Abstract

Although the traveling salesman problem (TSP) has a long research his-
tory as a mathematical approach to discover the shortest trip between a set
of cities, there is no effective solution for the problem as it is considered an
NP — hard problem of combinatorial optimisation. For example, solving the
symmetric traveling salesman problem (STSP) using the fastest computer
program, Concorde, for 85,900 vertices (which is the largest instance of TSP
which has been solved to provable optimality to date) takes more than 199
CPU days. However, due to the importance of practical applications, meth-
ods to find optimal solutions have been developed since the 1950s. Stefan
Hougardy and Rasmus T. Schroeder’s algorithm for reducing the number of
edges in two-dimensional Euclidean instances of TSP is one such method and
hastens the STSP process by 11 times in certain test examples. The total
runtime for the main part of their algorithm is O(n?logn) for n number of
cities. The largest TSP case, 85,900 points, took 2 CPU days to run their al-
gorithm. Concorde needed 16 CPU days to achieve the best outcome for this
case. Hougardy and Schroeder’s algorithm was presented alongside theoretic
graph results showing how they proved that some edges of a TSP instance
cannot be part of any optimal TSP trip. This thesis is based on Hougardy
and Schroeder’s results and shows how unnecessarily edges of a TSP instance
can be avoided in any optimal TSP trip. The thesis presents practical results
demonstrating how this can be achieved; it also presents a Matlab code for
a TSP instance named qatar194. The instance contains 194 nodes and 264
edges after being run with Hougardy and Schroeder’s elimination algorithm.
This research shows that more edges can be eliminated when k — opt edge
exchanges are considered for £ > 3. Linear programming (LP) is used in
combination with subtour elimination constraints (SEC) and comb inequal-
ities. The LP approach is taken by adding extra 28 constraints employing
SEC and comb inequalities. The approach allowed the elimination of 58 un-
necessarily edges and improved the lower bound to 9,350.6; while the optimal
tour length is 9,352. Mixed-integer linear programming (ILP) is then used
to find the shortest tour with no unnecessarily edges.
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