
1 
 

Flinders University 
School of Computer Science, 

Engineering and Mathematics 
 
 
 
 

 
 

National Instruments Autonomous Robotics 

Competition 2016: Programming of the robot 

using LabVIEW 
 
 
 

 
 

 
 

Student: Celeste Mercado 
B Engineering (Robotics)(Honours), M Engineering (Electronics) 

Academic Supervisor: Dr. Nasser Asgari 
 
 
 
 
 
 

Submitted to the School of Computer Science, Engineering and Mathematics 
in the Faculty of Science and Engineering in partial fulfilment 

of the requirements of the degree of B Engineering (Robotics)(Honours), M Engineering 
(Electronics) at Flinders University - Adelaide Australia 

October 17, 2016 



i 
 

Declaration 
 

I certify that this work does not incorporate without acknowledgment any material 

previously submitted for a degree or diploma in any university; and that to the best of 

my knowledge and belief it does not contain any material previously published or 

written by another person except where due reference is made in the text. 

 

 

 

______________________ 

Celeste Mercado 

Due Date: 17/10/16 

 

 

  



ii 
 

Acknowledgements 
 

I would like to thank our supervisor, Dr. Nasser Asgari for supporting and assisting the 

team throughout the project, and also my team members Joel Kluske and Melissa 

Drogmuller for their contribution to the completion of the project. Furthermore, I would 

like to thank our mentor Ben Illman who helped with some design considerations and 

provided pointers with the programming, and also Xan Smith who helped resolve some 

LIDAR complications. 

  



iii 
 

Abstract 
 

The National Instruments Autonomous Robotics Competition (NI ARC) is an annual 

competition which encourages students to become innovative in the field of robotics. 

Teams across New Zealand and Australia are tasked with designing, creating, and 

programming an autonomous robot capable of completing specific tasks of the 

competition within six months. 

With a focus in the medical field, the theme for the 2016 NI ARC competition was 

‘Hospital of the Future’. The course was modelled to represent a hospital and entailed 

the robot to navigate from a starting position and deliver medicine units to the Storage, 

The Wards, and the Operations Theatre, whilst avoiding collisions into walls and 

surrounding static and dynamic obstacles.  

This is the fourth year Flinders University has competed in the competition. This year’s 

team, Team FUTUREbot, consisted of three members, Joel Kluske, Melissa Drogmuller 

and Celeste Mercado, who were assigned the mechanical design, electronic design, and 

programming of the robot respectively. 

The final design of the robot consisted of a four-wheel holonomic wheel base, with a 

robotic arm for object handing, and a rotating top plate to store the medicine units. The 

primary sensor utilised by the robot was a Light Detection and Ranging (LIDAR), which 

was used for navigation and obstacle avoidance.  The myRIO was required to be used as 

the central processing unit and was used to communicate with, and control all the 

electronics selected for the robot. 

A state machine was implemented to navigate the robot through the course.  The robot 

would determine which state to transition to next depending on the conditions met in 

the current state. The majority of the navigation was heavily dependent on the 

manipulation and processing of the LIDAR data.  

Overall, the team was pleased with the performance of the robot. The team placed first 

in their Qualifiers heat, however was knocked out of the competition in the Round of 16 

knockouts. Out of all the competing robots, the team’s robot was found to have the most 

reliable object handling system, and received many compliments on the final design. 
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Chapter 1 

Introduction 
 

1.1 National Instruments Competition Overview 

The National Instruments Robotics Competition (NI ARC) is an annually held 

competition which encourages students to become innovative, and develop skills within 

the robotics field. Student teams from the top universities across Australia and New 

Zealand, create and develop an entirely autonomous robot within six months to 

compete in the live finals competition. The competition consists of pre-defined tasks 

which the robot must complete, whilst abiding by a set list of rules. The competition 

applies robotics to real world applications, with a focus on obstacle avoidance, object 

handling, localisation, navigation and localisation [1]. 

1.2 Competition Theme  

Technological advancements in the robotics field has provided many improvements and 

benefits in the medical field. The use of robots is now being incorporated within the 

medical field for various applications such as: assisting doctors with surgeries, 

undertaking patient check-ups from remote locations, and providing aid with the 

delivery of supplies within the hospital [2]. The competition is now in its sixth year, and 

the theme for the 2016 NI ARC was ‘Hospital of the Future’.  With a focus in the medical 

field, the robot was tasked with delivering medicine units to various locations within 

the hospital, whilst avoiding any static and dynamic obstacles along the way.  

The hospital track is depicted in Figure 1. The course is 6m by 4m and contains three 

areas in which the medicine units can be delivered to; Storage, The Wards, and the 

Operations Theatre. The two sides, and back wall of the Storage and Operations Theatre 

are made of glass Perspex. This also applies to The Wards, however, each of the five 

wards are also divided by Perspex. The three delivery areas consist of an elevated 

carrier which the robot must carefully place the medicine units onto.  

In addition, the track also comprises of two out of bounds areas; the Hospital Reception 

along with the Dynamic Obstacle Path. In the Dynamic Obstacle Path, a National 

Instruments (NI) Robot will be present; it will be either stationary or moving, 

depending on the round of the competition. Static obstacles will also be placed within 

the Main Area in random locations; however, they will be at least 1m away from the 

nearest wall, other obstacles, and vicinities of the three delivery areas [2].   
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Figure 1. Hospital Competition Track [2] 

Figure 2. NI ARC medicine unit 
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1.3 Team FUTUREbot 

The 2016 team consisted of 3 members; Joel Kluske, Melissa Drogmuller, and Celeste 

Mercado. The work load was divided into three categories; mechanical, electronic, and 

software (programming). Joel was assigned the mechanical section where he was 

responsible for designing and constructing the robot.  Melissa was assigned with the 

electronics section where she was in charge of selecting the required electronics for the 

robot, such as sensors and motor controllers, and, in addition, how these electronics 

would be interfaced. I was tasked with the programming, which consisted of 

determining how to navigate and control the robot using the selected electronics. In 

addition, Ben Illman, who was a participant in the 2015 NI ARC assisted as the group’s 

mentor. As programming was a large section of the project, Melissa also assisted with 

some sections of programming. Although each group member was assigned a specific 

role, team members worked cohesively and were not hesitant in discussing ideas with 

one another.  

1.4 Project Objective and Scope 

The objective of this project is to design, build, and program an autonomous robot 

which abides by the competition rules, and accomplishes the set of tasks as defined by 

NI.  

This thesis aims to provide an overview of the rules and requirements of the 2016 NI 

ARC, and a brief insight into the mechanical design and hardware involved in creating 

the robot. However, the main scope of the thesis is to explain the algorithms and 

methods implemented to control and navigate the robot through the course to achieve 

the competition goals.  
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Chapter 2 

NI ARC 2016 Competition Requirements 
 

2.1 Competition Structure 

The competition was structured as a knockout tournament. The basis for each round 

required the robot to begin within the Start area, then navigate its way to The Wards, 

then to the Operations Theatre, and finally park itself completely within the Finish area. 

Each round of the competition becomes progressively difficult. The number of medicine 

units required to be delivered to both The Wards and Operations Theatre gradually 

increase, the amount of static obstacles also increase, and the NI Robot gradually 

becomes more active. Table 1 explains the requirements and nature of each round. 

Delivering medicine units to Storage is not a requirement, however delivering the stated 

number of medicine units to The Wards as per Table 1 is mandatory before making 

deliveries to the Operations Theatre. However, only one medicine unit per ward is 

permitted; delivering multiple units to a single ward does not contribute to additional 

points being awarded. The points system details are described in Table 2, and the final 

score is calculated via applying the equation below (1)[2]. 

                              

 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑖𝑛𝑡𝑠 =  [(150 𝑠𝑒𝑐 −  𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛) 𝑥 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟]  +  𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑑𝑑𝑒𝑑 −

                                                 𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑒𝑑𝑢𝑐𝑡𝑒𝑑 +  𝑏𝑜𝑛𝑢𝑠 𝑝𝑜𝑖𝑛𝑡𝑠]   

(1) 
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Table 1. Competition Knockout Structure [2] 

Name of 

Round 

Round Format Time 

Limit 

(mins) 

# of 

Medicine 

Units 

Min # of units 

in wards 

before 

Operations 

Theatre 

Delivery 

# 

Obstacles 

in the 

Main 

Area 

NI Robot in 

Dynamic 

Obstacle Path 

Qualifiers 1 Group 

Stages (Best 

of 3) 

2.5 2 1 Max 3 Stationary 

Round of 16 2 Knockout 2.5 2 1 Max 3 Stationary 

Quarter-

Finals 

3 Knockout 2.5 3 2 Max 4 Moving slowly 

in one direction 

Semi-Finals 4 Knockout 2.5 4 2 Max 5 Moving fast in 

one direction 

Playoffs for 

3rd place 

5 Knockout 

(Best of 3) 

2.5 5 3 Max 7 Moving fast 

omnidirectional 

Champion-

ship Round 

6 Knockout 

(Best of 3) 

2.5 6 3 Max 7 Moving fast 

omnidirectional 

 

 

Table 2: Competition Points System 

Points 

Awarded for: 

Quantity 

Awarded 

Point Deductions 

for: 

Quantity 

Deducted 

Round Multiplier 

Delivery to 

Storage 

+75 Bumping into 

Walls/Obstacles 

-25 Qualifiers 1 

Delivery to 

Each Ward 

+150 False Starts -25 Round of 16 1.5 

Delivery to 

Operation 

Theatre 

+300 Crossing Dynamic 

Obstacle Path 

-30 Quarter-

Finals 

2 

(Bonus 

Points) 

Finishing 

without any 

obstacle 

collisions 

+200 Collision with NI 

Robot 

-300 Semi-Finals 2.5 

(Bonus 

Points) for 

Wi-Fi 

messaging to 

server 

+200 Entering Hospital 

Reception 

-25 Playoffs for 

3rd place and 

Championship 

Round 

3 
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2.2 Competition Rules 

National Instruments provided a set of rules in which the design and programming of 

the robot must abide by to qualify for the competition. Additional rules which were not 

previously discussed are as follows: 

 The robot must be entirely autonomous, self-powered, and must move i.e. a 

conveyor system cannot be used. 

 The NI myRIO provided must be used and utilised as the main Central Processing 

Unit (CPU). Other CPUs may be used if embedded within a sensor or actuator for 

signal conditioning purposes. 

 The LabVIEW software provided must be used for the majority of code written 

and implemented.  

 The robot must include a hardware switch to trigger the robot to start, and also 

an emergency switch to stop the robot. 

 The robot must not damage the medicine units, as well as any components of the 

track. At the competition judges’ discretion, the robot may be disqualified if 

deemed destructive. 

2.3 NI myRIO 1990 

As identified in the Chapter 2.2, a competition requirement was for the NI myRIO 

provided, to be utilised as the robot’s main CPU. The myRIO 1990 is an embedded 

portable hardware device which is designed for students to utilise for a wide variety of 

projects. It has a dual-core ARM Cortex -A9, real time-processing capabilities, and 

customizable Xilinx FPGA [3]. It is a reconfigurable input/output (I/O) device containing 

two identical sets of 33 pin MXP connectors, and a 20 pin Mini System Port (MSP). It 

also contains an accelerometer, USB host port, USB device port, and four programmable 

LEDs. The myRIO also has wireless capabilities, such that it can connect to a server and 

connect to a host computer via Wi-Fi.  
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2.4 LabVIEW 2015 

One of the rules of the competition is that the majority of the programming must be 

written and implemented using LabVIEW. As opposed to text based languages such as, 

C, C++ and Java, LabVIEW is a graphical software environment. It uses wires and icons 

to represent the flow of data through the program.  

LabVIEW uses Virtual Instruments (VIs) to write the programs. A VI consists of a Front 

Panel and a Block Diagram. The Front Panel is the graphical user interface (GUI) which 

contains the controls and indicators of the program. It allows the user to interact with 

the program in real time and/or monitor the outputs of the program.  

Figure 3. NI myRIO 1990 [4] 

Figure 4. myRIO MXP connectors [3] 

 

 

 

Image omitted due to copyright restrictions. 

 

 

 

Image omitted due to copyright restrictions. 
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The Block Diagram is where the graphical source code is implemented [5]. Data is 

processed by using wires to connect the inputs and outputs of components within the 

block diagram.  

 

 

 

 

 

 

 

 

 

Figure 5. LabVIEW Block Diagram and Front Panel [5] 

 

2.5 Milestones 

In the lead up to the competition, five milestones were required to be completed. Each 

milestone required a deliverable to be assessed by the NI ARC team.  

2.5.1 Milestone 1- Completion of Online Training Course 

The first milestone required two members of the team to complete Core 1 and Core 2 of 

the online NI LabVIEW training course by April 27, 2016. These online courses aimed to 

introduce and familiarise the competition participants to different features of the 

LabVIEW environment. 

Each core involved watching a series of videos broken down into modules, each 

covering a different aspect of LabVIEW. A quiz question was then required to be 

answered at the end of each module, along with completing a final quiz at the end of 

each course. As proof of completion of the online course, the Core 1 and Core 2 course 

certificates were to be provided to the NI ARC team. 

2.5.2 Milestone 2- Sensor Actuation and Data Acquisition 

Milestone 2 required a submission of a project proposal of 300-500 words, along with a 

demonstration of the use of myRIO and LabVIEW, to either: control at least one actuator 

or motor, or acquire data from at least one sensor. The due date for this milestone was 

May 9, 2016. 

 

 

 

 

Image omitted due to copyright restrictions. 
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The team submitted a video demonstrating the control of a DC motor using an Infra-Red 

(IR) sensor, where the value read from the sensor would control the speed of the motor.  

 

 

 

 

 

 

 

  

 

2.5.3 Milestone 3- Obstacle Avoidance  

Milestone 3 was due on June 8, 2016. This milestone required a preliminary design and 

construction of the robot with obstacle avoidance implemented. A video of the robot 

moving autonomously whilst avoiding obstacles was submitted. The team set up a 

replica of the competition track, and placed obstacles in random positions for the robot 

to avoid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Milestone 2-Controlling the speed of a motor 

Figure 7. Milestone 3- Obstacle avoidance 
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2.5.4 Milestone 4- Navigation and Localisation 

The due date for milestone 4 was July 25, 2016. The requirement for this milestone was 

for the robot to demonstrate navigation/localisation and obstacle avoidance.  The robot 

was to begin loaded with a medicine unit at position A, then navigate to location B. At 

location B the robot was to carefully deliver the medicine unit onto an elevated 

platform. Refer to Figure 8 for a visual representation of locations A and B. A video 

submission of the robot completing the task was required, along with a submission of 

the code and description of the VIs used within the code. 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Milestone 4 locations A and B 

Figure 9. Milestone 4-Navigation to location B to deliver 
a medicine unit 
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2.5.5 Milestone 5- Navigation and Object Handling 

The final milestone required the demonstration of a combination of obstacle avoidance, 

navigation and object handling, and was also a requirement to qualify for the final 

competition. The robot was to begin at location A with two medicine units loaded onto 

it, then move to location B and carefully deliver the first block onto an elevated 

platform. The robot must then navigate itself to location C whilst avoiding obstacles, 

where it must carefully deliver the second medicine unit onto an elevated platform. 

After delivering both units, the robot must park in location D whilst avoiding obstacles, 

to complete the task. Refer to Figure 10 for a visual representation of locations A, B, C 

and D.  

A video submission of the robot completing the task, along with the code and 

description of the VIs utilised was to be submitted by August 29, 2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.Milestone 5-locations A, B, C and D 

Figure 11. Milestone 5-Navigation to location C to deliver second 
medicine unit 
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2.6 Project Timeline 

The milestones discussed in Chapter 2.5 provided the timeline for the project. Table 3 

provides a summary of the of the deadlines and deliverables for the project. 

Table 3: Project timeline 

Task Due Date (2016) Deliverables 

Competition 

begins 

 April 11  - 

Milestone 1  April 27 -LabVIEW Core 1 and Core 2 training certificates  

Milestone 2  May 9 -Project Proposal 

-Video demonstration of motor/ actuator control or 

data acquisition from a sensor 

Milestone 3 June 8 -Prototype of robot 

-Video submission of prototype demonstrating 

obstacle avoidance 

Milestone 4 July 25 -Video submission of robot demonstrating 

navigation/localisation and obstacles avoidance 

-Code submission 

-VI descriptions 

Milestone 5 August 28 -Video submission of robot demonstrating 

navigation/localisation and obstacles avoidance and 

object handling 

-Code submission 

-VI descriptions 

Live Competition September 26 -Construction of final robot design 

-Program to compete in competition 
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Chapter 3  

Literature Review and Project 
 

There are three questions which formulate the problem of robot navigation;  

 Where am I? - For the robot to make useful decisions, it must know its location. 

Localisation is thus used to determine where the robot is located.  

 Where am I going? - The robot must know where it is going in order to achieve 

its task. Identifying its goal is known as goal recognition.  

 How do I get there? - Once the robot knows its location and where it wants to 

go, it must decide on how it will get there. Deciding on how it will get to its 

desired location is known as path planning [6]. 

In this chapter, localisation and feature extraction techniques will be explored to 

provide insight into which algorithms could be implemented for the project to navigate 

the robot through the course.  

3.1 Localisation 

The position of a mobile robot is one of the most important state parameters; the robot 

must know its position at every moment. This is known as localisation of the robot. A 

robot perceives its environment through the use of sensors which provide the robot 

with data about its environment. The robot can then use this information to determine 

its position in relation to the environment. However, robot localisation is affected due to 

environmental noise and interference. These sources of error cause a loss in precision 

and accuracy when determining the robot’s position [7]. 

A conference paper by Sangale, V & Shendre, A 2013, uses a multiple sensor fusion 

technique with the Extended Kalman Filter (EKF) to attain precise localisation, where 

the EKF combines readings from multiple sensors to predict the robot’s next state. The 

paper discusses how odometry and gyroscope measurements are used to accurately 

localise the robot. 

The Kalman Filter (KF) uses a “Gaussian probability density representation of robot 

position and scan matching for localisation” [7]. Where a single well-defined Gaussian 

probability density function represents the robot’s belief state. Although the KF is 

precise and efficient in tracking the robot from an initial known position, the filter itself 

is not sufficient for global localisation. Another issue with the KF is that it assumes the 

system model is perfect, and noise is white Gaussian [7]. 
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Figure 12 depicts the basic logic of the Kalman Filter. It is a recursive algorithm which 

“estimates the state of a noisy linear dynamic system” [7] using the system 

measurements it receives. 

 

 

 

 

 

 

 

 

 

 

 

The EKF overcomes the problems of the basic KF, as it can be applied to non-linear 

systems by using partial derivatives to linearize the estimation around the current 

estimate [7]. There are three stages to the EFK algorithm. 

Initialisation. The EKF is initialised at time step 0 with a posterior state estimate �̂�0
+ 

and uncertainty  𝑃0
+. 

Prediction. At every time step, the EKF predicts the current step by propagating the 

previous state and uncertainty of the system. The prediction equations are described by 

equations (2) and (3) [7]. 

  

�̂�𝑘
− = 𝑓(�̂�𝑘−1

+ ) 

                                               

(2) 

  

𝑃𝑘
− = 𝐴𝑘𝑃𝑘−1𝐴𝑘

𝑇 + 𝑄𝑘−1  

 

                                                   

(3)      

 

𝐴𝑘 is the Jacobian Matrix containing the partial derivatives of the function 𝑓(. ) with 

respect to the states previous posterior state estimate �̂�𝑘−1
+ [7]. 

 
𝐴𝑘 =

𝜕𝑓(𝑥)

𝜕𝑥
|
𝑥=�̂�𝑘−1

+

 

 

                                                   

(4) 

 

Figure 12. Kalman Filter System [7] 

 

 

 

Image omitted due to copyright restrictions. 



15 
 

 

Correction. The prior state estimate is corrected by the EFK with a full measurement 

𝑧𝑘. The correction equations are described by equations (5) to (6) [7].  

 𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1 

 

                                              (5) 

 �̂�𝑘
+ = �̂�𝑘

− = 𝐾𝑘(𝑧𝑘 − ℎ(�̂�𝑘
−))  

 

                                              (6) 

 

 

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

−                                               (7) 

 

𝐻𝑘 is the Jacobian Matrix containing the partial derivatives of the function ℎ(.) with 

respect to the state previous posterior state estimate �̂�𝑘− [7]. 

 
𝐻𝑘 =

𝜕𝑓(𝑥)

𝜕𝑥
|
𝑥=�̂�𝑘

−

 

 

                                              (8) 

 

 

The experiment was conducted using two methods: firstly, using only two wheel 

encoders, and secondly with a gyroscope and two wheel encoders combined by the EKF. 

The results of the experiment can be found in Figure 13, and the corresponding 

percentage errors are shown in Figure 14. The results show that the average percentage 

error is considerably reduced when localisation with sensor fusion by EKF is utilised. As 

the EKF uses a comparison of different sensors, it allows the system to not be 

completely disturbed; the system is able to follow the sensor which is less erroneous. 

Overall, it can be concluded that the use of sensor fusion via EKF yields an acceptable 

state estimation of the robot, where nominal errors lie within the tolerance level of the 

system [7].  
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The experimental results have shown that the EKF is a worthy consideration for the 

implementation of robot localisation for the competition. In particular, the study has 

helped identify the technique of sensor fusion to provide more accurate localisation. It 

has highlighted the benefits of integrating two sensors into the EKF such that it has a 

greater correcting capability in comparison to only using the wheel encoder data for 

localisation. 

 

 

 

 

 

Figure 13. Cartesian co-ordinates of experimental results [7] 

Figure 14. Percentage error of localised 
systems [7] 
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3.2 Dead-Reckoning  

Dead-reckoning is a relative positioning localisation method used to estimate the 

positioning of the robot. It utilises only its internal sensors such as encoders and inertial 

measuring unit (IMU) to estimate the relative position of the robot. As dead-reckoning 

does not rely on external signals, its major advantage over absolute positioning 

methods is that it is: much simpler to implement, lower in cost due to reduction on 

hardware and software needs, eliminates the need to implement landmarks, and is 

faster in calculating the robot’s position in real time. However, one disadvantage of this 

method is that the accuracy of estimations decreases due to the accumulation of 

transformation errors and slippage as the robot’s movement increases [8]. 

 

A journal paper by Sekimori, D & Miyazaki, F 2007, showed an effective implementation 

of a dead-reckoning system by utilising optical mouse sensors, where the robot’s 

movements are tracked from the floor using optical mouse sensors. Depending on the 

conditions of the flooring, and amount of shaking of the robot, there will be some 

expected errors in the read movements. Hence, to eliminate this problem, multiple 

optical mouse sensors were utilised to compare sensor values. The optical mouse 

measures non-contact movements. A sensor irradiates the floor with an LED through a 

lens, and the sensor captures the floor images. The optical mouse sensor then processes 

the pictures and transforms them into distance information [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Robot and optical mouse sensor 
configuration [9] 
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Figure 15 depicts the configuration of robot and optical mouse sensors. Movement of 

the robot (translational, and rotational movement) on a plane is measured using two 

optical mouse sensors. The relation movement measured by each 

sensor,[Δ𝜉𝑖, Δ𝜂𝑖]T, [Δ𝜉𝑗 , Δ𝜂𝑗 ]𝑇 , and the movement [Δx,Δy,Δθ]T of the robot centre is 

described by equations (9) and (10) [9].  

 

 
[
𝐶𝜑𝑖 −𝑆𝜑𝑖
𝑆𝜑𝑖 𝐶𝜑𝑖

] [
Δ𝜉𝑖
Δ𝜂𝑖

] = [
Δ𝑥
Δ𝑦

] + Δ𝜃 [
−𝑑𝑖𝑆𝜑𝑖
−𝑑𝑖𝑆𝜑𝑖

] 

 

(9) 

 
[
𝐶𝜑𝑗 −𝑆𝜑𝑗
𝑆𝜑𝑗 𝐶𝜑𝑗

] [
Δ𝜉𝑗
Δ𝜂𝑗

] = [
Δ𝑥
Δ𝑦

] + Δ𝜃 [
−𝑑𝑗𝑆𝜑𝑗
−𝑑𝑗𝑆𝜑𝑗

] 

 

(10) 

 

The equations are rearranged to provide equation (11), which is described by equations 

(12) to (14) [9]. 

 𝑨𝒖 =  𝒂  

 

(11) 

 𝒖 =  [Δ𝑥, Δ𝑦, Δ𝜃]𝑇  

 

(12) 

 

𝐴 = [

1 0 −𝑑𝑖𝑆𝜑𝑖0
0 1 𝑑𝑖𝐶𝜑𝑖
1 0 −𝑑𝑗𝑆𝜑𝑗
0 1 𝑑𝑗𝐶𝜑𝑗

] 

                                                                                                                                      

 

(13) 

  

𝑎 = [

Δ𝜉𝑖𝐶𝜑𝑖 −  Δ𝜂𝑖𝑆𝜑𝑖
Δ𝜉𝑖𝑆𝜑𝑖 + Δ𝜂𝑖𝐶𝜑𝑖
Δ𝜉𝑗𝐶𝜑𝑗 −  Δ𝜂𝑗𝑆𝜑𝑗
Δ𝜉𝑗𝑆𝜑𝑗 + Δ𝜂𝑗𝐶𝜑𝑗

] 

 

                                                                                                                                                                                                          

 

(14) 

 

The squared error of movement  𝐸𝑖𝑗  is expressed by equation (15) [9]. 

 
𝐸𝑖𝑗  = ∑(𝐴𝑝1Δ𝑥 +  𝐴𝑝2Δ𝑦 +  𝐴𝑝3Δ𝜃 −  𝑎𝑝)2

4

𝑝=1

 

 

                      

(15) 
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To determine the movement of the robot 𝒖 which results with a minimised square error 

𝐸𝑖𝑗  ,the following equation (16) [9] is used. 

 𝑢 = 𝐴−𝑎    

 

(16) 

 

After determining the movement 𝒖 of the robot, dead-reckoning can be computed via 

equation (17) [9]. 

 

 
[
𝑋𝑡
𝑌𝑡
Θ𝑡

] = [
𝑋𝑡 − 1 + Δ𝑥𝐶Θ𝑡 − 1 −  Δ𝑦 𝑆Θ𝑡 − 1
𝑌𝑡 − 1 + Δ𝑥𝑆Θ𝑡 − 1 + Δ𝑦 𝐶Θ𝑡 − 1

ΘΘ𝑡 − 1 + Δ𝜃
] 

 

              

(17) 

 

There are various factors which contribute to incorrect measurements by the optical 

mouse sensor such as: robot speed, floor conditions, and shaking. When monitoring 

only the error of one optical mouse sensor, error cannot be detected. A method was 

proposed to calculate the robot’s movements by comparing and selecting reliable 

sensor readings. The accuracy of a measurement is evaluated based on equation (18) 

[9]. 

 

 
𝑟𝑖 = ∑𝛿𝑖𝑗 ,

𝑁

𝑗=1
𝑗≠𝑖

    𝛿𝑖𝑗 = {
1     (𝐸𝑖𝑗  ≤  𝐸𝑡ℎ)

0     (𝐸𝑖𝑗  >  𝐸𝑡ℎ)
 

 

 

 

(18) 

Where 𝑟𝑖 is the reliability of the optical mouse sensor 𝑚𝑖,  𝑁 is the number of optical 

mouse sensors, 𝐸𝑖𝑗  is the calculated squared error and 𝐸𝑡ℎ is the threshold.  Reliability is 

calculated for each optical mouse sensor 𝑚𝑎 , 𝑚𝛽  etc., and a threshold value 𝑟𝑡ℎ is used 

to select the sensors with high reliability [9]. 

The movement of the robot is now calculated with the equation (19) [9]. 

 𝑢 = 𝐵−𝑏 

 

(19) 

 

𝐵 =

[
 
 
 
 
1 0 −𝑑𝛼𝑆𝜑𝑎
0 1 𝑑𝑎𝐶𝜑𝑎
1 0 −𝑑𝛽𝑆𝜑𝛽
0 1 𝑑𝛽𝐶𝜑𝛽
. . . . . . ]

 
 
 
 

 

 

                                                      

(20) 
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𝑏 =

[
 
 
 
 
Δ𝜉𝛼𝐶𝜑𝛼 −  Δ𝜂𝛼𝑆𝜑𝛼
Δ𝜉𝛼𝑆𝜑𝛼 + Δ𝜂𝛼𝐶𝜑𝛼
Δ𝜉𝛽𝐶𝜑𝛽 −  Δ𝜂𝛽𝑆𝜑𝛽
Δ𝜉𝛽𝑆𝜑𝛽 + Δ𝜂𝛽𝐶𝜑𝛽

. . ]
 
 
 
 

 

                                                                                                                                                                                                       

(21) 

 

The dead-reckoning method was tested using a robot driven with three omnidirectional 

wheels. A camera was installed in the ceiling to provide information on the robot’s true 

trajectory, and tests for dead-reckoning using the wheel encoders, two optical sensors, 

and four optical sensors were conducted and compared for two different speeds [9].  

Trajectory results for each speed can be observed in Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Dead-reckoning trajectory test results [9] 

 

These dead-reckoning tests were performed ten times whilst keeping the same 

conditions. Results from the ten tests resulted to similar results as depicted in Figure 

16, hence the dead-reckoning method proposed proved to be confirmed.  The average of 

the estimated errors is depicted in Figure 17, and show that the use of four optical 

mouse sensors provides the most accuracy when following the actual robot trajectory 

[9]. 
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As the known path for the robot can be pre-identified for the NI ARC, dead-reckoning is 

a plausible method which could be utilised. The experimental results from the proposed 

dead-reckoning method have shown that the robot can be made to move accurately to 

pre-set locations with the use of optical mouse sensors. Optical mouse sensors would be 

beneficial to provide a way to accurately track the robot’s movements without being 

influenced by floor friction, which is a main contributing factor to errors when using 

wheel odometry. Overall, based on the results presented, it can be concluded that the 

use of four optical mouse sensors is required if the robot is to be driven at faster speeds. 

Since fastest time to complete competition objectives is an element of the competition, it 

is most likely four optical sensors will be required to be utilised if accurate dead-

reckoning is wanted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Average error for ten dead-
reckoning tests [9] 
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3.3 Feature Extraction 

Odometry data alone is not sufficient enough to localise the robot due to the positioning 

error associated with it. A solution to this can be implemented via the use of a range of 

sensors such as a sonar, LIDAR or infrared. One of the most popular sensors is the 2D 

laser rangefinder, which is used for localisation, dynamic map building and collision 

avoidance. It has an advantage to other sensors such as: providing more accurate 

measurements, high sampling rate, higher angular resolution and has good range 

distance and resolution [10]. 

A major issue in robotic localisation is accurately matching sensor data to information 

on a priori map, or to previous information collected. Two matching techniques used in 

mobile robotics are: point based matching, and feature based matching. However, 

feature-based algorithms are preferred as they are more compact, thus require less 

memory storage whilst providing accurate information, and are also more efficient [10]. 

 A conference article written by Nguyen et al. 2005 evaluates six popular line extraction 

algorithms in mobile robotics, and compares each method to one another to highlight 

the advantages and disadvantages of each algorithm. Comparisons between each 

method will allow for easy identification as to which methods are preferable for specific 

applications. The six-line extraction methods tested were, Split and Merge, Line 

Regression, Incremental, Random Sample Consensus (RANSAC), Hough-Transform 

(HT), and Expectation-Maximization (EM). 

The paper provides an overview of the algorithm associated with each extraction 

method, and details the process of how the experiments were conducted. Algorithm 

specific parameters were tuned based on experimental results, such that the best 

performance of each algorithm could be utilised for comparison purposes. The 

correctness of each algorithm was determined by comparing them to manually 

extracted lines from the scan defined as “truth lines” [10]. To compare the results of the 

six algorithms, four quality measures were defined and evaluated: complexity, speed, 

correctness and precision. Figure 18 depicts the results of the six-line extraction 

algorithms combined with the clustering algorithm and the other five are the basic 

versions of the algorithms. The clustering algorithm was integrated to filter out noisy 

points and divide the raw scan into clusters. This allowed the scan to be segmented into 

contiguous point clusters [10]. 
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In terms of speed: Split and Merge, Incremental and Line Regression are the top three 

fastest, with Split and Merge being the superior. Incremental based algorithms have 

shown to perform best in terms of correctness, as they have a low number of false 

positives which is important for simultaneous localization and mapping (SLAM). Due to 

a higher percentage in true positives, Split and Merge combined with the clustering 

algorithm would be best for localisation with a priori map. Whilst having slow speed 

and bad correctness, RANSAC, HT, and EM+Clus algorithms are able to “produce 

relatively more precise lines” [10]. Overall, Split and Merge, and Incremental would be 

the best candidates for SLAM, due to their fast speed and correctness. For real time 

applications, Split and Merge would be the ultimate algorithm due to its superior speed, 

and would also be a preferred choice for localisation with a priori map where false 

positives are not so important [10]. 

Feature extraction would be a useful feature to implement for the NI ARC competition. 

The primary sensor which will be utilised on our robot will be a LIDAR which will 

essentially provide similar information as the laser sensor used in the experiment. By 

implementing a feature extraction algorithm, walls and obstacles can be easily 

identified, as well as provide the robot with information about its location by identifying 

certain features of the track. As the experiments conducted by Nguyen et al. 2005 

ensured each algorithm was compared to one another based on their best 

performances, and with as many common parameters as possible, the results provided 

good and clear comparisons as to which algorithms would provide the best 

performance for certain applications, along with the downfalls of each algorithm. Due to 

its fast computational time and good correctness, Split and Merge would be the most 

suitable algorithm for the requirements of the competition, as the robot can identify 

features within the track in real time. 

 

Figure 18. Comparison of line extraction methods 
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Chapter 4  

Final Robot Design 
 

In this chapter the final robotic design will be briefly discussed by breaking down the 

design into its mechanical and electronic design. 

 

 

 

 

 

 

 

 

 

 

4.1 Mechanical Design 

A brief overview of the final mechanical design will be provided in this chapter. 

However, greater detail can be found in the final project report written by Joel Kluske 

who was responsible for the mechanical design of the robot.  

4.1.1 Robot Base 

The robot was designed with a circular base driven by four omnidirectional wheels 

spaced 90° apart. Although the previous team encountered complications with a four 

wheeled design; where only three wheels would be in contact with the floor, the weight 

of the robot was substantial enough to ensure all four wheels remained in contact with 

the ground. 

 

 

 

 

 

 

 

Figure 19. Final robot design 
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4.1.2 LIDAR Positioning 

The placement of the LIDAR required to be low enough to sense the walls, elevated 

carriers and surrounding obstacles, whilst high enough such that it did not falsely detect 

the ground as an obstacle (due to the LIDAR’s beam diameter).  If the LIDAR was placed 

the right way up, it would fail to detect the walls and obstacles of the track. Hence, the 

optimal position of the LIDAR was to mount it upside down. Due to the wheel 

configuration, the LIDAR required to be extruded out from the robot’s base as to utilise 

the full detection range of the LIDAR.  

 

 

 

 

 

 

 

 

 

4.1.3 Object Handling 

The maximum number of medicine units the robot was required to carry was six. A 

rotational top was opted for to achieve this requirement. A rotating top meant the 

footprint of the robot could remain unchanged; as six blocks could be evenly spaced 

onto a disk of equal size as the base of the robot. A border/frame was placed around 

each of the six unit slots to ensure the units would remain secure whilst the robot was 

moving. A simple pick and place mechanism was then chosen for the placement of the 

medicine units, where a robotic arm with linear movement and a pair of grippers could 

easily grab each block from the rotational top. This placement method ensured the 

medicine units would be carefully and stably placed onto the carrier without them 

rolling off.  

 

 

 

 

 

 

Figure 20. LIDAR placement 
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4.2 Electronic Hardware 

This chapter aims to provide an overview of the electronics utilised which are related to 

the programming of the robot. More detail to the robot’s electronic design can be found 

in the thesis written by Melissa Drogmuller. 

4.2.1 Light Detection and Ranging (LIDAR) 

The only sensor utilised by the robot was the Hokuyo URG-04LX-UG01. This LIDAR has 

a detection area of 240°, with an angular resolution of 0.36°, and produces 

approximately 683 data points per scan. It completes a single scan every 100msec with 

a scanning range of 0.02 m to 4m. At 4m, the beam diameter is approximately 40mm 

[11]. 

The LIDAR was selected for various reasons. Firstly, its large detection area and 

precision would provide adequate vision for the robot without the need for additional 

sensors. Secondly, it could be connected to, and powered through the myRIO without 

the need for a separate power source. This allowed for ease of connectivity and 

decrease in electronic footprint. Thirdly, LabVIEW contained pre-defined VIs for this 

particular LIDAR, providing a simple way to interface the LIDAR, and allow the LIDAR 

data to be easily extracted. Lastly, the Hokuyo URG was readily available from previous 

years. 

 

 

 

 

 

 

Figure 22. Hokuyo URG-04LX-UG01 
LIDAR [11] 

Figure 21. LIDAR scanning range [12] 
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4.2.2 Motors 

The motors selected to drive the robot were 12 Volt brushed DC Pololu Metal 

Gearmotors with a 50:1 gearbox ratio, free run current of 300Ma and stall current of 5A. 

The motor also has integrated quadrature encoders which have a “resolution of 64 

counts per revolution of the motor shaft” [13]. This equates to an output of 3200 counts 

per revolution of the gearbox shaft.  

 

 

 

 

 

 

 

 

 

4.2.3 Wheels 

With the course track known to be a flat vinyl surface, wheeled locomotion was 

selected. A locomotion system with high manoeuvrability, precision and speed was 

required. Omnidirectional wheels were selected as the robot wheels, due to their ability 

to move in any direction regardless of the robot’s orientation. The Flinders team from 

the 2015 NI ARC also used omnidirectional wheels and were 45mm in diameter. 

However, the sizing of these wheels caused the robot to move relatively slowly 

compared to other robots in the competition. In addition, its small size also caused the 

robot to be caught in an unexpected ‘bump’ in the track. To improve from the previous 

year, the wheel sizing was increased to 70mm in diameter. This would in turn also 

increase the robot’s speed by a factor of 1.5. 

 

 

 

 

 

 

 

Figure 23. 50:1 gear ratio DC motor [13] 
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4.2.4 Motor Controller 

The motor controllers selected were the Sabertooth 2x5. They are capable of controlling 

two independent motors providing up to 5A per channel, and peak loads up to 10A per 

channel for a couple of seconds [14]. The Sabertooth has 4 four operating modes: 

Analog Input, R/C Input, Simplified Serial and Packetized serial. These modes are 

selected by configuring the six DIP switches to either ON or OFF as required. 

 

 

 

 

 

 

 

 

 

4.2.5 Servo Motors 

For the robotic arm movement two Servo-Hitec HS-422 were used. The servo has a 180° 

rotational range, and operates in-between 4.8V and 6V [15]. These servos were used to 

control the robot arm up and down, along with opening and closing the gripper. 

 

 

 

 

 

 

  

 

4.2.6 Stepper Motor 

To control the rotational top of the robot, a stepper motor was utilised with a full 

revolution of 360°. This would provide precision when rotating the rotational plate 

which holds the medicine units. 

 

Figure 24. Sabertooth 2x5 motor 
controller [14] 

Figure 25. Hitec HS-422 servo 
motor [15] 

 

 

Image omitted due to copyright 

restrictions. 

 

 

Image omitted due to copyright 

restrictions. 
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Chapter 5  

LabVIEW Programming 
 

5.1 Basic Motor Control 

A simple technique was found to control the direction of motion of the robot using the 

Sabertooth motor controllers. By sending a voltage between 0V to 5V to the motor 

controllers, the speed and direction of the motors could be controlled. A voltage from 0V 

to 2.5V would rotate the motors in the reverse direction, with 0V being the maximum 

speed then decreasing to a stop at 2.5V. Alternatively, a voltage from 2.5V to 5V would 

rotate the motors in the forwards direction, with 5V corresponding to the maximum 

speed, with the speed decreasing to a stop at 2.5V. 

Table 4. Motor Control 

Direction Voltage(V) 

Reverse 0 → 2.5 

Stationary 2.5 

Forwards 2.5 → 5 

 

Using Figure 26 as an example, the overall trajectory of the robot can be identified. The 

red arrows are the directions of the overall force on the wheel, the yellow arrows 

represent the x-component of force, and the purple arrows represent the y-component 

of force.  To determine the direction the robot will be projected, the total force of each 

wheel are summed together. This is given by equation (22).  The length of each force 

represents the magnitude of force, where in this particular example, the force applied to 

each wheel are equivalent. Equation (23) and (24) describes the total magnitude of 

force of the x and y components respectively. It can be seen that the x-components 

cancel each other out, and what is left is the summation of the y-components which are 

all in the forwards direction, hence the trajectory of the robot is forwards.  

 

 𝐹𝑇
⃗⃗⃗⃗ = 𝐹1

⃗⃗  ⃗ + 𝐹2
⃗⃗⃗⃗ + 𝐹3

⃗⃗⃗⃗ + 𝐹4
⃗⃗  ⃗ 

 

(22) 

 
𝐹𝑥 = ∑ 𝐹𝑛

4

𝑛=1

×sin (𝑎𝑛) 

 

(23) 

 
𝐹𝑦 = ∑ 𝐹𝑛

4

𝑛=1

×cos (𝑎𝑛) 

 

(24) 
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By applying these principles, the robot was able to be driven in any direction by 

applying the correct voltages to each wheel. In the competition, a total of six directions 

were utilised to navigate the robot around the course. These directions are depicted in 

Figure 27, where the arrows portray the direction of rotation required for each wheel to 

achieve each a certain trajectory. For these particular cases, the magnitude of force (or 

speed) of each wheel are equivalent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Model to calculate robot trajectory in the 
forwards direction 

Figure 27. Rotation of wheels to achieve specific trajectories 

𝐹 1 
𝑦1 

 
𝑥1⃗⃗⃗⃗  

 

𝐹 2 

𝐹 3 𝐹 4 

𝑦2⃗⃗⃗⃗  

 

𝑦3⃗⃗⃗⃗  

 

𝑦4⃗⃗  ⃗ 

 

𝑥2⃗⃗⃗⃗  

 

𝑥3⃗⃗⃗⃗  

 

𝑥4⃗⃗⃗⃗  

 

𝑎1 

 

 

𝑎2 

 

 

𝑎3 

 

 

𝑎4 
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5.1.1 Motor Control Adjustments 

Although the motors were all sent equivalent values of voltage for each direction of 

movement depicted in Figure 27, the characteristics of each motor varied slightly to one 

another. Due to these differences, when driving forward, reverse, and laterally left or 

right, the robot would veer off to a tangent. This caused a major complication when 

attempting to drive the robot to specific locations on the track. For instance, when using 

an encoder count to determine how far to turn the robot angularly left or right, 

depending on the orientation of the robot, this would cause the robot to turn either 

further or less than expected. As a result, this would cause the robot to travel in the 

wrong direction and become lost when progressing to the next state of the program. 

Another area where misalignment of the robot caused issues was when the robot 

attempted to deliver medicine units onto the elevated platforms. If the robot 

approached the platform on an angle this would cause the robot to stop either too close 

or too far from the platform, hence failing to appropriately deliver the medicine unit. 

Stopping too far would cause the unit to fall off the platform, or fall short from landing 

onto the platform, while stopping too close from the platform would cause the robot to 

knock the unit off, or overshoot the placement of the unit. 

To prevent the robot veering off from its required direction of travel, the motors 

causing the problem were identified, and the voltages applied to them were adjusted as 

required.  

 

5.2 LIDAR 

The Hokuyo LIDAR was connected to the myRIO through the USB device port. A pre-

defined VI in LabVIEW was then used to establish communication with the LIDAR. 

However, an initial complication which occurred was that the required VI for LabVIEW 

to communicate with the LIDAR could not be found. The reason for this was that each 

time the LIDAR was connected; a USB module would take control over the LIDAR 

connection such that LabVIEW was unable to access it. To solve this problem, the 

‘cdc_acm’ module within the LIDAR was blacklisted to avoid it from loading each time 

the LIDAR was connected to the myRIO. This was achieved by accessing the myRIO 

through ‘putty’ and entering the following script: 

> echo blacklist “cdc_acm”>/etc/modprobe.d/cdc_acm/uvcvideo.conf 

>reboot 

With this problem resolved, another problem occurred where the LIDAR was found to 

update very slowly.  The solution to this problem was found with the help of Xan Smith 

who was part of the Flinders 2014 NI ARC. To resolve this issue, the buffer within one of 

the subVIs contained in one of the Hokuyo LIDAR VIs required to be changed from 

99999999 bytes down to 1000 bytes.   
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5.2.1 LIDAR Data Extraction 

As mentioned in Chapter 4, the Hokuyo LIDAR was selected as the robot’s primary 

sensor, providing it with 240° of vision. Figure 28 shows how data from the LIDAR was 

extracted using a pre-defined VI specifically for the Hokuyo LIDAR, where the VI 

outputs the distances and corresponding angles as 1D arrays. A graph of the LIDAR scan 

could then be plotted by converting the corresponding distances and angles to their real 

and imaginary components. 

 

 

When testing the obstacle avoidance of the robot, it was witnessed the robot would 

sometimes not react as required. The cause was found due to the LIDAR scan producing 

readings of 0 (or close to 0), depending on the material of the object placed in front of it. 

To correct this, a LIDAR data filter was required to eliminate these faulty readings from 

the LIDAR. The simplest way to achieve this was to replace distances below a certain 

threshold with the distance from the previous point in the array.  

 

 

 

 

 

 

 

 

 

Figure 28. LIDAR data extraction 
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The 0° point of the LIDAR is located directly at the centre front of the LIDAR and 

corresponds to scan number 342 (or index number 324 of the data array). Due to the 

LIDAR being mounted upside down, the outputted distance array was reversed to 

remain consistent with the original scan orientation of -120° to 120° from left to right 

respectively. 

 

 

 

 

 

 

 

 

With each scan increment equal to 0.36°, this results to 1° of vision to be equal to 

approximately 3 scans. Hence, to access a particular point or angle of from the LIDAR, 

equation (25) was used. 

 𝑠𝑐𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 = 342 ± (3 ×𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑎𝑛𝑔𝑙𝑒)  

 

(25) 

Portions of the LIDAR scan can be isolated by extracting the appropriate data points 

within the data arrays, by supplying the starting index and the length of data required. 

This was accomplished via calculating the corresponding scan number (index) of the 

start and end angles required, then determining the data length between the two. As an 

example, if data from 90° of the front of the robot is desired, this can be obtained by 

accessing the data from -35° to +35°. See calculation below. 

 

𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡 𝑎𝑡 − 35° = 342 − (3 ×45) = 207 

𝐸𝑛𝑑 𝑃𝑜𝑖𝑛𝑡 𝑎𝑡 + 35° = 342 + (3 ×45) = 477 

 

 𝑑𝑎𝑡𝑎 𝑙𝑒𝑛𝑔𝑡ℎ = 𝐸𝑛𝑑 𝑃𝑜𝑖𝑛𝑡 −  𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡 (26) 

 

∴ 𝑑𝑎𝑡𝑎 𝑙𝑒𝑛𝑔𝑡ℎ = 477 − 207 = 270 

 

 

 

 

Figure 29. O° point of LIDAR 
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5.3 Obstacle Avoidance 

The methodology behind obstacle avoidance was that if the robot sensed an obstacle in 

front of it, it would then check to see if there was also an obstacle to its left. If an 

obstacle to its left was present, the robot would veer to the right, or else it would veer to 

the left. 

 

 

 

 

 

 

 

An adequate detection range for the robot was required to account for the various sizes 

and positioning of the objects it may encounter. Thus, a range of 90° vision in front of 

the robot was selected for its front detection, and 30° to its left was used for its left 

detection. The LIDAR would continuously cycle through the distances at each increment 

of the specified scan range, and compare the distances read to a threshold value. If the 

distance read was less than the threshold value, the robot would respond as described 

in Figure 30. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Obstacle avoidance methodology 

Figure 31.LabVIEW subVI for front detection 
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5.4 Wall Following  

A wall following algorithm was used to help easily navigate the robot around certain 

areas of the track. As the locations of obstacles in the track would be unknown, wall 

following would also allow the robot to avoid them by remaining in close vicinity to the 

walls. 

The basis for the wall following algorithm was to ensure the robot travelled parallel to 

the wall while remaining between a certain range from it. The methodology for the wall 

following algorithm is as follows; if the robot is greater than distance 𝑑𝑢𝑝𝑝𝑒𝑟, the robot 

would move towards the wall, and if the distance was less than 𝑑𝑙𝑜𝑤𝑒𝑟, the robot would 

move away from the wall.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another condition to the wall following algorithm was that if the LIDAR returned a 

distance greater than 1m, this would indicate the robot had reached an open area 

indicating the end of the wall. This condition was included as the wall following 

technique was only required for two walls of the track which had open ends. An opening 

distance of 1m could be used as one of the rules of the competition was that all obstacles 

would be placed at least 1m from any walls and other obstacles.  

In the initial implementation stages, the robot was made to correct its distance via 

veering left or right as appropriate. Using a single point on the LIDAR proved to be 

effective, however, if the robot’s heading was slightly angled towards the wall, the robot 

would continue to follow the wall at an angle.  

Figure 32. Wall following methodology 



36 
 

This would occasionally cause problems where the robot would crash into the wall due 

to the robot believing it was further away from the wall than it actually was.  

An initial attempt to amend this problem was by increasing the lower and upper 

threshold boundaries. This was successful in preventing the robot from hitting the wall, 

however, it did not eliminate the issue of the robot following the wall at an angle. As a 

consequence, when the robot reached the end of the wall, it would become lost when 

entering the Main Area of the track. 

The angular movement was then replaced with lateral movement to correct the robot’s 

distance from the wall. Lateral movement proved to be more favourable due to a 

number of reasons. Firstly, in the competition, the robot can easily navigate its way to 

the wall from the starting position. Secondly, lateral movement would also allow the 

robot to traverse through the course faster, as lateral movement could be utilised where 

the robot would otherwise be required to turn by 90°. Thirdly, whilst the robot is wall 

following, it could also correct itself (angularly) to ensure it remained parallel to the 

wall, hence minimising the risk of the robot becoming lost when entering various 

regions of the track (this method is later discussed in Chapter 5.5). The implementation 

of the wall following algorithm is identified in Figure 33. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. LabVIEW wall following subVI 
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5.5 Wall Alignment 

One of the main challenges encountered was ensuring the robot would drive in its 

intended direction, to avoid it becoming lost. Although correcting the voltages supplied 

to the motors aided in keeping the robot from straying too far from its intended 

direction of travel, additional measures were still required due to wheel slippage. 

Ensuring the heading of the robot remained as desired was a key factor in ensuring 

proper navigation for the robot. As an example, the wall following algorithm discussed 

in Chapter 5.4 required a correctional measure to ensure the robot remained parallel to 

the wall. In addition, one of the main challenges in the competition was ensuring the 

robot was able to enter and exit the wards without hitting, or crashing into the Perspex 

walls which divided them. Due to the size of the robot, there was not a great amount of 

leeway for error for the robot inside the wards. This meant the robot must position 

itself as closely to the centre of each ward. In addition, the heading of the robot must be 

as accurate as possible such that the robot could enter the wards head on.  

A wall alignment subVI was thus written to correct the heading of the robot, by aligning 

the robot to walls when possible. To implement the wall alignment, a small section of 

the LIDAR data which would correspond to a wall was utilised. The first and last data 

points of that section would then be used to calculate the slope of the robot in relation 

to the wall via equation (27). 

 𝑆𝑙𝑜𝑝𝑒 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
 

 

(27) 

If a slope of 0 is calculated, this indicates the robot is parallel to the wall and the robot 

can continue driving straight. If the resultant slope is negative, then the robot would 

correct itself by veering right, and if the resulting slope was positive, the robot would 

veer to the left. 

 Figure 34. Wall alignment methodology 
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The code implemented for the wall alignment algorithm is depicted in Figure 35. The x, 

y co-ordinates required for the calculation were calculated by converting the angles and 

distances to their real and imaginary counterparts. The resultant slope could then be 

monitored through a plot.  

 

 

 

Due to hardware limitations where the distances returned from the LIDAR would 

continuously fluctuate, the ideal slope of 0 could not be practically achieved. Hence, a 

tolerance range was required which would correspond to a slope of 0. This range was 

determined via trial and error, and by examining the slope values calculated whilst the 

robot remained stationary and aligned next to a wall. If the range was not large enough, 

the robot would continuously try to align itself to the wall, resulting with the robot 

constantly turning left and right, or it would overcompensate when it was already 

correctly aligned, causing it to then be misaligned.  Consequently, if the range was too 

large, the robot would falsely believe it was correctly aligned.   

This program proved to be successful when utilised for aligning the robot to left or right 

side walls, however was not successful when using walls in front of it. When examining 

the results for the front wall alignment, the slope values being calculated had ridiculous 

fluctuations and values between 200 to -100 although the robot was positioned 

perpendicular to the wall. 

A useful tool in LabVIEW is the ‘probe’ tool which allows variables within a VI to be 

monitored. With the use of this tool and by examining the slope plot, the reason for 

these unreasonable values being calculated was found. When monitoring the values of 

𝑦2, 𝑦1, 𝑥2 and 𝑥1,  the values of 𝑥1 and 𝑥2were noticed to be similar to each other, whilst 

there was a large difference between 𝑦1 and 𝑦2. When cross checking these results with 

the graph, it became apparent that due to how the LIDAR scans were orientated on the 

plot, the calculation for the front slope required to be switched to 
𝑥2−𝑥1

𝑦2−𝑦1
.  

Figure 35. LabVIEW wall alignment subVI 
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5.6 Encoders 

The encoders embedded within the motor controllers were utilised for cases when the 

robot was required to move a certain distance, or turn by a specific amount. For 

example, when using the wall following algorithm, when the robot reached the end of 

the wall, it required a method to clear the wall before attempting to enter the Main Area.  

The wheel circumference of the robot is calculated using 𝑐 = 𝜋𝑑, where 𝑑 is the 

diameter of the wheel. This is equal to the distance travelled by the wheel after one 

revolution. From this, the number of encoder counts required to drive the robot a 

certain distance can be calculated using equation (28). 

 

 
𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑐𝑜𝑢𝑛𝑡𝑠 =

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡𝑟𝑎𝑣𝑒𝑙 ×𝑐𝑜𝑢𝑛𝑡𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑤ℎ𝑒𝑒𝑙 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑟𝑒𝑛𝑐𝑒
 

 

(28) 

 

 

When this formula was adapted to drive the robot forward a set distance, the encoder 

counts calculated for this distance did not correspond to the distance travelled by the 

robot. The reason for this was due to the kinematics of the robot’s wheel placement, 

where, the distance travelled by the robot is not equivalent to the linear distance 

travelled by the wheels. 

To work around this issue, a general relationship between the encoder counts and 

distance travelled by the robot (in the forwards direction) was determined. A set of 

encoder counts were tested on one encoder, and the distance travelled between the 

starting and end positions of the corresponding wheel was measured. From this 

experiment, it was found that the robot travelled forward approximately 1cm per 100 

encoder counts. As it was not crucial for the robot to accurately travel the defined 

distance, this method was still effective for ensuring the robot cleared the open walls of 

the track.   

Although equation (25) could not be used to drive the robot forwards a specific 

distance, it however, could be applied when rotating the robot on the spot. This is likely 

due to the angular rotation of the robot closely relating to the linear distance travelled 

by the wheels. For the robot to have rotated 360°, it must turn a distance of 𝜋𝐷, where 𝐷 

Figure 36. Distance travelled by one revolution of a wheel [16] 

 

 

Image omitted due to copyright restrictions. 



40 
 

is the diameter of the robot footprint. Thus, to rotate the robot 90°, the robot must 

travel a distance of  
𝜋𝐷

4
. This could be applied to any one of the encoders as they are all 

required to travel the same distance to turn a certain angle. The number calculated was 

used as a basis, and the count was slightly adjusted through trial and error. 

The code implemented to set the distance the robot must travel is seen in Figure 37. To 

ensure the program worked as required, it was important to clear the encoder count 

beforehand. If the current encoder count had already surpassed the specified count, the 

program would be caught in the loop, but if the count had not been surpassed, the offset 

of the current count would cause the specified distance to be cut short.  

 

 

 

 

 

 

 

 

 

 

 

5.7 Placement of Medicine Units 

A simple and repetitive program for the placement of the medicine units was opted for 

to reduce the amount of programing required. This goal was easily achieved with the 

pick and place mechanism created by Joel. 

The servo motors and stepper motors could be controlled by connecting them to the 

PWM lines of the myRIO, then sending them a duty cycle and frequency. The duty cycle 

and frequency combinations to open and close the gripper by the appropriate amount, 

along with the linear movement of the robotic arm was determined by Melissa. Using 

these values, the movement of the robotic arm to place the medicine units were able to 

be achieved sequentially by using a ‘flat sequence’. The routine is as follows: close 

gripper to obtain block, lower the arm down to the elevated carrier, open gripper to 

place block, bring arm back up. 

Although the stepper motor was selected to allow for precise incremental control of the 

top rotating plate, it was found that using a timer to control how far the plate rotated 

was accurate enough. A timer value was found such that each rotation positioned the 

Figure 37. LabVIEW subVI to control the distance travelled by 
the robot 
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block directly in front of the robotic arm. This then allowed the movement of the 

rotating plate to be easily integrated into the ‘flat sequence’ depicted in Figure 38. The 

plate would rotate whilst the current block is being placed, so that the next block would 

be readily positioned in front of the grippers for the next delivery. 

 

 

5.8 Split and Merge 

From Chapter 3.3 it was proposed that Split and Merge line extraction was a good 

option for feature-extraction due to its fast response time and accuracy.  As the course 

would consist entirely of straight lines (apart from the dynamic obstacle), this technique 

would be useful for extracting the surrounding walls and static obstacles. 

The algorithm can be separated into two separate entities the ‘Split’ and the ‘Merge’. 

The Split function works by recursively splitting the LIDAR data until no more splits can 

be made. A baseline equation is found by using the first and last elements of the LIDAR 

data. The perpendicular distance of each point in the array to the baseline are then 

calculated, and the data is split into two separate arrays at the index of the point with 

the greatest distance from the line if the distance is greater than the threshold value. 

This process then occurs recursively for each split, until no more splits can be made.  

That is, the furthest distance from the baseline is less than the threshold [10].  

One of the difficulties encountered when implementing the split function was 

calculating the baseline equation. The distance from a point (𝑥𝑃, 𝑦𝑃) to a line  

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 is given equation (29) [17]. 

 

 
𝑑 =

|𝐴𝑚 + 𝐵𝑚 + 𝐶|

√𝐴2 + 𝐵2
 

 

(29) 

Where the line 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0, has a slope of −
𝐴

𝐵
. The slope −

𝐴

𝐵
 could easily be 

calculated by calculating the slope between the first and last elements of the LIDAR 

data. However, the complication occurred when trying to solve 𝐶. Re-arranging the 

equation of a line, 𝐶 could be determined using 𝐶 = −𝐴𝑥 − 𝐵𝑦. When this was 

implemented, the Split VI caused LabVIEW to continuously disconnect to the myRIO. 

Figure 38. LabVIEW flat sequence for medicine unit placement 
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The problem was known to be caused due to an error in how C was being calculated, but 

the location of the calculation error could not be identified.   

As a result, another equation was found which allowed the perpendicular distance of a 

point (𝑥𝑃, 𝑦𝑃)  to be calculated from a line defined by two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2), 

which is described in equation (30) [18]. 

 

 
𝑑 =

|(𝑦2 − 𝑦1)𝑥0 − (𝑥2 − 𝑥1)𝑦0 + 𝑥2𝑦1 − 𝑦2𝑥1|

√(𝑦2 − 𝑦1)2 + (𝑥2 − 𝑥1)2
 

 

(30) 

This equation is equivalent to equation (26), however eliminated the need to calculate 𝐶 

as the equation was in terms of known points which would be extracted from the 

LIDAR. The code to implement the Split function is depicted in Figure 39. 

 

 

The ‘Merge’ section of the algorithm traverses through the set of split arrays (where 

each array represents a ‘line’ defined by a series of points), and determines which 

arrays can be joined together.  This is achieved by first finding the baseline equation 

between the first two lines. The perpendicular distance to the baseline from the point 

where the two lines join is then compared to a threshold value. If the distance is less 

than the threshold value, the two lines are merged, else they remain as two separate 

lines. An example of how Split and Merge works is depicted in Figure 40. 

Figure 39. LabVIEW subVI for Split function 
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The code implemented for the Merge function is shown in Figure 41 where Equation 

(27) was also used to calculate the perpendicular distance of a point to the baseline. 

 

 

Figure 42 is the plot of the original LIDAR scan, and Figure 43 is the resulting extracted 

lines from the Split and Merge. As the threshold selected for the Split function is 

decreased, the data is split into more sections. This is portrayed in Figure 44 where a 

threshold of 10 was used. The Merge thresholds were adjusted through testing where 

the threshold required to be increased when lines which were expected to be merged 

were not merged.   

 

 

 

Figure 40. Theory of Split and Merge line segmentation [10] 

Figure 41. LabVIEW subVI for Merge function 

 

 

 

 

Image omitted due to copyright restrictions. 
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Figure 42. Original LIDAR data plot Figure 43. LIDAR data after Split and 
Merge 

Figure 44. Split with threshold value of 10 
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5.9 Corner Detection 

By applying the Split and Merge functions, features in the course such as corners could 

be extracted. A corner could be identified if the slope of two lines were perpendicular to 

one another, such that the product of the two slopes is equal to 1. 

The corner detection algorithm was implemented by iterating through the merged line 

arrays, and calculating the product between the slope of the two lines. Due to hardware 

limitations and inaccuracies, the chances of the product between two perpendicular 

lines equalling exactly 1 is not likely. Therefore, a range was determined to compensate 

for this. This program was initially tested by utilising a section of the LIDAR and 

positioning the LIDAR in front of corners and observing if the ‘Corner Detected’ 

indicator would turn on. A second method of testing this was to graph the locations of 

the detected corners and see if they matched with the corners in the LIDAR plot. Results 

from both methods indicated the algorithm successfully detected corners. 

 

 

 

 

 

 

 

 

 

Figure 45. LabVIEW subVI for corner detection 
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5.10 Wireless Communication 

To obtain bonus points in the competition, wireless communication to the server was 

required. A string was to be sent the server after the robot had completed its task of 

delivering all of the medicine units to The Wards and Operations Theatre. A program to 

achieve this was written by Melissa and was successfully tested on the server demo 

application. The basis of the program is to open a connection to the server, send the 

length of the string message, followed by the string message, then close the connection.  

 

 

Figure 46. LabVIEW subVI for wireless communication 
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5.11 Final Program Overview 

For the robot to succeed in the competition, the robot must exhibit a form of navigation. 

This was achieved by implementing a state machine system. The track was broken 

down into discrete states to navigate the robot around the course. The robot would 

know which state to transition to depending on the requirements met in the current 

state.  

As indicated in Table 1, the tasks for Qualifiers, and Round of 16 are identical, where the 

robot is required to deliver a total of two medicine units; the first to one of the wards, 

and the second to the Operations Theatre. This allowed for the same program to be 

utilised for both rounds. The path taken by the robot is identified in Figure 47 below. 

 

To begin, the robot uses the wall following technique to navigate from A to B. When the 

opening of the wall was sensed, the robot then travels a certain distance to ensure 

clearance of the first wall identified by C. At C, the robot ensures it is aligned to W1, 

before navigating to D. 

To avoid any obstacles which may be in the main area, the robot positions itself next to 

W3 shown by D. The robot accomplishes this by moving from C such that it is a certain 

distance away from W1, it then moves forward until it reaches a certain range from the 

wall in front of it identified by W4. The robot utilises W3 to align itself and also as a 

landmark to determine how far it has to travel to centre itself in front of the first ward.   

 

Figure 47. Navigation using a state machine 
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At D, the robot aligns itself to W3, then moves laterally to E. The robot knows it is at E 

by detecting its distance from W3. The robot was required to move relatively slowly 

when positioning itself in front of the wards as to avoid the LIDAR missing the defined 

range for the robot to stop. 

The robot enters the first ward and delivers the medicine unit and then reverses from 

the ward back to E. The robot recognises when to stop reversing from the ward by 

sensing its distance from the elevated carrier within the ward. 

At E, the robot again aligns itself to L3, then turns 90° right. By first aligning itself to L3, 

this ensures the robot turns the required 90°. After turning, the robot reaches location F 

by determining its distance from W7, then moves to G and H by wall following. While 

following W5 the robot also checks it remains aligned to the wall. When the opening of 

L5 has been reached, the robot uses the same technique as it did to clear W2, to reach H. 

From H the robot turns right 90°. By ensuring the robot remained aligned to L5, this 

guaranteed the robot would complete the 90° turn with the correct heading.   

After turning, the robot places the second medicine unit onto the elevated carrier in the 

Operations Theatre. The robot again recognises it is in front of the carrier by detecting 

its distance from it. After placing the second medicine unit, the robot turns 180°, and 

drives a certain distance to I. At I, the robot ensures it is aligned to W6 before moving to 

J. Due to the glass Perspex encasing the operations theatre, it was essential the robot 

cleared the Perspex before attempting to align itself to W6, else the Perspex would 

cause errors in the LIDAR data. After aligning itself, the robot also ensures it is a certain 

distance from W6, to remain a safe distance from the Dynamic Obstacle Path. 

The robot then positions itself at J and aligns itself to the wall in front of it.  The robot 

identifies it is at J by determining its distance from W4, then moves laterally to the finish 

point K.   

For the remaining rounds of the competition, the main differences were the number of 

wards which were required to be delivered to (where the maximum was three), and the 

quantity of medicine units to be delivered to the Operations Theatre. To accommodate 

for the additional wards, the same logic as entering the first ward and delivering the 

block was implemented, where W3 was used as a landmark to centre and align itself in 

front of each ward. This was integrated by using one ‘wall alignment’ state within the 

state machine.  After aligning itself, the robot would determine whether another ward 

required a delivery or not, depending on the conditions of the case statements within 

the state. An excerpt of this is depicted in Figure 48. The robot would then navigate its 

way to the Operations Theatre using the same method discussed for the Qualifiers and 

Round of 16 program.  
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Figure 48. Excerpt of 'wall alignment' state 

The delivery system of the robot only allowed for one delivery at a time. When more 

than one block was required to be delivered to the Operations Theatre, the robot was 

required to move slightly to the left or right to place the next unit. To avoid the robot 

entering the Dynamic Obstacle Path, the robot was made to move in the direction 

towards W7 to place the subsequent units. The robot would then navigate itself to the 

finish position K via the same process discussed for the Qualifiers and Round of 16. 

The robot was never made to deliver to Storage as it was not a requirement and 

contributed to the least amount of points. In addition, there was a high likelihood of 

encountering an obstacle along the way to Storage, such that it was not worthwhile 

making a delivery there.  

Although a program for wireless communication was written, it was not implemented in 

the final program for the competition. The main reason being due to not being able to 

test the wireless communication with the server prior to the competition. At the time 

the wireless communication was going to be tested, there were issues with the server.  
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Chapter 6  

 Results 
 

6.1 Pre-competition testing 

All members of the team were present at the live final competition which was held at 

the University of Technology Sydney (UTS).  The day before the competition, every team 

was allocated a period of time to test their robots on the two identical tracks used for 

the competition. This allowed teams to tweak their programs according to the robot’s 

performance on the competition track. As the replica track in our lab at Flinders 

University closely resembled the competition track, only minor changes were required. 

These changes in particular were the stopping ranges for entering the wards and the 

stopping distances in front of the elevated carriers. The only other major change 

required was removing the alignment state used before parking the robot in the finish 

position. Although this alignment state proved to improve the alignment of the robot 

when tested on our replica track, this was not the case when tested on the competition 

track. Rather than correcting the alignment of the robot, the robot became more 

misaligned causing the robot to enter the Dynamic Obstacle Path. However, it was found 

that alignment at position I in Figure 47 was sufficient enough to keep the robot in the 

correct orientation when moving to the finish area. 

6.1 Competition Results 

On the first run of the group knockout stage, the robot did not complete the course as it 

stopped too far away from W4 (Figure 47) and caused the robot to miss W3. From here, 

the robot did not have the correct landmark to navigate to the first ward.  This error 

was quickly corrected for the second run, where the robot successfully completed the 

course without any collisions. However, the robot was not as successful in the final run, 

as the medicine unit was not correctly placed onto the carrier of the ward, and fell to the 

ground. Nevertheless, the team still finished in 1st place in their heat for the Qualifiers 

round; scoring the highest points with the second run. Unfortunately, the team was 

immediately knocked out in the Round of 16, as this time, the robot stopped too close to 

W4, such that when it moved towards the first ward, the robot hit the Perspex and 

caused the LIDAR to clip the Perspex wall. The robot remained stuck and also lost its 

way as it began to rotate while it was clipped. As a result, the team had to call time, and 

were eliminated from the competition. This could have been avoided if the distance 

range from W4 was increased. However, since this did not seem to be an issue for the 

previous runs, this result was not expected.  
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Chapter 7 

Future Work and Conclusion 
 

7.1 Future Work 

After the completion of the competition, there are a number of improvements which can 

be made to improve the performance, reliability and efficiency of the robot. 

Firstly, a motor control algorithm could be implemented to control the movements of 

the robot. In the competition, the robot was controlled by manually setting the voltages 

sent to the motors to control its speed and direction of motion. Although this worked 

fine, a more advanced way to control the motors could be implemented to better utilise 

the manoeuvrability and motion of the robot. In LabVIEW there is a steering frame VI 

which is able to control the motion of the robot. By providing the lateral, forward and 

angular velocities, the VI is able to determine the required output voltages of each 

motor to achieve the overall steering frame velocity desired. If this VI was utilised the 

robot could be made to drive more accurately and with better motion. Additionally, a 

controller such as a proportional integral derivative (PID) controller could be integrated 

to smoothly control the acceleration and deceleration of the robot, such that the 

movement of the robot is not so ‘jerky’. 

The state machine navigation algorithm allowed the robot to efficiently navigate the 

robot through the course and complete its required tasks. However, this was highly 

dependent on the robot successfully reaching each pre-set/expected location to 

progress correctly to the next state. If this was not the case, the robot would 

immediately become lost and had no method to recover its location. For this reason, a 

localisation algorithm such as the EKF could be implemented. This would allow the 

robot to know its location on the course and recover its location.  

At times, the wall alignment technique would be a hit or miss depending on when the 

function was applied. To account for this, the sensor fusion technique discussed in 

Chapter 3.1 could be used where a gyroscope could be used in conjunction with the EKF 

to provide more accurate information on the robots heading along with providing more 

precise localisation. 

Although the Split and Merge function along with corner detection was implemented, 

they were not utilised. One of the main reasons as to why, was because the current 

implementation of the state machine worked well at the time, where relying solely on 

distance measurements obtained from the LIDAR data proved to be effective. Rather 

than over complicating the program, it was decided it was more important to 

implement a complete program which will be successful for the competition. However, 

in future, these functions could be integrated with an EKF to achieve a more accurate 

localisation process. In addition, using Split and Merge to identify walls of the track 
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could eliminate the robot from becoming lost, where sometimes using distance data 

alone is not reliable enough. 

Lastly, the use of optical mouse sensors could be further looked into for localisation. As 

seen in Chapter 3.2, optical mouse sensors can provide more accurate odometry 

measurements in comparison to encoder odometry when used for localisation.  

7.2 Conclusion 

Overall, the team worked well together and were able to complete all the milestones on 

time, and compete in the live finals. Although the team did not progress very far into the 

competition, it was pleasing to know the robot was able to compete against the top 

universities from Australia and New Zealand. The team received many compliments on 

the robot’s object handling mechanism, where the team’s mechanism resulted in being 

one of the most reliable. 

From the competition, it was learnt that the simpler robots are usually more successful. 

Although having the robot move with greater speed is more impressive it often caused 

the robot to drop units along the way and severely crash into obstacles. It was found 

that sometimes moving slowly and accurately will bring out better results.  

In addition, the results and experience from the competition showed that the 

programming of the robot did not require the most complex algorithms to achieve the 

tasks of the competition. A simpler program allowed quick adjustments to be made on 

the spot which was an important factor in succeeding in the competition. Nevertheless, 

if implemented correctly, more advance algorithms would prove to be more efficient 

and robust for localising the robot, and there are still many improvements for 

localisation which could be made to the team’s robot in the future. 
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