A novel technique to analyse trabecular bone mechanics during screw insertion

Melissa Ryan BSc BEng (Biomed) Hons

A thesis submitted to the School of Computer Science, Engineering and Mathematics in the Faculty of Science and Engineering in total fulfilment of the requirements of the degree of Doctor of Philosophy

Flinders University of South Australia, Australia

Submitted November 2014

TABLE OF CONTENTS

Table of Contents	I
Publicly Disseminated Work	IV
List of Figures	V
List of Tables	VIII
List of Equations	IX
A bbreviations	X
Abstract	vi
Dederation	
	AIII
Acknowledgements	XIV
1 Introduction	1
2 Background	5
2.1 Structure and function of bone	6
2.1.1 Whole bone level	7
2.1.2 Macrostructural level (cancellous vs cortical)	9
2.1.3 Microstructural level (osteonal vs trabecular bone)	
2.1.4 Sub-Microstructural level (lamellar)	12
2.1.5 Nanoscale level	12
2.1.5 Nanoscale level	13 11
2.2 Done remodeling	14 1 <i>5</i>
2.3 Mechanotransduction in bone	
2.4 Morphologic and mechanical properties of cancellous bone	16
2.4.1 Morphologic parameters	16
2.4.2 Mechanical properties	17
2.4.3 Apparent level properties	18
2.4.4 Tissue properties	21
2.4.4.1 Uniaxial Tensile Testing	23
2.4.4.2 Ultrasonic measurements	24
2.4.4.3 Bending Tests	24
2.4.4.4 Nanoindentation	24
2.4.4.5 Back-calculation using finite element models	
2.5 Density	25
2.6 Osteoporosis	<i>⊇e</i> 26
2.0 Ostoporosis	20 28
2.8 Implant stability	
3 The finite element method	
3.1 Principles of FEA	33
3.2 FF modelling of hone	35
3.2 1 Continuum Ve micro modele	
3.3 Finite element modelling of cancellous hone	
2.2.1 Coometry	
2.2.2 Dispretion	00
5.5.2 Discretisation	
5.5.5 Material models	
3.3.4 Loading and boundary conditions	40

	3.4 Cur	rent micro-FE models of cancellous bone: A review of the literatur	e41
	3.4.1	FE models of bone-implant constructs	47
4	Validat	ion of Image based micro-FEA	54
	4.1 Intro	oduction	55
	4.2 Aim	IS	57
	4.3 Met	hods	
	4.3.1	Image Processing	
	4.3.2	Experimental Analysis	
	4.3.3	FE models	60
	4.3.4	statistical Analysis	62
	4.4 Res		02
	4.4.1	Thresholding	02
	4.4.2	Comparison of full models and machanical tests	03
	4.4.5	Comparison of full and sub volume models	05
	4.4.4 15 Disc	Comparison of run- and sub-volume models	05 68
	4.3 DIS	.ussioii	00
5	Testing	the assumption of isotropy for cancellous bone tissue e	lastic
n	odulus		78
	5.1 Intro	oduction	79
	5.2 Aim	IS	81
	5.3 Met	hods	81
	5.3.1	FE Analysis	84
	5.3.2	Statistical Analysis	85
	5.3.3	Results	86
	5.3.4	FEA	87
	5.3.5	Micromechanical Behaviour	89
	5.4 D1sc	cussion	91
6	Nonline	ar micro-FE modelling of human vertebral bone under un	iaxial
C	ompression		100
	6.1 Intro	oduction	101
	6.2 Aim	18	102
	6.3 Met	hods	103
	6.3.1	Statistical Analysis	105
	6.4 Res	ults	105
	6.5 Disc	cussion	111
7	Determ	ining the relationship between insertion and stripping torques.	119
	7.1 Intro	oduction	120
	7.2 Scre	w Material	124
	7.2.1	Identification of Optimal Screw Material for micro-CT Imaging	125
	7.3 Aim	IS	130
	7.4 Met	hods	130
	7.4.1	Tissue Collection	130
	7.4.2	Ethical Approval	130
	7.4.3	Specimen Preparation	131
	7.4.4	Micro-CT Imaging of Bone Specimens	132
	7.4.5	Test-Rig	132
	7.4.6	Screw Insertion	134
	7.4.7	Signal analysis	136

	7.4.	8 Statistical Analysis	138
	7.5	Results	139
	7.6	Discussion	145
	7.6.	1 Screw material	145
	7.6.	2 Establishing a relationship between T _{plateau} and T _{stripping}	147
	7.6.	3 Morphological influences on screw insertion	150
8	Mic	cro-FE of the bone-implant interface	153
	8.1	Introduction	154
	8.2	Aims	156
	8.3	Methods	157
	8.3.	1 Specimens	157
	8.3.	2 Screw Insertion	157
	8.3.	3 Post-Analysis	158
	8.3.	4 Image Processing	158
	8.3.	5 Image guided failure assessment	159
	8.3.	6 FEA	162
	8.4	Results	165
	8.4.	1 Experimental analysis	165
	8.4.	2 Morphological assessment	169
	8.4.	3 Image guided failure assessment	169
	8.4.	4 Validation of the micro-FE model	175
	8.4.	5 Biomechanics of the peri-implant bone	178
	8.5	Discussion	
9	Sun	nmary and future recommendations	
	9.1	Summary	191
	9.1.	1 Micro-FEA vertebral bone	191
	9.1.	2 Understanding screw insertion	192
	9.1.	3 Micro-FE model of the bone-implant interface	192
	9.2	Considerations for future work	193
	9.2.	1 Micro-FE model	193
	9.2.	2 Validation of the model	194
	9.3	Applications	194
	9.4	Final Remarks	195
A	ppendi	ices	
R	References		

PUBLICLY DISSEMINATED WORK

Peer Reviewed Publications:

Ab-Lazid R, Perilli E, Ryan M, Costi J, and Reynolds K, (2014). "Does cancellous screw insertion torque depend on bone mineral density and/or micro-architecture?" J. Biomech 47(2), pp 347-353.

Conference Proceedings:

Ryan MK, Costi JJ, Badiei A, Fazzalari NL, Reynolds KJ. The role of effective tissue modulus in predicting apparent modulus and strength in osteoporotic bone. 56th Annual Meeting of the Orthopaedic Research Society, New Orleans, Louisiana USA, 2010.

Ryan MK, Costi JJ, Badiei A, Fazzalari NL, Reynolds KJ. The role of effective tissue modulus in predicting apparent modulus and strength in osteoporotic bone. ANZORS 12th annual scientific meeting, Adelaide, Australia, 2009.

Ryan MK, Costi JJ, Fazzalari NL, Reynolds KL. Validity of using a linear microfinite element model to predict trabecular bone apparent mechanical properties: comparison with a non-linear model and experimental data. ANZ/IBMS, Sydney, Australia, 2009. (Poster Presentation)

Ryan MK, Hearn TC, Costi JJ, Fazzalari NL, Reynolds KJ. Assessing failure mechanisms of trabeculae by micro-computed tomography based finite element modelling. 5th Annual Clare Valley bone meeting, Clare, Australia, 2008.

LIST OF FIGURES

FIGURE 2-1: PARTIALLY SECTIONED HUMERUS, AN EXAMPLE OF A LONG BONE
Figure 2-2: Cortical and cancellous bone structures of the human vertebra10
FIGURE 2-3: MICROSTRUCTURE OF CORTICAL BONE
FIGURE 2-4: MICROSTRUCTURE OF CANCELLOUS BONE
FIGURE 2-5: ATOMIC FORCE MICROSCOPY IMAGE OF (A) COLLAGEN TYPE I FIBRILS, AND (B)
HYDROXYAPATITE MINERAL CRYSTALS EXTRACTED FROM BONE
FIGURE 2-6: TYPICAL LOAD-DEFORMATION CURVES FOR CANCELLOUS AND CORTICAL BONE LOADED IN
COMPRESSION
FIGURE 2-7: COMPARISON OF NORMAL (TOP) AND OSTEOPOROTIC (BOTTOM) BONE ARCHITECTURE IN
THE THIRD LUMBAR VERTEBRAE
FIGURE 2-8: BOX PLOT INDICATING THE MEDIAN AND QUARTILE PULL-OUT STRENGTHS
FIGURE 3-1: FE MESH OF TRABECULAR BONE
FIGURE 3-2: CORRELATION BETWEEN PREDICTED AND EXPERIMENTAL UNIAXIAL APPARENT MODULUS
FIGURE 3-3: SCHEMATIC OF THE BILINEAR TISSUE MATERIAL MODEL (NOT TO SCALE)
Figure 3-4: Example of histology section (left) and FE section (right)
FIGURE 3-5: FE MODEL OF VERTEBRAL BONE WITH SCREW REMOVED
FIGURE 3-6: MICRO-CT IMAGE OF HUMERAL HEAD
FIGURE 3-7: PERI-IMPLANT STRAIN IN BONE FOR THE FREELY CONSTRAINED CONTINUUM MODEL (LEFT)
AND DISCRETE MODEL (RIGHT)
FIGURE 4-1: RECONSTRUCTED MIRO-CT SLICE BEFORE IMAGE PROCESSING (LEFT), AND AFTER IMAGE
PROCESSING (RIGHT)
$FIGURE \ 4-2: TYPICAL \ STRESS-STRAIN \ CURVE \ FOR \ THE \ EXPERIMENTAL \ UNIAXIAL \ COMPRESSION \ TESTS 60$
FIGURE 4-3: DIAGRAM SHOWING THE COMPRESSIVE DISPLACEMENT BOUNDARY CONDITIONS FOR THE
FE MODEL
Figure 4-4: Apparent modulus determined experimentally (E_{APP}^{EXP}) vs apparent modulus
PREDICTED BY THE FULL FE MODEL (E_{APP}^{FE})
FIGURE 4-5: APPARENT ULTIMATE STRENGTH DETERMINED EXPERIMENTALLY VS THE FE PREDICTED
APPARENT MODULUS (E_{APP}^{FE}) for the full-volume models
FIGURE 4-6: FE CALCULATED APPARENT MODULUS FOR THE FULL- AND SUB-VOLUME MODELS
Figure 4-7: Apparent modulus determined experimentally (E_{APP}^{Exp}) vs apparent modulus
PREDICTED BY THE SUB-VOLUME FE MODEL (E_{APP}^{FE})
FIGURE 4-8: APPARENT ULTIMATE STRENGTH DETERMINED EXPERIMENTALLY VS THE FE PREDICTED
APPARENT MODULUS (E_{APP}^{FE}) For the sub-volume models
FIGURE 5-1: SCHEMATIC ILLUSTRATING LOADING CONDITIONS FOR THE VERTEBRAL SPECIMENS IN
EITHER THE SUPERO-INERIOR (SI) OR ANTEROPOSTERIOR (AP) GROUP
FIGURE 5-2: DETERMINATION OF PERCENTAGE OF TOTAL TISSUE YIELDED FOR ONE OF THE SI
SPECIMENS

FIGURE 5-3: PERCENTAGE OF TISSUE YIELDED IN COMPRESSION AND TENSION AT APPARENT STRAIN
INCREMENTS FROM 0.5 TO 2.0 %
FIGURE 5-4: MAXIMUM COMPRESSIVE AND TENSILE TISSUE STRAINS AT EACH STRAIN INCREMENT UP TO
2.0% apparent strain for vertebral specimens loaded in either the SI or AP
DIRECTIONS
FIGURE 5-5: 3D RENDERINGS OF BONE SLICES TAKEN FROM A 60 YEAR OLD FEMALE SPECIMEN
FIGURE 6-1: SCHEMATIC OF THE IDEALISED MATERIAL MODEL FOR CAST-IRON PLASTICITY (A) AND THE
BILINEAR MATERIAL MODEL IMPLEMENTED FOR THE NONLINEAR FE ANALYSES (B) 104
FIGURE 6-2: EXPERIMENTALLY DETERMINED VS FE MODEL APPARENT MODULUS FOR MATERIAL
MODELS 2 AND 3
FIGURE 6-3: EXPERIMENTALLY DETERMINED VS FE APPARENT YIELD STRESS FOR THE THREE MATERIAL
MODELS ANALYSED
FIGURE 6-4: EXPERIMENTALLY DETERMINED VS FE APPARENT ULTIMATE STRENGTH
FIGURE 6-5: PERCENTAGE OF COMPRESSIVE TISSUE FAILURE AT APPARENT YIELD STRAIN VERSUS
BV/TV
Figure 6-6: Percentage of tensile tissue failure at apparent yield strain versus $BV/TV\ 111$
FIGURE 7-1: THE THREE PHASES OF SCREW PLACEMENT
FIGURE 7-2: TORQUE VERSUS ROTATION CURVE FOR AN ALUMINIUM SCREW INSERTED INTO CELLULAR
POLYURETHANE FOAM (SAWBONES, SEATTLE, WA)123
FIGURE 7-3: THREE SCREW TYPES WERE INVESTIGATED
FIGURE 7-4: ALUMINIUM SCREW USED FOR TESTING IN CANCELLOUS FEMORAL HEAD BONE
FIGURE 7-5: CROSS-SECTIONAL MICRO CT SCANS OF A 7.0MM CANCELLOUS BONE SCREW
FIGURE 7-6: PEEK SCREWS
FIGURE 7-7: SPECIMEN PREPARATION
FIGURE 7-8: CUSTOM DESIGNED TEST RIG, BLOCK DIAGRAM (TOP) AND ACTUAL TEST RIG SET UP IN
MICROCT SCANNER (BOTTOM)
FIGURE 7-9: FEMORAL HEAD INDICATING THE LOCATION OF THE HOLES FOR SCREW INSERTION 134
FIGURE 7-10: SCREW PLACEMENT IN THE FEMORAL HEAD
FIGURE 7-11: TORQUE VERSUS ROTATION TRACE INDICATING THE THREE DIFFERENT REGIONS PLATEAU
TORQUE WAS CALCULATED OVER
FIGURE 7-12: OUTPUT TRACES OF TORQUE VERSUS ROTATION
FIGURE 7-13: TORQUE AND COMPRESSION VERSUS SCREW ROTATION
FIGURE 7-14: PLATEAU VERSUS STRIPPING TORQUE
FIGURE 7-15: PLATEAU TORQUE VS MAXIMUM COMPRESSION
FIGURE 7-16: BOX PLOT INDICATING THE DIFFERENCE IN PLATEAU TORQUE IN THE THREE HOLE
LOCATIONS
FIGURE 7-17: COMPARISON OF PREVIOUS AND CURRENT DATA FOR PLATEAU TORQUE VS STRIPPING
TORQUE

FIGURE 8-1: SCHEMATIC OF REGION OF INTEREST SELECTED TO CREATE THE VOLUME OF INTEREST
(VOI). THE OUTER DIAMETER OF THE VOI EXTENDED 2.0 MM OUTSIDE THE OUTER EDGE OF THE
SCREW
FIGURE 8-2: CROSS SECTIONAL TWO-DIMENSIONAL SLICES OF THE BONE AND SCREW
FIGURE 8-3: THE NODES REPRESENTING THE OUTER SURFACE OF BONE. SPRINGS WERE APPLIED TO
THESE NODES TO SIMULATE AN ELASTIC BOUNDARY CONDITION164
FIGURE 8-4 : COMPARISON OF THE HEAD CONTACT DETECTION METHODS IMPLEMENTED
FIGURE 8-5: OUTPUT TRACES FROM SOFTWARE
FIGURE 8-6: TORQUE VERSUS ROTATION
FIGURE 8-7: COMPRESSION VERSUS ROTATION
FIGURE 8-8: 3D RENDERING OF THE SCREW IN THE FEMORAL HEAD
Figure 8-9: 2D time-elapsed images of the screw in the femoral head 171
FIGURE 8-10: 3D TIME ELAPSED SLICES OF BONE DURING SCREW TIGHTENING
FIGURE 8-11: TYPICAL DEFORMATION OBSERVED IN A TRABECULAR SPICULE SURROUNDING THE SCREW
THREAD
FIGURE 8-12: STEP-WISE ACQUIRED MASKS FROM MICRO-CT DATA SETS ARE OVER LAID TO VISUALISE
THE TRABECULAR DEFORMATIONS174
FIGURE 8-13: CONTACT STATUS OF CONTACT ELEMENTS REPRESENTING THE SURFACE OF BONE IN
CONTACT WITH THE SCREW
FIGURE 8-14: EXPERIMENTAL AND FE TORQUE VERSUS ROTATIONS CURVES
FIGURE 8-15: EXPERIMENTAL AND FE COMPRESSION VERSUS ROTATIONS CURVES
FIGURE 8-16: VOLUMES OF YIELDED TISSUE OVER 20 DEGREES OF ROTATION FROM HEAD CONTACT. 178
FIGURE 8-17: TIME-ELAPSED VON MISES STRAIN FIELD OF THE PERI-IMPLANT BONE
FIGURE 8-18: AXIAL DISPLACEMENT FIELD AFTER 20 DEGREES OF ROTATION
FIGURE 8-19: BINARISED IMAGE OF THE BONE-SCREW INTERFACE

LIST OF TABLES

TABLE 2-1: HIERARCHICAL STRUCTURE OF BONE 6
TABLE 2-2: MEAN (STANDARD DEVIATION) STRENGTH AND MODULUS VALUES FOR CANCELLOUS BONE
SPECIMENS
TABLE 2-3: AVERAGE REPORTED TISSUE PROPERTIES (\pm STANDARD DEVIATION) OF CANCELLOUS BONE
DETERMINED EXPERIMENTALLY OR BY FINITE ELEMENT ANALYSIS
TABLE 4-1: OUTPUT RESULTS OF PCG ITERATIVE SOLVER
TABLE 4-2: STRUCTURAL PARAMETERS FOR THE FULL- AND SUB-VOLUME MODELS ($N=11$)66
Table 4-3: Linear regressions (S_Y = ME_{APP} + c) of the yield strength of cancellous
TRABECULAR BONE UNDER UNIAXIAL COMPRESSION AGAINST YOUNG'S MODULUS (E)72
TABLE 4-4: MEAN (SD) TISSUE ELASTIC MODULUS VALUES FOR HUMAN VERTEBRAL TRABECULAR
TISSUE
TABLE 5-1: SPECIMEN PAIRS INDICATING VERTEBRAL LEVEL EACH SPECIMEN WAS TAKEN FROM AND
BV/TV
TABLE 5-2: AVERAGE MORPHOLOGICAL PARAMETERS FOR SI AND AP GROUPS 86
TABLE 5-3: LINEAR REGRESSION RESULTS 88
TABLE 6-1: FEA RESULTS FOR THE THREE DIFFERENT MODELS TESTED. 106
TABLE 6-2: LINEAR REGRESSION RELATIONSHIPS BETWEEN THE FE MODELS AND THE EXPERIMENTAL
DATA FOR YIELD STRESS AND UFS
TABLE 6-3: Average (SD) mechanical properties of human vertebral cancellous bone
SPECIMENS UNDER UNIAXIAL COMPRESSIVE LOADING
TABLE 7-1: MATERIAL PROPERTIES MATERIALS INVESTIGATED. 125
TABLE 7-2: SCANNING ACQUISITION PARAMETERS 127
$TABLE \ 7-3: Bivariate \ correlation \ of \ morphological \ and \ insertion \ variables \ \ldots \ 144$
TABLE 8-1: Average reported tissue properties (\pm SD) of cancellous bone163
TABLE 8-2: COMPARISON OF THE ALGORITHM PREDICTED AND ACTUAL TORQUE LEVELS FOR STEPWISE
SCREW INSERTION
TABLE 8-3: BONE AND SCREW VOLUMES FOR STEP-WISE ACQUIRED IMAGE DATA SETS

LIST OF EQUATIONS

EQUATION 2-1	24
EQUATION 2-2	24
EQUATION 2-3	25
EQUATION 2-4	25
EQUATION 3-1	
EQUATION 3-2	
EQUATION 4-1	56
EQUATION 5-1	96
EQUATION 8-1	158

ABBREVIATIONS

AP	antero-posterior
BV/TV	bone volume fraction
BS/TV	total surface
DA	degree of anisotropy
E _{Tiss}	bone tissue elastic modulus
E _{FEA}	finite element analysis determined elastic modulus
E _{Exp}	experimentally determined elastic modulus
ϵ_y^c	compressive yield strain
$\epsilon_y^{\ t}$	tensile yield strain
micro-CT	micro-computed tomography
micro-FEA	micro-finite element analysis
SI	supero-inferior
SMI	structure model index
TbN	trabecular number
TbTh	trabecular thickness
TbPf	trabecular pattern factor
TbSp	trabecular separation
T _{plateau}	plateau torque
T _{Stripping}	stripping / maximum torque

ABSTRACT

During screw insertion, surgeons manually tighten until they subjectively feel that adequate torque has been obtained. This "tightening torque" has been shown to equate to approximately 86% of maximum (stripping) torque. The level of torque to which orthopaedic screws are tightened, however, is highly subjective and can lead to over-tightening or even stripping in cases of poor bone quality. Whilst torque limiting devices exist that are able to terminate tightening at specified torque levels, these are of little value if the optimum torque is not known. Furthermore, the ideal level of tightening torque may vary according to anatomic location, bone quality and screw material and design. Bone quality is determined by the geometry of the bone and it's underlying micro-architecture, as well as accumulated microscopic damage, the quality of collagen, mineral density and crystallinity, and bone turnover. Therefore to fully understand these interactions at the macroscopic level, and understanding of the bone-screw interactions at the micro-structural level is necessary. The aim of this dissertation was, therefore, to develop a novel technique to analyse the mechanical interactions between cancellous bone and a lag screw during tightening. The ultimate goal was to develop a micro-finite element model that incorporated the screw and its mechanical interactions with the micro-structure of cancellous bone.

The first part of this dissertation explored the application of micro-finite element modelling for analysing vertebral trabecular mechanics at the micro-structural level under a uniaxial load in either the supero-inferior (SI) or antero-posterior (AP) direction. Results demonstrated distinctly different micro-mechanical behaviour between the two loading directions, with a greater volume of tissue reaching yield at the onset of apparent-level yielding, in the SI direction compared to AP. The incorporation of both material and geometric nonlinearity yielded strong agreement between model predictions of apparent yield and experimentally determined values; however the influence of experimental protocol was emphasized if tissue modulus values were derived from experimental data. It was demonstrated that the tissue modulus largely governs the apparent stiffness, whilst tissue yield criterion regulated apparent yield behaviour.

The second part of this dissertation focussed on the main objective, which was to understand the interactions between bone and screw at the micro-structural level. A novel micro-test device was developed that allowed the step-wise insertion of a screw into bone specimens within a micro-computed tomographic (microCT) scanner. Results showed a strong linear relationship between plateau torque and stripping torque, with the screw under investigation. Furthermore, it was demonstrated that the deformation of the trabeculae during screw insertion is restricted to primarily the bone tissue within the screw threads, and that the critical deformation occurs during the load step between 80 % ($T_{stripping} - T_{HC}$) and $T_{stripping}$.

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

ACKNOWLEDGEMENTS

Firstly I would like to thank my supervisors Professor Karen Reynolds, Dr John Costi & Dr Andrei Kotousov for taking me on as a PhD student. Karen you are an amazing and inspirational person; I have learnt so much from you not only with regard to engineering and orthopaedics, but about being able to juggle work and study with a family, thank you. Thankyou also to John; you provided an immense amount of insight and support for the entirety of this dissertation and without yourself and Karen this work would not have been possible. Thankyou both for your enduring guidance and support.

There is a vast number of others I would like to thank for their assistance and advice in many areas of my research. Richard Stanley assisted immensely in the design of the test apparatus' and protocols as well as pretty much any help I needed in the lab, be it testing, preparing specimens or finding a wayward screw, thank you! Mark Taylor provided an unbelievable amount of assistance in getting my final FE model working and what he has taught me with regard to understanding my models and debugging models is immeasurable! I would also like to thank the numerous friends that have had to share an office with me over the duration of this work, all of whom provided valuable insight and feedback on my thesis as well as life; thanks to Rohan Edmonds-Wilson, Diana Pham, Tae Hwan Joung, Tony Carlisle, Aaron Mohtar, Darius Chapman, Rosidah Lazid, Egon Perilli, Emily O'Brien, Bryant Roberts and Laura Diment. I would especially like to thank Rosidah for all her help with the mechanical testing and Aaron, who was always there to help with testing, writing programs or writing my thesis!

I would like to thank the Musculoskeletal Health ASRI for the scholarship that enabled me to undertake my doctorate, and to acknowledge that none of this work would have been possible without the funding provided by the National Health and Medical Research Grant ID 595933.

Finally I would like to thank my family, Luke, Audrey and Maeve. Deciding to start a family, as well as renovating and building houses, whilst undertaking a PhD has been a huge task and has certainly been a challenge at times. However, we have all learnt a lot of patience and time management skills over the duration. The birth of my girls provided me the inspiration to continue when times were tough and I thought I would never get there. I would also not have been able to spend the necessary time on this work without the support of my sister Hayley and my parent's in-law, Alan and Jenny. There were many times they cared for our girls so that mummy could spend time writing, as well as the emotional support and continuing encouragement. For this I am forever grateful.