

Advanced techniques for the upgrading of waste stabilisation pond effluent: rock filtration; duckweed; and attached-growth media

Michael Douglas Short B.Tech(AQUA); B.Sc(Hons)

Department of Environmental Health School of Medicine Flinders University, Adelaide, South Australia

PhD Thesis

December 2008

"It is striking that engineers have largely shaped the character of modern waste treatment, and even today one finds few aquatic biologists participating in it. Since most waste-treatment schemes are extensions of natural eutrophic ecosystems, ecologically oriented aquatic biologists could make a significant contribution to technologies heretofore dominated by sanitary engineers."

W.S. Hillman and D.D. Culley Jr. (1978).

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Michael Douglas Short

Abstract

Waste Stabilisation Ponds (WSPs) are a relatively simplistic and non-intensive wastewater treatment technology; with various WSP configurations widely employed to treat a range of different wastewaters the world over. Whilst the advantages of WSP treatment are both numerous and well recognized, performance problems relating to the presence of occasionally large and unpredictable quantities of plankton (both algal and zooplankton) biomass in the final pond effluents have posed significant operational problems for WSP operators; with this suspended biomass representing the single biggest drawback associated with the technology. Research conducted during this project was concerned with assessing a selection of so-called 'advanced' in-pond treatment processes for the upgrading or polishing of a final WSP effluent. The particular research emphasis was on the removal of problematic algal and zooplankton biomass from WSP effluent prior to Dissolved Air Flotation/Filtration (DAF/F) treatment and wastewater reuse at the Bolivar Wastewater Treatment Plant (WWTP) north of Adelaide.

The *in situ* WSP upgrade systems assessed in this thesis were: the native floating plant 'Duckweed' (DW); 'Rock Filters' (RFs); and an artificial 'Attached-Growth Media' (AGM); all of which were assessed for their relative treatment efficacies parallel to a non-interventional 'Open Pond' (OP) system which served as an effective control. These performance comparisons were assessed on a pilot-scale using a custom made pilot treatment plant which was located at the Bolivar WWTP. Performance monitoring was periodically carried out over a 12 month period from July 2005–August 2006, with algal and zooplankton populations monitored in addition to the more conventional wastewater quality parameters.

Results from pilot plant investigations demonstrated that of the four pilot upgrade series, the RF and AGM systems displayed the greatest treatment potential in terms of both the magnitude and reliability of suspended solids, algal and zooplankton biomass removals. The DW system was also shown to be at least as effective and in some instances significantly more advanced than the uncovered OP system in terms of its ability to significantly improve the final effluent quality of the Bolivar WSPs. Both the RF and AGM upgrades (and to a lesser degree also the DW system) were found to offer considerable potential for producing a higher quality WSP effluent for more efficient processing by the Bolivar DAF/F plant; although there were various operational advantages and disadvantages as well as varying capital establishment costs associated with each of the candidate technologies. This part of the research represented the first direct performance comparison between two popular pond upgrade technologies (i.e. RFs and DW) and also constituted the first assessment of a novel AGM for the upgrading of tertiary-level WSP effluent. In addition to this, results from ecological performance monitoring also provided the first detailed insights into algal and zooplankton population dynamics within these WSP upgrade environments.

In addition to these pilot-scale WSP upgrade performance investigations, another branch of the research project investigated additional research questions regarding the survival of algal cells within these pond upgrade environments. A series of laboratory experiments attempted to recreate the *in situ* conditions (in terms of light and oxygen availability) that might exist within the adopted upgrade environments. Using two common WSP algal species, long-term monitoring of the physiological status of phytoplankton cells during prolonged dark-exposure under conditions of reduced oxygen availability was performed in order to assess the likely effects of these particular environmental conditions on their survival potential *in situ*.

Results from these laboratory-based experiments showed that both algal species were capable of quickly adjusting their cellular metabolism in response to dark incubation. Results also showed that a reduced environmental oxygen concentration (25% of saturation) had no bearing on the ability of either *Chlorella* or *Chlamydomonas* species to withstand long-term dark-exposure; with both species retaining what was essentially full biological viability following up to two months of continuous dark-exposure. In an applied context, these results suggested that subjecting algal cells to conditions of simultaneous darkness and reduced oxygen availability would be expected to have no significant adverse effects on algal survivorship within an advanced in-pond upgrade system such as a duckweed-covered WSP, a rock filter or an AGM system.

Acknowledgements

I was once quoted saying "*there's no aptitude without gratitude*"; so it's now time to kneel down and give thanks!

I would firstly like to thank my principal supervisor Prof. Howard Fallowfield. Howard, thank you for being patient and supportive as I toiled away at the computer and for maintaining a sense of humour as the page number reached for the heavens... Your editorial feedback greatly improved the final thesis and your assistance during the early stages of the project was also invaluable in getting the beast off the ground and into the air, upon which it flew steadily—though not so rapidly at times—toward completion. Your *hands-off* supervisory approach was well suited to my desire to be largely left alone to get the job done, and has since helped me to become a highly independent and resourceful researcher; skills one requires if they are to be successful in this line of work. Thanks also to my co-supervisor Prof. Nancy Cromar for your involvement in my candidature, particularly the experimental design stage of the field work, and also for providing an open door throughout the project duration.

Thanks to United Water for providing financial sponsorship for the project and also for making room for me down at Bolivar WWTP. Incidentally, "*This research project was proudly supported by United Water International as part of its commitment to innovation and responsible water management.*" Thank you Dr. John Nixon and Dr. David Sweeney for your insightful advice with all things Bolivar-esque and wastewatery. Dave, your assistance with the fluid hydraulics side of the work was both first class and greatly appreciated (which reminds me, I still have your copy of Levenspiel!). A special thanks to Danny Tintor for your freely-offered and invaluable assistance on the ground at Bolivar. No job was ever too big or small and you sure kept everyone down there honest; you're undoubtedly a shiny pearl within the unrefined oyster that is the Bolivar treatment works. A big thank you goes also to Sheree Bailey for your invaluable assistance and technical advice with the flow cytometry side of the project. I know I learnt a lot about flow cytometry and I hope that you learned something about algae too…

Thanks to Darcy and Laurie down in Biomedical Engineering for all your help designing and building parts of the pilot plant, and also for your willingness to offer technical guidance (often without notice). Thank you Alana, Trish and Cheryl for taking care of all the nitty-gritty stuff over the past 5+ years. Each of you always made it your business to do whatever you could to help and I thank you all sincerely for it! Thank you also Dr. Richard Bentham, Dr. John Edwards and Dr. Kirstin Ross for your advice and scholarly assistance at various points along the way. Thanks Shazza and Emily for many a stimulating and at times fiery lunch break conversation; I wish you both the best for your future careers. A retrospective thanks goes to the gone but not forgotten legends of EH: Louigi; Ben Pol; Adele; Michelle; Duncan; and Iry; for many a good time over a cup of morning and/or afternoon tea, even if milky thumbs are your style Louis.

Thanks to Ben and Akio and for providing both practical and technical advice and project support. Thanks Ben for schooling me on some of the lab analyses and much respect for helping out with the pilot plant construction; I don't think either of us will

forget those rocks as long as we live. Thanks Akio for being a good mate over the past few years and for coming surfing with me when Ben was sleeping. Thank you also for teaching me about good coffee and for the Japanese bean grinder which I now use on a daily basis ©. Thanks to Richard Evans for yielding significant amounts of technical know-how and also for providing many an *in vivo* insight into how one might go about thinking 'outside the square' and then slightly to the left of the neighbouring triangle. What do you mean you can't see it, its right there?! No not that, that's a prism... oh boy, here we go again... Thanks to the G-man for many a glorious (but sometimes downright brutally frigid) morning spent punishing a frequently deserted and wanting Goolwa lineup, and less so for providing the occasional pearl of scientific wisdom. A big thank you also goes to the resident south coast aquatic megafauna for routinely bypassing an easy—albeit somewhat lean—meal.

Thanks to the classical masters J.C.W.T. Mozart and J.S. Bach for providing both a profoundly relaxing and also intellectually-stimulating soundtrack to the thesis writing process – one wonders whether you have forever tainted my prior appreciation for heavy metal. A big thanks should also go to the 'Doctor of Philosophy' degree itself, through which I have been afforded many an intellectual and lifestyle freedom. Through your flexible and relaxed academic nature, you have also enabled—if not thoroughly encouraged—me to hone my surfing skills over the past several years; a luxury for which I will be forever indebted. To this end, thanks also to the Australian Government, and in turn Flinders University, for providing me with the necessary financial assistance so that I was able to undertake such a process in the first instance.

Thanks to Mum and Dad for working around me on occasion and for allowing me to sleep in following many a late night spent in the lab. Although the PhD machine left me somewhat detached from family life at times, you have always supported me in my endeavours and for that I am eternally grateful! Finally, thanks to my now darling wife (previously darling fiancée and darling girlfriend) Miška for being patient with me all of the times when I didn't have enough spare time to catch up, and also for saying "yes" to that age-old question. You have provided me with both personal support and also inspiration for too many things to list, and it's a testament to your character that you still went ahead and enrolled in a PhD of your own even after seeing what a beast mine had become; although I do take great comfort in knowing that your University has a strictly enforced page limit for Doctoral theses ©.

Table of contents

1 AD	VANCED WASTEWATER TREATMENT FOR ALGAL REMOVAL: LITERATURE	1
1.1	Background	1
1.2	Waste Stabilization Danda	2
1.2	vaste Stabilisation Ponus	
1.2.	1 Facultative w SPS	4
1.2.	1.2.2.1 WSP technology and treatment performance	/ Q
1.2	3 Heterotrophic microbes and algae the backbone of effective WSP treatment	00
1.2.	4 Waste stabilisation: a state change from liquid to solids	9
1.2.	5 Algae and WSPs: a 'love-hate' relationship	13
1.2	6 WSP effluent compliance—a complex problem for a simple technology	16
1.2	7 The upgrading of WSP effluents	18
1.2	8 Advanced techniques for upgrading WSPs	19
	1.2.8.1 In-pond vs. out-of-pond upgrades	22
	1.2.8.2 Upgrading WSPs with aquatic macrophytes	24
	1.2.8.3 Water hyacinths	26
	1.2.8.4 Duckweed	27
	1.2.8.5 Duckweed as advanced WSP treatment	28
	1.2.8.5.1 BOD ₅ , SS, nutrient and pathogen removal in duckweed ponds	31
	1.2.8.5.2 Advantages and disadvantages of duckweed ponds	
	1.2.8.5.3 Duckweed as an advanced in-pond upgrade for algal solids removal	
	1.2.8.6 Rock filtration as an advanced WSP upgrade	40
	1.2.8.6.1 Rock filters for final effluent polisning: nutrients; BOD ₅ ; and SS abatement	41
	1.2.8.7 Artificial attached-growth incuta	44 15
	1.2.8.7.1 Microorganishs and ofornin processes in AGW S1 s	4 5 47
	1.2.8.7.3 Fixed-bed horizontal-flow AGM	48
1.3	Local WSP systems	50
1.3.	1 Bolivar WSPs	50
	1.3.1.1 Bolivar WSP plankton ecology	53
	1.3.1.2 Active management strategies for the Bolivar WSPs	55
1.3.	2 Local community waste management (CWM) schemes	59
1.4	Thesis questions, objectives and research design	60
1.4.	1 Thesis questions:	62
2 Ex	PERIMENTAL PILOT PLANT CONSTRUCTION CHARACTERISATION OPERATIO	ON
AND PEI	RFORMANCE MONITORING	63
21	Pilot plant design and characterisation	63
2.1	1 Pilot plant experimental treatments	69
2.1.	2.1.1.1 Duckweed treatment	
-	2.1.1.2 Open Pond treatment	72
-	2.1.1.3 Rock filter treatment	72
-	2.1.1.4 Fixed-bed horizontal-flow attached-growth media	75
2.1.	2 Pilot plant flow hydraulics	77
-	2.1.2.1 Hydraulic characterisation	78
-	2.1.2.2 Hydraulic balance	80
	2.1.2.3 Hydraulic operation	80
2.2	Operational sampling and water quality analyses	81
2.2.	1 Experimental sampling protocols	81
2.2.	2 Field- and laboratory-based water quality analyses	84
4	2.2.2.1 In situ water quality monitoring	84

	2.2.2.2 I otal and volatile suspended solids	04
	2.2.2.3 Turbidity	85
	2.2.2.4 Total five-day biochemical oxygen demand	85
	2.2.2.5 Total organic carbon	85
	2.2.2.6 Chlorophyll a	86
	2.2.2.7 Ammoniacal-nitrogen	86
	2.2.2.8 Oxidised nitrogen (nitrate and nitrite)	
	2.2.2.9 Soluble reactive orthophosphate	
	2.2.2.10 Indicator microorganisms	
	2.2.2.11 Heterotrophic microbial plate counts	
	2.2.2.12 Light–depth profiling	
	2.2.2.13 Phyto- and Zooplankton quantitation and identification	88 01
2.3	Data assessment, manipulation and statistical analysis	
3 R	RELATIVE PERFORMANCE OF DUCKWEED PONDS AND ROCK FIL	TRATION FOR THE
UPGRA	ADING OF WSP EFFLUENT	
3.1	Introduction	94
3.2	Materials and Methods	94
22	Results and Discussion	05
J.J 2	A Pilot plant hydraulies	95 05
3.	Pilot plant loading conditions and influent wastewater characteristics	
3	Duckweed mat properties and biomass density vs. light attenuation	103
3.	Environmental and physicochemical parameters.	
3.	8.3.5 Wastewater treatment performance: removal of particulate organics a	and oxygen demand
3.	8.3.6 Wastewater treatment performance: suspended solids, turbidity and a	algal biomass removal .
3.	3.3.7 Wastewater treatment performance: nutrient removal	138
3.	3.3.7 Wastewater treatment performance: nutrient removal	
3.	 3.3.7 Wastewater treatment performance: nutrient removal 3.3.7.1 Inorganic nitrogen dynamics	
3.	 3.3.7 Wastewater treatment performance: nutrient removal	
3. 3. 3.4	3.3.7 Wastewater treatment performance: nutrient removal 3.3.7.1 Inorganic nitrogen dynamics 3.3.7.2 Soluble reactive orthophosphate removal 3.3.8 Wastewater treatment performance: indicator organism removals General research findings and chapter summary	
3. 3. 3.4	 Wastewater treatment performance: nutrient removal	
3. 3. 3.4 3.5 1 R	 Wastewater treatment performance: nutrient removal	
3. 3.4 3.5 4 R AND R	 Wastewater treatment performance: nutrient removal	
3. 3.4 3.5 4 R AND R 4.1	 3.3.7 Wastewater treatment performance: nutrient removal	
3. 3.4 3.5 4 R AND R 4.1 4.2	 3.3.7 Wastewater treatment performance: nutrient removal	
3. 3.4 3.5 4 R AND R 4.1 4.2 4.3	 Wastewater treatment performance: nutrient removal	
3. 3.4 3.5 4 R 4.1 4.1 4.2 4.3 4	 Wastewater treatment performance: nutrient removal	
3. 3.4 3.5 4 R AND R 4.1 4.2 4.3 4.	 Wastewater treatment performance: nutrient removal	
3. 3.4 3.5 4 R AND R 4.1 4.2 4.3 4.	 3.3.7 Wastewater treatment performance: nutrient removal	
3. 3.4 3.5 4 R AND R 4.1 4.2 4.3 4. 4. 4.	 3.3.7 Wastewater treatment performance: nutrient removal	
3. 3.4 3.5 4 R 4.1 4.2 4.3 4. 4. 4. 4.	 Wastewater treatment performance: nutrient removal	In 138 In 174 In 175 In 194 In 175 In 194 In
3. 3.4 3.5 4 R 4.1 4.2 4.3 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	 Wastewater treatment performance: nutrient removal	138 174 175 189 194 200 rch 202 ROWTH MEDIA 205 206 207 208 209 201 202 203 204 205 207
3. 3.4 3.5 4 R AND R 4.1 4.2 4.3 4. 4. 4. 4. 4.	 Wastewater treatment performance: nutrient removal	136 174 175 189 194 200 rch 202 ROWTH MEDIA 205 206 207
3. 3.4 3.5 4 R AND R 4.1 4.2 4.3 4. 4. 4. 4. 4. 4. 4. 4.	 Wastewater treatment performance: nutrient removal	136 174 175 189 194 200 rch 202 ROWTH MEDIA 205 206 207
3. 3.4 3.5 4 R AND R 4.1 4.2 4.3 4. 4. 4. 4. 4. 4. 4. 4.	 Wastewater treatment performance: nutrient removal 3.3.7.1 Inorganic nitrogen dynamics 3.3.7.2 Soluble reactive orthophosphate removal 3.3.7.2 Soluble reactive orthophosphate removal 3.3.8 Wastewater treatment performance: indicator organism removals General research findings and chapter summary Experimental improvements and suggestions for future resea RELATIVE PERFORMANCE OF HORIZONTAL FLOW ATTACHED-G ROCK FILTRATION FOR THE UPGRADING OF WSP EFFLUENT Introduction Materials and methods 4.3.1 Pilot plant flow hydraulics: 4.3.1 Pilot plant flow hydraulics: attached-growth media reactors Benvironmental and physicochemical parameters 4.3.4 Wastewater treatment performance: removal of particulate organics attached solids, turbidity and attache	In 198 In 174 In 175 In 194 In 175 In 194 In 194
3. 3.4 3.5 4 R AND R 4.1 4.2 4.3 4. 4. 4. 4. 4. 4. 4. 4.	 Wastewater treatment performance: nutrient removal	

4.5 Suggestions for future research 293 5 ECOLOGICAL CHANGES TO PHYTO- AND ZOOPLANKTON COMMUNITIES AS A CONSEQUENCE OF DIFFERENT WSP EFFLUENT UPGRADE METHODOLOGIES: RESULTS FROM PILOT-SCALE INVESTIGATIONS 293 5.1 Introduction 293 5.2 Methods 293 5.3 Results and discussion 300 5.4.1 Comparative phytoplankton ecology of the pilot plant influent and the four advanced in- pond upgrades 300 5.3.2.1 Incidence of problem zooplankton species: implications of the effluent upgrade systems for DAF/F process efficiency 373 5.4 Conclusions 376 6 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS OF AMBIENT AND REDUCED DISSOLVED OXYGEN—LITERATURE REVIEW AND 383 6.1 Phytoplankton and photolithotrophy 383 6.2 Photophysiological acclimation by phytoplankton to changes in light climate: a survival strategy 384 6.3.2 Phytoplankton cell death and dark-survival—implications for advanced WSP upgrade technologies 399 6.4.1 Flow cytometry in phytoplankton research: viability assessment 399 6.4.2 Phytoplankton cell death dark-survival—implications for advanced WSP upgrade technologies	4.4	General research findings and chapter summary	291
5 ECOLOGICAL CHANGES TO PHYTO- AND ZOOPLANKTON COMMUNITIES AS A CONSEQUENCE OF DIFFERENT WSP EFFLUENT UPGRADE METHODOLOGIES: RESULTS FROM PHLOT-SCALE INVESTIGATIONS 295 5.1 Introduction 295 5.2 Methods 295 5.3 Results and discussion 300 5.1.1 Comparative phytoplankton ecology of the pilot plant influent and the four advanced in- pond upgrades 300 5.3.2 Comparative zooplankton ecology of the pilot plant influent and the four advanced in- pond upgrades 322 5.3.2.1 Incidence of problem zooplankton species: implications of the effluent upgrade 323 5.4 Conclusions 377 5.4 Conclusions 377 5.4 Conclusions 376 6 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS 382 6.1 Phytoplankton and photolithotrophy 383 6.2 Photophysiological acclimation by phytoplankton to changes in light climate: a survival strategy 383 6.3 Phytoplankton cell death adrk-survival—implications for algal community ecology 394 6.3.3 Phytoplankton cell death adrk-survival—implications for algal community ecology 394 6.4.2.1 Flow cytometry in phytoplankton research: v	4.5	Suggestions for future research	293
5.1 Introduction 299 5.2 Methods 299 5.3 Results and discussion 300 5.3.1 Comparative phytoplankton ecology of the pilot plant influent and the four advanced in- pond upgrades 300 5.3.2 Comparative zooplankton ecology of the pilot plant influent and the four advanced in- pond upgrades 320 5.3.2.1 Incidence of problem zooplankton species: implications of the effluent upgrade systems for DAF/F process efficiency. 377 5.4 Conclusions 377 5.4 Conclusions 377 5.4 PhytOplankton SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS OF AMBIENT AND REDUCED DISSOLVED OXYGEN—LITERATURE REVIEW AND INTRODUCTION 382 6.1 Phytoplankton and photolithotrophy 382 6.2 Photophysiological acclimation by phytoplankton to changes in light climate: a survival strategy 388 6.3.1 Dark-survival strategies 388 6.3.2 Phytoplankton cell death and dark-survival—implications for algal community ecology 399 6.3.3 Phytoplankton cell death and fark-survival—implications for algal community ecology 399 6.4.1 Flow cytometry in the biological sciences 399 6.4.2 Phytoplankton cell death and rese	5 E CONSI FROM	ECOLOGICAL CHANGES TO PHYTO- AND ZOOPLANKTON COMMUNITIES AS A EQUENCE OF DIFFERENT WSP EFFLUENT UPGRADE METHODOLOGIES: RESUL I PILOT-SCALE INVESTIGATIONS	lts 295
5.2 Methods 299 5.3 Results and discussion 300 5.3.1 Comparative phytoplankton ecology of the pilot plant influent and the four advanced in-pond upgrades 300 5.3.2 Comparative zooplankton ecology of the pilot plant influent and the four advanced in-pond upgrades 322 5.3.2.1 Incidence of problem zooplankton species: implications of the effluent upgrade systems for DAF/F process efficiency. 373 5.4 Conclusions 379 6 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS OF AMBIENT AND REDUCED DISSOLVED OXYGEN—LITERATURE REVIEW AND INTRODUCTION 382 6.1 Phytoplankton and photolithotrophy 382 6.2 Photophysiological acclimation by phytoplankton to changes in light climate: a survival strategy 386 6.3 Phytoplankton and dark-survival. 386 6.3.1 Dark-survival strategies 392 6.4 Analytical flow cytometry. 399 6.4.1 Flow cytometry in phytoplankton cell death dark-survival—implications for algal community ecology 399 6.4.2.1 6.4.2.1 Flow cytometry in phytoplankton cell death dark-survival—implications for algal community ecology 399 6.4.2.1 6.4.2 Flow cytometry in phytoplankton cell death	5.1	Introduction	295
5.3 Results and discussion 300 5.3.1 Comparative phytoplankton ecology of the pilot plant influent and the four advanced in-pond upgrades 300 5.3.2 Comparative zooplankton ecology of the pilot plant influent and the four advanced in-pond upgrades 322 5.3.2.1 Incidence of problem zooplankton species: implications of the effluent upgrade systems for DAF/F process efficiency. 377 5.4 Conclusions 379 6 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS OF AMBIENT AND REDUCED DISSOLVED OXYGEN—LITERATURE REVIEW AND INTRODUCTION 382 6.1 Phytoplankton and photolithotrophy 382 6.2 Photophysiological acclimation by phytoplankton to changes in light climate: a survival strategy 386 6.3.1 Dark-survival strategies 386 6.3.2 Phytoplankton and dark-survival—implications for algal community ecology 390 383 6.3.2 Phytoplankton cell death dark-survival—implications for advanced WSP upgrade technologies 399 6.4.1 Flow cytometry in the biological sciences 399 6.4.2 Flow cytometry in the sciency (FSC) 399 6.4.2.1 Phytoplankton cell death and dark-survival—implications for advanced WSP upgrade technologies 399 <t< td=""><td>5.2</td><td>Methods</td><td>299</td></t<>	5.2	Methods	299
5.3.1 Comparative phytoplankton ecology of the pilot plant influent and the four advanced in-pond upgrades 300 5.3.2 Comparative zooplankton ecology of the pilot plant influent and the four advanced in-pond upgrades 322 5.3.1 Incidence of problem zooplankton species: implications of the effluent upgrade systems for DAF/F process efficiency. 377 5.4 Conclusions 379 6 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS OF AMBLERT AND REDUCED DISSOLVED OXYGEN—LITERATURE REVIEW AND INTRODUCTION 382 6.1 Phytoplankton and photolithotrophy 382 6.2 Photophysiological acclimation by phytoplankton to changes in light climate: a survival strategy 382 6.3 Phytoplankton end dark-survival. 386 6.3.1 Dark-survival strategies 384 6.3.2 Phytoplankton end dark-survival. 386 6.3.3 Phytoplankton end dark-survival. 386 6.3.4 Dark-survival strategies 390 6.4.1 Flow cytometry 390 6.4.2 Flow cytometry in the biological sciences 390 6.4.2 Flow cytometry in phytoplankton research: viability assessment. 391 6.4.2.1 Phytoplankton cell dea	5.3	Results and discussion	300
5.4 Conclusions 379 6 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS 0F AMBIENT AND REDUCED DISSOLVED OXYGEN—LITERATURE REVIEW AND 382 6.1 Phytoplankton and photolithotrophy 382 6.1 Phytoplankton and photolithotrophy 382 6.2 Photophysiological acclimation by phytoplankton to changes in light climate: a survival strategy 383 6.3 Phytoplankton and dark-survival 384 6.3.1 Dark-survival strategies 383 6.3.2 Phytoplankton cell death and dark-survival—implications for algal community ecology 390 6.3.3 Phytoplankton cell death dark-survival—implications for advanced WSP upgrade technologies 399 6.4.1 Flow cytometry in the biological sciences 390 6.4.2 Flow cytometry in phytoplankton research: viability assessment 399 6.4.2.1 Physical light scatter (FSC) 399 6.4.2.1.2 Side-angle light scatter (FSC) 399 6.4.2.4.1 Cellular metabolic activity 400 6.4.2.3 Population cell density 400 6.4.2.4.1 Cellular metabolic activity 401 6.4.2.4.1 Ce	5.5 5 5 u	 5.3.1 Comparative phytoplankton ecology of the pilot plant influent and the four advanced pond upgrades 5.3.2 Comparative zooplankton ecology of the pilot plant influent and the four advanced in upgrades 5.3.2.1 Incidence of problem zooplankton species: implications of the effluent upgrade systems for DAF/F process efficiency. 	in- 300 i-pond 324
6 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS 0F AMBIENT AND REDUCED DISSOLVED OXYGEN—LITERATURE REVIEW AND 382 6.1 Phytoplankton and photolithotrophy 382 6.2 Photophysiological acclimation by phytoplankton to changes in light climate: a survival strategy 383 6.3 Phytoplankton and dark-survival 386 6.3.1 Dark-survival strategies 383 6.3.2 Phytoplankton cell death and dark-survival—implications for algal community ecology 399 6.3.3 Phytoplankton cell death and dark-survival—implications for algal community ecology 399 6.4.1 Flow cytometry in the biological sciences 396 6.4.2 Flow cytometry in phytoplankton research: viability assessment 397 6.4.2.1 Physical light scatter (FSC) 399 6.4.2.1.2 Side-angle light scatter (FSC) 399 6.4.2.3 Population cell density 400 6.4.2.4.1 Cellular metabolic activity 400 6.4.2.4.1 Cellular metabolic activity 400 6.4.2.4.1 Cellular metabolic activity 400 6.4.2.4.3 Dupulation cell density 400 6.4.2.4.3 Cellul	5.4	Conclusions	379
6.1 Phytoplankton and photolithotrophy	6 F OF AM INTRO	PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDIT MBIENT AND REDUCED DISSOLVED OXYGEN—LITERATURE REVIEW AND ODUCTION	IONS
6.2 Photophysiological acclimation by phytoplankton to changes in light climate: a survival strategy 382 6.3 Phytoplankton and dark-survival	6.1	Phytoplankton and photolithotrophy	382
6.3 Phytoplankton and dark-survival	6.2 sur	Photophysiological acclimation by phytoplankton to changes in light climat vival strategy	e: a 382
6.3.1 Dark-survival strategies 388 6.3.2 Phytoplankton cell death and dark-survival—implications for algal community ecology 390 6.3.3 Phytoplankton cell death dark-survival—implications for advanced WSP upgrade technologies .3.3 Phytoplankton cell death dark-survival—implications for advanced WSP upgrade technologies .392 6.4 Analytical flow cytometry. 392 6.4 Analytical flow cytometry. 392 6.4.1 Flow cytometry in the biological sciences. 399 6.4.2 Flow cytometry in phytoplankton research: viability assessment. 397 6.4.2.1 Physical light scatter (FSC) 399 6.4.2.1.2 Side-angle light scatter (FSC) 399 6.4.2.2 Chlorophyll a autofluorescence 400 6.4.2.3 Population cell density 400 6.4.2.4 Biological fluorochromes and flow cytometry. 400 6.4.2.4.1 Cellular membrane integrity 400 6.4.2.4.2 Cellular membrane integrity 400 6.4.2.5 Long-term dark viability assessment. 411 6.4.2.5 Long-term dark viability assessment. 412 6.5 Experimental	6.3	Phytoplankton and dark-survival	386
6.3.2 Phytoplankton cell death and dark-survival—implications for algal community ecology 396 6.3.3 Phytoplankton cell death dark-survival—implications for advanced WSP upgrade technologies 392 6.4 Analytical flow cytometry	6	5.3.1 Dark-survival strategies	388
6.4 Analytical flow cytometry	6 6 te	6.3.2 Phytoplankton cell death and dark-survival—implications for algal community ecolo 6.3.3 Phytoplankton cell death dark-survival—implications for advanced WSP upgrade echnologies	gy 390 393
6.4.1 Flow cytometry in the biological sciences 390 6.4.2 Flow cytometry in phytoplankton research: viability assessment 397 6.4.2 Flow cytometry in phytoplankton research: viability assessment 399 6.4.2.1 Physical light scattering 399 6.4.2.1.1 Forward-angle light scatter (FSC) 399 6.4.2.1.2 Side-angle light scatter (SSC) 400 6.4.2.2 Chlorophyll a autofluorescence 400 6.4.2.3 Population cell density 400 6.4.2.4 Biological fluorochromes and flow cytometry 404 6.4.2.4.1 Cellular metabolic activity 400 6.4.2.4.2 Cellular membrane integrity 400 6.4.2.4.3 Dual-staining for viability assessment 411 6.4.2.5 Long-term dark viability assessment 412 6.5 Experimental questions and research aims 412 7 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS 0F AMBIENT AND REDUCED DISSOLVED OXYGEN—MATERIALS AND METHODS 416 7.1 Algal stock culture maintenance and experimental cultures 416 7.2 Dark-survival experimental design, sampling protocols and a	6.4	Analytical flow extemptry	305
6.4.2 Flow cytometry in phytoplankton research: viability assessment	0.4 6	5.4.1 Flow cytometry in the biological sciences	
6.4.2.1 Physical light scattering	6	5.4.2 Flow cytometry in phytoplankton research: viability assessment	397
6.4.2.1.1 Forward-angle light scatter (FSC) 399 6.4.2.1.2 Side-angle light scatter (SSC) 400 6.4.2.2 Chlorophyll a autofluorescence 400 6.4.2.3 Population cell density 400 6.4.2.4 Biological fluorochromes and flow cytometry 400 6.4.2.4 Biological fluorochromes and flow cytometry 400 6.4.2.4.1 Cellular metabolic activity 400 6.4.2.4.2 Cellular membrane integrity 400 6.4.2.4.3 Dual-staining for viability assessment 411 6.4.2.5 Long-term dark viability assessment 412 6.5.1 Research aims: 412 6.5.1 Research aims: 414 7 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS 416 7.1 Algal stock culture maintenance and experimental cultures 416 7.1 Algal stock culture maintenance and experimental cultures 416 7.2 Dark-survival experimental design, sampling protocols and analyses 417		6.4.2.1 Physical light scattering	399
6.4.2.1.2 Side-angle light scatter (SSC) 400 6.4.2.2 Chlorophyll a autofluorescence 400 6.4.2.3 Population cell density 402 6.4.2.4 Biological fluorochromes and flow cytometry 402 6.4.2.4.1 Cellular metabolic activity 402 6.4.2.4.2 Cellular metabolic activity 402 6.4.2.4.2 Cellular membrane integrity 402 6.4.2.4.3 Dual-staining for viability assessment 403 6.4.2.4.3 Dual-staining for viability assessment 404 6.4.2.4.3 Long-term dark viability assessment 404 6.4.2.5 Long-term dark viability assessment 404 6.5.1 Research aims: 414 6.5.1 Research aims: 416 7.1 Algal stock culture maintenance and experimental cultures 416 7.1 Algal stock culture maintenan		6.4.2.1.1 Forward-angle light scatter (FSC)	399
6.4.2.2 Chlorophyll a autofluorescence 400 6.4.2.3 Population cell density 400 6.4.2.4 Biological fluorochromes and flow cytometry 400 6.4.2.4 Cellular metabolic activity 400 6.4.2.4.1 Cellular metabolic activity 400 6.4.2.4.2 Cellular membrane integrity 400 6.4.2.4.3 Dual-staining for viability assessment 411 6.4.2.5 Long-term dark viability assessment—how viable is viable? 412 6.4.2.5 Long-term dark viability assessment—how viable is viable? 412 6.5.1 Research aims: 414 6.5.1 Research aims: 414 7 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS OF AMBIENT AND REDUCED DISSOLVED OXYGEN—MATERIALS AND METHODS 416 7.1 Algal stock culture maintenance and experimental cultures 416 7.2 Dark-survival experimental design, sampling protocols and analyses 417		6.4.2.1.2 Side-angle light scatter (SSC)	400
6.4.2.3 Population cell density 40. 6.4.2.4 Biological fluorochromes and flow cytometry 40. 6.4.2.4 Cellular metabolic activity 40. 6.4.2.4.1 Cellular metabolic activity 40. 6.4.2.4.2 Cellular membrane integrity 40. 6.4.2.4.3 Dual-staining for viability assessment 41. 6.4.2.5 Long-term dark viability assessment—how viable is viable? 41. 6.4.2.5 Long-term dark viability assessment—how viable is viable? 41. 6.5 Experimental questions and research aims 41. 6.5.1 Research aims: 41. 7 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS 0F AMBIENT AND REDUCED DISSOLVED OXYGEN—MATERIALS AND METHODS 7.1 Algal stock culture maintenance and experimental cultures 41. 7.2 Dark-survival experimental design, sampling protocols and analyses 41.		6.4.2.2 Chlorophyll a autofluorescence	400
6.4.2.4 Biological nuorocinones and now cytometry 404 6.4.2.4.1 Cellular metabolic activity 405 6.4.2.4.2 Cellular membrane integrity 405 6.4.2.4.3 Dual-staining for viability assessment 411 6.4.2.5 Long-term dark viability assessment—how viable is viable? 412 6.5 Experimental questions and research aims 412 6.5.1 Research aims: 412 7 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS 0F AMBIENT AND REDUCED DISSOLVED OXYGEN—MATERIALS AND METHODS 416 7.1 Algal stock culture maintenance and experimental cultures 416 7.2 Dark-survival experimental design, sampling protocols and analyses 417		6.4.2.4 Pipelagical fluorochromos and flow automatry	403
6.4.2.4.1 Cellular membrane integrity		6.4.2.4 Biological nuolocitomes and now cylometry	404 405
6.4.2.4.3 Dual-staining for viability assessment		6 4 2 4 2 Cellular membrane integrity	409
6.4.2.5 Long-term dark viability assessment—how viable is viable?		6.4.2.4.3 Dual-staining for viability assessment	411
 6.5 Experimental questions and research aims		6.4.2.5 Long-term dark viability assessment—how viable is viable?	413
 6.5.1 Research aims:	6.5	Experimental questions and research aims	414
 PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDITIONS OF AMBIENT AND REDUCED DISSOLVED OXYGEN—MATERIALS AND METHODS	6	6.5.1 Research aims:	415
 7.1 Algal stock culture maintenance and experimental cultures	7 F OF AM	PHYTOPLANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDIT MBIENT AND REDUCED DISSOLVED OXYGEN—MATERIALS AND METHODS	10NS 416
7.2 Dark-survival experimental design, sampling protocols and analyses417	7.1	Algal stock culture maintenance and experimental cultures	416
	7.2	Dark-survival experimental design, sampling protocols and analyses	417
7.2.1 Experimental design rationale	7	7.2.1 Experimental design rationale	417
7.2.2 Experimental sampling protocols—65 and 7 day dark-survival experiments	7	7.2.2 Experimental sampling protocols—65 and 7 day dark-survival experiments 7.2.2.1 Summary of sampling protocol	421 423

7.2	7.2.2.2 Assessment of re-growth potential—experimental design and analysis	424
1.2	7 2 3 1 Gross culture analyses	425
,	7.2.3.1 Ontimisation of sample treatment staining protocols and extometric analyses	426
	7.2.3.2 Enumeration of population cell density	426
	7.2.3.2.2 PI, FDA and cytometry bead stock solutions	428
	7.2.3.2.3 PI and FDA staining optimisations	428
	7.2.3.2.4 The optimal PI–FDA staining protocol	431
,	7.2.3.3 Flow cytometric data acquisition, analysis and presentation	432
,	7.2.3.4 Chlorophyll fluorimetry	435
8 RF	7.2.3.5 Data treatment, statistical analyses and interpretations	436
OPTIMI	SATIONS—THE IMPORTANCE OF CRITICALLY ASSESSING OPTIMAL STAININ	G
PROTO(438
8.1	Phytoplankton enumeration	438
8.2 dual]	Flow cytometric discrimination of live vs. dead phytoplankton—optimising PI–FDA assay	the 438
8.2	1 Flow cytometric assessment of cell membrane integrity—optimising the PI assay	439
8.2 ass	.2 Flow cytometric determination of phytoplankton metabolic activity—optimising the l	F DA 441
:	8.2.2.1 Determination of optimal FDA concentration and assessment of substrate FDA hydrolysis kinetics	441
-	8.2.2.2 Effect of culture growth phase, population cell density, and pH on staining prot	ocol
	optimisation	450
:	8.2.2.3 Instrument drift, internal standards and data transformation	451
0 Ри	IVTORI ANKTON SURVIVAL DURING PROLONGED DARKNESS UNDER CONDIT	IONS
	ITTOLEANNTON SURVIVAL DURING FROLONGED DARKNESS UNDER CONDIT.	10135 151
OF AMB	IENT AND REDUCED DISSOLVED OXYGEN—RESULTS AND DISCUSSION	434
9.1	Validation of experimental design	454
9.2	Algal stock culture maintenance, standard growth curves and growth rates.	455
9.3	Effect of culture growth phase on dark-survival	456
9.4	Phytoplankton dark-survival kinetics: 65 versus 7 day investigations	458
9.5	Prolonged darkness and water quality: dissolved oxygen; pH; and dissolved	l
inorg	anic carbon	459
9.5	.1 Results from the two month dark-survival experiment	459
9.5	.2 Results from the 7 day dark-survival experiment	462
9.6	Prolonged darkness: implications for population cell density; cell size; and	
intra	cellular density	465
9.6	Darkness and population cell density: results from the 65 day experiment	465
0.6	2. Derkness and nonulation call density: results from the 7 day experiment	IS.468 460
9.0 Q A	 Darkness and population cell density. results from the / day experiment	409 ⊿71
9.0	9.6.3.1 FSC-height versus cell volume	+/1 472
·	9.6.3.2 The importance of cell volume for interpreting FCM data	
	9.6.3.3 Prolonged darkness and phytoplankton cell size and intracellular density: result	s from
1	the 65 day experiment	476
9	9.6.3.4 The interrelationship between FSC and SSC signals in FCM analysis	488
	9.6.3.5 Prolonged darkness and phytoplankton cell size and intracellular density: result	s from
1	the 7 day experiment	489
	9.6.3.6 The effects of darkness on cell volume and intracellular density—ecological	100
	implications for phytoplankton sinking velocity	492

9. cł	7 Norot	Darkness and phytoplankton photosynthesis—photosynthetic pigments and phyll a fluorescence activity	495
Ċ1	9.7.1 9.7.2 9.7.3	Dark-survival and cellular chlorophyll <i>a</i> : results from the 65 day experiment Dark-survival and cellular chlorophyll <i>a</i> : results from the 7 day experiment Dark-survival and <i>in viva</i> chlorophyll <i>a</i> fluorescence: results from the 65 day experiment	495 504
).1.5		505
	9. 9.7.4 exper	Dark-survival and phytoplankton <i>in vivo</i> chlorophyll <i>a</i> fluorescence: results from the 7- iment.	513 ' day 515
9.	8	Prolonged darkness: phytoplankton metabolic activity and membrane integr	ity 517
	9.8.1 9.8 9.8.2 9.8 9.8	Dual PI-FDA viability assessment: results from the 65 day dark-survival experiment8.1.1Agreement between the discrete viability assessments of the PI and FDA assays Dual PI-FDA viability assessment: results from the 7 day dark-survival experiment8.2.1The effects of a changing cell volume on FDA-quantified physiological activity 8.2.28.2.2The importance of multiple markers for viability resolution	517 530 532 542 543
9.	9 9.9.1	Phytoplankton re-growth potential following prolonged darkness	544 545
9. of	10 f the '	Dark-survival, dissolved oxygen concentration and dark respiration—discus low D.O' treatment results	sion 553
9.	11	Light versus dark survival—light controls for dark treatments?	567
9. da	12 ark-si	Darkness, organic substrates and heterotrophic nutrition: was the advanced urvival purely inorganic?	568
9.	13	Prior light history and dark-survival	576
9. of	14 ^f dark	Timescales for phytoplankton acclimation during prolonged darkness—kine	tics
9. ve	15 elocity	Darkness and physiological vitality—implications for phytoplankton sinking y and advanced WSP upgrade process efficiency	
9. re	16 eal life	The conundrum of clinical manipulations—application of laboratory results	to 585
9.	17	Research findings and experimental conclusions	587
9.	18	Suggested experimental improvements and future research questions	590
	9.18.	1 Destructive sampling for absolute dark-control	590
	9.18.	 Alternate trophic states, environmental media and dark-survival Strict anaerobsis and dark-survival 	591 592
	9.18.4	4 Axenic versus non-axenic, and uni-algal versus mixed dark-survival	592
	9.18.	5 Grazer interactions and dark-survival	594
	9.18.	6 Additional research suggestions	595
10	GEN	ERAL DISCUSSION	.596
1().1	Logistics of upgrading the Bolivar WSPs	604
1(10.1.	Multiple installations of advanced WSP upgrades a cumulative treatment	606
ef	fect?		608
1().3	Problems with in-pond effluent upgrades	610
1().4	WSP ecology—a management tool?	613
1().5	Wider applications of research	614

10.6	Final impact of thesis findings615
APPEN	DICES
App	endix A. Previously published data from Chapter 3:617
App	endix B. Correlation matrices for pilot plant performance data—Chapter 3627
App	endix C. Correlation matrices for pilot plant performance data—Chapter 4633
Арр 2005	endix D. Zooplankton taxa most commonly observed during pilot plant operation: –2006639
App bion Indi ^s bion	endix E. Mean zooplankton body lengths, length–weight regression equations and hass estimates for the dominant taxa observed from July 2005–August 2006. vidual dry weights were estimated either from length–weight equations or published hass values of individuals from the same genus or species645
App (taxo 30/0	endix F. Executive summary of the existing phytoplankton dark-survival literature onomic classifications sourced from AlgaeBase v.3.0 http://www.algaebase.org as at 6/2007)646
App (mod	endix G. Chemical constituents of the modified Woods Hole MBL growth medium lified from Nichols, 1973)649
Refer	ENCES

List of Figures

Figure 1.1. Schematic representation of daytime WSP operation (Metcalf and Eddy,
1991)
Figure 1.2. Cyclic 'symbiosis' between algae and bacteria within a WSP environment
(Ramalho, 1983)
Figure 1.3. Schematic (left) and photographic (right) depictions of the Australian native
duckweed <i>Lemna disperma</i> Hegelm
Figure 1.4. Schematic cross-section of a rock filter bed showing the typical horizontal-
flow configuration (modified from Powell <i>et al.</i> , 1998)40
Figure 1.5. (a) Close-up view of a novel, horizontal-flow attached-growth media for use
in WSP applications, and (b) schematic representation of the biofilm attachment
and <i>in situ</i> horizontal-flow regime
Figure 2.1. Schematic of the experimental pilot plant system, showing: the header tank
(HT); multiple pond layout with down-the-line pond numbering format; and
hydraulic configuration (dimensions given in metres)
Figure 2.2. Schematic representation of an individual pond inlet (a) and outlet (b)
manifolds showing arrangement of the inlet and outlet hydraulic ducts
Figure 2.3. Three-pond rock filter series layout showing <i>in situ</i> sampling port location
with PVC covers in place, and inset, schematic detail of the <i>in situ</i> perforated
sampling port design and dimensions75
Figure 2.4. Schematic representation of the experimental pilot plant system showing
daily sampling locations (indicated by filled stars) for each of the treatment trains
across all treatments: Duckweed Ponds (DW); Attached-Growth Media reactors
(AGM); Open Ponds (OP); and Rock Filters (RF)
Figure 2.5. (a) Complete acrylic zooplankton counting wheel and base, showing: central
pivot point (1); start/stop point (2); circular counting well (3); and acrylic base
stand (4); and (b) cross-sectional view of the counting wheel removed from the
base stand
Figure 3.1. Duckweed treatment system: duplicate single pond normalised residence
time distribution curves showing normalised rhodamine WT fluorescence (A.U).
Tracer experiments performed under a standing duckweed plant biomass density of
no less than 2kg m ⁻² (wet weight)95
Figure 3.2. Open Pond treatment: duplicate single pond normalised residence time
distribution curves showing normalised rhodamine WT fluorescence (A.U.)96
Figure 3.3. Rock filters: duplicate single pond normalised residence time distribution
curves showing normalised rhodamine WT fluorescence (A.U.)96
Figure 3.4. Irradiance–depth PAR profiles for Duckweed (DW) and Open Pond (OP)
systems, showing percent attenuation at 600μ mol quanta m ⁻² s ⁻¹ incident irradiation
and standing duckweed plant biomass density of 8kg m ⁻² (fresh weight). Individual
data points represent mean determinations from three parallel treatment ponds (± 1
S.D.)
Figure 3.5. Exponential fit of available duckweed biomass density vs. incident light
attenuation data (broken lines represent 95% confidence intervals for the fitted
line)
Figure 3.6. Selected mean monthly site weather conditions from July–December of
2005. Left y-axis shows average daily wind speed and monthly precipitation, and
the right y-axis shows mean monthly evaporation (data courtesy of the Australian
Government Bureau of Meteorology)108

Figure 3.9. Dissolved oxygen data for pilot plant: Influent (■); Rock Filters (△); Open Ponds (○); and Duckweed Ponds (◇). For ease of interpretation, data points show only the mean DO concentration (± 1 S.D.) averaged across each three-pond treatment series.
110

Figure 3.10. Dissolved oxygen box-plot data for pilot plant: Influent (INFL); Rock Filters 1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Duckweed Ponds 1, 2, 3 (DW-1, DW-2, DW-3).

Figure 3.14. BOD₅ box-plot data for pilot plant: Influent (INFL); Rock Filters 1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Duckweed Ponds 1, 2, 3 (DW-1, DW-2, DW-3). The shaded 'box' represents the IQR, the horizontal bar shows the median value, and the 'whiskers' show the absolute data range.... 118

Figure 3.19. Scatter-plot showing BOD₅ mass loading (pilot plant Influent) vs. total mass removal for Pond 3 data only. Individual data points represent performance data for: Duckweed Pond 3 (□); Open Pond 3 (★); and Rock Filter 3 (●). Linear

regression lines were fitted to the entire data set, but for ease of presentation are
shown only to the point of x- and y-axis breaks
Figure 3.20. Scatter-plot of observed vs. predicted BOD ₅ effluent concentrations for
Open Pond 1 based on the model of Uhlmann (1979; 1980) for equal volume pond
reactors arranged in a series. The solid line represents the fitted regression line for
OP-1 observed and predicted data (\pm 95% CI's; thick broken lines), and the thin
broken line shows the theoretical perfect fit line for the data
Figure 3.21. Suspended solids box-plot data for pilot plant: Influent (INFL): Rock Filters
1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Duckweed
Ponds 1, 2, 3 (DW-1, DW-2, DW-3), Filled circles (•) above the INFL data
represent the four extreme spike outliers $>3 \times IOR$ from the 75 th percentile value. 141
Figure 3.22. Turbidity box-plot data for pilot plant: Influent (INFL): Rock Filters 1, 2, 3
(RF-1 RF-2 RF-3): Open Ponds 1 2 3 (OP-1 OP-2 OP-3): and Duckweed Ponds
$1 \ 2 \ 3 \ (DW-1 \ DW-2 \ DW-3)$ Filled circles (•) above the INFL data represent the
three extreme spike outliers $>3 \times IOR$ from the 75 th percentile value 141
Figure 3.23 Box-plots showing daily percentage suspended solids removal performance
relative to pilot plant Influent concentration for all ponds and across all 3 pilot
treatment systems ($n > 20$ for all plots) 143
Figure 3.24 Scatter-plot showing suspended solids mass loading (pilot plant Influent)
vs. percentage mass removal (relative to daily loading rate) for Pond 1 data only
(note the condensed y-axis scale for values below zero) Individual data points
represent mean performance data for: Duckweed Pond 1 (\square): Open Pond 1 ($\mathbf{*}$):
and Rock Filter 1 (\bullet). Individual data points show the mean of duplicate
determinations 145
Figure 3.25 Scatter-plot showing suspended solids mass loading (pilot plant Influent)
vs. percentage mass removal (relative to daily loading rate) for Pond 3 data only
Individual data points represent mean performance data for: Duckweed Pond 3 (\square) :
Onen Pond 3 ($*$): and Rock Filter 3 (\bullet) Individual data points show the mean of
dunlicate determinations
Figure 3.26 Scatter-nlot showing suspended solids mass loading (nilot nlant Influent)
vs. total mass removal for Pond 1 data only. Individual data points represent mean
performance data for: Duckweed Pond 1 (\square): Open Pond 1 (\bigstar): and Rock Filter 1
(\bullet) Fitted lines represent best-fit lines from simple linear regression analyses
Individual data points show the mean of duplicate determinations
Figure 3.27 Scatter-nlot showing suspended solids mass loading (nilot nlant Influent)
vs. total mass removal for Pond 3 data only. Individual data points represent mean
performance data for: Duckweed Pond 3 (\square): Open Pond 3 (\clubsuit): and Rock Filter 3
(\bullet) Fitted lines represent best-fit lines from simple linear regression analyses
Individual data points show the mean of duplicate determinations
Figure 3.28 Relative volatile suspended solids fraction data (as a percent of total SS)
for: nilot nlant Influent (INEL): Rock Filters 1, 2, 3 (RE 1, RE 2, RE 3): Onen
Ponds 1, 2, 3 (OP 1, OP 2, OP 3); and Duckweed Ponds 1, 2, 3 (DW 1, DW 2)
Folias 1, 2, 5 (OF-1, OF-2, OF-5), and Duckweed Folias 1, 2, 5 (D w-1, D w-2, D w 3)
Figure 2.20 Chlorophyll a box plot data for pilot plant: Influent (INEL): Deale Eilters 1
2 2 (DE 1 DE 2 DE 2): Open Donds 1 2 2 (OD 1 OD 2 OD 2); and Disclarand
2, 5 (NI-1, NI-2, NI-5), Optil Folius 1, 2, 5 (OF-1, OF-2, OF-5), alla Duckweed Bonds 1, 2, 2 (DW, 1, DW, 2, DW, 2). Filled sireles (•) shows the INEL data
romus 1, 2, 5 (DW-1, DW-2, DW-5). Filled clicies (\bullet) above the INFL data
$\lambda = \lambda =$

Figure 3.31. Scatter-plot showing chlorophyll *a* mass loading (pilot plant Influent) vs. percentage mass removal (relative to daily loading rate) for Pond 1 data only (note the truncated *y*-axis scale for values below zero). Individual data points represent mean performance data for: Duckweed Pond 1 (□); Open Pond 1 (★); and Rock Filter 1 (●). Individual data points show the mean of triplicate determinations. 155

Figure 3.32. Scatter-plot showing chlorophyll *a* mass loading (pilot plant Influent) vs. percentage mass removal (relative to daily loading rate) for Pond 3 data only (note the truncated *y*-axis scale for values below zero). Individual data points represent mean performance data for: Duckweed Pond 3 (□); Open Pond 3 (*); and Rock Filter 3 (●). Individual data points show the mean of triplicate determinations. 156

Figure 3.33. Scatter-plot showing chlorophyll *a* mass loading (pilot plant Influent) vs. total mass removal for Pond 1 data only. Individual data points represent mean performance data for: Duckweed Pond 1 (□); Open Pond 1 (*); and Rock Filter 1 (●). Fitted lines represent best-fit lines from simple linear regression analyses.

Figure 3.35. Ammonia-nitrogen box-plot data for pilot plant: Influent (INFL); Rock
Filters 1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and
Duckweed Ponds 1, 2, 3 (DW-1, DW-2, DW-3). The shaded 'box' represents the
IQR, the horizontal bar shows the median, and the 'whiskers' show the absolute
data range.

Figure 3.39. Scatter-plot showing NH₄⁺-N mass loading (pilot plant Influent) vs. percent mass removal (relative to daily loading rate) for Pond 1 data only. Individual data points represent mean performance data for: Duckweed Pond 1 (□); Open Pond 1 (*); and Rock Filter 1 (●). Individual data points show the mean of triplicate determinations.

Figure 3.41. Scatter-plot showing NH ₄ ⁺ -N mass loading (pilot plant Influent) vs. total mass removal for Pond 1 data only. Individual data points represent mean performance data for: Duckweed Pond 1 (□); Open Pond 1 (*); and Rock Filter 1 (●). Fitted lines represent best-fit lines from simple linear regression analyses, with regression slopes shown alongside the respective figure legends. Individual data points show the mean of triplicate determinations
Figure 3.42. Scatter-plot showing NH₄'-N mass loading (pilot plant Influent) vs. total mass removal for the combined data of Ponds 2 and 3. Individual data points represent mean performance data for: Duckweed Ponds 2 and 3 (□); Open Ponds 2 and 3 (★); and Rock Filters 2 and 3 (●). Fitted lines represent best-fit lines from simple linear regression analyses, with regression slopes shown alongside the respective figure legends. Individual data points show the mean of triplicate determinations
Figure 3.43. Soluble reactive orthophosphate-phosphorous box-plot data for pilot plant.
Influent (INFL); Rock Filters 1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP- 1, OP-2, OP-3); and Duckweed Ponds 1, 2, 3 (DW-1, DW-2, DW-3). The shaded 'box' represents the IOP, the horizontal bar shows the median value, and the
'whiskers' show the absolute data range 190
Figure 3 44 Box-plots showing percentage orthophosphate-phosphorous removal
performance relative to pilot plant Influent concentration for all ponds and across
all 3 pilot treatment systems ($n = 11$ for all plots)
Figure 3.45. Faecal coliform box-plot data for pilot plant: Influent (INFL); Rock Filters
1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Duckweed
Ponds 1, 2, 3 (DW-1, DW-2, DW-3). The shaded 'box' represents the IQR, the
horizontal bar shows the median value, and the 'whiskers' show the absolute data
range194
Figure 3.46. <i>E. coli</i> box-plot data for pilot plant: Influent (INFL); Rock Filters 1, 2, 3
(RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Duckweed Ponds 1, 2, 3 (DW-1, DW-2, DW-3)
Figure 4.1. Duplicate single reactor normalised RTD curves for the Attached-Growth
Media treatment; showing normalised rhodamine WT fluorescence (A.U.; y-axis)
and time (days; <i>x</i> -axis)
Figure 4.2. Selected mean monthly site weather conditions from February–August of
2006. Left y-axis shows average daily wind speed and monthly precipitation, and the right y-axis shows mean monthly evaporation (data courtesy of the Australian
Government Bureau of Meteorology)
Figure 4.3. Water temperature data for pilot plant: Influent (\blacksquare); Rock Filters (Δ); Open
Ponds (O); and Attached-Growth Media (\diamondsuit) Reactors. For ease of interpretation,
data points show only the mean temperature (± 1 S.D.) averaged across each three-
pond treatment series, with a line fitted only to the influent data set
Figure 4.4. Water temperature box-plot data for pilot plant: Influent (INFL); Rock
Filters 1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Attached-Growth Media Reactors 1, 2, 3 (AGM-1, AGM-2, AGM-3). The shaded 'box' represents the interquartile data range (IOR), the horizontal bar shows the
median value and the 'whiskers' show the absolute data range 214
Figure 4.5. Dissolved oxygen data for pilot plant: Influent (■); Rock Filters (△); Open Ponds (O); and Attached-Growth Media (◇) Reactors. For ease of interpretation,
data points show only the mean DO concentration averaged across each three-pond
น เวลนที่เป็น 501105

xviii

1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Attached-
Growth Media Reactors 1, 2, 3 (AGM-1, AGM-2, AGM-3) 216
Figure 4.7. 24 hour online dissolved oxygen data from part of monitoring <i>Period 2</i> of
2006 for pilot plant: Influent (INFL): Rock Filter 1 (RF-1): and Open Pond 1 (OP-
1) 218
Figure 4.8. 24 hour online dissolved oxygen data from part of monitoring Pariod 2 of
2006 for Attached Crowth Media Departor 1 (ACM 1) only
2000 for Attached-Growth Media Reactor 1 (AGM-1) only
Figure 4.9. pH box-plot data for pliot plant: Influent (INFL); Kock Fliters 1, 2, 3 (RF-1,
RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Attached-Growth Media
Reactors 1, 2, 3 (AGM-1, AGM-2, AGM-3)
Figure 4.10. Specific conductivity data for pilot plant: Influent (\blacksquare); Rock Filters (Δ);
Open Ponds (O); and Attached-Growth Media (\diamondsuit) Reactors. For ease of
interpretation, data points show only the mean conductivity (± 1 S.D.) averaged
across each three-pond treatment series, with a line fitted only to the influent data
set 221
Figure 4.11 Specific conductance box-plot data for pilot plant: Influent (INFL): Rock
Filters 1 2 3 (RE-1 RE-2 RE-3): Onen Ponds 1 2 3 (OP-1 OP-2 OP-3): and
Attached Growth Modia Postors 1, 2, 2 (Λ GM 1, Λ GM 2, Λ GM 2) 222
Auacheu-Olowul Meula Reactors 1, 2, 3 (AOM-1, AOM-2, AOM-3)
Figure 4.12. BOD ₅ box-piot data for pilot plant. Influent (INFL); Kock Filters 1, 2, 3
(RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Attached-Growth
Media Reactors 1, 2, 3 (AGM-1, AGM-2, AGM-3). The shaded 'box' represents
the IQR, the horizontal bar shows the median value, and the 'whiskers' show the
absolute data range
Figure 4.13. Box-plots showing percentage BOD ₅ removal performance relative to pilot
plant Influent concentration for all three ponds of each pilot treatment system
$(n \ge 21 \text{ for each plot}).$ 225
Figure 4.14. Scatter-plot showing BOD ₅ mass loading (pilot plant Influent) vs. mass
removal (as a percentage of daily loading rate) for Pond 1 data only. Individual data
points represent performance data from single determinations for: Peak Eilter 1
DOTHIS LEDIESETH DEHOLHAUCE GATA TIOTH SHIPLE DETERTIONATIONS TO CONCENTRED T
(\bullet) : Open Pond 1 (*): and Attached-Growth Media Reactor 1 (\Box) 229
(●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
(●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (★); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)
 (●); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (□)

Figure 4.18. Scatter-plot showing BOD₅ mass loading (pilot plant Influent) vs. total mass removal for the combined three-pond data of each treatment train (excluding the single extreme outlying loading event across all treatments). Individual data points represent performance data from single determinations for: Rock Filters (\bullet) ; Open Ponds (**★**); and Attached-Growth Media Reactors (□)......234 Figure 4.19. Suspended solids box-plot data for pilot plant: Influent (INFL); Rock Filters 1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Attached-Growth Media Reactors 1, 2, 3 (AGM-1, AGM-2, AGM-3). The shaded 'box' represents the IOR, the horizontal bar shows the median value, and the 'whiskers' show the absolute data range. Filled circles (\bullet) above the INFL data represent the Figure 4.20. Turbidity box-plot data for pilot plant: Influent (INFL); Rock Filters 1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Attached-Growth Media Reactors 1, 2, 3 (AGM-1, AGM-2, AGM-3). Filled circles (•) above the INFL data represent the two extreme spike outliers $>3 \times IQR$ from the 75th percentile Figure 4.21. Box-plots showing percentage suspended solids removal performance relative to pilot plant Influent concentration for all ponds and across all 3 pilot Figure 4.22. Scatter-plot showing suspended solids mass loading (pilot plant Influent) vs. percentage mass removal (relative to daily loading rate) for Pond 1 data only (note the reduced *v*-axis scale for values below zero). Individual data points represent mean performance data from duplicate determinations for: Rock Filter 1 (\bullet); Open Pond 1 (*); and Attached-Growth Media Reactor 1 (\Box).242 Figure 4.23. Scatter-plot showing suspended solids mass loading (pilot plant Influent) vs. percentage mass removal (relative to daily loading rate) for Pond 3 data only (note the reduced y-axis scale for values below -50). Individual data points represent mean performance data from duplicate determinations for: Rock Filter 3 Figure 4.24. Scatter-plot showing suspended solids mass loading (pilot plant Influent) vs. total mass removal for Pond 1 data only. Individual data points represent mean performance data from duplicate determinations for: Rock Filter 1 (•); Open Pond 1 (\ast); and AGM Reactor 1 (\Box). Linear regression lines were fitted to the entire data set, but for ease of presentation are shown only to the point of x- and y-axis breaks. Individual treatment regression lines are shown with corresponding slope Figure 4.25. Scatter-plot showing suspended solids mass loading (pilot plant Influent) vs. total mass removal for Pond 3 data only. Individual data points represent mean performance data from duplicate determinations for: Rock Filter 3 (●); Open Pond 3 (\ast); and AGM Reactor 3 (\Box). Linear regression lines were fitted to the entire data set, but for ease of presentation are shown only to the point of x- and y-axis breaks. Individual treatment regression lines are shown with corresponding slope Figure 4.26. Relative volatile suspended solids fraction data (as a percent of total SS) for pilot plant: Influent (INFL); Rock Filters 1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Attached-Growth Media Reactors 1, 2, 3 (AGM-1, Figure 4.27. Chlorophyll *a* box-plot data for pilot plant: Influent (INFL); Rock Filters 1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Attached-

Growth Media Reactors 1, 2, 3 (AGM-1, AGM-2, AGM-3). The filled circle (•)
above the INFL data represents the single extreme outlying spike $>3 \times IQR$ from the
/5 th percentile value
Figure 4.28. Box-plots showing percentage chlorophyll <i>a</i> removal performance relative
to pilot plant influent concentration for all ponds and across all 3 pilot treatment systems ($n \ge 34$ for all plots) 251
Figure 4.29 Scatter-plot showing chlorophyll α mass loading (pilot plant Influent) vs
percentage mass removal (relative to daily loading rate) for Pond 1 data only.
Individual data points represent mean performance data from triplicate
determinations for: Rock Filter 1 (•): Open Pond 1 (*): and Attached-Growth
Media Reactor 1 (\Box) . 253
Figure 4.30. Scatter-plot showing chlorophyll <i>a</i> mass loading (pilot plant Influent) vs.
percentage mass removal (relative to daily loading rate) for Pond 3 data only (note
the reduced <i>v</i> -axis scale for values below zero). Individual data points represent
mean performance data from triplicate determinations for Rock Filter 3 (\bullet): Open
Pond 3 (*); and Attached-Growth Media Reactor 3 (□)
Figure 4.31. Scatter-plot showing chlorophyll <i>a</i> mass loading (pilot plant Influent) vs.
total mass removal for Pond 1 data only. Individual data points represent mean
performance data from triplicate determinations for: Rock Filter 1 (•); Open Pond
1 ($\mathbf{*}$); and Attached-Growth Media Reactor 1 (\Box). Linear regression lines were
fitted to the entire data set, but for ease of presentation are shown only to the point
of <i>x</i> - and <i>y</i> -axis breaks
Figure 4.32. Scatter-plot showing chlorophyll <i>a</i> mass loading (pilot plant Influent) vs.
total mass removal for Pond 3 data only. Individual data points represent mean
performance data from triplicate determinations for: Rock Filter 3 (●); Open Pond
3 (\clubsuit); and Attached-Growth Media Reactor 3 (\Box). Linear regression lines were
fitted to the entire data set, but for ease of presentation are shown only to the point
of <i>x</i> - and <i>y</i> -axis breaks
Figure 4.33. Ammonia-nitrogen box-plot data for pilot plant: Influent (INFL); Rock
Filters 1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and
Attached-Growth Media Reactors 1, 2, 3 (AGM-1, AGM-2, AGM-3) 263
Figure 4.34. Nitrite-nitrogen box-plot data for pilot plant: Influent (INFL); Rock Filters
1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Attached-
Growth Media Reactors 1, 2, 3 (AGM-1, AGM-2, AGM-3)
Figure 4.35. Nitrate-nitrogen box-plot data for pilot plant: Influent (INFL); Rock Filters
1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Attached-
Growth Media Reactors 1, 2, 3 (AGM-1, AGM-2, AGM-3)
Figure 4.36. Box-plots showing percentage ammonia removal performance relative to
pliot plant influent concentration for all points and across all 3 pliot treatment $2(6)$
systems ($n = 11$ for all plots)
Figure 4.37. Scatter-plot showing NH_4 -N mass loading (pilot plant influent) vs.
percentage mass removal (relative to daily loading rate) for Pond I data only.
Individual data points represent mean performance data from triplicate
determinations for: Rock Filter I ($\mathbf{\Psi}$); Open Pond I ($\mathbf{\star}$); and Attached-Growth
$\frac{1}{269}$
Figure 4.38. Scatter-plot snowing NH_4 - N mass loading (pilot plant influent) vs.
percentage mass removal (relative to daily loading rate) for the combined data of
Ponds 2 and 3. Individual data points represent mean performance data from

triplicate determinations for: Rock Filters 2 and 3 (\bullet); Open Ponds 2 and 3 (*);
and Attached-Growth Media Reactors 2 and 3 (\Box)
Figure 4.39. Scatter-plot showing NH ₄ -N mass loading (pilot plant Influent) vs. total
mass removal for Pond I data only. Individual data points represent mean
performance data from triplicate determinations for: Rock Filter I ($\mathbf{\Theta}$); Open Pond
$I(\mathbf{*})$; and AGM Reactor I (\Box). Fitted lines represent best-fit lines from simple
linear regression analyses, with regression slopes (m) shown alongside the
respective figure legends. $2/1$
Figure 4.40. Scatter-plot showing NH ₄ -N mass loading (pilot plant influent) vs. total
mass removal for the combined data of Ponds 2 and 3. Individual data points
represent mean performance data from triplicate determinations for: Rock Filters 2 and 2 (\square). On an Danda 2 and 2 (\blacksquare), and ACM Departure 2 and 2 (\square). Eithed lines
and $3(\mathbf{\Psi})$; Open Ponds 2 and $3(\mathbf{\pi})$; and AGM Reactors 2 and 3 ($\mathbf{\Box}$). Fitted lines
represent best-fit lines from simple linear regression analyses, with regression
Stopes (<i>m</i>) shown alongstue the respective figure regends
abserved versus predicted performance (predicted values calculated based on Peek
Filter regression performance analyses from Section 3.3.7.1). Fitted regression line
(solid line) shown with 95% CI's (broken lines)
Figure 4.42 Soluble reactive orthophosphate-phosphorous box-plot data for pilot plant:
Influent (INFL): Rock Filters 1 2 3 (RF-1 RF-2 RF-3): Open Ponds 1 2 3 (OP-
1 OP-2 OP-3) and Attached-Growth Media Reactors 1 2 3 (AGM-1 AGM-2
AGM-3) The shaded 'box' represents the IOR the horizontal bar shows the
median value and the 'whiskers' show the absolute data range 277
Figure 4 43 Box-plots showing percentage orthophosphate-phosphorous removal
performance relative to pilot plant Influent concentration for all ponds and across
all 3 pilot treatment systems ($n = 10$ for all plots)
Figure 4.44. Faecal coliform box-plot data for pilot plant: Influent (INFL); Rock Filters
1, 2, 3 (RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Attached-
Growth Media Reactors 1, 2, 3 (AGM-1, AGM-2, AGM-3). The shaded 'box'
represents the IQR, the horizontal bar shows the median value, and the 'whiskers'
show the absolute data range
Figure 4.45. E. coli box-plot data for pilot plant: Influent (INFL); Rock Filters 1, 2, 3
(RF-1, RF-2, RF-3); Open Ponds 1, 2, 3 (OP-1, OP-2, OP-3); and Attached-Growth
Media Reactors 1, 2, 3 (AGM-1, AGM-2, AGM-3)
Figure 4.46. Theoretical serviceable life of a Bolivar-based rock filter (based on a void
volume of 55.86%, HLR of $1.0\text{m}^3 \text{ m}^{-3} \text{ d}^{-1}$, mean influent SS of 27.4g m ⁻³ , mean
VSS of 52.5%, mean SS removal efficiency of 76% and a sludge water content of
85%)
Figure 4.47. Theoretical serviceable life of a Bolivar-based AGM upgrade installation
(based on a void volume of 95.7%, HLR of $1.0\text{m}^3 \text{m}^{-3} \text{d}^{-1}$, mean influent SS of
27.4g m ⁻³ , mean VSS of 52.5%, mean SS removal efficiency of 71% and a sludge
water content of 85%)
Figure 5.1. Pilot plant influent phytoplankton population dynamics during both
monitoring <i>Period 1</i> of 2005 and <i>Period 2</i> of 2006 showing relative temporal
abundance of the dominant genera (left y-axis) as well as total abundance (\log_{10}
cells mi ⁻ ; broken line; right <i>y</i> -axis)
Figure 5.2. Pilot plant influent phytoplankton population dynamics during both
monitoring <i>Period 1</i> of 2005 and <i>Period 2</i> of 2006 showing relative percentage

temporal abundance of: green algae; diatoms; cryptophytes; cyanobacteria; and
Euglenozoa
Figure 5.3. Box-plot showing total phytoplankton abundance for: the 2005 (INFL '05)
and 2006 (INFL '06) pilot plant Influent; Rock Filters 1 and 3 (RF-1; RF-3); Open
Ponds 1 and 3 (OP-1; OP-3); Duckweed Ponds 1 and 3 (DW-1; DW-3); and
Attached-Growth Media Reactors 1 and 3 (AGM-1; AGM-3). Abundance data
sourced from the entire monitoring duration from July 2005–August 2006 303
Figure 5.4. Duckweed Pond 1 phytoplankton population dynamics for a limited duration
during the 2005 Period 1 showing relative temporal abundance of the dominant
genera (left y-axis) as well as total phytoplankton abundance (\log_{10} cells ml ⁻¹ ;
broken line; right y-axis)
Figure 5.5. Duckweed Pond 1 phytoplankton population dynamics during the 2005
<i>Period 1</i> showing relative percentage temporal abundance of: green algae; diatoms;
cryptophytes; cyanobacteria; and Euglenozoa
Figure 5.6. Duckweed Pond 3 phytoplankton population dynamics during the 2005
<i>Period 1</i> showing relative percentage temporal abundance of the dominant genera
(left y-axis) as well as total phytoplankton abundance (\log_{10} cells ml ⁻¹ ; broken line;
right y-axis)
Figure 5.7. Duckweed Pond 3 phytoplankton population dynamics during the 2005
<i>Period 1</i> showing relative percentage temporal abundance of: green algae; diatoms;
cryptophytes; cyanobacteria; and Euglenozoa
Figure 5.8. Open Pond 1 phytoplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 Period 2 showing relative percentage temporal abundance of the
dominant genera (left y-axis) as well as total phytoplankton abundance (log ₁₀ cells
ml^{-1} ; broken line; right y-axis)
Figure 5.9. Open Pond 1 phytoplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 Period 2 showing relative percentage temporal abundance of: green
algae; diatoms; cryptophytes; cyanobacteria; and Euglenozoa
Figure 5.10. Open Pond 3 phytoplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 <i>Period 2</i> showing relative percentage temporal abundance of the
dominant genera (left y-axis) as well as total phytoplankton abundance (\log_{10} cells
ml^{-1} ; broken line; right y-axis)
Figure 5.11. Open Pond 3 phytoplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 <i>Period 2</i> showing relative percentage temporal abundance of: green
algae; diatoms; cryptophytes; cyanobacteria; and Euglenozoa
Figure 5.12. Rock Filter 1 phytoplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 <i>Period 2</i> showing relative percentage temporal abundance of the
dominant genera (left y-axis) as well as total phytoplankton abundance (\log_{10} cells
ml^{-1} ; broken line; right <i>y</i> -axis)
Figure 5.13. Rock Filter 1 phytoplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 <i>Period 2</i> showing relative percentage temporal abundance of: green
algae; diatoms; cryptophytes; cyanobacteria; and Euglenozoa
Figure 5.14. Rock Filter 3 phytoplankton population dynamics during the 2005 Period 1
and 2006 <i>Period 2</i> showing relative percentage temporal abundance of the
dominant genera (left y-axis) as well as total phytoplankton abundance (\log_{10} cells
ml ; broken line; right <i>y</i> -axis)
Figure 5.15. Rock Filter 3 phytoplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 Period 2 showing relative percentage temporal abundance of: green
algae; diatoms; cryptophytes; cyanobacteria; and Euglenozoa

Figure 5.16. Attached-Growth Media Reactor 1 phytoplankton population dynamics
during the 2006 Period 2 showing relative percentage temporal abundance of the
dominant genera (left y-axis) as well as total phytoplankton abundance (\log_{10} cells
ml^{-1} ; broken line; right y-axis)
Figure 5.17. Attached-growth media Reactor 1 phytoplankton population dynamics
during the 2006 <i>Period 2</i> showing relative percentage temporal abundance of:
green algae: diatoms: cryptophytes: cyanobacteria: and Euglenozoa
Figure 5.18 Attached-growth media Reactor 3 phytoplankton population dynamics
during the 2006 <i>Period</i> 2 showing relative percentage temporal abundance of the
dominant genera (left y-axis) as well as total phytoplankton abundance (\log_{10} cells
ml^{-1} broken line: right v-axis) as well as total phytophankton abundance (10510 certs)
Figure 5.10 Attached growth media Reactor 3 nhytonlankton nonulation dynamics
during the 2006 Pariod 2 showing relative percentage temporal shundanee of:
arean algae: distance: arentenbutes: avenabastoria: and Euclanozaa
Eigune 5.20 Mean nereantage contributions of the four major phytoplantan groups
Figure 5.20. Mean percentage contributions of the four major phytopiankton groups
(greens, diatoms, cyanobacteria and cryptophytes; (a)) and the three problem
pnytoplankton genera (<i>Chiamyaomonas</i> , <i>Chiorelia</i> and <i>Euglena</i> ; (b)) to the total
algal population. Data shown for: 2005 (INFL '05) and 2006 (INFL '06) pilot plant
Influent; Rock Filters I and 3 (RF 1&3), Open Ponds I and 3 (OP 1&3), Duckweed
Ponds I and 3 (DW 1&3) and Attached-Growth Media Reactors I and 3 (AGM
1&3). Average values for the RF and OP treatments were calculated from the
combined Pond 1 and 3 data of the 2005–2006 monitoring duration
Figure 5.21. Pilot plant influent zooplankton population dynamics during the 2005
<i>Period 1</i> and 2006 <i>Period 2</i> showing relative percentage temporal abundance of the
dominant genera (left y-axis) as well as total zooplankton abundance (individuals
L^{-1} ; broken line; right <i>y</i> -axis)
Figure 5.22. Pilot plant influent zooplankton population dynamics during the 2005
Period 1 and 2006 Period 2 showing relative temporal abundance of the dominant
zooplankton groups
Figure 5.23. Pilot plant influent zooplankton biomass dynamics during the 2005 Period
1 and 2006 Period 2 showing relative percentage temporal biomass of the dominant
genera (left y-axis) as well as total zooplankton biomass (mg L^{-1} ; broken line; right
y-axis)
Figure 5.24. Pilot plant influent zooplankton biomass dynamics during the 2005 Period
1 and 2006 Period 2 showing relative percentage temporal biomass of the dominant
zooplankton groups
Figure 5.25. Rock Filter 1 zooplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 <i>Period 2</i> showing relative percentage temporal abundance of the
dominant genera (left <i>v</i> -axis) as well as total zooplankton abundance (individuals
L^{-1} : broken line: right v-axis)
Figure 5.26. Rock Filter 1 zooplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 <i>Period</i> 2 showing relative percentage temporal abundance of the
dominant zoonlankton groups
Figure 5 27 Rock Filter 1 zooplankton biomass dynamics during the 2005 Period 1 and
2006 Period 2 showing relative percentage temporal biomass of the dominant
genera (left y-axis) as well as total zoonlankton biomass (mg I $^{-1}$ broken line right
v_{axis}
y with j

Figure 5.28. Rock Filter 1 zooplankton biomass dynamics during the 2005 <i>Period 1</i> and 2006 <i>Period 2</i> showing relative percentage temporal biomass of the dominant
zooplankton groups 340
Figure 5 29 Rock Filter 3 zoonlankton population dynamics during the 2005 Period 1
and 2006 Period 2 showing relative percentage temporal abundance of the
dominant genera (left y-axis) as well as total zoonlankton abundance (individuals
L^{-1} : broken line: right a suite)
E, UIOKEII IIIE, IIgiit y-axis)
Figure 5.50. Rock Filter 5 zoopiankion population dynamics during the 2005 Period 1
and 2006 Period 2 showing relative percentage temporal abundance of the
dominant zooplankton groups
Figure 5.31. Rock Filter 3 zooplankton biomass dynamics during the 2005 Period I and
2006 <i>Period 2</i> showing relative percentage temporal biomass of the dominant
genera (left y-axis) as well as total zooplankton biomass (mg L^{-1} ; broken line; right
<i>y</i> -axis)
Figure 5.32. Rock Filter 3 zooplankton biomass dynamics during the 2005 <i>Period 1</i> and
2006 Period 2 showing relative percentage temporal biomass of the dominant
zooplankton groups
Figure 5.33. Open Pond 1 zooplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 <i>Period 2</i> showing relative percentage temporal abundance of the
dominant genera (left y-axis) as well as total zooplankton abundance (individuals
L^{-1} broken line: right y-axis) 343
Figure 5 34 Open Pond 1 zooplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 Period 2 showing relative percentage temporal abundance of the
dominant zoonlankton groups
Figure 5.35 Open Pond 1 zoonlankton biomass dynamics during the 2005 Period 1 and
2006 Pariod 2 showing relative percentage temporal biomass of the dominant
2000 T eriou 2 showing relative percentage temporal biomass of the dominant
genera (left y-axis) as well as total zooplankton biomass (mg L , broken line, fight 244
y-axis)
Figure 5.36. Open Pond 1 zoopiankton biomass dynamics during the 2005 Period 1 and
2006 Period 2 showing relative percentage temporal biomass of the dominant
zooplankton groups
Figure 5.37. Open Pond 3 zooplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 <i>Period 2</i> showing relative percentage temporal abundance of the
dominant genera (left y-axis) as well as total zooplankton abundance (individuals
L^{-1} ; broken line; right y-axis)
Figure 5.38. Open Pond 3 zooplankton population dynamics during the 2005 <i>Period 1</i>
and 2006 Period 2 showing relative percentage temporal abundance of the
dominant zooplankton groups
Figure 5.39. Open Pond 3 zooplankton biomass dynamics during the 2005 <i>Period 1</i> and
2006 Period 2 showing relative percentage temporal biomass of the dominant
genera (left y-axis) as well as total zoonlankton biomass (mg L^{-1} broken line: right
y-axis)
Figure 5.40 Open Pond 3 zoonlankton biomass dynamics during the 2005 Period 1 and
2006 Pariod 2 showing relative percentage temporal biomass of the dominant
2000 <i>Teriou</i> 2 showing relative percentage temporal biomass of the dominant
Zoopiankion groups
Figure 5.41. Duckweed Pond 1 zoopiankion population dynamics during the 2005
monitoring <i>Period 1</i> snowing relative percentage temporal abundance of the
dominant genera (left y-axis) as well as total zooplankton abundance (individuals x^{-1}
L ⁻ ; broken line; right y-axis)

Figure 5.42. Duckweed Pond 1 zooplankton population dynamics during the 2005
monitoring Period 1 showing relative percentage temporal abundance of the
dominant zooplankton groups
Figure 5.43. Duckweed Pond 1 zooplankton biomass dynamics during the 2005
monitoring Period 1 showing relative percentage temporal biomass of the dominant
genera (left <i>y</i> -axis) as well as total zooplankton biomass (mg L ⁻¹ ; broken line; right <i>y</i> -axis)
Figure 5.44. Duckweed Pond 1 zooplankton biomass dynamics during the 2005
monitoring <i>Period 1</i> showing relative percentage temporal biomass of the dominant zooplankton groups
Figure 5.45. Duckweed Pond 3 zooplankton population dynamics during the 2005
monitoring <i>Period 1</i> showing relative percentage temporal abundance of the
dominant genera (left y-axis) as well as total zooplankton abundance (individuals
L^{-1} ; solid white line; right y-axis)
Figure 5.46. Duckweed Pond 3 zooplankton population dynamics during the 2005
monitoring <i>Period 1</i> showing relative percentage temporal abundance of the
dominant zooplankton groups
Figure 5.47. Duckweed Pond 3 zooplankton biomass dynamics during the 2005
monitoring Period 1 showing relative percentage temporal biomass of the dominant
genera (left y-axis) as well as total zooplankton biomass (mg L^{-1} ; broken line; right
<i>y</i> -axis)
Figure 5.48. Duckweed Pond 3 zooplankton biomass dynamics during the 2005
monitoring Period 1 showing relative percentage temporal biomass of the dominant
zooplankton groups
Figure 5.49. Attached-growth media Reactor 1 zooplankton population dynamics during
the 2006 monitoring <i>Period 2</i> showing relative percentage temporal abundance of
the dominant genera (left y-axis) as well as total zooplankton abundance
(individuals L^{-1} ; broken line; right y-axis)
Figure 5.50. Attached-growth media Reactor 1 zooplankton population dynamics during
the 2006 <i>Period 2</i> showing relative percentage temporal abundance of the dominant zooplankton groups
Figure 5.51. Attached-growth media Reactor 1 zooplankton biomass dynamics during
the 2006 monitoring <i>Period 2</i> showing relative percentage temporal biomass of the
dominant genera (left y-axis) as well as total zooplankton biomass (mg L^{-1} ; broken
line; right <i>y</i> -axis)
Figure 5.52. Attached-growth media Reactor 1 zooplankton biomass dynamics during
the 2006 monitoring <i>Period 2</i> showing relative percentage temporal biomass of the
dominant zooplankton groups
Figure 5.53. Attached-growth media Reactor 3 zooplankton population dynamics during
the 2006 monitoring <i>Period 2</i> showing relative percentage temporal abundance of
the dominant genera (left y-axis) as well as total zooplankton abundance
(individuals L ⁻ ; broken line; right y-axis)
Figure 5.54. Attached-growth media Reactor 3 zooplankton population dynamics during the 2006 $P_{\rm eff}$ is $l_{\rm 2}$ showing media reactor 4 zooplankton population dynamics during
the 2006 <i>Period 2</i> showing relative percentage temporal abundance of the dominant
Zoopiankion groups
rigure 5.55. Attached-growth media Reactor 5 Zooptankton biomass dynamics during
dominant genera (laft y axis) as well as total zoonlankton biomass (mg I $^{-1}$; broken
$\frac{1}{254}$
ше, нуш <i>у</i> -аль)

- Figure 5.59. Box-plot of zooplankton community Shannon diversity indices (*H*') for: 2005 (INFL '05) and 2006 (INFL '06) pilot plant Influent; Rock Filters 1 and 3 (RF-1; RF-3); Open Ponds 1 and 3 (OP-1; OP-3); Duckweed Ponds 1 and 3 (DW-1; DW-3); and Attached-Growth Media Reactors 1 and 3 (AGM-1; AGM-3). Data sourced from the entire pilot plant monitoring period from July 2005–August 2006.

- Figure 6.1. Laser excitation and detection optics layout for a standard bench-top (FACSCalibur, Becton Dickinson, USA) flow cytometer (modified from Campbell, 2001). Forward-angle light scatter, FSC; side-angle light scatter, SSC; red fluorescence, RFL; orange fluorescence, ORFL; green fluorescence, GRFL...... 396

- Figure 8.1. (a) Overlayed frequency distribution plots depicting live: dead *C. vulgaris* FCM discrimination in various PI-stained $(1.5\mu M)$ mixtures of live: dead (heat-killed) cultures: (A) 100% live; (B) 75% live; (C) 50% live; (D) 25% live; (E) 0% live (primary *x*-axes show log₁₀ PI fluorescence yield (A.U.), *y*-axes show number

of cells counted); (b) stacked histogram depicting the accurate discriminatory capacity for the various mixtures of live: dead PI-stained (1.5 μ M) <i>C. vulgaris</i> ($n \ge 1$
20,000 cells for each live: dead mixture)440
Figure 8.2. (a) Overlayed histogram plot depicting live: dead <i>C. reinhardtii</i>
discrimination via FCM and PI (1.5μ M) staining of mixed ratio live: dead (heat- killed) cultures: (A) 100% live; (B) 75% live; (C) 50% live; (D) 25% live; (E) 0% live (primary <i>x</i> -axis shows log ₁₀ PI fluorescence yield (A.U.), <i>y</i> -axis shows number of cells counted); (b) stacked histogram depicting the accurate discriminatory
capacity for the various mixtures of live: dead PI-stained (1.5 μ M) C. reinhardtii (n
\geq 20,000 cells for each live: dead mixture)
Figure 8.3. FDA uptake and hydrolysis kinetics dot-plots (with plotted mean
fluorescence kinetics line) for FCM staining protocol optimisation of <i>C. vulgaris</i> : (a) 2.4μ M; (b) 12μ M; (c) 24μ M and (d) 36μ M442
Figure 8.4. (a) Live C. vulgaris FDA (24µM) hydrolysis kinetics and fluorescence yield,
y-axis shows relative FDA (fluorescein) fluorescence yield ($n = 8 \times 10^4$ cells). (b)
Heat-killed negative control C. vulgaris FDA (24μ M) hydrolysis kinetics and
fluorescence yield, y-axis shows relative FDA fluorescence yield ($n = 3 \times 10^3$ cells).
NB. >99.9% of algal cells in Figure 8.4(b) are below the solid 10 ^o fluorescence cut-
off line
Figure 8.5. Parameters describing the time dependence of intracellular FDA hydrolysis:
$v = $ initial velocity, t_1 , $t_2 =$ relaxation times, $\rho =$ plateau level, or the time at which the subressellular substrate concentration gradient is made zero (modified from
Sengbusch <i>et al.</i> 1976)
Figure 8.6. Graphical plot of the initial linear portion of the Phase 1 EDA hydrolysis
curve for C vulgaris at: 2.4: 12: 24: and 36µM: with associated linear regression
(r^2) coefficients given in parentheses 445
Figure 8.7. FDA (24µM) hydrolysis and fluorescein-fluorescence kinetics for <i>C. vulgaris</i>
(fitted curves are derived from single- and two-phase exponential associations). 447
Figure 9.1. Standard 8 day algal growth curves for <i>C. vulgaris</i> and <i>C. reinhardtii</i>
(individual data points are the result of duplicate determinations)
Figure 9.2. Aqueous dissolved oxygen and pH for C. vulgaris over the 65 day
experiment for all 4 treatments: <i>x</i> -axis represents the experimental duration (days); left <i>y</i> -axis (in black) shows dissolved oxygen concentration (mg L^{-1}); and the right
y-axis (in blue) depicts aqueous pH. Data points shown mean values ± 1 S.D from
triplicate treatment cultures
Figure 9.3. Aqueous dissolved oxygen and pH for <i>C. reinhardtii</i> over the 65 day
experiment for all 4 treatments: x-axis represents the experimental duration (days);
left y-axis (in black) shows dissolved oxygen concentration (mg L ^{$-$}); and the right
y-axis (in blue) depicts aqueous pH. Data points snown mean values ± 1 S.D from
Figure 0.4. A queene discolved exugen and pH for C, unlegatic even the source of the 7
day experiment for all 4 treatments (x axis represents the experimental duration
(days); left y-axis (in black) shows DO concentration (mg L^{-1}); and the right y-axis (in blue) depicts aqueous pH). Data points shown mean values ± 1 S D from
triplicate treatment cultures
Figure 9.5. Aqueous total dissolved inorganic carbon (DIC) levels for <i>C. vulgaris</i> over
the course of the 7 day experiment for all 4 treatments (<i>x</i> -axis represents individual sampling intervals (days); and the <i>y</i> -axis shows DIC concentration (mg L^{-1}). Data
points shown mean values ± 1 S.D from triplicate treatment cultures

Figure 9.6. Two month C. vulgaris population cell density for all treatments (data points
show the mean of three replicate cultures ± 1 S.D.)
Figure 9.7. Two month <i>C. reinhardtii</i> population cell density for all treatments (data
points show the mean of three replicate cultures ± 1 S.D.)
Figure 9.8. Seven day C. vulgaris cell density following incubation under
experimentally-manipulated light and dissolved oxygen conditions (data points
show mean of three replicate cultures ± 1 S.D.)
Figure 9.9. Graphical representation of published data showing the analytical linearity
between FSC signal amplitude and cell volume: (a) modified from Shalapyonok <i>et</i>
al. (2001); and (b) modified from Demers et al. (1989). Axial markings indicate the
approximated relevant regions of the fitted curves $(10-1000\mu m^3)$ pertaining to the
cell size ranges used in this research
Figure 9.10. 65 day C. vulgaris population mean FSC signal amplitude for all four
experimental treatments (data points represent the mean of triplicate algal cultures
± 1 S.D)
Figure 9.11. 65 day C. <i>vulgaris</i> population average cell volume for all four treatments.
(deta points conclused according to the predefined equations of Section 9.6.3.1
(data points represent the mean of three repricate cultures $\pm 1.5.0$)
experimental treatments (data points represent the mean of triplicate algal cultures
+ 1 S D)
Figure 9.13.65 day <i>C</i> reinhardtii nonulation average cell volume for all four
experimental treatments. Cell volumes calculated according to the pre-stated
equations of Section 9.6.3.1 (data points represent the mean of three replicate
cultures ± 1 S D) 478
Figure 9.14, 65 day <i>C. vulgaris</i> population mean SSC signal amplitude for all four
experimental treatments (data points represent the mean of triplicate algal
cultures ± 1 S.D)
Figure 9.15. 65 day <i>C. reinhardtii</i> population mean SSC signal amplitude for all four
experimental treatments (data points represent the mean of three replicate algal
cultures ± 1 S.D)
Figure 9.16. C. vulgaris 65 day FSC vs. SSC signal amplitudes from: 'light / aerobic'
(\blacksquare); 'light / low D.O.' (\Box); 'dark / aerobic' (\bullet); and 'dark / low D.O.' (O)
treatments. Both regression slopes were significantly non-zero ($p < 0.0001$), with
fitted regression lines shown \pm 95% CI's (broken lines)
Figure 9.17. 7 day <i>C. vulgaris</i> FSC signal amplitude for all 4 experimental treatments
(data points show the mean of 3 replicate cultures ± 1 S.D)
Figure 9.18. / day C. vulgaris cell volume (μ m ²) for all 4 treatments (data points show
the population average of triplicate cultures ± 1 S.D)
Figure 9.19. / day C. vulgaris SSC signal amplitude for all 4 treatments (data points
show the mean of 3 replicate cultures ± 1 S.D)
Figure 9.20. C. vulgaris / day FSC vs. SSC signal amplitudes from: fight / aerobic' (\blacksquare);
Fitted regression line (solid) shown with 0.5% (U's (broken lines). Dealed
Future regression flow was significantly non-zero $(n < 0.0001)$ (0.001)
Figure 0.21. Two month aqueous chlorophyll a concentration for C, subgravia (a) and
<i>C</i> rainhardtii (b) across all experimental treatments (data points show the mean of
C. remarkation (0) across an experimental mean of triplicate culture determinations + 1 S D) 106

Figure 9.22. Two month chlorophyll <i>a</i> per-cell dynamics for <i>C. vulgaris</i> across the four
experimental treatments (data points show the mean of triplicate algal cultures ± 1
S.D.)
Figure 9.23. Two month chlorophyll <i>a</i> per-cell dynamics for <i>C. reinhardtii</i> across all
four experimental treatments (data points show the mean of triplicate cultures ± 1
S.D.)
Figure 9.24. Cytograms from FCM analyses showing <i>C. reinhardtii</i> cultures at: day zero
(a); Day 64 of 'dark / aerobic' treatment (b); and at Day 64 of 'light / aerobic'
treatment (c). Figures on the left hand side show 2-D FCM scatter plots, and figures
on the right snow 2-D contour plots depicting relative cell population proportions
from high (central) to low (outer) cell numbers (x and y axes show \log_{10} forward
Eigure 0.25.7 day C undergrig chlorophyll g nor call for all experimental treatments.
Figure 9.25. 7 day C. vulgaris chorophyli a per-cen for an experimental treatments (data points show mean of three replicate cultures ± 1 S.D.) 504
(data points show mean of three replicate cultures \pm 1 S.D.)
cell (note the broken y axis scale). Data points show the mean of three replicate
cultures (+1 S D) 506
Figure 9.27 Two month <i>C</i> reinhardtii chloronhyll <i>a</i> fluorescence (FCM-auantified)
ner-cell (note the broken y-axis scale). Data points show the mean of three replicate
cultures (+1 S D) 506
Figure 9.28 Two month <i>C</i> yulgaris chlorophyll <i>a</i> fluorescence (FCM-quantified) per
unit cellular volume (μm^3) Data points show the mean of triplicate cultures (± 1
S D) 508
Figure 9.29. Two month <i>C. reinhardtii</i> chlorophyll <i>a</i> fluorescence (FCM-quantified) per
unit cellular volume (μm^3). Data points show the mean of triplicate cultures (± 1
S.D.)
Figure 9.30. Relative rate of photosynthesis in continuously illuminated ageing cultures
of C. vulgaris over various culture ages (modified from Pratt, 1943)
Figure 9.31. 65 day cell volume vs. chlorophyll <i>a</i> fluorescence for <i>C. vulgaris</i> (a) and
<i>C. reinhardtii</i> (b) for 'dark / aerobic' (•); and 'dark / low D.O.' (O) treatments
(showing Pearson's correlation coefficient (r) and fitted regression lines $\pm 95\%$
CI's)
Figure 9.32. 7 day C. vulgaris cellular chlorophyll a fluorescence (note the truncated y-
axis). Data points show the mean of three replicate cultures (± 1 S.D.)
Figure 9.33. One week C. vulgaris chlorophyll a fluorescence (FCM-quantified)
normalised per unit cell volume (μ m ³). Data points show the mean of triplicate
cultures (± 1 S.D.)
Figure 9.34. Two month <i>C. vulgaris</i> (a) and <i>C. reinhardtii</i> (b) mean PI fluorescence for
all four treatments. The horizontal y-axis line (red) indicates the pre-determined
lower 'cut-off' limit of the PI-positive 'non-viable' regional marker (i.e. cells below
the line are PI-negative 'viable', and cells above the line are PI-positive 'non-
viable'). Both y-axes represent cellular PI fluorescence (A.U.) and x-axes show
elapsed time (days). Data points show the mean of 3 replicate cultures (\pm 1 S.D).
$\Sigma_{i} = 0.25 \text{True must} C = 1 (z) = 1 C = (1 - 1)^{-1} (z) = 1 z = 1 z = 1$
riguie 9.55. 1 wo monin C. <i>vuigaris</i> (a) and C. <i>reinnardiii</i> (b) PI cellular fluorescence
(normalised to cell volume, μm) for all treatments. Both y-axes represent cellular DI fluorescence (μm^{-3}) and y area show classed time (days). Data points show the
FT nuclescence (μ m) and x-axes show elapsed time (days). Data points show the mean of 2 replicate cultures (± 1 S D).
319

Figure 9.47. (a) Seven day *C. vulgaris* FDA fluorescence per-cell, and (b) FDA fluorescence per-cell normalised to cell volume (μ m⁻³). The *y*-axes show respective

List of Plates

Plate 1.1. Photograph of an established duckweed surface mat being contained by a
floating containment grid network
Plate 1.2. An aerial view of the expansive Bolivar WSP system, located north of
Adelaide, South Australia (photograph courtesy of Keremane and McKay, 2006).51
Plate 2.1. Aerial view of the Bolivar WWTP (top left) showing the pilot plant location,
and inset, an up-close aerial view of the Bolivar DAF/F plant, inlet sump and pilot
plant location (photographs courtesy of United Water International and Google
Earth; http://earth.google.com)64
Plate 2.2. (a) 2mm stainless steel passive influent screen, and (b) detail of the pilot plant
influent feed piping under the initial 'Phase 1' configuration
Plate 2.3. Detail of the pilot plant influent feed piping under the modified 'Phase 2'
configuration (broken arrows show the direction of flow)
Plate 2.4. Posterior view of a pilot pond (2 nd in series), showing the polyethylene pond
liner, supporting steel frame, and outlet piping configuration
Plate 2.5. Elevated view of the experimental pilot plant operating under experimental
<i>Period 1</i> (from left to right): Duckweed, Open Pond, and Rock Filter treatment
configuration
Plate 2.6. Elevated view of the experimental pilot plant operating under experimental
Period 2 (from left to right): Attached-Growth Media, Open Pond, and Rock Filter
treatment configuration (picture taken during a filamentous algal bloom in the Open
Pond series)
Plate 2.7. Photograph of the established <i>L. alsperma</i> surface mat on a pliot Duckweed
Poind, and inset, a more detailed view of the floating duckweed mat structure
the rate ining lettice and DVC supports
Plate 2.9. Un-close and structural views of the TKP-310 horizontal-flow attached.
growth media (nictures courtes) of 2H plastics: http://www.2h.com.au) 76
Plate 3.1 Detail of the relatively 'clean' biofilm-free internal rock media surfaces of RE-
1 showing non-attached accumulations of flocculated materials. Broken lines
indicate the water surface level
Plate 3.2 Detail of the relatively 'clean' biofilm-free internal rock media surfaces of RF-
3 showing non-attached accumulations of flocculated materials Broken lines
indicate the water surface level
Plate 3.3 Photograph showing the highly developed root network of a low-density
duckweed (<i>Lemna</i>) surface mat
Plate 3.4. Aerial view looking down into one of the Open Ponds: showing the high
densities of both pelagic (suspended) and substrate-grazing zooplankton
populations (note the heavy grazing on pond wall biofilms)
Plate 3.5. Aerial view looking down into another of the Open Ponds: once again
showing the high densities of both pelagic (suspended) and substrate-grazing
zooplankton populations (note again the dense congregation of zooplankton close
to the pond wall biofilm).
Plate 3.6. Photograph of the periodic filamentous green (Chlorophyceae; Cladophora
and Hydrodictyon) algal blooms experienced within the OP series
Plate 5.1. Detail of the internal rock media surfaces of RF-1 showing accumulations of
flocculated detrital materials and a number of resident snails (circles). Broken lines

indicate the water surface level. Scale bar (bottom-left) approximately 2cm in
length
Plate 7.1. Photograph showing the internals of the illuminated orbital incubator and the
randomized arrangement of the experimental treatment flasks for both algal species
in all four treatments
Plate 7.2 Double aluminium foil wrapped and sealed flask used for 'dark / low D Ω '
Trate 7.2. Double aluminum for wrapped and search mask used for dark 7 low D.O.
treatments (broken line represents the positioning of the opaque aluminium foil
treatments (broken line represents the positioning of the opaque aluminium foil cap)

List of Tables

Table 1.1. Regional WSP effluent quality upper limits for discharge with respect to BOD ₅ and SS. Data sourced from Meiring and Oellermann (1995), Mara (1996),
and SAEPA (2003)
Table 1.2. Summary of the most commonly reported advantages and disadvantages of
duckweed for the upgrading of WSP effluent (Lewis and Bender, 1961; Culley Jr.
and Epps, 1973; Dale and Gillespie, 1976; Reddy, 1983; Zirschky and Reed, 1988;
Brix and Schierup, 1989; Edwards et al., 1992; Reed et al., 1995; Bonomo et al.,
1997; van der Steen <i>et al.</i> , 2003)
Table 1.3. Listing of the most commonly reported advantages and disadvantages of rock filtration for the upgrading of WSP effluent (USEPA, 2002a; Middlebrooks, 1995).
Table 1.4. Summary of the most commonly reported advantages and disadvantages of
using attached-growth media for the upgrading of WSP effluent (Shin and
Polprasert, 1987; Lessel, 1991; Nambu et al., 1991; Polprasert and Sookhanich,
1995; Zhao and Wang, 1996; McLean, 1999)
Table 1.5. Typical phytoplankton species found in the Bolivar WSPs (modified from
Buisine and Oemcke 2003: Herdianto 2003: and Martyn <i>et al</i> 2004) 54
Table 2.1 Pilot plant operational calendar for monitoring <i>Period 1</i> and 2 for all four
experimental treatments: Duckweed (DW): Rock Filters (RF): Open Pond (OP):
and Attached Growth Media (AGM) Shading indicates treatment configuration
during each monitoring period
Table 2.2 Deviced characteristics of individual Deals Eilters (DE). Attached Growth
Table 2.2. Physical characteristics of individual Kock Filters (KF), Attached-Orowin Modio resisters (ACM) and Onen Danda (OD)
Table 2.1. Hadreadie also retrieved in the list of the factor of the structure of the struc
Table 3.1. Hydraulic characterisation of individual pilot ponds for the three treatment
systems: Duckweed (DW); Open Pond (OP); and Rock Filter (RF). Individual
parameter values represent the mean of duplicate tracer determinations
Table 3.2. Summary of the hydraulic and organic loading characteristics of the
individual pilot-scale WSP upgrade treatment reactors during operational <i>Period 1</i> .
Table 3.3. Pilot plant loading conditions and influent water quality for the first pond
reactor of each three-pond treatment series
Table 3.4. Summary of BOD ₅ performance data across all pilot plant treatments for Pond
1 and 3 data only 121
Table 3.5. Pearson's correlation matrix for pilot plant Influent water quality parameters:
suspended solids (SS); turbidity; chlorophyll a; and BOD ₅
Table 3.6. Summary of suspended solids performance data for all pilot plant treatments
for Ponds 1 and 3 only144
Table 3.7. Summary of chlorophyll <i>a</i> performance data across all pilot plant treatments
for Ponds 1 and 3 only
Table 3.8 Summary of ammonia removal performance across all pilot plant treatments
for Pond 1 and 3 data only
Table 3.9 Summary of orthonhosphate-phosphorous performance data for all three
treatments for Pond 1 and 3 only
Table 3.10. Summary of indicator organism removals across all nilot plant treatments for
Pond 1 and 2 data only
ronu i anu 5 uata onny
table 4.1. Explanation of individual phot pond reactors for the three tractures and sustained Deals Eilten (DE). One is Deal (OD), and Attached C. (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
ueatment systems: Kock Filter (KF); Open Pond (OP); and Attached-Growth Media

(AGM). Individual parameter values represent the mean of duplicate tracer determinations
Table 4.2. Summary of hydraulic and organic loading characteristics of the individual
pilot-scale WSP upgrade treatment reactors during operational <i>Period</i> 2 210
Table 4.3 Pilot plant loading conditions and pilot plant Influent water quality for the
first nond reactor of each three-nond treatment series 212
Table 4.4 Summary of BOD _c performance data across all three pilot plant treatments for
Ponds 1 and 3 only
Table 4.5. Spearman's correlation matrix for pilot plant influent water quality
parameters: suspended solids (SS); turbidity; chlorophyll <i>a</i> ; and BOD ₅ 237
Table 4.6. Summary of suspended solids removal performance across all pilot plant
treatments for Pond 1 and 3 data only
Table 4.7. Summary of chlorophyll <i>a</i> removal efficiencies across all three pilot plant
treatments for Pond 1 and 3 data only
Table 4.8. Summary of ammonia removal performance across all pilot plant treatments
for Pond 1 and 3 data only267
Table 4.9. Summary of orthophosphate-phosphorous performance data for all three
treatments for Pond 1 and 3 only279
Table 4.10. Summary of indicator organism removals across all pilot plant treatments for
Pond 1 and 3 data only
Table 5.1. List of all phytoplankton taxa encountered in the pilot plant influent during
monitoring from July 2005–August 2006
Table 9.1. FSC vs. SSC signal regression slope comparisons for both algal species
during the two-month dark-survival experiment. Significant differences between
treatments were identified via ANCOVA, with level of significance indicated by
shading intensity: no shading signifies no difference $(p > 0.05)$; light shading
indicates a difference at $p < 0.05$; intermediate shading is significantly different at
p < 0.01; and black shading is different at $p < 0.001$
Table 9.2. Statistical significance tables for two month chlorophyll <i>a</i> cellular
fluorescence (normalised to cell volume; μm^{-3}) of C. vulgaris and C. reinhardtii for
all treatments (1-way RM-ANOVA with Tukey's multiple comparisons). Shading
shows level of significant difference between treatment means: no shading signifies
no difference ($p > 0.05$); medium shading shows significance at $p < 0.01$; and black
shading indicates a significant difference at $p < 0.001$ 510
Table 9.3 Statistical significance tables for two month PI cellular fluorescence
(normalised to cell volume: μm^3) of C vulgaris and C reinhardtii for all treatments
(1-way RM-ANOVA with Tukey's multiple comparisons) Shading shows level of
significant difference between treatment means. no shading signifies no difference
(n > 0.05) medium shading shows significance at $n < 0.01$ and black shading
indicates a significant difference at $p < 0.001$ 520
Table 9.4 Statistical significance tables for two month FDA cellular fluorescence
(normalised to cell volume: μm^3) of C vulgaris and C reinhardtii for all treatments
(1-way RM-ANOVA with Tukey's multiple comparisons) Shading shows the level
of significant difference between treatment mean FDA fluorescence: no shading
signifies no difference $(n > 0.05)$: light shading represents a significant difference at
n < 0.05: medium shading shows significance at $n < 0.01$: and black shading
p > 0.00, moment shaving shows significance at $p > 0.01$, and black shaving side indicates a significant difference at $n < 0.001$
Table 10.1 Executive summary of selected advantages and disadvantages for the three
investigated advanced WSP ungrade systems 602
mvosugateu auvanteu wosi upgraut systems

Abbreviations and nomenclature

τ	calculated mean hydraulic residence time
$ au_{ m th}$	theoretical hydraulic residence time
°C	degrees Celsius
μg	microgram
μl	microlitre
μm	micrometre
μM	micromolar
mM	millimolar
μmol	micromole
$\mu S \text{ cm}^{-1}$	microsiemens per centimetre
χ^2	Kruskal-Wallis test statistic (Chi-square approximation)
ABS	absorbance
AGM	attached-growth media
AGWSP	attached-growth waste stabilisation pond
ANCOVA	analysis of covariance
ANOVA	analysis of variance
A.U.	arbitrary units
BOD ₅	five day biochemical oxygen demand
Chl. a	chlorophyll a
CI	confidence interval
cm	centimetre
CO_2	carbon dioxide
COD	chemical oxygen demand
CV	coefficient of variation
CWM	community waste management
d	day
DAF/F	dissolved air flotation/filtration
DMSO	dimethyl sulfoxide
DO	dissolved oxygen
DOC	dissolved organic carbon
DIC	dissolved inorganic carbon
DW	pilot-scale duckweed pond

F	analysis of variance F ratio
FACScan	Becton Dickinson brand flow cytometer
FC	faecal coliforms
FCM	flow cytometry
FDA	fluorescein diacetate (diacetyl fluorescein)
FSC	forward-angle light scatter
F_0	minimum <i>in vivo</i> chlorophyll <i>a</i> (PS-II) fluorescence yield (relative units)
	induced by a weak initial probing flash in dark-adapted cells
$F_{\rm m}$	maximum <i>in vivo</i> chlorophyll <i>a</i> (PS-II) fluorescence yield (relative units)
	induced by a weak initial probing flash in dark-adapted cells
g	gram
Η'	Shannon diversity index
h	hour
ha	hectare
HDPE	high-density polyethylene
HRT	hydraulic residence time
HLR	hydraulic loading rate
INFL	pilot plant influent
IQR	interquartile data range
K_1	BOD ₅ removal rate coefficient (per day)
kg	kilogram
L	litre
m	metre
MBL	Woods Hole algal culture medium
MJ	megajoule
ml	millilitre
mm	millimetre
mg	milligram
mA	milliamp
mW	milliwatt
MPN	most probable number of organisms
n	sample size
NH_4^+-N	ammonia nitrogen
nm	nanometre
vvvviii	
λλλγιιι	

NO_3-N	nitrate nitrogen
NO_2^-N	nitrite nitrogen
OLR	organic loading rate
OP	pilot-scale open pond
NTU	nephelometric turbidity units
PAR	photosynthetically active radiation (400–700nm wavelength)
PFD	photon flux density (light intensity)
pg	picogram
pН	potential hydrogen
PI	propidium iodide
PO ₄ ^{3–} -P	orthophosphate phosphorous
PS-I / PS-II	chlorophyll a Photosystems I and II
PVC	polyvinyl chloride
Q _{SC}	short-circuiting flow rate
r	Pearson's correlation coefficient
R	flow cytometer sample injection flow rate
RF	pilot-scale rock filter
ROS	reactive oxygen species
r _s	Spearman's rank correlation coefficient
RTD	residence time distribution
S	second
S1	FDA-negative 'non-viable' fluorescence state
S2	reduced 'compromised' FDA fluorescence state
S3	normal 'viable' FDA fluorescence state
S.D.	standard deviation
SS	suspended solids
SSC	side-angle light scatter
TOC	total organic carbon
TC	total carbon
UV	ultraviolet
V_d	dead volume
VSS	volatile suspended solids
WSP	waste stabilisation pond
WWTP	wastewater treatment plan