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“It is striking that engineers have largely shaped the character of modern waste 

treatment, and even today one finds few aquatic biologists participating in it. Since most 

waste-treatment schemes are extensions of natural eutrophic ecosystems, ecologically 

oriented aquatic biologists could make a significant contribution to technologies 

heretofore dominated by sanitary engineers.” 
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Abstract 
 

Waste Stabilisation Ponds (WSPs) are a relatively simplistic and non-intensive 

wastewater treatment technology; with various WSP configurations widely employed to 

treat a range of different wastewaters the world over. Whilst the advantages of WSP 

treatment are both numerous and well recognized, performance problems relating to the 

presence of occasionally large and unpredictable quantities of plankton (both algal and 

zooplankton) biomass in the final pond effluents have posed significant operational 

problems for WSP operators; with this suspended biomass representing the single 

biggest drawback associated with the technology. Research conducted during this 

project was concerned with assessing a selection of so-called ‘advanced’ in-pond 

treatment processes for the upgrading or polishing of a final WSP effluent. The 

particular research emphasis was on the removal of problematic algal and zooplankton 

biomass from WSP effluent prior to Dissolved Air Flotation/Filtration (DAF/F) 

treatment and wastewater reuse at the Bolivar Wastewater Treatment Plant (WWTP) 

north of Adelaide. 

 

The in situ WSP upgrade systems assessed in this thesis were: the native floating plant 

‘Duckweed’ (DW); ‘Rock Filters’ (RFs); and an artificial ‘Attached-Growth Media’ 

(AGM); all of which were assessed for their relative treatment efficacies parallel to a 

non-interventional ‘Open Pond’ (OP) system which served as an effective control. These 

performance comparisons were assessed on a pilot-scale using a custom made pilot 

treatment plant which was located at the Bolivar WWTP. Performance monitoring was 

periodically carried out over a 12 month period from July 2005–August 2006, with algal 

and zooplankton populations monitored in addition to the more conventional wastewater 

quality parameters. 

 

Results from pilot plant investigations demonstrated that of the four pilot upgrade series, 

the RF and AGM systems displayed the greatest treatment potential in terms of both the 

magnitude and reliability of suspended solids, algal and zooplankton biomass removals. 

The DW system was also shown to be at least as effective and in some instances 

significantly more advanced than the uncovered OP system in terms of its ability to 
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significantly improve the final effluent quality of the Bolivar WSPs. Both the RF and 

AGM upgrades (and to a lesser degree also the DW system) were found to offer 

considerable potential for producing a higher quality WSP effluent for more efficient 

processing by the Bolivar DAF/F plant; although there were various operational 

advantages and disadvantages as well as varying capital establishment costs associated 

with each of the candidate technologies. This part of the research represented the first 

direct performance comparison between two popular pond upgrade technologies (i.e. 

RFs and DW) and also constituted the first assessment of a novel AGM for the 

upgrading of tertiary-level WSP effluent. In addition to this, results from ecological 

performance monitoring also provided the first detailed insights into algal and 

zooplankton population dynamics within these WSP upgrade environments. 

 

In addition to these pilot-scale WSP upgrade performance investigations, another branch 

of the research project investigated additional research questions regarding the survival 

of algal cells within these pond upgrade environments. A series of laboratory 

experiments attempted to recreate the in situ conditions (in terms of light and oxygen 

availability) that might exist within the adopted upgrade environments. Using two 

common WSP algal species, long-term monitoring of the physiological status of 

phytoplankton cells during prolonged dark-exposure under conditions of reduced oxygen 

availability was performed in order to assess the likely effects of these particular 

environmental conditions on their survival potential in situ. 

 

Results from these laboratory-based experiments showed that both algal species were 

capable of quickly adjusting their cellular metabolism in response to dark incubation. 

Results also showed that a reduced environmental oxygen concentration (25% of 

saturation) had no bearing on the ability of either Chlorella or Chlamydomonas species 

to withstand long-term dark-exposure; with both species retaining what was essentially 

full biological viability following up to two months of continuous dark-exposure. In an 

applied context, these results suggested that subjecting algal cells to conditions of 

simultaneous darkness and reduced oxygen availability would be expected to have no 

significant adverse effects on algal survivorship within an advanced in-pond upgrade 

system such as a duckweed-covered WSP, a rock filter or an AGM system. 
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