
Flinders University

School of Computer Science, Engineering and Mathematics

Edge Elimination in 2D
Euclidean TSP

Author:
Mohammed Alammar

Supervisor:
Dr. Vladimir Ejov

February 13, 2018

Submitted to the School of Computer Science, Engineering,
and Mathematics in the Faculty of Science and Engineering in

partial fulfilment of the requirements for the degree of
Master of Science (Mathematics) at Flinders University –

Adelaide Australia.

Declaration

“I certify that this work does not incorporate without acknowledgment any
material previously submitted for a degree or diploma in any university; and
that to the best of my knowledge and belief it does not contain any material
previously published or written by another person except where due reference
is made in the text”.

MOHAMMED ALAMMAR

Signature

February 13, 2018

Date

i

Abstract

Although the traveling salesman problem (TSP) has a long research his-
tory as a mathematical approach to discover the shortest trip between a set
of cities, there is no effective solution for the problem as it is considered an
NP − hard problem of combinatorial optimisation. For example, solving the
symmetric traveling salesman problem (STSP) using the fastest computer
program, Concorde, for 85,900 vertices (which is the largest instance of TSP
which has been solved to provable optimality to date) takes more than 199
CPU days. However, due to the importance of practical applications, meth-
ods to find optimal solutions have been developed since the 1950s. Stefan
Hougardy and Rasmus T. Schroeder’s algorithm for reducing the number of
edges in two-dimensional Euclidean instances of TSP is one such method and
hastens the STSP process by 11 times in certain test examples. The total
runtime for the main part of their algorithm is O(n2 log n) for n number of
cities. The largest TSP case, 85,900 points, took 2 CPU days to run their al-
gorithm. Concorde needed 16 CPU days to achieve the best outcome for this
case. Hougardy and Schroeder’s algorithm was presented alongside theoretic
graph results showing how they proved that some edges of a TSP instance
cannot be part of any optimal TSP trip. This thesis is based on Hougardy
and Schroeder’s results and shows how unnecessarily edges of a TSP instance
can be avoided in any optimal TSP trip. The thesis presents practical results
demonstrating how this can be achieved; it also presents a Matlab code for
a TSP instance named qatar194. The instance contains 194 nodes and 264
edges after being run with Hougardy and Schroeder’s elimination algorithm.
This research shows that more edges can be eliminated when k − opt edge
exchanges are considered for k > 3. Linear programming (LP) is used in
combination with subtour elimination constraints (SEC) and comb inequal-
ities. The LP approach is taken by adding extra 28 constraints employing
SEC and comb inequalities. The approach allowed the elimination of 58 un-
necessarily edges and improved the lower bound to 9,350.6; while the optimal
tour length is 9,352. Mixed-integer linear programming (ILP) is then used
to find the shortest tour with no unnecessarily edges.

ii

Acknowledgment

Deep gratitude goes first to Dr. Vladimir Ejov, who expertly guided and
patiently supported my excitement to complete this research. It is also a
great pleasure to acknowledge my extreme sincere gratitude and apprecia-
tion to Mr. Serguei Rossomakhine for his encouragement, and his creative
and comprehensive advice during the research. I am truly grateful to all the
lecturers in the School of Computer Science, Engineering, and Mathematics
at Flinders University for their support towards the successful completion of
my studies in Australia.

I wish to express my gratitude, appreciation, and warmest affection to
my beloved families; for their understanding and endless love, through the
duration of my studies. Special gratitude and thanks to my mother for her
love, tenderness, devotion and unconditional support.

My appreciation and gladness also go to the government of the Kingdom
of Saudi Arabia for allowing me to complete a master’s degree at the inter-
national level. I would certainly be remiss to not mention and thank the
sponsorship authority, Shaqra University, for giving me this opportunity to
complete my study aboard. Finally, I sincerely thank Dr.Mohammed Nassar,
Head of the Mathematics Department at Shaqra University to whom I am
highly indebted and thoroughly grateful for guiding me through to complet-
ing my education.

iii

Contents

Declaration i

Acknowledgment iii

Introduction 2

Methodology 4

1 Mathematical preliminaries 5
1.1 The TSP complexity . 5
1.2 Brief history of TSP . 6
1.3 Basic graph theory terminologies 7
1.4 Notations and assumptions . 8
1.5 The LP relaxation . 10

2 Elimination Theorems 12
2.1 The Main Edge Elimination Theorem 12
2.2 The Close Point Elimination Theorem 16
2.3 Certifying potential points . 18

3 Solving the TSP 23
3.1 Solving the LP relaxation . 23
3.2 Improving the LP relaxation 24
3.3 The Algorithm . 53

Conclusion 55

Appendix 56

Bibliography 69

1

Introduction

One of the fundamental, classical, and widely studied problems in combi-
natorial optimisation is the traveling salesman problem (TSP). The general
idea is to minimise the total length of the tour of a salesperson who begins
from a given city and returns to the same city after visiting each other city
exactly once. The salesman must make a closed, completed trip, finishing
with the departure city in the shortest distance that is known, also, as a
Hamiltonian tour in a graph. The problem was first formulated as a math-
ematical problem in the 1930s, by Karl Menger, in Vienna and Harvard.
In operations research and computer science, since the 1950s, methods have
been developed to solve the TSP because of its practical applications. Most
of these methods of solving TSPs were motivated by direct applications. For
instance, scheduling a school bus route problem was considered by Flood
(Flood, 1956). Also, crop survey implementations were studied by Maha-
lanobis and Jessen (Mahalanobis, 1940; Jessen, 1942). As a result, many
exact and approximate algorithms as well as a large number of techniques
have been developed to solve this problem.

There are two types of TSP solver, exact and non-exact. The exact solv-
ing methods, such as the cutting plane, interior point, branch-and-bound and
branch-and-cut are characterised as guaranteeing to find the optimal solution
for this problem (Chauhan, Gupta, & Pathak, 2012). Nowadays, the fastest
available algorithm to solve large TSP instances optimally is the Concorde
TSP solver. The Concorde TSP solver is a computer code proposed by David
Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook. Although
Concorde is the fastest computer program, the total run time for 85,900 ver-
tices (which is the largest instance of TSP which has been solved to provable
optimality to date), for instance, needed more than 136 years of total CPU
time (Applegate, Bixby, Chvatal, & Cook, 2011). On the other hand, the
non-exact solvers, like the Christofides, Clarke-Wright, and Lin-Kernighan
(LK) algorithms, usually execute faster but may give a non-optimal solution
(Chauhan et al., 2012).

2

Searching for an optimal tour in a complete undirected graph through a
given set of locations is a well known mathematical approach started long
ago. Although a TSP is easily understood, solving the problem is known
to be computationally difficult. If the cost of traveling from city i to city j
equals that from j to i, then the problem is known as a symmetric traveling
salesman problem (STSP); otherwise, it is called an asymmetric traveling
salesman problem (ATSP). A symmetric problem, like an euclidean TSP, is
extremely important in practical applications; it is used as a metric where
the vertices are shown as points in the two-dimensional euclidean plane and
the length of an edge is the euclidean distance between the two points. How-
ever, the majority of the results in this thesis will not be metric, because our
results hold for arbitrary symmetric TSP cases.

In this thesis, the major focus is upon theoretical results as presented
by Hougardy and Schroeder for eliminating useless edges. Results are sup-
ported by analysing two-dimensional euclidean TSP instances. As the edge
elimination algorithm given by Hougardy and Schroeder can reduce the to-
tal run time, because it is 11 times faster than Concorde alone, applying
their algorithm steps was required to be able to eliminate more useless edges
faster (Hougardy & Schroeder, 2014). The key purpose, in this thesis, is to
eliminate further useless edges that do not belong to any optimal TSP tour.
Writing a software code using Matlab to solve two-dimensional euclidean
TSPs was the main basis of the research’s outcome. Reflecting our practical
results was also necessary to show the way we can avoid some extra useless
edges of a TSP.

3

Methodology

The main aim of this paper is to find a way to eliminate useless edges
that do not belong to any optimal TSP tour, so we can write a software
code using Matlab to solve two-dimensional euclidean TSPs. The paper
is organised as follows. The first chapter illustrates the complexity of the
TSP and gives a brief look at the history of this problem. This chapter,
also, shares about some basic graph definitions and some assumptions and
notations that are needed later in this thesis. The initial linear programming
relaxation is presented in this stage while the improvement of this relaxation
will be reflected afterward. The second chapter represents some methods and
theorems for eliminating edges adopted from Stefan Hougardy and Rasmus
T. Schroeder (Hougardy & Schroeder, 2014). The third chapter, the results
chapter, presents the practical results, demonstrating how we can avoid some
extra useless edges of a TSP instance in any optimal TSP trip. To arrive
at our aim, there are several steps have been used in the results chapter as
follows

� Applying Stefan Hougardy and Rasmus T. Schroeder algorithm steps
for a TSP instance. The instance was taken from TSPLIB (a library
of sample instances for the TSP collected from different resources) and
it’s called qatar194. It contains 194 cities and 264 edges after repeating
the Stefan Hougardy and Rasmus T. Schroeder algorithm steps.

� Engaging k − opt move edge exchange transformations with k > 3,
where the k − opt move is a concept that the most powerful heuristic
TSP algorithms depend on. This engagement was from employing the
subtour elimination constrains (SEC) and comb inequalities for the
purpose of eliminating further edges.

� Using these inequalities to solve the problem as a linear programming
problem. After adding 28 linear inequalities, as a result, we eliminated
58 further useless edges. The optimal tour must have the number of
edges equal to the number of cities, so, we applied the mixed-integer
linear programming technique to achieve the optimal tour.

4

Chapter 1

Mathematical preliminaries

In this chapter, we present some common themes when considering the TSP
complexity, brief history, basic graph theory terminologies and linear pro-
gramming relaxation for the traveling salesman problem.

1.1 The TSP complexity

In the 1960s, Edmonds came up with a substantial theoretical question of
whether there is a good algorithm for solving the TSP. The answer for this
question remains unknown. Over the past 50 years, the TSP has been set
within the subject of complexity theory as a general context. The problem, in
this theory, became a decision question where the question can be answered
with either yes or no. For example, asking if a trip exists of length less
than K instead of asking to find a minimum length trip. Two important
complexity classes: P and NP . If an algorithm exists that guarantees to
answer the question correctly in polynomial time, then the problem is known
as being in class P . On the other hand,NP class stands for non-deterministic
polynomial time. The problem is in NP if on any occasion the answer to the
decision question is yes, then we are able to check that the proposed solution
is indeed a solution in polynomial time. If, for instance, the answer for the
TSP is yes, then this can be verified by displaying a trip which has less length
than K. Such a problem is called NP−complete or NP−hard; if a decision
problem exists that is solvable in polynomial time, then for every problem in
NP there exists a solution in polynomial time. This existence was proven
by Stephen Cook (S. A. Cook, 1971) in 1971, and then, as a result, his initial
NP − hard problem guided Richard Karp (Karp, 1972) to prove the TSP is
NP − hard.

5

1.2 Brief history of TSP

There is a bit of mystery behind the origin of the name “traveling salesman
problem”. The name first originated in the United States and appeared on a
report published in 1949 (Robinson, 1949). In fact, the problem was already
known by various names. The Viennese mathematician Karl Menger looked
at a variation of TSP called the messenger problem (Botenproblem) (Bock,
1963; Menger, 1932). The messenger problem is described in English by Bock
(Bock, 1963) as follows:

“We designate as the Messenger Problem (since this problem is
encountered by every postal messenger, as well as by many trav-
ellers) the task of finding, for a finite number of points whose
pairwise distances are known, the shortest path connecting the
points. This problem is naturally always solvable by making a
finite number of trials below the number of permutations of the
given points. The rule, that one should first go from the starting
point to the nearest point, then to the point nearest to this etc.,
does not in general result in the shortest path. ”

While the report by Menger (Menger, 1932) was the first published work on
the TSP (Gutin & Punnen, 2006; Held, Hoffman, Johnson, & Wolfe, 1984),
the first reference that brought the research community’s attention towards
the TSP in 1983 is the 1832 German handbook Der Handlungsreisende-wie
er sein soll und was er zu thun hat, um Aufträge zu erhalten und eines
glücklichen Erfolgs in seinen Geschäften gewiss zu sein-Von einem alten
Commis-Voyageur by Heiner Müller-Merbach (Müller-Merbach, 1983). The
best known algorithm to find an optimal solution for the TSP with the small-
est time complexity was developed in 1962 by Held and Karp (Held & Karp,
1962). Their algorithm guarantees to find a solution in time complexity
O(n22n). Since the time complexity is exponential, however, Held and Karp’s
algorithm does not allow us to solve a large TSP instance within a reasonable
time. The substantial work of Dantzig, Fulkerson, and Johnson in 1954 to
find the optimal tour for the state capitals of the United States is considered
to be the first systematic study of the TSP as a combinatorial optimisation
problem (G. Dantzig, Fulkerson, & Johnson, 1954). They proved that a fea-
sible solution is indeed optimal using the LP relaxation. Their technique of
solving the 49-city problem was based on an earlier solution found by using a
branch and bound algorthim for part of the problem containing 42 cities. The
most common method to solve large LPs is the simplex algorithm, which was
developed by Dantzig in 1947 (Reeb, Leavengood, et al., 1998). Table (1.1)
gives the milestones achieved in solving the TSP. The most recent milestone

6

Table 1.1: Milestones in the solution of the TSP

was achieved in 2006 by solving a TSP containing 85,900 cities; it is the
largest instance of TSP which has been solved to provable optimality to date
(W. Cook, 2012). The way of solving such an instance was by the fastest
free available TSP solver Concorde, written by David Applegate, Robert E.
Bixby, Vašek Chvátal, and William J. Cook.

1.3 Basic graph theory terminologies

Definition 1 (Simple graph). A simple graph, G = (V,E), consists of a
finite nonempty set V of objects called vertices (or nodes) and a set E of
edges.

Definition 2 (Adjacent). Two vertices are adjacent when they share a com-
mon edge.

Definition 3 (Incident). A vertex x and the edge xy are called incident with
each other since they have a common vertex x.

Definition 4 (Complete graph). A graph G is said to be complete when
every pair of distinct vertices is connected by an edge.

7

Definition 5 (Walk). In a graph theory, a walk W in a graph G is a sequence
of vertices (x1x2...xk−1xk) starting from x1 and ending at xk if {xi, xi+1} ∈
E, ∀ 1 ≤ i ≤ k − 1.

Definition 6 (Path). A walk in a graph G is a path if every vertex is visited
no more than one time.

Definition 7 (Closed Walk). A walk of G is classified as a closed if the
initial and terminal vertices are the same.

Definition 8 (Hamiltonian cycle). A cycle in a graph G that contains all
vertices of G is called a Hamiltonian cycle (or tour) of G.

Definition 9 (Connected and Disconnected Graphs). A graph G is called
connected if a path (or edge) exists between every pair of vertices of G, oth-
erwise G is disconnected.

Definition 10 (2-Connected Graph). For every vertex x ∈ G(V), the graph
G is called 2-connected if G− x is connected.

Definition 11 (Subgraph). For a graph G = (V,E), H = (W,F) is called
a subgragh of G if W ⊆ V and F ⊆ E. Furthermore, if W ⊆ V and
F = {e : e ∈ E, e ⊆ W , then H = (W,F) is invited by the subgraph induced
by W .

Definition 12 (Component). For a graph G = (V,E), H is called component
of G if H is not proper subgraph of any connected subgraph of G.

1.4 Notations and assumptions

Since Stefan Hougardy and Rasmus T. Schroeder’s algorithm is the basis of
this research, we shall assume that a TSP instance has at least four nodes as
they mentioned in their paper. In this research, our aim is to visit each city
exactly once in a closed and completed route. Since every city is visited once,
there is a finite number of edges in the graph given by n(n− 1)/2 where n is
the number of cities. Any such possible trip is called a solution to the TSP.
As the number of possible trips is limited, there must be a trip which has a
minimal travel cost. The trip with a minimal travel cost is called an optimal
solution for the TSP. There are several notations that must be presented:

� For simplicity we denote the edge {p, q} by pq where p and q are two
vertices in a TSP instance.

8

� Let the distance function l be the 2D Euclidean function. Also, con-
sider pq and rs to be two edges in a TSP tour. The distance between
two points in euclidean space is called euclidean distance. Euclidean
distance between two points p and q is denoted as |pq| where:

l(pq)− 1

2
≤ |pq| ≤ l(pq) +

1

2
(1.1)

� If T is a solution for a TSP instance, then the total length is defined
as
∑

e∈E(T) l(e) where E(T) is the edge set of the tour T and l is the
symmetric length function when l : V × V → R+.

� Suppose there are two edges pq and rs in a TSP instance, they are
called compatible edges denoted by (pq ∼ rs) if:

max (l(pr) + l(qs), l(ps) + l(qr)) ≥ l(pq) + l(rs) (1.2)

Otherwise pq and rs are called incompatible. In fact, any two edges
sharing at least one vertex are always compatible. Suppose the edges
pq and rs are compatible and t ∈ rs, thus, it is an obvious that the
edges pq and rt are also compatible. Moreover, any two edges in an
optimal TSP tour are compatible. Let us assume the opposite, suppose
the edges pq and rs are incompatible in an optimal TSP tour T , by
(1.2) we have,

l(pr) + l(qs) < l(pq) + l(rs) and l(ps) + l(qr) < l(pq) + l(rs) (1.3)

By 2-opt moves, we can replace edges pq and rs by either pr and qs or
ps and qr, so one of these movements must be valid, resulting a shorter
tour and that contradicts the assumption that T is an optimal TSP
tour.

� In two-dimensional euclidean space, for each point r choose δr such
that no vertex apart from r lies in the interior of the circle by r with
radius δr. One can for example use:

δr :=
1

2
+ max {d ∈ Z+ | ∀ s ∈ V \ {r} l(rs) > d} (1.4)

the two lengths between an edge pq and a point r ∈ V \ {p, q} are given
by:

lp := δr + l(pq)− l(qr)− 1 and lq := δr + l(pq)− l(pr)− 1 (1.5)

Also, for each point s ∈ V \ {r}, we define sr ∈ rs such that |rsr| = δr.

9

� An edge is classified as a useless edge if it does not belong to any
optimal TSP tour.

� For S ⊆ V we denote δ(S) as the set of edges that have one end in S
and one end not in S, that is δ(S) = {e ∈ E : |e ∩ S| = 1}.

� For S ⊆ V , we denote E(S) as the set of all edges in G having both
endpoints in the set S.

1.5 The LP relaxation

One of the most well studied representations of the TSP is the linear
programming representation (LP for short). Linear programming is a math-
ematical technique to maximise or minimise a linear function subject to a
set of inequalities. Officially, the LP is a method of using a linear objective
function subject to linear equality and linear inequality constraints. The
introduction of the simplex method, written by Dantzig in 1947, was the
beginning of the LP computation. Although the simplex method has been
used since then and has become the major way of solving the LP, the first
paper was an unpublished technical report (Agarwala, Applegate, Maglott,
Schuler, & Schäffer, 2000; G. B. Dantzig, 1948). Before presenting the stan-
dard format for the LP relaxation of the TSP,

� Suppose S expresses the set of incidence vectors of all the tours.

� Assume xe refers to the variable x corresponding to e.

� To drive a model by way of a linear description, we have to represent
the tour as its incidence vector of length n(n − 1)/2. Therefore, for
every trip (or edge e), we present a vector x ∈ S of decision variables
xe as follows:

xe =

{
1 if edge e is selected;
0 if not.

For a TSP instance, the length of a tour should be minimised, thus, the linear
objective function that we want to optimise can be expressed as:

minimise cTx subject to x ∈ S (1.6)

where c are vectors of coefficients, (.)T is the matrix transpose and x is the
vector of variables. As the decision variables above show, for each x ∈ S and
each edge e, we can express that as:

0 ≤ xe ≤ 1 for all edges e (1.7)

10

Also, since every city v should be visited once, it must be entered and then
left to find a Hamiltonian cycle. In other words, for any trip x ∈ S, every
city v is met by exactly two edges, thus:∑

(xe : v is an end of e) = 2 for all cities v (1.8)

So far, we can say that the standard format for the LP relaxation of the TSP
is given by:

minimise cTx subject to (1.7), (1.8) (1.9)

11

Chapter 2

Elimination Theorems

The second chapter presents some theorems and methods for eliminating
edges as presented by Stefan Hougardy and Rasmus T. Schroeder. Briefly,
their algorithm to eliminate useless edges is described in three steps. For the
first step, they used the Main Edge Elimination Theorem, in which it is nec-
essary to determine two potential points which satisfy a particular condition.
Finding the two potential points that satisfy the condition of the Main Edge
Elimination Theorem allowed them to decrease the number of edges. After
that, the Close Point Elimination Theorem was applied in combination with
the Main Edge Elimination Theorem, to avoid further useless edges. Finally,
repeating the search of bounded depth was considered to eliminate further
edges. This chapter contains two parts. The first part is about the theo-
rems, describing how some edges can be considered as useless edges. The
second part shows how these theorems can be satisfied by presenting efficient
methods developed for certifying potential points.

2.1 The Main Edge Elimination Theorem

Introducing the concept of potential points is required to formulate this
theorem. Let (V,E) be a TSP instance and pq ∈ E. For r ∈ V \ {p, q},
define:

R := {x ∈ V | rx ∈ E ∧ pq ∼ rx} (2.1)

In addition, let R1, R2 ⊂ V and R ⊂ R1 ∪ R2 and R1 ∩ R2 6= φ. The
point r is called a potential point with respect to the edge pq and R1 and R2,
if for each optimal tour including pq, the two neighbors of r cannot both lie
in R1 or R2 respectively. The potentiality of r is certified when such a cover
is found. In any optimal tour having the edge pq and a potential point r,
however, it cannot be connected with R1 ∩ R2. There are effective methods

12

already developed for certifying the potentiality of points presented in the
next section.

Theorem 1 (The Main Edge Elimination Theorem). Let (V,E) be a TSP
instance and pq ∈ E. Let r and s be two different potential points with respect
to pq with covering R1 and R2, and, respectively, S1 and S2. Let r /∈ S1 ∪ S2

and s /∈ R1 ∪R2. If:

l(pq)− l(rs) + min
z∈S1

{l(sz)− l(pz)}+ min
y∈R2

{l(ry)− l(qy)} > 0 (2.2)

and

l(pq)− l(rs) + min
x∈R1

{l(rx)− l(px)}+ min
w∈S2

{l(sw)− l(qw)} > 0 (2.3)

then the edge pq is useless.

Z Y

rs

qp

w X R1S2

S1 R2

Figure 2.1: Two covered potential points

Proof. Assume that the edge pq contained in an optimal TSP tour T . Let
rx, ry, sz, sw ∈ T be the incident edges of r and s. Consider the vertices
x, y, z and w as being classified such that x ∈ R1, y ∈ R2, z ∈ S1 and w ∈ S2.
We assumed that the two points r and s are potential, so r, s /∈ {p, q} and
rs /∈ T , therefore the four edges rx, ry, sz and sw are distinct. As a result,
there are two possible 3-opt moves and one of them must be valid. The first
3-opt move is replacing pq, rx and sw with px, rs and qw, so we have:

l(pq) + l(rx) + l(sw)− l(px)− l(rs)− l(qw) (2.4)

13

The second 3-opt move is to replace pq, ry and sz with pz, rs and qy, so we
get

l(pq) + l(ry) + l(sz)− l(pz)− l(rs)− l(qy) (2.5)

By the two theorem inequalities (2.2 and 2.3), both terms are strictly posi-
tive. Since one of these 3-opt moves is valid, a shorter tour for T is found,
contradicting the optimality of T .

In general, the 3-opt moves can offer multiple valid tours to prove the
uselessness of the edge pq. All these possibilities are presented below. How-
ever, these tours might not result in a shorter trip than T . To contradict the
optimality of a tour we have to find a shorter tour than T from one of these
possibilities by using the Main Edge Elimination Theorem inequalities.

q,w, s, z,y, r,p,x,q

Z Y

rs

qp

w X

p,x, r,y, z, s,q,w,p

Z Y

rs

qp

w X

q,w, s, z,y,p, r,x,q

Z Y

rs

qp

w X

p,x, r,y, z,q, s,w,p

Z Y

rs

qp

w X

14

q,w, s, z,p,y, r,x,q

Z Y

rs

qp

w X

p,x, r,y,q, z, s,w,p

Z Y

rs

qp

w X

q,w, s,p, z,y, r,x,q

Z Y

rs

qp

w X

p,x, r,q,y, z, s,w,p

Z Y

rs

qp

w X

q, z,y, r, s,w,p,x,q

Z Y

rs

qp

w X

p,y, z, s, r,x,q,w,p

Z Y

rs

qp

w X

15

q, r,y,p,w, s, z,x,q

Z Y

rs

qp

w X

p, s, z,q,x, r,y,w,p

Z Y

rs

qp

w X

2.2 The Close Point Elimination Theorem

Although the uselessness of an edge in a TSP instance can be proved by
The Main Edge Elimination Theorem, there may be many other useless edges
present which are not identified by this process, therefore, other methods can
be applied. The Close Point Elimination Theorem is unlikely to be able to
eliminate further useless edges when it is applied to the complete graph of a
TSP instance. However, it will allow us to identify additional useless edges
when combined with The Main Edge Elimination Theorem.

Theorem 2 (Close Point Elimination Theorem). Let (V,E) be a TSP in-
stance and pq ∈ E. Let r ∈ V \ {p, q} define R := {x ∈ V | rx ∈ E ∧ pq ∼ rx}.
If for all x, y ∈ R with {x, y} 6= {p, q}, we then have

l(xy) + l(pr) + l(qr) < l(pq) + l(xr) + l(yr) (2.6)

then the edge pq is useless.

Proof. Suppose T is an optimal TSP tour that contains the edge pq. Let xr
and ry be the two edges in T that are incident with r. Then {x, y} 6= {p, q}
and x and y must be in R. By assumption, the inequality (2.6) holds, so
we can substitute the edges pq, xr and yr with xy, pr and qr and find a tour
that is shorter than T . Moreover, if one of x and y equals one of p and q,
then it also holds. Thus, the optimality of the tour T contradicted.

Another two possible 3-opt moves shown below might generate a shorter
tour than T .

16

p, y, q, x, r, p

r

qp

X Y

q, x, p, y, r, q

r

qp

X Y

Using the notation of metric excess, we can obtain a stronger result in a
degenerate case such as when x = p. This notation allows us to short cut
a eulerian subgraph in an instance that does not need to be metric. The
metric excess of a vertex z with respect to an edge pq denoted by mpq(z) is
defined as:

min
x,y∈N(z)\{p,q}

max{l(xz) + l(zp)− l(xp), l(yz) + l(zp)− l(yp),

l(xz) + l(zq)− l(xq), l(yz) + l(zq)− l(yq)}.

For k > 2 we call a set of k edges k-incompatible, if they cannot belong to
the same optimal TSP tour.

Theorem 3 (The Strong Close point Elimination Theorem). Let pq, pr and
rx be three edges of a TSP instance (V,E). Let z ∈ V \ {p, q, r, x}. If

l(xq) + l(rz) + l(zp)−mpr(z) < l(pq) + l(rx) (2.7)

then the edges pq, pr and rx are 3-incompatible.

Proof. Assume the edges pq, pr and rx were contained in an optimal TSP
tour T . The Close Point Elimination Theorem introduces how 3-opt moves
yield a shorter tour. Thus, we can delete the edges pq and rx and insert the
edges qx, pz and rz. This replacement is not a TSP tour as the vertex z has
degree four. As l(xq) + l(rz) + l(zp) −mpr(z) < l(pq) + l(rx) is a short
cut, however, it might yield a shorter tour than T . Thus, the optimality of
the tour T is contradicted.

17

2.3 Certifying potential points

Major useless edges can be removed efficiently using the the Main Edge
Elimination Theorem. Since this theorem needs two strong potential points
to be satisfied, the aim of presenting the following lemmas is to certify a
strong potential point r with respect to an edge pq in constant time. In
addition, another strong potential point s with respect to an edge pq must
be proved separately in constant time using the same steps.

Lemma 1. Let (V,E) be a TSP instance, pq ∈ E, r ∈ V \ {p, q} and s ∈
V \ {r}. The edges pq and rs are incompatible if |psr| < lp and |qsr| < lq.

Proof. To show these edges are incompatible, we have to show that both
2-opt moves are driving a shorter length for the edges pq and rs by using
(1.1 and 1.5) and, with the triangle inequality, we get:

l(ps) ≤ |ps|+ 1

2
where |ps| ≤ |psr|+ |ssr|

l(ps) + l(qr) ≤ |psr|+ |ssr|+
1

2
+ l(qr) < lp + |ssr|+

1

2
+ l(qr)

We know,
lp := δr + l(pq)− l(qr)− 1

Thus,

l(ps) + l(qr) < [δr + l(pq)− l(qr)− 1] + |ssr|+
1

2
+ l(qr)

So,

l(ps) + l(qr) < l(pq) + [δr + |ssr| −
1

2
] ≤ l(pq) + l(rs)

l(ps) + l(qr) < l(pq) + l(rs) is proven similarly using (1.2), thus, the edges
pq and rs are incompatible.

Lemma 2. Let (V,E, ρ) be a TSP instance, where ρ is a distance function
on V that satisfies triangular inequality (e.g. Euclidean distance), pq ∈ E,
and r ∈ V \ {p, q}. If

lp + lq ≥ l(pq)− 1

2
(2.8)

Then, the circle centered by r with radius δr intersects both circles centered
by p and q with radii lp and lq respectively.

18

Proof. It suffices to show |ir|− δr ≤ li ≤ |ir|+ δr for i ∈ {p, q}. By (1.5) and
(2.8) we get,

|pr| − δr ≤ l(pr) +
1

2
− δr = l(pq)− 1

2
− lq ≤ lp

≤ (|pr|+ |qr|+ 1

2
)− (|qr| − 1

2
) + δr − 1 = |pr|+ δr

Analogously for i = q.

Lemma 3. Let (V,E) be a TSP instance, pq ∈ E. For r ∈ V \ {p, q} let
R ⊂ Rp ∪ Rq with R = {x ∈ V | rx ∈ E ∧ pq ∼ rx}. If for i ∈ {p, q} :

l(pq) + l(rx) + l(ry) > l(pr) + l(rq) + l(xy) ∀ x, y ∈ Ri, (2.9)

then Rp and Rq certify the potentiality of r.

Proof. Assume T is an optimal tour that contains pq. And, rx, ry ∈ T with
x, y ∈ Ri for i ∈ {p, q}. Then replacing the edges pq, rx and ry by the edges
pr, rq and xy is a valid 3-opt move. According to the (2.9) inequality, this
3-opt move generates a shorter trip than T ; thus, the optimality of the tour
T is contradicted.

Lemma 3 gives a method to check the potentiality of a vertex r in non-
constant time O(n2). Now, our aim is to show that the vertex r is potential
in constant time. To do that, we assume the edge pq is a part of an optimal
tour T . Also, let the covering be Rp and Rq as described previously. Let
us denote the angles of the cones Rp and Rq as αp and αq respectively. The
following lemmas certify the potentiality of r in constant time.

Lemma 4. Let T be an optimal TSP tour that contains pq, r ∈ V \ {p, q}
and the angle γ between the two edges of T incident with r in T satisfies

γ > max {αp, αq}. (2.10)

Then, the neighbors of r in T cannot lie in both Rp and Rq.

Proof. W.l.o.g. we assume both neighbors of r in T lie in Rp. This directly
implies γ ≤ αp, contradicting the inequality (2.10).

19

Lemma 5. Assume (V,E) be a TSP instance and T an optimal tour. Let
pq ∈ T , and r ∈ V \ {p, q}. Assume the inequality (2.8) holds. If we define
the angle γr as

γr := cos−1

(
1−

(lp + lq − l(pq) + 1
2
)2

2δ2r

)
(2.11)

Then, the angle γ between the two edges of T incident with vertex r satisfies

γ ≥ γr (2.12)

Proof. let rx, ry ∈ T be the two incident edges of r. Let µ := |xryr|. The
cosine rule drives the equation

µ2 = 2δ2r − 2δ2r cos γ (2.13)

As T is an optimal tour, therefore, there is no valid 3-opt move which gen-
erates a shorter trip, so:

l(pq) + l(rx) + l(ry) ≤ l(pr) + l(qr) + l(xy)

lp + lq + |xrx|+ |yry| − l(pq) + 1 ≤ l(xy)

lp + lq − l(pq) +
1

2
≤ µ(

lp + lq − l(pq) +
1

2

)2
≤ µ2 = 2δ2r − 2δ2r cos γ

cos γ ≤ 1−
(lp + lq − l(pq) + 1

2
)2

2δ2r

γ ≥ cos−1

(
1−

(lp + lq − l(pq) + 1
2
)2

2δ2r

)
Thus,

γ ≥ γr

Therefore, from Lemma 4 and Lemma 5, we get the following result.

Lemma 6. Let pq be an edge contained in an optimal TSP tour T , and
r ∈ V \ {p, q}. Assume that the inequality (2.8) holds. If

γr > max{αp, αq} (2.14)

then the sets Rp and Rq certify the potentiality of r.

20

Both angles αp and αq of the cones Rp and Rq respectively can be com-
puted in constant time as:

αp = 2 · cos−1

(
l2q − δ2r − |rq|2

2δr|rq|

)
and, (2.15)

αq = 2 · cos−1

(
l2p − δ2r − |rp|2

2δr|rp|

)
. (2.16)

The results so far present a method to prove in constant time that a given
vertex, r, is potential. However, not every potential point can be detected
using this approach (Hougardy & Schroeder, 2014). If we suppose pq is an
edge and r ∈ V \ {p, q}, then the vertex r is called strongly potential with
respect to pq, if the conditions (2.8) and (2.14) hold. Therefore, we can
check whether a point r is a strongly potential point in constant time O(n)
(Supposing that the value of δr is known, which can be calculated in the
preprocessing step for all vertices). The Main Edge Elimination Theorem’s
inequalities still need O(n) time to be verified. Showing how this can be done
in constant time by calculating suitable lower bounds for the inequalities (2.2)
and (2.3) is our next aim.

Lemma 7. Let (V,E) be a TSP instance and r be a strongly potential point
with respect to pq. Consider Rp and Rq be the covering certifying r. Then

min
x∈Rp

{l(rx)− l(px)} ≥ δr − 1−max{|pxr| : x ∈ Rp} and (2.17)

min
y∈Rq

{l(ry)− l(qy)} ≥ δr − 1−max{|qyr| : y ∈ Rq} (2.18)

Proof. Let x ∈ Rp. Then

l(rx)− l(px) ≥ |rx| − |px| − 1 ≥ δr + |xrx| − (|pxr|+ |xrx|)− 1

≥ δr − 1−max{|pxr| : x ∈ Rp}
Similarly one can prove this for the set Rq.

Let the point r be the center of the circle Cr with radius δr. Define the
two arcs

Bp := {x ∈ Cr | |qx| ≥ lq} and Bq := {y ∈ Cr | |py| ≥ lp}

Also, let Cr contain two points p̃ and q̃ with the greatest distances to p and q
respectively. Since Bp and Bq are connected, the maxima in the inequalities

21

(2.17) and (2.18) can only be attained at p̃ and q̃ respectively, or at the
endpoints of Bp and Bq respectively. Considering the case that:

|pq̃| ≤ lp and |qp̃| ≤ lq (2.19)

This implies

max{|pxr| : x ∈ Rp} ≤ max{t | t ∈ Bp} and (2.20)

max{|qyr| : y ∈ Rq} ≤ max{t | t ∈ Bq} (2.21)

Using some lemmas presented in the appendix of Hougardy and Schroeder’s
paper, the right hand sides of (2.20) and (2.21) can be calculated in constant
time.

22

Chapter 3

Solving the TSP

After choosing a TSP instance from TSPLIB (a library of sample instances
for the TSP collected from different resources) which is called qatar194, re-
peating Stefan Hougardy and Rasmus T. Schroeder’s algorithm steps was
required. The instance contains 194 cities, so, the original number of edges
is 18,721. However, applying their algorithm steps reduced the number of
edges to become 264 edges only, which means 18,457 useless edges were elim-
inated. Here, the number of useless edges will be increased by adding some
linear inequalities as constraints. This chapter is organised as follows. The
first section shows how we achieve the aim in detail and presents every added
inequality to the list of constraints. The second section summarises our work
and talks about the chosen platform (Matlab) and gives some definitions of
the functions we used.

3.1 Solving the LP relaxation

As we have mentioned in chapter one (section 1.5), the standard LP relax-
ation for the TSP is formulated as

minimise cTx subject to∑
(xe : v is an end of e) = 2 for all cities v

0 ≤ xe ≤ 1 for all edges e

That means a feasible solution exists for every solution to the TSP. Although
solving the above LP relaxation does not lead to a Hamiltonian tour, it
provides an optimal solution x∗ to the TSP relaxation. The optimal solution
x∗ is characterised by, or called, the lower bound for the TSP, which is the
shortest length of a tour that can be used as a measurement of the quality of

23

any suggested trip. Thus, there is no trip shorter than cTx∗. In this instance,
the optimal solution using the initial LP is shown in the following figure.

Figure 3.1: Solution of the initial LP relaxation

From figure (3.1), the solution x∗ is disconnected; there are three components.
These components (or subsets) contain 162, 26 and six vertices (the subtour
with six vertices can be seen in figure (3.2)). Some of these vertices have an
odd number of edges, which means there are some edges having fractional
values. There are two possible values of an edge e in this figure, either
it carries x∗e = 1 or x∗e = 1/2. Throughout this thesis, only those edges
e with corresponding variable x∗e = 0 are displayed in figures. Here, the
number of non-zero edges is 206 with the total length, or lower bound, equal
to (9,267) where the optimal tour is known to have length (9,352). In this
case, the solution of the initial LP does not correspond to a Hamiltionian
cycle. Therefore, we have to add suitable linear inequalities to the list of
constraints to eliminate these subtours and improve the LP relaxation.

3.2 Improving the LP relaxation

From the previous section, the solution x∗ produced a disconnected graph
with three subtours. Now, adding extra constraints to the list of constraints
is required to eliminate these subtours. To avoid the occurrence of subtours
for a graph G with n vertices on node set S with 3 ≤ |S| ≤ n−1. For S ⊆ V
we define the following

24

E(S) = {(u, v) ∈ E : u ∈ S , v ∈ S} and,

δ(S) = {(u, v) ∈ E : either u or v ∈ S}

To break the graph into disjoint parts, we have to remove all edges in δ(S) for
all nonempty proper components S of vertices. Now, we are able to express
the subtour elimination constraint (SEC) for eliminating these subtours as
follows ∑

e∈E(S)

xe ≤ |S| − 1 for all S ⊂ V, 2 ≤ |S| ≤ |V | − 1. (3.1)

If the set |S| = 2, then these constraints decrease to xe ≤ 1 where e is the
unique edge in E(S). To eliminate these subtours and raise the LP value,
we have to add three constraints (c1, c2 and c3) to the list of constraints.
For instance, to write the SEC for the smallest subtour that contains six
cities, we have to know what the numbers (or names) of these cities are
first, then we will be able to write the constraint. The subtour contains

Figure 3.2: A part of the graph G shows S1

S1 = {34 39 40 51 43 47}. The constraint that the LP needs to eliminate
this subtour using the formula (3.1) is given by

c1 : x3439 + x3440 + x3947 + x3951 + x4043 + x4347 + x4751 ≤ 5

where x3439 is the edge starting from the vertex number (34) and finishing
at the vertex number (39). The following two constraints are required for

25

eliminating the other two subtours.

c2 : x0104 + x0106 + x0203 + x0204 + x0305 + x0509 + x0608 + x0711+

x0717 + x0816 + x0910 + x1012 + x1114 + x1215 + x1316 + x1323+

x1425 + x1519 + x1726 + x1821 + x1833 + x1930 + x2063 + x2065+

x2124 + x2227 + x2229 + x2325 + x2426 + x2737 + x2829 + x2833+

x3032 + x3132 + x3135 + x3538 + x3542 + x3544 + x3659 + x3663+

x3745 + x3841 + x3844 + x4144 + x4146 + x4244 + x4249 + x4250+

x4446 + x4448 + x4449 + x4557 + x4648 + x4654 + x4852 + x4853+

x4854 + x4856 + x4950 + x4955 + x5055 + x5253 + x5254 + x5356+

x5455 + x5456 + x5658 + x5760 + x5861 + x5962 + x6069 + x6167+

x6282 + x6468 + x6470 + x6585 + x6668 + x6673 + x6773 + x6974+

x7077 + x7176 + x7180 + x7182 + x7274 + x7275 + x7278 + x7576+

x7578 + x7680 + x7687 + x7784 + x7891 + x7981 + x7983 + x8087+

x8184 + x8388 + x8586 + x8698 + x87102 + x8892 + x8893 + x8990+

x8994 + x9098 + x9193 + x91103 + x9295 + x9297 + x9396 + x9499+

x9596 + x9597 + x99101 + x101104 + x102103 + x104111 + x111130+

x125126 + x125127 + x126132 + x126138 + x127130 + x127132+

x130132 + x130156 + x132134 + x134137 + x137140 + x138139+

x138142 + x139146 + x139154 + x140142 + x140145 + x141144+

x141147 + x141152 + x142146 + x143148 + x143160 + x144150+

x145149 + x145156 + x146149 + x147151 + x147152 + x148155+

x148160 + x149156 + x150153 + x150154 + x151155 + x152153+

x152159 + x153157 + x154157 + x155158 + x155162 + x156161+

x158159 + x158162 + x159165 + x160166 + x161163 + x161169+

x162167 + x163164 + x164169 + x164172 + x165168 + x166171+

x167168 + x167170 + x168178 + x169176 + x170171 + x170180+

x171185 + x172174 + x172179 + x173174 + x173175 + x174179+

x175177 + x175184 + x176182 + x177181 + x177184 + x178180+

x178181 + x179186 + x180185 + x181184 + x182194 + x183186+

x183187 + x184189 + x185193 + x186194 + x187190 + x188189+

x188191 + x188193 + x189191 + x189192 + x190192 + x190194+

x191192 ≤ 161

26

c3 : x100108 + x100110 + x105106 + x105107 + x106118 + x107108+

x109113 + x109114 + x110112 + x112115 + x113114 + x113119+

x114119 + x115116 + x116117 + x117121 + x118122 + x118131+

x119122 + x120121 + x120123 + x123124 + x124128 + x128133+

x129131 + x129133 + x129135 + x131136 + x133135 + x135136 ≤ 25

Here, c2 and c3 are constraints for the subtour with 162 and 26 vertices
respectively, where

S3 = {100 108 110 107 112 105 115 106 116 118 117 122 121 119 120

113 114 123 109 124 128 133 129 135 131 136}

and,
S2 = {V − (S1 ∪ S3)}

Adding c1, c2 and c3 constraints to the LP, as a result, improved the lower
bound which became (9281). However, the addition of these constraints
leaded to another two subsets, as the following figure shows:

Figure 3.3: A part of the graph G shows S4

Figure (3.3) shows the new subtour appearing inG. Thus, we repeat the same
procedure with these two new subtours by adding two SECs to the list of con-
straints. The first, or small, subtour has five vertices S4 = {42 44 50 49 55}.
Thus, we add

c4 : x4244 + x4249 + x4250 + x4449 + x4950 + x4955 + x5055 ≤ 4

And another constraint should be added which contains the rest of graph G’s
vertices, such that S5 = {V − S4}, as follows:

27

c5 : x0104 + x0106 + x0203 + x0204 + x0305 + x0509 + x0608 + x0711 + x0717+

x0816 + x0910 + x1012 + x1114 + x1215 + x1316 + x1323 + x1425 + x1519+

x1726 + x1821 + x1833 + x1930 + x2063 + x2065 + x2124 + x2227 + x2229+

x2325 + x2426 + x2734 + x2737 + x2829 + x2833 + x3032 + x3132 + x3135+

x3439 + x3440 + x3538 + x3659 + x3663 + x3739 + x3745 + x3840 + x3841+

x3947 + x3951 + x4043 + x4143 + x4146 + x4347 + x4356 + x4358 + x4557+

x4648 + x4654 + x4751 + x4852 + x4853 + x4854 + x4856 + x5161 + x5253+

x5254 + x5356 + x5456 + x5658 + x5760 + x5861 + x5962 + x6069 + x6167+

x6282 + x6468 + x6470 + x6585 + x6668 + x6673 + x6773 + x6974 + x7077+

x7176 + x7180 + x7182 + x7274 + x7275 + x7278 + x7576 + x7578 + x7680+

x7687 + x7784 + x7891 + x7981 + x7983 + x8087 + x8184 + x8388 + x8586+

x8698 + x87102 + x8892 + x8893 + x8990 + x8994 + x9098 + x9193 + x91103+

x9295 + x9297 + x9396 + x9499 + x9596 + x9597 + x97106 + x99101+

x102103 + x102109 + x103106 + x104111 + x105106 + x105107 + x106118+

x107108 + x109113 + x109114 + x110112 + x111114 + x111130 + x112115+

x113114 + x113119 + x114119 + x114125 + x114126 + x115116 + x116117+

x117121 + x118122 + x118131 + x119122 + x119126 + x120121 + x120123+

x123124 + x124128 + x125126 + x125127 + x126132 + x126138 + x127130+

x127132 + x128133 + x129131 + x129133 + x129135 + x130132 + x130156+

x131136 + x132134 + x133135 + x134137 + x135136 + x135143 + x136143+

x136155 + x137140 + x138139 + x138142 + x139146 + x139154 + x140142+

x140145 + x141144 + x141147 + x141152 + x142146 + x143148 + x143160+

x144150 + x145149 + x145156 + x146149 + x147151 + x147152 + x148155+

x148160 + x149156 + x150153 + x150154 + x151155 + x152153 + x152159+

x153157 + x154157 + x155158 + x155162 + x156161 + x158159 + x158162+

x159165 + x160166 + x161163 + x161169 + x162167 + x163164 + x164169+

x164172 + x165168 + x166171 + x167168 + x167170 + x168178 + x169176+

x170171 + x170180 + x171185 + x172174 + x172179 + x173174 + x173175+

x174179 + x175177 + x175184 + x176182 + x177181 + x177184 + x178180+

x178181 + x179186 + x180185 + x181184 + x182194 + x183186 + x183187+

x184189 + x185193 + x186194 + x187190 + x188189 + x188191 + x188193+

x100108 + x100110 + x101104 + x189191 + x189192 + x190192 + x190194+

x191192 ≤ 188

28

The result after adding c4 and c5 together increased the LP value to (9282).
Yet, the LP solution x∗ is disconnected, as the next figure shows:

Figure 3.4: A part of the graph G shows S6 and S7

From figure (3.4), there are three subtours. Similarly, the next three itera-
tions are completed by adding three more subtour elimination constraints to
the list of constraints, one with each of the following,

S6 = {49 50 55}

S7 = {34 39 40 51 38 47 41 43}

S8 = {V − (S6 ∪ S7)}

. So, we have

c6 : x4950 + x4955 + x5055 ≤ 2

c7 : x3439 + x3440 + x3840 + x3841 + x3947 + x3951 + x4043 + x4143+

x4347 + x4751 ≤ 7

29

c8 : x0104 + x0106 + x0203 + x0204 + x0305 + x0509 + x0608 + x0711+

x0717 + x0816 + x0910 + x1012 + x1114 + x1215 + x1316 + x1323+

x1425 + x1519 + x1726 + x1821 + x1833 + x1930 + x2063 + x2065+

x2124 + x2227 + x2229 + x2325 + x2426 + x2737 + x2829 + x2833+

x3032 + x3132 + x3135 + x3542 + x3544 + x3659 + x3663 + x3745+

x4244 + x4446 + x4448 + x4557 + x4648 + x4654 + x4852 + x4853+

x4854 + x4856 + x5253 + x5254 + x5356 + x5456 + x5658 + x5760+

x5861 + x5962 + x6069 + x6167 + x6282 + x6468 + x6470 + x6585+

x6668 + x6673 + x6773 + x6974 + x7077 + x7176 + x7180 + x7182+

x7274 + x7275 + x7278 + x7576 + x7578 + x7680 + x7687 + x7784+

x7891 + x7981 + x7983 + x8087 + x8184 + x8388 + x8586 + x8698+

x87102 + x8892 + x8893 + x8990 + x8994 + x9098 + x9193 + x91103+

x9295 + x9297 + x9396 + x9499 + x9596 + x9597 + x97106 + x99101+

x100108 + x100110 + x101104 + x102103 + x102109 + x103106+

x104111 + x105106 + x105107 + x106118 + x107108 + x109113 + x109114+

x110112 + x111114 + x111130 + x112115 + x113114 + x113119 + x114119+

x114125 + x114126 + x115116 + x116117 + x117121 + x118122 + x118131+

x119122 + x119126 + x120121 + x120123 + x123124 + x124128 + x125126+

x125127 + x126132 + x126138 + x127130 + x127132 + x128133 + x129131+

x129133 + x129135 + x130132 + x130156 + x131136 + x132134 + x133135+

x134137 + x135136 + x135143 + x136143 + x136155 + x137140 + x138139+

x138142 + x139146 + x139154 + x140142 + x140145 + x141144 + x141147+

x141152 + x142146 + x143148 + x143160 + x144150 + x145149 + x145156+

x146149 + x147151 + x147152 + x148155 + x148160 + x149156 + x150153+

x150154 + x151155 + x152153 + x152159 + x153157 + x154157 + x155158+

x155162 + x156161 + x158159 + x158162 + x159165 + x160166 + x161163+

x161169 + x162167 + x163164 + x164169 + x164172 + x165168 + x166171+

x167168 + x167170 + x168178 + x169176 + x170171 + x170180 + x171185+

x172174 + x172179 + x173174 + x173175 + x174179 + x175177 + x175184+

x176182 + x177181 + x177184 + x178180 + x178181 + x179186 + x180185+

x181184 + x182194 + x183186 + x183187 + x184189 + x185193 + x186194+

x187190 + x188189 + x188191 + x188193 + x189191 + x189192 + x190192+

x190194 + x191192 ≤ 182

30

So far, we have added eight constraints to the LP. The last three iterations
raised the lower bound to (9284). It also, however, generated another two
subtours, one with S9 = {42 49 50 55}, the other with S10 = {V − S9}. The
following figure shows S9:

Figure 3.5: A part of the graph G shows S9

Similarly, we add two more subtour elimination constraints c9 and c10, thus,

c9 : x4249 + x4250 + x4950 + x4955 + x5055 ≤ 3

and,

c10 : x0104 + x0106 + x0203 + x0204 + x0305 + x0509 + x0608 + x0711+

x0717 + x0816 + x0910 + x1012 + x1114 + x1215 + x1316 + x1323+

x1425 + x1519 + x1726 + x1821 + x1833 + x1930 + x2063 + x2065+

x2124 + x2227 + x2229 + x2325 + x2426 + x2734 + x2737 + x2829+

x2833 + x3032 + x3132 + x3135 + x3439 + x3440 + x3538 + x3544+

x3659 + x3663 + x3739 + x3745 + x3840 + x3841 + x3844 + x3947+

x3951 + x4043 + x4143 + x4144 + x4146 + x4347 + x4356 + x4358+

x4446 + x4448 + x4557 + x4648 + x4654 + x4751 + x4852 + x4853+

x4854 + x4856 + x5161 + x5253 + x5254 + x5356 + x5456 + x5658+

x5760 + x5861 + x5962 + x6069 + x6167 + x6282 + x6468 + x6470+

x6585 + x6668 + x6673 + x6773 + x6974 + x7077 + x7176 + x7180+

31

x7182 + x7274 + x7275 + x7278 + x7576 + x7578 + x7680 + x7687 + x7784+

x7891 + x7981 + x7983 + x8087 + x8184 + x8388 + x8586 + x8698 + x87102+

x8892 + x8893 + x8990 + x8994 + x9098 + x9193 + x91103 + x9295 + x9297+

x9396 + x9499 + x9596 + x9597 + x97106 + x99101 + x100108 + x100110+

x101104 + x102103 + x102109 + x103106 + x104111 + x105106 + x105107+

x106118 + x107108 + x109113 + x109114 + x110112 + x111114 + x111130+

x112115 + x113114 + x113119 + x114119 + x114125 + x114126 + x115116+

x116117 + x117121 + x118122 + x118131 + x119122 + x119126 + x120121+

x120123 + x123124 + x124128 + x125126 + x125127 + x126132 + x126138+

x127130 + x127132 + x128133 + x129131 + x129133 + x129135 + x130132+

x130156 + x131136 + x132134 + x133135 + x134137 + x135136 + x135143+

x136143 + x136155 + x137140 + x138139 + x138142 + x139146 + x139154+

x140142 + x140145 + x141144 + x141147 + x141152 + x142146 + x143148+

x143160 + x144150 + x145149 + x145156 + x146149 + x147151 + x147152+

x148155 + x148160 + x149156 + x150153 + x150154 + x151155 + x152153+

x152159 + x153157 + x154157 + x155158 + x155162 + x156161 + x158159+

x158162 + x159165 + x160166 + x161163 + x161169 + x162167 + x163164+

x164169 + x164172 + x165168 + x166171 + x167168 + x167170 + x168178+

x169176 + x170171 + x170180 + x171185 + x172174 + x172179 + x173174+

x173175 + x174179 + x175177 + x175184 + x176182 + x177181 + x177184+

x178180 + x178181 + x179186 + x180185 + x181184 + x182194 + x183186+

x183187 + x184189 + x185193 + x186194 + x187190 + x188189 + x188191+

x188193 + x189191 + x189192 + x190192 + x190194 + x191192 ≤ 189

32

Solving the LP with the previous ten constraints raised the lower bound
to (9284.5) and led to the following graph:

Figure 3.6: The LP solution with 10 SEC

The graph G in Figure (3.6) presents an updated version of the LP solution
x∗. The solution becomes connected now; however, it is not 2-connected.
That means, with the removal of vertex 188, the graph becomes two con-
nected subsets, as the next figure illustrates:

Figure 3.7: S11 before remove x188193

Figure (3.7) shows how removing of the edge x188193 splits the graph into
two connected components: one with cities S11 = {188 189 191 192} and the
other with cities S12 = {V − S11}. Since dividing the graph into connected
components with city sets S1, S2, ..., Sk (k ≥ 2), it is possible by removing a
single city, 188 in this case, then∑

(x∗e : e has one end in Si and one end not in Si) ≤ 1 (3.2)

for at least one set Si. Back to the same method, we add two more subtour
elimination constraints c11 and c12 for S11 and S12 respectively. Thus:

c11 : x188189 + x188191 + x189191 + x189192 + x191192 ≤ 3

33

c12 : x0104 + x0106 + x0203 + x0204 + x0305 + x0509 + x0608 + x0711+

x0717 + x0816 + x0910 + x1012 + x1114 + x1215 + x1316 + x1323+

x1425 + x1519 + x1726 + x1821 + x1833 + x1930 + x2063 + x2065+

x2124 + x2227 + x2229 + x2325 + x2426 + x2734 + x2737 + x2829+

x2833 + x3032 + x3132 + x3135 + x3439 + x3440 + x3538 + x3542+

x3544 + x3659 + x3663 + x3739 + x3745 + x3840 + x3841 + x3844+

x3947 + x3951 + x4043 + x4143 + x4144 + x4146 + x4244 + x4249+

x4250 + x4347 + x4356 + x4358 + x4446 + x4448 + x4449 + x4557+

x4648 + x4654 + x4751 + x4852 + x4853 + x4854 + x4856 + x4950+

x4955 + x5055 + x5161 + x5253 + x5254 + x5356 + x5455 + x5456+

x5658 + x5760 + x5861 + x5962 + x6069 + x6167 + x6282 + x6468+

x6470 + x6585 + x6668 + x6673 + x6773 + x6974 + x7077 + x7176+

x7180 + x7182 + x7274 + x7275 + x7278 + x7576 + x7578 + x7680+

x7687 + x7784 + x7891 + x7981 + x7983 + x8087 + x8184 + x8388+

x8586 + x8698 + x87102 + x8892 + x8893 + x8990 + x8994 + x9098+

x9193 + x91103 + x9295 + x9297 + x9396 + x9499 + x9596 + x9597+

x97106 + x99101 + x100108 + x100110 + x101104 + x102103 + x102109+

x103106 + x104111 + x105106 + x105107 + x106118 + x107108 + x109113+

x109114 + x110112 + x111114 + x111130 + x112115 + x113114 + x113119+

x114119 + x114125 + x114126 + x115116 + x116117 + x117121 + x118122+

x118131 + x119122 + x119126 + x120121 + x120123 + x123124 + x124128+

x125126 + x125127 + x126132 + x126138 + x127130 + x127132 + x128133+

x129131 + x129133 + x129135 + x130132 + x130156 + x131136 + x132134+

x133135 + x134137 + x135136 + x135143 + x136143 + x136155 + x137140+

x138139 + x138142 + x139146 + x139154 + x140142 + x140145 + x141144+

x141147 + x141152 + x142146 + x143148 + x143160 + x144150 + x145149+

x145156 + x146149 + x147151 + x147152 + x148155 + x148160 + x149156+

x150153 + x150154 + x151155 + x152153 + x152159 + x153157 + x154157+

x155158 + x155162 + x156161 + x158159 + x158162 + x159165 + x160166+

x161163 + x161169 + x162167 + x163164 + x164169 + x164172 + x165168+

x166171 + x167168 + x167170 + x168178 + x169176 + x170171 + x170180+

34

x171185 + x172174 + x172179 + x173174 + x173175 + x174179 + x175177+

x175184 + x176182 + x177181 + x177184 + x178180 + x178181 + x179186+

x180185 + x181184 + x182194 + x183186 + x183187 + x185193 + x186194+

x187190 + x190194 ≤ 189

Adding two more subtour elimination constraints improved the lower bound
to (9301) and the optimal solution x∗ is drawn in the following figure:

Figure 3.8: The LP solution with 12 SEC

Again, the graph is not 2-connected as we could divide it into two connected
sets by removing the city 175 as the next figure clarifies:

Figure 3.9: S13 before remove x173175

Splitting the graph G by removing the edge x173175 generates two subsets,
one with vertices S13 = {175 177 184 181 189 178 192 180 191 185 188 193}
and the other with vertices S14 = {V − S13}. The next two constraints are
given below:

35

c13 : x175177 + x175184 + x177181 + x177184 + x178180 + x178181+

x180185 + x181184 + x184189 + x185193 + x188189 + x188191+

x188193 + x189191 + x189192 + x191192 ≤ 11

c14 : x0104 + x0106 + x0203 + x0204 + x0305 + x0509 + x0608 + x0711+

x0717 + x0816 + x0910 + x1012 + x1114 + x1215 + x1316 + x1323+

x1425 + x1519 + x1726 + x1821 + x1833 + x1930 + x2063 + x2065+

x2124 + x2227 + x2229 + x2325 + x2426 + x2734 + x2737 + x2829+

x2833 + x3032 + x3132 + x3135 + x3439 + x3440 + x3538 + x3542+

x3544 + x3659 + x3663 + x3739 + x3745 + x3840 + x3841 + x3844+

x3947 + x3951 + x4043 + x4143 + x4144 + x4146 + x4244 + x4249+

x4250 + x4347 + x4356 + x4358 + x4446 + x4448 + x4449 + x4557+

x4648 + x4654 + x4751 + x4852 + x4853 + x4854 + x4856 + x4950+

x4955 + x5055 + x5161 + x5253 + x5254 + x5356 + x5455 + x5456+

x5658 + x5760 + x5861 + x5962 + x6069 + x6167 + x6282 + x6468+

x6470 + x6585 + x6668 + x6673 + x6773 + x6974 + x7077 + x7176+

x7180 + x7182 + x7274 + x7275 + x7278 + x7576 + x7578 + x7680+

x7687 + x7784 + x7891 + x7981 + x7983 + x8087 + x8184 + x8388+

x8586 + x8698 + x87102 + x8892 + x8893 + x8990 + x8994 + x9098+

x9193 + x91103 + x9295 + x9297 + x9396 + x9499 + x9596 + x9597+

x97106 + x99101 + x100108 + x100110 + x101104 + x102103 + x102109+

x103106 + x104111 + x105106 + x105107 + x106118 + x107108 + x109113+

x109114 + x110112 + x111114 + x111130 + x112115 + x113114 + x113119+

x114119 + x114125 + x114126 + x115116 + x116117 + x117121 + x118122+

x118131 + x119122 + x119126 + x120121 + x120123 + x123124 + x124128+

x125126 + x125127 + x126132 + x126138 + x127130 + x127132 + x128133+

x129131 + x129133 + x129135 + x130132 + x130156 + x131136 + x132134+

x133135 + x134137 + x135136 + x135143 + x136143 + x136155 + x137140+

x138139 + x138142 + x139146 + x139154 + x140142 + x140145 + x141144+

x141147 + x141152 + x142146 + x143148 + x143160 + x144150 + x145149+

x145156 + x146149 + x147151 + x147152 + x148155 + x148160 + x149156+

x150153 + x150154 + x151155 + x152153 + x152159 + x153157 + x154157+

36

x155158 + x155162 + x156161 + x158159 + x158162 + x159165 + x160166+

x161163 + x161169 + x162167 + x163164 + x164169 + x164172 + x165168+

x166171 + x167168 + x167170 + x169176 + x170171 + x172174 + x172179+

x173174 + x174179 + x176182 + x179186 + x182194 + x183186 + x183187+

x186194 + x187190 + x190194 ≤ 181

While the LP value grows to (9,307.75), the result of adding the last two
linear inequalities appears in the next two figures:

Figure 3.10: The LP solution with 14 SEC

Figure 3.11: S15 before remove x140145

Now, the LP solution x∗ again becomes not 2-connected, as figure (3.11)
confirms. Similarly, taking off the city 145 produces two subsets, one with
56 cities S15 = {145 149 146 142 138 ... 163 161 156} and the other one with
138 cities S16 = {V − S15}. Thus, we then add the following:

37

c15 : x138139 + x138142 + x139146 + x139154 + x141144 + x141147+

x141152 + x142146 + x143148 + x143160 + x144150 + x145149+

x145156 + x146149 + x147151 + x147152 + x148155 + x148160+

x149156 + x150153 + x150154 + x151155 + x152153 + x152159+

x153157 + x154157 + x155158 + x155162 + x156161 + x158159+

x158162 + x159165 + x160166 + x161163 + x161169 + x162167+

x163164 + x164169 + x164172 + x165168 + x166171 + x167168+

x167170 + x168178 + x169176 + x170171 + x170180 + x171185+

x172174 + x172179 + x173174 + x173175 + x174179 + x175177+

x175184 + x176182 + x177181 + x177184 + x178180 + x178181+

x179186 + x180185 + x181184 + x182194 + x183186 + x183187+

x184189 + x185193 + x186194 + x187190 + x188189 + x188191+

x188193 + x189191 + x189192 + x190192 + x190194 + x191192 ≤ 55

c16 : x0104 + x0106 + x0203 + x0204 + x0305 + x0509 + x0608 + x0711+

x0717 + x0816 + x0910 + x1012 + x1114 + x1215 + x1316 + x1323+

x1425 + x1519 + x1726 + x1821 + x1833 + x1930 + x2063 + x2065+

x2124 + x2227 + x2229 + x2325 + x2426 + x2734 + x2737 + x2829+

x2833 + x3032 + x3132 + x3135 + x3439 + x3440 + x3538 + x3542+

x3544 + x3659 + x3663 + x3739 + x3745 + x3840 + x3841 + x3844+

x3947 + x3951 + x4043 + x4143 + x4144 + x4146 + x4244 + x4249+

x4250 + x4347 + x4356 + x4358 + x4446 + x4448 + x4449 + x4557+

x4648 + x4654 + x4751 + x4852 + x4853 + x4854 + x4856 + x4950+

x4955 + x5055 + x5161 + x5253 + x5254 + x5356 + x5455 + x5456+

x5658 + x5760 + x5861 + x5962 + x6069 + x6167 + x6282 + x6468+

x6470 + x6585 + x6668 + x6673 + x6773 + x6974 + x7077 + x7176+

x7180 + x7182 + x7274 + x7275 + x7278 + x7576 + x7578 + x7680+

x7687 + x7784 + x7891 + x7981 + x7983 + x8087 + x8184 + x8388+

x8586 + x8698 + x87102 + x8892 + x8893 + x8990 + x8994 + x9098+

x9193 + x91103 + x9295 + x9297 + x9396 + x9499 + x9596 + x9597+

x97106 + x99101 + x100108 + x100110 + x101104 + x102103 + x102109+

38

x103106 + x104111 + x105106 + x105107 + x106118 + x107108+

x109113 + x109114 + x110112 + x111114 + x111130 + x112115+

x113114 + x113119 + x114119 + x114125 + x114126 + x115116+

x116117 + x117121 + x118122 + x118131 + x119122 + x119126+

x120121 + x120123 + x123124 + x124128 + x125126 + x125127+

x126132 + x127130 + x127132 + x128133 + x129131 + x129133+

x129135 + x130132 + x131136 + x132134 + x133135 + x134137+

x135136 + x137140 ≤ 137

Consequently, the lower bound increased to become (9308) and the new LP
solution with 16 SEC is given by

Figure 3.12: The LP solution with 16 SEC

As can be seen in the mid-left figure (3.12), the solution is still not 2-
connected, therefore we continue adding subtour elimination constraints after
the removal of city 111 (the edge x104111). There are two connected com-
ponents, one contains 91 cities S17 = {111 130 ... 114}, and the second one
has 103 cities S18 = {V − S17}. The next two constraints are listed below:

39

c17 : x100108 + x100110 + x105106 + x105107 + x106118 + x107108+

x109113 + x109114 + x110112 + x111114 + x111130 + x112115+

x113114 + x113119 + x114119 + x114125 + x114126 + x115116+

x116117 + x117121 + x118122 + x118131 + x119122 + x119126+

x120121 + x120123 + x123124 + x124128 + x125126 + x125127+

x126132 + x126138 + x127130 + x127132 + x128133 + x129131+

x129133 + x129135 + x130132 + x130156 + x131136 + x132134+

x133135 + x134137 + x135136 + x135143 + x136143 + x136155+

x137140 + x138139 + x138142 + x139146 + x139154 + x140142+

x140145 + x141144 + x141147 + x141152 + x142146 + x143148+

x143160 + x144150 + x145149 + x145156 + x146149 + x147151+

x147152 + x148155 + x148160 + x149156 + x150153 + x150154+

x151155 + x152153 + x152159 + x153157 + x154157 + x155158+

x155162 + x156161 + x158159 + x158162 + x159165 + x160166+

x161163 + x161169 + x162167 + x163164 + x164169 + x164172+

x165168 + x166171 + x167168 + x167170 + x168178 + x169176+

x170171 + x170180 + x171185 + x172174 + x172179 + x173174+

x173175 + x174179 + x175177 + x175184 + x176182 + x177181+

x177184 + x178180 + x178181 + x179186 + x180185 + x181184+

x182194 + x183186 + x183187 + x184189 + x185193 + x186194+

x187190 + x188189 + x188191 + x188193 + x189191 + x189192+

x190192 + x190194 + x191192 ≤ 90

c18 : x0104 + x0106 + x0203 + x0204 + x0305 + x0509 + x0608+

x0711 + x0717 + x0816 + x0910 + x1012 + x1114 + x1215+

x1316 + x1323 + x1425 + x1519 + x1726 + x1821 + x1833+

x1930 + x2063 + x2065 + x2124 + x2227 + x2229 + x2325+

x2426 + x2734 + x2737 + x2829 + x2833 + x3032 + x3132+

x3135 + x3439 + x3440 + x3538 + x3542 + x3544 + x3659+

x3663 + x3739 + x3745 + x3840 + x3841 + x3844 + x3947+

x3951 + x4043 + x4143 + x4144 + x4146 + x4244 + x4249+

x4250 + x4347 + x4356 + x4358 + x4446 + x4448 + x4449+

x4557 + x4648 + x4654 + x4751 + x4852 + x4853 + x4854+

40

x4856 + x4950 + x4955 + x5055 + x5161 + x5253 + x5254+

x5356 + x5455 + x5456 + x5658 + x5760 + x5861 + x5962+

x6069 + x6167 + x6282 + x6468 + x6470 + x6585 + x6668+

x6673 + x6773 + x6974 + x7077 + x7176 + x7180 + x7182+

x7274 + x7275 + x7278 + x7576 + x7578 + x7680 + x7687+

x7784 + x7891 + x7981 + x7983 + x8087 + x8184 + x8388+

x8586 + x8698 + x87102 + x8892 + x8893 + x8990 + x8994+

x9098 + x9193 + x91103 + x9295 + x9297 + x9396 + x9499+

x9596 + x9597 + x99101 + x101104 + x102103 ≤ 102

With adding the last two subtour elimination constraints, we obtain a re-
laxation of value (9,311.5) and the optimal solution x∗is presented in the
following figure:

Figure 3.13: The LP solution with 18 SEC

Apparently, the solution is now becoming 2-connected and removing another
city will not cause any division. Since the simplex algorithm is our ap-
proach to finding the optimal solution x∗ and the solution is not a tour yet,
there must be a linear inequality satisfied by all x in S and violated by x∗

(Applegate et al., 2011). The inequality is called a cutting plane, or simply
a cut.

41

Figure 3.14: Cutting plane to narrow down the feasible set

The cut takes the form a∗x ≤ b∗, where a∗ is a new row of the matrix A,
and b∗ is a new element of the vector b. Adding a cut pushes up the lower
bound and narrows down our feasible set S for the LP relaxation. We repeat
this procedure until get a relaxation to the problem in the form:

minimise cTx subject to a∗x ≤ b∗ (3.3)

with the solution obtained by the cutting plane method. The next step of our
approach is to add cuts, or linear inequalities, to raise the lower bound. A
common way to find cuts is by using Comb inequality (Grötschel & Padberg,
1979). Any family of subsets of V that consists of a single “handle” and a
set of “teeth” and that is characterised by

� the handle meeting each tooth but not containing any teeth,

� the teeth being pairwise disjoint,

� and the number of teeth k being an odd integer number and k ≥ 3

is called a comb. For every comb with handle H and teeth T1, T2, ..., Tk, the
inequality

x(E(H)) +
k∑

i=1

x(E(Ti)) ≤ |H|+
k∑

i=1

|Ti| − [
3k + 1

2
] (3.4)

is called a comb inequality (Letchford & Lodi, 2002). The optimal solution
x∗ drawn in figure (3.13) gives four combs, as shown in the next figure:

42

Figure 3.15: Parts of x∗ where combs are found

Figure (3.15) shows the four combs, where the blue circles represent han-
dles. Each of these handles are intersected by three teeth, determined by red
ovals. We have to define these combs first and then write a linear inequality
of each one using the inequality (3.4). The first comb contains the following:

H1 = {41 44 46}, T1 = {38 41}, T2 = {42 44}, T3 = {46 48}

Using the comb inequality (3.4) where |H| is the number of the handle’s
vertices |H1| = 3, |T1| = |T2| = |T3| = 2 and k is the number of teeth
(k = 3). Thus, we can express the constraint as

c19 : x3841 + x4144 + x4146 + x4244 + x4446 + x4648 ≤ 4

The second comb,

H2 = {48 52 53}, T1 = {46 48}, T2 = {52 54}, T3 = {53 56}

Thus,

c20 : x4648 + x4852 + x4853 + x5253 + x5254 + x5356 ≤ 4

The third comb

H3 = {145 149 156}, T1 = {140 145}, T2 = {146 149}, T3 = {156 161}

So,

c21 : x140145 + x145149 + x145156 + x146149 + x149156 + x156161 ≤ 4

Then, the last comb

H4 = {175 177 184}, T1 = {173 175}, T2 = {177 181}, T3 = {184 189}

43

The comb inequality is written as

c22 : x173175 + x175177 + x175184 + x177181 + x177184 + x184189 ≤ 4

The result of adding the last four linear inequalities to the list of constraints
is that the lower bound increased to (9328.167) and the optimal solution x∗

became disconnected, as the next two figures show:

Figure 3.16: The LP solution with 18 SEC and 4 combs inequality

Figure 3.17: The upper part of Figure (3.16)

44

The next two iterations are added to eliminate these subtours using SEC
(3.1). One of these subtours, figure (3.17), has 64 cities S23 = {130 127... 132},
and other one has 130 cities S24 = {V − S23}. Thus, we add the following
constraints:

c23 : x125126 + x125127 + x126132 + x126138 + x127130 + x127132+

x130132 + x130156 + x132134 + x134137 + x137140 + x138139+

x138142 + x139146 + x139154 + x140142 + x140145 + x141144+

x141147 + x141152 + x142146 + x143148 + x143160 + x144150+

x145149 + x145156 + x146149 + x147151 + x147152 + x148155+

x148160 + x149156 + x150153 + x150154 + x151155 + x152153+

x152159 + x153157 + x154157 + x155158 + x155162 + x156161+

x158159 + x158162 + x159165 + x160166 + x161163 + x161169+

x162167 + x163164 + x164169 + x164172 + x165168 + x166171+

x167168 + x167170 + x168178 + x169176 + x170171 + x170180+

x171185 + x172174 + x172179 + x173174 + x173175 + x174179+

x175177 + x175184 + x176182 + x177181 + x177184 + x178180+

x178181 + x179186 + x180185 + x181184 + x182194 + x183186+

x183187 + x184189 + x185193 + x186194 + x187190 + x188189+

x188191 + x188193 + x189191 + x189192 + x190192 + x190194+

x191192 ≤ 63

And,

c24 : x0104 + x0106 + x0203 + x0204 + x0305 + x0509 + x0608 + x0711+

x0717 + x0816 + x0910 + x1012 + x1114 + x1215 + x1316 + x1323+

x1425 + x1519 + x1726 + x1821 + x1833 + x1930 + x2063 + x2065+

x2124 + x2227 + x2229 + x2325 + x2426 + x2734 + x2737 + x2829+

x2833 + x3032 + x3132 + x3135 + x3439 + x3440 + x3538 + x3542+

x3544 + x3659 + x3663 + x3739 + x3745 + x3840 + x3841 + x3844+

x3947 + x3951 + x4043 + x4143 + x4144 + x4146 + x4244 + x4249+

x4250 + x4347 + x4356 + x4358 + x4446 + x4448 + x4449 + x4557+

x4648 + x4654 + x4751 + x4852 + x4853 + x4854 + x4856 + x4950+

45

x4955 + x5055 + x5161 + x5253 + x5254 + x5356 + x5455 + x5456+

x5658 + x5760 + x5861 + x5962 + x6069 + x6167 + x6282 + x6468+

x6470 + x6585 + x6668 + x6673 + x6773 + x6974 + x7077 + x7176+

x7180 + x7182 + x7274 + x7275 + x7278 + x7576 + x7578 + x7680+

x7687 + x7784 + x7891 + x7981 + x7983 + x8087 + x8184 + x8388+

x8586 + x8698 + x87102 + x8892 + x8893 + x8990 + x8994 + x9098+

x9193 + x91103 + x9295 + x9297 + x9396 + x9499 + x9596 + x9597+

x97106 + x99101 + x100108 + x100110 + x101104 + x102103+

x102109 + x103106 + x104111 + x105106 + x105107 + x106118+

x107108 + x109113 + x109114 + x110112 + x111114 + x112115+

x113114 + x113119 + x114119 + x115116 + x116117 + x117121+

x118122 + x118131 + x119122 + x120121 + x120123 + x123124+

x124128 + x128133 + x129131 + x129133 + x129135 + x131136+

x133135 + x135136 ≤ 129

With adding two more subtour elimination constraints, the LP value rose to
(9,336.667) and the LP solution became disconnected again. The LP solution
now looks as follows:

Figure 3.18: The LP solution with 20 SEC and 4 combs inequality

46

Figure 3.19: The top part of Figure (3.18)

We repeat the same argument of adding more subtour elimination con-
straints, one with 27 cities S25 = {185 193 ... 178 180}, and the other one
with 167 cities S26 = {V −S25}. Thus, we write the SEC for them as follows:

c25 : x161163 + x161169 + x163164 + x164169 + x164172 + x169176+

x172174 + x172179 + x173174 + x173175 + x174179 + x175177+

x175184 + x176182 + x177181 + x177184 + x178180 + x178181+

x179186 + x180185 + x181184 + x182194 + x183186 + x183187+

x184189 + x185193 + x186194 + x187190 + x188189 + x188191+

x188193 + x189191 + x189192 + x190192 + x190194 + x191192 ≤ 26

And,

c26 : x0104 + x0106 + x0203 + x0204 + x0305 + x0509 + x0608 + x0711+

x0717 + x0816 + x0910 + x1012 + x1114 + x1215 + x1316 + x1323+

x1425 + x1519 + x1726 + x1821 + x1833 + x1930 + x2063 + x2065+

x2124 + x2227 + x2229 + x2325 + x2426 + x2734 + x2737 + x2829+

x2833 + x3032 + x3132 + x3135 + x3439 + x3440 + x3538 + x3542+

x3544 + x3659 + x3663 + x3739 + x3745 + x3840 + x3841 + x3844+

x3947 + x3951 + x4043 + x4143 + x4144 + x4146 + x4244 + x4249+

47

x4250 + x4347 + x4356 + x4358 + x4446 + x4448 + x4449 + x4557+

x4648 + x4654 + x4751 + x4852 + x4853 + x4854 + x4856 + x4950+

x4955 + x5055 + x5161 + x5253 + x5254 + x5356 + x5455 + x5456+

x5658 + x5760 + x5861 + x5962 + x6069 + x6167 + x6282 + x6468+

x6470 + x6585 + x6668 + x6673 + x6773 + x6974 + x7077 + x7176+

x7180 + x7182 + x7274 + x7275 + x7278 + x7576 + x7578 + x7680+

x7687 + x7784 + x7891 + x7981 + x7983 + x8087 + x8184 + x8388+

x8698 + x87102 + x8892 + x8893 + x8990 + x8994 + x9098 + x9193+

x8586 + x91103 + x9295 + x9297 + x9396 + x9499 + x9596 + x9597+

x97106 + x99101 + x100108 + x100110 + x101104 + x102103 + x102109+

x103106 + x104111 + x105106 + x105107 + x106118 + x107108+

x109113 + x109114 + x110112 + x111114 + x111130 + x112115+

x113114 + x113119 + x114119 + x114125 + x114126 + x115116+

x116117 + x117121 + x118122 + x118131 + x119122 + x119126+

x120121 + x120123 + x123124 + x124128 + x125126 + x125127+

x126132 + x126138 + x127130 + x127132 + x128133 + x129131+

x129133 + x129135 + x130132 + x130156 + x131136 + x132134+

x133135 + x134137 + x135136 + x135143 + x136143 + x136155+

x137140 + x138139 + x138142 + x139146 + x139154 + x140142+

x140145 + x141144 + x141147 + x141152 + x142146 + x143148+

x143160 + x144150 + x145149 + x145156 + x146149 + x147151+

x147152 + x148155 + x148160 + x149156 + x150153 + x150154+

x151155 + x152153 + x152159 + x153157 + x154157 + x155158+

x155162 + x158159 + x158162 + x159165 + x160166 + x162167+

x165168 + x166171 + x167168 + x167170 + x170171 ≤ 166

48

Figure 3.20: The LP solution with 22 SEC and 4 combs inequality

Figure 3.21: S23 before remove x147151

The result of adding the last two linear inequalities appears in the LP so-
lution figure (3.20). The lower bound increased to (9,338.167) and the graph
became connected but not 2-connected. As can be seen from Figure (3.21),
the removal of city 147 (the edge x147151) split the graph into two connected
components; one consisting of 8 cities S27 = {141 144 147 152 150 153 154 157}
and the other one containing 186 cities S28 = {V −S27}. We add the following
inequalities:

c27 : x141144 + x141147 + x141152 + x144150 + x147152 + x150153+

x150154 + x152153 + x153157 + x154157 ≤ 7

49

c28 : x0104 + x0106 + x0203 + x0204 + x0305 + x0509 + x0608 + x0711+

x0717 + x0816 + x0910 + x1012 + x1114 + x1215 + x1316 + x1323+

x1425 + x1519 + x1726 + x1821 + x1833 + x1930 + x2063 + x2065+

x2124 + x2227 + x2229 + x2325 + x2426 + x2734 + x2737 + x2829+

x2833 + x3032 + x3132 + x3135 + x3439 + x3440 + x3538 + x3542+

x3544 + x3659 + x3663 + x3739 + x3745 + x3840 + x3841 + x3844+

x3947 + x3951 + x4043 + x4143 + x4144 + x4146 + x4244 + x4249+

x4250 + x4347 + x4356 + x4358 + x4446 + x4448 + x4449 + x4557+

x4648 + x4654 + x4751 + x4852 + x4853 + x4854 + x4856 + x4950+

x4955 + x5055 + x5161 + x5253 + x5254 + x5356 + x5455 + x5456+

x5658 + x5760 + x5861 + x5962 + x6069 + x6167 + x6282 + x6468+

x6470 + x6585 + x6668 + x6673 + x6773 + x6974 + x7077 + x7176+

x7180 + x7182 + x7274 + x7275 + x7278 + x7576 + x7578 + x7680+

x7687 + x7784 + x7891 + x7981 + x7983 + x8087 + x8184 + x8388+

x8586 + x8698 + x87102 + x8892 + x8893 + x8990 + x8994 + x9098+

x9193 + x91103 + x9295 + x9297 + x9396 + x9499 + x9596 + x9597+

x97106 + x99101 + x100108 + x100110 + x101104 + x102103 + x102109+

x103106 + x104111 + x105106 + x105107 + x106118 + x107108 + x109113+

x109114 + x110112 + x111114 + x111130 + x112115 + x113114 + x113119+

x114119 + x114125 + x114126 + x115116 + x116117 + x117121 + x118122+

x118131 + x119122 + x119126 + x120121 + x120123 + x123124 + x124128+

x125126 + x125127 + x126132 + x126138 + x127130 + x127132 + x128133+

x129131 + x129133 + x129135 + x130132 + x130156 + x131136 + x132134+

x133135 + x134137 + x135136 + x135143 + x136143 + x136155 + x137140+

x138139 + x138142 + x139146 + x140142 + x140145 + x142146 + x143148+

x143160 + x145149 + x145156 + x146149 + x148155 + x148160 + x149156+

x151155 + x155158 + x155162 + x156161 + x158159 + x158162 + x159165+

x160166 + x161163 + x161169 + x162167 + x163164 + x164169 + x164172+

x165168 + x166171 + x167168 + x167170 + x168178 + x169176 + x170171+

x170180 + x171185 + x172174 + x172179 + x173174 + x173175 + x174179+

x175177 + x175184 + x176182 + x177181 + x177184 + x178180 + x178181+

50

x179186 + x180185 + x181184 + x182194 + x183186 + x183187 + x184189+

x185193 + x186194 + x187190 + x188189 + x188191 + x188193 + x189191+

x189192 + x190192 + x190194 + x191192 ≤ 185

Figure 3.22: The LP solution with 24 SEC and 4 combs inequality

Figure 3.23: A part of Figure (3.22) where the extra uneliminated edges exist

The optimal solution x∗ after we added the last two constraints is shown
in figure (3.22). The lower bound arrived (9,350.66) and there are no more
edges in the graph except for those that appear in figure (3.23). The edges
in figure (3.23) either have the value 0.33 or 0.66; thus we need, instead of
comb inequalities, a more advanced inequality type such as domino parity
inequalities. Yet, after running Hougardy and Schroeder’s algorithm, sub-
tour elimination constraints and comb inequalities were only our tools, in

51

this thesis, to eliminate further useless edges. With 24 SEC and four comb
inequalities, the number of edges was reduced to 206, which means 58 useless
edges were eliminated. One way to achieve the best outcome, or the shortest
tour, is by applying this mixed-integer linear programming (ILP).

Figure 3.24: The optimal tour for qatar194

Figure 3.25: A part of Figure (3.24) where were the extra useless edges exist

The total length, the lower bound, of the optimal tour of qatar194 is (9352),
which means the number of edges is equal to the number of cities. The way
to hit that is by applying ILP representation using our list of constraints (24
SEC and 4 comb inequalities). Figure (3.24) and Figure (3.25) present the
optimal tour.

52

3.3 The Algorithm

In this section we shall summarise our work and define some functions
that are used in our Matlab code.

Table 3.1: Additional constraints summary

Inequality
Type

Number of
Constraints

Total
Constraints

Lower Bound

1 SEC 3 3 9,281
2 SEC 2 5 9,282
3 SEC 3 8 9,284
4 SEC 2 10 9,284.50
5 SEC 2 12 9,301
6 SEC 2 14 9,307.75
7 SEC 2 16 9,308
8 SEC 2 18 9,311.50
9 Comb 4 22 9,328.16
10 SEC 2 24 9,336.66
11 SEC 2 26 9,338.16
12 SEC 2 28 9,350.66

Solving the LP relaxation provided us a lower bound which was equal to
(9,267). Then, while improving the LP relaxation section, we were improving
the lower bound by adding more constraints to the list of constraints using
two essential linear inequalities. The first linear inequality type is called
subtour elimination constraints (SEC) and the other one is named comb in-
equalities. Table (3.1) shows that the more constraints we add, the closer
the lower bound is to the optimal tour (9,352). The table illustrates how
we improved the LP value by answering when, what and how many linear
inequalities were added. After 28 constraints, we eliminated extra 58 edges.
Then we achieved the optimal tour with length (9,352) using mixed-integer
linear programming (ILP).

All calculations and visualisations to solve and analyse this TSP have been
done using Matlab. Our primary function is known as linprog, which is
a function defined by Matlab to solve linear programming problems. The
job of this function is to solve the LP again each time we add more con-
straints. We decided to solve each LP problem by the default algorthim
known as the dual simplex method in Matlab. In the end of the work, to
solve the problem of mixed-integer linear programming, we applied intlinprog,

53

which is also defined by Matlab. The author created a function called
plot-cities-with-numbers which shows both the numbers of cities and their
locations (see Appendix Listing 3.2). It was usually used to certify the num-
bers of cities when the graph was not 2-connected. For visualisation, we used
a function called updateSalesmanPlot-modified which is an updated version
of updateSalesmanPlot. The updateSalesmanPlot is a defined function by
Matlab, however, our modified function was able to count drawn edges (see
Appendix Listing 3.3). This function draws every edge that is not equal to
zero. To define components’ number, sizes and elements, we used a function
called networkComponents created by Daniel Larremore in 2014 (Larremore,
2014), (see Appendix Listing 3.4). Daniel Larremore’s function was an ex-
tremely useful function that allowed us to add our linear inequalities easily.

The Matlab code (see Appendix Listing 3.1) started by reading two Ex-
cel files; one for cities’ locations and the second contained Hougardy and
Schroeder’ edges after applying their algorithm for eliminating useless edges.
Then we went through a number of steps to be able to solve the TSP. We
began with measuring distances between each pair of cities and writing the
objective function with initial constraints (1.9). Then, we discovered the
number of components and added subtour elimination constraints until the
graph was connected. Note, the code could not figure out whether the graph
was 2-connected or not, so we had to check each time. After the graph became
2-connected, the code was able to find combs under validation conditions and
then add them to the list of constraints. The Matlab code was also asking
Matlab to present all added constraints in a single file called “tsp.lp”, so we
could include them in the solution easily.

54

Conclusion

The traveling salesman problem (TSP for short) is one of the most widely
studied NP-hard problems in combinatorial optimisation. In 1954, Dantzig,
Fulkerson, and Johnson’s method to solve the 49-cities problem was the first
appearance of the most common way to solve the TSP. Their approach was
to use a branch and bound algorithm in combination with the cutting planes
method. One of the strongest implementations of this method is the fastest
available algorithm to solve TSPs, Concorde. It was written by David Ap-
plegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook in 2006.
Although Concorde is the fastest TSP solver, the total run time for 85,900
vertices (the largest instance of TSP which has been solved to provable op-
timality to date), for instance, required more than 136 years of total CPU
time (Applegate et al., 2011). In 2014, Stefan Hougardy and Rasmus T.
Schroeder discovered a method to eliminate useless edges that do not belong
to any two-dimensional euclidean TSPs. Their approach in combination with
Concorde is able to solve large TSP instances more than 11 times faster than
Concorde alone (Hougardy & Schroeder, 2014).

Based on Hougardy and Schroeder’s results, this thesis aimed to extend
the number of eliminated useless edges for a TSP instance called qatar194.
The instance contains 194 cities and originally 18,721 edges. Yet, after ap-
plying Hougardy and Schroeder’s algorithm steps, only 264 edges remained
in the instance. Our approach was by engaging k − opt move edge exchange
transformations with k > 3. This engagement was from employing the sub-
tour elimination constraints (SEC) and comb inequalities for the purpose of
eliminating further edges. After adding 28 constraints (24 SEC and 4 combs),
58 further useless edges were eliminated using linear programming technique.
Then, to eliminate all other useless edges and arrive at the optimal tour of
qatar194, we applied the mixed-integer linear programming implementation.
The main basis of the research’s outcome was to write a Matlab code to solve
two-dimensional euclidean TSPs (see appendix listing (3.1)), and to present
our practical results (in chapter 3) to demonstrate how we can avoid some
extra useless edges of qatar194.

55

Appendix

Listing 3.1: Matlab code to solve the TSP

1 close all; clear; clc;

2
3 % Cities location

4 cities = 194;

5 CitiesLocation = xlsread('qatar194.xlsx','Sheet1 ','

A1:B194');

6 x = CitiesLocation (:,1);

7 y = CitiesLocation (:,2);

8
9 % To plot these cities with numbers

10 plot_cities_with_numbers(x,y,cities);

11 fq = fopen('tsp.lp','w');

12 fprintf(fq,'Minimize\n');

13 fprintf(fq,'obj: ');

14
15 % Trips given by Stefan Hougardy

16 HougardyTrips = xlsread('HougardyTrips_qatar194.xlsx

','Sheet1 ','A1:B264');

17 HT1 = HougardyTrips (:,1);

18 HT2 = HougardyTrips (:,2);

19
20 % Measure all the trip distances integerly

21 dist = round(hypot(y(HT1) - y(HT2), x(HT1) - x(HT2)

));

22 lendist = length(dist);

23
24 % To write the object function in the tsp.lp file

25 distance = 0;

26 cnt = 0;

56

27 for i = 1: length(HougardyTrips)

28 cnt = cnt + 1;

29 distance = dist(i);

30 fprintf(fq,'%d x%02d%02d',distance ,HT1(i),HT2(i)

);

31 if (mod(cnt ,10) == 0)

32 fprintf(fq,'\n');

33 end

34 if i < length(HougardyTrips)

35 fprintf(fq,' + ');

36 end

37 end

38
39 % Number of trips

40 AA = spones (1: length(HougardyTrips));

41 BB = cities;

42
43 % The salesman should enter and leave each city

exactly once

44 G = spalloc(cities ,length(HougardyTrips),cities *(

cities -1));

45 Aeq = [AA;G];

46 for i = 1: cities

47 whichHT = (HougardyTrips == i);

48 whichHT = sparse(sum(whichHT ,2));

49 Aeq(i+1,:) = whichHT ';

50 end

51 Beq = [BB; 2*ones(cities ,1)];

52
53 % To write above constraints in the tsp.lp file

54 fprintf(fq,'\nSubject To\n');

55 for ii = 1 : cities

56 cnt = 0;

57 for jj = 1 : cities

58 if(ii == jj)

59 continue;

60 end

61 cnt = cnt + 1;

62 if(ii < jj)

63 fprintf(fq,'x%02d%02d',ii ,jj);

64 else

57

65 fprintf(fq,'x%02d%02d',jj ,ii);

66 end

67 if (mod(cnt ,11) == 0)

68 fprintf(fq,'\n');

69 end

70 if jj < cities

71 if ii == cities && jj == cities - 1

72 break;

73 end

74 fprintf(fq,' + ');

75 end

76 end

77 fprintf(fq,' = 2 \n');

78 end

79
80 lb = zeros(lendist ,1);

81 ub = ones(lendist ,1);

82
83 % Solve the initial LP

84 A = []; B =[];

85 opts = optimoptions('linprog ','Algorithm ','dual -

simplex ');

86 [x_tsp]= linprog(dist ,A,B,Aeq ,Beq ,lb,ub ,[],opts);

87
88 lh = zeros(cities ,1);

89 [lh1 , l1] = updateSalesmanPlot_modified(lh ,x_tsp ,

HougardyTrips ,x,y);

90 fprintf('# Number of edges (initial LP relaxation):

%d\n',l1);

91
92 % The total length of the tour is [dist '*x_tsp],

Optimal tour = 9352

93 opt_sol = dist '*x_tsp;

94 counter = 1;

95
96 % While loop here will end up with the optimal tour

97 while opt_sol ~= 9352

98
99 % How many subtours

100 G_x1 = HT1;

101 G_y1 = HT2;

58

102 for i = 1: length(x_tsp)

103 if x_tsp(i) == 0

104 G_x1(i) = 0;

105 G_y1(i) = 0;

106 end

107 end

108 DG = sparse(nonzeros(G_x1)',nonzeros(G_y1)',true

,cities ,cities);

109 [nComponents ,sizes ,member_of_subsets] =

networkComponents(DG);

110
111 if counter == 1;

112 B = [[]; zeros(nComponents ,1)];

113 A = zeros ([], length(HougardyTrips));

114 end

115
116 % ADD subtour elimination constraints

117 while nComponents > 1

118 for i = 1: nComponents

119 for jj = 1: length(HougardyTrips)

120 H = union (HT1(jj),HT2(jj));

121 if ismember (H, member_of_subsets{i

}) == [1 1];

122 A(counter ,jj) = 1;

123 if HT1(jj) < HT2(jj)

124 fprintf(fq,'x%02d%02d',HT1(

jj),HT2(jj));

125 fprintf(fq,' + ');

126 else

127 fprintf(fq,'x%02d%02d',HT2(

jj),HT1(jj));

128 fprintf(fq,' + ');

129 end

130 end

131 end

132 B(counter) = sizes(i) - 1;

133 fprintf(fq,' <= %d \n', B(counter));

134 counter = counter + 1;

135 end

136
137 % Try to optimise again

59

138 opts = optimoptions('linprog ','Algorithm ','

dual -simplex ');

139 [x_tsp]= linprog(dist ,A,B,Aeq ,Beq ,lb,ub ,[],

opts);

140
141 % Measure the total length (lower bound)

142 opt_sol = dist '*x_tsp;

143 fprintf('# Total length: %d\n',opt_sol);

144
145 % Visualise result

146 [lh2 , l2]= updateSalesmanPlot_modified(lh,

x_tsp ,HougardyTrips ,x,y);

147
148
149
150 % How many subtours this time

151 G_x2 = HT1;

152 G_y2 = HT2;

153 for iv = 1: length(x_tsp)

154 if x_tsp(iv) == 0

155 G_x2(iv) = 0;

156 G_y2(iv) = 0;

157 end

158 end

159 DG2 = sparse(nonzeros(G_x2)',nonzeros(G_y2)

',true ,cities ,cities);

160 [nComponents ,sizes ,member_of_subsets] =

networkComponents(DG2);

161 end

162
163 % Find handle H for the Comb inequalities

164 handle_x = zeros(size(HT1));

165 handle_y = zeros(size(HT2));

166 handle_find = zeros(size(x_tsp));

167 for i = 1: length(x_tsp)

168 if x_tsp(i) == 0.5

169 handle_x(i) = HT1(i);

170 handle_y(i) = HT2(i);

171 handle_find(i)= 1;

172 end

173 end

60

174 H_edges = [handle_x , handle_y];

175 H_edges_without_zeros = H_edges(any(H_edges ,2)

,:);

176 H_nodes = nonzeros(H_edges) ';

177
178 % Draw these handles

179 updateSalesmanPlot_modified(lh,handle_find ,

H_edges ,x,y);

180 H_G_X = nonzeros(handle_x)';

181 H_G_Y = nonzeros(handle_y)';

182 CV = sparse(H_G_X ,H_G_Y ,true ,cities ,cities);

183 [NComponent_handle ,Sizes_handle ,Members_handles

]= networkComponents(CV);

184
185 % Find real handles and their teeth only

186 real_handle = {};

187 teeth_find = zeros(size(x_tsp));

188 for i = 1 : length(x_tsp)

189 T = union (G_x2(i), G_y2(i));

190 cnt = 1;

191 for j = 1: NComponent_handle

192 if Sizes_handle(j) > 2 && mod(

Sizes_handle(j) ,2)==1;

193 real_handle (cnt) = Members_handles(

j);

194 cnt=cnt+1;

195 end

196 end

197 for ii = 1: length(real_handle)

198 if ismember (T , real_handle {ii}) ==

[1 0];

199 teeth_find(i) = 1;

200 elseif ismember (T , real_handle {ii})

== [0 1];

201 teeth_find(i) = 1;

202 end

203 end

204 end

205
206 teeth_x = zeros(size(HT1));

207 teeth_y = zeros(size(HT2));

61

208 for i = 1: length(x_tsp)

209 if teeth_find(i) == 1

210 teeth_x(i) = HT1(i);

211 teeth_y(i) = HT2(i);

212 end

213 end

214 teeth_x_y = [teeth_x teeth_y];

215 The_teeths = teeth_x_y(any(teeth_x_y ,2) ,:);

216 [lh4 ,l3] = updateSalesmanPlot_modified(lh,

teeth_find ,teeth_x_y ,x,y);

217 fprintf('# The Teeths: %d\n',l3);

218
219 % Define real combs

220 combs = {};

221 for ii = 1: length(real_handle)

222 combs{ii} = real_handle{ii};

223 for i = 1: l3

224 if ismember(The_teeths(i,:) ,

real_handle{ii}) == [1 0];

225 combs {ii} = unique ([The_teeths(i,:)

, combs{ii}]);

226 elseif ismember(The_teeths(i,:) ,

real_handle{ii}) == [0 1];

227 combs {ii} = unique ([The_teeths(i,:)

, combs{ii}]);

228 end

229 end

230 end

231
232 % What the teeth of real combs

233 comb_teeth = {};

234 for i = 1: length (combs)

235 cnt = 1;

236 for ii = 1: l3

237 if ismember(The_teeths(ii ,:) , combs{i})

== [1 1];

238 if cnt == 1

239 comb_teeth{i} = The_teeths(ii ,:)

;

240 cnt = cnt+1;

241 else

62

242 comb_teeth{i}= unique ([The_teeths

(ii ,:),comb_teeth{i}]);

243 cnt = cnt+1;

244 end

245 end

246 end

247 end

248
249 % Only valid combs will be considered

250 valid_comb = {};

251 S = {};

252 valid_handle = {};

253 cnt_for_valid_comb = 1;

254 for i = 1: length(comb_teeth)

255
256 if mod(length(comb_teeth{i}) ,2)==0 && ...

257 length(comb_teeth{i}) >= 6 && ...

258 mod(length(real_handle{i}) ,2) == 1 ;

259
260 valid_comb {cnt_for_valid_comb} = combs{

i};

261 S {cnt_for_valid_comb} = length(

comb_teeth{i} - 1)/2;

262 valid_handle {cnt_for_valid_comb} =

real_handle{i};

263 cnt_for_valid_comb = cnt_for_valid_comb

+ 1 ;

264 end

265 end

266
267 % Print number of valid combs

268 fprintf('# Number of valid Comb: %d\n',length(

valid_comb));

269
270 if cnt_for_valid_comb ~= 1;

271 for i = 1: length(valid_handle)

272 cnt = 0;

273 for ii = 1: length (HougardyTrips)

274 D = union (HT1(ii),HT2(ii));

275

63

276 if ismember (D , valid_handle{i}) ==

[1 1];

277 A(counter ,ii) = 1;

278 if HT1(ii) < HT2(ii)

279 fprintf(fq,'x%02d%02d',HT1(

ii),HT2(ii));

280 fprintf(fq,' + ');

281 else

282 fprintf(fq,'x%02d%02d',HT2(

ii),HT1(ii));

283 fprintf(fq,' + ');

284 end

285 end

286
287 for iii = 1: length(The_teeths)

288 F = intersect (The_teeths(iii ,:)

,valid_comb{i});

289 if ismember (D,F) == [1 1];

290 A(counter ,ii) = 1; cnt = cnt

+ 1;

291
292 if HT1(ii) < HT2(ii)

293 fprintf(fq,'x%02d%02d',

HT1(ii),HT2(ii));

294 fprintf(fq,' + ');

295 else

296 fprintf(fq,'x%02d%02d',

HT2(ii),HT1(ii));

297 fprintf(fq,' + ');

298 end

299 end

300 end

301 end

302 B(counter) = length(valid_handle{i}) +

2*cnt - (3* cnt + 1)/2;

303 fprintf(fq,' <= %d \n', B(counter));

304 counter = counter +1;

305
306 % ReOptimise

307 opts = optimoptions('linprog ','Algorithm

','dual -simplex ');

64

308 [x_tsp]= linprog(dist ,A,B,Aeq ,Beq ,lb,ub

,[],opts);

309
310 % ReMeasure the total length (lower

bound)

311 opt_sol = dist '*x_tsp;

312 fprintf('# Total length with LP: %d\n',

opt_sol);

313
314 % Visualise result

315 [lh4 , l4] = updateSalesmanPlot_modified(

lh ,x_tsp ,HougardyTrips ,x,y);

316 fprintf('# Number of edges %d\n',l4);

317 end

318 end

319
320 if cnt_for_valid_comb == 1 && nComponents == 1

321
322 % ReOptimise with MILP

323 intcon = 1: lendist;

324 [x_tsp]= intlinprog(dist ,intcon ,A,B,Aeq ,Beq ,

lb ,ub);

325
326 for i = 1: length(x_tsp)

327 if x_tsp(i) < 0.1

328 x_tsp(i) = 0;

329 end

330 end

331
332 % ReMeasure the total length (lower bound)

333 opt_sol = dist '*x_tsp;

334 fprintf('# Total length with ILP: %d\n',

opt_sol);

335
336 % Visualise result

337 [lh5 , l5]= updateSalesmanPlot_modified(lh,

x_tsp ,HougardyTrips ,x,y);

338 fprintf('# Number of edges %d\n',l5);

339 end

340 end

341

65

342 % Lower & upper bounds for tsp.lp file

343 all_possible_trips = nchoosek (1: cities ,2);

344 fprintf(fq,'\nBounds\n') ;

345 for i = 1: length(all_possible_trips)

346 fprintf(fq,'0 <= x%02d%02d <= 1\n',

all_possible_trips(i,1), ...

347 all_possible_trips(i,2));

348 end

349 fprintf(fq,'End\n') ;

Listing 3.2: To show cities location and number in the graph

1 function plot_cities_with_numbers(x,y,cities)

2
3 hold on

4 for ii=1: cities

5 plot (x(ii ,1),y(ii ,1),'r*');

6 ln = findobj('type','line');

7 set(ln ,'marker ','.','markers ',5,'markerfa ','w')

8 text(x(ii ,1),y(ii ,1),num2str ((ii)));

9 end

10 hold off

11 drawnow;

66

Listing 3.3: An updated version of updateSalesmanPlot

1 function [lh, l] = updateSalesmanPlot_modified(lh ,

xopt ,idxs ,stopsLat ,stopsLon)

2 % Plotting function for tsp_intlinprog example

3
4 % Copyright 2014 The MathWorks , Inc.

5
6 if (lh ~= zeros(size(lh))) % First time through

lh is all zeros

7 set(lh ,'Visible ','off'); % Remove previous

lines from plot

8 end

9
10 segments = find(xopt); % Indices to trips in

solution

11 l = length(segments);

12 % Loop through the trips then draw them

13 Lat = zeros (3* length(segments) ,1);

14 Lon = zeros (3* length(segments) ,1);

15 for ii = 1: length(segments)

16 start = idxs(segments(ii) ,1);

17 stop = idxs(segments(ii) ,2);

18
19 % Separate data points with NaN 's to plot

separate line segments

20 Lat (3*ii -2:3*ii) = [stopsLat(start); stopsLat(

stop); NaN];

21 Lon (3*ii -2:3*ii) = [stopsLon(start); stopsLon(

stop); NaN];

22 end

23
24 lh = plot(Lat ,Lon ,'k:','LineWidth ' ,2);

25 set(lh ,'Visible ','on');

26 drawnow; % Add new lines to plot

67

Listing 3.4: Find network components, sizes, and lists of member nodes

1 function [nComponents ,sizes ,members] =

networkComponents(A)

2 N = size(A,1); % Number of nodes

3 A(1:N+1:end) = 0; % Remove diagonals

4 A=A+A'; % make symmetric , just in case it isn 't

5
6 isDiscovered = zeros(N,1);

7 members = {};

8 % To check every node

9 for n=1:N

10 if ~isDiscovered(n)

11 members{end+1} = n; % started a new group so

add it to members

12 isDiscovered(n) = 1; % account for

discovering n

13 ptr = 1;

14 while (ptr <= length(members{end})) % find

neighbors

15 nbrs = find(A(:,members{end}(ptr)));

16 newNbrs = nbrs(isDiscovered(nbrs)==0);

17 isDiscovered(newNbrs) = 1;

18 members{end}(end +1:end+length(newNbrs))

= newNbrs;

19 ptr = ptr+1;

20 end

21 end

22 end

23 nComponents = length(members); % number of

components

24 for n=1: nComponents

25 sizes(n) = length(members{n}); % compute sizes

of components

26 end

27 [sizes ,idx] = sort(sizes ,'descend ');

28 members = members(idx);

29 end

68

Bibliography

Agarwala, R., Applegate, D. L., Maglott, D., Schuler, G. D., & Schäffer,
A. A. (2000). A fast and scalable radiation hybrid map construction
and integration strategy. Genome Research, 10 (3), 350–364.

Alevras, D., & Padberg, M. W. (2001). Linear optimization and extensions:
problems and solutions. Springer Science & Business Media.

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2011). The trav-
eling salesman problem: a computational study. Princeton university
press.

Bock, F. (1963). Mathematical programming solution of traveling sales-
man examples. Recent Advances in Mathematical Programming,(RL
GRAVES, AND P. WOLFE, eds.), 339–341.

Chauhan, C., Gupta, R., & Pathak, K. (2012). Survey of methods of solv-
ing tsp along with its implementation using dynamic programming ap-
proach. International Journal of Computer Applications , 52 (4).

Cook, S. A. (1971). The complexity of theorem-proving procedures. In
Proceedings of the third annual acm symposium on theory of computing
(pp. 151–158).

Cook, W. (2012). In pursuit of the traveling salesman: mathematics at the
limits of computation. Princeton University Press.

Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale
traveling-salesman problem. Journal of the operations research society
of America, 2 (4), 393–410.

Dantzig, G. B. (1948). Programming in a linear structure. Washington,
DC .

Fleischer, L., Letchford, A., & Lodi, A. (n.d.). Separating simple domino
parity inequalities.

Flood, M. M. (1956). The traveling-salesman problem. Operations Research,
4 (1), 61–75.

Grötschel, M., & Padberg, M. W. (1979). On the symmetric travelling
salesman problem i: inequalities. Mathematical Programming , 16 (1),
265–280.

69

Gutin, G., & Punnen, A. P. (2006). The traveling salesman problem and its
variations (Vol. 12). Springer Science & Business Media.

Held, M., Hoffman, A. J., Johnson, E. L., & Wolfe, P. (1984). Aspects of
the traveling salesman problem. IBM journal of Research and Devel-
opment , 28 (4), 476–486.

Held, M., & Karp, R. M. (1962). A dynamic programming approach to
sequencing problems. Journal of the Society for Industrial and Applied
Mathematics , 10 (1), 196–210.

Hougardy, S., & Schroeder, R. T. (2014). Edge elimination in tsp instances.
In International workshop on graph-theoretic concepts in computer sci-
ence (pp. 275–286).

Jessen, R. J. (1942). Statistical investigation of a sample survey for obtaining
farm facts. Research Bulletin (Iowa Agriculture and Home Economics
Experiment Station), 26 (304), 1.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Com-
plexity of computer computations (pp. 85–103). Springer.

Larremore, D. (2014). Find Network Components. https://

au.mathworks.com/matlabcentral/fileexchange/42040-find

-network-components?focused=3818140&tab=function/. ([Online;
accessed 19-May-2017])

Letchford, A. N., & Lodi, A. (2002). Polynomial-time separation of simple
comb inequalities. Lecture notes in computer science, 93–108.

Mahalanobis, P. C. (1940). A sample survey of the acreage under jute in
bengal. Sankhyā: The Indian Journal of Statistics , 511–530.

Menger, K. (1932). Das botenproblem. Ergebnisse eines mathematischen
kolloquiums , 2 , 11–12.

Müller-Merbach, H. (1983). Zweimal travelling salesman. DGOR-Bulletin,
25 , 12–13.

Reeb, J. E., Leavengood, S. A., et al. (1998). Using the simplex method to
solve linear programming maximization problems (Tech. Rep.). Corval-
lis, Or.: Extension Service, Oregon State University.

Robinson, J. (1949). On the hamiltonian game (a traveling salesman problem)
(Tech. Rep.). RAND PROJECT AIR FORCE ARLINGTON VA.

Vos, T. (2016). Basic principles of the traveling salesman problem and
radiation hybrid mapping.

70

