

2020

How Well a Neural Network System Could Interpret the Number of
Contributors to a DNA Profile.

(THESIS REPORT)

Submitted By
PARTHO PROTIM GHOSH

Supervisors

Prof. David M W Powers <David.powers@flinders.edu.au>
Dr. Duncan Taylor <Duncan.taylor@flinders.edu.au>

Submission Date
24 June 2020

Submitted to the College of Science and Engineering in partial
fulfilment of the requirements for the degree of Master of Science

(Computer Science) at Flinders University, Adelaide, Australia.

 1

I, Partho Protim Ghosh, declare that all works in this project is my authentic work unless

otherwise stated or referenced.

Signed,

--

Partho Protim Ghosh

On

24/06/2020

 2

Acknowledgements
Thanks to Prof. David M. W. Powers and Dr. Duncan Taylor, the supervisors of this thesis and

all their great support and advise. Specially I would like to thank Duncan and Forensic Science

South Australia for providing me population frequency databases and other databases to

generate the DNA profiles and for a proper guideline of entire project.

 3

Table of Contents
Acknowledgements ... 2

1. Introduction: .. 6

2. Literature Review: .. 7

2.1 Identifying numbers of contributor in DNA profile: .. 7

2.2 Classification of fluorescence in a DNA profiles: .. 7

2.3 Using Artificial Neural Network: ... 8

2.4 Recurrent Neural Network and LSTM (Long Sort-Term Memory): ..11

2.5 Convolutional Neural Network:..13

3. Importance of the Research: ...15

3.1 Motivation of Research: ...15

3.2 Goal of Research: ...16

3.3 Scope of Research: ...16

4. Methodologies: ...16

4.1 Dataset: ...16

4.2 Machine Learning Algorithms: ...17

4.3 Training the NNs: ...17

5. Project Achievements: ..17

5.1 Simulation of DNA Profiles: ..17

5.2 Pre-processing DNA Profiles Data to Train Neural Networks: ..25

5.3 Validation of Simulated DNA Profiles: ..27

5.4 Peak Identification through CNN: ..29

5.5 Results and Discussion: ..35

6. Further Development: ...38

7. Project Deliverables: ...38

8. Conclusion: ...39

9. References:..41

 4

List of Figures and Tables
Figure 1 : EPG of three contributor mixed DNA profile .. 7
Figure 2: Structure of Recurrent Neural Network with context layer [12] ...11
Figure 3: Structure of Recurrent Neural Network used in DNA sequence classification [13]12
Figure 4: Structure of Convolutional Neural Network [24] ..14
Figure 5: Steps to validate the simulated DNA profiles ...28
Figure 6: Comparison of Allele numbers for all 21 loci for a single dataset ..29
Figure 7: Example of allele numbers of individual profiles and Mixed profile. ...29
Figure 8: Loading Data program in Python ..30
Figure 9: Normalize Input Data program in Python ...31
Figure 10: Data conversion to array program in Python ...32
Figure 11: Loading input data to Neural Network Program in Python ...32
Figure 12: Build the model Program in Python ..33
Figure 13: Compiling and fitting the Model Program in Python ..34
Figure 14: Training performance for epochs 10 ...34
Figure 15: Predict and Evaluating the Model Program in Python ..35
Figure 16: Classification Report of model for vWA ...36

Table 1: Picked alleles of 21 Loci ...19
Table 2: Values of peak height after degradation ...20
Table 3: Values of TAP and A ..21
Table 4: Values of Allele heights, Back Stutter Heights (BSH) and Forward Stutter Heights (FSH)22
Table 5: Values of Observed allele heights, Back stutter (ObservedBSH) and Forward stutter peak heights
(ObservedFSH) ...23
Table 6: Values of coincident peaks ...24
Table 7: Heights of vWA ..25
Table 8: Properties of a generated profile (D3S1358) ..25
Table 9: Input for a single locus vWA (Mixture of 3 individual profile) ...26
Table 10: Normalized value of Input for a single locus vWA (Mixture of 3 individual profile)26
Table 11: Output values for a single locus vWA (3 individual profile) ..27
Table 12: Sample of input data before Normalization ..31
Table 13: Neural Network Performance Statistics for all Loci ...37

 5

Abstract
Machine learning approaches and artificial neural network (ANN) are very popular approaches

to improve the efficiency in many fields including economics, biology, finance, image

processing and gaming. It reduces the manual effort where complex interpretation and analysis

are required. The artificial neural network (ANN) and machine learning (ML) are quite new

approach in the field of DNA analysis and there are lots of prospects which can be visualised

by this technology. There are several goals included in the research work: Create a system

using the extensions of ANN such as Recurrent Neural Networks (RNN), or Convolutional

Neural Networks (CNN) that could interpret the number of contributors to a DNA profile. The

research can be divided into four components: Simulate realistic DNA profile with a probability

in accordance to their population frequency database (provided by FSSA named

Australia_Caucasian.csv); Simulate DNA profile for single contributor and mix the single

profiles to generate mixture of DNA profile for different contributors (Number of contributors

in mixture can be 2/3/4/5); Divide the profiles in 21 smaller parts (Each part represents a Locus

and DNA profile consists with 21 locus); Prepare the mix profiles and single contributor

profiles to train the Neural Networks; Train the Convolutional Neural Networks (CNNs) with

the input profiles (Mix Profiles) and output profiles (Individual Profiles) for all 21 Loci and

evaluate the performance.

Keywords: DNA, DNA profiling, Artificial Neural Network (ANN), Convolutional Neural

Network (CNN), Forensics, Bioinformatics

 6

1. Introduction:
Machine learning approaches and artificial neural network (ANN) are very popular approaches

to improve the efficiency in many fields including economics, biology, finance, image

processing and gaming. It reduces the manual effort where complex interpretation and analysis

are required. The artificial neural network (ANN) and machine learning (ML) are quite new

approach in the field of DNA analysis and there are lots of prospects which can be visualised

by this technology. DNA profile of more than one contributor are considered as a mixture of

DNA and it is collected from more than one person or contributor. The most complex step in

forensics is to interpret the individual contributor from the DNA mixture. It is essential that a

number of contributors is assigned to a DNA profile before it can be analysed. This task is

currently carried out by experts, using their experience.

Forensics Science South Australia (FSSA) is a government organisation and handles crime

case work. FSSA working in four different field, that are pathology, biology, toxicology and

chemistry. In the real world of investigation, DNA analysis plays a vital role. A typical case

work of FSSA involves few steps. Where police attend the crime site and collected the DNA

samples from suspected and from suspect and crime scene. After taking the DNA samples,

these are sent to forensic biology research lab to extract the DNA from the samples. Then DNA

profile is generated and compared with the other samples to find out the individual who may

have contributed DNA to the sample.

In this research, it has two components. 1) Simulate DNA profile and 2) Applied artificial

neural network (ANN) approach to improve the interpretation, specifically with respect to how

many contributors there might be in the mixture. In the first part of research, mixed DNA

profiles are simulated from some DNA database (Australian Caucasian). After that different

ANN approach have used to train and investigate the performance the number of contributors

that the DNA profile has originated from. Several deep learning approaches including

Recurrent Neural Network (RNN), Convolutional Neural Network (CNN) have been tested on

generated datasets. And finally, the performance of research evaluated on CNN based

implementation. Figure 1 represents an EPG of three contributor mixed DNA profile. (Taylor

et al. 2013). The EPG has developed based on the observed height of 16 locus/regions of three

known contributors.

 7

This image has been removed due to copyright restriction. Available online from

[https://doi.org/10.1016/j.fsigen.2013.05.011].

Figure 1 : EPG of three contributor mixed DNA profile [1]

2. Literature Review:

2.1 Identifying numbers of contributor in DNA profile:

Majority of DNA profile interpretations have followed few steps. In the first step, DNA

profiling has been implemented and after that classifier algorithm impose on the data set.

However, no single algorithm is perfectly working on every type of classification. The

performance of algorithm depends on the size of data, quality and characteristics (Marciano et

al. 2017).

Two computations are frequently used in the field of forensics to evaluate the evidential weight

of DNA profile data. These are likelihood ratio (LR) and the combined probability of inclusion

(CPI). Recently few more calculations have been adopted by few laboratories. That are

Random match probability (RMP). Taylor et al. [1] adopted likelihood ratio (LR) approach in

their analysis on interpretation of single source and mixed DNA profile. The mathematical

methods have programmed as software and validate the results by handwritten calculations.

The proposed method produced an LR. As there are no true LR available that’s why it is not

possible to examine the result by some true answers. The following practical tests are done in

that case. 1) Examination of interpretations of mixtures of known contributors (ground truth).

2) Comparisons against other methods and/or human judgement. There are few limitations

happen when a large number of artefacts is allowed through the manual EPG review process.

Also, currently the number of contributors must be specified by the user prior to analysis and

number must be same in both numerator and denominator.

2.2 Classification of fluorescence in a DNA profiles:

Even before the data from a DNA profile can be used to determine a number of contributors,

the raw signal from the laboratory instruments must be processed. There may be some scope

to link the processing of raw data and the determination of number of contributors to a DNA

profile to achieve the best performance. Taylor et al. [3] proposed a novel solution, where the

 8

artificial neural network can be trained on data of different sources (i.e. single sourced profiles

or mixed DNA profiles) and from different laboratory conditions. In this research they

extended their previous work where they demonstrated an artificial neural network (ANN) that

was trained on two good quality reference EPGs to classify the data in the 6-FAM dye lane and

then applied to a third good quality EPG with a reasonable success. In the current research,

they extended their work by increasing the number of training data, increasing the range of

training EPG quality, improving the quality of artificial neural network (ANN), training a series

of 10 ANNs for different areas of the EPG and Coupling the predictions of the ANNs with a

peak detection algorithm proposed by Woldegebriel et al. [4]. In the research they proposed

probabilistic peak detection algorithm based on Bayesian framework for forensic DNA

analysis. The proposed method worked with raw electropherogram data from a laser‐induced

fluorescence multi‐CE system. The main finding of the research was that a system of ANNs

trained on both single sourced and mixed DNA sample electropherograms performed

comparably to ANNs trained on, and applied to, only one data type.

2.3 Using Artificial Neural Network:

Taylor et al. [5] discussed about the demonstration of the use of artificial neural network (ANN)

which can be trained to read electropherograms and show that it can generalise to unseen

profiles. The research was done based on five categories including Baseline, Allele, Stutter,

Pull-up and Forward Stutter. The result of that investigation was very remarkable. On the

training dataset the ANN was able to learn to correctly classify approximately 98% of the

12,000 scans. When the model was then applied to the test dataset the performance was slightly

lower at approximately 93%, but still generally high.

Lawless C. [6] discussed in his article about dispute that arisen controversy in the DNA

profiling technology that known as ‘low-template DNA’ method. Here author described about

the technologies being used by forensics technology. LT-DNA was one of them, this

technology was introduced by UK Forensic Science Service (FSS) and quickly it was hailed as

a cutting age technology to sort out criminal cases. It represents relatively minor and

incremental adaptions to DNA profiling technology. It also deploys a probabilistic Bayesian

method that is a popular approach in the field of forensic science. It employed an increased

number of cycles of polymerase chain reaction (PCR), it means it copy the samples repeatedly.

PCR cycle has been carried out 28 times of in the ordinary DNA profiling. On the other hand,

 9

FSS method involved 34 repetition in a profile. Due to low amount of biological material in

the initial samples, this repetition has improved the quality of profiling. This study reviled the

technological limitations of LT-DNA and its high level of multivalence. A set of distinctions

were drawn like basic distinctions between ‘valid’ science verses efficient ‘pathological

science’ and the ‘new’ verses the ‘same’ technology. Also, most important part of the

discussion was, they examined LT-DNA as a tool and as a set of conditions to profiling the

DNA.

Cowell et al. [7] discussed different artefacts of DNA profiling and the analysis of forensic

DNA mixture. In this research, authors presented a statistical model for a quantitative peak

information from an EPG model and its significant impact on the criminal case that handled by

the forensic team. Here EPG model has generated by the previously used algorithm and

imposed some important artefacts on it. The model has some unknown parameters and its

estimated maximum likelihood in the presence of multiple unknown contributors in the sample,

multiple errors has generated, and it exploit a Bayesian network representation of the model.

In their model, they choose potential contributor in a DNA mixer and choose specific maker

and allele and this model is described the peak heights. In the model they represented stutter

by decomposing the individual contributions to peak heights by adding each contribution. After

that they calculated dropout in the mixtures where some alleles are not calculated.

Dakhli et al. [8] presented a new approach for DNA sequence classification. In this research,

they proposed a solution based on using Wavelet Neural Network (WNN) and the k-means

algorithm. The performance of WNN is depending on the proper demonstration and

implementation of WNN structure. The approach uses the Least Trimmed Square (LTS) and

the Gradient Algorithm (GA) to solve the architecture of Wavelet Neural Network (WNN).

The initialization of WNN was solved by the method Trimmed Square (LTS), which is applied

for wavelet candidate by selecting Multi Library of the Wavelet Neural Networks (MLWNN)

for constructing the WNN. This LTS method has used to choose best wavelet from the library.

On the other hand, the gradient algorithm has used to train the dataset of WNN. In the paper,

they classify the system in three phases. The first on is transformation that composed by three

sub steps. Binary codification of DNA sequences Fourier Transform and Power Spectrum

Signal Processing. The second step is approximation, and it is encouraged by the use of Multi

Library Wavelet Neural Networks (MLWNN) and finally classification of DNA sequence has

implemented. The proposed solution in paper can be used to classify the DNA sequence of

 10

organism into many classes. Also, this solution can be used to extract significant biological

knowledge.

In another research Cheng et al. [9] discussed about segmentation of DNA using simple

recurrent neural network. In the study they reported the strong correlation between protein

coding region and the error prediction during the simple recurrent network to segment genome

sequences. In the experiment they used SARS genome to demonstrate the procedure of training

and the method of achieving the results. Also, the HA gene of influenza A subtype H1N1

analysed in the similar way. H1N1 subtype has analysed using both supervised and

unsupervised simple recurrent network.

Most current approaches to mixture deconvolution require the assumption that the number of

contributors are known by the analysts. Determining the number of contributors can be

complex when the mixture contains 3 or more contributors. There are many algorithms and

approaches focussed on the getting good results from a neural network to interpret the number

of contributors to a DNA profile. Marciano et al. [2] focused on a probabilistic approach for

determining the number of contributors in a DNA profile that contain more than one person

DNA sample. In the research they trained, tested and validate using electrical data obtained

from 1405 non-simulated DNA mixture samples comprised of 1-4 contributors and generated

from a combination of 20 individuals. In the same research, five candidate machine learning

algorithms including k-Nearest Neighbors (k-NN), Classification and Regression Trees

(CART), Multinomial Logistic Regression (Logit), Multilayer Perceptron (MLP), Support

Vector Machine (SVM) are used to classify the problems. The performance of the algorithms

often depends on the size, quality and characteristics of the associated training data. In the

research, overall results show over 98% accuracy in identifying the number of contributors in

a DNA mixture of up to 4 contributors.

In this paper Zang et al. [10] have used an artificial neural network approach to establish a

unified model of DNA analysis to solve classification problem. In this model, they used a

parallel logic that is completely different from the traditional computer neural network. In the

traditional neural network model, weights between neurons and neurons are eventually stable

by continuously adjusting and this process is basically maintaining a serial. On the other hand,

in the parallel DNA model, the weights are calculated by determining all the possible weights

that are suited to all samples. In the building neural network, the weights are calculated by the

step by step modification through the training dataset. DNA computing in this paper, divided

the interval into sub intervals. For example, the interval can be divided equally into 20 sub

 11

intervals. DNA computing employs a linear pattern classifier and it can be categorised into

three modules. 1) Coding DNA modules, 2) Learning process and 3) Classification procedure.

In the learning process, for the K-layer, firstly generated the input and pass them to the weights.

Secondly, performed the weighted sum ration. After that according to the given output, selected

the possible output chains. In the classification process, they produced the input of given

samples, pass the input through the weights of the first layer. After that performed the weighted

summation reaction and generated the input for the next level. The proposed algorithm has

some advantage compared to traditional algorithms. Here the weights are calculated by all

possible weights combination instead of calculating neurons to neurons.

2.4 Recurrent Neural Network and LSTM (Long Sort-Term Memory):

Recurrent Neural Network (RNN) is a novel algorithm for subsequentially data and currently

used by Apple’s Siri and Google voice search [11]. RNN is the algorithm that can remember

its input because of the internal memory unit. And that’s why it is a novel solution for

subsequentially data like financial data, DNA sequence and time series data. Recurrent Neural

Network (RNN) was introduced by David Rumelhart in their work on learning representations

by back-propagation errors in 1986 [23]. On the other hand, Long Sort-Term Memory (LSTM)

was invented by Hochreiter and Schmidhuber in 1997 [22]. Long Sort-Term Memory (LSTM)

is a kind of RNN that contains internal memory cell in the layer. And it can store information

for long period of time for further processing.

Cheng et al. [12] have used simple recurrent neural network (RNN) for segmentation of DNA

profile. In this research, they discovered notable correlation between the coding sequence of

protein and error prediction. To find out the genome sequence here RNN was used. A simple

recurrent neural network (also called Elman network) that consists with three-layer neural

network with an edition “context neuron” in first layer. This network performs with steam state

that can handle a subsequent prediction task. The model of the recurrent neural network is like

below in Figure 2.

This image has been removed due to copyright restriction. Available online from

[10.1016/j.knosys.2011.09.001].

Figure 2: Structure of Recurrent Neural Network with context layer [12]

Without any prior biological knowledge researcher in this project, suggested a new technology

to read genome sequence. On the other hand, processing the ATCG sequence, the result was

 12

consistence and properly matched with finding from biologists. This new technology could be

used in studying of complex genome which are still a mystery to biologists. By analysing the

error from this study, it would be easier for researcher to identify which part of genome are

worth to study. The result of the method can be used to identify the artificial DNA segments

from natural segment.

In biomedical data analysis, DNA sequence classification is a key work in computational

framework. And in recent years of studies, several machine learning techniques have been

introduced to classify the DNA sequence. In a recent study, Bosco et al. [13] proposed two

different deep learning-based architectures that classify the DNA sequence automatically. The

proposed methods have evaluated on public data set of DNA sequence for different

classification tasks. In this research, they evaluate the performance with CNN, CNN-NT,

LSTM, LSTM-NT models over 10 folds cross validation with same data set. Here recurrent

neural network consists with 6 different layers. Where first embedding layer followed by a

max-polling layer size of 2. where input was one-hot encoding vector. The max-pooling layers

reduce the size of vector and reduce the computations of the next layers. After max-pooling

layer they implemented a recurrent layer that is working as LSTM. And it is can execute input

from left to right and produces an output vector size of 20. Then configured another max-

pooling layer and at the end two fully connected layers. The design of RNN model are like

below:

This image has been removed due to copyright restriction. Available online from [10.1007/978-3-

319-52962-2_14].

Figure 3: Structure of Recurrent Neural Network used in DNA sequence classification [13]
Here same dataset collected from bacteria species applied on CNN and LSTM models. And

CNNs performed better in four simple classification tasks. On the hand, LSTM worked better

than convolutional neural network (CNN).

Ling et al. [14] proposed a recurrent neural network (RNN) solution for modelling biological

solution. Their proposed method is an alternative of currently using ordinary differential

equations (ODE) for modelling accurate temporal dynamics of networks. It could be solution

over the limitation of ODE method that includes complexity in kinetic parameter estimation

and numerical solution with complex equations. The proposed RNN model can estimate the

parameter easily from data and efficiently examine the network behaviour. Modelling p53-

 13

Mdm2 using RNN involved few steps in the described research. 1) Understanding the protein

connections related in the system. 2) Evaluate the performance of existing solutions. 3)

Developing RNN that represent ODE parameters. 4) Generate and validate the data for RNN

and 5) Investigate the parameters and performance of proposed model.

Recurrent Neural Network (RNN) is an approach that is appropriate for sub sequential data like

weather data, financial data, DNA data and time series data. Chen et al. [15] proposed a

Reinforced Recurrent Neural Network model to forecast multi step ahead flood. In the

research, there are several parts are involved. 1) Construct a Reinforced Recurrent Neural

Network (R-RTRL NN) model to improve future flood predictions. 2) The R-RTRL NN system

rapidly update its parameters with latest values to improve the predictions. 3) BPNN and

another two neural network model are used here to compare performance with R-RTRL

systems. 4) Models are constructed to make multi step ahead (MSA) forecasts for time series

and flood series. For comparison purpose three neural network developed here (two dynamic

neural networks and one static neural networks). The examination of result showed that

numerical and experimental evaluation of R-RTRL systems was more accurate over other

developed neural network systems.

Recurrent neural network is different than feedforward neural network. It is not only dealing

with initial inputs but also works on internal state space. Internal state space tracks the data

what are being processed already. Raza et al. [16] have developed a Recurrent Neural Network

(RNN) based gene regulatory system (GRS). It is actually a hybrid version of an existing

system named Kalman filter for weight update in backpropagation through time training

algorithm. According to the research, RNN is a noble approach that provides a great

combination of biological closeness and mathematical flexibility to GRS. Recurrent neural

network has a capability to capture complex, non-linier and dynamic relations between

variables [16]. The implementation has also compared with the traditional system. And got the

better results compared to others. Further, 5% Gaussian noise added on the data to check the

effect on result. And the effect was negligible.

2.5 Convolutional Neural Network:
Convolutional Neural Network is most influential extension of neural network. And it is widely

using by technology giants in their products. Facebook using on their automatic tagging

information, Instagram uses on their search infrastructure [20]. Lecun et al. [21] worked on the

 14

modern convolutional neural network (CNN) for the first time by 1990s, that was inspired by

the neocognitron. In the research, authors used CNN for handwritten character recognition.

This image has been removed due to copyright restriction. Available online from

[10.3390/app9214500].

Figure 4: Structure of Convolutional Neural Network [24]
The convolutional layers are the major parts of Convolutional Neural Network (CNN). CNN

calculate L- one dimensional convolutions between the kernel vectors wl , of size 2n+1, and

the input signal x: [13]

This image has been removed due to copyright restriction. Available online from [10.1007/978-3-

319-52962-2_14].

Another important component of Convolutional Neural Network is max-pooling layer. It is a

non-linier layer that partitions the input vectors and classify the non-overlapping values and

for each sub region the maximum values considered as output.

Convolutional Neural Network [CNN] based approach is the efficient approach for image

classification. And deep learning-based approach is wise than traditional approaches because

it works on deep features [17]. Liu et al. [17] proposed a pixel-based attention map using

convolutional neural network (CNN). In traditional image recognition process has few major

steps including image collection, image classification (i.e. local binary pattern, support vector

mechanics, histogram of oriented gradient + SVM), image recognition and feature extraction.

In this research, developed P_VggNet solution worked better than the traditional approaches.

Modelling the properties of DNA sequence is an important but a challenging task in the field

of biotechnology. According to the research of Quang et al. [18] this task is even more difficult

for the class of DNA that are non-coding DNA. A noble approach for the non-coding DNA

could be the useful for both basic science and translational research. Because over 98% human

genome are non-coded [18]. In this research, authors proposed a noble solution named DanQ,

a hybrid convolutional neural network (CNN) and a bidirectional LSTM recurrent neural

network model to predict non-coding function from DNA sequence. In the LSTM based

recurrent neural network layers capture the dependencies between the motifs to learn regulatory

grammar to improve the performance. On the other hand, convolutional layers capture the

regulatory motifs. This model contains 320 convolutional kernels for 60 epochs. Also evaluate

the average multi-task cross entropy loss for validation after each epoch to monitor the

performance of training. Here in this model, dropout to randomly set proportion of neuron has

 15

included from the max polling and BLSTM layers to each training step. Authors have compared

the performance of developed DanQ model to a LR baseline model and the published Deep-

SEA model. According to summery of research, DanQ a powerful method that can predict the

function of DNA directly from sequence. Also, the powerful method of this architecture allows

to simultaneously learn motifs.

Convolutional neural network is a sort of feed forward ANN where the neurons are connected

locally and share the parameter mechanism. Without the definition of parameters, CNN can

able to extract features from raw input dataset and keep tracing the number of model parameters

by a series of convolutional layers and a series of pooling layers. And in a standard CNN model,

number of convolutional layers and pooling layers operated followed by one or more fully

connected layers after the last polling layer. In a research, Du et al. [19] proposed a deep

learning solution (Convolutional Neural Network) named DeepSS. That consists two modules.

DeepSS-C module used to classify the splice sites and DeepSS-M module used to detect the

splice site sequence pattern.

3. Importance of the Research:

3.1 Motivation of Research:

The most complex challenge in the field of Forensic DNA analysis, is to separate the DNA of

individual contributor from a DNA mixture. DNA analysis are widely using by the forensic

analysists to identify the crime sources. According to the literature reviews that have discussed

earlier, current developed approaches can work as expected for DNA mixers of 3-4

contributors.

Also, there are lots of manual task are involved in the analysis and detecting of the DNA

containing cell on the sample. Sometimes cells needed to count manually by the analysts. And

sometimes quality of the samples is not same in a DNA mixer. So, there is a scope to work on

this issue. On the other hand, it can be wise to develop an artificial neural network system that

can be solution of these limitations. The neural network (NN) is the well-recognised approach

to analysis the complex task like analysis DNA sequence. Sometimes it can be difficult and

complex to sort out the samples from the DNA mixture of more than one contributor.

A current limitation to the machine learning of number of contributors is that the data is highly

complex, and the relative amount of training data available is limited. However, we have

 16

models of DNA profile behaviour (which we use in other areas of DNA profile evaluation) that

should allow very realistic DNA profiles to be simulated for any number of contributors. So, it

will be interesting to work on the trailed system that can able to simulate mixtures of varying

complexity / quality / proportion etc as training data set with test / validation sets being real

data.

3.2 Goal of Research:

There are several goals included in the research work. Create a system using the extensions of

ANN such as Recurrent Neural Networks (RNN), or Convolutional Neural Networks (CNN)

that could interpret the number of contributors to a DNA profile. The research can be divided

into four components:

• Simulate realistic DNA profile with a probability in accordance to their population

frequency database (provided by FSSA named Australia_Caucasian.csv).

• Simulate DNA profile for single contributor and mix the single profiles to generate

mixture of DNA profile for different contributors (Number of contributors in mixture

can be 2/3/4/5)

• Divide the profiles in 21 smaller parts (Each part represents a Locus and DNA profile

consists with 21 locus). Prepare the mix profiles and single contributor profiles to train

the Neural Networks.

• Train the Convolutional Neural Networks (CNNs) with the input profiles (Mix Profiles)

and output profiles (Individual Profiles) for all 21 Locus and evaluate the performance.

3.3 Scope of Research:

• Simplifying the DNA profiles.

• Examine the classifiers for different number of contributors.

• Increase the performance of Neural Network by training with more DNA profiles.

4. Methodologies:
4.1 Dataset:
The system has been trained, tested and validated with simulated DNA mixture samples.

Dataset consist with input and output data. Output data contain the allele numbers of profile

 17

and input data contain weight, height, expected back strutter ratio, observed back strutter ratio,

expected forward strutter ratio, observed forward strutter ratio and population allele frequency.

For both mix DNA profile and individual profile, dataset has divided into 21 parts. And trained

21 Neural networks with it. Each neural network has represented each locus (Total number of

locus is 21).

4.2 Machine Learning Algorithms:
Based on the finding on the literature review, no single algorithm is perfectly working on every

types of classification. The performance of algorithms depends on the size of data, quality and

characteristics (Marciano et al. 2017). To find out the optimal solution I have worked on the

following algorithms including Convolutional Neural Network (CNN), Principal Component

Analysis (PCA), Non-negative matrix factorization (NMF) and Normalization have applied on

training dataset.

4.3 Training the NNs:
Training has been conducted using tools developed by Python (Framework: Tensorflow) and

Keras model. Every instance data has divided into training, test and cross-validation. All 21

neural networks have been trained and evaluated with simulated DNA profiles. Dataset

generation tool also developed using Python 3.7.

5. Project Achievements:
Project has two major components. Simulate DNA profiles (Both mixed profile and individual

profile), applying classifiers on the input and output files to train Neural Networks. And Train

Convolutional Neural Network (CNNs) with input and output profiles. And then evaluate the

performance.

5.1 Simulation of DNA Profiles:
In the first part of the research, the simulation of DNA profile has been implemented. Numpy

and Pandas frameworks of Python 3 have been used here to implement. And below are the

steps that are used to implement.

1. The first step is to pick alleles at each locus. This will involve picking alleles with a

probability in accordance to their population frequency (here I have used an Australian

Caucasian database). Here I have picked two of these alleles, with replacement from

the list of alleles that have some frequency > 0. These may end up being the same allele

 18

(in which case it represents a person who is homozygous at that locus), or they may be

two different alleles (in which case it represents a person who is heterozygous at that

locus). If two different alleles are picked then the convention is to order them in

ascending order (e.g. if you picked a 13 and then a 11 then your genotype is [11,13]).

At first 21 locus were chosen and stored it into another database

‘AustralianCaucasian_21_data’ and after that below scripts have applied to pick alleles:

for i in range(1, len(header_list)):

 index =

abs(AustralianCaucasian_21_data[header_list[i]] -

0.2).idxmin()

 AustralianCaucasian_21_data[header_list[i]][index] =

AustralianCaucasian_21_data[header_list[0]][index]

 index =

abs(AustralianCaucasian_21_data[header_list[i]] -

0.2).idxmin()

 AustralianCaucasian_21_data[header_list[i]][index] =

AustralianCaucasian_21_data[header_list[0]][index]

 print(header_list[i])

Below are the picked alleles for the 21 loci.

Loci Alleles
CSF1PO 10, 11
D10S1248 15, 16
D13S317 8, 12
D16S539 9, 13
D18S51 12, 14
D19S433 13, 15
D1S1656 15, 16
D21S11 29, 30
D22S1045 11, 16
D2S441 10, 14
D3S1358 16, 17
D5S818 10, 13
D7S820 8, 11
D8S1179 12, 14
DYS391 9, 12
FGA 21, 22

 19

SE33 28.2, 29.2
TH01 6, 7
TPOX 9, 11
Yindel 1, 2.2
vWA 16, 18

Table 1: Picked alleles of 21 Loci

2. At this stage I have two alleles chosen for each of 21 loci. The next step is to pick a

DNA amount. This amount is generally pretty free to pick anything, but to me more

realistic we want to bias the choice a bit to lower values. I used an exponential (0.0004)

between 100 and 10000. In DNA profiles the peak heights are measures in relative

fluorescent units (rfu), which hare arbitrary values, but we can consider them as amount

of DNA. We have designated DNA amount as T (for Template DNA).

Having picked DNA amounts I will now be able to give heights to the alleles that picked

in step 1. If the locus is heterozygous (2 different alleles were chosen) then they each

get the DNA amount that just picked to make 2 peaks (each peak gets a dose, call this

X, of 1). If the locus is homozygous (one allele was chosen twice) then that one allele

gets twice the DNA amount you just picked, to make 1 peak (dose, X = 2). Using the

below numpy’s random exponential library the value has generated.

T = np.random.exponential(scale=1/0.0004, size=1)

3. At this stage molecular weights have assigned to each of the peaks. These are the sizes

of the DNA fragments that have been amplified. To do this I have used a database

‘GlobalFiler_SizeRegression.csv’, which gives the slope and intercept of a line that

translates allele designation (i.e. the values have picked in step 1) to molecular weight

(which designated as m).

Next level of degradation for the profile have picked. Choose a value from uniform

distribution U[0,0.003]. Let’s refer to degradation as D. The amount that degradation

affects peak height can be determined by:

peak_height_after_degaradtion_applied = peak_height_before_degaradtion_applied *

exp[-D(m-offset)]

 20

where offset is the lowest molecular weight peak in the profile. Here the offset value is

81.5. The values of peak height after degradation are as follows for just some of the loci

shown in table 1:

Table 2: Values of peak height after degradation

4. Now need to choose an amplification efficiency for each locus. This can be chosen by

choosing a value from the normal distribution N(0, 0.01). Using the below numpy’s

random normal distribution library the value has generated.

np.random.normal(0,0.01,1)

Call amplification efficiency A. The model for amplification efficiency is that each

locus is expected to have a log10(A) ~ N(0, 0.01). So to convert the value ‘i’ from N(0,

0.01) back to an ‘A’ value that raised 10 to the power of ‘i’. Amplification efficiency

then affects peak heights by:

Peak_height_after_amplification_efficiency =

Peak_height_before_amplification_efficiency * A

 21

Now the pre-strutter peak heights (we will call TAP) have calculated by:

TAP = T*A*exp[-D(m-offset)] * X

The values of TAP and A are as follows for just some of the loci shown in table 3:

Table 3: Values of TAP and A

5. Now need to add stutters to the generated profile. We will need to take into account two

types of stutter, one that adds a small peak one allelic position less than the allele (called

back stutter) and one that adds a peak one allelic position more than the allele (called

forward stutter). Each allele at each locus has an expected stutter ratio (that is the ratio

of the stutter peak to its parent peak height). The stutter ratios are given in the databases

generated by GlobalFiler.

For back stutter, first check to see whether there is an expected stutter ratio in the

GlobalFiler_Stutter_Exceptions_3500 database. This file lists out all observed alleles

and locus combinations and their stutter ratio. If this file has a value of 0 for the stutter

ratio then move on to the file GlobalFiler_Back_Stutter database, which gives the linear

regression parameters that approximately convert allele to stutter ratio. For forward

stutter there is only the regression database named GlobalFiler_Forward_Stutter, so just

use that straight off. Once the SR for each locus has been obtained (both back stutter

 22

ratio BSR and forward stutter ratio FSR) then each TAP height has produced a back-

stutter height, a forward stutter height and an allelic height by the below equations:

Allele height = TAP /(1+BSR+FSR)

Back stutter height = BSR* Allele height

Forward stutter height = FSR*Allele height

The values of Allele heights, Back Stutter Heights (BSH) and Forward Stutter Heights

(FSH) are as follows for just some of the loci shown in table 4:

Table 4: Values of Allele heights, Back Stutter Heights (BSH) and Forward Stutter Heights (FSH)

6. The final height modification has been generated by add some noise (called stochastic

effects in forensic science) to the peak heights. The amount that observed peak heights

(call these O) vary from their expected height (call these E, and are what have just

calculated in step 5) is modelled by:

Log10(O/E) ~ N(0,SQRT(c/[b/E_A + E_A]))

Where c is a ‘variability constant’ and E_A is the expected parent allele height and b is

another constant that limits variability and has a value of 1000 for globalfiler. For allele,

back stutter and forward stutter the value of c is 10.34, 9.77 and 85.55 respectively. So,

this time added some stochastic effect to a back stutter peak which has an expected

height of E_S = 100rfu and its parent peak has an expected height of E_A = 2000rfu.

First draw a value ‘y’ from N(0,sqrt(10.34/[1000/2000 + 2000]) then apply it by:

O = E_S *10^y

 23

For each peak, new values for y are drawn. And this procedure has applied on all back

stutter, forward stutter and allele peaks obtained in step 5 to get the observed peaks

heights.

Below are the scripts that used to generate the values of observed allele heights:

tempHeight_y = offsetData.apply(lambda row:

np.random.normal(0,math.sqrt(10.34/((1000/row.Allele_Heig

ht)+row.Allele_Height)),1), axis=1)

ObserverHeightAL = offsetData.apply(lambda row:

row.Allele_Height * 10**row.tempHeight_y, axis=1)

The values of observed allele heights, back stutter and forward stutter peak heights are

as follows:

Table 5: Values of Observed allele heights, Back stutter (ObservedBSH) and Forward stutter peak

heights (ObservedFSH)

7. The final step is to add any coincident peaks within a locus e.g. if the alleles [10,11]

started with [10,11] then it has ended up with:

 24

A 9 back stutter from the 10 allele, a 10 allele and an 11 forward stutter from the 10

allele.

Also, a 10 back stutter from the 11 allele, an 11 allele and a 12 forward stutter from the

11 allele.

In the DNA profile if only observe a 9, 10, 11 and 12 so need to add the two instances

of 10 to get the final height of the 10 peak and add the two instances of 11 to get the

final 11 peak height. After applied this method in the implementation, I got the values

like below:

Table 6: Values of coincident peaks
And the heights after the final calculations be like as follows:

Locus Allele Height

vWA 15 138.456

vWA 16 2,023.845

vWA 17 230.396

vWA 18 2,583.309

 25

vWA 19 35.646
Table 7: Heights of vWA

5.2 Pre-processing DNA Profiles Data to Train Neural Networks:
1. The inputs created here for a mixture are on a per locus basis. i.e., for each locus in each

mixture the inputs are as follows. In input there are total seven columns for each allele.

For example, below are the properties of a generated profile.

Locus Allele Height Size
D3S1358 13 137 113.37
D3S1358 14 1527 117.43
D3S1358 15 3392 121.48
D3S1358 16 2954 125.41
D3S1358 17 87 129.62
D3S1358 18 866 133.61

Table 8: Properties of a generated profile (D3S1358)

o Peak 1 (i.e. allele number: 13).

o Peak height 1 (137).

o Peak size 1 (113.37)

o Expected Back Stutter Ratio (0.054664448 (i.e. from

"GlobalFiler_Stutter_Exceptions_3500.csv)

o Observed ratio of peak to peak one allele higher (this is the Observed Back

Stutter Ratio (137/1527 =0.089718))

o Expected Forward Stutter Ratio (0.00538 (i.e. from

"GlobalFiler_Forward_Stutter_3500.txt"))

o Observed ratio of peak to peak one allele lower (this is the Observed Forward

Stutter Ratio (137/0 (This is undefined because there is no observed height for

12, but just put in 0)))

o Peak 1 population allele frequency (From population database)

This mixed DNA profile will be a single input of neural network. These inputs are

categorised by the locus. There are total 22 locus exists in a DNA profile (for mixed an

 26

individual). After done the above processes on DNA mixture. The inputs are like as

follows:

Table 9: Input for a single locus vWA (Mixture of 3 individual profile)

In this stage, I have normalised the heights and sizes columns of input data. I did this

by considering highest value (X max) 30000 and 500 respectively, being the upper

limits for these values and applied on the below equation:

X ′ = (X − X min) / (X max − X min)

By doing this operation on input data, now all values are in the range of [0,1]. And

negative values replaced by normalized value.

Table 10: Normalized value of Input for a single locus vWA (Mixture of 3 individual profile)

2. Each [Nx7] input vector contains 3 [1xN] output vectors (These 3 output vectors

represented 3 individual DNA profile information). Each individual contributor profile

contains two allele number. At vWA there are 9 alleles with a non-zero frequency (this

is from your population frequency file, which are using to choose the alleles from).

These are 13, 14, 15, 16, 17, 18, 19, 20 and 21. I have assigned assign these alleles

positions 1 to 9 in an output array, i.e.

13 = position 1

14 = 2

15 = 3

....

21 = 9

 27

so that to specify a 16, I have put a 1 in the array position 4. For example, a [16,18] will

be specified by the output array [0,0,0,1,0,1,0,0,0].

Actual output file contains 3 [1x9] vectors (These 3 output vectors represented 3

individual DNA profile information for locus: vWA).

0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0

Table 11: Output values for a single locus vWA (3 individual profile)
3. Principal Component Analysis (PCA) have applied on dataset to check the

performance. PCA is statistical technique that used to reduce the dimension of training

data. Though mixed profiles contain the large number of features and the primary issue

was high dimensionality. That could cause model overfitting issue. However, after

applied the PCA, it was removed some essential parameters. To solve this issue, I have

divided the dataset into 21 parts. Each part represents single locus.

 5.3 Validation of Simulated DNA Profiles:
In this section, validation processes have been discussed to check produced dataset are valid or

not. To do this few dataset samples from generated DNA profiles have taken and applied the

below steps on it. The aim of this section is to get the same frequencies back again as in the

population frequency database.

 28

Figure 5: Steps to validate the simulated DNA profiles

From the above steps, the T values have been determined for the chosen allele numbers.

 29

Figure 6: Comparison of Allele numbers for all 21 loci for a single dataset

5.4 Peak Identification through CNN:
As discussed in previous section, Through Convolution Neural Network (CNN) peak values

(allele numbers) have been identified. Allele numbers for individual profiles are declared in

output files. These allele numbers for each locus described the number of contributors and their

description in DNA mixture profiles.

Actual motive of this section is to identify the peak or allele numbers for all 21 loci of each

individual contributors from the mixed profile parameters.

Figure 7: Example of allele numbers of individual profiles and Mixed profile.

 30

In the implementation of Neural Network model, below framework and programming language

version have been used.

Language: Python 3.7

Framework: TensorFlow

Python Distributor: Anaconda

The following steps have been implemented to get the inputs and outputs, train the neural

network models and evaluate the performance of the proposed model. Read data, Normalized

the data, Convert to Numpy array, Classification of output data (One hot encoding), Train the

data and test, prepare the data for Keras model, prepare sequential data model, flatten all the

layers prior train, Choose number of neurons, compare the activation functions (between

Sigmoid and Softmax), compile and fitting the model (Optimizer: adam and loss:

binary_crossentropy).

import os
import tensorflow as tf
import numpy as np

from google.colab import drive
drive.mount('/content/drive')
Dir = '/content/drive/My Drive/22'

def get_file_name(directory, file_name_prefix, count):
 return '%s/%s_%d.csv' % (directory, file_name_prefix, count)

def read_data(path, filename_prefix, num_files):
 X = []
 for i in range(1, num_files + 1):
 file_name = get_file_name(path, filename_prefix, i)
 x = np.genfromtxt(file_name, delimiter=',')
 X.append(x)
 return X
num_files = 2700
X = read_data(Dir + '/input', '0inputvWA', num_files)
Y = read_data(Dir + '/output', '20outputvWA', num_files)

Figure 8: Loading Data program in Python

Get_fine_name in using to get input and output files from google colab data directory. And

read_data method is using here get the data from all input and output files and append them for

 31

further processing. Here for vWA the input file name starts with 0inputvWA_ and output file

name starts with 20outputvWA_.

Table 12: Sample of input data before Normalization

In neural network, it is important to normalize the input data. Otherwise, the network prioritizes

the large values of input. The actual goal of normalization is to change data to a common scale

without changing the value of input data. In the input data file, “heights” column contains the

large values (it could be between 100 to 50000), “size” column contains the value between 50

to 500. Here in input files, two columns contain exceptional value. That are “Observed back

stutter ratio” and “Observed forward stutter ratio”. In each input file, these two columns contain

a single large value compare to other values of these columns. When an outlier detection

approach applied on the input data, these large values were deleted as abnormal distance from

other values.

def normalize_input(X):
 for k in range(len(X[0][0])):
 mn = 1000000
 mx = -1000000
 for i in range(len(X)):
 for j in range(len(X[0])):
 mn = min(mn, X[i][j][k])
 mx = max(mx, X[i][j][k])
 for i in range(len(X)):
 for j in range(len(X[0])):
 X[i][j][k] = (X[i][j][k] - mn)/(mx - mn)
 return X
X_tmp = normalize_input(X)
print(X_tmp[:3])
X = X_tmp
print(X)
X = normalize_input(X)

Figure 9: Normalize Input Data program in Python

 32

All input parameters have normalized before train the model. Highest value of a column

considered max value to do the normalization. As a part of Neural Network, MaxPooling2D

had applied on input data without doing normalization. And in that case only “height” columns

were dominating instead of proper modelling. Because “height” columns were containing

highest values.

X = np.array(X)
Y = np.array(Y)
Y = np.array(hot_vector_2d_to_1d(Y))

Figure 10: Data conversion to array program in Python

In this step all input and output file data have converted to NumPy array for further processing.

For mixture profiles of three individuals, all output file contains [3x9] vectors for vWA locus,

[3x7] vectors for TPOX and so on. And to feed neural network it is needed to convert output

file to 1D vectors. Y (or output) cannot be a 2D array and converting it to one hot vectors of

size 27 (for locus vWA), size 21 (for locus TPOX) and so on.

train_size = 2500
test_size = num_files - train_size
x_train = X[:train_size]
x_test = X[train_size:]
y_train = Y[:train_size]
y_test = Y[train_size:]
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1],
x_train.shape[2], 1)
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_te
st.shape[2], 1
input_shape = (x_train.shape[1], x_train.shape[2], x_train.sha
pe[3])
print(x_train.shape)
print(x_test.shape)

print(y_train.shape)
print(y_test.shape)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

Figure 11: Loading input data to Neural Network Program in Python

 33

Prior build, compile and fitting the model, it is needed to declare the number of training and

test size of data. Here in the implementation, 1500 sets of input and output files considered as

training size and 100 sets of input and out files have considered as test size. And making sure

that the values are float so that we can get decimal points after division. Now reshaping the

array to 4-dims so that it can work with the keras API. I would just reshape the input data of

vWA locus from (1600, 6, 7) to (1500, 6, 7, 1). And for other locus this shape will be different

than others. X_train is a tuple with 3 elements. On the other hand, we know that the input

dimensions of vWA are 6x7. So, the shape object's 1st and 2nd element's value is 6, 7. And

lastly make sure that the values are float. So that we can get decimal points after division.

from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, Dropout, Fl
atten, MaxPooling2D
model = Sequential()
model.add(Flatten())
model.add(Dense(128, activation = tf.nn.relu))
model.add(Dropout(0.2))
model.add(Dense(y_train.shape[1], activation='sigmoid'))

Figure 12: Build the model Program in Python

There are two ways to build a keras model i.e. Sequential model and Functional model. Most

of the ConvNets work with sequential model. The sequential model allows to create the models

by layer. After that Flatten the 2D arrays for fully connected layers. In Dense layer I have

defined 128 neurons for first hidden layer. And assigned the activation function relu and

Sigmoid. Relu is sort of transformation that works with non-linearity. Also, it deals with

negative values array input array. Relu keeps the non-negative value unchanged and replaces

the negative values with 0. On the other hand, Dropout layers fight with the overfitting by

disregarding some of the neurons while training. So, here we configure dropout value 0.2

(20%). Dropout can be used during training the models but not during evaluating the

performance of model. In this section, Softmax and Sigmoid functions have compared to use

in the model. Sigmoid function used as activation function that is used in binary classification.

On the other hand, Softmax function also used as activation function that deals with multiple

classification logistic regression model. Softmax doesn’t work here. Softmax works for

increasing score of a label. Sigmoid works on the output between [0,1].

 34

Model.compile(optimizer = ‘adam’,
 loss = ‘binary_crossentropy’)
model.fit(x = x_train, y = y_train, epochs = 10)

Figure 13: Compiling and fitting the Model Program in Python

‘sparse_categorical_crossentropy' doesn't help in this compile model. Since it is a binary class

prediction model. So, ‘adam’ optimizer with ‘binary_crossentropy’ as loss function have been

using in the model. In addition, epochs are defined to 10. That means one complete dataset

have been trained to neural networks for ten times.

Epoch 1/10
1500/1500 [==============================] - 1s 34ms/sample - loss: 0.8191
Epoch 2/10
1500/1500 [==============================] - 0s 266us/sample - loss: 0.8946
Epoch 3/10
1500/1500 [==============================] - 0s 373us/sample - loss: 0.8781
Epoch 4/10
1500/1500 [==============================] - 0s 66us/sample - loss: 0.8519
Epoch 5/10
1500/1500 [==============================] - 0s 182us/sample - loss: 0.8342
Epoch 6/10
1500/1500 [==============================] - 0s 139us/sample - loss: 0.8206
Epoch 7/10
1500/1500 [==============================] - 0s 205us/sample - loss: 0.9031
Epoch 8/10
1500/1500 [==============================] - 0s 221us/sample - loss: 0.8858
Epoch 9/10
1500/1500 [==============================] - 0s 199us/sample - loss: 0.8691
Epoch 10/10
1500/1500 [==============================] - 0s 160us/sample - loss: 0.8589

Figure 14: Training performance for epochs 10

 35

5.5 Results and Discussion:

preds = model.predict(x_test)
preds[preds>=0.5] = int(1)
preds[preds<0.5] = int(0)

scores = model.evaluate(x_test, y_test, verbose=0)
#print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
#cvscores.append(scores[1] * 100)
#print("%.2f%% (+/- %.2f%%)" % (numpy.mean(cvscores),
numpy.std(cvscores)))
scores

from sklearn.metrics import classification_report
print(classification_report(y_test,preds))

from sklearn.metrics import classification_report
print(classification_report(y_test,preds))

preds = convert_outputs(preds)
print(preds)
y_test = convert_outputs(y_test)
print(y_test)

Figure 15: Predict and Evaluating the Model Program in Python

In the first part of the program, rounding up the floating-point values to binary classes based

on thresholds. After that converting back the one hot vectors to original 3x9 matrix for vWA

locus, 3x7 matrix for TPOX locus etc. It is important to converting back to original output

format for manual evaluation of performance. Here the classification report (for precision,

recall, f1-score and support) has been generated to discuss about the performance of neural

model.

 36

Figure 16: Classification Report of model for vWA

From the classification report, it can be said that higher true positive rate or precision represents

the total predictive power of a model. 100% precision is found in class variable 3, 12, 21 and

22 where 3 belongs to the first individual profile, 12 from second individual profile and 21 &

22 from third individual profile. As this model can produce most of the class variables with

around 100% accuracy rate for three individual profiles, so it can be said that this model has

comparatively good predictive power for DNA profiling. In contrast, total accuracy of the

model is around 75% where error rate depicts 25% that means this model can successfully

predict 75 times out of 100 occurrences. And overall accuracy of the model has been evaluating

by model.evaluate function. Based on the current training the performance is 85.1% (Based on

all 21 Loci). On the other hand, based on the classification report, Precision, Recall and F1

Score have been calculated for all 21 loci. Precision has been calculated based on true positive

 37

score and false positive score. Recall has been calculated based on true positive and false

negative. And F1 score calculated based on Precision and Recall. After that average them to

get final evaluation. In addition, micro average, macro average, weighted average and samples

average have been calculated as well for comparison. The values of Precision, Recall and F1

Score are listed below for all 21 loci.

Loci Precision Recall F1 Score
CSF1PO 0.82 0.87 0.8442604
D10S1248 0.84 0.89 0.8642775
D13S317 0.89 0.92 0.9047514
D16S539 0.92 0.91 0.9149727
D18S51 0.82 0.83 0.8249697
D19S433 0.86 0.81 0.8342515
D1S1656 0.91 0.92 0.9149727
D21S11 0.88 0.87 0.8749714
D22S1045 0.82 0.81 0.8149693
D2S441 0.82 0.81 0.8149693
D5S818 0.83 0.82 0.8249697
D7S820 0.82 0.84 0.8298795
D8S1179 0.87 0.86 0.8649711
DYS391 0.85 0.84 0.8449704
FGA 0.87 0.86 0.8649711
SE33 0.89 0.88 0.8849718
TH01 0.87 0.88 0.8749714
TPOX 0.81 0.82 0.8149693
Yindel 0.83 0.82 0.8249697
vWA 0.74 0.76 0.7498667
Average 0.848 0.851 0.8493438

Table 13: Neural Network Performance Statistics for all Loci

Above performance measured on total 56700 sets of data with 21 Neural Networks (each NN

represents a single locus). Each neural network was trained with 2500 dataset and tested with

200 datasets.

 38

6. Further Development:

Further development of this neural network can be implemented for the mixture of N number

of contributors. In this current work, model has been designed for mixture of 3 and 4 individual

contributors. However, in further development, number of contributors in a mix profile can be

determined. Also, current model is unable to determine the individual profile that contain same

number allele. Like: if any locus contains the same number of allele (i.e. 19,19). Current model

can be compared with other optimised version of neural networks like: Recurrent Neural

Network (RNN). In addition, a desktop software application can be developed that can be able

to profile the DNA and able to setup and evaluate the different type of neural networks and

other classifiers (like: Rapidminer).

There would be many swabs from around the crime scene reflecting different proportions of

contributors’ DNA. If there are all up K contributors to a crime scene and we take ≥K swabs

with different (possibly 0) weightings of (subsets of) the contributors, it is possible to

mathematically (perfectly) solve that for the contributors, their DNA and their weightings. An

ELM model would suffice to do this in ANN terms if we knew the original DNA of some or

all the contributors. The weighted ranked contributor representation CNN could be a pre-

processor for this.

7. Project Deliverables:
The research and development of this Neural Network system will be focused on following

deliverables:

1. Develop python code that simulates realistic DNA profiles.

2. Trial a system of CNNs (and potentially other machine learning algorithms) to identify

the number of contributors to the simulated DNA profiles.

3. Identify the limitations of performance for determining the number of contributors to

any DNA profile.

4. Analysing the machine learning and data classification algorithms for the related

classification problems to find out best solution to train the neural networks.

5. Trial a system that takes into account the raw data from the laboratory instrument and

process it using existing ANNs as inputs into the ANNs for determining the number of

contributors.

 39

The outcomes of the research and development are as follows:

1. Reviewed existing Neural network systems and literature.

2. Finalised the method and algorithms and implementation of the DNA profiling part.

3. Collect and generated dataset and DNA samples.

4. Validate the generated dataset.

5. Complete the prototype of the Neural Network system.

6. Running simulation to test the system are working properly.

7. Finalising documentation based on all final finding.

8. Conclusion:
There are lots of manual tasks involved in the analysis of DNA in the field of forensic science.

Lot of challenges are involved here including quality of sample (low profile DNA), quality of

samples can be issue, also the manual calculation that involved in the examination. In addition,

number of contributors from a single mix swabs identification is a challenging task. There are

lot of potential scopes in this field of research. The project has developed to find a solution

using neural network that can interpret the individual contributor from DNA mixture. In the

implementation, DNA profiling has done for single contributor and developed the EPG analysis

graph for it. After that convolutional neural network (CNN) has been imposed on the DNA

mixtures for different number of contributors to explore the possibility of identifying the allelic

peaks. From the classification and performance evaluation report, it can be said that higher true

positive rate or precision represents the total predictive power of a model. 100% precision is

found in maximum class variable. As this model can produce most of the class variables with

around 100% accuracy rate for three individual profiles, so it can be said that this model has

comparatively good predictive power for DNA profiling. In contrast, total accuracy of the

model is around 75% where error rate depicts 25% that means this model can successfully

predict 75 times out of 100 occurrences. So far with this model, Accuracy is over 85% for all

21 loci and it can be increased by increasing the number of test profiles. On the other hand,

average precision for all 21 loci is 84.8% and average recall for all 21 is 85.1%.

Further development of this neural network can be implemented for the mixture of N number

of contributors. In this current work, model has been designed for mixture of 3 and 4 individual

contributors. However, in further development, number of contributors in a mix profile can be

 40

determined. Also, current model can be compared with other optimised version of neural

networks like: Recurrent Neural Network (RNN).

 41

9. References:
[1] D. Taylor, J. Bright and J. Buckleton, "The interpretation of single source and mixed
 DNA profiles", Forensic Science International: Genetics, vol. 7, no. 5, pp. 516-528,
 2013. Available: 10.1016/j.fsigen.2013.05.011.

[2] M. Marciano and J. Adelman, "PACE: Probabilistic Assessment for Contributor
 Estimation— A machine learning-based assessment of the number of contributors in
 DNA mixtures", Forensic Science International: Genetics, vol. 27, pp. 82-91, 2017.
 Available: 10.1016/j.fsigen.2016.11.006.

[3] D. Taylor, M. Kitselaar and D. Powers, "The generalisability of artificial neural
 networks used to classify electrophoretic data produced under different conditions",
 Forensic Science International: Genetics, vol. 38, pp. 181-184, 2019. Available:
 10.1016/j.fsigen.2018.10.019.

[4] M. Woldegebriel, A. van Asten, A. Kloosterman and G. Vivó-Truyols, "Probabilistic
 peak detection in CE-LIF for STR DNA typing", ELECTROPHORESIS, vol. 38, no.
 13-14, pp. 1713-1723, 2017. Available: 10.1002/elps.201600550.

[5] D. Taylor and D. Powers, "Teaching artificial intelligence to read electropherograms",
 Forensic Science International: Genetics, vol. 25, pp. 10-18, 2016. Available:
 10.1016/j.fsigen.2016.07.013.

[6] C. Lawless, "The low template DNA profiling controversy: Biolegality and boundary
 work among forensic scientists", Social Studies of Science, vol. 43, no. 2, pp. 191-214,
 2012. Available: 10.1177/0306312712465665.

[7] R. Cowell, T. Graversen, S. Lauritzen and J. Mortera, "Analysis of forensic DNA
 mixtures with artefacts", Journal of the Royal Statistical Society: Series C (Applied
 Statistics), vol. 64, no. 1, pp. 1-48, 2014. Available: 10.1111/rssc.12071.

[8] A. Dakhli, W. Bellil and C. Amar, "Wavelet Neural Network Initialization Using LTS
 for DNA Sequence Classification", Advanced Concepts for Intelligent Vision Systems,
 pp. 661-673, 2016. Available: 10.1007/978-3-319-48680-2_58.

[9] W. Cheng, J. Huang and C. Liou, "Segmentation of DNA using simple recurrent neural
 network", Knowledge-Based Systems, vol. 26, pp. 271-280, 2012. Available:
 10.1016/j.knosys.2011.09.001.

[10] W. Zang, X. Liu and W. Bi, "An Artificial Neural Network Classification Model
 Based on DNA Computing", Human Centered Computing, pp. 880-889, 2015.
 Available: 10.1007/978-3-319-15554-8_82.

[11] "Recurrent neural networks 101: Understanding the basics of RNNs and LSTM", Built
 In, 2020. [Online]. Available: https://builtin.com/data-science/recurrent-neural-
 networks-and-lstm.

 42

[12] W. Cheng, J. Huang and C. Liou, "Segmentation of DNA using simple recurrent neural
 network", Knowledge-Based Systems, vol. 26, pp. 271-280, 2012. Available:
 10.1016/j.knosys.2011.09.001.

[13] G. Lo Bosco and M. Di Gangi, "Deep Learning Architectures for DNA Sequence
 Classification", Fuzzy Logic and Soft Computing Applications, pp. 162-171, 2017.
 Available: 10.1007/978-3-319-52962-2_14.

[14] H. Ling, S. Samarasinghe and D. Kulasiri, "Novel recurrent neural network for
 modelling biological networks: Oscillatory p53 interaction dynamics", Biosystems, vol.
 114, no. 3, pp. 191-205, 2013. Available: 10.1016/j.biosystems.2013.08.004.

[15] P. Chen, L. Chang and F. Chang, "Reinforced recurrent neural networks for multi-step-
 ahead flood forecasts", Journal of Hydrology, vol. 497, pp. 71-79, 2013. Available:
 10.1016/j.jhydrol.2013.05.038.

[16] K. Raza and M. Alam, "Recurrent neural network based hybrid model for
 reconstructing gene regulatory network", Computational Biology and Chemistry, vol.
 64, pp. 322-334, 2016. Available: 10.1016/j.compbiolchem.2016.08.002.

[17] K. Liu, P. Zhong, Y. Zheng, K. Yang and M. Liu, "P_VggNet: A convolutional neural
 network (CNN) with pixel-based attention map", PLOS ONE, vol. 13, no. 12, p.
 e0208497, 2018. Available: 10.1371/journal.pone.0208497.

[18] D. Quang and X. Xie, "DanQ: a hybrid convolutional and recurrent deep neural network
 for quantifying the function of DNA sequences", Nucleic Acids Research, vol. 44, no.
 11, pp. e107-e107, 2016. Available: 10.1093/nar/gkw226.

[19] X. Du, Y. Yao, Y. Diao, H. Zhu, Y. Zhang and S. Li, "DeepSS: Exploring Splice Site
 Motif Through Convolutional Neural Network Directly From DNA Sequence", IEEE
 Access, vol. 6, pp. 32958-32978, 2018. Available: 10.1109/access.2018.2848847.

[20] A. Deshpande, "A Beginner's Guide To Understanding Convolutional Neural
 Networks", Adeshpande3.github.io, 2020. [Online]. Available:
 https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-
 Convolutional-Neural-Networks/.

[21] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to
 document recognition", Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
 Available: 10.1109/5.726791.

[22] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory", Neural Computation,
 vol. 9, no. 8, pp. 1735-1780, 1997. Available: 10.1162/neco.1997.9.8.1735.

[23] D. Rumelhart, G. Hinton and R. Williams, "Learning representations by back-
 propagating errors", Nature, vol. 323, no. 6088, pp. 533-536, 1986. Available:
 10.1038/323533a0.

[24] Phung and Rhee, "A High-Accuracy Model Average Ensemble of Convolutional
 Neural Networks for Classification of Cloud Image Patches on Small Datasets",

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-

 43

Applied Sciences, vol. 9, no. 21, p. 4500, 2019. Available: 10.3390/app9214500 [Accessed 23
June 2020].

	Acknowledgements
	1. Introduction:
	2. Literature Review:
	2.1 Identifying numbers of contributor in DNA profile:
	2.2 Classification of fluorescence in a DNA profiles:
	2.3 Using Artificial Neural Network:
	2.4 Recurrent Neural Network and LSTM (Long Sort-Term Memory):
	2.5 Convolutional Neural Network:

	3. Importance of the Research:
	3.1 Motivation of Research:
	3.2 Goal of Research:
	3.3 Scope of Research:

	4. Methodologies:
	4.1 Dataset:
	4.2 Machine Learning Algorithms:
	4.3 Training the NNs:

	5. Project Achievements:
	5.1 Simulation of DNA Profiles:
	5.2 Pre-processing DNA Profiles Data to Train Neural Networks:
	5.3 Validation of Simulated DNA Profiles:
	5.4 Peak Identification through CNN:
	5.5 Results and Discussion:

	6. Further Development:
	7. Project Deliverables:
	8. Conclusion:
	9. References:

