Drink. However for any set of elements it is possible to define

many different concept hierarchies. For example, Cocoa could be classified as a

Chocolate as well as a PowderedProduct.

The incorporation of concept hierarchies or hierarchical semantics within asso-

ciation mining results in the production of generalised inferences, which provides

two main benefits. Firstly, generalised inferences minimise information loss that

results from increasing the support threshold and secondly they facilitate inter-

pretation of the associations within the inference set.

For example, given σ(x), the valid elementset [Whiskey,Lemonade] is discov-

ered, resulting in the inference Whiskey ⇒ Lemonade. However by increasing

the support threshold to σ(x + ε), the elementset becomes invalid and is there-

fore excluded from consideration. The inclusion of a concept hierarchy allows

the consideration of elementsets derived from different levels of abstraction, such

as [Whiskey, Soft Drink ] from which inferences such as Whiskey ⇒ Soft Drink

can be derived given that σ(Whiskey, Soft Drink)≥ max{σ(Whiskey, Lemon-
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ade), σ(Whiskey, Cola), σ(Whiskey,Ginger Beer)}. This elementset containing

an abstract concept, although introducing a degree of uncertainty, implies that

inferences may exist between the implied elements, such as Whiskey ⇒ Lemon-

ade, that did not meet the validity threshold. Therefore the information loss that

occurs through increasing the support threshold is reduced through the inclusion

of hierarchical semantics.

Hierarchical semantics can also facilitate result interpretation by presenting

inferences that incorporate abstract concepts as defined by the concept hierarchy.

This additional dimension produces inferences between groups of elements that

may be of greater interest than inferences of a more specific nature. For example,

within a particular mining session generalised inferences such as Alcohol ⇒ Soft

Drink σ(84%) may be more interesting to a marketing department than more

specific inferences such as Whiskey ⇒ Lemonade σ(56%).

Hierarchical association algorithms have been an area of research since 1994

when Han and Fu introduced the concept of the dynamic generation of concept

hierarchies for knowledge discovery (Han & Fu 1994). The following year they

also presented a series of algorithms for hierarchical mining known as the ML-T*

family (Han & Fu 1995).

These algorithms were mainly concerned with intra-level mining, or mining

within concept levels only, however this research did provide an algorithm for

inter-level mining known as ML-T2. This algorithm incorporates the hierarchical

semantics within D, so that each element is replaced with its hierarchical posi-

tion. For example, the element Whiskey in Figure 1 would be replaced by the

hierarchical element Drink-Alcohol-Whiskey. This integration of D and the con-

cept hierarchy before analysis, reduced I/O and simplified analysis by locating

all required information within a single source.

Subsequent analysis is based upon Apriori extensions. The algorithm begins

by discovering the valid elements, V1, relating to the first hierarchical level and

then progressively deepening the level of hierarchical inclusion. The discovery of

valid elementsets involving different level concepts occurs during the creation of

V2, by deriving V2 from n concepts at all levels of abstraction. Derivation of the

rest of V is based upon typical Apriori analysis.
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Subsequent algorithms include work by Srikant and Agrawal (1997), Hipp et

al. (1998), Thomas and Sarawagi (1998), Mao (2001), Ong et al. (2001) and

(Ceglar, Roddick, Calder & Rainsford 2004). Srikant and Agrawal devised the

algorithms Basic, Cumulate, Stratify, Estimate and Estmerge that extend the

Apriori algorithm. Basic appends the generalised element concepts to each ob-

ject in D, and then treats all elements the same way during Apriori processing.

Cumulate improves this by filtering out redundant candidate elementsets con-

taining an element as well as its ancestors. Stratify uses the hierarchy during

processing to optimise pruning during candidate generation, by ensuring that the

more generalised candidate sets, Ci, are processed first. This is achieved by asso-

ciating each Ci with a concept depth and performing a scan of D for each concept

level in increasing order. If an elementset is found invalid then its hierarchical

descendant elementsets are removed from consideration. The Estimate and Est-

merge algorithms extend the previous algorithms by incorporating sampling to

estimate the support of candidates.

HND and HPtid (Ceglar et al. 2004) (see Appendix A) and Prutax (Hipp et al.

1998) are also based upon the Apriori algorithms but allow the dynamic genera-

tion of inferences as the elementsets are discovered. HND also provides variable

support enabling the user to vary the support threshold across hierarchical lev-

els, while HPtid and Prutax both use vertical dataset organisation. Furthermore,

HPtid provides an effective technique for prioritised mining, allowing the user to

specify elementsets of greater interest that they would like explored first.

Most hierarchical mining algorithms are based upon Apriori. However,

Thomas and Sarawagi (1998) have devised techniques that accomplish analysis

through the SQL querying of databases with incorporated hierarchical seman-

tics. Recently, Mao (2001) and Ong et al. (2001) have developed hierarchical

algorithms based upon the FP-Growth algorithm (Han, Pei & Yin 2000).

Spatial

The inclusion of spatial semantics allows the discovery of inferences between spa-

tially and possibly non-spatially bound objects, enabling the implication of spa-

tial connotations between elementsets. Examples of spatial connotations include



REVIEW: ASSOCIATION ANALYSIS 70

Figure 1.18: Topological Hierarchy (Koperski & Han 1995)

topology (intersect, above), orientation (west of, left of ) and distance (close to).

Therefore given a discovered inference, the inclusion of spatial semantics results

in the derivation of possibly multiple spatial inferences.

The seminal research into spatial inclusion was undertaken by Koperski & Han

(1995) who proposed an Apriori extension that accommodated spatial semantics.

The algorithm requires as input, a spatial dataset and a set of concept hierarchies.

The spatial dataset contains a set of spatial objects with possibly additional non-

spatial objects, where the spatial component refers to the object’s existence within

a geographic map, for example point or area. The inclusion of pre-defined concept

hierarchies of both spatial and non-spatial attributes optimises the analysis by

providing generalised concepts. An example topological hierarchy is illustrated in

Figure 1.18. The subsequent analysis contains two stages of analysis, high-level

spatial inference identification and refined mining.

The first stage identifies the high-level spatial inferences between the individual

spatial objects using inexpensive spatial algorithms, the focus of which is to reduce

the number of spatial inferences to be considered during further processing. At

this point, simple inferences based upon these high-level spatial concepts may be

derived, Rule 1, containing a single antecedent and consequent. However, often

more detailed spatial inferences are required and hence refined mining is required.

Refinement occurs through the replacement of identified high-level spatial in-

ferences with concrete spatial inferences that exist within the abstract spatial
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concept. For example, given the spatial topology in Figure 1.18, through refine-

ment the abstract spatial concept gen close to is replaced by adjacent to, resulting

in respective inference refinement shown in Rule 1 and 2. This derivation is based

upon a new refined V 2 consisting of more concrete spatial concepts.

Subsequent mining is similar to Han and Fu’s hierarchical mining extension

of Apriori (Han & Fu 1995), in which after finding all valid elementsets at the

highest concept level, valid elementsets are discovered at lower concept levels

through continued concept substitution (see Section 1.3.3). For example, Rule 3,

presents a more concrete inference based upon Rule 2.

Rule 1 is a(x, tourist accomodation)
gen close to

⇒ (x, water)84%

Rule 2 is a(x, tourist accomodation)
adjacent to

⇒ (x, water)72%

Rule 3 is a(x, caravan park)
adjacent to

⇒ (x, lake)%60

Related research by Shekhar and Huang (2001) discovers co-location associa-

tions between area-based spatial features, where an area based spatial feature is

referenced by a polygon, not a single point. Co-location inferences attempt to

reflect spatial feature density by discovering the subsets of spatial features that

are frequently located together. This process is accomplished by defining spatial

neighbourhoods in which an event occurs and then mining the neighbourhoods to

discover co-location inferences, using a BFT candidate generation approach. The

algorithm incorporates two novel interestingness measures prevalence and condi-

tional probability to reduce the search space. A further discussion of spatial data

mining can be found in Abraham & Roddick (1999) and Miller & Han (2000).

Temporal

Often objects have a temporal aspect that is either explicit, such as a time-stamp

attribute, or implied, such as a defined ordering or sequence of objects. The in-

clusion of temporal semantics within association mining can be sub-classed into

the incorporation of temporal-qualifiers and temporal-predicates within associa-

tion mining and sequence mining. Temporally qualified analysis relates to the
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discovery of inferences that hold over a particular temporal interval. Temporal

predicate analysis, in a similar manner to spatial mining, refers to the discovery

of temporarily constrained inferences. For example, the inference a
before
⇒ b. Se-

quence mining refers to the discovery of inferences within a temporally ordered

sequence of objects.

Temporally qualified analysis encompasses inferences which have a temporal

existence or pertain to a temporal period. For example, “newspapers and milk are

purchased in the morning”, is indicative of a temporally qualified inference where

morning represents a temporal concept. Hence temporarily qualified inferences

can lead to the discovery of inferences that although having low global validity

within the dataset, have a high validity when constrained to a particular temporal

subset of objects. In the literature, specialisations of temporally qualified mining

exist and are known as interval, cyclic and calendric mining, and although they

result in temporally qualified inferences, different temporal schemas are applied.

Temporally qualified analysis attempts to discover valid elementset and tem-

poral pattern pairs, through proposed extensions to Apriori (Li, Ning, Wang &

Jajodia 2001, Ramaswamy, Mahajan & Silberschatz 1998) and Partition (Ale

& Rossi 2000). The inclusion of temporal hierarchies within association mining

is discussed in Bettini et al. (1998) to discover temporal inferences of differing

granularities, while Ale & Rossi (2000) introduce the concept of an element’s life-

time (or existence), which enables the exclusion of elementsets from consideration

during times at which they did not exist within the dataset.

Temporal predicate inferences differ to temporally qualified analysis as the

temporal quality is represented within the inference rather than through a tem-

poral qualification of the valid elementset. Instead of finding that an inference

has an existence (or a cyclic nature) temporal predicate inferences indicate a

temporal relationship within a valid elementset. For example, Policy-A
meets
⇒

Policy-B 82%, indicates that 82% of clients that closed their Policy-A did so as

part of the change to Policy-B. Some critical work in this field was undertaken

by Rainsford & Roddick (Rainsford & Roddick 1999) through the development

of a post-analysis process that incorporated the temporal relationships identified

by Allen (1993).
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a
b
c
d

sequenceowner

(3) (6,9)
(1,6) (4,7,9) (5,6)
(4,9) (3,6) (6,9)
(2,7) (4) (2,5,8,9)

Figure 1.19: Sequential mining example dataset, Agrawal & Srikant (1995)

The process generates all pairings of elements within an inference that have a

temporal component. The dataset (D) is subsequently scanned, calculating the

validity for the each pairing in reference to the temporal relationships defined by

Allen (1983). All valid temporal relationships are then appended to the original

inference as illustrated in Rule 4.

Rule 4 Policy A ⇒ Policy B, Policy C (79%),

(Policy A
during
→ Policy C (74%)),

(Policy A
meets
→ Policy B (82%))

Sequence mining concerns the discovery of valid elementsets across ordered

sequences of elements, within which the ordering has temporal implications. A

sequence is a temporally ordered set of objects and hence sequence mining in-

volves the discovery of ordered elementsets between objects within sequences. In

this context each object o ∈ O has an associated time-stamp and owner, and

a sequence is the time-stamped ordered set of O for a particular owner, and a

sequential pattern is valid if it is contained in at least minsup sequences. For ex-

ample, given the sequential mining dataset in Figure 1.19(from Agrawal & Srikant

(1995)) and a minsup = 50%, V contains those ordered elementsets that exist in

two or more sequences, such as [(4)(6)] and [(3)(6,9)].

Seminal sequential mining research (Agrawal & Srikant 1995) led to the de-

velopment of a set of algorithms based upon Apriori. AprioriAll discovers all

sequential patterns within D, while AprioriSome and DynamicSome discover the

maximal sequential patterns, in a like manner to MFS, with DynamicSome gener-

ating the candidate elementsets on the fly. This work was later extended, through
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the development of GSP, which incorporated hierarchies and non-contiguous ele-

mentsets (Srikant & Agrawal 1996).

Alternatively, SPADE and PrefixSpan by Zaki (2002) and Pei et al. (2001a)

respectively, use pattern growth variations to perform sequential mining. SPADE

is based upon equivalence classes, in a similar fashion to Eclat and Charm. Pre-

fixSpan is based upon concepts developed in FP-Tree, however since ordering is

significant, the reordering and prefix sharing undertaken by FP-Tree cannot be

incorporated. This results in excessively large structures. To overcome this Pre-

fixSpan recursively partitions (through projection) the dataset and the relevant

patterns to a smaller environment, resulting in the creation of smaller structures.

Episode mining is a generalised form of sequential mining, that discovers valid

patterns within simple sequences of events. Mannila et al. (1997) have devel-

oped a number of episodic mining algorithms based upon candidate generation

techniques and incorporating support as a quality heuristic. A full syurvey of

temporal data mining is given by Roddick & Spiliopoulou (2003).

Privacy

A recent inclusion to semantic incorporation has been privacy semantics, the goal

of which is to develop accurate models without access to precise data. The diffi-

culty lies in the fact that the two metrics of accuracy and privacy are contradic-

tory, and consequently improving one generally incurs a cost to the other. Privacy

mining attempts to find optimal solutions to this dilemma. There are two main

approaches evident in the literature, data distortion and secure multi-party com-

putation. Data distortion involves the development of pre-process techniques that

distort the exact data while still allowing the elicitation of true valid elementsets.

Secure multi-party computation involves the distributed computation of infer-

ences without sharing information between sources (Vaidya & Clifton 2002).

A common data distortion technique, (Warner 1965), is based upon randomised

response and uses a probability heuristic p to dictate the replacement of an el-

ement with other elements not in that object. Where if p is significantly large,

most elements will be randomised, obscuring element ownership and improving

privacy. However true valid elementsets will still be visible, though to a lesser
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extent, in large datasets with high variance, where |E| is large. For example,

from (Evfimievski, Srikant, Agrawal & Gehrke 2002), given p = 80% and an

elementset of length 3 that occurs in 1% of objects (σ(i) = 1%), then after ran-

domisation it will appear in about 1% · (0.2)3, or 0.008% of objects. The opposite

chance of false elementsets becoming more frequent is determined by |E|, where

as |E| increases the chance of false positives diminishes rapidly. Although gener-

ally effective, uniform randomisation has been shown to allow privacy breaches

in certain situations. This issue is addressed by Evfimievski et al. with the de-

velopment of more advanced randomisation operators that reduce the possibility

of security breaches.

Saygin et al. (2002), present an alternative technique in which instead of

distorting the data through the use of false values, the concept of unknown values

(or uncertainty) is introduced. Therefore the regular binary matrix of 1’s and 0’s

is extended to a ternary matrix incorporating ?’s, in effect hiding the presence of

sensitive elements within objects. The inclusion of uncertainty ensures privacy,

however it subsequently results in uncertainty within validation metrics. This

is addressed within Saygin et al. (2002) by modifying the algorithm to provide

heuristic intervals, within which the actual value lies. For further information

regarding the state-of-art in privacy preserving data mining, see Verykios et al.

(2004).

1.3.4 Incremental mining

Incremental mining is concerned with the maintenance of an inference set in

an evolving dataset, a dataset that is updated with new data. Hence if the

inferences are calculated for the initial dataset D, then after the arrival of new

data (δ) some of the inferences initially calculated may no longer be valid, due

to a change in their degree of presence. The naive approach to compute the

updated set of inferences is to re-mine the entire dataset D + δ using a classic

algorithm, however, this is inefficient due to the re-analysis of existing data. The

aim of incremental mining algorithms is to minimise the expense of updating V

by using previously mined information.
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Cheung et al. (1996) proposed the first incremental association mining algo-

rithm Fast UPdate (FUP) that extends Apriori with a set of incremental inclusion

rules, presented in the subsequent list, to incorporate incremental functionality.

Therefore, given an initial valid elementset V based upon D and an update or

increment dataset δ such that δ � D, FUP finds all valid elementsets in D ∪ δ,

denoted V̄ . This research was subsequently extended in FUP2 (Cheung, Lee &

Kao 1997) to handle increment removal and to use statistical sampling to decide

when to incorporate the increment datasets. Like Apriori, both FUP and FUP2

require κ scans of D, however subsequent algorithms have been able to reduce

this to at most a single scan.

• Elementset V i
κ ∈ D is eliminated if and only if σ(V i

κ) ∈ (D ∪ δ) < minsup.

• Elementset A 6∈ V can only be included in V̄ if σ(A) ∈ δ ≥ minsup

Other incremental extensions have been proposed to the classic association

mining algorithms, Partition (Savasere et al. 1995), FP-Growth (Han & Pe 2000)

and also to the notion of negative borders introduced by Toivonen (1996). An

incremental Partition extension is proposed by Omiecinski & Savasere (1998)

and a fundamentally equivalent foundation is used as the basis for the sliding

window filtering algorithm (SWF) proposed by Lee, Lin & Chen (2001) and its

proposed extension FI-SWF, (Chang & Yang 2003). Two incremental extensions

to FP-Growth have been proposed, both of which avoid rebuilding the FP-Tree

structure when relative frequencies change. This is achieved through the develop-

ment of a modified tree structure, CATS-Tree, (Cheung & Zaiane 2003) and the

development of an associated Pattern Repository structure from which FP-Tree

can be derived (Relue, Wu & Huang 2001).

Thomas et al. (1997) propose the ULI algorithm that uses the principle of

negative borders, proposed by Toivonen (1996), to facilitate incremental update.

Where the negative border is the set of candidate elementsets C that were not

included within V , e.g. C|σ(Ci) < minsup. Through maintenance of the negative

border ULI (which requires κ scans of δ) only requires a single scan of D if
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the negative border changes. Ganti et al. (2000) extend ULI by using Tidlists

and introducing data stream monitoring to determine when to update. They

also present a generic model GEMM that provides a general framework through

which incremental algorithms can be extended to incorporate windowing. Where

windowing functionality constrains the active dataset, or the dataset from which

the current inferences are derived, to be the most ω blocks of data. The use

of windowing indicates that data, within specific domains, has a time span of

relevancy and is removed after a specified period.

Ayan et al. (1999) present the Update with Early Pruning (UWEP) algorithm

that based upon Apriori scans D at most once and the new dataset D̄ | D̄ = D∪δ

exactly once. UWEP incorporates Tidlists and look-ahead strategies to improve

pruning, however it only promotes candidate elementsets if they are valid in both

D and δ, resulting in the possible removal of valid elementsets.

Recently, incremental extensions (Veloso, Possas, Meira Jr & de Carvalho 2001,

Veloso, Meira Jr, de Carvalho, Possas, Parthasarathy & Zaki 2002) have been pro-

posed for MFS algorithms (Section 1.3.2). Pelican, (Veloso et al. 2001), extends

MaxEclat through the common use of prefix-based equivalence relations. Subse-

quent work by the same team proposed Zigzag, (Veloso et al. 2002), that extends

GenMax in using naive backtracking for searching and also introduces two novel

quality heuristics. Zigzag was further extended in Wave (Veloso et al. 2002) to

incorporate estimation techniques and trend analysis to efficiently maintain an

approximate data model, although further improvements to the processing time

comes at the expense of accuracy.

Although not based upon the principle of MFS, Maap (Zhou & Ezeife 2001)

is similar in its approximation of small valid elementsets. The algorithm uses an

Apriori based framework, whereby given the high-level valid elementsets from D
2, VD, it is able to efficiently compute the equivalent high-level valid elementsets

Vδ, and also infer some of the lower-level Vδ.

2Refer to Zhou & Ezeife (2001) for detailed discussion of high and low level elementsets.
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Table 1.3: Summary of Semantic & Incremental Algorithms.

Name Author Year Base Contribution

Hierarchical Algorithms

ML-T* Han & Fu 1995 Apriori Element replacement
Basic Srikant & Agrawal 1997 Apriori Transaction extension
Cumulate Srikant & Agrawal 1997 Basic Redundancy filtering
Stratify Srikant & Agrawal 1997 Basic Pruning Optimisation
Estimate Srikant & Agrawal 1997 Apriori Sampling
Estmerge Srikant &Agrawal 1997 Apriori Sampling
Prutax Hipp et al. 1998 AprioriTID -
Adaptive-FP Mao 2001 FP-Growth -
FP-Tree Ong et al. 2001 FP-Growth Recurrency
HND Ceglar et al. 2003 Apriori Non-monotonic support & dynamic rule gen.
HPTid Ceglar et al. 2003 AprioriTID Prioritisation

Privacy Algorithms

- Vaidya &Clifton 2002 - Secure multi-party computation
- Evfimievski et al. 2002 - Data Distortion
- Saygin et al. 2002 - Uncertainty

Spatial Algorithms

- Koperski & Han 1995 Apriori Spatial
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Table 1.3: Summary of Semantic & Incremental Algorithms (continued).

Name Author Year Base Contribution

Sequence & Episodic Algorithms

AprioriAll Agrawal & Srikant 1995 Apriori -
AprioriSome Agrawal & Srikant 1995 AprioriAll Maximal sequential patterns
DynamicSome Agrawal & Srikant 1995 AprioriSome Dynamic candidate generation
GSP Srikant &Agrawal 1996 DynamicSome Hierarchies & Non-contiguous elementsets
- Mannila et al 1997 Apriori -
SPADE Zaki 1998 ECLAT -
PrefixSpan Pei et al. 2001 FP-Growth -

Temporal Algorithms

- Rainsford & Roddick 1999 - Post mining process
- Ale & Rossi 2000 Apriori Element lifetime
Temporal-Apriori Li et al. 2001 Apriori -

Incremental Algorithms

FUP Cheung et al. 1996 Apriori Deletion & Sampling
ULI Thomas et al. 1997 - Negative borders
Borders Gant et al. 2000 ULI Tidlists
UWEP Ayan et al. 1999 Apriori Look ahead strategies
ZIGZAG Veloso et al. 2002 GenMax Incremental MFS
WAVE Veloso et al. 2002 ZIGZAG Estimation
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1.4 Inference Generation

Inferences are derived (or generated) from the set of identified valid elementsets.

For each valid elementset (v) a set of inferences R are produced, derived from

partitions based upon the permutations of v, where an inference r ∈ R is of the

form A ⇒ B | A ⊂ v∧A 6= ∅∧B = (v−B), where A is the set of antecedents and

B is the set of consequents. All inferences have an associated quality heuristic

confidence (γ) that is derived from the inference’s strength, γ(R) = σ(v)
σ(A)

. The in-

ferences that meet a specified confidence threshold (θ), or strength, are appended

to the result set.

Agrawal and Srikant (1994) propose an optimisation to this technique that

can potentially reduce the number of elementset permutations considered. This

is based upon the observation that given the derivation from v of an inference

A ⇒ B that does not meet the confidence threshold θ, then all subsets of A need

not be considered for generating inferences using v. For example, if γ(ab ⇒ cd) <

θ then γ(a ⇒ bcd) < θ and γ(b ⇒ acd) < θ, as σ(A) is the denominator in the

calculation of γ and σ(a) ∧ σ(b) ≥ σ(ab) .

In order to effectively incorporate this pruning technique the inferences R for

v must be produced in order of descending antecedent length, so that if γ(A ⇒

B) < θ then all antecedents Ā | Ā ⊂ A will not be considered. The process is more

intuitive if considered from the other direction, that of generating the inferences in

order of increasing consequent length, due to its non-monotonicity. For example,

given the derivation of a valid inference γ(A ⇒ B) ≥ θ from v, then all other

inferences derived from v of form Ā ⇒ B̄ must be valid where B̄ ⊂ B. This is

true, as for the same case given that B̄ ⊂ B, then Ā ⊃ A. Inference generation

then becomes an iterative process incorporating a non-monotonic constraint (in

a similar manner to Apriori) where the inferences of consequent length κ are

based upon the valid inferences of consequent length κ− 1 discovered during the

previous iteration

1.4.1 Rule inferencing

The number of inferences generated in any mining run is often too many to be

effectively presented and interpreted by the user.Three current general methods
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exist to facilitate user interpretation: generalisation (Section 1.3.3), visualisation

(see Chapter 3) and rule inferencing. Rule inferencing constrains inference gener-

ation to non-redundant inferences, where an inference is redundant if it conveys

the same or less general information than another inference of the same useful-

ness and relevance (Pasquier, Bastide, Taouil & Lakhal 1999a). Hence inference

r = (A ⇒ B) is non-redundant if there is no other inference r̄ = (Ā ⇒ B̄) with

the same validity (level of support) such that A ⊂ Ā and B ⊃ B̄. This minimal

set of non-redundant inferences has been denoted the inference basis.

Initial research by Toivonen et al. (1995) developed a simple inferencing tech-

nique in which an inference r is removed if another inference r̄ exists, where B̄ =

B, Ā ⊂ A and the relevant elementsets Tidlists are equal, T idlist(r) = T idlist(r̄).

An inference basis clustering technique is also proposed, where distance between

bases is based upon the difference between their associated tidsets, further fa-

cilitating user interpretation. This initial pruning technique was subsequently

incorporated into Shah et al. (1999) rule pruning list (rule 1), presented below.

1. If two inferences A ⇒ C and A ∧ B ⇒ C of similar strength exist then

A ∧ B ⇒ C is redundant.

2. If two inferences A ⇒ C and B ⇒ C with similar strength exist, B ⇒ C is

redundant if A ⇒ B is valid and B ⇒ A is not.

3. If two inferences A ⇒ C and B ⇒ C with similar strength exist they are

considered weak inferences if both A ⇒ B and B ⇒ A are valid. Where

a weak inference is one which is valid in terms of the quality heuristic

however due to the possible presence of alternative causes, their validity

may be questionable.

4. If two inferences A ⇒ C and A ⇒ B ∧ C exist, then A ⇒ C is redundant.

5. If two inferences A ⇒ B and A ⇒ C exist, and further B ⇒ C exists, then

A ⇒ C is redundant.
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Following their previous work both Pasquier et al. (1999a) and Zaki (2000a)

proposed similar rule inferencing techniques based upon the theory of closed

elementsets (see Section 1.3.1), which they show to be a generating set for all

inferences holding within D. Based upon this, basis techniques are defined for

both exact (inferences with 100% confidence) and inexact inferences.

1.5 Summary

This chapter provides a comprehensive review of significant algorithmic contri-

butions within the field of association analysis. It shows (through chronological

presentation) the field’s evolution to it’s current level of maturity, in which re-

search emphasis has moved from performance optimisation to domain specific

specialisations. Although comprehensive, the review could never be complete

due to the size of the current body of research, instead it focuses upon providing

coverage of the different fundamentals used within association mining. For new

algorithms, the yearly ICDM workshop on Frequent Itemset Mining Implemen-

tations (FIMI) provides an excellent source (Goethals & Zaki 2003).

This review serves as a foundation upon which further research into the hy-

pothesis of guided association mining is based. As a result of research undertaken

in the construction of this survey, the novel concept of incremental (maintained)

closed-set association mining (MCL) was elicited. This approach shows promise

in both process optimisation and facilitating user interpretation of results and is

presented in the next chapter (Chapter 2).



Chapter 2

MCL: Maintained Closed-Lattice

Association Analysis

Incremental association mining research concerns the maintenance of the set of

valid elementsets (V ) in an evolving dataset. Given that VDi is the set of valid

elementsets generated from the evolving dataset Di, where i signifies an evolution-

ary step of D, then the inclusion of an increment dataset δ such that |δ| � |Di|)

will effect the degree of element presence in the combined dataset D1 = D0 + δ.

The naive computation of VDi involves re-mining Di using a classic association

mining algorithm (such as Apriori) however, as a significant part of the knowl-

edge produced by the mining of Di, is already available in VDi−1 , this results in

process replication. Hence incremental mining attempts to facilitate the inclusion

of δ into VDi by using currently available information in VDi−1 and Di−1. This

evolution results in the alteration of participant states (summarised in Table 2.1),

where participants are the elements in D and the elementsets in V .

This chapter presents a novel technique that advances the state of incremen-

tal association mining. Maintained Closed-Lattice Association Analysis (MCL)

like previous approaches, uses currently available information. Unlike previous

algorithms however, it uses the concept of the closure of the Gaulois connection

(Ganter & Wille 1999), or closed-sets, basing the incremental mining upon a

condensed representative lattice from which V can be inferred (Section 1.3.1).

Such an approach shows promise in both process optimisation and facilitating

user interpretation of results. The processing is optimised (especially in highly
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Shape Description

Static No relative change in participant presence.

Strengthened The presence of the participant increases.

Weakened The presence of the participant decreases.

Emergent An invalid participant becomes valid.

Declined A valid participant becomes invalid.

Table 2.1: Alteration of Participant state

correlated or dense datasets) as increment datasets are applied to a smaller main-

tained lattice, reducing the search space. The maintenance of a closed-set lattice

also aids user interpretation due to its reduced size. The other significant con-

tribution of this algorithm is the production of an increment lattice I during the

mining process. This provides the user with insight into the increment’s effect

upon the maintained lattice L. Furthermore, it provides an effective means of

incorporating windowing functionality (Cheung et al. 1997), or the removal of

previous increments, without the need for further mining.

This chapter presents the theory behind MCL, its implementation and the

results of some some preliminary testing. The foundations for this presentation

of MCL lie in reviews of closed-set and incremental association mining, presented

in the previous chapter (see Sections 1.3.1 and 1.3.4). The following section

discusses MCL in detail with subsequent sections presenting some preliminary

test results and a conclusion.

2.1 MCL Framework

MCL provides a novel and efficient incremental association mining method by

maintaining a closed-set lattice (L) from which the set of valid elementsets (V )

can be easily derived. The maintenance of Li uses an increment closed-set lat-

tice I that is derived from the increment dataset δ in the presence of Di−1 and

Li−1. I is then appended or removed from Li−1 resulting in Li, an evolution of

the maintained closed-set lattice. Assuming that an increment dataset must be

appended to the maintained lattice before it can be removed, the removal process
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Object Elements

1 a,c,t,w

2 c,d,w

3 a,c,t,w

4 a,c,d,w

5 a,c,d,t,w

6 c,d,t

actw:3 acw:4

ct:4cd:4 cw:5

cdw:3cdt:2

c:6acdw:2

Figure 2.1: Example dataset & resulting closed set lattice derived from (Zaki &

Hsaio 2002)

can be optimised by using the previously derived I, alleviating the need to remine

δ. Furthermore the generation of I during the append process provides the user

with an effective insight to δ’s effect upon L.

The algorithm assumes an initial L0 and D0. The internal representation of

the increment dataset δ, referred to as d (see section 2.2.1), and Di are vertically

organised Tidlists and the subsumption table, used as part of closed-set validation

takes the tuple form {T idlist, Array[Li]}. The lattice structures L and I are

prefix trees, of node form {elementset, T idlist} that use lexicographic ordering

to maintain consistency during evolution. The output from both the append and

remove process is an updated Li and Di. The append process also produces I

and d to facilitate user interpretation and subsequent increment removal. These

processes are presented in the following sections.

2.2 Append Function

The following discussion of the append process is logically divided, based upon

the fundamental processing steps into three sections: generate, merge and strip.

Generate prepares the required data structures including the increment lattice,

I, while merge and strip perform the actual update, focusing upon the update

of existent and emergent closed-sets respectively. Figure 2.1 presents L0 and D0,

from Zaki & Hsiao (2002) , which is used as the working example.
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2.2.1 Generate

This stage prepares for the subsequent merging of L and I through the prepa-

ration of data structures and the subsequent generation of I. Data structure

preparation requires a scan of δ which is used to update D ∀ e | e ∈ δ ∧ e ∈ E,

generating D1 from D0. During this traversal the data structures d and ext are

also populated. Given σ(D0
e) > minsup and σ(D1

e) > minsup then e ∈ δ is ap-

pended to d, resulting in a listing of δ elements that exist in L and the increment

objects within which they participate. If σ(D0
e) < minsup and σ(D1

e) > minsup

then e is emergent and D1
e is appended to ext, resulting in a listing of emergent

elements in D1 that may extend L0.

Subsequently, closed-set mining based upon the closure principles identified by

Zaki and Hsiao (Section 1.3.1) is applied to d and ext resulting in I and X respec-

tively. While the mining of ext incorporates quality heuristics (eg support), this

does not apply to the mining of d, as all elementsets founded upon current valid

elements (those existing within L0) must be reported in I to accurately update

all elementsets in L. Once constructed, I and X (presented in Figure 2.2 with δ)

contain all the information required to accurately update L. A summarisation of

this process is presented in Algorithm 2.1.

Algorithm 2.1 Generate

1: for all de ∈ d do

2: D1
e = D0

e + de

3: if σ(D1
e) > minsup then

4: di.append(de)

5: if σ(D0
e) < minsup then

6: ext.append(de)

7: end if

8: end if

9: end for

10: I = closeMine(di, 1)

11: X = closeMine(ext, minsup)
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Object Elements

1 a,c,d,t,z,x

2 a,t,x

3 c,d,z,x

acdt [7] at [7,8] cd [7,8]

I

x [7,8,9] x,z [7,8]

X

Figure 2.2: Example increment dataset and derived data-structures

2.2.2 Merge

The incorporation of I and X within L requires a scan of L for which all pertinent

x ∈ X and i ∈ I are applied to l ∈ L. Given that |δ| � |Di| and the set of

elements e ∈ E is common to both D and δ, relatively few new elementsets are

appended to L during any given increment. The result is that an increment’s effect

upon L will often be internal to the lattice, as most valid elementsets are already

represented. However, although less common, lattice boundary extension does

occur through emergent elementsets and superset extension, therefore each l must

be tested against X for emergent supersets and against E to update its Tidlist

and to discover any emergent subsets. This process is optimised by considering

only relevant X and E for each l by dynamically altering these structures as

processing occurs.

Each l is then checked against an evolving X and I during a pre-order traversal

of L0, resulting in the construction of a new closed lattice L1, which eliminates

updating complexity apparent when using a single lattice. The emergent set X

applied to each l contains the emergent elementsets valid for the parent of l,

denoted Xl̄, therefore X< = X.

For example, given X = {x, z} and Xa = {ax}, then Xa is the extension set

passed to all children of a, quickly reducing Xl as the traversal deepens. Hence

each l is merged with Xl̄ and if valid and not subsumed (through closed set

pruning), it is appended to L1, Xl and R (discussed in Section 2.2.3).
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The increment lattice is pruned during processing (see section 2.2.3) so that

the pertinent i ∈ I for the current l are the first nodes encountered using a pre-

order traversal. Thus I is traversed until i lexicographically exceeds l at which

point no subsequent i are pertinent to l.

adw

ad

(a) Partial L

adt

a

adw

(b) Partial I

Figure 2.3: Partial lattice structures: L and I

The inclusion of further search space reduction depends upon the effect of I

and X upon l and the relationship between i and l. For each pertinent i, if i ⊇ l

then L is updated with i.T idlist and i’s descendants are removed from the search

space as the Tidlists, all supersets of i, are subsets of i.T idlist and cannot further

affect l. If i ⊂ l then descend to i’s children, with no action taken upon l. If i is

neither a superset, a subset nor equal to l, then its subtree is not processed. For

example, given the partial lattices in Figure 2.3, when l = {ad} it is first compared

to i = {a} (a subset) therefore no update occurs and i descends to i = {adt} a

superset, l is updated, but i’s subtree is not processed. Processing then moves

to i = {adt}, also a superset, therefore once again l is updated. Assuming that

the next i exceeds l, since l was updated, its descendants are processed, namely

{adw}. As i = {a} is a subset i moves to i = {adt}, according to this algorithm

an unrelated set, therefore its descendants are ignored and i moves to {adw}

which is equivalent to the current l which is therefore updated.

The incorporation of these search constraints optimises the update (strength-

ening and weakening) of existing l ∈ L0. If there is no change to l through this

processing, then no superset of l will be modified by X or I due to the inclusion of

the non-monotonic heuristic, support. Hence the subtree of l is appended to L1,

without further comparison against I or X. However before any l is appended to

L1 a final check against minsup is made to identify declined elementsets, and if
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declined, l and its descendants are eliminated from consideration. Algorithm 2.2

presents the merge process, including the update method that details the traversal

of pertinent I for l.

2.2.3 Strip

Strip is instigated from merge when a level-1 node is encountered during L0’s

traversal. It provides two functions, the reduction (or stripping) of I to eliminate

unwanted elements and the discovery of all remaining emergent elementsets. Be-

fore instigating the reduction process a copy of I is made, denoted R, to report

the increments effect upon L0 and to facilitate the removal process. Any emergent

elementsets that are subsequently appended to L1 are also inserted into R.

Due to lexicographic ordering, once all l ∈ L0 beginning with a particular

element (e) have been merged with I and X, all subsequent l exceed e and it

therefore takes no further part in the update of L0. Therefore e can be stripped

from all i ∈ I, allowing the progressive reduction of I.

Strip occurs before the merge of level-1 L0 nodes, removing all elements

from I that lexicographically precede the first element of the current l. Once

the preceding elements have been removed, the modified elementsets (if not

subsumed) are re-inserted into I. For example, given a level-1 l = {d} and

I = {{a, c}, {c, d}, {d, w}}, then after stripping I = {{d}, {d, w}}. This dynam-

ically reduces I and facilitates the update of L0 by ensuring that the relevant

increment closed-sets are the first encountered during merge.

The discovery of emergent closed-sets is undertaken in conjunction with strip-

ping due to the focus upon the relevant structures. All candidate emergent set

information is represented within I and X, and by removing their discovery from

the traversal of L significant process duplication is avoided. The emergent closed-

sets comprised of valid elements in D0 are represented in I, while emergent ele-

ments are represented in X.

The candidate emergent sets in which the stripped elements (S) participate are

identified by deriving the set of elementsets from the closed-sets in I in which an
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Algorithm 2.2 Merge

merge(l,X)

1: for all l′ | l′ ∈ l.child do

2: if lparent == L< then strip(l′)

3: modified = l′.update(l′,I)

4: if σ(l′)> minsup then

5: if modified then

6: if !subsumed(l′) then

7: L1.append(l′)

8: X ′ = extCheck(l′,X)

9: end if

10: merge(l′, X ′)

11: else

12: L1.appendTree(l′,minsup)

13: end if

14: end if

15: end for

update(l,i)

1: for all i′ | i′ ∈ i.child do

2: if i′.exceeds(l) then break

3: mod = false

4: if i′ ⊇ l then

5: l.updateTid(i′)

6: mod = true

7: else

8: if i′⊂l then mod=update(l,i′)

9: end if

10: end for

11: return mod

s ∈ S participates. For example, given S = {a} and I = {{a, c}, {a, w, x}, {c, d},-

{d, w}}, then the candidate emergent elementsets, C, are {{a, c}, {a, w}, {a, x},-

{a, w, x}}. The potential candidate emergent elementsets p are generated through

a preorder traversal of I, incorporating DCP. If p 6∈ C, its support in D1 is dis-

covered and is appended to C, irrespective of whether σ(p) > minsup. The

representation of all p in C irrespective of support optimises processing as dupli-

cate p can be quickly removed without calculating support.

Algorithm 2.3 Strip

strip(l)

1: for all i | i ∈ I ∧ i1. < l1 do

2: C = genCandidateEmerg(i,l)

3: i.removeFromParent()

4: i.removePreceding(l)

5: if !subsumed(i) then

6: I.insert(i)

7: end if

8: generateEmergent(C)

9: end for

generateEmergent(C)

1: for all c | c ∈ C do

2: if σ(c) > minsup & !subsumed(c)

then

3: L1.append(c)

4: R.append(c)

5: extCheck(l′,X)

6: end if

7: end for
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The resulting C is then appended to L1 and R where c is valid and not sub-

sumed. Furthermore, if appended to L1, c is then checked against the emergent

elements X in a similar manner to l (see Section 2.2.2) to possibly generate fur-

ther emergent supersets. The identification of the emergent closed-sets, although

algorithmically complex, consumes relatively little processor time due to the small

number of candidate sets generated and the pruning techniques incorporated.

After L0 has been updated through the merge process the remaining emergent

closed-sets are discovered by applying the same process to what remains of I.

Finally the emergent elements, x ∈ X, are appended to L1 and R if they are not

subsumed. This process is summarised in Algorithm 2.3 and the resulting L and

I are presented in Figure 2.4

a:6

ac:5

act:4

actw:3acdw:2

L

cd:6 ct:5 cw:5

c:8 t:6 x:3

acd:3 acw:4

at:5 atx:2

cdxz:2cdw:3cdt:3

acdt:2 acdtxz [7] atx [7,8] cdx [7,9] x [7,8,9]

I

Figure 2.4: Complete lattice structures: L and I

2.3 Removal

The creation of the increment lattice (I) facilitates the removal of previous in-

crements from L by alleviating the need to re-mine the increment dataset. This

significantly reduces the removal process by reusing information. The maintained

dataset D is first updated by removing the increment dataset (δ) from it. The

subsequent updating of the maintained closed-set lattice (L) is similar to the

merge stage of append, in that it is based upon the traversal of L and uses

consistent ordering to reduce the search space.
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For each l ∈ L, I is traversed until i lexicographically exceeds l or i ⊃ l. If i ⊃ l

then iT idlist is removed from lT idlist, which may result in the subsequent declining

and removal of l and its supersets from L. If l remains valid, its presence within

the subsumption table is altered to reflect its new Tidlist and if l subsumes its

parent, the parent is replaced by l in L.

2.4 Experimental Results

Some experimental results are presented in Figure 2.5, which compares processing

time and lattice size between a naive algorithm and MCL as dataset density

increases. These graphs are both from the same result set and are based upon

artificial datasets, |D0| = 5K and |δ| = 0.5K, in which density is manipulated by

adjusting the number of elements from which the objects are generated. Figure

2.5(a) illustrates the efficiency of MCL over the naive re-mining of D1, using

Apriori, and also presents the time taken to construct the initial lattice L0 using

Charm. Figure 2.5(b) illustrates, from the same result set, the relative lattice

size reduction of the maintained and increment lattices, L and I, over the valid

elementset lattice, as density increases.

The contributions of MCL to incremental association mining are twofold. First,

through the use of closed-sets a condensed representative lattice is maintained

that facilitates efficient update (especially for dense datasets) through reduced

processing. Second, the creation of a closed-set increment lattice allows insight

to the increment’s effect upon the maintained lattice and reduces the processing

required for subsequent increment removal.

The preliminary results support the theory of closed incremental mining and

its contribution to data mining, especially within dense datasets environments.

However, further testing against other incremental association mining algorithms,

such as FUP2 (Cheung et al. 1997) and ULI (Thomas, Bodagala, Alsabti &

Ranka 1997), is required to discover the extent of these contributions.
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Part III

Rule Presentation

Thus I will again argue that visualization is

necessary at all stages of the discovery

process: at the front end for data awareness,

understanding, massaging and audit; at the

back end for presentation of results (either

in confirmatory or presentation

visualization); and in the middle stages for

monitoring and understanding the

computational elements, an area still under

visualised

Georges Grinstein, 2002



Chapter 3

Rule Presentation Review

The user’s acquisition of knowledge from a set of derived inferences, discovered

during association mining analysis, requires an interface or means of communi-

cation between the computer and the user. This communication of information

is at present restricted to visual and auditory perception. While there has been

general research into the auditory presentation of data and the benefits of com-

bining auditory with visual presentations (Barass, 1995), advances to date appear

limited. This chapter focuses upon research into rule presentation techniques that

facilitate user interpretation.

This chapter provides a review of presentation techniques used to facilitate

the user’s interpretation of association mining results. Section 3.1 discusses vi-

sual presentation in general, touching upon human perception and information

theory. The next two sections (3.2 & 3.3) present a review of current association

rule presentation techniques. Section 3.4 then presents a discussion of presenta-

tion interaction techniques in order to provide support for subsequent material

that looks at incorporating guidance through interacting with rule presentation

techniques.

3.1 Visual Presentation

There are two classes of visual presentation: textual and graphical. Textual

presentation methods are simpler but more constrained. Graphical techniques are
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more difficult to implement but show more promise, as they facilitate discovery

through incorporating human perception in a less constrained manner.

Textual presentations are constrained to a set of well-defined primitives (char-

acters, symbols and mathematical operators), which are interpreted by the user

in a sequential manner at a fine-grained level of detail, with each primitive exam-

ined in turn. For example, reading is a sequential low-level interpretation of the

symbols on a page. The benefit of this presentation style is that it is recognised

and perceived in the same way by different users and is relatively quick and easy

to produce. A drawback for textual presentations is that they are not conducive

to the analysis of patterns, complex data or large data sets, all of which are key

characteristics of useful data mining results. Table 3.1 shows the results of discov-

ering inferences by performing association mining upon a small dataset. Textual

presentation is satisfactory in this case as the result set is small and simple, and

therefore the set of inferences can be easily interpreted through textual analysis.

This form of analysis is impractical for typical association mining results, which

are both large and complex.

Antecedent Consequent Confidence(%)

GingerBeer ⇒ Whisky 96

Whisky ⇒ GingerBeer 94

Lemonade ⇒ Whisky 95

Coffee ⇒ Tea 98

Cocoa ⇒ Coffee 95

Tea ⇒ Cocoa 93

Coffee ⇒ Tea, Cocoa 90

Table 3.1: Textual association presentation

Graphical methods or visualisations of mining results provide more powerful

forms of presentation as they are not constrained to the pre-specified set of prim-

itives, in the same way as textual presentation methods. Graphical presentations

can take many different forms, as the underlying data can be mapped to many
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different types of graphical primitives such as position, shape, colour, and size.

Such a diversity leads to individual visualisations being able to present many

dimensions of data in a concise manner by mapping data dimensions to differing

graphical primitives. In contrast textual presentations of data dimensions are

mapped to the same textual primitive type.

Human Perception and Information Theory (Miller 1956) indicates that graph-

ical presentation facilitates the search for patterns by harnessing the capabilities

of the human visual system to elicit information through visualisation, multi-

dimensional perception, recoding, and relative judgement. Many experiments

within the field of cognitive psychology have identified that regardless of sensory

type (eg. sight, taste, and smell), humans can accurately perceive differences in

the stimuli to a greater extent when many parameters of that stimuli are pre-

sented. For example, in experiments by Garner et al. (1956), participants were

presented with a series of single dimension stimuli in the form of images, each

showing a point at a different position on a line. Participants were asked to

label each image either from a list of possibilities or with a number from 0 to

100 indicating where to the best of their judgement the point lay on the line.

Results showed that on average humans could accurately perceive approximately

10 different placements. However in experiments where the visual stimulus was

increased to two dimensions (Klemmer & Frick 1953) by the presentation of a

point within a square, the level of perception rose to approximately 25 different

placements. Multi-dimension perception results suggest that graphical presenta-

tions will greatly improve user perception. The relationship between dimension-

ality and perception has however been found to be asymptotic. Above ten or

so dimensions, the addition of further dimensions does not improve perception

(Miller 1956).

Recoding is the process of reorganising information into fewer chunks with

more information within each chunk. This process is the means by which hu-

mans extend short-term memory (Miller 1956). The concept of recoding suggests

that it is more difficult to perceive patterns within textual presentations because

of the fine-grained sequential interpretation required. This is not conducive to

pattern perception as the logical units remain small, resulting in the inability

to understand the underlying structure of the result set. Visual presentations
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present a more contiguous representation of the data that can often be inter-

preted as a single logical unit, providing a conducive means by which the overall

structure of the data set may be examined.

Weber’s Law of Just Noticeable Differences (1834) states that “The likelihood

of detection [of a change] is proportional to the relative change, not the absolute

change of a graphical attribute” (Weber 1834). This law indicates that a user’s

perception will be superior when relative judgement instead of absolute measure-

ment is made. For example, it is easier to perceive the change in a graphical

object if its original form is displayed alongside the newly modified representa-

tion, because we can compare the difference or relative change between the two

objects. It is more difficult to perceive changes when the original object is re-

placed by the new one because no comparison is available and reliance is instead

placed upon the knowledge of the object’s absolute measures.

Relative judgement is a graphical capability and is a major strength of graph-

ical presentations as it allows users to obtain a holistic qualitative view of the

result set, where relative differences between items can be recognised. A qual-

itative view is then used to focus attention, with subsequently more focused

and quantitative analysis (absolute measurement) following. This process was

dubbed the “Visual Information Seeking Mantra” by Shneiderman (1996) and is

conducive to pattern discovery, allowing the user to analyse a picture at different

levels.

Although more powerful and flexible than textual presentations, graphical pre-

sentations are more difficult to create and are open to subjective interpretation,

whereas textual primitives have, in general, a more stable interpretation. Subjec-

tive interpretation is due to the abstraction of the underlying results into graph-

ical primitives through defined mappings. This allows results to be presented in

ways that facilitate perception of patterns and structures within the result set,

however, if non-intuitive mappings are used then the perception of patterns will

be less predictable.

The variance in subjective interpretations of a presentation can be reduced

through good design. This includes ensuring that presentation styles reflect the

data-mining task, and that the mapping between mining and graphical primi-
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(a) 2D matrix (Wong,

Whitney & Thomas

1999)

(b) SGI Mineset visualisation of association

rules (D. Rathjens 1997)

Figure 3.1: Common matrix-based presentations

tives is intuitive, taking into consideration the user’s objectives and facilitating

interaction techniques. Clearly there is no single best presentation technique for

a data-mining task as there are too many factors that depend upon both the

user and the problem domain. The solution is therefore to create a flexible set of

presentation formats for each mining task that can satisfactorily be applied to a

wide range of problems.

To facilitate the interpretation of association mining results, various visualisa-

tion techniques have been created. Each of these methods requires two essential

components: a graphical representation of the elements, and a technique that

illustrates the relationships between these elements. The techniques fall into two

classes: matrix-based and graph-based methods.

3.2 Matrix-based Visualisations

The basic design of a two dimensional matrix, maps the antecedent and conse-

quent to the X and Y axes and, with inferences indicated by a graphical presence

upon the intersecting cell (as illustrated in Figure 3.1(a)). This graphical pres-

ence can often encapsulate other information such as confidence through the use

of primitives such as size and colour. Figure 3.1(b) from SGI’s MINESET tool

presents a complete three dimensional matrix based presentation (Rathjens 1997).
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Figure 3.2: Rule vs item association matrix (Wong, Whitney & Thomas 1999)

This common presentation technique is useful when the inference set is com-

prised of a relatively small number of distinct antecedent and consequent values,

so that given a particular presentation area (or real-estate) the entire inference set

is viewable. Matrix-based techniques tend to quickly degenerate as the number of

different antecedents and/or consequents in the inference set increases, resulting

in the worst case, of an O(n2) rate of matrix area growth. This rapidly leads to

large visualisations that are cumbersome, occluded and difficult to understand.

Wong et al. (1999) proposed a matrix presentation variation that attempts

to minimise some of these matrix growth problems through the implementation

of a rule-to-element matrix (shown in Figure 3.2) visualisation based upon the

premise that an element can only occur once in an inference. This technique

provides an improvement as matrix growth becomes linear, with respect to the

number of inferences. Occlusion is also reduced by displaying associated quality

heuristics, such as support and confidence as wall plates.

CrystalClear (Ong, Ong, Ng & Lim 2002) addresses the issue of scalability

by mapping the quality heuristics of support and confidence to the axes instead

antecedents and consequents. In this way the matrix size remains constant as it

is not dependant upon the number of inferences but upon heuristic ranges, which

may be grouped. Each matrix cell therefore relates to a group of inferences with

common heuristics. Furthermore this approach allows for the easy identification

of groups of heuristically similar rules that can then be displayed in a textual

format for detailed analysis.
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Consequent

Antecedents

Figure 3.3: Interactive Mosaic Plot (Hofman, Siebes & Wilhelm 2000)

Hofman et al. (2000) created an alternative form of matrix visualisation -

Interactive Mosaic Plots (Figure 3.3). This technique allows for the detailed

investigation of inferences between a set of antecedents and a consequent. Within

mosaic plots individual antecedents are represented as horizontal bars along the

x-axis with the strength of an inference represented by the height of the vertical

column above the specified antecedent permutation (inclusion denoted by black

bar). Figure 3.3 illustrates the inferences between the antecedent set heineken,

coke, chicken and the consequent sardines, the vertical columns indicate both the

strength of the positive-inference (dark grey) and its negation not sardines (light

grey).

Interactive mosaic plots allow the user to arbitrarily specify sets of antecedents

and consequents. Such a technique is designed for focused interpretation where

the set of attributes under consideration is small, as the number of elements

increase the presentation technique becomes increasingly difficult to interpret.

Figure 3.3 indicates that a potential rule of interest may exist in the form of

heineken, coke, chicken ⇒ sardines as there is a significant difference between

its confidence and that of all other permutations. The example highlights the

contribution of mosaic plots, which although constrained in regard to information

volume, provide a novel means of analysing the participants in detail.
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Figure 3.4: Rule Graph (Klemettinen, Mannila, Ronkainen & Verkano 1994)

3.3 Graph-based visualisations

Graph-based techniques present elements as nodes and inferences as links between

nodes. Participant visualisations vary in respect to node placement techniques

and in the use of graphical primitives to node and inference characteristics. This

form of visualisation displays inferences in a more concise manner than matrix-

based techniques, as it is based upon the number of elements within the dataset

not the number of inferences derived, and therefore it generally achieves better

scalability. However, as the number of elements and inferences increase, graph-

based visualisations become increasing cluttered and hence more difficult to in-

terpret.

Rule Graph (Klemettinen, Mannila, Ronkainen & Verkano 1994) is a compre-

hensive directed graph visualisation, with typical node and inference semantics

where an inference’s strength is represented by arc thickness and label. This

technique also incorporates user interaction in the form of rule template specifi-

cation, through which the user can create display filters to constrain the element

set for which inferences are presented. This is illustrated in Figure 3.4 by ele-

ments E through J, which have been removed from the presentation and appear

to the right. This allows the user to focus on inference subsets, facilitating vi-

sual interpretation. Similarly Rainbows (Hetzler, Harris, Havre & Whitney 1998)

provide a variation in which specific inferences can be focused upon through edge

animation.
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Figure 3.5: Circular association rule visualisation (Rainsford & Roddick 2000)

Rainsford and Roddick (2000) (Figure 3.5) developed a circular visualisation in

which the elements are evenly spaced around the circumference and V2 inferences

are represented as chords, coloured with respect to inference direction. This type

of visualisation is effective in providing a holistic presentation, concisely repre-

senting the entire inference set, effectively indicating general areas of interest.

For example, from the figure it is easy to see the participation level of various

elements within the entire inference set.

Directed Associated Visualisation (DAV) (Hao, Dayal, Hsu, Sprenger & Gross

2001), is a 3D visualisation technique that maps the elements and inferences to

positions and vertices on a sphere, using weighted edges to indicate confidence

and arrows for direction. DAV distributes elements equally on a spherical surface

(Figure 3.6(a)). Based on physics principles of masses and springs, a support ma-

trix is then created that relates the strength of the inferences in terms of spring

tension. The spherical structure is then relaxed and a state of local minimum

energy is reached (Figure 3.6(b)), resulting in each elements’s relative position

reflecting its inference participation. The direction and confidence of each vertex

is then calculated (Figure 3.6(c)), and finally presented to the user. This tech-

nique also serves as the basis of the current Galicia project visualisation at the

University of Montreal (Godin, Missaoui, Huchard & Napoli 2004).
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(a) Initialisation (b) Relaxation (c) Direction

Figure 3.6: DAV Process (Hao, Dayal, Hsu, Sprenger & Gross 2000)

3.4 Presentation Interaction

Visualisation facilitates the perception of patterns and structure within data min-

ing results. A static presentation in itself is often inadequate and human com-

puter interaction (HCI) capabilities are required to allow effective exploration of

the visualisation. This relates to the Visual Information Seeking Mantra which

states that the initial view is qualitative and of an overview nature and through

interaction the user can proceed to focus upon interesting sub-areas for more

quantitative analysis Shneiderman (1996).

HCI occurs at many different levels as illustrated by the Layered Interaction

Model (LIM) devised by Nielson et al. (1992) and shown in Table 3.2. This model

identifies a sequence of interaction levels which build upon each other, illustrat-

ing that the HCI requirement can be broken into different levels of abstraction

from the subjective goals of the interaction through to the physical I/O of the

interaction. There is however a definite shift between the concept-based upper

levels and the activity-based lower levels indicating a transition between what is

required and how it is done. The mapping or transformation between the con-

cept and activity levels of interaction is known as direct manipulation and occurs

at the junction of the syntactic and semantic levels. This section discusses the

exploration of presentations through direct manipulation and the use of views to

facilitate understanding in large complex visualisations.
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Level Name Exchanged Information Example

7 Goal Real World Concepts Remove letter section

6 Task Computer oriented actions Delete 6 lines of text

5 Semantic Specific operations Delete selected lines

4 Syntax Sentences of tokens Click at left of first char.,

whilst holding down left

mouse button, click to the

right of the last character.

3 Lexical Tokens (information units) Click at left of first char.

2 Alphabet Lexemes (primitive symbols) Click at (200,150)

1 Physical Hard I/O (movement,click) Click

Table 3.2: Layered Interaction Model (Nielson 2001)

3.4.1 Direct manipulation

Direct manipulation can be defined as the mapping between the semantic and

syntactic levels of the LIM. The objective in constructing such a mapping is to

create as close a match as possible between the structure of how users think about

a task and the activity used in solving it. This is achieved through pragmatic

engineering, so as to maximise problem domain compatibility (John, Rosenbloom

& Newell 1985). Pragmatics is a branch of syntax interpretation which deals with

relationship of the syntax and their users. Direct manipulation design effects

the interactive quality of the system, including error frequency, speed of task

performance and user skill retention (Buxton 1986).

However, there is not always a single best set of interaction capabilities for a

particular visualisation as users do not have the same mental model and even

within a single user the mental model may differ depending upon the user’s

current goals. Therefore the optimal solution is an intuitive set of mappings that

mimic real world activities. For example, the task of moving a file in a paper

based office involves going to the relevant filing cabinet, picking the required
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file and carrying it to its new location. Intuitively the same task on a computer

system will follow the same pragmatics. Although not possible to incorporate this

form of pragmatism within a text-based system, graphical interfaces provide this

capability by representing data as graphical icons and encapsulating activities

within interaction mappings. So the movement of a piece of data within the

computer system will generally involve the selection of the relevant icon and the

dragging of it to its new location. Importantly the syntax of operations in an

interaction command should closely correspond to the semantic changes to the

data and the screen representation should reflect these changes.

Graphical level interaction is based upon selection and navigation activities

which are specified to the computer by the user through pointing devices. Se-

lection is the designation of a point of interest within the graphical interface,

signified through a terminal action such as clicking a mouse button or pressing

a key. Navigation is the movement of the interest focus which is generally ac-

complished through a continuous activity such as moving the mouse or holding

down specific keys. These primitives work together within different environments

to allow the user the means by which any presentation may be explored in a

detailed manner.

As there are an arbitrary number of semantic tasks that can be undertaken

within a presentation, the overloading of an activity primitive such as selection

is overcome by varying the graphical primitive specification. For example, the

functionality required within a presentation environment may include the ability

to delete items and to display item details in a pop-up dialog, both of which

involve item selection. This overloading of the selection primitive is overcome by

either varying the singular selection action for each semantic task (e.g. left click

for deletion, right click for details dialog) or requiring a combination action either

in sequence or parallel (e.g. left click whilst holding down ‘D’ to delete, left click

then press ‘I’ to display dialog). Another technique used to combat overloading

especially in navigation is indirect manipulation, whereby the presentation is

manipulated through interaction with associated graphic artefacts, a common

example is the inclusion of scrollbars within presentation environments to provide

navigation at both the screen and document levels. However this incorporation

of indirect manipulation techniques requires that the user’s focus be drawn away
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from the actual presentation and lessens the interactive experience (Koedinger

1992). The advent of mice with scroll-wheels have overcome this by providing an

additional form of vertical navigation, hence providing a means for direct vertical

navigation at both the screen and document levels.

Euclidean presentations provide another degree of presentation freedom com-

monly referred to as depth, given that the first and second degrees of presentation

freedom are height and width. Satisfactory interaction with these presentations

can be accomplished through the mapping of Euclidean graphical primitives onto

regular input devices such the mouse and keyboard. However this increases input

overloading and hence the variation of actions required to effectively explore the

environment. Alternatively the utilisation of immersive presentation devices such

as headsets and pointing devices which allow further degrees of freedom such as

flying mice and gloves can increase the users experience of direct interaction and

reduce the mapping overload upon input primitives.

The provision of a succinct set of direct manipulation mappings is critical for

effective presentation exploration. The level of interactive functionality provided

is important as not enough will constrain the exploration process and too much

will result in ‘overload’ and interactive quality degradation. This degradation re-

flects the provision of too many functional alternatives, resulting in non-intuitive

mappings and hence longer task times and less skill retention. Therefore good

direct manipulation design involves the specification of a succinct intuitive set of

mappings based upon selection and navigation primitives that facilitate the direct

comprehensive exploration of a presentation. As a final complication, the correct

level of interactive functionality is user dependant with the level of functionality

increasing with user experience. Consideration should therefore be given to user

specified de/activation of functionalities and visual devices depending upon their

requirements.

The following subsections provide a discussion on view filtering and distor-

tion, which are two common interaction based methods used to alleviate some

of the problems incurred through the presentation of large complex datasets in

co-ordinate space.
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3.4.2 View Filtering

Typical inference sets are large and complex making them difficult to present

to the user in their entirety, in a form conducive to user understanding. Large

result sets produce cluttered presentations due to the volume of graphical ob-

jects required to represent the underlying elements and inferences. View filter-

ing uses direct and indirect manipulation techniques to enhance user percep-

tion of the result set by constraining the presentation to a particular subset

of interest (Klemettinen, Mannila & Toivonen 1997, Ribarsky, Katz, Jiang &

Holland 1999, Wills 1998).

Presentation constraint uses both direct and indirect manipulation depending

upon the presentation’s characteristics and the nature of the constraint. For

example, the exclusion of an element from a graph based presentation would likely

involve the direct selection of the element from the presentation canvas, whereas

an indirect technique such as the use of a drop-down exclusion list widget may be

used in a matrix based presentation. In contrast, global constraint adjustment,

such as the heuristic confidence, is generally specified through indirect widgets as

they apply to the entire presentation and not specific graphical objects and hence

cannot be directly manipulated. The specification of constraints is discussed in

detail in Chapter 5.

3.4.3 View Distortion

Research into the computer-based distortion of visualisations has been an area of

research for the past twenty years and has seen the development of many varied

techniques including Bifocal Displays (Spence & Apperley 1982), Fisheye Views

(Furnas 1986), Perspective Walls (MacKinley, Robertson & Card 1991) and Frus-

trum displays (Anderson, Smith & Zhang 1996). The objective of distortion is

to provide, within a graphic environment, space for the magnification of an area

of interest whilst providing context through compression of the rest of the image

(Sheelagh, Carpendale, Cowperthwaite & Francis 1997). This allows the user to

focus on a particular presentation area whilst still maintaining a holistic view of

the presentation. Without distortion techniques, zooming upon an area of inter-
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est can result in context loss, as graphics objects move outside the viewable area

as illustrated in Figure 3.7.

(a) Original image (b) Zoom with context

loss

(c) Fisheye distortion

Figure 3.7: Graphical Fisheye Views (Sarkar & Brown, 1994)

Focus without context loss improves interpretation of the information pre-

sented as all relationships between the underlying elements are still evident whilst

providing more detailed information about a particular element or set of elements

and their immediate surroundings. Note that although distortion focus is gener-

ally at a single point (as shown in Figure 3.7(c)) it can have multiple foci, allowing

the scrutiny of many areas at once without context loss.

Figure 3.8: Removing occlusion through distortion (Sheelagh et al. 1997), left:

original view of matrix, central: selection of required item of interest, right: visual

access distortion.
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Distortion within Euclidean space can additionally provide a solution to the

problem of occlusion in which graphical objects are hidden by those graphical ob-

jects closer to the view point. This concept is described by Sheelagh et al. (1997)

and illustrated in Figure 3.8. This set of images shows an initial dense matrix

of similar objects and the internal object of interest, indicated by colouration

and enlargement. As the object of interest is internal, regular manipulation of

the presentation may not be adequate as the object will either still be occluded

through rotation or context will be lost through zooming. The third image shows

the use of Visual Access Distortion which clears the line of sight to the chosen

focal region, providing an unobstructed focus.

Translucency can also be used to provide a solution to occlusion in Euclidean

space, by causing the objects closer to the viewing point to become semi trans-

parent. This technique can be applied to facilitate the presentation of inferences

(as discussed in Chapter 4).

3.5 Summary

This chapter provides a review of association rule presentation techniques used

to facilitate the user’s interpretation of association mining results. The review

discusses the perceptual advantage of graphical over textual presentation and

identifies two classes of graphical association presentation 1) matrix-based and 2)

graph-based, in which graph based techniques appear more powerful due to their

superior presentation flexibility.

This survey (in conjunction with Chapter 1) serves as a foundation upon which

further research into the hypothesis of guided association mining is based. To sup-

port this further research, this chapter presents a discussion upon presentation

interaction techniques, which are required to provide a guided mining environ-

ment (Part III).

As a result of research undertaken in the construction of this review, the novel

concept of incorporating hierarchical semantics within an association rule pre-

sentation was proposed. This technique, known as Concentric Association Rule

Presentation (CARV ) is presented in the next chapter (Chapter 4).



Chapter 4

CARV: Concentric Association

Rule Visualiser

A typical mining run can produce many associations that need to be presented to

the user in a manner that facilitates interpretation. Presentations have evolved

from text to graphic visualisations enabling the better use of human perceptual

capabilities. Researchers have devised several techniques for the visualisation of

regular associations built upon matrix and graph based techniques. However our

research has found no current techniques that allow for the effective visualisation

of hierarchical inferences. The problem lies in finding a technique by which the

hierarchy and inference contexts can be merged into a single effective presentation.

To this end we present a novel and useful technique, the concentric associa-

tion rule visualiser (CARV), which allows the simultaneous visualisation of both

hierarchical and association semantics. This chapter provides a review of hierar-

chical presentation techniques and then introduces CARV, discussing its design,

functionality and implementation.

4.1 Visualisation of Hierarchies

In general, a visualisation’s objective is to display data in a manner that facili-

tates user interpretation. Hence the visualisation of hierarchical semantics should

match the user’s concept of a hierarchical structure, a layered structure within
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which each node has a parent and a number of children. This structure is known

as a rooted tree as the structure emanates from a single root node, in compar-

ison to free trees that do not encode any structure apart from their topology

(Eades 1992). Rooted-tree visualisations can be thought of as belonging to either

of two groups: graph-based in which the hierarchy is presented as a collection of

nodes with connecting arcs representing the hierarchical semantics, and embedded

in which the parent’s graphical representation encompasses that of its children.

This section provides an overview of the types of hierarchical visualisation.

Figure 4.1: Classic Tree Visualisation (Herman, Melancon & Marshall 2000)

Graph-based visualisations use nodes and connecting arcs to represent hier-

archical semantics, a set of rules for the effective placement of these nodes was

developed by Wetherell and Shannon (1979). The classical tree visualisation posi-

tions child nodes under their parents as shown in Figure 4.1 (Herman, Melancon &

Marshall 2000). Building upon this work, two significant visualisation techniques

based upon a fractal approach were devised, the radial and cone-tree models.

The radial model (Eades 1992) positions nodes on concentric circles according

to their depth in the tree. Each sub-tree is positioned over a sector of the circle and

a convexity constraint forces the sub-tree wedge to remain convex ensuring that

adjacent sub-trees do not overlap (Figure 4.2).The cone-tree model by Robertson
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et al. (1991) differs in that each sub-tree is represented by a circle connected to

the parent node (Figure 4.3). A 2D version of the cone-tree model can be obtained

by projecting the model onto a plane (Carriere & Kazman 1995), termed a balloon

view (Figure 4.4).

Figure 4.2: Radial visualisation (Eades 1992)

Figure 4.3: Cone-tree visualisation

(Robertson, Mackinley & Card 1991)

Figure 4.4: Balloon View

(Carriere & Kazman 1995)

Embedded visualisations represent hierarchical semantics by encapsulating

sub-trees within the parent’s graphical representation in a manner similar to Venn

diagrams. Examples include Treemaps (Johnson & Schneiderman 1991), Bubble

Trees (Boardman 2000) and Onion Graphs (Sindre, Gulla & Jokstad 1993). Fig-

ure 4.5, a Treemap, illustrates the principle by recursively splitting the screen into
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Figure 4.5: Treemap (Johnson & Schneiderman 1991)

rectangles of alternating orientation as the hierarchy is traversed. Onion Graphs

are a circular version of this technique and Bubble Trees reduce clutter by only

displaying three hierarchy levels simultaneously and requiring user interaction to

traverse the tree.

The visualisation of hierarchical information in an effective manner has been

an active field of research for the past two decades and there is an abundance

of literature available. However research indicates that much of this work in-

volves extensions and variations of the techniques summarised above, in order

to better visualise larger datasets (Koike & Yoshihara 1993, van Wijk & van de

Wetering 1999). This generally involves the incorporation of functionality such

as navigation and focus + context concepts (Herman, Melancon, de Ruiter &

Delest 2000, Kreuseler & Schuman 1999, Yee, Fisher, Dhamija & Hearst 2001).

4.2 Concentric Association Rule Visualisation

A hierarchical association visualisation requires the visualisation of elements and

their inferences within a structure that captures hierarchical semantics. This re-

quires the simultaneous visualisation of both the hierarchy and association struc-

tures in an effective and intuitive way. Background research into the visualisation

of hierarchical and association semantics, summarised in Sections 1.3.3 and 4.1,
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indicated the effective use of graph-based techniques to represent both types of

semantics. While matrix-based and embedded techniques are useful within their

respective fields they are more tightly constrained and cannot accommodate the

introduction of other semantics.

In comparing the suitability of the different graph-based techniques, our focus

was upon the aesthetic quality of the resulting visualisation. Scalability, which

often seems be a key issue in data visualisation, is of less importance as the result-

ing visualisations will typically not be large. This is because although a typical

dataset may contain thousands of different elements, the resulting presentation is

significantly smaller, both in regard to the participant hierarchy and discovered

inferences, through constraint inclusion. Which, in the case of support excludes

those elements of little impact, reducing presentation content to the extent that

it can be easily interpreted by the user. Herman et al. (2000) argue that from

a cognitive perspective it makes little sense to display large amounts of data

because understandability is reduced.

Much research has been undertaken in regard to graph aesthetics (Battista,

Eades, Tamassia & Tollis 1999, Purchase 1998) and the main types of graph-based

visualisation conform to these (see Section 4.1). By basing node positioning upon

hierarchical semantics and using an existing hierarchical graph-based technique

many aesthetic qualities are assured. The issue then becomes the preservation of

these aesthetics when association semantics are introduced. The introduction of

association semantics as additional edges will not effect those aesthetic qualities

that relate to node placement, it may however have a detrimental effect upon

presentation clarity through obscurement.

In relation to both the hierarchy and inferences, obscurement will result in

information loss and therefore obscurement can have a significant impact upon

the understandability of the visualisation. Hierarchy obscurement will occur in

visualisations that rely upon edges as well as nodes to convey the hierarchical

semantics. Of the three core graph-based models, the cone-tree model (Section

4.1) relies heavily upon edges in conveying hierarchy semantics. The other two

models can effectively present hierarchy semantics solely from node placement.
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The classic model, although the most effective in regard to minimising hier-

archical obscurement because of its unidirectional layout, will result in excessive

inference obscurement due to this same layout. For example from Figure 1, if

there existed two inferences Whiskey ⇒ Fruit Juice and Gin ⇒ Soft Drink, the

first would be overlain by the second and hence obscured. This form of obscure-

ment is not a significant issue in the radial and cone-tree models because of their

more flexible layout.

Based upon the primary need to minimise obscurement the radial model is

the best suited technique as it is simple enough to convey the hierarchy without

the use of edges and therefore association obscurement is minimised due to its

circular layout. Additionally, previous work by Rainsford and Roddick (2000)

(Section 1.3.3), has shown the effectiveness of using circular representations and

as the visualisation is bounded by the hierarchy, the visualisation will be less

obscured than one based upon the classic or cone-tree models. Figure 4.6 shows

the visualisation using radial layout of the complete hierarchy used in Figure 1,

in which the arcs indicate sibling elements.

Figure 4.6: Radial visualisation of example hierarchy

The inference can then be simultaneously visualised using two techniques: di-

rect method, in which relationships are drawn directly between the associated

elements, and the trail method, where the relationships are drawn along the hier-

archical path. For example, using the trail method and the hierarchy in Figure 1

the rule Whiskey ⇒ Soft Drink would be represented as a line that traverses the
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hierarchy from Whiskey to Soft Drink through nodes Alcohol, Drink and NonAl-

cohol. These techniques are illustrated in Figure 4.8, based upon the hierarchical

frame presented in figure 4.7, which shows the result of an association mining

session using a test dataset. The direct method (Figure 4.8(a)) is useful in tasks

that seek to identify general trends within the rule set, however the hierarchy is

quickly obscured as the number of inferences increase. The trail method (Figure

4.8(b)) results in a less cluttered visualisation of the hierarchical semantics. How-

ever, due to inference overlay there is a high level of obscurement, thus resulting

in an ineffective visualisation.

Figure 4.7: Hierarchical Frame.

(a) Direct method (b) Trail method

Figure 4.8: Incorporation of inferences upon a radial hierarchy framework using

both direct and trail methods.
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Figure 4.9: Conic model representation of item hierarchy

From Figure 4.8 it is apparent that the direct method is more effective in repre-

senting associations, as overlaying of associations is, in general, avoided, however

this method leads to hierarchy obscurement. An effective solution, similar to that

proposed by Baker et al. (2002) to clarify the visualisation of genetic regulatory

networks, is to make the hierarchy more prominent by extruding the two dimen-

sional radial model into the third dimension, effectively creating a transparent

conical model (Figure 4.9). Within this model elements become more prominent

as they lay upon the cone’s surface, while both intra and inter-level inferences,

within and across hierarchy levels respectively, lie within the cone and hence do

not obscure the hierarchical representation.

Although the direct method avoids most overlays, they will occur where mul-

tiple associations with the same constituent elements exist. For example the

inferences Gin ⇒ SoftDrink and SoftDrink ⇒ Gin, which have different conno-

tations, will be overlaid using the direct method. An effective solution to this

problem is the introduction of an inference vertex. A vertex is an approximate

midpoint of the constituent elements, where the vertex must be unique to ensure

no overlaying occurs. This is accomplished by checking new vertices against a

listing of existing vertices. If non-unique the new vertex is moved slightly in a

random direction and rechecked.

The introduction of a vertex also provides a method for the effective visuali-

sation of inferences in which the number of constituent elements is greater than

two. This provides a capability not apparent in some current graph-based tech-
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niques that only present V2 associations, such as Rainsford & Roddick (2000) and

Hao et al. (2001), presented in Chapter 3. Rule Graph (Klemettinen et al. 1994)

although capable of visualising Vn inferences, does not present a generally appli-

cable solution to the overlay problem.

(a) Interface with rotated model (b) Labelling and transparency

Figure 4.10: CARV implementation snapshot

4.2.1 Implementation

The implementation of these concepts resulted in the development of the Concen-

tric Association Rule Visualiser or CARV (illustrated in Figure 4.10(a)), in which

the implementation of 3D environment functionality such as zooming, panning

and model rotation provides a direct and effective inference model exploration.

Associated functionalities of interest include labelling and focus, presented in Fig-

ure 4.10(b). Focus is achieved by using transparency to hide inferences of little

interest. For example, within Figure 4.10(b) only the inferences in which the

concepts Soft Drink and Non Alcoholic participate are apparent.

Figure 4.11 illustrates two important features of the visualiser: firstly the

ability to represent non-hierarchical or regular association mining results, and

the inclusion of vertices to eliminate overlay and visualise complex inferences.
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Figure 4.11: Non-hierarchical visualisation illustrating vertex inclusion

4.3 Dynamic Inference Presentation

The concept of CARV was developed to provide a solution to the visualisation of

hierarchical inferences, however it has also been used to provide a base visualisa-

tion component for subsequent research into guided association mining. Where a

guided association mining system requires in effect a merging of the analysis and

presentation stages of the mining system, allowing the user to see the analysis

process and provide feedback to it (presented in detail in Part III). To this end

CARV has been extended to enable the dynamic presentation of inferences and

to allow for interactive functionality, through direct manipulation, so that the

user can insert guidance within the analysis process.

An example of the dynamic presentation capability is provided in Figure 4.12.

The images illustrate the initial visualisation of valid elements (Figure 4.12(a)),

the dynamic visualisation of inferences (Figure 4.12(b)), and the completed vi-

sualisation (Figure 4.12(c)). Further discussion and presentations of CARV in

relation to the provision of guidance are provided in Chapter 8.
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(a) Initial visualisation of itemsets (b) Intermediate visualisation stage (c) Final visualisation

Figure 4.12: Dynamic CARV



Part IV

Guided Association Mining

Anyone who has ever used a computer

knows that interactive tools are

indispensable.

Surajit Chauduri 2002



Chapter 5

Analysis Constraint Review

The unconstrained analysis of the dataset (D) results in the discovery of an

inference set that grows exponentially as the number of dataset elements increases

linearly, |R| = 2|E|−1. Analysis constraint, or the inclusion of constraints within

the analysis process is fundamental to maintaining exploration tractability, given

the typically large and complex nature of target datasets.

Furthermore the user specification of constraints provides a mechanism where-

by the user’s subjective knowledge about the domain and the task at hand can

be incorporated within exploration. This results in an inference set that better

reflects the user’s focus, enabling the specification of characteristics of interest

to the user, in essence providing a limited form of analysis synergy between the

user and computer. Therefore user involvement can enhance the usefulness and

performance of mining processes, by eliminating information that is of no interest

to the user.

This chapter presents a discussion about constraint specification and its in-

clusion within association analysis. Section 5.1 presents the different types of

constraints, while Section 5.2 provides a review of the different techniques by

which analysis is currently constrained.
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5.1 Constraint Classes

There are two classes of constraint: domain and functional, which serve as the

building blocks for complex constraint specification, where domain constraints

involve set comparisons and functional constraints are based upon mathemati-

cal functions and operators. Prior research by Ng et al. (1998) describes four

classes of constraint, however this thesis argues that there are only two founda-

tion classes: domain and functional, that definitively encapsulate the constraint

class domain. From these all other constraint classes, including those proposed

by Ng et al. (1998), are built through sub-classing and complexity.

Given two elementsets A and B that are subsets of the common domain E,

then A λ B represents the common domain constraint form, where λ is a logi-

cal operator, {=, 6=,⊂,⊆,⊃,⊇∈, 6∈}. For example, given the partial hierarchy

in Figure 1 and the generation of elementsets, Examples 1 and 2 respectively

represent the constraint of valid elementsets to those containing GingerBeer and

those not containing the abstract concept Alcohol, while Example 3 presents a

domain constraint based upon excluding an element characteristic, colour.

Example 1 A ⊃ {GingerBeer}

Example 2 A 6⊃ {Alcohol}

Example 3 A.colour 6∈ {red, blue}

Functional constraints, of the form AθB, relate to the boolean comparison of

two operands, {=, 6=, <,≤, >,≥}, which are either constants or functions. Given

x is a constant and age is a numerical element characteristic, Examples 4 - 6

present sample function constraints.

Foundation classes can then be built to describe more complex constraints,

either positive or negative, including inference and conjunct constraints. Posi-

tive constraints specify what the user wants and hence the valid concepts, either

elementsets or inferences, that satisfy the constraints. Negative constraints, rep-

resent what the user already knows, and therefore valid concepts are based upon

constraint violation or unexpectedness.
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Example 4 freq(A) ≥ x

Example 5 freq(A) ≥ avg(freq(B) ∈ D)

Example 6 sum(Sage) ≤ Sum(Tage)

Constraints are of most effect during elementset generation, in reducing explo-

ration by applying the constraint to each candidate elementset. However infer-

ence constraints can also be applied during inference derivation, and enable the

positive and negative constraint of either the antecedent or consequent. While

more specific than elementset constraints, some inference constraints can be in-

corporated during elementset generation and again during inference derivation.

This enables the inference constraint to aid an exploration constraint. If an infer-

ence is valid then its underlying elementset is also valid, given that the inference

constraint is generically applied to each elementset irrespective of antecedent or

consequent specification, which is handled during inference derivation.

For example, given an elementset A from which derived inferences take the

form Aa ⇒ Ac, then Example 7 represents an inference constraint that can also

be used to constrain exploration. Example 8 can only be included during inference

generation as the comparison is between antecedent and consequent subsets.

Example 9 represents a conjunct constraint that has been constructed through

the joining of multiple simple constraints. This constraint involving a conjunction

of inference constraints to be incorporated during inference derivation. However

the portion Sc.type ∈ {alcoholic} can also be used to constrain exploration as it

refers to the existence of a domain concept within all valid elementsets.

Example 7 sum(Aa.age) ≥ x

Example 8 sum(Sa.price) ≤ sum(Sc.price)

Example 9 size(Sa) > 2∧Sc.type ∈ {alcoholic}∧freq(Sa) > x∧freq(Sc) > x
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An important constraint attribute is that of reflexivity, where many element-

sets can be removed from consideration given a reflexively invalid elementset. This

is based upon the principle of directed validity, where given the monotonically

valid elementset A, all supersets of A are also valid (Definition 1). For example,

consider the functional constraint count(A)> x, where x is a constant, then if

A is valid the all supersets of A will also be valid due to the static value of x.

The opposite is true for non-monotonically reflexive constraints, such as support,

whereby given the non-monotonically valid elementset A, then all subsets of A are

also valid (Definition 2). For example, given the common functional constraint

σ, then if σ(A) is valid all subsets must be valid. Therefore given a top-down

lattice exploration incorporating the non-monotonic constraint support, valid Vκ

can be derived from Vκ−1 as all subsets of a valid elementset must also be valid

(see Chapter 1).

While all domain constraints exhibit reflexivity as they relate to the concept

existence, not all functional constraints are reflexive and are therefore not useful in

regard to exploration reduction. For example, consider the mathematical function

average, as it is not directional within a set domain, ever increasing or decreasing,

then it is not reflexive. Given avg(A)x it cannot be predicted, based upon the

introduction or removal of an element, whether x will increase or decrease.

Definition 1 (monotonic) ∀ A, B | (A ⊆ B ⊆ E ∧ V (A)) ⇒ V (B)

Definition 2 (anti-monotonic) ∀ A, B | (B ⊆ A ⊆ E ∧ V (A)) ⇒ V (B)

The use of uncertainty (or fuzziness) in the definition of functional con-

straints has been proposed by Liu et al. (1999), based upon the principle

of fuzzy linguistic variables (Zimmermann 1996). An element’s characteristic

is associated with a defined set of concepts, each of which represents a sub-

set of the charateristic’s domain. For example, given the element character-

istic price with a range of r = [0.05, 200] and an applicable set of concepts

c(price) = {cheap, reasonable, expensive}. Then each concept is mapped to r

denoting a degree of membership, m(concept). Example 10 presents a definition

of m(expensive). Based upon this, fuzzy constraints, both positive and nega-

tive, can be specified in which an inference’s conformity to a fuzzy constraint is
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specified by its membership within that constraint. Example 11 presents a fuzzy

constraint based upon the specification of fuzzy concepts for price and colour.

Example 10 m(expensive) = {(u, µexpensive(u)) | u ∈ [0.05, 200]}

µexpensive(U) =















1 : u ∈ [120, 200]
u−50

70
: u ∈ [50, 120]

0 : u ∈ [0.05, 50]

Example 11 S.price > cheap ∧ S.colour = dark

Constraints are often referred to as Measures Of Interest (MOI) within the lit-

erature and are commonly classified as being either objective or subjective. Where

objective measures are dependent upon statistics and the underlying dataset,

while subjective measures depend upon user beliefs in respect to what is of inter-

est to them (Silberschatz & Tuzhilin 1996). This classification however appears

flawed in its use of the term objective. A Measure Of Interest, by its definition,

cannot be objective, as it embodies a user’s belief and therefore is always subjec-

tive. For example, the inclusion of the “objective” MOI support, is based upon

the statistical validation of elementsets according to a specified threshold, which

is specified by the user based upon their beliefs. Therefore support is ultimately

subjective.

Measures Of Interest is an important, large area of research, however this work

focuses upon constraint inclusion within analysis and not upon specific constraints

or MOI’s. For detailed reviews see Silberschatz & Tuzhilin (1996), Hilderman &

Hamilton (1999), Padmanabhan & Tuzhilin (2000), Tan et al. (2002) and Wang

et al(2003).

5.2 Constraint Inclusion

Constraints can target elements, elementsets or inferences and are incorporated at

the earliest effective point within the mining cycle, given the constraint’s target,

to maximise the constraints effect upon analysis reduction. For example, prior to



REVIEW: ANALYSIS CONSTRAINTS 128

analysis, only constraints targeting elements or “raw data” can be incorporated,

as elementsets and inferences do not yet exist. While constraints targeting ele-

mentsets are incorporated during exploration, and inference based constraints are

included during derivation. However some inference based constraints can also

be included during exploration in a more general form to reduce exploration, as

discussed in Section 5.1.

The seminal works in constraint analysis were published in the early 1990’s

with researchers proposing techniques to constrain the number of generated in-

ferences presented to the user, through the removal of redundant inferences and

template specification, thereby reducing cognitive load (Han, Cai & Cerone 1992,

Toivonen, Klemettinen, Ronkainen, Hatonen & Mannila 1995, Klemettinen, Man-

nila & Toivonen 1996). However, the most notable contribution of this period

was the introduction of reflexive constraints within analysis to significantly re-

duce exploration, the most common being support, (Agrawal et al. 1993), where

support measured an elementset’s dataset presence providing a quality heuristic

that resulted in the discovery of only the frequent elementsets within D, given a

user specified threshold, minsup.

The following subsections (5.2.1 . . . 5.2.3) provide a review of constrained min-

ing techniques separated into the stage of constraint inclusion. Dataset Constraint

(Section 5.2.1) presents the inclusion of constraints upon the dataset before anal-

ysis. Exploration constraint (Section 5.2.2) discusses the inclusion of constraints

within analysis and Inference Derivation Constraint (Section 5.2.3) discusses the

incorporation of constraints during the derivation of inferences.

5.2.1 Dataset Constraint

Constraints included prior to analysis focus upon the removal of data, or ele-

ments, from D. In its simplest form this is achieved through the selection of

the dataset to be mined, or the construction of the analysis dataset D, through

querying of source database(s) via SQL. Most dataset constraint research has

pragmatically focused on the extension of standard SQL for its use within a data

mining environment.
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Meo et al. (1996), propose an SQL operator Mine Rule that allows the SQL

specification of dataset constraints to be incorporated before analysis. However,

the join operations used are inefficient. This operator was subsequently extended

to allow for the specification of inference constraints, that were incorporated

during inference derivation (Yen & Chen 1997). Similar SQL extensions have

also been proposed that enable the embedding of constraints within a data mining

query language (Han, Fu, Wang, Koperski & Zaiane 1996, Imielinski & Virmani

1999).

Ng et al. (1998) proposed the concept of succinctness to identify forms of

constraint that can be used to identify and subsequently constrain the exploration

space before analysis begins. Succinctness, as proposed by Ng et al. (1998)

applies to single-variable constraints only, where the constraint can be expressed

as a relational algebra selection predicate, σp(E). Given a number of succinct

sets A1, . . . , Ak ⊂ E, a constraint is succinct if it can be expressed in terms of

the strict powerset of these succinct sets using union and minus operators.

For example, the constraint {Alcohol, SoftDrink} ⊆ AType is succinct as it

can be reduced to a simple selection on individual elements. In more detail, the

constraint specifies that valid elementsets must contain at least one element of

type Alcohol and one of type Softdrink. For example, given the succinct sets

A1 . . . A3 below, the constraint is succinct as its applicable search space, V , can

be expressed as in Example 12, where 2A1 represents the powerset of E1.

Therefore if a constraint is succinct, the valid exploration space in respect to

this constraint can be identified before analysis, allowing the generation of all

valid elementsets satisfying the constraint without exploration being undertaken.

Example 12 V = 2E − 2A1 − 2A2 − 2A3 − 2A1∩A3 − 2A2∩A3

A1 = σtype=′Alcohol′(E)

A2 = σtype=′SoftDrink′(E)

A3 = σtype 6=′Alcohol′∨type 6=′SoftDrink′(E)
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Subsequent research, by Lakshmanan et al. (1999), extended the concept

of succinctness to two-variable constraints, by introducing the concept of quasi-

succinctness. Whereby a quasi-succinct two-variable constraint can be reduced to

two one-variable constraints, upon which the succinct pruning techniques can be

applied. Furthermore the concept of succinctness and quasi-succinctness were ap-

plied to the efficient computation of correlated sets, extending Brin et al. (1997).

Goethals & Bussche (2000) propose dataset constraint given a set of domain

based inference constraints. This is accomplished through the generation of a

set filter (S) based upon a user specified rule filter, Rf , of the form Ante ⇒

Cons where each element of Ante and Cons relates to an element’s inclusion or

exclusion within valid inferences. This results in positive and negative element

filters, Spos and Sneg respectively, that are used to reduce D to only those objects

that are supersets of Spos and from which all elements in Sn are removed, resulting

in Ds. Association mining upon Ds is then conducted, resulting in the discovery

of all valid elementsets V , with respect to S. In effect, each elementset represents

the elementset X∪Spos, where X is an arbitrary elementset, and hence no invalid

candidates are generated.

Subsequent inference derivation ensures that all valid rules satisfying Rf are

generated, where the rules antecedent (consequent) is a superset of RA (RB) and

does not contain any RB (RA). To calculate rule confidence an additional scan

of D is required to calculate the support for all rule participating subsets that

are disjoint to Spos. This results in the valid set of rules for the defined rule

constraint.

Xia et al. (2002) propose the use of Bayesian networks to efficiently embed

user beliefs within a compact but expressive structure. Furthermore the authors

propose three techniques by which the set of objects within D that satisfy the

user’s criterion can be efficiently selected for subsequent mining.

5.2.2 Analysis Constraint

The inclusion of constraints within analysis is significant, reducing exploration

and discovered inference quantity, ultimately improving result quality. This en-

ables a limited form of synergy to be incorporated during analysis and is the
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forerunner to guided analysis. Applicable constraints target elementset genera-

tion and inference derivation through the inclusion of both functional and domain

based constraints. Agrawal’s seminal work that presented the Apriori algorithm,

(Agrawal et al. 1993), introduced the use of a functional constraint within analy-

sis, namely support, while domain based constraints were introduced into analysis

by Srikant et al. (1997).

Srikant et al. (1997) introduced the inclusion of complex domain constraints

within analysis where a domain constraint is of the form X1 ∧ X2 ∧ ... ∧ Xn

where each disjunct Xi of the form xi1 ∨ xi2 ∨ ...∨ xim specifies a set of elements,

where each element xij is either positively or negatively constrained. When a

concept hierarchy is available, an element can also be contextually constrained

in regard to the hierarchy. For example, based upon Figure 1, (Gin∨Coffee)∧

descendants(Softdrink) is a valid complex domain constraint.

However it was found that the implementation required the subsequent gen-

eration of subsets during inference derivation, which although invalid in relation

to the domain constraint, were required to derive inferences, as they had a valid

superset. This work was extended by enabling the specification of domain based

inference constraints and optimising exploration by incorporating them before

analysis through dataset pruning (Goethals & Van den Bussche 2000).

Liu et al. (1999) propose the concept of applying multiple constraints upon

an element characteristic, by specifying the group of elements upon which a par-

ticular constraint is valid. The implementation is simple, with the constraint

being attached, in this case support to each element. During exploration valid

elementsets are those whose support exceeds the lowest participant element’s

threshold, instead of a global threshold. This work was subsequently extended

through the notion of support constraints, that allow direct support specification

for elementsets that can subsequently be treated as a single concept (Wang, He

& Han. 2000).

Readt & Kramer (2001) propose a technique that naively incorporates reflex-

ive constraints by incorporating anti-monotone constraints within analysis and

subsequently re-analysing the output, incorporating any monotone constraints.

Dualminer, (Bucila, Gehrke, Kifer & White 2002), provides an optimisation by
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incorporating both monotone and anti-monotone constraints in each level-wise

scan of D, by applying the monotone constraints to the elementset complements.

For example, given E = {a, b, c, d}, the complement of a is ¯{a} = {b, c, d}, re-

sulting in the simultaneous reduction of the search space from both directions

at once. This concept has been subsequently adapted for closed-set mining in

MIN-Ex (Boulicaut & Jeudy 2001).

Pei et al. (2001) extend functional constraint research by identifying and

proposing optimisations for a constraint sub-class, referred to as convertible con-

straints. The authors refer to the class members as tough as they are neither

reflexive nor succinct, including sum(i) and mean(i). The optimisation is based

upon the theory that tough constraints often become reflexive in the presence of

certain element orderings and by ordering the set of elements in regard to the

characteristic in question, either in descending or ascending order, the constraint

can be dealt with in a reflexive manner. Due to its focus upon element ordering,

FP-growth (Han et al. 2000) provides a conducive environment for convertible

constraint inclusion, not possible in classic level-wise algorithms due to ordering

irrelevance.

Wang et al. (2003) propose a novel Divide-and-Approximate approach for

pushing functional constraints into the analysis of Iceberg-cubes. This differs

from previous constrained analysis research as Iceberg-cubes deal with tuple-

based instead of element based mining. Therefore the element order approach

to function constraints taken by Pei et al. (2001) cannot be applied, as no such

tuple-ordering exists. The suggested approach optimises processing by pushing

the functional constraint so that only likely cells are examined. Through ap-

proximators, which are approximations of the function constraint, the algorithm

converges upon the constraint using a divide and conquer strategy.

5.2.3 Post-Analysis Constraint

Given that analysis results in a discovered inference, a number of techniques

have been proposed that manipulate this inference set to improve the subsequent

presentation quality by reducing quantity and increasing interestingness. This is

achieved before actual presentation by implementing rules (as discussed below)
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or during presentation to facilitate interpretation through the use of interactive

views or graphical interaction (Xiao & Dunham 2001, Wills 1998, Chu & Wong

1998, Klemettinen et al. 1997, Ribarsky et al. 1999).

Shah et al. (1999) propose a set of pruning rules to increase the interestingness

of the inference set by eliminating redundant inferences. These rules, presented

below, introduce two concepts: subsumption and weak rules. Where subsumption

refers to relative element occurrence. For example, given that element a subsumes

element b then b has a high co-occurrence with a, or a ⇒ b γ(x%), where x is

high. Weak rules are those whose validity may be questioned due to the presence

of alternative causes.

• Given a ⇒ C and a, b ⇒ C occur with similar confidence, then a, b ⇒ C is

redundant as b is not a significant contributor or cause of the inference.

• Given a ⇒ C and b ⇒ C occur with similar confidence, then b ⇒ C is

redundant, if b subsumes a but a does not subsume b.

• Given a ⇒ C and b ⇒ C occur with similar confidence, then they are weak

rules if a and b subsumes each other.

• Given A ⇒ c and A ⇒ c, d, then A ⇒ c is redundant as it is represented

within A ⇒ c, d.

• Given A ⇒ c and A ⇒ d and c subsumes d then A ⇒ c is redundant as the

subsumed consequent is logically stronger.

Liu et al. (2000) propose the filtering of discovered inferences to remove ex-

pected inferences through the iterative specification of three constraint levels:

general impressions, reasonably precise concepts and precise knowledge. Each of

these in an increasing order of precision specify a class of expected inference, the

participants of which can be removed from consideration. General Impressions

(GI) represent vague user intuition about a relationship between a set of elements

or higher level concepts. The precision is increased in Reasonably Precise Con-

cepts (RPC) with the specification of antecedent and consequent classes, while

Precise Knowledge (PK) allows the user to specify a specific inference and its

strength. The constraints are then applied to each discovered inference and as-

signed a conformance weight, which is the degree to which the inference conforms

to the specified constraint, providing a measure of unexpectedness. This work
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was subsequently extended through the inclusion of fuzzy constraints (Liu, Hsu,

Mun & Lee 1999).

Saha (1999) proposes a technique by which large families of inferences can be

quickly eliminated through the user classification of seed rules, where a seed rule is

a simple inference that forms the basis of many other existent inferences. Through

a user classification of seed rules, a knowledge base containing user beliefs is

developed this allows the elimination of families of inferences deemed expected,

based upon the classification of their seed rules. By iteratively presenting the

largest seed rules for the user to classify in regard to their interestingness, families

of uninteresting rules can be eliminated from consideration where the largest seed

rules refer to those seed rules that represent the largest families of inferences. The

author presents evidence indicating that, over five iterations of classification up

to half of the inferences can be eliminated from consideration.

5.3 Summary

This chapter provides a review of techniques used to constrain the exploration of

a search space lattice. The discussion presents constraints as being derived from

two classes: 1) functional or 2) domain based constraints and discusses the stage

of constraint inclusion within the knowledge discovery process.

This discussion identifies the different types of constraint that need to be

incorporated within a guided mining environment, information subsequently used

in the development of a guided mining environment and proof-of concept tool

(Chapter 7 & 8). This discussion is continued in the next chapter (Chapter 6)

by discussing techniques that allow for the refinement of constraints during a

knowledge discovery session.



Chapter 6

Constraint Refinement Review

The inclusion of constraints within data analysis is fundamental to maintaining

exploration tractability. As the nature of a dataset’s inferences are initially un-

known, initial constraint specification, is at best based upon an educated guess.

Therefore as inferences, or patterns, are elicited from the dataset and presented

to the user, the user’s knowledge base evolves in respect to understanding the

patterns within the dataset. As a result the user can subsequently refine con-

straints, based upon this new knowledge, to focus upon areas of interest and

thereby improve the quality of results.

The typical inclusion of refinement results in an iterative analysis process in-

volves the successive refinement of constraints, until the user is satisfied with the

quality of inferences generated. However a new area of research, and the focus of

this thesis, is the dynamic refinement of constraints during the analysis process.

Dynamic constraint adjustment therefore provides a mechanism allowing the

user to steer subsequent analysis into areas of exploration interest. To accom-

modate such functionality, an interactive analysis environment is required that

provides users with the dynamic presentation of intermediate results. This gives

the users the opportunity to react to the current state of analysis and through

constraint adjustment guide subsequent processing. The inclusion of guidance

also leads to a greater level of user trust in the mining results, as the user is more

involved with the process (Section I.3) and hence better understands the process

leading to the results, thereby reducing the unknown processing element.
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This chapter provides a review of the current state of constraint refinement

within knowledge discovery and provides a foundation for subsequent chapter

contributions. The first section (Section 6.1) presents several techniques proposed

to facilitate iterative analysis through the use of previously generated information.

The remaining sections review the current techniques that enable user guidance

within the field of knowledge discovery, leading into a detailed discussion on

this thesis’s contribution to guided analysis in Chapter 7. To this extent, the

following review looks at guided analysis not only in regard to association mining

but also within the knowledge discovery process (Section 6.2) and the main facets

of exploratory mining: clustering (Section cim:gc), classification (Section cim:gcl)

and association mining (Section cim:ga).

6.1 Iterative constraint refinement

Nag et al. (1999) propose the use of a knowledge cache to reuse previously discov-

ered inferences during subsequent analysis, effectively reducing analysis iteration

time. While several caching strategies are proposed the only constraint incorpo-

rated is support, while solutions for the inclusion of domain based constraints are

not presented. This work was extended by using condensed representations, such

as closed sets, to reduce cache size and improve processing in highly correlated

datasets (Jeudy & Boulicaut 2002). Other iterative optimisations are based upon

the storage of previous results (Raghavan & Hafez 2000, Ortega, Chakrabarti &

Mehrotra 2003).

Cong & Liu (2002) propose using the boundary of the valid elementset lattice to

summarise the useful information from the previous analysis instance. Given the

inclusion of support the boundary provides the set of maximal valid elementsets.

Subsequent refinement of support therefore results in either a tightening or relax-

ation of the lattice boundary. If tightened then the new valid elementsets can be

easily derived from the existing boundary set, while if relaxed, all previous results

are valid and subsequent analysis can begin at the lattice boundary. This lattice

boundary technique is constrained to simple reflexive constraints due to the use of

the lattice boundary and the requirement for global constraint non-monotonicity.
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Bolton and Adams (2003) propose a refinement technique based upon an evolv-

ing baseline model (or background model) that represents what the user expects

in the data. By iteratively analysing and appending uninteresting inferences to

the baseline model, the process approaches an optimal set of interesting infer-

ences, as the baseline model of expected inferences becomes complete. Elicited

inferences of interest can also be appended to the baseline model to avoid repeat

discoveries. Any initial baseline model proposed by the user is rarely complete or

correct and requires subsequent iterative analysis and refinement to become so.

The baseline framework is not dependent upon a single methodology, the authors

suggesting its use in both modelling and algorithm pattern discovery techniques,

however, the examples presented focus upon statistical modelling techniques.

A similar knowledge refinement strategy is presented by Padmanabhan &

Tuzhilin (2002) in which unexpected inferences are reconciled with the prior spec-

ified domain knowledge base. Two reconciliation algorithms are proposed that

extend previous work upon the discovery of unexpected patterns (Padmanabhan

& Tuzhilin 2000), through the inclusion of a set of refinement properties, these

are outlined below.

• Convergence of a belief system to a fixed point. After a finite number

of iterations no unexpected patterns are discovered in relation to a refined

system of beliefs.

• Consistency of all beliefs at any iteration of the belief refinement process.

• Path Independence ensures that the order in which the selected patterns

are incorporated into the belief system does not affect the refined system

of beliefs

• Minimality requires that the refinement strategy creates a minimal set of

beliefs.

• Monotonicity guarantees that once an unexpected pattern is incorporated

into the belief system and becomes expected, it will not subsequently re-

appear as unexpected.

Goethals and Bussche (2000) propose an online filtering technique that at-

tempts to optimise integrated filtering by reusing previous analysis results, where
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integrated filtering is the inclusion of the constraints in the generation of valid

elementsets. Goethals and Bussche (2000) also discuss the trade-off between

post-process and integrated filtering. They show that given an iterative inte-

grated environment, there comes a point at which naive analysis and subsequent

post-process filtering becomes more efficient than iterative integrated filtering,

even with reuse, due to the extra processing involved for each new query in an

integrated environment.

6.2 Guided Knowledge Discovery

Guidance within the knowledge discovery process provides a framework mecha-

nisms to facilitate or control the mining session. This guidance occurs at a coarse

level facilitating the selection of tools (collection, pre-processing, mining and pre-

sentation) and the piping of data between them, however it does not address the

incorporation of guidance within the mining process.

Wrobel et al. (1996) propose an architecture allowing the guidance of hypoth-

esis exploration, incorporating parallelism to allow different subtasks (hypothesis

explorations) to be carried out upon separate processors. The system is based

upon a Search Space Manager (SSM) that persistently stores the search state of

different hypothesis. Through SSM the user can analyse current subtasks, insti-

gating new subtasks based upon existing hypothesis refinement. Furthermore,

through the maintenance of a hypothesis history any previously investigated hy-

pothesis can be refined and re-processed, in essence providing backtracking func-

tionality within the knowledge discovery framework.

Aide (Amant & Cohen 1997), is an assistant based architecture in the related

field of Exploratory Data Analysis (EDA) that incrementally explores a dataset

(D) guided by user directives and its own evaluation of the data. The area of

EDA provides statistical tools through which patterns in data may be extracted

and examined in detail. Aide facilitates EDA exploration by representing the

EDA search space as a plan of operations, which, based upon intermediate data

analysis results, guides EDA operation selection to select algorithms that discover

more extensive descriptions of the underlying data.



REVIEW: CONSTRAINT REFINEMENT 139

User inclusion within the system is at an operational level. During processing

the user can override the next operation selected in the plan, thereby directing

further processing and enabling the inclusion of domain-knowledge through oper-

ation selection. Based upon user intervention, the system subsequently searches

through its plan-base to propose and execute subsequent operations based upon

the user’s guidance and the specified task at hand. Similar frameworks are pro-

posed within knowledge discovery Engels et al. (1997) and Jensen et al. (1999)

that assist the user in decomposing a knowledge discovery task by proposing suit-

able tools within each stage, which may be overridden, while handling subtask

dependencies.

Extending this work Livingston et al. (2001a) propose an autonomous knowl-

edge discovery system that decides upon the next task to perform based upon

an agenda and justification based framework. The authors propose that an au-

tonomous system improves inference quality through the removal of human error,

the use of multiple strategies and multi-hypothesis analysis. The system is com-

prised of an initial agenda of tasks, specified by the user, that are prioritised

according to their plausibility, where a task’s plausibility is calculated using a

function of the strength of a reason for performing the task and an estimate of

the interest of the elements or elementsets that the task operates on. This is

presented in Example 13, given that T is the task being considered and e is an

elementset within the domain of T .

Example 13 P lausibility(T ) = (ΣStrength(ReasonT )) ∗ (ΣInterest(eT ))

The reasons for undertaking a specific task is based upon qualitative repre-

sentations of the support and fit of that task to the knowledge discovery task

at hand, providing a means by which the framework can reason about task ap-

propriateness. During the processing of tasks, new tasks can be appended to

the agenda and new reasons for existing agenda tasks can be discovered, altering

plausibility and hence agenda ordering. The result is the autonomous processing

of the agenda according to a set of user defined heuristics.

The heuristics used to control agenda processing and result interestingness

are specified before analysis (Livingston, Rosenberg & Buchanan 2001b). Given
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that all tasks use a generic set of interestingness heuristics, the result set can-

not be optimal for all user defined tasks, as what is interesting can significantly

change between tasks. Although the user may propose good general measures,

they cannot be optimal for each task and therefore the processing and level of

result interestingness suffer. Furthermore the automatic insertion of new tasks,

based upon the initially specified heuristics and statistical interpretation, cannot

accurately account for what the user requires and therefore irrelevant processing

may occur.

This autonomous framework is potentially beneficial for the general exploration

of a hypothesis, as it considers many possibilities and does not require the presence

of a user for lengthy periods of time. However it is not an efficient means of

discovering an optimal set of interesting results as the heuristics incorporated are

general and cannot be optimal for all tasks.

6.3 Guided Clustering

The Mitsubishi Electronic Research Laboratory (MERL) has investigated the use

of interaction to solve optimisation problems in the fields of capacitated vehicle

routing with time windows Anderson et al. (2000) and network partitioning Lesh

et al. (2000). This work centres upon the Human Guided Simple Search or

HuGSS paradigm that improves the effectiveness of a relatively simple search

algorithm by allowing users to steer the search process interactively. The inter-

active capabilities provided by this include the ability to escape local minima

through manual editing and the ability to focus the search into areas of promise.

The problem in capacitated vehicle routing involves the optimisation of goods

delivery to a group of customers with the least amount of trucks, whilst minimis-

ing the distance travelled by each truck. HuGSS addresses this problem by using

either a greedy or steep-descent clustering algorithm to determine the number of

trucks and the routes they should take. The user specifies the number of steps

in a search invocation, which effectively controls how many automated allocation

moves the computer can make before presenting a set of intermediate results to

the user. This allows the user an opportunity to insert a guidance primitive for

the next invocation of automated allocation.
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Figure 6.1: Repercussions of user-movement (Rabejij 2001)

The user guides the route allocation process, escaping local minima by manu-

ally assigning customers to routes, effectively changing the element’s cluster. This

automatically invokes a route optimisation algorithm upon the effected routes

only, ensuring that under these new constraints they still provide the best pos-

sible solution as illustrated in Figure 6.1. The user can also refine clustering

constraints such as customer priority and the number of clusters before invocat-

ing another sequence of automated route allocations. Figure 6.2 shows a snapshot

of the completed routing allocation.

Figure 6.2: Routing interface snapshot

(Anderson et al. 2000)

Figure 6.3: Network Partitioning pre-

sentation (Lesh et al. 2000)

The MERL group has also applied the HuGSS paradigm to the area of k-way

network partitioning, an NP-hard problem arising in VLSI design and elsewhere.

This required the development of a different set of presentation techniques to

visualise the required relevant aspects (as shown in Figure 6.3). This consequently
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led to the development of a new set of interaction mappings which effectively

provide the same types of interactive guidance as the route discovery application

(Lesh, Marks & Patrignani 2000). This research by MERL is the most significant

published work in this field to date. Although other work such as Nascimento &

Eades (2001) allows the user to interactively change the cluster number and size,

the critical element in MERL’s research is the ability to guide cluster membership.

Aggarwal (2001) proposes an interactive clustering architecture that identifies

clusters within high dimensional space through interactive subspace analysis. A

need for interactivity is motivated by the apparent variations that may exist be-

tween subspaces in regard to noise, cluster density and the difficulty that static

measures have in effectively distinguishing clusters across subspaces. By incorpo-

rating the user in subspace selection and cluster specification, less subspaces are

analysed and the quality of subspace clustering is increased. The process com-

bines active subspace exploration with user interaction to reduce the number of

possibilities considered during subspace exploration. For each selected subspace,

clusters are algorithmically proposed and presented to the user for validation and

possible manipulation. Once subspace analysis is complete, the higher dimen-

sional clusters are automatically derived from the subspace clusters identified. A

similar technique, presented by Hinneburg et al. (1999a), varies in respect to

metrics and subspace selection. The work is further extended to provide similar

optimisations for high dimensional nearest neighbour search in Aggarwal (2002).

6.4 Guided Classification

Classification involves both descriptive (or exploratory) and predictive processing

stages where guidance is incorporated into the descriptive aspect of constructing

the decision tree model. The construction of decision trees lends itself to guidance

inclusion as they are iterative, applying the same process to each step in the

decision tree’s construction. This provides consistent feedback points, where given

intermediate presentations the user can guide subsequent construction.
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Figure 6.4: Perception-based classification process (Ankerst et al. 2000)

Perception-Based Classification (Ankerst, Ester & Kriegel 2000) uses a coop-

eration based framework, allowing the user to guide and automate construction

as necessary. The interactive process as illustrated in Figure 6.4 indicates the

automated steps (shaded) and user interaction. It can also be seen that the user

has five options at each intermediate presentation, which can be classed into local

and global interaction with respect to their area of effect.

Local interaction includes split, propose split and look-ahead. The first, split,

involves manual interaction while the others instigate automated processing, ei-

ther to propose the next split, propose split, or provide a look-ahead to the result

of specific splits upon further construction. The global interactions effect global

decision tree structure and consist of active node removal and labelling or active

node expansion. The manual tasks of node removal and labelling are orthogo-

nal in that removal undoes prior processing. This allows for other splits to be

explored, while class labelling completes processing of that particular subtree.

Active node expansion instigates the automatic classification of that particular

subtree. Processing is complete when either all leaf nodes have had class labels

associated with them or when the user is satisfied with result quality, classification

accuracy and tree size. Through this level of interaction the authors claim that a
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Figure 6.5: CAP process (Ng et al. 1998)

better classification solution is achievable through user specification of splits and

the ability to backtrack, when a subtree’s classification is suboptimal.

A similar technique (CIAD) is proposed by Poulet (2002) that appears less

flexible in its interaction capabilities and uses interactive scatter-plot matrices as

the cooperative interface.

6.5 Guided Association Mining

Ng et al. (1998) propose an open architecture and a rich set of constraints (Section

5.1) that enable coarse-grained user involvement within the association mining

process. The proposed architecture enables constraint refinement, within analy-

sis, between elementset derivation and inference derivation through the inclusion

of user feedback. Given analysis based upon an initial constraint set, the user is

presented with the set of valid elementsets. If the user is satisfied with the quality

of V they can instigate inference derivation, or refine constraints and re-generate

V . The architecture also enables the inclusion of inference constraints during

inference derivation and their possible refinement. Given an unsatisfactory infer-

ence set the user is able to refine either elementset or inference constraints and

re-instigate the respective analysis stage (illustrated in Figure 6.5). This architec-

ture has been embedded within On-Line Analytical Mining that includes OLAP

functionality to focus analysis upon data warehouse subsets (Han, Lakshmanan

& Ng 1999).

Brin and Page (1998) proposed Dynamic Data Mining (DDM) that attempts

to produce more interesting inferences by foregoing traditional support based

algorithms that use a single deterministic run and instead use a technique that
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incrementally explores more of the search space. This is accomplished through

the inclusion of two new heuristics: Weight, which can be dynamically refined

and the Heavy Edge Property which guides the exploration process. Instead of

the mining process being a single deterministic run, producing a well defined

set of elementsets and subsequently inferences, DDM invokes an analysis process

that iteratively generates valid elementsets (V ) of improving quality. Based upon

the Dynamic Itemset Counting algorithm (DIC) (Brin, Motwani, Ullman & Tsur

1997), DDM takes advantage of intermediate counts to form an estimate of an

elementset’s occurrence or weight, resulting in an intermediate presentation. The

user is then able to dynamically adjust the individual element weights, in effect

prioritising them. Such user interaction is indirect and textual, with refinement

occurring through an associated text box, whereby the user adjusts global analysis

parameters and individual element weights via a simple language. This technique

importantly enables a simple type of user focus through element prioritisation

that facilitates the improvement of resul t quality. This incorporation of user

focus is extended in GAM (presented in Chapter 8).

Hidber (1999) proposed CARMA that allows the dynamic adjustment of sup-

port and confidence thresholds during analysis. The algorithm continuously con-

structs a candidate elementset lattice during an initial scan of a dataset (D), each

member of which has a deterministic lower and upper support bound. Upon com-

pletion the lattice is comprised of a superset of all elementsets in relation to some

minsup, depending upon support adjustment during analysis. A second scan is

then used to remove all elementsets from the lattice whose upper support bound

is below the last user specified threshold and to update the precise frequency of

all remaining elementsets.

Given Ve−1 as the lattice representing the discovered elementsets in objects up

to e−1, Ve is constructed by appending e using three steps: increment, insert and

prune (presented on the next page). An intermediate presentation is made after

each object’s inclusion within V enabling opportunity for the dynamic adjustment

of support threshold. This results in the development of a support sequence, used

to determine the upper support bound on subsequent elementsets.
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• Increment all count’s of v ∈ V |v ∈ Oe are incremented.

• Insert all s into V , given that s ⊂ Oe and s 6∈ Ve−1 and s is valid in respect

to the current support bounds. The lower bound is defined by the count

of s, while the upper bound is based upon the function maximised, which

is based upon the current and previous support thresholds defined by the

user.

• Prune all v, where |v| ≥ 2 and the upper support bound is less than the

current user defined threshold.

6.6 Summary

This chapter provides a discussion and review upon constraint refinement within

knowledge discovery sessions, which can be classed into iterative and interactive

refinement. The literature review conducted indicates (through a lack of pub-

lished material) the novelty of this promising area of research.

This discussion provides a basis for justification of our contributions in the

area of guided association mining and guided knowledge discovery in general. The

following two chapters present this thesis’s contributions in this regard. The next

chapter (Chapter 7) presents a generic guided knowledge discovery framework

and Chapter 8 presents a guided association mining system (GAM ) built upon

this framework. Furthermore, a discussion is provided within the conclusion of

this thesis (Part IV), that compares this thesis’s contributions against the current

interactive techniques presented within the chapter.



Chapter 7

Guided Association Mining

Architecture

The effective inclusion of guidance within analysis requires an extension to the

current accepted knowledge discovery architecture presented in Figure I.2. The

provision of guidance requires a dynamic association between the analysis and

presentation stages, not possible given the current architecture, in which the

stages are independent and sequential. This chapter presents a guided knowledge

discovery architecture, that although targeted at association mining, could be

adapted to other exploratory tasks such as clustering or classification.

Within the current architecture the user is able to interact with the knowledge

discovery system between stages, enabling user selection of appropriate tools, pa-

rameter adjustment and possibly input data adjustment. User interaction within

specific stages is tool specific, however the user, given current technologies, is

generally integrated within collection, pre-processing and presentation tools. In

contrast, the analysis stage is currently an automated and opaque process, a

“black box”, that explores a dataset according to a specified constraint set, pre-

senting upon completion a set of valid inferences.

Association mining is an exploratory task, whereby the user is in effect fishing

for interesting information without an established hypothesis as to what the

catch of the day will be. The initial constraint specification is therefore at best

an educated guess, based upon the user’s current understanding of the domain
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including: the dataset, the domain, past experience and the current task. Because

of the analysis “black box”, the construction of a quality result set becomes an

iterative process, requiring successive analysis and presentation iterations until

an inference set of satisfactory quality is obtained.

It is therefore the proposal of this thesis that by opening the process and allow-

ing the dynamic refinement of constraints during analysis, that a higher quality

of inferences will be obtained through the maintenance of user-computer synergy.

To effect this the analysis process must become transparent and interactive rather

than opaque and automated.

By making analysis transparent, through the dynamic presentation of the

evolving inference model, the user’s knowledge base can also evolve during the

analysis, enabling the discovery of interesting inferences before analysis is com-

plete. By also including premature termination functionality that allows the user

to prematurely terminate analysis, analysis can be reduced once all the infer-

ences of interest have been discovered. Such an architecture will be referred to

as a dynamic architecture throughout this chapter.

Although an optimisation over the classic architecture, through the use of

transparency and premature termination, a dynamic architecture still uses batch

processing in the sense that it is automated and statically constrained. By fur-

ther extending the architecture and providing feedback points through which

the user can dynamically adjust constraints during analysis, the user can guide

search space exploration. The level of synergy that this interaction maintains

is determined by the level of possible feedback granularity within the analysis.

Where the term “possible” relates to the goal of dynamic feedback, so that the

user should be able to interrupt automated analysis as required, where the lag

between interrupt and interaction reflects the level of interaction granularity.

The inclusion of guidance therefore requires the tight coupling of the previ-

ously independent analysis and presentation stages. This functionality could be

provided at the tool level through the provision of a component providing both

analysis and presentation functionality. However, it is a goal of this thesis to

present a guided association mining architectural design, through which guid-

ance enabled analysis and presentation components can be “plugged in”.
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Figure 7.1: Guided Knowledge Discovery Process

Such architectural extension is achieved by strengthening the coupling between

the analysis and presentation stages, providing real-time streaming of analysis

results to the presentation tools or views. The user can then interpret and guide

further analysis through view interaction, as shown in Figure 7.1. Although this

could be achieved through the merging of the analysis and presentation stages,

this would require specialised guidance tools. A more promising approach is

the maintenance of stage independence and the increase of coupling through the

specification of an interface to manage interactive functionality between the two

stages, facilitating “pluggable” components.

Figures 7.2 and 7.3 present an example that highlights the difference between

classic and guided analysis, through illustration of their respective analysis ex-

ploration space. These models are represented as trees, in which the node colour

represents its function.

Figure 7.2 presents classic analysis in which the terminal results are presented

upon completion. Figure 7.3 contains three images illustrating inference model
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evolution during analysis. The images represent initial, intermediate and com-

plete inference model presentations, where the intermediate presentation typifies

a dynamic presentation architecture. The number of intermediate presentations

within a system is arbitrary, dependent upon the underlying analysis algorithm

and the inference model.

Function

Terminal−node
Internal−node

Colour

Red
Blue

Figure 7.2: Classic Analysis

Figure 7.3(a), presents an initial model, based upon the valid dataset elements

(E) given a set of initial constraints, before any combinatorics are considered.

Through interaction with this initial presentation the user can focus subsequent

exploration. This is apparent in Figure 7.3(b), an intermediate presentation, as

exploration has only been undertaken in specified areas of focus. By guiding

analysis through intermediate presentation interaction, the final model, Figure

7.3(c) is constructed.

By comparing a presentation of the complete models in Figure 7.4, some in-

tended advantages of guided analysis are apparent. The presentation tool used

within the figure is a two-dimensional pre-cursor to CARV designed during can-

didature, that clearly illustrates the example model differences for this example.

Through the ability of the user to focus exploration, only a portion of the en-

tire search space has been explored, resulting in reduced analysis time and a

reduced result set. More importantly however is that through the maintenance
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(a) Initial presentation (b) Intermediate presentation

Function

Terminal−node
Internal−node
Focus−node

Colour

Red
Blue

Green

(c) Completed presentation

Figure 7.3: Guided Analysis

of user-computer synergy, the resultant inferences are of higher quality (or of

greater interest), further optimising mining by reducing or alleviating iterative

refinement. Making analysis transparent and allowing user guidance improves

knowledge discovery by reducing processing time and improving result quality.

This chapter discusses guided mining and its advantages over current sys-

tem architectures. The following section discusses constraint adjustment in three

different architectures: classic, dynamic presentation and guided. Chapter 8 pro-

poses a guided association mining system and process architecture.
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(a) Batch model (b) Guided model

Figure 7.4: Comparison of batch vs guided model

7.1 Analysis Interaction

Analysis interaction, or constraint specification relevant to the analysis stage

within classic architectures, occurs either before or after analysis due to its au-

tomated processing. A guided architecture will enable interaction within the

analysis process itself, through the dynamic refinement of constraints. The dif-

ference between the two interaction models is presented in Figure 7.5. In practice,

post-analysis interaction or constraint refinement is integrated with the presen-

tation tool, enabling filtering of the resultant inference model, while pre-analysis

interaction allows the specification of constraints and their refinement upon sub-

sequent analysis iteration. Within a guided architecture a single interaction point

is evident due to the merging of the analysis and presentation stages.

As previously stated, analysis interaction provides mechanisms through which

constraints upon the analysis process can be specified and refined. Previous

discussion (Chapter 5) presented two classes of association mining constraint:

functional and domain based with functional constraints focusing on algorithm

heuristics, and domain constraints on concepts such as elements and elementsets.

In addition to these algorithmic constraints, the inclusion of analysis trans-

parency enables the inclusion of process constraints. That is, given that algo-

rithmic constraints refer to exploration extent, process constraints deal with the

nature of the exploration, including automation extent.
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(a) Classic Architecture

(b) Guided Architecture

Figure 7.5: Stages of analysis constraint refinement

The following sections (Section 7.1.1 . . . 7.1.3) discuss the extent of interaction

available for both algorithmic and process constraints within the three architec-

tures: classic, dynamic and guided. Finally a summarisation of guided interaction

is presented ion Section 7.2.

7.1.1 Algorithmic Interaction

Algorithmic interaction encapsulates domain and functional constraint refine-

ment. Domain based constraints enable the user to effect a concept’s (either

elements or elementsets) characteristics and participation within analysis. Func-

tional constraints allow the user to incorporate quality heuristics based upon

mathematical operators or functions to improve the quality of discovered infer-

ences. There are three forms of domain constraint interaction: filtering, adjust-

ment and focus, while functional constraint interaction takes the single form of

adjustment (presented on the next page).

Algorithmic constraint refinement is similar within both classic and dynamic

architectures as they are both automated. While dynamic architectures incor-

porate transparency and process interruption, the extent of interaction is con-

strained by the automated analysis, thereby reducing dynamic system interaction

capability to that of classic systems. The following discussion therefore implicitly
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groups these two architectures together, unless otherwise specified. The advan-

tage of dynamic systems over classic systems, in regard to interaction, lies in their

ability to incorporate process constraints.

• Domain Filtering allows the positive or negative constraint of concept

participation within analysis.

• Domain Adjustment refers to concept characteristic manipulation. For

example, the adjustment of a concept’s weight in a quantitative analysis

algorithm.

• Domain Focus is concerned with concept prioritisation, by which the user

can alter the order of processing to explore a particular concept before, or

perhaps after, other concepts.

• Functional Adjustment refers to the manipulation of statistical thresh-

olds incorporated within analysis.

The nominated architectures can potentially incorporate all forms of algorith-

mic constraint refinement, however it is the effect of this refinement that differs

between classic and guided architectures. Due to automated analysis, classic re-

finement results in complete model reconstruction, the exception being constraint

tightening, which can require model re-analysis only, while the interactive, rather

then iterative, nature of a guided architecture enables refinement to be incorpo-

rated within the same analysis process. This is however, dependent upon the

effect of the interaction upon the search space and the user goals.

The discussion of algorithmic constraint refinement through user interaction

can be broken into three classes: exploration refinement, prioritisation and con-

cept adjustment.

Exploration Refinement

Exploration refinement encapsulates both concept filtering and heuristic adjust-

ment, arguably the most common forms of refinement, as they effect the extent of

the search space. The subsequent processing required to ensure inference model

accuracy in regard to the refined constraints is therefore dependent upon the

refinement’s effect on the search space.
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Given the refinement of a reflexive constraint, the result will be a global tight-

ening or relaxation of the lattice, allowing for model update optimisations without

requiring a re-generation of the model. However if the constraint is not reflexive,

then its effect upon the lattice cannot be predicted. Therefore as its effect is not

directional, inference model reconstruction to the current exploration extent will

be required to ensure accuracy in regard to the refined constraint.

While all domain constraints are by their participatory nature, reflexive, not

all functional constraints are. The inclusion of non-reflexive constraints within

analysis is infrequent as they are of little use. It is therefore assumed for this dis-

cussion, that all exploratory constraints incorporated are reflexive. Furthermore,

given complex constraint refinement (in which multiple constraints are refined)

global reflexivity can still be ensured by treating each constraint independently.

Given a classic architecture lattice relaxation requires re-analysis due to the

possible introduction of new valid concepts. Lattice tightening however may not

require re-analysis, dependant upon the global reflexivity of the incorporated

constraints, as all pertinent information is contained within the current lattice

(inference model).

However, this leads to the point that tightening is generally unwarranted within

classic architectures, because the information is already present in the inference

model. By providing filtering and adjustment functionality within the presenta-

tion tool, the same effect can be achieved without any re-analysis. This is not

the case for relaxation as new information will result from lattice relaxation and

therefore update analysis is required.

Dynamic architectures provide an advantage in this case over classic architec-

tures, as the user is able to prematurely terminate and re-instigate analysis based

upon a refined set of constraints. Therefore lattice tightening may become feasible

depending upon how early in analysis the tightening occurs and the extent of its

effect upon exploration. The larger the exploration effect, the later its inclusion

is warranted. Given an optimal algorithm, tightening would then require analysis

of the partially generated inference model, removing concepts as necessary, then

automated analysis with dynamic presentation would proceed, based upon the

tightened partial model.
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Based upon this explanation of dynamic tightening, heuristic adjustment and

positive concept filtering may be warranted, as their effect upon exploration can

be significant. However, although further investigation is required, it appears un-

likely that refinement based upon negative concept filtering or concept exclusion

is warranted due to the limited effect they have upon exploration.

Furthermore while tightening is generally based upon the user’s evolving know-

ledge base, relaxation cannot be, as concepts that have not yet been presented

cannot be incorporated. The decision to relax is based therefore not upon seman-

tic factors resulting from presented inferences but upon concerns that inferences

of interest may have been missed.

While the above discussion considers the complex case of updating the existing

model to reflect refinement before proceeding with further analysis, it is possible

to reduce update processing by enabling a flexible re-start process constraint.

This constraint restricts the update of the existing model by indicating where the

refinement is to restart. For example, given a tightening of support during the

BFT construction of the fourth level of an inference model using classic candi-

date generation analysis, refinement can be incorporated from the current or any

previous point of model construction, in this case constrained to specification of

levels within the lattice. If included from the current analysis state then no model

updating is required and analysis resumes from the current state. In contrast,

the user could request inclusion from level-two, whereby level-two downwards

would be refined before analysis recommenced. While this feature is practical for

heuristic refinement such as support, domain relaxation must always update the

entire current model, due to its exclusion at the top-level.

Prioritisation

The usefulness of concept focus or prioritisation within a classic architecture is

arguable, as because of automated analysis, it can be reduced to pre-analysis

concept filtering. Focus can be considered as temporal concept filtering, as the

analysis is temporarily constrained to the positive filtering of a concept. There is

no significant difference, in a classic architecture, between focus and two analysis

iterations, with the concept first positively and then negatively constrained. Dy-
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namic architectures through the use of intermediate presentations can accomplish

this in a single analysis iteration. However the main limitation of both systems

is that focus must be defined before analysis begins and cannot be dynamically

incorporated as in a guided architecture.

Focus is pragmatically specific to guided architectures as through dynamic re-

finement the user has the ability to focus upon different concepts as the analysis

proceeds. Although of little use within automated analysis architectures, it is

the ability within a guided system to dynamically change focus as new areas of

interest are revealed to the user that are significant. While focus can still be seen

theoretically as a subclass of concept filtering, it is singled out because of imple-

mentation differences, but more importantly due to its significant contribution

toward validating guided architectures.

Concept Alteration

Concept alteration is valid where analysis is based upon concept characteristics

through the inclusion of functional constraints upon characteristics of interest.

Included for the purpose of completeness, this form of interaction will result in

functional constraint refinement. The difference is that the adjustment target

is not a functional constraint but a concept specific parameter, used within a

functional constraint during analysis. For example an analysis algorithm may

use user specified weights to influence concept importance, therefore the user can

change the weighting of a concept to effect subsequent exploration (as in Fule

& Roddick 2004). The functional inclusion of characteristic refinement within

analysis will be as for functional constraint refinement, which is presented in the

next section.

7.1.2 Process Interaction

Constraints on the analysis process allow the user to control the extent and

pace of automated processing. Although not possible in classic systems due to its

“black box” nature, process constraints can be incorporated within both dynamic

and guided systems, as they do not effect exploration extent, but the manner in
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which exploration is automated. The purpose of process constraint is to facilitate

user interpretation of intermediate results and allow fine level control of further

analysis. Process constraints fall into four classes: interrupt, pace, step and

restart (presented below).

• Interrupt allows the user to pause analysis, giving the user an opportunity

to inspect current inference model state. Given a guided architecture, this

allows the user to instigate refinement without analysis overrunning the

target of their refinement before implementation.

• Pace allows the user to control analysis speed.

• Step allows the user to incorporate an automatic interrupt after a specific

amount of analysis.

• Restart provides the ability to re-instigate analysis from a previous model

state. By default the process restarts from the current inference model

state.

While pace, step and interrupt are valid for both applicable architectures,

restart is not valid within dynamic architectures as the same model will always

be built due to static constraint inclusion.

7.1.3 Guided Architecture Interaction

A guided architecture providing Dynamic Constraint Refinement (DCR) in a

transparent analysis environment enables interaction capabilities previously im-

possible due to architectural constraints. This is apparent through features such

as focus and restart that are particular to an interactive environment, and the

ability to implement constraint refinement with less overheads than previous ar-

chitectures. A summary of interactive functionality viable within the different

architectures is presented in Table 7.1.

Guidance provides a richer set of functions than presented in Table 7.1 - it

provides an interactive analysis environment through which emergent capabilities

based upon the described functionality become obvious. Consider the scenario
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Classic Dynamic
Constraint Class Interaction Task

Pre Post Pre Post
Guidance

concept filtering ✓ ✓ ✓ ✓ ✓

concept adjustment ✓ ✓ ✓Domain

concept focus ✓ ✓ ✓

heuristic adjustment ✓ ✓ ✓
Functional

heuristic filtering ✓ ✓

pace adjustment ✓ ✓

step adjustment ✓ ✓

flexible restart ✓
Process

analysis interrupt ✓ ✓

Table 7.1: Interaction type summarisation

for both classic and guided architectures, presented on the next page, in which

the power of guidance over automated analysis architectures in facilitating the

production of quality results during a single analysis iteration is illustrated. Given

that quality is measured by the number of interesting inferences over the total

number of inferences.

The result of including guidance within analysis is the production of a quality

inference set in less time than classic architectures, as guidance reduces processing

overheads in relation to the refinement of constraints. This is the advantage of

guided association mining in a nutshell. All types of interaction or guidance can

be mimicked in a classic architecture, but due to the overheads incurred they

become infeasible. This is due to automated analysis and the requirement for

analysis iteration to implement constraint refinement.

There are two disadvantages to the implementation of a guided architecture:

processing complexity and scalability. The additional processing complexity, due

to the inclusion of guidance functionality within the mining architecture will slow

analysis where no iteration is required. However, given the goal of obtaining a

quality inference set and the dynamic constraint of search space exploration,

analysis will often be faster within a guided architecture.
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• Classic Architecture: The user, based upon an educated guess, con-

strains the analysis too tightly in order to reduce analysis, and therefore

may miss inferences of interest. The only way to avoid this possibility

within classic architectures is to start with a set of minimum constraints

and if warranted refine and tighten, through re-analysis. Initial analysis

is therefore relatively slow, discovering many inferences of little interest,

resulting in a cluttered presentation. Following this, if warranted the user

can tighten constraints and re-analyse, however as previously discussed, this

can be achieved through post-analysis interaction.

• Guided Architecture: The user starts analysis with a minimum set of

constraints and as analysis proceeds, the user is able through a combina-

tion of both process and algorithmic interaction to progressively tighten

constraints as either uninteresting concepts are presented or the user re-

alises that a functional constraint is too tight, thereby resulting in a greater

quality of inference set in a single analysis iteration. If the user during

analysis realises that a heuristic was too tight and relaxation is required,

backtracking is enabled through the use of flexible re-start.

Scalability limitations relate, not to analysis, but to use of quality presentation

tools, i.e. the ability of the presentation to effectively facilitate user interpreta-

tion. As guided presentation tools are dynamic, it is advantageous for the actual

presentation to be directly viewable. In other words the model presented should

fit be directly viewable. Therefore as the presentation area (or real estate) is con-

strained, it becomes increasingly difficult to effectively present elements and their

inferences, as the number of elements, and to a lesser extent inferences, increase.

This limitation is difficult to overcome – it is not viable to effectively represent

ten thousand elements, let alone show the inferences between them. However,

as discussed in Chapter 3, there is little point in presenting such large quantities

of information to the user as the inherent cognitive load inhibits interpretation.

Although resulting in scalability limitation, it is due to an inherent visualisation

problem, which although not limiting the proposed architecture, does constrain

its practical application.



CONTRIBUTION: GAM ARCHITECTURE 161

7.2 Guidance Architecture

The inclusion of guidance within the knowledge discovery framework requires an

extension to the current architectural model as presented in Figure I.2. Figure 7.1

preliminarily introduced the architectural extension required by introducing bi-

directional data flow between analysis and presentation: streaming and guidance.

This section presents the proposed generic architectural extension that enables

guidance inclusion within the knowledge discovery framework. The discussion

first presents the component level architectural extension and then discusses pro-

cess flow based upon the guidance functionality presented in the previous section.

Figure 7.6: Guided association mining system architecture
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7.2.1 System Architecture

The proposed system architecture is presented in Figure 7.6, which shows an

expanded view of Figure 7.1. The classic architectural components of analysis and

interpretation can be seen. The presentation is split into two distinct components

providing views of the model and of the process state. The double-line and

solid/dashed process flows indicate the boundary between user and system. The

straddling of this boundary by the process and model view components indicates

their functionality as an interface between user and system. The separation

between streaming and guidance flow are indicated through thick and thin lines

respectively.

The guidance extension is based upon the well established Model View Con-

troller (MVC) pattern proposed by Reenskaug (in Krasner & Pope 1988), which

maps the traditional Input Process Output (IPO) pattern into the GUI realm.

This typifies the inclusion of guidance within the knowledge discovery framework

as IPO maps directly to classic automated analysis. Therefore the guidance ar-

chitecture is based upon the triad of component classes defined within MVC,

where model, maps to analysis, view, maps to presentation and controller, a new

component within the knowledge discovery architecture, is the means by which

the user interacts with analysis. In effect, the controller is responsible for map-

ping user interaction to application response within analysis and the model. The

controller maintains functional modularity within the architecture and assumes

the central role for directing analysis and incorporating guidance.

The separation of the presentation stage into process and model views is due

to their different sources. The model view presents the current model state and

provides interactive capabilities that allow the user, through both direct and indi-

rect interaction, to specify both domain and functional constraint refinement. In

contrast, the process view provides the same functionality for process constraints.

While the model views are derived from the current inference model, the process

view is maintained by the controller, which allocates analysis work and therefore

controls the state of analysis (see Section 7.2.2). While there is generally a single

process view, many model views may exist, each presenting different aspects of

the inference model.
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Through view interaction the user refines constraints, which are then collected

and interpreted by the controller and subsequently used to direct amendments to

the model and analysis. This is discussed in more generic detail in process flow

and and a specific implementation example is provided in Chapter 8.

7.2.2 Process Flow

This section discusses the process flow model used within the proposed guidance

architecture. The model is generic in the sense that it does not make assumptions

about the nature of the tools used.

Figure 7.7 is an expanded view of the system side of the architectural extension

(Figure 7.6) showing the process flow between architectural components. Within

this view of the system the process and model views are simple sinks and the sys-

tem sources are through data input and guidance. The model provides a single

transient point, acting as a sink for control and analysis component output, and

a source for multiple model views. Although represented as a single component,

model can maintain multiple data structures depending upon analysis implemen-

tation. The analysis and control components form the process core, with control

providing the mechanisms to direct analysis.

The model’s process flow is separated into classic and guidance represented by

solid and dashed lines respectively, where the classic process flow is typified by a

lack of guidance. In fact the proposed guidance model still allows, in the manner

of backwards compatibility, the ability to mimic a dynamic or even classic mining

architecture, with respect to automation and transparency. Control is the central

flow component, responsible for analysis invocation and controlling subsequent

guidance and its influence upon analysis. The following discussion assumes a

guided association mining session involving a single process view and multiple

model views.

Through control, the guidance system is initialised, based upon the input

dataset and default parameters. This involves initialisation of the model, analysis

and default view components (including a process and model view) and any other

required views. Although no analysis has been undertaken, depending upon the
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nature of the model and the default views, an initial presentation can be made to

the user. This enables a final opportunity to perform pre-processing tasks, such

as element deletion and initial element focus.

Figure 7.7: Guided association mining process architecture

The model and process views dictate the types of guidance allowed through

the presence of both direct and indirect manipulation features. In general, the

model views provide an effective means through direct manipulation to perform

domain constraint refinement, while functional refinement, which generally has

a global effect and is implicitly presented within the model views, is indirectly

manipulated through the process view.
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Analysis execution can be constrained (as described in Table 7.1) in regard

to extent as represented by the flow, analyse next. Upon invocation, analysis is

automated to the extent specified by the process constraints, which by default

should be “null”, allowing analysis to naturally conclude, unless interrupted by

the user. As analysis proceeds it updates the model and control components

with relevant information. By updating model, the MVC architecture cascades

any model changes to the relevant model views and by updating control the

current analysis state is presented within the process view. It is during this

update of control that user guidance, specified through the views, is inserted

within subsequent analysis processing (also referred to as control check). If no

user interaction has occurred since the last control check and no extent constraint

has been reached, the next step of analysis is performed. The granularity of

guidance inclusion is therefore based upon analysis steps, the smaller the steps

the finer the possible guidance granularity.

Although a fine level of guidance is useful, there is a processing overhead,

albeit small. As a result, the step size is dictated by the analysis algorithm

implemented, because analysis must be in a stable state, in regard to both process

and underlying data structures, before regular analysis can be interrupted to

perform constraint refinement. An analysis step is therefore an autonomous piece

of processing. For example, in Apriori, analysis reaches a stable state at the

end of processing a level of candidates (e.g.Cκ), few analysis steps exist within

a particular analysis iteration. Therefore step size is large providing limited

opportunities to insert guidance, making Apriori a poor choice for guided analysis.

In fact, given the association mining analysis review in Chapter 1, both the

candidate generation/merge and pattern growth families of inference analysis

are not good choices. Merge is a poor choice because the generally small num-

ber of evident stable states leads to limited opportunity for guidance insertion,

while pattern-growth algorithms are a poor choice as their use of complex hyper-

structures results in complex model views that are difficult to understand.

The best apparent choice for guidance analysis algorithms are from the can-

didate generation/extension genre. These algorithms are generally based upon

simple data structures, such as prefix-trees, facilitating the creation of simple ef-
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fective model views. Furthermore this genre results in many stable analysis states,

as they are based upon valid elementset extension with a set of single elements.

Therefore a stable state exists after the processing of each valid elementset or

even after the consideration of each possible extension.

Therefore given no user interaction and no constrained extent, analysis mimics

a dynamic architecture, running to completion and dynamically displaying model

evolution. A classic architecture can also be mimicked by not initiating a model

view until after analysis has completed, upon which it will be populated with the

completed model for post-analysis user interpretation.

Given view interaction, guidance may result depending upon the interaction

type and the guidance functionality incorporated. For example, navigation or

simple selection interaction may not have a mapping to guidance functionality,

where as an MOI adjustment or element exclusion will. The types of possible view

interactions will be dependant upon the guidance functionality incorporated. For

example, given the inclusion of support within analysis, if no functional constraint

refinement is enabled for support then although adjustable before analysis, its

related widget, given indirect manipulation, should be disabled during analysis.

The guidance details are passed to the control component where they await

deployment depending upon their nature. This can include the updating of the

current model and other relevant data structures to a specified extent and ad-

justing analysis heuristics. Upon completion of refinement deployment, analysis

proceeds based upon these updated structures and heuristics. If concept focus

has been specified, the prioritised elementsets are analysed first, before returning

to regular analysis.

The guidance architecture uses an interrupt-based guidance methodology, in

which the analysis process is paused while the user refines the constraints. Once

complete the user then re-starts the analysis process. The alternative to this

is a blackboard method of inclusion where instead of interrupting analysis, the

guidance instructions are written to a virtual blackboard. These instructions are

then automatically incorporated at specific points during analysis. Both methods

achieve the same result and both could be used, given the guidance architecture

specified. However the interrupt method provides more control, allowing time
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for the user to interpret the current model state and refine constraints, while in

using a blackboard method the analysis continues during interpretation and as

such the analysis may overrun the required refinement before it is incorporated.

The manner in which guidance functionality is incorporated within a guidance

architecture is implementation dependant, to which end the Guided Association

Mining system (GAM) was developed. This system is presented in the next

chapter as a proof of concept, presenting a realisation of the guided association

mining architecture.



Chapter 8

GAM: Guided Association Mining

This chapter presents a proof of concept tool for the guidance architecture de-

scribed in the previous chapter. Guided Association Mining or GAM provides

an effective guided mining environment, incorporating the dynamic refinement

of both concept and heuristic based constraints. To this end, the following dis-

cussion focuses upon the techniques used to maintain accurate inference model

evolution in the face of dynamic constraint refinement.

The chapter first discusses the role of the three main system components:

analysis, presentation and control in detail. A detailed discussion of incorporated

guidance functionality is then presented, with the chapter concluding with a short

discussion.

8.1 Analysis

As discussed in the previous chapter, the genre of analysis algorithm best suited to

the inclusion of guidance is candidate generation/extension due to its fine-grained

stability and use of simple data structures. The analysis algorithm used within

GAM is based upon concepts introduced in Tree Projection (Agrawal et al. 1999),

see Section 1.2.1, a robust extension algorithm that uses tidLists and dataset

projection. Furthermore Tree Projection constructs a prefix-tree inference model,

or exploration model, that is conducive to effective presentations. This is in

contrast to Eclat and Clique that use more complex data structures. The analysis
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algorithm implemented within GAM differs significantly from Tree Projection to

facilitate guidance through the use of BFT and the storage of additional extension

set information, both provide optimisations in guidance environments, which are

not critical to analytical success.

Breadth First model evolution was implemented as it follows the visualisation

seeking mantra (see Section 3.1), presenting an evolving overview that progres-

sively focuses, on a global scale, upon more complex elementsets. This enables

the identification of broad areas of user interest during early analysis, whereas

DFT evolution explores the full extent of a single concept, providing a focused

exploration technique that is less conducive to general guidance. However, upon

invocation of prioritisation (or concept focus) model exploration of the specified

concept is undertaken using DFT, in which case the concept in question is ex-

plored to its full extent. The storage of additional information within the node

extension steps is a trade-off that has been made against memory usage to im-

prove processing upon user refinement.

The following subsections present the the underlying data structures, how they

are initialised and finally classic algorithm execution, without refinement.

8.1.1 Data Structures

There are two main underlying data structures of GAM analysis: the queue and

the prefix-tree. The queue, is a support structure containing the sequence of

tree nodes, or elementsets, to be processed to maintain BFT evolution. The

prefix-tree is the evolving elementset structure used during analysis to represent

the explored search space it is also referred to as the inference or exploration

model within the guidance architecture. This is because analysis is based upon

elementset exploration, from which inferences are derived, therefore it is to this

elementset structure that guidance is applicable, while model views may present

either the elementset structure or the derived inferences, the model closest relat-

ing to the actual exploration will be one based upon elementsets not inferences.

Furthermore for each elementset there are multiple inferences, therefore the ele-

mentset based model view will provide a less cluttered presentation of the current

exploration state.
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Figure 8.1: GAM prefix-tree (model)

Figure 8.1 presents a complete GAM prefix-tree highlighting the information

content of each node, which consists of two parts: the valid elementset, i, and

its extension set, iext, where the extension set consists of those valid parental

extensions, or siblings, that occur after the current node’s element within the

parent’s extension set. Also the extension is maintained in increasing order of

element presence, maintaining a consistent ordering throughout the tree, which

facilitates certain refinement updates. Furthermore, each elementset within the

GAM tree consists of two parts, its label and its tidList.

GAM analysis is similar to Tree Projection, as exploration proceeds by merg-

ing each extension member with the current elementset and if valid, a child node

is created. However in order to facilitate refinement, especially functional re-

finement, additional information is stored for each concept. A detailed example

follows for clarification.

Given a current elementset a, its tidList at and it extension set ae, then the

extension of a involves merging a with each i ∈ ae resulting in the candidate

set Ca. Each c ∈ Ca is then validated against any relevant constraints, success

resulting in c being appended as a child of a.
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To facilitate subsequent refinement, GAM stores all candidate elementsets Ca

within the relevant extension set a, as shown in Figure 8.1. This results in a

trade-off between storage and relaxation refinement optimisation. By storing

all C within the relevant extension sets, the update of relaxation refinement is

optimised. Candidate storage becomes useful if relaxation is required, which is

often the case, as discussed in the scenario presented in Section 7.1.3. A detailed

description of how this storage is an advantage is presented in the discussion on

heuristic relaxation, Section 8.4.3.

8.1.2 Analysis Initialisation

Initialisation prepares for subsequent analysis by populating the model and queue

structures, denoted N and Q respectively, which are reflected within initial model

views. The structures are populated from a scan of D, transforming the dataset

and incorporating any initial constraints, in effect populating N and Q with valid

elements (V1). The transformation stage maps elements to an ordered numeric

representation and the dataset is vertically organised for intersection based ac-

crual. The numeric mapping represents the element’s relative frequency within

the element set providing pruning optimisation as the least frequent elements are

processed first within the prefix-tree. Given that analysis is based upon subse-

quent element extension, then the largest candidate extension sets are processed

first, but as the related elements are the least frequent, the resultant valid exten-

sion set is optimally small. This facilitates model balance, as the later extension,

although based upon smaller candidate sets, are larger due to increased element

frequency.

t	 2

w
c
x
a

Root

c x aw

w 3
c 4
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Figure 8.2: Initial GAM structures (model and queue)
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The first model level N1 is populated with V1, as is Q, however the extension

set for N1 nodes, contains the ordered set of all elements irrespective of frequency

stored at <ext. This storing of all candidate extensions, as previously discussed,

provides optimisation upon relaxation refinement. The resultant initial structures

are presented in Figure 8.2 based upon the initial state of Figure 8.1.

Through provision of this initial state, the users can interact with the initial

model views, manipulating constraints before analysis begins.

8.1.3 Classic Processing

Classic processing refers to dataset analysis using GAM without the inclusion of

guidance, so that a classic architecture analysis is mimicked. Given an initialised

state as described above, Algorithm 8.1 presents an outline of the subsequent

analysis process, in which the inclusion of guidance is alluded to at lines #5 and

#13.

Algorithm 8.1 GAM Analysis

Analysis(queue Q)

1: while Q 6= ∅ do

2: node n = Q.pop()

3: set X = n.getExtSet()

4: for all x ∈ X do

5: Control Check B

6: node c = merge(n,x)

7: n.addExt(c)

8: if validExt(c) then

9: n.insertChild(c)

10: Q.push(c)

11: end if

12: end for

13: Control Check A

14: end while
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Analysis proceeds by processing each queue member until it is empty. Each

n ∈ Q is extended by merging it with the valid extensions that occur after n, in

the extension set of n’s parent. Given that extension sets store all candidates and

are ordered in regard to elementset frequency, processing is optimised by iterating

backwards over this set, stopping when the current extension element is reached.

For example, the extension of c, in Figure 8.2, proceeds through the consideration

of extensions a and x respectively, stopping at c. Furthermore, although all

candidate extensions are stored, infrequent extensions are never considered during

processing as they are positioned before the first valid extension and are therefore

never reached.

The merge operation results in the creation of a candidate elementset (c) that is

appended to next. If it is valid in respect to specified constraints, c is inserted into

the model as a child of n and pushed onto Q, leading to its eventual extension.

This process results in the constrained breadth first exploration of the search

space defined by the element set E.

The Control Check points with the algorithm illustrate typical stability points

at which constraint refinement can be incorporated, where Control Check A and

Control Check B respectively refer to coarse and fine level guidance. Control

Check A allows guidance to be incorporated after the analysis of each elementset

and Control Check B provides for finer guidance, allowing its inclusion after each

considered extension. A trade-off is evident between granularity of guidance and

processing overheads incurred due to analysis interruption. GAM implements the

coarser of the two approaches.

8.2 Presentation

The GAM system provides a process view and multiple model views required to

facilitate effective guidance, as discussed in Chapter 7. Upon invocation GAM

provides a default view incorporating both a process and model view, shown

in Figure 8.3(a), while two optional model views presenting a different model

aspect and a view of the derived inferences are also available, Figure 8.3(b).

Through the use of the multiple model views, various aspects of the model can
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(a) Default View (b) Optional Model Views

Figure 8.3: Initialised GAM Views

be presented, facilitating user perception as the different views can elicit different

patterns. These views or interfaces in association with dynamic presentation open

the “black box” providing a transparent analysis system, or dynamic architecture,

providing the user interface support for guided analysis.

Figure 8.3 presents an initialised GAM session using the example dataset pre-

sented in Figure 1. The model views present V1, given σ(80%), with the default

providing a tree based presentation, while the optional model views: concen-

tric elementset visualiser and concentric inference visual, are based upon CARV

(Ceglar et al. 2004). The following subsections discuss these views in detail,

including model interface interaction and model view linking.

8.2.1 Default View

The default view is comprised of two main areas: control panel and tree view. The

control panel provides indirect guidance through a set of widgets, to refine process

and functional constraints. The tree view provides a view of the elementset model,

which through direct manipulation enables domain constraint refinement. The

tree view presents the model structure in a prefix tree form, where each node is
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(a) Intermediate Model (b) Complete Model

Figure 8.4: GAM default view

represented by the valid extension element and the elementset’s presence. The

tree view evolves as analysis proceeds, to incorporate discovered valid elementsets.

Figure 8.4 illustrates the evolving tree view during analysis. Given the ini-

tialised view in Figure 8.3(a), Figures 8.4(a) and 8.4(b) present an intermediate

and complete elementset model. Where a leaf node is red, an internal node is

blue and an expanded node is green. Within these images it can be seen that

paths represent elementsets. For example, in Image 8.4(a) the concept Gin-

gerBeer(84) being a child of OrangeJuice(94), represents the valid elementset

OrangeJuice,GingerBeer and specifies its support as being 84%.

8.2.2 Inference View

The inference view is an optional view that presents the derived inferences as

they are discovered, if this view has not been instigated then the inferences are

not derived. This implementation choice optimises analysis by only requiring

inference derivation if they are being presented to the user. It may be that it is
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the elementsets rather than the inferences that are of interest and need not be

calculated. As previously mentioned, it is the constraint of elementset exploration

that is critical to quality, not the derivation of inferences.

Given that the inference view is instigated during analysis, the inferences from

the current model extent are generated and presented before further analysis.

The subsequent discovery of valid elementsets then results in dynamic inference

derivation and presentation.

The Inference view is comprised of a graphical and textual component. The

graphical component is an instance of CARV and given that no hierarchy is

defined it initially appears as a disc upon the circumference of which the valid el-

ements are arrayed. As analysis progresses, the inference view evolves, presenting

the discovered inferences as shown in Figure 8.5.

The textual component enables a more detailed analysis of the resultant infer-

ences by presenting textually the inferences selected within the graphical view.

For example, Figure 8.6, shows the selection of GingerBeer and MineralWater

and the subsequent textual presentation of the inferences within which both these

elementsets participate. Selection is through direct manipulation and is repre-

sented graphically by “boxing” the relevant spheres.

(a) Intermediate Model (b) Complete Model

Figure 8.5: GAM inference views
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Figure 8.6: GAM inference view selection

8.2.3 Elementset View

The elementset view, shown in Figure 8.7, is derived from CARV and is similar in

principle to the inference view. However, this view presents an alternative to the

elementset model and conveys different model information to the user, potentially

improving interpretation.

The graphical and textual components of the elementset view work in the same

manner as the inference view. However the graphical view now presents valid el-

ementsets instead of inferences. Therefore within the presentation, relationships

between elements now represent valid elementsets. This CARV extension is sig-

nificant as the two optional views, although different are presented in a common

manner and reduce cognitive load. This can be seen by comparing Figure 8.6

and Figure 8.8, which present concurrent snapshots of the views and highlight

through linked selection (see section 8.2.4) the derivation of inferences from valid

elementsets. It can also be seen from this that a single elementset generally re-

sults in many inferences and hence the elementset view is more scalable providing

a less cluttered presentation.
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(a) Intermediate Model (b) Complete Model

Figure 8.7: GAM initialised elementset views

Figure 8.8: GAM itemset view selection
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8.2.4 Model view management

GAM ensures that all model views maintain a consistent state, by implementing

view management within the control component of the architecture. Therefore

given model effecting view interaction, such as deletion and selection, control ef-

fectively ensures that all other instigated model views are updated. For example,

given the deletion of an element through direct elementset interaction, the ele-

ment is also removed from the default tree view and the inference view, while

element selection within inference view results in not only the textual display of

inferences in its associated panel, but also the selection and textual display of

participant elementsets within the elementset view and its selection within tree

view. However not all interaction requires global update. Consider the expansion

of a path within tree view or the rotation of the elementset or inference models.

An example of model view management is provided in Figure 8.2.4.

(a) Default

(b) Elementset

(c) Inference

Figure 8.9: GAM model view management
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8.3 Control

The main function of the control component is to provide an interface between the

user and the analysis process, enabling analysis synergy. To effectively provide

this the control component also maintains system consistency, by ensuring that

all aspects of the guided analysis session maintain a consistent state.

The main components of control are presented in Figure 8.10 along with their

interaction with external components and data structures. Within this figure the

classic analysis is signified through the use of bold process flows. The external

components and data structures used are derived from Figure 7.7, except for the

Excluded array based structure used to facilitate concept exclusion.

Given an initialised system state, all subsequent activity is triggered through

user interaction, including constraint refinement, analysis and the instigation

of optional model views. The nature of the interaction is determined by the

Interpreter and the relevant processing is undertaken to comply with the request

and ensure resultant inference model accuracy. The actual types of interaction

and their interpretation are presented in the next section.

At a higher concept level, all interaction is received by the Interpreter. Process

constraint adjustments are sent to Extent, while concept and heuristic constraint

adjustments are sent to Adjustment and Analysis, depending upon task and the

current analysis state.

While most process flows within Figure 8.10 are generic, a few relate to partic-

ular types of interaction included within GAM, these are analysis priority, select

update and append (presented below).

• Analyse Priority Focused concept analysis is distinguished due to the

different traversal strategy used.

• Select Update Maintain consistency between multiple views.

• Append Maintains a list of excluded elementsets.
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Figure 8.10: Control component

8.4 Guidance

This section presents the techniques by which guidance functionality has been

incorporated within GAM, based upon the guided architecture interaction dis-

cussed in Section 7.1.3. Given the summarisation of required guidance function-

ality presented in Table 7.1, GAM includes all but concept adjustment, as it is

not supported by the dataset used. However its exclusion does not detract from

the tool or the underlying theory for two reasons. Firstly, it is not a common

task. Secondly, it’s inclusion, given a relevant dataset, is replicated by function-

ality included within GAM, namely concept selection, focus and flexible restart.

Once the elementset is selected, the attribute is adjusted, then re-analysis of the

elementsets in which it participates occurs in a prioritised fashion, using restart

to begin analysis at the elementset in question.

The inclusion of process constraints due to their task independency is exhaus-

tive. In relation to heuristic refinement, GAM allows the relaxation and tight-
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ening of support and confidence, which typify heuristic constraints. While not

exhaustive, the technique used to incorporate support refinement can be applied

generically to all reflexive heuristic constraints. If the heuristic constraint is not

reflexive then re-analysis from the initial model state is required to accurately

represent the refinement. Concept refinement is incorporated through prioritisa-

tion and exclusion, while other forms such as templates have not been considered,

a similar methodology to that of exclusion can be used (see Section 8.4.2).

The following subsections detail the inclusion of guidance within GAM. Figure

8.11 provides a snapshot of the elementset visualisation based upon the analysis

of the dataset with support σ(80%). This figure is used to highlight the effect of

refinement in the following subsections.

Figure 8.11: Complete elementset model at σ(80)

8.4.1 Process Constraints

Process constraints do not effect the nature of search space exploration but en-

ables the user to control the automated analysis in terms of extent, pace, and

point of invocation. Four classes of process constraint are incorporated within

GAM (see Figure 8.10), the classes of pace, interrupt and extent are handled

within Extent, while restart effects the model and associated data structures so

that analysis, resumes from a previous point.
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As previously shown (Algorithm 8.1) the analysis algorithm specifies two Con-

trol Check candidates, of which at least one must be implemented to incorporate

guidance. This updates Control with information regarding current analysis state

and ultimately provides the opportunity for guidance inclusion.

Through Control Check the process constraints of extent, interrupt and pace

are included. Given that Control Check updates the current automated extent,

then if the user has specified a constrained extent its state is updated, if the

extent is reached analysis stops, passing control to the user. Interrupt forces

analysis to stop upon the next Control Check. Finally pace allows the user to

vary analysis speed, pausing for a user specified period during Control Check.

The implementation of the extent constraint within GAM can take the forms of

end, count, level and siblings (presented below).

• End (Default) No constraint.

• Count Analyse x number of elementsets.

• Level Automated analysis until a specified model depth,or level, has been

reached.

• Siblings Automated analysis for siblings of current elementset.

The final process constraint is restart that allows the user to resume automated

analysis from previous stages of model evolution. By default, analysis will resume

from the current state, however given model views, the user, through interpreta-

tion of the current analysis state, may want to refine and resume from an earlier

point of analysis. For example, during analysis the user realises that support is

too low, producing too many valid elementsets, and tightening is required. The

user is able then to interrupt analysis, refine support and resume analysis from a

previous state such as initial state or third level.

Flexible restart is instigated through a call to the Adjustment component

within Control that controls the update of the underlying data structures to

reflect refinement, be it concept exclusion or restart. The implementation of

restart requires model adjustment and a rebuild of the queue to reflect the model

adjustment.
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The queue is first cleared and the model is then traversed in DFT removing

those elementsets below the specified restart level and adding the new leaf ele-

mentsets to the queue. For example, given the completed tree in Figure 8.1 and

the constraint of restart within GAM to model levels, the user can resume anal-

ysis from level 2 (initial) or level 3. Given the specification of a level 3 restart,

Figure 8.12 presents the adjusted model and queue.

2x

3a
3x
3c 4a

wx
wc

Queue

w ac x

Root

a ac x a

4a

2t	

5a
4x
4c
3w

3a
2x 3a

Figure 8.12: GAM restart

8.4.2 Domain Guidance

Domain Guidance refers to the refinement of domain based constraints including,

concept filtering, concept adjustment and concept focus. Within GAM, concept

guidance is represented through the implementation of elementset focus and ex-

clusion, while concept adjustment is excluded for reasons previously discussed.

The following subsections detail the techniques used to incorporate domain based

refinement within GAM.

Concept focus is an important guidance function allowing the prioritised ex-

ploration of an elementset. In effect, it is a positive constraint that enables the

user to generate all valid elementsets, and hence inferences, in which a specified

elementset participates before any others.

Concept filtering, which can define both positive and negative domain con-

straints, is represented through the implementation of concept exclusion, which

allows users to remove elementsets from further consideration. While there are
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many types of concept filtering, exclusion is indicative of these and the method-

ology introduced within GAM can be easily adapted for generic use.

Concept Focus

The ability to dynamically prioritise the exploration of an elementset is a signifi-

cant feature of guided analysis, as it allows the user to iteratively specify narrow

areas of interest, exploring them before any other areas. This is implemented

within GAM through the invocation of a DFT exploration of the focus concept.

However, as the entire extent of elementset participation is to be explored,

model ordering used during regular analysis does not apply. For example, given an

ordered set of valid elements a, b, c, d, e, f and a focus concept de then using GAM

analysis, deext = {f}. However consideration must also be given to potential

elementsets derived from extensions a, b, c, which will not be considered given

regular analysis of de.

Algorithm 8.2 GAM priority analysis

Priority Analysis(queue Q, node n)

1: node m = new (n)

2: mext = validElements()

3: Queue P = new Queue(m)

4: while P 6= ∅ do

5: node m = P .pop()

6: set X = m.getExtSet()

7: for all x ∈ X do

8: node c = merge(m,x)

9: m.addExt(c)

10: if validExt(c) then

11: insert(c)

12: P .push(c)

13: end if

14: end for

15: end while

16: Q.remove(n)

Prioritisation creates a copy of the focus concept, referred to as a facilitator,

within which ext is comprised of all valid elements. Facilitator analysis is then
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undertaken in regular DFT fashion, using a separate queue (focus-queue) and

inserting discovered valid concepts in their correct positions within the model.

This, in effect, undertakes DFT exploration of the focus concept, but uses regular

exploration techniques.

Therefore, given the discovery of the valid elementset bde, it is inserted within

the model as a child of b. Finally the focus concept is removed from the regular

queue avoiding subsequent replicated analysis. This prioritised analysis is shown

in Algorithm 8.2 and an example is presented in Figure 8.13, showing the result

of prioritising the concept SodaWater at σ(60%), based upon the default concept

model in Figure 8.11.

Anomalies can be caused during insertion of focus concepts into the model

if intermediate concepts have not yet been discovered. For example, given the

above case, bde is inserted as a child of b as bd does not yet exist. Assuming the

inclusion of only non-monotonic constraints there are two possible solutions: to

deal with it on the fly when bde is inserted, or to reorganise the subtree of b upon

discovery of bd.

Figure 8.13: Focus analysis of SodaWater, σ(60)

The optimal method appears to be the creation of intermediate concepts on

the fly to alleviate the need for ad-hoc reorganisation during subsequent analy-
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sis. Finally some subsequent replicated analysis is unavoidable as regular anal-

ysis encounters those concepts discovered during focus. For example, given the

insertion of bde during prioritisation, regular analysis will want to explore the

subtree, which has already been undertaken. This is overcome by not append-

ing elementsets to the focus-queue if they already exist within the model, unless

heuristic refinement has occurred.

Concept Exclusion

Concept exclusion enables the user to remove elementsets from further consider-

ation resulting in exploration restriction. Its inclusion therefore requires model

adjustment and given the nature of GAM analysis, storage for reference during

subsequent analysis. The model is adjusted by performing a partial DFT and

removing all nodes within which the excluded elementset participates, given that

if a node is excluded so are all its descendants. The excluded concept is then

stored in the Excluded data structure, which is checked upon generation of new

concepts. If the excluded elementset is a participant it is excluded.

The apparent inefficient management of excluded concepts is required as GAM

analysis cannot exclude, using its regular underlying structures, the generation

of excluded concept supersets during regular analysis. Therefore these concepts

must be stored and checked against all discovered valid elementsets. Figure 8.14

shows the result, within the elementset view, of excluding two elements SodaWa-

ter and Whisky from the default model presented in Figure 8.11.

However, simple element exclusion can be achieved without requiring the sub-

sequent step of storage and analysis checking. This is achieved by scanning the

model and removing all instances of the element from ext sets as well as the

nodes within which it participates. As the element does not exist in any form no

elementsets can be derived from it and hence the need for storage and checking

is alleviated.
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Figure 8.14: Exclusion of SodaWater and Whisky from the default model

However elementset or complex concept exclusion cannot be achieved in the

same single step manner as it may result in extraneous removal, therefore the

second storage and checking step is required. This is because by removing all

elements of an excluded elementset from the model, concepts that share com-

mon elements but are not supersets of the specified complex concept will also

be excluded. For example, given the exclusion of ce and the valid concept b

such that bext = {c, e, f, g}, the elements c and e cannot be removed from bext

as it will ultimately result in the exclusion of concepts bc and be, which are still

valid. Therefore the only way to effectively exclude a complex concept is to per-

form the second step that maintains a list of excluded concepts against which all

subsequent discoveries are checked.

GAM, as currently implemented, does not provide mechanisms to enable the

inclusion of a prior excluded concept. However this could be achieved by imple-

menting a variation of concept focus, by which the inclusion concept is explored,

using DFT analysis, to the current model state, inserting valid concepts into the

model.



CONTRIBUTION: GAM TOOL 189

8.4.3 Heuristic Guidance

Heuristic guidance relates to the dynamic refinement of functional constraints.

This is presented in GAM through enabling refinement of the common heuristic

support and confidence. Both of these constraints are non-monotonic in principle,

however while support is included during exploration, confidence is used only

during inference derivation and as such is presented separately. Furthermore,

through cooperation with restart, the refined heuristic can be incorporated from

previous model states, not just from the current state. In the case of heuristic

relaxation the storage of invalid candidates is used to facilitate an accurate model

update.

Typically heuristic relaxation will be incorporated from the initial state, ensur-

ing that all valid concepts are discovered. In contrast, heuristic tightening may

well be incorporated from the current state, as all valid concepts under the refined

heuristic already exist within the current model and as previously discussed, can

be excluded through post-analysis filtering.

Although the heuristic refinement techniques presented are applied to a specific

MOI, the principles involved are generic and easily adapted to the refinement of

any reflexive heuristic constraint. The only consideration is that the reflexive

nature of the constraint can influence the traversal method required in order to

incorporate pruning optimisations. If an incorporated constraint is non-reflexive,

directional based optimisations cannot be incorporated. Given this, the proposed

refinement technique has two stages: model update and heuristic adjustment.

Although heuristic refinement can be considered a two part process, the re-

finement complexity lies in the accurate updating of the current model. The

following two sections present a technique for accurate model update for tight-

ening and relaxation respectively, which considers the case of complete model

update, or the inclusion of refinement from the initial state. This provides the

most complex scenario, as inclusion from a current state does not require model

update, only heuristic adjustment, for subsequent analysis, while inclusion from

an internal model level, specified through restart, requires a constrained model

update that only updates nodes below the specified level. The final subsection

discusses the refinement of the inference constraint confidence.
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Heuristic Tightening

The tightening of a reflexive heuristic results in exploration reduction, or the

production of a smaller elementset lattice. In general, tightening is a two part

process, involving model update and heuristic adjustment, however the extent to

which the model is updated is dependant upon restart (as discussed above) which

partially effects the extent of lattice reduction.

Given the requirement of a complete model update, the model is traversed, re-

moving all sub-trees rooted at now invalid elementsets, due to the non-monotonic

nature of support. To avoid subsequent invalid exploration, leaf nodes of removed

sub-trees are removed from the queue. There are two methods of performing

this given an invalid elementset. Firstly, the queue can be scanned, removing

all elementsets that are supersets of the invalid concept. Secondly, given that

the queue contains pointers to model nodes, by traversing over the invalid sub-

tree, each node can be removed from the queue. While the first choice requires

only partial model traversal, the second requires full traversal, including invalid

sub-trees. The most efficient choice is dependant upon both queue and invalid

sub-tree size, at present the second method has been implemented within GAM.

Once the traversal is complete the model and queue contain valid concepts only

and further analysis can be undertaken with the refined heuristic value. The

update traversal is presented in Algorithm 8.3, where l represents the level of

refinement inclusion specified by restart.

Within GAM, although the invalid elementsets are removed from the model,

the top-level invalid elementset still exists as an invalid candidate extension of its

parent. For example, given the invalidation of ce, it is removed from the model,

however it is still represented as an invalid candidate extension within cext, eg

c{e,g,i}. As previously discussed, the storage of generated candidates irrespective

of heuristic validity is used to facilitate subsequent relaxation. Although this only

happens for the invalid sub-tree root, due to the subsequent parental existence,

which cannot be said of its descendants.

The effect of heuristic tightening is shown through Figures 8.15 and 8.16.

Figure 8.15 presents the elementset model generated with a support of 60, while

Figure 8.16 illustrates the effect of tightening support from 60 to 80 after the 2nd
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Algorithm 8.3 GAM heuristic tightening

Tighten(queue Q, node n, support s, level l)

1: for all m | m ∈ n.children do

2: if σ(m) ≤ s ∧ mlevel ≥ l then

3: QueueRemove(Q,m)

4: n.remove(m)

5: continue

6: end if

7: Tighten(Q,m,s,l)

8: end for

QueueRemove(queue Q, node n)

1: for all m | m ∈ n.children do

2: Q.remove(m)

3: QueueRemove(Q,m)

4: end for

level exploration of SodaWater. To highlight the tightening effect upon model

exploration, Figure 8.16(b) presents the result of tightening from the current

analysis state. The figure therefore presents the result of analysis continuation

from the current state, shown in Figure 8.16(a), without model update, with

σ(80). The resultant model is therefore a combination of the two models explored

at σ(60) and σ(80) as shown in Figures 8.15 and 8.11 respectively.

Heuristic Relaxation

The relaxation of a reflexive heuristic results in expanding exploration, or a larger

resultant elementset lattice. Like tightening, relaxation is a two part process,

involving model update and heuristic adjustment, however the extent to which the

model is updated is dependant upon restart, as discussed above, which effects the

extent of lattice extension. Furthermore, this process is facilitated within GAM

through the storage of previously calculated candidates irrespective of heuristic

validity. This optimises relaxation by reducing the processing required to update

the current model.
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Figure 8.15: Complete elementset model at σ(60)

(a) σ(60) to Sodawater (b) Resume from current state, with σ(80)

Figure 8.16: Heuristic tightening on SodaWater from σ(60) to σ(80)

Model relaxation is undertaken in DFT, involving a two stage process for each

node. Firstly, existing ext members are re-validated, appending to the model

those candidate extensions that have become valid through the relaxation. Sec-

ondly, given the validity of previously invalid elementsets, new candidate exten-

sions are generated for a node based upon the newly valid parental extensions.
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Given the specification of model refinement, restart from previous state, then

a full model traversal is required to accurately update the model. Algorithm 8.4

presents the recursive technique implemented to relax the current model, where

s and s̄ respectively represent the new and old support values, l represents the

model level associated with the current model state and r represents, restart

value, or the level from which relaxation is to be included within the model.

Algorithm 8.4 GAM heuristic relaxation

Relax(queue Q, node n, int s, int s̄, int l, int r)

1: if nlevel ≥ r then

2: for all m | m ∈ next ∧ s̄ > σ(m) ≥ s do

3: Append(Q,n,m)

4: end for

5: if n.parent != null then

6: for all x | x ∈ nsiblings − next do

7: node c = merge(n,x)

8: n.extInsert(c)

9: if σ(c) ≥ s then Append(Q,n,c)

10: end for

11: end if

12: end if

13: if nlevel ≤ l then

14: for all k | k ∈ n.children do Relax(Q,k,s,s̄,l)

15: end if

The Algorithm 8.4 is comprised of two main parts: re-validate and discovery

given a valid portion of model relaxation, specified through r and l. Revalidation

iterates over a node’s invalid candidates, appending those that become valid, while

discovery generates new extension candidates for nodes given the validation of

new siblings during parental relaxation. These new candidates are inserted into

the node’s extension set and if valid they are also appended.

The Append process, not explicitly shown, relates to elementset insertion, the

actual nature of which depends upon its position within the model. Given that

the model being relaxed is generally not complete, relaxation is constrained to

the current model extent. Therefore if the appended elementset will be inserted

at the current model level, it is also inserted into the queue. For the same reason l
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is included within the algorithm to restrict update traversal to the current model

extent. Therefore the result will be a relaxation to the current model extent, with

those areas, or elementsets, to be further explored existing within the queue.

This process is further explained through relaxation of Figure 8.1 from a sup-

port threshold of 3 to 2, the result of which is presented in Figure 8.17.
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Figure 8.17: Prefix-tree model relaxation

Although the model presented in Figure 8.1 is complete, the application of re-

laxation is still appropriate. Figure 8.17 presents the completed relaxed model in

which new artefacts are signified by dashed extensions and candidate sets. Using

the process described in Algorithm 8.4, relaxation first analyses <, discovering

that element t is now valid, resulting in its addition to the model. Subsequently

using DFT, t is explored to the current model depth, resulting in the insertion of

elementsets tca and txa to the queue.

During the subsequent analysis of w, wx becomes valid and is appended. The

validation of wx results in the consideration of x as an extension of wcx, which

is found to be valid and appended to the model and queue for further explo-

ration, due to its depth within the model. Once traversal is complete the model

accurately represents the refinement up to the current analysis state. Subsequent

analysis results in the complete relaxed model shown in Figure 8.17.
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The effect of relaxation is also presented in Figure 8.18, an inverse presenta-

tion to that shown in heuristic tightening. This figure shows the effect of analysis

at σ(80) to Sodawater and then relaxing the support heuristic to σ(60) for sub-

sequent analysis. Similarly to heuristic tightening, Figure 8.18(b) presents the

result of tightening from the current analysis state.

(a) σ(80) to Sodawater (b) Resume from current state, with σ(60)

Figure 8.18: Heuristic relaxation on SodaWater from σ(80) to σ(60)

Inference Heuristic Refinement

Inference derivation is typically constrained through inclusion of the confidence

heuristic, improving inference quality by incorporating a strength measure. GAM

enables the dynamic refinement of confidence during exploration when the op-

tional Inference Visualisation tool is active, by deriving and presenting inferences

from elementsets as they are discovered during exploration.

In a similar manner to support, once an inference is generated it is stored

irrespective of subsequent heuristic validity. Therefore the inference list contains

all inferences valid for the lowest confidence threshold specified. This facilitates

subsequent refinement as, so long as the confidence threshold exceeds the previous

lowest value, a traversal of the elementset model is not required to generate an

accurate inference set. All the required inferences have been generated.

Confidence refinement is, again, a two part process requiring model update and

heuristic adjustment for subsequent analysis. However in the case of confidence
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the entire inference set is refined, there is no notion of confidence refinement from

a particular state with GAM.

Both tightening and relaxation result in complete inference list traversals.

Tightening results in a reduced inference presentation by iterating through the

list and “turning off” invalid inferences. Hence all inferences remain within the

listing, however only a subset are presented. Relaxation results in a similar pro-

cess, but extending the presentation by “turning on” valid inferences. However if

confidence is relaxed below the previously smallest value, naive inference deriva-

tion is undertaken by traversing the elementset model, appending to the list any

new inferences. The effect of confidence refinement is shown in Figure 8.19.

(a) γ(100) (b) γ(80)

Figure 8.19: GAM Confidence Adjustment highlighting SodaWater and Miner-

alWater, GingerBeer for completed model based upon σ(80)

Confidence refinement received less attention, and was naively implemented,

due to its relatively low significance, given the goals of this research, in which

the focus was maintained upon exploration guidance, and hence the evolution of

the elementset model. Inference filtering can be viewed as post-processing and

the storage of inferences within GAM is currently within the presentation tool,

in this case CARV, localising the presentation material.



Part V

Conclusion

Current state of the art data mining tools

are automated, but the perfect data mining

tool is interactive and highly participatory.

Georges Grinstein, 2002
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This thesis extends the current body of knowledge in the field of guided knowl-

edge discovery. This is achieved through the proposal of a generic guided analysis

architecture for descriptive knowledge discovery tasks and the development of a

guided association mining environment based upon this proposed architecture.

The effective realisation of these artefacts supports recent statements by promi-

nent researchers as to the the benefit of maintaining user-computer synergy during

the analysis process, a concept, which although widely discussed, has seen little

research activity.

Although the benefit of this synergy is not quantifiable, due to its subjective

nature and the general case of an initial null hypothesis, the possible benefit

that this synergy can provide is not in question. The question that this thesis

addresses is how this synergy can be provided in an effective manner. Previous

guided analysis research is minimal, with this thesis contributions providing a

significant step in guided knowledge discovery, which will hopefully be used to

stimulate further work in this important area of knowledge discovery research.

Furthermore this thesis also provides novel contributions to the foundation

areas of analysis and presentation, through the proposal of MCL and CARV. The

concept of MCL was elicited during a review into incremental association mining,

in which it was thought that the maintenance of a condensed representation may

be of interpretative benefit to the user. It has been shown to be effective in its

maintenance of smaller structures. However further comparative work is required

against other existing incremental association analysis algorithms. CARV (Ceglar

et al. 2004) is more mature and has been used to support further research in

which it has shown its usefulness, not only in hierarchical presentations but also

in presentations where no hierarchy is evident.

The following sections complete this thesis. The first provides a discussion

that compares the guidance contributions of this thesis against previous published

work, illustrating the significant contribution of this thesis to guided knowledge

discovery. The second section provides a discussion of avenues of further research

based upon this thesis contributions.
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V.1 Discussion

For a concept that theoretically shows promise in significantly improving infer-

ence quality, guided knowledge discovery is a field much in its infancy. Given

the subjective nature of interestingness, guidance seems the next logical step in

explorative knowledge discovery research, as user-computer synergy maintenance

provides the best means to accurately incorporate interestingness within descrip-

tive analysis. The previous research within this field is scarce, as presented in

Chapter 5. This section discusses the contribution of this thesis in respect to this

previous material.

Previous guided knowledge discovery research addresses guidance at two levels

of granularity: dynamic tool selection and guided analysis. Dynamic tool selec-

tion (reviewed in Section 6.2) regards the dynamic selection of tools during a

knowledge discovery session. This is not directly related to this thesis contribu-

tions as it does not enable analysis guidance but facilitates tool selection based

upon the results of the previous processing stage.

Guided analysis research to date has been conducted in all three of the common

descriptive knowledge discovery tasks: classification, clustering and association

mining (reviewed in Sections 6.3 - 6.5). Current guided clustering techniques

centered upon research by the MERL group (Anderson et al. 2000) in allowing

the manual assignment, or constraint, of elements to clusters, while associated

research by Aggarwal and Charu (2001) involved the user specification of interest-

ing subspace clusters, from which higher dimensional clusters are automatically

derived. The largest body of guided classification research has been undertaken

by the Knowledge Discovery in Databases group at the University of Munich and

focuses upon the interactive creation of the decision tree, which is subsequently

used for predictive classification (Ankerst, Ester & Kriegel 2000).

Prior guided association mining research has three major contributors. Ng

et al. (1998) propose an architectural extension enabling coarse-grained user

involvement within the association mining process. This enables constraint re-

finement, within analysis, between elementset derivation and inference derivation

through the inclusion of user feedback. If the user is satisfied with the quality

of V they can instigate inference derivation, else they can refine constraints and
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re-generate V . Brin and Page (1998) propose DDM an analysis process that pro-

duces a set of intermediate presentations through which the user can prioritise

elements in subsequent analysis, through manipulation of a weight heuristic. Fi-

nally Hidber (1999) proposed CARMA that allows the dynamic adjustment of

common functional constraints support and confidence during analysis.

This thesis significantly extends this research by the presentation of the first

generic guided knowledge discovery architecture that, although presented in the

context of association mining, can be used to facilitate guidance in all descriptive

(or exploratory) tasks. This architecture is novel and generic, effectively merging

the current knowledge discovery architecture with the HCI model-view-controller

architecture, providing an effective framework for guided analysis. The architec-

ture is non specific in regard to the analysis algorithm, presentation mediums

and constraint types used, only requiring that both a process and model view be

present to allow for effective analysis interaction.

As a proof-of-concept as to the viability of this guided architecture, GAM has

been developed. GAM is superior to previous techniques in its provision of a

complete guided association mining system that is flexible, generic and extensi-

ble. Based upon comprehensive research into association mining constraints and

the additional constraints that guidance will allow, GAM illustrates the archi-

tecture’s potential to incorporate the dynamic refinement of any constraint type,

by including an instance for each constraint class. Furthermore the inclusion of

process constraints, enables the dynamic adjustment of the level of interactivity

incorporated within the analysis process. This ability to interrupt analysis at

will, has not been provided before and addresses an interactive issue raised by

Piatetsky-Shapiro, presented below.

The perfect data mining tool should have a more automated mode for

beginners and a more interactive mode for experts.

Gregory Piatetysky Shapiro 2002
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V.2 Future Direction

The objective of CARV was to develop a presentation technique that allowed the

integration of discovered inferences within a hierarchical context to facilitate user

interpretation. However for each set of element domain multiple hierarchies can

be defined, it might therefore be interesting to develop a presentation technique

that allows for the simultaneous presentation of multiple hierarchies and the

inferences within them. This would require a supporting analysis algorithm that

enabled the discovering of inference within multiple hierarchical contexts and also

the use of presentation functionality such as linking to facilitate interpretation.

This presentation could be realised as a set of simultaneous CARV structures.

Furthermore CARV has demonstrated the effectiveness by which inferences

can be presented, using graph based techniques, within specific semantic do-

mains. Further investigation is therefore required to find if the same principles

can be applied to the inclusion of temporal and spatial semantics within as-

sociation analysis. This would be realised as the development of presentation

techniques in which the inferences are presented within a context that facilitates

the understanding of their temporal or spatial nature.

The objective of MCL is to facilitate user interpretation of frequent elementsets

maintained within a lattice by maintaining a smaller representative lattice, through

the use of the closed-set concept. Although the objective of MCL was not process

optimisation, but lattice reduction, further research regarding comparison against

other current incremental association mining algorithms is required to quantify

its overall efficiency. This is a priority for further work. Consideration is also

being given to implementing a Maximal Frequent Set (MFS) version (see Section

1.3.1), which although resulting in an even more condensed representation will

loose the ability for accurate derivation of inference confidence.

GAM at present provides a comprehensive proof-of-concept guided association

mining system. Further work is required to make it robust enough for external

use. In addition to general strengthening of the tool, three areas of extension

present themselves. Firstly the extension of constraint manipulation, at present

GAM allows the dynamic refinement of a typical constraint from each constraint

class, the extension of its current capabilities to include more powerful constraint
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refinement, especially complex filtering, may result in further significant quality

improvement. Secondly, GAM currently uses an effective candidate generation

algorithm and model views, based upon the prefix-tree structure built during

valid elementset discovery. Furthermore thought should be given to the use of

pattern growth based analysis techniques within a guided environment, although

initial research has suggested their unsuitability (see Chapter 8).

The final extension to GAM is the refinement of heuristic constraint inclu-

sion, allowing the specification of heuristic constraint refinement at specific el-

ementsets, or view nodes. Within the current system constraint relaxation can

occur from a particular prefix-tree level, however this can be extended to en-

able the specification of different thresholds at different elementsets. This new

threshold will then be applied to the concept’s sub-tree until it is replaced by

another.

In regard to the proposed guided architecture three areas of further work

present themselves. Firstly the validation of the framework’s generic capabilities

through its use in the development of both guided clustering and guided classi-

fication systems. Secondly, and perhaps more importantly, is the identification

and development of a set of generic interaction mappings between the graphical

interface and the underlying analysis process, to provide a form of standardis-

ation. Thirdly further consideration needs to be given to the quantification of

the benefits that guidance has upon the knowledge discovery process in regard to

explorative tasks.



Part VI

Appendices and Bibliography



Appendix A

Miscellaneous Analysis

Algorithms

This appendix presents brief descriptions of a couple of miscellaneous analysis

algorithms that made a contribution to the research effort. HND was designed

to support CARV, providing a dynamic hierarchical analysis environment and

furthermore enabling hierarchical monotonic support to reduce high-level concept

inferences, while HPtid was used to investigate preliminary ideas about prioritised

mining.

Given the current state of research these algorithms now appear rather simple,

however they were novel at the time and important to furthering our knowledge.

They are included here to provide further indication as to the path travelled,

during the evolution of this thesis and because of their mention in Chapter 1.

A.1 HND: Hierarchical Non-monotonic

Dynamic Association Analysis

HND is a hierarchical Apriori extension that enables dynamic inference deriva-

tion as the elementset model is explored and the variable specification of support

(interestingness measure) across hierarchical levels. A significant problem with

current hierarchical algorithms is that given a support threshold specified in order
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to discover concrete inferences, low-level inferences, results in the generation of a

plethora of higher-level inferences, as abstract concepts are obviously more com-

mon within objects than elements and low-level concepts (Han & Kamber 2001).

As a result of this, any presentations (in this case CARV) contain inference over-

load at the higher concept levels from which little if anything can be interpreted.

The theory behind HND was to allow for the specification of a monotonic support,

that increased as higher-level concepts were included within the elementset un-

der consideration, thereby reducing the number of valid high-concept elementsets.

Although enabling the required functionality, it also resulted in a less efficient al-

gorithm as pruning optimisations, such as those outlined in Chapter 1, could not

be incorporated. HND extended Apriori and was paired with CARV, to present

our initial dynamic association mining environment in 2002.

As a first step HND incorporates the hierarchical information within the dataset,

so that each element is replaced with its hierarchical position. For example, Rye is

replaced, given an associated hierarchy with the concept Bread-Loaf-Rye, improv-

ing analysis by locating both data and hierarchical structure in a single source,

reducing I/O and simplifying analysis. This process is similar to that presented

by Han & Fu in the ML-T* family of hierarchical algorithms (Han & Fu 1995).

ML-T2 algorithm devised by Han and Fu undertakes inter-level analysis, by

incorporating the hierarchical semantics during the generation of V2. This results

in set of length 2 valid elementsets, incorporating concepts from all abstraction

levels. Subsequent analysis uses regular Apriori, which (being derived from V2)

generates valid elementsets from all levels of abstraction. The hierarchical inclu-

sion during the generation of V2 is achieved in a top-down fashion, only exploring

lower-concepts given the validity of its generating higher-concept elementset. For

example, given the hierarchy in Figure 1, the top-level V2 elementsets, such as

Drink, PowderedProduct, are first explored. Subsequent V2 analysis is based upon

the valid elementsets discovered within the previous hierarchical level. Given

that Drink, PowderedProduct is valid, then elementsets such as Drink,Cocoa,

Drink,Coffee and PowderedProduct, Alcohol are considered. If Drink, Coffee is

not valid then V2 elementsets generated from this are not considered.
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This top-down method effectively prunes the exploration of the hierarchical

V2 space, given a static support threshold, as given an invalid elementset then

lower-concept elementsets derived from this can not be valid either. For example,

given that Drink, Coffee has σ(12), then descendant elementsets such as Alcohol,

Coffee can have a maximum support of 12. Therefore the hierarchical exploration

space is bounded by invalid V2 elementsets.

The requirement within HND of providing monotonic support cannot incor-

porate this bounded exploration as support is not static but is non-monotonic

given a top-down traversal. Therefore V2 generation considers all hierarchical

permutations of all elements in the construction of V2. From which point subse-

quent analysis uses Apriori, deriving and presenting inferences as their generating

elementset is discovered. Figure A.1 presents the HND interface.

HND was effective in reducing top-level inference overload in CARV, reducing

the number of higher level inferences produced. However this initial research

was subsequently optimised in HPtid, through the use of vertical organisation

and extended to allow a constrained form of prioritised analysis, which was later

extended and implemented within GAM.

Figure A.1: Hierarchical Association Mining



MISCELLANEOUS ANALYSIS ALGORITHMS 207

A.2 HPtid: Hierarchical Prioritised

TidList Association Analysis

HPtid optimises and extends HND through the use of vertical organisation and

the enabling of prioritised analysis. The use of a vertical organisation, provides

an element centric approach, whereby each higher-level concept could be consid-

ered as an element in its own right, with an associated tidList. This simplifies

non-prioritised analysis to AprioriTid, see Chapter 1, after the vertical tidList

structure has been constructed in memory, including hierarchical concepts. Fur-

ther constraint can be included within the generation of V2 to ensure that no

elementsets are generated in which one element is the ancestor of the other.

The main goal of HPtid was to enable a preliminary investigation into concept

focus, where focus or prioritisation (see Chapter 8) enables the user to focus ex-

ploration upon a specific area of interest during analysis. However unlike GAM,

HPtid only enabled the static prioritisation of elements, whereby the focus con-

cepts needed to be specified prior to analysis and could therefore only incorporate

elements. As a HND extension, HPtid incorporates hierarchical semantics and

dynamic presentation, enabling the prioritisation of abstract concepts and the

subsequent presentation of focus derived inferences, before analysis of the remain-

ing exploration space is undertaken. The HPtid interface is shown in Figure A.2,

which was paired with CARV to provide a dynamic association mining system

with limited concept prioritisation.

Vertical organisation facilitates prioritisation because of its element-centric

layout through which element based analysis constraint can be easily incorpo-

rated. This is achieved by forcing a partial V1 ordering, whereby the prioritised

elements are placed at the head of the V1 list. Prioritised analysis is subsequently

undertaken by iterating over the subsequent V1 members for each prioritised el-

ement, generating prioritised V2, or P2, where P2 consists of a a list of length

2 elementsets, each containing at least one prioritised concept, and their rele-

vant tidLists. Generation of subsequent P , is equivalent to that of AprioriTid

(Agrawal & Srikant 1994) incorporating tidList projection.
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The inclusion of dynamic presentation within HPtid, achieved through dy-

namic inference derivation, may however require knowledge of a non-prioritised

elementset. For example, prioritisation of g and the subsequent discovery of the

valid elementset bgt, will result in the derivation of the inference b ⇒ gt, however

gt does not contain a prioritised concept and hence its presence has not been

calculated. In these cases the required elementset’s presence is calculated from

V1 through the intersection of tidLists, the result of which is used to calculate the

confidence of the inference. Furthermore these valid non-prioritised elementsets

can be stored within their appropriate Vκ listing for further reference.

Once prioritised analysis is complete HPtid pauses analysis to allow the user

to explore the presentation. If specified the algorithm then resumes analysis from

the first non-prioritised element within the V1.

Figure A.2: Prioritisation of large snapper and softdrink using HPtid



Bibliography

Abraham, T. & Roddick, J. F. (1999), ‘Survey of spatio-temporal databases’,

Geoinformatica 3(1), 61–99.

Aggarwal, C. C. (2001), A human-computer cooperative system for effective high

dimensional clustering, in ‘Proceedings of the seventh ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining (KDD’01)’,

San Francisco, CA,USA, pp. 221–226.

Aggarwal, C. C. (2002), ‘Towards effective and interpretable data mining by

visual interaction’, SIGKDD Explorations 3(2), 11–22.

Agrawal, R. C., Aggrawal, C. C. & Prasad, V. (2000), Depth first genera-

tion of long patterns, in ‘Proceedings of the Sixth ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining’, ACM Press,

Boston,Massachusetts, pp. 108–118.

Agrawal, R. C., Aggrawal, C. C. & Prasad, V. V. V. (1999), A tree projection

algorithm for generation of frequent itemsets, in ‘Proceedings of High Per-

formance Data Mining Workshop’, ACM Press, Puerto Rico.

Agrawal, R., Imielinski, T. & Swami, A. (1993), Mining association rules between

sets of items in large databases, in ‘1993 ACM SIGMOD International Con-

ference Management of Data’, ACM Press, Washington D.C. U.S.A, pp. 207–

216.

Agrawal, R. & Srikant, R. (1994), Fast algorithms for mining association rules,

in ‘Proceedings of the 20th International Conference on Very Large Data

Bases’, Morgan Kaufmann Publishers Inc., Santiago, Chile, pp. 487–499.

Agrawal, R. & Srikant, R. (1995), Mining sequential patterns, in P. S. Yu &

A. S. P. Chen, eds, ‘Proceedings of the 11th International Conference on

Data Engineering(ICDE’95)’, IEEE Computer Society Press, Taipei,Taiwan,

pp. 3–14.



BIBLIOGRAPHY 210

Ale, J. M. & Rossi, G. H. (2000), An approach to discovering temporal association

rules, in ‘Proceedings of the 2000 ACM Symposium on Applied Computing

(SAC)’, Vol. 1, ACM Press, Villa Olmo, Como, Italy, pp. 294–300.

Allen, J. F. (1983), ‘Maintaining knowledge about temporal intervals’, Commu-

nications of the ACM 26(11), 832–843.

Amant, R. S. & Cohen, P. R. (1997), Evaluation of a semi-autonomous assis-

tant for exploratory data analysis, in ‘Proceedings of the first international

conference on Autonomous agents’, ACM Press, Marina del Rey, California,

United States, pp. 355–362.

Anderson, D., Anderson, E., Lesh, N., Marks, J., Perlin, K., Ratajczak, D. &

Ryall, K. (2000), Human guided simple search: combining information visu-

alization and heuristic search, in ‘Proc. of the workshop on new paradigms in

information visualization and manipulation. In conjunction with the eighth

ACM international conference on Information and Knowledge Management’,

ACM Press, Kansas City, MO, pp. 21–25.

Anderson, P., Smith, R. & Zhang, Z. (1996), Frustrum: A novel distortion ori-

ented display for demanding applications, in ‘Proceedings of the 3rd SPIE

Conference on Visual Data Exploration and Analysis’, Vol. 2656, IEEE

Press, San Jose, California, USA, pp. 150–156.

Ankerst, M. (2001), Human involvement and interactivity of the next generation’s

data mining tools, in ‘ACM SIGMOD Workshop on Research Issues in Data

Mining and Knowledge Discovery’, Santa Barbara, CA.

Ankerst, M. (2002), The perfect data mining tool: Automated or interactive?, in

‘Panel at ACM SIGKDD02’, Edmonton, Canada.

Ankerst, M., Ester, M. & Kriegel, H.-P. (2000), Towards an effective cooperation

of the user and the computer for classification, in ‘Proc. 6th Int. Conf. on

Knowledge Discovery and Data Mining (KDD’2000)’, Boston, MA, pp. 179–

188.

Ayan, N. F., Tansel, A. U. & Arkun, E. (1999), An efficient algorithm to update

large itemsets with early pruning, in ‘Proceedings of the fifth International

Conference on Knowledge Discovery and Data Mining (SIGKDD’99).’, ACM

Press, San Diego, CA USA, pp. 287–291.

Baker, C. A. H., Carpendale, M. S. T., Prusinkiewicz, P. & Surette, M. G. (2002),

Genevis: Visualization tools for genetic regulatory network dynamics, in



BIBLIOGRAPHY 211

‘Proceedings of the conference on Visualization’02’, IEEE Press, Boston,

Massachusetts, pp. 243–250.

Barass, S. (1995), Personify: a toolkit for perceptually meaningful sonification,

in ‘Australian Computer Music Conference ACMA’95’.

Bastide, Y., Taouil, R., Pasquier, N., Stumme, G. & Lakhal, L. (2000), ‘Mining

frequent patterns with counting inference’, SIGKDD Explorations 2(2), 66–

75.

Battista, G. d., Eades, P., Tamassia, R. & Tollis, I. G. (1999), Graph Drawing:

Algorithms for the Visualization of Graphs, Prentice Hall, Englewood, NJ.

Bayardo, R. & Agrawal, R. (1999), Mining the most interesting rules, in

S.Chaudhuri & D.Madigan, eds, ‘Fifth International Conference on Knowl-

edge Discovery and Data Mining’, ACM Press, San Diego, CA, USA,

pp. 145–154.

Bayardo, R. J. (1998), Efficiently mining long patterns from databases, in ‘Pro-

coceedings of the International Conference on Management on Data (SIG-

MOD)’, ACM Press, Seattle, Washington, United States, pp. 85–93.

Bettini, C., Wang, X. S., Jajodia, S. & Lin, J.-L. (1998), ‘Discovering temporal

relationships with multiple granularities in time sequences’, IEEE Transac-

tions on Knowledge and Data Engineering 10(2), 222–237.

Boardman, R. (2000), Bubble trees: Visualization of hierarchical information

trees, in ‘Proceedings of the Conference on Human Factors in Computing

Systems (CHI’00)’, ACM Press, The Hague.

Bodon, F. (2003), A fast apriori implementation, in B. Goethals & M. J. Zaki,

eds, ‘Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining

Implementations (FIMI’03)’, Vol. 90 of CEUR Workshop Proceedings, IEEE

Press, Melbourne, Florida, USA.

Bolton, R. J. & Adams, N. M. (2003), An iterative hypothesis-testing strategy

for pattern discovery, in ‘Proceedings of the Ninth ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD2003)’,

Washington D.C., USA, pp. 49–58.

Boulicant, J.-F., Bykowski, A. & Rigotti, C. (2001), ‘Free-sets: A condensed

representation of boolean data for the approximation of frequency queries’,

Data Mining and Knowledge Discovery Journal 7(1), 5–22.



BIBLIOGRAPHY 212

Boulicaut, J.-F. & Jeudy, B. (2001), Mining free itemsets under constraints, in

‘Proceedings of the International Database Engineering and Applications

Symposium’, IEEE, Grenoble, France, pp. 322–329.

Brin, S., Motwani, R. & Silverstein, C. (1997), Beyond market basket: General-

izing association rules, in ‘Proceedings of the ACM SIGMOD International

Conference on Management of Data’, ACM-Press, Tucson, Arizona,USA,

pp. 265–276.

Brin, S., Motwani, R., Ullman, J. D. & Tsur, S. (1997), ‘Dynamic itemset count-

ing and implication rules for market basket data’, SIGMOD Record (ACM

Special interest group on the Management of Data) 26(2), 255–276.

Brin, S. & Page, L. (1999), Dynamic data mining: Exploring large rule spaces by

sampling, Technical Report SIDL-WP-1999-0122, Stanford University.

Bucila, C., Gehrke, J., Kifer, D. & White, W. (2002), Dualminer: A dual-

pruning algorithm for itemsets with constraints, in ‘The Eighth ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing (SIGKDD02)’, Edmonton, Alberta, Canada.

Burdick, D., Calimlim, M. & Gehrke, J. (2001), Mafia: A maximal frequent item-

set algorithm for transactional databases, in ‘The 17th International Confer-

ence on Data Engineering’, IEEE Press, Heidelburg, Germany, pp. 443–452.

Buxton, W. (1986), Chunking and phrasing and the design of human computer

dialogues, in ‘Proceedings of the IFIP 10th World Computer Congress’, Mor-

gan Kaufmann Publishers Inc., Dublin, Ireland, pp. 475–480.

Bykowski, A. & Rigotti, C. (2001), A condensed representation to find frequent

patterns, in ‘Proceedings of the 20th ACM SIGMOD Symposium on Princi-

ples of Database Systems’, ACM Press, Santa Barbara, California, pp. 267–

273.

Calders, T. & Goethals, B. (2002), Mining all non-derivable frequent itemsets, in

T. Elomaa, H. Mannila & H. Toivonen, eds, ‘Proceedings of the 6th European

Conference on Principles of Data Mining and Knowledge Discovery’, Vol.

2431, Springer-Verlag, Helsinki, Finlanmd, pp. 74–85.

Carriere, J. & Kazman, R. (1995), Interacting with huge hierarchies: Beyond

cone trees, in ‘InfoViz’95, IEEE Symposium on Information Visualisation’,

IEEE Computer Society Press, Atlanta, Georgia, pp. 74–78.



BIBLIOGRAPHY 213

Ceglar, A., Roddick, J. F., Calder, P. & Rainsford, C. P. (2004), ‘Visualising

hierarchical associations’, Knowledge and Information Systems (to appear).

Chang, C.-H. & Yang, S.-H. (2003), Enhancing swf for incremental association

mining by itemset maintenance, in ‘Proceedings of the seventh Pacific Asia

conference on Knowledge Discovery and Data Mining PAKDD’03’, Seoul,

Korea.

Chen, B., Haas, P. & Scheuermann, P. (2002), A new two-phase sampling based

algorithm for discovering association rules, in ‘Proceedings of the 8th ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing.’, ACM Press, Edmonton,Alberta,Canada, pp. 462–468.

Cheung, D. W., Han, J., Ng, V. T. & Wong, C. (1996), Maintenence of discovered

association rules in large databases: An incremental updating technique,

in ‘Proceedings of the Twelfth International Conference on Data Engineer-

ing (ICDE’96)’, IEEE Computer Society Press, New Orleans, Louisiana,

pp. 106–114.

Cheung, D. W.-L., Lee, S. D. & Kao, B. (1997), A general increment technique for

maintaining discovered association rules, in ‘Proceedings of the fifth Inter-

national Conference on Database Systems of Advanced Applications (DAS-

FAA)’, Melbourne, Australia, pp. 185–194.

Cheung, W. & Zaiane, O. R. (2003), Incremental mining of frequent patterns

without candidate generation or support constraint, in ‘The seventh Inter-

national database Engineering and Applications Symposium (IDEAS’03)’,

Hong Kong, China.

Choudhuri, S., Datar, M., Motwani, R. & Narasayya, V. (2001), Overcoming

limitations of sampling for aggregation queries, in ‘Proceedings of the 17th

International Conference on Data Engineering, ICDE’, IEEE press, Heidel-

burg,Germany, pp. 534–542.

Chu, H. K. & Wong, M. H. (1998), Interactive data analysis on numeric-data, in

‘Proceedings of the 1999 International Symposium on Database Engineering

& Applications’, IEEE Computer Society, Montreal, Canada, p. 226.

Cong, G. & Liu, B. (2002), Speed-up iterative frequent itemset mining with

constraint changes, in ‘Proceedings of the IEEE International Conference

on Data Mining, (ICDM 2002).’, Maebashi City, Japan, pp. 107–114.



BIBLIOGRAPHY 214

Deshaspe, L. & Toivonen, H. (1998), Frequent query discovery: A unifying ap-

proach to association rule mining, Technical Report CW-258, Department

of Computer Science, Katholieke Universiteit Leuven, Belgium.

Dunkel, B. & Soparkar, N. (1999), Data organization and access for efficient

data mining, in ‘Proceeding of the 15th International Conference on Data

Engineering’, IEEE, Sydney, Australia, pp. 522–532.

Eades, P. (1992), ‘Drawing free trees’, Bulletin of the Institute of Combinatorics

and its Applications 5, 10–36.

Engels, R., Lindner, G. & Studer, R. (1997), A guided tour through the data

mining jungle, in D.Pregibon, D. Heckerman & H.Manilla, eds, ‘Proceedings

of the 3nd International Conference on Knowledge Discovery in Databases

(KDD-97)’, AAAI Press, Newport Beach, CA, pp. 163–166.

Evfimievski, A., Srikant, R., Agrawal, R. & Gehrke, J. (2002), Privacy preserving

mining of association rules, in ‘Proceedings of the 8th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (KDD’02)’,

ACM Press, Edmonton, Alberta, Canada, pp. 217–228.

Freitas, A. (1999), ‘On rule interestingness measures’, Knowledge Based Systems

12(5-6), 309–315.

Fule, P. & Roddick, J. (2004), Detecting privacy and ethical sensitivity in data

mining results., in V. Estivill-Castro, ed., ‘Proceedings of the 27th Aus-

tralasian Computer Science Conference (ACSC2004).’, CRPIT, Dunedin,

New Zealand, pp. 159–166.

Furnas, G. W. (1986), Generalized fisheye views, in ‘Conference Proceedings of

Human Factors in Computing Systems (CHI’86)’, ACM Press, New York,

USA, pp. 16–23.

Ganter, G. & Wille, R. (1999), Formal Concept Analysis: Mathematical Founda-

tions, Springer Verlag.

Ganti, V., Gehrke, J. & Ramakrishnan, R. (2001), ‘Demon: Mining and monitor-

ing evolving data’, IEEE Transactions on Knowledge and Data Engineering

(TKDE) 13(1), 50–63.

Gardarin, G., Pucheral, P. & Wu, F. (1998), Bitmap based algorithms for min-

ing association rules, in ‘Proceedings of the 14th Bases de Donnes Avances

(BDA’98)’, Springer Verlag, Hammamet, Tunisia, pp. 157–176.



BIBLIOGRAPHY 215

Garner, W. R., Hake, H. & Erikson, C. W. (1956), ‘Operationism and the concept

of perception’, Psychological Review 63, 149–159.

Gibbons, P. (2001), Distinct sampling for highly-accurate answers to distinct

values queries and event reports, in ‘Proceedings of 27th International Con-

ference on VLDB Conference’, Morgan Kaufmann, Rome Italy, pp. 541–550.

Godin, R., Missaoui, R., Huchard, M. & Napoli, A. (2004), ‘Galicia - galois lattice

interactive constructor.’.

Goethals, B. & Van den Bussche, J. (2000), On supporting interactive associ-

ation rule mining, in Y. Kambayashi, M. K. Mohania & A. M. Tjoa, eds,

‘Data Warehousing and Knowledge Discovery, Second International Confer-

ence (DaWaK)’, Springer, London, UK, pp. 307–316.

Goethals, B. & Zaki, M. J. (2003), Advances in frequent itemset mining im-

plementations: Introduction to fimi03, in B. Goethals & M. J. Zaki, eds,

‘Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Im-

plementations (FIMI’03)’, IEEE Press, Melbourne, Florida, USA.

Gopalan, R. P. & Sucahyo, Y. G. (2002), Itl-mine: Mining frequent itemsets

more efficiently, in L. Wang, S. Halgamuge & X. Yao, eds, ‘Proceedings of the

2002 Internatiional Conference on Fuzzy Systems and Knowledge Discovery’,

Vol. 1, Springer Verlag, Singapore, pp. 167–172.

Gouda, K. & Zaki, M. J. (2001), Efficiently mining maximal fequent itemsets, in

‘IEEE International Conference on Data Mining’, IEEE Press, San Jose.

Goulbourne, G., Coenen, F. & Leng, P. (2000), ‘Algorithms for computing asso-

ciation rules using a partial support tree’, Knowledge Based Systems 13(2-

3), 141–149.

Grahne, G. & Zhu, J. (2003a), Efficiently using prefix-trees in mining frequent

itemsets, in B. Goethals & M. J. Zaki, eds, ‘Proceedings of the IEEE ICDM

Workshop on Frequent Itemset Mining Implementations (FIMI’03)’, Vol. 90,

IEEE Press, Melbourne, Florida, USA.

Grahne, G. & Zhu, J. (2003b), High performance mining of maximal frequent

itemsets, in ‘Proceedings of the 6th SIAM International Workshop on High

Performance Data Mining (HPDM ’03)’, San Francisco, CA,USA.



BIBLIOGRAPHY 216

Gunopulos, D., Mannila, H. & Saluja, S. (1997), Discovering all most specific

sentences by randomised algorithms extended abstract, in F.Afrati & P. Ko-

laitis, eds, ‘Proceedings of the 6th International Conference on Database

Theory’, Springer Verlag, Delphi, Greece, pp. 251–229.

Han, J., Cai, Y. & Cerone, N. (1992), Knowledge discovery in databases: an

attribute-oriented approach, in ‘Proceedings of the 18th International Con-

ference on Very Large Databases (VLDB)’, pp. 547–559.

Han, J. & Fu, Y. (1994), Dynamic generation and refinement of concept hierar-

chies for knowledge discovery in databases, in ‘Proceedings AAAI’94 Work-

shop on Knowledge Discovery in Databases (KDD94)’, ACM Press, Seattle,

WA, pp. 157–168.

Han, J. & Fu, Y. (1995), Discovery of multiple-level association rules from

large databases, in ‘21st International Conference on Very Large Databases

(VLDB’95)’, Morgan Kaufmann Publishers Inc., Zurich, Switzerland.

Han, J., Fu, Y., Wang, W., Koperski, K. & Zaiane, O. (1996), DMQL: A data

mining query language for relational databases, in ‘Proceedings of the 1996

SIGMOD Workshop on Research Issues in Data Mining and Knowledge Dis-

covery (DMKD’96)’, Montreal, Canada, pp. 27–33.

Han, J. & Kamber, M. (2001), Data Mining: Concepts and Techniques, Morgan

Kaufmann, San Francisco California U.S.A.

Han, J., Lakshmanan, L. V. S. & Ng, R. T. (1999), ‘Constraint-based, multidi-

mensional data mining’, IEEE Computer 32(8), 46–50.

Han, J. & Pe, J. (2000), ‘Mining frequent patterns by pattern growth: Method-

ology and implications’, ACM SIGKDD Explorations 2(2), 14 – 20.

Han, J., Pei, J. & Yin, Y. (2000), Mining frequent patterns without candidate

generation, in W. Chen, J. Naughton & P. Bernstein, eds, ‘2000 ACM SIG-

MOD International Conference on Management of Data.l C’, ACM Press,

pp. 1–12.

Hao, M. C., Dayal, U., Hsu, M., Sprenger, T. & Gross, M. H. (2001), Visualization

of directed associations in e-commerce transaction data, in ‘Proceedings of

VisSym’01, Joint Eurographics - IEEE TCVG Symposium on Visualization’,

IEEE Press, Ascona, Switzerland, pp. 185–192.

Herman, I., Melancon, G., de Ruiter, M. M. & Delest, M. (2000), ‘Latour - a tree

visualization system’, Lecture Notes in Computer Science 1731, 392–404.



BIBLIOGRAPHY 217

Herman, I., Melancon, G. & Marshall, M. S. (2000), ‘Graph visualisation and

navigation in information visualization: a survey’, IEEE Transactions on

Visualizations and Computer Graphics 6(1), 24–43.

Hetzler, B., Harris, W. M., Havre, S. & Whitney, P. (1998), Visualizing the full

spectrum of document relationships, in ‘Proceedings of the 5th International

Society for Knowledge Organisation Conference (ISKO)’, Springer Verlag,

San Fransisco, California, pp. 168–175.

Hidber, C. (1999), Online association rule mining, in ‘ACM SIGMOD Intl. Conf.

on Management of Data’, ACM Press, pp. 145–156.

Hilderman, R. J. & Hamilton, H. J. (1999), Knowledge discovery and interest-

ingness measures: A survey, Technical Report CS 99-04, Department of

Computer Science, University of Regina.

Hinneburg, A., Keim, D. A. & Wawryniuk, M. (1999), ‘HD Eye: Visual min-

ing of high dimensional data’, IEEE Computer Graphics and Applications

19(5), 22–31.

Hipp, J., Guntzer, U. & Nakhaeizadeh, G. (2000), Mining association rules: De-

riving a superior algorithm by analysing today’s approaches, in ‘Proceedings

of the 4th European Symposium on Principles of Data Mining and Knowl-

edge Discovery (PKDD’00)’, Springer Verlag, Lyon, France, pp. 159–168.

Hipp, J., Myka, A., Wirth, R. & Guntzer, U. (1998), A new algorithm for faster

mining of generalised association rules, in ‘Proceedings of the 2nd Sympo-

sium on Principles of Data Mining and Knowledge Discovery (PKDD’98)’,

Springer Verlag, Nantes, France, pp. 74–82.

Hofman, H., Siebes, A. & Wilhelm, A. (2000), Visualizing association rules with

interactive mosaic plots, in ‘Proceeding of KDD2000’, ACM, Boston, MA

USA, pp. 227–235.

Houtsma, M. & Swami, A. (1993), Set oriented mining of association rules, Tech-

nical Report RJ 9567, IBM Almaden Research Centre.

Imielinski, T. & Virmani, A. (1999), ‘MSQL: A query language for database

mining’, Journal of Data Mining and Knowledge Discovery 3(4), 373–408.

Jensen, D., Dong, Y., Staudt Legner, B., McCall, E. K., Osterweil, L. J., Sut-

ton Jr., S. M. & Wise, A. (1999), Coordinating agent activities in knowledge

discovery processes, in ‘Proceedings of the international joint conference on



BIBLIOGRAPHY 218

Work activities coordination and collaboration’, ACM Press, San Francisco,

California, United States, pp. 137–146.

Jeudy, B. & Boulicaut, J. F. (2002), Using condensed representations for inter-

active association rule mining, in T. Elomaa, H. Mannila & H. Toivonen,

eds, ‘In Proceedings of the 6th European Conference on Principles of Data

Mining and Knowledge Discovery’, Vol. 2431, Springer, Helsinki, Finland,

pp. 225–236.

John, B. E., Rosenbloom, P. S. & Newell, A. (1985), A theory of stimulus-response

compatibility applied to human computer interaction, in ‘Proceedings of the

Conference on Human Factors in Computing Systems (CHI’85)’, ACM Press,

pp. 213–230.

Johnson, B. & Schneiderman, B. (1991), Tree-maps: a space-filling approach to

the visualization of hierarchical information structures, in ‘IEEE Visualiza-

tion’91’, IEEE Computer Society Press, pp. 275–282.

Kivinen, J. & Mannila, H. (1994), The power of sampling in knowledge discovery,

in ‘Proceedings of the 13th ACM AIGACT-SIGMOD-SIGART Symposium

on the Principles of Database Systems (PODS’94)’, ACM Press, Minneapo-

lis,NM,USA, pp. 77–85.

Klemettinen, M., Mannila, H., Ronkainen, T. & Verkano, A. (1994), Finding in-

teresting rules from large sets of discovered association rules, in N. R. Adam,

B. K. Bhargava & Y. Yesha, eds, ‘Third International Conference on Infor-

mation and Knowledge Management (CIKM’94)’, ACM Press, Gaitherburg

Maryland USA, pp. 401–407.

Klemettinen, M., Mannila, H. & Toivonen, H. (1996), Interactive exploration of

discovered knowledge: A methodology for interaction, and usability stud-

ies., Technical Report Report C-1996-3, Department of Computer Science,

University of Helsinki,.

Klemettinen, M., Mannila, H. & Toivonen, H. (1997), A data mining methodology

and its application to semi-automatic knowledge acquisition, in ‘Proceedings

of the 8th International Workshop on Database and Expert Systems Appli-

cations’, IEEE Press, pp. 67–677.

Klemmer, E. T. & Frick, F. C. (1953), ‘Assimilation of information from dot and

matrix patterns’, Experimental Psychology 45, 15–19.



BIBLIOGRAPHY 219

Koedinger, K. R. (1992), Emergent properties and structural constraints: Advan-

tages of diagrammatic representations for reasoning and learning, in ‘AAAI

Spring Symposia on Reasoning with Diagrammatic Representations’, AAAI

Press, Stanford University.

Koike, H. & Yoshihara, H. (1993), Fractal approaches for visualizing huge hier-

archies, in E. P. Gilbert & K. A. Olsen, eds, ‘IEEE Symposium on Visual

Languages VL’93’, IEEE Computer Society, pp. 55–60.

Koperski, K. & Han, J. (1995), Discovery of spatial association rules in geographic

information databases, in ‘Proceedings of the 4th International Symposium

on Large Spatial Databases (SSD’95)’, Springer Verlag, Portland, Maine,

pp. 47–66.

Kosters, W. A. & Pijls, W. (2003), Apriori, a depth first implementation, in

B. Goethals & M. J. Zaki, eds, ‘Proceedings of the IEEE ICDM Workshop

on Frequent Itemset Mining Implementations (FIMI’03)’, IEEE Press, Mel-

bourne, Florida, USA.

Krasner, G. & Pope, S. (1988), ‘A cookbook for using the model-view-controller

user interface paradigm in smalltalk’, Journal of Object Oriented Program-

ming 1(3), 26–49.

Kreuseler, M. & Schuman, H. (1999), Information visualization using a new focus

+ context technique in combination with dynamic clustering of information

space, in ‘New Paradigms in Information Visualization and Manipulation’,

Springer Verlag, Kansas City, Missouri, pp. 1–5.

Lakshmanan, L. V. S., Ng, R., Han, J. & Pang, A. (1999), Optimization of

constrained frequent set queries with 2-variable constraints, in ‘Proceedings

of ACM SIGMOD Conference on Management of Data (SIGMOD’99)’, ACM

Press, Philadephia, Pennsylvania, USA, pp. pages 157–168.

Lee, C. H., Lin, C. R. & Chen, M. S. (2001), Sliding window filtering: An efficient

algorithm for incremental mining, in ‘Proceedings of the 10th International

Conference on Information and Knowledge Management (CIKM’01)’, ACM,

Atlanta, Georgia, USA.

Lesh, N., Marks, J. & Patrignani, M. (2000), Interactive partitioning, Technical

report, Mitsubishi Electronic Research Laboratory.



BIBLIOGRAPHY 220

Li, Y., Ning, P., Wang, X. & Jajodia, S. (2001), Discovering calendar-based tem-

poral association rules, in ‘Proceedings of the 8th Symposium on Tempo-

ral Representation and Reasoning (TIME’01)’, IEEE Press, Cividale, Italy,

pp. 111–118.

Lin, D. I. & Kedem, Z. M. (1998), Pincer search: A new algorithm for discov-

ering the maximum frequent set, in ‘Proceeding of the 6th International

Conference on Extending Database Technology (EDBT’98)’, Springer Ver-

lag, Valencia, Spain.

Lin, J. L. & Dunham, M. H. (1998), Mining association rules: Anti skew algo-

rithms, in ‘Proceedings aof the 14th International Conference on Data En-

gineering’, IEEE Computer Society Press, Orlando, Florida, USA, pp. 486–

493.

Liu, B., Hsu, W., Chen, S. & Ma, Y. (2000), ‘Analyzing the subjective interest-

ingness of association rules’, IEEE Intelligent Systems 15(5), 47–55.

Liu, B., Hsu, W. & Ma, Y. (1999), Mining association rules with multiple mini-

mum supports, in ‘Proceedings of ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD-99)’, ACM Press., San

Diego, CA, USA, pp. 337–341.

Liu, B., Hsu, W., Mun, L. & Lee, H. (1999), ‘Finding interesting patterns using

user expectations’, IEEE Transactions on Knowledge and Data Engineering

11(6), 817–832.

Liu, J., Pan, Y., Wang, K. & Han, J. (2002), Mining frequent item sets by oppor-

tunistic projection, in ‘Proceedings of Knowledge Discovery in Databases’,

Vol. 31, ACM Press, Edmonton, Canada, pp. 97–102.

Livingston, G. R., Rosenberg, J. M. & Buchanan, B. G. (2001a), Closing the

loop: an agenda - and justification-based framework for selecting the next

discovery task to perform., in ‘Proceedings of the 2001 IEEE International.

Conference on Data Mining (ICDM)’, IEEE Computer Society Press., San

Jose, CA., pp. 385–392.

Livingston, G. R., Rosenberg, J. M. & Buchanan, B. G. (2001b), Closing the

loop: Heuristics for autonomous discovery., in ‘Proceedings of the 2001 IEEE

International. Conference on Data Mining (ICDM)’, IEEE Computer Society

Press., San Jose, CA., pp. 393–400.



BIBLIOGRAPHY 221

Lucchese, C., Orlando, S., Palmerini, P., Perego, R. & Silvestri, F. (2003), kdci:

a multi-strategy algorithm for mining frequent sets, in B. Goethals & M. J.

Zaki, eds, ‘Proceedings of the IEEE ICDM Workshop on Frequent Item-

set Mining Implementations (FIMI’03)’, Vol. 90, IEEE Press, Melbourne,

Florida, USA.

MacKinley, J., Robertson, G. & Card, S. (1991), The perspective wall: Detail and

context smoothly integrated, in ‘Proceedings of International Conference of

Human Factors in Computing Systems (CHI’91)’, Morgan Kaufmann Pub-

lishers Inc., New York, USA, pp. 173–179.

Mannila, H., Toivonen, H. & Verkamo, A. I. (1994), Efficient algorithms for

discovering association rules, in U. M. Fayyad & R. Uthurusamy, eds, ‘Pro-

ceedings of Knowledge Discovery in Databases’, AAAI Press, Seattle, Wash-

ington, pp. 181–192.

Mannila, H., Toivonen, H. & Verkamo, A. I. (1997), ‘Discovery of fre-

quent episodes in event sequences’, Data Mining and Knowledge Discovery

(DMKD) 1(3), 259–289.

Mao, R. (2001), Adaptive-FP: An Efficient and Effective Method for Multi-Level

Multi-Dimensional Frequent Pattern Mining, PhD thesis, Simon Fraser Uni-

versity.

Meo, R., Psaila, G. & Ceri, S. (1996), A new sql-like operator for mining asso-

ciation rules, in ‘Proceedings of the 22nd International Conference on Very

Large Data Bases VLDB’96,’, Morgan Kaufmann, Mumbay, India, pp. 122–

133.

Miller, G. A. (1956), ‘The magic number seven,plus or minus two: Some limits

on our capacity for processing information’, Psychological Review 63, 81–97.

Miller, H. J. & Han, J. (2001), Geographic Data Mining and Knowledge Discovery,

Taylor & Francis, Inc.

Mueller, A. (1995), Fast sequential and parallel algorithms for association rule

mining: A comparison, Technical Report CS-TR-3515, Department of Com-

puter Science, University of MaryLand -College Park, College Park, MD.

Nag, B., Deshpande, P. M. & DeWitt, D. J. (1999), Using a knowledge cache for

interactive discovery of association rules, in ‘Proceddings of KDD99’, ACM

Press, San Deigo Ca USA, pp. 244–253.



BIBLIOGRAPHY 222

Nascimento, H. A. & Eades, P. (2001), Interactive graph clustering based upon

user hints, in ‘Proceedings of the Second International Workshop on Soft

Computing Applied to Software Engineering’, Springer Verlag, Enschede,

The Netherlands.

Ng, R., Lakshmanan, L., Han, J. & Pang, A. (1998), Exploratory mining and

pruning optimizations of constrained association rules, in ‘Proceedings of the

Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems’, ACM Press, Seattle, Washington, pp. 13–24.

Nielson, J. A. (1992), A layered interaction analysis of direct manipulation, Tech-

nical Report Tech. Rep JN-1990-7.2, Dept. of Computer Science, Tech. Univ.

of Denmark,.

Omiecinski, E. & Savasere, A. (1998), Efficient mining of association rules in large

dynamic databases, in ‘Proceedings of 16th British National Conference on

Databases (BNCOD’98)’, Cardiff, Wales, UK, pp. 49–63.

Ong, K. H., Ong, K. L., Ng, W. K. & Lim, E. P. (2002), Crystalclear: Active

visualization of association rules, in ‘International Workshop on Active Min-

ing (AM-2002) in Conjunction with the IEEE International Conference on

Data Mining (ICDN’02)’, IEEE Press, Maebashi City, Japan.

Ong, K. L., Ng, W. K. & Lim, E. P. (2001), Large mining multi-level rules with

recurrent items using fp-tree, in ‘Proceedings of the 3rd IEEE Conference on

Information, Communications and Signal processing (ICICS’2001)’, Springer

Verlag, Singapore.

Orlando, S., Palmerini, P. & Perego, R. (2001a), DCI: a hybrid algorithm for fre-

quent itemset counting, Technical Report CS-01-9-2001, Dip. di Informatica,

Universita Ca Foscari.

Orlando, S., Palmerini, P. & Perego, R. (2001b), Enhancing the apriori algorithm

for frequent set counting, in Y. Kambayashi, W. Winiwarter & M. Arikawa,

eds, ‘International Conference on Data Warehousing and Knowledge Dis-

copvery’, Springer-Verlag, Munich, Germany, pp. 71–82.

Ortega, M., Chakrabarti, K. & Mehrotra, S. (2003), Efficient evaluation of rel-

evance feedback for multidimensional all-pairs retrieval, in ‘Proceedings of

the 2003 ACM symposium on Applied computing’, ACM Press, Melbourne,

Florida, pp. 847–852.



BIBLIOGRAPHY 223

Ozel, S. A. & Guvenir, H. A. (2001), An algorithm for mining association

rules using perfect hashing and database pruning, in A. Acan, I. Aybay &

M. Salamah, eds, ‘Proceedings of the Tenth Turkish Symposium on Artificial

Intelligence and Neural Networks’, Springer Verlag, Gazimagusa, T.R.N.C.,

pp. 257–264.

Padmanabhan, B. & Tuzhilin, A. (2000), Small is beautiful: Discovering the min-

imal set of unexpected patterns, in R. Ramakrishnan, S. Stolfo, R. Bayardo

& I. Parsa, eds, ‘Proceedings of the 6th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, KDD2000’, ACM Press,

New York, USA, pp. 54–63.

Padmanabhan, B. & Tuzhilin, A. (2002), ‘Knowledge refinement based on the

discovery of unexpected patterns in data mining’, Decision Support Systems

33(3), 309–321.

Park, J. S., Chen, M. S. & Yu, P. S. (1997), ‘Using a hash-based method with

transaction trimming and database scan reduction for mining association

rules’, IEEE Transactions on Knowledge and Data Engineering 9(5), 813–

825.

Pasquier, N., Bastide, Y., Taouil, R. & Lakhal, L. (1999a), Closed set based

discovery of small covers for association rules, in ‘Proceedings of the 15th

Conference on Advanced Databases’, Springer Verlag, Bordeaux, France,

pp. 361–381.

Pasquier, N., Bastide, Y., Taouil, R. & Lakhal, L. (1999b), Discovering frequent

closed itemsets for association rules, in ‘Proceedings of the 7th International

Conference on Database Theory (ICDT99)’, Springer Verlag, Jerusalem, Is-

rael, pp. 398–416.

Pasquier, N., Bastide, Y., Taouil, R. & Lakhal, L. (1999c), ‘Efficient mining of as-

sociation rules using closed itemset lattices’, Information Systems 24(1), 25–

46.

Pei, J., Han, J. & Lakshmanan, L. V. (2001), Mining frequent itemsets with

convertible constraints, in ‘Proceedings of the 17th International Conference

on Data Engineering ICDE’01’, IEEE Computer Society Press., Heidelberg,

Germany, pp. 433–442.

Pei, J., Han, J., Lu, H., Nishio, S., Tang, S. & Yang, D. (2001), H-mine: Hyper-

structure mining of frequent patterns in large databases, in ‘Proceedings



BIBLIOGRAPHY 224

of the 2001 International Conference on Data Mining (ICDM)’, IEEE, San

Jose, California, pp. 31–39.

Pei, J., Han, J. & Mao, R. (2000), CLOSET: An efficient algorithm for mining

frequent closed itemsets, in ‘Proceedings of ACM SIGMOD International

Workshop on Data Mining’, ACM Press, Dallas, Texas, pp. 21–30.

Pietracaprina, A. & Zandolin, D. (2003), Mining frequent itemsets using patricia

tries, in B. Goethals & M. J. Zaki, eds, ‘Proceedings of the IEEE ICDM

Workshop on Frequent Itemset Mining Implementations (FIMI’03)’, Mel-

bourne, Florida, USA.

Pijls, W. & Bioch, J. C. (1999), Mining frequent itemsets in memory resident

databases, in E. Postma & M. Gyssens, eds, ‘Proceedings of the eleventh

Belgium-Netherlands Conference on Artificial Intelligence (BNAIC’99)’,

Springer Verlag, Kasteel Vaeshartelt, Maastricht, The Netherlands, pp. 75–

82.

Poulet, F. (2002), ‘Full view: A visual data mining environment’, International

Journal of Image and Graphics 2(1), 127–143.

Purchase, H. C. (1998), Which aesthetic has the greatest effect upon human un-

derstanding?, in ‘Proceedings of the Symposium on Graph Drawing GD’97’,

Springer-Verlag, pp. 248–261.

Rabejij, D. R. (2001), Greedy random: A novel algorithm for vehicle routing

optimisation, in ‘39th National Junior Science and Humanities Symposium:

Powerpoint presentation’, Orlando, Florida.

Raghavan, V. & Hafez, A. (2000), Dynamic data mining, in ‘Industrial and Engi-

neering Applications of Artificial Intelligence and Expert Systems’, Lecture

Notes in Computer Science, Springer-Verlag, pp. 220–229.

Rainsford, C. P. & Roddick, J. F. (1999), Adding temporal semantics to associa-

tion rules, in J. Zytkow & J. Rauch, eds, ‘Proceedings of the 3rd European

Conference on Principles and Practice of Knowledge Discovery in Databases,

PKDD’99’, Springer Verlag, Prague, Czech Republic, pp. 504–509.

Rainsford, C. & Roddick, J. (2000), Visualisation of temporal interval association

rules, in ‘Proceedings of the 2nd International Conference on Intelligent Data

Engineering and Automated Learning’, Morgan Kaufmann Publishers Inc.,

Shatin, N.T. Hong Kong, pp. 91–96.



BIBLIOGRAPHY 225

Ramaswamy, S., Mahajan, S. & Silberschatz, A. (1998), On the discovery of

interesting patterns in association rules, in ‘Proceedings of the 24th VLDB

Conference’, Morgan Kaufmann, New York, USA.

Rathjens, D. (1997), Mineset users guide, Technical report, Silicon Graphics, Inc.

Readt, L. & Kramer, S. (2001), The levelwise version space algorithm and its ap-

plication to molecular fragment finding, in ‘Proceedings of the seventeenth

International Joint Conference on Artificial Intelligence (IJCAI 2001)’, Aca-

pulco, Mexico, pp. 853–862.

Relue, R., Wu, X. & Huang, H. (2001), Efficient runtime generation of association

rules, in ‘Proceedings of the 10th ACM International Conference on Infor-

mation and Knowledge Management’, Atlanta, Georgia,USA, pp. 466–473.

Ribarsky, W., Katz, J., Jiang, F. & Holland, A. (1999), ‘Discovery visualization

using fast clustering’, IEEE Computer Graphics and Applications 19(5), 32–

39.

Robertson, G. G., Mackinley, J. D. & Card, S. S. (1991), Cone trees: Animated 3d

visualizations of hierarchical information, in ‘Proceeding of the International

Conference on Human Factors in Computing Systems (CHI’91)’, ACM Press,

New Orleans, U.S.A., pp. 189–194.

Roddick, J. F. & Spiliopoulou, M. (2002), ‘A survey of temporal knowledge dis-

covery paradigms and methods’, IEEE Transactions on Knowledge and Data

Engineering 14(4), 750–767.

Rymon, R. (1992), Search through systematic set enumeration, in ‘Proceedings

of the Third International Conference on the Principles of Knowledge Repre-

sentation and Reasoning’, Morgan Kaufmann, Cambridge MA, pp. 539–550.

Sahar, S. (1999), Interestingness via what is not interesting, in S. Chaudhuri &

D. Madigan, eds, ‘Fifth International Conference on Knowledge Discovery

and Data Mining’, ACM Press, San Diego, CA, USA, pp. 332–336.

Sarker, M. & Brown, M. (1994), ‘Graphical fisheye views’, Communications of

the ACM 37(12), 73–84.

Savasere, A., Omiecinski, E. & Navathe, S. (1995), An efficient algorithm for

mining association rules in large databases, in U. Dayal, P. M. D. Gray &

S. Nishio, eds, ‘Proceedings of the 21st International Conference on Very

Large Databases’, ACM Press, Zurich, Switzerland, pp. 432–444.



BIBLIOGRAPHY 226

Saygin, Y., Verykios, V. S. & Elmagarmid, A. K. (2002), Privacy preserving asso-

ciation rule mining, in ‘Proceedings of the 12th International Workshop on

Research Issues in Data Engineering: Engineering E-Commerce / E-Business

Systems (RIDE’02)’, Morgan Kaufmann Publishers Inc., San Jose,CA,USA.

Shah, D., Lakshmanan, L. V. S., Ramamritham, K. & Sudarshan, S. (1999),

Interestingness and pruning of mined patterns, in K. Shim & R. Srikant, eds,

‘Proceedings of the 1999 ACM SIGMOD Workshop on Research Issues in

Data Mining and Knowledge Discovery (DMKD)’, ACM Press, Philadelphia,

USA.

Sheelagh, M., Carpendale, T., Cowperthwaite, D. J. & Francis, F. D. (1997),

‘Extending distortion viewing from 2D to 3D’, Computer Graphics 17(4), 42–

51.

Shekhar, S. & Huang, Y. (2001), Discovering spatial co-location patterns: A

summary of results, in ‘Proceedings of the 7th Internationl Symposium on

Spatial and Temporal Data Databases (SSTD01)’, Vol. 2121 of Lecture Notes

in Computer Science, Springer Verlag, Redondo Beach,CA,USA, pp. 236–

256.

Shenoy, P., Haritsa, J. R., Sudarshan, S., Bhalotia, G., Bawa, M. & Shah, D.

(2000), Turbo-charging vertical mining of large databases, in W. Chen, J. F.

Naughton & P. A. Bernstein, eds, ‘Proceedings of the 2000 ACM SIGKDD

International Conference on Management of Data’, Vol. 29, ACM Press,

Dallas Texas, pp. 22–33.

Shneiderman, B. (1996), The eyes have it: A task by data type taxonomy for

information visualization, in ‘1996 IEEE International Symposium on Visual

Languages’, IEEE Press, Boulder, Colorado, pp. 336–343.

Silberschatz, A. & Tuzhilin, A. (1996), ‘What makes patterns interesting in

knowledge discovery systems?’, IEEE Transactions on Knowledge and Data

Engineering 8(6), 970–974.

Sindre, G., Gulla, B. & Jokstad, G. (1993), Onion graphs: Aesthetics and layout,

in ‘IEEE/CS Symposium on Visual Languages’, IEEE CS Press, pp. 287–

291.

Spence, S. & Apperley, M. (1982), Database navigation: An office environment

for the professional, in ‘Behaviour and Information Technology’, Morgan

Kaufmann, pp. 43–54.



BIBLIOGRAPHY 227

Srikant, R. & Agrawal, R. (1996), Mining sequential patterns: Generalizations

and performance improvements, in P. M. G. Apers, M. Bouzeghoub &

G. Gardarin, eds, ‘Proceedings of the 5th International Conference on Ex-

tending Database Technology, EDBT’, SpringerVerlag, Avignon, France,

pp. 3–17.

Srikant, R. & Agrawal, R. (1997), ‘Mining generalized association rules’, Future

Generation Computer Systems 13(2–3), 161–180.

Srikant, R., Vu, Q. & Agrawal, R. (1997), Mining association rules with item

constraints, in D. Eckerman, H. Mannila, D. Pregibon & R. Uthursamy,

eds, ‘3rd Int. Conf. on Knowledge Discovery and Data Mining’, AAAI Press,

Newport Beach, C.A., U.S.A., pp. 67–73.

Sucahyo, Y. G. & Gopalan, R. P. (2003), CT-ITL: Efficient frequent item set

mining using a compressed prefix tree with pattern growth, in K. Dieter-

Schewe & X. Zhou, eds, ‘Proceedings of the 14th Australiasian Database

Conference’, Vol. 25, Australian Computer Society Inc., Adelaide, Australia,

pp. 95–105.

Tan, P., Kumar, V. & Srivastava, J. (2002), Selecting the right interesting-

ness measure for association patterns, in ‘Proceedings of the Eight ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing (KDD02)’, Edmonton, Canada, pp. 32–41.

Thomas, S., Bodagala, S., Alsabti, K. & Ranka, S. (1997), An efficient algorithm

for the incremental updation of association rules, in ‘Proceedings of the 3rd

International conference on Knowledge Discovery and Data Mining (KDD

97)’, ACM Press, New Port Beach, California, pp. 263–266.

Thomas, S. & Sarawagi, S. (1998), Mining generalized association rules and se-

quential patterns using sql queries, in ‘Proceedings of the 4th International

Conference on Knowledge Discovery and Data Mining (KDD’98)’, ACM

Press, New York City, New York, pp. 344–348.

Toivonen, H. (1996), Sampling large databases for association rules, in T. Vija-

yaraman, Alejandro, P.Buchmann, C. Mohan & N. Sarda, eds, ‘Proceedings

of the 22nd International Conference on Very Large Data Bases’, Morgan

Kaufman, Mumbia (Bombay), India, pp. 134–145.

Toivonen, H., Klemettinen, M., Ronkainen, P., Hatonen, K. & Mannila, H. (1995),

Pruning and grouping discovered association rules, in ‘MLnet: Familarisa-



BIBLIOGRAPHY 228

tion Workshop on Statistics, Machine Learning and Knowledge Discovery in

Databases’, Springer Verlag, Heraklion, Crete, pp. 47–52.

Vaidya, J. & Clifton, C. (2002), Privacy preserving association rule mining in

vertically partitioned data, in ‘Proceedings of the 8th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (KDD’02)’,

ACM Press, Edmonton, Alberta, Canada, pp. 639–644.

van Wijk, J. J. & van de Wetering, H. (1999), Cushion treemaps: Visualization of

hierarchical information, in ‘IEEE Symposium on Information Visualization

INFOVIS’99’, IEEE Press, San Fransisco, California, pp. 73–78.

Veloso, A., Meira Jr, W., de Carvalho, M, B., Possas, B., Parthasarathy, S. &

Zaki, M. (2002), Mining frequent itemsets in evolving databases, in ‘Pro-

ceedings of the 2nd SIAM International Conference on Data Mining’, IEEE

Press, Arlington, Virginia, USA.

Veloso, A., Possas, B., Meira Jr, W. & de Carvalho, M, B. (2001), Knowledge

management in association rule mining, in ‘Integrating Data Mining and

Knowledge Management, held in conjunction with the 2001 IEE Interna-

tional Conference on Data Mining (ICDM)’, San Jose, California, USA.

Verykios, V. S., Bertino, E., Fovino, I. N., Provenza, L. P., Saygin, Y. & Theodor-

idis, Y. (2004), ‘State-of-the-art in privacy preserving data mining’, In SIG-

MOD Record 33(1), 50–57.

Wang, J., Han, J. & Pei, J. (2003), Closet+: searching for the best strategies for

mining frequent closed itemsets, in ‘Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining’, ACM

Press, Washington, DC, USA, pp. 236–245.

Wang, K., He, Y. & Han., J. (2000), Pushing support constraints into frequent

itemset mining, in ‘Proceedings of the 26th International Conference on Very

Large Databases (VLDB2000)’, Cairo, Egypt, pp. 43–52.

Wang, K., Jiang, Y. & Lakshmanan, L. V. S. (2003), Mining unexpected rules by

pushing user dynamics, in ‘Proceedings of the ninth ACM SIGKDD inter-

national conference on Knowledge discovery and data mining’, ACM Press,

Washington, D.C., USA, pp. 246–255.

Wang, K., Tang, L., Han, J. & Liu, J. (2002), Top down fp-growth for association

rule mining, in ‘Proceedings of the 6th Pacific Asia Conference on Knowledge



BIBLIOGRAPHY 229

Discovery and Data Mining (PAKDD’02)’, Springer-Verlag, Taipei, Taiwan,

pp. 334–340.

Warner, S. (1965), ‘Randomised response: A survey technique for eliminat-

ing evasive answer bias’, Journal of the American Statistical Association

60(309), 63–69.

Weber, E. H. (1834), ‘Weber’s law britannica concise encyclopedia’.

Wetherell, C. & Shannon, A. (1979), ‘Tidy drawing of trees’, IEEE Transactions

on Software Engineering 5(5), 514–520.

Wills, G. (1998), An interactive view for hierarchical clustering, in ‘IEEE Sym-

posium on Information Visualization (InfoVis ’98)’, IEEE Press, Raleigh,

North Carolina, USA.

Wong, P. C., Whitney, P. & Thomas, J. (1999), Visualizing association rules for

text mining, in ‘Proceedings of IEEE Symposium on Information Visual-

ization’99’, IEEE Computer Society Press, Los Alamitos, California,USA,

pp. 120–124.

Wrobel, S., Wettschereck, D., Verkamo, I., Siebes, A., Mannila, H., Kwakkel, F.

& Klosgen, W. (1996), User interactivity in very large scale data mining,

in W. Dilger, M. Schlosser, J. Zeidler & A. Ittner, eds, ‘FGML-96 An-

nual Workshop of the GI Special Interest Group Machine Learning’, TU

Chemnitz-Zwickau, pp. 125–130.

Xia, Y., Wang, W., Yang, J., Yu, P. & Muntz., R. (2002), Efficient filtering of large

dataset – a user-centric paradigm, in R. L. Grossman, J. Han, V. Kumar,

H. Mannila & R. Motwani, eds, ‘Proceedings of the 2nd SIAM International

Conference on Data Mining (SDM)’, Arlington, VA, USA, pp. 112–127.

Xiao, Y. & Dunham, M. H. (2001), Interactive clustering for transaction data, in

Y. Kambayashi, W. Winiwarter & M. Arikawa, eds, ‘Third Int. Conf. Data

Warehousing and Knowledge Discovery’, Springer Verlag, Munich, Germany,

pp. 121–130.

Yee, K. P., Fisher, D., Dhamija, R. & Hearst, M. (2001), Animated exploration of

graphs with radial layout, in ‘IEEE Symposium on Information Visualisation

2001, InfoVis’01’, IEEE Press, pp. 43–50.

Yen, S. J. & Chen, A. L. P. (1996), An efficient approach to knowledge discov-

ery from large databases, in ‘Proceedings of the IEEE/ACM International



BIBLIOGRAPHY 230

Conference on Parallel and Distributed Information Systems’, ACM Press,

pp. 8–18.

Yen, S. J. & Chen, A. L. P. (1997), An efficient data mining technique for discov-

ering interesting association rules, in ‘Proceedings of the 8th International

Conference and Workshop on Database and Expert Systems Applications

(DEXA97)’, pp. 664–669.

Zaiane, O. R. & El-Hajj, M. (2003), Cofi-tree mining: A new approach to pattern

growth with reduced candidacy generation, in B. Goethals & M. J. Zaki,

eds, ‘Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining

Implementations (FIMI’03)’, Melbourne, Florida, USA.

Zaki, M. (2000a), Generating non-redundant association rules, in ‘Proceedings of

the 6th International Conference on Knowledge Discovery and Data Mining,

(SIGKDD’00)’, AAAI PressACM, Boston, MA, USA, pp. 34–43.

Zaki, M. J. (1998), Efficient enumeration of frequent sequences, in ‘Proceedings

of the 7th International Conference on Information and Knowledge Manage-

ment, CIKM’, ACM Press, Bethesda, pp. 68–75.

Zaki, M. J. (1999), ‘Parallel and distributed association mining: A survey’,

IEEE Concurrency, Special Issue on Parallel Mechanisms for Data Mining.

7(4), 14–25.

Zaki, M. J. (2000b), ‘Scalable algorithms for association mining’, IEEE Trans.

Knowledge and Data Engineering 12(3), 372–390.

Zaki, M. J. & Gouda, K. (2001), Fast vertical mining using diffsets, Technical Re-

port 01-1, Computer Science Department, Renasslaer Polytechnic institute.

Zaki, M. J. & Hsiao, C.-J. (2002), Charm: An efficient algorithm for closed itemset

mining, in ‘Proceedings of the Second SIAM International Conference on

Data Mining’, ACM Press, Arlington, Vancouver, pp. 457–473.

Zaki, M. & Ogihara, M. (1998), Theoretical foundations of association rules, in

‘In Proceedings of 3 rd SIGMOD’98 Workshop on Research Issues in Data

Mining and Knowledge Discovery (DMKD’98)’, Seattle, Washington, USA,

pp. 85–93.

Zaki, M., Parthasarathy, S., Ogihara, M. & Li, W. (1997), New algorithms for

fast discovery of association rules, in ‘Proceedings of the 3rd International

Conference on Knowledge Discovery and Data Mining (KDD-97)’, AAAI

Press, Newport Beach, California, pp. 283–286.



BIBLIOGRAPHY 231

Zhou, Z. & Ezeife, C. (2001), A low-scan incremental rule maintenence method, in

E. Stroulia & S. Matwin, eds, ‘Proceedings of the 14th Canadian Conference

on Artificial Intelligence (AI’2001)’, Springer, Ottawa, Canada.

Zimmermann, H. J. (1996), Fuzzy set Theory and its Applications (3rd ed.),

Kluwer Academic publishers, Norwell, MA, USA.


