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ABSTRACT 

Rice is an important crop that feeds more than half of the global population. Rice demand remains 

high, however, population growth, climate change, limited suitable land areas, and a lack of water 

challenge its availability. Access to fast and accurate information about rice production at lower 

spatial units, such as the district-level and lower, is crucial. This study explores the usefulness of 

freely available satellite images for mapping the extent of rice which, in turn, can be used to 

forecast rice production at lower spatial units. 

This study uses satellite imagery from Moderate Resolution Imaging Spectroradiometer (MODIS). 

Specifically, MOD09A1, the MODIS 8-day composite product that developed by selecting the least 

cloud contaminated data from the daily images, was used. All available imagery was downloaded 

from the Land Processes Distributed Active Archive Centre (LPDAAC) within the 2016 growing 

season, totalling 138 tiles (3 tiles by 46 time-slices). Additionally, Landsat 8 level-1 data, with a 

higher, 30-metre spatial resolution was used to spot-check the trend of the NDVI and LSWI in 

some key Agro-Ecological Zones.  

In pre-data processing step, the MODIS data was calibrated with the scaling factor provided with 

the manual and followed by the additional cloud removal. Atmospheric corrections and the 

exclusion of cloud cover and its shadow layers were carried out with the Landsat 8 level-1 data. 

The algorithm uses the NDVI, EVI, and LSWI to detect moisture levels in soil and vegetation at the 

time when rice crops were temporarily flooded. After that, all the irrelevant areas such as 

permanent water, forest, and steeply sloping layers were excluded. Then a phenology analysis of 

potential rice crops was carried out using the EVI to estimate the potential number of rice pixels. 

Finally, the study estimates district-level rice production using Simple Linear Regression while the 

Dasymetric mapping technique was used to interpolate rice yield at the district level.  

The study found that there were both over- and underestimations of the extent of rice crop areas in 

different locations within the study area when compared with the official figures. Underestimated 

rice crop area data was found in the Northern and Eastern upland provinces and this signals a 

limitation of the method. However, those provinces that have a relatively large scale of rice 

cultivation have an error of less than 10%, and these are located in low and flat land areas. 

Overall, the RMSE is 15,000 Ha, and the R2 value is 0.95.   

Keywords:   Lowland rice, MODIS, NDVI, EVI, LSWI, Dasymetric, Lao PDR 
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CHAPTER ONE: INTRODUCTION 

1.1 Problem statement and rationale  

Rice is an essential crop for billions of people around the world. In Lao PDR, rice is not only a 

staple food crop for most of the country’s citizens, but it is an essential means to sustain the 

livelihoods of the poor (Armstrong & Ramasawmy 2012; Eliste & Santos 2012; Manivong, Cramb 

& Newby 2014; Mohanty, Wailes & Chavez 2010). Because of the significance of rice as a food 

staple and its current status for food security, access to on-time and accurate information about 

rice production, especially at the district level, is crucial. Currently, the Lao Government relies on 

two monitoring systems for rice production data, with these being the Lao Census of Agriculture 

and the reporting system. While the agricultural census provides accurate data down to the lowest 

spatial units like a village, the intensive cost for this method of data collection and its prolonged 

intervals of 10 years between census dates are demotivating factors for investment into this 

method of data collection (Pozhamkandath, Nampanya & Ishihara 2014; Sun, H-s et al. 2009). 

Furthermore, results from the census and other household surveys are not georeferenced, which 

limits spatial analysis (Dong & Xiao 2016). Similar to the census method of data collection, the 

reporting system that authorities from each administration unit use to manually compile information 

and report on figures also provides detailed data down to the district level. Although the reporting 

system is inexpensive, it lacks any consensus on the methodology for the reporting of data, suffers 

delays in the reporting of data, and the reliability of the data being accurate is low (GoL & FAO 

2013). It is essential for information about rice production to be current and timely, not only for 

agricultural and environmental management but also for disaster management (Bouapao et al. 

2016; Peng et al. 2011; Saysompheng 2018).  

In recent decades, there have been many success stories with the use of remote-sensing 

technology, especially in mapping the extent of rice crops in a study area. Active remote-sensing 

provides the promising capacity to collect aerial imagery regardless of weather conditions (Shao et 

al. 2001; Torbick et al. 2017; Zhang, Y et al. 2009; Zhang, Y et al. 2020). These sensors are 

suitable to map the extent of rice farming because rice crops are grown in monsoonal areas where 

cloud cover often obscures the observation of rice crops using optical imagery (Clauss et al. 2018; 

Nelson et al. 2014; Nguyen, DB, Gruber & Wagner 2016). Specifically, the recently launched 

Sentinel-1 satellite provides free access to Synthetic Aperture RADAR (SAR) imagery with a high 

revisit rate of 12 days, while also resolving some previous RADAR issues (Tian et al. 2018). 

However, constraints associated with RADAR imagery still exist. For instance, brightness can 

cause a speckled effect, thereby degrading the quality of the data received (Mosleh, MK, Hassan, 

QK & Chowdhury, EH 2015). Besides this, the available C-band from Sentinel-1A/B SAR images 

appears to present limitations when detecting inundated water hidden under the cover of the rice 
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canopy (Liu et al. 2019; Slagter et al. 2020; Torbick et al. 2017). Also, access to the long 

wavelength of RADAR imagery is difficult because of the cost involved (Zhang, Y et al. 2009). 

Passive remote-sensing depends on electromagnetic radiation (EMR) from the sun as the primary 

source of energy to record information. The onboard sensor records the EMR emitted and 

reflected from objects on the Earth’s surface to produce aerial imagery (Khorram et al. 2012; 

Khorram et al. 2016). This type of sensor is unable to collect information at night, and also when 

cloud cover blocks the objects being observed (Chen, C et al. 2011; Mosleh, M, Hassan, Q & 

Chowdhury, E 2015). A range of different passive sensors produce satellite images with different 

spatial, spectral, and temporal resolutions, but most of them encounter cloud contamination 

issues. However, some sensors can be used to resolve and address such issues in different ways. 

The MODIS 8-day composite image provides a trade-off between spatial resolution and the 

obscurity caused by cloud cover. This data has been experimented with in mapping the extent of 

rice production in the region and at the country-level with favourable accuracy rates (Sun, H-s et 

al. 2009; Vermote, EF, Roger & Ray 2015; Xiao et al. 2006; Xiao et al. 2005). Specifically, access 

to this imagery at no monetary cost is essential for the extensive monitoring of rice crops. 

Therefore, this remote sensing technique is of interest for further experimentation with country-

specific data.  

1.2 Study aim and objectives 

This study aims to explore the capacity of passive remote-sensing techniques and the freely 

available satellite imagery for the mapping of lowland, rainfed rice fields. The expected outcome of 

this research aims to find a solution to address the information gap mentioned above.  

Specifically, the study's objectives are to:  

• Estimate the extent of wet season, lowland, rainfed rice farming for the entire country of 

Lao PDR, 

• Interpolate the zonal yield statistics of smaller spatial units than the provincial level, so the 

data retrieved better supports the program target and problem monitoring, 

• Provide recommendations to the concerned authorities on the application of remote 

sensing and GIS techniques to fill the information gap in the extent of rice farming and 

production.  

1.3 Research question 

Can optical satellite low-cost remote-sensing provide reliable estimates for the extent of rice 

farming and yield on multiple scales for Lao PDR? 
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1.4 Study area  

This study apportions the whole country of the Lao People's Democratic Republic (Lao PDR) as 

the targeted area for the study. Figure 1 illustrates the true colour (Red, Green, and Blue bands) of 

the map of the study area. Lao PDR is situated in the middle of the Indochinese Peninsula 

between the latitudes of 13  ̊45  ̍N and 22  ̊ 41  ̍N, the longitudes of 100  ̊09  ̍E and 107  ̊45  ̍E, and 

with no access to the sea (Kanemaru, Muhammad & Hirota 2014). Lao PDR shares its border with 

five countries – China, Vietnam, Cambodia, Thailand, and Myanmar – and has a total land area of 

approximately 238,600 square kilometres (Kittikhoun 2009). Along its western border, the Mekong 

River flows down the length of the country and becomes a significant supply source for water to 

various crops, including rice. Also, the geographic characteristics of the country from the north to 

the south range from flat land to mountainous and this is favourable to different types of crops, 

including different rice crops (Hurni, Hett, Heinimann, et al. 2013).     
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Figure 1. Map of the study area   
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Lao PDR has a tropical, monsoonal climate with two seasons – hot and wet versus hot and dry 

(FAO 2020). The wet or monsoon season runs from May to late October while the dry season runs 

from November to April the following year. The maximum temperature ranges from 28 C̊ to 35 ̊C 

while the variation between the maximum and minimum temperatures is sometimes less than 10 

̊C.  However, the temperature remains above 30  ̊C throughout the monsoon season, which is 

favourable for rice growing and especially the germination of rice seeds (Basnayake et al. 2006).  

Furthermore, the average rainfall of Lao PDR varies from the north to the south of the country. The 

northern part of the country is more likely to receive less rainfall than the central and southern 

parts of the country (Krishnamurthy, Chong & Poungprom 2015). Annually, the northern provinces 

receive approximately 1,566 millimetres of rain, the southern provinces around 2,237 millimetres, 

and the central provinces about 3,200 millimetres (Basnayake et al. 2006).  

In Lao PDR, there are 18 provinces and 148 districts with a population of 7 million (LSB 2019) . 

Rice has been the main priority of the National Socio-economic Development Plan since the early 

1990s (Eliste & Santos 2012). As a result, farmers converted any possible land into the rice-

growing areas, however, rainfed rice plantations covering the majority of the agricultural 

land(Linquist et al. 2006). Different ethnic groups engage in different rice production systems; for 

instance, the Lao-Tai ethnic group engages mostly in rainfed paddy rice farming. In contrast, other 

smaller groups who live in the north and at higher altitudes rely on slash and burn cultivation in 

those upland areas (Schiller et al. 2006). Also, please see Appendix 1 which provides further 

information on the administration level of the provinces and district of the country.  

Overall, agricultural activities can be divided into six Agro-Ecological Zones (AEZ) which is 

displayed in Appendix 2. The dominant lowland rice production is largely grown along the Mekong 

Corridor Zone (Li, El Solh & Siddique 2019; WFP 2013). According to the United Nations WFP 

(2013), the Mekong Corridor consists of a flat area that has an altitude ranging from 100-200 

metres above sea level with an annual rainfall of 1,500-2,000mm. Given the suitability of this 

landscape and its immediate water source, the main livelihood in this AEZ is lowland rainfed rice 

cultivation. Consequently, lowland paddy rice fields are predominantly distributed in this AEZ more 

than the other Agro-Ecological Zones. 

In contrast, the Northern Highlands AEZ in the north of the country has an altitude range of 500-

2,500 metres, with the livelihood of citizens in this zone being predominantly associated with cash 

crops and livestock rearing (Li, El Solh & Siddique 2019). Also, the upland AEZs in the eastern 

part of the country, especially the Central and Southern Highlands, are limited in terms of lowland 

rice cultivation. The reason for this is due to topographic characteristics in which the mountains are 
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contaminated with unexploded ordnances (UXO) resulting in limited agricultural opportunities (GoL 

& FAO 2013; Saysompheng 2018). See Appendix 2 for further information on AEZ. 

1.5 Significance of the research  

This research provides a solution to address the current information gap in rice production. The 

efficiency of the methodology is crucial for any governmental consideration about how to further 

improve its monitoring of rice production. This study takes advantage of remote-sensing 

techniques and free, archived, optical satellite imagery to estimate the area of wet season, lowland 

rice paddies. It shows how the government could forecast rice production before the harvest 

period with low cost and minimal resources. Also, it shows how to use current crop statistics to 

interpolate a more accurate visualisation of the problem. Consequently, this early information is 

provided to planners in the earliest possible, timely manner. In the meantime, other sectors of the 

economy and government can also use these figures to evaluate their respective program 

outcomes. For example, those who manage food security can benefit from this early release of 

information so they are better informed to proactively take action in advance of any previously 

unexpected risk. The research results of this study are not only useful to the technical level officers 

who practically engage in producing such data, but also the high-ranking officers who make 

decisions based on that data. Technically, staff from concerned ministries could use the results of 

this study as a reference to improve their current techniques, and perhaps this input can be used 

to develop a proposal for the funding of a similar project. Also, at the decision-making level, this 

study could be used to improve the understanding of techniques which use current geospatial 

information technologies and their application to the agricultural sector and for the Lao Statistics 

Bureau.  

1.6 Outline of the thesis structure 

This thesis consists of six chapters which explain relevant issues and solutions to mapping the 

extent of paddy rice as well as appropriate techniques to estimate rice production at lower spatial 

units. Chapter one introduces the problem, background, objective of the research, and the 

description of the study area. Chapter two contains the critical literature that is relevant to the 

demand for rice, rice growth, and the different techniques of rice mapping. Chapter three covers 

the respective processes necessary to estimate the extent of rice farming and production. Chapter 

four presents all the key outputs yielded by each method. Chapter five provides a discussion of the 

main findings, for instance, the issues and opportunities associated with the methodology used. 

Finally, chapter six offers a conclusion and recommendations for future research.  
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Rice production in Lao PDR 

2.1.1 Factors influencing the demand for rice  

Rice is an essential food crop that feeds more than half of the global population. The demand for 

rice may shift or decline due to changes in consumer behaviour. However, even though changing 

consumer behaviour and the presence of volatile factors which can contribute to a scarcity of rice 

production (such as water for irrigation and suitable land for farming rice), rice remains the primary 

crop to meet the food demands of the poor and the world’s increasing population overall (Mohanty, 

Wailes & Chavez 2010). In Lao PDR, several factors maintain rice’s position as the nation’s most 

critical crop. First, since most people rely on rice as their staple food, the significance of rice will 

remain high well into the future. This picture is reflected in the food consumption behaviour of the 

population where more than eighty per cent of each household’s daily energy needs are derived 

from rice consumption (Armstrong & Ramasawmy 2012). Furthermore, environmental factors such 

as the unavailability of suitable land for rice farming are expected in the future. This problem arises 

from the continued growth of the population and urbanisation; meaning there will be more people 

to feed while urban expansion will reduce the amount of suitable land available to grow rice (Eliste 

& Santos 2012).  

Other factors that fuel the rise of the significance of the rice crop are national vulnerabilities and 

the status of food security for the country. Although at the country level a rice deficit appears to be 

less concerning, the issue becomes worse when considered at the nation’s regional and 

community levels, especially among some ethnic groups (Schiller et al. 2006). Furthermore, with a 

poverty rate of about twenty per cent, a high correlating rate of malnutrition makes a rice-deficit 

situation alarming (Boupha 2020; LSB & UNICEF 2018). Thus, if rice crops do not perform well or 

yield highly, the status of food security and nutrition can be worsened as a direct result of the main 

livelihood of the poor being rice farming (Manivong, Cramb & Newby 2014). Similarly, the risk of 

natural disasters such as flooding, drought, and crop disease make food security even more 

worrisome. Lao PDR has a long history of severe, natural disasters. For example, in 1966, the 

country experienced the most devasting flooding in its history (Schiller et al. 2006). However, 

another severe bout of flooding occurred in 2018 when one of the nation’s hydropower dams 

collapsed as a result of the tropical storm Son Tinh (UN 2019). Also, drought is another climate 

risk event which threatens food security in Lao PDR (FAO 2020). All these are contributory factors 

which keep the need for a high supply of rice. 

2.1.2 Rice ecosystems 

Overall, rice production across Lao PDR comprises of three distinct systems. They include 

irrigated rice production in the dry season, lowland rice production in the wet season, and upland 
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rice production in the wet season also. First, irrigated rice accounts for about thirteen per cent of 

the nation’s total rice production. This rice is generally grown between December and May in the 

flat and lowland areas where irrigation systems dominate (Eliste & Santos 2012; Linquist et al. 

2006). Irrigated and lowland rice production are similar in terms of crop ecology where some 

flooding and standing water is required. The only difference between the two systems is the timing 

of the farming and the water source. Irrigated rice is located in the same area as lowland rice, but 

only in those specific locations which are near to a water source and where irrigation systems 

exist. Lowland rice production is most prominent in the Savannakhet, Khammuane, Salavan, and 

Vientiane provinces as well as Vientiane Capital (Linquist et al. 2006). This ecosystem of rice is 

the majority of all rice production in Lao PDR and represents about seventy-seven per cent of the 

nation’s total rice production (Eliste & Santos 2012). In general, lowland rice production begins in 

June and runs through to early November using rainfall as the primary source of water. In the rainy 

season there is more flexibility than during the dry season. Thus, farmers can grow rice more 

widely and even in the highlands or upland areas where it is suitable to do so. As a result, lowland 

rice cultivation is also common in high-altitude and mountainous areas as well as along the 

Mekong Valley (Linquist et al. 2006).    

Unlike rainfed rice and irrigated rice, upland rice does not need seedling preparation because 

farmers sow the rice seeds directly into the soil at the beginning of the rainy season (IRRI 1975). 

The upland rice crop is generally grown in rice fields where water is quickly drained following 

rainfall (Gupta & O'Toole 1986). According to Ahmadi et al. (2004), such a rice system emerges in 

response to the poverty and the need of a cereal staple food, especially in the area where lowland 

or flat land surfaces are limited. In Lao PDR, upland rice paddy cultivation covers approximately 

ten per cent of the total rice production around the nation but uses the slash and burn cultivation 

technique. The upland rice cycle runs from late April to early October and is mostly in the northern 

and eastern parts of the country, the mountainous areas (Eliste & Santos 2012; Linquist et al. 

2006). A significant proportion of the population, especially the poor who live in rural and remote 

communities, relies on upland rice farming for a subsistent living (Heinimann et al. 2013). Also, 

upland rice includes the rotary and slash-and-burn practices, with the largest proportion of upland 

rice cultivation being in the northern part of the country (Saito et al. 2006). 

2.1.3 Key constraints of rice production  

Pest and crop disease are two serious issues for rice production. However, based on the generic 

risk profile of the country in terms of its vulnerability to natural disasters, flood and drought are the 

most frequently registered risks (Saysompheng 2018). Despite damage to infrastructure and the 

humanitarian aspect, agriculture is another sector that is severely impacted when extreme climatic 

events occur. According to Schiller et al. (2001), since 1966 Lao PDR has experienced flooding or 

drought in at least some part of the country almost every year. This accounted for a loss of 20-30 

per cent in arable land areas between 1991 and 1999, while the general loss in rice crop 
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production as a result of flooding or drought was estimated to be at 15 per cent in 2018 

(Saysompheng 2018). The effect of natural disasters substantially influences the whole cycle of 

rice growing. Specifically, if drought occurs at the beginning of the growing season, the remaining 

cycle is affected. Since water is the primary means to initiate rice growing, farmers need water with 

the appropriate temperature to facilitate the germination of rice seeds (Linquist et al. 2006). When 

a drought occurs, the transplanting of rice is most likely delayed and eventually the following 

stages, the most critical determinants for rice productivity, are also delayed in turn (Fukai 1999; 

Ishimaru et al. 2016). The current constraints may be hard to address since there is the anomaly 

with the onset of the rainy season. According to Krishnamurthy, Chong and Poungprom (2015), 

the variation of seasonality fluctuates by about ten days. The high uncertainty of rainfall remains 

and it may be hard for farmers to adapt year-by-year. In some years, farmers start the 

transplanting of rice seedlings as late as August (Ikeura et al. 2016). These are the main 

constraints that farmers have been facing in the last decade, where farmers need to adapt to the 

climatic situation.  

2.1.4 Rice growth and its development 

Rice is an annual grass and its life cycle can be divided into three main phases: vegetative, 

reproductive, and ripening or maturing. Within these three main phases there are substantial 

growth stages. According to Kuenzer and Knauer (2013), there are about ten stages which could 

be categorised in the rice growth cycle. Figure 2 illustrates the broad picture of rice growth starting 

from the initial rice seed through to when the rice is harvested. Referring to this illustration, the first 

step is to germinate the rice seed before preparing the seedlings for transplantation. After the rice 

seedlings have been transplanted into the rice field, the rice starts tillering with stems and leaves. 

In this stage, more shoots are added to the main shoot. The vegetative phase ends with a 

maximisation of tillering before an elongation of the stems begin. In this stage, no more stems are 

added to the current rice tillers. Next is the reproductive phase. Moldenhauer and Slaton (2001) 

explain that the reproductive phase involves six critical stages starting from the formation of rice 

panicles to rice ‘headings’, which is when the panicles begin to emerge from their ‘boots’ before 

rice flowers start to bloom. Finally, there is the ripening or maturing phase, which includes starch 

grain development. Starch will form into grain but remain soft at first before hardening and 

becoming ready for harvest (Moldenhauer & Slaton 2001). The entire process of rice growth takes 

about 110-120 days in a tropical region. By comparison, the same process can take up to 150 

days in temperate weather regions (Le Toan et al. 1997). However, these timeframes also depend 

on the variety of rice planted (Moldenhauer & Slaton 2001).   
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Figure 2. Rice growth cycle. Image sourced from the International Rice Research Institute 
(IRRI)-Rice Knowledge Bank (Nelson et al. 2014, CC-BY) 

 

2.2 Mapping the extent of rice farming with low spatial resolution optical 
imagery 

2.2.1 Vegetation indices-based approach 

In the literature regarding remote sensing, the pixel-based approach is one of the most popular 

approaches applied to delineate paddy rice fields from other landscapes. There are two critical 

elements for this approach: multispectral band imagery and knowledge of how rice grows. These 

two elements are combined into one algorithm and used to detect rice fields. Xiao et al. (2006); 

(Xiao et al. 2005) developed this algorithm based on three vegetation and water indices. These 

indices are the outputs of the differentiation between the visible wavelength, Near-infrared band, 

and Short-wave infrared band wavelengths of the optical satellite. The Normalised Difference 

Vegetation Index, the Enhanced Vegetation Index, and the Land Surface Water Index are the most 

common indices used in this approach, while knowledge of rice growth is another essential 

element. As mentioned above, a rice crop has three phases in its life cycle. However, the most 

critical phase for mapping the extent of rice cropping in a study area is the transplanting period. 

According to Xiao et al. (2005), the rice calendar is essential because the algorithm needs to run 

according to the time when farmers transplant their rice crops, so the temporary flooding is 

detected. This algorithm has been used ever since, with Xiao et al. (2006) applying this 

assumption with MODIS data and mapping the extent of rice farming for the whole South East 

Asian region. Some studies have even modified and enhanced this algorithm by applying specific 

techniques to meet their unique objectives. For example, instead of mapping rice in general, some 

studies modify the algorithm using specific knowledge of different rice species so they can 

differentiate the different ecosystems of rice (Sun, H-s et al. 2009).   
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2.2.4 Advantages and disadvantages of vegetation-based mapping with low-resolution 
imagery 

Low and moderate spatial resolution imagery like MODIS and AVHRR imagery provide high 

temporal resolution and a swath width which are appropriate for the large scale monitoring of 

vegetation (Xiao et al. 2006; Xiao et al. 2005). These characteristics are necessary when there is a 

need to monitor vegetation on an extensive scale. At the nation’s regional and whole country 

levels, it is essential to have data which allows such large-scale monitoring, while a high temporal 

resolution is also crucial for monitoring purposes because the rice crop is highly dynamic 

(Bridhikitti & Overcamp 2012; Sun, P et al. 2017). Despite the advantages of low and moderate 

spatial resolution imagery, there are some challenges that different users may encounter during 

the data analysis. Low spatial resolution imagery yields larger pixel sizes, for instance, 250 metre x 

250 metre, 500 metre x 500 metre, and 1,000 metre x 1,000 metre pixels. At this spatial resolution, 

it is challenging to differentiate rice fields that are grown on small parcels of land and where there 

is a high diversity of land cover (Mosleh, M, Hassan, Q & Chowdhury, E 2015; Tingting & Chuang 

2010; Xiao et al. 2006). These are, therefore, both advantages and disadvantages of using this 

mapping approach with low and moderate spatial resolution.  

2.3 Mapping the extent of rice farming with medium to very high-
resolution imagery 

2.3.1 Object-based image analysis 

Object-based image analysis (OBIA) is another method which is extensively applied when 

mapping rice. In most cases, this method is chosen in response to limitations of the pixel base, 

which is quite common with low-spatial resolution imagery (Peña-Barragán et al. 2011; Singha, 

Wu & Zhang 2016). The object-based analysis comprises of two steps of image segmentation, 

where the image is divided into sub-homogenous pixel groups before the classification method is 

implemented (Wulder et al. 2008). The difference between a pixel-based versus an object-based 

approach is the way it identifies the objects. While the pixel-based approach focusses on the 

individual pixel values, the object-based approach gives priority to the homogeneity of the pixels 

(Singha, Wu & Zhang 2016). This means the object-based approach clusters or groups pixels 

according to their similarities before a statistical method is applied in the classification process.  

2.3.2 Benefits and drawbacks of applying object-based image analysis 

Classification of objects in highly topographical areas and with varying land cover classifications 

can be challenging. However, the object-based image analysis (OBIA) approach is capable of 

classifying objects in highly heterogeneous areas where the variability of each land cover 

classification is small (Dong & Xiao 2016; Kim & Yeom 2014). OBIA advantageously applies 

various statistical parameters to analyse pixel values when segmenting the image, thereby 

increasing the accuracy of the rice mapping process (Dao & Liou 2015). However, this approach 
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needs a high spatial resolution image. Although Landsat and Sentinel-2 data is freely available to 

download, other high resolution imagery like Rapid-EYE and SPOT-6/7 can be costly to acquire, 

especially for extensive or large scale mapping (Bridhikitti & Overcamp 2012; Sozzi et al. 2018). 

Besides, it is difficult to find a cloud-free image with high spatial resolution imagery during the wet 

season. Also, high spatial resolution imagery has a narrow swath width which challenges the 

timing and other resources of the mapping project.  

2.4 Mapping the extent of rice farming with RADAR imagery 

2.4.1 Mapping of the temporary inundation of rice paddies with RADAR imagery 

The inundation and transplanting periods for rice paddies are essential, even when using active 

remote sensing (Kuenzer & Knauer 2013). When mapping rice using RADAR as the data source, 

the analysis unit is called the "backscatter coefficient" instead of “pixels” (the unit used in optical 

image analysis). Like the optical image-based approach, to distinguish rice paddies from other 

features, the rice-growing calendar and other information about rice growing phases are 

fundamental. Thus, with a temporal analysis of the backscatter coefficient, the unique feature of 

rice transplanting and temporary flooding is detected. Torbick et al. (2017) used C-band from 

Sentinel-1 to conduct a temporal analysis of backscatter compared to the seasons and rice 

calendar to classify rice paddy areas in Myanmar. Their temporal analysis found that a low rate of 

backscatter was observed initially but this was then followed by an immediate increase of 

backscatter at the beginning of the rice growing season. This behaviour was considered a sign of 

the temporary inundation of rice fields (Mansaray et al. 2017).  

2.4.2 Classification of rice crops with RADAR imagery using polarimetric analysis 

Despite the successful analysis of the temporary flooding areas of rice paddies using the methods 

above, other methods can also be employed for classification procedures. Regarding the range of 

classification methods, the literature indicates several algorithms have been developed and tested. 

Often, the classification schema involves collecting samples from the objects and field missions. 

Zhang, Y et al. (2009) experimented with the classification technique by adopting the support 

vector machine (SVM) to classify rice paddy areas using Phased Array type L-band SAR or 

PALSAR. SVM is the optimal classifier that finds the best representation of the class (Tan et al. 

2007). SVM is applicable in other types of data too, for example, in optical imagery like Landsat 

and Sentinel-2. This approach can yield an accuracy of up to 80 per cent. Furthermore, Mansaray 

et al. (2019) conducted a comparative study of the accuracy across the classifications of SVM and 

Random Forest (RF) on rice mapping from three different datasets including SAR from Sentinel-

1A. Their results indicated that SVM is more accurate than RF in all datasets. Also, another 

classifier is called the Neural Net Classifier and this is available as commercial software used to 

classify rice paddies, using ground truth data from the field (Shao et al. 2001). However, not all 

studies can involve field missions and this method exploits any contrasts in variations over time of 
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SAR images to distinguish rice paddies from other land features (Le Toan et al. 1997). These are 

some of the most effective classification approaches which have been applied in rice paddy 

mapping using RADAR imagery.   

2.4.3 RADAR imagery sources and applications in rice mapping 

Many kinds of RADAR images have been produced and made available since its launch in the late 

1990s. Some of those satellites which have been used for mapping agriculture are ERS-1 and 2, 

ALOS-1 and 2, RADARSAT-1 and 2, and Sentinel-1A and 1B. Some of these sensors have 

recently concluded their missions while others remain in orbit. The Advanced Land Observing 

Satellite (ALOS-1) was the largest satellite ever launched by Japan. Developed in Japan and 

launched in 2006, it completed its mission in 2011 (Rosenqvist et al. 2007). The subsequent 

ALOS-2 launched in 2014, however, and remains available to analysts (Reiche et al. 2018). The 

Phased Array type L-band SAR (PALSAR) onboard the ALOS-2 can capture images with a spatial 

resolution of 6.25 to 50 metres, with swath widths ranging from 70 to 360 kilometres. Zhang, Y et 

al. (2009) experimented with PALSAR images to map rice paddies, while Shao et al. (2001) 

applied multi-temporal data from RADARSAT to map rice paddies and achieved over 90 per cent 

accuracy. Another sensor that provides C-band data in SAR imagery, especially since this data is 

comparable with SAR imagery produced by RADARSAT, is ERS-1 (Le Toan et al. 1997). 

Furthermore, the most recently launched satellite offering RADAR imagery is from the European 

Space Agency Copernicus program. The onboard Sentinel-1A/B has four acquisition modes and 

each method provides Synthesis Aperture RADAR (SAR) produced in four levels. Of these, it is 

Level 1-GDR, or the ground detection range, which is commonly applied when mapping rice 

plantations (Mansaray et al. 2017). The bands in SAR imagery are called Amplitude and Intensity, 

and they have dual polarisations in terms of vertically transmitted and vertically received (VV), or 

vertically transmitted and horizontally received (VH). The product has three levels, with Level 0 

being the foundation level from which Levels 1 and 2 are generated from. However, the ground 

detection range that is typically applied in agriculture monitoring (ESA 2000-2020; Mansaray et al. 

2017; Mansaray et al. 2019).  

2.4.4 Opportunities and challenges when applying RADAR imagery to rice mapping 

While microwave remote sensing or the application of the RADAR sensor is weather independent, 

data availability and data structure remain a challenge. The limitation for rice mapping is cloud 

cover and long rainy days in the tropical regions where rice production is most prevalent. RADAR 

is, therefore, the only mapping option that can collect the phenological changes during the 

monsoon season (Le Toan et al. 1997; Shao et al. 2001; Zhang, Y et al. 2009). The other 

advantage of RADAR is its high geometric resolution and the wide swath width of the image. 

However, the spatial resolution depends on the polarisation type. For instance, a single-look image 

provides higher spatial resolution than a multiple-looks image. ALOSPALSAR is capable of 
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providing ground resolution at 10 to 20 metres with a high swath width of up to 360 kilometres 

(Rosenqvist et al. 2007). Furthermore, the high temporal resolution allows for better observation of 

changes in crops, especially crop phenology. In terms of temporal resolution, PALSAR has a 

repetitive rate of 46 days, while Sentinel-1 A and B can revisit the same location every six days. 

This is even better than the previous C-band SAR images (Clauss et al. 2018; Mansaray et al. 

2017). Furthermore, SAR images from Sentinel-1 A and B are archived and freely available from 

the European Space Agency's platform (Clauss, Ottinger & Künzer 2017).  

By contrast, the structure of SAR data is complicated and may need specific software to convert it 

to a format suitable for analysis. With RADAR imagery, it is a complicated process converting SAR 

amplitude to the sigma naught (𝜎°) backscatter coefficient (Sun, C et al. 2019). To do this, different 

analysts apply different algorithms to achieve the best representative dataset. The data in 

Sentinel-1A is converted into the backscatter coefficient with a tool called SNAP and by using a 

specific equation (Mansaray et al. 2017), while a different calibration method is required for SAR 

images from RADARSAT (Shao et al. 2001). Sometimes, a RADAR image loses spatial resolution 

from such pre-processing steps. For instance, an SLC RADAR image has a higher spatial 

resolution than multiple-look images but due to necessary noise filtering, the quality of the 

representation of the Earth’s surface is negatively affected (Torbick et al. 2017). Another constraint 

of SAR is associated with the availability of the data. Due to the limited capacity of data storage, 

RADAR images are not available everywhere and archiving of data is not provided for larger areas 

(Clauss et al. 2018). In addition, the cost to access the specific wavelength of SAR for more 

accurate mapping is limited because it is expensive to acquire (Mosleh, M, Hassan, Q & 

Chowdhury, E 2015). In terms of constraints for rice classification, SAR images can be confusing 

or difficult to separate or distinguish crops with a similar shape to rice, potentially causing 

misclassification (Forkuor et al. 2014). Also, there is a higher degree of uncertainty when mapping 

steep rises in highly topographical areas, where rice fields are smaller, and also in the areas 

around the edges or border of images (Zhang, Y et al. 2009). So, these are some essential factors 

which need to be considered when using RADAR imagery.  

2.5 Rice yield estimation approach with different sensors  

 2.5.1 Rice yield estimate indices and heading stage identification 

The Normalised Difference Vegetation Index (NDVI) is a traditional vegetation index which many 

studies have proven successfully correlates to crop yields (Chang, Shen & Lo 2005; Huang et al. 

2013; Skakun et al. 2017). Some studies have used the NDVI as the primary indicator while also 

combining it with other vegetation indices to forecast rice yields (Cai & Sharma 2010; Huang et al. 

2013). However, the NDVI has several limitations when representing crop phenology. This is 

especially true in areas with a high coverage of vegetation present, as the NDVI value becomes 

saturated with increased green biomass and lacks the reliability to measure the productivity or 
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yields of rice crops (Huete, Alfredo et al. 2002). Consequently, some studies avoid using the NDVI 

for crop yield forecasts. For example, Son et al. (2013) chose the enhanced vegetation index (EVI) 

and the leaf area index (LAI) instead of the NDVI to forecast rice yield. In crop yield studies, the 

leaf area index for rice paddy areas plays an essential role in providing phenological value. LAI 

has a strong relationship to vegetation indices and rice productivity, thereby making it suitable for 

yield forecasts (Xiao, He, et al. 2002). Furthermore, another critical element of rice yield estimation 

is the identification of heading dates when the panicle begins to emerge from the boot, with this 

usually taking about 10-14 days (Moldenhauer & Slaton 2001). While some studies define the 

heading stage as 80 days after the rice is transplanted (Oza, Panigrahy & Parihar 2008), other 

studies define the heading stage as 30 days before the harvest (Son et al. 2013). Nevertheless, 

the determination of the heading stage needs to refer to the rice crop calendar as well as 

information from the relevant local authorities (Xiao et al. 2005). These are two essential stages 

that data analysts must consider before they conduct the analysis.  

2.5.2 Methods of rice yield estimation with optical imagery 

Once the paddy rice areas have been mapped, it is possible to estimate crop yields or crop 

production. There are several assumptions and methods which can be applied, however, these 

methods are based on census and remotely-sensed data to forecast yield. These methods 

assume that the official statistical yields represent the advancement of technologies, fertiliser, and 

other improvements to farming methods. By contrast, the remotely-sensed yield represents natural 

influences, for instance, precipitation, temperature, disease, and soil. The yields from an official 

census are converted into raster format to allow for production estimates after the planted area 

and the key indicator have been applied, for example, when the NDVI, EVI, or LAI has been 

computed. So, to forecast rice yield, it is essential to have an estimated extent of rice crop area 

before the remotely-sensed yield is derived from the heading stage. Once the average and 

individual rice yields are available, it is merely a matter of multiplying the official rice yield by the 

remotely-sensed rice yield (Cai & Sharma 2010; Huang et al. 2013).  

Another approach is to forecast the rice yield using a regression model. This method assumes that 

the official rice yield is the dependent variable and the vegetation indices are the rice yield 

predictors (Groten 1993; Noureldin et al. 2013). Son et al. (2013) used the EVI instead of the NDVI 

together with the LAI to predict the rice yield with a multiple regression model. Thus, results from 

the regression model provided predicted yields with associated errors, which is useful to assess 

the robustness of the results. Also, there is one crucial detail to be aware of when forecasting rice 

yields. Any pixel usually mixes with a non-rice background in the same pixel. It is essential, 

therefore, to extract only those pixels that have at least more than 90% of rice (Son et al. 2013). 

These are the methods and techniques used to forecast rice yields with optical imagery as well as 

official statistical figures. 



 

16 

2.5.3 Forecasting rice yields using RADAR images 

Once the rice area is delineated, the production of rice can be estimated based on the backscatter 

coefficient value. This means the value of the backscatter coefficient, especially the median from 

the VH polarisation of C-Band SAR images, will be used to estimate rice yields further. This 

follows the simple concept of forecasting crop yield by multiplying the planted area by the yield per 

unit of area (Clauss, Ottinger & Künzer 2017). As a result, the overall production will be a 

summation of the production of all the planted areas. Clauss et al. (2018) used the C-Band SAR 

images from Sentinel-1A to classify the rice paddy areas in the Mekong Delta with super-pixel 

segmentation. The area was divided into three groups according to the local rice varieties, with the 

median backscatter from each variety multiplied by the area for that rice variety’s production. 

On the other hand, instead of using a backscatter coefficient value as the yield, Lao Statistics 

Bureau sometimes records details of historical rice yields by rice variety as well as their life span, 

and this data can be used to forecast rice production in turn. For example, Shao et al. (2001) 

forecasted the rice yield of different rice varieties using a multi-temporal analysis of rice 

backscatter behaviour from the rice growth cycle with RADARSAT. They estimated the remotely-

sensed area according to the official, historical yields of rice varieties. Thus, the simple 

mathematical model to calculate rice production is to multiply the estimated area of rice by the 

yield per unit of area from the census.  

2.6 Noise and eliminating strategies for each sensor 

2.6.1 Noise of low spatial imagery and solutions 

The main issues associated with low spatial resolution optical imagery of cloud, shadow, and 

aerosol scatter, as well as several algorithms available for noise filtering, have all been discussed 

in the literature analysis. The moderate and low spatial resolution refers to MODIS and AVHRR 

imagery. MODIS products are tested with a cloud mask that was developed using all 36 bands of 

the imagery to maximise the reliability of the product (Ackerman et al. 1998). Even if the image 

vendors apply noise filters before the release of the products, some noise will still be present, 

especially with regard to the remaining cloud cover (Xiao et al. 2006). An additional cloud mask is 

essential for all MODIS data before the data analysis (Sun, H-s et al. 2009). The impact on the 

image is serious because information about key objects is lost or missing when cloud or shadow 

block the sensor. Different studies have applied several additional measures to MODIS data. Sun, 

H-s et al. (2009) adopted the CTIF, which stands for conditional temporal interpolation filtering, to 

reduce haze. This method addresses the issue while retaining the best data, with the pixels 

exhibiting the most scatter being removed (Groten 1993). Furthermore, another technique to 

address cloud contamination in addition to the cloud flag provided with the product is the removal 

of all Blue band reflectance at 0.2 and above (Sakamoto et al. 2006; Xiao et al. 2006; Xiao et al. 

2005). Since the Blue band is sensitive to atmospheric scattering, the high reflectance of this band 
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is considered an error. Son et al. (2013) adopted the empirical mode decomposition (EDM) to filter 

out thin cloud and remove any contaminated pixels. However, the missing value was treated with a 

time series profile using a linear interpolation method. EDM is the most efficient filter to address 

noise from the cloud in the NDVI  time-series(Chen, CF et al. 2011). Overall, it is difficult to find 

cloud-free images during the monsoon season but selecting the best technique to minimise the 

impact of cloud contamination of the data is necessary.  

2.6.2 Noise and noise-addressing strategies for medium to high-resolution imagery 

High spatial resolution optical imagery encounters similar noise to that of low and moderate spatial 

resolution imagery, however, the solution applied to resolve the problem is slightly different. 

According to Gao, B et al. (2002), cloud and cloud shadow have a significant, negative effect on 

remote-sensing studies, especially with data analysis. For example, it influences the true reflection 

of the Earth’s surface and creates a bias in the NDVI and other indices. Detection of cloud is 

generally more straightforward than of cloud shadow. While the shadow from thick clouds may be 

easier to detect, identification of shadow from thin clouds is more complicated. This is due to the 

reflectance of cloud shadow appearing differently on different backgrounds. For instance, the 

reflection of cloud shadow on a bright background is different from that on a dark background (Zhu 

& Woodcock 2012). In dealing with cloud cover and its shadow, Kontgis, Schneider and Ozdogan 

(2015) applied Fmask, which is an algorithm explicitly developed to filter out cloud cover and cloud 

shadow contamination in Landsat imagery. This cloud mask is not only applied to Landsat 

imagery, it is also applicable to other high spatial resolution images like that of Sentinel-2 (Zhu, 

Wang & Woodcock 2015). The general cloud mask discusses how to remove cloud but pays less 

attention to filling in the missing pixels. Thus, Cheng et al. (2014) propose an algorithm called 

Spatio-temporal Markov Random Field. This algorithm was developed to support the cloud 

removal process while concurrently replacing the omitted pixels with the most represented pixels 

from another window or auxiliary time series.   

2.6.3 RADAR imagery-related noise and how to address it 

The most frequently reported noise found in RADAR images, especially in Synthetic Aperture 

RADAR (SAR) images, is the speckle effect. Speckle is the disorder of the SAR image which 

results from multiple reflection points combining in the same pixel, which ultimately leads to having 

many bright and dark pixels in the image (Bruniquel & Lopes 1997). Another effect caused by 

speckling is a rougher image, meaning the image is not as smooth as an optical image (Shao et al. 

2001). Speckle reduces the accuracy of identifying different objects, while also affecting the 

change detection analysis. Le Toan et al. (1997) claim that change detection analysis is sensitive 

to the speckle effect. Thus, in response to this issue, a number of algorithms have been developed 

for different assumptions. According to  Lopes, Touzi and Nezry (1990), four speckle filters have 

been developed. However, based on the literature studied, the most extensively applied filter to 

address the speckle effect is the Lee filter (Shao et al. 2001; Tan et al. 2007; Zhang, Y et al. 
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2009). Furthermore, there are other schema which have been reported as effective, for example, 

Multilook (L-looks) and the Gamma-Gamma MAP (Bruniquel & Lopes 1997; Lopes et al. 1993). In 

addition, there is another technique which uses pixel segmentation to spatially average the 

backscatter time series and this also minimises the effect of speckle (Clauss, Ottinger & Künzer 

2017). Also, for Sentinel-1A SAR data, this issue can be addressed by using SNAP that includes 

several spatial filters including Lee filter (Sun, C et al. 2019). It is essential to understand the 

effects of speckle on RADAR imagery and solve the issue for a better representation of the data 

before further data analysis is conducted.  

2.7 Accuracy assessment and validation of rice mapping 

2.7.1 Validation of rice mapping in low and moderate resolution imagery 

Validation of the studies that apply low and moderate spatial resolution imagery is more likely to 

rely on the comparison of the estimated rice extent and with census figures. The technique applied 

to compare data may vary, however, the most common method to compare the estimation to the 

actual data is using simple linear regression. This means taking the actual data as the dependent 

variable and the remotely-sensed results as an independent variable. The root means square error 

(RMSE) and the r-square value are then assessed. This method is proposed by Xiao et al. (2006), 

who used moderate spatial resolution time-series data from the MODIS sensor to map rice 

paddies across the whole South East Asian region, including Lao PDR. From their studies, they 

compiled official statistics regarding rice production, including the planted area from national 

statistics offices of 13 countries, to compare with their estimated extent of rice farming. This similar 

method of assessing accuracy has been applied in many studies (Bridhikitti & Overcamp 2012; 

Sun, H-s et al. 2009; Xiao et al. 2005). By contrast, other studies choose only the root mean 

square error as a means to validate their results. According to Son et al. (2013), who conducted 

rice mapping using MODIS data to monitor rice paddies in the Mekong Delta, they computed 

RMSE to assess the accuracy of their estimate with the actual rice production figures. These 

techniques offer a range of options where field missions to collect ground truth data is unfeasible. 

2.7.2 Accuracy assessment of rice mapping in high spatial resolution images  

In studies that use high spatial resolution imagery, the method for the assessment of accuracy is 

slightly different from that of low spatial resolution imagery. However, the coverage of the mapped 

area in high resolution imagery may be significantly lower than at the administrative level. In this 

case, the method for the accuracy assessment needs to rely on the local statistics approach. The 

local statistics approach refers to statistical parameters that are available from the data analysis 

technique, for instance, statistical values from the regression model. In addition, some other 

figures that could be compiled from the research team can be used for reference purposes, for 

example, observations from the studied area. Thus, in response to such a situation, Noureldin et 

al. (2013) relied on both local statistical parameters from their study and their own observations for 
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validation. In any case, where village or community-level records about crop production are 

available, it is sensible to use those records as an additional reference. Dao and Liou (2015) 

conducted a remote-sensing study to investigate the area of rice lost as a result of flooding. In this 

case, the studied area was much smaller than the zone level, for which crop statistics are 

provided. So, they used information directly from the villages for verification purposes.  

In the worst-case scenario, where other reference data is unavailable, the random sampling 

technique of different points within the study area from the field can be applied (Mansaray et al. 

2017). For this, it is essential for ground truth information from field missions be used to verify the 

agreement or disagreement of the classification. Also, if fieldwork is unfeasible, another solution is 

to rely on the auxiliary dataset. This ancillary data can be accessed via Google Earth, the Digital 

Elevation Model, or a land cover map (Singha, Wu & Zhang 2016). Thus, there are a variety of 

options to help data analysts validate the output from studies which rely on a high spatial 

resolution. More importantly, it is necessary to cross-check what is available in the study area and 

adapt accordingly.    

2.7.3 Validation of rice mapping from RADAR image-based studies 

Accuracy assessments for RADAR imagery related studies are similar to those for optical image-

based studies in that the assessment method used depends on the scale and availability of the 

reference data. One such validation method is conducted by randomly selecting the sample within 

the study area and evaluating its classification. Following this, the mean and the confidence 

interval can be computed, with these being useful to gauge the level of data accuracy (Lasko et al. 

2018). Clauss, Ottinger and Künzer (2017) conducted their accuracy assessment using a stratified 

random sampling technique. For example, they stratified the study area into two classes before 

randomly selecting approximately 100 labelled points from each class. However, for this 

technique, a reference image is required. In this case, they used a high-resolution image from the 

archives of Google Earth and Landsat data as references. Finally, the matching and non-matching 

points were accounted for and measured as percentages of matching and non-matching data, 

which offers a representation for the accuracy percentage sought (Zhang, Y et al. 2009). 

Nevertheless, when fieldwork is feasible, then field visits should be conducted. Field trips provide 

the opportunity to collect ground truth information at the field level and this is useful to validate the 

results attained from the remote-sensing studies (Shao et al. 2001). Following this, Clauss et al. 

(2018) created a database from the field missions where GPS points were marked with the identity 

of those objects on the ground to resolve any invalidation. Finally, if census data is available, a 

comparison with official statistics should also be added (Chen, C et al. 2011). 
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2.8 Summary 

In summary, rice is a critical staple food for billions of people around the world, especially among 

the poor. An increasing population, the risk to food security, the poverty rate and malnutrition of 

those in poverty, and climate change all make rice even more critical in Lao PDR. Three rice 

ecosystems are spatially distributed across different Agro-ecological Zones, with the lowland, 

rainfed rice ecosystem accounting for the majority of all rice production from these three. This rice 

system is mainly distributed along the Mekong Valley and other suitable areas in the upland or 

mountainous regions of the country. The main constraints of rice production are flooding and 

drought, with these two environmental factors having persistently affected the infrastructure and 

livelihood of the citizens as well. This issue may remain a critical problem to the socio-economic 

development plan of the Lao Government in the future as climate change is exacerbated.  

In order to map the extent of rice farming and forecast rice production, several techniques have 

been developed and applied. However, from a geospatial perspective, two particular systems – 

active and passive remote-sensing – have been extensively applied in rice mapping and to 

forecast rice production. Alternatively, there are a variety of sensors from a different satellite which 

offer different output products to meet specific scientific research needs. Technically, active 

remote-sensing, which is otherwise independent of the rice-mapping process, can be used for 

backscatter analysis. For example, the analysis of rice backscatter behaviour can be used as an 

input to extract more accurate data about the extent of rice farming in the area studied. By 

contrast, passive remote-sensing presents the issue of cloud contamination, especially during the 

monsoon season, requiring the analyst to resort to field missions and the application of various 

resolution scales. Two main techniques can be applied in pixel-based and object-based mapping 

procedures, both of which are extensively experimented with.  

In general, the remote sensing of rice crops requires knowledge of rice growth and the rice 

calendar from locals in the farmed study area. In any case, official authorities publish such 

information in Lao PDR, bearing in mind that climatic conditions and social factors pertaining to 

rice farmers can impact the currency of such information. Parallel with the knowledge of rice 

cropping, quality control measures must be implemented before producing any results. Analysts 

need to understand the specific noise from different sensors and address them accordingly. These 

noises include geometry-specific noise, speckle or brightness effects from RADAR, and cloud or 

other atmospheric-associated errors from the optical satellite imagery. These problems require 

appropriate strategies for effective resolution. Also, the accuracy of the mapped results is critical 

and different strategies were offered in the literature. However, these strategies depend on the 

availability of auxiliary data and the context of the study area. Both active and passive remote-

sensing are capable of mapping the extent of rice farming for forecasting rice production, however, 

this depends on the objectives and scale of the mapping exercise.     
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CHAPTER THREE: METHODS 

3.1 Choice of imagery and data collection  

3.1.1 Satellite imagery (MODIS) 

This study used imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS), the 

sensor on board the NASA ESO Terra Satellite, launched in 1999. The standard products provided 

by MODIS are in a tile of 1,200 x 1,200 kilometres. Specifically, MOD09A1, an MODIS 8-day 

composite product, is developed by selecting the least cloud contaminated data from an 8-day 

period (Peng et al. 2011). This imagery was chosen as the primary dataset because it is freely 

available and it minimises the effect of cloud contamination that is a main issue during the 

monsoon season. Furthermore, this product is atmospherically-corrected and it offers a sound 

balance between spectral, temporal, and spatial resolution for mapping rice at the country level 

(Sun, H-s et al. 2009; Xiao et al. 2006; Xiao et al. 2005).  

MOD09A1 is a surface reflectance product which is provided with seven spectral bands at a 500-

metre spatial resolution and this is useful for mapping rice crops at the country level. All available 

imagery was downloaded from https://lpdaac.usgs.gov/, the Land Processes Distributed Active 

Archive Centre (LPDAAC) data sharing platform (Vermote, EF, Roger & Ray 2015). The imagery 

used amounted to 138 tiles (three tiles by 46 time slices) within the 2016 growing season. Also, 

MODIS data has the potential to be used for extensive crop monitoring, and the data is regularly 

updated and archived. Specifically, the daily product is available after two days from capture while 

the 8-day product is available two weeks after the final capture date (Zhang, P 2007). 

3.1.2 Satellite imagery (Landsat-8 OLI)  

Landsat-8 OLI offers 16 days of revisits with a 30-metre spatial resolution, which is sufficient to 

verify trends in the NDVI and LSWI. Two scenes of the Landsat-8 images from path/row 128/48 

and 126/50 with eight data points were used, totalling 16 images acquired in the rice-growing area 

for 2016, and these were downloaded from the US Geological Survey database 

(https://glovis.usgs.gov/). 

3.1.3 Auxiliary datasets 

The land cover map used in this study was derived from the European Space Agency Land Cover 

data-sharing platform: http://www.esa-landcover-cci.org/. This global product is the output of the 

CCI-LC project and offers a 300-metre spatial resolution. Classifications are based on the Land 

Cover Classification System from the United Nations Food and Agriculture Organization (Kirches 

et al. 2017). The dataset was extracted particularly for the study area – the whole country of Lao 

PDR.  

https://lpdaac.usgs.gov/
https://glovis.usgs.gov/
http://www.esa-landcover-cci.org/
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Secondly, the study used the SRTM Digital Elevation Model with a 30-metre spatial resolution to 

assist in separating rice fields out from the high topographic terrain. 38 tiles covering the whole 

country were downloaded from the USGS database https://earthexplorer.usgs.gov/. All the scenes 

captured were mosaicked and generated into a countrywide layer which covered the whole study 

area. 

3.1.4 Vector dataset 

The administrative boundaries of provinces and a district were required. These datasets were 

sourced from the National Geographic Department, Ministry of Home Affairs, Lao PDR.  

3.1.5 Crop statistics  

Rice crop statistics were downloaded from the website for the Lao Statistics Bureau (LSB) 

https://laosis.lsb.gov.la/. The LSB is the official national agency empowered by the Lao 

Government to compile and publish Lao country data pertaining to any required socio-economic 

information. The Bureau provides technical support to different line agencies with its data 

collection and the conducting of national surveys, the census, and reporting systems.  

3.2 Software used 

This study used ArcGIS Pro 2.6/ArcMap10.6.1 to process satellite imagery and spatial data 

modelling. In contrast, the general simple regression model and other tabulations were processed 

using Microsoft Excel 2010.  

3.3 Data analysis 

Figure 3 shows the details and the flow of all the essential processes used for this study. Analysis 

of the data for this study can be divided into three components. The analysis in the first component 

focuses on the mapping of rice using MODIS data, auxiliary datasets such as Land Cover Map, 

and the digital elevation model (DEM). In this process, a spot check of the vegetation index pattern 

on the potential rice fields was carried out using Landsat-8 OLI with a 30-metre spatial resolution. 

The objective was to ensure that the indices computed with the MODIS data accurately fluctuate in 

time with the different periods of the rice-growing season. The next component focused on the 

process of interpolating the rice yield at the district level. The district rice yield was estimated using 

the simple regression model based on the provincial rice yield and the remotely sensed rice area 

run within each specific Agro-Ecological Zone. Finally, validation of the model was conducted 

using the correlation analysis , the root mean square error (RMSE), and the mean absolute error 

(MAE). The consistency between the extent of remotely-sensed rice and the official statistics was 

assessed by Agro-Ecological Zone and by province.  

  

https://earthexplorer.usgs.gov/
https://laosis.lsb.gov.la/
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Figure 3. Flow chart of data management and analysis  

 

3.4 Pre-data analysis for MODIS images 

3.4.1 Image extraction and sub-sets 

MOD09A1 is in hierarchical data format (HDF). To extract the data required, a raster dataset was 

created to accommodate the individual band of the image. MODIS was the primary dataset used in 

this study to compute the NDVI, EVI, and LSWI. Therefore, the Red (620-670 nm), NIR1 (841-876 

nm), Blue (459-479 nm), and SWIR1 (1628-1652nm) bands, or band 1,2,3, and 6, were extracted. 

The Data Management Tool, Create Raster Dataset, and Mosaic were all used. The specific 

details of the raster remain as the origin from the raw data such as the cell size of 463 metres x 

463 metres, with the pixel type signed as 16 bits. The separated tiles were mosaicked together as 

one scene before masking that scene with the Data Management Tool, with the provincial 

administration boundary. Also, the output raster files were re-projected to ‘PCS: WGS_1984_UTM 

Zone 48N’ and ‘GCS: WGS1984’, which are the standard systems for the country (Suepa 2013).  

3.4.2 Digital number conversion to reflectance number 

The valid range of the digital numbers for MODIS data is -1,00 to 16,000. However, before the 

data analysis was conducted, the digital numbers were converted to reflectance numbers by 

adjusting them with a scaling factor of 0.0001, as recommended in the user manual (Vermote, EF, 

Roger & Ray 2015). The data range then became smaller, more convenient to analyse, and easier 

to apply any further necessary cut-off points or thresholds (Deus & Gloaguen 2013). 
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3.4.3 Cloud contamination removal 

MOD09A1 offers geometrically corrected surface reflectance imagery with no cloud contamination 

(Vermote, EF, Roger & Ray 2015). Although the product was designed to avoid contamination 

from cloud cover, the issue remains. Thus, different studies which use the same products have 

been applied with a variety of approaches to address the cloud issue. Some studies used the 

smoothing algorithm such as the conditional temporal interpolation filter (Sun, H-s et al. 2009), 

while others used the empirical mode decomposition (Son et al. 2013). According to Sun, H-s et al. 

(2009), a smoothing approach affects the reflectance of the short wave infrared band, and so does 

the Land Surface Water Index. This study, however, relied on the reflectance of the Blue band, 

with a threshold of 0.2 and above being excluded (Son et al. 2014; Xiao et al. 2006). This 

approach was used because the Blue band is sensitive to the atmosphere and cloud cover. Thus, 

Figure 4(a) shows example where cloud presents, then 4(b) figure shows the cloud mask, and 

figure 4(c) illustrate an area where cloud was removed from a study area illustrated in 4 (d).  

Figure 4. Cloud contaminated scenes  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a). Cloud contaminated scene 

(b). Cloud mask 

(c). Cloud cleared scene 

(d). Study area 
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3.5 Pre-data analysis for images attained via Landsat-8 Operational 
Land Imaging (OLI) 

3.5.1 Top of the atmosphere (TOA) reflection  

Landsat-8 Operational Land Imaging (OLI) is a multispectral band satellite image that has a 30-

metre spatial resolution and a 16-day temporal resolution. This level-1 product is radiometrically 

and geometrically corrected. It is provided with a high swath width of 190 x 180 kilometres, 

however, the images need atmospheric correction to calibrate the digital number to the reflectance 

radiance (Zanter 2016; Zhang, HK et al. 2018). Atmospheric correction helps to minimise the 

effects of the atmosphere by converting radiometric values into reflectance, so the data correctly 

represents the earth surface at that specific time and location, thus sun elevation angle was taken 

into account (González-Márquez et al. 2018; Zhang, HK et al. 2018). Since the purpose of using 

this imagery was to verify the trends of the NDVI and SLWI, only the relevant bands were 

extracted and corrected. Therefore, Band 4-Red (640-670 nm), Band 5-NIR (850-880 nm), and 

Band 6-SWIR1 (1570-1650 nm) were extracted and corrected for further processing. To convert 

DNS to the reflectance radiance of Landsat-8 OLI, the algorithm illustrated in Equation 3 was run 

with the additional inputs from the metadata provided with the product (Zhang, HK et al. 2018).  

Equation 1. Landsat-8 OLI atmospheric correction adopted from Zanter (2016) 

𝑝ᴧ = (𝑀𝑝 ∗ 𝑄𝑐𝑎𝑙 + 𝐴𝑝)/ sin(𝜃𝑆𝐸) 

Where:  

𝑝ᴧ = TOA reflectance  

𝑀𝑝 = Reflectance multiplicative scaling factor for the band  

𝑄𝑐𝑎𝑙 =  Level-1 pixel value in DN 

𝐴𝑝 = Reflectance additive scaling factor for the band  

sin(𝜃𝑆𝐸) = Local elevation angle of the sun 

3.5.2 Elimination of cloud and cloud shadow for Landsat-8 OLI imagery  

Cloud and cloud shadow severely affect the quality and availability of the optical image, especially 

during the rainy season. Any pixel contaminated with cloud needs to be eliminated because the 

cloud creates a bias against the actual reflectance of the object. As a result, the NDVI is lower 

(Zanter 2016). Fmask was developed to detect the cloud and cloud shadow in Sentinel-2 data as 

well as Landsat imagery (Zhu, Wang & Woodcock 2015). However, this study used the available 

cloud classification, or the quality assurance (QA) band, that is available from the Landsat-8 OLI 

level-1 product (Zhang, HK et al. 2018; Zhou et al. 2016). In order to use it effectively, this study 
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applied a tool which the USGS team provided. It is the ArcGIS tool which is available for download 

from this website: https://www.usgs.gov/land-resources/nli/landsat/landsat-quality-assessment-

arcgis-toolbox. According to Zanter (2016), the pixel value of 2720 is classified as low cloud cover 

and cloud shadow, that could be reliable data. Thus, the other pixels, rather than this one, were 

classified as cloud cover and cloud shadow. Figure 5 (a) depicts the satellite image with cloud 

while image (b) shows the scene after the cloud is removed. Visually, the cloud effect remains 

around the edge of the contaminated area even though the well-developed algorithm was 

executed.   

Figure 5. Cloud and cloud shadow elimination  

 

 

 

 

 

 

 

(a) Before cloud exclusion 

https://www.usgs.gov/land-resources/nli/landsat/landsat-quality-assessment-arcgis-toolbox
https://www.usgs.gov/land-resources/nli/landsat/landsat-quality-assessment-arcgis-toolbox
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3.6 Algorithm for the detection of temporarily flooded areas using 
MODIS imagery 

3.6.1 Normalised Difference Vegetation Index 

The Normalised Difference Vegetation Index (NDVI) is the difference between the Red band, 

which has a wavelength from 620 to 670 nanometres, and the Near-Infrared band, which has a 

wavelength of 841 to 876 nanometres. In the process of photosynthesis by vegetation or tree 

leaves, chlorophyll absorbs visible light while it emits or reflects the Near Infrared energy 

(Chandrasekar et al. 2010). Thus, healthy vegetation reflects NIR strongly, and so this becomes 

evident in the NDVI. The NDVI has a high sensitivity to high biomass areas, atmosphere, and the 

soil background, which all influence the actual reflectance in crop phenology (Huete, AR et al. 

1997; Wardlow, Egbert & Kastens 2007). Despite its weakness, the NDVI has a long and 

successful history in the monitoring of changes in vegetation, including of rice crops when viewed 

from space (Huang et al. 2013; Jensen 2007; Kogan 1990). However, this study used the NDVI to 

capture temporarily flooded areas, forest, and surface water, which were used as part of the 

(b) After cloud exclusion 
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algorithm to delineate rice fields (Xiao et al. 2005; Xiao, He, et al. 2002). Please see Equation 2 for 

an algorithm of the NDVI.  

Equation 2. Normalised Difference Vegetation Index algorithm 

𝑁𝐷𝑉𝐼 =
𝑃𝑛𝑖𝑟 − 𝑃𝑟𝑒𝑑

𝑃𝑛𝑖𝑟 +  𝑃𝑟𝑒𝑑
 

Where: 

𝑝𝑛𝑖𝑟 = Near Infrared Band (841-876 nm) 

𝑝𝑟𝑒𝑑 = Red Band (620-670 nm)  

3.6.2 Enhanced Vegetation Index 

The Enhanced Vegetation Index (EVI) is one of the Vegetation Indices which is used extensively in 

vegetation studies. The EVI is the improved version of the NDVI. The algorithm illustrated in 

Equation 3 includes several factors needed to exclude the weakness encountered in the NDVI. For 

instance, C1 and C2 are the coefficients used to prevent the effect of aerosols in the imagery by 

using the Blue band to adjust the reflectance in the Red band, where G is the gain factor 

(Wardlow, Egbert & Kastens 2007). Since the EVI minimises the sensitivity to the soil background 

and the dense canopy of vegetation, it reflects changes in crop phenology more effectively (Huete, 

Alfredo et al. 2002; Huete, AR et al. 1997). Thus, this study used the EVI as the supplementary 

variable to the NDVI for detecting rice fields as well as for the phenology trend analysis.  

Equation 3. Enhanced Vegetation Index algorithm adopted from Jamali et al. (2011) 

 

𝐸𝑉𝐼 = 𝐺 ×
Pnir − Pred

(𝑃𝑛𝑖𝑟 + 𝐶1 × 𝑃𝑟𝑒𝑑 − 𝐶2 × 𝑃𝑏𝑙𝑢𝑒 + 𝐿)
 

Where:  

𝑝𝑛𝑖𝑟 = Near Infrared band (841-876 nm) 

𝑝𝑟𝑒𝑑= Red band (620-670 nm) 

𝑝𝑏𝑙𝑢𝑒 = Blue band (459-479 nm)  

L=1, C1=6, C2=7.5, and G=2.5.  
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3.6.3 Land Surface Water Index 

The land surface water index (LSWI) is the ratio of the Near-Infrared and Short-Wave Infrared 

bands from the Multispectral band in optical imagery. This term was adopted from the Normalised 

Difference Water Index (NDWI), which is used for research regarding different types of water, 

including for detecting the moisture levels of vegetation (Gao, B-C 1996; Mosleh, M, Hassan, Q & 

Chowdhury, E 2015). While NIR is sensitive to vegetation, SWIR is sensitive to water, and so the 

moisture of soil and vegetation can be captured from space (Chandrasekar et al. 2010; Gao, B-C 

1996; Jackson et al. 2004). Therefore, this study adopted the LSWI as part of the algorithm for 

detecting temporarily flooded areas during the rice transplanting stage, so that the rice fields can 

be separated from other terrain (Bridhikitti & Overcamp 2012; Dong & Xiao 2016; Xiao et al. 2006; 

Xiao et al. 2005). The computation of the LSWI requires the Multispectral band image. In this 

study, the reflectance values for the Near-Infrared Band, which has a wavelength of 841 to 879 

nanometres, and the reflectance radiance for the Shortwave Infrared Band, which has a 

wavelength of 1628 to 1652 nanometres, were used. Please see algorithm of the index below for 

more information.  

Equation 4. Land and Surface Water Index 

𝐿𝑆𝑊𝐼 =
Pnir − Pswir

𝑃𝑛𝑖𝑟 + 𝑃𝑠𝑤𝑖𝑟
 

Where: 

𝑝𝑛𝑖𝑟 = Near Infrared band (841-876 nm) 

𝑝𝑠𝑤𝑖𝑟 = Short wave infrared band (1,628-1,652 nm) 

3.6.4 Temporary inundation detection algorithm 

While different studies have applied different classification techniques to map the extent of rice 

cropping, the classification techniques used depended on the type and resolution of the satellite 

imagery those studies intended to use. This study used Multispectral band satellite imagery with a 

500-metre spatial resolution to map the extent of rice farming on a country scale. Thus, a pixel-

based temporary flooding analysis of the rice fields is essential (Bridhikitti & Overcamp 2012; Dong 

& Xiao 2016; Xiao et al. 2006; Xiao et al. 2005). This study applied the algorithm developed by 

Xiao et al. (2005). It used both the NDVI and the EVI as part of the algorithm to capture the 

temporarily flooded areas of the rice fields when farmers transplant their rice seedlings. In this 

algorithm, LSWI is used to estimate the beginning of the rice transplanting, while the NDVI and the 

EVI are used to understand the ‘greenness’ and changes in the ‘greenness’ of the rice crops 

(Mosleh, M, Hassan, Q & Chowdhury, E 2015). 
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The algorithm used in this study was adopted from Xiao et al. (2005), in which it was assumed that 

there is more water than the rice crop found in the initial stage of the rice-growing cycle (Equation 

5). The algorithm, however, involved a parameter of 0.05, which is the global threshold to ease the 

detection of flooded areas. This parameter varies from study to study, depending on factors such 

as seasonality, region, aquatic plant, and rice variety. Since these factors influence the reflectance 

of the LSWI and EVI/DNVI during the rice transplanting stage, this parameter sometimes needs a 

higher value to ensure rice fields are detected (Peng et al. 2011; Sun, H-s et al. 2009).  

Rice transplanting dates are different from one country to the next and even from one Agro-

Ecological Zone to the next, making it difficult to define in general terms. In Lao PDR, according to 

Linquist et al. (2006), farmers generally start transplanting rice in late June to July. This study took 

the variation of the onset of the rainy season into consideration. Based on the report from the most 

recent assessment, the variation is about ten days (Krishnamurthy, Chong & Poungprom 2015). 

Also, some studies emphasise that due to the drought-like conditions in this particular year, the 

transplanting of rice was delayed until late August (Ikeura et al. 2016). Therefore, the temporal 

analysis of temporarily inundated areas was conducted from July to August. The date of rice 

transplanting can be identified from the observation of the vegetation pattern against the water 

index; for instance, when the NDVI or the EVI is lower than the water index (Xiao et al. 2006; Xiao, 

Boles, et al. 2002; Xiao et al. 2005).  

Equation 5. Temporary flooding algorithm 

𝑻𝑭𝑨 = 𝑳𝑺𝑾𝑰 +  𝑷 ≥ 𝑵𝑫𝑽𝑰 𝒐𝒓 𝑬𝑽𝑰 

Where:  

𝑇𝐹𝐴 = Temporary flooding area  

𝑃 = Parameter (0.05) 

3.7 Non-rice area masking 

3.7.1 Permanent water mask 

While there are many different techniques to separate water from other features, Xiao et al. (2005) 

developed a useful algorithm in this regard by assuming that water refers to the condition when the 

vegetation is lower than the water. Permanent water has long-lasting flooding, so the water is only 

considered if any pixel is flooded for more than 20 composites, or more than 160 days (Xiao et al. 

2006; Xiao et al. 2005). However, this study took into account the time that rice crops can survive 

while being completely submerged under water. Rice crops can grow well in wet conditions, 

however, rice crops cannot tolerate continued flooding for more than fourteen days because they 

need oxygen and the sun’s energy to survive (Hattori, Nagai & Ashikari 2011).  
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Thus, this study considered permanent water as areas which are flooded for more than 16 days 

(Equation 6). Also, due to the effect of cloud contamination in different MODIS time series, it 

misses some water bodies. It is essential to find an auxiliary dataset to resolve this issue. 

Fortunately, the global land cover map was developed at almost the same time as the study and is 

available for use. The 300-metre spatial resolution Global Land Cover Map from the CCI-LC 

project provides a crucial contribution in this water mask development. In this study, the Global 

Land Cover water layer was resampled using the same grid as with MODIS spatial resolution. 

After that, the study merged the data with the computed water body and used it to exclude water 

from the potential rice areas. Also, Figure 6 illustrates where computed water and GLC 

complemented each other. 

Equation 6. Surface water algorithm 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑊𝑎𝑡𝑒𝑟 = 𝑁𝐷𝑉𝐼 < 0.1 𝑜𝑟 𝑁𝐷𝑉𝐼 < 𝐿𝑆𝑊𝐼 

Figure 6. Contribution of Land Cover Map to the development of the water mask  
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3.7.2 Evergreen forest and shrub mask   

The spectral profile of the forest and shrubbery can be confused with one of the rice crops. 

However, the temporal analysis of the vegetation index is the key to distinguish evergreen forest 

and even small ‘forests’ such as shrubs in a rice field. Forest and shrubbery refer to the pixels that 

have a consistently high NDVI over the years (Peng et al. 2011). Different studies have adopted 

different thresholds to determine evergreen forests. For instance, the NDVI is more significant than 

0.5 (Dao & Liou 2015), while Xiao et al. (2005) assigned any pixel that has an NDVI value equal to 

or more significant than 0.7, or any pixel that has an LSWI value higher than 0.15 for about 160 

days, as a forest mask. This study adopted the 0.7 threshold developed by (Xiao et al. 2005). 

However, this included more than 80 days (about 50 per cent more) of the temporal data due to 

some pixels being removed due to cloud contamination. Please see equation 7 below for more 

information.  

Equation 7. Algorithm of evergreen forest and shrubbery adapted from Xiao et al. (2005) 

𝐸𝑣𝑒𝑟𝑔𝑟𝑒𝑒𝑛 𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑛𝑑 𝑠ℎ𝑟𝑢𝑏𝑏𝑒𝑟𝑦 = 𝑁𝐷𝑉𝐼 ≥ 0.7 𝑜𝑟 𝐿𝑆𝑊𝐼 > 0.15 

3.7.3 Slope masking 

The raw data used to compute slope is the SRTM – the digital elevation model (DEM) which was 

downloaded from the USGS database. Using the Spatial Analyst tool that is available from 

ArcGISPro, the slope layer was computed. Xiao et al. (2005) eliminated the area above an altitude 

of 2,000 metres and any areas sloping higher than two degrees out of their study. However, this 

study found that lowland paddy rice is grown in almost every altitude of elevation where flat land 

exists (Linquist et al. 2006). Therefore, to maintain the flat area, this study excluded any pixels 

greater than 10 degrees in slope, regardless of the elevation, because of the associated vertical 

errors of the SRTM-DEM in the different continental regions which range from 5 metres to 10 

metres (Gesch, Muller & Farr 2006).  

3.8 Estimation of rice pixels 

3.8.1 Extraction of the potential rice area and vegetation indices by Agro-Ecological Zone 
(AEZ) 

Six Agro-Ecological Zones (AEZ) were identified in Lao PDR. They are the Vientiane Plain, the 

Northern Lowlands, the Northern Highlands, the Mekong Corridor, the Central and Southern 

Highlands, and the Bolaven Plateau (Li, El Solh & Siddique 2019). In order to estimate the date of 

rice transplanting and its growth pattern, the potential rice area and vegetation indices were 

extracted for the individual AGE zones. The data management tool "Extract by mask" in ArGISPro 

was used to extract potential rice fields and vegetation indices from each Agro-Ecological Zone. 

However, due to cloud contamination, the Bolevan Plateau AEZ was excluded from the data 

analysis. Rice phenology change analysis in this study focused on the EVI and LSWI from May to 
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November for rainfed, lowland rice (Linquist et al. 2006). Since cloud contamination can affect the 

temporal analysis of rice crops, it is essential to have sufficient pixilation or data to allow for this 

analysis. However, in this study, any time series that had cloud contamination beyond 50% was 

excluded before the temporal analysis was performed by using a trend line graph of the EVI and 

LSWI. Appendix 2 illustrates further information about the AEZs.  

3.8.2 Spot check of VIS trend 

Verification of the vegetable indices was carried out using Landsat-8 OLI imagery. The intention 

was to use the higher spatial resolution imagery to double-check if those vegetation indices 

computed with MODIS data are accurate. Two AEZs, the Vientiane Plain and the Mekong 

Corridor, were selected. These two zones were selected because they have the highest proportion 

of rice production. To carry out a spot-check, the area of interest (AOI) was digitised based on the 

pixel of potential rice area that was already identified using MODIS data. After the AOI within the 

potential rice fields was created, the NDVI and LSWI were extracted from the indices computed 

with Landsat-8 OLI imagery. The line plots were created to compare if the trends of the Lansat-8 

OLI and MODIS are identical. An AOI area of 103 square kilometres was created in the Vientiane 

Plain AEZ and an AOI of 137 square kilometres was created in the Mekong Corridor AEZ.  

3.8.3 Finalisation of the rice mapping 

With MODIS data at a spatial resolution of 500 metres, a pixel can include non-rice areas such as 

canals and grassland. If this data remains, it can affect the quality of rice yield forecasts where 

identified rice fields contain no rice. It is essential to ensure that the rice extent contains pixels with 

rice crops. Some studies which offer better data to cross-check this information, such as field 

missions, could potentially address this issue. Due to the weakness of the NDVI, for instance, 

because of the effect of the atmosphere or saturation in areas with high biomass, the EVI was 

chosen as the indicator to detect vegetation changes in the rice cycle (Sun, H-s et al. 2009). To 

estimate the number of rice pixels, it was assumed that a rice pixel is a pixel with a potential value 

of the EVI. Thus, if any pixel has at least more than half of the maximum EVI value in the growing 

cycle for more than 40 days following the transplanting date, this pixel was assigned as a rice pixel 

(Bridhikitti & Overcamp 2012; Xiao et al. 2006; Xiao et al. 2005).  

3.9 Estimation of district rice production  

3.9.1 Scaling factors analysis with simple linear regression 

While the provincial rice yield is available, the more useful data is at the district and smaller spatial 

levels. Thus, it is crucial to estimate rice production at the lowest possible level. In order to 

estimate rice yield at the district level, the scaling factor of the district yield was required. In order 

to find the district rice yield, the Linear Regression model in each AEZ was carried out. The study 

assigned the provincial rice yield as the dependent variable and the remotely sensed rice area as 
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an independent variable (Son et al. 2013). Different AEZs may result in different yields because 

each zone has a different climate and soil quality. Within each AEZ, several provinces and districts 

are part of the zone. However, vice versa, one province may be spread across more than one 

zone. This study assumed that the subordinated districts has the same yield as of its AEZ. Thus, 

to estimate the yield of each AEZ, the estimated area was summarised by province using the 

Zonal Statistics as Table tool from ArcGISpro. The zonal estimated extent of rice was joined into 

the provincial vector files that have the same format with one of the yields. Then, the provincial rice 

yield and estimate area were intersected with AEZ. Thus, AEZ had its corresponding province’s 

data. The attribute table was transferred into Excel spread sheet before, the Simple Linear 

Regression model was run by AEZ to determine the yield of individual AEZs using the equation 

displayed in Equation 8. Also, Appendices 8 and 9 display zonal rice yield and planted area from 

Lao Statistics Bureau.  

Equation 8. Linear regression model 

𝑌 = 𝑏 𝑋 + 𝑎 

Where:   

𝑌 =Yield/scaling factor 

𝑋 =Remotely sensed area 

𝑏 =Slope  

𝑎 =Intercept of Y 

With one AEZ being excluded from the analysis, only five regression models were carried out. The 

Vientiane Plain had four data points for four provinces, the Northern Lowlands model had twelve 

provinces or points, the Northern Highlands had eleven, the Mekong Corridor six, and the Central 

and Southern Highland model had six data points also.  

3.9.2 Rice yield interpolation with the Dasymetric modelling technique 

Once the rice yield or scaling factor of each AEZ becomes available, the process of estimating 

district rice production becomes possible also. A number of studies have applied the average 

value of vegetation indices derived from the heading stage, which is the critical stage of rice 

reproduction as a predictor to estimate rice yield (Cai & Sharma 2010; Huang et al. 2013; Son et 

al. 2014). This study used the traditional cartographic mapping technique; for instance, 

‘Dasymetric’ Mapping, which is used extensively to address the spatial information gap in 

population statistics (Su, M-D et al. 2010). The strategy was to apply the available aggregated rice 

yield statistics at the provincial and AEZ levels into a smaller spatial scale and make small-area 

estimates using the auxiliary dataset (Petrov 2012). Since the estimated rice extent is spatially 
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distributed at the pixel level, so this dataset was used as a bridge to interpolate the rice yield for 

each pixel (Cai & Sharma 2010). First, the process involved summarising the remotely-sensed 

areas into district levels using the Zonal Statistics as Table tool in ArcGISPro and then merging 

this information into district boundaries as a vector file. This vector file was then converted to the 

raster format, which used the same grid as MODIS data at a 500-metre spatial resolution, while 

keeping all the other parameters the same as the input file. A similar technique was carried out for 

rice yield at the AEZ level. Thus, the two raster files that were in the grid were available for use. 

Finally, the rice yield and the estimated extent of rice were further processed to generate district 

rice production following a formula illustrated in Equation 9 below.  

Equation 9. Formula for forecasting rice production  

𝑃 = 𝐴 ∗ 𝑌 

Where:  

𝑃 = Rice production (Tonnes) 

𝐴 =Remotely sensed area (Ha) 

𝑌 =Rice yield (Tonnes/Ha) 

3.10 Validation of the results 

The credibility assessment of the method is another essential element to help analysts understand 

how robust the methodology is. Ideally, accuracy assessment involves some field missions and 

independent images. They can be used as a reference image to make comparisons. However, in 

absence of such imagery, this thesis adapted the two methods of mean error and root mean 

square error to determine how accurate the results of the study are (Clauss et al. 2018; Son et al. 

2014).  

3.10.1 Correlation of the remotely-sensed area and official figures by Agro-Ecological Zone 
and province 

Given the lack of field mission or ground truth data, the accuracy assessment of the results of this 

study used an alternative method. A comparison of estimated results with available official 

statistics was applied extensively as the preferred option or in response to the absence of field 

information (Gumma et al. 2014; Peng et al. 2011; Son et al. 2014). Thus, a scatter plot or linear 

regression model was applied to evaluate the relationship of the estimate and statistics, so that 

consistency of the results can be measured (Su, X, Yan & Tsai 2012).  

The calculation of this relationship is simple. The remotely-sensed rice area was assigned as the 

independent variable, while the provincial rice planted area was an independent variable (Dao & 
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Liou 2015). The squared value and correlation coefficients were assessed to evaluate the 

robustness of the study methods. The significant relationship of the estimate and results indicate 

that the method applied to estimate the results are valid (Cai & Sharma 2010; Xiao et al. 2006; 

Xiao et al. 2005).  

Six simple linear regression models were carried out. This included five models for each AEZ and 

the national model that used all 18 provinces or data points for analysis. Equation 10 illustrates 

how the analysis was executed.  

Equation 10. Linear regression model  

𝑌 = 𝑏 𝑋 + 𝑎 

Where:   

𝑌 =Yield/scaling factor 

𝑋 =Remotely sensed area 

𝑏 =Slope  

𝑎 =Intercept of Y 

3.10.2 Root Mean Square Error  

In this study, the root means square error (RMSE) and the mean absolute error (MAE) were 

applied to validate the results of the study. Due to the unavailability of rice production at the district 

level, the provincial land area of rice was therefore used for analysis against the actual data from 

the official source. It was assumed that if the RMSE and MAE are between 10-20%, the estimated 

results would be considered reasonable. The study method is indicated as robust when both the 

RMSE and MAE are less than 10% compared to the actual data (Son et al. 2014). The root mean 

square error measures the weighted average error of the difference between the estimate and the 

actual statistic. By contrast, the mean absolute error measures the weighted average of absolute 

errors. The difference between the two is the sensitivity to the scale of errors. While the MAE is 

less sensitive to errors, the RMSE aims to detect a large number of errors in the comparison 

(Willmott & Matsuura 2005). Calculation of these two statistics is simple and the below equation 

illustrates how to compute them. Equation 11(a) illustrates how the root mean square error was 

computed, while equation 11(b) shows how the mean square error was calculated.  
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Equation 11. Algorithm for the Root Mean Square Error 

(𝑎 ).              𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦�̂� − 𝑦𝑖  )2

𝑛

𝑖=1

 

(𝑏).                 𝑀𝐴𝐸 =
1

𝑛
∑(𝑦�̂� − 𝑦𝑖  )

𝑛

𝑖=1

 

Where:   

n = Number of provinces, 

yî = Official rice planted area, 

𝑦𝑖 = Estimated rice extent  
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CHAPTER FOUR: RESULTS 

4.1 Results of MODIS data pre-processing 

4.1.1 Spectral profile investigation results of the MODIS data 

MOD09A1 is an atmospherically and geometrically corrected product. However, radiance is 

converted to the standard reflectance scale of 0 to 1 (Deus & Gloaguen 2013). The data analysis 

was based on the scale of the corrected image. To ensure the data used in the study correctly 

represented the Earth’s surface, a spectral profile investigation for some key features was carried 

out. The spectral profile is a measure of reflectance in proportion to an object’s response to the 

sun’s energy known as electromagnetic radiation. Objects on the Earth’s surface respond to this 

energy differently depending on the physical and chemical composition of the object. Figure 7 

illustrates the spectral profile of vegetation, water, bare soil, and built-up. It found that vegetation 

has low reflectance in the visible wavelength (Blue, Green, and Red) because the chlorophyll of 

healthy vegetation absorbs electromagnetic energy while its reflectance is high in the NIR band. 

Bare soil results in an increasing reflectance where higher wavelengths are needed to detect it, for 

instance, in the NIR and SWIR bands. This similar behaviour was observed for the built-up. By 

contrast, water has low reflectance in all wavelengths because it absorbs energy (Jensen 2007; 

Khorram et al. 2012). However, in this case water was mixed between rivers and wetlands where 

different quality of water presented and resulted in higher reflectance in some spectral bands. 

Figure 7. Spectral profile investigation results 
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4.1.2 Cloud mask and cloud exclusion 

Cloud detection and cloud elimination were carried out on all satellite scenes before data analysis. 

Based on the analysis of this data, it was discovered that cloud contamination is high during the 

monsoon season running from mid-May until late September. However, not all time series of this 

type of imagery were damaged with high amounts of cloud cover. Figure 8 indicates the overall 

cloud percentage over the whole year with a focus on the monsoon season. It shows that during 

the non-monsoon season, from November to April, the percentage of cloud cover is lower than 

10%. However, during the monsoon season from May to October, some time series were affected 

by up to 70% cloud contamination.  

The time-series analysis of rice crops was carried out by AEZ, and the cloud percentage for each 

time series in each AEZ is presented in Appendices 11-15. The temporal analysis of the 

vegetation index of rice fields needs sufficient pixilation to allow for a reliable fluctuation of 

vegetation in each time series, so imagery with cloud cover above 50% was excluded from the 

temporal analysis in turn. Appendix 11 illustrates cloud contamination over the Vientiane Pain 

AEZ. It shows that there are three time series which have cloud cover higher than this threshold; 

for instance, on May 24, August 12, and September 5.  

The percentage of cloud cover in the Northern Highlands AEZ ranges from 1% in the dry months 

to 64% during some months of the wet season. In this AEZ, there are three time series that were 

contaminated with cloud cover beyond 50%, being August 12, August 28, and September 5 (see 

Appendix 12). Furthermore, in the Northern Lowlands AEZ, the percentage of cloud cover is up to 

70% during some of the wet months (see Appendix 13). The contamination of cloud cover was 

even more severe in the Mekong Corridor AEZ, in which some time-series images were damaged 

by cloud cover as high as 61% on September 5, 70% on June 25, and 81% on August 12 

(Appendix 14). Also, the severe effect of cloud cover was observed in the Central and Southern 

Highlands AEZ, with four time series being affected by more than 50% of cloud cover (Appendix 

15).  
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Figure 8. The overall percentage of cloud contamination during the rice-growing season 

 

4.2 Results of Landsat-8 OLI data pre-processing 

4.2.1 Top of atmosphere reflectance and spectral profile investigation 

Similarly, the dataset that was used to verify the results of the vegetation index derived from 

MODIS needed to be investigated for whether the reflectance is correct. Overall, this investigation 

found that all the selected features of water, vegetation, bare soil, and build-up are consistent with 

the other corrected image. Figure 9 shows that vegetation has low reflectance in bands 2, 3, and 4 

(Blue, Green, and Red), and high reflectance in band 5 (Near Infrared). This consistency is found 

also for bare soil, builtt-up, and water.  
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Figure 9. Spectral profile investigation results 

 

4.2.2 Cloud cover and shadow exclusion in Landsat imagery 

Since cloud is a typical issue during the optical time for rice farming, it is difficult to find images 

with no cloud cover or shadow for an equal period to complete the time-series image. The problem 

is critical for Landsat imagery that has a lower temporal resolution, for instance, 16 days. However, 

from the available scenes obtained for this study, the cloud occupies up to 30% of the imagery in 

scene (a) and nearly 60% in scene (b), as displayed in Figure 10.  

Figure 10. Cloud contamination in the spot-check site 

(a) Scene 1 - Vientiane Plain   (b) Scene 2 - Mekong Corridor 
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4.3 Results of vegetation and water indices 

4.3.1 Normalised Difference Vegetation Index (NDVI)  

The Normalised Difference Vegetation Index (NDVI) is a ratio between the Red and NIR bands of 

the optical image, ranging from -1 to +1. The NDVI measures photosynthesis activity of vegetation 

on the Earth’s surface. A high NDVI refers to the density of ‘greenness’, indicating healthy 

vegetation, while a low NDVI indicates the moisture stress that occurs with unhealthy vegetation. 

Applications of the NDVI vary in science, for instance, it can be used for drought monitoring 

(Chandrasekar et al. 2010) or including crop yield estimations (Huang et al. 2013). The application 

of the NDVI in this thesis project was to detect the temporary flooding period of rice crops when 

farmers transplant their rice. Specifically, the NDVI is useful to estimate bodies of water and forest 

cover, enabling the process of separating rice fields from other areas (Sun, H-s et al. 2009; Xiao et 

al. 2006; Xiao et al. 2005). Figure 11(a) shows the satellite image of the base map indicating one 

part of the study area. The purpose here was to check if the NDVI, which is shown in 11(b), 

correctly computes and represents different land cover. Thus, Figure 11(b) illustrates how the 

NDVI represents features of the Earth’s surface in one of the time series. In this picture, the green 

colour refers to areas of vegetation. By contrast, yellow through to red refer to bare soil and bodies 

of water which lack green vegetation.  

Figure 11. NDVI representation of the Earth’s surface   
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4.3.2 Enhanced Vegetation Index results 

The Enhanced Vegetation Index (EVI) is the improved version of the NDVI. If compared with the 

NDVI above, the EVI represents the features better, for instance, the Mekong River or water is 

shown with the EVI better than what the NDVI can display. The reason for this is due to sensitivity 

to the effects of atmosphere, vegetation, and soil background, which were all removed. Similarly to 

the NDVI, the EVI is widely applied in crop yield estimates, and most likely this index offers an 

alternative to the NDVI for rice yield estimates given its lower sensitivity to the issues described 

above (Son et al. 2013). The application of the EVI in this study is crucial, for instance, in 

contributing to the detection of temporarily flooded areas of rice as well as the contribution to the 

finalisation of the rice yield forecasts. The EVI presents the Earth’s surface in the ratio of -1 and 

+1. Also, Figure 12(b) illustrates how the EVI responds to the environment. 

Figure 12. Response of the EVI to the environment 

 

 

 

4.3.3 Land and Surface Water Index results 

The Land Surface Water Index measures the moisture element of the vegetation canopy which 

interacts with sunlight (Gao, B-C 1996). Same as the other vegetation indices, the ratio of the 

liquid content of water or moisture ranges from -1 to +1. A low value in the LSWI indicates a low 

level of moisture in the vegetation while a higher value signals higher levels of moisture and 

bodies of water. Figure 13(b) illustrates how features on the Earth’s surface interact with the sun’s 

energy. Vegetation and rivers reflect high LSWI in blue while dry and bare soil reflects low 

moisture in yellow through to red. 

 

(a) The Earth’s surface (b) EVI 



 

44 

Figure 13. Liquid water content of vegetation measured with LSWI 

 

 

 

4.3.4 Results of temporarily flooded areas 

The temporarily flooded areas from each image between July and August were summarised into 

one layer as the potential rice extent. This flooded area is the initial output of the extent of lowland 

rice. However, the temporarily flooded area needs more processing to eliminate non-rice areas, 

such as permanent water body, forest, and shrub pixels, and those pixels where water or moisture 

is higher than vegetation during this period. Figure 14 illustrates the temporarily flooded areas in 

the whole country. It found that a higher density of pixels is located where there are dams, rivers, 

and thick forest. Overall, the total of temporarily flooded areas is about 10,063,678 hectares. 

Hence, this area will be further processed as input for mapping the extent of rice in the following 

steps.  
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Figure 14. Temporary flooding areas 
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4.4 Results of the development of non-rice masking layers  

4.4.1 Non-rice area masking 

Non-rice areas such as permanent water, forest, and highly topographical areas where lowland 

rice is not commonly planted were excluded from the temporary flooding areas. Appendices 3, 4, 

and 5 display the permanent water layer, the forest or shrub layer, and steep sloping areas 

respectively. First, the permanent water illustrated in Appendix 3 is a combination of the water 

bodies derived from Global Land Cover and all the flooded areas – the combination of flooding 

from all the time-series images (that is, 46 time-series). The surface area of the water recorded 

totals approximately 304,670 hectares. Secondly, the forest layer was developed from the NDVI 

and LSWI, which have a high staple value throughout the year. Appendix 4 illustrates forest and 

shrubbery cover around 16,104,309 hectares. Also, the steep sloping terrain layer is displayed in 

Appendix 5. The highly topographical areas are mainly in the North and Eastern parts of the 

country, covering about 12,487,499 hectares.  

4.4.2 Result for potential rice areas after non-rice areas are excluded 

Potential rice areas following the exclusion of non-rice areas are provided in this section. The 

temporary flooding areas declined from 10,063,678 hectares to 1,028,804 hectares after all the 

non-rice areas were eliminated. It was found that most of the area, especially in the northern and 

eastern parts of the study area, were eliminated. This is consistent with the characteristics of the 

AEZs where the northern and eastern AEZs spreading from north to south are constrained with 

highly topographical conditions. However, this area will need further analysis to find the actual rice 

pixels by taking into account the differences of each AEZ and analysing its EVI. Below, Figure 15 

displays this potential extent of rice. 
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Figure 15. Potential lowland rice areas  
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4.5 Results of the rice pixel estimation 

4.5.1 Identification of rice transplanting dates by Agro-Ecological Zone 

This section provides results for the finalised extent of lowland rice by taking AEZ character-

specific information into account. First, the identification of rice transplanting dates is essential to 

estimate the extent of rice. The EVI was chosen instead of the NDVI for the change in ‘greenness’ 

analysis because the EVI has less sensitivity to noise than the NDVI. Figure 16 displays changes 

of the EVI and LSWI in the potential rice fields of the Vientiane Plain AEZ. It found that the EVI is 

lower than the water index on July 3, which is considered the date for transplanting rice in this 

AEZ. Thus, the rice pixel analysis using the EVI starts from this timeframe.  

Figure 16. Identification of the rice transplanting date for the Vientiane Plain AEZ 

  

 

Figure 17 shows fluctuations in the EVI and LSWI in the Northern Lowlands AEZ. It shows that the 

moisture or water condition starts to increase above 0, which signals the onset of the rainy season, 

before it declines to the same level in early December, which is the end of the rainy season. In 

general, the EVI fluctuates higher than the water index throughout the year, however, the EVI is 

lower than the water index when farmers flood their rice fields for transplanting rice seedlings. The 

date of transplanting rice is found to be at the same time as with the Vientiane Plain AEZ (Figure 

16), while the fluctuation of the EVI is slightly different.  
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Figure 17. Identification of the rice transplanting date for the Northern Lowlands AEZ 

 

Identification of the transplanting date for rice crops in the Northern Highlands AEZ is displayed in 

Figure 18. Similarly, the transplanting date of rice is found to be at the same time as the Vientiane 

Plain and Northern Lowlands AEZs.  

Figure 18. Identification of the rice transplanting date for the Northern Highlands AEZ 
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in the Mekong Corridor. The EVI is lower than the water index on August 20 in the Mekong 

Corridor (Figure 19), while the Central and Southern Highlands farmers transplanted their rice 

seedlings in mid-August (Figure 20). 

Figure 19. Identification of the rice transplanting date for the Mekong Corridor AEZ  

  
 

Figure 20. Identification of the rice transplanting date for the Central and Southern 
Highlands AEZ  
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4.5.2 Result of the vegetation indices spot check 

Validation of the temporal analysis of the vegetation indices which used MODIS imagery was 

carried out using the indices computed with a higher spatial resolution image or Landsat-8 

imagery. Figure 21(a) shows the temporal changes of the NDVI and LSWI computed with Landsat-

8 imagery in the Vientiane Plain AEZ while Figure 21(b) shows the phenological change of 

potential rice cropping in the Mekong Corridor AEZ. It was found that the trend of the vegetation 

and water index computed with Landsat-8 imagery is consistent with that computed using MODIS 

data. For instance, the NDVI was low and fluctuated close to the peak level of the LSWI in early 

July, which corresponds to the findings found for the same AEZ in Figure 16. Furthermore, the 

findings for the Mekong Corridor in Figure 21(b) are slightly different from the findings for the same 

AEZ in Figure 19. However, this difference is only seven days. Hence, the spot check using higher 

spatial resolution imagery can indicate the fluctuation of indices computed with coarse spatial 

resolution imagery like MODIS, which ensures that the trend of indices used to compute the extent 

of rice farming is reliable.   

Figure 21. Vegetation index spot check 

(a) Vientiane Plain AEZ 

 

(b) Mekong Corridor AEZ 
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4.5.3 Result of the rice pixel estimation 

Following the identification of the rice transplanting date in each Agro-Ecological Zone, it is 

possible to estimate the potential extent of rice farming. This section provides the output of the EVI 

temporal analysis for the potential rice fields. Figure 22(a) illustrates the estimated extent of rice 

after carrying out the EVI analysis for each AEZ. At this final stage, the temporary flooding area 

reduced to 29,368 pixels, which is equivalent to 688,009 hectares. Spatially, it looks similar to the 

previous map in Figure 15 after the non-rice areas were excluded. However, the area was actually 

about 33% per cent less than in Figure 15. Thus, this is the finalised extent of rice which could be 

used to forecast the rice yield. Refer to Appendix 5 for an improved visualisation of this finalised 

extent of rice farming.  

Figure 22. Finalised extent of lowland rice 

  

(a). Overall finalized rice extent 
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(b). High potential rice field 

(c). Misclassification 
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However, this result needs to be interpreted with caution since it contains both reasonable and 

some unreasonable estimates. The estimated extent of rice contains some suspicious rice areas. 

It was found that there are some odd pixels which were identified as rice areas, but these pixels 

are located in wetland areas or where there is a dam Figure 23(c). The dam and wetlands are 

uncommon locations for rice crops. This inaccuracy is caused by the similarity of the spectral 

profile of aquatic plants that grow in wetlands along the edge of water reservoirs. However, Figure 

23(b) illustrates the area where there is a high possibility of rice fields being situated. Thus, the 

results of the estimation from this method may need to be applied and interpreted with a margin of 

error.   

4.6 Results of district rice production estimations  

4.6.1 Estimation of the rice yield for each AEZ 

Despite the availability of rice yields at the provincial level, rice production at the district level is 

preferred for better planning and targeting in terms of food security and other program monitoring. 

Lao PDR has six Agro-Ecological Zones and each Zone has several subsequent provinces or 

districts of administration. Hence, the AEZ is the key to forecast district-level rice production 

accurately because rice yield is not determined by administrative boundaries, but climate and 

Agro-Climatic Zones do influence rice yield(Li, El Solh & Siddique 2019). Thus, this assumption 

was applied here with the rice yield estimation. Table1 shows the results of a simple linear 

regression model analysis which found that the coefficient which refers to rice yield ranges from 

4.3 in the Northern Highlands AEZ to 4.8 in the Northern Lowlands AEZ. However, we must also 

consider the p-value which indicates a significant level of the yield estimate. The p-values of the 

estimates for the Northern Lowlands and Northern Highlands AEZs were higher than the 

significant level (0.05), while the correlation of rice yield and the independent variable (remotely-

sensed extent of rice) were high for all estimates. Specifically, the Vientiane Plain AEZ and the 

Central and Southern Highlands AEZ are recorded as 0.96, while the lowest degree found in the 

Northern Highlands AEZ is 0.86. These results are useful for the estimation of rice yield in smaller 

spatial units.  

Table 1. Summarised parameters of yield estimate by AEZ 

Agro-Ecological Zone R-square Coefficient P-value 

Vientiane Plain 0.96      4.7 0.002967977 

Northern Lowlands  0.92 4.8 2.17696E-07 

Northern Highlands  0.86 4.3 1.42185E-05 

Mekong Corridor 0.95 4.5 0.000137735 

Central and Southern Highlands 0.96 4.5 0.000145006 
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Also, a strong correlation within each AEZ shows a consistent direction from all data points or 

provinces. Figure 23 illustrates some results of the correlation within each AEZ.  

Figure 23. Scatter plots of the estimated area and provincial rice yield for each AEZ 

 

 

4.6.2 District rice production  

This section provides the outputs from applying the GIS “Dasymetric mapping” technique to 

estimate rice production at the district level. Figures 24(a) and 24(b) present the estimated extent 

of rice and its production spatially using the pixel-based technique. It shows that higher rice yields, 

as well as the extent of lowland rice, is mostly distributed along the western side of the country, 

from the central down to the southern parts of the country. By contrast, the Northern and Eastern 

Districts were found to have fewer rice fields and so their production of rice is lower. Thus, the 

estimation of lowland rice at the district level could be useful to others, including food security 

program planners. Refer to Appendices 9 and 10 for more information.   
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Figure 24. Spatial distribution of estimated rice yields at the district level 

 

 

 

 

 

 

 

 

 

4.7 Accuracy assessment of the results 

This section provides detailed results of the accuracy assessment of the method applied in the 

mapping of the extent of rice farming. With the absence of ground truth data and any independent 

auxiliary datasets, validation of this study was carried out by comparing the estimated rice extent 

with the official crop statistics from the Lao Statistics Bureau (LSB). Scatter plots were created 

using the estimated extent of lowland areas planted with rice crops in 2016 as inputs. Specifically, 

the validation was carried out within each AEZ as well as for the national average, as displayed in 

Figure 25(a-f). Overall, it was found that there is a strong relationship between the estimated 

extent of rice and the official statistics. In detail, the correlation value or R2 in all the AEZs range 

from 0.85 to 0.95, and the national level is at 0.95. This proves that the remote sensing method 

produced results containing some level of consistency with the actual data, the census results.  

The analysis discussed above indicates a degree of correlation between the estimated extent of 

rice and the actual number from official statistics. However, the magnitude of the difference 

between the estimations and the actual statistics is missing. Hence, the measurement of the root 

means square errors, as well as the mean absolute errors, needed to be conducted. Since the 

available rice statistics are at the provincial level only, the estimated extent of rice was 

summarised into the provincial level. Table 2 below shows details of the errors after comparing the 

estimated results with the official statistics. Overall, the total estimated rice area is 688,009 Ha. By 

contrast, the official statistic is 771,772 Ha. So, the mean absolute error is -83,763 and the RMSE 

is 14,687 Ha.  

(a) District rice extent (b) District rice yield 
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Figure 25. Scatter plots of the estimated areas and official figures 
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Furthermore, the absolute errors in each province range from 688 hectares in the Vientiane 

Capital to -40,011 hectares in Champasack province, as indicated in Table 2. The underestimation 

of the results tended to be in the northern provinces of Xaysomboon, Luangprabang, Oudomxay, 

Bokeo, Huaphanh, Phongsaly, and Luangnamtha respectively. Meanwhile, some significantly 

overestimated results were also observed in some provinces in the centre and south, such as 

Attapeu, Xiengkhuang, and Xayabouly. Nevertheless, there are some provinces in the Mekong 

Corridor AEZ which have an absolute error of less than 10%. These include the Vientiane Capital 

district, and the Salavan, Savannakhet, Vientiane, and Borikhamxay provinces. This is where the 

majority of rice is grown.   

Table 2. Summary of errors as a result of comparing the estimated extent of rice with 
official crops statistics 

Code Provincial name 

Estimated 
area 

NSO's 
rice area 

Absolute  
errors  

Percent 
of error 

Square  
error 

RMSE 

Ha Ha Ha % Ha squared Ha 

1 Vientiane Capital 54,538 53,850 688 1.3% 473,952   

2 Phongsaly 3,280 7,720 -4,440 -57.5% 19,715,348   

3 Luangnamtha 5,833 9,585 -3,752 -39.1% 14,074,771   

4 Oudomxay 5,529 15,282 -9,753 -63.8% 95,124,694   

5 Bokeo 5,927 14,565 -8,638 -59.3% 74,613,785   

6 Luangprabang 3,046 14,095 -11,049 -78.4% 122,090,754   

7 Huaphanh 6,372 12,770 -6,398 -50.1% 40,931,985   

8 Xayabouly 41,302 32,390 8,912 27.5% 79,425,399   

9 Xiengkhuang 33,993 19,060 14,933 78.3% 222,989,030   

10 Vientiane Pro. 49,478 52,950 -3,472 -6.6% 12,053,578   

11 Borikhamxay' 34,297 37,345 -3,048 -8.2% 9,288,046   

12 Khammuane 59,083 81,330 -22,247 -27.4% 494,915,149   

13 Savannakhet 201,802 191,940 9,862 5.1% 97,251,234   

14 Salavan 72,835 76,520 -3,685 -4.8% 13,578,800   

15 Sekong 6,442 9,250 -2,808 -30.4% 7,882,222   

16 Champasack 74,639 114,650 -40,011 -34.9% 1,600,884,168   

17 Attapeu 27,246 7,170 20,076 280.0% 403,037,486   

18 Xaysomboon 2,366 21,300 -18,934 -88.9% 358,490,914   

    688,009 771,772 -83,763 -10.9% 3,666,821,314 14,686.6 
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CHAPTER FIVE: DISCUSSION AND LIMITATIONS 

This section aims to provide a dialogue aligned with the objectives and research question provided 

in chapter one. It discusses the main findings to provide a basis upon which chapter 6 can conclude 

whether the aim and objectives of the research have been met and satisfactorily addressed. There 

are three main points to be discussed, which are the performance of both the imagery and the 

method used to map the extent of rice farming and forecast rice production at the district level, the 

critical limitations encountered by the study, and possible solutions to any limitations.  

5.1 Performance of optical imagery to map the extent of rice  

5.1.1 Challenges of applying the method to map the extent of rice  

Even if the study chose a better composite product than MODIS could provide, cloud cover and 

cloud shadow remain the critical issue, especially in this tropical monsoon region. As many studies 

have raised regarding the issue of cloud being persistent in optical satellite imagery, so this thesis 

project too encountered the severe effects of cloud contamination (Sun, H-s et al. 2009; Xiao et al. 

2006). The impact is not just on the quality of the data but also on the availability of the vital time 

series that is necessary for temporal analysis of the rice areas. This study had to skip some time 

series from the analysis accordingly. With the missing essential time series, the imagery lost critical 

pixels or information, and this affected the amount of the rice area measured, which potentially 

resulted in the underestimation of rice yields in the study area. Furthermore, the cloud effect 

presented another bias for the results, for instance, overestimation. When cloud pixels remain in the 

dataset, for example, the cloud pixels around the edge of the cloud mask make the NDVI low – 

lower than the value of the water index even. As a result, unnecessary inundated areas were 

detected and counted as potential rice areas, as was the case for estimations in some areas in the 

north where clouds remained (Zhou et al. 2016).  

Another challenge that affects the ability to correctly estimate the extent of rice using optical images 

is the temporal resolution of the available imagery. Despite the high dynamic of crop phenology, 

changes in the temporarily inundated areas of rice fields were significant too. This issue contributed 

to the underestimation of rice field area because the transplanting of rice fields started and finished 

at different times (Sun, H-s et al. 2009; Xiao et al. 2005). Hence, to ensure all potentially inundated 

areas can be detected when seedlings are transplanted, it is essential to have imagery with a high 

temporal resolution. Even if this study used the 8-day composite products of MODIS capable of 

avoiding cloud contamination, the cloud and cloud shadow are still critical (Xiao et al. 2005). 

Although some studies suggest that the daily product of MODIS may work better, the daily product 

will be even more affected (Sun, H-s et al. 2009). When rice crops are not transplanted at the same 

time, there is more opportunity to miss potential rice cropping areas. This incident can occur 

because the rice canopy can cover the water and saturated soil several weeks after transplanting. 
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Thus, despite the potential of the 8-day composite imagery, it could miss changes in rice crop 

development over this time period.  

It is challenging to use MODIS data to detect the extent of rice in mountainous areas. Given the 

characteristics of the terrain, the size of rice fields is relatively smaller than the pixel size, which 

caused errors (Son et al. 2014; Sun, H-s et al. 2009; Xiao et al. 2006). Based on the results of this 

study, a relatively high error was recorded for many provinces, especially those located in the 

Northern Highlands AEZ and the upland areas in the eastern part of the country. The Northern 

Highlands AEZ has relatively steep and mountainous areas with altitudes of up to 2,500 metres 

above sea level (Li, El Solh & Siddique 2019). These highly topographical characteristics limit the 

opportunity for lowland rice cultivation. Consequently, some small areas that are suitable for lowland 

rice farming are located along the streams and in valleys. Thus, with a 500-metre spatial resolution 

MODIS image, the algorithm fails to capture small rice fields, which contributed to underestimated 

rice area data (Tingting & Chuang 2010).  

Furthermore, the inclusion of non-rice areas in some pixels and the confusion for spectral pixels 

between rice crops and aquatic plants both caused results which were sometimes overestimated. 

Due to the large size of the pixels, there must be a mixture of rice and non-rice areas within some 

pixels. Unfortunately, such pixels were counted as rice for some positive values of the EVI and this 

increased the estimate of the extent of rice (Peng et al. 2011). Similarly, the similarity of the EVI 

value between rice pixels and those of aquatic plants or other similar crops can also cause errors of 

overestimation. According to Peña-Barragán et al. (2011), it is challenging to distinguish rice from 

other crops that have similar spectral profiles. This especially becomes an issue in cases where 

there is a similar environment to rice crops within the study area, for example, wetlands or dams 

where aquatic plants and other plants which appear similar to rice are grown (Zhang, G et al. 2015).  

In addition, since the study area is large, different rice crops are grown in different areas within the 

AEZ, thereby posing difficulties in the rice crop temporal analysis. In Lao PDR, there are more than 

ten thousand rice varieties, including six per cent of unidentified varieties (Appa Rao et al. 2006; 

Basnayake et al. 2006; Rao et al. 2002). These rice varieties represent three different life spans of 

the rice crop – early, medium and late varieties – which are grown countrywide. Due to the diversity 

of rice and variations in the rice transplanting date, the trend of the vegetation index was quite noisy. 

These issues can lead to results which underestimate the extent of rice farming. For example, early 

rice varieties would be excluded because they were planted before the study timeframe or before 

the mapping stage took place (Sun, H-s et al. 2009). Because of this issue, some studies modified 

this algorithm to capture the different rice varieties using a detailed crop calendar (Bridhikitti & 

Overcamp 2012).  

Also, utilisation of Landsat-8 OIL to verify some vegetation indices was found useful; however, level-

1 data is challenging and can cause errors if misconduct on the pre-processing step was practiced. 
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As the imagery need atmospheric correction and it needs to apply for all relevant bands(Zanter 

2016; Zhang, HK et al. 2018). Even more, when take time series into account, it would be a huge 

task and cost in time and resources of the project.  

 

5.1.2 The opportunity to apply the method to map the extent of rice farming 

The scale of mapping is another essential criterion to investigate the capacity of the optical image to 

estimate the extent of rice. The review has provided several sensors that have the capacity to cater 

to this scale, including AVHRR and SPOT VGT, which provide 10-kilometre and 1-kilometre spatial 

resolutions (Gumma et al. 2014). However, MODIS offers a better solution for providing the 

appropriate resolution. One tile of a MODIS image covers 1,200 x 1,200 kilometres, better allowing 

for a country-scale estimate, especially since this data has a better spatial resolution of 500 metres 

with daily and 8-day periods. This temporal resolution offers the potential to meet the objectives of 

this study. The study found that MODIS imagery and the method applied produce accurate results in 

the lowland areas where a large proportion of the rice cultivation is located. This means that MODIS 

provides the opportunity to map rice on a large scale in lowland areas, for instance, in the Vientiane 

Plain AEZ and the Mekong Corridor AEZ (Xiao et al. 2006; Xiao et al. 2005). 

Another advantage of using MODIS imagery is that the data is both free and convenient to access. 

These characteristics make it the right choice for researchers and governments to use for further 

research, with the improved capacity for ground monitoring according to their needs (Elshorbagy 

2013). Although other optical images are also free, finding cloud-free imagery with a high temporal 

resolution like MODIS is difficult. Thus, sustainable ground monitoring should not be limited in terms 

of access to data. Access to MODIS is not only a means of addressing the issue of cost but also 

those of the facility and convenience to access the information. MODIS has a professional team that 

maintains the system called the LPDAAC; they developed the product originally and provide ongoing 

support for ease of access to its information (Didan et al. 2015; Tingting & Chuang 2010; Vermote, 

FE, Kotchenova & Ray 2011).  

In addition, the MOD09A1 provided radiometrically and geometrically corrected data. This quality is 

another advantage for the data analysis, which helped save time during the image processing stage. 

In most cases, such corrections cost time, especially when there are multiple data points or 

multitemporal images. Moreover, it was found that the data and the method applied in this study can 

help researchers save on resources (Elshorbagy 2013). One significant benefit that the study 

presents is the reduced reliance on data attained from field missions. The method is flexible in terms 

of accuracy assessment since it offers an alternative way to retrieve ground truth data by comparing 

estimates with the census data (Son et al. 2013; Sun, H-s et al. 2009; Xiao et al. 2006; Xiao et al. 

2005). This increases the efficiency in terms of spending less in terms of monetary resources to 

conduct the mapping.  
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Also, MODIS and the method applied in this study showed a relatively high correlation with the 

census data, especially since there were only minor errors when compared with the actual data. 

According to Son et al. (2013), they considered the method consistent if the errors generated by the 

study are less than 10%. However, this thesis finds that the correlation of this study is 0.95 with an 

RMSE of 14,686 hectares (2%). Thus, when compared with the above comment, it is reasonable to 

assume that the overall method of the study is robust. This accuracy is further reinforced when 

compared to another similar study by Bridhikitti and Overcamp (2012) which reported a correlation of 

0.93 for the r-square. Finally, the results from this study are slightly more accurate than the 

correlation found in Xiao et al. (2006) which was a similar study but for all of South East Asia, 

including Lao PDR. Their results yielded an R2 of 0.79 and an RMSE of 45,000 hectares.  

5.2 Performance of the technique used to forecast district level rice 
production 

The method applied to forecast district level rice production is called ‘Dasymetric mapping’. This is a 

GIS technique which is commonly applied to interpolate population distribution spatially. The 

technique is based on the aggregated population density from the census with auxiliary datasets like 

the Land Use Map, which is in raster format (Su, M-D et al. 2010). Thus, in this study, the ancillary 

dataset is the MODIS dataset of the estimated extent of rice. The method assumed that, within each 

AEZ, rice yield is homogenous across the zone. The study shows that this method is simple and 

straightforward to apply. It does not need much information, just the aggregated information and 

some complementary datasets (Cai & Sharma 2010). The key is the aggregated data either by zone 

or by province. This type of data, that is, rice production statistics, is regularly produced and updated 

by the relevant government agencies.  

Other similar products which are commonly generated by the government and can be used as inputs 

for Dasymetric modelling are choropleth and thematic maps. Since these maps do not spatially 

represent the data sought, the use of these maps requires extra attention as they could mislead the 

researcher in the interpretation of the data sought. They would be more beneficial if they allowed 

spatial analysis at smaller spatial units. Thus, by using the Dasymetric mapping technic, it is 

possible to offer analysis spatially. In turn, planners can see the information more accurately and be 

more effective in their planning accordingly (Bielecka 2005). Also, nowadays, auxiliary datasets such 

as the Global Land Cover map are becoming increasingly more accessible. This presents an 

opportunity to apply this method in regions or countries with a low capacity to typically research such 

information.  

The only issue of this method is the control of the quality of the estimate. Since this method only 

facilitates the estimation stage of the process, it cannot influence the quality of the estimation. It is 

dependent on the spatial interpolation since the result of its estimation depends solely on the 

inputted data from the census and the ancillary dataset (Cai & Sharma 2010). Therefore, some 
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studies claim that the relationship, especially between the input from census and the ancillary data, 

should be assessed and quantified as well. Consequently, some studies propose later generations 

of Dasymetric modelling which take into account the uncertainties associated with the population 

data or the auxiliary datasets (Nagle et al. 2014).      

5.3 Key limitations 

This study did not have access to ground truth data and this is considered the main constraint of the 

study. Ground truth data is useful to check the accuracy of the rice field classification physically. 

However, the field mission and physical collection of field information could not be conducted. This 

issue was due to the timeframe of this study not allowing for ground truth data collection. Thus, it 

would be helpful to confirm the results rather than just relying on census figures which may still lack 

accuracy.  

Furthermore, due to high cloud contamination, this study lacks high spatial resolution imagery for 

use as an independent dataset to capture the rice fields.  Even if Landsat-8 OLI imagery was used, 

the repetitive rate of 16-day temporal resolution made it vulnerable to cloud during the monsoon 

season. Although Sentinel-2 data offers better output in terms of both spatial and temporal 

resolution, this data was limited by the same constraint. It was impossible to find a completed time 

series from these optical satellite images to fulfil the expectations of this study. 

Another limitation of the study is the lack of an actual rice calendar for all the different rice varieties. 

The available crop calendar was quite broad, and it lacked the necessary information to distinguish 

the different rice varieties. This limitation made it difficult to interpret the pattern of different 

vegetation indices. 

Also, the study lacks a detailed Land Cover Map of rice crops, especially in the lowland, rainfed rice 

areas. Although the global Land Cover map was useful for some water body mask development, it 

was unable to provide reliable data for such lowland, rainfed rice crops to satisfactorily undertake the 

accuracy assessment.  
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CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS 

6.1 Summary and conclusion 

This study aimed to investigate and examine the capacity of optical imagery to map the extent of 

lowland, rainfed rice crops, which is necessary for the forecasting of district-level rice production. 

MOD09A1, the MODIS 8-day composite image product with a 500-metre spatial resolution 

acquired in 2016, was used to test all assumptions and hypotheses. The estimated extent of 

lowland, rainfed rice cropping was obtained based on the temporal, inundated areas of the rice 

crops, as estimated using the NDVI, EVI, and LSWI. While the AEZ plays a crucial role in 

determining the main livelihood of its citizens, it also directly influences the suitability of agricultural 

activities, including rice crops. Thus, the AEZ was used to guide the temporal analysis of the 

vegetation index for potential rice crops before the extent of rice cropping was estimated.  Once 

the extent of rice became available at the pixel level, the Dasymetric modelling technique was 

used to spatially interpolate zonal rice yields at the district level.  

The results of the research showed that cloud cover is the critical issue of the optical satellite 

imagery as it affects the quality of the estimates. Some essential time series were severely 

affected, and even if the 8-day temporal resolution imagery was used, the impact remained high. 

Another weakness of the method was the failure to capture the smaller sized rice fields, especially 

in the north and eastern provinces. Another challenge was that this method presents the issue of 

pixel confusion, failing to delineate rice crops in areas with high crop heterogeneity. Also, it was 

discovered that the large size of the pixels made it difficult to measure rice crop areas when there 

are non-rice areas mixed in with the same pixels. All these factors led to the study results having 

relatively high errors in the areas where there is high topography. While these issues persisted, 

the study offers some positive results too. For instance, the wide swath width of MODIS is suitable 

for mapping at the country level. The high temporal resolution of the data helps analysts access 

data better. When compared to other optical satellite imagery, MODIS data offers improved 

flexibility for avoiding cloud contamination. Also, it was found that this study is relatively efficient in 

terms of resources used. For instance, there was almost no cost associated with the data analysis.  

In conclusion, despite the challenges in delineating the extent of rice from the non-rice areas, the 

optical satellite imagery and the method were shown to be a potential source of information for the 

mapping of rice areas. The study showed the potential for mapping rice in lowland areas where 

large scale rice cultivation is present. The results of the research indicate that large errors are 

found with estimating the extent of rice cropping in highly topographical areas while fewer errors 

were encountered in lowland areas. Thus, it may make more sense to apply this method for the 

Vientiane Plain AEZ and the Mekong Corridor AEZ. By contrast, the other Zones require more 

high spatial resolution imagery and other analysis techniques for mapping the extent of rice. Also, 
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the Dasymetric modelling technique is a potential tool to address gaps in spatial data, including 

rice crops. Therefore, the aim of this research yields mixed answers and further research in this 

field is required if the whole country is to be mapped again.   

6.2 Recommendation 

6.2.1 Further research on mapping the extent of rice cropping during the wet season 

In terms of improving the availability of the imagery during the monsoon period, the application of 

active remote sensing, such as the Synthetic Aperture Radar (SAR), can be an alternative data 

source (Le Toan et al. 1997; Shao et al. 2001; Van Tricht et al. 2018). Despite the reliable 

performance of the long-wavelengths of SAR, for instance, the Phased Array type L-band SAR 

(PALSAR) from the Advanced Land Observation Satellite (Zhang, Y et al. 2009), the freely 

available C-band SAR imagery from Sentinel-1 could be a potential solution to fill this information 

gap (Mansaray et al. 2019). Sentinel-1 Synthetic Aperture RADAR (SAR) carries two C-band 

instruments, A and B. Launched by the European Spaceship Agency in 2014, it remains in orbit 

today. This can ensure the sustainability of the data source in the future. Also, with the high 

temporal resolution of up to 6 days, and a wide swath width of the image, this sensor has the 

potential to map rice at the whole country level. More specially, Sentinel-1 provides a high 

geometric resolution of 5 metres by 20 metres, which is capable of mapping small-sized rice fields 

in highly topographical regions (Mansaray et al. 2017; Zhang, Y et al. 2009).  

Since MODIS and the applied method in this study are practical for the mapping of large rice-

cultivated areas, this is favourable to map rice in the Vientiane Plain AEZ and along the Mekong 

Corridor AEZ. This study recommends experimenting with the daily product as well as adopting 

some new techniques. First, experimenting with the daily product instead of the composite product 

because the composite seem to selects only the minimal Blue band reflectance, which could skip 

some changes on crop (Xiao et al. 2005). Secondly, it is worthwhile to experiment with the second 

version of the LSWI because the MODIS product has two short-wave infrared bands that are 

sensitive to water. The longer wavelength band, which is the Short Wave Infrared Band (2,105–

2,155 nanometres), could be more effective in detecting water (Xiao et al. 2005). Also, to better 

deal with the noise caused by cloud cover, after ensuring Quality Assurance from the product was 

enabled, gap-fill algorithms are necessary to smooth the trends of the indices. Some studies adopt 

the method “Empirical Mode Decomposition” (Son et al. 2013). In addition, it may be worthwhile to 

experiment with the Gaofen-4 satellite, which is a Chinese Earth Observation Satellite. The 

satellite provides a time series of optical images with a spatial resolution of 50 metres and a high 

temporal resolution (Xia et al. 2019; Zhang, T et al. 2018). This may be another solution in addition 

to using MODIS.  
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In addition, to address the issue of confusing the spectral profile of rice crops with non-rice crops, 

an object-based analysis may be a better solution to such an issue. Rather than using individual 

pixels as in this study, the object-based method uses groupings of the pixels and statistical 

parameters to segment similar pixels before analysing them and classifying any rice crops 

(Kontgis, Schneider & Ozdogan 2015; Peña-Barragán et al. 2011; Tingting & Chuang 2010). Also, 

in response to the absence of useful information for the accuracy assessment, it is recommended 

to adopt an alternative solution. It is recommended to find and acquire a higher spatial resolution 

dataset to classify as the land use map (Tingting & Chuang 2010). Once the reliable land cover 

map is available, the areas of interest (AOI) are randomly selected and an accuracy assessment 

may be conducted with Kapa, producer, and user indices. However, where fieldwork is feasible, it 

is best to physically inspect the classification of the study using GPS technology and local 

knowledge of rice areas (Gumma et al. 2011). Fieldwork needs to be conducted at around the 

same time as the mapping exercise to ensure the consistency of the fields and the modelling.  

6.2.2 Mapping of the extent of rice upland 

Although upland rice is not a part of this study, further research and experimentation are 

recommended regarding the best possible method for mapping the extent of upland rice cropping. 

Although this rice system accounts for only ten per cent of the nation’s rice production, it plays a 

vital role in the food security of the rural communities and the poor (Heinimann et al. 2013; 

Krishnamurthy, Chong & Poungprom 2015; Linquist et al. 2006). The nature of upland rice 

cultivation is that it lacks surface water. Nevertheless, some studies use the same algorithm 

applied in this study. They still, however, experience a high degree of uncertainty and it is not 

recommended to use this algorithm with the mapping of upland rice (Tingting & Chuang 2010; 

Xiao et al. 2006). Given the nature of upland rice farming, cultivation involves slash and burn 

cultivation or shifting cultivation. Further research regarding detecting changes in land use is 

essential to delineate this rice ecosystem from other land cover classes (Hurni, Hett, Epprecht, et 

al. 2013).  

6.2.3 Mapping the extent of irrigated rice 

Based on the lessons learnt from this research, there is an issue with the mapping of small rice 

fields, especially in highly topographical areas. In general, irrigated rice is relatively smaller in 

terms of surface area than lowland, rainfed rice cultivation, so a high spatial resolution image is 

required to capture irrigated rice fields (Xiao et al. 2006). Fortunately, farmers in Lao PDR cultivate 

irrigation rice only in the dry season where cloud cover may not be as problematic as during the 

monsoon season. In this case, optical satellite imagery may be a potential source of data. Thus, it 

is worthwhile experimenting with free optical high-resolution imagery like Landsat-8 OLI and 

Sentinel-2. It is flexible as to which classification method is applied. Generally, both pixel and 

object-based methods are applied extensively. Zhou et al. (2016) use Landsat-8 OLI with a pixel or 

phenology-based method to map the rice fields, which has been found to yield a more accurate 
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result compared to object-based methods. However, Nguyen, TTH et al. (2012) used the NDVI to 

generate a hyper-temporal image time series using a ten-year time series of data. They used 

unsupervised ISODATA with a supplementary field trip and achieved 94% accuracy. Thus, the 

classifier is not as important as the spatial and temporal resolution of the image for mapping 

irrigated rice.
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Appendix 1. Map of administration of Lao PDR 
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Appendix 2. Map of the Agro-Ecological Zones (AEZ) 
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Appendix 3. Map of permanent water layer 
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Appendix 4. Map of the forest layer 
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Appendix 5. Map of the slope layer   
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Appendix 6. Map of lowland rice extent  
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Appendix 7. LSB map of rice-planted areas by province 
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Appendix 8. LSB map of rice production by province 
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Appendix 9. Map of remotely-sensed extent of rice by district 
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Appendix 10. Map of estimated rice production by district 
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Appendix 11. Summary table of cloud contamination in the Vientiane 
Plain AEZ 

No Date 

Pixel Count Percentage 

Cloud 
Non-
cloud Total Cloud 

Non-
cloud Total 

1 8-May 129 35,777 35,906 0% 100% 100% 

2 16-May 3,328 32,578 35,906 9% 91% 100% 

3 24-May 23,588 12,318 35,906 66% 34% 100% 

4 1-Jun 5,289 30,617 35,906 15% 85% 100% 

5 9-Jun 3,116 32,790 35,906 9% 91% 100% 

6 17-Jun 2,642 33,264 35,906 7% 93% 100% 

7 25-Jun 5,079 30,827 35,906 14% 86% 100% 

8 3-Jul 14,729 21,177 35,906 41% 59% 100% 

9 11-Jul 2,330 33,576 35,906 6% 94% 100% 

10 19-Jul 949 34,957 35,906 3% 97% 100% 

11 27-Jul 900 31,961 32,861 3% 97% 100% 

12 4-Aug 276 32,585 32,861 1% 99% 100% 

13 12-Aug 23,697 12,209 35,906 66% 34% 100% 

14 20-Aug 5,173 30,733 35,906 14% 86% 100% 

15 28-Aug 12,033 23,873 35,906 34% 66% 100% 

16 5-Sep 30,346 5,560 35,906 85% 15% 100% 

17 13-Sep 1,600 34,306 35,906 4% 96% 100% 

18 21-Sep 1,605 34,301 35,906 4% 96% 100% 

19 29-Sep 1,489 31,895 33,384 4% 96% 100% 

20 7-Oct 1,548 34,358 35,906 4% 96% 100% 

21 15-Oct 97 33,287 33,384 0% 100% 100% 

22 23-Oct 2,898 33,008 35,906 8% 92% 100% 

23 31-Oct 56 33,328 33,384 0% 100% 100% 

24 8-Nov 1,133 34,773 35,906 3% 97% 100% 

25 16-Nov 443 32,941 33,384 1% 99% 100% 

26 24-Nov 3 35,903 35,906 0% 100% 100% 

27 2-Dec 0 34,040 34,040 0% 100% 100% 

28 10-Dec 0 34,040 34,040 0% 100% 100% 

29 18-Dec 3 34,037 34,040 0% 100% 100% 

30 26-Dec 6 34,037 34,043 0% 100% 100% 
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Appendix 12. Summary table of cloud contamination in the Northern 
Highlands AEZ 

No Date 

Pixel Count Cloud percentage 

Cloud 
Non-
cloud Total Cloud Non-cloud Total 

1 8-May 2,549 312,946 315,495 1% 99% 100% 

2 16-May 45,322 270,173 315,495 14% 86% 100% 

3 24-May 82,672 232,823 315,495 26% 74% 100% 

4 1-Jun 93,355 222,140 315,495 30% 70% 100% 

5 9-Jun 82,770 232,725 315,495 26% 74% 100% 

6 17-Jun 46,785 268,710 315,495 15% 85% 100% 

7 25-Jun 59,317 256,178 315,495 19% 81% 100% 

8 3-Jul 126,992 188,503 315,495 40% 60% 100% 

9 11-Jul 98,418 217,077 315,495 31% 69% 100% 

10 19-Jul 66,275 249,220 315,495 21% 79% 100% 

11 27-Jul 31,034 258,186 289,220 11% 89% 100% 

12 4-Aug 6,069 283,151 289,220 2% 98% 100% 

13 12-Aug 190,809 124,686 315,495 60% 40% 100% 

14 20-Aug 83,713 231,782 315,495 27% 73% 100% 

15 28-Aug 194,941 120,554 315,495 62% 38% 100% 

16 5-Sep 203,348 112,147 315,495 64% 36% 100% 

17 13-Sep 25,927 289,568 315,495 8% 92% 100% 

18 21-Sep 33,217 260,412 293,629 11% 89% 100% 

19 29-Sep 33,217 260,412 293,629 11% 89% 100% 

20 7-Oct 73,767 241,728 315,495 23% 77% 100% 

21 15-Oct 6,404 287,225 293,629 2% 98% 100% 

22 23-Oct 65,210 250,285 315,495 21% 79% 100% 

23 31-Oct 8,325 285,304 293,629 3% 97% 100% 

24 8-Nov 71,300 244,195 315,495 23% 77% 100% 

25 16-Nov 10,847 282,782 293,629 4% 96% 100% 

26 24-Nov 20,770 294,725 315,495 7% 93% 100% 

27 2-Dec 2,334 296,890 299,224 1% 99% 100% 

28 10-Dec 2,204 313,291 315,495 1% 99% 100% 

29 18-Dec 4,484 294,740 299,224 1% 99% 100% 

30 26-Dec 34,895 280,600 315,495 11% 89% 100% 
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Appendix 13. Summary table of cloud contamination in the Northern 
Lowlands AEZ 

No Date 

Pixel Count Pixel Percent 

Cloud 
Non-
cloud Total Cloud 

Non-
cloud Total 

1 8-May 7,355 334,862 342,217 2% 98% 100% 

2 16-May 50,903 291,314 342,217 15% 85% 100% 

3 24-May 147,427 194,790 342,217 43% 57% 100% 

4 1-Jun 103,206 239,011 342,217 30% 70% 100% 

5 9-Jun 87,212 255,005 342,217 25% 75% 100% 

6 17-Jun 42,477 299,740 342,217 12% 88% 100% 

7 25-Jun 74,859 267,358 342,217 22% 78% 100% 

8 3-Jul 168,081 174,136 342,217 49% 51% 100% 

9 11-Jul 68,157 274,060 342,217 20% 80% 100% 

10 19-Jul 40,631 301,586 342,217 12% 88% 100% 

11 27-Jul 25,760 288,016 313,776 8% 92% 100% 

12 4-Aug 5,757 308,019 313,776 2% 98% 100% 

13 12-Aug 253,482 88,735 342,217 74% 26% 100% 

14 20-Aug 104,395 237,822 342,217 31% 69% 100% 

15 28-Aug 191,805 150,412 342,217 56% 44% 100% 

16 5-Sep 251,246 90,971 342,217 73% 27% 100% 

17 13-Sep 34,315 307,902 342,217 10% 90% 100% 

18 21-Sep 29,876 312,341 342,217 9% 91% 100% 

19 29-Sep 42,268 276,143 318,411 13% 87% 100% 

20 7-Oct 79,347 262,870 342,217 23% 77% 100% 

21 15-Oct 8,248 310,163 318,411 3% 97% 100% 

22 23-Oct 57,370 284,847 342,217 17% 83% 100% 

23 31-Oct 10,952 307,459 318,411 3% 97% 100% 

24 8-Nov 40,748 301,469 342,217 12% 88% 100% 

25 16-Nov 4,740 313,671 318,411 1% 99% 100% 

26 24-Nov 24,524 317,693 342,217 7% 93% 100% 

27 2-Dec 1,783 322,935 324,718 1% 99% 100% 

28 10-Dec 1,499 340,718 342,217 0% 100% 100% 

29 18-Dec 3,324 321,394 324,718 1% 99% 100% 

30 26-Dec 34,008 308,207 342,215 10% 90% 100% 
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Appendix 14. Summary table of cloud contamination along the Mekong 
Corridor AEZ 

No Date 

Pixel Count 
  

Cloud percentage 
  

Cloud 
Non-
cloud Total Cloud 

Non-
cloud Total 

1 8-May 4,048 195,424 199,472 2% 98% 100% 

2 16-May 10,220 189,252 199,472 5% 95% 100% 

3 24-May 60,177 139,295 199,472 30% 70% 100% 

4 1-Jun 31,355 168,117 199,472 16% 84% 100% 

5 9-Jun 25,277 174,195 199,472 13% 87% 100% 

6 17-Jun 29,560 169,912 199,472 15% 85% 100% 

7 25-Jun 145,893 53,579 199,472 73% 27% 100% 

8 3-Jul 89,790 109,682 199,472 45% 55% 100% 

9 11-Jul 32,603 166,869 199,472 16% 84% 100% 

10 19-Jul 10,941 188,531 199,472 5% 95% 100% 

11 27-Jul 33,169 149,562 182,731 18% 82% 100% 

12 4-Aug 9,301 173,431 182,732 5% 95% 100% 

13 12-Aug 161,360 38,112 199,472 81% 19% 100% 

14 20-Aug 93,389 106,083 199,472 47% 53% 100% 

15 28-Aug 87,584 111,888 199,472 44% 56% 100% 

16 5-Sep 122,185 77,287 199,472 61% 39% 100% 

17 13-Sep 14,652 184,820 199,472 7% 93% 100% 

18 21-Sep 23,334 176,138 199,472 12% 88% 100% 

19 29-Sep 8,779 176,801 185,580 5% 95% 100% 

20 7-Oct 33,724 165,748 199,472 17% 83% 100% 

21 15-Oct 11,855 173,725 185,580 6% 94% 100% 

22 23-Oct 179 199,293 199,472 0% 100% 100% 

23 31-Oct 1,683 183,897 185,580 1% 99% 100% 

24 8-Nov 0 199,472 199,472 0% 100% 100% 

25 16-Nov 1,121 184,459 185,580 1% 99% 100% 

26 24-Nov 75 199,397 199,472 0% 100% 100% 

27 2-Dec 838 188,274 189,112 0% 100% 100% 

28 10-Dec 14,248 185,224 199,472 7% 93% 100% 

29 18-Dec 58 189,054 189,112 0% 100% 100% 

30 26-Dec 3,141 196,331 199,472 2% 98% 100% 
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Appendix 15. Summary table of cloud contamination in the Central 
Southern Highlands AEZ 

No Date 

Pixel Count Cloud percentage 

Cloud Non-cloud Total Cloud Non-cloud Total 

1 8-May 5,669 152,793 158,462 4% 96% 100% 

2 16-May 15,926 142,536 158,462 10% 90% 100% 

3 24-May 43,135 115,327 158,462 27% 73% 100% 

4 1-Jun 30,837 127,625 158,462 19% 81% 100% 

5 9-Jun 47,660 110,802 158,462 30% 70% 100% 

6 17-Jun 24,360 134,102 158,462 15% 85% 100% 

7 25-Jun 134,102 25,084 159,186 84% 16% 100% 

8 3-Jul 96,883 61,579 158,462 61% 39% 100% 

9 11-Jul 11,545 146,917 158,462 7% 93% 100% 

10 19-Jul 4,495 153,967 158,462 3% 97% 100% 

11 27-Jul 20,950 124,256 145,206 14% 86% 100% 

12 4-Aug 21,977 123,229 145,206 15% 85% 100% 

13 12-Aug 147,234 147,234 294,468 50% 50% 100% 

14 20-Aug 91,364 67,098 158,462 58% 42% 100% 

15 28-Aug 105,441 53,021 158,462 67% 33% 100% 

16 5-Sep 92,831 65,631 158,462 59% 41% 100% 

17 13-Sep 17,104 141,358 158,462 11% 89% 100% 

18 21-Sep 16,368 142,094 158,462 10% 90% 100% 

19 29-Sep 30,063 117,415 147,478 20% 80% 100% 

20 7-Oct 47,859 110,603 158,462 30% 70% 100% 

21 15-Oct 25,120 122,358 147,478 17% 83% 100% 

22 23-Oct 4,475 153,987 158,462 3% 97% 100% 

23 31-Oct 20,552 126,926 147,478 14% 86% 100% 

24 8-Nov 2,567 155,895 158,462 2% 98% 100% 

25 16-Nov 10,557 136,921 147,478 7% 93% 100% 

26 24-Nov 30,230 128,232 158,462 19% 81% 100% 

27 2-Dec 31,693 118,566 150,259 21% 79% 100% 

28 10-Dec 21,463 128,796 150,259 14% 86% 100% 

29 18-Dec 21,463 128,796 150,259 14% 86% 100% 

30 26-Dec 58,469 99,993 158,462 37% 63% 100% 
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Appendix 16. Table of rice crop statistics, 2016 derived from the LSB 

Code Province Name Planted area (Ha) Production (Tonnes) 

1 Vientiane Capital 53,850 245,600 

2 Phongsaly 7,720 38,100 

3 Luangnamtha 9,585 43,500 

4 Oudomxay 15,282 66,200 

5 Bokeo 14,565 71,200 

6 Luangprabang 14,095 68,000 

7 Huaphanh 12,770 61,000 

8 Xayabouly 32,390 155,000 

9 Xiengkhuang 19,060 81,500 

10 Vientiane Pro. 52,950 249,000 

11 Borikhamxay' 37,345 153,800 

12 Khammuane 81,330 345,300 

13 Savannakhet 191,940 830,800 

14 Salavan 76,520 358,000 

15 Sekong 9,250 40,400 

16 Champasack 114,650 512,000 

17 Attapeu 7,170 26,000 

18 Xaysomboon 21,300 82,600 

  Total 771,772 3,428,000 
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