FORENSIC IDENTIFICATION OF AVIAN SPECIES USING MITOCHONDRIAL LOCI

By Sansook Boonseub

A thesis in fulfilment of the requirements for the degree of

Doctor of Philosophy (Forensic Genetics)

School of Biological Sciences Flinders University

October 2011

CERTIFICATE OF AUTHORSHIP OF THESIS

I further certify that to the best of my knowledge, the thesis contains no material previously published or written by another person except where due reference is made in the text of the thesis.

The material in the thesis has not been the basis of an award or any other degree or diploma except where due reference is made in the text of the thesis.

Sansook boonseub October 2011

ACKNOWLEDGEMENTS

Firstly, I would like to thank you Prof. Dr. Adrian Linacre, my supervisor who always gave me advice and encouragement at all time of my study. I would never be successful in my study without his support.

I would like to thank the Royal Thai Police and the Royal Thai Government who gave me full scholarship for doing my Ph.D. I could not be here to study in the UK and Australia without the funding support from Thailand.

I would like to thank all my colleagues here at the forensic laboratory (Prof. Linacre's lab) in Flinders University, for willing to help whenever I needed any assistance for anything.

Lastly, I would like to thank my parents and my brother who are always beside me when I feel sad, depressed or experience any trouble. They are the first ones who are always ready to hold out their hands for help, unconditionally. Thank you all very much.

ABSTRACT

Mitochondrial DNA (mtDNA) loci are used routinely for species testing in mammalian species. This project examines their use in avian identification for forensic purposes, particularly as certain avian species are the subject of an illegal trade. Comparison of amino acid sequences for a range of mitochondrial genes taken from avian species indicated that along with two commonly used gene loci (cyt b and COI), two members of the NADH dehydrogenase family (ND2 and ND5) showed greater variation.

Alignment of entire avian mitochondrial sequences illustrated the potential for using such large sequences, but comparison of individual genes using 102 avian species further supported ND2 and ND5 as having greater interspecies variation and less intra-specific variation. Support for these two loci was further provided when looking at closely related avian species. As each gene is relatively large, sections of these loci were selected for ability to identify and distinguish closely related avian species and reconstruct accurate phylogenetic trees. A 452 bp section at the 5' terminus from both ND2 and ND5, at base positions 58-509 and 101-552 respectively, were superior compared to the other mitochondrial loci in species identification, including closely related members of the Fringillidae, Psittacidae and Cacatuidae families and in accurate phylogenetic tree reconstruction. DNA extracts were obtained from individual barbs and calamus of feathers. Samples included both fresh from known species, feathers from unknown species collected in Adelaide, and archived the museum samples. Successful amplification of sections of the ND2 (561 bp) and ND5 genes (921 bp) was achieved. Sequence data comparison of the PCR products confirmed accurate species identification.

TABLE OF CONTENTS

CERTIFICATE OF AUTHORSHIP OF THESIS	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	xxi
LIST OF ABBREVIATION	xxv
CHAPTER 1 INTRODUCTION	
General Introduction	1
Types of wildlife crime	2
Legislation covering wildlife protection	2
Background to Forensic Science	5
Avian taxonomy	
Speciation and Species concept	
Avian mitochondrial DNA (mtDNA)	21
Generation of Genetic Variation	
Molecular clocks	
Mitochondrial DNA Barcoding genes	
Phylogenetic tree	
The Aim of this Study	
Chapter 1 References	
CHAPTER 2 MATERIALS AND METHODS	
Sequence Data	
Mitochondrial protein sequence analysis	
Primer design	
Sample collection	
DNA extraction	
DNA amplification	
Gel Electrophoresis	
PCR product purification by using Gel extraction kit	
DNA Sequencing	

Avian mitochondrial DNA analysis	
Chapter 2 References	
CHAPTER 3 RESULTS AND DISCUSSIONS	
Mitochondrial protein sequences analysis	101
Mitochondrial DNA sequences analysis	121
Species identification and phylogenetic tree reconstruction in the membe	rs of
the same genera	
Methods and models comparison for phylogenetic tree reconstruction of	the
parrot and cockatoo families	
Inter- and intra-species variations in closely relative species	170
Chapter 3 References	
CHAPTER 4 IDENTIFICATION OF PROTECTED AVIAN SPECIES US	SING A
SINGLE BARB	186-199
Chapter 4 References	199
CHAPTER 5 CONCLUSION	
Summary	
Applications	
Validation	
Dissemination	
The technologies for species identification	
Future developments	
Chapter 5 References	
ADDENIDICS	212 428
APPENDIX E	

LIST OF FIGURES

Figure 1.1b: Figure 1.1b: Schematic representation of RFLP analysis; genomic DNA from sample 1 (S1) and sample 2 (S2) were cut by restriction enzymes which generated different length of restriction products. They were separated on agarose gel and transferred to membrane. Visualization was performed using hybridization with labelled probes then exposed to x-ray film. There are 2 types of RFLP profiling; Multi-locus (MLPs) profiling (using multi-locus probes) and Single locus (SLPs) profiling (using single locus probes).

Figure 1.3: Schematic representation of AFLP analysis; genomic DNA from sample 1 (S1) and sample 2 (S2) were doubled-digested with *Eco*RI and *Mse*I. These generated different length of restriction products with 'sticky ends' generated by the enzymes to which adapters could be ligated; with these adapters being of a known sequence and can act as a template in PCR. Pre-amplification, single nucleotide selective amplification was performed using one base extending into the unknown sequence of interest; this reduces the number of PCR products produced. Example species identification using AFLP profiling shows in (b), the figure was taken from James Lee's thesis [66]. Lane M is 100 bp ladder. Lanes 1 to 17 are unknown samples. Lane 1-3 are from the same species, 10-12 are from the same species and 18-20 are reference samples from *Volvariella volvacea, Agaricus bisporus and Lentinus edodes*, respectively. The result shows that the sample from the same species shows very similar AFLP profile but none of them show 100% match

Figure 3.8: Phylogenetic tree reconstruction of the complete mitochondrial genome sequences. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was inferred using the Neighbor-Joining method [44]. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analysed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2-parameter method [46] and are in the units of the number of base substitutions per site. The analysis involved 102 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 9166 positions in the final dataset. The Galliformes, Anseriformes, Struthioniformes, Tinamiformes, Falconiformes and Passeriformes are clustered together as expected if the genetic data of the whole mitochondrial genome matches the current taxonomic groups at the taxonomic level of Order. The green dots indicate the bootstrap value for a given interior branch is 95% or higher, then the topology at that branch is considered correct [47].....122

Figure 3.10: Phylogenetic tree reconstruction of the complete gene sequences of the COI gene. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was inferred using the Neighbor-Joining method [44]. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2-parameter method [46] and are in the units of the number of base substitutions per site. The analysis involved 102 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 1238 positions in the final dataset. The Galliformes and Gruiformes are clustered together as expected if the genetic data of the complete gene sequences of the COI gene matches the current taxonomic groups at the taxonomic level of Order. The green

Figure 3.11: Phylogenetic tree reconstruction of the complete gene sequences of the cyt b gene. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was inferred using the Neighbor-Joining method [44]. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2-parameter method [46] and are in the units of the number of base substitutions per site. The analysis involved 102 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 770 positions in the final dataset. The Galliformes is clustered together as expected if the genetic data of the complete gene sequences of the cyt b gene matches the current taxonomic groups at the taxonomic level of Order. The green dots indicate the bootstrap value for a given interior branch is 95% or higher, then the topology at that branch is considered correct [47].....128

Figure 3.13: Phylogenetic tree reconstruction of the complete gene sequences of the ND4 gene. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was inferred using the Neighbor-Joining method [44]. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2-parameter method [46] and are in the units of the number of base substitutions per site. The analysis involved 102

Figure 3.14: Phylogenetic tree reconstruction of the complete gene sequences of the ND5 gene. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was inferred using the Neighbor-Joining method [44]. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2-parameter method [46] and are in the units of the number of base substitutions per site. The analysis involved 102 nucleotide sequences. Codon positions included were 1st, +2nd, +3rd, +Non-coding. All positions containing gaps and missing data were eliminated. There were a total of 908 positions in the final dataset. The Galliformes are clustered together as expected if the genetic data of the complete gene sequences of the ND5 gene matches the current taxonomic groups at the taxonomic level of Order. The green dots indicate the bootstrap value for a given interior branch is 95% or higher, then the topology at that branch is considered correct [47].....131

Figure 3.16a: Phylogenetic tree reconstruction of the 450 bp segment from the ND2 gene at base positions 1-450. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history of the 1-450 ND2 fragment was inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2-parameter method [46] and are in the units of the number of base substitutions per site. The analysis involved 104 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 450 positions in the final dataset. The Galliformes, Anseriformes, Struthioniformes and Tinamiformes are clustered together as expected if the genetic data of the complete gene sequences of the ND2 gene matches the current taxonomic groups at the taxonomic level of Order. The green dots indicate the bootstrap value for a given interior branch is 95% or higher, then the topology at that branch is considered correct [47].....133

Figure 3.16b: Phylogenetic tree reconstruction of the 450 bp segment from the ND5 gene at base positions 101-550 bp. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history of the 101-550 bp ND5 fragment was inferred using the Neighbor-Joining method . The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2-parameter method [46] and are in the units of the number of base substitutions per site. The analysis involved 102 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 450 positions in the final dataset. The Galliformes and Anseriformes are clustered together as expected if the genetic data of the complete gene sequences of the ND5 gene matches the current taxonomic groups at the taxonomic level of Order. The green dots indicate the bootstrap value for a given interior branch is 95% or higher, then the topology at that branch is considered correct [47]......134

Figure 3.18: Phylogenetic tree reconstruction of the partial sequences at 5' terminus (57-508, 452 bp) of the ND2 gene of 10 different species from Carduelis and Fringilla genera. The out group was a moa. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was inferred using the Neighbor-Joining method [44]. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2parameter method [46] and are in the units of the number of base substitutions per site. The nucleotide sequences. Codon positions included were analysis involved 44 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 452 positions in the final dataset. The two genera are clustered together as expected if the genetic data of the 452 bp at 5' end of the ND2 gene matches the current taxonomic groups at the taxonomic level of genus. The green dots indicate the bootstrap value for a given interior branch is 95% or higher, then the topology at that branch is considered correct [47].....145

Figure 3.19: Phylogenetic tree reconstruction of the partial sequences at 5' terminus (136-639, 504 bp) of the cyt b gene from 10 different species. The out group was a moa. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was

Figure 3.20: Phylogenetic tree reconstruction of the partial sequences at 5' terminus (98-708, 611 bp) of the COI gene from 10 different species. The out group was a moa. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was inferred using the Neighbor-Joining method [44]. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2-parameter method [46] and are in the units of the number of base substitutions per site. The analysis involved 81 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 610 positions in the final dataset. The two genera are clustered together as expected if the genetic data of the 611 bp at 5' end of the COI gene matches the current taxonomic groups at the taxonomic level of genus. The green dots indicate the bootstrap value for a given interior branch is 95% or higher, then the topology at that branch is considered correct [47].....147

Figure 3.21: Phylogenetic tree reconstruction of the partial sequences at 5' terminus (58-509, 452 bp) of the ND2 gene of 14 different species from Psittacidae and Cacatuidae families. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was inferred using the Neighbor-Joining method [44]. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2-parameter method [46] and are in the units of the number of base substitutions per site. The analysis involved 15 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 449 positions in the final dataset. The two Families are clustered together as expected if the genetic data of the 452 bp at 5' end of the ND2 gene matches the current taxonomic groups

Figure 3.22: Phylogenetic tree reconstruction of the partial sequences at 5' terminus (101-552, 452 bp) of the ND5 gene of 14 different species from Psittacidae and Cacatuidae families. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was inferred using the Neighbor-Joining method [44]. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2-parameter method [46] and are in the units of the number of base substitutions per site. The analysis involved 15 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 448 positions in the final dataset. The two Families are not clustered together as expected if the genetic data of the 452 bp at 5' end of the ND5 gene matches the current taxonomic groups at the taxonomic level of family. The green dots indicate the bootstrap value for a given interior branch is 95% or higher, then the topology at that branch is considered correct [47]......161

Figure 3.23: Phylogenetic tree reconstruction of the partial sequences at 5' terminus (39-760, 722bp) of the COI gene of 5 different species. According to there is no sequences at 5' end of this gene from Psittacidae family submitted on the database so that the tree was reconstruct from Cacatuidae family. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was inferred using the Neighbor-Joining method [44]. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2-parameter method [46] and are in the units of the number of base substitutions per site. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 722 positions in the final dataset. The green dots indicate the bootstrap value for a given interior branch is 95% or higher, then the topology at that branch is considered correct [47].....162

Figure 3.24: Phylogenetic tree reconstruction of the partial sequences at 3' terminus (741-1272, 532 bp) of the COI gene of 10 different species from Psittacidae and Cacatuidae families. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was inferred using the Neighbor-Joining method [44]. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap

Figure 3.25: Phylogenetic tree reconstruction of the partial sequences at 3' terminus (686-860, 175 bp) of the cyt b gene of 11 different species from Psittacidae and Cacatuidae families. Evolutionary analyses were conducted in MEGA5 [43]. The evolutionary history was inferred using the Neighbor-Joining method [44]. The bootstrap consensus tree inferred from 1000 replicates [45] is taken to represent the evolutionary history of the taxa analyzed [45]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [45]. The evolutionary distances were computed using the Kimura 2-parameter method [46] and are in the units of the number of base substitutions per site. The analysis involved 12 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 175 positions in the final dataset. The two Families are clustered together as expected if the genetic data of the 175 bp at 5' end of the cyt b gene matches the current taxonomic groups at the taxonomic level of family. The green dots indicate the bootstrap value for a given interior branch is 95% or higher, then the topology at that branch is considered correct [47]......164

Figure 3.33: Inter- and intra-species of the Psittacidae family (parrots) and Cacatuidae family (cockatoos) at genus and species taxonomic level using partial sequences of the COI

Figure 4.2: showing amplification of sections of the avian mitochondrial ND2 and ND5 genes from 2 barbs and 5 barbs of the Short-billed Black Cockatoo (*Calyptorhynchus latirostris*) under various annealing temperature of 50° C, 52° C, 54° C, 57° C and 60° C. The amplification from the ND2 gene producing a product of 561 bp is in Figure 4.2(a) and M is a 100 bp marker, N is a negative control, P is a positive control from chicken muscle. The amplification from the ND5 gene producing a product of 921 bp is in Figure 4.2(b) and M is a 1 kb marker, N is a negative control, P is a positive control from chicken muscle.

Figure 4.7: showing an example of the comparison sequence data from two barbs after amplification of DNA of a 921 bp fragment of ND5. A partial sequence of 475 bp from red-winged Parrot (*Aprosmictus erythropterus*) was found to match the kakapo (*Strigops habroptilus*) (accession number AY309456) with a similarity of 86%......196

LIST OF TABLES

Table 1.2: The taxonomy of a range of species.15

Table 1.4: The length of mitochondrial amino acid sequences of the 13 loci including the ND family, COI, COII, COIII, ATP6, ATP8 and cyt *b* of chicken (*G. gallus*), junglefowl (*G. varius*), guineafowl (*Numida meleagris*), human (*Homo sapiens*), sheep (*Ovis aries*), Northern native cat (*Dasyurus hallucatus*), grasshopper (*Gomphocerippus rufus*), frog (*Xenopus laevis*) and snake (*Crotalus horridus*) obtained from the DNA database. The mammalian species are highlighted in green and the avian species are highlighted in pink.

Table 2.1: A list of the 102 avian species, 40 Families and 19 Orders used in this study, including their scientific name, common name, accession number of complete mtDNA genomes. Colour shading indicates members within the same family......60

Table	2.3:	showi	ng	primer	sites,	highl	ighte	ed in j	yellow	, and	the	melti	ng te	mpe	rature	: (Tm)
of the	prime	ers for	r the	e ND2	gene	ampli	ficat	ion of	avian	speci	ies. 7	The re	edun	dant	positi	ons in
the p	rimers	s are	in	blue:	M =	A or	С,	R =	A or	G, Y	Y =	C of	τ	and	K =	G or
Т																70

Table 2.4: Primer pairs and product size for ND2 gene amplification......71

Table 2.9: showing primer site, highlighted in yellow, and the melting temperature (Tm) of the primer for the ND5 gene amplification of parrot and cockatoo species......74

 Table 2.13: PCR components were combined as the following:
 88

Table 3.6: The table of conclusion showing percent homogy within the species (intraspecies variation) and between species (inter-species variation) of the 12 finches......143

Table 3.12: The comparison of the use of all methods and models provided in MEGA 5

 and MrBayes programs
 166

LIST OF ABBREVIATION

TM	melting temperature
DTT	dithiothreitol
rpm	revolutions per minute
PCR	polymerase chain reaction
dNTPs	deoxynucleotide triphosphates
bp	base pair
μL	microlitre
μΜ	micromolar
pmol	picomole
ng	nanogram
mM	millimolar
mL	milliliter
MEGA	Molecular Evolutionary Genetics Analysis
EBI	European Bioinformatics Institute
iTOL	Interactive Tree Of Life
ML	Maximum Likelihood
NJ	Neighbor Joining
UPGMA	Unweighted Pair Group Method with Arithmetic Mean
MP	Maximum Parsimony
ME	Minimum Evolution
MCMC	Markov chain Monte Carlo
HTUs	hypothetical taxonomic units
OTUs	operational taxonomic units
tRNA	transfer RNA

rRNA	ribosomal RNA
DNA	deoxyribonucleic acid
mtDNA	mitochondrial DNA
COI	cytochrome oxidase c subunit 1
COII	cytochrome oxidase c subunit 2
COIII	cytochrome oxidase c subunit 3
ND	NADH dehydrogenase
cyt b	cytochrome b
ATP6	ATP synthase subunit 6
ATP8	ATP synthase subunit 8

IUPAC (International Union of Pure and Applied Chemistry) codes

Nucleotide code

А	Adenine
С	Cytosine
G	Guanine
T (or U)	Thymine (or Uracil)
R	A or G
Y	C or T
S	G or C
W	A or T
Κ	G or T
Μ	A or C
В	C or G or T
D	A or G or T
Н	A or C or T
V	A or C or G
Ν	any base

Amino acid code

A/Ala	Alanine
C /Cys	Cysteine
D/Asp	Aspartic Acid
E/Glu	Glutamic Acid
F/Phe	Phenylalanine
G/Gly	Glycine
H/His	Histidine
I/Ile	Isoleucine
K/Lys	Lysine
L/Leu	Leucine
M/Met	Methionine
N/Asn	Asparagine
P/Pro	Proline
Q/Gln	Glutamine
R/Arg	Arginine
S/Ser	Serine
T/Thr	Threonine
V/Val	Valine
W/Trp	Tryptophan
Y/Tyr	Tyrosine