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ABSTRACT

During screw insertion, surgeons manually tighten until they subjectively feel that
adequate torque has been obtained. This “tightening torque” has been shown to
equate to approximately 86% of maximum (stripping) torque. The level of torque to
which orthopaedic screws are tightened, however, is highly subjective and can lead
to over-tightening or even stripping in cases of poor bone quality. Whilst torque
limiting devices exist that are able to terminate tightening at specified torque levels,
these are of little value if the optimum torque is not known. Furthermore, the ideal
level of tightening torque may vary according to anatomic location, bone quality and
screw material and design. Bone quality is determined by the geometry of the bone
and it’s underlying micro-architecture, as well as accumulated microscopic damage,
the quality of collagen, mineral density and crystallinity, and bone turnover.
Therefore to fully understand these interactions at the macroscopic level, and
understanding of the bone-screw interactions at the micro-structural level is
necessary. The aim of this dissertation was, therefore, to develop a novel technique
to analyse the mechanical interactions between cancellous bone and a lag screw
during tightening. The ultimate goal was to develop a micro-finite element model
that incorporated the screw and its mechanical interactions with the micro-structure

of cancellous bone.

The first part of this dissertation explored the application of micro-finite element
modelling for analysing vertebral trabecular mechanics at the micro-structural level
under a uniaxial load in either the supero-inferior (SI) or antero-posterior (AP)
direction. Results demonstrated distinctly different micro-mechanical behaviour
between the two loading directions, with a greater volume of tissue reaching yield at
the onset of apparent-level vyielding, in the SI direction compared to AP. The
incorporation of both material and geometric nonlinearity yielded strong agreement
between model predictions of apparent yield and experimentally determined values;
however the influence of experimental protocol was emphasized if tissue modulus
values were derived from experimental data. It was demonstrated that the tissue
modulus largely governs the apparent stiffness, whilst tissue yield criterion regulated
apparent yield behaviour.
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The second part of this dissertation focussed on the main objective, which was to
understand the interactions between bone and screw at the micro-structural level. A
novel micro-test device was developed that allowed the step-wise insertion of a
screw into bone specimens within a micro-computed tomographic (microCT)
scanner. Results showed a strong linear relationship between plateau torque and
stripping torque, with the screw under investigation. Furthermore, it was
demonstrated that the deformation of the trabeculae during screw insertion is
restricted to primarily the bone tissue within the screw threads, and that the critical

deformation occurs during the load step between 80 % (Tsuipping - THc) and Tstripping:
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