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Abstract∗

The use of databases is a common practice for storing and organising large

amounts of data. In a distributed environment, especially widely distributed

systems, replication provides a means for storing an entire database locally. How-

ever, in an environment where mobile devices are used, resource limitations on

both storage and power capacity eliminates the possibility of full replications.

Moreover, reliable access to centralised databases is not always possible in these

environments. Consequently, there is a need to find ways of storing data on a mo-

bile computer in such a way as to maximise user access while providing answers

at an acceptable level of accuracy.

This dissertation argues that it is useful to know and incorporate the user

context in which the database will be used in the creation process of the mo-

bile database. It investigates a context sensitive summarisation technique and

provides a proof of concept prototype, COSMOS, which maximises data avail-

ability based on the context in which the system is being used and the accuracy

required by the user. More specifically, a framework for summarising data using

the context of the user is introduced.

Local nulls are proposed to the relational algebra and SQL to allow efficient

querying of summary databases. Some modifications to the database management

system include the handling of transactions in the system, update propagation

and system failure protocols. These modifications are proposed to allow the

effective use of the summarised data.

∗This research was partially supported by Australian Research Council SPIRT Grant
C00107533, held in collaboration with HP Labs.
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Chapter 1

Introduction

Mobile systems offer the opportunity to access information, such as those available

in a database, without the need of fixed wired connections to the server. Instead,

access is typically achieved through the use of wireless network interfaces. This

can free the user from the physical constraints of accessing and processing data

in limited locations. However, to maximise this advantage, new techniques must

be developed as the naive approach provides for a non-optimal solution.

The COntext Sensitive MObile Summarisation (COSMOS) database system

discussed in this dissertation is proposed to provide summarisation of a large data-

base based on the user’s context. This will shift the reliance on a server database

to the local database and effectively maximise the use of local data. Some mod-

ifications are required of the database management system. In particular, local

nulls are proposed to facilitate the querying of data, and other modifications are

required to the handling of transactions, update propagation and the failure of

important sites in the system.

This chapter introduces mobile systems and outlines the basis of this disser-

tation. Section 1.1 presents a history of mobile computers. Section 1.2 discusses

the limitations of mobile systems. The goal of this dissertation is to design mobile

databases that are capable of operating even with these resource limitations. The

problem statement and a motivating example are presented in Sections 1.3 and

1.4 respectively. The contributions of this dissertation are outlined in Section 1.5.

Finally, the structure of this dissertation is given in 1.6.

1



INTRODUCTION 2

1.1 Mobile Computer Technologies

In 1981, the Osborne Computer corporation released what was considered to be

the first true portable computer, the Osborne 1 Personal Business Computer.

This model consists of a carrying handle, small 5in display, keyboard, battery

pack and floppy disk drives. This was quickly followed in the following year

with the release of the Epson’s HX-20 notebook computer, consisting of tape

drives, full sized keyboard, a 4-line Liquid Crystal Display (LCD) screen, printer

and rechargeable batteries. The sales of these computers showed that the porta-

bility of these computers were popular with the general population. Compaq

released the Compaq Portable computers in early 1983, which were IBM Per-

sonal Computer (PC) compatible, ensuring that software written for the IBM

PCs would work on the Compaq Portables, further increasing the popularity for

portable computers. In the same year, Tandy/Radio Shack released the popu-

lar TRS-80 Model 100 designed by Kyocera with integrated full size keyboard

and an 8-line LCD screen display. In early 1984, Commodore released the first

portable colour computer. It featured a 5 inch colour monitor and floppy drives,

but required mains power. The Psion Organiser 1 handheld computer was also

released at the same time. It resembled a calculator with a 16 character LCD

display, providing calculator functions, calendar, BASIC programming language

and utilities packs for science and maths functions.

From 1985 to 1991, major companies such as IBM, Compaq and Apple, de-

veloped and released portable computers that improved on previous releases.

Portable computers, that at first had suitcase sized design, was progressively

changed to have that of the current laptop computer, where the LCD monitor

would close over the keyboard. The 1990’s also saw the introduction and growth

of the Internet allowing portable computers with modem capabilities to access

information from around the world.

In 1993, Apple’s Newton introduced a pen-based input device, which lead to

the first successful Personal Digital Assistant (PDA). Additionally, with further

advances to CPU circuitry that reduced the power consumption and increased

performance, subnotebooks began appearing which took the appearance of a

laptop which could be held in the user’s palm, much like a PDA. Popular models

included the HP’s OmniBook, IBM’s ThinkPad and Toshiba’s T3400.

Additionally, in 1994, following the pen-based idea, computers using the slate

design similar to current Tablet PC were introduced. These computers used the

then available processors, such as the x386 microprocessors, running Windows
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3.1 with Pen Extensions. Among the companies that introduced the hardware

to support the slate design were RCA, EO, NCR, Samsung, Dauphin, Fujitsu,

TelePad, Compaq, Toshiba, and IBM.

In 1996, the Palm Pilot saw PDAs became more affordable and thus more

accessible to the public. These devices were popular as they were small and

lightweight, while providing an intuitive user interface. The functionalities of

PDAs then increased to include games, music and Internet capabilities.

In 1999, affordable PDAs with colour display were introduced as was the

IEEE 802.11b wireless interface (commonly known as Wireless Fidelity (WiFi))

that enabled wireless networking between mobile computers and existing wired

networks.

The Bluetooth technology originally developed in 1997 for mobile telephony,

appeared in mobile computers to allow devices with Bluetooth to interact with

each other. These devices included other PDAs, laptops, modems, mobile phones

and handsfree headsets. From 2000, mobile computers such as laptops and PDAs

were generally fitted with wireless technologies, such as Bluetooth and WiFi, to

make them truly mobile.

In 2001 to 2002 saw the reintroduction of the slate computers by Microsoft as

Tablet PC. It had similar functionality to the current laptops but also included

a touch screen and used a pen-based interface. The Tablet PC is essentially a

larger version of the PDA that uses similar CPU to that found in current laptops.

It is thus capable of running software similar to a laptop. While the uptake of

these mobile computers was slow, it was an important advancement for mobile

computers.

The history of large scale database management systems can be considered to

began with the 1960s Apollo moon landing project. Vast amounts of information

to support the project were required to be managed. As a result of that project,

a hierarchical database system and a network database system were developed

by IBM and General Electric, respectively, in the 1970s. The relational database

system was introduced by Codd, later in the 1970s. The commercialisation of

relational database systems in the early 1980’s saw an increase in the usage of

databases within businesses. With the arrival of the Internet in the 1990’s, remote

access to computer systems with legacy data were introduced through the Client-

Server architecture. This would later serve as an architecture from which mobile

computers could access databases, (Connolly, Begg & Strachan 1999).

The development of the Third Generation (3G) mobile phone networks, which
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began in 1999, aimed to have a single standard for voice, data and video commu-

nications. While this technology is currently marketed towards mobile telephony

sector, it is also suitable for the network of mobile computers because of its high

data transfer rate. This technology can allow compliant mobile computers to

operate over a much larger area. More details of wireless communication tech-

nologies are discussed in Section 2.1.

While there are many advantages of using mobile computers, there are also

many limitations to it when compared to fixed location computers. These issues

are discussed in the next section.

1.2 Mobile Database Issues

There are many issues concerning the effective use of mobile systems, both in

respect to current technology and those likely to become available in the near

future. For mobile databases the most important of these are:

• the limiting power and bandwidth capacities,

• the limitations on storage capacity, and

• the security and privacy issues created when a computer is in a mobile

environment.

Issues concerning security and privacy may cause significant problems in re-

gards to databases in mobile environments and may include the identification

and authentication of users and the theft of data during transmission (Heuer &

Lubinski 1996, Zaslavsky & Tari 1998). However, these issues are outside the

scope of this thesis. This thesis will focus only on the first two of these issues.

1.2.1 Power and Bandwidth Capacities

An important limiting characteristic of mobile computers is their finite bat-

tery capacity and the low communication bandwidth available and/or affordable

(Imielinski & Badrinath 1994, Pitoura & Bhargava 1993). These limits may lead

to frequent disconnection due to both the need to reduce connection costs and

because of technical limitations (Heuer & Lubinski 1996, Lubinski 2000).
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Advancements in battery technology have allowed longer intervals between

recharge1. However, even with longer life, the high energy costs associated with

data transmission will rapidly decrease battery life of a mobile computer (Pitoura

& Bhargava 1993, Zaslavsky & Tari 1998). Thus, intentional disconnection may

be required through power management software to allow higher priority opera-

tions to continue.

In regards to bandwidth, in most situations there are likely to be many mo-

bile users connected to their centralised or distributed database servers and in

some locations, wireless coverage may be patchy. The available communication

bandwidth in a mobile environment must therefore be shared between each user,

thereby restricting the bandwidth available. As a result, networks may experience

outages that can cause the mobile device to be subjected to frequent disconnec-

tion. Thus, in terms of mobile databases, access between central servers and the

mobile system can be unreliable at times (Madria, Mohania & Roddick 1998). For

example, the disconnections that may occur can disrupt a query being performed

and as a result, prevent or slow query response.

1.2.2 Storage Capacity

Limited storage capacity is another important resource limitation of mobile de-

vices (Lubinski 2000, Pitoura & Bhargava 1993). Large multiple hard drive sys-

tems, such as those found in common desktop and server computers, cannot

be accommodated into a mobile computer, given that they are required to be

portable.

Improvements in hard drive technology have made modern hard drives smaller

and with a greater capacity. Devices holding 60Gb are currently available for

laptops, while comparable to single drive desktop systems, this is still only a

fraction of the storage capability of centralised servers that support corporate

databases. However, even with the reduced physical size of the modern hard

drive, most are still as large as a PDA. Consequently, the storage capacities

of laptop-based hard drives are about 500 times more than that utilised by a

flash disk emulator2. These flash disk emulators may provide attractive energy

1In particular, PDAs (such as the iPaQs produced by HP) provide 600-1400 mAH Li-Ion
batteries that may last for up to 10-14 hours of continuous usage, while the Lithium-Ion bat-
tery packs for laptops may provide continuous usage for 2-10 hours depending on the battery
configurations of the laptop.

2Currently, a typical capacity for laptop is around 60Gb while flash disks may provide around
128Mb.
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consumption and performance, but are still relatively expensive and have limited

capacity (Douglis, Kaashoek, Li, Cáeres, Marsh & Tauber 1994). Due to the

storage limitation of mobile computers, it is thus difficult (even if it was logically

desirable) to create replicas of large databases on such devices, particularly on

handheld devices such as PDAs, which are the current focus of our work.

1.3 Problem Statement

Available power capacity is a major limitation in the mobile environment that

must be considered. That is, energy consumption must not increase significantly

such that it reduces the operating time of the mobile device. With reduced storage

capacity, mobile devices are limited to smaller databases. Thus, low availability

of data may exist, especially when only the local database is accessible. For many

cases, mobile computers are typically connected to other fixed computers through

wireless networking, which are prone to being unreliable. Thus, any queries over

these networks may compromise the query response time.

The problem addressed in this dissertation is how to provide methods

for ensuring the availability of priority data (through summarisation)

on a mobile database system, without compromising its operating and

query response time.

If a mobile database is to function during periods of weak or no connections,

then data must be available during these times. The goal of this dissertation is to

provide a means by which the important information (with regards to the user)

is locally available, reducing the need to access the main database through weak

connections.

1.4 Motivating Example

As motivation, consider the use of mobile database in the medical profession.

Within a hospital scenario, medical practitioners and staff often find themselves

moving around visiting patients within different wards. With the use of mobile

computers, it is possible to provide updated data readily to staff, without the

requirement of a physical network connection. The mobile computer then enables

staff to read current data regarding patients for diagnosis purposes, and also

provide update regarding the condition of patients they are monitoring.
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Additionally, outside the hospital scenario, medical practitioners making house

calls may also benefit from the use of mobile databases. Before leaving, the med-

ical practitioner’s database may be summarised to contain only the required data,

such as the patient’s details and any recent illnesses within the current month.

Once the practitioner leaves the hospital’s network coverage, connection to the

main database will be expected to be weak or non-existent. The medical prac-

titioner can access locally available data, and any new information regarding

the patient are stored on the mobile computer and merged back with the main

database when the connection is more reliable.

In this scenario, each user may require different information from the main

hospital database. Thus, personalisation is required to define the required sum-

marised mobile database for each individual user. This personalisation of each

mobile database, requires the identification of user context. This context can

include

• enumerated data that the user has specified,

• information regarding the interest of the user,

• previous requests from the user,

• the schema of the main database,

• inductive information gathered from techniques such as data mining tech-
niques, and

• any time or location information with regards to the user.

More details of this example are given in Appendix B. This scenario will be used

as a running example for examples in the later chapters.

This dissertation develops the COntext Sensitive MObile Summarisation (COS-

MOS) framework, from which a summarised mobile database is created. COS-

MOS uses the user’s context as criteria in order to determine data that are of

important. Once created the mobile database may be used in a client/server,

and ultimately a hierarchical architecture. One advantage of using the database

in such an architecture is that when disconnected the user can rely on the local

mobile database, and if connected, the server database can be queried for more

accurate results.
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1.5 Contribution of this Dissertation

The main contribution of this dissertation is the creation of a framework for

summarising and allocating data in a hierarchical mobile distributed database

system, COSMOS. A hierarchical architecture is a tree structured architecture

that uses a central database as its root. The central database acts as the main

storage of all accessible data within the system. Child nodes have a client role,

while any parent nodes have a server role. Thus, any node having both a parent

and children nodes will have both a client and a server role within the system.

COSMOS employs different context sensitive data selection techniques to iden-

tify data of importance to the user. The selection techniques, termed criteria,

are categorised as Primary, Secondary and Tertiary criteria. Primary criteria

include enumeration, contextual, previous usage and push-based. Secondary cri-

teria include model-based and induction, while Tertiary criteria include time and

spatial-based criteria. COSMOS is capable of using all or some of the criteria in

each category. All data selected are weighed against each other and ordered in

regards to importance so that data inclusion is from the most important down

until the specified database size is reached. The use of a Storage Map (SM)

provides a representation of available data within each summarised database.

The use of COSMOS introduces new issues, which include the management

of missing values within a summarised database and the inability to follow strict

ACID3 properties of transactions. This dissertation also provides solutions to

these issues. For the missing values, a new semantics for the null value, namely

local nulls, is proposed. Typically, a summary database represents a subset of

the main database, and to represent the locally unavailable data, local nulls are

used. That is, a local null value in the summary database represents a value that

is unavailable locally but may be available if the main database is accessible.

Strict ACID properties for transactions, while suitable for traditional and

even many distributed database system, are quite limiting when used in a mobile

environment. Thus, the relaxation of these ACID properties, especially the con-

sistency properties, and introduction of transaction operations to suit the relaxed

ACID properties are required.

In order to ensure a COSMOS database system operates correctly, different

protocols are required. These protocols include:

1. a function to transform the transaction operations to SM,

3Atomicity, Consistency preservation, Isolation, and Durability
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2. protocols to ensure serialisability,

3. reconciliation protocols,

4. protocols required when an update is submitted at a local summary data-

base,

5. protocols required once it passes the commit phase at the central database,

and

6. recovery protocols if the central database is inaccessible.

1.6 Dissertation structure

This dissertation is structured as follows: Chapter 2 surveys the area of mobile

databases in terms of wireless networking technologies, the architecture used for

mobile databases, and the functionalities required for a database to work within

a mobile environment. Chapter 3 provides a survey of data summarisation tech-

niques in terms of modifications to the either schema or domain. Data allocation

schemes are also examined, in the context of distributed and mobile database

systems. Chapter 4, presents a survey of how context is used in mobile comput-

ing. Chapter 5 discusses the construction of summary databases using COSMOS.

Chapter 6 discusses why local nulls are important and explains how they work

in terms of relational algebra and SQL. Chapter 7 discusses transaction manage-

ment of a COSMOS database system and Chapter 8 provides a list of protocols

required by that system. Chapter 9 provides an evaluation of a COSMOS data-

base system. Finally, Chapter 10 provides a conclusion and discussion of future

work.



Chapter 2

A Survey on Mobile Databases

In contrast to distributed databases operating on traditional hardware, the de-

vices available to mobile databases exhibit severe resource limitations that af-

fect the manner in which data is managed. However, in many respects both

conventional distributed databases and mobile databases may be considered as

special cases of a common architecture and both can borrow ideas from the

other (Dunham & Helal 1995). Indeed, Holliday, Neumann and others (Holliday,

Agrawal & Abbadi 2000, Neumann & Maskarinec 1997) discuss the addition of

mobile components within a distributed database system. In short, many dis-

tributed data management issues are similar to those that affect mobile database

systems, and the innovations being considered for mobile databases are equally

applicable to some distributed data management problems. This chapter surveys

some of these techniques focussing on summarisation techniques for mobile data-

bases. To do this the manner in which database functionality is maintained in

mobile database systems is discussed, including critical functions such as query

processing, data replication, concurrency control, transaction support and system

recovery.

This chapter is structured as follows. Section 2.1 discusses the three major

classes of mobile wireless technology. Section 2.2 will then examine the archi-

tectures available in a mobile environment in terms of the operational modes

experienced by mobile applications, the wireless technologies currently available

and the database architectures that may be used. Finally, Section 2.3 explores

different techniques for implementing common database functions.

1A version of this chapter appears as part of Chan and Roddick (2005)

10
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2.1 Mobile Wireless Technologies

In contrast to most distributed networks, the nature of the communication links

used in mobile environments determines to a great extent the appropriate pro-

tocols that are required to be adopted for data management. Therefore, this

section briefly describe the three major classes of wireless technology based on

their operating range.

Wireless Personal Area Network (WPAN) describes wireless networks that

have a small transmitting range, commonly less than 10 metres. As a result of this

short range, they usually have low power consumption. An example of a WPAN

technology is Bluetooth – an open standard for shortwave radio communications

that allows two-way connectivity of up to 1 Mbps. The concept of WPAN is

based on proximity networking. That is, devices may come and go frequently and

devices may join or collaborate with each other or other networks in proximity

as the WPAN user moves. Current Bluetooth technology allows any Bluetooth

enabled devices to communicate when they are within proximity.

The Wireless Local Area Network (WLAN) is a wireless extension of the tra-

ditional Local Area Network (LAN) (Imielinski & Badrinath 1994). Like LANs,

they provide medium coverage of up to a few hundred of metres, at relatively high

data rates. Common examples for WLAN are the IEEE 802.11b and 802.11g stan-

dards that provide data rates of up to 11 Mbps and 54 Mbps respectively. As a

result of the medium range and high data rates, energy consumption is relatively

high and only portable systems such as laptops that can supply the required

energy, while keeping a reasonable battery life, are able to continuously support

such networks. WLAN works more efficiently when used in stationary networks.

That is, the mobile unit is restricted to the coverage of the wireless access point

and roaming between networks is typically difficult.

The Wireless Wide Area Network (WWAN) covers network systems capable

of providing services that include voice, data and video, to geographically large

areas (kilometres). These networks use a cellular architecture, where an area

is divided into cells. Each cell consists, at minimum, of a base transmitting

hardware which interacts with both mobile devices in its area of service and other

base transmitting hardware from different cells. The first generation of these

wireless networks were designed mainly for voice communications and utilised

analog technology such as FM modulation. The second and current generation

of wireless networks use digital modulations to provide voice and limited data

services. This commercially accepted generation of wireless network includes
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Figure 2.1. Architecture for a Mobile Database

systems such as the Global System for Mobile (GSM), Code Division Mutiple

Access (CDMA) and paging networks. The third generation of WWAN, or more

commonly known as 3G networks, evolves from mature second generation systems

and is currently appearing on the commercial market. Its aim is to provide a single

set of standards for high voice, data and video communication rates for a wide

range of wireless applications.

The above mentioned technologies are terrestrial that employ land-based hard-

ware, such as base towers, to provide wireless communications to mobile comput-

ers. However, it is also possible to use satellites to relay the communications. For

example, the Iridium System employs 66 low-earth-orbit networked satellites to

provide wireless voice and paging coverage to mobile devices (Leopold, Miller &

Grubb 1993).

2.2 Mobile Database Architecture

A typical architecture for a mobile database includes a small database fragment

residing on the mobile device that has been derived from a complete database,

(see Figure 2.1 (Madria et al. 1998)).

This architecture may be considered as a client/server architecture where

the complete database is located within the server and the summary database

resides within the client or mobile device. This type of architecture has been

used in the literatures of many projects (Demers, Petersen, Spreitzer, Terry,
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Theimer & Welch 1994, Phatak & Badrinath 1999, Chan & Roddick 2003, Madria

et al. 1998). The Bayou architecture (Demers et al. 1994) uses a client/server

architecture with the addition of lightweight servers, which are clients capable of

serving data in their caches to other clients. Such a technique allows for better

availability of data but has a weak consistency property that requires complex

conflict detection and resolution.

Other database architectures have also included an agent within the struc-

ture, i.e., a server/agent/client architecture. The role of the agent varies between

different implementations and resides either in the server or client mobile de-

vice. A bandwidth dependent agent, called an intermediary is described by Zenel

and Duchamp (1995) to allow only essential data to travel through a slow com-

munication link, while other data are filtered out and delayed. In a paper by

Heuer and Lubinski (1996) an information agent is introduced to intelligently

handle the transfer of multimedia specific data. Lauzac and Chrysanthis (1998a,

1998b), introduced a view holder agent to provide individual updates to the client’s

database. Pitoura and Bhargava (1995a), introduced an agent by which mobile

transactions can access other heterogeneous database systems.

These client/server network architectures discussed a fixed topology network

where the server is fixed and mobile computers may move from one server to an-

other as required. Fife and Gruenwald (2003) propose an ad-hoc wireless network

system that changes its network topology frequently as the nodes in the area re-

organise themselves. These nodes consist of both clients and servers that are both

wireless and mobile in comparison to the fixed servers. Such changes in network

topology result in the possibility of nodes being in a standalone network or part

of a larger network. An example of ad-hoc networks is the Bluetooth scatternet,

a collection of connected piconets, where a piconet comprised of a master node

that coordinates all proximate mobile nodes (Law & Siu 2001). This leads to a

peer-to-peer architecture in which clients can communicate with other clients to

share data. This will result in high data availability but compromises consistency

if clients are allowed to perform updates upon any data.

2.2.1 Mobile Operation modes

Due to resource restrictions, there are several modes of operation that mobile

systems experience when compared to non-mobile systems, which are either fully

connected or disconnected. Indeed, many non-mobile systems are written assum-

ing only a fully connected status and are rendered unavailable otherwise. Mobile
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systems do not normally have this luxury and special protocols are required to

handle each mode (Neumann & Maskarinec 1997, Pitoura & Bhargava 1993).

The three modes of operation that are of interest here are:

• Full connection mode

The mobile computer is continually connected to a server. Hand-over proto-

cols are required if a cellular structure is used and when mobiles move from

one cell to another. The hand-over protocol involves a new communication

link between the mobile unit and the new server, requiring the saving and

transferring the states from the old to the new server (Madria et al. 1998).

This communication hand-over should be transparent to both users and

applications not specifically involved with the hand-over process.

• Disconnected mode

In which frequent disconnections of a mobile host, as described in Section

1.2, must be addressed. One possible solution to resolve the disconnection

is to use a proxy for the mobile computer (Stanoi, Agrawal, El Abbadi,

Phatak & Badrinath 1999). This would ensure the query continues to run

even when the mobile component is disconnected. The mobile unit, then,

requests an update from its proxy upon reconnection. In addition, mobile

computers can voluntarily move into this disconnected mode when idle or

low on battery power, to free up bandwidth resources and extend battery

life (Pitoura & Bhargava 1993). While disconnected, any applications that

required the communication link before the disconnection save their current

communication state, and where possible continue with its other processes.

Upon reconnection and depending on the saved communication states, ap-

plications may resume transmission or reception, or retransmit a request to

begin the communication anew.

• Partial or weak connection mode

In which the mobile unit is connected to the rest of the network through

low or intermittent bandwidth. The degree to which the communication

bandwidth is available varies between less than full bandwidth availability to

almost no connectivity. Partial or weak connection occurs when the mobile

units are in areas within or on the edge of a cell, where reception is poor.

The partial-connection protocol would then be required to enable the mobile

client to limit its communications to the available network. Applications

using this protocol can then experience longer transmission time and be

required to extend timeouts in anticipation of a lengthy response time.
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These operation mode protocols could also be deliberately invoked by the mobile

unit to allow for resource conservations. Previous research has focussed on the

disconnected and partially connected operation modes (Keunning & Popek 1997),

since, in these modes, the mobile device must rely more heavily on its own re-

sources to process transactions.

2.3 Mobile Database Functionalities

The database management system provides functionalities to ensure the database

is operating correctly. This section explores different functionalities such as query

processing, replication schemes, concurrency, transaction support, and system

recovery.

2.3.1 Query Processing and Optimisation

An important issue when dealing with queries is the way in which they are

processed. The process of deciding the optimum approach in a mobile distrib-

uted environment is difficult as the mobile computers are prone to a dynamically

changing environment and state. In previous work by Roddick (1997), three

approaches were identified:

• Allow a query processor to determine the appropriate database to answer

the query, whether it is the main or summary. This relies on in-built intel-

ligence that can determine whether the local database can answer arbitrary

queries.

• Adopt a course grained approach where the query is sent to both databases

and the first received response will be used. This option can be expensive

but is guaranteed to produce the quickest answer.

• Adopt a fine grained approach in which the query is segmented and those

segments are run, either in parallel or in series, on both databases. This

has the advantage of utilising the quicker local database more often and,

on occasion, can obviate the need for parts of the query to be processed.

The parallel option is quicker but results in redundant communication. The

serial option uses the complete database when the local database is unable

to process the required sub-query.
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It is also important to understand the nature of returned responses when

using an incomplete database such as a summary database. Madria et al. (1998)

identified four types of query answers:

1. Complete2 and sound3,

2. Potentially understated (sound but may be incomplete),

3. Potentially overstated (complete but may not be sound),

4. Wrong.

The difference between 1 and 3 lies in the relaxation of the closed world as-

sumption (Reiter 1978), which dictates that anything not recorded within the

database may be assumed false, and thus potentially overstated responses are

correct if there is no evidence to prove otherwise. This can be useful as part of a

fine-grained query decomposition process (Roddick 1997).

With traditional database queries, the objective is to provide query answers

that are logically complete and sound. However, summary databases are, by

their nature, associated with data loss and are thus sound but incomplete. Con-

sequently, it is not always possible to provide both sound and complete answers.

However, for these cases, it is sometimes possible to provide knowingly overstated

responses (for example, through generalised responses). Thus, query responses

can be the same as those given by the original database, or where allowable, po-

tentially overstated responses can provided. Furthermore, the query processor

is responsible for determining the correct database to answer a query depend-

ing upon conditions such as user interaction, heuristics, the nature of the query

or type of connections (Madria et al. 1998). Once determined, query rewriting

techniques can be used to provide sound if not complete answers to the query.

Ganguly and Alonso (1993) presents three search algorithms, namely adapted

partial order dynamic programming, linear combinations and linearset algorithm,

which are used to determine energy efficient query optimisation within a mobile

environment.

This thesis examines the use of Storage Map (SM) within summarised data-

basase (Chan & Roddick 2003). SM represent the data contained within a sum-

mary database in order to answer queries. An SM for a relation is a binary

2A query on the summary database will return at least the data that the same query would
return on the main database.

3A query on the summary database will return no additional data that the same query would
return on the main database.



A SURVEY ON MOBILE DATABASES 17

Figure 2.2. Storage Map

representation of the relation indicating the existence of a value within the sum-

mary database, as shown in Figure 2.2. Primary keys are not converted as they

are used as references back to the tuples in the actual relation. A fine grained

approach is then adopted by using the storage map to determine which data may

be extracted to answer the query. Therefore, while disconnected, only the local

database is available, an incomplete answer can be returned, but this will gradu-

ally be more complete as more of the database becomes available. SM their use

are discussed in more details in Chapters 4 and 8.

The concept and semantics of the null value in relational databases has been

discussed widely since the introduction of the relational data model in the late

1960s (Codd 1970, Lacroix & Pirotte 1976, Maier 1983, Zaniolo 1984, Roth, Ko-

rth & Silberschatz 1989). With the introduction of highly mobile distributed

databases, the semantics of the null value needs to expand to reflect a localised

lack of information that may not be apparent for the global/complete database.

In order to preserve the accepted soundness and completeness criteria, this thesis

extends the notion of nulls to include the semantics of ‘local’ nulls (Chapter 6).

2.3.2 Data Replication Schemes

Data replication schemes specify the way in which a replicated site can update

the database and how that update is propagated to other sites. There are two

mechanisms available that relate to where an update is processed. The first

designates a primary site through which all updates are performed and from

which updates are propagated. The second uses an ‘update everywhere’ approach

whereby the update is processed at the site of origin and propagated to all sites

that have an interest in the data (Wiesmann, Pedone, Schiper, Kemme & Alonso

2000a, Wiesmann, Pedone, Schiper, Kemme & Alonso 2000b).

Within distributed databases, there are generally two propagation protocols,
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eager or lazy. An eager update protocol keeps the propagation process as part

of the transaction, requiring all sites to be synchronised during an update (Gray,

Helland, O’Niel & Shasha 1996). Further classifications may be possible in terms

of how the transaction is terminated, such as through voting or non-voting tech-

niques, and the manner in which the servers communicate with each other (that

is, constant or linear interaction) (Wiesmann et al. 2000a). Eager updates have

the advantage of providing serialisability of the update execution on each of the

sites and consistency between all the replicas (Breitbart, Komondoor, Rastogi, Se-

shadri & Silberschatz 1999). However, it requires higher message overheads and

extended response times as all the replicas are involved in the update process

(Wiesmann et al. 2000b). While eager updates work well for traditional distrib-

uted databases, it is often unsuitable for mobile distributed databases as frequent

disconnections may cause the update to fail.

Lazy update protocols, on the other hand, propagate an update only after

it has commit on the initiated site(Wiesmann et al. 2000b, Gray et al. 1996,

Breitbart et al. 1999, Ladin, Liskov, Shrira & Ghemawat 1992). Lazy updates

can provide faster response time, since other replicas are only involved after an

update has been committed, but global serialisability may be compromised since

it is possible for two or more sites to commit the same data at the same time

(Gray et al. 1996). Therefore, further schemes are required to detect and resolve

such conflict.

The combination of both eager and lazy schemes is examined by Lubinski

and Heuer (2000). The authors discussed a framework for a protocol to allow

replication that is configured for specific mobile applications.

There is a large body of literature dealing with the different schemes, most

of them comprising various combinations of the classifications discussed above.

Many of these are also surveyed in other literatures (Bernstein, Hadzilacos &

Goodman 1987, Davidson, Garcia-Molina & Skeen 1985, Wiesmann et al. 2000a,

Wiesmann et al. 2000b).

2.3.3 Concurrency Controls

Concurrency control mechanisms are used to ensure consistency within a database

management system when multiple users access and change data. Concurrency

control methods are usually dependent on where update procedures can occur.

For example, in cases where updates only occur on the central or primary site,
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simple two-phase locking management on that site provides the required consis-

tency. For a distributed database system, where updates occur at any site, a

voting method is used in which the site performing the update requests a lock

from all relevant replicas (Elmasri & Navathe 2000), locking the data for the

update duration. In mobile distributed database systems, however, such locking

procedure is costly in terms of an increase in the number of messages that are

required to coordinate the locking and unlocking of data while the mobile site is

moving from one server to another (Jing, Bukhres & Elmagarmid 1995). An Op-

timistic Two Phase Locking for Mobile Transactions (O2PL-MT) was proposed

by Jing et al. (1995) to reduce the number of messages, based on the Optimistic

Two Phase Locking (O2PL) algorithm presented by Carey and Livny (1991).

O2PL follows an optimistic ’read one, write all’ concurrency control approach,

which allows lock processing for read locks on the site or the nearest server site.

O2PL-MT then restricts the read unlock messages to the remote server where the

lock is set by allowing unlocks to occur at the local or nearest server site.

The Bayou storage system (Terry, Theimer, Petersen, Demers, Spreitzer &

Hauser 1995), provides a weakly consistent system that ensures eventual consis-

tency between replicas. The Bayou architecture achieves high data availability

to mobile applications at the cost of providing weak consistency, by allowing any

client or server to perform updates (Demers et al. 1994). Conflict detection and

resolution for the Bayou system is possible through the use of dependency checks

and merge procedures, but is mainly application specific. That is, each write

operation has additional queries attached that checks the server’s data against

an expected result to specify if a conflict has occurred. If a conflict occurs, a

merge procedure will attempt to resolve it.

The authors (Pitoura & Bhargava 1995b, Pitoura 1996) proposed a two-level

consistency model where clusters are formed from different partitions of a data-

base system. Within each cluster, full mutual consistency is maintained, while

only varying degrees of consistency are kept between clusters. This is enabled

through the proposal of strict and weak operations, where strict operations re-

quire full consistency, while the weak operations provide solutions that may be

weakly consistent. Assuming that partitions are specified through usage patterns,

allowing varying consistencies between clusters are acceptable, as the main users

for any particular data would be within a cluster.
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2.3.4 Transaction Support

Transaction support relies on the availability of all necessary information to com-

plete its operations. If data are unavailable, the transaction would either fail or

be required to wait for the data to be available.

Traditional transactions are a sequence of read and write operations that in-

clude operations that access different data over multiple locations if a distributed

database is used. Mobile transactions however, are different and display different

characteristics to both centralised and distributed systems. These characteristics

include (Madria 1998, Dunham & Kumar 1999)

• the need to split a transaction into parts for computation on both local and

remote databases,

• migration of the transaction to a remote non-mobile database when no user

interaction is required to conserve the mobile computer’s resources,

• support for the transaction by non-mobile databases,

• computation of different parts of a transaction on different servers while the

mobile computer is on the move, and

• a long-lived nature due to the frequent disconnections that may occur.

Chrysanthis (1993) proposed an open-nested transaction model using the no-

tion of Reporting Transactions and Co-Transactions in order to perform updates

on mobile computers. A mobile transaction may be split into several subtransac-

tions which may commit and abort independently. A reporting transaction allows

partial results to be shared with other subtransactions in the mobile transaction,

while a co-transaction allows the control of the partial results to be passed from

one subtransaction to another at the time of sharing.

For multidatabase systems with mobile components, Yeo and Zaslavsky (1994),

presented a method that allows multidatabase transactions to be submitted by

a mobile computer. Once submitted, a mobile computer may disconnect and a

coordinating site will process the transaction on its behalf. Using simple messag-

ing and queuing techniques, the mobile computer may be informed of the status

of the transaction when it reconnects. Such technique is similar to having a

proxy for the mobile computer that process transaction requested by the mobile

computer.
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A semantic-based transaction processing method has been extended for mo-

bile transactions by Walborn and Chrysanthis (1995), who introduced the idea

of fragmentable and reorderable objects to improve database concurrency and

caching efficiencies. Using this idea, a mobile computer requests a database frag-

ment which is cached locally, and on which mobile transactions operate. This

fragment is consistent as it is only accessible to the transactions of the mobile

computer that requested it. Once a fragment is no longer required, it is merged

back into the master database. Such a technique is suitable when data objects

can be fragmented such as aggregate items, sets and stacks.

Kangaroo Transactions were introduced by Dunham, Helal and Balakrishnan

(1997) to allow transactions to be processed by capturing the moving nature of a

mobile computer. In effect, a transaction is split into several parts whereby each

part is processed (and perhaps committed) by the server in which the mobile

computer relies. These parts or subtransactions are serialisable using the split

transaction method proposed by Pu, Kaiser and Hutchinson (1988), and may

commit and abort independently.

Madria et al. (2002) examined a multi-version transaction model for mobile

computing. The model aimed to increase the availability of data by using ver-

sions. By allowing a version of a transaction to be executed and committed on

the mobile computer, the new data from that transaction would be readily avail-

able. A terminating version is then required at the main database to ensure the

consistency of the database.

2.3.5 System Recovery

In centralised and primary copy distributed database systems, the failure of the

primary copy prevents clients from putting in an update request. In instances

where clients do not cache any data locally, read access would also be denied. In

cases where the failure duration is extensive, a new site must be nominated to fill

in the role as the primary copy database. The most common algorithm for de-

ciding is an election algorithm proposed by Garcia-Molina (1982). The algorithm

specifies a site nominating itself as primary and informing the remaining sites.

Once a majority agreement is reached, the site becomes the new coordinator until

the actual primary coordinator has recovered. Similar algorithms may be used

in mobile distributed systems with fixed sites, where a fixed site may assume

the role of primary coordinator. It is unlikely for a mobile computer to take on
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the role of primary coordinator since they may disconnect frequently from the

network.

In mobile ad-hoc networks, network partitioning may occur when mobile com-

puters move from one area to another. Network partitioning occurs when a

network is split into different partitions in such a way that communication be-

tween partitioned networks is not possible. The authors, Aggarwal, Kapoor,

Ramachandran and Sarkar (2000), introduced a clustering algorithm, where the

elected super master knows all the mobile computers that are available, to design

and create a scatternet.

2.4 Summary

For databases to operate within the mobile environment, the adoption of differ-

ent protocols that suit these environments are required. Current protocols that

work well for traditional distributed databases are, however, unsuitable for mo-

bile environments. They must therefore, extend their functionalities to handle

the limited resources exhibited by the mobile computers.

This chapter introduced the area of mobile computing and databases. In

particular, it examined the different wireless technologies enabling a database to

be mobile and the current mobile database architectures. Additionally, a survey

was provided regarding issues resulting from the effects of mobility on different

database functionalities and the research undertaken to resolve them.



Chapter 3

A Survey of Data Summarisation

To date, many database summarisation techniques used on traditional databases

involve the use of structural reduction techniques that reduce the volume of data

without considering the use (i.e., the importance to the user) of the data. How-

ever, in mobile distributed environments context sensitive information is impor-

tant in as it provides more relevant information to users readily and efficiently

(Hawick & James 2003, Jones & Brown 2004, Covington, Long, Srinivasan, Dev,

Ahamad & Abowd 2001, Chan & Roddick 2003). Context sensitive data are the

part of information that has a semantic connection to user of those data.

Database summarisation involves the reduction of the size and information

capacity of a database while maximising the useability of the resultant (sum-

marised) dataset (Roddick, Mohania & Madria 1999). That is, the measure of a

summarisation technique can be seen as the relationship between the physical re-

duction in dataset size and the loss of useful information as a result. Clearly, this

relationship is non-linear as some items in a dataset will be more critical than oth-

ers with respect to context. In simple terms the effectiveness of a summarisation

technique can be given as:

W =
ζDB

ζSDB

.
ΥSDB

ΥDB

(3.1)

where ζSDB and ζDB are the storage requirements and ΥSDB and ΥDB are the use-

ful information capacities of the summarised and original databases respectively

(Roddick et al. 1999). Given that ζDB and ΥDB are fixed for any given database

and ζSDB has an upper limit on any given platform, the task is to maximise ΥSDB

for a target system.

1A version of this chapter appears as part of Chan and Roddick (2005)
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This chapter explores both context sensitive and insensitive techniques used

for traditional, distributed and mobile databases. The chapter is structured as

follows: Sections 3.1 and 3.2 discusses techniques that modifies the schema and

domain of a database, respectively. Section 3.3 presents the techniques used to

allocate data to different databases within a distributed database system. Sec-

tion 3.4 examines data compression techniques. Finally, Section 3.5 provides a

discussion for this chapter.

3.1 Schema Modification Techniques

These techniques modify the schema by removing either attributes or tuples from

the relations of a database to produce new relations that are reduced in size.

Schema modification techniques by themselves are usually insensitive to data

usage. However, the inclusion of usage sensitive criteria such as a previous us-

age history, to provide context sensitive techniques. There are three techniques

presented here as schema modification techniques.

3.1.1 Projection (vertical) methods

Simply used, this method involves the vertical elimination of attributes in a rela-

tion within the database (Ceri, Negri & Pelagatti 1982, Lubinski 2000, Roddick

et al. 1999), and is a common technique used for reducing the size of a database.

As shown by Roddick et al. (1999) the summarisation weighting W for each

attribute is determined by:

W (t) =
ζDB

ζSDB

.
KDB

K(πt(DB))
.
ΥSDB

ΥDB

(3.2)

where

t is an attribute,

DB is the complete relation,

SDB (= DB − t) is the summary relation,

ζ is the storage requirement,

K is the cardinality of a relation, and

Υ is the information capacity of a relation.
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The method of projection may also be utilised in conjunction with other types

of summarisation techniques, such as concept hierarchies. Projection provides a

modification to the structure of the database schema. That is, the technique is

used to remove attributes within the base relations.

3.1.2 Selection (horizontal) methods

Selection involves the horizontal reduction of tuples within a database (Chu 1992,

Cornell & Yu 1990, Muthuraj, Chakravarthy, Varadarajan & Navathe 1993, Na-

vathe, Ceri, Wiederhold & Dou 1984, Navathe & Ra 1989, Lubinski 2000, Roddick

et al. 1999). This is achieved through a selection of values of a specified attribute.

The summarisation weighting W is determined as follows (Roddick et al. 1999):

W (c) =
KDB

K(σc(DB))
.
Υ(σc(DB))

ΥDB

(3.3)

where

c is the selection criterion,

DB is the complete relation,

σc(DB) (= SDB) is the summary relation,

K is the cardinality of a relation, and

Υ is the information capacity

Again, selection may also be found in conjunction with other summarisation

techniques.

3.1.3 Hybrid methods

Projection and selection can be combined to produce hybrid method or views.

Views define a function from a subset of relations to a derived relation, and are

materialised by physically storing the tuples of the view (Lauzac & Chrysanthis

1998b). The use of views in terms of mobile systems has largely been discussed

within data warehouse applications to allow maintenance and updates of the

mobile client’s database (Lauzac & Chrysanthis 1998a, Lauzac & Chrysanthis

1998b, Stanoi et al. 1999). Lauzac and Chrysanthis’ materialised view holder,

acts as a proxy during network disconnection to provide the required updates

and views to the mobile client upon its reconnection. Note that since views are
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predetermined queries, an equivalent query employing rewriting techniques can

also be used to allow query optimisation (Halevy 2001).

A related method used in distributed databases is that of hybrid fragmenta-

tion, of which there are different schemes. For example, if horizontal fragmen-

tation is performed followed by vertical fragmentation then subsequent rejoining

of the fragments (assuming each fragment is disjoint) vertically, will produce

the horizontal fragment (See Figure 3.1). Horizontal joins, however, will not be

possible since the fragments may not contain the same attributes. The same oc-

curs where vertical fragmentation is performed before horizontal fragmentation,

with the exception that vertical joins are not possible and horizontal joins will

produce the original vertical fragment (See Figure 3.1). The hybrid fragmenta-

tion method is independent of the sequence that the fragmentation is performed

(Navathe, Karlapalem & Ra 1996). The fragments, termed grid cells, have the

property of being able to be both vertically or horizontally joined. This is possible

since each grid cell belongs to exactly one horizontal and one vertical fragment

(See Figure 3.1).

Horizontal then Vertical Fragmentation

Vertical then Horizontal Fragmentation

Grid Cell Fragmentation

Figure 3.1. Hybrid Fragmentation Methods
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3.2 Domain Modification Techniques

Domain modification changes the domain of a relation in such a way that it

is possible for data to be grouped together or replaced with associated data.

This then produces a reduction in size of the final result. Domain modification

techniques discussed in this section include concept hierarchies, abstraction and

surrogacy.

3.2.1 Concept Hierarchies

The usage of concept hierarchies to reduce the database size is a domain mod-

ification technique. This technique was proposed by Madria et al. (1998) as a

query processing model for mobile computing to facilitate data volume reduction

for a summary database. The concept hierarchy process is capable of organising

data and concepts in a hierarchical form by providing a mapping or generalisa-

tion of the lower layer concepts to their corresponding higher level concepts (Han

& Fu 1994). The central idea is that of concept ascension in which low level

data items are elevated onto a higher level within the hierarchy and duplicate

tuples are then removed. This hierarchy may be externally supplied, or dynami-

cally generated and refined, as demonstrated by Han and Fu (1994). In terms of

context sensitivity, current techniques for concept hierarchies may be considered

insensitive to the data usage since they do not have the capability of identifying

specific data for storage. Thus, while still a useful addition to schema decompo-

sition, these techniques can not be determine the optimum data required by the

user.

3.2.2 Abstraction through aggregation

This is the summarisation of selected attributes through the use of metadata

by creating new attribute values such as the sums and averages of existing data

(Heuer & Lubinski 1998, Lubinski 2000).

A report by Barbara et al. (1997) examined several other aggregation tech-

niques that may provide rapid but approximate answers for data warehouse ap-

plications. These aggregation techniques include Singular Value Decomposition

(SVD), Discreet Wavelet Transform (DWT), Regression, Histogram, Clustering

Techniques, Index Trees, and Sampling techniques.
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SVD technique decomposes a matrix, N×M for example, into three matrices,

N × r, r× r and r×M . That is, (Press, Teukolsky, Vetterline & Flannery 1996),

X = U × Λ× V t (3.4)

where U and V are then similarity matrices for the row and column, respec-

tively, of X, and Λ is an diagonal r × r matrix. These matrices are then used to

determine which group the data will fall under. The SVD technique and its prop-

erties are discussed in more details by Faloutsos (1996) and Korn et al. (1997).

DWT is a signal processing technique used to determine the groups that data

in a dataset may fall into. There are several wavelet transformation techniques

available including the Haar transform (Barbara, DuMouchel, Faloutsos, Haas,

Hellerstein, Ioannidis, Jagadish, Johnson, Ng, Poosala, Ross & Sevcik 1997),

Daubechies-4 and Daubechies-6 transforms (Daubechies 1992). For the datasets,

a k-d signal used in wavelet transforms represents a k-dimensional matrix. For

all wavelet transformation techniques, two functions are applied to a signal, for

example, a 1-d signal. The first function performs a weighted average while

the second performs a weighted difference. The functions are then recursively

applied to both halves and sub-halves of the signal as indicated by the weighted

average and differences. This continues until the resulting signals are too short

to transform.

Regression attempts to model the data as a function of the values of a multi-

dimensional vector. Linear regression is the simplest form of this whereby a

variable Y is modeled as a linear function of a another variable X (Wonnacott &

Wonnacott 1985). That is, Y = α + βX. The parameters β =
P

(X−X̄)(Y−Ȳ )
P

(X−X̄)2
and

α = Ȳ −βX̄ are estimated using the current known data X1, X2, ..., Y1, Y2, ... and

X̄ and Ȳ are average values for those data respectively.

Histogram is a common form of aggregation technique(Poosala, Ioannidis,

Haas & Shekita 1996), which works by distributing data into buckets. Buckets

may be considered to be subset in which data may fall into. Approximate answers

to the true attribute value and their frequencies in the data may then be provided

using the history stored with each bucket. The histogram technique is mainly used

to record data statistics for query optimisers.

Clustering is used to determine groups within a dataset (Kaufman & Rousseeuw

1990). These clusters consist of a collection of similar data objects. Similarities

are usually determined using a distance function. By using the derived clusters,
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it is then possible to approximate answers by searching the clusters instead of the

actual data.

Index trees are used for organising and accessing large datasets. Since the

nodes of an index tree represent the aggregate information of a data set, it is pos-

sible to use these nodes as a form of aggregation for data reduction (Antoshenkov

1993, Aoki 1998). Index trees are usually ordered on one or more key attributes.

The B+− is commonly used in one-dimensional data sets where there are only

single key attributes (Bayer & McCreight 1972, Comer 1979). The single keys are

then ordered according to the different ranges to provide nodes in a tree. R-trees

on the other hand, deal with higher dimension data sets where more than one key

attribute is used for (Guttman 1984). Thus, regions which the data are organised

into, forms the nodes of a R-tree.

Sampling attempts to represent a large data set with a small random sample

of data elements. Many techniques for sampling data exists, and most of which

are dependent on the application of the data set (Cochran 1977, Sudman 1976,

Sarndal, Swensson & Wretman 1992). Two of the more common types of sampling

techniques are the simple and cluster techniques. The simple random sampling

technique attempts to extract a sample n records from a set of N records such

that N >> n. Whiet in cluster sampling, the records are first clustered into

mutually disjoint clusters and then a sample is made for each cluster.

Given the different types of aggregation techniques available, there are also

different types of data sets to which the reduction techniques are more suited to.

These include distance only, unordered flat and hierachical, sparse, skewed and

high dimensional data types. Figure 3.2, extracted from Barbara et al. (1997),

shows the data types that are applicable for each aggregation technique.

Aggregation, allows not only a reduction in data required for storage by gen-

eralising the data into a new collection of objects, but is capable of quickly an-

swering queries through those new objects. All data reduction ultimately result

in some information loss where an approximate form must be used to replace that

data. Therefore, aggregation works well if the user does not require specific or

detailed data.

3.2.3 Surrogate

Finally, in situations where complex data types are used in a database, a surrogate

method can be used. Data that are complex can usually lead to extra resources
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Figure 3.2. Applicability of Techniques to Different Data Types

being required to access, transfer and present them (Lubinski 2000). Thus, using

surrogates that substitutes complex data types with corresponding simpler forms

relieves resources for other operations. An example of this is the substitution

for a large image file with its equivalent but simpler text description. Such a

technique would modify and replace the data type of the attributes of the base

relations.

3.3 Data Allocation of Fragments

In many literatures, fragmentation and data allocation are considered separate

processes. Methods of fragmentation use a representative set of transactions

or queries as a base to partition a global relation into fragments. For example,

attribute and predicate usage matrices are used as starting points for vertical and

horizontal fragmentation procedures, respectively. These matrices are formed by

examining the frequency that an attribute or predicate is accessed by the given

set of transactions. While basing the fragmentation on a given set of transactions

is important, it may not encapsulate the importance of a query, especially when

the representative set is small or out of date. Moreover, it can be blunt in its

decisions for inclusion. Information, such as location, the time of events stored in

the database and inductive association between data items is useful when deciding

on the content of a summarised distributed database.

Regarding data allocation, literatures indicate the common usage of a repre-

sentative transaction set to minimise the cost of accessing and processing queries
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at each site, and allocates fragments accordingly. This is perhaps the same set as

used in the fragmentation stage. Shephard et al. (1995) investigate a two-phase

approach to data allocation. The first step creates the fragment clusters based

upon the given set of transactions and their access frequencies, the second step

allocates the clusters based on a divide and conquer algorithm such that the cost

of query processing is minimised. This allocation technique is most useful when

future access patterns are the same. Ahmad et al. (2002) suggest that evolu-

tionary techniques, such as genetic algorithms, simulated evolution, mean field

annealing and random neighbourhood search algorithms, can be useful in allocat-

ing fragments to each site. These algorithms are also based on a representative set

of queries to minimize access costs. While these algorithms are used within tra-

ditional distributed database systems, it is also possible to use similar algorithms

for mobile distributed database systems in which the access costs also consider

the resource limitations of a mobile computer (Huang, Sistla & Wolfson 1994).

Wolfson and Jajodia (1995) proposed a reallocation of fragments during run-

time using data collected from recent transactions. Similar work was undertaken

by Brunstrom et al. (1995) who showed that dynamic reallocation of fragments

is significantly improve the performance of distributed databases with changing

workloads. In addition, there is also research that examines fragmentation and

allocation within a single process. Note that in some instances, elements of repli-

cated fragments may exist (and potentially be updated) at more than one site.

The allocation method that will be discussed in Chapter 5, uses different con-

text sensitive criteria, including location, time, inductive and enumerated criteria.

When combined these criteria specify which data are to be included in the mobile

database (Chan & Roddick 2003). Similarly, changes in the user’s context would

induce a change to the data within the mobile database.

3.4 Data Compression

There are many methods of data compression based mainly on character encoding

and repetitive string matching (Graefe & Shapiro 1991). Techniques that allow

the compression of data usually aim to reduce the redundancy that may be found

in stored or communicated data (Lelewer & Hirschberg 1987). More details of

the available compression techniques may be found in a number of surveys (Bell,

Witten & Cleary 1989, Lelewer & Hirschberg 1987, Cannane & Williams 2001). In

the context of databases, there are many literatures available that investigate the
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use of text only data compression techniques(Severance 1983, Cannane, Williams

& Zobel 1999, Roth & Van Horn 1993, Cormack 1985, Graefe & Shapiro 1991, Ray,

Haritsa & Seshadri 1995). However, one particular method that does consider

the different data types is the RAY algorithm as described by Cannane, Williams

and Zobel (1999).

3.5 Discussion

This chapter discusses data summarisation techniques used within databases.

Many of the techniques surveyed are capable of reducing a large volume of the

data. However, most of techniques do not consider context or data usage. For

mobile environments, using the context of the data may provide the user with

more efficient and relevant answers. Thus, in Chapter 4 a discussion on useful

context is presented.

While data reduction or summarisation and data compression is similar in

that they both reduce the size of a database, they are viewed quite differently

within this thesis. In data compression, the aim is to reduce the redundancy in a

data, while data summarisation aims to reduce data by removing irrelevant data

or aggregating the data together.



Chapter 4

The Uses of Context in Mobile

Computing

The term context is difficult to define, as recognised by Dourish (2004). It can

be defined as being aware of the changes that are occurring to the context. A

common definition of context as described by Dey, Abowd and Salber (2001) is

”typically the location, identity and state of people, group and computational

and physical objects”. However, there is more to context than just the objective

features, which can be tracked and recorded easily. There are also user experiences

which may include subjectively perceived features and how past experiences of

similar contexts can affect current activities (Chalmers 2004).

In mobile environments, the use of context sensitive, or context awareness is

of more importance as mobile computers are essential part of a network whose

topology can change constantly (Schmidt 2000, Hawick & James 2003, Imielinski

& Badrinath 1992, Zaslavsky 2004). To quote Moran and Dourish (2001):

”‘One goal of context-aware computing is to acquire and utilize

information about the context of a device to provide services that

are appropriate to the particular people, place, time, events and so

forth.”’

Moran and Dourish, thus, suggest that noticing the context that a technology

is in, is an important step towards building usable technologies.

This chapter is structured as follows. Section 4.1 discusses location awareness

as a context sensitive technique. Sections 4.2, 4.3 and 4.4 examines the applica-

tion of context in information retrieval, data reduction and sensors, respectively.

33
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Section 4.5 explores the characteristics of context. Finally, Section 4.6 provides

a summary of this chapter.

4.1 Location-aware techniques

In regards to computer mobility, context awareness in terms of location awareness

covers a significant portion of the current research. That is, in highly mobile envi-

ronments, mobile computers have the ability to constantly change their location.

Thus, applications capable of adapting to their current location can provide its

user with more useful information.

Early location-aware research focus upon ubiquitous computing techniques

and from which general consideration of the use of context in mobile computing

began (Schilit, Adams & Want 1994). Other research lead to the development

of the Active Badge system, which requires a device to transmit infra-red signals

every intervals so that networked sensors may determine the location of that

device (Want, Hopper, Falcao & Gibbons 1992, Ward, Jones & Hopper 1997).

Many systems that exploit location awareness information are based on describing

the user’s physical location. These information are easily collected using Global

Positioning System (GPS) or location information available from the underlying

communication infrastructure, such as GSM.

While it is useful to have location only context, the literature also explore the

combination of location and time to capture context-aware information. Brown

(1996) developed Stick-e-notes, which are documents that are tagged with both

location and time information. This eventually led to the development of an

electronic tour guide application, which provided tourist information based on

their position and orientation (Brown, Bovey & Chen 1997).

Hawick and James (2003) use the contextual information of both spatial tem-

poral information within a middleware architecture. Furthermore, the authors

introduce an active list of preferences that combines a list of user preferences,

spatial and temporal information. The middleware supports mobile applications

by attempting to filter the data according to the active preferences. For exam-

ple, an email destined for the user, first passes through the middleware. It then

determines (depending on the user’s current location, the current time and any

other preferences) whether the email should be sent to the mobile application.

Location-awareness has also been incorporated through modifying the query

language. That is, a query in SQL is modified to include the location of the user
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(Imielinski & Badrinath 1992). So for example, if a user queries a database using

Find me a doctor, this is then be modified into Find me a doctor that is less than

5km away from me. In terms of SQL, we would then have:

SELECT Name FROM Doctor

Assuming that the system determines that my location is l1, and the location

within 5km of l1 are l2, l3, l4, then the following select statement is possible:

SELECT Name FROM Doctor

WHERE location = ’l1’

OR location = ’l2’

OR location = ’l3’

OR location = ’l4’

Location is one of the more commonly used pieces contextual information

within mobile environments. Its use in middleware and query modifications shows

its capablity of reducing the data to be presented on the user’s mobile device.

4.2 Information Retrieval

Information retrieval is not only limited to databases. The tour guide applica-

tion mentioned earlier is an example of an information retrieval system. The

use of location-aware context allows the electronic tour guide, Cyberguide, to

provide information to a tourist based on the knowledge of position and orien-

tation (Abowd, Atkeson, Hong, Long, Kooper & Pinkerton 1997). The Guide

Project developed in Lancaster, attempts to integrate both context of location

and user preferences in its information retrieval system. This is done to provide

an awareness of the service quality to its users, while employing a wireless network

architecture.

Another example of an information retrieval system is that of a web search

engine. Given a search condition, the retrieval engine attempts to return a set of

potentially relevant documents. This is done by giving a weight to each document

according to how well they match the query (Jones & Brown 2004). The use of

context within information retrieval then determines which of the documents are

more relevant to the user, by the use of contextual criteria.
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The Jones and Brown (2004) describe two methods, context diary and context-

aware cache to deal with dynamically changing context and fast retrieval of in-

formation, respectively. The context diary incorporates both the current and

predicted location of the user and the user’s personalisation to determine which

documents are of relevance. The context-aware cache attempts to predict the

future context that the users may find themselves in. Documents relating to such

context will then be retrieved and stored in the cache for fast access.

4.3 Data Reduction

Lubinski (2000) proposes the gradual data reduction technique as a way of reduc-

ing the data of query results before it reaches the mobile system. This technique

specifies different domains of data precision and also a layered reduction for those

domains. The domains of data precision relate to the interestingness that the

user has placed on the resultant data through specifying domain boundaries. For

example, in terms of a mobile user, three domains of data precision can be spec-

ified. Domain 1 can corresponds to data that are most relevant with respect to

the user’s current position. Domain 2 contains data that are less relevant to the

user’s current position but could be relevant to future positions. Finally, Domain

3 contains data that are not relevant to any of the user’s positions.

The layered data reduction technique, where at Layer 1 the least or no data

reduction occurs, up to Layer n, where the most extreme data reductions occur,

are used to reduce the data contained within those domains from 1 to n. That

is, for Domain 1, a corresponding Layer 1 will be used. So following the previous

example, an abstraction technique may be used where certain parameters are

changed to allow weak to strong abstraction to be used. Domain 1, Layer 1

can be defined where no reductions are performed. While Layer 2 where weak

abstraction is performed to the data in Domain 2. Finally, a strong abstraction

technique is used in Layer 3 for data in Domain 3.

4.4 Sensors

The use of sensors provides a means to collect context information in addition

to that of location. Sensor technology is widely used in applications involving

robotics, machine vision and process control. There are many types of sensors

available including optical/vision, audio, motion, location and bio-sensors.
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For example, the development of motion sensors integrated with a handheld

device allows the interface to be aware of gestures made by users (Harrison,

Fishkin, Gujar, Mochon & Want 1998, Rekimoto 1996). The idea of wearable

computers furthers the development of sensors in context awareness. As such,

it has been explored by Maguire, Smith and Beadle (1998) and Smith (1999),

where the distinguishing features of these wearable computers are the awareness

of both the user and the physical environment.

However, it should be noted that the context obtainable by sensors are gen-

erally of low abstraction, such as noise level, temperature, or it must be designed

to be usable for specific applications.

4.5 Characteristics of Context

The two major characteristics of context are that of objectivity and subjectivity.

For computer systems, objectivity refers to context that is not influenced by the

system’s users. Examples of objective context include location and temporal

awareness and were discussed in the previous section. Subjective context on the

other hand, are be influenced by the system’s users. Examples of subjective

context include user’s activity history and direct input by the user.

Objective context is usually easier to identify and record than subjective con-

text. However, the need to effectively combine both types of context was recog-

nised by Chalmers (2004). Several authors discuss an activity-based computing

system that combines the use of objective context such as location awareness

with subjective context, namely modelling of activity using workflow and activ-

ity theory as described by Nardi (1996). The activities here are typically a set of

defined tasks from which the users may use the computer services available from

stationary and mobile computers (Christensen & Bardram 2002, Bardram, Kjaer

& Pedersen 2003).

4.6 Summary

There is a variety of context information available ranging from the well re-

searched location-awareness context to the subjective context such as user’s ac-

tivities. While this chapter surveys the use of objective context within computer

systems, it is also important to consider subjective context. By combining the
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use of both types of context gathering, it is possible to provide users with more

useful information.

The next chapter discusses the COSMOS technique to provide a framework

to integrating different types of context in summarising a database.



Chapter 5

COntext Sensitive MObile

Summarisation (COSMOS)

In this chapter, several context to extract information about the users are exam-

ined to provide a solution to determine the storage of data. In general, the selec-

tive determination of information to be stored may still require a large amount

of storage that is not available to mobile devices. As a result summarisation

is required to fit the required information into the mobile device such that it

still useful information. Chapter 3 showed that there are many types of sum-

marisation. This chapter presents several types of context to extract information

regarding the users to provide a solution to determine the required data for stor-

age. The data selected is stored in a summary database and represented as a

Storage Map (SM), which is an abstract view of the a database for the mobile

device.

This chapter presents the COSMOS technique and is structured as follows:

Section 5.1 examines the COSMOS database architecture. Section 5.2 presents

the first stage of creating a COSMOS database. This stage involves the use

of priorities to determine the candidates for inclusion into the summarisation

process to identification of the relevance of data with respect to the users. The

second stage is then presented in Section 5.3, which employs heuristic techniques

to construct the summary database.

1A version of this chapter appears as part of Chan and Roddick (2003)

39
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5.1 COSMOS Database Architecture

In this research it is assumed that COSMOS is used with a primary or centralised

database, to which updates are directed and from which data is replicated to

other sites. That is, all updates must be directed to the primary database for

propagation. This reduces the complexity of monitoring consistency between

every database within the architecture as changes to any database will be resolved

at the central database that stores the primary copy of that data.

Figure 5.1. Architecture for a COSMOS Database

The architecture of a COSMOS database system follows a hierarchical client/

server architecture with its root being a central server database, see Figure 5.1.

The hierarchical architecture will consider a database site a server if there exists

another site with a subset of its database. A database site is considered a a

client when its database is a subset of another site’s database. A database site

can also be both a client and server if its database is both a subset of another

database and a superset for other databases. Being a server requires the site to

store additional information of its clients, such as the client’s storage maps. This

kind of architecture may be useful in situation where, for example, a specialist

located at the Flinders Medical Centre Cardiac Unit holds a specialised local

database that is a subset of the Flinders Medical Centre’s database, which is in

turn a subset of the South Australian State Health database.

For the client site, the Database Management System (DBMS) will have
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fast access to the site’s summarised database while maintaining a comparatively

slower and perhaps unreliable access to the main database through the server

site’s DBMS. In addition, each client site’s DBMS now has access to an Update

Database (UDB). The UDB is a relatively small repository for the changes to

the local database that passes through the site’s DBMS. The UDB is discussed

further in Section 5.1.1.

In the case where the UDB stores data that supersedes the data in the Sum-

mary Database (SDB), the DBMS will now be required to adhere to the following

steps:

1. The DBMS is required to retrieve data from the UDB by comparing the

UDB’s storage, Mu may with the query’s equivalent storage map, Mq.

2. The DBMS then retrieves the remainder of the query from the SDB, using

similar procedures as the previous step.

3. The DBMS then attempts to retrieve data unavailable to both the SDB

and UDB, from the server.

Thus when data items are available in both the SDB and the UDB, the UDB’s

data will always be used. This ensures that more updated data found in the UDB

is accessed before the local database. If data is not found in the UDB, the main

or remote database will be queried. This architecture provides better scalability,

in that the main database can be a subset of a larger database, while the local

database can also be a superset of other databases, as shown in Figure 5.1.

5.1.1 Update Database

A fundamental inclusion to the database architecture used within COSMOS,

shown in Figure 5.1, is that of the Update Database (UDB). The presence of

an UDB within a local database structure allows a SDB, which was previously

specified as read-only, to perform read and write procedures. This provides both

the read-only and read-and-write aspect within the COSMOS database architec-

ture. It is important since in cases such as mobile databases, where resources

are limited, there are situations where only read-only access is required. In these

situations, the mobile database will consists of only the SDB and any updates

will require propagation to a server.

Therefore, the UDB can be considered an extension of the SDB and con-

tains more data than is originally assigned to the SDB. The maximum size of
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both databases is set by the database administrator depending on the available

capacity.

The main function of an UDB is to store updated values. Whenever an up-

date is requested, the new values in the UDB are recorded, while rendering the

corresponding values in the SDB invisible (through its storage map). A separate

UDB storage map is subsequently stored to keep track of which attribute values

have been updated. The changed values are stored on the UDB until a database

refresh command is initiated. After updating, the UDB’s storage map is also

updated to reflect the change.

A full or partial pull database refresh integrates new values into the SDB from

the central server. Once a full database refresh is completed, the UDB items are

no longer required.

5.2 A Protocol for Priority-based Data Sum-

marisation (First Stage)

The proposed priority-based data summarisation uses a two stage protocol. The

first stage uses the notion of priorities (weights) that are assigned to every at-

tribute value to indicate the importance of that value. The second stage then

selects the appropriate data for the expected situation. To ensure an optimal

accommodation of the required information, this is done in a fine-grained man-

ner and are calculated at the level of the data item. The priorities are numerical

values, either supplied or generated through observation and experimentation,

which are assigned through a multifaceted evaluation of different criteria. The

relative use of each criterion is termed a protocol, (for example, see Table 5.2).

The criteria that might contribute to a protocol are grouped into three categories,

Primary, Secondary and Tertiary Criteria (Table 5.1. These categories are useful

as a basic framework for which additional criteria that may be defined by the

user.

Table 5.1. Criteria Categories
Primary Criteria Secondary Criteria Tertiary Criteria
Enumeration, e Model based, m Time-based inference, t
Contextual, c Induction, i Spatially-base inference, s
Previous Usage, u
Push-based, p
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Determine Operational 
Environment and 
Establish Protocol 

Supply particular constraints and  
current information and run 
parameter setting routines 

Assign weights to each 
data item in DB

Determine optimum 
data items from DB to 

include in SDB

Install SDB on Mobile 
Device

Summarisation Engine

Required on Establishment.  
May be periodically reviewed

Required for each full refresh of 
SDB although many datasets 
will not change or will be 
generated automatically.

May be updated periodically 
when connection is available.  
Will be refreshed when 
connectivity is good.

Figure 5.2. Conceptual View of the Summarisation Process

The protocol and the priorities are combined through a single formula which

gives a prioritisation Pd for each data item as shown in (Formula 5.1) and as

shown in Figure 5.2. As a policy decision, any criterion not used is set to zero.

Pd =

[
x∑

ρx.φx

]
/ln(lend + 1) (5.1)

where

x is one of the criteria defined in the protocol,

ρx is the relative priority of criterion x in the protocol,
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Table 5.2: Example of a criteria protocol – the setting of ρ for each
data inclusion criterion.

Criteria ρ

Enumerated e 100
Contextual c 75
Model-based m 50
Inductive i 45
Previous Usage u 65
Time-based t 20
Spatially-based s 20
Push-based p 100

φx is the assigned priority for that data item as calculated for that criterion,

lend is the size of the data item (in bits). This value is necessary to discourage

the storage of overly large data items.

Pd provides an indication as to the importance of the data item and is thus

proposed as the basis for the first stage of database summarisation.

The values of ρx are usually not bound by any limits. They provide an in-

dication as to the importance of individual criterion as compared to the others.

Therefore as the values of ρx become closer, the importance of the criteria will

be increasingly similar. On the other hand, the value of φx must be within the

bounds of 0 and 1, i.e., 0 ≤ φx ≤ 1. The following sections provide a discussion

regarding the determination of the values ρx and φx, relative to the other criteria,

and the ability of each criterion to recalculate the priority of individual attribute

values. Recalculation is necessary during the runtime of a database system to

ensure that database refresh is possible. This will be examined in Chapter 8.

5.2.1 Primary Criteria

Criteria that extracts data from the main database to the summary database

through an external input are part of the category called the Primary Criteria.

The following subsections discuss the types of criteria that fall under this category.

5.2.1.1 Enumeration

Enumerated data are references to those items specifically indicated as useful by

an agent external to the summarisation process and which indicate information

that is directly recommended for representation in the summary database. It al-

lows direct external input into the creation of the summary database and strongly
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encourages the summarisation process to include data which is of significance to

users. Although potentially any specification can be made, the enumeration of

data is commonly a horizontal specification of tuples within one or more relations.

It is also possible to enumerated a list by using the ‘hoarding’ method(Tait, Lei,

Acharya & Chang 1995). Hoarding prefetches data according to the current ap-

plication being used.

Example: A medical practitioner has a list of patients to be visited, and

will thus enumerate a list that will be used to specify the patient data

required. That is, specific tuples of a relation corresponding to the pa-

tients’ details are given priorities that will encourage their inclusion in the

summarisation database. Following the example given in Figure 5.3, these

tuples may be from the relation corresponding to the entity PATIENT.

Since enumerated information are explicitly specified, perhaps in terms of a

parameterised relational query, ρe is likely to be assigned, for most applications,

a higher value in the protocol than data specified through the other criteria.

Moreover, the simplest form that φe is likely to take is either 0 or 1, depending on

whether the data is enumerated or not. More complex methods of determination

requires the user to indicate which data or group of data they feel are more

important. Arbitrary numbers between 0 and 1 may then be assigned to the φe

of each data, since the protocol is more concerned with the relative importance

of data. Algorithm 1 provides an example of how to implement an enumeration

criterion.

Algorithm 1 Enumeration Criterion

Require: Input list (I) of attribute values to be enumerated and ρe

while I contains attribute values do
Remove an attribute value (a) from I
Assign φe(a) = 1 to attribute value
Assign priority, we(a) = ρe.φe to attribute value
Add a and we(a) to enumerated list E

end while

The recalculation of the total enumeration priority for an individual attribute

value is simply recalculating ρe ∗ φe. φe will continue to take the form of 0 or

1 depending on whether the new attribute value is one that has been specified

earlier by the criterion.
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Table 5.3. Example of a set of contextual rules.
Rules Corresponding Relation Corresponding Attribute φc

Specialisation PHYSICIAN SID 100
Project PROJECT PID 25

Practice Location PHYSICIAN LOC 50

5.2.1.2 Contextual

Knowledge of the context of use is useful in inferring the data that may be needed

by users. Thus, contextual criterion can be used to include data that may be

useful because they are related to the user’s details or environment. As such this

criterion differs from the enumerated criterion which is data-centric rather than

user-centric. The contextual priorities are deduced through rules that relate to

aspects of a user, such as the user’s medical specialisation, through to data that

may be useful in that user’s operation of the database.

Example: A medical specialist may, by virtue of their specialisation, have

a greater interest in particular aspects of a patient’s case history. In ad-

dition, records of patients who have been seen recently by the medical

practitioner and who are still under active treatment by others, might also

be included into the summary database to ensure that the information is

available if consultation is required.

In order to determine contextual priority, φc, there must be a set of rules con-

cerning the user (specialisation, practice, projects, etc.). This set of rules will

provide a profile of the user. The assignment of φc due to the different contextual

criteria will vary as a result of the importance placed on the data. For instance,

data relating to the specialisation of the practitioner can have higher importance

than the inclusion of records relating to recently seen patients. An example of

this is shown in Table 5.3. An implementation example using these rules is given

in Algorithm 2.

For the recalculation of the total contextual priority of an attribute value, the

same set of values for φc and ρc used during the initial calculation, may be used.

For example, in the case of an eye specialist, assume that a patient’s diagnosis

data now included a cataract treatment. That is, an attribute value now has the

value ‘Cataract Treatment’. Then the attribute value will be assigned a value of

φc depending on what has been assigned to the value ‘Cataract Treatment’.
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Algorithm 2 Contextual Criterion

Require: Rules definition set D, Rules set R regarding users and ρc

while R contains rule r do
Remove r from R
Extract φc(r)
Use D and r to determine search conditions for queries
Search for attribute values (A) in main database using queries
Assign priority, wc(A) = ρc.φc(r) to attribute values
Add A and wc(A) to contextual list C

end while

5.2.1.3 Previous Usage

This criterion allows the user’s previous activity to act as a guide to future activ-

ity. This is accomplished through an inspection of previous queries invoked and

assigns a priority based on the frequency of access, of either the data item ex-

plicitly or the likely access through a type of heuristic. For example, association

rule mining might be used to associate the use of one attribute with another or

between the characteristics of one query and the next.

Example: A particular user might have a preference for referring to sim-

ilar cases before deciding treatment. Thus, for that user, the presence of

a patient record with a particular set of conditions may also cause the

inclusion of other similar cases.

The manner in which the values for φu can be calculated is wide. A simple

technique examines the data, in terms of attribute values, accessed by previous

queries issued by a particular user. By determining the frequency of each attribute

value accessed, a percentage of the total number of accesses made to all attribute

values may be assigned to the φu of each attribute value. For example, assumimg

that the lifetime of a database system is divided into sessions, and each session

represents an hour of the system’s time, and that the frequency of access is

sampled according to the transactions that has ended within a session. Then, by

dividing the number of accesses to a particular attribute value by the maximum

number of access made to any attribute value, it is possible to assign φu with a

value between 0 and 1. φu = 1 will then indicate that the attribute value has

been accessed most often.

φu =
n

ntot

(5.2)

where
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n is the total number of accesses made to an attribute value

per session.

ntot is that total number of accesses made to any attribute

values by a transaction within the session.

A second solution to calculating φu is to count the number of times an at-

tribute is accessed instead of a particular attribute value. This will assign at-

tribute values with a particular attribute to have the same φu value. φu can again

be calculated by Equation 5.2 except that n and ntot now refer to attributes in-

stead of attribute values. The disadvantage to using this solution is that priority

is assigned to attributes instead of attribute values and redundant values may

be selected. However, such a method may be useful when transactions specify

different keys for the same attributes. For example, querying for the name of

different items. Algorithm 3 provides an example to implement this criterion.

Algorithm 3 Previous Usage Criterion

Require: Set of previously accessed attribute values PU and ρu

while PU contains attribute value pu do
Remove pu from PU
Determine attribute A(pu) of pu
Counter C(A(pu)) = C(A(pu)) + 1
Add A(pu) to previous usage list U

end while
Determine most accessed attribute, max
for all A(pu) in U do

φu(pu) = C(A(pu))/max
Assign priority, wu(pu) = ρu.φu(pu) to attribute value
Add wu(pu) to U

end for

The recalculation of previous usage criterion on an attribute value occurs at

the end of every session regardless of whether an update has occurred or not.

This recalculation uses the same formula for φu and ρu as mentioned above (and

in this case, Equation 5.2). In the case where an update has been made to an

attribute value, the value n for that attribute value will reset to one. This will

indicate that the update process has accessed the new attribute value.

5.2.1.4 Push-based Approaches

The push-based criterion indicates that the data has been determined important

by the server and should be communicated to the clients. In this respect it can
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be used as a mechanism for partially updating a summary database without full

synchronisation. Such data may include updates that the server has received

(such as recent pathology laboratory results). It can also be used to manually

override decisions made by the summarisation engine. Algorithm 4 provides an

implementation of the push-based criterion.

Algorithm 4 Push-based Criterion

Require: Set of push content C, associated φp(C) and ρp

for all c in C do
Determine attribute values A for c
Assign priority, wp(A) = ρp.φp(A) to attribute values
Add all A and wp(A) to push-based list P

end for

5.2.2 Secondary Criteria

Criteria using data that has been extracted by the Primary Criteria in order to

determine any new data for the summary database are part of the category called

Secondary Criteria. The following subsections discuss the criteria that fall under

this category.

5.2.2.1 Model or Schema-based

The model or schema-based criterion is based on the relationships implied through

the data model. That is, data flagged for inclusion by this criterion is related

to other data through the structure described in the database schema. The

inclusion of data into the summary database using this criteria depends on the

data extracted by any Primary Criteria.

The model-based priority, ρm, determines its importance relative to the other

criteria (if no model is available then this is set to zero). It is important to note

that as the modelled relationship to the data generated by the Primary Criteria

becomes more distant, the importance of the data is assumed to decrease. Thus,

the weight of φm would decrease as the modelled distance increases. An example

formula for φm may be given by:

φm = k−(a−1) (5.3)

where k ≥ 1 is a constant and a > 0 is the length of the shortest path from

the data under consideration to the Primary Criteria data that it is associated to.
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It is also possible that an attribute value may have relationships with multiple

Primary Criteria data. In this case, φm is calculated for each relationship and

averaged together to form the final φm Additionally, φm is always zero when none

of the Primary Criteria are present. That is, φm = 0 when φe, φc, φu and φp are

all equal to zero.

Figure 5.3. A medical E-R scheme, after (Golfarelli et al. 1998)

Example: Following the example in Section 5.2.1.1, and the associ-

ated Entity-Relationship diagram for the example in Figure 5.3, it can

be seen that two important entities exist- PATIENT and ADMISSION

that provide information regarding patient details and details of their

hospital admissions, respectively. By observation, tuples from ADMISSION

are related to PATIENT through the relationship undergoes. Assuming

these are annotated as useful through primary criteria and are given

weights that indicate certain usefulness.

Using the model-based criterion, the data residing in entities WARD,

DIVISION and HOSPITAL, will be given incrementally lower weight-

ings depending on the number of relations they are from the entity

PATIENT.

An implementation of model-based criterion is given in Algorithm 5. The

recalculation of Secondary Criteria is more complex than those techniques pre-

sented for Primary Criteria. This is because priority values of Secondary Criteria,
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Algorithm 5 Model-based Criterion

Require: enumeration list E, contextual list C, push-based list P , number of
relations n and ρm

Combine lists (E,C,P ) together into primary criteria list PR
Sort list into its originating relations R
for x = 1 to n do

Determine proximity of other relations to R(x)
Determine maximum proximity to R(x) (maxr)
for y = 1 to maxr do

for all relations y away from R(x) do
Determine attribute values A related to all r in R(x)
φm(A) = 2−y

Assign priority, wm(A) = ρm.φm(A) to A
if Model-based list M contains attribute values in A then

if wm(a) > wm(m) for all a in A and m in M , and a = m then
Replace wm(m) with wm(a)

end if
else

Add all A to M
end if

end for
end for

end for

for an attribute value are influenced by data that has already been assigned a

Primary Criteria value. So after an update, changes can occur to the model-based

priority value, of both the updated attribute value and any attribute values it is

related to, through the database schema. For updated attribute, the model-based

priority value is changed if the value is no longer related to any Primary Criteria,

or is now related to other attribute values. The Equation 5.3 is used to recalculate

the model-based priority for that attribute value. Additionally, the new updated

value may now be related to other attribute values. In this case, a search for

other related attribute values would then be required if the updated value had

been assigned a Primary Criteria value. On the other hand, if the updated value

is no longer Primary Criteria data, a search is required to determine the attribute

values that were related to the attribute value prior to an update. In a related

work, Badrinath et al. (1999) examined referential integrity to cluster data and

create fragments for caching.
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5.2.2.2 Induction

This criterion enables the use of inductive rules to specify the inclusion of data.

By inspection of the data contained within the main database, it is possible to

derive rules to indicate data that are associated with each other. Data mining

techniques, such as Association Rule Mining (ARM) as typified in the Apriori al-

gorithm (Agrawal, Imielinski & Swami 1993) and its many successors, are useful

for the derivation of inductive rules. ARM involves the identification of relation-

ships between items that occur frequently together and is then be used to imply

the storage of other items within the database.

Example: Within the medical records of a patient, assuming there

is an association between a disease and the pathology tests used to

diagnose and monitor this disease. Depending on the strength of this

association, this would imply that the appropriate pathology results

of the patient suspected with this disease would then be flagged for

storage in the summary database.

Similar to model-based criterion, data are related to any Primary Criteria or

Secondary Criteria already generated. They are thus dependent on those data,

where the condition (φi = 0), again, applies when no Primary Criteria are present.

Note that the importance of each rule used can be specified, which could be used

to determine the correct values for φi. Algorithm 6 shows an implementation for

the induction criterion.

Recalculation of induction-based criterion for an attribute value is similar to

model-based criterion. That is, it requires a search to determine if the attribute

value is still affected by other attribute values, and if the new attribute value will

affect other attribute values.

5.2.3 Tertiary Criteria

Finally, tertiary criteria is a category of criteria that involves specific data types

within the summary database. They are used to place more emphasis upon

certain attribute values, depending on how the priority weights are calculated for

the criterion.
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Algorithm 6 Induction Criterion

Require: enumeration list E, contextual list C, push-based list P , model-based
list M , set of inductive rules R, set of φi(R) associated to R and ρi

Combine lists (E,C,P ) together into primary criteria list PR
Combine lists (PR,M) together into a list L
while L contains attribute values l do

Remove l from L
if pr exists in R then

Determine all attribute values A from rules R
Assign priority wi(A) = ρi.φi(R) to A
for all Attribute value a ∈ A do

if Induction list I contains a AND wi(a) > wi(i) where attribute value
i = a then

Replace wi(i) with wi(a)
else

Add attribute value a and wi(a) to I
end if

end for
end if

end while

5.2.3.1 Time-based Inference

This criterion makes the assumption that recent events are of more importance. In

the modelling of time-based data there are a number of characteristics to be con-

sidered (Roddick & Patrick 1992, Snodgrass 1987). In particular, two temporal

dimensions are identified as important when an event occurs, namely transaction

and valid time. The former refers to the time that the event is recorded into

the database, allowing the user to rollback the database to an earlier view. In

the context of this thesis, transaction time is less relevant since the creation of a

summary database is based on the data that are stored being useful and accurate

to the user. The latter, valid time, refers to the time that events have occurred in

reality, and facilitates the post or predating of changes to the database. The valid

time of an event is likely to be of interest. Thus, time-based criterion focuses on

an event’s valid time reference.

Example: A patient had an episode relating to a fractured arm some time

ago. More recently, the patient made an appointment for a consultation

with the medical practitioner for a cough. Apart from the relative asso-

ciation between a fracture and a cough (dealt with through the inductive

priority (i.e., the value of ρi)), the time since the first event will mean

that it is less likely to be of relevance and would be given a lower prior-
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ity. On the other hand, a sore back that the patient mentioned during a

more recent consultation would be given a higher priority (and thus may

be included in the summary database).

φt indicates the relative importance of the data item due to its temporal

information. ρt is a priority specified as part of the protocol and indicates the

importance of the time-based criterion. Since time is continuous, φt may be

calculated by either one of the following functions:

• Stepwise. This assumes that data has the same level of interest (and

priority) until changed.

• Linear or Continuous Change Functions. These functions assume

some degradation of interest over time.

In both calculations, it is assumed that only attribute values with at least

one associated timestamp attribute will have time-based inference criterion. It is

therefore likely that attribute values within a tuple will have the same time-based

priority value. So only attribute values that have at least a Primary Criterion

will be recalculated. This involves recalculating φt for the new attribute value

according to whichever function was initially specified. An implementation of

time-based criterion is shown in Algorithm 7.

Algorithm 7 Time-based Criterion

Require: enumeration list E, contextual list C, push-based list P , previous us-
age list U , model-based list M , induction list Is and ρt

Combine lists (E,C,P ,U ,M ,I) together into primary and secondary criteria list
PS
Determine current date and time, time
for all Attribute value ps ∈ PS do

Determine associated timestamp d for ps
if x = (time− d) > 0 then

φt(ps) = 2(−x)

Assign priority wt(ps) = ρt.φt(ps) to ps
Add ps and wt(ps) to time-based criterion list T

end if
end for

5.2.3.2 Spatially-based Inference

In the same way that time-based criterion assumes recent events are more impor-

tant than those in the past, spatially-based inference assumes that physically or
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geographical closer events are of more interest than those more spatially distant.

Thus, by using location knowledge, it is possible to give a higher priority to data

that corresponds to that location, as there is an assumed higher probability that

data relating to that area will be accessed.

Example: A travelling medical practitioner is visiting patients in a remote

location. In addition to the details relating to the (enumerated) patients,

information relating to other patients residing in the same area could also

be stored.

As with time-based criterion, where attribute values require at least one as-

sociated timestamp attribute, spatially-based criterion is calculated for those at-

tribute values with associated spatial attributes, such as an address. φs is then

be calculated using the formula:

φs = c−d (5.4)

Where c ≥ 1 is a constant, and d is the shortest distance (geographically) that

the attribute value is from the location of the target data. This indicates that the

closer the attribute values are to the target’s location, the more important the

attribute value will be. For recalculation, φs is only required when an attribute

value has Primary Criteria priority. This recalculation would then determine a

new value for φs . Algorithm 8 shows an implementation of the spatially-based

criterion.

Algorithm 8 Spatial-based Criterion

Require: enumeration list E, contextual list C, push-based list P , previous us-
age list U , model-based list M , induction list Is and ρs

Combine lists (E,C,P ,U ,M ,I) together into primary and secondary criteria list,
PS
Determine a set of origin points, O
for all Attribute value ps in PS do

if ps has associating spatial data, d then
Shortest distance s = min(d−O)
φs(ps) = 2(−s)

Assign priority ws(ps) = ρs.φs(ps) to ps
Add ps and ws(ps) to time-based criterion list S

end if
end for
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5.2.4 User-defined

The criteria described are not an exhaustive list of those that could be used in

the COSMOS process. COSMOS also allows additional user-defined criteria to

be included. The main condition that any user-defined criteria must adhere to is

that it must fall into the behaviour of any one of the three categories (Primary,

Secondary or Tertiary).

5.3 Summarisation Stage Two

Having determined the priorities of each data item, the task is to construct a

summary database such that the organisation of the summary is not overly com-

plex. It must be possible to calculate rapidly whether a query to the summarised

database is able to return the same response as the same query to the original

database. That is, whether, for a given query Q

Q(DB) ≡ Q(SDB) (5.5)

where SDB = Ψ(DB) and Ψ is the summarisation function.

If Ψ is able to be stored, for example, as (the equivalent of) a relational alge-

braic expression (i.e., a view), then query rewriting techniques (with extensions)

could be used to evaluate the equivalence. For example, given the priorities shown

in Figure 5.4, the optimum summarisation, as shown by the colour, might be

σId∈{10129,10187}(RelA)⊕ π{ID,AttA}(RelA) (5.6)

where ⊕ is a combination function.

With traditional databases, the objective is to provide query answers that

are logically complete and sound. However, summary databases are by their

nature associated with a loss in data and are thus incomplete but sound. That

is, these summary databases may provide some of the solutions available to a

complete main database. Consequently, it is not always possible to provide both

sound and complete answers. Hence, in the second stage of COSMOS, views

may be constructed to include attribute values that have an associated priority

value exceeding a certain threshold. The threshold is usually determined such

that the size of the attribute values summed together is within a specified size.

The summary database then has views such as that shown in Figure 5.5, where
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RelA Id AttA AttB AttC

10002 D34 23,000 76, The Avenues ...

10077 D32 24,500 1, The Arches ...

10093 D34 29,000 19, Boulevard Tce ...

10129 D32 23,500 c/o PO Box 15, ...

10165 D33 28,000 1232, Great South Rd ...

10184 D33 26,250 992, Great South Rd ...

10187 D32 26,250 33, Maple Street ...

10211 D39 23,000 244, The Avenues ...

1.2 1.7 .7 .6

1.2 1.7 .7 .6

1.2 1.7 .7 .6

1.8 2.1 1.4 1.1

1.2 1.7 .7 .6

1.2 1.7 .7 .6

1.8 2.1 1.4 1.1

1.2 1.7 .7 .6

Figure 5.4. Example relation with summarisation priorities

attribute values that are not included are substituted by a local null. The concept

of local nulls are discussed in Chapter 6.

RelA Id AttA AttB AttC

10002 D34 Lnull

Lnull

Lnull

23,500

Lnull

Lnull

10187 D32 26,250 33, Maple Street …

Lnull

Lnull

10077 D32 Lnull

10093 D34 Lnull

10129 D32 c/o PO Box 15,…

10165 D33 Lnull

10184 D33 Lnull

10211 D39 Lnull

Figure 5.5. View of relation in Figure 5.4 with local nulls

5.3.1 Storage Maps

As well as constructing the views during this second stage 2, it is also necessary

to provide a descriptive representation of the structure of the resultant summary

database to allow the query processor to determine if a given query can be an-

swered. Many methods capable of representing a view. The adopted format is

through the use of Storage Map (SM).

For the first stage of the summarisation process, each data item is assigned

a particular priority that is used to determine the items selected for inclusion.

In addition, as the summary database is built, a second parallel set of matrices
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are developed that hold a boolean flag corresponding to each of the data items

within the database. This second set of matrices, together with the schema itself,

are known as the SM. It is kept after summarisation to enable query answering

and transaction processing. A SM that corresponds to the relation in Figure 5.5,

is shown in Figure 5.6

RelA Id AttA AttB AttC

10002 1 0

0

0

1

0

0

10187 1 1 1

0

0

10077 1 0

10093 1 0

10129 1 1

10165 1 0

10184 1 0

10211 1 0

Figure 5.6. An example of a storage map

The main advantages of using SM to store descriptions are:

• a fixed, relatively short, description length. Since a bit is used to represent

each value within the database, it is easy to determine the length of the

description,

• for many cases (although not always) a lower storage requirement than the

equivalent algebraic expression, and

• a fast way to determine if queries could be answered. Simple logical binary

operators can be used to quickly determine if a query may be answered.

The main disadvantage of using a storage map is that the technique may not

provide the most optimum description of the summary database. That is, since

SMs are of fixed length, it is not possible to reduce the size of the description

without using compression techniques. If all keys are stored within the summary,

a larger storage requirement is required.

There are two cases that must be considered when creating a storage map.

The first is to store all the keys found in the main database. For large databases,

this case is expensive since they are likely to contain many keys. Additionally, new

keys added to the main database must also be reflected in the summary database
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and thus frequent synchronisation of keys will be required. Since all keys in the

summary database reflect the main database, it is possible to provide a negative

answer when queries refer to keys not present in the summary database.

The second approach is to store only selected keys into the summary database.

One method of this is to determine the primary keys of the tuples that are stored

in the summary database. This would then identify which keys are necessary in

the storage map. This approach resolves the size problem and does not require

frequent synchronisation. However, reference to key values not held requires

querying the centralised database to ensure that all data will be retrieved.

5.4 Discussion

A mobile database is as useful as its contents. However, storage constraints on

mobile devices limit the amount of information that may be stored. Thus, context

sensitive techniques are required to effectively determine the stored information.

COSMOS introduces a protocol that uses context sensitive criteria to rate each

attribute value according to their importance. This rating is subsequently used

to store the required information into the mobile database and create a SM. The

SM may then be used to assist in queries and transactions. The construction and

uses of the SM is discussed in Section 8.1.



Chapter 6

Local Nulls

Codd and Zaniolo gave the semantics of null values as three-fold – value un-

known, value inapplicable and no information (Codd 1970, Zaniolo 1982) while

the ANSI/SPARC Interim Report (ANSI/X3/SPARC 1975, p. IV-28) gave four-

teen different reasons as to why a null value might appear. A variety of research

has since expanded on this – see particularly (Biskup 1983, Codd 1986, Codd 1987,

Date 1986, Imieliński & Lipski 1984, Reiter 1986, Roth et al. 1989, Vassiliou 1979).

In this thesis, an additional definition for the null value in mobile and distributed

databases is required (Chan & Roddick 2003) – that of a ‘local null’ – which is

not so far investigated and not covered by existing interpretations.

Within a summarised database, there may be attributes for which a value

exists only in the global database. Moreover, the lack of connectivity in a mo-

bile environment may result in this summarised database being the best that

is available. The context of our work is thus to maximise the usability of the

data available – i.e., the maintenance of maximal completeness when summarised

databases are used in a low capacity mobile environment. We use the term sum-

marised here to refer to any database which holds, in whatever form may be

appropriate, a fragment of some ‘relatively global’ database. The term ‘relatively

global’ allows for a hierarchy of fragments.

Local nulls can be loosely defined as items that are not available locally, but

may be available from the global database. During periods of good communica-

tion nulls can be handled by passing a request to the global database. However, in

cases where the global database is not accessible2 it would be misleading to return

1A version of this chapter appears as part of Chan and Roddick (2006)
2This is not an uncommon occurrence with mobile devices. Network inaccessibility may

be caused by disconnection, low priority in partial or weak connection mode or intentional

60
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a ‘global’ null value. Null values that are (authoritatively) held in some relatively

global database as ‘global nulls’ and while ‘local’ null values are non-authoritative

values held on distributed and/or mobile devices.

This chapter discusses a novel extension to the current notion of null values

to include the semantics of nulls found in mobile and distributed systems. It

introduces local nulls in terms of amendments to the relational algebra and ex-

amines its impact on the query languages such as SQL. Interestingly, despite the

orthogonality of relations in query languages such as SQL, the impact of a local

null can be different depending on where in the statement the local null appears.

This chapter is structured as follows. Section 6.1 discusses the research to

date and provides more details on our motivation for this problem. Section 6.2

then introduces the notation that will be used within the paper. Section 6.3

examines the relational algebra in terms of local nulls. Section 6.4 discusses the

changes to query languages such as SQL to include local nulls. Finally, section

6.5 will provide a conclusion and a discussion of the use of local nulls.

6.1 Previous Research and Motivation

6.1.1 Literature Survey

Much of the research on the semantics of null values in relational databases dates

back to the 1970s and 1980s (Codd 1970, Lacroix & Pirotte 1976, Maier 1983,

Zaniolo 1984, Roth et al. 1989, Imieliński & Lipski 1984, Vassiliou 1979). The

two definitions of nulls as given by Codd are missing and applicable, and missing

and inapplicable (Codd 1970) and Zaniolo (1992, 1984) later proposed a third

definition as, essentially, a lack of knowledge about the attribute’s applicability,

or no information.

To handle null values, various logical approaches have been developed. For

example, the commonly-used three value logic includes true, false (often by virtue

of a value’s absence - q.v. the closed-world assumption (Reiter 1978)), and a maybe

value which indicates that the results may be true (Yue 1991, Codd 1979). A

four value logic has also been proposed which includes an additional truth value,

which represents the outcome of evaluating expressions which have inapplicable

values (Codd 1986, Gessert 1990).

disconnection through power management because of limited battery capacity (Chan & Roddick
2005).
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Approaches to accommodating null values in practical systems include the

work of Motro (1988) who uses the ideas of conceptual closeness fill the vacancies

represented by a null value and Roth et al. who aim to accommodate nulls in

NF2 databases (Roth et al. 1989). Null values have also been studied in relation

to schema evolution and integration (Kim & Seo 1991, Roddick 1995).

However, there has been little research being undertaken in terms of missing

data / nulls in distributed and mobile databases. Much of the reason for this

is that there is little common agreement as to how to deal with such values.

However, some of the techniques introduced to deal with null values in relational

database are also applicable to distributed databases. That is, in many cases

the evaluation of any query on a distributed database system as a whole may be

viewed as an evaluation of that query on a single relational database with all the

data of the distributed one. Thus, in some cases, although not all, specialised

techniques to handle nulls in distributed databases can be avoided. Moreover,

there is research that introduces techniques to allow for the approximation of

incomplete data using fuzzy rules (Chen & Chen 2000).

Finally, it should be noted that many of the techniques for handling data

(including nulls) in distributed databases are often applicable to mobile databases,

especially they are viewed as extensions to distributed databases. In such cases,

many designers are able avoid developing new techniques to dealing with problems

in mobile databases specifically. Similarly, modifications to techniques developed

for mobile systems are often applicable to distributed systems.

6.1.2 Motivation

As motivation for using local nulls, an ongoing example of a medical practitioner

visiting patients is adopted. In this example, the practitioner carries a PDA

which stores a summarised version of the main database. It is assumed that

the main database contains all information available to the practitioner at the

medical clinic, and the summarised database stores an optimum subset of (what

has been estimated to be) relevant information3.

Should the main database lack information such as patient’s details these are

then stored into the main database as null values. Thus, within the summary

database, the same information, if selected for inclusion, would also be represented

3Note that ’relevant information’ can be determined using the context-sensitive framework,
COSMOS, as discussed in an earlier paper (Chan & Roddick 2003) or by some other means.
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as null values. Since the summary database is created using relevancy, much

irrelevant data is excluded and, in the absence of local nulls, these missing data

would also be represented by null values. In such cases, while the summarised

database is disconnected from the clinic’s network, it will not be possible to

differentiate between data that are available somewhere in the network and data

that are globally unavailable. Since the existence, or otherwise, of the data is

known when the summary database is populated, by introducing the concept

of a ‘local null’, a disconnected summary database would be able to distinguish

between them.

There are a number of benefits to this. For example, in a mobile, wireless

or large area distributed environment, where the cost of communication are re-

leatively high, by knowing which data is available it is possible to request only

specific data, and thus reducing the traffic over the low bandwidth communica-

tion network. That is, by examining the query, such as one that displays the

patient’s details, it is possible to create sub-queries that resolve the local nulls.

These sub-queries may then be forwarded to the main database, thus allowing the

practitioner to vary the accuracy of the results. That is, lower accuracy would

result in faster response time. On the other hand, if higher accuracy is required,

a slower response time (and fewer local nulls) would be returned as the querying

is done mostly at the main database.

6.2 Notation

Maier (1983) examined the presence of unknown values in relational databases,

which have been adopted here as a basis for our modifications to include the

notion of local null values. This section presents the amended notations and

provides a comparison to Maier’s work.

For the purposes of this paper, local and global null values will be represented

as ϕ and ω, respectively.

A tuple t in a local relation is a locally complete tuple (LC-tuple) if it holds

all data that also exists in the equivalent attributes within the global database4.

Conversely, a locally partial tuple (LP-tuple) contains one or more local nulls.

LC-tuples will not contain any local nulls but can, of course, contain global nulls.

LP-tuples contains global ω and local ϕ nulls.

4Note that the local and global schemata may differ. For example, the local database may
possess a restricted subset of attributes.
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The designation of LC and LP-tuples can be extended to include Maier’s

notation (1983), in which a tuple may be designated as a partial tuple or a total

tuple depending on whether global nulls exists in the tuple. When an attribute

value, t(A), is not a local null it is considered to be equal to its representation

in the global database, t(A)L ↓, where t(A) ↓ defines an attribute value that is

not a global null. Thus, for a set of attributes X, t(X)L ↓ implies t(A)L ↓ for

every attribute A ∈ X. A simplified notation, tL ↓, is then used to define t as a

locally complete tuple, while a complete tuple consists of no nulls of either type.

Similarly, for tuples, t and u defined over the same schema, t locally subsumes u,

t ≥L u if ∀ u(A)L ↓, u(A) = t(A). If t ≥L u and tL ↓, then t is a local extension of

u, t ↓≥L u. For example, the tuple < a, ϕ, ϕ > is locally subsumed by < a, b, ω >,

and in this case, the tuple is also locally extended by < a, b, ω >. In comparison

to Maier’s work, tuple < a, b, ω > is subsumed and extended by < a, b, c >.

A relation r is a locally complete relation (an LC-relation), r ↓L, when all its

tuples are locally complete tuples, and a locally partial relation (an LP-relation)

when its tuples contains one or more local nulls. For a relation scheme R, Rel ↑
(R)L is a set of all locally partial relations over R, while Rel(R)L is the set of all

locally complete relations over R. For relations r and s over R, r locally subsumes

s, denoted r ≥L s, if ∀ts ∈ s, ∃tr ∈ r : tr ≥L ts. If r is a locally complete relation,

then r is a local extension of s if every tuple of s is subsumed by at least one

tuple of r, denoted r ↓�L s, and it is a local completion of s if every tuple of s is

subsumed by exactly one tuple of r, denoted r ↓≥L s. For example in Table 6.1,

r is a local extension of s since both tuple < d, e, f > and < d, e, ω > subsume

< d, e, ϕ >, while p is a local completion of s.

Table 6.1: Example of Local Extension and Local Completion. r is a
local extension of s, while p is a local completion of s.

s (A B C)
a b c
d e ϕ
k l m
g ϕ i

r (A B C)
a b c
d e ω
d e f
k l m
g h i

p (A B C)
a b c
d e ω
k l m
g h i

Constraints on global nulls do not usually appear in any component of a

candidate key (Maier 1983). Similarly, any component of a candidate key for

any summary databases should not contain any local nulls. This is important

as primary keys are used not only as object identifiers but as indexes to retrieve
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information when data is lacking from the summary database.

6.3 Local Nulls and Relational Algebra

Relational algebra provides a set of operations to be used in the manipulation and

retrieval of data from a database (Codd 1970). As with global nulls, the presence

of local nulls in relations requires an extension to current relational algebra.

6.3.1 Set Theory Operations

Two global relations, R(A1, A2, ..., An) and S(B1, B2, ..., Bn), are considered union

compatible, and set operations can be applied, if they have the same degree of

n and if ∀i ∈ n : dom(Ai) = dom(Bi). For LP-relations where local nulls exist,

this thesis shows that the use of set operators are plausible and that the results

gracefully degrade as local nulls are resolved. Since local nulls are extensions of

the traditional null concept, it is reasonable to conclude that set theory operations

are possible for LP-relations.

Table 6.2. Union Compatible Tables
r (A B C)

a b c
d j ϕ
ϕ l m
g ϕ i

s (A B C)
a ϕ ϕ
ϕ j ϕ
g h ϕ

Table 6.3. Operations using null substitution principle
r ∪ s (A B C)

a b c
d j ϕ
ϕ l m
g h i

r ∩ s (A B C)
a b c
d j ϕ
g h i

r − s (A B C)
ϕ l m

The conventional set theory operations of union ∪, intersection ∩ and set

difference − operate over two union compatible tables r and s (see Table 6.2):

union: r ∪ s = {t|t ∈ r ∨ t ∈ s} (6.1)

intersection: r ∩ s = {t|t ∈ r ∧ t ∈ s} (6.2)

set difference: r − s = {t|t ∈ r ∧ t /∈ s} (6.3)
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For these three operations, only duplicate tuples will be removed from the

final relation. However, for relations with global nulls, Codd introduced the null

substitution principle to reduce redundancy in the relation (Codd 1979). This was

further discussed in (Zaniolo 1984, Biskup 1983, Maier 1983) for global nulls. For

LP-relations, this principle is also applicable to remove redundancy with respect

to local nulls instead of global nulls. That is, if for two tuples t and u such that

t ≥L u, then u will be removed from the relation (see Table 6.3 for examples).

In related work, Rice and Roddick (2000) propose a similar technique for

reducing redundancy such that only the more informative tuple is kept. In their

technique, however, tuples are not required to be locally or globally partial.

In cases where the primary keys of a relation are available, it is possible to

exploit the keys, introducing ‘keyed’ operations. Essentially, the keyed operations

make it explicit when two tuples represent the same object. For example, suppose

there are two observations of a white car travelling at speed. One observer states

that there were two passengers while the other is unsure. Given that white cars

are common, it can not be assumed there was only the one car and thus merge the

two observations. However, if the registration number of the cars were recorded,

such an assumption can be made and the two observations merged.

Given that ∈L is an extension of ∈ for global nulls, then for a relation r and

its corresponding LC-relation, r ↓L, t ∈L r iff there exists a tuple t1 ∈ r ↓L such

that t1 ≥L t. Thus, a set of n tuples, {t1, t2, ..., tn}, represent a unique key set

as {t1, t2, ..., tn}k where ti(k) 6= tj(k)∀i, j in n and k is the set of primary key

attributes.

Thus given two tuples in different union-compatible relations, defined over the

schema R, with the same primary keys:

keyed union:

r ∪k s = {t|t ∈L r ∨ t ∈L s}k (6.4)

keyed intersection:

r ∩k s = {t|t ∈L r ∧ t ∈L s}k (6.5)

keyed set difference:

r −k s = {t|t ∈L r ∧ t /∈L s}k (6.6)

Conflicting tuples can result from such operations, if unique keys are not

identified in union compatible relations. That is, tuples conflict when, for a

primary attribute Ap, the primary keys for two tuples are the same, while other
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Table 6.4. Value Evaluation of x ∩k y and x ∪k y
x

Value ‘A’ Value ‘B’ ϕ ω
Value ‘A’ A Conflict A A

y Value ‘B’ Conflict B B B
ϕ A B ϕ ω
ω A B ω ω

non-null values are not. Since the tuple conflicts, the relations would then be

considered non-union compatible and the keyed operation would fail. This union

compatibility is different in that it relates to data-centric compatibility instead of

structural compatibility. Table 6.4 examines the evaluation of two values, x and

y, when used in keyed union or intersection given that the primary keys match.

For example, if x is the value ‘A’ and y is a local null, then the evaluated value

is ‘A’.

‘Keyed’ operations are a generalised form of conventional set operation. That

is, if r is a LC-relation, from observation it can be seen that t ∈L r implies t ∈ r,

and t /∈L r implies t /∈ r. Similarly, if r consists of set n tuples, then {t1, t2, ..., tn}k

implies {t1, t2, ..., tn}. Thus,

r ↓L ∪ks ↓L = {t|t ∈L r ↓L ∨t ∈L s ↓L}k

= {t|t ∈ r ↓L ∨t ∈ s ↓L}

= {t|t ∈ r ↓L ∨t ∈ s ↓L}

r ↓L ∩ks ↓L = {t|t ∈L r ↓L ∧t ∈L s ↓L}k

= {t|t ∈L r ↓L ∧t ∈L s ↓L}

= {t|t ∈ r ↓L ∧t ∈ s ↓L}

r ↓L −ks ↓L = {t|t ∈L r ↓L ∧t /∈L s ↓L}k

= {t|t ∈L r ↓L ∧t /∈L s ↓L}

= {t|t ∈ r ↓L ∧t /∈ s ↓L}

6.3.2 Select and Project Operations

The select operation selects a number of tuples that satisfy a certain condition, as

denoted by σ<condition>(R) (Elmasri & Navathe 2000). Given R is a LP-relation,
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the same form may be used, i.e σ<condition>(R).

A selection over Table 6.5 σB=b(R) would result in the selections of rows 1

and 2. To include row 3, a new operator ’?=’ is introduced, which states that for

Table 6.5. Relation Example
R (A B C D)

a b c d
g b e ϕ
f ϕ e d
k h ϕ ϕ
p h e ϕ

two attribute values A and B,

A ?= B iff (A = B) ∨ (A = ϕ) ∨ (B = ϕ) (6.7)

Projection produces a new relation which includes only those attributes spec-

ified. Since this does not include an evaluation of local nulls against a value, it is

possible to include local nulls that exist within those columns into the new rela-

tion. However, there is a possibility that the new relation will contain duplicate

tuples. For example, a projection, πC,D over the relation in Table 6.5 will result

in the following relation (Table 6.6). This relation consists of a duplicate tuple

Table 6.6. Projection Example
(C D)
c d
e ϕ
e d
ϕ ϕ
e ϕ

<e, ϕ >, which can be deleted as the evaluation of local null against another

local null is that they are the same. This is reasonable since including the extra

duplicating tuples does not provide any additional information. Similarly tuple,

< ϕ, ϕ > does not provide any useful information, and is removed. Additionally,

the evaluation requires multiple conditions joined together by logical operators.

For example πB,CσB?=b∧C?=e, produces Table 6.7, in which the first row is true

and the second row is locally unknown.
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Table 6.7. Multiple Conditions Example
(B C)
b e
ϕ e

6.3.3 Join Operations

Unlike set theory operations where the relations being used must be compati-

ble, join operations allow the joining of relations that is defined over different

schemata. These operations involve the combination of two relations over com-

patible attributes. A conventional join of two LP-relations produce a new relation

whose tuples are true with respect to the conditions of the join.

Table 6.8. Join Example
R (A B C D)

a b c d
g b e ϕ
f ϕ e d
k h ϕ ϕ
p h e ϕ

S (E F G H)
l a d k
m a h ϕ
n ϕ e d
o ω ϕ ϕ
q k e ϕ

Assuming a conventional join over the attributes A and F of relations R and

S in Table 6.8, (i.e., R onA=F S), the relation in Table 6.9 would be produced.

Table 6.9. Conventional Join
(A B C D E F G H)
a b c d l a d k
a b c d m a h ϕ
k h ϕ ϕ q k e ϕ

Methods to generalise joins over attributes where global nulls exists had been

discussed in the literature (Zaniolo 1984, Codd 1975, Lacroix & Pirotte 1976,

Maier 1983). These generalised join states that there may also exist tuples where

it is globally unknown whether it is true, in addition to tuples that are true.

That is, using the null substitution principle proposed by Codd (1975), it is

possible to include tuples where the equivalence evaluation over attribute values

that are globally null indicates a globally unknown solution. These tuples are

included since they suggests a solution that might be true. For example, Table

6.10 shows a proposed generalised join, denoted onG, over the attributes A and

F , R onG
A=F S. For this example, tuples 4 to 8 are global unknown solutions.
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In fact, R onG
A=F S can be considered equivalent to a conventional join where

R on(A=F )∪(A=ω)∪(F=ω) S. The local join over the attributes A and F would

Table 6.10. Generalised Join
(A B C D E F G H)
a b c d l a d k
a b c d m a h ϕ
k h ϕ ϕ q k e ϕ
a b c d o ω ϕ ϕ
g b e ϕ o ω ϕ ϕ
f ϕ e d o ω ϕ ϕ
k h ϕ ϕ o ω ϕ ϕ
p h e ϕ o ω ϕ ϕ

evaluate the true solutions in addition to locally unknown solutions. That is,

R onL
A=F S ≡ R on(A?=F ) S

≡ R on(A=F )∪(A=ϕ)∪(F=ϕ) S (6.8)

This may be seen in Table 6.11. Similarly, a generalised local join is also proposed,

denoted onGL. That is,

R on(A=F )∪(A=ω)∪(F=ω)∪(A=ϕ)∪(F=ϕ) S (6.9)

Table 6.11. Local Join
(A B C D E F G H)
a b c d l a d k
a b c d m a h ϕ
g b e ϕ o g ϕ ϕ
k h ϕ ϕ q k e ϕ
a b c d n ϕ e d
g b e ϕ n ϕ e d
f ϕ e d n ϕ e d
k h ϕ ϕ n ϕ e d
p h e ϕ n ϕ e d

Outer joins are also possible for tables with local nulls. There exist two

outer join operations, left outer join and right outer join. Both perform similar

operations whereby it includes the tuples which would result from a normal join,

in addition to any remaining tuples from one table padded with global null values,
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since they are unable to be joined with the other table. The difference between

the left and the right outer joins is that the tuples from the first or left table in

the join are padded in the former, while the tuples in second or right table in the

join are padded in the latter. A local outer join, denoted onLLO and onRLO for

left and right respectively, is then proposed to allow attributes to join over local

nulls, but still be padded with global nulls, i.e.,

R onLLO S ≡ R on(A=F )∪(A=ϕ) S (6.10)

R onRLO S ≡ R on(A=F )∪(F=ϕ) S (6.11)

A summary of join operations, including both conventional and the proposed

local operations, and their corresponding conditions over the attributes A, B is

shown in Table 6.12.

Table 6.12. Summary of Local Join Operations
Operation Conditions

Normal Join on A = B
Local Join onL A? = B

Left Outer Join onLO (A = B) ∪ (A = ω)
Left Local Outer Join onLLO (A = B) ∪ (A = ω) ∪ (A = ϕ)

Right Outer Join onRO (A = B) ∪ (B = ω)
Right Local Outer Join onRLO (A = B) ∪ (B = ω) ∪ (B = ϕ)

Generalised Join onG (A = B) ∪ (A = ω) ∪ (B = ω)
Generalised Local Join onGL (A? = B) ∪ (A = ω) ∪ (B = ω)

6.3.4 Division Operation

A procedure for the division operation may be found in (Elmasri & Navathe 2000).

Table 6.13 shows an example.

Table 6.13. Division Example - R÷ S = T
R (A B)

a b
g b
f ϕ
ϕ h
p h

S (A)
a
g

T (B)
b

When undertaking division on tables where local nulls are involved, maybe

true evaluations could also be included. For example, R ÷L Q would produce a



LOCAL NULLS 72

result, T , which maybe true since there is a possibility that the local null value

is the value b (Table 6.14).

Table 6.14. Local Null Division Example
R (A B)

a b
g b
f ϕ
ϕ h
p h

Q (A)
a
g
f

T (B)
b

6.4 Local Nulls and SQL

To take advantage of the notion of locality using local nulls, extensions to the

query language are required.For example, it is now possible to extend SQL to

enable the querying for tuples that are locally unknown.

SELECT * FROM R

WHERE A = LNULL

Where the new reserved word ’LNULL’ represents local null values.

It is also possible to define queries that results in tuples that are true and

locally unknown. That is, using the new operator for relational algebra, ’? =’, a

new query statement such as

SELECT * FROM R

WHERE A ?= ’b’

may be constructed.

For local joins,

R onL S ≡ R on(A?=B) S

≡ σ(A?=B)(R× S) (6.12)

In which case, we may now convert it to

SELECT * FROM R,S

WHERE A ?= B
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Additionally, it is also possible to convert the ’?=’ operator further.

R onL S ≡ R on(A=B)∪(A=ϕ)∪(B=ϕ) S

≡ σ(A=B)∪(A=ϕ)∪(B=ϕ)(R× S) (6.13)

which in SQL is equivalent to

SELECT * FROM R,S

WHERE A = B

OR A = LNULL

OR B = LNULL

This now provides a way to separate local unknown solutions from true solu-

tions. Similarly, for generalised local joins,

R onGL S ≡ R on(A=B)∪(A=ω)∪(B=ω)∪(A=ϕ)∪(B=ϕ) S

≡ σ(A=B)∪(A=ω)∪(B=ω)∪(A=ϕ)∪(B=ϕ)(R× S)

which in SQL is equivalent to

SELECT * FROM R,S

WHERE A = B

OR A = ω

OR B = ω

OR A = ϕ

OR B = ϕ

For the other local operations, a conversion using the equivalent condition

algebra as shown in Table 6.12 is possible and Table 6.15 provides a summary.

Table 6.15. Summary of Local Join Operations in SQL
Operations SQL
Local Join R onL S SELECT * FROM R,S

WHERE A?=B
Left Local Outer Join R onLLO S SELECT * FROM R LEFT LOCAL JOIN S

WHERE A=B
Right Local Outer Join R onRLO S SELECT * FROM R RIGHT LOCAL JOIN S

WHERE A=B
Generalised Local Join R onGL S SELECT * FROM R,S

WHERE A=B OR A=ϕ OR B=ϕ
OR A=ω OR B=ω
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For the example, assuming that the medical practitioner decides to looks up

the address of a patient. The following query can now be submitted:

SELECT NAME,ADDRESS,AGE,TELEPHONE

FROM PATIENT

WHERE NAME ?= ’John Doe’

AND AGE ?= 30

which would result in the Table 6.16.

Table 6.16. Example Results
ID Name Address Age Telephone

1 John Doe 22 Ever St... 30 NULL
2 LNULL LNULL 30 LNULL

In our running example, the practitioner may be satisfied with the result of

ID 1 if enough information is already displayed. However, since the ‘Telephone’

attribute of ID 1 returns a NULL value, no additional query is required from the

main database. If the telephone attribute of ID 2 is required, it can be obtained

through further querying of the main database. The sub-query transmitted to

main database may then more specific and thus, reduce the time and communi-

cation bandwidth required.

It is interesting to note that a local null appearing in the SELECT clause of an

SQL statement is generally less of an issue that one appearing in a WHERE clause.

For example, given the SQL example above, a local null in AGE would mean that

the selection of the complete tuple is conditional, whereas a local null in ADDRESS

would merely mean that the value is unknown but the presence of the tuple is

unconditional.

6.5 Discussion

In this chapter, the concept of local nulls in relations was introduced, where it

was shown that it is possible to manipulate relations with these nulls through the

use of extended relational algebra. It is then possible to extend the SQL language

to identify locally unknown solutions and, importantly, to provide users with a

definable response to queries that include them.

The concept of local nulls are primarily applicable within a distributed or

mobile database system, where a piece of information exists in multiple databases
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within that system. Because local nulls are considered to be temporary nulls that

replace actual values within a database in order to conserve storage capacity, it is

possible for attribute values to be nulls, in a local database, while other databases

can have its actual value. In mobile databases, where the storage capacity is

limited, it is useful to have the ability to store only parts of the database that are

used often. For values that are not stored, local nulls are used to allow a database

to determine whether the information being sought by the can be found in other

databases within its system.



Chapter 7

Transaction Management

For a mobile distributed system to use COSMOS in a hierarchical architecture,

current transaction processing concepts must be examined, and if necessary, mod-

ified. In traditional distributed transactions, the ACID properties must be sat-

isfied. However, due to the issues within the mobile environment (see Section

1.2), mobile transactions will not be able to adhere to strict ACID properties.

Modification to the ACID properties are therefore required.

This chapter is organised as follows. In section 7.1 a transaction model is pre-

sented, which examines the relaxation of certain ACID properties. In particular,

the relaxation of consistency allowing mobile transactions to occur, is discussed

in Section 7.2. A reconciliation scheme to ensure consistency is then discussed in

Section 7.3. A discussion on this chapter is presented in Section 7.4.

7.1 Transaction Model

Within a hierarchical centralised distributed system, there is one authoritative

copy of the database, the Central Database (CDB). All other sites will either

have a local or server Summary Database (SDB), depending upon whether it is

capable of being a server site. Sites that have a direct connection to a server SDB

are said to exist on a same branch as the server.

Within the system, sites can be weakly or strongly connected to other sites.

Strong connectivity refers to connections that are attained through high-bandwidth

and low-latency communications, while weak connectivity refers to as those with

intermittent or low bandwidth (Pitoura & Bhargava 1999, Madria & Bhargava

76
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1999). Weak connectivity is expensive in terms of cost and speed, and is un-

reliable. Two strongly connected sites implies that both are reliably connected

(strong connectivity) and disconnections only occur through failure. Alterna-

tively, two weakly connected sites exhibit frequent disconnections, whether vol-

untary or not. Additionally, widely distributed database systems display similar

network connectivity conditions. A ‘strong branch’ includes sites in the same

branch that have strong connectivity. Thus, in order to reduce the amount of

communication over weakly connected sites, local and global transactions are

introduced that access summarised copies of the database.

In addition, traditional distributed transactions (strict transactions), are sup-

ported that are atomic, consistent, durable and isolated, satisfying the ACID

properties. That is, the transaction is:

• atomic when all of its operations are executed or none at all,

• consistent if completing its execution will maintain the database consis-

tency,

• isolated, in that the transaction does not view the partial results of any

other transactions, and

• durable if any changes applied to the database are permanent after com-

mitting the transaction.

For mobile transactions, atomicity is a restrictive property since they are prone

to error and can be long-lived. Thus, using the structure (described in Sections

7.1.1 and 7.2) a transaction is divided into subtransactions, each of which must

be atomic. The consistency requirement is also restrictive when used for mobile

transactions. That is, out-of-date local data can be read when the mobile data-

base is disconnected. Thus, a more relaxed consistency requirement is required

and is discussed in Sections 7.1.2 and 7.2. The isolation property is application-

specific (Pitoura & Bhargava 1994), and relates to the sharing of results between

concurrently executing transactions. This is desirable for different types appli-

cations and is not affected by mobility. Due to the error-prone nature of mobile

transactions, it is difficult to enforce durability (see Section 7.1.3). Finally, mobile

transactions can also support a new property (transaction relocation) examined

in Section 7.1.4.
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7.1.1 Transaction Structure

In order to increase availability and provide support for local nulls, local opera-

tions are defined such that they provide local processing of transactions using the

SDB. The two local SDB operations are Local Read (LR) and Local Write (LW).

A second set of operations, Global Read (GR) and Global Write (GW) at-

tempt to access server copies of the database. It is assumed that local databases

contain subsets of a server, resulting in times when the local database does not

contain all the required information. In which case, global operations are used to

access the server’s database copy.

The traditional operations, renamed from just Read and Write to Strict Read

(SR) and Strict Write (SW), respectively, are also supported. These operations

attempt to access the data from the central database, and are assumed to be

explicitly requested by the user.

To process transaction operations, the database management system trans-

lates the operations on the attribute values into operations on the replicated

copies of the attribute values. This translation is formalised by a function h

(detailed in Section 8.1).

Using these operations, it is now possible to define a transaction as a partial

ordering of operations. That is, following the definitions by Bernstein et al.

(1987), a transaction is a partial order (op, <), where op is the set of operations

executed by the transaction, and < is the execution order. Where operations

include the data operations, Local Read (LR), Local Write (LW), Global Read

(GR), Global Write (GW), Strict Read (SR), Strict Write (SW), Abort (A) and

Commit (C). The partial order specifies the execution order the read and write

operations and contain either an abort or commit at the end. Two data operations

conflict if they access the same copy of an attribute value and at least one of them

is a type of write operation.

To model transaction processing at an intermediate level of the system archi-

tecture, GR and GW can be downgraded to LR and LW, respectively. That is,

global operations, from a mobile database, will be propagated to its respective

server, which then re-evaluates the operations through transaction decomposition

to refine the operations. However, if a global transaction is propagated to the

CDB the transaction is upgraded to a strict transaction, allowing it to access

data within the CDB.
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7.1.2 Data Consistency

A database state is a snapshot of the attribute values at a particular point in time.

To ensure that a database state is correct and consistent, integrity constraints on

the attribute values are used (Papadimitriou 1986). A type of integrity constraint

is coherence, which defines the restriction between actual values of same attribute

values that exist in different databases. For traditional distributed databases,

consistency is assumed for fully connected sites. However, this is not true for

mobile sites, where intermittent connections are possible. As a result, there is

a need to relax consistency constraints and allow variable consistency to exist

between databases (Pitoura & Bhargava 1999, Terry et al. 1995).

In the case of COSMOS, any consistency other than full consistency is re-

garded as weakly consistent. Local integrity constraints are then the integrity

constraints, excluding coherency of an attribute value that exists in both the lo-

cal SDB and UDB. On the other hand, global integrity constraints specify the

integrity constraints, including that of coherency, that exist between the same

attribute value in different databases. For example, integrity constraints that

exist between a local SDB and a global SDB or a local SDB and the CDB.

Thus, a SDB state is consistent when the local integrity constraints are sat-

isfied and the global integrity constraints are bounded-inconsistent, i.e., weakly

consistent, when weakly connected and fully consistent otherwise. Note that the

local coherence constraint between the SDB and UDB is not required, since UDB

only stores local updates until a database refresh is initiated.

Bounded inconsistency implies that when a local database site is weakly con-

nected to its server or central site, there is a bounded divergence between the

copy that it holds and the server or central copy (Alonso, Barbara & Garcia-

Molina 1990, Sheth & Rusinkiewicz 1990, Pitoura & Bhargava 1999). The degree

of divergence, d, quantifies the bounded divergence, and the term d-consistent

indicates how a replication constraint for an attribute value is bounded. The

possible definitions of d are:

• The maximum number of transactions that operate on local SDB copies.

• The range of acceptable values that an attribute value may take.

• The maximum number of attribute values that have divergent copies.

The degree of divergence can be changed to suit the current connectivity status.
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That is, for strong connectivity, a smaller divergence is required and for weak

connectivity, a greater divergence is acceptable.

7.1.3 Recovery

Mobile hosts are more inclined to failures than static hosts. Due to their mobility,

these hosts can be lost, stolen or damaged. Additionally, their reliance on wireless

communications can cause more communication failures (described in Section 1.2)

when compared to wired communications.

Recovery protocols ensure the durability of a transaction. However, it is more

difficult to ensure the durability of transactions in a mobile environment than in

a non-mobile environment, as any mobile operations must be reported to a fixed

network to ensure durability.

Traditional database recovery includes several techniques for non-catastrophic

transaction failures (Bernstein et al. 1987). These include UN-DO/REDO, UNDO/NO-

REDO, NO-UNDO/REDO, and NO-UNDO/NO-REDO algorithms. These algo-

rithms specify whether the recovery technique is able to undo any operations,

and whether it is required to redo any operations if a system fails.

For traditional distributed systems this is more complex, especially to main-

tain atomicity, requiring a two-phase commit protocol (Bernstein et al. 1987).

This protocol employs a coordinator to maintain recovery information, such as

update logs, and coordinates commit operations on all involved databases.

These recovery techniques are not always suitable for mobile transactions due

to the host’s susceptibility to failure. Pitoura and Bhargava (1995a), proposed an

agent-based model from which mobile transactions are processed in order to ac-

cess heterogeneous mobile databases. Agents are middleware, situated in a fixed

network, through which mobile transactions may be submitted for processing,

and therefore extends the client/server architecture into client/agent/server ar-

chitecture. That is, mobile transactions can be submitted either in parallel to the

local database and the agent, or just to the agent. Since the agent is located at a

fixed network, it processes the transaction using any available database. If dur-

ing this time the mobile client fails, either through voluntary or non-voluntary

failure, the agent continues processing. Assuming that the agent has a stable

storage and can survive failures, durability is ensured even after commit, as the

agent still has a copy of any transaction made by the client.

In the case of COSMOS, it is necessary to assume that the CDB has stable
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storage and is able to survive failures, so that the durability is ensured for strict

transactions. For local transactions, all updates are propagated after a local

commit. If the required updates are propagated to its server before a failure

occurs, then transaction durability is guaranteed for this site. However, since

updates require propagation until the CDB is reached, there is still a possibility

of failure during this further propagation. Thus, durability for local transactions

are only guaranteed if the local transaction reaches the CDB. At this time, it

is considered a strict transaction, if it does not violate the serialisability rule as

described later in Section 7.3.

7.1.4 Transaction Relocation

The idea of mobility is that users move geographically, and changes locations

frequently. It is possible that after moving the communication cost to their

support station is expensive in terms of communication times. This may result in

users moving from their current support station to another of less communication

cost. It is then necessary to relocate part of a mobile transaction to the new

support station improving response time by using the cheaper communication

link.

Dunham et al. (1997) proposed the Kangaroo Transaction as a mobile trans-

action model to capture the movement of a mobile user. That is, a transaction

is first divided into different parts, and as the user moves from one support sta-

tion to another, different parts are processed at different support stations. These

transaction parts are then committed and/or aborted independently.

At this point, COSMOS does not provide support for transaction relocation.

However, the architecture does not require the relocation of any transaction part,

as all strict transactions that affect global commitment are required to be prop-

agated to, and executed at, the CDB. The effect of mobile hosts connecting to

a server other than its own requires that its server, and all its supersets, include

all attribute values that exist in the SDB. This can be costly if there are no in-

tersections in attribute values between the local and server SDB, as all the local

attribute values must be added to the server’s database.
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7.2 Consistency in Local Operations

For the correct execution of concurrent transactions at a local database, only

conflicts between local and global operations must be examined. That is, con-

flicts may occur when users that are local to the server database submits local

transactions while users local to any subset of that server database submits global

transaction to that server database, concurrently.

For simplicity, if the CDB is isolated by having only weak connectivity to the

SDBs, it can be assumed that strict transactions are only executed at the CDB.

This assumption, however, may be removed in which case strong consistency is

required of those sites and the CDB.

Global transactions are, seen to be, a special case of local transactions. That

is, using the hierarchical architecture, global transactions only affect the server

site that they are submitted to and all other subsequent server sites to which the

global transactions are submitted on the same branch. Other sites on different

branches considers those global transactions to be local transactions, and as a

result, does not affect those sites.

Thus, a complete Local Schedule (LS) is an observation of an interleaved exe-

cution of transactions at the top site of a strong branch. Let T = {T0, T1, ..., Tn}
be a set of transactions. A complete Local Schedule (LS) over T is formally,

a pair (op, <L) in which <L is a partial ordering relation such that (Bernstein

et al. 1987):

1. op = h(
⋃n

i=0 Ti) for some translation function h.

2. For each Ti and all operations pi,qi in Ti, if pi <i qi, then every operation

in h(pi) is related by <L to every operation in h(qi).

3. For all read operations, rj[xi], there is at least one write operation, wk[xi],

such that wk[xi] <L rj[xi] and wk[xi] ∈ SWk[x].

4. All pairs of conflicting operations are related by <L, where two operations

conflict if they access the same copy of an attribute value and one of them

is a write operation.

5. If wj[x] <L rj[x] and rj[xi] ∈ h(rj[x]) then wj[xi] ∈ h(wj[x]).

Condition 1 states that the database system translates each operation on an

attribute value into the appropriate operations on the data copies. Condition 2
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states that the local schedule preserves the ordering stipulated by each transaction

Ti. Condition 3 states that a transaction is not allowed to read a copy unless it

has been previously initialised in the central database. Condition 4 states that

the local schedule records the execution order of conflicting operations. Condition

5 states that, if a transaction writes into an attribute value x before it reads x,

then it must write to the same copy of x that it will subsequently read.

For a set of transactions, T , a read operation on an attribute value x reads-x-

from a transaction Ti, if it reads a copy of x written by Ti and no other transaction

writes to this copy of x in between. A transaction Ti, then has the same read-

from relationship in two schedule, S1 and S2, if Ti reads-x-from Tj in S1 and it

reads-x-from Tj in S2.

Two schedules are conflict equivalent if for the same set of transactions, the

order of any two conflicting operations are the same in both schedules (Bernstein

et al. 1987). A one-copy schedule is a single-copy interpretation where all opera-

tions on data copies are represented as operations on the corresponding attribute

value (Pitoura & Bhargava 1999). A schedule is then one-copy serialisable if it is

equivalent to a serial one-copy schedule.

7.2.1 Correctness Criterion

Bounded inconsistency must be maintained for the correct concurrent execution

of local, global and strict transactions. The correctness criterion for strict trans-

action execution is one-copy serialisability at the CDB. One-copy serialisability

ensures that all strict transactions have a consistent view as a one-copy serial

schedule. This occurs since strict transactions only exist in the CDB and thus,

consistency is required to only be managed centrally.

For global and local transactions, the correctness criterion is a weaker form

of one-copy serialisability. That is, only serialisability is required between the

schedule of the top server site of a branch, and all other branch sites. As a

result, the sites are only required to read consistent data that has been globally

or branch committed, by either strict transactions or global transactions from the

same branch, respectively. Branch commit refers to a global transaction being

committed at the top branch site.

Two schedules S and S ′ are said to be view equivalent if the following three

conditions hold (Bernstein et al. 1987):

1. For a set of transactions T , all operations in T exist in both S and S ′.



TRANSACTION MANAGEMENT 84

2. Both S and S ′ has the same read-from relationship.

3. Each final set of writes in S is the same as the final set of writes in S ′

So a Local Schedule (LS) is weakly correct if and only if the following condi-

tions are true:

1. All transactions in LS have a consistent view.

2. There exists a one-copy serial schedule, S, such that S is view equivalent

to a strict projection of LS.

3. There is bounded-inconsistency between weakly connected sites.

Given that bound-inconsistency exists, it is possible to show that LS is weakly

correct in terms of equivalence to a serial schedule. That is,

1. a projection over the strict transactions of LS is one-copy serialisable, and

2. a projection on a site is conflict equivalent to a serial schedule.

Thus, assuming bounded inconsistency between weakly connected sites, it is

only necessary to guarantee a consistent view for transactions that occur between

sites that are strongly connected. Assuming that there exists a serial schedule

for every transaction, then projecting that schedule to only include transactions

that affect a site will also provide a serial schedule. For local transactions, since

they only operate locally, it is possible to assume a consistent view if a projection

of each transaction on the site satisfies local integrity constraints when executed

alone. Similarly for global transactions, only local integrity constraints at the top

branch site, within a strong branch, must be satisfied.

Thus, for strict transactions one-copy serialisability ensures that all strict

transactions have a consistent view as a one-copy serial schedule. For local and

global transactions, it suffices to have serialisability for the projection of the

schedule on the top branch site.

This serialisability ensures that local and global transactions from strongly

connected sites, within the same branch, will have a consistent view of strict

transactions. For sites that are weakly connected, the correctness criterion does

not ensure that local and global transactions have the same view. Thus, a stronger

definition for correctness criterion is proposed, which is similar to that defined by

Pitoura and Bhargava (1999):
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A Local Schedule (LS) is strongly correct if and only if there is a serial schedule

SS

1. SS is conflict equivalent with LS.

2. There exists a one-copy serial schedule, S, such that S is view equivalent

to a strict projection of SS.

3. There are bounded-inconsistencies between weakly connected sites.

Strong correctness then requires synchronisation of local and global transac-

tions regardless of where they originate from. Alternatively, weak correctness

only requires that the top site of a branch keeps track of any local and global

transactions that affect it. Therefore, no concurrency control messages would be

required over weak connections, since strict transactions are executed and com-

mitted on the CDB, and local and global transactions are synchronised within

strong branches.

7.2.2 Serialisation Graph

The correct execution of a LS can be determined by extending the serialisation

graph, based on methods proposed by Pitoura and Bhargava (1999). In which, a

serialisation graph is first constructed using all strict transactions, then conflict-

ing local transactions are included. Global transactions are disregarded in the

serialisation graph and are considered as local transactions of the server site to

which they were submitted. This is because a global transaction is only global

at the originating site and at all its subsequent subsets or SDB. The conflicts

between local and strict transactions are usually due to local reads and strict

writes. Thus, the following edges exist for a Local Serialisation Graph (LSG)

between local and strict transactions induced by a LS:

1. Dependency edge from ST to LTi.

2. Precedence edge from LTi to ST .

Where ST is a strict transaction and LTi is a local transaction from site i. A

dependency edge then represents the fact that a transaction reads a value that

has been changed by another transaction. While a precedence edge represents a

transaction reading a value that was later changed by another transaction.
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For a LS to be strongly correct, the LSG must be acyclic. It has been shown

(Pitoura & Bhargava 1999) that when acyclic, each of its subgraphs is acyclic,

and thus the replicated data serialisation graph on which the LS is built on is

acyclic. The proof by Pitoura and Bhargava (1999) is presented in the context of

local transactions:

Acyclicity of the replicated data serialisation graph implies one-copy

serialisability of strict transactions, since strict transactions only read

values produced by strict transactions. Let T1, T2, ..., Tn be all lo-

cal and strict transactions in LS. Thus, T1, T2, ..., Tn are the sites

of the LS. Since LS is acyclic it can be topologically sorted. Let

Ti1 , Ti2 , ..., Tin be a topological sort of the edges in LS, then by a

straightforward application of the serialisability theorem (Bernstein

et al. 1987), LSG is conflict equivalent to the serial schedule SS =

Ti1 , Ti2 , ..., Tin . This order is consistent with the partial order induced

by a topological sorting of the replicated data serialisation graph,

let S1C be the one-copy serial schedule corresponding to this sorting.

Thus, the order of transactions in SS is consistent with the order of

transactions in S1C .

7.3 Consistency Reconciliation

After the execution of several local and strict transactions, bounded inconsis-

tency will occur where, for each attribute value, there will be differences in value

between the same attribute values in CDB and all its subsequent SDBs. There

are many approaches that for reconciling the different attribute values into one,

ranging from purely syntactic to purely semantic (Davidson et al. 1985). Syn-

tactic approaches use serialisability-based criteria to restore the database state.

While, semantic approaches use the semantics of either the transactions or at-

tribute values to reconcile. For this thesis’s purposes, a purely syntactic approach

has been selected, based on methods by Pitoura and Bhargava (1999), since it

is application independent. Reconciliation occurs at different times at different

SDBs. For example, it can occur to keep the consistency of a SDB bounded, or

occur periodically or when strong connectivity is achieved between two databases.
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7.3.1 Correctness Criterion

The rule of reconciliation requires that a local transaction, which subsequently

propagates to high tier sites as global transaction, becomes globally committed

if the inclusion of its write operations does not violate the one-copy serialisabil-

ity of strict transactions (Pitoura & Bhargava 1999). In the case of COSMOS,

reconciliation occurs at two places, a CDB or a server SDB. Therefore, global

transactions from different branches leading to a CDB must not interfere with

each other and any strict transactions. While, global transactions from differ-

ent lower tier branches leading to a server SDB must not interfere with each

other or any local transaction originating from the server. A complete Global

Schedule (GS) models execution after reconciliation when the strict transaction,

or local transaction at the server SDB, becomes aware of the global transaction.

Thus, relevant conflicts between global and strict, or global and local, operations

are reported in addition to the conflicts already reported by LS.

A Global Schedule (GS) is then a pair (op′,<G) based on the Local Schedule

(LS), where

1. op′ = G(op).

2. For any pi and qi ∈ op′, if pi <L qi in G(LS) then pi <G qi in GS.

3. For each pair of global write pi = GWi[x] and strict read qj = SRj[x]

operations, all pairs of operations li ∈ h(pi) and sj ∈ h(qj) where either

li <G sj or sj < li.

4. For each pair of global write pi = GWi[x] and strict write qj = SWj[x]

operations, all pairs of operations li ∈ h(pi) and sj ∈ h(qj) where either

li <G sj or sj < li.

Condition 1 and 2 specify that the GS contains the same operations and

ordering as a LS, however, all local operations are converted using some function,

G, to global operations. Condition 3 and 4 then define extensions where strict

transactions, or local if reconciliation is occurring at a server SDB, have read-from

relationships with local transactions. That is, a strict operation on an attribute

value x reads-x-from a transaction Ti in a GS, if it reads a copy of x from which

Ti has written to in the CDB or any subsequent SDB and no other transactions

write any copy of x in between.

The correctness of a Global Schedule (GS) is then true if and only if:
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1. it is based on a correct LS, and

2. the reads-from relationship for strict transactions are the same with their

reads-from relationships in the LS.

Similarly, a reconciliation occurring at a server SDB is defined using the same

definition as that which occurs at the CDB, but substituting all strict operations

to local operations originating at the server SDB. Since a server SDB can still

have bounded inconsistency to the CDB, only transactions that originate from

its branch are required for reconciliation purposes.

7.3.2 Serialisation Graph

Using methods described in (Pitoura & Bhargava 1999), a modified serialisation

graph, called Global Schedule Graph (GSG), is used to determine the correctness

of GS. That is, the graph of a LS, LSG, is used as a base to construct a GSG. Note

that only reconciliation at the CDB is considered here, since any reconciliation

occurring at any server SDB uses the same notation, once all strict transactions

are converted to local transactions of that site.

To illustrate the conflict between weak and strict transactions that access

different copies of the same attribute value, the following edges are induced for:

1. a write order, if Ti local writes and Tk strict writes any copy of an item x

then either there is an edge Ti → Tk or Tk → Ti, and

2. a strict read order, if a strict transaction STj reads-x-from STi in LS and a

global transaction LT follows STi, then an edge STj → GT is added.

Thus, a GS is correct if the GSG for the GS is acyclic, as proven Pitoura and

Bhargava (1999), and is extended as follows:

Clearly, if the GSG is acyclic, the corresponding graph for the LS is

acyclic (since to get the GSG we only add edges to the LSG) and

thus the LS is correct. To show that if the graph is acyclic, then the

reads-from relationship for strict transactions in the GS is the same

as in the underlying LS. Assume that STj reads-x-from STi in LS.

Then STi → STj. Assume for the purposes of contradiction, that STj

reads-x-from a global transaction GT . Then GT writes x in GS and
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since STi also writes x either (a) STi → GT or (b) GT → STi. In case

(a), from the definition of GS, there is an edge STj → GT , which is

a contradiction since STj reads-x-from GT . In case (b), WT → STi,

that is GT precedes STi which precedes STj, which again contradicts

the assumption that STj reads-x-from GT .

7.4 Discussion

The management of transactions discussed in this chapter is based on allowing

these transactions to work within different types of communication environments.

As such, the ACID requirements for transactions work well for traditional distrib-

uted databases, where the communications used are relatively high in bandwidth.

However, due to the resource issues of operating within a mobile environment,

relaxation of certain ACID properties are required. In particular, this chap-

ter explored the relaxation of the consistency requirements and the subsequent

reconciliation required, in terms of the serialisability of schedules. The method

proposed is based on previous work by Pitoura and Bhargava (1999). A similarity

between their method and the method presented in this chapter is the support

for weak connectivity operations and the syntactic approach to reconciling data

between different databases.

While similarities exists, there are also many differences. In particular, COS-

MOS focuses on a hierarchical database architecture. This leads to the definition

of three types of transactions, local, global and strict transactions. Where a local

transaction operates only at an SDB, a global transaction captures the database

access of a user attempting to request data that are not available locally. Finally,

a strict transaction allows a user to access up-to-date information stored at the

CDB.

Another difference occurs during reconciliation, which can now occur at dif-

ferent places, a server SDB or CDB. This requires identifying conflicts between

global and local transactions when occurring at a server SDB, or between global

and strict transactions when occurring at the CDB. As a result aborts may now

occur before reconciliation reaches the CDB.

In practice, the testing of the serialisability of a schedule is quite difficult

especially when a SDB has no access to the transactions of other SDB’s from

different branches. Thus, protocols are developed to ensure the serialisability of
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all schedules. The next chapter discusses different protocols in detail, including

the ones that ensure serialisability.



Chapter 8

Transaction and System Failure

Protocols

Protocols ensure that a mobile distributed database system runs as expected, by

employing a number of different protocols that are responsible for different system

aspects. This chapter examines protocols for transactions and system failures.

Transaction management protocols deal with how transactions are handled within

the system. This includes the locking protocols used by the system to deal with

how concurrent transactions access the same data, and update mechanisms that

deal with data updates. The system management protocols examined in this

chapter deal primarily with how each site may react if the CDB is unavailable for

a long period of time.

This chapter will be organised as follows: Section 8.1 discusses the trans-

formation function requirement to separate a transaction into local and global

subtransactions. Sections 8.2 and 8.3 examine concurrency control and recon-

ciliation mechanisms, respectively, to ensure serialisability as discussed in the

Chapter 7. Sections 8.4 and 8.5 examines local update mechanisms. Section 8.6

examines the possible protocols to bound inconsistencies between sites. Section

8.7 examines database refresh procedures required to propagate CDB updates.

Finally, Section 8.8 discusses the recovery techniques required, if the CDB is

unavailable to any SDB, due to failure or network partitioning.

8.1 Transformation Function

As Storage Map (SM) provide a method to describe the contents of the SDB, a

query transformation, h, is required to construct a corresponding storage map.

91
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There are two main methods used for h both of which utilise SMs during the

transformation.

The first is for read-only transactions (queries). To determine which part

of a read-only transaction may be processed by the SDB, new a SM is created

for the transaction. As an example, consider a map description for the relation,

Patient, in Figure 5.3 (see Table 8.1). In the figure the Patient Identifier, patCode,

is included in full, while other attributes are listed as boolean values indicating

that the value is held in the SDB.

Given that the following query, Q1, is part of the submitted read-only trans-

action, (Table 8.1),

SELECT Name FROM Patient

WHERE SEX = ‘F’

AND patCode < 1003

Assuming that this query then induce the following read operations on the

relation, Patient:

r[(1000, name)]r[(1001, name)]r[(1002, name)].

These read operations directly map onto an SM (see Table 8.1). The easiest

way to determine if a query can be answered is to perform a bitwise AND NOT

operation to the description. That is, if Q∧¬S = 0 where Q and S are the storage

maps of the query (Q1) and the summary database (Patient), respectively, then

the query is answerable. In addition, a non-zero answer also indicates which

particular items are causing the inability to answer.

As can be seen from Table 8.1, R1 6= 0 and thus the above query is unan-

swerable within the summarised Patient relation. However, R1 now provides the

missing attribute values that can be used as a request to the server. That is,

global operations may be induced from R1 to create a global transaction. In this

case, GR[(1000, name)]GR[(1001, sex)]GR[(1002, sex)].

Meanwhile, as the global transaction is created for submission to the server (if

available), the local SDB may also run the query and return local nulls for those

attribute values that are not available locally. This can be achieved through the

use of local null SQL rewrites as described in Chapter 6, which is application

dependent and may also depend on the accuracy required by the user. This pro-

cedure is also used when the local SDB is disconnected from the server. Assuming

the user does not require high accuracy, the SQL statement for Q1 may then be

rewritten as:
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Table 8.1: Storage Map Examples for Patient Relation, Query, Q1 and
Result R1 = (Q1 ∧ ¬Patient)

Patient patCode name sex age town physician
1000 0 1 0 1 0
1001 1 0 0 0 1
1002 1 0 0 1 1
1003 0 0 0 0 1
1004 0 1 1 0 1
1005 1 1 0 0 0
1006 1 1 1 1 1
1007 1 1 0 0 1

Q1 patCode name sex age town physician
1000 1 1 0 0 0
1001 1 1 0 0 0
1002 1 1 0 0 0
1003 0 0 0 0 0
1004 0 0 0 0 0
1005 0 0 0 0 0
1006 0 0 0 0 0
1007 0 0 0 0 0

R1 patCode name sex age town physician
1000 1 0 0 0 0
1001 0 1 0 0 0
1002 0 1 0 0 0
1003 0 0 0 0 0
1004 0 0 0 0 0
1005 0 0 0 0 0
1006 0 0 0 0 0
1007 0 0 0 0 0

SELECT Name FROM Patient

WHERE patCode < 1003

AND SEX = ‘F’

OR SEX = ‘LNULL’

The second transformation function is required for read-write transactions. To

determine the required database, a SM conversion is required to determine the

local availability of the attribute values. This conversion is the same procedure as

that described in the first method. If all the required attribute values exist in the

local SDB then the update id performed locally. However, if there exists a required

attribute value that is a local null, dependencies must exist between the operation

on the locally unknown value and other operations, the entire transaction becomes

a global transaction and is propagated to the server.

8.2 Serialisability

For concurrency control it is possible to use a strict two phase locking protocol,

for which a transaction is required to release all locks on commit. This is similar
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to the two level serializability scheme used in multidatabases (Breitbart, Garcia-

Molina & Silberschatz 1992, Breitbart, Garcia-Molina & Silberschatz 1995). For

a strict transaction, locks are released after global commitment. That is, the

transaction is committed at the CDB while all databases maintain bounded in-

consistency. For local transactions, locks are released after local commit, while

for global transactions, locks are released after local commitment at the server

database.

There are thus six lock modes (LR,LW,GR,GW,SR,SW) that correspond to

the different data operations. A lock is required before the execution of an op-

eration, and is granted when the attribute value is not currently locked in an

incompatible lock. Locks for strict, global and local transactions are processed at

the CDB, server SDB and local SDB, respectively. Lock compatibility between

different lock are shown in Table 8.2 and 8.3.

Propagation of strict updates from the CDB are asynchronous, or lazy, using

database refresh procedures. This occurs since the CDB keeps track of all locks

for strict transactions (see Section 8.7). There are two methods of lock invocation

on an attribute value. These methods reflect whether locks may be granted while

a write lock is being held by a global or strict transaction.

The first method does not impose a lock on any site but the top branch server

or CDB, when either a global write or strict write is respectively requested. A lock

request is then granted for local or local and global transactions when global write

or strict write locks are being respectively held. These locks are only granted to

sites at which the locks are not currently being held. In the case of disconnections,

the second method does not incur any blocking since the locks of strict and global

transactions do not interfere with local transactions. However, the database must

assess bounded-inconsistency as if those transactions had been committed. The

locking matrix for this method is presented in Table 8.2.

Table 8.2. Locking Matrix 1
Held

LR LW GR GW SR SW
LR Y N Y Y Y Y
LW N N Y Y Y Y
GR Y Y Y N Y Y

Request
GW Y Y N N Y Y
SR Y Y Y Y Y N
SW Y Y Y Y N N

The second method requires that all global and strict locks are requested from
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sites that are respectively either of the same branch as the server or globally from

all sites. This is achieved by using an ‘invisibility mask’ on the attribute values,

similar to those described in Section 8.5. Thus, all locked items is invisible to all

affected sites. During this time, a locking matrix would be induced, as shown in

Table 8.3. Incompatibility between lock requests and those held are marked with

an ‘N’ to indicate the lock requests being denied. Thus, no other transactions are

possible when a strict lock is being held, and no other local or global transactions

are possible when a global lock is held. This, however, has a detrimental effect

on the availability of data at the local SDB, as blocking can occur between any

two combinations of strict, global and local transactions, when they access the

same data. In the case of disconnections, any local transaction will not be able

to access any data that has been ‘masked’.

Table 8.3. Locking Matrix 2
Held

LR LW GR GW SR SW
LR Y N Y N Y N
LW N N Y N Y N
GR Y Y Y N Y N

Request
GW N N N N Y N
SR Y Y Y Y Y N
SW N N N N N N

8.3 Reconciliation

Attribute values between different databases are bounded by some degree of di-

vergence and reconciliation is required when strict transactions are globally com-

mitted. Reconciliation occurs when a local transaction is propagated to the CDB

or server SDB. When a global transaction is submitted to the CDB a correct

schedule requires that any potential cycles in the GS graph (GSG) be broken.

The construction of a GSG begins with an acyclic graph, and any edges between

global and strict transactions are added. Thus, any cycles created would involve

at least one local transaction.

To break the cycle, global transactions require rollback, where a transaction

T can cause cascading aborts of local transactions that read the values that T has

written. In terms of graphs, this means that all transactions have a dependency

edge from T . The rollback of a transaction is then required from the server that

the transaction was propagated to, and the local SDB from which the transaction
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originated from. All other sites would not be affected since local transactions from

those sites do not read the values that other transactions have seen.

The detection of cycles are difficult as polygraphs result when edges within

a transaction that wrote an attribute value can have an arbitrary direction

(Papadimitriou 1986). However, a polynomial test for acyclicity can be under-

taken given the assumption that a transaction read an attribute value before

writing it. Thus, only a precedence edge ST → GT is required to construct a

GSG from a LSG, when a strict transaction ST reads an item written by a global

transaction GT . The steps for reconciliation is outlined in Algorithm 9.

Algorithm 9 Reconciliation

while there are no cycles in GSG do
rollback a global transaction to its origin, ie when it is a local transaction
rollback all exact transactions related with a dependency edge to GT

end while
for all attribute values required by the transaction do

propagate the current value to all lower tier SDB served by the server or
CDB.

end for

Since it is possible for reconciliation to occur at a server SDB, if that server

is consistent with the CDB the conflicts will be detected earlier and thus, limit

the effects of cascading aborts.

8.4 Local Update Propagation

Since all attributes of a database are constrained to a certain size limit, updates to

individual attribute values must result in values that are within the constraints.

For these cases where local attribute values are updated with similar or smaller

sized values a slight modification of the conventional ‘update everywhere’ ap-

proach as outlined by Gray et al. (1996) can be adopted. This is considered to

be a Local Update Propagation (LUP) protocol. In order to perform the update,

the client site is first required to request locks (see Section 8.2) on the pertinent

attribute values, where given LUP, the transaction has the required attribute

values and is therefore a local transaction. The local SDB is then able to grant

locks for local transactions, and the client site can begin processing the update.

Depending on the amount of storage left on the client site, the new values may

be committed to the UDB. The results are subsequently propagated lazily to the
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central site. If committed to the UDB, the new values are immediately avail-

able to that client. Once committed on the central site, a database refresh (see

Section 8.7) can be initiated by the central site, where the updated values are

available on the client’s SDB, either by moving it from the UDB or propagating

it from the central site.

An insertion of new values into the local database can also be achieved through

the LUP protocol, where the new data are created in the UDB and the results

propagated to the central site. Once committed a database refresh is required to

update both the SDB and its storage map to reflect the new information. For

the deletion of existing attribute values from a local database, the LUP protocol

is only used if the local database contains all the attribute values required of the

transaction.

Of interest is the attribute-value sensitivity of the COSMOS database means

that a change in value can change the interest in the value to a site. Thus a

future refresh may result in that value not being retained in the SDB.

Once a transaction is locally committed, the transaction is propagated up the

architecture to the CDB for processing, whereby each server is required to process

the transaction and update the required attribute values locally. Depending on

the locking mechanism used, the affected attribute values of all other descendent

of this server would become invisible using the method described in the next

section. This is to limit the effect of cascading aborts on those sites.

8.5 Update Through Local Item Invisibility

Given that the SDB is of limited size, a second scheme is necessary where up-

dates would change the data such that the client’s database becomes larger than

the threshold originally placed upon it or where the local database does not con-

tain enough data to process the update. When this occurs a relocation of the

transaction is required, where it is converted into a global transaction. To ensure

serialisability the lock is obtained before the transaction is relocated. These locks

are granted from the local SDB if it is a local transaction, server SDB if it is a

global transaction, and from the central site if it is a strict transaction. Since

the correct application of the summarisation criteria will create a maximal SDB

containing the information required by the user, it is assumed that relocation of

transactions to a server would occur rarely.
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A method for ensuring that a local value is not accessed, is to render the local

copy of the data invisible by changing the storage map for the local SDB. That

is, the data is effectively ‘dropped’ from the local database by masking out the

relevant parts of the associated storage map. On receiving the update request,

the client is required to convert the update into a SM, U , which is then considered

an invisible mask for the SDB. Assuming the client’s storage map of the SDB is

C, then a simple bitwise operation of

C ′ = ¬(C ∨ ¬U) (8.1)

equates into an updated representation of the client database that does not in-

clude the items requested for update. Moreover,

U ′ = ¬(U ∨ ¬C) (8.2)

represents the bits of the query turned off. The client can also remove the physical

data from its database, once those values have been committed into the central

database. The steps that occur when a user places a request to update the

database are:

1. User sends an update request to client.

2. Client converts the update into a storage map, U , making the relevant items

invisible. C ′ is used for all subsequent updates.

3. Client forwards the update request to the central database, and waits for a

response.

4. If an update is committed, C ′ is subsequently used. If update fails (or is

rolled back) then U ′ is used to reinstate old attribute values.

5. A partial push refresh is then initiated by the server to store the new values

on to the UDB and the old data is systematically removed from the SDB.

6. When resources permit, a full database refresh operation is undertaken.

8.6 Bounded Divergence

For each site, the degree of divergence, d, for each attribute value represents the

allowable difference between the same attribute values in a local SDB and its
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server, which is either the server SDB or CDB. These differences result from

either the local SDB having local writes that were not propagated to its server,

or updates that have not yet propagated from its server. As a result, it is possible

to bound the degree of divergence by limiting the number of local writes until a

global commit is performed. There are also different degrees of divergence be-

tween sites, that are of the same branch, but in different levels of the architecture.

That is, a site closest to the CDB (one tier away) will have a smaller degree of

divergence than another site of the same branch that is n > 1 tiers away. This is

caused by the fact that if a server SDB is k-consistent with the CDB and a local

SDB is l-consistent with the server SDB, then the local SDB is k + l-consistent

with the CDB.

Table 8.4. Protocols to maintain bounded inconsistencies
Definition of divergence (d) Possible protocols
Maximum number of transactions that Appropriately limit the number of
operate on local SDB copies. local write transactions at the SDB.
Range of acceptable values that an Local transactions may only write
attribute value may take. to a certain range
Maximum number of attribute values Appropriately limit the number of
that have divergent copies. local attribute values that may be

modified by local transactions.

There are several options for defining the degree of divergence, d, each of

which has a different implementation protocol, as shown in Table 8.4.

8.7 Database Refresh

Database refresh facilitates the ability to add information to a local SDB created

through COSMOS, after the initial population. The CDB is required to hold

all SMs associated with sites that are one tier away from it. Similarly, server

SDB are required to hold SMs associated with sites directly below. The CDB

and server SDB are then able to determine whether a given attribute value is of

interest.

Three database refresh procedures are supported, partial pull, partial push

and full refresh. The following sections discuss each in more detail.

Partial Pull Refresh.

This refresh is initiated where there are sufficient changes made to any cri-

teria that the local site is currently using. Thus, it is a client-initiated
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operation. If a local site, such as a mobile host, is unable to store any infor-

mation regarding its criteria, a connection with its server SDB is required

before changes to the criteria and subsequent refresh is initiated. This will

allow the server SDB to coordinate the calculation and refresh the local

SDB.

When changes are made to the criteria for a local site, recalculation of the

priorities of data affected by, the criteria involved and the criteria that it

affects. Section 5.2 provides a discussion on the recalculation of the priority

for each criteria. Once recalculated, the corresponding attribute values are

included within the SDB, and the associated attribute values in the UDB

are removed.

It is important to note that a strong connection between the local SDB

and the CDB, through a server SDB, results in the local SDB being able

to pull more data that it requires. When a local SDB has a connection to

a server SDB, which does not have strong connectivity to the CDB, then

the local SDB may only pull data available from the server. Any additional

data is unavailable, and returned as a local null, until a connection can be

established.

Partial Push Refresh.

This is a server-initiated refresh. When changes are committed on the

CDB, the server will communicate the commit action with any affected

sites and a database refresh is initiated. A recalculation of the priorities

of those affected attribute values are required. The recalculation uses the

same approach as partial pull refresh.

Full Refresh.

A full refresh involves a total recalculation of the priority table, which can

be initiated from either a client or a server. This may occur when the

client is expected to be in a long idle state, large bandwidth is available

from the network, and/or the state of the local database has degraded so

much that it is no longer useful. However, before a full refresh is initiated,

any pending local transactions must be processed and globally committed.

Once recalculated, the SDB should have all the required data it needs, and

the entries in the UDB can be removed.

For all three refresh procedures, a new SM is created for the new local database

after the priority table has been recalculated. The attribute values required can
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then be determined by calculating the difference between the new and current

SMs, and placing a request to the server for additional data. The new SM is also

sent to update the representation held at the server. Any additional attribute

values not represented by the storage map are now permanently removed from

the client’s database.

8.8 System Recovery

To this point, the assumption was that the network connecting the clients to a

server and the actual server, itself, does not fail. However, this is not always

the case, especially when hardware errors occur or wireless networking is used.

Since sites are hierarchical in COSMOS, where all lower tier sites are subsets of

a higher tier site, it is possible for higher tier sites to serve even those that are

more than one tier lower along its branch. Therefore, during a site disconnection,

all the clients for that site can connect directly to its server. In the case where

the central server is no longer accessible, recovery mechanisms are required.

The failure of the central site can be debilitating to a centralised distributed

database system. At the least, it results in users being unable to initiate up-

dates. Since the central site is used as a coordinator for any update request, a

new coordinator must be chosen from the available sites to fulfil this role until

the central site is functional. Selection of a new coordinator is achieved using

the election algorithms proposed by Garcia-Molina (1982), in which sites nomi-

nates itself as the coordinator whenever it receives a specified number of failed

communications with the current central coordinator. The site then attempts to

communicate with all other operational sites informing them that it wants to be

the new coordinator. When a majority of other sites agree, the nominated site

becomes the coordinator.

In addition, the new coordinator will request the storage maps from all other

directly connected sites. Since the allocation of data is such that each site only

contains information useful to them, the election algorithm must be extended to

include the nomination of coordinators to service different sections of the data.

This is achieved by enabling the new coordinator to assign additional coordina-

tors. Therefore, when a transaction request is received that includes data that

the new coordinator does not have, it attempts to search all replica sites, by their

SMs, for sites that contain a majority, if not all, of the attribute values required

by the transaction. Once found, the site becomes a secondary coordinator and a
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SM is generated to represent the attribute values that it is now responsible for.

This site is then assigned a priority by the primary coordinator based upon the

amount of data for which it is responsible for. The SM generated on a secondary

site is distinct from the primary coordinator’s or any other secondary sites. A

copy of which is kept with the primary coordinator ensuring that it knows where

to direct data requests. The secondary coordinator will subsequently attempt to

request for additional attribute values that it does not have to complete the trans-

action from the primary. Multiple secondary coordinator is possible depending

on the number of sites directly connected to the primary.

In the event that the new coordinator fails before the central site is opera-

tional, a secondary site with the highest priority takes over as primary. Assuming

that consistency is guaranteed between all running sites, the failure of a secondary

site will have little impact, since the primary may assign a new secondary site to

take its place. The worst-case scenario occurs when data is unavailable at any

of the sites still running to process a transaction. In this case, the transaction is

postponed until the central site becomes operational.

A network partition is used to describe a network split, such that sites can

only communicate with sites within the same partition. When this occurs, sites

within the CDB partition will work as normal while sites in other partitions will

presume that a failure has occurred upon the central site. This will result in the

election of a replacement for the CDB. This allows operations to continue on

that partition, and ensures consistency between sites within each partition. Since

network partitioning is not limited to two partitions, each partition must assign

its own primary site.

In either case, where the central site fails or a network partition occurs and

the central site is perceived to have failed, a synchronisation process must oc-

cur between the central site and any existing primary and secondary sites when

network communications are possible between them. However, if two or more

partitioned networks are able to communicate with each other before the central

site is operational then merging occurs, in which the network with highest pri-

ority primary, takes precedence over the other primary candidates. The primary

site of the highest priority is now the new primary site, and all previous updates

are now propagated and synchronised with the new primary site. In the event

that two or more primary sites have the same priority, then the total priority of

the primary and all secondary sites is calculated for each network and the highest

will take precedence.
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8.9 Summary

Protocols are rules ensuring that a system operates the way it is supposed to.

This chapter discussed the protocols for transaction management, update propa-

gation and system recovery. For transaction management, protocols are required

to ensure that the transactions operations are mapped to the correct database,

to ensure serialisability of schedules and to ensure correct execution of reconcil-

iation. Additionally, protocols for keeping the inconsistency between databases

at different sites bounded are also presented.

The use of protocols, especially those used in the management of transactions,

affect transaction response times. Thus, the next chapter (Chapter 9) will discuss

a quantitative evaluation of COSMOS.



Chapter 9

Evaluation of COSMOS

The evaluation of what is stored within a SDB is usually subjective and subse-

quently it is quite difficult to measure usefulness a SDB since the needs of each

user are different. Thus, a quantitative evaluation of COSMOS is presented in

this chapter, focusing on an evaluation of the transaction processes involved.

This chapter is structured as follows: Section 9.1 examines quantitative eval-

uation methods, in particular the choices required when designing a performance

model. Section 9.2 discusses the model used in this chapter. Section 9.3 provides

the results of an analytical analysis of COSMOS. Section 9.4 provide a simulation

of COSMOS. Finally, Section 9.5 provides a discussion of this chapter.

9.1 Quantitative Evaluations

Nicola and Jarke (2000) presented a comprehensive survey of performance mod-

elling of distributed and replicated databases, where several basic choices for

quantitative evaluation models are proposed. The first relates to the type of per-

formance criteria required. The most common of which considered are the trans-

action response time and the transaction throughput. Other performance metrics

used to measure distributed systems include number of messages, hardware cost,

availability and transaction abort rates (Alonso et al. 1990, Barbara & Garcia-

Molina 1982, Cheung, Ammar & Ahamad 1992, Ciciani, Dias & Yu 1990, Pitoura

& Bhargava 1995b).

The second is a choice between an analytical model, a simulation or a hybrid

of both. The main advantage of simulations is that they are able to evaluate

system models are too complex for analytical models. However, simulations are
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costly in terms of programming and computing time. Analytical models, on the

other hand, are capable of obtaining performance results efficiently from closed

form expressions and numerical iterations.

The third choice is parameter values. Every performance model requires a

set of input parameters. These parameters may be dependent on currently avail-

able technologies such as disk service time and CPU speed, or dependent on the

application, such as the number database nodes and number of operations per

transaction. The former is usually easier to accurately estimate than the latter.

The final choice is the homogeneity assumption, which is common to nearly

all types of performance models. That is, the homogeneity assumption is when

all database sites and their respective workloads are identical. The inter-database

activities are also symmetrical among participating sites. This assumption implies

that all databases have the same structure and service capacity, that all sites

have the same transaction arrival rate, or the communication between sites are

symmetrical.

9.2 Performance Model

It is assumed that a COSMOS distributed system will have n major sites and

a Poisson arrival rate for both queries and updates. That is, λq and λu are the

average rate of queries and updates on attribute values initiated at each site.

For the proposed model, the central site contains the main database copy and

receives and processes all strict transactions. Let a be the number of tiers a site

is away from the central site, where a = 0 specifies the central site, and A is the

total number of tiers in the system architecture. Assume that an average fraction,

h, of the database is summarised onto the tier-1 sites, while tier-2 sites have an

average summarisation fraction of k2h. Thus, tier-a has an average summarisation

fraction of kah where k1 = 1. In a worst case scenario, the smallest database would

be a local SDB at the tier-A and would have an average fraction of kAh. Thus,

the smallest server SDB has an average fraction of kA−1h. For the purpose of this

evaluation, all references to the local and server SDB imply the furthest tiered

local and server SDB, respectively.

Let c be the consistency value such that it represents the fraction of the arrived

operations to the system are strict. That is, for c = 1 all arrived operations are

strict.
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If the attribute values required by a transaction are random, then the transac-

tion will be processed locally with a probability of ah. However, since transactions

are more likely to access summarised data, let f denote the probability that the

transaction will access database hot spots. Hot spots in this case is what is avail-

able locally at the SDB. Hence, a transaction has a kahf probability of being

locally processed and a 1− kahf chance of being propagated to the central site.

9.2.1 Resource Contention Analysis

Sites are modelled using M/G/1 servers, where each request is processed with

the same priority on a first-come, first-served basis. The number of sites, n is

determined by

n =
A∑

i=0

[di] (9.1)

where d is the average number of sites.

The average service time for the various types of request, exponentially dis-

tributed, is determined using the following parameters:

• tCq processing time of a query on a summary copy at the CDB.

• tCu processing time of installing an update on a summary copy at the CDB.

• tSq processing time of a query on a summary copy at a server SDB.

• tSu processing time of installing an update on a summary copy at a server

SDB.

• tLq processing time of a query on a summary copy at a local SDB.

• tLu processing time of installing an update on a summary copy at a local

SDB.

• tb overhead time to propagate an update or query to another server SDB.

Since each site’s connectivity is unreliable, weak connections must also be

modelled. Pitoura and Bhargava (1999) proposed the modelling of disconnections

by using a M/M/1 server with vacations whereby a vacation system is one which

the server accordingly becomes unavailable for a period of time. For such system,

given that messages have an average size of m with exponentially distributed

packet lengths and an available bandwidth of W , the service rate sr is W/m.
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Now, the total number of messages transmitted per second, M , between sites

are:

M = 2n[c(λq + λu) + (1− c)(1− kAhf)(λq + λu)] (9.2)

where the first term corresponds to the propagation of strict traffic to the

CDB, and the second term corresponds to the propagation of global query traffic

up one tier higher.

To calculate execution time, the communication overheads between strongly

connected sites are ignored and it is assumed that grouped together they contain

a single server node with relatively fast connections.

For each site, there are the following types of request:

1. Locally initiated queries, λ1 = (1 − c)λq are local and are serviced locally

with an average service time of θ1 = tlq.

2. Local updates arrive at a rate of λ2 = (1− c)kAhfλu and have an average

service time of θ2 = tlu.

3. Strict updates arrive at a rate of λ3 = kAhfcλu with an average service

time of θ3 = tlu.

E[X l] =
3∑

i=1

(
λi

λ
)θi (9.3)

E[(X l)2] =
3∑

i=1

(
λi

λ
)2θ2

i (9.4)

Similarly, for server sites, the wait time is calculated using the following types

of requests:

• Local queries arrive at a rate of λ1 = (1 − c)kA−1hfλq with an average

service time of θ1 = tsq.

• Global queries arrive at a rate of λ2 = (1− c)[1− kAhf ]λq with an average

service time of θ2 = tsq.

• Local updates are installed at a rate of λ3 = (1−c)kA−1hfλu and an average

service time of θ3 = tsu.

• Global updates arrive at a rate of λ4 = (1− c)[1− kAhf ]λu with an average

service time of θ4 = tsu.
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• Strict updates are installed at a rate of λ5 = kA−1hfcλu with an average

service time of θ5 = tsu.

• Strict updates are propagated to servers and clients one tier away at a rate

of λ6 = kAhfcλu with an average service time of θ6 = dtb.

The service time of the combined flow, Xs, is no longer exponentially distrib-

uted but has a mean and second moment of:

E[Xs] =
6∑

i=1

(
λi

λ
)θi (9.5)

E[(Xs)2] =
6∑

i=1

(
λi

λ
)2θ2

i (9.6)

Finally, for the central site, the wait time may be calculated using the following

types of requests:

• Strict queries arrive at a rate of λ1 = cλq with an average service time of

θ1 = tcq.

• Strict updates are installed at a rate of λ2 = cλu and an average service

time of θ2 = tcu .

• Strict updates are propagated to servers and clients one tier away at a rate

of λ3 = hfcλu with an average service time of θ3 = dtb.

The service time of the combined flow, Xc, is no longer exponentially distrib-

uted but has a mean and second moment of:

E[Xc] =
3∑

i=1

(
λi

λ
)θi (9.7)

E[(Xc)2] =
3∑

i=1

(
λi

λ
)2θ2

i (9.8)

Thus, using the Pollaczek-Khinchin formula, the wait time, w is:

w =
λE[(Xc)2]

2(1− λE[Xc])
(9.9)
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The wait times for the different types of site are therefore:

local sites: wL =
P3

i=1 λiθ
2
i

1−
P3

i=1 λiθi
(9.10)

server sites: wS =
P6

i=1 λiθ
2
i

1−
P6

i=1 λiθi
(9.11)

central site: wC =
P3

i=1 λiθ
2
i

1−
P3

i=1 λiθi
(9.12)

The average response time, without considering data contention, for a local

read (RL
q ), local write (RL

w), global read (RG
q ), global write (RG

w), strict read (RS
q )

and strict write (RS
w) are as follow:

RL
q : R

L
q= (wL + tlq)kAhf (9.13)

RL
w : R

L
u= (wL + tlu)kAhf (9.14)

RG
q : R

G
q= (wS + tsq + tr)(1− kA−1hf) (9.15)

RG
w : R

G
u= (wS + tsu + tr)(1− kA−1hf) (9.16)

RS
q : R

S
q= wC + tcq + dtr (9.17)

RS
w : R

S
u= wC + tcu + dtr (9.18)

Each network link is modelled similarly to Pitoura and Bhargava’s (1999),

where the arrival rate, λr, for each link is Poisson with a mean of M/(n(n− 1)).

The average transmission waiting time wr, of a non-exhaustive vacation system,

or a queue system with Bernoulli scheduling (Takagi 1991), is used. That is, after

the end of each service, the server continues its service with a probability of p, or

takes a vacation with a probability of 1− p. This is modelled by:

wr =
E[v2]

2E[v]
+

λr{s(2)
r + (1− p)(2(1/sr)E[v] + E[v2])}

2{1− p− (1− p)λrE[v]}
(9.19)

where s
(2)
r is the second moment of the service rate and v is the duration of

disconnection. The average transmission time tr is then the sum of the service

time, 1/sr and the wait time, wr, at each network link, obtained by:

tr = 1/sr + wr (9.20)
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9.2.2 Data Contention Analysis

For data contention analysis, a transaction is modelled by having nL + 2 states

(Yu, Dias & Lavenberg 1993), where nL is the random number of attribute values

accessed by the transaction. State 0 refers to the initial setup, while the execution

phases, states 1, 2, ..., nL, are executed in that order. State nL + 1 terminates

the process with the transaction entering a commit phase if successful. The

transaction response time rtrans is expressed as (Yu et al. 1993):

rtrans = rINPL + rE +

nW∑
j=1

rwj
+ tcommit (9.21)

where

• The execution time in state 0 is rINPL.

• The sum of the execution time in states 1, 2, .., nL excluding lock waiting

times is rE.

• The number of lock waits during the run of a transaction is nW .

• The wait time for the jth lock contention is rwj
.

• The commit time to reflect the updates in the database is tcommit.

Then, using Formula 9.21, the response time for strict, global and local trans-

actions is 1:

Rstrict−transaction = RINPL + REstrict
+ NqPSRRSR + NuPSW RSW + Tcommit

(9.22)

Rglobal−transaction = RINPL + REglobal
+ NqPGRRGR + NuPGW RGW + Tcommit

(9.23)

Rlocal−transaction = RINPL + RElocal
+ NqPLRRLR + NuPLW RLW + Tcommit

(9.24)

where Pop is the probability that a transaction contends for an op operation

on a data copy. Rop is the average waiting time to get lock for op.

1where lowercase letters represent random variables and uppercase letters represent the
average of the corresponding random variables.
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The term REop can be approximated using resource contention analysis, by:

REstrict
= NqR

S
q + NuR

S
u (9.25)

REglobal
= NqR

G
q + NuR

G
u (9.26)

RElocal
= NqR

L
q + NuR

L
u (9.27)

The approximation of Pop and Rop considers the locks held by a transaction.

Each state i of a local transaction is divided into subtransactions where i1 is the

lock state and i2 is the execution state. In substate i0 the transaction is at its

initiating site, holds i − 1 locks and sends messages to the server SDB or CDB.

In substate i1, the transaction holds i − 1 locks and is waiting for the ith set of

locks. In substate i2 the transaction now holds i locks and is executing.

The probability that substate i1 is entered after leaving substate i2−1 or i0 is

the lock contention probability, PLR, PLW , PGR, PGW , PSR, PSW for LR, LW, GR,

GW, SR and SW lock requests, respectively. Let cop be the average time an op

spends in state i0. Thus, for GR, cGR = wS +tb+tr. Similarly, cGW = wS +tb+tr,

cSR = wC + tb + atr, and cSW = wC + tb + atr. Let aop be the average time in

substate i2, which is determined by using the average response time from the

resource contention analysis. Thus, aLR = RL
q = (wL + tlq)kahf , aLW = RL

u ,

aGR = RG
q , aGW = RG

u , aSR = RS
q , and aSW = RS

u . Finally, the time spent in

substate i1 is Rop, and the unconditional mean time in substate i1 is thus bop,

such that bLR = PLRRLR, bLW = PLW RLW , bGR = PGRRGR, bGW = PGW RGW ,

bSR = PSRRSR, and bSW = PSW RSW .

Let Pop1/op2 be the probability that an op1-lock request conflicts with an op2-

lock request, and TL (TG and TS) be the average lock holding time for local (global

and strict) transactions. Then,

PLR = PLR/LW

= kAhfλq(1− c)TL (9.28)

Similarly,

PLW = PLW/LR + PLW/LR

= kAhf(1− c)(λq + λu)TL (9.29)

PGR = kA−1hf(1− c)λqTG (9.30)
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PGW = kA−1hf(1− c)(λq + λu)TG (9.31)

PSR = (1− hf)cλqTS (9.32)

PSW = (1− hf)c(λq + λu)TS (9.33)

Let GL, GG and GS be the the sum of the average lock holding times over all

N copies accessed by a local, global and strict transactions, respectively. Then,

GL = {
N∑

i=1

[
Nq

N
(iaLR + (i− 1)bLR) +

Nu

N
(iaLW + (i− 1)bLW )]}+ NTcL

(9.34)

GG = {
N∑

i=1

[
Nq

N
(iaGR + (i− 1)bGR + (i− 1)cGR)

+
Nu

N
(iaGW + (i− 1)bGR + (i− 1)cGW )]}+ NTc

(9.35)

GS = {
N∑

i=1

[
Nq

N
(iaSR + (i− 1)bSR + (i− 1)cSR)

+
Nu

N
(iaSW + (i− 1)bSW ) + (i− 1)cSW ]}+ NTc

(9.36)

where Tc is the average commit time. Then, TL = GL/N , TG = GG/N and

TS = GS/N for local, global and strict transactions, respectively. Let CP ie
op1/op2 be

the conditional probability that an op1-lock request contents with a transaction

in substate ie, which holds an incompatible op2-lock, given that lock contention

does occur. Let optype1 be the read or write operation of op1 and opt1cat be the

operation’s category. For example, if op1 is a LR then optype1 has a ‘q’ (query

value), and opt1cat has the value ‘local’, then,

CP i0
op1/op2 = (i− 1)[(Noptype1/N ∗ cop1 + (Noptype2/N) ∗ cop2]/Gop1cat (9.37)

Let the factors fi then express the average remaining times at each corre-

sponding substate, where its value is dependant on the distribution of the sub-

state times. Additionally, if sLi
, sGi

and sSi
are the average time for a local,

global and strict transaction, respectively, from acquiring the ith lock until the
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end of commit, then

sLi
= (N − i)[

Nq

N
(aLR + bLR) +

Nu

N
(aLW + bLW )] + Tc (9.38)

sGi
= (N − i)[

Nq

N
(aGR + bGR + cGR) +

Nu

N
(aGW + bGW + CGW )] + Tc

(9.39)

sSi
= (N − i)[

Nq

N
(aSR + bSR + cSR) +

Nu

N
(aSW + bSW + CSW )] + Tc

(9.40)

The average time spent waiting to get an op lock is then Rop (given the locking

matrix in Table 8.2) and they are as follows:

RLR = {
N∑

i=1

[CP i1
LR/LW (

RLW

f1

+ aLW + sLi
) + CP i2

LR/LW (
aLW

f2

+ sLi
)

+
NTcL

GL

(
Tc

f3

)

(9.41)

RLW = {
N∑

i=1

[CP i1
LW/LW (

RLW

f1

+ aLW + sLi
) + CP i2

LW/LW (
aLW

f2

+ sLi
)

+ CP i1
LW/LR(

RLR

f1

+ aLR + sLi
) + CP i2

LW/LR(
aLR

f2

+ sLi
)

+
NTc

GL

(
Tc

f3

)

(9.42)

RGR = {
N∑

i=1

[CP i0
GR/GW (

cGW

f0

+ RGW + aGW + sGi
) + CP i1

GR/GW (
RGW

f1

+ aGW + sGi
)

+ CP i2
GR/GW (

aGW

f2

+ sGi
)]}

+
NTc

GG

(
Tc

f3

)

(9.43)
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RGW = {
N∑

i=1

[CP i0
GW/GW (

cGW

f0

+ RGW + aGW + sGi
) + CP i1

GW/GW (
RGW

f1

+ aGW + sGi
)

+ CP i2
GW/GW (

aGW

f2

+ sGi
) + CP i0

GW/GR(
cGR

f0

+ RGR + aGR + sGi
)

+ CP i1
GW/GR(

RGR

f1

+ aGR + sGi
) + CP i2

GW/GR(
aGR

f2

+ sGi
)]}

+
NTc

GG

(
Tc

f3

)

(9.44)

RSR = {
N∑

i=1

[CP i0
SR/SW (

cSW

f0

+ RSW + aSW + sSi
)

+ CP i1
SR/SW (

RSW

f1

+ aSW + sSi
) + CP i2

SR/SW (
aSW

f2

+ sSi
)]}

+
NTc

GS

(
Tc

f3

)

(9.45)

RSW = {
N∑

i=1

[CP i0
SW/SW (

cSW

f0

+ RSW + aSW + sSi
) + CP i1

SW/SW (
RSW

f1

+ aSW + sSi
)

+ CP i2
SW/SW (

aSW

f2

+ sSi
) + CP i0

SW/SR(
cSR

f0

+ RSR + aSR + sSi
)

+ CP i1
SW/SR(

RSR

f1

+ aSR + sSi
) + CP i2

SW/SR(
aSR

f2

+ sSi
)]}

+
NTc

GS

(
Tc

f3

)

(9.46)
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For the locking matrix in Table 8.3, Rop are determined as follows:

RLR = {
N∑

i=1

[CP i1
LR/LW (

RLW

f1

+ aLW + sLi
) + CP i2

LR/LW (
aLW

f2

+ sLi
)

+ CP i0
LR/GW (

cGW

f0

+ RGW + aGW + sGi
) + CP i1

LR/GW (
RGW

f1

+ aGW + sGi
)

+ CP i2
LR/GW (

aGW

f2

+ sGi
) + CP i0

LR/SW (
cSW

f0

+ RSW + aSW + sSi
)

+ CP i1
LR/SW (

RSW

f1

+ aSW + sSi
) + CP i2

LR/SW (
aSW

f2

+ sSi
)]}

+
NTc

GL

(
Tc

f3

)

(9.47)

RLW = {
N∑

i=1

[CP i1
LW/LR(

RLR

f1

+ aLR + sLi
) + CP i2

LW/LR(
aLR

f2

+ sLi
)

+ CP i1
LW/LW (

RLW

f1

+ aLW + sLi
) + CP i2

LW/LW (
aLW

f2

+ sLi
)

+ CP i0
LW/GW (

cGW

f0

+ RGW + aGW + sGi
) + CP i1

LW/GW (
RGW

f1

+ aGW + sGi
)

+ CP i2
LW/GW (

aGW

f2

+ sGi
) + CP i0

LW/SW (
cSW

f0

+ RSW + aSW + sSi
)

+ CP i1
LW/SW (

RSW

f1

+ aSW + sSi
) + CP i2

LW/SW (
aSW

f2

+ sSi
)]}

+
NTc

GL

(
c

f3

)

(9.48)

RGR = {
N∑

i=1

[CP i0
GR/GW (

cGW

f0

+ RGW + aGW + sGi
) + CP i1

GR/GW (
RGW

f1

+ aGW + sGi
)

+ CP i2
GR/GW (

aGW

f2

+ sGi
) + CP i0

GR/SW (
cSW

f0

+ RSW + aSW + sSi
)

+ CP i1
GR/SW (

RSW

f1

+ aSW + sSi
) + CP i2

GR/SW (
aSW

f2

+ sSi
)]}

+
NTc

GG

(
c

f3

)

(9.49)
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RGW = {
N∑

i=1

[CP i1
GW/LR(

RLR

f1

+ aLR + sGi
) + CP i2

GW/LR(
aLR

f2

+ sGi
)

+ CP i1
GW/LW (

RLW

f1

+ aLW + sGi
) + CP i2

GW/LW (
aLW

f2

+ sGi
)

+ CP i0
GW/GR(

cGR

f0

+ RGR + aGR + sGi
) + CP i1

GW/GR(
RGR

f1

+ aGW + sGi
)

+ CP i2
GW/GR(

aGR

f2

+ sGi
)CP i0

GW/GW (
cGW

f0
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)
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(
c

f3

)

(9.50)

RSR = {
N∑

i=1

[CP i0
SR/SW (

cSW

f0

+ RSW + aSW + sSi
)

+ CP i1
SR/SW (

RSW

f1

+ aSW + sSi
) + CP i2

SR/SW (
aSW

f2

+ sSi
)]}

+
NTc

GS

(
Tc

f3

)

(9.51)
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)
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RLW

f1

+ aLW + sSi
) + CP i2

SW/LW (
aLW

f2

+ sSi
)

+ CP i0
SW/GR(
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)
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)
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)

+ CP i2
SW/SR(
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)
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SW/SW (
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+ sSi
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+
NTc
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(
c

f3

)

(9.52)

9.2.3 Reconciliation

The cost of restoring consistency is estimated in terms of the number of local

transactions required to be rolled back, given the size of the CDB. The method

described in this section extends Pitoura and Bhargava (1999).

For the CDB site, a global transaction, GT , is rolled back if its writes conflict

with a read operation of a strict transaction, ST , that follows it in a GSG. Let

P1 be the probability that a GT writes to an attribute value read by a ST , and

P2 be the probability that a ST follows a WT in the serialisation graph. Then,

the probability that a global transaction is rolled back is P = P1P2. Given

that reconciliation occurs after Nr transactions, of which y = cNr are strict and

y′ = (1− c)Nr are global. Assuming a uniform access distribution for simplicity

(Yu et al. 1993). Then,

P1 ' 1− (1−Nu/hD)Nq (9.53)

where D is the average number of attribute values at a site one tier away from

the CDB.

Let pKL be the probability that, in the GSG, there exists an edge from a given

transaction of category K to transaction of category L, where a category is either
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local, global or strict. Let p′KL(m, m′) then be the probability that in a GSG with

m strict and m′ global transactions, there is an edge from a given transaction of

category K to any transaction of category L. The following probability of edges

then exist:

pGG = [1− (1− Nu

D
)N ]pc (9.54)

p′GG(m, m′) = 1− (1− pGG)(m′−1) (9.55)

where pc = 1/n2 is the probability that two given transactions are initiated from

the same branch.

pGS = 1− (1− Nq

nhD
)Nuh (9.56)

p′GS(m,m′) = 1− (1− pGS)m (9.57)

pSG = pGS (9.58)

p′SG(m, m′) = 1− (1− pSG)m′
(9.59)

pSS = 1− (1− Nu

D
)N (9.60)

p′SS(m, m′) = 1− (1− pSS)(m−1) (9.61)

Let p(m,m’,i) then be the probability that there is an acyclic path of length

i. That is, a path with i + 1 distinct nodes, that begins at a global transaction

and terminates at a strict transaction in a GSG with m strict and m′ global

transactions. Then,

P2 = 1−
y+y′−1∏

i=0

[1− p(y, y′, i)] (9.62)

An iterative method is used to calculate the value of p(y, y′, i) using the fol-

lowing recursive relations (Pitoura & Bhargava 1999):

p(m, m′, 1) = pGS for all m > 0, m′ > 0 (9.63)

p(m, m′, 0) = 0 for all m > 0, m′ > 0 (9.64)

p(m, 0, i) = 0 for all m > 0, i > 0 (9.65)

p(0, m′, i) = 0 for all m′ > 0, i > 0 (9.66)
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p(y, y′, i + 1) = 1− [(1− p′GG(k, k′)p(k, k′ − 1, i))

(
i−1∏
j=1

1− (p′GS(k, k′)

i−j−1∏
l=1

p′SS(k − l, k′ − 1)

p′SG(k − i + j, k′ − 1) p(k − i + j − 1, k′ − 2, j))

(1− p′WS(k, k′)
i−1∏
l=1

p′SS(k − l, k′ − 1)pSS)] (9.67)

The first term represents the probability of a path whose first edge is between

global transactions. The second term is the probability of a path whose first edge

is between a global and strict transaction and includes at least one more global

transaction than strict transaction. The last term is the probability of a path

whose first edge is between a global and a strict transaction and does not include

any other global transactions. Thus, the actual number of global transactions

required to be undone or compensated as their write might not become permanent

is,

Nabort = Py′ (9.68)

The number of exact global transactions required to be rolled back because they

read the values written by the aborted transaction, is,

Nroll = o[1− (1−Nu/D)Nq ]y′Nabort (9.69)

where o is the fraction of exact global transactions.

Similarly, the cost of consistency restoration at the server SDB is calculated

using the same formulas. The difference is that the conflicts between a global

transaction, GT , that originates from a site and a local transaction, LT , from

the server SDB site that the GT is sent to. That is, a GT is rolled back if its writes

conflict with a read operation of a LT that follows it in a GSG. Thus, assuming

that reconciliation occurs after Nr transactions, of which z = (1− c)kAfhNr are

local and z = (1 − c)kA−1fhNr are global. The size of the server SDB will now

be Dserver = kA−1D. Formulas 9.53 to 9.67 can be used by substituting local for

strict and Dserver for D, to determine

N server
abort = Pz′ (9.70)

and

N server
roll = o[1− (1−Nu/D

server)Nq ]z′N server
abort (9.71)
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9.3 Performance Evaluation

Table 9.1. Input parameters
Parameter Description Value

d number of sites per server/central 3
A maximum number of tiers 4
λq query arrival rate 12 queries/second
λu update arrival rate 3 updates/second
c consistency factor ranges from 0 to 1
f hot spot factor ranges from 0 to 1
h fraction of database summarised ranges from 0 to 1
kA coefficient of h for Ath tier local site 0.5

kA−1 coefficient of h for (A− 1)th tier server site 0.7
tCq processing time of a query at CDB 0.00025 seconds
tCu processing time of a update at CDB 0.001 seconds
tSq processing time of a query at server SDB 0.0025 seconds
tSu processing time of a update at server SDB 0.01 seconds
tLq processing time of a query at local SDB 0.025 seconds
tLu processing time of a update at local SDB 0.1 seconds
tb propagation overhead 0.00007 seconds
V vacation interval ranges
W available bandwidth ranges
m average size of a message 512 bits
D average number of attribute values per site 1000

one tier away from the CDB
N average number of operations per transaction 10
Tc average commitment time 0.025 seconds

9.3.1 Communication Cost

Communication costs are estimated by the number of messages sent. Using the

parameters in Table 9.1, Figure 9.1 presents the average number of messages as

a function of h and c. As expected, when no strict transactions are present (c =

0), the average number of messages is dependent on how much of the database

is stored within the SDB. Hence, the number of messages sent decreases as

the replication becomes full (h = 1). When there is no replication (h = 0),

all transactions are forwarded to the CDB for processing. Similarly, when all

transactions are strict (c = 1), the number of messages remain constant, since all

transactions are propagated to the CDB.
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Figure 9.1. Communication Cost

9.3.2 Transaction Response Time

Using the parameters in Table 9.1, the response time for local transactions are

given in Figure 9.2. The left figure depicts a response time given the locking

method presented in Table 8.2, while the right uses the locking method shown in

Table 8.3. As expected, the response time, (left), increases as the percentage of

the data existing in the local SDB increases. This occurs because the local SDB is

required to process more local transactions, as it stores a larger percentage of the

CDB. However, as the consistency requirement increases (the users submit more

strict transactions), the response time decreases as there are less local transactions

contending for data. In comparison, for the second locking method’s (right),

increase in response time is more rapid, which is caused by conflicts occurring

between different types of transactions.
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Figure 9.2. Response time for Local Transactions

The response time for global transactions are shown in Figure 9.3, where

the left uses the locking method in Table 8.2 and the right uses the locking
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method in Table 8.3. The response time for the left figure depends on the required

consistency, where for high values of c, the response time decreases as less global

transactions are contending for the same data. While for lowest value of c, the

response time increases as there is more contention for the same data.

While the right figure shows a more rapid decrease in response time for larger

values of c, due to more transactions being processed locally, instead of being

submitted as a global transaction, and much of the transactions being strict

transactions. Therefore, less contention for the same data occurs. While for low

value of c an increase is evident as the local transactions of a server SDB conflict

with the global transactions of a local SDB, one tier down.
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Figure 9.3. Response time for Global Transactions

Strict transactions require propagation to the CDB regardless of how much

of the required data are stored locally. It is, therefore, more useful to examine

response times in terms of consistency requirements. Figure 9.4 presents the

response times of the two locking mechanisms for strict transactions, Method 1

and Method 2 (Tables 8.2 and 8.3 respectively), given various consistency value.

This shows that as c increases, response time increases as there are more conflicts

occuring. Strict transactions of Method 1 have a faster response time than Method

2 since other transaction types do not contend for the same data. However,the

average response time for strict transactions are, in general, much longer as they

are propagated through several communication links to the CDB.

9.3.3 Reconciliation Costs

Given a size for the CDB, the cost of reconciliation is calculated using the para-

meters in Table 9.1. Figure 9.5 presents the probability of a global transaction not

being accepted because of a conflict with a strict transaction, given that reconcil-

iation occurred after a certain number of transactions and different consistencies.
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The left, and right figures, shows the probability of an abort caused at the CDB,

and server SDB respectively.
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Figure 9.5. Probability of abort for CDB and server SDB

The figure indicates that there is a higher probability of aborts occurring at

the server SDB, than at the CDB. The reason for this is that at a server SDB

level, many global transactions are filtered out and aborted, due to conflicts,

before they reach the CDB. Thus, reducing the number of transactions that are

involved in an abort.

Furthermore, the figure illustrates that as a greater percentage of strict trans-

actions are submitted, the probability of a global transaction being aborted in-

creases. This is because strict transactions require more values from the database

and thus, global transactions are blocked and aborted. These results are used to

determine after how many transactions a reconciliation events should occur, to

ensure that the probability of an abort is kept to a minimum.
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Figure 9.6. Overview of the Summarisation Process

9.4 System Simulation

9.4.1 Summarisation Engine Implementation

The main body of the summarisation engine combines the data gathered by the

criteria to be used in the priority formula. Figures 5.2 and 9.6 provide an overview

of the Summarisation Engine. The two databases, Source Database and SDB,

represent the main database and the resulting summary database, located within

the mobile unit. Through a DBMS, application programs access the summary

and main database, depending on network connectivity.

The Summarisation Engine has inputs from seven sources:

• The Source Database

• Knowledge Bases

– Context Knowledge Base (CKB)

Consisting of user-supplied information, including a list of enumerated

data of information concerning the users that can be used for contex-

tual values. Either or both of which are optional.

– System Knowledge Base (SKB)

This is generated by the system and includes system information such

as storage size, power requirements and communication network.

†This section appears as part of Chan and Roddick (2003)
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– Rule Knowledge Base (RKB)

This contains rules generated by any external data mining engine.

– Application Knowledge Base (AKB)

This provides a feedback mechanism when deciding on data storage

prioritisation. The AKB is generated by a DBMS to track requested

data. The information is then used to include or delete data during

the future recreation of summary database. For example, minimal

used data can indicate a low degree of importance and hence, this

data may be excluded in subsequent recreation.

• Data Model

The schema/model of the database which is a simplified EER format, in

this thesis.

• Runtime Parameters

Include the specification of protocol as described in Table 5.2 and other

information such as target location and SDB size.

Stage 2 of the summary database construction creates the database and re-

flects the priorities generated in Stage 1, such that the description length of the

summary database is a small fraction of the total space available. In the case

where all the primary keys are stored, the description length is a fixed value

that depending on the database size. Alternatively, if only the required keys are

stored, there is a trade-off between, including low priority data items and the

costs of specifying the view structure. For the prototype, the former case has

been chosen and the algorithm used by each criteria to select attribute values is

given in Section 5.2.

The modular, plug-compatible implementation of the criteria means that mod-

ules representing, for example, the determination of φ for each of the criteria de-

scribed earlier can either be developed specifically for the application or a generic

module can be adopted. The prototype is then used to create the database re-

quired for the simulation implementation.

9.4.2 Simulation Implementation

A discrete-event simulation has been developed to validate the response time

analysis given in Section 9.3. The simulation keeps track of the data accessed

by each transaction and explicitly simulates data contention, transaction aborts,
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the locking of attribute values, locks availablility, queuing and processing at each

site, I/O waits, communication delays and commit processing.

Sites that have consistently strong connection to each other are simulated

as having a common work queue, while geographically distributed and mobile

sites have separate queues. All transaction arrival processes are independent and

Poisson. The service times at each site are no longer exponentially distributed

as in the analytical model, but are constants that corresponds to the CPU MIPS

rating.

Communication delays are modelled similarly to the vacation system model

used in the analytical model. That is, the link is available with a probability of

p and the service times at each link are constants, plus the time required to wait

for a link to become available, which is exponentially distributed. The commit

times, I/O times and backoff times are all constants. The service handler at each

site is released by a transaction when lock contention occurs, and during backoff

after an abort.

The states of a transaction in the simulation are the same as described in

Section 9.2.2. In the case of a local transaction, it is first queued at the corre-

sponding site and the initial I/O times are added. At the start of each subsequent

state, a request is made to the local concurrency control component. In which

the lock table is checked, and if a contention is detected, the service handlers are

released, and the transaction is enqueued on that lock. Transactions that access

the same attribute values as the first run of that transaction. In the case of a

contention based deadlock, the latest transaction is aborted, and all locks held

are released and a backoff interval is started. The transaction is then enqueued

to run after the backoff interval expires and no other transactions are running at

that site. Any update propagation activities are modelled as the arrival of new

global transactions with the same attribute values accessed.

In the case of global transactions, the destination and originating sites are

identified. The transactions are then queued at the originating site. The start of

each subsequent state requires communication with the destination site for the

lock status of the required attribute value. The remainder of the transaction state

is then handled similarly to a local transaction. A new global transaction then

arrives at the destination to represent the propagation of the updates made by

the global transaction. For sites that are only one link away from the central, a

strict transaction arrival process is used instead of a global transaction.

For strict transactions, only the originating site is required. Since all strict
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transactions are processed at the central site, they are queued there. The total

communication delay is determined by the number of links from the originating

site and the wait time at each link. Each state is then handled similarly to

local transactions but at the central site. After commitment, update propagation

occurs, through the arrival of a global transaction at the central site with its

destination pointing to all sites one link away.

For every transaction types, a destination stack is used, where the first origi-

nating site is pushed onto the stack first, followed by any subsequent destinations.

If an abort occurs, the stack is used to determine where the transaction originated

from. Transaction generators used to input transactions into each site and are

used to define the percentage of strict transactions introduced into the system.

9.4.3 Simulation Results

The average response time of local transactions are calculated using the simula-

tion schedule as the average time taken to reach the queue, until the time they

leave the system. The percentage of strict transactions, or consistency, are var-

ied as with the analytical model, and all other parameters are in accordance to

Table 9.1 unless otherwise specified. Figure 9.7 shows the average response times

of local transactions versus the percentage of the database summarised at the

tier-1 database, using the two locking schemes shown in Tables 8.2 and 8.3. Both

the analytical approximations and simulation estimates are provided, where the

solid line shows the former and the dash line shows the latter. Figure 9.8 shows

the average response times for global transactions. While for strict transactions,

presented in Figure 9.9, shows the average response times versus consistency, as

a summarised database has no effect on strict transactions.
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Figure 9.7. Response time for Local Transactions
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In all cases, there is good agreement between the simulation and the analysis.

They are all close, especially in terms of the shapes of their curves.

9.5 Discussion

The COSMOS database system was evaluated in terms of its transaction process-

ing, using a performance model to measure the response times of transactions

within the COSMOS database system. An analytical approach was used for this

evaluation, while a simulation was used to validate these analytical results. The

evaluation shows that the use of local and global transactions increase response

time as they are dependant on databases that are close to the originating transac-

tion site. Strict transactions, on the other hand, increase the consistency between

databases from different sites, but at the cost of response time when only weak

connectivity is available. Thus, the use of strict transactions should be limited to

periods when strong connectivity is available, or when the user requires accurate

transaction results.



Chapter 10

Conclusion

This dissertation presents the development of COSMOS, a framework for context

sensitive summarisation of a mobile distributed relational database. This chapter

presents the contributions of this dissertation in Section 10.1, while further work

in this area is discussed in Section 10.2

10.1 Contributions

The main contribution made by this dissertation is the creation of a framework

for summarising and allocating data in a hierarchical mobile distributed database

system, COntext Sensitive MObile Summarisation (COSMOS). Associated with

the use of COSMOS are database and transaction management issues such as

missing values, consistencies between databases and update protocols.

The creation of COSMOS consist of two stages. The first stage identifies
important information with regards to the user by through the specification of
criteria. These criteria can consist of:

• External enumeration of data.

• Contextual information on the user and the user’s environment.

• Previous user’s history.

• Push-based criterion that allows the main server to specify data importance.

• Model-based criterion that employs the database schema and its corre-
sponding ER diagram.

• Inductive criterion that employs data mining techniques.

130
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• Time-based criterion to filter out old data.

• Spatial-based criterion that uses location-awareness to filter out less impor-
tant information.

The second stage then creates Storage Map (SM), which identify attribute values

that are to be stored within the summarised mobile database.

Since a summary database is always a subset of a main database, there are

always attribute values that are null in the summary, but have a value within the

main database. From the summary database, it is quite difficult to determine

whether they are global nulls without consulting the main database. To distin-

guish between the two, local nulls are used. Local nulls are defined as locally

unavailable values, they extend the definitions of global nulls, but are limited to

only summary databases. Local nulls allow the accuracy of a query to be varied

according to the need of the user and the bandwidth available.

Transaction management within a COSMOS system requires modification to

the ACID. In COSMOS, there are three types of transactions, local, global and

strict. Local transactions are processed at the originating local SDB. Global

transactions are handed over by the originating site to its server SDB transaction

processing. Finally, strict transactions are processed at the CDB.

With the proposal of new transaction operations, a relaxation of consistency

was required and hence proposed between databases with weak connections. For

strongly connected databases, strict consistency is required. Bounded incon-

sistency is used to measure the amount of consistency between the databases.

Reconciliation is therefore required after a number of transaction to ensure con-

sistency between participating databases. The method proposed to reconcile

attribute values uses a syntactic approach that employs serialisability-based cri-

teria. To reconcile, the CDB examines whether transactions committed from

lower tiers will successfully commit at the CDB. If unsuccessful, an abort occurs

that rolls-back all transactions committed down the branch that the transaction

originates from.

To ensure that COSMOS database system functions correctly, a list of proto-

cols is required, including:

1. A function to transform the transaction operations to Storage Map (SM).

This function uses transaction operations to map which attribute the oper-

ation is being applied to.
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2. Protocols that ensure serialisability, by using a locking mechanism. Every

transaction is required to check the locking table for each attribute value

before it may operate on it. A local transaction checks locks at the local

SDB. A global transaction checks locks from its server SDB, while strict

transactions checks locks at the CDB.

3. Reconciliation protocols, which check the Global Schedule Graph (GSG)

for cycles before either committing or aborting a transaction.

4. Protocols required when an update is submitted to a local summary data-

base including the Local Update Propagation (LUP) and Update through

local item invisibility. The former specifies that a local transaction can

locally commit before propagating the result to the server SDB or CDB.

While the latter, specifies that any updates that do not have all the re-

quired attribute values available locally, are required to ‘mask’ the available

attribute values as invisible, and forward the updates to the server SDB.

5. Protocols required when commit phase at the central database is complete.

Once committed database refresh procedures propagate updates to all per-

tinentdatabases. A push refresh allows these new values to be propagated

to all the databases. A full refresh allows all the attribute values in a SDB

to be updated and its importance to the user be recalculated. Finally, a

pull refresh is also available to allow an SDB to update data accordingly to

any change in user context.

6. Recovery protocols are required when the central database is inaccessible.

Using an election protocol, the highest tier databases elect a primary data-

base to act as the CDB until the actual CDB becomes accessible. Multiple

primary databases are allowed, to coordinate the storage of different at-

tribute values.

An evaluation was conducted using models based upon queuing systems. An-

alytical approximations and simulation estimates were used to determine the

response times for different transactions. It showed that the use of local and

global transactions reduce transaction response time. While the use of strict

transactions requires strong connectivity between the originating SDB and the

CDB. Otherwise, higher response time will be experienced because of the com-

munication delays of wireless and long distanced networks.
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10.2 Future Work

A natural extension of this dissertation is the determination of the optimal com-

bination of summarisation criteria. While there may not be a best combination

for every users, a group of users may share similar interest and hence, the same

data. A survey of users may be required to properly determine the optimal set of

data different groups of users might use. Further refinement by individual users

may be required depending on the available storage. best combination.

Another possible extension to the COSMOS database system that is of inter-

est to enable mobile databases to roam around different sub-networks. Roaming

capabilities would allow a user to have access to any required information regard-

less of where they are. Currently in COSMOS, mobile databases can freely roam

between sub-networks that contain a server database of which it is a subset. To

roam other sub-networks would cause the server database to store all the data

that is contained within the mobile database. This may not be practical since

a mobile database may just be passing or only staying for short periods, but

the server database would still be required to store all those data. A solution

to this involves introducing proxies or middleware into the architecture, which

can then act as caches for any mobile databases, storing only the required data

temporarily.

Finally, allowing queries to return approximate results, instead of simply re-

sults with local nulls may decrease the need of local databases to access the rest

of the network. One way to achieve this for databases, in particular the mobile

databases, to be aware of the context used to create it. That is, if a criterion

specifies that attribute values with the same value are to be included into the

SDB, then that knowledge can be used to approximate the values of the local

nulls for that attribute. For example, assume a criterion stores all values a for an

attribute, COL1. Then, a query searching for all a in COL1 will only be required

to search the local SDB since it knows that any local nulls which result will not

be an a value.
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Acronyms and Terminology

A.1 Acronyms

3G Third Generation Mobile Networks

A Abort for transactions

ARM Association Rule Mining

C Commit for transactions

CDB Central Database

CDMA Code Division Mutiple Access

COSMOS COntext Sensitive MObile Summarisation

DBMS Database Management System

DWT Discreet Wavelet Transform

GPS Global Positioning System

GR Global Read

GS Global Schedule for transactions

GSG Global Schedule Graph for transactions

GSM Global System for Mobile

GW Global Write
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LAN Local Area Network

LCD Liquid Crystal Display

LR Local Read

LS Local Schedule for transactions

LSG Local Serialisation Graph for transactions

LUP Local Update Propagation

LW Local Write

O2PL Optimistic Two Phase Locking

O2PL-MT Optimistic Two Phase Locking for Mobile Transactions

PC Personal Computer

PDA Personal Digital Assistant

SDB Summary Database

SM Storage Map

SR Strict Read

SVD Singular Value Decomposition

SW Strict Write

UDB Update Database

WiFi Wireless Fidelity

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WWAN Wireless Wide Area Network
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A.2 Terminology

Attribute Value are the actual values stored for in a database for each corre-

sponding tuple and attribute.

CDB is the central database which stores all information available to a database

system.

Local SDB are client sites which may not act as a server for any other sites.

Server SDB are client sites which may act as a server for any other sites.
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Example

This example, assumes the case of a general hospital, in which many users access

the hospital’s database. For this example, however, only one user will be examined

here. The database used has a schema given in Figure 5.3. The specific criteria

used to create the summary database for the user is given in this appendix.

The first user examined is a doctor working at the hospital. In this example,

Table B.1 provides the criteria used and the relative importance of each criteria.

The following list provides a description of how each criterion is used.

Table B.1. The setting of ρ for each data inclusion criterion.
Criteria ρ

Enumerated e 100
Contextual c 75
Previous Usage u 30
Push-based p 30
Model-based m 90
Inductive i 60
Time-based t 0
Spatially-based s 20

Since previous treatments are still valid and possibly required for current

treatment, the use of time-based criterion is not required for this user.

• Enumerated

For this criterion, the doctor had earlier pre-enumerated a list of today’s

patients. This list is used to generate a list of all patient’s code for the

corresponding patient, Table B.2.

The enumerated list has the highest relative priority because it contains

critical information. The assigned priority, φ, given to list enumerated is 1

to indicate that they are to be included.

137
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Table B.2. Enumerated patient’s list.
patCode

1002
1013
1040
1060

• Contextual

Given that the doctor is an ear, nose and throat specialist, a contextual

search of the database discovers that the admission records in Table B.3(left)

had treatments for related disorders. Of the list patients, Table B.3(centre)

shows the a list of patients that have visited this doctor. While Table

B.3(right) shows the ones that have not.

Table B.3. Contextual patient’s list.
admCode
3001002
3001013
3001020
3001024
3001040
3001050
3001055
3001060
3001200
3001201

admCode
3001002
3001013
3001024
3001040
3001060
3001201

admCode
3001020
3001050
3001055
3001200

The contextual information has been allocated the second highest relative

priority since it contains information the doctor will need if any patients

turn up without an appointment. The assigned priority, φ, is given a value

of 1 for the list in B.3(centre), and a 0.5 for the list in B.3(right). This is

because the centre list contains patients that are more likely to visit the

doctor than the ones on the right.

• Previous Usage

For this criterion, assume that with patient with a patCode of 1024 has

weekly appointments with the doctor, 1002 has fortnightly appointments,

and 1201 has monthly appointments. For each patient, the frequency that

the doctor accesses their details correlate to appointment frequency. Thus,

the assigned priority, φ, may be given the values of 1, 0.7 and 0.5 for patients

with weekly, fortnightly and monthly appointments, respectively.

• Push-based

The server or the main database specifies what information is pushed to
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its clients. The information are general notices that affect all the hospital

staff, includes system downtimes or any intending upgrades to the system.

Assuming a short system upgrade has been planned for the afternoon. Since

the database schema used does not provide for system notices, an email

system has been used to notify the staff. The specified email has an assigned

priority of 1 and is installed into the calendar doctor’s mobile device as a

reminder that the server is unavailable.

• Model-based

Using the data collected by the primary criteria (Enumerated, Contextual

and Previous Usage) and the database schema, new information is collected

by this criteria. The first data identified are the tuples corresponding to

data selected by primary criteria. In the case of the Patient table the tuples

identified are shown Table B.4.

Table B.4. Patient Table
patCode name sex age town physician

1002 Jay Bedford M 44 Adelaide 9001
1013 Clara Hall F 21 Adelaide 9001
1024 Julie Long F 23 Adelaide 9001
1040 Hector Best M 25 Adelaide 9001
1060 Michael Biggs M 53 Adelaide 9001
1201 Andrew Perez M 40 Adelaide 9001

Using an iterative method, the second step then identifies all data in re-

lationship tables that are one link away. This is done using the schema’s

corresponding ER diagram. The tables Town, Physician and Admission

are all one link away from the Patient table. The third step identifies all

data two links away, and so on. The continues until all tables have been

searched, or until a specified search depth has been reached. Given a search

depth of two, the third step identifies data from Diagnosis, D.R.G, Ward,

Surgery. Notice that Physician and Admission tables are only counted once

since only the shortest distance is used.

To calculate the assigned priority, φ, the shortest distance between the new

data and the original data collected by Primary criteria is used in Formula

5.3. That is, φm = k−a, where k = 2 and a is the shortest distance given by

the ER diagram. The following tables (Table B.5) show the data collected

by the second step.

The process is repeated for attribute values in other tables selected by all

primary criteria, such as those selected in the Admission table.
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Table B.5. Town, Physician, Admission Tables
town

Adelaide
Sydney

physician

9001

admCode patCode date n.days outcome diagnosis

3001002 1002 12 Jan 2003 3 still in hospital treatment ear implant
3001013 1013 24 Feb 2003 2 still in hospital treatment sinus
3001020 1020 15 Oct 2004 NULL NULL NULL
3001024 1024 2 Dec 2001 3 still in hospital treatment ear infection
3001040 1040 18 Mar 2002 2 still in hospital treatment flu
3001050 1050 22 Nov 2003 3 NULL sinus
3001060 1060 10 Aug 2003 3 still in hospital treatment fever
3001200 1200 26 Sep 2004 1 prescribed antibiotics allergies
3001201 1201 7 May 2002 1 prescribed antibiotics sorethroat

• Inductive

Assuming the Apriori algorithm is used and inferences have been identified

for the main database, some of the rules that are generated are given in the

following list:

– flu → fever (66%)

– flu → sorethroat (60%)

– flu → antibiotic (40%)

– fever → headache (66%)

– fever → sorethroat (100%)

– fever → antibiotics (100%)

The easiest way to determine the assigned priority, φ, is to equate it to

the confidence of each rule. For this example, a list of admission codes are

generated from the rules corresponding with the admissions given in Table

B.5 (bottom) and given in Table B.6.

Table B.6. Admission Table after Inductive criterion used.
admCode patCode date n.days outcome diagnosis

3001003 1003 2 Jan 2003 1 prescribed antibiotics sorethroat
3001023 1023 22 Feb 2003 1 prescribed antibiotics NULL
3001036 1036 15 Oct 2003 1 prescribed antibiotics headache
3001060 1060 10 Aug 2003 1 still in hospital treatment fever

... ... ... ... ... ...

• Spatially-based

Since the hospital is located in Adelaide, there is a less probability that

patients from a different town will revisit. Thus, patients from Adelaide

selected by primary and secondary criteria will be given a higher assigned
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priority, φ, value than those from another state. That is, φ = 1 when town

= ’Adelaide’ and φ = 0.2 when town = ’Sydney’.

All priorities calculated by each criterion are summed together using Formula

5.1. All attribute values have a corresponding priority weighting assigned to it.

Table B.7 and B.8 show partial Patient and Admission tables with corresponding

priority weightings.

Table B.7. Patient Table
patCode name sex age town physician

1002 Jay Bedford M 44 Adelaide 9001
1013 Clara Hall F 21 Adelaide 9001
1020 Michele Moore F 39 Adelaide 9001
1024 Julie Long F 23 Adelaide 9001
1040 Hector Best M 25 Adelaide 9001
1050 Jay Doe M 30 Sydney 9001
1060 Michael Biggs M 53 Adelaide 9001
1200 Tim Cutten M 30 Adelaide 9001
1201 Andrew Perez M 40 Adelaide 9001

patCode name sex age town physician

... ... ... ... ... ...
1002 21.1 211 70.33 26.37 52.75
1013 19 190 63.33 23.75 47.5
1020 9 90 30 11.25 22.5
1024 12 120 40 15 30
1040 19 190 63.33 23.75 47.5
1050 9 90 30 11.25 22.5
1060 19 190 63.33 23.75 47.5
1200 9 90 30 11.25 22.5
1201 10.5 105 35 13.12 26.25
... ... ... ... ... ...

Assuming that the database is capable of storing any attribute value which

has a priority weighting higher than 8, then, Table B.9 shows the Patient and

Admission tables stored in the user’s SDB. Note that for the Patient table, more

attribute values are stored since it is much small in size than the Admission table.
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Table B.8. Admission Tables
admCode patCode date n.days outcome diagnosis

... ... ... ... ... ...
3001002 1002 12 Jan 2003 3 still in hospital treatment ear implant
3001003 1003 2 Jan 2003 1 prescribed antibiotics sorethroat
3001013 1013 24 Feb 2003 2 still in hospital treatment sinus
3001020 1020 15 Oct 2004 NULL NULL NULL
3001023 1023 22 Feb 2003 1 prescribed antibiotics NULL
3001024 1024 2 Dec 2001 3 still in hospital treatment ear infection
3001036 1036 15 Oct 2003 1 prescribed antibiotics headache
3001040 1040 18 Mar 2002 2 still in hospital treatment flu
3001050 1050 22 Nov 2003 3 NULL sinus
3001055 1055 30 Jul 2004 NULL NULL NULL
3001060 1060 10 Aug 2003 3 still in hospital treatment fever
3001200 1200 26 Sep 2004 1 prescribed antibiotics allergies
3001201 1201 7 May 2002 1 prescribed antibiotics sorethroat

... ... ... ... ... ...

admCode patCode date n.days outcome diagnosis

... ... ... ... ... ...
3001002 41.25 15 41.25 8.25 16.5
3001003 9 3.27 9 1.8 3.6
3001013 41.25 15 41.25 8.25 16.5
3001020 9.375 3.40 9.375 1.87 3.75
3001023 6 2.18 6 1.2 2.4
3001024 41.25 15 41.25 8.25 16.5
3001036 9.9 3.6 9.9 1.98 3.96
3001040 41.25 15 41.25 8.25 16.5
3001050 9.375 3.40 9.37 1.87 3.75
3001055 9.9 3.6 9.9 1.98 3.96
3001060 41.25 15 41.25 8.25 16.5
3001200 9.37 3.40 9.37 1.87 3.75
3001201 41.25 15 41.25 8.25 16.5

Table B.9. Patient and Admission Table
patCode name sex age town physician

1002 Jay Bedford M 44 Adelaide 9001
1013 Clara Hall F 21 Adelaide 9001
1020 Michele Moore F 39 Adelaide 9001
1024 Julie Long F 23 Adelaide 9001
1040 Hector Best M 25 Adelaide 9001
1050 Jay Doe M 30 Sydney 9001
1060 Michael Biggs M 53 Adelaide 9001
1200 Tim Cutten M 30 Adelaide 9001
1201 Andrew Perez M 40 Adelaide 9001

admCode patCode date n.days outcome diagnosis

... ... ... ... ... ...
3001002 1002 12 Jan 2003 3 still in hospital treatment ear implant
3001003 1003 LNULL 1 LNULL LNULL
3001013 1013 24 Feb 2003 2 still in hospital treatment sinus
3001020 1020 LNULL NULL NULL NULL
3001023 LNULL LNULL LNULL LNULL NULL
3001024 1024 2 Dec 2001 3 still in hospital treatment ear infection
3001036 1036 LNULL 1 LNULL LNULL
3001040 1040 18 Mar 2002 2 still in hospital treatment flu
3001050 1050 LNULL 3 NULL LNULL
3001055 1055 LNULL NULL NULL NULL
3001060 1060 10 Aug 2003 3 still in hospital treatment fever
3001200 1200 LNULL 1 LNULL LNULL
3001201 1201 7 May 2002 1 prescribed antibiotics sorethroat

... ... ... ... ... ...
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