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Abstract 

Optical coherence tomography (OCT) has evolved over a period of 30 years from an 

interesting research tool to a ubiquitous method of imaging the eye in clinical practice, now 

considered essential in the management of corneal, glaucoma, neuro-ophthalmic and 

retinal disease. Without it, the transformation of the management of medical retinal 

diseases (macular degeneration and diabetes) through the use of anti-vascular endothelial 

growth factors would have been difficult and far more complex for both patient and 

physician. This thesis emerged from the observation that OCT retinal shape differs between 

eyes, particularly with increasing myopia, leading to the question as to whether there was 

useful information to be learned from the retinal contour.  

 

Both magnetic resonance imaging and more recently the OCT have already been used to 

analyse the shape of the posterior segment of the eye. The objectives of this thesis are to 

more widely explore retinal shape measured with spectral domain OCT. OCT samples an 

area smaller than the retinal entirety, and combined images may alter shape information, so 

local retinal shape is used. While many papers have described the retinal curvature of 

myopic eyes, here the irregularity in retinal contour is employed as a sign, describing its 

distribution across both the posterior and mid-peripheral retina. This irregularity is then 

correlated with axial length, the primary determinant of myopia. This thesis further 

advances the understanding of retinal shape by examining the relationship between 

irregularity and posterior vitreous detachment (PVD), retinal tears and retinal detachment. 

Using discriminant analysis, a machine learning algorithm suitable for small-medium sized 

datasets, evidence is found for differences in retinal irregularity between eyes that can be 

used to classify retinal detachment and PVD eyes. Between eye and within eye observations 

over time suggest these differences do not arise from the PVD event or surgery, nor are 

they directly associated with chorio-retinal scarring from the use of therapeutic laser. 

During the course of this work, swept source OCT became available. Images collected with 

the swept source OCT confirm the utility of retinal irregularity features as a tool for 

classification. 

 



 ix 

The novel shape analysis described here requires only data easily available in the clinic, and 

has the potential to provide quick, high resolution, cost effective local shape information 

relevant to eye health. As a result of this work, it is now known that quantification of 

peripheral retinal irregularity with OCT is not only possible but useful. Retinal irregularity is 

a biomarker that relates to myopia, and may improve the ability to predict retinal 

detachment, which opens the possibility that vision loss may be preventable in at risk eyes. 
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Chapter 1. Introduction 
Over the last 30 years optical coherence tomography (OCT) has revolutionised the 

understanding and management of ophthalmic disease. Its ease of use, accessibility and low 

cost have enabled identification and regular monitoring of some of the anatomical 

correlates of visual impairment, particularly with diseases of the optic nerve, neurosensory 

retina, and choroid. Awareness of OCT reliability, combined with the volume of information 

produced, has led to the development of multiple tools for the quantitative analysis of 

retinal structure as a guide to disease management1. More recently, some attention has 

been paid to the shape or contour of the macula2, with retinal shape usually represented by 

the path that the high signal intensity retinal pigment epithelium takes across the OCT B 

scans.  

 

Myopia is expected to produce a global epidemic of visual impairment by 20503. Myopia is 

associated with an increased eye size and an increasingly abnormal eye shape with greater 

refractive error. Myopic eye shape was initially investigated with magnetic resonance 

imaging (MRI) of the whole eye4, but OCT has also been shown to be of use in analysing 

myopic pathology with regard to both retinal shape2 as well as neurosensory retinal 

degeneration5. Most OCT-based research has focussed on the macula and its diseases. OCT 

measured macular curvature has been reported for myopic traction maculopathy6, 

degenerative myopic retinopathy7,8, and dome shaped maculopathy9, with these reports 

fitting retinal shape to a best fit curve, and consequently discarding any shape differences 

between the retinal contour and that curve. Extra-macular OCT has been used to describe 

features of the peripheral retina in isolated peripheral retinal images10,11. Larger optical 

sections have been created through the merging of separate scans12. However, OCT analysis 

of the shape of extra-macular areas has not been reported.  

 

This thesis examines macular and mid-peripheral retinal shape with the OCT, and its 

relationship to disease. As OCT samples retina within a defined space, only local retinal 

shape is measured. A particular and unique focus of this work is consideration of the retinal 

irregularity rather than just the general curvature of any retinal sample.  

 



 2 

The remainder of this introductory Chapter 1 reviews the anatomy of the retina (Section 

1.1.1), then describes the diseases studied in this work, specifically myopia, posterior 

vitreous detachment (PVD), retinal tears and retinal detachment, and macular holes 

(Section 1.1.2). Retinal detachment is a sight threatening retinal emergency associated with 

myopia13. The retinal breaks that cause retinal detachment arise in the peripheral retina, 

away from areas normally imaged in clinical practice, and the mid-peripheral retina is 

another focus of this thesis. After a brief review of retinal imaging modalities (Section 1.2.1), 

OCT is described in greater detail (Sections 1.2.2 and 1.2.3). Prior work in posterior segment 

retinal shape analysis is reviewed in Section 1.2.4, followed by a brief review of image 

processing methods relevant to this work (Sections 1.2.5-1.2.7).  

 

Chapter 2 describes the image capture (Section 2.1) and analysis (Section 2.2) methods 

common to Chapters 3-6.  

 

Chapter 3 explores the reliability of shape measurement with OCT (Section 3.1), and tests 

whether merging OCT images would enable analysis of larger features (Section 3.2). The 

ability to quantify gaze position might provide an external frame of reference for non-

macula retinal images, and Section 3.3 looks at the measurement of gaze position during 

OCT image capture of non-macular retina. Section 3.4 describes the variation in retinal 

shape across retina that can be imaged with an unmodified commercially available OCT. The 

relationship between shape and myopia is reported in Chapter 4. While many papers have 

described retinal curvature differences in larger eyes, here the irregularity in retinal contour 

is employed as a sign, and correlated with axial length, the primary determinant of myopia. 

 

Chapter 5 explores the link between shape and disease. Section 5.1 investigates whether 

macular shape is changed by PVD, through the comparison of groups with and without a 

PVD, and comparison of macular shape before and after macular hole surgery or 

spontaneous PVD. Section 5.2 uses discriminant analysis to train a classifier to distinguish 

between retinal detachment and PVD eyes using shape features. As a desirable outcome 

would be a tool to identify eyes at risk of retinal detachment before PVD occurs or vision is 

lost, further analyses are performed to check whether factors such as chorio-retinal scarring 
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from surgery, or the occurrence of PVD itself alter shape. The relationship between shape 

and retinal detachment is further tested with swept source OCT in Chapter 6.  

 

The goal of optometric and ophthalmic care is to prevent vision loss and control visual 

impairment. Identifying more eyes at risk of retinal detachment would further those goals. 

The specific aim and objectives of this thesis are presented in Section 1.3. It is hoped that 

this work has made some progress toward reducing the burden that patients experience 

from retinal detachment. 

 

 

 

1.1.1 Anatomy 

The retina 

The neurosensory retina receives an image focused by anterior ocular structures, performs 

the first processing of this image, and transmits visual information to the brain via the optic 

nerve. The retina lies on the retinal pigment epithelium (RPE), is bound anteriorly by the ora 

serrata, and extends posteriorly from this across the posterior pole, covering 72% of the 

interior of the eye (Figure 1.1.1)14. The outermost retinal layer, comprising the 

photoreceptor rods and cones, interdigitates with the apical processes of the RPE. Retinal 

attachment is maintained by a combination of hydrostatic force, and viscoelastic adhesion15. 

Net fluid flux from anterior to posterior in the eye, generated by active transport of 

electrolytes by the RPE cells and subsequent osmotic flow, provides a hydrostatic force. The 

viscous interphotoreceptor matrix, a material that lies between photoreceptor and RPE 

cells, may also create some adhesion (Figure 1.1.2)16. Retinal thickness varies from 300	"m 

in the peri-foveal region to 80	"m in the periphery15,17. A typical 23 mm axial length eye is 

estimated to have a total retinal area18 of 1094 mm2. 

 

Retinal pigment epithelium  

The RPE is a monocellular layer that protects and provides nutrition to the outer retina, 

including the photoreceptor cells. The RPE does this by maintaining the blood-retinal 

barrier, transporting nutrients and waste products to and from the rods and cones, 
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managing retinoid metabolism, and phagocytosing redundant outer segments17. The RPE-

Bruch membrane complex thickness is approximately 22	"m in healthy eyes, but this varies 

by location, and by how much of the interdigitations with the photoreceptors are 

included19. These apical processes consist of microvilli, thought to maximise the surface area 

for transepithelial transport, and photoreceptor sheaths that cap the retinal outer 

segments. The RPE cells are 10-14	"m thick at the macula, then become flatter and wider 

(up to 60	"m across at the ora) more peripherally17. Measured by optical coherence 

tomography (OCT), the RPE signal layer is up to 40	"m thick, and forms the major part of the 

outer highly reflective band, which has the highest intensity signal in normal retina. 

 

Vitreous 

The vitreous gel fills the space between the retina posteriorly, and the lens, lens zonules, 

and ciliary body anteriorly20. A mixture of water, sodium hyaluronate, and collagens, it has 

an outer collagenous cortex over the retina that merges with the vitreous base anteriorly. 

The central vitreous is more liquid21. 

 

Figure 1.1.1. Anatomy of the eye. Anatomy of the relationships between the retina, 
vitreous, and vitreous base. The vitreous base lies under the ora serrata, extending (in adult 
life) anteriorly over the pars plana, and posteriorly over the anterior retina22. (This figure 
published under STM automatic permission guidelines, from Wilkinson & Rice, Michel’s 
Retinal Detachment, Mosby, 1997, Copyright 1997). 
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Figure 1.1.2. Retinal pigment epithelium. Diagram of the relationship between the retina, 
and retinal pigment epithelium. Light comes from the front of the eye, which is above the 
image. (This figure published under STM automatic permission guidelines from Bonilha VL, 
Retinal pigment epithelium (RPE) cytoskeleton in vivo and in vitro. Experimental Eye 
Research. 2014 Sep 1; 126: 38-45. Copyright Elsevier 2013). 
 

The vitreous base is a firm connection between the retina and the vitreous cortex that 

straddles the ora serrata, the anterior limit of the retina. The posterior extent of the 

vitreous base sits at the ora at birth, and remains roughly parallel to the ora through life as 

it grows posteriorly, further in men than women, and nasally further than temporally. This 

means the posterior border of the vitreous base approaches coronal concentricity in later 

life. Posterior vitreous base extension occurs from synthesis of new vitreous collagen from 

vitreous hyalocytes21. In adults it sits 1.00 - 3.68 mm from the ora, with a mean extent 1.32-

1.79 mm varying by quadrant of the eye23. The posterior face of the vitreous base is 
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sharpest in those with a posterior vitreous detachment (PVD)24. 

Vitreous collagen is predominantly type II, with IX next most common, and V/XI making up 

most of the rest23. Cortical collagen is oriented roughly parallel with the retinal surface. 

Vitreous collagen fibres are long, uniform and unbranched. At the vitreous base the fibres 

pass through the inner limiting membrane perpendicularly, to merge with fibrils on the 

cellular side23, forming a firm and unbreakable adhesion. 

 

 

 
1.1.2. Vitreo-retinal pathology 

Posterior vitreous detachment  

Progressive vitreous liquefaction, starting as early as four years of age, is accompanied by 

weakening of adhesion between the posterior vitreous face and inner limiting membrane of 

the retina23. PVD, the separation of the posterior hyaloid from the retina, occurs when the 

liquid vitreous enters the retro-hyaloid space through a defect in the weakened cortex. PVD 

increases in prevalence from the age of 40, with a diagnosis of PVD reported to be present 

in 50% at 50 years old and 65% of those aged 65 as determined by clinical examination25, 

then in 80% of 80 year olds26,27. PVD occurs earlier in myopes, a median of 10 years earlier 

overall, but at an increasingly younger age the more myopic the eye28,29. Histological 

correlation with clinical diagnosis of PVD suggests that the true incidence may be lower, 

with many clinically suspected cases of complete vitreous separation in fact being a vitreo-

schisis, or splitting of the vitreous cortex, with the outermost vitreous layer remaining 

attached to the retina30. Separation is not an “all or nothing” event31: incomplete PVD, the 

separation from posterior pole structures such as the optic disc or fovea, with persistent 

attachment elsewhere, can be visualized with spectral domain OCT25,32. OCT has increasingly 

been used to analyse and diagnose PVD33. Incomplete PVD decreases in prevalence through 

later adult life, as complete posterior vitreous detachment occurs25,31. For this work, a PVD 

was defined as documented separation of the posterior hyaloid face from optic disc, 

macula, and surrounding posterior pole structures34, with a history of typical symptoms. 
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The majority of PVDs are benign, producing irritating “floaters” in vision from the shadow 

cast on the retinal surface by opaque aggregates of collagen fibrils and glial tissue within the 

detached mobile cortex. The further from the retina they lie, the smaller the area of the 

cone of shadow to produce symptoms, although smaller pupils will produce a longer 

penumbra and increase symptoms21. Photopsias (“flashing lights”) may occur at the time of 

separation and are thought to arise from mechanical irritation of the retina35. Photopsias 

that persist after the acute posterior vitreous detachment are typically seen in the temporal 

visual field in low light conditions. They are thought to arise from the mobile vitreous 

cortex, swinging from the vitreous base in the fluid-filled vitreous cavity36. 

 

Macular holes 

Macular holes are round, full-thickness neurosensory retinal defects centred on the fovea, 

the thinnest part of the posterior retina that is the structure responsible for the central and 

greatest acuity vision37. They are thought to arise from predominantly antero-posterior 

vitreo-macular traction arising during the period of incomplete PVD38. Peri-foveal posterior 

hyaloid separation with persistent attachment at the fovea leads to a full thickness defect 

with radial then tangential displacement of the retinal tissue. Developing in the sixth to 

eighth decades of life, idiopathic macular holes are thought to be associated with failure of 

posterior vitreous detachment formation12. Presenting with a sub-acute blurring of vision, 

untreated over three quarters will progress to vision loss severe enough to meet the WHO 

criteria for blindness39,40. 

 

More common in females than males, most idiopathic macular holes respond very well to 

surgical intervention within 6 months of onset. Vitrectomy with induction of posterior 

hyaloid face detachment and peeling of the inner limiting membrane of the retina has an 

anatomical success rate over 90%41,42. The procedure is thought to produce hole closure by 

removing the centripetal force through PVD induction. Removing the inner limiting 

membrane and associated residual vitreous cortex on the retinal surface removes the 

tangential traction from the posterior hyaloid face and takes away the most inelastic retinal 

layer, enabling the retinal tissues displaced laterally during hole formation to migrate back 

to their origin43.  
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Retinal tears 

In a minority of cases, the PVD involves a more traumatic separation, with retinal tears 

produced where an abnormally tight point of adhesion lifts the retina at, or posterior to, the 

vitreous base35. The true prevalence of these complicated or “traumatic” PVD is difficult to 

determine: many patients either do not present for review or are managed in primary 

ophthalmic care. The reported incidence of retinal tears varies from 0.59% to 27% in 

different studies, depending upon what population has been sampled 44. In one series of 

acute PVDs presenting to an ophthalmology unit, 8.2% had a retinal tear, with a wide 

variation in incidence in other case series of up to 47%, presumably reflecting varying 

referral patterns35.  

 

Once flow from liquid vitreous into the sub-retinal space overwhelms the ability of the RPE 

to remove fluid, retinal detachment occurs. Not all retinal tears lead to retinal detachments, 

with the hypothesis being that the retinal pigment epithelial pump maintains retinal 

apposition in some cases45,46. Straatsma47 found an incidence of retinal tears at autopsy of 

3.3% of patients (1.9% of eyes), similar to Foos’ finding of retinal tears in 2% of autopsy 

eyes48. Martin Sanchez & Roldan Pallares49 found a prevalence of 3% retinal tears in myopic 

eyes, unrelated to severity of myopia or age. Westfall et al50 found 8% of acute symptomatic 

PVD eyes (which excludes all those who do not present to eye health care) had a retinal 

tear, whereas the combined incidence of retinal tear and detachment in those presenting to 

healthcare with PVD-related symptoms was reported as 14%51. A more recent estimate is 

that just over half of retinal tears produced by an acute PVD will produce a retinal 

detachment35. Acute symptomatic retinal tears are thought to have the highest risk of 

progression to retinal detachment, particularly in the older population in whom posterior 

vitreous detachment has occurred (and caused the symptoms). The incidence of retinal 

detachment, the end result of progressive, untreated retinal tears that will lead to visual 

loss, is approximately 1:10,000 per annum52. This is close to the estimated lifetime risk of 

1%13. Van der Put et al53 found annual incidence of retinal detachment of 18.2 per 100 000, 

with a peak at 52.5 years. Wong et al54 found an overall incidence of 10.5 per 100 000, with 

different incidences in different ethnicities in Singapore, but did not address possible 
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differences in refractive error between groups as a source of the difference. Together, these 

suggest that retinal tears are 2-3 times more common than retinal detachment. 

 

Treatment of retinal tears 

Retinal tears without retinal detachment can be treated by using laser photocoagulation or 

cryopexy to create a firm chorio-retinal adhesion (essentially a scar) and prevent retinal 

detachment14. Once retinal separation from the RPE occurs, surgery is required35.  

 

Retinal detachment 

Acute PVD is a common, often annoying, but benign event in the aging eye. In a minority it 

is complicated by retinal tear formation which, if untreated, can lead to retinal detachment 

and vision loss even with effective surgical care. The time period between acute PVD 

involving a retinal tear and development of retinal detachment varies, and may be hours or 

weeks depending on conditions within the eye. Once detached, outer retinal cells including 

the photoreceptor cells that lose contact with the RPE cells that maintain their function, 

cease working and undergo apoptotic cell death55. The result is severe loss of vision from 

the area of retina affected, and is not entirely reversible even with appropriate surgery56. In 

approximately half of eyes presenting with retinal detachment, the macula has separated 

from the underlying RPE cells (“macula off”), and nearly all of these will be left with some 

permanent visual impairment affecting central vision53. 

 

Approximately 6-34% of individuals with a retinal detachment in one eye will develop a 

retinal detachment in the fellow eye57–61. There is no test to predict eyes at risk of retinal 

detachment. Myopia is known to be a risk for retinal detachment, with the size of the risk 

varying with degree of myopia62 consistent with the risk being related to the size of the 

eye13,63. Although lattice degeneration is seen more commonly in eyes with a complicated 

PVD, most eyes with lattice degeneration do not develop a retinal detachment, so 

prophylactic treatment is rarely indicated46,64,65,66. Those with known high risk of retinal 

detachment, including type 1 Stickler syndrome67 and the fellow eyes of giant retinal tears68, 

do benefit from prophylactic retinal laser69.  
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Incidence of retinal detachment compared to PVD 
The true relative incidence of retinal detachment and posterior vitreous detachment in the 

population is difficult to determine, as many uncomplicated PVDs will either not present to 

healthcare or be rapidly assessed by primary healthcare. The relative incidence of PVD and 

retinal detachment has been estimated from the literature in different ways. Of those 

presenting to medical eye care with new-onset floaters, with or without photopsia, it was 

estimated that 14% would have a retinal tear or detachment requiring treatment35,51,70,71, a 

ratio of approximately 6:1.  

 

An estimation of the relative probability for the wider population incidence can loosely be 

made based upon independently reported incidence of the two groups. The incidence of 

retinal detachment has been reported as between 1: 8 000 – 10 000 individuals per annum 

in several reports52,57,59, including those of comparable populations to this study. The 

prevalence of PVD has been reported at 57% in subjects over 85 years72 beyond which it 

was assumed further posterior vitreous detachment events are uncommon. Assuming no 

difference in mortality linked to PVD development or retinal detachment, this equates to a 

ratio of approximately 50:1.  

 

 

Myopia 

The refractive state of the eye is largely determined by the combination of anterior corneal 

curvature (which provides the majority of the refractive power of the eye) and axial length. 

Emmetropia is the state where parallel incident light rays are brought to a focus at the 

retina. Hyperopia, or hypermetropia, is the state where the focal point of parallel light rays 

lies posterior to the retina. In myopia parallel incident light rays are brought to a focal point 

anterior to the retinal surface, leading to a blurred image73. While myopia can occur from an 

increased focal power of the anterior ocular structures (in particular the cornea, but also the 

lens of the eye), most myopic eyes exhibit a greater axial length than do emmetropic eyes. 

Most of the axial growth that produces myopia happens in the second decade of life. 

However axial length can increase in myopia even in the middle years: this increase is 

greater in larger, more myopic eyes74. Posterior segment eye shape (in particular retinal 

shape) affects ocular pathology and leads to visual impairment in other ways than just 
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refractive error. Lattice degeneration, retinal tears and retinal detachment are more 

common in larger, myopic eyes52. Severe, or pathological myopia, has various definitions, 

usually related to the increased eye size at which pathological chorio-retinal changes75, 

particularly typical patchy chorio-retinal atrophy, develop76. Frisina et al77 related posterior 

staphyloma type to both ocular shape observed on MRI and OCT profile, and chorio-retinal 

atrophy. This is more common once refractive error is less than -6.00 dioptres, or axial 

length greater than 26.5 mm78. However, myopic retinopathy becomes more prevalent after 

the fifth decade of life76, meaning larger eyes in early life are less likely to show chorio-

retinal pathological changes79. Posterior staphylomata that developed after the fifth decade 

of life produced a temporally distorted globe shape associated with visual field defects 

(Figure 1.1.3)4. Simulations of retinal haemodynamics found that pathological alterations in 

eye shape equivalent to myopia adversely affect the retinal vascular circulation80. 

 

 

Figure 1.1.3. MRI globe reconstructions. Nasal view of MRI reconstructions of an 
emmetropic eye (labelled B, looking to the left), and a myopic eye (labelled D, looking to the 
right). The myopic eye has a posterior staphyloma, posteriorly, in the left of the image. Both 
images demonstrate artefactual “dimpling” of the surface from the reconstruction 
algorithms, as well as the asymmetric shape of the posterior segment. (This figure published 
under STM automatic permission guidelines from Moriyama M, Ohno-Matsui K, Hayashi K, 
Shimada N, Yoshida T, Tokoro T, Morita I. Topographic analyses of shape of eyes with 
pathologic myopia by high-resolution three-dimensional magnetic resonance imaging. 
Ophthalmology. 2011 Aug 1;118(8):1626-37. Copyright 2011, American Academy of 
Ophthalmology). 
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Prevalence of myopia 

Myopia is becoming a public health issue in many parts of the world, predicted to increase 

and affect up to 46%, or four billion people by 20503 . The Beijing Eye Study found 77% of 

18-year-old school students had myopia, with 5% having high axial myopia of less than -8.00 

dioptres81. The same study found 20% of university students had high axial myopia. In Seoul, 

96.5% of 19 year old men are myopic82. In comparison, the Blue Mountains Eye Study in 

Australia found only 2.7% of adults 40 years and over had myopia less than -5.00 dioptres83, 

and 2.4% of adults over 40 in a rural population in China were similarly myopic84. This 

suggests that myopia is particularly increasing in prevalence in younger, urban 

populations85. 

 

In Australia, the 2005 report, “Eye Health in Australia” estimated 15-20% of the adult 

population was myopic86. However, an increase has not been documented in Australian 

primary schools to date, with a myopia prevalence of 13% amongst a representative primary 

school population in Queensland, and a lower incidence in European Caucasian children 

than East Asian87,88.  

 

Genome wide association studies have identified loci in severe myopia relate to genes 

expressed in the sclera, retina, and retinal pigment epithelium89. Genes for myopia have 

been identified in Stickler syndrome (COL2A1 and COL11A1), type VI Ehlers-Danlos 

syndrome (lysyl-protocollagen hydroxylase), and Marfan syndrome (fibrillin)90. 

 

Myopisation and its effects 

Eye shape affects focus at different retinal eccentricity, and it has been suggested this may 

influence eye growth and final refractive error at maturity91: local feedback from peripheral 

defocus may modulate eye growth. Demonstration that visual feedback influences growth 

of the eye and consequent axial myopia was first demonstrated in macaque monkeys92, and 

is seen in visual deprivation from visual pathway opacities – both experimentally induced93 

and in clinical observation94. Relative peripheral ametropia (in particular, hyperopic defocus 

in myopic eyes) has been hypothesized as a drive for eye growth and myopia progression.  

Experimental models have produced results supporting this hypothesis: marmosets fitted 

with bifocal contact lenses that induce relative peripheral hyperopia developed axial 
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myopia95. 

 

Clark et al96 summarised techniques of peripheral refraction and determination of retinal 

shape across the posterior 30 degrees of retina, and discussed the hypothesis that relative 

peripheral hyperopia leads to myopic progression. They combined spectral domain OCT-

determined retinal curvature, peripheral refraction measured by an auto-refractor, and 

partial coherence interferometry to measure axial length. Increased curvature was found in 

myopic eyes 5° from fixation, closer to fixation than other studies, and consistent with a 

more prolate shape. This study demonstrated the utility of OCT in analysing retinal shape in 

its relation to refractive states. 

 

For defocus to influence eye growth and myopia progression, a signal must pass between 

the visual pathway and the sclera. The proposed mechanism of scleral remodelling to allow 

eye growth in myopia is a local retino-choroidal signal that activates scleral fibroblasts and 

myofibroblasts. Although the exact mechanism remains unclear97, there is some evidence 

that retinal dopamine release inhibits myopic progression98. Dopamine, insulin, glucagon, 

and GABA agonists and antagonists have been shown to influence choroidal and scleral 

growth90. 

 

The tissue of origin of myopisation has been hypothesised to be Bruch’s membrane5. Jonas, 

Ohno-Matsui & Panda-Jonas noted that the distances between the foveola and Bruch’s 

membrane opening (BMO) near the optic disc (which itself does enlarge), and distance 

between the superior and inferior temporal arcades, do not correlate with axial length. 

Hence the macular Bruch’s membrane does not enlarge with axial length. The BMO shifts 

temporally in myopia, contributing to the increased peripapillary gamma zone (the gap 

between the margin of the optic disc and edge of Bruch’s membrane). Sclera and choroid 

thin post equatorially with increasing axial length, whereas Bruch’s membrane does not. 

The absence of an increase in choroidal and scleral volume with axial length suggested 

enlarging eyes rearrange these tissues rather than grow more tissue. The RPE cells enlarge 

with increasing axial length99. Posterior RPE cell density and retinal thickness do not reduce 

with increasing axial length, whereas they do in the peripheral retina. Jonas & Ohno-Matsui 

hypothesise that the efferent process of myopisation is Bruch’s membrane production at 
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the equator, reducing RPE density here, with thinning of the posterior choroid by 

compression or stretch through increased Bruch’s membrane area, while neurosensory 

macula, RPE and Bruch’s membrane structures are preserved. 
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1.2.1. Imaging the eye (non-OCT) 

Eye size: axial length  

Axial length is the standard clinical assessment of the size of an eye. Measured as the 

distance from the corneal apex at the front of the eye to the fovea at the back, it is usually 

measured by partial coherence interferometry or ultrasound A scans. Along with corneal 

curvature it describes the refractive status of the eye. Most commonly measured prior to 

cataract surgery, it is the primary determinant of myopic refractive error. Myopic eyes tend 

to be larger than emmetropic eyes, which are themselves typically larger than hyperopic 

eyes. With an increased interest in myopia control, axial length is recognised as an ideal 

metric for assessing the effect of interventions on prevention of myopic progression100.  

 

Fundoscopy and photography 

The first recorded visualisation of the retina in vivo occurred in 1704 when Jean Mery noted 

that he could see the retinal blood vessels of (live) cats immersed in water101. More 

practically, Purkinje developed an ophthalmoscope in 1823, which was re-invented by von 

Helmholtz in 1851102. Gullstrand’s development of the science of ophthalmoscopy (for 

which he won the 1911 Nobel prize) led to the construction of the first fundus camera in 

1925103. 

 

Retinal photography (Figure 1.2.1) and fluorescein angiography (fluorescent dye assisted 

imaging with the use of filters, Figure 1.2.2) remained the primary retinal imaging technique 

up to the development of the OCT in 1991. They provide a two-dimensional view of the 

translucent retinal tissue and blood vessels overlying the retinal pigment epithelium and 

choroid. 
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Figure 1.2.1. Fundus photography. Colour fundus photograph of a right eye. The image is a 
montage of ten separate fundus photographs. This is a normal eye. 
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Figure 1.2.2. Fluorescein angiography. Images from a highly myopic eye. Both retinal and 
choroidal circulations are seen, the former the white lines emerging from the optic nerve 
head, right of centre in all four images. 
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Early three dimensional images were provided through stereo fundus photography104, and 

the scanning laser ophthalmoscope provided some depth information, but only with a 

resolution of 100	"m, which is of limited utility for retina with a tissue thickness 150-

250	"m105. 

 

Ultrasound 

While OCT can provide high axial resolution, ultrasound has greater tissue penetration with 

lower resolution (Figure 1.2.3). Ultrasound requires different probes for anterior and 

posterior chamber examination, with the posterior chamber typically imaged with a 10 MHz 

probe. A 10 MHz ultrasound has a resolution of up to of 150	"m, but eye movement 

artefact and loss of detail of anterior ocular structures limit its accuracy. At 50-80 MHz, 

ultrasound can resolve down to 20 "m, but only penetrates tissue to a depth of 3 mm, and 

is useful in examining the anterior chamber106,107. Colour Doppler ultrasound can show 

dynamic retinal blood flow108,109. Ultrasound is performed by placing the probe either on 

the open, anaesthetized eye, or through a closed eyelid. Both involve contact, which may 

exert some pressure and distort the globe. Despite its availability, ultrasound has been little 

used in quantifying posterior segment shape, probably because it can be time consuming, 

uncomfortable, requires a skilled operator, and differences between technicians may limit 

accuracy110. 
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Figure 1.2.3. Ocular ultrasound. This eye has a closed funnel retinal detachment following 
trauma. The optic nerve is at the bottom of the image. The retina rises near vertically from 
the optic nerve head then reflects toward the vitreous base, due to extensive proliferative 
vitreo-retinopathy. This eye is blind.  
 

 

 

Magnetic resonance imaging (MRI) and computed tomography 

MRI can image the entire eye (reviewed by Nayak, Desai & Maheshwari111, Figure 1.1.3). 

The high water content of vitreous gives it a low T1 signal that contrasts well with the 

relatively hyper-intense uveal signal, which also enhances with contrast. On T2, the bright 

vitreous signal obscures surrounding tissues. Surface coils may be placed on the eye for 

higher spatial resolution, but the signal remains sensitive to eye movement artefact. 

Standard investigations have a pixel size of 1 mm, but can be improved to 500	"m with 

higher Tesla scanners112.  

 

While MRI has been considered the gold standard in posterior globe curvature estimation, 

its resolution is too low to measure many of the features observed with OCT110,113. Gradient 

field non-linearities produce pincushion-like radial distortions requiring some calibration 

and correction. Magnetic field inhomogeneities may influence the imaging of the eye which 

has comparatively large variation in magnetic susceptibility in different tissues. As a result, 
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precise subject positioning is required, and difficulties in achieving this, as well as its cost, 

can limit its widespread use for research110. Computed tomography (CT) has slightly better 

intraocular resolution (500-1000 "m) with faster scan times reducing motion artefact. This 

greater resolution leads to its use for stereotactic interventions114. CT imparts a not 

insignificant dose of radiation to the eye and sensitive crystalline lens106, which limits its use 

for research imaging.  

 

Peripheral retinal imaging (non-OCT) 

Conventional fundus imaging typically covers 35-55°, centred on, or close to the posterior 

pole. With the eye turned away from the camera, peripheral fields can be captured with 

range and image quality dependent upon pupil dilation and optical factors. Wider field (non 

OCT) peripheral retinal imaging includes colour photography (the RetCam, Clarity Medical 

Systems, Pleasanton, CA, Figure 1.2.4), and wide field scanning laser ophthalmoscopes such 

as the Optos (Optos plc, Dunfermline, UK, Figure 1.2.5), both of which have the facility to 

add retinal angiography. The RetCam can reach 120°, and the Optos up to 200° field of view, 

with a lower range superiorly and inferiorly115. Witmer & Kiss116 concluded that imaging the 

ora requires a 230° field of view (imaging the equator requires a 180° field when the image 

is centred on the posterior pole). The distortion of the retinal field in a wide-field 

photograph is similar to the Mercator projection on a map of the world, both representing a 

three dimensional spherical surface with a two dimensional image117. The peripheral areas 

are magnified and distorted compared to the posterior pole. Conversion for the distortion of 

area can be performed118. 

 

Nomenclature standardisation of descriptive terms for imaging of different retinal 

structures has been established119. This separates retinal areas into the posterior pole, mid-

periphery (or widefield) and far-periphery (ultra-widefield).   
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Figure 1.2.4. Widefield retinal photography, RetCam. Image shows the right eye of a 
neonate who has had laser treatment for retinopathy of prematurity.  This is a review image 
taken weeks after the laser treatment. Laser scars are seen on the right of the image. The 
temporal retinal vessels (to the left in the image) are straightened due to traction from 
temporal peripheral pre-retinal fibrosis. 
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Figure 1.2.5. Optos wide field fundus image of a right retinal detachment. Taken with the 
Optos scanning laser ophthalmoscope. The false colour image enhances colour differences: 
detached retina appears green, above, as it transmits less of the orange light from the 
underlying retinal pigment epithelium. In reality the retinal tissue has a grey appearance. 
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1.2.2. Optical coherence tomography 

OCT is widely used in ophthalmology to image the retina and optic nerve head7,91,120. A 

Michelson interferometer, spectral domain OCT uses low coherence interferometry with 

frequency domain signal separation via a diffraction grating to provide image resolution 

comparable to histological (microscopic) samples. Axial resolution theoretically approaches 

2 "m, with transverse resolution 15 "m91,121 providing image definition greater than 

ultrasound or magnetic resonance imaging. Yet OCT captures images rapidly, non-invasively, 

and repeatedly, with minimal patient inconvenience and no risk. Energy incident upon the 

eye is minimal: power is less than 1.5 mW at the cornea. Most clinical images are taken of 

the posterior pole – the macula and disc, where the common pathologies of glaucoma, 

diabetes and macular degeneration can be seen. Zeiss Cirrus OCT machines, one of the most 

common machines used in ophthalmic practice in Australia, can capture from 27 000 – 68 

000 individual A scans per second, and swept source OCT can capture up to 200 000 A scans 

per second. 

 

OCT imaging of the retina was first reported by Huang122, with images of tissue samples of 

the retina and coronary artery. In vivo ocular imaging was reported in 1994123. Early 

commercial OCTs involved moving the reference mirror to image each voxel and complete 

the A scan (time domain OCT), which limited acquisition speed and have largely been 

replaced by spectral domain OCT (SD OCT). In this, a broad bandwidth superluminescent 

diode (SLD) light source is used, and the returning signal split into component frequencies 

by a grating and received by a charge-coupled device containing photo-detectors with 

varying frequency sensitivity, allowing different wavelengths to provide signal from different 

tissue depths. This results in much faster A scan generation. This rapid signal generation has 

permitted fast scanning speeds to capture multiple parallel B scans for three-dimensional 

tissue assays (Figure 1.2.6). Swept source OCTs (SS OCT) use a tuneable laser of varying 

wavelength to further increase imaging speed. 
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Figure 1.2.6. 3D OCT image. Three-dimensional reconstruction of retinal tissue. The 
scanning laser ophthalmoscope image of the area is projected beneath the OCT cube. The 
image is formed from 512 A scans arranged side by side in the direction given by the red 
line, and letter I. This forms a single B scan. Then, 128 B scans are aligned in parallel up the 
blue line, letter T. The retinal surface is toward the top, and the paler layer in the middle of 
the OCT cube represents the retinal pigment epithelium and ellipsoid layers. 
 

 

Retinal OCT is oriented from the point of view of the examiner: the x-axis horizontal left to 

right, y-axis vertically inferior to superior, and z-axis antero-posterior. A B scan image is 

constructed from multiple A scans (a single antero-posterior assay) aligned in parallel. The 

image voxels are anisotropic. Lateral (x-axis) resolution is affected by the optical factors of 

the camera and the eye, and is approximately 15	"m with the Zeiss Cirrus. y-axis resolution 

is determined by the interval between each B scan: the vertical angular displacement 

between each image. In the Zeiss Cirrus macular cube protocol this is 45	"m. The interval 

between scans and consequent y-axis resolution is larger with other scan algorithms, with 
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the HD21 raster scan spacing adjustable between 50-500	"m. The axial (z-axis) resolution is 

as low as 2	"m reflecting the high sensitivity of interferometry.  

 

The Zeiss Cirrus OCT has a camera to image the external eye, and a separate camera (a 

scanning laser ophthalmoscope) for imaging the fundus, with field of view of 36° lateral 

width, and 26° vertical height. The light source is a superluminescent diode for 

interferometry with a centre optical frequency of 840 nm. The area scanned by the standard 

OCT cube within the camera field covers approximately 20° of retina, or 6 mm horizontally. 

 

Schmitt124 described the physics behind the OCT. Waves are coherent if they are of the 

same frequency and have a constant phase difference. The coherence length is the length of 

a wave along which (a specified degree of) coherence is maintained, and is proportional to 

the square of the mean wavelength, and inversely proportional to the bandwidth. A laser 

has a coherence length of meters, but the use of a superluminescent diode with a broader 

bandwidth reduces this to micrometres. The broader the bandwidth, the better the axial 

resolution. Other factors affecting coherence length include the speed of light and refractive 

index of the media. In OCT literature, coherence length is given as 

# = 0.44
(!"

∆(
 

where (! is the centre optical frequency, and ∆( the bandwidth of the light source. Thus, for 

a near infrared 840 nm wavelength superluminescent diode with a bandwidth of 100 nm 

the coherence length is 2-3 "m, however adjustment for the absorption and refractive index 

of water reduces the useful bandwidth and hence resolution of the OCT to around 10 "m. 

 

The broader the emission bandwidth, the better the resolution and contrast, as long as 

chromatic aberration and mismatch between reference and sample beams remains low124. 

Near infrared light of 840 nm provides good tissue penetration, is safe and non-irritating to 

the subject. Voxel signal intensity is represented on a grey-scale or converted to a colour 

map via a look-up table, with red equal to white (high reflectance) and blue replacing lower 

intensity (darker) pixels. 
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OCT is now widely used for vitreo-macular interface disorders, diabetes, macular 

degeneration, and glaucoma125. Interferometry produces high axial resolution, but the lower 

transverse resolution comes from the limits set by the entire optical pathway (instrument 

and eye) affecting the spot size on the target tissue. This can be increased with pupil 

dilation, and is decreased by defocus (refractive error) and higher order aberrations. Swept 

source OCTs can provide greater resolution, use a longer wavelength improving tissue 

penetration, and generate signal even faster to allow fast repeatable scans of any point to 

detect motion via phase and amplitude shift of signal.  Such motion in the retina is usually 

from blood flow, which has led to the development of OCT angiography126,127. OCT retinal 

oximetry may be possible128.  

 

 

OCT image processing 

The standard image output from commercial OCTs has undergone considerable processing 

for presentation and to enable accurate and repeatable segmentation for analysis of disease 

states. The processes vary by device and manufacturer, but the first step in image 

production from data is pre-processing: A scans are normalized (the signal intensity in each 

A scan balanced to match adjacent scans) and previously were flattened (aligned) by 

intensity and spatial position (usually by the outer highly reflective band and inner limiting 

membrane – the two highest intensity layers in the signal), to transform the data into a 

common space (Figure 1.2.7)129. Flattening in lower frequency scans allowed (posterior) z-

axis truncation to reduce file size130, and segmentation by surface layers to provide a 

consistent shape for visualization other segments131–133. Segmentation involves the 

distinction of up to 27 separate retinal layers by boundary classification – the consistent 

sudden changes in signal intensity120. 

 

The outer highly reflective band consists of photoreceptor cells, RPE, Bruch’s membrane, 

and choroid, that can be separated into three highly reflective interfaces, presumed to be 

the ellipsoid layer, RPE, and Bruch’s membrane134. This high signal layer was often used as 

the reference line to be flattened for segmentation. 
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Figure 1.2.7. Pre-processing OCT flattening. The outer highly reflective band (brightest 
white horizontal line) shows pre-processing effects. In (b), the signal intensity is normalized 
along the line. (c) shows identification of retinal boundaries, which are flattened in (d). 
(Reprinted with permission from Lang et al (2013), © The Optical Society). 
 

 

OCT image artifacts 

OCT images require correction for the distortion effects produced by the geometry of the 

scanning beam (distance between source and subject, fan scanning, oblique scan effects), 

motion errors (eye and head movement), and differences in refraction.  

 

Axial length effects 

OCT curvature values need to be corrected for OCT image acquisition artifacts. Variation in 

axial length has the greatest impact on errors in retinal curvature estimation with the OCT, 

with tilt and eye position less significant. Correction for this has been performed by pre-

calculating the error induced by axial length differences using ray-tracing models135, or 

through more complex combined anterior and posterior OCT imaging for true individual eye 

optical effects136. As well as axial length, alterations in device-to-eye distance alters 

measured retinal shape137, so correct head and eye alignment during imaging is important. 

More difficult to correct for are optical pathway distortions arising from the beam passing 

through different parts of the peripheral cornea and lens on a pathway at an angle to the 

visual axis. The aberrations and distortions resulting from this are indeterminate, variable, 

and therefore difficult to correct. However, the absolute size of these effects is small138. 

 

aging, causing differences in its dynamic range. These issues are scanner dependent and may
not affect other scanners in the same way as in our experiments.

To address the intensity inconsistency issue, we carry out a contrast rescaling on each B-scan.
Specifically, intensity values in the range [0, Im] are linearly rescaled to [0,1] while intensities
larger than Im are set to unity. The value Im is interpreted as a robust maximum of the data,
which is found by first median filtering each individual A-scan within the same B-scan using a
kernel size of 15 pixels (58 µm). Then, Im is set to the value that is 5% larger than the maximum
intensity of the entire median-filtered image. This rescaling removes hyperintense reflections
found at the surface of the retina while maintaining the overall intensity values in the B-scan.
A result of this normalization step is shown in Fig 3(b).

(a) 

(b) 

(c) 

(d) 

Fig. 3. Row-wise: Shows two B-scans from within the same volume (a) with the original
intensities, (b) after intensity normalization, (c) with the detected retinal boundary, and
(d) after flattening.

2.1.2. Retinal boundary detection and flattening

The second step in preprocessing is to estimate the retinal boundaries and flatten the image
to the bottom boundary of the retina. This serves to give more meaning to the spatial coor-
dinates of pixels for use in our random forest classifier, to help to constrain the search area
for the final segmentation, and to reduce the algorithm sensitivity to retinal curvature and ori-
entation. The top and bottom boundaries of the retina are defined as the ILM and the BrM,
respectively. Flattening is a common preprocessing step performed by many retina segmenta-
tion algorithms [13, 15, 25] and refers to translating all of the A-scans in each B-scan such that
a chosen boundary in the image is flat. We choose to flatten the retina to the BrM boundary.
We note that these initial boundary estimates are improved in our segmentation algorithm, but
flattening is only carried out at the beginning using these initial estimates.

To find the top and bottom boundaries of the retina, our algorithm starts by applying a Gaus-
sian smoothing filter (s = 3 pixels isotropic or s(x,y) = (17,12) µm) on each B-scan separately.
Then it computes an image derivative of each A-scan (i.e., the vertical gradient) using a Sobel
kernel [26]. Looking along each A-scan, we find an initial estimate of either the ILM or the IS-
OS boundary from the two pixels with the largest positive gradient values more than 25 pixels
(97 µm) apart, since both of these boundaries have a similar gradient profile. To find an estimate
of the BrM, we take the pixel with the largest negative gradient below that of the IS-OS, but no
more than 30 pixels (116 µm) from it. These two collections of largest positive and negative
gradients are taken to be the ILM and BrM, respectively. Of course, using only the maximum
gradient values leads to spurious points along each surface. Correction of these errors is ac-
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Eye motion artifact 

Eye motion induced artifacts can be reduced by multiple scan signal averaging, or eye 

tracking with the use of a scanning laser ophthalmoscope to maintain alignment with target 

tissue120. The capture speed for a single B scan is fast enough with SD OCT that very little 

motion artifact occurs. However, the reconstructed B scan at 90° to the fast scan direction 

(created by extracting all A scans with a constant x coordinate from multiple parallel B 

scans) does display “rippling” from micro-saccades, blinks, and other eye movements. This 

can be reduced by autocorrelation that aligns stacks of frames: each frame is used as a 

template to align the next frame in the series139. Both axial flattening from this auto-

correlation, and eye movement artifact correction, can be performed by scanning twice, 

with the fast scan direction rotated by 90 degrees from the horizontal to vertical direction. 

The fast acquired data from one scan orientation can be used to correct movement artefact 

in the slow scan direction of the other. The faster scanning speeds of newer devices reduce 

the requirement for correction for eye movements140,141. Fast scan direction B scans may 

show “tilt” due to paraxial imaging off the optical axis of the eye (oblique scans, see 

below)131,142. 

 

Fan scanning errors 

While A scans are collected in an arc originating from the signal source, they are presented 

as a square B scan (Figure 1.2.8). The result is the A scans at the margins in any B scan are 

displaced and represented posterior to their actual sample position. When operating the 

Cirrus OCT, the technician identifies the pupil plane to acquire the image. This allows the 

OCT to set the reference path length as the pupil plane to retina distance. The effective 

point of rotation differs for the vertical and horizontal fans with the former 1.65 mm 

anterior to the posterior. Axial displacement of the eye from the scanner (resulting from not 

positioning the eye so the reference path length starts at the pupil plane) leads to bending 

of retinal structures. The error in image position relative to object is given by: 

 

where E1 is the lateral displacement of the image point from its true location, Ea the axial 

displacement of the image, r0 = reference path length, z = the movement of the scanner 

1288 A Podoleanu et al

z is the axial movement of the reference mirror from the initial position. kh and kv are scanning
scaling factors for the transverse and axial scanners, respectively. kh is given by the number
of sample pixels along the horizontal axis, 2H, divided by the maximum optical ray deflection
angle, αM. kv is given by the number of vertical sample pixels in the image along the vertical
axis V , divided by the maximum axial range, zM covered by the axial scanner in the reference
arm of the OCT interferometer:

kh = 2H

αM
(12a)

kv = V

zM
(12b)

The axial scanner varies the reference path to select points within the retina, situated at a
certain radial distance between r0 and r0 + "r . If the scanner moves by z, then the coherence
gated spatial window advances from the initial position r0 to

r = r0 +
z

n
(13)

where n is the average index of refraction of the retina, considered a constant, 1.38 everywhere
in the eye for brevity.

Placing the reference for OPD = 0 in the top centre of the image o and also making the
object space and the image space coincide at this point, lateral and vertical errors produced by
the fan scanning can be computed as

El =
(
r0 +

z

n

)
sin α (14a)

Ea =
(
r0 +

z

n

)
cos α − r0. (14b)

El measures how much the image point I moves laterally relative to the corresponding object
point O, while Ea signifies how much the image point I moves axially from the corresponding
object point O. For a null α angle, the errors are zero.

To better understand the distortions in the fan scanning case, let us consider a simple
rectangular object, such as a microscope slide glass in figure 11 (left). During scanning, for a
certain fixed OPD in the OCT apparatus, the coherence gate selects those points from the object
situated on an arc of circle with the centre at C and radius matching the reference arm length.
Under these circumstances, the anterior surface #1 appears in the image (figure 11, right) as
a curved line, S1. The same is true for the other surface, #2 whose image is described by S2.
The example in figure 11 shows that a horizontal shape of the object surface is represented
as a downward curved surface in the image space. This means that the images collected by
fan scanning type have to be corrected by curving them up.

For points on the anterior surface, #1, the polar coordinates in the object space are

O

(
r0

cos α
, arctan

x

r0

)
. (15)

In Cartesian coordinates h and v, the points of the anterior surface #1 will be located in
the B-scan image at points

I (h, v) =
(

ku arctan
x

r0
,

kvr0

cos α
− kvr0

)
. (16)
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from r0, with n= 1.38, the refractive index of retina, and from anterior to posterior the 

retinal thickness averages 250	"m. At the null angle ∝, Ea = z/n, and E1 is zero143. For the 

standard Cirrus scan, ∝	= 10 degrees for a macular cube with a 6 mm line scan (half the 20° 

scan area). The result of this fan scanning distortion is that objects perpendicular to the scan 

axis (with a constant true z-axis position) would “frown”, or droop in the image. At the 

lateral locations on a 6 mm macular cube, the axial displacement is approximately 186 "m if 

r0 = 24. Therefore, careful head positioning is required for accurate retinal assessment. 

Lateral displacement error (E1) is around 4 "m, and so is below the limit of resolution for the 

OCT.  

 

Fan scanning errors can be corrected post hoc using knowledge of the beam geometry, but 

this is dependent upon the beam passing through the centre of the pupil and knowledge of 

the reference point displacement (Figure 1.2.8). With earlier devices, axial (z-axis) 

displacement of the eye, bringing the reference point away from the pupil plane, led to this 

bending of image due to the path length variation in some OCT machines139. The Zeiss Cirrus 

OCT only acquires a retinal signal when axially positioned so the reference point is at the 

pupil plane, avoiding these axial positioning bending errors. While this effect of differences 

in the axial position of the eye influencing shape are reduced by focussing the image of the 

external eye during scanning, as well as accounting for variation in the axial length of the 

eye, the fact that A scans are acquired in an arc and converted to a rectangular output 

image will reduce the measured curvature. This is a feature of the machine consistent 

across all images, and is not corrected in this work. Any x-axis, or y-axis displacement of the 

beam from the centre of the pupil will lead to oblique scanning tilt errors, discussed below.  
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Figure 1.2.8. Fan-shaped OCT A scan acquisition converted to a rectangular B scan image. 
Fan scanning errors result when a signal acquired in an arc from a point source emitter is 
converted to output presented in a rectangular form. Arcs ae, and bd, in the upper image, 
are presented in the image as flattened lines. This results in lateral and posterior 
displacement of each point in the output. The reference plane (x) is shown here through the 
middle of the lens. In fact, with the Zeiss Cirrus OCT the horizontal scanning reference point 
is set at the pupil plane of the subject. The vertical pivot is from a point 1.65 mm anterior to 
the horizontal. (From Podoleanu et al (2004), © Institute of Physics and Engineering in 
Medicine. Reproduced by permission of IOP Publishing. All rights reserved).  
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Figure 10. Acquiring the OCT image by fan scanning the object ray.

an SGI O2, with a MIPS R5000 CPU at 200 MHz. The only input variables are the index of
refraction, 1.46 and the shape of the top surface, entered as the pixel coordinates of the centre
and the value of the radius, in pixels, inferred from figure 9 (left).

5. Distortions due to fan scanning

Let us consider the case of angular scanning, where the fan of rays converges in a point C, as
illustrated in figure 10. This is the scanning pattern when imaging the retina. A collimated
beam is scanned angularly through the anterior part of the eye, where refractive elements
focus it on the retina. The top part of figure 10 shows the fan of rays scanning the retina. The
bottom part represents the image acquired by the OCT for arc circles with the centre at C.
Polar coordinates, r, α and a corresponding Cartesian system with axes x and z are defined
for the object space with the centre located in the eye pupil, C. For the image space, a simple
Cartesian coordinate system (h, v) is used. The relation between a point in the object space
O(r,α) and the corresponding point in the image space I (h, v) needs to be understood.

The frame grabber of the OCT system places the B-scan image in the plane (h, v), where

h = khα (11a)

v = kvz (11b)
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Oblique scanning induced errors 
Oblique scanning (imaging the retina off the optical axis) alters the reference path length 

across the width of the B scan: retina contralateral to the entry point will be further away 

from the OCT source, and displayed as such. This leads to the retinal image tilted toward or 

away from the observer in a manner unrelated to its true position (Figure 1.2.9). While 

accurate and consistent A scans are obtained within each B scan, each different pupil entry 

point used when scanning peripheral retina will have differing obliquity, producing different 

tilt142.  

 

 
Flattening 

In pre-processing, flattening, in particular, is unhelpful when determining retinal shape and 

contour (Figure 1.2.7). While reversal of flattening can be performed with the use of ray 

diagrams, at least for the posterior pole137, fortunately this is not required for Zeiss Cirrus 

data. With this OCT device, conversion of a fan scanned image to rectangular/cuboidal 

output is performed by aligning the A scans, with the reference path length equivalent to 

the pupil to retina distance. No extra flattening is performed, so reversal of this step is not 

necessary for Cirrus output.  

 

 
Refractive index effects 

Varying refractive indices of intraocular tissues, including the retina, lead to the distortion of 

the RPE line under the foveal dip: under the (thinner) fovea, the RPE will appear elevated 

(by about 2.1	"m) due to less travel distance through retina with its different refractive 

index to vitreous143. These errors are at the limit of resolution for the OCT, and have little 

impact on the measured location of the RPE, which has a thickness of 20-40	"m. 
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Figure 1.2.9. Oblique scanning-induced image tilt. These two macular cube scans were 
centred on the same point of the same right eye but captured off axis. The images on the 
left are taken through the nasal (right) side of the pupil, and the scans on the right taken 
through the temporal (left) side of the pupil. In the horizontal scan (middle image on each 
side), the part of the macula contralateral to the scanner is further away, so it is displaced 
posteriorly in the image. The lower OCT image is vertical, and unaffected, as the scanner has 
been moved left to right only. 
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Vignetting 

Loss of signal intensity in the peripheral A scans from an image arises from reduced scatter 

and leads to reduced contrast and reduced ability to identify retinal structures. In these 

areas, only the higher intensity signals can be reliably identified, but position and shape are 

not affected. 

 

Scatter 

Scattering refers to the redirection of light from interaction in the transmitting medium 

(effectively the entire eye). Other than back-scatter and wide angle scatter (which deflect 

the light away and reduce signal), low angle forward scatter that still passes through the 

temporal coherence gate reduces resolution and contrast, while wide angle scatter reduces 

contrast but not resolution. Speckle is a noise feature present in all narrow band imaging 

systems, including OCT. Speckle arises from random back-scatter and forward propagation 

delay from forward scatter contributing to the returning beam signal. These image effects 

do not alter the location of image compared to object and so do not affect measurement of 

shape124. Noise reduction occurs during acquisition and processing, with methods including 

multiple signal averaging, and signal intensity correction between A scans. 

 

 

 

1.2.3. Peripheral retinal OCT imaging 

A standard OCT line scan extends 6-9 mm across the posterior pole of the eye. The term 

“wide field OCT” has been used to describe the use of faster (newer) OCT systems to acquire 

a line scan of 9-12 mm length144, although this term is now reserved for peripheral retinal 

images beyond a 50° field of view10. The larger B scan widths have been used to extend the 

range of image acquisition, which has improved the OCT imaging of non–posterior pole 

retinal anatomy. Techniques employed to extend the range further toward the retinal 

periphery include asking the subject to look away from the OCT scan axis (eccentric 

fixation), which brings peripheral retina into the field of view145; and the use of condensing 

lenses (similar to those used for indirect ophthalmoscopy) to widen the field of view by 

increasing the angular range of the imaging light source144,146,147.   
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Eccentric fixation for peripheral retinal imaging has been used to describe the OCT features 

of peripheral retinal pathologies. Kothari et al148 used unmodified spectral domain and time 

domain OCT this way to image peripheral retinal features including lattice and pavingstone 

degeneration in 36 eyes. These are single scan samples of peripheral retinal anatomy, with 

each image discrete and isolated from the larger retinal picture. Choudhry et al10 et al used 

the term “ultra-wide field” to describe OCT images captured at 200° from the posterior 

pole, adding dioptric power within the (unmodified) OCT system to bring focus forward as 

the distance to the anterior retina decreased from the posterior pole. Pichi et al145 reported 

peripheral retinal OCT findings in healthy eyes, and those with macular degeneration, 

retinitis pigmentosa, and central serous retinopathy. Carrai et al149 reported peripheral 

retinal OCT in 40 eyes with central serous retinopathy. The images presented in these 

reports were montages of individual OCT B scans, combined using Adobe Photoshop (San 

Jose, CA) to link the macula and eccentric retina. These works did not look at retinal shape, 

but described the vitreo-retinal features identified within the scan window.  

 

Mori et al12,150 used the Heidelberg Spectralis OCT with eccentric fixation to capture 

peripheral images and describe the changes within the retinal layers. In particular, they 

described the reduction in ganglion cell layer thickness in the retinal periphery. Images were 

again stitched together with Adobe Photoshop. The merging technique involved aligning 

OCTs by rotating the peripheral scans to fit the curve of the retinal pigment epithelium seen 

in the macular scan. They did not adjust images for curvature artifact, and perhaps as a 

result found the peripheral retinal image appeared flattened. The same group used stitching 

to compile wide field of view OCT images in another report on the vitreo-retinal interface 

changes seen in differing stages of macular hole. While this did not consider retinal shape, it 

was an interesting attempt to relate vision threatening disease to peripheral vitreo-retinal 

morphology seen with the OCT12. 

 

Reports on wider field OCT with the use of condensing lenses include one series of 27 eyes, 

with a purpose built wide field of view swept source OCT with indirect lenses (20 dioptre 

and 40 dioptre) used to achieve a 20 x 20 mm, or 80° field of view, in a single scan, without 

requiring eye movements or image stitching146. This field of view was centred on the 
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posterior pole, and it is the image size reduction from the condensing lens that widens the 

area of coverage of the OCT scan. Similarly, the use of the 20 dioptre condensing lens has 

been demonstrated to increase the field of view to 1.45 – 1.65 with SD OCT144 and 1.64 – 

1.67 with swept source OCT devices151. This magnifies the voxel and reduces resolution, as 

well as increasing the complexity of the optics of the system, which can make image 

acquisition more challenging.  

 

Peripheral retinal imaging introduces extra factors that interfere with the quality of imaging 

obtained. Oblique scanning142 has little effect on retinal image curvature135 but does reduce 

the image resolution through a range of factors, including: vignetting (loss of sampling beam 

intensity at the edge of the pupil, or due to suboptimal axial position); increased aberrations 

and reduced backscatter at an increased angle of incidence152 to the curved retinal surface; 

curved retina taking the imaged tissue beyond the focal range; and loss of sensitivity as the 

image transitions posteriorly away from the OCT systems zero-delay plane. With the eye 

movements required for eccentric retinal images, induced vignetting is particularly 

noticeable in affecting the quality of the retinal image153. Despite the lower intensity signal 

resulting from these effects, the high intensity signal from the retinal pigment epithelium 

remains apparent, a useful feature considering retinal shape analysis is dependent on this 

line.  

 

 

 

1.2.4. Posterior segment and retinal shape analysis 

The eye is neither a perfect sphere nor even an ideal ellipsoid.  Magnetic resonance imaging 

(MRI) has been employed to investigate both globe and retinal shape. Studies of human eye 

shape with a range of refractive errors generally show myopic eyes are further from an ideal 

sphere than emmetropic eyes, with a tendency to be prolate (the shape of an ellipse rotated 

about its major axis) rather than oblate (an ellipse rotated about its minor axis)154. MRI data 

has also been used to validate OCT derived shape information, which has added more 

granular detail. 
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Beenakker112 used MRI to generate a topographic map of the posterior 30 degrees of the 

retina, reporting the topography as the distance of any retinal point from the lens centre. 

These results were in close agreement with partial coherence interferometry. They found an 

increasingly prolate form to the posterior 30° of the eye with increasing myopia. This study 

did not seek to investigate retinal shape features other than relative curvature. 

 

Thinner sclera is seen posterior to the equator in myopic eyes compared to emmetropic 

eyes78, and there was some thought that the growth of the eye in myopia is purely an axial 

elongation. That this is not necessarily the case was confirmed by Atchison et al155, who 

calculated ellipsoid best fits for eye shape of 21 emmetropic and 66 myopic eyes. The model 

of eye shape was generated with measurements of retinal curvature from just one 

transverse axial (horizontal) and one sagittal (vertical) MRI section per eye, using a surface 

coil and an LED fixation target to minimize eye movement and improve resolution. The 

ellipsoids were tilted around the vertical axis by approximately 11° in all eyes, consistent 

with peripheral refraction asymmetry in the horizontal visual field. Increased myopia was 

associated with a much greater increase in the axial semi-diameter than horizontal or 

vertical semi-diameter, although the myopic eyes were bigger in all dimensions compared 

to the emmetropic eyes. Myopic eye growth was neither simply an equatorial elongation 

(where the size of the eye at the equator is unchanged as axial length increases) nor a 

uniform global growth (even expansion of eye size in all dimensions), but had different 

expansion in different meridians. Myopic eyes were larger axially (anterior to posterior) 

more than vertically, and vertically more than horizontally (left to right). In emmetropes the 

different axes had less variation in size, and the antero-posterior axis remained the largest. 

The study did not look at local differences in individual eyes, nor the effects of eye size on 

different disease states. MRI retino-choroidal thickness decreased at the equator in myopic 

eyes, although this change was small (0.014 mm per dioptre) and well below MRI 

resolution155.  

 

Another group reconstructed the three dimensional form of the eye from a three Tesla MRI 

scanner156. This enabled determination of variation from sphericity, and confirmed nasal-

temporal asymmetry, with the temporal hemisphere of the eye more bulbous (Figure 

1.2.10, in particular sub-images (c), (f), and (g)). MRI determined axial length was on average 
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0.41 mm greater than the same measure determined by partial coherence interferometry 

with the IOLMaster (Carl Zeiss AG, Germany). This difference was considered significant. 

They attributed this difference to the MRI voxel resolution, although it is not clear in the 

report whether the posterior margin of the calculated globe included sclera, or only uveal 

tissue. The paper did not relate eye shape to the presence of retinal pathology.  

 

 

 

 

 

 

Figure 1.2.10. MRI globe surface topography. Reconstruction of a right eye. (a) The total 
(Pythagorean) distance from the corneal pole; (b) axial distance from the same point. (c) 
Deviation from sphericity, with colours representing differences from the mean radius of 
the best-fit sphere to the posterior portion of the eye model, not including the anterior 
chamber. The posterior pole of the eye has a smaller radius than the mean best fit sphere, 
implying an oblate shape. (d–g) The distance from the longitudinal axis of the eye, with (d) 
and (e) showing total distance from the axis, and (f) and (g) showing only the horizontal 
distance component (i.e., the distance from a vertical plane incorporating the visual axis). 
The bottom panels demonstrate a clear asymmetry in this eye, with the eye more bulbous 
in the temporal direction. In (a) to (f) the cornea is to the left. In (g) the cornea is to the 
right156. Reproduced with permission, copyright of the Association for Research in Vision 
and Ophthalmology, 2006. 
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Shimada157 use wide angle ultrasonography to compare retinal detachment eyes to a 

sample of eyes without retinal detachment. The retinal detachment eyes had both a greater 

axial length and a larger horizontal (but not vertical) diameter than non-retinal detachment 

eyes. Selection criteria of the non-retinal detachment eyes was not reported, in particular 

whether they had experienced a PVD. One interpretation of their result is simply that longer 

eyes are also wider. 

 

The use of OCT in the analysis of abnormal retinal contour in myopia has concentrated on 

the posterior pole, and in particular the extremes seen with myopic posterior staphyloma, 

due to its consistent landmarks (the fovea and optic disc), ease of imaging, and known 

clinical significance. A link has been established between the shape of posterior staphyloma 

and the myopic retinal complications of atrophy and myopic traction 

maculopathy4,6,158,159,160. Miyake et al158 reported on the use of OCT to determine the 

contour of the posterior pole in myopic staphyloma, relating OCT defined retinal contour to 

disease. They took 12 radial OCT B scans, centred around the fovea, of 182 myopic eyes, and 

described the local radius of curvature along these line scans. The curvature along these 

lines was plotted at 1 "m intervals in a colour topography map, similar to that used in 

corneal topography. Using this, fundus shape was related to the observed chorio-retinal 

changes. In particular, higher curvatures and greater point to point curvature variance was 

associated with chorio-retinal atrophy. Moderate curvature and moderate point to point 

curvature variance was associated with myopic retinoschisis; and lower curvature and point 

to point variance associated with myopic choroidal neovascular membranes. 

 

Scleral shape has been associated with myopic retino-choroidal lesions, including chorio-

retinal degeneration and myopic retinal schisis7,8,161. Dome-shaped maculopathy is a well-

recognised pathology of myopic eyes with subretinal fluid without choroidal 

neovascularisation, reduced vision and a convex inward ridge shaped deformation of retinal 

shape within a posterior staphyloma9,162,163. The aetiology has been attributed to uneven 

paracentral scleral thinning leading to variable scleral rigidity164. Wakazono et al6 used the 

custom software Retinaview (Canon Inc., Tokyo, Japan) to examine posterior scleral 

curvature, and found curvature changes between 3 mm and 6 mm from the fovea were 

associated with myopic traction maculopathy.  
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Other authors have explored the shape of structures seen in OCT other than retinal shape as 

defined by the contour of the retinal pigment epithelium. Scheibe et al165 developed a 

model to describe and analyse the shape of the normal foveal (inner) surface in three 

dimensions using the Heidelberg Spectralis OCT (Heidelberg Engineering Co, Heidelberg, 

Germany). Ruiz-Medrano et al166 described the shape of the posterior choroido-scleral (not 

retinal) interface. They concluded that both normal variants of concave and S-shape 

contours were associated with focal choroidal thinning. Guimaraes et al167 used spectral 

domain OCT to reconstruct the retinal vasculature in 3D. Ohno-Matsui et al7 described the 

shape of posterior scleral curvature with swept source OCT in highly myopic eyes.  

 

Posterior pole shape has been quantified by measurements of its curvature and how this 

relates to disease. Macular curvature, quantified by the mean, standard deviation, and 

range of curvature, has been shown to differ between myopic eyes with and without a 

staphyloma, where the former had a greater range and standard deviation but lower 

average local curvature. This lower curvature related to the longer axial length observed in 

staphylomatous eyes2. In contrast Numa et al168 measured the mean and variance of 

macular curvature in a Japanese population. Both values were significantly greater in the 

presence of diagnosed staphyloma by fundus photography and OCT, and these 

measurements were sufficient in themselves to diagnose staphyloma. Curvature was 

significantly correlated with axial length (+	= 0.480, p < 0.005). McNabb et al113,136 used 

graph theory to segment retina after rough manual segmentation, and estimated curvature 

determined by fitting a circle to the corrected OCT segmentation. Using an OCT that 

provided anterior and posterior images simultaneously, they used the anterior OCT images 

to correct the distortions in the posterior retinal curvature arising from anterior segment 

effects on the beam pathway. These were validated via comparison with MRI determined 

retinal curvature. The process was used to create retinal topographic maps of the posterior 

pole169. Eyes with papilloedema were flattened nasally, and myopic eyes with staphyloma 

had a greater variation in macular curvature compared to normal.  

 

Peripheral refraction has also been used to estimate retinal curvature. This tends to under-
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estimate retinal curvature, particularly with increasingly myopic eyes, compared to the 

more accurate corrected OCT curvature measurements96,170. Peripheral refraction also 

requires dedicated hardware and only produces limited results at defined points110. 

Tabernero & Schaeffel171 designed a scanning infra-red photo-retinoscope to measure 

peripheral refraction 45° from fixation along the horizontal meridian, potentially providing a 

greater sensitivity to local variations in refractive path length than obtained with MRI. The 

peripheral myopic eye was “bumpier” than an emmetropic eye, requiring a higher order 

polynomial to match data than that for emmetropic eyes. They attributed this to loss of 

scleral rigidity, leading to increasingly irregular eyeball shape in myopia, as is seen with MRI 

reports7,156, and the formation of staphyloma. 

 

Kuo et al110 compared MRI and OCT measured radius of curvature of the posterior pole. 

Fifty-two subjects who had undergone MRI and OCT were taken from the Singapore 

Epidemiology of Eye Disease (SEED) project. Coronal MRI slices of 1 mm voxel resolution of 

right eyes were segmented, and the posterior segment oriented around a visual axis defined 

as 3.5 degrees off the optical axis drawn through the apices of the anterior corneal, anterior 

lens and posterior lens surfaces. This was to align the MRI images with the axis of the OCT. 

The retinal pigment epithelial layer was segmented within a standard 6 x 6 mm macular 

cube, with OCT distortions corrected by an optical model in OpticStudio Standard (Zemax, 

Kirkland, USA). Both MRI and OCT showed a trend for eyes becoming more prolate as 

myopia increased. OCT and MRI agreed as to form (oblate versus prolate) in 47 of the 52 

eyes. OCT categorized 5 eyes as prolate that MRI classified as oblate. The authors 

considered MRI as the gold standard, despite MRI having the more limited resolution of 1 

mm. They used only a single OCT field to define curvature, with no “stitching” of adjacent 

images to widen the area investigated. 

 

Much of the quantitative analysis of OCT retinal contour has been on the best fit curve to 

the retinal pigment epithelium, often but not always called retinal curvature. Kuo et al110 

calculated the radius of curvature from the spherical solution to the general quadric 

equation fit to the retinal pigment epithelium. As most solutions from the OCT image using 

the general conic equation produce a hyperboloid form, and minor differences in scan 

position can lead to widely diverging results due to programmatic approximations of infinite 
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series, correction by a reflection of the posterior shape anteriorly at the distance of the axial 

length was made to restrict the solution to an ellipsoid. The asphericity of this ellipsoid was 

quantified by Rx2/Rz2 -1, with R the radii of curvature perpendicular to each other. They 

found the resulting distortion-corrected OCT measurements of curvature and asphericity 

had an individually important if overall non-significant difference from MRI measurements 

of curvature.  

 

Swept source OCT macular shape was described using curvature calculated from 17 points 1 

mm apart using cubic spline interpolation curve fitting to three, 4 mm sections: one central 

and one on each side from a 16 mm B scan. The peri-macular curvature was greater than 

macular curvature in both horizontal and vertical scans, with no difference found between 

vertical and horizontal central macular curvature. The retinal pigment epithelial curvature 

was found to be affected by the underlying choroidal and scleral tissues172. 

 

Non – curvature metric retinal shape analysis 

Differences between baseline retinal curvature and the actual retinal shape have been used 

to identify the drusen induced “bumps” in the RPE line in age-related macular 

degeneration173–176. The best fit curve was taken from both second order174,176 and the 

average of multiple 5th order173 polynomials calculated from a random selection of points 

taken from the RPE layer. The difference between this and the true contour was explored to 

identify a threshold irregularity above which pathological change were likely to be present.  

 

Kafieh177 used image processing tools to identify the RPE, and from that distinguish 

abnormal retina from normal through what they label as curvature. This is a different 

property from the retinal curvature quantified in other papers above, and in this work, and 

is more like the concept labelled irregularity in this thesis.  

 

Shape features in other disease 
Focal choroidal excavation is a localised outpouching of the retinal pigment epithelium line 

found rarely in macular OCT scans (Figure 1.2.11)178. As focal choroidal excavation has been 

reported to both follow and precede choroidal neovascularisation, it is unclear what process 

is occurring in these eye179–183. One hypothesis is that it arises from choroidal fibrosis 
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drawing inner retinal structures outward. It may be a feature of pachychoroid spectrum 

disease, characterised by other OCT features including thickened outer choroid, RPE and 

neurosensory retinal changes. 

 

Differentiation between optic nerve drusen, an apparent swelling of the optic disc due to 

anterior migration of calcified hyaloid bodies within the optic nerve that in most has little 

effect on vision, from papilloedema, a neuro-ophthalmic emergency arising from raised 

intra-cranial pressure can be a difficult clinical decision to make. The OCT has been 

demonstrated to provide useful information. Both show alterations in the disc contour, with 

the disc drusen themselves often visible on OCT. Reported retinal contour differences are an 

‘A’ pattern to the peri-papillary Bruch’s membrane – RPE complex seen in papilloedema184 

as compared to a ‘V’ pattern seen with optic nerve drusen185. 

 

Shape has also been shown to affect the assessment of disease severity. Variation in retinal 

curvature, particularly nasal to the optic disc, has been found to affect the ability to detect 

the pathological nerve fibre layer abnormalities used to monitor for glaucoma186. 

 

 

Figure 1.2.11. Focal choroidal excavation. OCT angiogram B scan from a 15 year old girl 
who presented with choroidal neovascularisation. The local concavity seen in the RPE 
contour (just left of centre) has been hypothesised to occur from fibrosis and contraction of 
choroidal tissue. This has been observed to appear both before and after choroidal 
neovascular membrane formation. 
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Summary 
Research on posterior segment shape has increasingly used the OCT due to its ability to 

image the retina in a fast, accurate and reliable manner. Compared to MRI, OCT has 

superior resolution, with the disadvantage of only sampling a portion of retina in a single 

scan. Imaging beyond the posterior pole has been performed with both eccentric fixation 

and the use of condensing lenses. Posterior pole shape differences have already been 

explored in relation to myopia and its complications, macular degeneration, optic disc 

drusen, and focal choroidal excavation. 

 

 

 
1.2.5. Gaze direction analysis 

An anterior segment image of the eye is taken at the time of OCT imaging with the Zeiss 

Cirrus OCT. Stored in the iris.bin image in the OCT .img exported data package, it is a 480 x 

640 pixel image of the external eye taken at the end of the OCT scanning. This provides 

some information on gaze direction that may be useful in identifying which area of the 

retina has been imaged. The corneal light reflex is not helpful for determining gaze 

orientation when OCT imaging is being performed, as the light reflexes are complicated by 

multiple sources within the room, or absent due to low light levels. When not obscured by 

the eyelids, the iris and pupil are easily seen. 

 

There has been considerable work in gaze direction analysis across different settings that 

can be divided into the laboratory environment and “real world” settings, often with the 

aim of assessing and improving an individual’s interaction with the environment, including 

human-machine interface tasks. Most methods for this use either the light reflex from the 

corneal surface, or the pupil shape. Laboratory based methods to assess gaze direction 

include reflectance differences between sclera and anterior segment structures187,188, 

detection of Purkinje images in the  near -infra-red reflected from anterior chamber 

structures (ISCAN device189), and electro-oculography, which assesses the potential 

difference between the anterior and posterior structures of the eye190. 
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Open environment gaze determination frequently takes the form of image analysis, often 

focussed on detection of pupil location191, either through passive image analysis, or active 

near infra-red light illumination and detection of response192. These often use a Hough 

transform193 to identify the circular margin of the pupil194. Gaze estimation “in the wild” 

needs first to identify the eye in an image, either by characteristic image patterns 

(appearance based) or model based detection of local features around the eye, a process 

that has been improved through machine learning195 and deep learning techniques196,197. 

One example of open environment infrared reflectance, requiring what were described as 

special glasses but in fact resemble more the anglerfish illium, performed gaze detection 

using a dynamic assessment of pupil shape, size, and position188. 

 

Analysis of gaze position during OCT image acquisition falls between these situations. In this 

work, gaze position analysis broadly resembles the laboratory based situation rather than 

the complex open world challenges198, as it is performed in a closed environment, with a 

specific single image taken for each position of interest, and a label for each image reflecting 

where the subject was being asked to look. The latter is important, as pupil shape alone 

cannot distinguish between upgaze and downgaze, left and right gaze. In this work (Chapter 

3), all that is required is measurement of the pupil ellipse from an external eye image of 

generally good quality. The total numbers were small enough for manual segmentation of 

the pupil to suffice. 

 

 

 
1.2.6. Machine learning 

Statistical shape analysis is a discipline that quantifies shape features independent of image 

orientation, translation, or scale. A numerical description of shape enables feature analysis 

and comparison of multiple samples. With a large number of potential variables of unknown 

significance, machine learning is an ideal tool to explore this field. Machine learning involves 

the development of algorithms, created from sample observations, that can then provide 

information about new observations. Models are defined using a training set of 

observations, in which each observation is described by the same set of variables (also 
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known as attributes, features, predictors, or dimensions). The training set may be 

supervised, in which the observations used to create the algorithms have labels, or 

unsupervised, in which case data mining is performed to identify new classes. Statistical or 

probabilistic methods may be combined with Boolean logic and conditional probability to 

improve learning from labelled examples. Machine learning can identify complex patterns 

or trends within the data that may not be otherwise apparent199. 

 

One possible advantage of machine learning is the ability to input a larger number of 

potential variables, reducing but not eliminating the element of potential bias in variable 

selection compared to more traditional statistical techniques. With supervised machine 

learning, this can be interpreted as the testing of a hypothesis that the classifier attempts to 

answer: “does x, y, and z predict A?” and is a process similar to more traditional 

experiments with a narrow or well-defined focus. In contrast, unsupervised learning asks, 

“what do x, y, and z reveal?” The latter has been subject to some criticism, with the concern 

that spurious associations may be created, and unintended bias may be introduced, leading 

to erroneous conclusions200. Riley201 breaks these issues into three: 

 

Inappropriate data splitting: while data samples may be separated into training and 

testing sets randomly, they may not have a random distribution with different weighting 

over time. For example, diagnostic rigor may improve over the course of the study (or 

deteriorate). 

Hidden variables: the data set used in the study may include information such as “meta-

data”, details about where or when the information was taken, which may skew the 

distribution of diagnoses in the sample. 

Mistaking the objective: the desired outcome may differ from the outcome created with 

the settings used to generate the algorithm, particularly with regard to the cost of errors. 

Additionally, for some early labels used in screening for disease, expert opinion may differ 

as to the significance of any particular state. 
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Steps in the machine learning process 

Feature selection 

Feature, predictor, variable, or dimensionality reduction may be performed by eliminating 

factors with little or no predictive value (stepwise backward reduction). In some cases, 

additional attributes may reduce the performance of the classifier through overfitting202. 

The reverse approach of stepwise addition, involves starting with the single most useful 

feature, then sequentially adding further features (based on the size of their contribution to 

the model) until no further gains in accuracy are made. Feature transformation (such as 

principal component analysis) can be used to create new variables from a combination of 

features.  

 

Classifier generation 

The majority of the samples in a data set are usually used to train the algorithm to the 

problem. This may be 2/3 to 90% of the entire sample. Ideally the data set should have 

many more observations than dimensions to avoid overfitting, with a sample to feature 

ratio variously suggested as 5:1203, 10:1204 or log10(N) features, where N is the number of 

samples205. With a random selection of samples taken to train the classifier, re-iterations of 

the training process may create different classifiers with different predictive results. Larger 

differences between models created with different selections from the same set imply a 

skew in the data set leading to poor utility. The robustness of the classifier can be tested by 

multiple iterations of classifier generation and comparison of results via k-fold cross 

validation. This involves splitting the training set by randomly allocating each observation to 

one of k folds. A classifier is then trained on the data from k – 1 folds and tested on the 

remaining fold. The process is repeated k times, each time with a different fold left out for 

testing. Each of the k classifiers will be distinct from each other, but if the data are uniform, 

they should be similar to one another. The consistency of the model is reflected in the size 

of the standard deviation of the k models error rate. As the observations are allocated 

randomly the estimation of the variance can be improved by repeating the cross-validation 

multiple times206. The number of folds used for cross validation can be varied by the number 

of observations, and may be five, ten, or in the case of “leave one out” equal to the size of 
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the dataset. In practice, the 5- or 10-fold cross validation has been reported to be effective, 

assuming sample size is sufficient206,207. 

 

Confirmation of algorithm utility 

Algorithms created with a training set of data are then tested with an independent set of 

observations taken from the same population, to confirm their predictive value. An ideal 

classifier would give all the samples within a group the same label, with a different label for 

each separate group. Results can be presented in a confusion matrix (Table 1.2.1). 

 

Table 1.2.1. Ideal classifier performance.  
Category Label 1 Label 2 

Group 1 all group 1 samples no group 1 samples 

Group 2 no group 2 samples all group 2 samples. 

 

 

Algorithm selection 

The “no free lunch” hypothesis states that no single algorithm is best for all data sets208. The 

choice of classifier depends principally on the type of data studied, as well as the size of the 

dataset, including whether the variables (and labels) are continuous or categorical data. 

Different types of classifier include: 

 

1. Logic based. Decision trees partition groups by a series of branching nodes, with a test at 

each node to divide the observation into groups based on a single variable analysis. These 

work well with discrete and categorical data. 

 

2. Perceptrons. A perceptron is a binary linear classifier. This provides weights or bias to its 

input layer (typically a vector of variables) to classify the observation into (usually one of 

two) possible outputs. Perceptrons are the building block of multi-layer neural networks. 

 

3. Statistical models generate the probability that any observation has a particular label. 

This includes linear and quadratic discriminant analysis. Bayesian networks and maximum 
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entropy are also statistical approaches. Discriminant analysis creates a classification 

function for each group from weighted combinations of features that maximise the 

separation of groups. K nearest neighbours classify a sample based on the K nearest 

neighbours to establish boundaries between training groups. In contrast to linear 

discriminant analysis, these may have arbitrarily complex boundaries between groups, with 

the result that small changes in the data may alter local boundaries significantly209.  

 

4. Support vector machines (SVMs) find the hyperplane that best separate classes based on 

maximising the observation free margin between the classes. In many cases there will be no 

hyperplane to separate the groups, in which case transformation of the feature space into a 

space with a greater number of dimensions, using kernel functions, will allow group 

separation. SVMs work well with continuous data, and larger dimension data sets, as the 

solution requires only the identification of the points on or near the hyperplane. 

 

Classifier types 3 and 4 are not “black box” systems, and the decision-making processes are 

more transparent than methods 1 and 2, although the latter methods can be interrogated 

by alterations in the dataset. 

 

Discriminant analysis  

Discriminant analysis is a computationally efficient supervised machine learning algorithm. 

Its aim is to convert the multiple variables taken from each observation that are used to 

classify them into their different groups, and convert these to a single dimension that 

maximises the separation of class means while minimising the within-class scatter. This can 

be stated as, and found by, solving for the direction of the new dimension vector , in 

-(,) =
("0# − "0")"

2̃#" +	 2̃""
 

where " and 2 are respectively mean and scatter for classes 1 and 2 in the new dimension 

(which are unknown before training). This can be demonstrated to be equivalent to  

-(,) = 	
,$5%,
,$5&,

 

where SB is the between class scatter matrix before projection, and SW the sum of the within 

class scatter matrices also before projection, therefore both these values are known from 
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the dataset. This is the Rayleigh quotient which by differentiation with respect to , and 

setting -(,) = 0 converts to a solvable eigenvalue problem. 

 

From labelled multivariate samples, discriminant analysis generates functions to determine 

the probability that any new sample will belong to any particular group (Figure 1.2.12). It 

maximises the separation of the groups by applying weights to each of the variables (also 

known as features, predictors, or attributes) used to describe each sample, according to the 

utility of that variable in discriminating between labelled groups. The success of the model 

(in terms of stability, or robustness) is reflected in the standard deviation of the accuracy of 

subgroup classifiers created from cross-validation of the training set210,211. Discriminant 

analysis was developed for Gaussian data, but remains a robust method when this condition 

is not met. All machine learning algorithms perform better with larger data sets.  

 

Machine learning in ophthalmology 

There has been a rapid escalation in the use of machine learning in ophthalmology212,213,214 , 

so that an understanding of its use, performance and limitations is needed by general 

clinicians as well as specialists215. Lemm206 provides good illustrations and simple 

mathematical descriptions of classification. OCT images have been extensively used as data 

for machine learning, due to their ease of acquisition, wide availability, and high resolution. 

Macular disease detection classifiers analyse images for the presence of intraretinal fluid as 

a feature, either within B scans or through the alteration in retinal thickness216,217, or use 

deep learning techniques on larger datasets218,219. Machine learning with OCT images has 

been used for automated diagnosis of macular degeneration and diabetic macular 

oedema176. 

 

Multiple classifiers were used to test 38 features to detect glaucoma with the OCT220. The 

best result was obtained with 8 parameters using a support vector machine. A similar 

approach was used to find which classifier best identified glaucoma from standard 

automated perimetry221. The authors selected a high specificity arguing that because the 

prevalence of glaucoma is low and progression slow, the cost of a false positive is greater 

than that of a false negative. The classifiers performed as well as glaucoma experts. Other 

approaches include the use of linear discriminant analysis on nerve fibre layer thickness and 
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Bruch’s membrane opening size from OCT images to diagnose glaucoma222. Discriminant 

analysis has also been used to differentiate between glaucomatous and non-glaucomatous 

eyes using Fourier transformation of retinal nerve fibre layer measurements223. 

 
Figure 1.2.12. Illustration of a two-variable discriminant analysis classifier. Two variables 
were used to generate a classifier with two possible outcomes, with the results shown by 
the red and blue surfaces. For any combination of the two variables, discriminant analysis 
calculates the results of two quadratic equations, one for label 1 (blue), and one for label 2 
(red). The result of each equation is the probability that an eye with that combination of 
features will belong to the red or blue group, and is plotted on the z-axis. The classifier 
allocates any sample to the group that has the highest probability with given inputs. As 
there are only two possible outcomes (labels) the sum of probabilities for the red and blue 
labels always adds up to 1. The probability any sample belongs to the red group becomes 
more likely with increased variable 1 and 2 values. At lower values of variables 1 and 2, the 
probability that an eye belongs to the blue group increases (top left of image), and the blue 
surface rises above the red.  
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1.2.7. Fourier transformation 

 

The Fourier transform allows manipulation (analysis through both deconstruction and 

synthesis) of a signal, on the understanding that any continuous signal can be recreated 

from or separated into multiple sine waves of varying frequency, phase and amplitude 

(Figure 1.2.13). Fourier analysis enables image processing, mathematical data manipulation, 

and elimination of unwanted frequencies, such as noise, within a signal. 

 

 

Figure 1.2.13. Fourier analysis. The apparently irregular topmost (green) line is the sum of 
the lower four sine waves (where each line has its own y = 0). The ability to express an 
irregular continuous (theoretically infinite) line as the sum of regular sine waves of varying 
amplitude and frequency allows numerical analysis of complex data. 
 

 

Briefly, Fourier’s revelation was that any point x on the vibrating string of an instrument is 

displaced by an amplitude whose function depends on its position on the string and time, 

and is the sum of the possible standing waves of the string of wavelength (: 
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With Euler’s formula 
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the Fourier series becomes 
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The Fourier transform is a description of a continuous signal by its component frequencies, 

with any signal consisting of the total of all constituent frequencies whose relative 

contribution to the signal is determined by the set of weightings X: 
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For a series with discrete sampled values such as pixels, this is determined by the discrete 

Fourier transform224: 
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1.3. Aims and objectives 

There is a need to identify a sign that can predict which eyes are at risk of retinal 

detachment. If this were found, it could be used to explore the ability of treatment to 

prevent vision loss from this disease, which currently requires emergency surgery to control. 

Larger myopic eyes are known to be at increased risk of retinal detachment. MRI has 

demonstrated that myopic eyes have increased irregularity compared to emmetropic eyes. 

OCT has become widely available in optometric and ophthalmological practice and images 

the eye on a smaller scale with smaller sample volume than MRI. OCT has already been used 

to examine both the structure of the posterior segment as well as document changes in 

macular curvature with short-sightedness. 

 

The overall aim of this work is to look for features that may allow identification of eyes at 

risk of retinal detachment through the quantitative analysis of retinal shape. The specific 

objectives chosen to achieve this aim were: 

• to investigate whether retinal shape can reliably be assessed with OCT; 

• to explore the utility of OCT in assessing retinal shape in myopic eyes; and 

• to develop a test based on retinal shape that can identify retinal detachment eyes 

as a step toward identifying eyes at risk of retinal detachment before vision is lost. 
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Chapter 2. Technical considerations/materials & methods 
Introduction 
 
This thesis presents work on the process and utility of retinal shape analysis as it relates to 

myopia, PVD, macular hole, retinal tear and retinal detachment. While the studies discussed 

in Chapters 3 – 6 vary in subject selection and specific image analysis, this chapter presents 

the general methods of data acquisition, analysis, and interpretation that they have in 

common. Comparison of a large numbers of retinal shape samples requires their 

quantification. This is achieved here through their observation in the frequency domain, 

enabling the comparison of multiple samples through statistical analysis.  

 

The process of participant recruitment, the OCT image settings (scan size, spacing, and 

orientation), and areas of retina sampled are described, along with the key terms used to 

describe the OCT scans and the retinal shape (Section 2.1). The fundamental steps of image 

analysis are reported including image extraction and retinal shape identification. This is 

followed by the description of the process of shape analysis, including calculation of 

curvature and the Fourier transformation of the irregularity (Section 2.2). The objective is 

the measurement of each scans shape features in a manner that is consistent while 

accounting for variation in retinal image sample size and orientation. Finally, common 

statistical methods are mentioned.  

  

Human research ethics committees and participant recruitment 
 
The study was undertaken with Southern Adelaide Clinical Human Research Ethics 

Committee approval, in accordance with the Declaration of Helsinki. Site specific approval 

was subsequently obtained for Flinders Medical Centre, and Eyemedics, Adelaide. Approval 

was also obtained from the Royal Australian and New Zealand College of Ophthalmologists 

ethics committee. As well as the retinal and emergency ophthalmology clinics of Flinders 

Medical Centre and Eyemedics, some patients were referred by retinal specialists at the 

Royal Adelaide Hospital and Pennington Eye Clinic, Adelaide. All participants were examined 

by a retinal specialist (SL). 
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Participant information and consent forms are shown in Appendix A. After written informed 

consent, eyes were dilated with one drop of tropicamide 1% (Bausch & Lomb, Chatswood, 

Australia), and where greater mydriasis required one drop of phenylephrine 2.5% (Bausch & 

Lomb, Chatswood, Australia). The image identifiers used create de-identified data, with 

each eye identified by one letter followed by two-to-four numbers. The first digit is an even 

number for a right eye, and an odd number for left eyes. 

 

 

2.1. OCT image parameters  

OCT energy/optics/acquisition time  

All spectral domain OCTs were taken with the Zeiss Cirrus HD-OCT 5000 (Carl Zeiss Meditec 

AG, Germany). The imaging beam light source is an 840 nm superluminescent diode, with a 

nominal 600 +/- 60 µW at the cornea.  OCT cube acquisition times were 2 – 9 seconds. 

 

Swept source OCT images were taken with a Zeiss Plex Elite 200 kHz OCT. This used a 

tunable laser with a sweep range of 980 – 1120 nm, centred between 1040 – 1060 nm, 

delivering a nominal 4.5 mW at the cornea. 

 

Line scanning ophthalmoscope images for both spectral domain and swept source devices 

used a 750 nm superluminescent diode with less than 1.5 mW incident on the cornea, a 

field of view of 36° wide and 30° height, and resolution of 25 µm. Iris images were taken 

with an infrared LED CCD camera at a wavelength of 700 nm. 

 

 

Slice thickness/interval 

Spectral domain OCT 

Throughout this thesis the term B scan applies to a single retinal OCT image, and the term 

cube refers to a set of B scans acquired together using a standard clinical protocol, even 

when the B scans do not form a cubic shape when re-assembled relative to one another. All 

these B scans are multiple pass composite images, which control for within B scan axial 
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artefacts arising from subject movement225. A summary of cube protocols is provided in 

Table 2.1. 

 

Spectral domain OCT – retinal survey 

The most commonly used spectral domain cube protocol was the HD 21, taking 21 parallel 9 

mm B scans separated by 0.4 mm.  

 

Spectral domain OCT – radial macular cubes 

Studies examining macular shape used the HD radial cube, which consists of 12 radially 

oriented 6 mm B scans, with each B scan rotated 15° to the next around a central point 

(Figure 2.1). HD radial B scans were acquired in an identical pattern whether a right or left 

eye, which means the scan number oriented supero-temporal to infero-nasal in the right 

eye is supero-nasal to infero-temporal in the left eye. To correct this, left eye scans were 

reallocated to match right eye scans (Table 2.2).  
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Table 2.1. Description of OCT cube protocols 
Name B scan 

orientation  

No. B scans 

per cube 

B scan 

spacing 

B scan 

width 

(pixels) 

B scan 

width 

(mm) 

B scan 

depth 

(pixels) 

B scan 

depth 

(mm) 

comment 

Spectral domain OCT        

HD 21  Horizontal 21 0.4 mm 1024 9  1024 2  

HD radial  radial 12 15 degrees 1024 6 1024 2 Centred on 

fovea via 

fixation 

          

Swept source OCT        

UHD spotlight Perpendicular 

to gaze 

direction  

1 - 2047 16 3072 6  

Angio horizontal 500 (0.018 mm) 500 9 1536 3  
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Table 2.2. Radial scans: left and right scan correspondence.  

Right eye -1 -12 -11 -10 -9 -8 7 -6 -5 -4 -3 -2 

Left eye 1 2 3 4 5 6 7 8 9 10 11 12 

A negative means the direction of scanned was reversed to match contralateral scan 
orientation, although this has no effect on calculation of curvature or irregularity. 
 

 

Swept source OCT 

Swept source OCT cubes used included 9 x 9 mm Angio cubes, with 500 pixels in both x and 

y directions and a 3 mm long, 1536 pixel A scan size. The UHD spotlight consisted of a single 

B scan 16 mm (2047 pixels) wide and 6 mm (3072 pixels) deep (Table 2.1).  

 

 
Figure 2.1. Radial B scan key. Orientation of radial HD B scans used for macular shape 
analysis, each scan consisting of a diameter rotated around a centre point, which for all 
images in this work was centred on the fovea. The numbers index the B scans and are used 
to identify scan position (Chapter 5.1.1). These do not correspond to the pdf output labels 
produced in the Cirrus reports. 
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Pixel size  

Spectral domain device manual quoted axial resolution is 5 µm in tissue, with 15 µm 

transverse resolution. However, SD OCT image sizes were analysed in metric length 

(millimetres) converted from pixels using the reported B scan width of 9 mm and depth 2 

mm. The spectral domain B scans used in this study were 1024 x 1024 pixels. The UHD 

spotlight swept source B scans were reported to be 16 mm wide with 6 mm deep A scans, 

with pixel dimensions of 2047 wide by 3072 deep. OCT angiogram image sizes were 

reported as 9 mm by 9 mm by 3 mm deep, with pixel dimensions of 500 by 500 by 1536 

deep. 

 

Orientation  

Unless otherwise specified, all SD OCT scans were taken with a horizontal orientation for 

consistency within and between eyes and to maximise the sampled retinal area in each 

cube. Changing scan orientation from the horizontal would reduce the area imaged in a 

single cube as B scan length drops to 6 mm, and potentially increase variation in sampling 

between eyes. 

 

Within the B scan, the lateral direction was the x-axis, and the axial direction the z-axis. The 

y-axis was perpendicular to these two, which was the vertical direction along which parallel 

B scans were arranged in the HD21 cube. 

 

Sampled retinal area 

Retina was imaged with standard OCT cube protocols and no intermediate lenses added 

between subject and device144,146,151. According to the standardised nomenclature for 

retinal imaging, this equates to the posterior pole and mid-peripheral retina119. 
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Figure 2.2. Example of retinal sampling. Exploded retinal map from a highly myopic eye 
(axial length 28.25 mm) illustrating areas imaged with the OCT. Each horizontal line marks 
the location of a B scan. The OCT cube samples a volume with a depth of 2 mm, and as the 
retina curves antero-posteriorly through the cube, it is only seen in the section of each B 
scan highlighted in red. It is the posterior staphyloma in this eye that leads to loss of retinal 
image capture inferior to the optic disc. The OCT will sample wider areas in non-myopic 
eyes. Fourier transform moduli were corrected to compensate for different retinal image 
lengths in different B scans (function AnnotSLO).  
 

 

Cube locations/ Data capture 

HD21 line scans were obtained, with 9 mm horizontal scans and 0.4 mm line spacing. 

Starting at the macula, cubes were obtained by asking the participant to look in different 

directions and sample retina from the macula to as far peripheral as possible. In the 

extreme gazes the scanning laser ophthalmoscopic retinal image blacks out in some eyes 
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(no view) but a B scan may still be obtained, with the RPE high intensity signal visible even in 

areas of vignetting. 

 

Multiple OCT cubes were taken asking the participant to look in different directions, to 

enable image acquisition from different parts of the posterior hemisphere of the retina. 

Montages of the scanning laser ophthalmoscope images were constructed to illustrate the 

area sampled (Figure 2.2). Due to the curvature of the eye, the retinal image is seen in 

different antero-posterior locations within the parallel B scans of an OCT cube. With 

increasing obliquity, this means with some OCT cubes the retinal image disappears 

anteriorly or posteriorly out of the image acquisition area. As a result, retinal image data are 

incomplete across the area visible in the scanning laser ophthalmoscope images. Rescanning 

the same area with the acquisition volume moved anteriorly or posteriorly can image 

missed areas in a separate cube.  

  

The first cube was taken with the participant looking directly toward the OCT fixation point 

(the macular cube). Subsequent OCT cubes were taken in 8 positions of gaze: superiorly, 

inferiorly, horizontally to the left and right, up and right, up and left, down and right, and 

down and left (Figure 2.3). Ideally 2 OCT cubes were taken in each direction of gaze, one at 

the edge of the macular cube, and the second more peripheral. Each of these locations was 

considered a “region” for image feature analysis. Cubes were allocated to regions on the 

basis of information recorded at time of image capture and examination of the retinal image 

taken simultaneous to the OCT. Only one cube per region per eye was used for analysis 

(Table 2.3). 

 

5  3  17 

 4 2 16 

7 6 1 14 15  

 8 10 12 

9  11  13 

Figure 2.3. OCT cubes retinal region key. Representation of a right eye, showing the 
numeric region identifier of OCT cubes used in this study. The macula is region 1. Compare 
to Figure 2.2. 
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Table 2.3. Tabular list of regions with their numeric identifier. 

Region number Region description  

1 Macula 

2 Posterior superior 

3 Anterior superior 

4 Posterior supero-temporal 

5 Anterior supero-temporal 

6 Posterior temporal 

7 Anterior temporal 

8 Posterior infero-temporal 

9 Anterior infero-temporal 

10 Posterior inferior 

11 Anterior inferior 

12 Posterior infero-nasal 

13 Anterior infero-nasal 

14 Posterior nasal 

15 Anterior nasal 

16 Posterior supero-nasal 

17 Anterior supero-nasal 
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2.2. Image analysis 

Analysis was performed with functions written in MATLAB (The MathWorks, Inc., Natick, 

MA) for this study. Function names are given in each section where used and identified by 

Courier font. The script of each function is given in Appendix C. 

 

Image segmentation 

Livewire226 is a free-to-download add on to Fiji/ImageJ, a health science image processing 

suite developed by the National Institute of Health227. This uses graph theory, identifying 

the least cost path from one pixel to the next to define the borders of regions of interest for 

image segmentation. Livewire will follow (with observer input) high intensity lines such as 

the ellipsoid layer or retinal pigment epithelium on the OCT. From this, the x,z coordinates 

of points along the line were saved, so that properties of the geometry of the line can be 

studied. 

  

Data extraction 

Raw .img data files were exported from the OCT device with the IMG export facility. These 

were converted to tagged image file format (tiff) with ImageJ or MATLAB, and in each B scan 

the retinal shape was traced using the Livewire plugin macro for ImageJ. The retinal shape 

was represented by the retinal pigment epithelial line or outer highly reflective band in all 

but the macular scans. Macular shape information was taken from the ellipsoid line, as this 

high intensity line was more reliably tracked with Livewire, and is parallel to (and therefore 

has the same shape as) the retinal pigment epithelial line in the images acquired (Figure 

2.4). The line region of interest was saved as a text file of pixel coordinates. The data for 

each eye were stored within a folder for each cube, within which were subfolders consisting 

of up to 21 text files containing the x,z coordinate of the retinal pigment epithelium from 

each B scan. The retinal shape data consisted of two columns, representing the x (lateral) 

and z (axial) coordinates for each pixel representing the retinal shape in the B scan. This 

coordinate information was converted from pixels to physical length in millimetres for 

analysis.  
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Figure 2.4. Inconsistent retinal shape identification. OCT image of macular tissue with a 
highly reflective ellipsoid layer distinct from the RPE line. If attempts were made to follow 
the retinal pigment epithelium line in macular tissue with a high intensity ellipsoid layer, the 
two parallel high intensity signals confuse the Livewire least cost pathway algorithm leading 
to jumps in the contour pathway. This was avoided by taking shape from the ellipsoid layer, 
which parallels the RPE line and has high enough signal to entrain Livewire without jumps. 
 

 
Shape metrics 
For analysis, the B scan retinal shape information was separated into two components: a 

base curve, and the difference between the retinal shape and base curve, called the 

irregularity (Figure 2.5). 
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Figure 2.5. Retinal shape analysis. Retinal shape was taken from the contour of the retinal 
pigment epithelium in OCT B scans. Figures A, C, & E: the retinal contour is highlighted in 
yellow in the B scan images, and this contour is used for shape analysis. The quadratic best 
fit curve is superimposed in blue on the OCT images. Figures B, D, & F present the Fourier 
analysis of OCTs A, C, and E respectively. The B scan retinal contour is plotted in the 
uppermost panel of B, D, F. The middle panel in B, D, and F present the residual after the 
best-fit quadratic curve has been subtracted, with the Fourier transform of the residual in 
the lowermost. There is very little shape information at higher frequencies in the frequency 
domain. 
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Curvature 
Conic equations can be used to derive the radii of conic shapes that reflect the base curve of 

the retinal shape. Most retinal images on OCT are either elliptical or hyperbolic in form110. 

The latter are counter-intuitive in having an imaginary radius as well as a real one, but 

mathematically this is not problematic. The principal disadvantage in conic sections is that 

the derivation of the radii from the general conic equation coefficients is not a robust 

process. Solving for the radius of curvature of a retinal image is a poorly constrained 

problem, due to the retina within the B scan comprising too small and localised a sample arc 

of the larger conic shape. Minor changes in retinal position or orientation leads to wide 

variation in the solution for the radii, making it an unreliable method for analysis. 

 

Instead, a parabolic second order polynomial equation was used to describe the best fit 

curve to the B scan. To account for shape information within the best-fit quadratic that was 

subtracted from the retinal shape prior to Fourier transformation, the curvature at the 

vertex of the best-fit curve was recorded for each B scan (hereafter curvature). Curvature 

was derived geometrically rather than optically, and was used to differentiate OCT shape 

from other measurements in vision science (such as corneal shape) that use its inverse, the 

radius of curvature. This approach has been used in most analyses of retinal shape110,136,137. 

Curvature has the intuitive advantage that as its magnitude increases, the shape of the 

curve becomes more acute.  

 

Using the simple quadratic curve formula z = ax2+bx+c, the x-coordinate of the vertex of this 

is found at -b/2a. 

Hence the z coordinate of the vertex zv = a.(b2/4a2) – b2/2a + c    

  or zv = -b2/4a + c. 

Curvature is given by: 

! = 	

$!%
$&!

'1 + *$%$&+
!
,

"
!
. 
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As dz/dx = 2ax + b and d2z/dx2 = 2a 

 

! = 	
2/

[4/!&! + 4/2& + 2! + 1]
"
!
. 

 

Inserting x=-b/2a to find the curvature at the vertex, then R=2a. 

 

The best-fit quadratic was generated by the polyfit function in MATLAB and subtracted 

from the retinal contour line (Figure 2.5). This was done to avoid contamination of the 

Fourier transform (aliasing) of the retinal irregularity by mismatches at the endpoints of the 

signal. An example of the scanning laser ophthalmoscopic image of the OCT cube warped 

onto the B scan shape information is shown in Figure 2.6, with the best fit curves 

superimposed in red. 

 

 
Figure 2.6. Retinal shape, 3D OCT cube. OCT cube retinal shape re-created from the B scan 
retinal pigment epithelium shape. The scanning laser ophthalmoscope image has been 
imposed on the surface, with the position of each B scan marked by the green and blue 
lines. The best fit curve to every second B scan is superimposed in red. Axes are in pixels. 
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Correction for OCT imaging artifacts  

Image capture with OCT is subject to the distortions discussed in Section 1.2.2 “OCT image 

artifacts”. The OCT devices used in this thesis (Zeiss spectral domain OCT Cirrus and swept 

source OCT Plex Elite) compensate for the effects of eye motion through multiple pass 

composite images, correct for the distance between light source and the anterior segment 

of the eye through focussing the external eye image during scanning, and do not perform 

pre-image processing flattening. Refractive index effects, vignetting, and scatter do not 

affect the retinal contour studied here. The conversion from an acquired arc of A scans to a 

rectangular output leads to some flattening of the retina across all images and was not 

corrected here. 

 

As the distance from the reference point of the OCT at the pupil and the retina affect 

measured retinal curvature137, correction for this was performed. OCT retinal curvature was 

corrected using the axial length induced error correction from Steidle & Straub135. They 

reported the correction required according to variation in axial length, and kindly provided 

by personal communication their measured values in 1 mm increments between 20 and 28 

mm (Table 2.4), that were only reported in graphical form in print. To determine the exact 

correction value for any axial length (which is routinely given to 1/100th of a mm), a 

goodness-of-fit calculation was performed for linear, second and third order polynomial 

lines fit to the data. The differences between the empirical and best fit curve values for each 

1 mm increment were calculated for each order polynomial. This was lowest for the second 

order polynomial, so this was used to correct curvature for each scan. Correction factors 

were provided for eyes with integer axial length 21 – 28 mm, so within and beyond this 

range, the actual correction value was calculated from the second order polynomial fit to 

the available data. For correction, curvature was converted to radius of curvature, the 

appropriate correction value deducted, and curvature recalculated.  

 

The median curvature for a single cube reflected the typical curvature within the volume of 

that cube. The interquartile range of curvature for a single cube was the interquartile range 

of the curvatures of the B scans within that cube. This represented the degree to which 

curvature changes across the area of the cube from top to bottom, and not the spread of 
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observations from a single sample. For an entire eye, the interquartile range of curvature 

represented the range of values within the eye. Some B scans had negative curvature 

(convex into the eye), for instance at the edge of staphyloma.  

 

Irregularity 
The second component of the image for analysis is the residual values left after the base 

curve is subtracted from the retinal pigment epithelial line. Examples of these are shown in 

Figure 2.5. With the base curve removed from the retinal line, the residuals resemble a 

noisy, roughly horizontal signal.  

 

 

Table 2.4. Axial length induced error in OCT curvature. 

Axial 

Length 

Retinal Radius 

of Curvature 

Induced 

Error 

20 17.34 3.94 
21 16.30 2.90 
22 15.29 1.89 
23 14.32 0.92 
24 13.40 0.00 
25 12.53 -0.87 
26 11.72 -1.68 
27 10.97 -2.43 
28 10.28 -3.12 

All values in mm. Data reproduced with the permission of Dr Jochen Straub135. 
 

  

Fourier transformation 

A Fourier transformation was performed on the residual. This irregularity consisted of 

vectors of x- and z- axis coordinate data. To prepare these data for analysis, where there 

were duplicate values of x, a single z value was attached to this x value equal to the mean of 

the z values recorded for the duplicate x values. Gaps in the sequence of x values (from A 

scans where the retinal image was obscured) were filled by linear interpolation. If the signal 

(length of the x vector) was less than 1024 points long, then the signal was padded by zeros 

to equal 1024. If the signal was more than 1024 points long, the ends were cut to limit the 

length to 1024. The discrete Fourier transform of the z values was computed and since z was 

a signal of length 1024, the modulus for the Fourier transform was defined on 512 evenly 
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spaced frequency values in the range 0 to Ny (Nyquist frequency). The moduli of the Fourier 

transform of the 30 lowest frequency bins constituted the output vector representing the 

shape of the B scan. Higher frequency information was discarded as noise.  

 

Correcting for the differences in retinal length in B scans  

A set of scanning laser ophthalmoscope images from OCT cubes of one eye is shown in 

Figure 2.2. Due to the curvature of the eye, in some regions the retina passes obliquely 

through the rectangular B scan window, and the retinal image does not always cross the 

entire width of the B scan, nor does the retina appear in all B scans in a cube. The moduli for 

each frequency bin were corrected for the length of the signal (the adjusted length of the 

retina in the B scan) to allow comparison of images of different size, as not all retinal images 

in peripheral retina extend from one side of the B scan to the other (Figure 2.2). This results 

in all irregularity values in the frequency domain being measured in mm2 per mm of retina 

imaged, or simply mm. 

 

Anomaly  
The anomaly was defined as the difference in B scan irregularity from the average B scan 

irregularity, with units the same as the irregularity, of mm2 per mm, or mm. Anomaly was 

calculated as follows. 

 

All cubes sampled from all the eyes used in any chapter were included, and the Fourier 

spectrum of each B scan irregularity determined. The eyes were distributed into five folds in 

the following manner, to ensure that there was an even distribution of axial lengths and 

diagnoses between each fold. Eyes were sorted separately for each diagnostic group by axial 

length and any eyes with no axial length measurement excluded from further analysis. The 

randperm function was used to randomly allocate eyes in each group into 5 folds by 

generating consecutive sets of random numbers from 1-5 equal to the number of eyes 

included. Numbers in each fold were non-equal when the sample was not divisible equally 

by five, when the remaining n samples were randomly placed into n groups. For eyes in each 

fold an average B scan irregularity was calculated from all the images in the other 4 folds, 

equivalent to 80% of the entire sample. For all-of-eye features, B scans from all regions 

were used to create the average value. 
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As an example, consider 53 retinal detachment and 61 PVD eye spectral domain OCT scans 

used for classifier development in Chapter 5. Across the five folds, mean B scan irregularity 

coefficient of variation was 0.0099, suggesting consistency between folds. This consistency 

in mean B scan irregularity was used to simplify anomaly calculation as more eyes were 

included in this study. For ongoing recruitment of eyes in Chapter 5, the average anomaly of 

the five folds detemined from the initial dataset in Section 5.2 was used. 

 

 

 

Shape feature terminology 

The difference between the retinal shape and its best-fit quadratic curve was represented 

by values taken from the Fourier transform of the retinal irregularity. Table 2.5 summarises 

the terms used to describe shape features. The first (total anomaly) was the sum of the 

absolute difference between the 30 lowest frequency bin moduli of a scan and the average 

irregularity values of the same frequency bins. The second variable was the largest single 

frequency bin difference in any B scan compared to average bin values (peak anomaly 

(Figure 2.7)). The third was the root mean square of the difference between the scan bin 

moduli and the average normal bin values, named rmsa. These variables reflected the 

difference of any B scan from the average B scan in its control group. More irregular retinal 

shapes that correspond poorly to a quadratic curve had greater total anomaly, peak 

anomaly, and rmsa. The interquartile range of total anomaly, peak anomaly and curvature 

was used to describe the spread of values within each eye, region, or cube. 
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Figure 2.7. Illustration of features: total anomaly and peak anomaly. The average 
frequency bin value for all B scans is illustrated by the solid line. The coloured shaded areas 
(cyan and lilac) represent total anomaly for the sample B scan (dotted line). Peak anomaly is 
the bin value with the largest difference from the average, and is illustrated by the lilac 
shaded area. 
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Table 2.5. Description of shape terms. 

Quantity Description Units  Comment  

Retinal shape Path of the retinal pigment epithelium 
across an OCT B scan 

  

Curvature The vertex curvature of the best fit 
quadratic curve fit to the retinal shape 

mm-1  

Irregularity  Residual shape after best fit curve 
removed, usually referring to this within 
the frequency domain 

mm Unless 
specified, 
refers to 
bins 1-30 
only 

Total anomaly Difference between a B scan irregularity 
and the average B scan irregularity in the 
frequency domain 

mm A measure 
of 
irregularity 

Anomaly 
spectrum 

The distribution of total anomaly across 
the frequency bins 

mm  

Peak anomaly The modulus of the largest frequency bin 
in the anomaly spectrum 

mm  

All values taken from bins 1-30. All values corrected for sampled retinal length, making the 
anomaly units mm2 per mm, hence mm. Section 5.2 determined which specific [region, bin] 
anomaly values were to be used for classification. This may or may not be the peak 
anomaly. 
 

  

Statistics 

All-of-eye and regional median and interquartile range features (total anomaly, peak 

anomaly, root mean square anomaly, and curvature) were correlated to axial length by 

Spearman’s rank correlation with 95% confidence intervals calculated with Fisher’s z-

transformation228. Bonferroni-Holm correction for multiple comparisons was performed 

with 4 = 0.05. Eyes that were scanned twice were compared by the Wilcoxon signed rank 

sum test.  

 

Test-retest reliability of shape metrics was explored with Bland Altman plots, with classifier 

performance assessed by sensitivity and specificity, and stability by the standard deviation 

of the success rates in five-fold cross validation of the training set. The two-sample t-test 
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was used to check for similarity between groups, and the paired t-test for where 

comparison was for change of state in individual eyes. Classifier output was reported in a 

confusion matrix, with specificity and sensitivity the key measures. A two-tailed Fisher’s 

exact test was performed on the model confusion matrices and classification label 

correspondence to test the probability of non-random distribution.  
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Chapter 3. Validation and exploration of the limits of 

methodology 

 
Introduction 
This aim of this chapter is to investigate whether and how information taken from OCT 

images can be relied upon to assess retinal shape, and describe that retinal shape across the 

posterior retina.  

 

The Australian Therapeutic Goods Administration requires medical imaging devices to 

provide accurate, precise and stable measurements (Medical Devices Essential Principles 

Checklist229). Commercial OCT machines such as the Cirrus have documented reliability in 

segmentation and volume determination of retina and surrounding tissues230. In other 

words, test-retest measurements are consistent. Shape is not a metric normally measured 

or quantified in standard OCT analyses, although if it were to vary substantially, the 

consistency of retinal volume estimation and segmentation would be compromised.  

 

In section 3.1, two aspects of determining the reliability of OCT retinal shape analysis are 

considered: first, that the retinal contour produced by the operator of Livewire in ImageJ is 

consistent if repeated by a different operator measuring the same image; and second, that 

repeat OCTs of the same retina have the same shape, assuming no change in the retina 

itself. As long as retinal shape itself does not vary over time, any variation in these 

measurements would suggest a reliability issue.  

 

In Section 3.2, overlapping swept source OCT cubes are reconstructed in three dimensions 

and merged via two different methods to explore the utility and limitations of composite 

images for retinal shape analysis. OCT provides high resolution, cross-sectional, two 

dimensional retinal images, and images taken in parallel have been used to reconstruct local 

retinal shape from these sections in three dimensions. OCT is capable of sampling a limited 

area of retina in a single image. Wider field images have become available with developing 

technologies including swept source OCT, as well as through the merging in series of 

individual B scans in two dimensions. Merging swept source OCT images in three 
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dimensions (3D) has not previously been reported. Should merged images retain accurate 

shape information, it may be possible to consider larger scale shape features measured 

from the composite images. Conversely, if errors are introduced from the merger, 

information taken from composite data cannot be relied upon.  

 

Section 3.3 explores the use of the external eye image taken at time of OCT imaging to 

determine whether gaze direction analysis could help in describing which area of retina is 

being imaged. OCT cubes sample a retinal area with multiple parallel lines with the 

measurement of shape used here taken from the most irregular scan within the cube. This 

sampling method compensates for some differences in eye position, but gaze position 

analysis is explored to determine whether it can provide further evidence of which area of 

retina has been sampled where landmarks such as retinal vessel anatomy vary. This section 

analyses the elliptical eccentricity of the pupil margin imaged when the OCT is taken to 

assess how far, and in which direction, the eye is turning.  

 

The ability to quantify shape enables comparison of a large volume of samples. The OCT 

only samples retina locally rather than globally. Section 3.4 describes how locally sampled 

retinal shape varies as a quantity by the area of retina imaged. Section 3.5 presents the 

conclusions and discusses the significance and limitations of Sections 3.1-4. 

 

 

Published work 
 

The contents of Section 3.4 have been published in “Correlation between optical coherence 

tomography retinal shape irregularity and axial length. (Lake S, Bottema M, Williams K, 

Reynolds K. PLoS ONE (2019); 14(12). https://doi.org/10.1371/journal.pone.0227207). My 

contributions to this paper included data collection and analysis (90%), writing and editing 

(85%), and research design (25%). My co-authors contributed equally to research design 

(25% each); proof reading, revision of and guidance on writing the papers (5% each); and 

instruction and advice on data analysis (10%).  
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3.1. Reliability 

Aim 
The aim of this section was to assess the reliability of OCT measured retinal shape. First, a 

visual inspection of the correspondence of shape in repeat scans taken from oblique angles 

is presented. Then, repeated retinal measurement from a set of scans using the graph 

theory-based Livewire tool are compared. Thirdly, the consistency of retinal shape 

measured with Livewire is assessed by comparing the results of the same images segmented 

by two different observers. Finally, repeat images of the same retina are compared to test 

whether they have the same shape.  

 

Visual inspection 
 

Repeat imaging of the same retinal sample and visual inspection of these scans confirmed 

good correspondence between one image and its repeat (Figure 3.1.1). Figure 3.1.2 

illustrates peripheral retinal features that were imaged at two separate sittings. Visually, 

there was good correspondence between the images despite variation in position within the 

scan window – there are rotational and translational differences between images of similar 

retinal areas. Each OCT cube is in its own coordinate system, and can be rotated and 

translated compared to other images of the same or different eyes142. Analysis of shape 

depends on features that are independent of rotation, translation or scaling. Orientation 

independent information on shape is required to compare images of the same area of retina 

taken from differing angles.  
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Figure 3.1.1. Macular shape consistency. Two B scans from the same eye taken 
consecutively, one through the nasal side of the pupil, and the second the temporal side. 
This rotates the image around a vertically oriented axis, and has been called oblique 
scanning142. Despite image rotation, superimposing one image on the other made it clear 
the retinal shape was unchanged.  
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Figure 3.1.2. Shape consistency. Repeat OCT images of inferior retina from two different 
eyes (A & B, and C & D), with the second set of images (B & D) taken weeks after the first set 
(A & B). While the retina was translated and rotated from one image to the next, there was 
persistence of shape features. 
 

 

3.1.1 One eye measured by two different operators 

 

To ascertain that the Livewire RPE contour identification process was reliable and user 

independent, retinal shape from OCT cubes of one eye were measured twice with the 

ImageJ Livewire plug by two independent observers.  
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Methods 

The OCT cubes from a retinal survey of a single eye were used. This was the right eye of a 54 

year old man with axial length 24.70 mm, with no pathology other than minor peripheral 

lattice degeneration. There were 345 B scans with retina present from 18 HD21 cubes (one 

from each of the 17 regions (Figure 2.3 and Table 2.3) with an 18th cube not classified). All 

images were taken at a single sitting on 17 February 2017. 

 

To address small variations in the start and finish points that each operator used to capture 

retinal contour, alignment of vectors was performed by checking that the two observers had 

matching initial x-index in each x-coordinate vector (lateral pixel position). Where there was 

a mismatch, the longer x-vector was truncated to match the shorter. 

 

Statistical methods 

Comparison of the two sets of retinal shape was made through the root mean square 

difference between the two z-coordinate vectors. Then, to address any systematic error, 

one z-vector from each pair of scans was translated by the mean difference between the 

two z-vectors (in case one measurement was taken from a different retinal layer compared 

to the other, changing the axial position without changing the shape information). The root 

mean square error between the translated vector and its pair was calculated. Median and 

interquartile range of curvature and irregularity were also determined from the two sets of 

measurements and compared by a Wilcoxon sign rank test (RetestLVWrmse). 

 

Results 

The number of B scans extracted from each cube was the same in each test. Mean root 

mean square error (standard deviation) was 3.06 +/- 3.95 pixels. After correcting for average 

shift (i.e., deduct the average difference between the two), mean root mean square error 

was 1.28 +/- 1.49 pixels, a difference of less than two pixels. Results of the comparison of 

curvature and irregularity metrics derived from each assay are shown in Table 3.1.1.  
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Table 3.1.1. Between observer shape measurement correspondence.  

Shape feature  Examiner 1 

Mean +/- SD 

Examiner 2 

Mean +/- SD 

p-value 

K 0.034 +/- 0.015 0.035 +/- 0.015 0.93 

IQR K 0.013 +/- 0.016 0.012 +/- 0.016 0.94 

irregularity 2.54 +/- 1.06 2.60 +/- 1.05 0.89 

IQR irregularity 1.39 +/- 0.52 1.38 +/- 0.62 0.96 

Comparison of the two Livewire measurements of retinal shape from 18 cubes from a single 
eye. Cube values were compared by two-sample t-test (column 4). K = curvature, IQR = 
interquartile range, SD = standard deviation. Units: K: mm-1, irregularity: mm. 
 

 

Conclusion 

Retinal shape did not significantly differ when measure by two different observers with 

Livewire.  

 

 

3.1.2 Sample eyes measured multiple times on different occasions 

Methods 
This study re-imaged the same areas of retina multiple times, to test whether the shape 

metrics were consistent between observations (Figure 3.1.3). Five eyes, described in Table 

3.1.2, had HD radial macular cubes taken repeatedly. Images were acquired between 

October 2019 and March 2021. Their shape information was described by the 

measurements of curvature and total irregularity.  

 

Statistical analysis 

The reliability of measurements taken from multiple repeat images was assessed using 

intra-class correlation coefficients (ICC) of metrics taken from repeated sampling of 

maculae231. Intra-class correlation coefficients range from 0 to 1 with the value of one 

indicating identity. Functions used were icc and icc21 from MATLAB File exchange232,233. 

Measurements were tested with intra-class correlation using a two way random effects 
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model with a single rater assessment (to determine how useful a single test would be) 

requiring absolute agreement (implying no bias between measurements)234. 

 

Results 

Table 3.1.2 summarises the eyes imaged with repeat macular HD radial cubes centred by 

fixation. Intra-class correlation is shown in Table 3.1.2 for the 12 B scans in each cube 

described by curvature and total irregularity (24 values per eye, column 5), and then the B 

scan irregularity spectrum (360 values – 30 bins for each of the 12 B scans, column 6). 

 

 

Table 3.1.2. Description of eyes with repeat macular imaging. 

Eye Number 

of cubes 

Time interval: 

first – last 

scan 

Reason for attending ICC (2,1) K 

and total 

irregularity 

ICC (2,1) 

irregularity 

L2 01 9 Single session Volunteer 0.9934 0.9839 

L1 02 9 Single session Myopia assessment 0.9485 0.9353 

L1 03 7 6 months Myopia, vitreo-macular 

traction in fellow eye 

0.9879 0.9762 

L2 04 8 17 months Retinal vein occlusion, 

fellow eye 

0.9854 0.9811 

L1 05 5 10 months Myopic macular disease in 

fellow eye 

0.9714 0.9436 

Number of cubes = the number of macula OCT cubes taken of each eye. Each cube consists 
of 12 radially oriented B scans, centred on the fovea. ICC = intra-class correlation 
coefficients, K = curvature. 
 



  83 

 
Figure 3.1.3. Repeat macular imaging, myopic eye. Single B scans from nine HD-radial cubes 
taken consecutively from the same macula. This was a highly myopic eye with a macular 
schisis and poor vision. This should increase the magnitude of shape features due to greater 
curvature and greater irregularity compared to an emmetropic eye, as well as increase the 
risk of poor alignment from one cube to the next due to poor fixation. Subtle differences in 
anatomy can be seen from one scan to the next. Despite this, intra-class correlation was 
high (> 0.9), and comparable to the intra-class correlation of a non-myopic eye.  
  

 

 

Conclusion 

The measures of curvature, irregularity, and the frequency distribution of the irregularity 

were consistent between repeated HD-radial scans. These assessments of the reliability of 

retinal shape measurements taken from OCT images confirm that shape can be reliably 

assessed with OCT. Further tests of reliability are reported for the performance of a 

classifier using shape in sections 5.2 and 5.3. 
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3.2. Merging OCT cubes 

Individual OCT images have been shown to be a reliable method of measuring retinal shape, 

with spectral domain OCT sampling a limited area of retina of length 9 mm. Analysis of 

larger scale shape features requires the joining together of adjacent or overlapping scans, 

involving potentially three dimensions of translation and three dimensions of rotation. Here, 

this process was performed to assess whether the resulting composite images were reliable 

enough for shape analysis.  

 

Aim 
The aim was to assess whether fusing images preserved retinal shape in a way that might 

enable larger scale features to be extracted.  

 

Methods 
Subjects 

Pairs of overlapping OCTs were taken from five eyes of five human volunteers. Subjects are 

described in Table 3.2.1. Images were taken between September 2020 and May 2021.  

 

Table 3.2.1. Subject eyes for merging OCT cubes. 

Eye Side Axial length 

(mm) 

Pathology Cube locations 

SS 0028 L 23.74 PVD Macula & ST to disc 

SS 0066 L 24.06 Retinal tear Macula & IT to disc 

SS 0067 L 26.54 FE to RD Macula & ST to disc 

SS 0082 R 25.27 RD Macula & temporal to macula 

SS 0102 R 24.78 Stickler syndrome (a) ST to disc & superior 

(b) superior & far ST 

L = Left eye, R = Right eye, FE = fellow eye, RD = retinal detachment, ST = supero-temporal, 
IT = infero-temporal. 
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Overlapping pairs of 9 x 9 mm SS OCT cubes were taken. The scanning laser 

ophthalmoscope images were adjusted to pixel dimensions of 500 x 600 to correspond to 

the B scan pixel dimensions. Twenty five B scans were sampled from each cube by 

CretiffSScube, starting at B scan 10, and sampling 25 B scans out of the 500 at 20 B 

scan intervals, finishing at B scan 490. These were used to reconstruct local retinal shape 

within the area covered by the scanning laser ophthalmoscope. For each eye, three pairs of 

corresponding points were identified in the scanning laser ophthalmoscope images from 

each pair of cubes. The reconstructed 3D images were merged via two different methods, 

both using a rigid transformation to preserve shape features. In the first method, two 

sequential axis-angle rotations were performed to align the three points, using a function 

written for this process in MATLAB. To validate these results, a second method using a 

single axis-angle rotation using a quaternion was performed. The quaternion was generated 

from the same three corresponding points in the two cubes using an open-access function 

from MATLAB File Exchange. 

 

Steps 

The z index was corrected to be the same scale as x and y, by 

%# =
%. 56
56%

 

where sf = 500 pixels/9 mm, and sfz = 1536 pixels/3 mm for the swept source 9 x 9 mm 

Angio cubes. 

 
Method 1, sequential axis-angle rotation 

First, three matching points were identified from the scanning laser ophthalmoscope 

images: I1: a, b, c from the macular cube, and I2: x, y, z from the overlapping eccentric cube. 

These points were from small-scale high-contrast margins, such as the edge of the optic 

disc, or the branching or intersection of blood vessels. 

 

Step 1:  
translate I2 to I1: x moved to a 

y & z become y2 & z2 

b & c unmoved 
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Step 2: 
Rotate so y2 is coincident with b, by rotating I2 by angle 7,  where 

9 = arctan(‖2 × B!‖ 2 ∙ B!⁄ ) 

around the axis perpendicular to plane y2ab:  axis = 2 × B! 

z2 becomes z2’ 

 

Step 3: 
A second rotation to bring z2’ (previously z then z2) to c: by angle F. This would move y2 off b 

if performed around the axis perpendicular to z2’ac. Therefore, rotation was around axis ab, 

which required finding point p on ab where zp and zc were normal to ab. 

Assume distance |az2’| = |ac| (as c and z2’ are the same point in the eye seen in rotated 

images), angle bac = angle baz2’, which is the angle between 2 vectors, G: 

G = arctan(‖2/ × /%!′‖ 2/ ∙ /%!′⁄ ). 

To get these vectors, subtract a from b, and a from z2’.  

As  

‖/I‖ = ‖/%!′‖ ∗ cos(G) 

 

and the coordinates of p are: 

I = / +	‖/I‖ ∗ /2M  

 

where /2M  is the unit vector of ab, calculated by: (b-a)./norm(b-a) 

 

Method 2, rotation via calculation of a quaternion 

The second composite image was merged from the two OCT cubes using a single rotation 

with a quaternion. This was calculated from the same three corresponding pixels in the two 

images as above, using function absor from MATLAB File Exchange235. 

 

 

Statistical analysis 

The mean and standard deviation of the disparity in z-axis coordinates from the overlapping 

A scans in each composite image was determined. Comparison of the performance of the 

sequential axis-angle and the quaternion rotations was made via a paired t-test of this 
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disparity from all sets of eyes. Image manipulation and analysis were performed with 

mergeSLO3DSSa and mergeSLO3DPt2SSa. 

 

Results 
Sample composite images from these eyes are shown in Figures 3.2.1 – 3.2.3. 

 

 

 
Figure 3.2.1. Merged cubes: a healthy eye with a “normal” shape. Quaternion method. 
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Figure 3.2.2. Merged cubes: myopic eye post retinal detachment repair. The shallow 
posterior staphyloma visible inferior to the disc and macula (dotted oval line) is demarcated 
by a ridge (dashed arc) superior and temporal to the macula. The combined OCT image 
reveals the plateau supero-temporally, emphasizing the nature of the ridge (axial length 
25.27 mm, axis angle method). 
 

 
Figure 3.2.3. Merged cubes: Stickler syndrome. 29 year old female with Stickler syndrome 
who had a retinal detachment repair via vitrectomy. In the cube superior to the macula an 
inward swelling is seen (blue oval). There is some mismatch in alignment with the superior 
cube retinal surface rolled anti-clockwise relative to the macular cube (quaternion method). 
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Mean disparity in A scan (z-axis) position  

Across all merged images: 

Mean (+/- standard deviation) disparity, sequential axis-angle method:  30.37 +/- 20.32 

pixels 

Mean disparity, quaternion rotation method: 34.14 +/- 23.99 pixels 

 

Considering all A scans where retinal image was superimposed, the axial difference (z-axis) 

in retinal position between the two cubes ranged from -97 to 79 (sequential axis angle 

method) and -103 to 25 (quaternion method). This was large enough to have an impact on 

observed retinal shape. The difference in performance between the two methods was 

statistically significant (two-sample t-test, p<0.005)236, implying the sequential axis angle 

method was slightly more accurate by a mean of 3.77 pixels (confidence interval 3.70 – 

3.83). However, as this was in the z-axis where 1536 pixels = 3 mm, this average disparity 

difference between the two methods was very small (3.77 pixels = 0.007 mm), and is 

practically unimportant.  

 

Conclusion 
Although each rotation on average induced small errors, the sequential rotation axis angle 

method performed statistically better than the single rotation quaternion method. The 

difference between the two methods was small and would have little effect on qualitative 

analysis. However, the range of A scan z-axis position disparity with both methods was large 

enough that without further image manipulation, quantitative retinal shape analysis could 

not be performed.  Merged OCT images provided a good qualitative description, or 

illustration, of wide field retinal shape in three dimensions. 
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3.3. Gaze direction analysis  

This section aimed to determine whether analysis of gaze position, determined from the 

orientation and shape of the pupil in anterior segment images taken at time of OCT image 

capture, was helpful in quantifying which area of retina was being imaged. This was to 

explore whether cubes from different eyes that were qualitatively given the same region 

were consistently sampling the same retinal area. Two experiments were performed to see 

if gaze direction analysis were helpful in challenging the findings of Section 5.2 and Chapter 

6 of this thesis. Firstly, anterior segment images were analysed from swept source OCT 

cubes captured when subjects were asked to look in uncomplicated, easily comprehensible 

directions: up, down, left, and right, as well as straight ahead. These were analysed to 

describe and detect variations both between and within the defined gaze positions. 

Secondly, an analysis was performed comparing the anterior segment images taken from 

the two retinal regions used by the classifier in Section 5.2: superior, and supero-temporal. 

The specific objective of this section was to assess how distinct these two gaze positions 

were. 

 

 
Figure 3.3.1. Sample pupil shape ellipses. The inner margin of the pupil was identified using 
the MATLAB roi.ellipse function. The semi-axes lengths, aspect ratio, rotation, and 
centre point were recorded for analysis. Note the gaze direction in the right image can be 
perceived as looking up or down. Gaze orientation labelling is performed from the eye 
position known at time of image capture (the image on the right is in fact looking up, which 
can be inferred from the presence of sclera visible at 6 o’clock, inferior to the iris). 
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Gaze position was quantified by analysing two measurements taken from the shape of the 

pupil margin (Figure 3.3.1, Table 3.3.1): the direction in which the eye was looking (gaze 

direction, the angle of rotation of the pupil ellipse); and how far the eye looked away from 

straight ahead (gaze excursion, angle 4). For this study, the observations for right eyes were 

mirrored to match the gaze direction of the left eyes. 

 

Methods 
The external eye images were 640 x 480 pixel size, and reconstructed using CretiffSS. 

From these images the pupil shape was determined using the ellipse.roi function, and 

their aspect ratio and rotation angle were used to compare position (Pupilanalysis, 

PupilanalysisSS, and PupilanalysisSD2).  

 

The eye may move forward or backward between successive OCT image captures. In 

particular, there is a tendency to tilt the head upward in upgaze, taking the head and eye 

away from the OCT. This was minimised by asking the participant to keep their forehead 

against a fixed headrest. To correct for this, the size of the axes of the eccentric pupil were 

corrected by comparing the major axis in eccentric gaze (the larger axis perpendicular to 

gaze direction) to the eye’s average axis size in the primary position. This average was used 

to correct for elliptical pupils in the primary position and the fact that the major axis in 

primary position may be at a different orientation to the major axis when looking away. For 

example, if when looking straight ahead the axes are at 0 and 90°, neither will correspond to 

the major axis when looking up to the right, which may be 45° to the horizontal (Figure 

3.3.2). Therefore, corrected MiAxE = (AvAxC/MaAxE)*MiAxE, where MiAxE = minor axis 

length in excursion, MaAxE = major axis length in excursion, and AvAxC = average of the 

pupil margin ellipse axes lengths looking straight ahead (when imaging the macula). 
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Pupil metrics for gaze position 

Table 3.3.1. Description of terms used to describe the gaze position of the eye. 

Term  Description Assessed by 

Gaze position The direction the subject was asked 

to look in (region – see Table 2.3) 

Instruction to subject 

Gaze direction The direction actually taken (“where”) Pupil margin ellipse rotation  

Gaze excursion  How far the eye moved from the 

primary position (“How far”) 

Pupil margin ellipse 

eccentricity, angle 4, 

 

 
Figure 3.3.2. Pupil assessment. Eccentricity was the ratio of the largest diameter divided by 
the smallest diameter. Looking ahead for macular imaging (left image), this was close to 1.0. 
When looking away, such as up and to the right (right image), eccentricity increases, and the 
axes rotate. The rotation of the axes reflects where the eye is looking (gaze direction), and 
the ellipse eccentricity how far from straight ahead gaze direction has changed (measure by 
angle 4). 
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Figure 3.3.3. Iris and pupil diameter shown in cross section, with the eye looking to the left. 
Size of pupil diameter AC (left) in the primary position becomes AB when the pupil plane 
deviates from the vertical in upgaze (right) by angle 4. 
 

 

An eccentric pupil has “reclined” by angle 4 = arccos(|AB|/|AC|). This angle reflects the 

angle the eye has deviated from straight ahead (Figure 3.3.3). Here it was called gaze 

excursion angle, to distinguish it from the rotation of the pupil ellipse which reflects gaze 

direction. 

 

 

3.3.1 Horizontal and vertical gaze positions (swept source OCT images) 

This analysis explored whether gaze direction and excursion angles varied as expected: 

consistent within, but with differences between, the different gaze positions. 

 

Subjects 

Analysis was performed on 415 external eye images taken with 415 B scans from 94 eyes of 

48 participants imaged between July and November 2020. 

 

Results 
Macular cube gaze position 

All scans were taken with the subject asked to look at the internal fixation point on the OCT, 

to image the macula centred upon the fovea. As a result, excursion angle was 0 (arccos(1)).  
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Mean gaze direction = 6.93°, with a standard deviation 63.83° reflecting variation in pupil 

orientation between eyes. 

 

Peripheral gaze positions 

Table 3.3.2 presents the mean +/- standard deviation gaze direction and gaze excursion 

angles for the four gaze positions up, down, temporal, and nasal. On average, subjects 

looked slightly above the horizon on nasal and temporal gaze positions, and laterally away 

from their midline with vertical gaze positions. Gaze excursion angle was on average less for 

upgaze than downgaze, and equal for nasal and temporal gaze positions. 

 

 

Table 3.3.2. Mean gaze direction and excursion for cardinal gaze positions.  

Gaze position Where/direction (SD) How far/excursion (SD) 

Up 3.01 (27.18) 26.83 (10.47) 

Down -5.90 (9.46) 37.61 (10.40) 

Temporal -6.03 (18.06) 32.94 (8.85) 

Nasal 3.90 (24.04) 31.12 (10.33) 

The gaze direction angle is relative to the horizon (lateral gaze positions) and vertical 
meridian (for up and down gaze), positive values in a clockwise direction, as for a left eye. 
All measurements in degrees. SD = standard deviation 
 

 

Between-eye distribution of gaze position 

Figure 3.3.4 illustrates the gaze direction and excursion angles for gaze positions up, down, 

nasal, and temporal.  
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Figure 3.3.4. Gaze position analysis. Gaze direction and excursion angle for gaze positions 
up (red), down (blue), temporal (magenta) and nasal (cyan). Gaze excursion angle is 
represented by the displacement from the centre (radius), and gaze direction is represented 
by the polar angle. The pupil ellipse shape does not differentiate between eyes looking in 
diametrically opposite directions (that is, up was not distinguishable from down when 
assessed by pupil shape alone). Gaze position was recorded at time of imaging, and 
opposing gaze positions have been separated here by 180° for clarity. 
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3.3.2 Comparison of superior and supero-temporal gaze position  

 

Results 
Subjects 

The three gaze positions “macula”, “superior” and “supero-temporal” were analysed from 

the external eye pictures taken during SD OCT imaging of eighty-eight eyes. In twenty of the 

264 images it was not possible to measure the shape of the pupil due to poor image quality. 

Twelve of these were from the superior gaze position, and eight from the superior-temporal 

position. 

 

Gaze position 

The average pupil margin elliptical eccentricity for macular scans was 1.08, lower than that 

of the eccentric gaze positions (1.14 for superior, and 1.33 for supero-temporal). Mean gaze 

direction was 14.8° nasal to the vertical for the superior gaze position (Table 3.3.3), and 

49.2° anti-clockwise from the positive x-axis, supero-temporal gaze. Mean gaze excursion 

angle was less for the superior gaze position (25.5°) than the supero-temporal gaze position 

(39.1°).  

 

The displacement of the pupil centre from the image centre (Table 3.3.3) alters the 

relationship between gaze position and location of retina imaged. Furthermore, during 

image capture the OCT reticle can be moved around the observed retinal area in three 

dimensions, further complicating the relationship between gaze position and imaged retinal 

area. 

 

 

 

 

 

 

 



  97 

Table 3.3.3. Mean gaze direction and excursion for superior and supero-temporal gaze 

positions.   
Mean (SD) 

gaze 

direction 

(degrees) 

Mean gaze 

excursion 

angle 

(degrees) 

Pupil 

displacement 

from image 

centre (pixels) 

Direction pupil 

displacement 

Macula 1.2  19 -22.42 

Superior 14.8 (37.6) 25.5 (10.7) 36 -23.48 

Supero-temporal 49.2 (30.8) 39.1 (10.3) 32 -25.85 

SD = standard deviation. 

 

Within-gaze position variability  

Figure 3.3.5 illustrates gaze excursion and gaze direction for superior and supero-temporal 

gaze positions. More than half (45 out of 79 supero-temporal gaze images measured) of the 

supero-temporal gaze position images had an excursion angle greater than 40°, with a gaze 

direction between 40-80°. In contrast, the superior gaze position tended to be directed 

slightly more to the nasal than temporal direction, with a lower gaze excursion. 

 

The eye with a superior gaze position zero excursion (at the centre of the polar plot Figure 

3.3.5) is shown in Figure 3.3.6. This was a vertically oval pupil where upgaze reduced the 

elliptical shape. 
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Figure 3.3.5. Superior and supero-temporal gaze position analysis. Gaze direction (polar 
angle) and gaze excursion (radius aa, in degrees) for superior and supero-temporal gaze 
positions. The nasal direction is at the polar angle 180°. 
 

 
Figure 3.3.6. External eye images. This eye was identified as having zero gaze excursion in 
upgaze in Figure 3.3.5. The vertically oval pupil in forward gaze (left image) was 
foreshortened in upgaze to a more circular shape, confounding the analysis of position. 
Note also in the supero-temporal position (right image) optical distortions from the cornea 
magnify the iris width to the left of the pupil and shorten the iris (lower right) which may 
affect observed pupil shape. 
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Differentiation between gaze positions within individual eyes 

To determine to what degree the superior and supero-temporal gaze positions were 

sampling different areas from the same retina, Figure 3.3.7 presents each eye according to 

the difference between superior and supero-temporal gaze position by where (direction) 

and how far (excursion) they looked. Points close to the origin identify eyes where there 

was little difference between gaze position for the two images in a single eye (close to zero 

difference in gaze direction and gaze excursion between the two positions). The participant 

closest to the origin (R289) did show little difference between the anterior segment pupil 

images across the two gaze positions (Figure 3.3.8).  

 

 
Figure 3.3.7. Within-eye gaze position differences. Each point represents one individual 
eye, with the x-axis representing the difference in excursion angle for that eye between 
superior and supero-temporal regions, and the y-axis the difference in superior and supero-
temporal gaze direction. The three uppermost points with gaze direction difference greater 
than 140° had oval pupils that confounded the gaze position analysis. Points close to the 
origin are from eyes with little apparent difference between the two gaze positions (see 
Figure 3.3.8). 
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Figure 3.3.8. Gaze position. Eye R289, the closest subject to the origin in Figure 3.3.7. 
Superior gaze (left) differs little from supero-temporal gaze (right). This retinal tear eye was 
labelled “2” by the classifier in Chapter 5, equivalent to the retinal detachment 
classification. This label would likely have arisen from the magnitude of a single region 
anomaly value alone (see discussion, Section 5.2). 
 

 

Influence of age on upgaze excursion 

Aging is known to lead to a deterioration in eye movement tasks including smooth pursuit 

eye movements and saccadic responses237. To explore whether age affected the gaze 

position during OCT imaging, the correlation between age and both upgaze and downgaze 

was performed (Figure 3.3.9). The effect size of age on gaze excursion was low, but 

significant for upgaze (r2 = 0.029, N = -0.24, p = 0.02) and not downgaze (r2 = 0.017, N	= 0.11, 

p = 0.32). 
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Figure 3.3.9. Effect of age on gaze excursion for upgaze and downgaze. Effect size was 
small (upgaze, figure A, left, r2 = 0.029, downgaze figure B, right, r2 = 0.017), and only 
significant for upgaze. The low effect size may be due to the effects of aging only becoming 
apparent in the oldest participants: note the reduction in eyes looking more than 30° 
upwards after 70 years. 
 
 
Conclusion 
Based on analysis of pupil shape, gaze excursion differed between gaze positions in a 

manner consistent with the known direction of action of the extra-ocular muscles. There 

was less variation between eyes in gaze excursion than in gaze direction. Gaze position 

analysis could identify a lack of difference between different gaze positions in an individual 

eye. However, there are significant issues with this technique that limit its usefulness and 

the conclusions that can be made. Between eye comparisons of position were limited by 

factors including a non-circular pupil, and from optical effects of observing anterior segment 

structures through the peripheral cornea (Figures 3.3.6 & 3.3.8)238. Relating gaze position to 

retinal area imaged was further complicated by variation in the position of the imaging 

beam to the pupil, and the ability to vary the OCT reticle position within the OCT window. 

Therefore it was concluded that this gaze position analysis has limited value in quantifying 

the location of sampled retinal area, and this method did not contribute to later chapters of 

this thesis. 
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3.4. Description of posterior pole and mid-peripheral retinal shape 

 
This section describes the variation in local retinal shape across the eye. First, the 

distribution of the magnitude of total anomaly across the entire set of scans is described. 

Then, the curvature and anomaly from each region is reported.  

 

Methods 
Subjects 

Seventy eyes of 70 participants were recruited from ophthalmology clinics in South Australia 

between October 2016 and August 2019. Their reason for attending the clinic were new 

onset floaters (51 eyes, all with posterior vitreous detachment), optometric initiated review 

for retinal assessment of myopic eyes (16 eyes), ocular hypertension (one eye, no structural 

or posterior segment abnormality), and previous retinal detachment or retinal tear in the 

contralateral eye (two eyes, both with posterior vitreous detachment but no retinal 

pathology). Myopic maculopathy was present in 13 participants: 3 with a tessellated fundus 

(category 1 in the International photographic classification of myopic maculopathy239), 4 

with diffuse chorio-retinal atrophy (category 2), and 6 with patchy choroidal atrophy 

(category 3). Participant age range was 33–83 years (median 62 years), with axial length 

from 21.11–36.88 mm (median 24.52 mm). There were 40 right eyes, and 30 left eyes; 37 

were female, 33 male.  

 

A retinal OCT survey was performed for each eye, and B scan retinal curvature and anomaly 

were determined as described in Chapter 2. Results are described by the distribution of 

anomaly values across all scans, and by the median and interquartile range of anomaly 

values and curvature across the different regions of the eye (XvalMYPVDbyALmm). 

 

Results 
Distribution of magnitude of irregularity 

The distribution of the size of total anomaly is illustrated by a histogram in Figure 3.4.1. B 

scan examples from total anomaly values of 5, 10, 20, and 35 mm are presented in Figure 
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3.4.2. The majority of eyes had low anomaly values, reflecting a good correspondence of 

retinal shape to a parabola. 

 

 
Figure 3.4.1. Distribution of total anomaly, all B scans. The number of B scans for each total 
anomaly value is shown. 94% of B scans had a total anomaly less than 5 mm. Median B scan 
total anomaly was 2.14 mm. Units of anomaly: mm. 
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Figure 3.4.2. Sample B scans by total anomaly value. Representative B scans with total 
anomaly 5 mm (A), 10 mm (B), 20 mm (C), and 35 mm (D) are presented. All feature values 
were corrected for the retinal width in the B scan, to allow comparison between images (the 
anomaly value units are in fact mm2 per mm of retinal length). Retinal mirror artefacts (to 
the left side in images A & B, and the right side of C & D) were ignored. a = total anomaly.  
 

 

 

The magnitude of irregularity in different regions is shown in Fig 3.4.3a. Regional median 

total anomaly, peak anomaly value, root mean square anomaly, and curvature values are 

presented in Table 3.4.1. The anterior inferior regions had the greatest irregularity, followed 

by the macula. This means these regions had the most irregular retinal contour that 
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corresponded least with a best-fit quadratic curve. To investigate whether this distribution 

was particular to this group, the same measurements for a different set of eyes (retinal 

detachment eyes) were examined (Fig 3.4.3b). This second set of eyes exhibited a very 

similar distribution in retinal irregularity.  

 

 

 
Figure 3.4.3a. Retinal OCT shape irregularity in different regions of the eye. Graphical 
representation of the magnitude of irregularity (the sum of the first 30 frequency bins of the 
Fourier transformation of B scan shape) in different regions of the eye, viewed from a 
viewpoint supero-nasal to the eye (looking down on a left eye from a point above the 
medial end of the eyebrow). The vertical axis scale is in mm, so the taller the column the 
greater the irregularity. The anterior inferior and macular regions were the most irregular 
locations. 
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Figure 3.4.3b. Retinal irregularity distribution (2). This is the same presentation of median 
retinal shape irregularity as in Figure 3.4.3a, but for a different set of eyes. These eyes had 
all experienced retinal detachment, and surgical repair via vitrectomy. The distribution of 
irregularity across the eye was very similar to Fig. 3.4.3a, suggesting this pattern of regional 
variation is common. 
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Table 3.4.1. Regional shape median and interquartile range values. 

Region 

Median 
total 

anomaly 

Median 
peak 

anomaly 
Median 

rmsa 
Median 

K 

IQR  
total 

anomaly 

IQR  
peak 

anomaly 
IQR 

rmsa IQR K 

1 2.445 0.515 0.139 0.026 1.511 0.368 0.087 0.020 

2 1.838 0.387 0.108 0.026 1.043 0.275 0.068 0.018 

3 1.910 0.417 0.114 0.018 1.160 0.289 0.077 0.025 

4 1.813 0.400 0.109 0.028 0.927 0.284 0.064 0.023 

5 2.235 0.327 0.109 0.036 1.050 0.168 0.062 0.027 

6 1.681 0.341 0.093 0.032 0.886 0.242 0.056 0.021 

7 2.018 0.257 0.090 0.039 0.819 0.094 0.039 0.028 

8 1.671 0.349 0.095 0.031 0.803 0.207 0.050 0.025 

9 2.170 0.327 0.107 0.031 0.884 0.159 0.056 0.032 

10 1.906 0.404 0.109 0.032 1.131 0.297 0.078 0.019 

11 3.017 0.727 0.188 0.031 1.814 0.387 0.117 0.026 

12 1.766 0.337 0.096 0.034 0.819 0.211 0.052 0.018 

13 2.310 0.402 0.121 0.029 1.200 0.169 0.072 0.024 

14 1.989 0.382 0.108 0.036 0.958 0.263 0.063 0.021 

15 1.760 0.211 0.079 0.028 0.763 0.136 0.041 0.025 

16 1.962 0.401 0.109 0.027 1.027 0.280 0.064 0.019 

17 2.078 0.372 0.108 0.026 1.028 0.175 0.062 0.025 

The regions with the largest values (the macula and anterior inferior regions) were more 
irregular than regions with smaller values. Descriptors total anomaly, peak anomaly, and 
rmsa describe the variation in irregularity seen in B scans within a region, compared to the 
average B scan irregularity within the same region. Median total anomaly = region median 
absolute difference from the average region value. Median peak anomaly = median largest 
single frequency bin difference from the region average. rmsa = root mean square 
difference between each B scan and the average bin value. K = curvature at the vertex of 
the best-fit curve to the retinal shape. Units are mm for total anomaly, peak anomaly, and 
rmsa, and units are mm-1 for K. For the region identifiers key, see Table 2.2. 
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Distribution of higher anomaly B scans around the eye (MYPVDFrBsgtThr)  

The proportion of B scans with total anomaly greater than 5 mm in each region is shown in 

Tables 3.4.2, 3.4.3 and Figure 3.4.4. Consistent with the distribution seen in Figures 3.4.3, 

the inferior regions had the most high-anomaly scans. 

 

 

Table 3.4.2. Fraction of B scans in each region with total anomaly > 5 mm.  

 Temporal   Midline   Nasal  

Superior  0.067   0.035   0.066 

   0.062  0.042  0.066  

Midline  0.053  0.052  0.106  0.066  0.022 

   0.039  0.048  0.061  

Inferior   0.035   0.110   0.082 

Overall, 5.9% of B scans had total anomaly > 5 mm. Data presented as for a right eye, with 
the macula central, temporal regions to the left. Excludes B scans with no retinal image. 
 
 
 

 
Figure 3.4.4. Proportion of B scans over total anomaly threshold. The x-axis displays the 
anomaly value, the y-axis the proportion of all B scans that exceed that anomaly value. This 
is a graphical illustration of the bottom row of Table 3.4.3. 
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Table 3.4.3. Fraction of B scans (with retinal image) over anomaly threshold, by region.  

  Threshold (mm) 

Region 1 2 3 4 5 6 7 8 9 10 

Mac 0.986 0.692 0.330 0.142 0.106 0.082 0.066 0.053 0.043 0.036 

PS 0.934 0.416 0.133 0.067 0.042 0.027 0.020 0.016 0.013 0.011 

AS 0.968 0.460 0.154 0.066 0.035 0.017 0.006 0.001 0.000 0.000 

PST 0.974 0.395 0.144 0.093 0.062 0.040 0.023 0.010 0.006 0.004 

AST 1.000 0.662 0.234 0.115 0.067 0.041 0.025 0.017 0.009 0.006 

PT 0.965 0.324 0.107 0.073 0.052 0.038 0.029 0.021 0.013 0.010 

AT 0.998 0.513 0.145 0.077 0.053 0.042 0.035 0.026 0.024 0.020 

PIT 0.959 0.320 0.112 0.065 0.039 0.026 0.018 0.013 0.008 0.004 

AIT 0.998 0.600 0.174 0.063 0.035 0.029 0.020 0.020 0.018 0.013 

PI  0.972 0.449 0.169 0.086 0.048 0.026 0.019 0.012 0.008 0.005 

AI  1.000 0.830 0.505 0.264 0.110 0.074 0.040 0.025 0.015 0.010 

PIN 0.988 0.370 0.129 0.084 0.061 0.045 0.032 0.022 0.015 0.009 

AIN 0.999 0.654 0.257 0.122 0.082 0.053 0.030 0.023 0.013 0.007 

PN 0.991 0.495 0.166 0.099 0.066 0.044 0.028 0.017 0.009 0.005 

AN 0.976 0.350 0.109 0.050 0.022 0.010 0.005 0.003 0.001 0.000 

PSN 0.984 0.478 0.173 0.104 0.066 0.041 0.025 0.014 0.011 0.008 

ASN 0.998 0.540 0.186 0.105 0.066 0.042 0.024 0.014 0.010 0.007 

Mean 0.982 0.497 0.185 0.096 0.059 0.040 0.026 0.018 0.013 0.009 

The threshold (shown in the column headings) at which the fraction of scans in each region 
was greater than 0.05 is italicised in blue: more irregular regions have this value further to 
the right. This indicates how many scans in any region have elevated anomaly values, 
reflecting increased irregularity compared to the average scan. Key: Mac = macula, A = 
anterior, P = posterior, I = inferior, N = nasal, S = superior, T = temporal. 
 

 

Conclusion  
Most B scan retinal contours corresponded closely to a parabola described by a quadratic 

equation. In 94% of B scans the size of residual shape after removal of the best fit curve was 

of low value, having a total anomaly value less than 5 mm. Furthermore, the irregularity 

sampled in this way differed in different areas, with the inferior retina the most irregular 
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both in magnitude and number of higher anomaly scans. The anterior inferior region had 

the greatest average irregularity, and the greatest total anomaly. The macular region had 

more B scans with a total anomaly higher than 5 mm, suggesting this area had a moderately 

increased anomaly, which is likely to be due to the adjacent optic disc. 

 

 

3.5. Conclusions and discussion  

Reliability 
The aim of this section was to determine if repeated measurements taken from the same 

OCTs produced the same or similar results in retinal shape metrics, and whether repeat 

OCTs from an eye produced the same result each time. Both re-measurement of the same 

images by different operators, and re-imaging the same retina multiple times produced 

consistent results. This was unsurprising. The Livewire tool, based on graph theory, has been 

extensively used in biomedical image analysis. Contemporary OCT devices also have 

scanning rates fast enough that many of the image artefacts seen with slower (time-

domain) devices are not apparent. All the B scan images used in this work were multiple-

pass composite images constructed from A scans repeated 4-8 (spectral domain) to 100 

times (swept source). This speed and duplication eliminated potential eye and head motion 

artifact which would have led to a registration failure and loss of the composite image. 

These images were all from a retinal survey of one eye. This does not test whether 

measurement reliability varies between different eyes, but does assess reliability across the 

varied retinal presentations seen in the different regions (see Figure 3.4.3). Both observers 

were ophthalmologists used to examining OCT images. This work cannot eliminate the 

possibility that other observers may not be as consistent. However, minimal instruction and 

no supervision was performed of observer 2, suggesting familiarity with OCT images was an 

acceptable standard.  

 

Most statistical tests are designed to determine whether a difference is present and not 

necessarily able to prove identity. The statistical non-significant difference between the 

measurements taken here should be considered less important than the high degree of 

similarity between the repeat measurements. 
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Merging OCT cubes 
Although the average magnitude of induced error was low with both rotation methods, 

quantitative analyses of composite images will have limited benefit without further image 

processing, as these combinations of unmodified images revealed differences in retinal 

position in the overlapping areas which would affect measured retinal shape. For this 

reason, further analyses in this thesis were directed to local retinal shape features found 

within individual B scans. 

 

Gaze position analysis 
Knowledge of where an eye was looking at the time of imaging might enable identification 

of the part of the retina imaged. If gaze position were quantifiable, it would define which 

part of the eye had been imaged and allocated to any particular region and ensure 

consistent sampling between eyes. With a lack of consistent between-eye internal 

landmarks once away from the optic disc and fovea, this section explored the use of the 

external eye image as an indication of eye position. Results were mixed. There were 

differences on average when comparing different gaze positions. However, there was 

significant within-gaze position variation in terms of the direction of gaze and how far in 

that direction different eyes had travelled.  

 

Section 3.3.1 explored the gaze position from iris images used the swept source OCT. Four 

cardinal directions of gaze were assessed: up, down left and right, and as these instructions 

are simple to understand it might have been expected that differences between individuals 

would be low. This analysis was performed as these gaze directions are more intuitively 

comprehensible to a participant – it is easier to consistently “look up” than “look up to the 

right”, so analysis of these gaze positions removed some subjectivity and assessed the 

method itself. The second section analysed the superior and supero-temporal gaze positions 

used by the classifier in Section 5.2. The method used here cannot determine the direction 

of the gaze of the eye from the image alone: pupil shape with supero-temporal gaze may 

appear identical to the infero-nasal gaze position. 
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For this analysis to be helpful in evaluating what part of retina was imaged with the OCT, the 

assumptions included that the pupil eccentricity when imaging the macula should be close 

to 1 (a round pupil); and that the beam pathway passes through the centre of the pupil. If 

these were correct, then confirmation that the same retina was being sampled in different 

eyes would arise from finding that the gaze excursion angle was similar across eyes for any 

single gaze direction; that the gaze direction should be similar across eyes for any gaze 

position; and that the macula position should have the narrowest range of gaze direction, 

noticeably different from the gaze positions looking away. Except for the final point, none of 

these factors were strictly true, limiting the usefulness of this approach.  

 

The eye does not gimbal around a fixed origin, but moves more like a horse’s head 

controlled by reins. There is therefore no direct link between the measured gaze position 

from examination of the pupil shape and the area of retina imaged with OCT. Eye 

movement control varies between individuals240 and is influenced by many factors including 

age241, which affect upgaze more severely than other directions242, as well as vestibular 

dysfunction243, and neurological disease244,245. 

 

This analysis ignores any torsion around z-axis (roll), and neglects optical effects from an off-

centre path through the cornea, which has been shown to magnify anterior segment 

features along the gaze direction axis and will have greater effects with increasingly 

eccentric gaze246. This might seem to favour a reduction in measured eccentricity, but as 

this effect increases toward the distal edge of the cornea, the iris may be widened distally, 

leading to a reduction in apparent pupil width and increase in measured pupil eccentricity 

(Figure 3.3.8). This method ignores any shift in the pupil centre relative to the visual axis 

with changes in pupil size247. However, as all eyes in the study were dilated this effect 

should not be significant.  

 

Further limitations to the method include the fact that some ellipse matching to the pupil, 

particularly as gaze diverts further away, was on an arc of the pupil margin only, rather than 

the full pupil margin, due to eyelid and peripheral cornea interfering with visualisation. In 

some cases, it was not possible to identify enough of the pupil for analysis. 
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The OCT beam pathway was always horizontal, and when the eye is looking away, the 

imaging beam completes a chord rather than a diameter across the eye. In addition, any 

displacement of the imaging beam pathway from the pupil centre affects the area of retina 

imaged. Moving the reticle off the pupil centre images more peripheral retina if displaced in 

the direction of gaze, and images more posterior retina if moved opposite to the direction 

of gaze. This loosens the link between the observed gaze position and the area of retina 

sampled. Further analysis could compensate for the off-centre image acquisition seen here 

(Table 3.3.3) to better assess the significance of variation in gaze direction and excursion 

between eyes for any gaze position. However, it should be noted that the retina was 

sampled with 21 parallel B scans with SD OCT, and each imaged region was defined by the 

highest anomaly B scan out of the 21 B scans per cube. This vertical sampling spread further 

reduces the impact the variation in gaze position would have on inter-eye comparison.  

 

The superior rectus muscle has a mixed elevation and intorsion action from looking straight 

ahead, but a pure elevation action in lateral gaze. Looking directly upward is a more 

complex composite movement for the eye than looking up and out. Therefore, it was not 

surprising that participants generally looked further from the primary position when looking 

supero-temporally than superiorly.  

 

If the eye looked equally up and out when looking supero-temporal the rotation angle 

would be expected to be 45°. As it was 49°, this suggests a gaze position only marginally 

more superior than supero-temporal. The average difference between gaze directions for 

superior and supero-temporal gaze positions was 35°, a good separation. The superior gaze 

position was always imaged before the supero-temporal, so the slight nasal displacement of 

the former was not related to the subject deliberately looking away from the supero-

temporal position. The nasal trend may arise from the operator subconsciously and pre-

emptively seeking to differentiate the superior position from the supero-temporal. 

 

Comparing which part of the retina has been imaged in different eyes from the retinal 

image itself is limited by a lack of defined landmarks once in the mid-periphery and away 

from the optic disc and fovea. Choroidal pigmentation and retinal vessels and their branches 
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vary between individuals in their appearance and location. The more recognisable vascular 

landmarks (such as first, second, and third order branching points) may vary in their 

absolute position relative to one another and there are uncertainties around the variable 

growth of the eye: whether it is a characterised by generalised inflation, variable regional 

stretch, or even addition of new tissue landmarks. The axial length (distance from image 

focal point and retina) will also slightly influence image size from optical effects.  

 

Retinal imaging in this work was performed without strictly defined points of fixation for the 

subject. For gaze excursions for the two superior and supero-temporal regions analysed 

here, participants were asked to look up as far as possible, with the gaze direction “straight 

up”, or “up to the right/left”, in all cases guided by the operator observing the participant’s 

position. The scanning laser ophthalmoscope retinal image was useful in confirming the 

position of the peri-macular cube relative to the posterior pole, and was useful in modifying 

gaze position – to ensure it was away from but adjacent to the macula. The position of the 

more eccentric mid-peripheral cubes studied here could broadly be confirmed by the 

visualisation of more distal retinal vasculature, as well as through sighting the participants 

gaze position by looking at the subject around the OCT machine. While the gaze excursion 

would be expected to vary from person to person, in these eyes it varied less than the gaze 

direction, although analysis of both was limited by the factors mentioned above.  

 

 

Retinal shape distribution 
Sections 3.1-3.3 provide confidence that OCT sampled retinal shape measurements can be 

relied upon to assess local shape features, although each image should be considered 

separately for analysis and does not provide information about larger-scale or generalised 

information about retinal shape. Section 3.4 used this approach to describe the variation in 

curvature and irregularity across the posterior pole and mid-peripheral retina. This found 

that irregularity was greatest inferiorly. The irregularity at the macula relates to posterior 

staphyloma development in myopic eyes, but may also be linked to the adjacent optic disc 

influencing local anatomy. 
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The lower average irregularity in the nasal and temporal regions compared to inferiorly may 

reflect real differences in irregularity in these regions. However, it should be acknowledged 

that these regions with lower average irregularity were sampled longitudinally, while the 

upper and lower regions were sampled transversely, which may have contributed to the 

difference. There may be differences in retinal shape arising from this different orientation: 

if the more midline horizontal regions (temporal and nasal) were imaged perpendicular to 

the visual axis (a vertical scan) irregularity in these regions might be higher (and the reverse 

might be true for the superior and inferior regions). This was not possible with the spectral 

domain OCT. Only horizontally oriented B scans can be 9 mm in length (although that has 

changed with more recent OCT devices). 

 

Local retinal shape was sampled with OCT by multiple passes of the superluminescent diode 

light source. This irregularity suggests growth of posterior eye tissues is non-uniform with 

irregular expansion5. If so, this also implies that once away from the distinct landmarks of 

the fovea and optic nerve, exact correspondence of sampled retinal area from one eye to 

the next is not just technically difficult but meaningless. Similar, rather than identical, areas 

can be sampled for comparison. 

 

Summary 
This chapter demonstrated that OCT can be relied upon to measure local retinal shape. The 

mismatch seen in combined images introduced errors, so each scan needs to be analysed 

individually, with shape information reflecting local, within-scan features. Gaze position 

analysis had enough confounding factors in the method that it was not helpful in describing 

retinal regions, and the significance of the identified variation in gaze position is reduced 

when analysing shape as each region is described by the maximum anomaly in any single B 

scan out of 21 scans in each cube sampling each region. Retinal shape varied around the eye 

in a consistent manner, with the inferior retinal areas the most irregular. 
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Chapter 4. The correlation between retinal shape irregularity 

and axial length 

 

Introduction 
Multiple sources have identified an increase in the incidence of myopia within populations 

over time, an increase projected to reach epidemic proportions through the first half of this 

century3. An inconvenience for many, the more severe forms of myopia carry with them a 

significant risk of visual impairment particularly in the later years248. The causes of visual 

impairment include myopic maculopathy, glaucoma, inability to access visual aids (a 

common cause of admission to blind schools in the developing world249,250), and retinal 

detachment13. 

 

Axial length is the primary determinant for most myopia100, and highly myopic eyes are 

known to have an increased incidence of staphyloma and globe shape irregularities on the 

scale documented by MRI, and visible with OCT168. OCT retinal shape sampling might be 

assumed to show increased irregularity with increasing axial length, but the sampling scale 

is smaller than MRI, with a width of 9 mm and maximum depth of 2 mm for spectral domain 

OCT, so that irregularity observed with MRI may not relate to OCT irregularity, and vice 

versa. Any correlation between the larger scale shape features of myopia documented with 

MRI and smaller scale features observed with OCT is uncertain.  

 

Reported work with MRI has focussed on the most extreme examples of myopia158,251. What 

has not been demonstrated is whether irregular globe shape only appears above a 

threshold of eye size, or changes in a continuous manner. If the former were the case, 

irregularity might be absent or minimal in hyperopic eyes and appear only in larger globes. 

This would imply that the regional irregularity noted in Section 3.4 originated from the 

subset of larger eyes alone. 

 

The aim of this study is to determine whether there is a correlation between retinal 

irregularity and axial length. 
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Published work 
 

The contents of Chapter 4 have been published in “Correlation between optical coherence 

tomography retinal shape irregularity and axial length. (Lake S, Bottema M, Williams K, 

Reynolds K. PLoS ONE (2019); 14(12). https://doi.org/10.1371/journal.pone.0227207). My 

contributions to this paper included data collection and analysis (90%), writing and editing 

(85%), and research design (25%). My co-authors contributed equally to research design 

(25% each); proof reading, revision of and guidance on writing the papers (5% each); and 

instruction and advice on data analysis (10%). 

 

Null Hypothesis  

That OCT measured retinal irregularity has no correlation with axial length. 

 

Methods 
Subjects 

The eyes included in this study (n = 70) were the same sample analysed in a previous 

section, the regional distribution of irregularity (Chapter 3.4, Table 4.1).  

 
Statistical analysis 

All-of-eye and regional median and interquartile range of total anomaly, peak anomaly, root 

mean square anomaly, and curvature were determined as described in Chapter 2, and 

correlated to axial length by Spearman’s rank correlation (XvalMYPVDbyALmm, 

MYPVDALregXvalmm, MYPVDALstatsmm, MYPVDallBSdatamm, and 

MYPVDALregstatsmmKc). The 95% confidence intervals were calculated with Fisher’s z-

transformation: 

95% confidence intervals = tanh (arctanh (O) ±1.96/√(P−3)). 

Bonferroni-Holm correction for multiple comparisons was performed with 4 = 0.05 

(BHcorrmmALK).  
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Results 
Correlation between all-of-eye shape variables and axial length  
Collating both regional and all-of-eye measures, the lowest p-value required for significance 

using Bonferroni-Holm correction for multiple comparisons with a = 0.05 was 0.00046. After 

correction, there was significant positive correlation with axial length for 36 metrics. These 

included the all-of-eye values median total anomaly (r = 0.66), peak anomaly (r = 0.61), and 

root mean square anomaly (r = 0.67). No correlation was seen between all-of-eye median 

curvature and axial length (r = 0.11). Interquartile range total anomaly (r = 0.60), 

interquartile range root mean square anomaly (r = 0.48), and interquartile range of 

curvature (r = 0.61) also correlated with axial length. Full results for all-of-eye variables are 

shown in Table 4.2 and Figure 4.1. Correlation was repeated with the largest eye (axial 

length 36.88 mm) removed in case this eye was skewing the results, with almost identical 

results, as the non-parametric analysis uses rank order, not absolute variable size.  

 

Table 4.1. Participant demographics. 

 
Median Range 

Age 62 33-83 

Axial length 24.52 21.11 – 36.88 

   
Sex 33 male, 37 female 

Laterality 40 right, 30 left 

Ethnicity Caucasian 67 

 Filipino 1 

 Chinese 1 

 Black American 1 

Seventy eyes from 70 participants. Age in years, axial length in mm. 
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Figure 4.1. The correlation between retinal shape metrics and axial length. Scatter plots of 
whole-of-eye features median total anomaly (A), median peak anomaly (B), median root 
mean square anomaly (C), and median curvature (D) plotted against axial length. 
Spearman’s rank correlation r is shown for each and was significant for A-C (see Table 4.2). 
 

 

 

 

 

 

 

 

 

  

20 25 30 35 40
Axial length (mm)

  

0

2

4

6

8

10
M

ed
ia

n 
su

m
di

ff 
(m

m
)

A. rho = 0.66

20 25 30 35 40
Axial length (mm)

  

0.2

0.4

0.6

0.8

1

M
ed

ia
n 

M
ax

E 
(m

m
)

B. rho = 0.61

20 25 30 35 40
Axial length (mm)

0

0.1

0.2

0.3

0.4

0.5

M
ed

ia
n 

rm
se

 (m
m

)

C. rho = 0.67

20 25 30 35 40
Axial length (mm)

0

0.02

0.04

0.06

0.08

0.1

M
ed

ia
n 

K 
(/m

m
)

D. rho = 0.11



  120 

Table 4.2a. Spearman’s rank correlation between shape metrics and axial length. 

Correlation r   

median 

total anomaly 

(95% CI) 

median 

peak anomaly 

(95% CI) 

median 

rmsa (95% CI) 

median 

K (95% CI) 

All of eye 0.66 (0.49 – 0.77) 0.61 (0.46 – 0.75) 0.67 (0.52 – 0.78) 0.11 (-0.14 – 0.32) 

Macula 0.52 (0.34 – 0.68) 0.50 (0.32 – 0.67) 0.50 (0.33 – 0.67) 0.32 (0.10 – 0.53) 

Posterior superior 0.47 (0.24 – 0.62) 0.46 (0.20 – 0.59) 0.49 (0.25 – 0.63) 0.16 (-0.16 – 0.31) 

Anterior superior 0.42 (0.19 – 0.60) 0.35 (0.11 – 0.55) 0.41 (0.19 – 0.60) 0.17 (-0.16 – 0.33) 

Posterior ST 0.33 (0.07 – 0.52) 0.32 (0.08 – 0.53) 0.35 (0.11 – 0.55) -0.22 (-0.45 – 0.02) 

Anterior ST 0.08 (-0.15 – 0.34) 0.11 (-0.15 – 0.34) 0.08 (-0.12 – 0.37) -0.02 (-0.26 – 0.23) 

Posterior temporal 0.44 (0.21 – 0.61) 0.34 (0.17 – 0.59) 0.38 (0.22 – 0.62) -0.18 (-0.37 – 0.12) 

Anterior temporal 0.09 (-0.16 – 0.33) 0.31 (0.10 – 0.54) 0.21 (-0.01 – 0.46) 0.11 (-0.18 – 0.32) 

Posterior IT 0.48 (0.24 – 0.64) 0.37 (0.14 – 0.57) 0.42 (0.19 – 0.61) -0.38 (-0.50 - -0.04) 

Anterior IT 0.28 (-0.03 – 0.44) 0.29 (0.06 – 0.51) 0.34 (0.04 – 0.49) -0.30 (-0.49 - -0.03) 

Posterior inferior 0.56 (0.38 – 0.70) 0.49 (0.30 – 0.66) 0.49 (0.30 – 0.66) 0.32 (0.15 – 0.56) 

Anterior inferior 0.20 (-0.04 – 0.42) 0.10 (-0.14 – 0.33) 0.17 (-0.09 – 0.38) 0.03 (-0.21 – 0.27) 

Posterior IN 0.47 (0.27 – 0.65) 0.41 (0.19 – 0.59) 0.45 (0.25 – 0.63) 0.13 (-0.11 – 0.36) 

Anterior IN 0.35 (0.13 – 0.56) 0.29 (0.09 – 0.53) 0.29 (0.01 – 0.47) -0.15 (-0.44 – 0.02) 

Posterior nasal 0.35 (0.10 – 0.53) 0.30 (0.06 – 0.51) 0.35 (0.09 – 0.53) 0.21 (-0.09 – 0.39) 

Anterior nasal 0.14 (-0.08 – 0.40) 0.05 (-0.22 – 0.27) 0.14 (-0.13 – 0.36) -0.09 (-0.35 – 0.13) 

Posterior SN 0.41 (0.18 – 0.58) 0.44 (0.21 – 0.60) 0.41 (0.18 – 0.58) 0.11 (-0.18 – 0.30) 

Anterior SN 0.61 (0.44 – 0.75) 0.47 (0.31 – 0.68) 0.59 (0.44 – 0.75) -0.17 (-0.43 – 0.05) 

Tables 4.2a & b. Spearman’s rank correlation r between axial length and median and 
interquartile range total anomaly, peak anomaly, rmsa, and curvature. Values significant 
after Bonferroni-Holm correction for multiple comparison are highlighted in bold, and for all 
these values p < 0.001. Correlation between irregularity measures (median total anomaly, 
peak anomaly, and rmsa) and axial length was greater at the macula and adjacent cubes 
than in more anterior cubes. Interquartile range of curvature (IQR K) correlated with axial 
length in most nasal regions. rmsa = root mean square anomaly, IQR = interquartile range, 
ST = supero-temporal, IT = infero-temporal, IN = infero-nasal, SN = supero-nasal. 
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Table 4.2b. Correlation between interquartile range of shape metrics and axial length. 

Correlation r   

IQR 

total anomaly 

(95% CI) 

IQR 

peak anomaly 

(95% CI) 

IQR 

rmsa (95% CI) 

IQR 

K (95% CI) 

All of eye 0.60 (0.41 – 0.72)  0.06 (-0.18 – 0.29)  0.48 (0.28 – 0.64) 0.61 (0.44 – 0.74) 

Macula 0.47 (0.26 - 0.63) 0.53 (0.34 – 0.68) 0.52 (0.26 – 0.63) 0.44 (0.26 – 0.63) 

Posterior superior 0.25 (0.01 – 0.46) 0.24 (0.03 – 0.47) 0.26 (0.03 – 0.47) 0.20 (-0.01 – 0.44) 

Anterior superior 0.33 (0.11 – 0.55) 0.34 (0.17 – 0.59) 0.37 (0.14 – 0.57) 0.11 (-0.20 – 0.29) 

Posterior ST 0.16 (-0.09 – 0.40) 0.11 (-0.20 – 0.30) 0.13 (-0.15 – 0.34) 0.34 (0.09 – 0.54) 

Anterior ST 0.00 (-0.20 – 0.29) -0.06 (-0.22 – 0.27) -0.06 (-0.24 – 0.25) 0.07 (-0.20 – 0.29) 

Posterior temporal 0.44 (0.22 – 0.62) 0.13 (-0.11 – 0.38) 0.28 (0.09 – 0.53) 0.47 (0.24 – 0.64) 

Anterior temporal 0.33 (0.09 – 0.53) 0.12 (-0.27 – 0.22) 0.21 (-0.06 – 0.42) 0.23 (0.00 – 0.47) 

Posterior IT 0.41 (0.19 – 0.60) 0.10 (-0.23 – 0.27) 0.20 (-0.09 – 0.40) 0.31 (0.03 – 0.49) 

Anterior IT 0.29 (0.05 – 0.51) 0.16 (-0.10 – 0.38) 0.28 (0.02 – 0.48) 0.47 (0.26 – 0.65) 

Posterior inferior 0.48 (0.27 – 0.64) 0.32 (0.08 – 0.51) 0.29 (0.08 – 0.51) 0.35 (0.12 – 0.54) 

Anterior inferior 0.04 (-0.20 – 0.28) -0.16 (-0.34 – 0.14) -0.12 (-0.33 – 0.14) 0.31 (0.05 – 0.50) 

Posterior IN 0.37 (0.13 – 0.55) 0.08 (-0.18 – 0.30) 0.26 (-0.01 – 0.45) 0.45 (0.26 – 0.64) 

Anterior IN 0.29 (0.05 – 0.49) 0.08 (-0.19 – 0.29) 0.18 (-0.05 – 0.42) 0.20 (-0.07 – 0.40) 

Posterior nasal 0.27 (0.01 – 0.46) 0.14 (-0.17 – 0.32) 0.20 (-0.08 – 0.39) 0.57 (0.36 – 0.70) 

Anterior nasal 0.39 (0.15 – 0.57) -0.06 (-0.27 – 0.22) 0.16 (-0.12 – 0.36) 0.45 (0.23 – 0.62) 

Posterior SN 0.25 (0.00 – 0.45) 0.15 (-0.13 – 0.34) 0.20 (-0.04 – 0.42) 0.58 (0.40 – 0.72) 

Anterior SN 0.52 (0.32 – 0.68) 0.04 (-0.19 – 0.30) 0.37 (0.15 – 0.57) 0.43 (0.24 – 0.64) 

See Table 4.2a for explanatory footnotes. 

 
Correlation between regional measurements and axial length 
Correlation between regional irregularity and axial length was strongest in the macula and 

posterior extra-macular cubes as measured by median total anomaly, peak anomaly, and 

root mean square anomaly. Interquartile range of curvature correlated with axial length in 

most nasal regions (Table 4.2b).  

 

Discussion 
This method provides a quantitative description of the deformation of the retinal contour 

that arises in relation to the size of the eye. The null hypothesis can be confidently rejected. 

Overall, retinal shape irregularity increased with axial length, even as local curvature did 
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not. This correlation was strongest at the macula and regions adjacent to it. This suggests 

that the irregularity relates to growth or expansion of the eye that occurs at or around the 

posterior pole.  

 

The ability to quantify OCT retinal shape allows comparison of multiple scans within and 

between eyes. Median and interquartile range are conservative choices of metrics to 

represent retinal shape, which limit the impact of outlying values on the analysis. The shape 

descriptors derived from the Fourier transformation and best-fit curvature are unaffected 

by position and orientation of the retinal image within the B scan. Some distortions of 

retinal contour occur during OCT image capture, most significantly due to axial length, so 

correction of curvature for axial length-induced artefact was performed135,143. Optical 

distortions from anterior chamber structures may alter retinal topography113. Both tilt of the 

eye and lateral decentration have little effect on retinal geometry in OCT, although they 

reduce the size of retinal arc sampled 135,138. The speed of A scan acquisition and the use of 

composite B scans preserves real information on retinal shape within the OCT image. Just as 

the pattern on an embossed leather belt is recognisably the same whether it is held straight 

or flexed, so the information within the Fourier transformation of retinal irregularity reflects 

real retinal features.  

 

Participant eyes were included in this study if they were found to have no abnormality on 

examination (other than the myopic retinal changes described in the Methods, Chapter 3.4), 

as the purpose was to explore and describe retinal shape features in non-pathological eyes. 

This analysis does not identify the cause of retinal irregularity. The reason for the 

progression is uncertain. Some of the irregularity was likely to be related to staphylomata. 

The suggestion that the tissue driving myopic eye growth is Bruch’s membrane5 raises the 

possibility that “overproduction” of this layer leads to tissue redundancy and “wrinkling”, at 

least in the transverse orientation of these scans. Alternatively, it may more directly relate 

to alterations in choroidal thickness or sclera: the irregular contour seen in dome-shaped 

maculopathy has been reported to be due to variations in scleral thickness leading to 

alterations in scleral rigidity252. Spectral domain OCT does not have sufficient resolution at 

depth to discriminate between these possibilities, particularly in mid-peripheral retina 

where signal strength is reduced. Imaging with swept source OCT may clarify this further.  
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The measurements presented here confirm impressions gathered from visual inspection of 

B scans in different parts of the eye. Irregularity, measured by Fourier analysis of the 

residual, increased with axial length at and around the macula. Interquartile range of 

curvature correlated with axial length at the macula and in most nasal regions, so these 

areas had a wider range of curvatures as axial length increased. The shape metrics of the 

anterior inferior and infero-nasal regions had no correlation to axial length. The inferior 

regions exhibited the most irregular retinal contour on OCT, irrespective of axial length (the 

images in Figure 3.1.2 are from inferior retinal regions). The uniformly high irregularity of 

shape in these regions may have masked any correlation between axial length and shape.  

 

The correlation between shape features and axial length agrees with the known irregularity 

of the eye at a larger scale seen with increasing myopia on MRI. This correlation could 

therefore be anticipated from clinical and MRI observations of globe shape, but has not 

previously been described with the resolution of the OCT. As the OCT has much greater 

resolution than MRI, retinal shape features reported here are so small that MRI images are 

unlikely to be able to confirm or refute the measurements taken with the OCT. In myopic 

eyes, the macula can be abnormal in shape with highly curved concave sections from 

staphylomata. Posterior non-macular cubes in myopic eyes image the margins of 

staphylomata and have negative curvature (convex inwards), and OCT cubes anterior to this 

often display a straight retinal contour. These factors reduce median curvature values in 

myopic eyes while increasing the range of curvature values and explain why median 

curvature does not correlate with axial length while interquartile range of curvature does, 

particularly in nasal regions.  

 

Measurement of variation in local curvature and the Fourier analysis of differences between 

OCT retinal contour and the best-fit curvature provide a measure of regional variation in 

shape. Although macular curvature analysis has been reported before2,136,158,168, this is the 

first work to systematically describe and quantify the residual, or difference between 

measured curvature and actual retinal contour, and extends the analysis to the mid-

peripheral retina. This mid-peripheral shape is also in agreement with an estimation of 

peripheral retinal contour from peripheral refraction171. Local curvature cannot be 
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extrapolated to represent the shape of the posterior segment as a whole. In summary, 

retinal OCT shape irregularity increased along with the axial length of the eye.  
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Chapter 5. Development of a classifier to identify retinal 

detachment eyes 

 

With retinal shape irregularity shown to correlate with axial length, the known major risk 

factor for retinal detachment, this chapter explores whether retinal shape can help identify 

eyes that have experienced a retinal detachment. As noted in the introduction, there is a 

real clinical need to identify these eyes before vision is lost. The aim of this chapter is to 

explore the ability of a classifier trained on retinal shape features to identify eyes that have 

had a retinal detachment in a post hoc group of PVD and retinal detachment eyes.  

 

For such a classifier to be useful in predicting disease before PVD has occurred, the effects 

on shape of the intervening events between the ex ante pre-PVD state and the post-PVD 

and post retinal detachment states need to be explored: does the PVD itself, the retinal 

tear, or the treatment events for retinal detachment (vitrectomy, and laser) influence 

retinal shape? These are explored and are presented in sections of this chapter as follows: 

 

Section 5.1 explores the effects of PVD on macular shape in three ways: a cross-

sectional comparison of retinal irregularity and curvature in a group of eyes that have had a 

PVD compared to a group of eyes that have not; a longitudinal comparison of macular shape 

in eyes before and after surgery for macular hole, where PVD is surgically induced as part of 

the clinical care; and a longitudinal analysis of macular shape in eyes that have been 

opportunistically imaged before and after spontaneous PVD. 

Section 5.2 trains and tests a classifier on eyes that have had either a PVD, or a 

retinal detachment repaired by vitrectomy, with the aim of separating retinal detachment 

eyes from the entire sample. The classifier is further tested with a group of eyes that have 

had treatment for a retinal tear without retinal detachment. 

Section 5.3 looks at the change in shape metrics from retinal OCT surveys in eyes 

that have been imaged both before PVD, then after PVD (3 eyes), or after surgery for PVD 

related retinal detachment (2 eyes). 

Section 5.4 presents an analysis of whether the presence of visible scarring produced 

by therapeutic retinal laser treatment visible in the OCT images alters the performance of 
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the classifier trained in Section 5.2. Also reported is whether the classifier performance is 

influenced by the location of the retinal tears within the eye, in particular whether the 

presence of superior or supero-temporal retinal breaks improved its success rate.  

 

 

Published work 

 

Part of the contents of Sections 5.2 and 5.3 have been submitted as a paper to Medical 

Physics, titled “Optical coherence tomography retinal irregularity-based classification of 

retinal detachment and posterior vitreous detachment eyes.” Authors Lake SR, Bottema MJ, 

Williams KA, Reynolds KJ. The paper differs in that the results in this thesis consist of a larger 

dataset than those in the publication. My contributions to that paper included data 

collection and analysis (90%), writing and editing (85%), and research design (25%). My co-

authors contributed equally to research design (25% each); proof reading, revision of and 

guidance on writing the papers (5% each); and instruction and advice on data analysis 

(10%). 
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5.1. The effect of posterior vitreous detachment on macular shape 
Introduction 
Were image analysis to be used to predict PVD-related vision threatening events such as 

retinal detachment prior to the occurrence of PVD, one would need to know what effect 

PVD itself has on retinal shape. Were PVD to alter retinal shape, prediction based on 

evidence taken after the event would be less likely to help decision-making based on shape 

measurements taken before PVD. Conversely, an absence of shape change with PVD would 

suggest that information acquired from eyes post-PVD could be used to interpret the 

significance of pre-PVD retinal shape.  

 

The fovea is a consistent landmark in all non-pathological eyes. It is the source of the 

highest acuity vision, and being located at the posterior pole, it is easy to image with the 

OCT in a cooperative subject in whom no media opacities are present. The ability of subjects 

to fixate with the fovea, its anatomical consistency, and the facility of many OCT machines 

to register an image to allow repeat examination of the same site allows fast, easy, and 

reproducible image capture. Along with the optic disc, the macula is the most commonly 

imaged part of the eye, so that sample images are widely available. As a landmark, it also 

facilitates comparison of shape between eyes.  

 

PVD may occur at any time within the age range 55 – 85 years, and the time of occurrence 

of PVD is unpredictable in any individual27,28. This makes it difficult to obtain a large volume 

of longitudinal information regarding whether PVD leads to change in shape within a single 

eye. While many individuals present to eye health practitioners with a new onset PVD, pre-

PVD image capture from these eyes relies on chance encounters with patients assessed 

ideally for fellow eye co-morbidity to record macular OCTs before and after PVD. This makes 

comparison of retinal OCT images pre- and post- PVD for any single eye an opportunistic 

event.  

 

The largest dataset in this section presents a cross-sectional analysis of macular shape, 

performed by comparing the maculae of a group of eyes that have had a PVD to the 

maculae of those that have not. This cross-sectional analysis looked for differences between 
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the two groups, rather than differences within individual eyes over time. The hypothesis 

was that there would be no difference in macular shape comparing eyes with a PVD to eyes 

without a PVD. Analysis of this is presented in Section 5.1.1. 

 

One situation where the time of posterior hyaloid separation is known is with idiopathic full 

thickness macular holes, a visually symptomatic pathology associated with an attached 

posterior hyaloid that is treated by surgically inducing a PVD. This procedure provides an 

opportunity to document pre-operative shape (when no PVD is present), and compare this 

to the shape after the surgically induced PVD. All these eyes were routinely imaged both 

before and after surgery to diagnose the macular hole and assess the success of surgery. 

This provides some longitudinal data on shape change from PVD, albeit with a surgically 

induced event rather than a natural one. The objective was to investigate whether shape 

metrics differ between pre-operative and post-operative states. Analysis of these eyes is 

presented in Section 5.1.2. 

 

To test whether spontaneous PVD produced shape changes at the macula, a comparison of 

HD radial OCT images was performed from subjects who had been imaged prior to PVD, 

then imaged again after PVD had occurred. This has the advantage of a longitudinal analysis 

of eyes, investigating the effects on shape of “natural” or spontaneous PVD, but with the 

disadvantage that recruitment was more difficult with a lower number of samples as a 

result. Analysis of these eyes is presented in section 5.1.3. 

 

Aim 
Section 5.1 explores whether macular shape is affected by PVD.  

 

Common methods 
The OCT imaging protocol for this study was different from others in this chapter, with a 

single HD radial cube acquiring 12 radially oriented B scans of 6 mm, all centred at the 

fovea. Retinal shape was taken as the high intensity ellipsoid layer traced using the Livewire 

plug in for ImageJ.  
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Retinal shape was analysed with the combination of best fit curvature and total irregularity 

after the best fit curve was deducted from the retinal shape (MHFEPVxzcomp, and 

prepostMHcomp). Magnitude of irregularity was calculated in the frequency domain as 

the sum of the first thirty frequency bin moduli. Curvature was corrected for axial length 

induced artifact. There were twelve curvature and twelve irregularity values per macula 

cube. To manage the nested data structure, the shape of each eye was analysed with mean 

and range of curvature and mean and range of irregularity253. This is analogous to analysis of 

corneal shape which is summarised by average dioptric power and astigmatism (the 

difference between maximum and minimum power).  

 

 
 
5.1.1. Cross-sectional comparison of macular shape between eyes with and 
eyes without a PVD 
Methods 
Participants were recruited from the retinal clinics of Flinders Medical Centre and 

Eyemedics, Adelaide between July and December 2019. If they required OCT imaging as part 

of their normal clinical care they were approached and after informed consent macular OCT 

images were taken for this study. 

 

Posterior vitreous detachment was diagnosed when both symptoms and examination were 

consistent with a PVD, with an absence of any visible posterior hyaloid seen on the OCT at 

the macula or the disc (Figure 5.1.1). The latter was confirmed with extra imaging across the 

disc where not clear within the standard length 6 mm radial scans.  

 

No PVD was diagnosed by the presence of hyaloid attached to any posterior pole structure 

seen within the B scan, optic disc or macula. This included eyes where vitreo-macular 

separation was apparent within the macular OCT but attachment was still seen to the optic 

disc on a wider or adjacent scan.  
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Figure 5.1.1. OCT appearance of eyes with a PVD (top) and without PVD (bottom). The 
upper row (PVD eyes) has no visible posterior hyaloid membrane seen in the OCT (left) with 
a visibly detached posterior hyaloid seen on clinical examination (colour fundus photograph, 
right). The lower row OCTs (no PVD) illustrate posterior hyaloid still attached to the macula, 
with either minimal separation (red ellipse, lower left), or perifoveal separation (lower 
right). All analyses in this work considered PVD to have occurred when the posterior hyaloid 
face was documented to have completely separated from both optic disc and macula. 
 

 

Statistical analysis  

Difference between these groups was assesssed by a two-sample t-test, with significance 

set at p ≤ 0.05. 

 

Results 
Participant reasons for attending clinic are shown in Table 5.1.1. Participant demographics 

are shown in Table 5.1.2.  There were 51 eyes without and 49 eyes with a PVD. B scan shape 

features are shown individually (not clustered by eye) in Figure 5.1.2. 
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Table 5.1.1. Participant reasons for attending clinic. 

Reason for attending Number no-PVD eyes Number PVD eyes 

PVD  34 

Retinal detachment, FE 9 3 

Macular hole, FE 6  

PVD, FE 5 1 

Review for diabetes 5 2 

Post op cataract surgery, FE 4 1 

OAG/OHT 4 2 

CSR, FE 3  

Epiretinal membrane, FE 2 4 

Retinal tear, FE 3  

Retinal vein occlusion, FE 2  

ARM 1 2 

cataract 2  

Choroidal naevus 1  

Healthy eye 1  

Iritis  1  

Lattice degeneration 1  

Macular microaneurysm, FE 1  

Total 51 49 

Key: ARM = age related maculopathy, CSR = central serous retinopathy, FE = fellow eye (the 
pathology listed was in the other eye, with no abnormality in the eye included), OAG = open 
angle glaucoma, OHT = ocular hypertension, PVD = posterior vitreous detachment, RVO = 
retinal vein occlusion. 
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Table 5.1.2. Participant demographics. 

 No PVD (+/- SD) PVD (+/- SD) p-value (t-test) 

Mean age (years) 64.8 +/- 8.82 66.2 +/- 8.19 0.40 

Mean axial length (mm) 23.89 +/- 1.02 24.29 +/- 1.48 0.18 

Mean K (mm-1) 0.0238 +/- 0.014 0.027 +/- 0.021 0.005* 

Mean residual (mm) 2.480 +/- 1.113 3.341 +/-2.525 < 0.005* 

* Significance of these values should be treated with caution, as this involves single level 
analysis of nested data. See main text. 
 
 
 
 

 
Figure 5.1.2. Scatter plot of irregularity and curvature. Each point represents a single B 
scan. Red circles are from PVD eyes, and blue crosses from eyes with no PVD. There was a 
greater spread of values for curvature and irregularity from B scans of eyes with a PVD. 
However, analysis of this requires accounting for the nested nature of the data – that 12 
scans belong to each eye254. 
 
 

 

Comparison of group shape features  

Both range of curvature and range of irregularity differed significantly between the two 

groups (mean range of curvature difference between groups = 0.0088 mm-1, p= 0.0028, 95% 

confidence intervals for difference between groups 0.0145 – 0.0031 mm-1. Mean range 

irregularity difference = 1.114 mm, p = 0.043, 95% confidence interval of difference 
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between groups 0.0373 – 2.190 mm). Examples of maculae with high and low curvature 

ranges are shown in Figure 5.1.3. 

 

Mean irregularity was significantly greater in PVD eyes (mean difference = 0.7643 mm, p = 

0.0018, 95% confidence intervals 0.135-1.394 mm). Mean curvature was not different 

between the no PVD and PVD groups (mean difference = 0.0025 mm-1, p = 0.43, 95% 

confidence intervals -0.0088 –  -0.0038 mm-1, Table 5.1.3).  

 

 

 

 

 

 

 
 

Figure 5.1.3. Three-dimensional reconstruction of maculae. A narrow range of macular 
curvature (top), and a wide range of macular curvature (bottom, myopic eye). The sides of 
the square tiles on the surface plane below the maculae are 1.2 mm. The tiles on the walls 
are 0.05 mm high. 
 

 

 

 

 



  134 

 

Table 5.1.3. Comparison of macular curvature and irregularity in eyes with and without a 

PVD. 

 Mean K  

 

Range K 

 

Mean 

irregularity  

Range 

irregularity  

No PVD 0.0243 +/- 0.0128 0.0156 +/-0.0071  2.577 +/- 1.091 2.370 +/- 1.417 

After PVD 0.0268 +/- 0.0185 0.0244 +/- 0.0192  3.341 +/- 1.974 3.484 +/- 3.594 

     

p-value 0.43 0.0028 0.018 0.043 

p-values determined with a two-sample t-test. K = curvature, SD = standard deviation. Units 
for curvature are mm-1, and mm for irregularity. 
 

 

Location of maxima and minima 

Orientation of the B scan with the maximum curvature differed between PVD and no PVD 

eyes (maximal curvature scan orientation: PVD eyes 5.06 (anticlockwise of vertical), no PVD 

eyes 6.33 (clockwise of vertical), p = 0.041, see Figure 2.1). This significant value likely 

reflects the discrete nature of the B scan orientation variables (indices 1-12) and the small 

sample sizes, rather than a true shift in maximum curvature orientation. There were no 

other significant differences in B scan distribution of maximal and minimum curvature or 

irregularity between eyes with and without a PVD (two-sample t-tests, p-values = 0.21-

0.95). Maximum and minimum curvature and irregularity did occur in all B scan orientations, 

but minimum curvature was most commonly in the horizontal meridian scan (Figure 5.1.4). 

The maximum curvatures were approximately orthogonal to the minimum, with a 

separation in maximum and minimum curvature of 60-120° (4-8 scans) in 88%, and 75-105° 

in 57%.   
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Figure 5.1.4. Location of maximum and minimum curvature and irregularity. Eyes with and 
without a PVD combined. The notable feature here was the minimum curvature was most 
commonly seen in the horizontal meridian (B scans 12, and 1). Scan 12 is the horizontal 
meridian B scan. 
 

 

Conclusion 
PVD eyes had greater average irregularity, and greater range of irregularity and curvature 

than eyes without a PVD. There was no significant difference in axial length or age between 

the two groups, suggesting these were not likely to be confounding factors.  

 

 

5.1.2 Macular shape before and after macular hole repair 
Methods 
Participants attending retinal clinics in South Australia with an idiopathic full thickness 

macular hole between February 2019 and May 2021 were invited to participate. Radial HD 

OCTs centred in the fovea were taken prior to surgery, and the same scan protocol repeated 

after surgery once the intra-ocular gas had cleared and the macula was visualised (Figure 
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5.1.5). Intra-ocular gas typically takes up to 2 months to disperse and allow imaging of the 

macula after surgery, and post-operative imaging was performed as soon as possible after 

this within the clinical setting. 

 

Macular hole eyes by definition have a break in the ellipsoid layer due to the hole in the per-

operative images, and in the post-operative images if surgery was unsuccessful or structural 

recovery poor. For this zone, to stay parallel with the retinal contour, the retinal shape was 

taken as a line parallel to the retinal pigment epithelial layer/Bruch’s membrane highly 

reflective band and continuous with the edges of the ellipsoid layer. 

 

Statistical analysis  

Comparison of pre- and post- operative observations was performed with a paired t-test. 

Two-sample t-tests were performed to compare the pre-operative macular hole shape to 

the sample of eyes with no PVD and no macular hole, to investigate whether the presence 

of the macular hole had affected shape. For all tests significance was set at p ≤ 0.05. 
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Figure 5.1.5. Macular hole prior to surgery (top), and after surgical closure (bottom). 

 

Results 
Twenty seven eyes were imaged before and after surgery: ten right eyes, seventeen left 

eyes, eighteen female, nine male, with average age 70 (range 56-90) years and axial length 

23.87 (22.01 – 30.24) mm. Twenty three eyes were surgical successes (hole closure) with a 

single procedure, with one eye (a highly myopic eye) a success after a second procedure. 

Individual B scan curvature and irregularity distribution are shown in Figure 5.1.6. 
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Figure 5.1.6. Scatter plot of B scan irregularity and curvature, macular hole eyes.  Each 
point represents a B scan from pre-operative eyes (blue crosses), or post-operative eyes 
(red circles). 
 

 

There was no difference in range of curvature or irregularity, pre- versus post- operation 

(mean difference in range of curvature between groups = 0.0006 mm-1, pK = 0.24. Mean 

difference in range of irregularity between groups = 0.0083 mm, pirr = 0.96, two-sample t-

tests, Figures 5.1.7 and 5.1.8).  

 

There was a statistically significant difference between mean curvature pre-operation and 

mean curvature post-operation (difference between groups = 0.0025 mm-1, pK = 0.04), with 

no difference in mean irregularity pre- to post- operation (difference between groups = 

0.089 mm, pres = 0.25). 

 

Comparing macular mean and range of curvature and irregularity between pre-operative 

macular hole eyes and 45 eyes without a macular hole with no PVD (eyes from the cross-

sectional group in section 5.1.1, above): there was no significant difference between 

macular hole eye shape before surgery and the macular shape of eyes without a PVD. 

Difference in the mean irregularity between these groups was neither statistically significant 

when the highly myopic macular hole eye was included (p = 0.058), or excluded (p = 0.16, 

Table 5.1.4). 
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Table 5.1.4. Comparison between pre-operative and post-operative macular curvature 

and irregularity for macular hole eyes. 

 Mean K 

 

Range K Mean 

irregularity 

Range 

irregularity 

MH 0.029 +/- 0.011 0.016 +/- 0.0076 3.17 +/- 2.18 

[2.82*] 

2.45 +/- 1.80 

Post op MH 0.026 +/- 0.012 0.016 +/- 0.0082 3.08 +/- 2.04 2.46 +/- 1.82 

p-value 

 

0.04 0.24 0.25 0.96 

no PVD 0.024 0.0150 2.48 2.31 

p-value 

 

0.10 0.61 0.058  

[0.16*] 

0.68 

The first three rows report the comparison of pre-operative macular shape to post-
operative macular shape in eyes with a full-thickness macular hole. The lower two rows 
provide information on a sample of eyes without a PVD and their comparison to the pre-
operative macula hole images (bottom row). The “no PVD” group (n = 45) differs slightly 
from that presented in Section 5.1.1: the latter included 6 fellow eyes from participants with 
a macular hole which were removed from this analysis. * Indicates mean pre-operative 
irregularity and p-value excluding one highly myopic macular hole eye (axial length 30.24 
mm). K = curvature, MH = macular hole. Units for curvature are mm-1, and mm for 
irregularity. 
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Figure 5.1.7. Pre-operative and post-operative macular hole irregularity. There was no 
difference in irregularity between the pre-operative and post-operative state for these eyes 
(Table 5.1.5). 

 
Figure 5.1.8. Curvature before and after surgery for macular hole. Scatter plot of post-
operative mean and range of curvature against pre-operative mean and range of curvature 
for macular hole eyes, with the pre-op = post-op line drawn in blue. There was a statistically 
significant difference between mean curvature pre-op and mean curvature post-op 
(difference between groups = 0.0025 mm-1, pK = 0.04), but no difference in range of 
curvature pre- versus post- operation (mean difference in range curvature between groups 
= 0.0006 mm-1, pK = 0.24). K = curvature. 
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Location of maximum and minimum shape metrics 

The locations of the maximum and minimum values of curvature and irregularity are shown 

in Figure 5.1.9. There was no difference in the orientation of maximum and minimum 

curvature and irregularity comparing pre-operation to post-operation macular hole eyes (pk 

= 0.73, pres = 0.41). In 50% of cubes the maximum and minimum curvature and in 37% of 

cubes (n = 20) the maximum and minimum irregularity were 5-7 scans apart (90° +/- one 

scan separated by 15°), making the maxima and minima approximately perpendicular to 

each other. In 60% of cubes irregularity and in 72% of cubes curvature were 4-8 scans (60-

120°) apart. 

 

 
Figure 5.1.9. Shape metric location, macular holes. Histograms of the location of the 
maximum and minimum curvature and irregularity values of all the macular hole radial 
scans. The most notable finding is again that the minimum curvature was most commonly 
seen in the horizontally oriented scans (1 and 12, top left chart). K = curvature, res = 
irregularity. See Figure 2.1 for the scan number key. 
 

Conclusions  
The only difference in retinal shape found in comparing eyes before and after macular hole 

surgery involving posterior hyaloid detachment was a larger mean curvature found before 
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surgery compared to after surgery. It is possible, then, that surgery or PVD leads to a small 

reduction in the curvature of the macular shape. There was no significant difference 

between eyes with a macular hole before surgery and eyes without a PVD but no macular 

hole. This suggests there was nothing unique in shape in macular hole eyes, and that the 

radial and tangential traction from the posterior hyaloid face hypothesised to cause macular 

holes does not affect shape.  

 

 

5.1.3 Macular shape before and after PVD 
Methods  
Eyes were imaged in retinal clinics at Flinders Medical Centre or Eyemedics, Adelaide. 

Participants were recruited if they attended with a new onset PVD where the eye had 

already had HD radial macular scans performed at a previous visit as part of normal clinical 

care. 

 

Statistical analysis  

Comparison of before and after PVD observations was performed with a paired t-test, with 

significance set at p ≤ 0.05. 

 

Results  
Eighteen eyes were identified and imaged between December 2019 and February 2022: 

eight right, ten left eyes, described in Table 5.1.5. 

 

There was no difference overall in mean and range of curvature and irregularity, comparing 

macular scans before and after PVD (Table 5.1.6), with little within-eye change in irregularity 

(Figure 5.1.10) or curvature (Figure 5.1.11). 
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Table 5.1.5. Eyes imaged before and after PVD. 

Eye Age  Interval between images (months) Reason for initial attendance 

V1 60 71 2 diabetic eye disease 
V2 61 62 8 eye check - NAD 
V1 62 76 11 fellow eye macular hole  
V1 63 70 2 cataract 
V1 64 69 4 ARM 
V2 65 71 6 cataract 
V2 66 66 9 fellow eye to retinal detachment 
V2 67 52 11 Retinal tear fellow eye 
V2 68 63 2 PVD other eye 
V1 69 69 3 diabetic eye disease 
V2 70 74 19 Fellow eye VMT 
V2 71 60 2 fellow eye to retinal detachment 
V2 72 56 20 Glaucoma review 
V1 73 75 12 Glaucoma review 
V2 74 70 17 Glaucoma review 
V2 75 73 14 Post cataract surgery 
V1 76 69 4 ARM 
V1 77 75 10 Fellow eye to cataract surgery 

NAD = no abnormality detected, ARM = age-related maculopathy, VMT = vitreo-macular 
traction. Age is at time of first examination in years.  
 

 

Table 5.1.6. Comparison of macular curvature and irregularity from eyes before and after 

PVD. 

 Mean K Range K 

 

Mean irregularity  Range 

irregularity 

Pre-PVD 0.020 +/- 0.017 0.019 +/- 0.011 3.81 +/- 2.27 3.35 +/- 2.14 

Post PVD 0.020 +/- 0.019 0.020 +/- 0.011 3.81 +/- 2.04 3.51 +/- 2.28 

     

p-value 0.92 0.83 0.92 0.07 

K = curvature, SD = standard deviation. Units for curvature are mm-1, and mm for 
irregularity. 
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Figure 5.1.10. Macular irregularity before and after PVD. There was no significant 
difference in macular irregularity in these eyes imaged before and after spontaneous PVD, 
with the line of no change drawn in blue.  (Table 5.1.6). 
 

 
Figure 5.1.11. Macular curvature before and after PVD. Scatter plot of mean and range of 
curvature before and after spontaneous PVD, with the line of no change drawn in blue. K = 
curvature. 
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Conclusion 
There was no difference in the shape metrics of macular scans in these eyes, when 

comparing images taken before PVD to after PVD. This result particularly differs from the 

findings of cross-sectional analysis comparing eyes with a PVD to those without, presented 

in Section 5.1.1. Irregularity was high in this group, most likely due to a mixed pathology 

including age related maculopathy with the presence of drusen.  

 

The maxima and minima were evenly distributed around the 12 radial B scans except for the 

minimum curvature, which was again most commonly seen in the horizontally oriented 

scan. This is the scan orientation most commonly examined in clinical practice, and the 

flattest overall. The separation of maximum and minimum curvature was “regular”, or 

approximately perpendicular to each other, in more than half of the eyes. 

 

 

Discussion 
 

The third cohort, that of eyes imaged both before and after spontaneous PVD, found no 

difference in macular shape metrics from development of PVD, despite having some 

heterogeneity in comorbidities. While perhaps high quality data in terms of no (potentially 

confounding) surgical intervention and a paired sample, this was from the smallest sample 

of the three groups.  Section 5.1.2 provided data that the only intra-eye change in shape 

metrics after surgically induced PVD and macular hole closure was a reduction in curvature 

after surgery. While cataract surgical incisions alter corneal curvature, incisions for 

vitrectomy are smaller and far from the posterior pole, and are known not to alter 

refraction and hence have little effect on the (more proximal) corneal shape255,256. It 

therefore seems improbable that the vitrectomy itself influences posterior curvature or 

irregularity. The cross-sectional data (comparing eyes with a PVD to eyes without) in Section 

5.1.1 had the largest sample size and found differences in mean irregularity and range of 

curvature and irregularity – essentially the opposite of the macular hole group.  

 

The coefficient of variation of all these parameters was high: 0.42 – 1.03 for irregularity, and 

0.44 – 1.02 for curvature. A power calculation, based on 4 = 0.05 with an 80% chance of 
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detecting a difference between the two groups from Section 5.1.1 (PVD and no PVD eyes) 

requires 210 eyes to detect a real difference for irregularity, and 1720 eyes for curvature. 

Using the pre- and post- operative macular hole data finds 746 eyes for curvature and 

16,640 for irregularity would be required to detect a difference between the groups. For the 

eighteen eyes in 5.1.3 (before and after PVD), 554 822 samples would be required for 

curvature and 28 028 758 eyes for irregularity to detect a difference. The large sample size 

required to detect a difference suggests the effect of PVD on curvature and irregularity is 

small, and that the significant findings in these analyses were spurious257. The shape 

differences seen in the cross-sectional group (Section 5.1.1) most likely reflect inter-eye 

variation in metrics rather than actual PVD effects (see Figure 5.1.12). It is concluded that 

PVD has little effect on macular curvature, and even less effect on irregularity. 

 

The fellow eyes from participants who had experienced a retinal detachment in one eye 

have been imaged as part of this project, and five individuals to date have re-presented with 

a PVD or retinal detachment and volunteered for repeat imaging. The comparison of these 

eyes is described in section 5.3, which provides further information about the effects of PVD 

(and surgery for retinal detachment) on shape.  
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Figure 5.1.12. Summary of macular shape features. The average and range of curvature 
(left axis) and irregularity (right axis), for the six groups (identified by coloured names along 
the bottom of the chart) compared in sections 5.1.1-3, with +/- one standard deviation error 
bars for each value. For each comparison pair the measures were similar, with wide error 
bars confirming there was insufficient power for conclusions to be drawn. K = curvature, 
mm-1, I = irregularity, mm.  
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5.2. Classification of retinal detachment and PVD eyes using shape 

Introduction 
 

Retinal shape irregularity and axial length both correlate with increasing myopia. Myopia 

itself is a major risk factor for development of retinal detachment after PVD, but axial length 

alone is not specific enough to predict retinal detachment. This section investigates whether 

a combination of these retinal shape features and axial length can differentiate between 

retinal detachment and PVD. If this is possible, and if PVD itself does not alter retinal shape, 

then it may be possible to predict retinal detachment before the PVD has occurred. 

 

This section compared regional retinal shape in OCT images of eyes that have had a retinal 

detachment with those that have had PVD. The comparison was used to identify features to 

train a machine learning classifier (using quadratic discriminant analysis) to discriminate 

between retinal detachment and PVD eyes. The classifier was generated with a training set 

of eyes that had either experienced a retinal detachment or an uncomplicated PVD. The 

models were then tested with a separate validation set of PVD and retinal detachment eyes 

from the same sample.  Although this chapter does not describe a fully developed test for 

retinal detachment, results are presented that comply with the recommendations of the 

STARD initiative reporting standards for studies of tests of diagnostic accuracy258. As there is 

no test for retinal detachment, there is no reference test available for comparison of 

effectiveness259. 

 

An agnostic approach to feature selection was used, looking for maximal points of 

difference in the anomaly spectrum between retinal detachment and PVD eyes in the 

feature identification set to use as algorithm predictors. 

 

Aim 

The aim of this section was to develop a classifier that can separate eyes that have had a 

retinal detachment from eyes that have experienced a PVD.  
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Methods  
Retinal breaks are not uniformly distributed around the retinal periphery, but more 

commonly found superiorly and temporally260. Retinal irregularity has a different pattern of 

distribution, with the greatest value found inferiorly. To explore if irregularity in different 

areas of the eye differs in retinal detachment and PVD eyes, the approach used was to 

explore the average B scan anomaly spectrum and select as features those points in 

individual region spectra that had the greatest difference between retinal detachment and 

PVD eyes, without prior assumptions as to where or what these should be. The first step 

was to explore the distribution of anomaly within the retinal detachment and PVD eyes. The 

aim was to review all the anomaly data to identify areas of larger difference between the 

two groups that might be useful for training a classifier.  

 

Subjects 

Participants were recruited from ophthalmology clinics in South Australia between October 

2016 and February 2021. Three groups were collected; eyes that had had an uncomplicated 

acute symptomatic PVD confirmed by a retinal specialist, eyes that had undergone 

vitrectomy without scleral buckling for rhegmatogenous retinal detachment, and eyes that 

had laser retinopexy to treat a PVD related tear without retinal detachment. Retinal tear 

eyes were maintained as a distinct group from retinal detachment eyes due to their 

different clinical presentation. The reasoning behind this is presented in the discussion. Only 

one eye from any participant was used for training or testing. 

 

 

Classifier development 

The process of image acquisition and feature generation was as described in the methods in 

Chapter 2. B scan anomaly spectra, curvature, age, and axial length were taken from PVD 

and retinal detachment eyes. Forty of the PVD eyes were also used in the description of the 

distribution of irregularity and to investigate the correlation between axial length and shape 

irregularity (Chapters 3 and 4). 
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Classifier development progressed through a feature selection – training – testing process. 

Feature identification was performed with the training set of eyes, with a separate 

validation set preserved for testing (Regdescr, Regdescre3D). Once the best features 

were selected, the classifier was trained, then tested with the validation set of eyes 

(BSspec). The training set consisting of 45 PVD and 35 retinal detachment eyes, which was 

approximately two-thirds of the initial sample of eyes. Ongoing recruitment of subjects 

enlarged the testing sets. The classifier was further tested with retinal tear eyes as an 

independent validation set. Five-fold cross-validation of the classifier was performed with 

the same training set of 80 eyes, using a test fold of 20% on classifiers generated by 80%, 

and run 100 times to determine the standard deviation of the model success rate 

(ClsXval).  

 

Statistical analysis 

The two-sample t-test was used to check for similarity between group demographics. Model 

performance is presented in a 3 x 2 table, with a two-tailed Fisher’s exact test used to test 

the probability of non-random distribution of classification between retinal detachment and 

PVD groups. Accuracy was defined as number of PVD eyes labelled ‘1’ plus the number of 

retinal detachment eyes labelled ‘2’ divided by the total number of eyes. 

 

Single variable models 

Axial length was the most successful single variable classifier, with larger axial length known 

to increase the risk of retinal detachment. To test whether axial length alone was sufficient 

to enable classification of eyes, a single variable classifier using axial length was tested for 

sensitivity and specificity in identifying retinal detachment eyes. 

 

Test reliability 
A subset of eyes was imaged twice with no change in their ocular status, and each imaging 

set tested independently. This was to explore the stability of classification with repeat 

imaging. While it could be concluded from Chapter 3 that shape analysis is reliable, it was 

noted that variations in gaze direction (Section 3.3) potentially introduced some variability, 

at least between individuals. Furthermore, even with an individual following gaze 



  151 

instructions consistently, movement of the sampling cube window antero-posteriorly might 

alter the area of retina sampled (see Methods – cube locations, Figures 2.2 and 2.3). 

 

 

Group weighting 

Weighting the probability of allocating a label to an observation can be done by altering the 

prior probability allocated to each group. By default, this is set to the relative number of 

each group in the training set, and is found and changed within the classifier by altering the 

‘Prior’ input to the classifier fitcdiscr in MATLAB. For example, if both groups were 

equally common, weighting would be [0.50 0.50]. Weighting for optimal classifier 

performance was explored using the training set, before testing with the validation set. 

Prior probability was evaluated across the range [1-Wt Wt] for [PVD RD] with Wt = 0.01 – 

0.99 in increments of 0.01 (CreROCTS). 

 

 

Results 
Demographics 
Ninety-seven eyes of individuals who had presented with an acute symptomatic PVD were 

recruited after examination by a retinal specialist. A second group of 99 eyes had undergone 

vitrectomy for a PVD-associated retinal detachment without scleral buckling. There were 68 

eyes in the retinal tear group. There were 134 right eyes, 130 left eyes, with 159 male 

participants and 105 females. Participant demographics are presented in Table 5.2.1, and 

mean age and axial length of the groups are presented in Table 5.2.2. Eyes that had suffered 

a retinal detachment had a significantly longer mean axial length than PVD eyes, and were 

from significantly younger individuals. The mean axial length of eyes with a retinal tear was 

shorter than for the retinal detachment group eyes, but longer than for eyes with PVD, with 

no difference in age.  
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Table 5.2.1. Participant demographics. 

 Sex Laterality Ethnicity* 

 M F R L  

      
PVD 50 47 50 47 Black American (1) 
Retinal detachment  72 27 51 48 South Asian (1) 
Retinal tear   37 31 33 35 South Asian (1) 

        
* Only non-Caucasian ethnicities listed. All ethnicities self-reported. 
 

 

Table 5.2.2. Subject demographics (study variables).  

   Age - years (+/-SD) AL - mm (+/-SD) 

PVD Training set  
(n=45) 64.5 +/- 6.6 24.08 +/- 1.10 

  Test set  
(n=52) 66.2 +/-5.1 24.36 +/- 1.24 

  All  
(n=97) 65.3* +/- 5.9 24.23† +/- 1.18 

Retinal 

detachment 
Training set  
(n=35) 63.1 +/- 7.4 25.10 +/- 0.98 

 Test set  
(n=64) 61.4 +/- 9.5 25.09 +/- 1.33 

  All  
(n=99) 62.1* +/- 8.8 25.09† +/- 1.21 

Retinal tear All  
(n=68) 64.1‡§ +/- 6.2 24.62||# +/- 1.28 

Mean age and axial length (AL) for the three groups, subdivided where appropriate into 
training set and validation set. Age is in years, with axial length in millimetres. Comparison 
of all retinal detachment eyes to all PVD eyes:  * age: p=0.0027, † axial length: p<0.005 
(0.00000115). RT eyes to all PVD eyes. ‡Age: p = 0.18, || axial length: p = 0.04. RT eyes to all 
retinal detachment eyes. §Age: p = 0.09, # axial length: p = 0.01 (two sample t-test). RT = 
retinal tear eyes, PVD = posterior vitreous detachment eyes, SD = standard deviation. 
 

 

Feature exploration: higher magnitude anomaly values 
As noted in Chapter 3, the majority of B scans exhibit very low irregularity, and this pattern 

was repeated in the B scans in these eyes (Figures 5.2.1 & 5.2.2). This will significantly 

influence any average values taken from areas of the eye. Initial analysis was therefore 

focused on B scans with total anomaly over a threshold determined by the observed 
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distribution. To explore the irregularity of the eye for feature selection, only B scans with 

total anomaly > 5 mm were used for feature selection, although all scans were used for 

training and testing. 

 
Figure 5.2.1. Histogram of the distribution of B scans by total anomaly value. Only 3.4% of 
B scans had total anomaly > 5 mm, and 35.7% had total anomaly > 2 mm. These data are 
from the retinal detachment and PVD group eyes in this section. x-axis is B scan total 
anomaly (mm), y-axis number of B scans with that anomaly. 

 
Figure 5.2.2. B scan anomaly distribution. The same histogram in Fig 5.2.1 limiting the x-
axis to total anomaly 0-10 mm to illustrate distribution at these lower values. x-axis is total 
anomaly (mm), y-axis number of B scans with that anomaly. 
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Figure 5.2.3 below presents the histogram of the bin indices of peak anomaly (the frequency 

bin location in each scan with the greatest anomaly) for B scans from retinal detachment 

and PVD eyes with total anomaly > 5 mm. Peak anomaly shows very little difference in 

distribution between diagnostic groups across the B scan spectra, except for a slight 

increase in higher bin/frequencies for peak anomaly for retinal detachment eyes.  

 

 
Figure 5.2.3. Peak anomaly indices.  Histogram of the bin index location of the largest single 
frequency bin (peak anomaly) for retinal detachment and PVD eye B scans. This includes all 
B scans from all regions. The y-axis is normalised to compare the distribution of peak 
anomaly between the two groups. There was very little difference between the groups, and 
in both diagnostic groups peak anomaly was most commonly in bin 3. PVD eyes shown in 
blue, retinal detachment eyes in red: the purple colour arises from the overlap of the two. 
 

 

Figure 5.2.4 presents the regional distribution of frequency bin indices of peak anomaly (the 

bin location of peak anomaly within the eye, a breakdown of Figure 5.2.3 into individual 
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regions) for retinal detachment and PVD groups, with again little difference. From these two 

figures it can be concluded that peak anomaly varies little between the two groups. 

 
Figure 5.2.4. Peak anomaly bin index distribution by region. While there are some 
differences in distribution between regions there is little difference between retinal 
detachment and PVD groups. PVD in blue, retinal detachment in red, the purple colour 
comes from the overlap of the two.  
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For all gaze directions there were more B scans with greater anomaly in the distal regions 

compared to the proximal regions.  

All-of-eye B scans, with anomaly > 5 mm 

The average normalised all-of-eye anomaly bin distribution for retinal detachment and PVD 

eyes is shown in Figure 5.2.5, with larger differences seen in bins 1-6, and the largest 

difference in bin 2. 

 

 
Figure 5.2.5. Mean normalised anomaly spectrum.  The average anomaly spectrum of 
retinal detachment and PVD eyes is shown, including only B scans where total anomaly > 5 
mm. RD = retinal detachment. 
 

 

The non-normalised (absolute bin difference from the average B scan value) distribution is 

shown in Figure 5.2.6. 
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Figure 5.2.6. Mean anomaly spectrum of retinal detachment and PVD eyes. Retinal 
detachment (RD) eyes have a greater average anomaly than PVD eyes, with the largest 
differences in bins 3, 4, and 6. Includes only B scans where total anomaly > 5 mm. 
 

 

From the above, it can be seen the number of larger total anomaly scans (Figures 5.2.1 & 

5.2.2) was similar to the group of eyes analysed in Chapters 3.4 & 4 (Figure 3.14), with most 

B scans having total anomaly < 5 mm. The distribution around the eye of higher total 

anomaly scans was similar in the retinal detachment and PVD groups. The bin index of 

maximum anomaly was similar between retinal detachment and PVD eyes (Figures 5.2.3 & 

5.2.4). However, differences were apparent between the groups within the anomaly 

spectrum (Figures 5.2.5 & 5.2.6). These differences were explored for feature selection. 
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Feature identification 

Features were identified from regions using only B scans with total anomaly > 5 mm, by 

looking for regional differences between retinal detachment and PVD group average 

anomaly spectra.  

 

Regional differences, anomaly > 5 mm 

Regional normalised (total anomaly =1) anomaly spectra for retinal detachment and PVD 

eyes are shown in Figure 5.2.7. The figure is repeated, with unified axes ranges and bins 11-

30 removed to concentrate on the information in bins 1 - 10 (Figure 5.2.8). 
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Figure 5.2.7. Mean normalised region anomaly spectra. Regions are shown as for a right eye, so the central subplot is the macula, and the top 
left subplot the distal supero-temporal region. Retinal detachment eyes (red) and PVD eyes (blue), including only B scans with total anomaly > 
5 mm. The x-axes identify bin numbers, and the y-axes the normalised anomaly distribution.  
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Figure 5.2.8. Mean normalised region anomaly spectra. The same data as shown in Figure 5.2.7, with only bins 1-10 included and y-axis 
ranges standardised for comparison. Retinal detachment eyes (red) & PVD eyes (blue). The x-axes are frequency bin number, and the y-axes 
anomaly values (with total anomaly set to 1). 
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Feature selection and reduction 

The four largest regional differences in anomaly all came from bins 2 and 3, and were in 

regions 3 (distal superior), 8 and 9 (proximal and distal IT) for both normalised and absolute 

bin amplitudes. The next largest region differences were 4 and 5 (both supero-temporal) for 

absolute magnitudes, and 6 (proximal nasal) and 16 (proximal supero-nasal) for normalised 

distributions. The largest differences between the normalised region anomaly spectra for 

retinal detachment and PVD eyes were taken to narrow the number of potential features 

(from the 30 bins x 17 regions) before formal selection for classification. As there was some 

overlap between cubes sampling proximal and distal regions in the same direction (such as 

regions 8 and 9), only one region from the same direction (for example, either 8 or 9) was 

included as a source for a potential feature. Distal regions have more over-threshold (total 

anomaly > 5 mm) B scans than proximal regions (p154, above), so if two regions in the same 

direction exhibited a similar difference between the groups, the more distal was preferred. 

This narrowed the potential features to be used for classification to those shown in Table 

5.2.3. Axial length was included as a feature, as it is known to affect both irregularity and 

retinal detachment risk. These anomaly features (identified using coordinates [region, bin]) 

were used to develop a discriminant model using as metrics the [region, bin] moduli with 

the greatest differences between the retinal detachment and PVD groups. 

 

Table 5.2.3. Features explored for selection. 
Region Bin Identifier 

3 3 [3, 3] 

9 3 [9, 3] 

3 2 [3, 2] 

6 2 [6, 2] 

16 3 [16, 3] 

5 3 [5, 3] 

- - Axial length 

Region refers to retinal location (Table 2.3). Bin refers to the frequency domain bin number. 
These features were selected as they had the largest difference between retinal 
detachment and PVD eyes in the normalised anomaly spectra. 
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Training 

Using only anomaly > 5 mm B scan data for training was unsuccessful as the data were too 

sparse: the number of B scans with anomaly > 5 mm were too small to populate the 

classifier predictors with 3-5 variables. This remained the case even after lowering the 

anomaly threshold to 2 mm. Therefore, feature selection was performed on B scans with 

anomaly > 5 mm as above, but the training set included any scan with an arbitrary low 

threshold set as total anomaly > 0.01 mm to include all scans. All models were created using 

the same training set of eyes, starting with all seven variables in Table 5.2.3 and proceeding 

with a progressive reduction in number, exploring all possible combinations of features. The 

average performance for each number of features is presented in Table 5.2.4. Accuracy was 

higher with more variables, but classifiers with more than 3 features were rejected due to 

the size of the dataset. Within the three-variable classifiers, the most specific high-accuracy 

feature set was using features [3, 2], [5, 3], and axial length. This had a specificity of 0.89, 

sensitivity of 0.50, and accuracy of 0.70. Age was tested as a possible feature and did not 

improve classification. 

 

 
Table 5.2.4. Classifier performance with progressive reduction in features.  
No. variables Specificity  Sensitivity  Accuracy  
7 0.853 0.636 0.746 
6 0.869 0.571 0.723 
5 0.883 0.501 0.698 
4 0.860 0.453 0.665 
3 0.827 0.413 0.630 
2 0.800 0.389 0.607 

Specificity, sensitivity, and accuracy are the average classifier performance with the number 
of variables identified in column 1. All models were created using the same training set 
eyes. 
 
 
Axial length single variable classification performance 
As axial length is known to relate to risk of retinal detachment, its performance as a single 

variable was explored. Performance using axial length depended on the threshold axial 

length chosen to separate PVD and retinal detachment: at a specificity of 75%, sensitivity 

was less than 5%, and with a sensitivity of 40% specificity was only 34%.  



  163 

Classifier cross-validation 

Five-fold cross validation of the three variable classifier was performed to assess model 

stability. The training set eyes were divided into five folds with axial length stratified random 

allocation between the folds. Models were created with four of the folds and success rate 

tested with the fifth fold. This was repeated 20 times to produce 100 model success rates. 

Average success rate was 0.694, with a standard deviation of the success rates of 0.088 

across the 100 models. 

 

Group weighting 

Figure 5.2.9 shows the training set sensitivity and specificity with different class weightings. 

The accuracy is shown in orange. Prophylactic retinal laser photocoagulation therapy has a 

poorly quantified but low risk of side effects (see Chapter 7: Discussion). In the situation 

with potentially an uncorroborated test for retinal detachment, a high specificity is more 

desirable than overall accuracy, especially when the disease state is much less common 

than the non-pathological one. For this reason, weighting was selected to attain the highest 

sensitivity with a specificity greater than 90%.  

 

 
Figure 5.2.9. Classifier training set performance by class weighting. Weighting at x = 0.5 is 
PVD: retinal detachment 0.5:0.5 (no class weighting). Weighting increases to the left to 
favour PVD up to 0.99:0.01, and to the right to favour retinal detachment up to 0.01:0.99. 
Optimal weighting was selected at x = 0.64, with a PVD: retinal detachment weighting of 
0.64:0.36 for the greatest sensitivity while maintaining specificity over 90%. 
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Classifier performance – validation sets 

With the test set of eyes, the classifier identified 23 out of 64 retinal detachment eyes 

(35%), with a specificity of 84%. A receiver operating characteristic curve was created from 

the test set eyes, with 95% confidence intervals generated through 5000 bootstrap replicas 

(Figure 5.2.10). Area under the curve was 0.75 (95% confidence intervals 0.58-0.85). Retinal 

tear eyes were employed as an independent validation set for the same classifier, conscious 

of the fact they have a different clinical presentation from retinal detachment eyes and may 

not be exactly the same condition. Out of the 68 retinal tear eyes, the classifier gave 16 

(24%) the predicted retinal detachment label (Table 5.2.5). 

 

The average values of both classifier shape features were smaller for the retinal tear than 

retinal detachment groups: mean (standard deviation) region 3 bin 2 anomaly was 0.80 +/- 

0.62 mm for retinal detachment eyes, and 0.61 +/- 0.38 mm for retinal tear eyes. For region 

5 bin 3 anomaly was 1.25 +/- 0.96 mm for retinal detachment eyes, and 0.94 +/- 0.59 mm 

for retinal tear eyes. Group axial length values are presented in Table 5.2.2.  

 

 
Figure 5.2.10. Receiver operating characteristic curve. Representing the classifier 
performance on the test set eyes, with 95% confidence intervals generated from 5000 
bootstrap replicas. Area under the curve = 0.75 (95% confidence intervals 0.58-0.85). 
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Table 5.2.5. Test set results.  
Category: Label 1 Label 2 Total 

PVD 44   8 52 

RD 41 23 64 

    

RT 52 16 68 

Total 137 47 184 

Performance of the three-variable classifier on the test set of retinal detachment and PVD 
eyes. The classifier had a sensitivity = 35%, and specificity = 84%, for identifying retinal 
detachment eyes. Fisher’s exact two-tailed test, comparing PVD and RD distribution 
(numbers in italics) p = 0.019. Label 1 is classifier predicted class PVD, and label 2 classifier 
predicted retinal detachment. The retinal tear eyes are reported in the bottom row as an 
independent validation set, and were preserved as a distinct category but tested with the 
same classifier due to their distinct clinical presentation but similar pathology. PVD = 
posterior vitreous detachment, RD = retinal detachment, RT = retinal tear eyes. 
 
 
Classification reliability 

To test whether classification changed when eyes were re-imaged, patients who had been 

imaged once and who subsequently attended retinal clinics for normal clinical care were 

approached, and if they agreed were scanned again. For all repeat examinations, only distal 

superior and supero-temporal retinal regions were imaged. OCT cubes were taken using the 

same instructions as for the first imaging session: “look straight up”, and “look up to your 

right/left”. No reference was made to the initial OCTs to assess consistency of retinal 

imaging. Thirty-three eyes were re-imaged and analysed an average of 14 +/- 16 months 

apart (three PVD, 13 retinal detachment, 4 retinal tear, and 13 “fellow eyes”). For twenty-

three of these eyes the classifier predicted PVD, and in ten eyes the classifier predicted 

retinal detachment. Thirty-two of the thirty-three eyes received the same classification from 

each imaging session, confirming that repeated images from the same eye produce the 

same classification results. One eye, a fellow eye without a PVD imaged 24 months apart, 

changed from PVD to retinal detachment classification without any change in clinical 

condition.  
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What do these B scans look like?  

Sample B scans used by the classifier to correctly label retinal detachment eyes are shown in 

Figure 5.2.11 accompanied by the wavelengths of the feature frequency bins used in 

classification.  

 

  
Figure 5.2.11. Shape features used in classification. The sine waves (top left) illustrate the 
two frequency bins used as classifier features. For comparison, three irregular B scans are 
shown from eyes correctly identified by the classifier as having had a retinal detachment. 
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Classifier space image construction 

The decision surface in the three-variable classifier space (created by CreClsImg) is 

shown in Figure 5.2.12. The limits for the figure axes are the minimum and maximum values 

of each variable within the entire sample set (Table 5.2.6). 

 

 
Figure 5.2.12. Illustration of the three-variable classifier decision surface. PVD eyes lie 
within the classifier space demarcated by the meshgrid cone. The risk of retinal 
detachment increased as shape feature values increased (Region 3 - bin 2, region 5 - bin 3, 
and axial length). Note the PVD volume is smaller than the retinal detachment volume in 
this space. This does not imply retinal detachment is more common. Eyes were not evenly 
distributed within this space with the majority having lower values in region 3 and region 5 
anomaly and were concentrated within the conic section. The irregular (scalloped) margin at 
the base of the cone facing the Region 5 axis is an artifact of the image construction 
(CreClsImg). 
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Table 5.2.6. Range of feature values. 
 Region 3 (mm) Region 5 (mm) Axial length (mm) 

Minimum 0.20 0.39 21.11 

Maximum  2.88 4.45 28.09 

Includes all eyes from both training and testing sets. 

 

 

 

Development and evaluation of a research test for ongoing prediction  
Introduction 

Section 5.2 identified shape features of retina that can identify a proportion of retinal 

detachment eyes from a mixed group of those and PVD eyes. The test has shown ability to 

identify eyes after they have had surgery for retinal detachment. Before use as a clinical 

test, it would need to be confirmed that it can identify eyes that will develop a retinal 

detachment before the PVD has occurred. As the risk of retinal detachment in any group 

varies from 1% (general population) to up to 20% (fellow eyes to retinal detachment eyes 

that do not have a PVD), a large number of eyes would need to be imaged to collect 

prospective data on classifier performance at identifying eyes at risk. While OCT image 

capture is quick, painless, and safe for the participant, imaging 17 regions of the eye was 

time consuming, which challenged workflow during regular clinic hours. The segmentation 

of seventeen or more OCT cubes was also time consuming and labour intensive. Processing 

a retinal survey used for the initial cohort of eyes in Section 5 took 3-5 hours, impractical for 

a point of care or large-scale research test. Time efficiency is important.  

 

The task of performing OCT retinal surveys for a large number of eyes, most of which will 

never have a problem (and likely not attend an eye clinic) to prospectively evaluate classifier 

performance was logistically challenging. In addition, social distancing precautions were 

introduced in Australia in March 2020 to reduce the spread of SARS-Cov-2261. As a 

consequence of this, research participant visits were restricted where possible to 

interactions simultaneous to normal clinical care262. The outcome of Section 5.2.1, that the 

information required comes from axial length and just two mid-peripheral OCT cubes, was 

fortunate for further study. The three variable classifier model needed only OCT cubes from 
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regions 3 (superior), region 5 (supero-temporal), and axial length. Further testing of this 

classifier was undertaken with participants imaged using this reduced protocol. With only 

two cubes required, the processing time was reduced to less than 30 minutes. 

 

Tyra Lange developed a shape analysis function named A2 for segmenting retinal OCT using 

graph theory and Dijkstra’s algorithm as part of her dissertation for Engineering Honours at 

Flinders University263. The objective was to create a freestanding function that allowed any 

user to take OCT image files as input and receive a classification output. Like Livewire, this 

used graph theory. However, the use of Livewire/ImageJ requires some skill; it requires 

operator input to trace the path of the retinal pigment epithelium and place “anchor 

points”, whereas the purpose-built algorithm identified the retinal shape with less operator 

input. Trials of A2 suggested it was faster and simpler to use, but had the disadvantage that 

as written, errors in path selection could not be corrected. In particular, contour was 

created across any OCT image, even if no retina was within the B scan, or the retinal image 

was an inverted, defocused retinal signal from mirror artifact.  

 

This section reports on the utility of Tyra Lange’s A2 function in identifying retinal 

detachment eyes. First, the ability to select only accurate segmentation was added to the 

function. Then, comparison of the relative performance of Livewire and A2 was undertaken. 

Differences in classification and speed of use of the two methods was evaluated.  

 

Aim 
To develop an algorithm that can take retinal OCT image files, analyse shape and produce a 

classification fast enough to be practical as a clinical test.  

 

Methods 
Subjects 

51 eyes from 31 participants were included. 28 eyes had a diagnostic category, and 23 eyes 

were part of the predictive study of classifier performance with no confirmed diagnosis yet 

(“fellow eyes”). A summary of the steps in processing OCT images with both methods is 

shown in Table 5.2.7.  
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Table 5.2.7. Description of steps involved in two retinal OCT classification methods. 
Procedure A2FFT A2FFT 

time to 

perform 

LVW LVW  

time to  

perform 

Participant recruitment, consent, OCT imaging & axial length measurement, 
documentation: same for each method. Not included in analysis 

 
.img to .tif 
conversion 
 

Performed by 
A2FFT 

Seconds. 
Included  

Manually to 30 May 
2020, then by function 

< 1 minute. Not 
included  

Shape 
identification 

A2FFT. User 
marks start 
and end point 
each B scan 

Minutes. 
Included 

Livewire/ImageJ. User 
traces contour from start 
to finish, marking 
intermediate points 
 

Minutes. 
Included 

File saving Done by A2FFT Trivial. 
Included 
 

Manually Trivial. Included 

Classification  Done by A2FFT Seconds. 
included 

Separate function Seconds. Not 
included 

Included/not included = whether time taken for this step was included in time analysis. 
A2FFT = function using graph theory for retinal contour identification. User identifies start 
and end point on each B scan of correctly identified retinal contour, or rejects B scan with 
no relevant information. 
LVW = Livewire/ImageJ contour identification. User traces retina contour with start, finish, 
and intermediate marker points, the number of these depending on the complexity of the 
retinal shape.  
 

 

Method 1: ImageJ/Livewire 

For the Livewire analysis arm, tiff files were created from the OCT .img files, retinal shape 

captured with Livewire, images converted to the frequency domain and classification 

performed using the classifier developed in Section 5.2. 

 

Method 2: A2FFT. 

Script A2 was incorporated into function A2FFT. This was built around Tyra Lange’s 

function. This program required user input of an eye identification code, axial length, and 

the full file name of the raw .img OCT image files, with these files present in the working 

directory or current folder in the MATLAB window. Starting with the region 3 cube, a tiff file 
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was created from the .img file, and each B scan presented in a new window with the retinal 

contour marked by a green line. The A2 output (the RPE delineated in green on the B scan) 

was presented to the operator who selected the start and endpoints of retinal shape. Due 

to inclusion of errors such as mirror artefact image, inner retinal border identification, and 

even absence of any retina all misleading contour identification, this manual step was 

necessary to select the start and end point correctly. A2FFT then truncated the retinal 

contour by the selected start and end points. This allowed removal of mirror artifact or B 

scan areas empty of information.  

 

To facilitate rapid error free selection, start and end points were taken only from the x-index 

the user selects. Requiring a match between user selected retinal extent and the retinal 

shape in both x and z axes might generate errors unless the exact pixel on the retinal 

contour line was selected.  

 

Once all 42 B scans from regions 3 and 5 were segmented, the three variable classifier was 

loaded, and anomaly calculated relative to the average B scan irregularity from all five folds 

of the classifier training sets. Mean coefficient of variation (Cv) for all 30 bins from the five 

average B scans was 0.0099 (range 0.0063 – 0.0585), confirming low variation between folds 

in average B scan value. The largest value (Cv  = 0.0585) was for bin 1, and bin 2 the second 

largest with Cv = 0.0166. With axial length information input, the eyes were tested, and a 

result reported in the MATLAB command window with the optimised weighting. 

 

Comparison of the speed of the two methods was performed in a retrospective manner. 

Time for each method was calculated using the final modification time in the file metadata, 

identified by the dir function in MATLAB. For Livewire, this was the total time between the 

first and last textfile created for each of the two OCT cubes that stored the contour 

information. This time included only time taken to extract shape information. For A2FFT, 

the time between creation of the first tiff image file to the time of the last image analysis 

datafile saved was used. This time period included conversion of .img file to .tif format, 

extraction of shape information with operator input, as well as classification (Table 5.2.6). 

For both methods, outlying time values arose from breaks in user activity. These were 
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known to be not related to the method itself, so any time durations greater than 30 minutes 

were removed.  

 

Statistical analysis 

Performance of the two methods of shape analysis were compared by classification as well 

as time taken for each process. Times for each method were compared by two-sample t-

tests. 

 

Results  
Label attribution with A2FFT and LVW differed in two out of 51 eyes analysed. Both of 

these eyes were part of the predictive study, with no ground truth to identify which method 

was correct. 

 

Time to perform analyses 

There were 46 LVW eye and 50 A2 eye time periods within the range 0-30 minutes. Mean 

+/- standard deviation processing times were significantly shorter with A2FFT compared to 

Livewire use times (A2FFT = 524 +/- 62 seconds, LVW = 814 +/- 223 seconds, two-sample t-

test, p < 0.0005 (p = 5.52 x 10-14)). In all but 4 of 45 eyes for which times from both methods 

are available, processing time was faster with A2FFT than LVW. Histograms of the time to 

perform analyses are shown for Livewire (LVW, figure 5.2.13), and A2 methods (A2FFT, 

figure 5.2.14). 
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Figure 5.2.13. Curated Livewire image processing times. Excludes eyes where processing 
took more than 30 minutes. 

 
Figure 5.2.14. Processing times using A2FFT. 

 

 

Conclusions  
5.2 classifier development 
A useful model to predict eyes at risk of retinal detachment should have a high specificity to 

avoid misclassifying eyes at no risk being labelled as at risk of retinal detachment, combined 
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with an ability to identify eyes that will develop a retinal detachment. The classifier 

described here had a reassuringly high specificity of 84%, with a sensitivity 35%. The high 

specificity within the validation set means that an eye with label 2 is highly likely to have a 

retinal detachment. This test has low sensitivity, so a label 1 result does not indicate no 

retinal detachment.  

 

Classification of the retinal tear group had a sensitivity lower than the retinal detachment 

group itself. Retinal tear eyes had on average smaller anomaly feature values than retinal 

detachment eyes, and these differences between retinal tear and detachment eyes reduced 

classifier performance with the retinal tear eyes.  

 

Classification was stable with re-imaging. This is in agreement with the results from the five 

eyes reported in section 5.3, where classification was unaffected by PVD or retinal 

detachment repair. 

 

Conclusion: ongoing test development 
Obtaining a classification result was faster using A2FFT compared to Livewire. A2FFT was 

also easier for the operator to perform, requiring less patience for contour identification. 

This method was preferred for ongoing classification. 

 

 

Discussion - research test development 
With broad retinal area imaging and analysis time consuming, the ability to streamline the 

process using retinal imaging from two areas and improved analysis times enables rapid 

participant recruitment and faster processing. This enabled ongoing and even prospective 

sampling of a larger number of eyes potentially at risk. In addition, with streamlined image 

capture it became more acceptable to more participants to have both eyes imaged, with the 

result that more eyes with identified diagnostic categories were available for testing the 

classifier.  

 

Processing time with Livewire/ImageJ included only the time taken for shape identification, 

and did not include the time for identifying the contour in the first B scan in each cube (as 
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the start time was when the first B scan data was saved), whereas the A2FFT time included 

all B scans, classification time, and conversion of .img format image data files to tiff files. 

Despite these processing differences favouring the use of Livewire, it was found to take 

significantly longer. The time difference of almost 5 minutes per eye was enough to bring 

the test closer to a practical point of care test in clinical practice. As well as taking less time, 

user required input was simplified with the A2FFT algorithm. The faster process was 

therefore easier to perform, further increasing its acceptability. 

 

While it is not surprising that a purpose-built algorithm would perform better than a general 

use biomedical image analysis tool, this was a significant development in enabling 

classification to be performed on a greater number of eyes. A2FFT enabled more eyes to 

be imaged in clinical time, with faster results. As a result, it was possible to recruit many 

more eyes for prospective evaluation of the classifier. The need to incorporate the process 

within routine patient essential clinical encounters was particularly important during the 

second half of 2020, when the SARS-Cov-2 pandemic required social interaction and the 

restriction of healthcare activity and hospital encounters to only those essential for patient 

care.  

 
Discussion - classifier development  
To develop the classifier, variables were selected from the training set anomaly spectra that 

had the largest difference between retinal detachment and PVD eyes, without 

preconceptions about what might be important. Then, using those variables as predictors, a 

model was constructed to discriminate between the two groups. When exploring cube 

regional spectra, including all the samples would result in values being heavily influenced by 

the majority of low magnitude anomaly B scans (Figure 5.2.1). Identifying predictors of 

interest from the differences between retinal detachment and PVD eyes in scans where the 

total anomaly was above a certain threshold, but using all the data for model construction, 

helped identify features to develop the classification function. The groups presented in this 

work were of moderate size, and the use of the majority of the sample for feature selection 

as well as training was an efficient use of data205. 
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Discriminant analysis was chosen as it is a classifier suitable for smaller sample sizes. An 

early model (not presented here) used features from the overall survey metrics used to 

describe eyes in Chapters 3.4 and 4, which were found to vary both across the eye and with 

axial length, which is known to correlate with risk of retinal detachment. Fortunately, this 

was unsuccessful and the regional bin feature classifier successful, as testing an eye using 

OCT cube surveys across all regions would be much more time consuming and difficult to 

replicate in clinical practice. If the better performance was seen in classification from whole 

of eye metrics such as median metric values, the entire eye would require imaging for a test 

result to be reached. With the three variable ([3, 2], [5, 3], and axial length) classifier, only 

two OCT cubes were needed to perform the test. This time saving advantage was exploited 

to continue patient recruitment and extend the validation set.  

 

The significant shape features from bins 2 and 3 equate to wavelengths of 3 – 9 mm.  As this 

is the longest feature size within the 9 mm B scan window, the question arises as to 

whether even longer-wavelength (lower frequency) features would improve classification. 

This can only be tested with larger OCT images such as are available with swept source OCT, 

and is explored in Chapter 6.  

 

It is possible that there was some overlap between OCT cubes of superior and supero-

temporal retina. The criticism may be raised that classification was affected by imaging the 

same retina twice, or that incorrect attribution of cubes to regions will alter results, as the 

anomaly threshold in the classifier for the supero-temporal region (around 3.5 mm) was 

greater than that for the superior region 3 (around 2 mm, although both vary with axial 

length). However, the frequency bin used from the two regions differs, so the variable from 

each region samples a different shape feature. The significant feature from the supero-

temporal region was of a shorter wavelength than superior region. This may relate to the 

shorter sample length of retina in the supero-temporal region B scans due to oblique 

imaging. Furthermore, the classification space illustrated in Figures 5.2.12 and 5.2.15 reveals 

that the quadratic classifier required an elevated feature value in an “or” rather than an 

“and” fashion to change label. In other words, one high value shape feature is enough to 

switch classification from one label to the other, with the impact of the second shape 
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feature magnitude less important than it would be were the classification boundary a linear 

discriminant and not a conic section.  

 

 

 

Figure 5.2.15. Classifier space (from Figure 5.2.12) viewed along the z-axis. The area 
equivalent to PVD is displayed by the coloured mesh. As either variable increases (along 
each axis), they pass a threshold where classification switches label. This threshold is not 
sensitive to changes in the alternate variable. 
 

 

While clinicians do often not have a deep understanding of Fourier analysis, the conversion 

of the shape metric description from frequency to wavelength and their presentation on 

OCT images in Figure 5.2.11 attempts to illustrate what is being used by the classifier. This 

does not imply that prediction can be performed by visual inspection of OCTs, and the 

illustrated amplitude of the wavelengths does not relate to the threshold feature 

magnitude. Sample OCTs from correctly identified retinal detachment eyes are shown for 

illustrative purposes only. In performing analysis of validation set eyes, SL examined every B 

scan to confirm correct retinal shape segmentation. During this process, user prediction of 
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classifier outcome was inevitable, and as it turned out, often wrong. This was likely related 

to difficulties in assessing the magnitude of the significant shape features and whether they 

reached the required threshold (or not). 

 

The retinal tear group were tested with a two-class classifier rather than treated as a third 

class, as current concepts in ophthalmology consider acute symptomatic retinal tear eyes to 

have the same pathology but with a different presentation compared to retinal detachment 

eyes. Prior to PVD occurrence there are only two possible outcomes when vitreous 

separation occurs: uncomplicated (no retinal tear), or PVD complicated by a retinal tear that 

without timely presentation to healthcare may lead to retinal detachment. The ultimate aim 

of the classifier is to identify eyes at risk of vision loss before emergency care is required, 

including both retinal tear and detachment eyes. Separation was maintained between 

retinal tear and retinal detachment eyes to preserve a clean data set, create a second 

validation set, and to explore feature differences between the retinal tear and detachment 

eyes that might provide evidence as to why some patients are able to present at an earlier 

stage of the disease than others. This revealed that the retinal tear group variables were 

intermediate in size between PVD and retinal detachment groups in terms of shape as well 

as axial length. The implications of this may be:  

 that the retinal tear group was heterogeneous, including eyes that will progress to 

retinal detachment as well as eyes that will not. This mix leads to lower anomaly values and 

lower classifier sensitivity.  

 that the lower feature size (axial length, and/or anomaly) in the retinal tear group 

delays progression to retinal detachment giving these subjects time to present to 

healthcare. 

or that vitrectomy increased irregularity, producing the larger values seen in the 

retinal detachment group. 

 

The reasons to test retinal tear eyes were: 

to test the validity of the model with an independent data set. 

to investigate whether the model was effective in a group that had not had surgery.  
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A criticism of the discriminant ability of the classifier might be that the model is detecting 

shape differences that arise from surgery (vitrectomy), and therefore that shape differences 

have no ability to identify eyes at risk of retinal detachment prior to PVD. The average B 

scan for this analysis was taken from the original PVD/retinal detachment group, with no 

retinal tear eyes, so the retinal tear eyes may reflect a different population (pathological 

group) from those of the training set eyes. Retinal tear without detachment may be a 

distinct pathological entity, which the model was not designed to identify. Not all retinal 

tears lead to retinal detachment. Clinical consensus considers that all acute symptomatic 

PVD associated retinal tears need intervention with laser photocoagulation or cryopexy to 

seal the tear and prevent retinal detachment developing, with evidence for the need to 

intervene with asymptomatic breaks currently lacking264. If this retinal tear sample reflects a 

more stable eye configuration than eyes that will develop retinal detachment, and the 

model detects only eyes that are likely to progress to detachment, then sensitivity in the 

retinal tear group will be reduced proportionately to the subset that will detach. If this were 

the case, while sensitivity would be reduced, the classifier would have the additional benefit 

of detecting higher risk eyes. There are likely to be multiple pathways to PVD associated 

retinal detachment. As well as bulk flow through retinal breaks overwhelming the ability of 

the RPE pump to maintain retinal attachment, delayed retinal detachment may occur from 

retinal pigment epithelial migration into the pre-retinal space, leading to fibroglial 

proliferation and inner retinal contraction increasing the separation/detachment force. All 

the retinal tear group eyes here were selected if they presented with an acute, 

symptomatic, PVD-related retinal tear, which is believed to be the group most at risk of 

progressing to acute retinal detachment. 

 

The difference in mean axial length between the retinal detachment and PVD groups was 

not unexpected, as larger eyes are at greater risk of retinal detachment265. Axial length was 

the most successful single variable discriminant model, confirming the link between axial 

length and the risk of retinal detachment, but was not sufficient on its own to classify eyes 

accurately (for an axial length classifier with a specificity of 75%, sensitivity was less than 

5%, and with a sensitivity of 40% specificity was only 34%), and did not account for the 

effectiveness of the entire model. The fact that age had no discriminant utility reflected the 
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narrow range of the sample population, but suggests that PVD occurring early or later does 

not affect the risk of retinal detachment occurring. 

 

All groups had a PVD, but only the retinal detachment group had a vitrectomy as well as a 

retinal detachment. All vitrectomies were with 23-gauge instruments, with no scleral buckle. 

Vitrectomy or laser treatment may have had indirect effects on shape that can explain the 

differences between the two groups. Surgery may alter the irregularity of the posterior 

hemisphere of the eye as measured with this method, but this seems unlikely as vitrectomy 

has not been shown to alter the corneal shape even though that lies much closer to the 

surgical incisions255,256. Laser retinopexy was visible on some OCT B scans in the retinal 

detachment cohort. The impact of these factors is considered in the Section 5.4.  
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5.3. The effect of PVD and retinal detachment on retinal survey shape 

features 

Introduction 
As PVD may occur anytime over a 20-30 year period in the middle years of life, imaging 

someone before and after PVD for research relies on good fortune that the affected 

individual is imaged prior to any problem, then re-presents after PVD occurs and that the 

event occurs within the time span of the project. Fortuitously, this occurred with five 

participants who had OCT retinal surveys of their fellow eyes after a retinal detachment in 

the contralateral eye. Three eyes were enrolled then re-presented with an acute PVD 

without any retinal breaks. A further two eyes were imaged prior to PVD and subsequently 

progressed to retinal detachment. One was labelled 1 (PVD), and the other 2 (retinal 

detachment) by the classifier prior to retinal detachment. Both subsequently underwent 

vitrectomy to repair retinal detachment with good outcomes. All were approached and 

asked for permission to re-image their eyes to compare pre- and post-operative shape and 

provide some insight into how wider retinal shape features changed with hyaloid separation 

and surgery.  

 

Here, the variation in shape between initial and subsequent examination was explored with 

the use of Bland Altman plots, with limits of agreement set by the re-imaging of eight eyes 

that had experienced no change in their ocular status.  

 

Aim 
The aim of this section was to assess whether retinal shape was changed by either PVD or 

vitrectomy for retinal detachment. 

 

Methods 
Subjects 

Subject details are presented in Table 5.3.1. The images were taken using the same survey 

protocol of one macular and 16 mid-peripheral cubes, with no reference to the first imaging 

set taken when imaging the second time (Figures 5.3.1 & 5.3.2). Allocation of cubes to 
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retinal regions, and processing of image data was undertaken as described in the Section 2.2 

and performed independently for each imaging session.  

 

Table 5.3.1. Subjects with OCT retinal surveys before and after PVD or retinal detachment.  
Imaged Eye/ 

Pathology 

Axial length 

(mm) 

FE Pathology Interval between imaging 

sessions 

PVD:    

Q129/S121 23.01 RD 30 months 

S113/S125 22.65 PVD 7 months 

S210/S410 26.06 RD 17 months 

RD:    

R294/S223 24.56 RD 8 months 

R276/S224 26.72 RD 13 months 

FE pathology = fellow eye condition leading to clinical examination and imaging. RD = retinal 
detachment. 
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___________________________________________________________________________ 

 
Figure 5.3.1. SLO maps of a PVD eye. Q129/S121, respectively before (top) and after 
(bottom) PVD. The black and white SLO images identify the areas of retina sampled, with 
the horizontal red bars indicating the segments of each B scan where retinal image was 
observed. As the B scan window depth is only 2 mm and the retina is curved, with 
increasingly peripheral scans a shorter length of retina was sampled. Correspondence 
between the two sittings was close, but with some differences (seen in cubes marked by 
blue asterisk and hash). SLO = scanning laser ophthalmoscopy (AnnotSLO). 

* 

* # 

# 
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___________________________________________________________________________ 

 

Figure 5.3.2. OCT cube maps before PVD and after retinal detachment repair. Comparison 
can be made between the areas imaged in the two sessions, with the upper set prior to PVD 
and the lower set taken following vitrectomy for retinal detachment. The differences in 
sampled area between the two sessions were small, as seen by comparing the red lines 
highlighting where retina was imaged in each scan. 
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Bland Altman plots  

The repeat eye anomaly values were determined relative to an average B scan irregularity 

taken from the set of eyes used to assess the correlation of irregularity with axial length 

(Chapter 4). For the Bland Altman analysis (Comprep, comprepBA), the metrics assessed 

were the maximum regional anomaly values, as used in the retinal classifier created in 

Section 5.2, but included all frequency bins from 2-20 for all regions 1-17. Bins 1 and 21-30 

were excluded as they were of such low magnitude that their variation would most likely 

reflect signal noise, and not reflect variation in shape between corresponding images. A log2 

Bland Altman plot of the observations was created,  

!(#, %) = (log! ," + log! ,!2 , log! ," − log! ,!0 

 

as a comparison of the ratio of the measurements was preferable using the log2 difference 

for the y-axis as feature magnitude may vary substantially between bins266.  

 

Control eyes 

The Bland Altman plot does not set the threshold for what is acceptable variation in test-

retest performance. Following convention, the use of +/- 1.96 standard deviations was used 

here. These limits of agreement were generated using eight eyes that were imaged twice in 

the same manner, without any change in their ocular status. The details of these eyes are 

presented in the Table 5.3.2. These eight eyes were re-examined on separate days.  
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Table 5.3.2. Eyes imaged twice with no change in ocular status between examinations. 
ID Side Interval 

between 
exams 

Age at first 
exam 

Diagnosis Axial length 

P 123 R 13 months 62 Volunteer – 
retinoschisis 

23.47 

Q 228 L 4 months 33 Volunteer – no 
pathology 

22.91 

P 216 L 22 months 45 Myope – no 
pathology 

26.11 

Q 296 L 4 months 73 Retinal 
detachment 

27.19 

R 151 R 6 weeks 33 Myope – no 
pathology 

25.94 

R 207 L 5 months 
 

65 Retinal tear 24.07 

R 150  R 1 day 33 Volunteer – no 
pathology 

23.92 

R 164 R 6 weeks 28 Myope – no 
pathology 

27.21 

Age in years. Axial length in mm. 
 

Results 
The Bland Altman plots for the eyes that experienced PVD are shown in Figures 5.3.3 – 

5.3.5, and for retinal detachment in Figures 5.3.6 & 5.3.7. Exploration of those points 

outside the limits of agreement found only one that was in lower frequency bins 2 and 3 

from the superior and supero-temporal retina used for classification, in the second retinal 

detachment eye (Figure 5.3.7). Most outliers were in higher frequency bins, except for 

region 15 (distal nasal) in the first PVD eye Q129 (marked by the blue hash in Figure 5.3.1), 

and to a lesser degree region 7 (distal temporal, blue star, same Figure) in the same eye, 

where both cubes had clearly sampled a different retinal region at each sitting. Figure 5.3.8 

presents all the values outside limits of agreement for the second retinal detachment eye 

(Figure 5.3.7), which had both the largest anomaly values and the most number of points 

outside the limits of agreement. Most of these outliers were from low amplitude regions of 

the anomaly spectrum, consistent with measurement variation from ‘noise’.  
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Figure 5.3.3. Bland Altman plot, eye imaged before and after PVD (Q129/S121). The 
anomaly variation from pre- to post- PVD (in blue) is compared with the anomaly variation 
of eight eyes imaged twice with no change in ocular status (imaged in black). Each point 
represents one of bins 2-20 from the anomaly spectrum for each of the 17 regions. Only 
frequency bins 2-20 were included, as the size of anomaly outside this range is small and 
variation likely to be reflect noise. This is a log2 Bland Altman plot, so log2 A2 - log2 A1 is 
plotted against (A2 + A1)/2, where A1 and A2 are anomaly bin values 2-20 from regions 1-17. 
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Figure 5.3.4. Bland Altman plot, eye imaged before and after PVD. Eye (S113/S125) imaged 
before and after PVD (blue points), with limits of agreement set by the control eyes (black 
points). 
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Figure 5.3.5. Bland Altman plot, eye imaged before and after PVD. Comparison of two 
imaging sessions (in blue) for eye S210/S410, before and after PVD. 
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Figure 5.3.6. Bland Altman plot, retinal detachment eye (R294/S223) anomaly variation 
between before-PVD and after-vitrectomy for retinal detachment (plotted in red). Control 
eyes plotted in black.  
 



  191 

 
Figure 5.3.7. Bland Altman plot, second retinal detachment eye. This eye was imaged 
before PVD and after vitrectomy for retinal detachment (R276/S224).  
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Figure 5.3.8. Histogram of anomaly bin values outside limits of agreement. The y-axis gives 
the number of variables (bin moduli) at each anomaly bin value indicated by the x-axis 
where their test-retest difference was outside the limits of agreement set by the test-retest 
examination of eyes with no change in state (Table 5.3.2). Most of these anomaly values are 
of very small magnitude, so that small variations will lead to breaching the limits of 
agreement without any change in classifier performance. The darker brown colour arises 
from the lighter brown and blue overlap. This is eye R276/S224 (Figure 5.3.7) 
 

 

Conclusion 
The test-retest variability was low comparing before and after PVD, and comparable to eyes 

imaged twice with no change in ocular status. Correspondence between before PVD and 

after PVD related retinal detachment repair anomaly values was also good, with a low 

number of variations in higher anomaly values. Anomaly measurements appear to be stable 

despite PVD and retinal surgery in these eyes. Most metrics from these eyes were within 

limits of agreement (+/- 1.96 standard deviations from the mean) set by eyes imaged twice 

without change in state, and all but one of the [region, bin] anomaly values used in the 

classifier in these eyes was within the limits of agreement. In consequence of this, there was 

no change in the classification label for any of these eyes imaged twice. With all imaging, 

however, it is important to sample the correct tissue. The hypothesis that PVD or vitrectomy 

for retinal detachment alters retinal shape could not be confirmed. 
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Discussion 
With the horizontal peripheral retinal B scans from HD 21 cubes separated by 0.4 mm, it is 

unlikely repeat scans will always image the exact same retinal tissue, both from variation in 

gaze position and changes in the position of the OCT scans within the imaging viewfinder. 

Macular scans can use the Cirrus facility to align repeat images, but this is more problematic 

with eccentric images relying on participant eye movements to visualise an area where the 

retinal landmarks may be indistinct and the retinal image of poor quality. With repeat 

imaging of these eyes, the same process was undertaken both times, with subjects asked to 

look in set directions (up, up to the right, etc.), but with no attempt to match the second 

imaging set to the first. This might result in some variation in the area of retina imaged for 

any region. Furthermore, the area imaged by the OCT within the visualised region can vary: 

in the x- and y- axis directly by moving the OCT reticle, as well as x- and y- axis variation 

from z-axis displacement sampling a separate zone within the cubic window. As 

quantification of shape through Fourier analysis is very sensitive, some variation in output 

as a result of these differences was to be expected. The question was, does the small 

alteration in area of examination significantly alter the measurements, and does this 

alteration alter classification? From the five eyes examined here, the answer seems to be 

no. 
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5.4. The effects of laser and retinal break location on classification 

Introduction 
All retinal tear and detachment eyes used in training and testing the classifier had received 

laser photocoagulation to seal retinal breaks, either as a stand-alone intervention or during 

vitrectomy. Laser therapy disrupts the outer retina and retinal pigment epithelium, and may 

damage the choroid, by way of producing chorio-retinal adhesion and to prevent sub-retinal 

fluid migration. These effects may both alter retinal shape as well as the identification of the 

retinal contour. Where the latter factor applied (retino-choroidal scarring leading to loss of 

the retinal pigment epithelium landmark) contour tracking was terminated, i.e., no shape 

information was taken. However, it is also possible that the effects of laser therapy 

influence the surrounding retinal shape. Not all eyes will have visible laser within the 

regions imaged with OCT. The retinal tears may be in a different region of the eye from the 

superior and supero-temporal, or located more peripherally to the area that was imaged. To 

investigate whether laser within the OCT images was influencing classification, the 

classification of eyes with and without visible laser was compared. 

 

A related question was whether the presence of the retinal breaks themselves in the regions 

considered by the classifier affected performance. The classifier used only shape 

information from superior and supero-temporal retina, and it is notable that those locations 

are the most common site of retinal break formation260. It might be the case that the 

classifier preferentially detected the most common pathology (superior and supero-

temporal breaks) and neglected retinal breaks arising elsewhere. This was explored by 

looking at the category labels applied where the breaks were in superior and supero-

temporal retina compared to labelling of eyes where the retinal breaks occurred elsewhere.  

 

Aim 
This section aimed to answer two queries regarding two factors that may influence the 

classification of retinal detachment and PVD eyes through OCT measured retinal shape. If 

either of these factors influence classification, then the test will be less successful at 

predicting retinal detachment prior to PVD occurring. The first was whether chorio-retinal 

laser scarring visible in OCT images was influencing classification. The second was whether 
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location of the retinal break in the superior and supero-temporal retinal improved classifier 

performance. 

 

Methods 
The effect of laser 
Laser was considered present for this analysis if chorio-retinal scarring was seen on the OCT 

images, or if the chorio-retinal scarring was visible in the retinal image taken at time of 

image capture, even if not present within the (smaller) area of retina sampled by OCT. 

 

Subjects 

This analysis was performed with 132 validation set retinal tear and detachment eyes.  

 

Statistical analysis 

Fisher’s exact test was used to test for non-random distribution of visible laser between the 

classifier labels. 

 

Location of retinal break 
Subjects 

Retinal break locations were taken from the clinical notes and record of treatment. The 

presence of visible retinal breaks or laser in the OCT image was not required for this 

analysis. Where breaks were in multiple locations, eyes were included in the 

superior/supero-temporal group if any of the breaks were present within those regions. 

Eyes were included in the “other” group only if no breaks were present superiorly or 

supero-temporally. 

 

All 89 eyes with information on retinal break position from the validation dataset up to T1 

123 (12 April 2021) were included.  
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Statistical analysis 

Fisher’s exact test was used to test for non-random distribution of label attribution 

comparing eyes with any retinal breaks in the superior and supero-temporal regions 

compared to eyes with only retinal breaks elsewhere. 

 

Results 
Effect of visible laser 
82 (62%) had no laser scars in the OCT cubes used for classification, with the laser either 

anterior to the region imaged or in a different part of the eye. Distribution of visible laser by 

classification is shown in Table 5.4.1. Of the thirty nine eyes labelled ‘2’ (23 retinal 

detachment and 16 retinal tear), 26 (66 %) had no laser marks identifiable within the OCT 

images (Fisher’s exact test, p = 0.56), suggesting that laser made no difference to 

classification. 

 

Table 5.4.1. Relationship between classification label, and the presence of laser induced 
scarring in regions 3 & 5. 
 Laser reaction present S/ST retinal area 

Category label Yes (laser marks present) No (laser not present) 

1 37 56 

2 13 26 

Total: 132 eyes. S = superior, ST = supero-temporal regions. 

 

 

Effect of retinal break location 
Distribution of retinal break location by classification label is shown in Table 5.4.2. Fisher’s 

exact test applied to this table found no significant difference between groups (p = 0.75), 

suggesting that location of tear(s) had no impact on classification for retinal detachment 

and retinal tear eyes. 
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Table 5.4.2. Relationship between classification label, and the presence of retinal breaks 
in regions 3 or 5. 
 Retinal break present S/ST retinal area? 

Category label No (not present S/ST) Yes (break(s) present S/ST) 

1 11 45 

2 5 15 

Total: 76 eyes. S = superior, ST = supero-temporal regions. 

 

Conclusion and Discussion 
Neither visible laser scarring in OCT images, nor location of retinal break in the superior or 

supero-temporal retina significantly influenced classification of retinal detachment or retinal 

tear eyes. Were they to do so, it could be expected that attempted classification prior to 

PVD would be less successful. Based on the distributions in Tables 5.4.1 and 5.4.2, 320 eyes 

would be required to have sufficient power to confirm or refute the hypotheses that 

location of retinal break or the presence of visible laser have no effect on classification. 

 

 

SL examined all B scans and noticed no pattern in retinal shape adjacent to chorio-retinal 

laser scars, although eyes were not imaged prior to laser, and it was possible that shape 

change in adjacent retina did occur. Identifying retinal shape with graph theory algorithms 

can be complicated by significant chorio-retinal scarring, which produces deeper higher 

intensity pixels. As a result, segments of scarred retina in OCT were often cut from retinal 

shape extraction and information from that part of the retina excluded, with fewer samples 

taken from eyes with laser reaction. This might reduce rather than increase the sensitivity of 

classification, so it is possible that a combination of these factors (laser increasing 

irregularity but reducing retinal sampling) produced the absence of any observed effect.  
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Chapter 6. Swept source OCT and retinal shape 

Introduction 
Chapters 3.4, 4, and 5 have explored the use of SD OCT in analysing retinal shape. Over the 

last decade, the swept source OCT has emerged as a new imaging modality with its own 

unique properties. SD OCT scan rates of 65 000 A scans per second can be exceeded by 

swept source devices, which may achieve up to 200 000 A scans captured per second267,268. 

Swept source OCT uses a tuneable laser to replace the SD OCT super-luminescent diode as 

the sampling light source, with the returning light from the object captured by a dual-

balanced photodetector269. This laser has a wavelength centred at 1060 nm, longer than the 

SD OCT light source, which has the disadvantage of reducing its minimum theoretical axial 

resolution, although the fast resampling combined with image processing can offset this to 

produce results similar to SD OCT270. The advantages of swept source OCT are a faster image 

capture rate and lower sensitivity roll off with increasing tissue penetration which provides 

greater image quality across the depth of tissue166,172. This has improved OCT 

angiography271–273, as well as enabled longer and wider retinal sampling in a single B 

scan274,275.  

 

The larger B scan image size makes the swept source OCT of interest for retinal shape 

analysis. Chapter 5 identified the useful shape features for classification of retinal 

detachment eyes had a wavelength between 3 – 9 mm, the latter being the maximum width 

of the B scan window (Figure 5.2.10). This raises the possibility that larger shape features 

captured by a wider B scan may improve classification performance.  

 

Furthermore, the maximal scan width of 9 mm obtainable with SD OCT is only available in 

horizontal orientation (newer SD OCT devices released after swept source OCT became 

available can obtain both increased B scan widths of 12 mm as well as rotate the orientation 

away from the horizontal). The Zeiss Plex Elite swept source OCT has a maximum sample 

length of 16 mm which can be oriented to any angle. Section 3.4 found greater irregularity 

in inferior and superior retinal areas compared to temporal and nasal areas (Figure 3.4.3). 

As all scans were obtained in the horizontal orientation, this means the temporal and nasal 

scans are oriented roughly parallel with the optical axis of the eye, and the superior and 
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inferior scans perpendicular. Irregularity may be equally great in the horizontal meridian as 

in the superior or inferior when imaged with coronal sections; swept source OCT can 

investigate retinal shape in this direction.  

 

This chapter reports the analysis of retinal shape measurements with swept source OCT, to 

investigate whether it can increase the understanding of retinal shape and its relationship to 

PVD, retinal tear, and retinal detachment.  

 

As in Chapter 5, there are many more potential predictors than samples. For this reason, 

selection of optimum and elimination of unhelpful features is required. Ridge, Least 

Absolute Shrinkage Selector Operator (LASSO), and elastic net are regularization methods to 

reduce overfitting a model to its training data and improve its performance in validation 

sets. They reduce within feature variance at the expense of increased feature bias. Ridge 

reduction will not eliminate features whereas LASSO will, making the latter suitable for 

predictor selection. As a result, LASSO performs better than ridge regularisation where 

many of the predictors do not influence model performance (have little or no predictive 

value). Elastic net as a compromise between ridge and LASSO has the advantage in dealing 

better with correlated predictors276. 

 
Aims 
To compare retinal shape taken with the swept source OCT to that taken with SD OCT. 

Furthermore, to investigate whether the larger features and different image orientations 

made possible with swept source OCT improved classification of retinal detachment eyes. 

 

 

Methods 
Subjects 

Participants were recruited as in Chapter 5, from out-patient clinics at Flinders Medical 

Centre, Eyemedics, and the Royal Adelaide Hospital, South Australia. All were imaged 

between July 2020 and January 2022 at Flinders Medical Centre using a Zeiss swept source 

Plex Elite OCT. Eyes were imaged from individuals who had experienced either a PVD, retinal 

tear, or retinal detachment. 
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Swept source OCT images were taken with the UHD 1 Spotlight 200 kHz scan, a single 16 

mm (2047 pixels) wide by 6 mm (3072 pixels) deep composite image created from 100 

repetitions of the B scan (Figure 6.1). Here, five images were taken from each eye. The first 

macula image was followed by images taken with the participant looking up, down, left, and 

right. The left and right scans were oriented vertically, at 90 degrees to the horizonal, with 

the scans taken looking up and down parallel to the horizon. If the scan position is moved 

too peripherally, the retina may be lost by intrusion of the pupil margin or other opacities 

into the field of view. OCT image scan capture was performed at the most extreme 

eccentricity where retina could still be visualised across the full 16 mm B scan window 

(Figure 6.1). The 6 mm deep scan ensured all but the most irregular (highly myopic) eyes 

were able to be imaged across the full width of the scan window. 

 

Correlation with axial length 

Spearman’s rank correlation was performed between axial length and average anomaly, 

anomaly for each region, and age, for all eyes and by diagnostic group. 

 

Image processing 

The process of image analysis was similar to that described in the methods for SD OCT 

images (Chapter 2), with programs written specifically for this study in MATLAB. All retinal 

shape information was extracted from the OCT images using the programs CretiffSS 

and SSA2FFT (Appendix C), which used the purpose-built graph theory algorithm 

developed by Tyra Lange (Section 5.2, Development and evaluation of a research test for 

ingoing prediction). The identified retinal contour had the best fit curve removed, and then 

a fast Fourier transformation of the irregularity left after removal of best fit curvature was 

performed. Anomaly values were calculated by comparing each scan irregularity to the 

average irregularity of 80% of the PVD eye sample, with the average irregularity determined 

from scans distributed randomly into five-folds in an axial length stratified manner. A 

feature vector was created for each eye consisting of the first 30 bins from the anomaly 

spectrum for each of the four directions of gaze (in order up, down, temporal, nasal), the 

best fit curvatures to the retinal contour for each region in the same order, and then the 



  201 

axial length of the eye and the participants age, to create 126 potential predictors 

(SStabFFT and SStabana). 

 

 

Figure 6.1. Sample swept source OCT image output.  The blue line at the top of the retinal 
image (left) identifies what part of the retina is imaged by the OCT (seen on the right). As 
shown here, the retina imaged by OCT could be outside the area imaged by the scanning 
laser ophthalmoscope. 
 

 

Feature selection 

Eyes were split into training and testing sets, and feature selection performed with the 

training set prior to testing (SSTrTst). Univariate and multivariate feature selection 

approaches were explored. The regularisation methods LASSO and elastic net were used to 

identify potential feature combinations. Both LASSO and elastic net input variables were 

scaled to a mean of 0 with variance of 1 with elastic net 1	= 0.5, and ten-fold cross-

validation to identify potential features. Maximum relevance – minimum redundancy277, the 

absolute difference between retinal detachment and PVD anomaly values, neighbourhood 

component analysis, rank importance of predictors using the ReliefF algorithm, and 

univariate feature ranking via Chi-squared tests and regression testing to determine 

whether each predictor was independent of the response variable was performed. For these 

latter six methods a table was constructed listing the most importance predictors identified 

by each method (Table 6.2). 

 

Once a reduced feature set was obtained, all possible combinations of these were explored 

with quadratic discriminant analysis to identify the classifiers with three or fewer predictors 

with the highest sensitivity for a specificity greater than 0.90 within the training set. After 
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optimisation of group weighting to again maximise sensitivity for specificity greater than 

0.90, classifier performance with the test set was determined. These specificity thresholds 

were selected to reduce the number of false positives (identifying a PVD eye as one with a 

retinal detachment). 

 

Results 
Subjects 

Participant demographics and the number of eyes in each group and are reported in Table 

6.1. Subjects with a retinal detachment were younger and had larger eyes than those who 

experienced PVD. Those who experienced a retinal tear had eyes with shorter axial length 

than those who presented with a retinal detachment. 

 

Table 6.1. Participant demographics. 
Group Number of eyes Age (SD) Axial length 
PVD 77 65.3 (6.1) 24.41 (1.10) 
Retinal detachment 64 62.6 (8.5)* 25.10 (1.10)** 
    
Retinal tear 51 64.1 (6.5) 24.41 (1.12)*** 

* Age, p = 0.04; **axial length, p < 0.005, comparing PVD to retinal detachment. *** axial 
length differed between retinal tear and retinal detachment eyes, p = 0.001, with no other 
difference between retinal tear eyes and the other groups. Two-sample t-tests, SD = 
standard deviation. Age in years, axial length in mm. 
 

 
Within-eye distribution of irregularity 

Irregularity was greatest in the inferior retina. Irregularity in the coronal-oriented temporal 

and nasal scans was slightly less than the superior irregularity (Figure 6.2).  
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Figure 6.2. Regional irregularity, swept source OCT. Average irregularity was greater in the 
inferior retina for all diagnostic groups. PVD eyes (blue), retinal detachment eyes (red), 
retinal tear eyes (pink). Up = superior retina, down = inferior retina. 
 

 
 
Correlation of irregularity with axial length 

Axial length correlated weakly with the average total anomaly of all eyes (p = 0.02, 3	= 0.17), 

and average total anomaly for the PVD group alone (p = 0.04, 3	= 0.23), but not with 

average anomaly of retinal detachment or retinal tear eye groups. Within the four individual 

regions, axial length correlated weakly with the total anomaly from superior (p = 0.05, 3 = 

0.14) and inferior (p = 0.015, 3 = 0.18) retina. In individual diagnostic groups this correlation 

only persisted for PVD eyes (superior retina, p = 0.08, 3 = 0.20; inferior retina, p = 0.03, 3 = 

0.24) and not with retinal detachment or retinal tear eyes. 

 

Feature selection 

Elastic net regularisation identified a group of six predictors, with feature vector indices [4; 

36; 79; 83; 86; 125] and mean squared error 0.22; and LASSO a group of three predictors [4; 

83; 125] with mean squared error 0.24. The top six candidate features from the other 

feature reduction methods are shown in Table 6.2. There are 22 different features in this 
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table. As all the elastic net regularisation features are within the top five rows of Table 6.2, 

these six features were further explored through training set classifier performance. 

 

 
 
Table 6.2. Six best candidate features.  
Abs (RD – 
PVD)/PVD  

MRMR ReliefF Neighbourhood 
component 
analysis 

Chi2 F-test 

4 U4 4 U4 125 AxL 33 D3 4 U4 4 U4 
80 T20 125 AxL 126 Age 32 D2 36 D6 36 D6 
86 T26 32 D2 4 U4 34 D4 125 AxL 125 AxL 
79 T19 89 T29 36 D6 4 U4 95 N9 95 N9 
83 T23 124 Tbfc 39 D9 2 U2 31 D1 31 D1 
90 T30 122 Dbfc 21 U21 126 Age 28 U28 115 N25 

Each column reports in order the 1st to 6th best candidate features for each selection 
method. Column 1: the absolute difference between average retinal detachment and PVD 
eye feature value, divided by the magnitude of the PVD feature value. MRMR = maximum 
relevance minimum redundancy. Relieff = predictor importance ranked through algorithmic 
variable weighting that rewards common dependencies, based on the categories of the 10 
nearest neighbours. Chi2 = variable selection through p-values from Chi-squared tests of 
variable and diagnosis. F-test = predictor ranking via F-test p-value. The first column is an 
unsupervised method, the others are supervised filter methods. Each candidate feature is 
identified by a number reflecting its position in the feature vector, as well as by key. Key: U, 
D, T, N = up, down, temporal, and nasal anomaly bin regions, with the accompanying 
number equal to bin number, bfc = best fit curvature, AxL = axial length.  
 

 

Training set classifier performance 

All possible combinations of 1 – 6 features from the six feature candidates were identified 

and used to train quadratic discriminant classifiers. The four classifiers with the highest 

sensitivity for specificity with the training set are shown in Table 6.3. The classifier 

generated from features 4 (fourth bin from the superior retinal scan), 83, and 86 

(respectively bins 23 and 26 from the temporal retinal scan) was selected for use. Five-fold 

cross validation of the classifier using training set eyes repeated 20 times had an average 

success rate = 0.66, with the standard deviation of the success rates = 0.07. Table 6.4 

presents the confusion matrix including subsequently recruited validation set eyes. Initial 

receiver operating characteristic curve generated by 5000 bootstrap replicas had an inverse 

sigmoid or logit shape suggesting the predictor had a non-linear (U-shaped) relationship 
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with outcome278. This was corrected by centring the classifier output to its median value, 

leading to an area under the curve = 0.74 (95% confidence intervals 0.59 – 0.85, Figure 6.3). 

 
Table 6.3. Classifier performance. 
 Training set eyes Test set eyes 
Features Specificity Sensitivity Specificity Sensitivity 

(RD) 
Sensitivity 
(RT) 

[4,79,86] 0.912 0.366 0.95 0.36 0.41 
[4,83,86]  0.912 0.390 0.90 0.50 0.35 
[79,83,125] 0.912 0.488 0.90 0.45 0.24 
[79,86,125] 0.930 0.366 0.90 0.45 0.25 

Training then testing set performance for four quadratic discriminant analysis classifiers. 
The classifier in the second row is described further in Table 6.4 and Figure 6.3. For this 
model, cross validation of the mean success rate of the training set = 0.66, with standard 
deviation of the success rates = 0.07. RD = retinal detachment, RT = retinal tear. 
 
 
 
 
Table 6.4. Confusion matrix for swept source OCT classifier.  
 Label 1 Label 2 Total 
PVD 26 5 31 
Retinal detachment 13 12 25 
Total 39 17 56 

Numbers represent eyes from the combination of the initial and extended validation set 
eyes. This classifier was the second line in Table 6.3. Sensitivity = 0.48, specificity = 0.84, 
Fishers exact test, p = 0.018. 
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Figure 6.3. Receiver operating characteristic curve. The vertical bars represent the 95% 
confidence intervals, generated by 5000 bootstrap replicas. Classifier output centred to the 
median. Area under the curve = 0.74 (95% confidence intervals 0.59 – 0.85), generated with 
SSneweyetest. 
 

 

Conclusions and discussion 
 
Shape feature distribution within-eye and between eyes of different size 

The swept source OCT became available during the course of this study. The increased B 

scan size and variability of B scan orientation enabled exploration of shape in a manner 

complementary to that of SD OCT. Swept source OCT retinal irregularity exhibits an 

irregularity distribution similar to SD OCT irregularity (Section 3.4), being greatest in inferior 

retina. Nasal and temporal retinal irregularity with swept source OCT was sampled 

vertically, orthogonal to SD OCT. In this orientation, irregularity in these regions was of a 

similar magnitude to superior retina, suggesting the lower magnitude irregularity seen in SD 

OCT (Figure 3.4.3) related more to the horizontal scan orientation rather than to regional 
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differences between superior and inferior retina and temporal and nasal retina. This 

supports the hypothesis that mid-peripheral irregularity is greater when measured coronally 

compared to transversely. 

 

Swept source OCT shape correlated with axial length in eyes with a PVD. The lack of 

correlation between axial length and shape in retinal tear and detachment eyes, along with 

the slightly greater average irregularity in these eyes suggests that these eyes are simply 

more irregular regardless of size. 

 

Features 

PVD eyes alone were used to create the average B scan irregularity, so the average B scan 

reflected the most common diagnostic group. If further classifiers were to be developed, it 

would be undesirable to use varying proportions of a mixture of pathologies for each to 

generate an average scan. Candidate feature selection was performed with both an average 

B scan from the PVD eyes and then repeated with an average B scan from PVD and retinal 

detachment eyes combined and produced the same feature sets (Table 6.2), confirming this 

distinction was minimal for this dataset. 

 

Feature selection took as potential features the shape anomaly and best fit curve from four 

peripheral regions, eye axial length and subject age. From 126 possible features, reduction 

to candidate features was explored by two methods: regularisation with LASSO and elastic 

net, looking for combinations of features; and features taken from maximum relevance – 

minimum redundancy, neighbourhood component analysis, ReliefF algorithms, F-test/Chi-

squared for feature – response dependence, and the average difference between retinal 

detachment and PVD features divided by the PVD feature value. Results from these 

approaches produced similar candidate features.  

 

Of the six candidate features selected by elastic net and used to train classifiers, two were 

consistent with or expected from the results from the SD OCT classifier: 4 (upper region 

longer wavelengths), and 125 (axial length). One predictor, 36 was from the consistently 

more irregular inferior region. The three remaining features were comparatively higher 
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frequencies from the temporal region. Temporal and nasal retina was imaged in a vertical 

orientation with the swept source OCT, which was not performed with SD OCT.  

 

The best three-variable model had a sensitivity and specificity in the validation set similar to 

the training set. The three features used were bins 4 (superior retina), 23 and 26 (temporal 

retina). With a bin width of 0.0625 cycles mm-1, these are 0.25 cycles mm-1 (a 4 mm feature 

wavelength superiorly), 1.44 cycles mm-1 (a 0.69 mm feature wavelength temporally), and 

1.62 cycles mm-1 (a 0.61 mm feature wavelength temporally). The first (bin 4, superior 

retina) parallels the useful shape features identified with SD OCT. The useful temporal 

features are almost an order of magnitude smaller. This may relate to the temporal scans 

coming from more anterior retina than the superior scans (Figure 3.3.4 and Table 3.3.2).  

 

Classifier  

Four classifiers were tested (Table 6.3), with two including a lower frequency superior 

retinal anomaly (which was used in the SD OCT classifier, Chapter 5) and two including axial 

length. These were tested as both the other features in each model and their training set 

performances were all similar to each other. They were tested to see whether the superior 

retinal anomaly or axial length proved more important in classification. Perhaps surprisingly 

in the context of prior knowledge of the association between myopia and retinal 

detachment, the superior retinal shape feature had greater utility than axial length. None of 

the best performing classifiers included both axial length and the upper region fourth 

anomaly bin, which would be a combination similar to the SD OCT classifier. The lowest 

frequency features that were sampled with swept source OCT but not SD OCT were not 

utilised in these classifiers, suggesting that larger B scan size is not critical when sampling 

shape to classify retinal detachment and PVD eyes.  

 

The swept source OCT classifier performed slightly better in both sensitivity and specificity 

than the SD OCT classifier. This used one shape feature that was and two shape features 

that were not sampled by SD OCT in Chapter 5. Newer SD OCT devices are likely to be able 

to image this retinal anomaly in the temporal region. This swept source OCT data provides 

further support to the concept that retinal shape differs between eyes that have 

experienced a retinal detachment and those that have experienced a PVD. It does not 
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identify whether this pattern of shape features precede retinal detachment. Prospective 

data will be required to demonstrate whether these features are present prior to retinal 

detachment occurring. 
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Chapter 7. Discussion 

Thesis overview 
The aims of this thesis were to explore whether new information could be extracted from 

retinal OCT, specifically the shape of the retinal contour as represented by the retinal 

pigment epithelium. In particular, the objective was to investigate the relationship between 

retinal shape and myopia and retinal detachment. Similar work exploring posterior segment 

shape in myopia has previously been performed both with MRI for globe shape, and OCT, 

focussed on the macula. While shape has been used to identify disease, this has been 

largely in a qualitative manner for conditions such as dome-shaped maculopathy, focal 

choroidal excavation, and optic nerve head swelling. Most of the prior work in myopia has 

been focussed on the larger eyes with the greatest differences in shape. Imaging artefact 

effects on observed shape are recognisable, and either small (oblique scanning, defocus) or 

correctable (the effect of axial length on curvature)135. The key developments of this thesis 

are the extension of shape analysis to identify eyes with retinal detachment, the analysis of 

shape across a continuum of eye sizes and consequent refractive errors, and the systematic 

use of quantitative OCT retinal shape analysis beyond the macula. Much (but not all) of the 

prior work has been on the best fit curvature to retinal shape. This work has demonstrated 

that retinal irregularity is a useful property worthy of analysis.   

 

OCT irregularity increased with increasing eye size represented by axial length in a manner 

similar to the increased globe irregularity seen with increasing myopia in MRI. This is the 

first identification of this irregularity in peripheral retina279. This provides some reassurance 

that what has been measured is consistent with prior knowledge of myopic eye shape. The 

discovery that irregularity consistently differs in magnitude in different regions of the eye, 

with inferior areas more irregular, is a novel finding.  

 

The age range of the subjects in Chapter 5 was narrow, confined to those had experienced 

PVD in at least one eye, usually in the middle years of life. The pathology of myopia 

progresses throughout life, and therefore it is possible that irregularity itself will increase 

over time. Shape anomaly increased in one eye re-tested over two years without 

experiencing PVD, altering its classification from “PVD” to “retinal detachment”. If this 
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increase in anomaly over time is repeated in other eyes, it will limit the useful classification 

period for retinal detachment from decades or years to years or months, particularly in eyes 

with anomaly values close to the classification thresholds (Figure 5.2.12).  

 

A shape analysis discriminator will be of clinical utility if it can identify eyes at risk of retinal 

detachment prior to the development of PVD, to direct counselling or even administer 

prophylactic retinal laser to reduce the risk of vision loss from retinal detachment. The 

classifier developed in Chapter 5 was able to identify with high specificity some (but not all) 

retinal detachment eyes from a sample of retinal detachment and PVD eyes. If the same 

classifier has the same specificity in eyes that have not undergone PVD, a positive test 

outcome will indicate future risk of retinal detachment. While sensitivity is low, this is 

preferable to a low specificity which would potentially expose eyes with low risk of retinal 

detachment to unnecessary intervention221, and this is the first report of any method that 

can distinguish between retinal detachment and PVD eyes with the OCT. Specificity is more 

important here than success rate (assuming the test has some sensitivity). Without external 

verification, a clinical test should avoid a false positive that might expose a non-pathological 

eye to intervention.  

 

 

Gaze position analysis 

There were noticeable differences in gaze positions during imaging between different 

individuals. The OCT cube protocol used for Chapters 4 and 5 consisted of 21 parallel B scans 

over 8 mm of vertical range, with classification based upon the most irregular scan within 

that sample. As a result, the exact location of any scan used in different eyes varied 

between individuals, reducing the link between gaze position and retinal shape information. 

This variation is a sampling issue but does not invalidate the consideration of regional 

variation in irregularity or classification between eyes.  

 

There is evidence that each individual has an “oculomotor signature”, or consistent 

quantitative performance in ocular smooth pursuit and saccadic eye movements240. This 

individual gaze consistency may contribute to the consistency in within-eye shape analysis, 

both in regional shape metrics (as seen in Bland Altman plots) and in the classification result 
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when individual eyes were re-imaged. The finding here that the upgaze eye position 

maintained for imaging declines with age and is on average less than other directions of 

gaze is consistent with other measurements of eye movements but has not been reported 

before.  

 

Retinal tears 

Patients with retinal tears experience both a different presentation and management for a 

pathological process that is very similar if not necessarily identical to retinal detachment. 

This is not simply due to a longer interval between onset of symptoms and presentation to 

health care, as many individuals develop a retinal detachment within hours of symptoms 

while many retinal tears present weeks after symptomatic floaters. The axial length of eyes 

that experienced retinal tear without retinal detachment was longer than the axial length of 

PVD eyes, and both were shorter than the axial length of retinal detachment eyes. This, 

while not unexpected, has not been reported before, and it may be the smaller size (or 

lower shape anomaly) of the eye slows the development of retinal detachment, giving the 

subject time to access health care before neurosensory retinal separation. Not all 

symptomatic retinal tears lead to retinal detachment, and the non-inevitability of retinal 

detachment after retinal tear may be related to the difference in axial length, although with 

a large overlap in axial length range between the groups it is unlikely to be clinically helpful.  

 

Impact of imaging protocols on this work 
Retinal shape consistency over time (similar features are identified over an interval of 

months) and space (adjacent images, either in parallel or series, show consistency and 

evolution of shape feature rather than incoherent changes) was reassuring. The bulk of this 

work was performed with a Zeiss Cirrus 5000 spectral domain OCT, with a maximum image 

size of 9 mm horizontally oriented B scans. The standard horizontally oriented HD21 

protocol chosen for this study was used to maximise the area sampled in a single cube, but 

does not provide any information on retinal shape in the perpendicular direction. Alteration 

of the orientation of the B scan in the spectral domain OCT window reduces the size of area 

covered to a 6 mm scan length, and complicates the comparison between cubes taken at 

different positions in different eyes, as it is difficult to maintain the scan orientation 

perpendicular to the gaze direction when knowledge of that gaze direction is imprecise. As a 
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result, different information is being considered in scans of the lateral (temporal and nasal) 

retina, where scans are oriented along the sagittal axis, to the information taken from the 

superior and inferior retina, where scan orientation is transverse or coronal. The parallel B 

scans in the HD21 cube protocol are not aligned in the z-axis direction, nor corrected for y-

axis rotation, meaning each must be considered independently and shape information from 

the vertical (y-axis) direction cannot be examined. The decision to limit analysis to 

horizontal scans proved justified by the finding that the useful classification features came 

from the lower frequency features, which would have been missed were smaller 6 mm OCT 

cubes used. The alignment of the parallel scans in the z-axis with 6 mm cube protocol would 

have allowed some shape information from the perpendicular to be considered.  

 

There is continuous improvement in technology for imaging the eye. During the period this 

thesis was undertaken the length of B scans available in commercially available devices 

increased from 9 mm to 16 mm within a single scan. The vertical scan window extent (y-

axis) increased from 8 mm to 12 mm. One of the reasons this became possible was the 

increase in the depth (z-axis) range from 2 mm to 3 mm with spectral domain, and up to 6 

mm with swept source OCT.  The greater depth is required to usefully widen the field of 

view, as otherwise (without altering the z-axis position mid-scan, which would complicate 

analysis of shape) the curvature of the retina in a wider scan would take it outside the field 

of view.   

 

Current technology limits what area of the retina can be examined. The regions covered in 

this work are from the posterior hemisphere extending anteriorly toward the posterior 

extent of the vitreous base. This enabled imaging of retinal tears and extended beyond the 

boundary of most myopic posterior staphylomata. Newer imaging devices have extended 

anteriorly what retina can be visualised11,280 but these were not available for this work, with 

products discontinued internationally without becoming available in Australia. Swept source 

OCT provides better image resolution across the entire depth of the B scan than spectral 

domain OCT, which may improve understanding of the tissue origin of shape features. The 

larger swept source OCT cube protocols provide information from both the horizontal and 

vertical direction simultaneously. Consistent A scan sampling in the x- and y- axis 

orientations will improve the understanding of shape in the different dimensions.  
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The base curve of the retina was quantified by a quadratic or parabolic curve. Parabolic 

estimation of the base curve provides a straightforward single variable assessment of the 

retinal contour. It has the advantage of limiting the number of variables needed to describe 

the base curve to one: the vertex curvature of the parabola. A wider selection of curve 

solutions from all possible conic sections (as opposed to only parabolic solutions) would be 

expected to lead to a closer fit. This could describe the retinal base curve with 2 variables: 

the radii of curvature derived from the general conic equation. However, initial work during 

this thesis found that minor changes in orientation or sampled arc of the retina within the 

OCT image led to large changes in the solution to the radius of curvature from the general 

conic equation, making this approach unreliable. The alternative to deriving the conic radii is 

to use all the constants from the conic equation, replacing one variable with six that are less 

intuitive and no more robust to variation in orientation than the parabola.  

 

While OCT retinal shape values quantified in this work were consistent with repeat imaging, 

measurement is influenced by factors other than the retina itself, including the optics of 

light transmission from source to object and back. Most but not all imaging artifacts 

discussed in the Introduction (Section 1.2.2) have little impact on the information studied in 

this thesis. Those that do can affect the assessment of base curvature. As a result, the 

quantities reported here for curvature reflect not the true local curvature of the eye, but 

the curvature influenced by the examination method. Furthermore, it should again be 

emphasised that local curvature has little relationship to broader retinal curvature as the 

OCT samples only a small and localised arc. B scan retinal shape here is therefore a property 

to compare to other B scans for comparison and classification. Different approaches to 

shape analysis and different imaging devices (OCT or other imaging tools) may produce 

different results.  

 

 

Machine learning 
This thesis differs in two important ways from many reports that have used machine 

learning techniques in ophthalmology215. Firstly, this is not an assessment of the potential 

for machine learning to be able to predict a disease that can be currently predicted by a 

human operator. Rather, it has used the techniques of machine learning to identify a novel 
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image-based feature that may become a diagnostic sign for retinal detachment. Secondly, 

the use of machine learning rather than deep learning techniques, while required by the 

lower sample size studied here compared to most, but not all, published deep learning 

papers214,281, has the advantage of avoiding one of the hazards of “black box” algorithms in 

that the source of classification here is clear, even if the reason for the association between 

shape and pathology is at present uncertain. This promotes an understanding of the 

association between retinal shape and retinal detachment, opens further avenues for 

investigation282, and gives more confidence in what may be considered unusual results283. 

 

Aetiology of irregularity 
The retinal shape was measured with the eye turned away from the primary position. This 

work does not distinguish shape features that are gaze position independent from those 

that are induced by eccentric gaze. The features used here may be independent of eye 

position or arise from eccentric gaze due to localised variations in tissue flexibility. Imaging 

eccentric retinal shape with an OCT imaging beam that can alter its incident angle while the 

eye remains in the primary position might answer this question. Hoang279 and others284 

have explored the shape changes produced from eye movements in highly myopic eyes 

(axial length 27-39 mm) with MRI. These were most apparent in downgaze with a 

measurement (the length and volume of an axially oriented cylinder within the vitreous 

chamber) that relates to changes in macula shape and position relative to the corneal limbal 

plane. The “corrugations” in retinal shape in the superior and inferior retinal periphery 

measured in this thesis are parallel to the direction of gaze and muscle action, and are 

therefore not arising from direct muscle-contraction induced globe compression. Ghosh284 

found a small increase in axial length on downgaze, and it may be that this axial lengthening 

is producing irregularity through secondary concentric contraction. Even if these features 

are gaze dependant, they remain a clinical sign related to myopia and retinal detachment. 

 

Association between irregularity and myopia 
The cause of the irregularity in myopia is not known. It may arise with staphyloma 

development, but irregularity in inferior retinal areas was present in eyes without known 

staphyloma, and is at a smaller scale than MRI shape features. The irregularity may come 

from underlying scleral changes7,285, or from alteration in the choroid286. Quality of retinal 
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image falls in peripheral areas and at the posterior areas of the B scan due to scatter and 

loss of resolution, limiting the information that can be extracted about structures posterior 

to the retinal pigment epithelium. Dome shaped maculopathy, a convex intrusion of the 

macula in myopic eyes, is one example of regional irregularity-associated pathology. While 

this entity was not addressed in this work, hypotheses for the abnormal shape in these eyes 

include relative scleral thinning at the margins of the dome164 measured with extended 

depth imaging OCT. Confidence in this finding was gained with the use of swept source OCT 

which improved scleral image definition and found the same increased scleral thickness 

under the dome compared to the surrounding regions, with no change in external scleral 

contour252,287. In contrast, Gaucher9 hypothesised local choroidal thickening was the cause 

of dome-shaped maculopathy. Further hypotheses include localised hypotony, and altered 

vitreo-retinal traction, both within the staphyloma288. These mechanisms are unlikely to 

produce the shape irregularity seen in this work in eyes that are post vitrectomy and PVD 

eyes where no vitreous attachment remains. Regions of proliferative vitreoretinopathy seen 

in complex retinal detachment and traction retinal detachment eyes of diabetics are known 

to alter the contour of the inner retinal surface without alteration in retinal pigment 

epithelium shape289,290, suggesting inner retinal structures do not have a significant effect 

on retinal contour. 

 

Association between irregularity and retinal detachment 
While the pathology of retinal tears is found at the posterior margin of the vitreous base at 

or around the equator, MRI imaging of globe shape finds most globe irregularity occurs in 

the posterior hemisphere. With the established link between axial length, myopia, and 

retinal detachment, the question arises as to the cause of the link between these, and the 

cause of the association between retinal OCT shape irregularity and retinal detachment. It is 

unlikely that the shape feature differences directly lead to retinal tear formation, but more 

likely that an underlying property of the eye causes both increased shape irregularity and 

promotes retinal tear formation. 

 

Without any adaptative growth in the coronal size of the eye, Poisson’s effect means that 

axial enlargement may lead to compression wrinkles perpendicular to globe elongation291. 

This may explain the increased irregularity seen in the longer retinal detachment eyes 
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compared to PVD eyes, with the inhomogeneity of the eye and its surroundings causing 

different wrinkle sizes in different locations291,292. The link between local irregularity 

differences and retinal detachment may relate to regional variation in the enlargement of 

Bruch’s membrane.  

 

Possible causes of this association include:  

(a) That the association between retinal irregularity and retinal detachment relates to the 

growth of Bruch’s membrane in the equatorial region of the eye5,293. Retinal breaks 

occurring with PVD are associated with localised posterior extension of the posterior margin 

of the vitreous base (Figure 7.1), which may relate to variation in axial expansion of the 

equatorial retina. The transverse irregularity documented in this work may similarly arise 

from Bruch’s membrane expansion, but in the coronal dimension. If this is the cause of the 

association it would explain why the significant shape features are the lowest frequencies, 

representing a passive compression due to constraints on expansion in the coronal plane. It 

would also explain the relative insignificance of negative curvature, the convex inward 

shape seen in some regions in the eyes that might be expected to be pathological in what 

should be a broadly ellipsoid eyeball. If the relationship between irregular eye shape and 

eye size arises from excess growth in the area of Bruch’s membrane, whether it flexes 

inward or out, subject to regional pressures, is unimportant. Small segments of the 

posterior margin of the vitreous base are drawn posteriorly with myopisation, either in 

continuity with or separated from the continuous vitreous base. These posterior points of 

firm vitreo-retinal attachment are put under extra mechanical strain when PVD occurs up to 

the vitreous base, leading to hole or tear formation. The relationship between retinal tear 

formation and irregularity is in this hypothesis an association arising from growth of the 

Bruch’s membrane simultaneously exceeding the coronal size of the spheroid in which it is 

confined, leading to “wrinkles” in the sagittal plane, and axial expansion drawing local 

segments of vitreous base posteriorly, producing retinal tears when PVD occurs. 

 

(b) Myopia and retinal detachment have both been associated with multiple gene loci 

related to collagen294,295. The alteration in connective tissue behaviour from collagen 

variation in these eyes may affect scleral integrity, leading to both small scale changes in 

scleral rigidity producing shape irregularity, as well as abnormal vitreo-retinal attachment.  
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(c) Variation in scleral strength leading to localised weakening and increased irregularity. 

These ‘micro-staphylomas’ alter the interaction between vitreous and retina, changing the 

strength of vitreo-retinal adhesion. In areas of posterior extension of the vitreous base, this 

leads to retinal tear formation when PVD occurs. 

 

 

 
Figure 7.1. Schematic of the posterior margin of the vitreous base.  Seen from within the 
eye looking forward, a non-pathological posterior vitreous base margin is shown on the left. 
The risk of retinal tear formation may arise from irregular expansion of the equatorial 
Bruch’s membrane (red arrow, right image), with associated localised posterior extension of 
the posterior margin of the vitreous base. The classifier detects these eyes by identifying 
coronal expansion of Bruch’s membrane (blue arrow). This is compressed due to limited 
globe growth in this dimension, leading to retinal contour irregularity.  
 

 

 
Prevention of retinal detachment 
Current literature supports the effectiveness of prophylactic 360° laser to the retinal 

equator in preventing vision loss from retinal detachment67,296,297. The issue with preventing 

retinal detachment, then, is not how but who (with a high degree of certainty) to treat. As 

no test is infallible and no treatment without risk, an understanding of the hazards of 

intervention is needed to assess the potential benefits. Were a test with imperfect 

specificity in identifying eyes at risk of retinal detachment to be developed, the question 
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arises as to what risks from prophylactic therapy would be acceptable. A Cochrane review 

reported the risk from 360° equatorial retinal laser prophylaxis ranged from 0 to 3.8%298. 

They reported side effects of retinal laser: 

 

“include refractive errors, raised intraocular pressure, anterior segment ischaemia, cataract, 

anterior and/or posterior uveitis, cystoid macular oedema, epiretinal membrane, retinal 

breaks and diplopia. Although some of these are likely to be the result of the prophylactic 

interventions (refractive errors, anterior segment ischaemia, uveitis, cystoid macular 

oedema, epiretinal membrane and diplopia), others may be coincidental (cataract) or 

related to the underlying disorder (retinal breaks).298” 

 

Of these complications, epiretinal membrane development at the macular (epi-macular 

membrane) is the most common adverse effect of retinal laser to cause permanent visual 

impairment. Retinal laser therapy is routinely used to treat ischaemic retinopathy in 

diabetes299–301, retinal vein occlusion302, and uveitis303, to demarcate retinal breaks to 

prevent retinal detachment, and to treat retinal vascular leak in diabetes. Retinal laser 

prophylaxis has been used in young children with congenital peripheral retinal non-

perfusion diseases (such as retinopathy of prematurity304–307, familial exudative vitreo-

retinopathy308, incontinentia pigmentii309, and Coats’ disease310) as well as type 1 Stickler 

disease67 and the fellow eyes of giant retinal tears. All these conditions are known to have a 

risk of epi-macular membrane formation with subsequent visual impairment, and as all 

these pathologies can themselves produce epi-macular membrane, it is unclear how much 

of the morbidity is due to the disease and how much is iatrogenic.  

 

Epi-macular membrane after laser for retinal tears 

Studies on laser treatment for retinal tears report a range of epiretinal membrane 

development frequency of 0 – 40% (with 23-2000 eyes or patients in each study). The 

highest incidence of 40% is from one study of 50 eyes311,312. Another study reported epi-

macular membrane formation in 14% of eyes following the use of laser photocoagulation to 

treat a retinal break, compared to 10% of untreated retinal breaks found to develop 

epiretinal membrane, with no significant change in visual acuity 313. The largest study, of 
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2000 eyes, reported an incidence of 0.2%314, with greater laser energy use thought to 

contribute to the risk. Pollack65 performed 360° circumferential prophylactic laser in 53 eyes 

with extensive lattice, retinal breaks, and other risk factors for retinal detachment. Two eyes 

developed retinal detachment, and 3.8% (2 eyes) developed epiretinal membrane not 

requiring surgery. Blackorby315 performed a chart review looking for coding for retinal laser 

use with later diagnostic coding for ERM. In this series, 2.9% (48 of 1655 eyes) developed 

epi-macular membrane after an average interval of 12 months, with five requiring surgery. 

Govan316 found a complication rate of 13.2% in 106 eyes treated with laser for “risk of 

retinal detachment”: three eyes developed anterior uveitis, three eyes cystoid macular 

oedema (post cataract extraction), one a dilated pupil, two cataract, and one each of 

vitreous haemorrhage, retinal haemorrhage, choroidal haemorrhage, and epiretinal 

membrane (0.9% each). 

 

Stickler syndrome prophylaxis & ERM 

Fincham67 (2014) and Ang69 report no cases of epiretinal membrane following cryotherapy 

for prophylaxis against retinal detachment in Type 1 Stickler syndrome. 

 

Giant retinal tear prophylaxis & epiretinal membrane 

Both Wolfensberger296 and Ripandelli297 reported no epiretinal membrane development in 

their series of prophylactic retinal laser therapy to the fellow eyes of individuals who had 

experienced a giant retinal tear in one eye. Other reports on prophylaxis for giant retinal 

tears do not provide any data on epiretinal membrane development317–319. 

 

Summary 

Epiretinal membrane may occur in 0 – 40% of eyes following retinal laser. While some 

authors relate the risk of occurrence to the amount of laser energy applied, this is 

unsupported across the range of papers considered here. Notably the case series that 

consider prophylaxis in eyes with no neurosensory retinal break at time of treatment67,296,297 

found no epiretinal membrane development. The difference may arise from the mixed 

aetiology of epiretinal membrane, with some developing from laminocyte proliferation after 

disruption of the posterior vitreous cortex, and others involving retinal pigment epithelium 
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cells after retinal tear formation320. Retinal pigment epithelial cell migration into the pre-

retinal space contributes to epiretinal membrane formation, which is unlikely to occur with 

an intact retina. In the absence of a retinal break the cellular mix to generate surface retinal 

changes is more sparse, reducing the impact of pathological changes and clinical disease 

manifestation. This provides some indication that retinal laser photocoagulation itself has a 

low risk of producing epiretinal membrane in healthy eyes, and may be an acceptable 

treatment should a test for retinal detachment be developed. 

 

Conclusion 
Retinal shape irregularity can be measured with the OCT. This irregularity has a consistent 

variation across different regions of the eye, and increases with increasing axial length. 

There is a need to develop methods to reduce the vision loss that over 50% of individuals 

with retinal detachment experience. While vitreo-retinal surgery has experienced significant 

technological advances in the last 50 years that have improved both the patient experience 

and outcomes321–323 prevention has been proven better than cure where at-risk eyes are 

identifiable. This thesis provides evidence that the crucial step of identifying who as at risk 

may be achievable for more patients through the analysis of retinal irregularity with OCT.  
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Appendix A. Participant information and consent form 

          
 

Participant Information Sheet/Consent Form 
 

Central Adelaide Local Health Network 
 

Title 
Optical Coherence Tomography (OCT) retinal 
topography 
 
 retina Short Title OCT retinal topography 

Protocol Number 31.17 

Coordinating Principal Investigator Dr Stewart Lake 

Associate Investigator(s) 
 

Prof. Karen Reynolds, Prof Keryn Williams, 
A/Prof Murk Bottema 

Location  Flinders Medical Centre 
 

 
 
Part 1 What does my participation involve? 
 
 
1 Introduction 
 

 
You are invited to take part in this research project, Optical coherence tomography (OCT) 
retinal topography. This is because you have had drops to examine your eye (for your out-
patient appointment), and we can clearly see your peripheral retina on examination. The 
research project is aiming to investigate whether the OCT scan can provide useful 
information about the contour, or shape, of the retina. 
 
This Participant Information Sheet/Consent Form tells you about the research project. It 
explains the tests and research involved. Knowing what is involved will help you decide if 
you want to take part in the research. 
 
Please read this information carefully. Ask questions about anything that you don’t 
understand or want to know more about. Before deciding whether or not to take part, you 
might want to talk about it with a relative, friend or local doctor. 
 
Participation in this research is voluntary. If you don’t wish to take part, you don’t have to. 
You will receive the best possible care whether or not you take part. 
 
If you decide you want to take part in the research project, you will be asked to sign the 
consent section. By signing it you are telling us that you: 
• Understand what you have read 
• Consent to take part in the research project 
• Consent to the use of your personal and health information as described. 
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You will be given a copy of this Participant Information and Consent Form to keep. 
 
 
 
2  What is the purpose of this research? 
 
While the eye is roughly spherical, it is known that the shape varies from person to person, 
with short-sighted people generally having larger, more irregularly shaped eyes than long-
sighted people. The aim of the study is to see if reliable information on the shape of the 
retina can be gained from using OCT.  
 
OCT is routinely used to image the posterior retina (the macula), but has not been routinely 
used to study peripheral retinal shape, or contour. If accurate contour information can be 
taken, it may be useful in the study of the development and effects of refractive errors, such 
as short-sightedness. 
 
This research has been initiated by the study doctor, Dr Stewart Lake. The results of this 
research may be used by Dr Lake to obtain a doctorate in Biomedical Engineering. 
3 What does participation in this research involve? 
 
OCT uses near-infrared light (light that is close to the visible spectrum) to obtain highly 
detailed images of the retina. The instrument looks like a computer with a large built in 
camera. It has a chin rest on which you place your head while the scan takes place. One 
scan takes a few seconds, during which you may see some green and red lines while 
looking into the lens of the camera. A single scan covers approximately 4% of the retina (the 
light sensitive layer at the back of the eye). 
 
Several scans of different parts of your eye will be taken, so that later analysis can 
investigate differences in shape between and within eyes, and the relationship between 
different areas. We will not be scanning your entire eye, but a small region as a sample to 
explore image analysis and reconstruction. 
 
Before taking part, you will need to sign the consent form, below. Then Dr Lake will take you 
to the OCT machine. While the scans are being taken, you will be asked to look in different 
directions to help us see your retina. The number of scans will vary depending on how easy 
it is to see the retina. After the OCT scans are performed we may ask to take colour 
photographs of your retina to position the scans within your eye, or use a similar machine to 
measure the length of your eye. 
 
The study takes place in a single visit. Once the test is completed no further study tests are 
required. No additional medications or tests are required.  
 
This research project has been designed to make sure the researchers interpret the results 
in a fair and appropriate way and avoids study doctors or participants jumping to 
conclusions.   
 
There are no costs associated with participating in this research project, nor will you be paid.  
 
5 Other relevant information about the research project 
 
For this study we plan to examine participants at Flinders Medical Centre. These may 
include healthy participants, as well as those who are short-sighted, long-sighted, or have 
had problems with their peripheral retina, such as retinal tears.  
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6 Do I have to take part in this research project? 
 
Participation in any research project is voluntary. If you do not wish to take part, you do not 
have to. If you decide to take part and later change your mind, you are free to withdraw from 
the project at any stage. 
 
If you do decide to take part, you will be given this Participant Information and Consent Form 
to sign and you will be given a copy to keep. 
 
Your decision whether to take part or not to take part, or to take part and then withdraw, will 
not affect your routine treatment, your relationship with those treating you or your 
relationship with Flinders Medical Centre. 
 
7 What are the alternatives to participation?  
  
You do not have to take part in this research project to receive treatment at this hospital.  
 
 
8 What are the possible benefits of taking part? 
 
There will be no benefit to you from your participation in this research, however possible 
benefits may include an improved understanding of the shape of the eye that may help us 
better understand some retinal diseases. 
 
9 What are the possible risks and disadvantages of taking part? 
 
The dilating drops you have been given for your out-patient appointment will make your 
eyesight blurry for 2-3 hours. You should not drive during this period. 
 
You may be asked to look up, out, or to the side to take the pictures. This can be a little 
uncomfortable but usually settles within minutes.  
 
Should the images find any abnormality in your retina, the specialist will tell you and explain 
its significance. If any treatment is required for these abnormalities, the possible options will 
be discussed and should you decide to have treatment it will be performed either at Flinders 
Medical Centre or the Royal Adelaide Hospital, without cost to you. 
 
This study does not involve exposure to ionising radiation. 
   
 
10 What will happen to my test samples? 
 
No blood or tissue tests are required, and no sample of your tissue will be taken. 
 
13 What if I withdraw from this research project? 
 
You can withdraw at any time simply by telling the investigator you do not wish to take part.  
 
If you do withdraw your consent during the research project, the study doctor and relevant 
study staff will not collect additional personal information from you, although personal 
information already collected will be retained to ensure that the results of the research 
project can be measured properly and to comply with law. You should be aware that data 
collected by the sponsor up to the time you withdraw will form part of the research project 
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results.  If you do not want them to do this, you must tell them before you join the research 
project 
 
 
Part 2 How is the research project being conducted? 
 
16 What will happen to information about me? 
 
By signing the consent form you consent to the study doctor and relevant research staff 
collecting and using personal information about you for the research project. Any information 
obtained in connection with this research project that can identify you will remain 
confidential. The data will be stored on the OCT machine database, as part of your medical 
record. Sample data for analysis will be copied to portable hard drives for transfer to the 
Flinders University College of Science & Engineering for analysis. This data will be 
identifiable by a study code number. Your information will only be used for the purpose of 
this research project and it will only be disclosed with your permission, except as required by 
law. 
 
Information about you may be obtained from your health records held at Flinders Medical 
Centre for the purpose of this research. By signing the consent form you agree to the 
research team accessing health records if they are relevant to your participation in this 
research project. 
 
Your health records and any information obtained during the research project are subject to 
inspection for the purpose of verifying the procedures and the data.  This review may be 
done by relevant authorities, the institution relevant to this Participant Information Sheet, 
Flinders University, or as required by law. By signing the Consent Form, you authorise 
release of, or access to, this confidential information to the relevant research personnel and 
regulatory authorities as noted above.  
 
It is anticipated that the results of this research project will be published and/or presented in 
a variety of forums. In any publication and/or presentation, information will be provided in 
such a way that you cannot be identified, except with your permission. 
 
Information about your participation in this research project will be recorded in your health 
record, on the OCT database itself. 
 
In accordance with relevant Australian and/or South Australian privacy and other relevant 
laws, you have the right to request access to the information collected and stored by the 
research team about you. You also have the right to request that any information with which 
you disagree be corrected. Please contact the research team member named at the end of 
this document if you would like to access your information. 
 
Any information obtained for the purpose of this research project that can identify you will be 
treated as confidential and securely stored.  It will be disclosed only with your permission, or 
as required by law. Should this study lead to larger studies on retinal shape, we may wish to 
include your data in such. However, for this to occur, we will contact you to obtain consent 
for this additional use. 
 
17 Complaints and compensation 
 
If you suffer any injuries or complications as a result of this research project, you should 
contact the study team as soon as possible and you will be assisted with arranging 
appropriate medical treatment. If you are eligible for Medicare, you can receive any medical 
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treatment required to treat the injury or complication, free of charge, as a public patient in 
any Australian public hospital. 
 
18 Who is organising and funding the research? 
 
This research project is being conducted by Dr Stewart Lake. 
 
No member of the research team will receive a personal financial benefit from your 
involvement in this research project (other than their ordinary wages). 
 
19 Who has reviewed the research project? 
   
All research in Australia involving humans is reviewed by an independent group of people 
called a Human Research Ethics Committee (HREC).  The ethical aspects of this research 
project have been approved by the HREC of the Southern Adelaide Clinical Human 
Research Ethics Committee. This project will be carried out according to the National 
Statement on Ethical Conduct in Human Research (2007). This statement has been 
developed to protect the interests of people who agree to participate in human research 
studies. 
 
20 Further information and who to contact 
 
The person you may need to contact will depend on the nature of your query.  
If you want any further information concerning this project or if you have any medical 
problems which may be related to your involvement in the project (for example, any side 
effects), you can contact the principal study doctor Dr Stewart Lake on 8204 4252, or any of 
the following people: 
 
 
 Clinical contact person 
 

 
 
 

For matters relating to research at the site at which you are participating, the details of the 
local site complaints person are: 
 
  
Complaints contact person 
 
Position Director, Office for Research 
Telephone 8204 6453 
Email Health.SALHNofficeforresearch@sa.gov.au 

  
  
If you have any complaints about any aspect of the project, the way it is being conducted or 
any questions about being a research participant in general, then you may contact: 
 
Reviewing HREC approving this research and HREC Executive Officer details 
  
Reviewing HREC name Southern Adelaide Clinical 
Position HREC Executive Officer 
Telephone 8204 6453 
Email Health.SALHNofficeforresearch@sa.gov.au 

Position The Ophthalmology Registrar (available 24 hours) 
Telephone 8204 5511 
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Local HREC Office contact (Single Site -Research Governance Officer) 
 
Position Research Governance Officer 
Telephone 8204 6453 
Email Health.SALHNofficeforresearch@sa.gov.au 
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Consent Form - Adult providing own consent 
 

Title Optical coherence tomography retinal topography 

Short Title OCT retinal topography 
Protocol Number 31.17 
Coordinating Principal Investigator 
Principal Investigator 

Dr Stewart Lake 
Principal Investigator] Associate Investigator(s) 

 
Prof. Karen Reynolds, Prof Keryn Williams, 
A/Prof Murk Bottema 

Location  Flinders Medical Centre 

  
 
Declaration by Participant 
 

I have read the Participant Information Sheet or someone has read it to me in a language 
that I understand.  
 

I understand the purposes, procedures and risks of the research described in the project. 
 

I have had an opportunity to ask questions and I am satisfied with the answers I have 
received. 
 

I freely agree to participate in this research project as described and understand that I am 
free to withdraw at any time during the project without affecting my future health care. 
 

I understand that I will be given a signed copy of this document to keep. 
 
 
 

 
 Name of Participant (please print)     
 
 Signature   Date   
  
 
Declaration by Study Doctor/Senior Researcher† 
 

I have given a verbal explanation of the research project, its procedures and risks and I 
believe that the participant has understood that explanation. 
 
 Name of Study Doctor/ 

Senior Researcher† (please print) 
  

  
 Signature   Date   
 
† A senior member of the research team must provide the explanation of, and information concerning, the research 
project.  
 

Note: All parties signing the consent section must date their own signature.
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Form for Withdrawal of Participation - Adult providing own consent 
 
 
 

Title Optical Coherence tomography retinal 
topography 

Short Title OCT retinal topography 
Protocol Number 31.17 
Coordinating Principal Investigator 
 Dr Stewart Lake 

Associate Investigator(s) 
 

Prof. Karen Reynolds, Prof Keryn Williams, 
A/Prof Murk Bottema 

Location  Flinders Medical Centre 
 
 
Declaration by Participant 
 
I wish to withdraw from participation in the above research project and understand that such 
withdrawal will not affect my routine treatment, my relationship with those treating me, or my 
relationship with Flinders Medical Centre 
 
 
 Name of Participant (please print)     
 
 Signature   Date   
 
 
In the event that the participant’s decision to withdraw is communicated verbally, the Study 
Doctor/Senior Researcher will need to provide a description of the circumstances below. 
 
 
 
 

 
Declaration by Study Doctor/Senior Researcher† 

 
I have given a verbal explanation of the implications of withdrawal from the research project 
and I believe that the participant has understood that explanation. 
 
 
 Name of Study Doctor/ 

Senior Researcher† (please print) 
  

  
 Signature   Date   
 
† A senior member of the research team must provide the explanation of and information concerning withdrawal 
from the research project.  
 
Note: All parties signing the consent section must date their own signature. 
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Appendix B. Note on data file format used in MATLAB 
functions 
Fourier transform data for Chapters 3, 4 and 5 were stored in MATLAB workspace 

FFTconcat. These arrays were accessed by many of the functions analysing shape given in 

Appendix C. Within this workspace, a separate array held shape information for each 

diagnosis (for example: RD,  RT, PVD, MH, FE, each with suffix Fb), with each eye’s 

information in a separate row. Relevant columns were 

4 axial length and age 

5 identifiers for all cubes taken 

6 cube identifiers for regions 1-17, in order 

10 all eye B scan spectra, in an array frequency bins (1-30) x B scans (1-21) x cubes (in 

the same order as column 5 vector) 

11 Regional cube spectra. A vector of cells identified by the cells in column 6, each cell 

containing a single cube B scan spectra (bin (1-30) x B scans (1-21)). 

 

Other columns held information developed during analysis iteration and were not used in 

any of the processes described by this work. 
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Appendix C. MATLAB functions written for this thesis 
Chapter 3. 
Image reliability 
1. RetestLVWrmse 
%compare curvature & FFT for retest MP 
%CHANGE: line 8 % 210, plus figure labels 
%takes data from MP xz and xy and calculates FFT and K 
%plus median, var, and iqr sum bins  
%plus median, iqr, and variance K 
%CHANGE: for accurate data, uncomment 427-428,432-433  
%load MH data 
str1 = '/Users/stewartlake/Documents/Retinalcontour/data validity/MP - livewire 
check/MP repeat xy/'; 
cd (str1); 
  
MHinfo = dir; 
MHinfo = MHinfo(~ismember({MHinfo.name},{'.','..','.DS_Store'})); 
MHnames = {MHinfo.name}; 
  
MHNum = size (MHnames,2);%number MP cubes 
MHcubeFFTvec = cell(1,MHNum);%One eye per cell %each cell 30 bins x 12 B scans 
MHbfccoeff = cell(1,MHNum); 
MHK = cell(1,MHNum); % best fit curve vertex curvature.One eye per cell 
MHID = cell(1,MHNum); 
MHside = zeros(1,MHNum); 
MedKMH = zeros(1,MHNum); %median MH K 
IqrKMH = zeros(1,MHNum);%iqr MH K 
VarKMH = zeros(1,MHNum);% variance MH K 
MedFMH = zeros(1,MHNum);% median FFT bins 1-30 
IqrFMH = zeros(1,MHNum);%iqr FFT bins 
VarFMH = zeros(1,MHNum);%variance FFT bins 
x2=cell(MHNum,21); 
z2=cell(MHNum,21); 
  
%generate data for MP cubes 
for CurFol=1:MHNum 
     
    MHnam = MHnames {1,CurFol}(1:5);%cube ID 
    MHside = MHnames {1,CurFol}(2);%eye laterality (not needed) 
    MHprefix = MHnames {1,CurFol}(1:2);%first two characters for textfile str 
    %open cube of data 
    nowFolderMH=MHnames{1,CurFol}; 
     
    cd (nowFolderMH);%open cube xz data folder 
  
    %get directory of textfile (B scan) names 
    MHdinfo = dir; 
    MHnames_cell = {MHdinfo.name}; 
%gives a matrix called names_cell where each column has a filename 
%then: 
    outMH=regexp(MHnames_cell,'\d+','match'); 
    outMH=str2double(cat(1,outMH{:})); 
%gives a matrix called out in which each row has a number from an original filename 
%these are in column 2 if text file header has a number, column 1 if it 
%doesn't. 
  
%script alpha. takes a cube of data and 
%Puts x and z coordinate values into an array (myData), each cell a line of data. 
%Then separates this into arrays for x, and z. 
    numFiles = size(outMH, 1);%number of B scans in cube 
    startRow = 1; 
    endRow = inf; 
    myData = cell(1,numFiles); 
    ximp = cell (1, numFiles);%this cubes x data 
    zimp = cell (1, numFiles);%this cubes Z data 
    cubeFFT = zeros (30, numFiles); 
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    Cubefreq = zeros (30, numFiles); 
    MHKurv = zeros (numFiles,1); 
      
    fileName = cell(1); 
     
    zedres = zeros(1024,numFiles); 
    Quadcoeffs = zeros(3, numFiles); 
    VecLen1 = zeros (1, numFiles); 
     
     
     for fileNum = 1:numFiles %work through B scan xz txt files 
            Bscanline = outMH(fileNum,end); 
            %This loop is for a single cube 
            fileName =[]; 
            fileName1 = sprintf('-%04d.txt',Bscanline); 
            fileName = [MHprefix fileName1]; 
            myData{Bscanline} = importfile(fileName,startRow,endRow); 
             
            ximp{Bscanline}=myData{Bscanline}(:,1); 
            zimp{Bscanline}=myData{Bscanline}(:,2); 
             
             
     
            %now format x and z for FFT 
            x=table2cell(ximp{Bscanline}); 
            z=table2cell(zimp{Bscanline}); 
            x2{CurFol,Bscanline}=cell2mat(x); 
            z2{CurFol,Bscanline}=cell2mat(z); 
             
            L = length (z2{CurFol,Bscanline}); 
             
            [FFTz,freq] = 
FFTforOCT_R3mm(x2{CurFol,Bscanline},z2{CurFol,Bscanline});%mac hole FFT script 
            VecLen1(fileNum) = length(z2{CurFol,Bscanline});%vector length(FFT 
already corrected) 
             
            %create matrix of residuals 
            zVlen = size (z2{CurFol,Bscanline}); 
            zedres(1:zVlen,fileNum) = z2{CurFol,Bscanline}; 
            %zedres = zedres(1:1024,fileNum); 
             
            %save quadratic coefficients 
            sf = 1024/9;% 6 mm scan length 
            xmm{Bscanline} = x2{CurFol,Bscanline}/sf;%convert to mm 
            sfz = 1024/2; 
            ZMM{Bscanline} = z2{CurFol,Bscanline}/sfz; 
            p{Bscanline} = polyfit(xmm{Bscanline},ZMM{Bscanline},2);% 
            Quadcoeffs (1,Bscanline) = p{Bscanline}(1); 
            Quadcoeffs (2,Bscanline) = p{Bscanline}(2); 
            Quadcoeffs (3,Bscanline) = p{Bscanline}(3); 
     
            %put FFTz, freq into matrix, one column per B scan 
            cubeFFT(1:30,Bscanline) = FFTz(1:30,1); 
            %cubeFFT(1:30,fileNum)=cubeFFT(1:30,fileNum)/VecLen(fileNuM); 
            Cubefreq(1:30,Bscanline) = freq(1:30)'; 
             
            MHKurv(Bscanline) = 2* (Quadcoeffs(1,Bscanline));%unrotated K 
             
             
            %this section (155 - 176)creates rotated BFCvK 
             
%p1 is the best fit line to the curve, to determine rotation angle 
MHp1{Bscanline} = polyfit(xmm{Bscanline},ZMM{Bscanline},1);%first element p1 is 
gradient 
  
%rotate that line to the horizontal 
angleA(Bscanline) = -atan(MHp1{Bscanline}(1));%angle for rotation 
  
%rotate the curve by the same angle 
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%rotation matrix 
R = [cos(angleA(Bscanline)) -sin(angleA(Bscanline)); sin(angleA(Bscanline)) 
cos(angleA(Bscanline))]; 
  
MHRotCd{Bscanline} = (cat(2,xmm{Bscanline},ZMM{Bscanline}))';%combine x & z in one 
array 
MHOdisp{Bscanline}(1) = mean(nonzeros(MHRotCd{Bscanline}(1,:))); 
MHOdisp{Bscanline}(2) = mean(nonzeros(MHRotCd{Bscanline}(2,:))); 
MHRotCd{Bscanline} = MHRotCd{Bscanline} - MHOdisp{Bscanline}';%move to origin for 
rotation  
  
MHRotCd{Bscanline} = R*MHRotCd{Bscanline};%rotated coordinates 
MHRotCd{Bscanline} = MHRotCd{Bscanline} + MHOdisp{Bscanline}';%translate to 
original position 
MHRotp2{Bscanline} = polyfit(MHRotCd{Bscanline}(1,:),MHRotCd{Bscanline}(2,:),2); 
MHRotKurv(Bscanline) = 2* MHRotp2{Bscanline}(1);%rotated BFCvK 
    
            
     end 
      
        cubeFFT(cubeFFT==0) = NaN;%30 rows for bins, 12 columns for B scans 
        MHcubeFFTvec{CurFol} = cubeFFT;%each cell 30 bins x 12 B scans 
        MedFMH(CurFol) = median (sum(cubeFFT)); 
        IqrFMH(CurFol) = iqr (sum(cubeFFT)); 
        VarFMH(CurFol) = var (sum(cubeFFT)); 
         
        MHbfccoeff{CurFol} = Quadcoeffs; 
         
        MedKMH(CurFol) = median (MHKurv); 
        IqrKMH(CurFol) = iqr (MHKurv); 
        VarKMH(CurFol) = var (MHKurv); 
        MHK{CurFol} = MHKurv; 
         
        MHRotK{CurFol} = MHRotKurv; 
        MedKMHRot(CurFol) = median (MHRotKurv); 
        IqrKMHRot(CurFol) = iqr (MHRotKurv); 
        VarKMHRot(CurFol) = var (MHRotKurv); 
         
        cd ../  
         
        MHID{CurFol} = MHnam(4:5); 
        %nowSide = MHIID(nowMHID,str2double(MHside)+1); 
        MHside(CurFol) = MHnam(2); 
end 
  
  
  
%load PV data (PVD eyes) 
str1 = '/Users/stewartlake/Documents/Retinalcontour/data validity/MP - livewire 
check/MP xz/'; 
cd (str1); 
  
PVinfo = dir; 
PVinfo = PVinfo(~ismember({PVinfo.name},{'.','..','.DS_Store'})); 
PVnames = {PVinfo.name}; 
  
PVNum = size (PVnames,2);%number MP cubes 
PVcubeFFTvec = cell(1,PVNum);%PVD FFT data 
PVbfccoeff = cell(1,PVNum); 
PVK = cell(1,PVNum);% best fit curve vertex curvature 
PVID = cell(1,PVNum); 
PVside = zeros(1,PVNum); 
MedKPV = zeros(1,PVNum); %median MH K 
IqrKPV = zeros(1,PVNum);%iqr MH K 
VarKPV = zeros(1,PVNum);% variance MH K 
MedFPV = zeros(1,PVNum);% median FFT bins 1-30 
IqrFPV = zeros(1,PVNum);%iqr FFT bins 
VarFPV = zeros(1,PVNum);%variance FFT bins 
x1=cell(PVNum,21); 
z1=cell(PVNum,21); 
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%generate data for MP cubes 2 
for CurFol=1:PVNum 
     
    PVnam = PVnames {1,CurFol}(1:5);%eye ID 
    PVside = PVnames {1,CurFol}(2);%eye laterality 
    PVprefix = PVnames {1,CurFol}(1:2);%first two characters for textfile str 
    %open cube of data 
    nowFolderPV=PVnames{1,CurFol}; 
     
    cd (nowFolderPV);%open cube xz data folder 
  
    %get directory of textfile (B scan) names 
    PVdinfo = dir; 
    PVnames_cell = {PVdinfo.name}; 
%gives a matrix called names_cell where each column has a filename 
%then: 
    outPV=regexp(PVnames_cell,'\d+','match'); 
    outPV=str2double(cat(1,outPV{:})); 
%gives a matrix called out in which each row has a number from an original filename 
%these are in column 2 if text file header has a number, column 1 if it 
%doesn't. 
  
%script alpha. takes a cube of data and 
%Puts x and z coordinate values into an array (myData), each cell a line of data. 
%Then separates this into arrays for x, and z. 
    numFiles = size(outPV, 1);%number of B scans in cube 
    startRow = 1; 
    endRow = inf; 
    myData = cell(1,numFiles); 
    ximp = cell (1, numFiles);%this cubes x data 
    zimp = cell (1, numFiles);%this cubes Z data 
    cubeFFT = zeros (30, numFiles); 
    Cubefreq = zeros (30, numFiles); 
    PVKurv = zeros (numFiles,1); 
      
    fileName = cell(1); 
     
    zedres = zeros(1024,numFiles); 
    Quadcoeffs = zeros(3, numFiles); 
    VecLen2 = zeros (1, numFiles); 
     
     
     for fileNum = 1:numFiles %work through B scan xz txt files 
            Bscanline = outPV(fileNum,end); 
            %This loop is for a single cube 
            fileName =[]; 
            fileName1 = sprintf('-%04d.txt',Bscanline); 
            fileName = [PVprefix fileName1]; 
            myData{Bscanline} = importfile(fileName,startRow,endRow); 
             
            ximp{Bscanline}=myData{Bscanline}(:,1); 
            zimp{Bscanline}=myData{Bscanline}(:,2); 
             
             
     
            %now format x and z for FFT 
            x=table2cell(ximp{Bscanline}); 
            z=table2cell(zimp{Bscanline}); 
            x1{CurFol,Bscanline}=cell2mat(x); 
            z1{CurFol,Bscanline}=cell2mat(z); 
             
            L = length (z1{CurFol,Bscanline}); 
             
            [FFTz,freq] = 
FFTforOCT_R3mm(x1{CurFol,Bscanline},z1{CurFol,Bscanline});%mac hole FFT script 
            VecLen2(CurFol,Bscanline) = length(z1{CurFol,Bscanline});%vector 
length(FFT already corrected) 
             
            %create matrix of residuals 
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            zVlen = size (z1{CurFol,Bscanline}); 
            zedres(1:zVlen,fileNum) = z1{CurFol,Bscanline}; 
            %zedres = zedres(1:1024,fileNum); 
             
            %save quadratic coefficients 
            sf = 1024/9;% 6 mm scan length 
            xmm{Bscanline} = x1{CurFol,Bscanline}/sf; 
            sfz = 1024/2; 
            ZMM{Bscanline} = z1{CurFol,Bscanline}/sfz; 
            p{Bscanline} = polyfit(xmm{Bscanline},ZMM{Bscanline},2);% 
            Quadcoeffs (1,Bscanline) = p{Bscanline}(1); 
            Quadcoeffs (2,Bscanline) = p{Bscanline}(2); 
            Quadcoeffs (3,Bscanline) = p{Bscanline}(3); 
     
            %put FFTz, freq into matrix, one column per B scan 
            cubeFFT(1:30,Bscanline) = FFTz(1:30,1); 
            %cubeFFT(1:30,fileNum)=cubeFFT(1:30,fileNum)/VecLen(fileNuM); 
            Cubefreq(1:30,Bscanline) = freq(1:30)'; 
             
            PVKurv(Bscanline) = 2* (Quadcoeffs(1,Bscanline));%unrotated K 
     
%this section (356 - 377)creates rotated BFCvK 
             
%p1 is the best fit line to the curve 
p1{Bscanline} = polyfit(xmm{Bscanline},ZMM{Bscanline},1);%first element p1 is 
gradient 
  
%rotate that line to the horizontal 
angleA(Bscanline) = -atan(p1{Bscanline}(1));%angle for rotation 
  
%rotate the curve by the same angle 
  
%rotation matrix 
R = [cos(angleA(Bscanline)) -sin(angleA(Bscanline)); sin(angleA(Bscanline)) 
cos(angleA(Bscanline))]; 
  
PVRotCd{Bscanline} = (cat(2,xmm{Bscanline},ZMM{Bscanline}))';%combine x & z in one 
array 
PVOdisp{Bscanline}(1) = mean(nonzeros(PVRotCd{Bscanline}(1,:))); 
PVOdisp{Bscanline}(2) = mean(nonzeros(PVRotCd{Bscanline}(2,:))); 
PVRotCd{Bscanline} = PVRotCd{Bscanline} - PVOdisp{Bscanline}';%move to origin for 
rotation  
  
PVRotCd{Bscanline} = R*PVRotCd{Bscanline};%rotated coordinates 
PVRotCd{Bscanline} = PVRotCd{Bscanline} + PVOdisp{Bscanline}';%translate to 
original position 
PVRotp2{Bscanline} = polyfit(PVRotCd{Bscanline}(1,:),PVRotCd{Bscanline}(2,:),2); 
PVRotKurv(Bscanline) = 2* PVRotp2{Bscanline}(1);%rotated BFCvK 
             
            
     end 
        cubeFFT(cubeFFT==0) = NaN; 
        PVcubeFFTvec{CurFol} = cubeFFT; 
        MedFPV(CurFol) = median (sum(cubeFFT)); 
        IqrFPV(CurFol) = iqr (sum(cubeFFT)); 
        VarFPV(CurFol) = var (sum(cubeFFT)); 
        PVbfccoeff{CurFol} = Quadcoeffs; 
        PVK{CurFol} = PVKurv; 
        MedKPV(CurFol) = median (PVKurv); 
        IqrKPV(CurFol) = iqr (PVKurv); 
        VarKPV(CurFol) = var (PVKurv); 
         
        PVRotK{CurFol} = PVRotKurv; 
        MedKPVRot(CurFol) = median (PVRotKurv); 
        IqrKPVRot(CurFol) = iqr (PVRotKurv); 
        VarKPVRot(CurFol) = var (PVRotKurv); 
         
         
        cd ../  
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        PVID{CurFol} = PVnam(4:5); 
        %nowSide = PVIID(nowPVID,str2double(PVside)+1); 
        PVside(CurFol) = PVnam(2); 
end 
  
  
  
  
  
  
%stat tests for difference between groups: one tailed Mann Whitney 
[pFI,hIF] = ranksum(IqrFPV,IqrFMH); 
[pKI,hIK] = ranksum(IqrKPV,IqrKMH); 
[pVF,hVF] = ranksum(VarFPV,VarFMH); 
[pVK,hVK] = ranksum(VarKPV,VarKMH); 
[pMF,hMF] = ranksum(MedFPV,MedFMH); 
[pMK,hMK] = ranksum(MedKPV,MedKMH); 
  
[pKrotI,hIKrot] = ranksum(IqrKPVRot,IqrKMHRot);%for rotated BFCvK 
[pVKrot,hVKrot] = ranksum(VarKPVRot,VarKMHRot); 
[pMKrot,hMKrot] = ranksum(MedKPVRot,MedKMHRot); 
  
  
%match z vector from each livewire & determine rmse 
%find common x  
MP1a = x1(:); 
MP2a = x2(:); 
MP1a(100)=[];%removes mismatched txt files (doesnt explain why?) 
MP2a(334) = [];%see end of function 
MP1 = MP1a(~cellfun('isempty',MP1a)); 
MP2 = MP2a(~cellfun('isempty',MP2a)); 
  
MPz1a = z1(:); 
MPz1a(100)=[]; 
MPz2a = z2(:); 
MPz2a(334)=[]; 
MPz1 = MPz1a(~cellfun('isempty',MPz1a)); 
MPz2 = MPz2a(~cellfun('isempty',MPz2a)); 
  
match2 = cell(length(MP2),1); 
match1 = cell(length(MP2),1); 
lengthvec = cell(length(MP2),1); 
rmse = zeros(length(MP2),1); 
rmsecorr = zeros(length(MP2),1); 
answ=cell(2,1); 
  
for NumBS = 1:length(MP2) 
     
answ{1}=find(MP2{NumBS}==MP1{NumBS}(1),1); 
answ{2}=find(MP1{NumBS}==MP2{NumBS}(1),1); 
  
if (~(isempty(answ{2}))) 
     
    lengthvec{NumBS} = min(length(MP1{NumBS}),length(MP2{NumBS})); 
    match1{NumBS} = MPz1{NumBS}(answ{2}:lengthvec{NumBS}); 
    match2{NumBS} = MPz2{NumBS}(1:lengthvec{NumBS}-(answ{2}-1)); 
     
  
elseif (~(isempty(answ{1}))) 
  
    lengthvec{NumBS} = min(length(MP1{NumBS}),length(MP2{NumBS})); 
    match1{NumBS} = MPz1{NumBS}(1:lengthvec{NumBS}-(answ{1}-1)); 
    match2{NumBS} = MPz2{NumBS}(answ{1}:lengthvec{NumBS}); 
    
     
else 
    lengthvec{NumBS} = min(length(MP1{NumBS}),length(MP2{NumBS})); 
    match1{NumBS} = MPz1{NumBS}(1:lengthvec{NumBS}); 
    match2{NumBS} = MPz2{NumBS}(1:lengthvec{NumBS}); 
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end 
  
rmse(NumBS) = sqrt(sum((match1{NumBS} - match2{NumBS}).^2)/lengthvec{NumBS}); 
meandiff = mean(match1{NumBS} - match2{NumBS}); 
rmsecorr(NumBS) = sqrt(sum(((match1{NumBS}-meandiff) - 
match2{NumBS}).^2)/lengthvec{NumBS}); 
%vector of rmse for all B scans in series 
end 
  
  
MnBsrmse = mean(rmse); 
MnBsrmsecorr = mean(rmsecorr); 
SDBsrmse = std(rmse); 
SDBsrmsecorr = std(rmsecorr); 
  
  
%signrank all the FTR/K for each assay in a single vector 
for Ec=1:18 
    
    SUMFFTMH{Ec} = sum(MHcubeFFTvec{Ec}); 
    SUMFFTPV{Ec} = sum(PVcubeFFTvec{Ec}); 
     
    KallMH{Ec} = 2*MHbfccoeff{Ec}(1,:); 
    KallPV{Ec} = 2*PVbfccoeff{Ec}(1,:); 
     
end 
  
SUMFFTMH = [SUMFFTMH{:}];%vector of all B scan FTR30 
SUMFFTPV = [SUMFFTPV{:}]; 
KallMH = [KallMH{:}];%vector of all B scan Ks 
KallPV = [KallPV{:}]; 
  
[pFsum,hFsum] = ranksum(SUMFFTMH,SUMFFTPV); 
[pKall,hKall] = ranksum(KallMH,KallPV); 
  
  
%{ 
%scatter plot variance of K and FFT,MH v PV, rotated K 
dx=0.000001;%label displacement 
dy=0.1; 
figure 
hold on 
scatter(VarKMHRot,VarFMH,[],'r') 
%text(VarKMH +dx,VarFMH + dy,MHID); 
scatter(VarKPVRot, VarFPV,[],'b') 
%text(VarKPV +dx,VarFPV + dy,PVID); 
title('MPYHY v MPSL cube rotated K v FFT variance'); 
xlabel('Krot var'); 
ylabel('FFT var'); 
  
%scatter plot variance of K and FFT,MH v PV 
dx=0.000001;%label displacement 
dy=0.1; 
figure 
hold on 
scatter(VarKMH,VarFMH,[],'r') 
%text(VarKMH +dx,VarFMH + dy,MHID); 
scatter(VarKPV, VarFPV,[],'b') 
%text(VarKPV +dx,VarFPV + dy,PVID); 
title('MPYHY v MPSL cube K and FFT variance'); 
xlabel('K var'); 
ylabel('FFT var'); 
  
%scatter plot median K v FFT 
figure 
dx2=0.005; 
dy2=0.1; 
hold on 
scatter(MedKMH,MedFMH,[],'r') 
%text(MedKMH +dx2,MedFMH + dy2,MHID); 
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scatter(MedKPV, MedFPV,[],'b') 
%text(MedKPV +dx2,MedFPV + dy2,PVID); 
title('MPYHY v MPSL cube median K and FFT'); 
xlabel('K med'); 
ylabel('FFT med'); 
  
%scatter plot iqr K & FFT 
figure 
dx3=0.0001; 
dy3=0.1; 
hold on 
scatter(IqrKMH,IqrFMH,[],'r') 
%text(IqrKMH +dx3,IqrFMH + dy3,MHID); 
scatter(IqrKPV, IqrFPV,[],'b') 
%text(IqrKPV +dx3,IqrFPV + dy3,PVID); 
title('MPYHY v MPSL cube iqr K and FFT'); 
xlabel('iqr K'); 
ylabel('iqr FFT'); 
%} 
save ('/Users/stewartlake/Documents/Retinalcontour/data validity/MP - livewire 
check/sgnrkrmse');  

 
 
Merging 3D cubes  
1. mergeSLO3DSSa 
  
%SLO3Dcontour added to this 
%create 3D surf plot cube (with BFC added) 
%CHANGE:  
%CHANGE: Cubename1, & Cubename2, lines 9/13 
%CHANGE:  
%CHANGE: create SLO images of both first, in location as per line 66 & 149 
%corrected for SLO FoV 36 x 30 see guidance lines 70-71 
clear 
Cubename1 = 'SSa 0102 11-43-46';%'SSa 0067 14-23-57';%'SSa 0066 11-28-46';%macula 
Eyename1 = Cubename1(1:8); 
Eyeprefix1 = Cubename1(1:3); 
  
Cubename2 = 'SSa 0102 11-44-29';%'SSa 0067 14-25-53';%eccentric 
Eyename2 = Cubename2(1:8); 
Eyeprefix2 = Cubename2(1:3); 
%% 
xzdir1= ['/Users/stewartlake/Documents/SS OCT eyes/' Eyename1 '/' Eyename1 ' xz/' 
Cubename1 ' xz/']; 
cd(xzdir1); 
dinfo = dir; 
    names_cell = {dinfo.name}; 
%gives a matrix called names_cell where each column has a filename 
%then: 
    out1=regexp(names_cell,'\d+','match'); 
    out1=str2double(cat(1,out1{:})); 
%gives a matrix called out in which each row has a number from an original filename 
%these are in column 2 if text file header has a number, column 1 if it 
%doesn't. 
  
%script alpha. takes a cube of data and 
%Puts x and z coordinate values into an array (myData), each cell a line of data. 
%Then separates this into arrays for x, and z. 
    numFiles = size(out1, 1); 
    startRow = 1; 
    endRow = inf; 
    myData = cell(1,numFiles); 
    ximp = cell (1, numFiles); 
    zimp = cell (1, numFiles); 
     
    fileName = cell(1); 
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     for fileNum = 1:numFiles 
            Bscanline = out1(fileNum,end); 
            %This loop is for a single cube 
            fileName =[]; 
            fileName = sprintf('-%04d.txt',Bscanline); 
            fileName = [Eyeprefix1 fileName]; 
            myData{Bscanline} = importfile(fileName,startRow,endRow); 
             
            ximp{Bscanline}=myData{Bscanline}(:,1); 
            zimp{Bscanline}=myData{Bscanline}(:,2); 
             
     
     
             
     end 
      
     sf = 500/9; 
sfz = 1536/3; 
for BFC=1:numFiles 
    NowBS = out1(BFC,end); 
xmm{NowBS} = ximp{1,NowBS}.VarName1; 
ZMM{NowBS} = zimp{1,NowBS}.VarName2; 
p2{NowBS} = polyfit(xmm{NowBS},ZMM{NowBS},2);%unused 
end 
  
SLOpicname1 = ['/Users/stewartlake/Documents/SS OCT eyes/' Eyename1 '/' Eyename1 ' 
lslo/' Cubename1 '.png']; 
SLOpic1 = imread(SLOpicname1); 
  
%SLO FoV 36x30,lines 72,92,162,180,101, 190 from [500 500] to [500 600] 
% & lines 101 190 from ximp2{1,Site2}.VarName1+1 to 
floor(ximp2{1,Site2}.VarName1)*1.2+1 
SLOpicMrNsize1 = imresize(SLOpic1,[500 600]);%pixel dimensions of B scans 
IMGcontour1 = zeros(500,600); 
  
 %put height into IMGcountour for surf 
 for Site = 1:numFiles 
     if ~isempty(ximp{1,Site})%only if there is B scan data here 
         %LineWidth=LongI1(GaP1(Site+1))-LongI1(GaP1(Site)+1)+1;%width of green 
lines 
         %ThickZ1 = (repmat(zimp{1,Site}.VarName2',LineWidth,1))/4.5;%repeat z to 
match line width 
         ThickZ1 = fliplr(zimp{1,Site}.VarName2');%fliplr 
         ThickZ1 = ThickZ1*sf/sfz;%converts to x index dimension size 
         ColI1 = floor(ximp{1,Site}.VarName1*1.2)+1; 
         IMGcontour1((((numFiles+1)-Site)*20)-10,ColI1)=ThickZ1; 
           %the 26-Site places higher index B scans at the top of the image  
     end 
 end 
  
 IMGcontour1(IMGcontour1==0)=NaN; 
  
  
I1 = floor(fillmissing(IMGcontour1,'previous',1,'EndValues','nearest')); 
I1 = floor(fillmissing(I1,'previous',2,'EndValues','nearest')); 
%%  
 %now generate second image contour map 
  
xzdir2= ['/Users/stewartlake/Documents/SS OCT eyes/' Eyename2 '/' Eyename2 ' xz/' 
Cubename2 ' xz/']; 
cd(xzdir2); 
dinfo2 = dir; 
    names_cell2 = {dinfo2.name}; 
%gives a matrix called names_cell where each column has a filename 
%then: 
    out2=regexp(names_cell2,'\d+','match'); 
    out2=str2double(cat(1,out2{:})); 
%gives a matrix called out in which each row has a number from an original filename 
%these are in column 2 if text file header has a number, column 1 if it 
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%doesn't. 
  
%script alpha. takes a cube of data and 
%Puts x and z coordinate values into an array (myData), each cell a line of data. 
%Then separates this into arrays for x, and z. 
    numFiles2 = size(out2, 1); 
    startRow = 1; 
    endRow = inf; 
    myData = cell(1,numFiles2); 
    ximp2 = cell (1, numFiles2); 
    zimp2 = cell (1, numFiles2); 
     
    fileName = cell(1); 
    
     
     for fileNum2 = 1:numFiles2 
            Bscanline2 = out2(fileNum2,end); 
            %This loop is for a single cube 
            fileName =[]; 
            fileName = sprintf('-%04d.txt',Bscanline2); 
            fileName = [Eyeprefix2 fileName]; 
            myData{Bscanline2} = importfile(fileName,startRow,endRow); 
             
            ximp2{Bscanline2}=myData{Bscanline2}(:,1); 
            zimp2{Bscanline2}=myData{Bscanline2}(:,2); 
     
    NowBS2 = out2(fileNum2,end); 
    xmm2{NowBS2} = ximp2{1,NowBS2}.VarName1; 
    ZMM2{NowBS2} = zimp2{1,NowBS2}.VarName2; 
    p22{NowBS2} = polyfit(xmm2{NowBS2},ZMM2{NowBS2},2);%unused 
end 
  
SLOpicname2 = ['/Users/stewartlake/Documents/SS OCT eyes/' Eyename2 '/' Eyename2 ' 
lslo/' Cubename2 '.png']; 
SLOpic2 = imread(SLOpicname2); 
  
%SLOpicMr2 = SLOpic2(end:-1:1,end:-1:1,:);  
  
SLOpicMrNsize2 = imresize(SLOpic2,[500 600]); 
IMGcontour2 = zeros(500,600); 
  
 %put height into IMGcountour for surf 
 for Site2 = 1:numFiles2 
     if ~isempty(ximp2{1,Site2})%only if there is B scan data here 
         %LineWidth=LongI2(GaP2(Site2+1))-LongI2(GaP2(Site2)+1)+1;%width of green 
lines 
         %ThickZ2 = (repmat(zimp2{1,Site2}.VarName2',LineWidth,1))/4.5;%repeat z to 
match line width 
         
%IMGcontour2(LongI2(GaP2(Site2)+1):LongI2(GaP2(Site2+1)),ximp2{1,Site2}.VarName1+1)
=ThickZ2; 
         ThickZ2 = fliplr(zimp2{1,Site2}.VarName2');%fliplr 
         ThickZ2 = ThickZ2*sf/sfz; 
         ColI2=[]; 
         ColI2 = floor(ximp2{1,Site2}.VarName1*1.2)+1; 
         IMGcontour2((((numFiles2+1)-Site2)*20)-10,ColI2)=ThickZ2; 
          
     end 
 end 
  
 IMGcontour2(IMGcontour2==0)=NaN; 
  
  
I2 = floor(fillmissing(IMGcontour2,'previous','EndValues','nearest')); 
I2 = floor(fillmissing(I2,'previous',2,'EndValues','nearest'));  
  
%% 
 %create surf plot 
%for first image 
Imi1f = figure; 
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%[XX,MaP]=rgb2ind(SLOpicMrNsize1,256); 
colormap(gray) 
CubeHtmap=surf(I1,SLOpicMrNsize1,'FaceColor','texturemap','EdgeColor','none','CData
Mapping','direct','FaceAlpha',0.7,'FaceLighting','gouraud'); 
view(2); 
%pbaspect([9 9 3]);%not needed - z converted to x scale in ThickZ1 
  
Imi2f = figure; 
%[XX2,MaP2]=rgb2ind(SLOpicMrNsize2,256); 
colormap(gray) 
CubeHtmap2=surf(I2,SLOpicMrNsize2,'FaceColor','texturemap','EdgeColor','none','CDat
aMapping','direct','FaceAlpha',0.7,'FaceLighting','gouraud'); 
view(2); 
%pbaspect([9 9 3]); 
  
%rest is for Pt2 
%find three matching points looking at SLO map - I1: a,b,c & I2: x,y,z 
%I2 = I2 + (a-x);%translate to match two points 
  
%bring both to origin 
%I2orgn = I2 - a; 
%I1orgn = I1 - a; 
  
 
2. mergeSLO3DPt2SSa 
%mergeSLO3DPt2SSa from mergeSLO3DPt2v2 12 october 2020 
%runs from data created by mergeSLO3DSSa.m 
% MergeSLO3DSSa has created two 3D images, and displayed their SLO maps in 2D 
%from those, select 3 matching points: a,b,c (I1 - host), and x,y,z (I2) 
%enter the x,y coords in these matrices - leave z zero 
%correct for Fov SLO 36 x 30 lines 42, e/d/+/1 lines 113 & 159 
%% 
%create surfaces 
%I1 & I2 created with mergeSLO3D 
a = zeros(3,1,1);%SSan0028 at the major ST vessel 
b = zeros(3,1,1);%at the disc  
c = zeros(3,1,1);%bv near the fovea 
x = zeros(3,1,1); 
y = zeros(3,1,1); 
z = zeros(3,1,1); 
%{ 
a(1) = 479;%SSa 0028;square SLO:56;Note (1) is y, (2) is x 
a(2) = 265;%328; 
b(1) = 330;%220; 
b(2) = 69;%477; 
c(1) = 387;%191; 
c(2) = 426;%326; 
x(1) = 174;%58; 
x(2) = 272;%36; 
y(1) = 38;%228; 
y(2) = 72;%175; 
z(1) = 77;%196; 
z(2) = 431;%23; 
%} 
%{ 
a(1) = 88;%SSa 0066;Note (1) is y, (2) is x 
a(2) = 126;% major xing 
c(1) = 38;% 
c(2) = 429;%minor branching ST 
b(1) = 222;%disc 
b(2) = 44;% 
x(1) = 342;% 
x(2) = 137;%; 
z(1) = 301;% 
z(2) = 440;% 
y(1) = 495;% 
y(2) = 41; 
  
a(1) = 367;%SSa 0067;Note (1) is y, (2) is x, 14-23-57, 14-25-53 
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a(2) = 561;%  ST branch 
b(1) = 329;%disc 
b(2) = 91;% 
c(1) = 488;%sup 
c(2) = 235;% 
x(1) = 111;% 
x(2) = 557;%; 
y(1) = 68;% 
y(2) = 87;% 
z(1) = 226;% 
z(2) = 232; 
  
a(1) = 168;%SSa 0082;Note (1) is y, (2) is x 
a(2) = 25;%  ST branch 
b(1) = 381;%disc 
b(2) = 120;% 
c(1) = 365;%sup 
c(2) = 333;% 
x(1) = 112;% 
x(2) = 276;%; 
y(1) = 324;% 
y(2) = 362;% 
z(1) = 324;% 
z(2) = 576; 
  
a(1) = 105;%SSa 0102;Note (1) is y, (2) is x 
a(2) = 133;%  cubes 11-44-29 &  
b(1) = 301;% 
b(2) = 335;% 
c(1) = 371;% 
c(2) = 196;% 
x(1) = 34;% cube 11-46-1 
x(2) = 377;%; 
y(1) = 247;% 
y(2) = 561;% 
z(1) = 298;% 
z(2) = 418; 
%} 
a(1) = 387;%SSa 0102;Note (1) is y, (2) is x 
a(2) = 494;%  cubes 11-43-46 &  
b(1) = 250;% 
b(2) = 330;% 
c(1) = 415;% 
c(2) = 120;% 
x(1) = 177;% cube 11-44-29 
x(2) = 560;%; 
y(1) = 31;% 
y(2) = 404;% 
z(1) = 187;% 
z(2) = 189; 
  
a(3) = I1(a(1),a(2));%identifies z value from the 3D reconstruction of the  
b(3) = I1(b(1),b(2));%B scans in mergeSLO3D - I1/2 where row=y,col=x 
c(3) = I1(c(1),c(2)); 
x(3) = I2(x(1),x(2)); 
y(3) = I2(y(1),y(2)); 
z(3) = I2(z(1),z(2)); 
  
%scatter3(Imi1f,[a(1); b(1); c(1)],[a(2); b(2); c(2)],[a(3); b(3); c(3)]); 
%scatter3(Imi2f,[x(1); y(1); z(1)],[x(2); y(2); z(2)],[x(3); y(3); z(3)]); 
  
%create x and Y for I1 & I2 
I2x=1:600;%not 500 
I2x=repmat(I2x, 500,1); 
%I2y=flipud(I2x');%try with y origin at the top - works better 
I2y = (1:500)'; 
I2y = (repmat(I2y,1,600)); 
I1x=I2x; 
I1y=I2y; 
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I2 = cat(3,I2y(1:500,:), I2x(1:500,:), I2);%500 x 600 
I1 = cat(3,I1y(1:500,:), I1x(1:500,:), I1);%sheeets y,x,z 
  
  
  
%% 
%Translation 
  
%move x to a 
I22 = I2 - permute((x-a),[3 2 1]);%translate I2 to I1 to match two points (x to a) 
  
y2= y - (x-a); %this moves y to translated location x on a (I2 on I1) 
z2= z - (x-a); 
  
  
%% 
%create second surf image to rotate to I1 space 
%note created after translation (I22) 
I2surf = surf(I22(:,:,2),I22(:,:,1), 
I22(:,:,3),SLOpicMrNsize2,'FaceColor','texturemap','EdgeColor','none','CDataMapping
','direct','FaceAlpha',0.7); 
%2 & 1 reversed here as surf uses (x,y,z) while I2 are (y,x,z) 
  
%% 
%first rotation - y (now y2) to b. Subtract a to get vectors ab/ay2 not 
0b/0y2Angle: 
Epsilon = atan2d(norm(cross(b-a,y2-a)),dot(b-a,y2-a));%angle in degrees 
%And the axis of rotation is  
Axby = cross(b-a,y2-a); 
Origin = a; 
  
rotate(I2surf, Axby, Epsilon,Origin); 
%  
  
%Determine new z (z2prime) after first translation (z2) then rotation 
%This uses AxelRot: 
%Matt J (2020). 3D Rotation about Shifted Axis  
%(https://www.mathworks.com/matlabcentral/fileexchange/30864-3d-rotation-about-
shifted-axis) 
%MATLAB Central File Exchange. Retrieved September 24, 2020. 
  
[z2prime,~,~]=AxelRot(z2,Epsilon,Axby,Origin); 
  
  
%% 
%Second rotation: z to c (now z2prime to c) 
%{ 
%using axis angle here rotates y2 off b.  
Delta=atan2d(norm(cross(c,z2prime)),dot(c,z2prime)); 
Axcz = cross(c,z2prime); 
Originpr=a; 
%} 
  
%Need to make second rotation z2' to c around axis ab 
  
%determine vectors ab (bvec) and az2' (z2pvec) 
bvec = b-a; 
z2pvec = z2prime-a; 
%angle between these, theta  
theta = atan2d(norm(cross(bvec,z2pvec)),dot(bvec,z2pvec)); 
  
%find p, where pz2' & pc are normal to ab (assumes |pz2'| = |pc|) 
%lenap = |az2'|*cos(theta) 
az2plen = sqrt((a(1) - z2prime(1)).^2 + (a(2) - z2prime(2)).^2 + (a(3) - 
z2prime(3)).^2); 
lenap = az2plen*cosd(theta);% as theta < 90 degrees 
  
%point p is at a + lenap*unit vector ab(== (b-a)./norm(b-a)) 
p=a+lenap*((b-a)./norm(b-a)); 
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%now second rotation, rotate z2' to c around axis ab at point p 
Axab = b-a; 
  
%angle delta = cpz2' 
Delta = atan2d(norm(cross(z2prime-p,c-p)),dot(z2prime-p,c-p)); 
Originpr=p; 
  
  
rotate(I2surf, Axab, Delta, Originpr); 
  
  
%add surf I1 
%axes(Imi2) 
hold on  
CubeHtmap=surf(I1(:,:,2),I1(:,:,1),I1(:,:,3),SLOpicMrNsize1,'FaceColor','texturemap
','EdgeColor','none','CDataMapping','direct','FaceAlpha',0.7,'FaceLighting','gourau
d'); 
%CubeHtmap=surf(I1(:,:,1),I1(:,:,2),I1(:,:,3),XX,'FaceColor','flat','FaceAlpha',0.7
); 
%pbaspect([9 8 2]); 
view(-64,14) %display image in 3D view 
title('SSa 0102 axis angle v2, angles epsilon+, delta+, SLO FoV corrected'); 
%change axes values 
set(gca,'XTick',[100 200 300 400 500 600 700 800 900] ); 
set(gca,'YTick',[100 200 300 400 500 600 700 800 900] ); 
set(gca,'zTick',[100 200 300] ); 
set(gca,'XTickLabel',[1.8 3.6 5.4 7.2 9 10.8 12.6 14.4 16.2] ); 
set(gca,'YTickLabel',[1.8 3.6 5.4 7.2 9 10.8 12.6 14.4 16.2] ); 
set(gca,'ZTickLabel',[1.8 3.6 5.4] ); 
xlabel('x mm'); 
ylabel('y mm'); 
zlabel('mm'); 
%% 
 
  
%find matching x,y corrrdinates in I1 and moved I2, determine average 
%displacement in z axis 
rotXaxan=I2surf.XData; 
rotYaxan = I2surf.YData; 
rotZaxan = I2surf.ZData; 
  
I22v = cat(2,rotYaxan(:),rotXaxan(:),rotZaxan(:)); 
%[I22prv,~,~]=AxelRot(I22v,Epsilon,Axby,Origin); 
%[I22Dprv,~,~]=AxelRot(I22prv,Delta,Axab,Originpr); 
I22Dprv = round(I22v); 
I1v = reshape(I1,[],3); 
OlapAxAn = ismembertol(I1v(:,1:2),I22Dprv(:,1:2),1/600,'ByRows',true); 
  
DisparityAxAn = I1v(OlapAxAn,3)-I22Dprv(OlapAxAn,3); 
  
MnDispAxAn = mean(abs(DisparityAxAn)); 
SDDispAxAn = std(abs(DisparityAxAn)); 
  
  
%% 
%quaternion merging 
  
Ac = [a(2) b(2) c(2); a(1) b(1) c(1);a(3) b(3) c(3)]; 
Bc = [x(2) y(2) z(2); x(1) y(1) z(1);x(3) y(3) z(3)]; 
  
[regParams,~,ErrorStats]=absor(Bc,Ac); %note order 
  
%The output regParam.q, is converted to a quaternion: 
  
%(Note outputs: Regparams.s = 1, so no scaling required. 
%and Regparams.t reveals translation required) 
  
quat = quaternion(regParams.q'); 
  
%and the cube points converted to Nx3  list: 
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I2vq = reshape(I2,[],3); 
TrV = regParams.t';%this is the translation vector 
Trvec = cat(2, TrV(2), TrV(1), TrV(3)); 
  
Rres=rotatepoint(quat,I2vq); 
  
I2v1q = Rres + Trvec;%translate 
  
%pixel differences in z between two image overlaps 
I2v1qf = round(I2v1q); 
Olapq = ismembertol(I1v(:,1:2),I2v1qf(:,1:2),1/600,'ByRows',true); 
Disparityq = I1v(Olapq,3)-I2v1qf(Olapq,3); 
MnDispq = mean(abs(Disparityq)); 
SDDispq = std(abs(Disparityq)); 
  
  
I2v2q = reshape(I2v1q,500,600,3); 
  
%hold on 
Imi2q = figure;%remove % this line and remove hold on above to separate images, 
%also the %{ %} 276 & 289 should be pressent to combine 
%SLOpicMrNsize3 = ind2rgb8(SLOpicMrNsize2,copper);%changes color of Q (this for 
merged- put in line below) 
CubeHtmap2=surf(I2v2q(:,:,2),I2v2q(:,:,1),I2v2q(:,:,3), 
SLOpicMrNsize2,'FaceColor','texturemap','EdgeColor','none','CDataMapping','direct',
'FaceAlpha',0.7,'FaceLighting','gouraud'); 
colormap(gray)% 
  
hold on  
CubeHtmap=surf(I1(:,:,2),I1(:,:,1),I1(:,:,3),SLOpicMrNsize1,'FaceColor','texturemap
','EdgeColor','none','CDataMapping','direct','FaceAlpha',0.7,'FaceLighting','gourau
d'); 
view(-64,14) %display image in 3D view 
title('SSa 0102 Quaternion rotation, angles e+ d+'); 
set(gca,'XTick',[100 200 300 400 500 600 700] ); 
set(gca,'YTick',[100 200 300 400 500 600 700 800] ); 
set(gca,'zTick',[100 200 300] ); 
set(gca,'XTickLabel',[1.8 3.6 5.4 7.2 9 10.8 12.6] ); 
set(gca,'YTickLabel',[1.8 3.6 5.4 7.2 9 10.8 12.6 14.4] ); 
set(gca,'ZTickLabel',[1.8 3.6 5.4] ); 
xlabel('x mm'); 
ylabel('y mm'); 
zlabel('z mm'); 
 
 
Pupil Image Analysis 
1. Pupilanalysis 
%Get iris images from store, analyse pupil shape 
%for SS OCT eyes 
%CHANGE: open folder for eye data from store (complete raw IMG folders) 
%CHANGE: saves Iristable once completed 
  
%set variables 
clear 
Currfold = pwd; 
  
%Eyesinfo=dir; 
%Eyesinfo = Eyesinfo(~ismember({Eyesinfo.name},{'.','..','.DS_Store'})); 
%Enames = {Eyesinfo.name}; 
%NumEyes = size(Enames,2); 
load('/Users/stewartlake/Documents/MATLAB/SSOCT eyes.mat'); 
load('/Users/stewartlake/Documents/MATLAB/Iris table.mat'); 
SSDirstr = '/Users/stewartlake/Documents/SS OCT eyes/'; 
dimiris = [640 480]; 
roi = images.roi.Ellipse('Color','c','StripeColor','r', 'LineWidth',0.75, 
'MarkerSize',4); 
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%for Eye = 1:NumEyes 
     
    %enter eye folder 
    %hostdir=cd(Enames{Eye}); 
    EyeID = Currfold(end-7:end);%Eye ID (eg 'SS1 0028') 
    EyeIDs= Currfold(end-5:end);%Eye ID (eg '1 0028') 
    EyeIDss = EyeIDs(~isspace(EyeIDs));%eye ID '10028' 
    EyeIDn=str2double(EyeIDss); 
    Match = find(strcmp(SSOCTeyes.ID,EyeID));%find table row to match current eye 
  
    IMGinfoS = dir; 
    IRISinfo = IMGinfoS(contains({IMGinfoS.name},'iris.bin'));% 
    IRISnames = {IRISinfo.name}; 
    %IRISnames(1)=[];%CHECK need to remove first iris.bin all cases11 
    %SStime = 
cellfun(@(s)regexp(s,'\d*\S\d*\S\d*(?=iris)','all','match'),IRISnames,'UniformOutpu
t',false); 
    numbiris = size(IRISnames,2); 
    CCtime = 
string(cellfun(@(s)regexp(s,'(?<=2020_)\d*\S\d*\S\d*','all','match'),IRISnames,'Uni
formOutput',false));%'11-4-42 
    Tformat = datetime(CCtime,'InputFormat', 'HH-mm-ss');% 
    [tsort(1,1:numbiris),Its(1,1:numbiris)] = sort(Tformat(1,1:numbiris));%ID time 
sorted 
    IRISnameS = IRISnames(Its(1,1:numbiris));%sort into time order 
    CCtime = CCtime(Its(1,1:numbiris));%sort into time order 
     
    irisDir = [SSDirstr EyeID '/' EyeID ' iris']; 
       if (~exist(irisDir,'dir')) 
     
           mkdir (irisDir) 
       end 
        
    %run through iris.bin images in an eye folder    
    for Irisimg=1:length(IRISnameS) 
         
         
        %iris tiff creation 
        IRISnm = IRISnameS{Irisimg}; 
        IRISfileID = fopen(IRISnm); 
        IRISfile = fread(IRISfileID); 
  
         
        IRISfile1 = flipud(uint8(reshape(IRISfile,dimiris)));%orient R/L correctly 
with flipud 
        %CCtime = regexp(IRISnm,'(?<=2020_)\d*\S\d*\S\d*','all','match');%'11-4-42' 
         
        TsaveNiris = [irisDir '/' EyeID ' ' CCtime{Irisimg} '.tif']; %tiff cube 
name 
        imwrite(IRISfile1',TsaveNiris); 
         
         
        imshow(TsaveNiris) 
        roi = images.roi.Ellipse('Color','c','StripeColor','r', 'LineWidth',0.75, 
'MarkerSize',4); 
        draw(roi) 
        pause 
  
         
        Iristable.Eye(end+1) = EyeIDn; 
        Iristable.AspectRatio(end) = roi.AspectRatio; 
        Iristable.Rotation(end) = roi.RotationAngle; 
        Iristable.Center{end} = roi.Center; 
        Iristable.SemiAxes{end} = roi.SemiAxes; 
        %next line assumes sorted into time order to match location index 
        Iristable.Direction{end} = SSOCTeyes.UHDSpot1{Match}(Irisimg); 
  
        if Iristable.Direction{end} == 'M' 
            AvAxM = (roi.SemiAxes(1)+roi.SemiAxes(2))/2; 
            Iristable.AvAxM(end)=AvAxM; 
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        else 
            cMiAxE = (AvAxM/max(roi.SemiAxes(:)))*min(roi.SemiAxes); 
             
            Iristable.PitchAngle(end) = acosd(cMiAxE/AvAxM); 
        end 
         
         
    end 
  
    %back up to eye directory 
    %cd (hostdir) 
%end 
  
save('/Users/stewartlake/Documents/MATLAB/Iris table.mat','Iristable'); 
 

 
2. PupilanalysisSD2 
% PupilanalysisSD2, to analyse SD pupil data, created by Pupilanalysis.m 
% that was saved in MATLAB/Pupil analysis/IrisSD.mat. Rows in this array match rows 
% in sALLIDt 
  
%IrisSD/UseIris match col: 1=ID,2 =mac, 3 = sup, 4= Sup-temp 
   %sheets 2+ 1=Aspectratio, 2=Rotation, 3&4=centrepoints, 5&6 = semiaxis 
   %lengths, 7=pitchangle(=pupil angle, alpha) 
  
%Aspect ratio corrrected from ht/wdith to max axis: min axis. 
%rotation corrected from angle closest to x-axis to angle between major axis and 
x=0.  
clear 
load('/Users/stewartlake/Documents/MATLAB/Pupil analysis/SD cube IDs m s st.mat'); 
load('/Users/stewartlake/Documents/MATLAB/Pupil analysis/IrisSD.mat'); 
  
UseID = sALLIDt; 
UseIris2 = IrisSD; 
  
Nomac = isnan(IrisSD(:,2,1)); 
  
UseID(Nomac,:)=[];%remove eyes NaN or no macula data 
UseIris2(Nomac,:,:)=[]; 
UseIris = UseIris2; 
LeftIs = UseIris2(:,1,1)>199; 
NumIs = size(UseID,1); 
%% 
%use largest axis to determine angle. ellipse take semiaxis.1 as that 
%closest to x. Add 90 degrees to these eyes rotation axis. 
%step 1: if semaxis1 (UseIris2(:,2:4,5))< semiaxis2 (2:4,6) then angle=angle-90 
Angchk=UseIris2(:,2:4,2); 
RevAx = find(UseIris2(:,2:4,5) < UseIris2(:,2:4,6)); 
  
Angchk(RevAx) = Angchk(RevAx)-90; 
%now angle -90 to 270, or 0-360 
  
%step 2: IF Angle > 90, then Angle = Angle - 180 
NumAng=numel(Angchk); 
  
for CA=1:NumAng 
     
    while Angchk(CA)>90 
        Angchk(CA)=Angchk(CA)-180;%loops for each element individually     
    end 
  
end 
  
%step 3: left eyes = - left eyes 
Angchk(LeftIs,:)=-Angchk(LeftIs,:); 
PupilRotn = Angchk;%this variable the corrected angles for analysis:col mac/S/st 
%% 
%determine scan axis displacement from centre of pupil 
%note rho is in pixels 
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EllipseCenXY = UseIris(:,2:4,3:4);%Eyes x image (M/S/ST) x (x,y) 
EllipseCenXY(:,:,2) = - EllipseCenXY(:,:,2); 
Cen = [320 -240];% image centrepoint 
EllX = EllipseCenXY(:,:,1) - 320; 
EllY = EllipseCenXY(:,:,2) - (-240); 
cEllCenXY = cat(3, EllX, EllY);%pupil centre displacment from centre of image 
[ECtheta,ECrho] = cart2pol(EllX,EllY); 
ECtheta = ECtheta - 90; 
Newtheta = wrapTo180(ECtheta);%scan axis diplacement angle, 0 = vertical, +/-180 
Newtheta(LeftIs,:) = -Newtheta(LeftIs,:);%mirror left eyes to right 
  
  
CenDirVar = Newtheta - PupilRotn;%scan axis displacement relative to gaze direction 
Mncdv = mean(CenDirVar,'omitnan'); 
SDcdv = std(CenDirVar,'omitnan'); 
  
figure %1 
hold on 
h(1) = scatter(ECrho(UseID.Diag==2,1),Newtheta(UseID.Diag==2,1),'o','b'); 
h(2) = scatter(ECrho(UseID.Diag==2,2),Newtheta(UseID.Diag==2,2),'o','b'); 
h(3) = scatter(ECrho(UseID.Diag==2,3),Newtheta(UseID.Diag==2,3),'o','b'); 
  
h(4) = scatter(ECrho(UseID.Diag==3,1),Newtheta(UseID.Diag==3,1),'x','r'); 
h(5) = scatter(ECrho(UseID.Diag==3,2),Newtheta(UseID.Diag==3,2),'x','r'); 
h(6) = scatter(ECrho(UseID.Diag==3,3),Newtheta(UseID.Diag==3,3),'x','r'); 
  
h(7) = scatter(ECrho(UseID.Diag==4,1),Newtheta(UseID.Diag==4,1),'+','m'); 
h(8) = scatter(ECrho(UseID.Diag==4,2),Newtheta(UseID.Diag==4,2),'+','m'); 
h(9) = scatter(ECrho(UseID.Diag==4,3),Newtheta(UseID.Diag==4,3),'+','m'); 
  
legend(h([1 4 7]),'PVD','RD','RT'); 
title('Scan axis displacement (from image centre), by diagnosis'); 
xlabel('Distance rho pixels (how far)'); 
ylabel('Angle theta (degrees) which way?'); 
hold off 
  
figure %2 
hold on 
scatter(ECrho(:,1),abs(Newtheta(:,1)),'o','g'); 
scatter(ECrho(:,2),abs(Newtheta(:,2)),'s','r'); 
scatter(ECrho(:,3),abs(Newtheta(:,3)),'d','b'); 
legend('Macula','Superior','Supero-temporal'); 
title('Scan axis displacement (from image centre), by gaze direction'); 
xlabel('Distance rho pixels: how far)'); 
ylabel('Angle theta (degrees): which way?'); 
hold off 
  
%Aspectratio2 = UseIris(:,2:4,1); 
Aspectratio2 = max(UseIris(:,2:4,5:6),[],3)./min(UseIris(:,2:4,5:6),[],3); 
figure %3 
hold on 
ha(1) = scatter(Aspectratio2(UseID.Diag==2,1),PupilRotn(UseID.Diag==2,1),'o','b'); 
ha(2) = scatter(Aspectratio2(UseID.Diag==2,2),PupilRotn(UseID.Diag==2,2),'o','b'); 
ha(3) = scatter(Aspectratio2(UseID.Diag==2,3),PupilRotn(UseID.Diag==2,3),'o','b'); 
  
ha(4) = scatter(Aspectratio2(UseID.Diag==3,1),PupilRotn(UseID.Diag==3,1),'x','r'); 
ha(5) = scatter(Aspectratio2(UseID.Diag==3,2),PupilRotn(UseID.Diag==3,2),'x','r'); 
ha(6) = scatter(Aspectratio2(UseID.Diag==3,3),PupilRotn(UseID.Diag==3,3),'x','r'); 
  
ha(7) = scatter(Aspectratio2(UseID.Diag==4,1),PupilRotn(UseID.Diag==4,1),'+','m'); 
ha(8) = scatter(Aspectratio2(UseID.Diag==4,2),PupilRotn(UseID.Diag==4,2),'+','m'); 
ha(9) = scatter(Aspectratio2(UseID.Diag==4,3),PupilRotn(UseID.Diag==4,3),'+','m'); 
  
legend(ha([1 4 7]),'PVD','RD','RT'); 
title('Aspect ratio v Pupil ellipse rotation, by diagnosis'); 
xlabel('Ellipse Aspect ratio'); 
ylabel('Pupil ellipse rotation (degrees)'); 
hold off 
  
macmnaxisdim=mean(UseIris(:,2,5:6),'omitnan'); 
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MnAspRdir = mean(Aspectratio2,'omitnan'); 
MnAspRall = mean(Aspectratio2(:),'omitnan'); 
  
MnNwthetadir = mean(Newtheta,'omitnan');%displacment direction from pupil centre 
MnNwthetaall = mean(Newtheta(:),'omitnan'); 
  
MnNwthetaabsdir = mean(abs(Newtheta),'omitnan');%displacment direction from pupil 
centre 
MnNwthetaabsall = mean(abs(Newtheta(:)),'omitnan'); 
  
MnECrhodir = mean(ECrho,'omitnan');%distance from centre image 
MnECrhoall = mean(ECrho(:),'omitnan'); 
  
MnProtdir = mean(PupilRotn,'omitnan');%gaze direction 
MnProtall = mean(PupilRotn(:),'omitnan'); 
  
SDAspRdir = std(Aspectratio2,'omitnan'); 
SDAspRall = std(Aspectratio2(:),'omitnan'); 
  
SDNwthetadir = std(Newtheta,'omitnan'); 
SDNwthetaall = std(Newtheta(:),'omitnan'); 
  
SDECrhodir = std(ECrho,'omitnan'); 
SDECrhoall = std(ECrho(:),'omitnan'); 
  
SDProtdir = std(PupilRotn,'omitnan');%SD gaze direction 
SDProtall = std(PupilRotn(:),'omitnan'); 
  
MnPitAngdir = mean(UseIris(:,3:4,7),'omitnan');%gaze excursion 
SDPitAngdir = std(UseIris(:,3:4,7),'omitnan'); 
MnabsPitAngdir = mean(abs(UseIris(:,3:4,7)),'omitnan'); 
  
%% 
%difference between individuals up gaze and upright gaze 
diffS2ST = PupilRotn(:,3)-PupilRotn(:,2);%gaze direction diff 
figure %4 
alphadiff = abs(UseIris(:,3,7)-UseIris(:,4,7)); 
difftable = table(UseID{:,1}, alphadiff, diffS2ST); 
scatter(abs(UseIris(:,3,7)-UseIris(:,4,7)),abs(diffS2ST),50,'o','m','filled')%sup 
  
xlabel('ST - S Angle alpha (degrees)'); 
ylabel('ST - S gaze (degrees)'); 
title({'Difference between up & up/right gaze direction';'and pupil 
eccentricity'}); 
%point close to the origin reflects overal s to ST? R289 
%% 
%non-mac (pitch angle) v ellipse rotation by diagnosis 
figure %5 
hold on 
hb(1) = scatter(UseIris(UseID.Diag==2,3,7),PupilRotn(UseID.Diag==2,2),'o','b'); 
hb(2) = scatter(UseIris(UseID.Diag==2,4,7),PupilRotn(UseID.Diag==2,3),'o','b'); 
  
hb(3) = scatter(UseIris(UseID.Diag==3,3,7),PupilRotn(UseID.Diag==3,2),'x','r'); 
hb(4) = scatter(UseIris(UseID.Diag==3,4,7),PupilRotn(UseID.Diag==3,3),'x','r'); 
  
hb(5) = scatter(UseIris(UseID.Diag==4,3,7),PupilRotn(UseID.Diag==4,2),'+','m'); 
hb(6) = scatter(UseIris(UseID.Diag==4,4,7),PupilRotn(UseID.Diag==4,3),'+','m'); 
  
legend(hb([1 3 5]),'PVD','RD','RT'); 
title('Angle alpha v Pupil ellipse rotation, by diagnosis'); 
xlabel('Angle alpha (degrees)'); 
ylabel('Pupil ellipse rotation (degrees)'); 
hold off 
  
%non-mac (pitch angle) v ellipse rotation by region (gaze direction) 
figure %6 
hold on 
scatter(UseIris(:,3,7),abs(PupilRotn(:,2)),'s','r');%non macula (Pitch angle) 
scatter(UseIris(:,4,7),abs(PupilRotn(:,3)),'d','b'); 
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legend('Superior','Supero-temporal'); 
title('Angle alpha v Pupil ellipse rotation, by gaze direction'); 
xlabel('Angle alpha (degrees)'); 
ylabel('Pupil ellipse rotation (degrees)'); 
hold off 
  
figure%fig7 
GSu = PupilRotn(:,2);%gaze drn sup 
%GSu(GSu>0)=GSu(GSu>0)-180; 
GST = PupilRotn(:,3); 
%GST(GST<0) = GST(GST<0)+180; 
ax = polaraxes; 
hold on 
polarscatter (deg2rad(GSu+90), (UseIris(:,3,7)./90),'s','r');%sup 
polarscatter (deg2rad(GST), (UseIris(:,4,7)./90),'d','b');%ST 
title({'Polar plot, Angle alpha (rho) v Pupil ellipse rotation (theta),',' by gaze 
direction'}); 
legend({'Superior','Supero-temporal'},'Location','best'); 
%xlabel('Gaze direction (degrees)'); 
%ylabel('Angle alpha (degrees)'); 
rticks([0.2 0.4 0.6]) 
rticklabels({'aa = 18','aa = 36','aa = 54'}) 
ax.RAxisLocation = 300; 
hold off 
  
  
  
%look at fovea angle and pitch/rotation 
ODfovAngle = table2array(UseID(:,6));%optic disc-fovea angle 
figure %8 
hold on 
scatter3(UseIris(:,3,7),abs(PupilRotn(:,2)),ODfovAngle,'s','r');%Superior,non 
macula (Pitch angle) 
scatter3(UseIris(:,4,7),abs(PupilRotn(:,3)),ODfovAngle,'d','b');%supero-temp 
legend('Superior','Supero-temporal'); 
title('Angle alpha v Pupil ellipse rotation v Optic disc-fovea angle, by gaze 
direction'); 
xlabel('Angle alpha (degrees)'); 
ylabel('Pupil ellipse rotation (+/- degrees from vertical)'); 
zlabel('Optic disc-fovea angle'); 
hold off 
  
  
%non-mac (pitch angle) v ellipse rotation v OD fovea angle, by diagnosis 
figure %9 
hold on 
hc(1) = 
scatter3(UseIris(UseID.Diag==2,3,7),PupilRotn(UseID.Diag==2,2),ODfovAngle(UseID.Dia
g==2),'o','b'); 
hc(2) = 
scatter3(UseIris(UseID.Diag==2,4,7),PupilRotn(UseID.Diag==2,3),ODfovAngle(UseID.Dia
g==2),'o','b'); 
  
hc(3) = 
scatter3(UseIris(UseID.Diag==3,3,7),PupilRotn(UseID.Diag==3,2),ODfovAngle(UseID.Dia
g==3),'x','r'); 
hc(4) = 
scatter3(UseIris(UseID.Diag==3,4,7),PupilRotn(UseID.Diag==3,3),ODfovAngle(UseID.Dia
g==3),'x','r'); 
  
hc(5) = 
scatter3(UseIris(UseID.Diag==4,3,7),PupilRotn(UseID.Diag==4,2),ODfovAngle(UseID.Dia
g==4),'+','m'); 
hc(6) = 
scatter3(UseIris(UseID.Diag==4,4,7),PupilRotn(UseID.Diag==4,3),ODfovAngle(UseID.Dia
g==4),'+','m'); 
  
legend(hc([1 3 5]),'PVD','RD','RT','best'); 
title('Angle alpha v Pupil ellipse rotation v OD-fovea angle, by diagnosis'); 
xlabel('Angle alpha (degrees)'); 



  253 

ylabel('Pupil ellipse rotation (degrees)'); 
zlabel('Optic disc-fovea angle'); 
hold off 
%% 
%ST eye images with angle <20 degrees 
outSTrot = UseID(abs(PupilRotn(:,3))<20,:); 
  
%Superior images with angle 25-55 degrees 
outSurot = UseID((abs(PupilRotn(:,2))>25 & abs(PupilRotn(:,2))<55),:); 
  
BigODf = UseID(ODfovAngle>13,:); 

 
 
3. PupilanalysisSS 
%Pupil analysis for SS OCT eyes 
clear 
load('/Users/stewartlake/Documents/MATLAB/Iris table.mat','Iristable'); 
  
EyeID = Iristable.Eye; 
LeftIs = EyeID>19999; 
RightIs = ~LeftIs; 
  
Rotatangle = Iristable.Rotation; 
  
%% 
%get Gaze direction angle 
%step 1: if semaxis1 (UseIris2(:,2:4,5))< semiaxis2 (2:4,6) then angle=angle-90 
Angchk=Rotatangle; 
smiaxes = cell2mat(table2array(Iristable(:,5))); 
  
RevAx = find(smiaxes(:,1) < smiaxes(:,2)); 
  
Angchk(RevAx) = Angchk(RevAx)-90; 
%now angle -90 to 270, or 0-360 
  
%step 2: IF Angle > 90, then Angle = Angle - 180 
NumAng=numel(Angchk); 
  
for CA=1:NumAng 
     
    while Angchk(CA)>90 
        Angchk(CA)=Angchk(CA)-180;%loops for each element individually     
    end 
  
end 
  
%step 3: left eyes = - left eyes 
Angchk(LeftIs,:)=-Angchk(LeftIs,:); 
GazeDrn = Angchk;%this variable the corrected angles for analysis 
  
%% 
%Get angle alpha 
AngAlpha = Iristable.PitchAngle; 
  
  
%% 
%find macular rows 
for Run=1:length(Iristable.Direction) 
    
    if (ischar(Iristable.Direction{Run})) 
        
        IdxM(Run) = contains(Iristable.Direction(Run),'M'); 
        IdxU(Run) = contains(Iristable.Direction(Run),'U');%indices of gaze 
direction 
        IdxD(Run) = contains(Iristable.Direction(Run),'D'); 
        IdxR(Run) = contains(Iristable.Direction(Run),'R'); 
        IdxL(Run) = contains(Iristable.Direction(Run),'L'); 
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    end 
     
     
end 
  
TL = all([LeftIs IdxL'],2);%left eyes looking L = temp 
NR = all([RightIs IdxL'],2);% RE looking L = Nasal 
NL = all([LeftIs IdxR'],2);%left eyes looking right = nasal 
TR = all([RightIs IdxR'],2);% RE looking L = nasal 
  
IdxT = any([TL TR],2); 
IdxN = any([NL NR],2); 
  
macD = Iristable(IdxM,:);%macular rows. Can repeat for others 
  
%% 
%analyse AngAlpha and GazeDrn for each orientation 
MnMAA = mean(AngAlpha(IdxM),'omitnan'); 
SDMAA = std(AngAlpha(IdxM),'omitnan'); 
MnMgd = mean(GazeDrn(IdxM),'omitnan');%ignore - see 138-145 
SDMgd = std(GazeDrn(IdxM),'omitnan');%ignore - see 138-145 
  
MnUAA = mean(AngAlpha(IdxU),'omitnan'); 
SDUAA = std(AngAlpha(IdxU),'omitnan'); 
MnUgd = mean(GazeDrn(IdxU),'omitnan');%ignore - see 138-145 
SDUgd = std(GazeDrn(IdxU),'omitnan');%ignore - see 138-145 
  
MnDAA = mean(AngAlpha(IdxD),'omitnan'); 
SDDAA = std(AngAlpha(IdxD),'omitnan'); 
MnDgd = mean(GazeDrn(IdxD),'omitnan');%ignore - see 138-145 
SDDgd = std(GazeDrn(IdxD),'omitnan');%ignore - see 138-145 
  
MnNAA = mean(AngAlpha(IdxN),'omitnan'); 
SDNAA = std(AngAlpha(IdxN),'omitnan'); 
MnNgd = mean(GazeDrn(IdxN),'omitnan');%ignore - see 138-145 
SDNgd = std(GazeDrn(IdxN),'omitnan');%ignore - see 138-145 
  
MnTAA = mean(AngAlpha(IdxT),'omitnan'); 
SDTAA = std(AngAlpha(IdxT),'omitnan'); 
MnTgd = mean(GazeDrn(IdxT),'omitnan'); 
SDTgd = std(GazeDrn(IdxT),'omitnan'); 
  
%% 
figure 
hold on 
scatter (GazeDrn(IdxM), AngAlpha(IdxM),'o', 'k'); 
scatter (GazeDrn(IdxU), AngAlpha(IdxU),'^','r'); 
scatter (GazeDrn(IdxD), AngAlpha(IdxD),'v','b'); 
scatter (GazeDrn(IdxT), AngAlpha(IdxT),'<','m'); 
scatter (GazeDrn(IdxN), AngAlpha(IdxN),'>','c'); 
xlabel('Gaze direction (degrees)'); 
ylabel('Angle alpha (degrees)'); 
hold off 
  
figure 
hold on 
scatter (abs(GazeDrn(IdxM)), AngAlpha(IdxM),'o', 'k'); 
scatter (abs(GazeDrn(IdxU)), AngAlpha(IdxU),'^','r'); 
scatter (abs(GazeDrn(IdxD)), AngAlpha(IdxD),'v','b'); 
scatter (abs(GazeDrn(IdxT)), AngAlpha(IdxT),'<','m'); 
scatter (abs(GazeDrn(IdxN)), AngAlpha(IdxN),'>','c'); 
xlabel('Gaze direction (degrees)'); 
ylabel('Angle alpha (degrees)'); 
hold off 
  
figure 
GN = GazeDrn(IdxN); 
GN(GN>0)=GN(GN>0)-180; 
GT = GazeDrn(IdxT); 
GT(GT<0) = GT(GT<0)+180; 
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ax = polaraxes; 
polarscatter (deg2rad(GazeDrn(IdxM)), (AngAlpha(IdxM)./90),'o', 'k'); 
hold on 
polarscatter (deg2rad(GazeDrn(IdxU)+90), (AngAlpha(IdxU)./90),'^','r'); 
polarscatter (deg2rad(GazeDrn(IdxD)-90), (AngAlpha(IdxD)./90),'v','b'); 
polarscatter ((deg2rad(GT+90)), (AngAlpha(IdxT)./90),'<','m'); 
polarscatter ((deg2rad(GN+90)), (AngAlpha(IdxN)./90),'>','c'); 
%xlabel('Gaze direction (degrees)'); 
%ylabel('Angle alpha (degrees)'); 
rticks([0.2 0.4 0.6]) 
rticklabels({'aa = 18','aa = 36','aa = 54'}) 
ax.RAxisLocation = 300; 
hold off 
  
mGDU = mean(GazeDrn(IdxU),'omitnan');% mean gaze direction 
sGDU = std(GazeDrn(IdxU),'omitnan');%sd gaze direction 
mGDD = mean(GazeDrn(IdxD),'omitnan'); 
sGDD = std(GazeDrn(IdxD),'omitnan'); 
mGDT = mean(GT,'omitnan'); 
sGDT = std(GT,'omitnan'); 
mGDN = mean(GN,'omitnan'); 
sGDN = std(GN,'omitnan'); 

 
 
Irregularity distribution 
1. XvalMYPVDbyALmm 
%New cross validation - combined PVD and MY in each fold - mm data 
%generate indices for combined MYPVD by axial length 
%Normalised FFT moduli by length of retinal vector -  
% FFTmm, saved in column 10 FFTconcat 
%corrected for empty B scans 
%loads FFTconcat,AllIKurv 
%CHECK only one eye of bilateral data used: the shorter AL eye is removed 
%CHECK correct number eyes without AL deleted line 31-32 
%binvars treated like sumdiff - fold mean subtracted 
  
load('/Users/stewartlake/Documents/MATLAB/FFTconcat'); 
load('/Users/stewartlake/Documents/MATLAB/AllIKurv'); 
  
PVDMYFb=cat (1,PVDFb,MYFb);%combined Fb 
PVDMYFb(66,:)=[];%remove second eye from bilateral data participants 
PVDMYFb(63,:)=[]; 
%get age and AL vector to match PVDMYFb 
Agevec = zeros(size(PVDMYFb,1),1); 
IDFblist = PVDMYFb(:,1);%eye ID 
ALvec = zeros(size(PVDMYFb,1),1); 
for findage=1:size(PVDMYFb,1) 
    sIde = str2double(IDFblist{findage,1}(2)); 
     
    Agevec(findage) = PVDMYFb{findage,4}(3); 
    ALvec(findage) = PVDMYFb{findage,4}(sIde); 
end 
  
%sort Fb by AL 
[sALvec,ALorder]=sort(ALvec);% ascending order of AL 
ALlFb=PVDMYFb(ALorder,:); 
ALlFb(1:2,:)=[];%removes eyes with no AL 
sALvec(1:2)=[];%removes head of sALvec to match ALlFb 
  
NumPVD = size (PVDFb,1); % number of PVD eyes in array 
NumMY = size (MYFb,1); % number of MY eyes 
k = 5; %number of folds 
Nrow = 12; %no rows must = Veye (max number eyes per subset)  
  
Sumdiff10 = cell (Nrow,k);  
absdiff10 = cell (Nrow,k); 
Eyermsd10 = cell (Nrow,k); 
maxeBs10 = cell (Nrow,k); 
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IndMeBs10 = cell (Nrow,k); 
Kurv = cell (Nrow, k); 
  
MaxCVar10 = cell (Nrow,k); 
IndMCVar10 = cell (Nrow,k); 
logMxvar10 = cell (Nrow,k); 
sumbinvar10 = cell (Nrow,k); 
SbVar10diff = cell (Nrow,k); 
Eymsdf10 = zeros (Nrow,k); 
Indmax10 = zeros (Nrow,k); 
Eymsbv10 = zeros (Nrow,k); 
  
dispPT = 0.1; 
% generates a column vector to randomise Num? eyes into k=5 folds. Non AL 
% stratified 
%IndicesPVD = crossvalind('Kfold',NumPVD, k);%NumPVD - put back instead of 33 when 
all eyes processed  
%IndicesMY = crossvalind('Kfold',NumMY, k);  
  
%generate random distribution into 5 folds 
NumIpfold = floor(size(ALlFb,1)/k);%number of eyes per k folds 
Rem=mod(size(ALlFb,1),k);%plus the remainder not divisible by k 
Ransel = zeros(k,NumIpfold); 
for Ranrun=1:NumIpfold 
     
    Ransel(:,Ranrun) = randperm(k)'; 
end 
Ranrem=randperm(Rem)'; 
Ransel = cat(1,Ransel(:),Ranrem);%these are the indices to divide into folds 
  
%create five subsets for comparison 
Grps10 = cell(k,1); %the '10'reflects the column where the data is stored 
GrpAL = cell(k,1); 
GrpIID10 = cell (k,1); 
MnGrp10 = cell (k,1); 
ColVec = cell (k,1); 
  
for n = 1:k 
  Grps10{n} = ALlFb(Ransel==n,10); % puts each fold of all eye cubes into a cell in 
Grps 
  GrpIID10 {n} = ALlFb(Ransel==n,1); %eye identifiers of each fold 
  MnGrp10{n} = ALlFb(Ransel~=n,10); % selects not subset n: the training set for 
Grps(n) 
  GrpAL{n}=sALvec(Ransel==n); 
  %create colour vector for plotting: not used here:not split into 2 groups 
  %ColVec{n} = [repelem([0 0 1],nnz(IndicesPVD==n),1);repelem([0 1 
0],nnz(IndicesMY==n),1)]; 
   
  TMnGrp10 = cat (3, MnGrp10{n}); %training set 
   
  for Feyes = 1:length(TMnGrp10) 
      FI= TMnGrp10 {Feyes}; 
      FI(FI==0) = NaN; 
      TMnGrp10 {Feyes} = FI; %replaces all 0 with NaN to eliminate empty B scans in 
training set 
  end 
   
   
  TMnGrp10 = cat (3, TMnGrp10{:}); %concatenates all cubes from all eyes in 
MnGrp{n} 
   
  FoldMnBV10 =  var(TMnGrp10,0,2,'omitnan');%30 x 1 x X array, x=number of cubes 
  TFMnBV10 = mean (FoldMnBV10,3,'omitnan');%30 x 1 mean fold bin Var 
   
  TMnGrp10 = TMnGrp10 (:,all(~isnan(TMnGrp10)));%removes Nan columns 
   
  TSbmn10 = nanmean (TMnGrp10,2); %creates PVD/RD bin mean training set 
   
  %The number of eyes in this subset Grps(n) 
  SzC10 = size (Grps10{n},1); % SzC = number of eyes in this subset 
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  for Veye = 1:SzC10 
      NowIFFT10 = Grps10{n}{Veye}; %call first eye in validation set 
      NowIFFT10=NowIFFT10(:,any(NowIFFT10));%remove empty B scans 
      NumBS=size(NowIFFT10,2);%number of non -zero B scans 
       
      %generate the summary values, sumdiff, RMSD and max error, each row an eye, 
each fold a %column 
      % for 0 removed by Nan mean 
      absdiff10 {Veye,n} = abs(NowIFFT10 - TSbmn10); 
      Sumdiff10 {Veye, n} = sum(absdiff10{Veye,n}); 
      Sumdiff10 {Veye, n} = permute (Sumdiff10{Veye,n}, [3 2 1]); %sumabsdiff 
moduli, cubes x Bs 
  
      [Eymsdf10(Veye, n),Indmax10(Veye,n)] =max (Sumdiff10 {Veye,n}(:));%max 
sumdiff for eye 
      Isize=size(Sumdiff10{Veye,n}); 
      [cubemax,~] = ind2sub(Isize,Indmax10(Veye,n));%the cube index of max sumdiff 
  
      Eyermsd10 {Veye, n} = sqrt ((sum (absdiff10{Veye,n}.*absdiff10{Veye,n}))/30); 
      Eyermsd10 {Veye,n} = permute (Eyermsd10 {Veye,n}, [3 2 1]); 
  
  
      [maxeBs10{Veye,n}, IndMeBs10{Veye,n}] = max(abs(NowIFFT10 - TSbmn10)); 
  
      maxeBs10 {Veye,n} = permute (maxeBs10 {Veye,n}, [3 2 1]);%can switch out for 
cube bin var 
      IndMeBs10{Veye,n} = permute (IndMeBs10{Veye,n}, [3 2 1]); 
       
      %cube bin variance - (can put in scatter3 when desired), max and sum 
      [MaxCVar10{Veye,n},IndMCVar10{Veye,n}] = max(var(NowIFFT10,0,2,'omitnan')-
TFMnBV10); 
      %this is the SBV for the entire eye - ALL B scans ~=0 
      SbVar10diff {Veye,n} = sum(var(NowIFFT10,0,2,'omitnan') - TFMnBV10); 
      SbVar10diff {Veye,n} = permute (SbVar10diff {Veye,n},[3 2 1]); 
      sumbinvar10 {Veye,n} = sum (var(NowIFFT10,0,2,'omitnan')); 
      sumbinvar10 {Veye,n} = permute (sumbinvar10 {Veye,n},[3 2 1]); 
      Eymsbv10 (Veye,n) = max (sumbinvar10{Veye,n}(:));%max sumbinvar10 for eye 
      sumbinvar10 {Veye,n} = repmat(sumbinvar10 {Veye,n},1,21); 
      SbVar10diff {Veye,n} = repmat(SbVar10diff {Veye,n},1,21); 
      MaxCVar10{Veye,n} = permute (MaxCVar10{Veye,n}, [3 2 1]); 
      MaxCVar10{Veye,n} = repmat (MaxCVar10{Veye,n},1,21); %repeat elements to plot 
c sumdiff etc 
      logMxvar10 {Veye,n} = log10 (MaxCVar10{Veye,n}); 
      IndMCVar10{Veye,n} = permute (IndMCVar10{Veye,n}, [3 2 1]); 
       
      %match curvature array sheet with current eye 
      Kurvmatch=find(strncmp(GrpIID10{n}{Veye},AllIEyenames2,4)); 
      Kurv{Veye,n} = AllIBsKurv(:,:,Kurvmatch); 
      %Kurv{Veye,n} = Kurv{Veye,n}(any(Kurv{Veye,n},2),:);%removes empty rows 
      %now vectorise to remove 0 to match SD etc for plotting 
      vecKurv = Kurv{Veye,n}(:); 
      vecKurv(vecKurv==0) = []; 
       
      ClocoPt=(1:size(Sumdiff10{Veye,n})); 
      ClocoPt = repmat(ClocoPt,1,21);%the cube sheet ID for each point (for 
textlabel) 
      %{ 
      %plot, with Eye title 
      Fignamn0 = strcat (GrpIID10 {n} {Veye},GrpAL{n}(Veye),' MY&PVD Normalised mm 
Sumdiff v BFCvK v max error'); 
      figure ('Name',Fignamn0); 
      scatter3 (Sumdiff10 {Veye, n}(:), vecKurv(:), maxeBs10 {Veye,n}(:),24,'b') 
      axis ([0 50 -1 3 0 15]);  
      xlabel ('sumdiff'); 
      ylabel ('BFCvK'); 
      zlabel ('max error'); 
      savefig (strcat('Eye ',GrpIID10{n} {Veye})); 
      %} 
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  end 
end 
save ('/Users/stewartlake/Documents/Retinalcontour/mm analyses/NfftXV AL 
MYmm/XvalFTMYPVDbyAL4'); 

 
 
Chapter 4 
1. MYPVDFrBsgtThr 
%sd11cellvec in line 4 array holds the Total anomaly (sumdiff) for every B scan, by 
%region.Generates fraction of B scans in each region > Thr 
clear 
cd ('/Users/stewartlake/Documents/Retinalcontour/Regional MY PVD by AL/') 
BSreg = cell(1,17); 
  
for Region = 2:18 
     
Varfile = strcat(('XvalNfftMYPVDregionmm'),num2str(Region)); 
  
load (Varfile); 
  
%SD11cellvec = Sumdiff11(:);%has been cleared of empty B scans 
  
BSreg{Region-1}= [SD11cellvec{:}]'; 
  
  
end 
  
for Thr = 1:10   
   for Reg = 1:17 
       
        
       %BSreg{Reg} = [BSreg{:,Reg}]';%all BS for each region 
       rbs = BSreg{Reg}; 
       rbs(isnan(rbs)|rbs==0) = []; 
       Numgt(Reg,Thr) = nnz(find(rbs>Thr)); 
       Frgt(Reg,Thr) = Numgt(Reg,Thr)/length(rbs);% fraction Bs with anomaly gt 5 
        
        
   end 
   allrBS = vertcat(BSreg{:}); 
   allrBS(isnan(allrBS)|allrBS==0) = []; 
   allgt(Thr) = nnz(find(allrBS>Thr)); 
   frallgt(Thr) = allgt(Thr)/numel(allrBS);%fraction of all Bscans across all 
regions 
  
 end     
 
 
2. MYPVDALregXvalmm 
%%cross validation of cubes by region - myopic eyes plus PVD 
%for correlation regions of MY+PVDFb by AL - mm data 
%loads FFTconcat and AllIKurv 
%takes cube by location (column) in column 11 of Fb 
%IF plotting results open current folder to where figures are to be saved 
%removes shortest eye data from bilaterally measured participants 
load('/Users/stewartlake/Documents/MATLAB/FFTconcat'); 
load('/Users/stewartlake/Documents/MATLAB/AllIKurv'); 
  
PVDMYFb=cat (1,PVDFb,MYFb);%combined Fb 
PVDMYFb(66,:)=[];%remove second eye from bilateral data participants 
PVDMYFb(63,:)=[]; 
%get age and AL vector to match PVDMYFb 
Agevec = zeros(size(PVDMYFb,1),1); 
IDFblist = PVDMYFb(:,1);%eye ID 
ALvec = zeros(size(PVDMYFb,1),1); 
for findage=1:size(PVDMYFb,1) 
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    sIde = str2double(IDFblist{findage,1}(2)); 
     
    Agevec(findage) = PVDMYFb{findage,4}(3); 
    ALvec(findage) = PVDMYFb{findage,4}(sIde); 
end 
  
  
k=5; %number of folds 
  
Nrow = 12; %no rows must > Veye (max number eyes per subset)  
  
for Region = 2:18 %one column (region) at a time) 
  
%sort Fb by AL 
[sALvec,ALorder]=sort(ALvec);% ascending order of AL 
ALlFb=PVDMYFb(ALorder,:); 
ALlFb(1:2,:)=[];%removes 2 eyes with no AL 
sALvec(1:2)=[];%removes head of ALvec to match ALlFb 
  
NumPVDMY = size (ALlFb,1); 
  
KurvrowMP = cell(NumPVDMY,1); 
PVDMYRegcubeID=cell(NumPVDMY,1); 
PVDMYcols=cell(NumPVDMY,1); 
  
Sumdiff11 = cell (Nrow,k);  
absdiff11 = cell (Nrow,k); 
Eyermsd11 = cell (Nrow,k); 
maxeBs11 = cell (Nrow,k); 
IndMeBs11 = cell (Nrow,k); 
IKurv = cell (Nrow, k);%Kurv data for an entire eye 
CKurv = cell (Nrow, k);%the Kurv data to match sumdiff etc 
  
MaxCVar11 = cell (Nrow,k); 
IndMCVar11 = cell (Nrow,k); 
logMxvar11 = cell (Nrow,k); 
sumbinvar11 = cell (Nrow,k); 
SbVar11diff = cell (Nrow,k); 
Eymsdf11 = zeros (Nrow,k); 
Indmax11 = zeros (Nrow,k); 
Eymsbv11 = zeros (Nrow,k); 
  
%create five subsets for cross validation 
Grps11 = cell(k,1); %the '9'reflects the column where the data is stored 
GrpIID11 = cell (k,1); 
TSGrp11 = cell (k,1); 
FoldKurvrow = cell (k,1); 
GrpAL11 = cell(k,1); 
  
%This section gets the cubes for this region 
for Iye= 1:size(ALlFb,1)  
     
    PVDMYcols(Iye)=ALlFb{Iye,11}(Region);%this region cube FFT data - bins x Bs 
    PVDMYRegcubeID{Iye} = ALlFb{Iye,6}{Region-1};%cube identifier 
    if PVDMYRegcubeID{Iye}~=0 
        KurvrowMP{Iye} = 
find(contains(ALlFb{Iye,5}(:),num2str(PVDMYRegcubeID{Iye}))); 
    end 
end 
    
%remove empty values if region cube cell empty 
PVDMYeyeID=ALlFb(:,1); 
KurvrowMP(cellfun('isempty',PVDMYcols))=[]; 
PVDMYeyeID(cellfun('isempty',PVDMYcols))=[]; 
sALvec(cellfun('isempty',PVDMYcols))=[]; 
PVDMYcols(cellfun('isempty',PVDMYcols))=[]; 
  
NumPVDMY1 = length(PVDMYeyeID); 
  
%generate random distribution into 5 folds 
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NumIpfold = floor(NumPVDMY1/k);%number of eyes per k folds 
Rem=mod(NumPVDMY1,k);%plus the remainder not divisible by k 
Ransel = zeros(k,NumIpfold); 
for Ranrun=1:NumIpfold 
     
    Ransel(:,Ranrun) = randperm(k)'; 
end 
Ranrem=randperm(Rem)'; 
Ransel = cat(1,Ransel(:),Ranrem);%these are the indices to divide into folds 
  
  
  
% generates a column vector to randomise ?Num? eyes into ?k?=5 subsets. 
%IndicesPVD = crossvalind('Kfold',NumPVD1, k);  
%IndicesMY = crossvalind('Kfold',NumMY1, k);  
  
for n = 1:k % one fold at a time 
  Grps11{n} = PVDMYcols(Ransel==n); % puts each subset into a cell in Grps 
  GrpIID11 {n} = PVDMYeyeID(Ransel==n,1); %eye identifiers of the validation set 
  TSGrp11{n} = PVDMYcols(Ransel~=n); % selects not subset n: the training set for 
Grps(n) 
  FoldKurvrow{n} = KurvrowMP(Ransel==n);%the row match in Kurv for current fold 
cubes 
  GrpAL11{n}=sALvec(Ransel==n);%AL for current fold cube 
  %create colour vector to match GrpIID9 
  %ColVec{n} = [repelem([0 0 1],nnz(IndicesPVD==n),1);repelem([0 1 
0],nnz(IndicesMY==n),1)]; 
   
  TSMnGrp11 = cat (3, TSGrp11{n}); %training set 
   
  for Feyes = 1:length(TSMnGrp11) 
      FI= TSMnGrp11 {Feyes}; 
      FI(FI==0) = NaN; 
      TSMnGrp11 {Feyes} = FI; %replaces all 0 with NaN to eliminate empty B scans 
in training set 
  end 
  
   
   
  TSMnGrp11 = cat (3, TSMnGrp11{:}); %concatenates all cubes from all eyes in 
MnGrp{n} 
   
  FoldTSBV11 =  var(TSMnGrp11,0,2,'omitnan');%30 x 1 x X array, x=number of cubes 
  TFMnBV11 = mean (FoldTSBV11,3,'omitnan');%30 x 1 mean fold bin Var 
   
  TSMnGrp11 = TSMnGrp11 (:,all(~isnan(TSMnGrp11)));%removes Nan columns 
   
  TSbmn11 = nanmean (TSMnGrp11,2); %creates PVD/MY bin mean training set 
   
  %The number of cubes/eyes in this subset Grps(n) 
  SzC11 = size (Grps11{n},1); % SzC = number of eyes in this subset 
   
  for Veye = 1:SzC11 
      NowIFFT11 = Grps11{n}{Veye}; %call first cube in validation set 
      
           
      NowIFFT11=NowIFFT11(:,any(NowIFFT11));%added 22/9/18 to remove empty B scans 
      NumBS=size(NowIFFT11,2);%number of non -zero B scans 
      %generate the summary values, sumdiff, RMSD and max error, each row an eye, 
each fold a %column 
      % for 0 removed by Nan mean 
      absdiff11 {Veye,n} = abs(NowIFFT11 - TSbmn11);%bins x B scans 
      Sumdiff11 {Veye, n} = sum(absdiff11{Veye,n});%total all bins for each B scan 
      Sumdiff11 {Veye, n} = permute (Sumdiff11{Veye,n}, [3 2 1]); %sumabsdiff 
moduli, 1 cube x Bs 
  
      Eymsdf11 (Veye, n) =max (Sumdiff11 {Veye,n}(:));%max sumdiff for eye 
  
      Eyermsd11 {Veye, n} = sqrt ((sum (absdiff11{Veye,n}.*absdiff11{Veye,n}))/30); 
      Eyermsd11 {Veye,n} = permute (Eyermsd11 {Veye,n}, [3 2 1]); 
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      [maxeBs11{Veye,n}, IndMeBs11{Veye,n}] = max(abs(NowIFFT11 - TSbmn11)); 
  
      maxeBs11 {Veye,n} = permute (maxeBs11 {Veye,n}, [3 2 1]);%can switch out for 
cube bin var 
      IndMeBs11{Veye,n} = permute (IndMeBs11{Veye,n}, [3 2 1]); 
       
      %cube bin variance - (can put in scatter3 when desired), max and sum 
      [MaxCVar11{Veye,n},IndMCVar11{Veye,n}] = max(var(NowIFFT11,0,2,'omitnan')-
TFMnBV11); 
      SbVar11diff {Veye,n} = sum(var(NowIFFT11,0,2,'omitnan') - TFMnBV11); 
      SbVar11diff {Veye,n} = permute (SbVar11diff {Veye,n},[3 2 1]); 
      sumbinvar11 {Veye,n} = sum (var(NowIFFT11,0,2,'omitnan')); 
      sumbinvar11 {Veye,n} = permute (sumbinvar11 {Veye,n},[3 2 1]); 
      Eymsbv11 (Veye,n) = max (sumbinvar11{Veye,n}(:));%max sumbinvar3 for eye 
      sumbinvar11 {Veye,n} = repmat(sumbinvar11 {Veye,n},1,NumBS); 
      SbVar11diff {Veye,n} = repmat(SbVar11diff {Veye,n},1,NumBS); 
      MaxCVar11{Veye,n} = permute (MaxCVar11{Veye,n}, [3 2 1]); 
      MaxCVar11{Veye,n} = repmat (MaxCVar11{Veye,n},1,NumBS); %repeat elements to 
plot c sumdiff etc 
      logMxvar11 {Veye,n} = log10 (MaxCVar11{Veye,n}); 
      IndMCVar11{Veye,n} = permute (IndMCVar11{Veye,n}, [3 2 1]); 
       
      %match curvature array sheet with current eye/cube 
      Kurvmatch=find(strncmp(GrpIID11{n}{Veye},AllIEyenames2,4)); 
      IKurv{Veye,n} = AllIBsKurv(:,:,Kurvmatch);%Bs K for this eye 
      IKurv{Veye,n} = IKurv{Veye,n}(any(IKurv{Veye,n},2),:);%removes empty rows 
      CKurv{Veye,n} = IKurv{Veye,n}(FoldKurvrow{n}{Veye},:); 
      CKurv{Veye,n}(CKurv{Veye,n}==0)=[]; 
           
  
    %{  
       to plot select a single region 
       %plot, with Eye title 
      Fignamn0 = strcat (GrpIID9 {n} {Veye},' MY/PVD Normalised Sumdiff v Kurv v 
max error: Region', num2str(Region)); 
      figure ('Name',Fignamn0); 
      scatter3 (Sumdiff9 {Veye, n}(:), CKurv {Veye, n}(:), maxeBs9 
{Veye,n}(:),24,'b');%  
      axis ([0 50 -inf inf 0 12]); %for SD,CKurv,maxeBs 
      xlabel ('sumdiff'); 
      ylabel ('BFC vertex K'); 
      zlabel ('max error'); 
      savefig (strcat('Eye ',GrpIID9{n} {Veye},'Region', num2str(Region))); 
       
      %} 
     
  end 
end 
save (['/Users/stewartlake/Documents/Retinalcontour/Regional MY PVD by 
AL/XvalNfftMYPVDregionmm',num2str(Region)]); 
end 
  
 
 
3. MYPVDALstatsmm 
%run from NfftXV AL MYmm/XvalFTMYPVDbyAL4 
%generated by a XvalMYPVDbyALmm script (AL stratified MY and PVD) 
%eg in mm analyses/NfftXV AL MYmm 
%It is for whole eye analysis, and measures the volume of the scatter3 
%plot for each eye 
%saves in same folder 
%determines ranges, med etc for all scans, and by eye 
%calculates SRC for selected values 
%includes corrected K vals for AL 
%load XvalFTMYPVDbyAL.... 
SD10cellvec = Sumdiff10(:); 
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ID10cellvec = GrpIID10(:); 
SBV10cellvec = SbVar10diff(:); 
Me10cellvec = maxeBs10(:); 
ALcellvec = vertcat(GrpAL{:}); 
ind10cellvec= reshape(IndMeBs10,[],1); 
RM10cellvec = Eyermsd10(:); 
  
SD10cellvec(cellfun('isempty', SD10cellvec)) = []; 
SBV10cellvec(cellfun('isempty', SBV10cellvec)) = []; 
ID10cellvec(cellfun('isempty', ID10cellvec)) = []; 
Me10cellvec(cellfun('isempty', Me10cellvec)) = []; 
RM10cellvec(cellfun('isempty', RM10cellvec)) = []; 
  
ind10cellvec(cellfun('isempty',ind10cellvec)) = []; 
  
  
Kay = cell(length(SD10cellvec),1); 
Vol = zeros (length(SD10cellvec),1); 
convKay = cell(length(SD10cellvec),1); 
convVol = zeros (length(SD10cellvec),1); 
  
  
%this converts Kurv into AKurv, a match for sumdiff10 etc 
Kurvline=Kurv(:); 
  
for clean=1:length(Kurvline) 
    Kurvline{clean}= Kurvline{clean}(:); 
    cleanspace=Kurvline{clean}'; 
    cleanspace(cleanspace==0)=[]; 
    Kurvline{clean}=cleanspace; 
       
end 
  
AKurv=reshape(Kurvline,size(Kurv,1),size(Kurv,2)); 
  
KVcellvec = AKurv(:); 
KVcellvec(cellfun('isempty',KVcellvec)) = []; 
  
Metr = zeros(length(SD10cellvec),3); 
Metrc = zeros(length(SD10cellvec),3); 
Metr2 = zeros(length(SD10cellvec),3); 
Metr5 = zeros(length(SD10cellvec),3); 
Metr6 = zeros(length(SD10cellvec),3); 
Metr3 = zeros(length(SD10cellvec),3); 
Metr4med = zeros(length(SD10cellvec),4); 
Metr4iqr = zeros(length(SD10cellvec),4); 
CorIval = zeros(length(SD10cellvec),3); 
  
vectSD = cat(2,SD10cellvec{:}); 
vectMe = cat(2,Me10cellvec{:}); 
vectK = cat(2,KVcellvec{:}); 
vectRM= cat(2,RM10cellvec{:}); 
  
%corrected KVcellvec for AL 
Alcorrcoeff = [0.0257,-2.1182,36.0516]; 
for Eye1 = 1:length(KVcellvec) 
     
    Rcvec{Eye1} = KVcellvec{Eye1}.^(-1); 
     
    corR = Alcorrcoeff(1).*ALcellvec(Eye1).^2 + ... 
        Alcorrcoeff(2).*ALcellvec(Eye1) + Alcorrcoeff(3); 
     
    Rcveccor{Eye1} = Rcvec{Eye1} - corR;  
     
    KVcellveccor{Eye1} = Rcveccor{Eye1}.^(-1); 
     
     
end 
  
vectKc = cat(2,KVcellveccor{:});%AL corrected K 
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AllIMedSD = median(vectSD);%all eye values 
AllIMedMe = median(vectMe); 
AllIMedK = median(vectK); 
AllIMedKc = median(vectKc); 
AllIMedRM = median(vectRM); 
  
AllIMinSD = min(vectSD); 
AllIMinMe = min(vectMe); 
AllIMinK = min(vectK); 
AllIMinKc = min(vectKc); 
AllIMinRM = min(vectRM); 
  
AllIMaxSD = max(vectSD); 
AllIMaxMe = max(vectMe); 
AllIMaxK = max(vectK); 
AllIMaxKc = max(vectKc); 
AllIMaxRM = max(vectRM); 
  
for RuN=1:length(SD10cellvec) 
     
    [Kay{RuN},Vol(RuN)] = boundary(SD10cellvec{RuN}', KVcellvec{RuN}', 
Me10cellvec{RuN}',1); 
    %vol is the alpha shapes boundary volume 
    [convKay{RuN},convVol(RuN)] = convhull(SD10cellvec{RuN}', KVcellvec{RuN}', 
Me10cellvec{RuN}'); 
     
    MedSD = median(SD10cellvec{RuN}); 
    MedMe = median(Me10cellvec{RuN}); 
    MedK = median(KVcellvec{RuN}); 
    MedKc = median(KVcellveccor{RuN}); 
    MedRM = median(RM10cellvec{RuN}); 
     
    MinSD = min(SD10cellvec{RuN}); 
    MinMe = min(Me10cellvec{RuN}); 
    MinK = min(KVcellvec{RuN}); 
    MinKc = min(KVcellveccor{RuN}); 
    MinRM = min(RM10cellvec{RuN}); 
     
    MaxSD = max(SD10cellvec{RuN}); 
    MaxMe = max(Me10cellvec{RuN}); 
    MaxK = max(KVcellvec{RuN}); 
    MaxKc = max(KVcellveccor{RuN}); 
    MaxRM = max(RM10cellvec{RuN}); 
     
    iqrK = iqr(KVcellvec{RuN}); 
    iqrKc = iqr(KVcellveccor{RuN}); 
    iqrSD = iqr(SD10cellvec{RuN}); 
    iqrMe = iqr(Me10cellvec{RuN});  
    iqrRM = iqr(RM10cellvec{RuN}); 
     
    %this is the first input matrix for corr 
    %col1 = vol, col2 = medsd, c3=medMe, c4=medK 
    %Metr(RuN,1) = Vol(RuN); 
    Metr(RuN,1) = MedSD; 
    Metr(RuN,2) = MedMe; 
    Metr(RuN,3) = MedK; 
     
    CorIval(RuN,1) = MedKc;%correct K by AL med, range 
    CorIval(RuN,2) = MinKc; 
    CorIval(RuN,3) = MaxKc; 
     
    Metrc(RuN,1) = MedSD; 
    Metrc(RuN,2) = MedMe; 
    Metrc(RuN,3) = MedKc; 
     
    Metr2(RuN,1) = MaxSD; 
    Metr2(RuN,2) = MaxMe; 
    Metr2(RuN,3) = MaxK; 
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    Metr3(RuN,1) = MinSD; 
    Metr3(RuN,2) = MinMe; 
    Metr3(RuN,3) = MinK; 
     
    Metr4med(RuN,1) = MedSD;% the features for each eye 
    Metr4med(RuN,2) = MedMe; 
    Metr4med(RuN,3) = MedRM; 
    Metr4med(RuN,4) = MedKc; 
     
     
    Metr4iqr(RuN,1) = iqrSD;% the features for each eye 
    Metr4iqr(RuN,2) = iqrMe; 
    Metr4iqr(RuN,3) = iqrRM; 
    Metr4iqr(RuN,4) = iqrKc; 
     
     
    Metr5(RuN,1) = iqrSD; 
    Metr5(RuN,2) = iqrMe; 
    Metr5(RuN,3) = iqrK;   
     
    Metr6(RuN,1) = iqrSD; 
    Metr6(RuN,2) = iqrMe; 
    Metr6(RuN,3) = iqrKc; 
end 
  
[rho,pval]=corr(Metr,ALcellvec,'Type','Spearman'); 
[rhoc,pvalc]=corr(Metrc,ALcellvec,'Type','Spearman'); 
[rho5,pval5]=corr(Metr5,ALcellvec,'Type','Spearman'); 
[rho6,pval6]=corr(Metr6,ALcellvec,'Type','Spearman'); 
[rho4m,pval4m]=corr(Metr4med,ALcellvec,'Type','Spearman'); 
[rho4i,pval4i]=corr(Metr4iqr,ALcellvec,'Type','Spearman'); 
  
 save ('/Users/stewartlake/Documents/Retinalcontour/mm analyses/NfftXV AL 
MYmm/XVftMYPVDbyALstatsALKcor4a');  

 
 
4. MYPVDallBSdatamm 
%this gets summary values for each region 
% 
%runs through Xval files from MYPVDALregstatsmmKc 
%and calculates average bin modulus for the B scans 
%then median, max, iqr for all the B scan data each region 
  
cd ('/Users/stewartlake/Documents/Retinalcontour/Regional MY PVD by AL/') 
  
sumTSbin = zeros(18,1); 
sumTSMedbin = zeros(18,1); 
  
MEDK = zeros(18,1); 
MEDMe = zeros(18,1); 
MEDRM = zeros(18,1); 
MEDSD = zeros(18,1); 
  
MAXSD = zeros(18,1); 
MAXMe = zeros(18,1); 
MAXRM = zeros(18,1); 
MAXK = zeros(18,1); 
  
AvK = zeros(18,1); 
AvMe = zeros(18,1); 
AvRM = zeros(18,1); 
AvSD= zeros(18,1); 
  
IQRSD = zeros(18,1); 
IQRMe = zeros(18,1); 
IQRRM = zeros(18,1); 
IQRK = zeros(18,1); 
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SDK = zeros(18,1); 
SDMe = zeros(18,1); 
SDRM = zeros(18,1); 
SDSD = zeros(18,1); 
  
for Region = 2:18 
     
Varfile = strcat(('XvalNfftMYPVDregionmm'),num2str(Region)); 
  
load (Varfile); 
  
AllBS=[PVDMYcols{:}];%PVDMYcols the raw FFT for 1-30 bins x number of B scans 
AllBS = AllBS(:,any(AllBS));%this is all non empty B scans for a region 
  
ALLBSMbn = nanmean(AllBS,2); 
ALLBSMedbn = nanmedian (AllBS,2); 
  
sumTSbin(Region,1) = sum (ALLBSMbn);%vector of mean total bin val for each region 
sumTSMedbin(Region,1) = sum (ALLBSMedbn);%sum of median total bin value 
  
MEDK(Region) = median([KVcellvec{:}]);%median K of entire region 
MEDKc(Region) = median([KVcellveccor{:}]); 
MEDMe(Region) = median([Me11cellvec{:}]); 
MEDRM(Region) = median([RM11cellvec{:}]); 
MEDSD(Region) = median([SD11cellvec{:}]);%median sumdiff 
MAXSD(Region) = max(Metr2(:,2)); 
MAXMe(Region) = max(Metr2(:,3)); 
MAXRM(Region) = max(Metr2(:,4)); 
IQRK(Region) = iqr([KVcellvec{:}]); 
IQRKc(Region) = iqr([KVcellveccor{:}]); 
  
AvK(Region) = mean([KVcellvec{:}]); 
AvKc(Region) = mean([KVcellveccor{:}]); 
AvMe(Region) = mean([Me11cellvec{:}]); 
AvRM(Region) = mean([RM11cellvec{:}]); 
AvSD(Region) = mean([SD11cellvec{:}]); 
IQRSD(Region) = iqr([SD11cellvec{:}]); 
IQRMe(Region) = iqr([Me11cellvec{:}]); 
IQRRM(Region) = iqr([RM11cellvec{:}]); 
SDK(Region) = std([KVcellvec{:}]); 
SDKc(Region) = std([KVcellveccor{:}]); 
SDMe(Region) = std([Me11cellvec{:}]); 
SDRM(Region) = std([RM11cellvec{:}]); 
SDSD(Region) = std([SD11cellvec{:}]); 
  
end 
  
save('regionsumBsbin','sumTSbin','sumTSMedbin','MEDK','MEDMe','MEDSD','MAXSD','MAXM
e','IQRK',... 
    'AvK', 'AvMe','AvSD','IQRSD','IQRMe', 
'SDK','SDMe','SDSD','MEDRM','MAXRM','IQRRM','AvRM',... 
    'SDRM','SDKc','AvKc','IQRKc','MEDKc'); 
 
 
5. MYPVDALregstatsmmKc 
%this calculates from the SD,KV,ME,RM vectors for Regional 
%plus median SD, K, ME,RM max SD, ME, RM and iqr K, mean and std 
%then runs spearman's correlation 
%generated by a MYPVDALregXvalmm script (AL stratified MY and PVD, mm) 
%in /Regional MY PVD by AL  
%It is for regional eye analysis,  
%Metr4m/i do all 4 descriptors in Kc  
% 
%Can correct K for AL<28 only in Metr6 and Metrc for iqr and median, 
%if lines in 170s are uncommented, and Metrc & 6 changed to use 
%ALcellveclim. 
cd ('/Users/stewartlake/Documents/Retinalcontour/Regional MY PVD by AL/') 
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for Region = 2:18 
     
Varfile = strcat(('XvalNfftMYPVDregionmm'),num2str(Region)); 
  
load (Varfile); 
  
SD11cellvec = Sumdiff11(:); 
ID11cellvec = GrpIID11(:); 
SBV11cellvec = SbVar11diff(:); 
Me11cellvec = maxeBs11(:); 
RM11cellvec = Eyermsd11(:); 
ALcellvec = vertcat(GrpAL11{:}); 
ind11cellvec= reshape(IndMeBs11,[],1); 
  
SD11cellvec(cellfun('isempty', SD11cellvec)) = []; 
SBV11cellvec(cellfun('isempty', SBV11cellvec)) = []; 
ID11cellvec(cellfun('isempty', ID11cellvec)) = []; 
Me11cellvec(cellfun('isempty', Me11cellvec)) = []; 
RM11cellvec(cellfun('isempty', RM11cellvec)) = []; 
ind11cellvec(cellfun('isempty',ind11cellvec)) = []; 
  
  
Kay = cell(length(SD11cellvec),1); 
Vol = zeros (length(SD11cellvec),1); 
Kay1 = cell(length(SD11cellvec),1); 
Vol1 = zeros (length(SD11cellvec),1); 
convKay = cell(length(SD11cellvec),1); 
convVol = zeros (length(SD11cellvec),1); 
  
  
%this converts Kurv into AKurv, a match for sumdiff11 etc 
Kurvline=CKurv(:); 
  
for clean=1:length(Kurvline) 
    Kurvline{clean}= Kurvline{clean}(:); 
    cleanspace=Kurvline{clean}'; 
    cleanspace(cleanspace==0)=[]; 
    Kurvline{clean}=cleanspace; 
       
end 
  
AKurv=reshape(Kurvline,size(CKurv,1),size(CKurv,2)); 
  
KVcellvec = AKurv(:); 
KVcellvec(cellfun('isempty',KVcellvec)) = []; 
  
%now correct KVcellvec for AL 
ALcorrcoeff = [0.0257,-2.1182,36.0516]; 
for Eye1 = 1:length(KVcellvec) 
     
    Rcvec{Eye1} = KVcellvec{Eye1}.^(-1); 
     
    corR = ALcorrcoeff(1).*ALcellvec(Eye1).^2 + ALcorrcoeff(2).*ALcellvec(Eye1) + 
... 
        ALcorrcoeff(3); 
     
    Rcveccor{Eye1} = Rcvec{Eye1} - corR;  
     
    KVcellveccor{Eye1} = Rcveccor{Eye1}.^(-1); 
     
    iqrKcorr(Eye1) = iqr(KVcellveccor{Eye1}); 
     
end 
  
  
Metr = zeros(length(SD11cellvec),4); 
Metrc = zeros(length(SD11cellvec),4); 
Metr2 = zeros(length(SD11cellvec),4); 
Metr3 = zeros(length(SD11cellvec),4); 
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Metr4 = zeros(length(SD11cellvec),4); 
Metr4m = zeros(length(SD11cellvec),4); 
Metr4i = zeros(length(SD11cellvec),4); 
Metr5 = zeros(length(SD11cellvec),4); 
Metr6 = zeros(length(SD11cellvec),4); 
  
for RuN=1:length(SD11cellvec) 
     
    [Kay{RuN},Vol(RuN)] = boundary(SD11cellvec{RuN}', KVcellvec{RuN}', 
Me11cellvec{RuN}'); 
    [Kay1{RuN},Vol1(RuN)] = boundary(SD11cellvec{RuN}', KVcellvec{RuN}', 
Me11cellvec{RuN}',1); 
    %vol is the alpha shapes boundary volume. Vol1 is shrink val=1 
    [convKay{RuN},convVol(RuN)] = convhull(SD11cellvec{RuN}', KVcellvec{RuN}', 
Me11cellvec{RuN}'); 
     
    MedSD = median(SD11cellvec{RuN}); 
    MedMe = median(Me11cellvec{RuN}); 
    MedRM = median(RM11cellvec{RuN}); 
     
    MedK = median(KVcellvec{RuN}); 
    Rck = MedK.^(-1); 
    corR = ALcorrcoeff(1).*ALcellvec(RuN).^2 + ALcorrcoeff(2).*ALcellvec(RuN) + ... 
        ALcorrcoeff(3); 
    Rccorr = Rck-corR; 
    MedKcorr = Rccorr.^(-1); 
     
    AvSD = mean(SD11cellvec{RuN}); 
    AvMe = mean(Me11cellvec{RuN}); 
    AvRM = mean(RM11cellvec{RuN}); 
    AvK = mean(KVcellvec{RuN}); 
     
    stdSD = std(SD11cellvec{RuN}); 
    stdMe = std(Me11cellvec{RuN}); 
    stdRM = std(RM11cellvec{RuN}); 
    stdK = std(KVcellvec{RuN});     
     
    MaxSD = max(SD11cellvec{RuN}); 
    MaxMe = max(Me11cellvec{RuN}); 
    MaxRM = max(RM11cellvec{RuN}); 
    iqrKc = iqr(KVcellveccor{RuN});%this is corrected K 
    iqrK = iqr(KVcellvec{RuN}); 
     
    iqrSD = iqr(SD11cellvec{RuN}); 
    iqrMe = iqr(Me11cellvec{RuN}); 
    iqrRM = iqr(RM11cellvec{RuN}); 
     
    %this is the first input matrix for correlation 
    % 
    %Metr(RuN,1) = Vol1(RuN); 
    Metr(RuN,1) = MedSD; 
    Metr(RuN,2) = MedMe; 
    Metr(RuN,3) = MedK; 
     
    Metrc(RuN,1) = MedSD; 
    Metrc(RuN,2) = MedMe; 
    Metrc(RuN,3) = MedKcorr; 
     
    Metr4m(RuN,1) = MedSD; 
    Metr4m(RuN,2) = MedMe; 
    Metr4m(RuN,3) = MedRM; 
    Metr4m(RuN,4) = MedKcorr; 
     
    Metr4i(RuN,1) = iqrSD; 
    Metr4i(RuN,2) = iqrMe; 
    Metr4i(RuN,3) = iqrRM; 
    Metr4i(RuN,4) = iqrKc; 
     
    %second input matrix for corr 
    Metr2(RuN,1) = Vol(RuN); 
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    Metr2(RuN,2) = MaxSD; 
    Metr2(RuN,3) = MaxMe; 
    Metr2(RuN,4) = MaxRM; 
     
    Metr3(RuN,1) = Vol(RuN); 
    Metr3(RuN,2) = stdSD; 
    Metr3(RuN,3) = stdMe; 
    Metr3(RuN,4) = stdK;   
     
    Metr4(RuN,1) = Vol(RuN); 
    Metr4(RuN,2) = AvSD; 
    Metr4(RuN,3) = AvMe; 
    Metr4(RuN,4) = AvK;  
     
    Metr5(RuN,1) = iqrSD; 
    Metr5(RuN,2) = iqrMe; 
    Metr5(RuN,3) = iqrK;   
     
    Metr6(RuN,1) = iqrSD; 
    Metr6(RuN,2) = iqrMe; 
    Metr6(RuN,3) = iqrKc;     
end 
  
%now remove AL > 28 mm eyes 
ALcellveclim=ALcellvec;%use lim if avoiding AL > 28 
ALcellveclim(ALcellveclim>28,:)=[]; 
  
%Metrc(ALcellvec>28,:)=[]; 
  
%Metr6(ALcellvec>28,:)=[]; 
  
[rho,pval]=corr(Metr,ALcellvec,'Type','Spearman'); 
[rhoC,pvalC]=corr(Metrc,ALcellvec,'Type','Spearman');%consider adding lim 
[rho2,pval2]=corr(Metr2,ALcellvec,'Type','Spearman'); 
[rho3,pval3]=corr(Metr3,ALcellvec,'Type','Spearman'); 
[rho4,pval4]=corr(Metr4,ALcellvec,'Type','Spearman'); 
[rho4m,pval4m]=corr(Metr4m,ALcellvec,'Type','Spearman'); 
[rho4i,pval4i]=corr(Metr4i,ALcellvec,'Type','Spearman'); 
[rho5,pval5]=corr(Metr5,ALcellvec,'Type','Spearman'); 
[rho6,pval6]=corr(Metr6,ALcellvec,'Type','Spearman');%consider lim 
  
save (Varfile); 
  
end 
  
 
 
6. BHcorrmmALK 
%this collates all p values and rho from /Regional MY PVD by ALmm 
%sorts and perform Bonferroni - Holm correction 
%((result in 'where': col 1 sorted pval, col 2 alpha/(m-number) 
%col3 index of unsorted p val, col4 corresponding rho 
%first 6/8 rho/pvals are from all of eye stats. Then regional 2-18 
%for AL corrected K values)) 
%whereALL is for all 4 descriptors, so first 8 rho/pvals are all of eye, 
%then regions 2-18. 8 per region: med followed by iqr,in order SD Me rmse K 
%CHANGE: have /regional MY PVD by AL open: 
cd ('/Users/stewartlake/Documents/Retinalcontour/Regional MY PVD by AL/') 
  
%this loads all of eye data from MYPVDALstatsmm 
load ('/Users/stewartlake/Documents/Retinalcontour/mm analyses/NfftXV AL 
MYmm/XVftMYPVDbyALstatsALKcor4a'); 
  
Allp = cat(1,pvalc(1:3,1), pval6(1:3,1));%starts p/rho vectors with all of eye... 
Allrho = cat(1,rhoc(1:3,1),rho6(1:3,1));%...AL corrected med and iqr results 
  
ALL4p = cat(1,pval4m(1:4,1), pval4i(1:4,1));%starts p/rho vectors with all of 
eye... 
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ALL4rho = cat(1,rho4m(1:4,1),rho4i(1:4,1));%...AL corrected med and iqr results for 
all 4 metrics 
  
  
for Region = 2:18 
    %from MYPVDALregstatsmmKc 
    Varfile = strcat(('XvalNfftMYPVDregionmm'),num2str(Region)); 
  
    load (Varfile); 
     
    Allp = cat(1, Allp, pvalC(1:4,1), pval6(1:4,1));%median and iqr p vals 
    Allrho = cat(1, Allrho, rhoC(1:4,1), rho6(1:4,1)); 
     
    ALL4p = cat(1, ALL4p, pval4m(1:4,1), pval4i(1:4,1));%median and iqr p vals 
    ALL4rho = cat(1, ALL4rho, rho4m(1:4,1), rho4i(1:4,1)); 
     
     
end 
  
  
[sAllp,psort] = sort(Allp); 
sAllrho = Allrho(psort); 
  
[sALL4p,psort4] = sort(ALL4p); 
sALL4rho = ALL4rho(psort4); 
  
  
m=length(sAllrho); 
mALL=length(sALL4rho); 
alpha = 0.05; 
BH=zeros(m,1); 
BHALL=zeros(mALL,1); 
  
for list=1:m 
    BH(list) = alpha/(m-(list-1)); 
end 
  
for list=1:mALL 
    BHALL(list) = alpha/(mALL-(list-1)); 
end 
  
where= cat(2,sAllp,BH,psort,sAllrho); 
  
whereALL= cat(2,sALL4p,BHALL,psort4,sALL4rho); 
  
save ('/Users/stewartlake/Documents/Retinalcontour/regional MY PVD by 
AL/BHcorrectionmmALK4a'); 

 
 
Chapter 5. 
1. MHFEPVxzcomp 
%compare curvature for no PVD xz (or, see line 8) and PV xz files (radial HD 12) 
%CHANGE: line 9 & 217, plus figure labels 
%takes data from temp xz folder (line 8) and PV xz (line 216) and calculates FFT 
and K 
%plus median, var, and iqr sum bins  
%plus median, iqr, and variance K 
%signrank, cohens d and t test 
%load 'MH' data = no PVD, PV data = PVD 
clear 
str1 = '/Users/stewartlake/Documents/MH contour/temp xz folder/'; 
cd (str1); 
  
MHinfo = dir; 
MHinfo = MHinfo(~ismember({MHinfo.name},{'.','..','.DS_Store'})); 
MHnames = {MHinfo.name}; 
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MHNum = size (MHnames,2);%number MH eyes 
MHcubeFFTvec = cell(1,MHNum);%One eye per cell %each cell 30 bins x 12 B scans 
MHbfccoeff = cell(1,MHNum); 
MHK = cell(1,MHNum); % best fit curve vertex curvature.One eye per cell 
MHID = cell(1,MHNum); 
MHside = zeros(1,MHNum); 
MedKMH = zeros(1,MHNum); %median MH K 
IqrKMH = zeros(1,MHNum);%iqr MH K 
VarKMH = zeros(1,MHNum);% variance MH K 
MedFMH = zeros(1,MHNum);% median FFT bins 1-30 
IqrFMH = zeros(1,MHNum);%iqr FFT bins 
VarFMH = zeros(1,MHNum);%variance FFT bins 
  
  
%generate data for MH maculae 
for CurFol=1:MHNum 
     
    MHnam = MHnames {1,CurFol}(1:5);%eye ID 
    MHside = MHnames {1,CurFol}(2);%eye laterality 
    MHprefix = MHnames {1,CurFol}(1:2);%first two characters for textfile str 
    %open cube of data 
    nowFolderMH=MHnames{1,CurFol}; 
     
    cd (nowFolderMH);%open cube xz data folder 
  
    %get directory of textfile (B scan) names 
    MHdinfo = dir; 
    MHnames_cell = {MHdinfo.name}; 
%gives a matrix called names_cell where each column has a filename 
%then: 
    outMH=regexp(MHnames_cell,'\d+','match'); 
    outMH=str2double(cat(1,outMH{:})); 
%gives a matrix called out in which each row has a number from an original filename 
%these are in column 2 if text file header has a number, column 1 if it 
%doesn't. 
  
%script alpha. takes a cube of data and 
%Puts x and z coordinate values into an array (myData), each cell a line of data. 
%Then separates this into arrays for x, and z. 
    numFiles = size(outMH, 1);%number of B scans in cube 
    startRow = 1; 
    endRow = inf; 
    myData = cell(1,12); 
    ximp = cell (1, 12);%this cubes x data 
    zimp = cell (1, 12);%this cubes Z data 
    cubeFFT = zeros (30, 12); 
    Cubefreq = zeros (30, 12); 
    MHKurv = zeros (12,1); 
      
    fileName = cell(1); 
     
    zedres = zeros(1024,numFiles); 
    Quadcoeffs = zeros(3, 12); 
    VecLen = zeros (1, numFiles); 
     
     
     for fileNum = 1:numFiles %work through B scan xz txt files 
            Bscanline = outMH(fileNum,end); 
            %This loop is for a single cube 
            fileName =[]; 
            fileName1 = sprintf('-%04d.txt',Bscanline); 
            fileName = [MHprefix fileName1]; 
            myData{Bscanline} = importfile(fileName,startRow,endRow); 
             
            ximp{Bscanline}=myData{Bscanline}(:,1); 
            zimp{Bscanline}=myData{Bscanline}(:,2); 
             
            %now reverse left to right eye orientation (reverse z) 
            %and reposition scans in left to match right eyes 
            if (MHside == 2)%if a left eye 
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                if (Bscanline == 1) 
                   zimp{Bscanline}=flipud(zimp{Bscanline}); 
                elseif (Bscanline == 2) 
                    zimp{12} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 3) 
                    zimp{11} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 4) 
                    zimp{10} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 5) 
                    zimp{9} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 6) 
                    zimp{8} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 8) 
                    zimp{6} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 9) 
                    zimp{5} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 10) 
                    zimp{4} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 11) 
                    zimp{3} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 12) 
                    zimp{2} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                end 
            end 
            
             
     
            %now format x and z for FFT 
            x=table2cell(ximp{Bscanline}); 
            z=table2cell(zimp{Bscanline}); 
            x=cell2mat(x); 
            z=cell2mat(z); 
             
            L = length (z); 
             
            [FFTz,freq] = FFTforOCT_RMHmm(x,z);%mac hole FFT script 
            VecLen(fileNum) = length(z);%vector length(FFT already corrected) 
             
            %create matrix of residuals 
            zVlen = size (z); 
            zedres(1:zVlen,fileNum) = z; 
            %zedres = zedres(1:1024,fileNum); 
             
            %save quadratic coefficients 
            sf = 1024/6;% 6 mm scan length 
            xmm{Bscanline} = x/sf;%convert to mm 
            sfz = 1024/2; 
            ZMM{Bscanline} = z/sfz; 
            p{Bscanline} = polyfit(xmm{Bscanline},ZMM{Bscanline},2);% 
            Quadcoeffs (1,Bscanline) = p{Bscanline}(1); 
            Quadcoeffs (2,Bscanline) = p{Bscanline}(2); 
            Quadcoeffs (3,Bscanline) = p{Bscanline}(3); 
     
            %put FFTz, freq into matrix, one column per B scan 
            cubeFFT(1:30,Bscanline) = FFTz(1:30,1); 
            %cubeFFT(1:30,fileNum)=cubeFFT(1:30,fileNum)/VecLen(fileNuM); 
            Cubefreq(1:30,Bscanline) = freq(1:30)'; 
             
            MHKurv(Bscanline) = 2* (Quadcoeffs(1,Bscanline));%unrotated K 
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 %{            
            %this section (155 - 176)creates rotated BFCvK 
             
%p1 is the best fit line to the curve, to determine rotation angle 
MHp1{Bscanline} = polyfit(xmm{Bscanline},ZMM{Bscanline},1);%first element p1 is 
gradient 
  
%rotate that line to the horizontal 
angleA(Bscanline) = -atan(MHp1{Bscanline}(1));%angle for rotation 
  
%rotate the curve by the same angle 
  
%rotation matrix 
R = [cos(angleA(Bscanline)) -sin(angleA(Bscanline)); sin(angleA(Bscanline)) 
cos(angleA(Bscanline))]; 
  
MHRotCd{Bscanline} = (cat(2,xmm{Bscanline},ZMM{Bscanline}))';%combine x & z in one 
array 
MHOdisp{Bscanline}(1) = mean(nonzeros(MHRotCd{Bscanline}(1,:))); 
MHOdisp{Bscanline}(2) = mean(nonzeros(MHRotCd{Bscanline}(2,:))); 
MHRotCd{Bscanline} = MHRotCd{Bscanline} - MHOdisp{Bscanline}';%move to origin for 
rotation  
  
MHRotCd{Bscanline} = R*MHRotCd{Bscanline};%rotated coordinates 
MHRotCd{Bscanline} = MHRotCd{Bscanline} + MHOdisp{Bscanline}';%translate to 
original position 
MHRotp2{Bscanline} = polyfit(MHRotCd{Bscanline}(1,:),MHRotCd{Bscanline}(2,:),2); 
MHRotKurv(Bscanline) = 2* MHRotp2{Bscanline}(1);%rotated BFCvK 
  %}   
            
     end 
      
        cubeFFT(cubeFFT==0) = NaN;%30 rows for bins, 12 columns for B scans 
        MHcubeFFTvec{CurFol} = cubeFFT;%each cell 30 bins x 12 B scans 
        MedFMH(CurFol) = median (sum(cubeFFT)); 
        IqrFMH(CurFol) = iqr (sum(cubeFFT)); 
        VarFMH(CurFol) = var (sum(cubeFFT)); 
        MeanFMH(CurFol) = mean (sum(cubeFFT)); 
        stdFMH(CurFol) = std (sum(cubeFFT)); 
         
        MHbfccoeff{CurFol} = Quadcoeffs; 
         
        MedKMH(CurFol) = median (MHKurv); 
        IqrKMH(CurFol) = iqr (MHKurv); 
        VarKMH(CurFol) = var (MHKurv); 
        MeanKMH(CurFol) = mean (MHKurv); 
        stdKMH(CurFol) = std (MHKurv); 
        MHK{CurFol} = MHKurv; 
        %{ 
        MHRotK{CurFol} = MHRotKurv; 
        MedKMHRot(CurFol) = median (MHRotKurv); 
        IqrKMHRot(CurFol) = iqr (MHRotKurv); 
        VarKMHRot(CurFol) = var (MHRotKurv); 
        %} 
        cd ../  
         
        MHID{CurFol} = MHnam(4:5); 
        %nowSide = MHIID(nowMHID,str2double(MHside)+1); 
        MHside(CurFol) = MHnam(2); 
end 
  
  
  
  
%load PV data (PVD eyes) 
str2 = '/Users/stewartlake/Documents/MH contour/PV xz/'; 
cd (str2); 
  
PVinfo = dir; 
PVinfo = PVinfo(~ismember({PVinfo.name},{'.','..','.DS_Store'})); 
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PVnames = {PVinfo.name}; 
  
PVNum = size (PVnames,2);%number PVD eyes 
PVcubeFFTvec = cell(1,PVNum);%PVD FFT data 
PVbfccoeff = cell(1,PVNum); 
PVK = cell(1,PVNum);% best fit curve vertex curvature 
PVID = cell(1,PVNum); 
PVside = zeros(1,PVNum); 
MedKPV = zeros(1,PVNum); %median MH K 
IqrKPV = zeros(1,PVNum);%iqr MH K 
VarKPV = zeros(1,PVNum);% variance MH K 
MedFPV = zeros(1,PVNum);% median FFT bins 1-30 
IqrFPV = zeros(1,PVNum);%iqr FFT bins 
VarFPV = zeros(1,PVNum);%variance FFT bins 
  
%generate data for PVD maculae 
for CurFol=1:PVNum 
     
    PVnam = PVnames {1,CurFol}(1:5);%eye ID 
    PVside = PVnames {1,CurFol}(2);%eye laterality 
    PVprefix = PVnames {1,CurFol}(1:2);%first two characters for textfile str 
    %open cube of data 
    nowFolderPV=PVnames{1,CurFol}; 
     
    cd (nowFolderPV);%open cube xz data folder 
  
    %get directory of textfile (B scan) names 
    PVdinfo = dir; 
    PVnames_cell = {PVdinfo.name}; 
%gives a matrix called names_cell where each column has a filename 
%then: 
    outPV=regexp(PVnames_cell,'\d+','match'); 
    outPV=str2double(cat(1,outPV{:})); 
%gives a matrix called out in which each row has a number from an original filename 
%these are in column 2 if text file header has a number, column 1 if it 
%doesn't. 
  
%script alpha. takes a cube of data and 
%Puts x and z coordinate values into an array (myData), each cell a line of data. 
%Then separates this into arrays for x, and z. 
    numFiles = size(outPV, 1);%number of B scans in cube 
    startRow = 1; 
    endRow = inf; 
    myData = cell(1,12); 
    ximp = cell (1, 12);%this cubes x data 
    zimp = cell (1, 12);%this cubes Z data 
    cubeFFT = zeros (30, 12); 
    Cubefreq = zeros (30, 12); 
    PVKurv = zeros (12,1); 
      
    fileName = cell(1); 
     
    zedres = zeros(1024,numFiles); 
    Quadcoeffs = zeros(3, 12); 
    VecLen = zeros (1, numFiles); 
     
     
     for fileNum = 1:numFiles %work through B scan xz txt files 
            Bscanline = outPV(fileNum,end); 
            %This loop is for a single cube 
            fileName =[]; 
            fileName1 = sprintf('-%04d.txt',Bscanline); 
            fileName = [PVprefix fileName1]; 
            myData{Bscanline} = importfile(fileName,startRow,endRow); 
             
            ximp{Bscanline}=myData{Bscanline}(:,1); 
            zimp{Bscanline}=myData{Bscanline}(:,2); 
             
            %now reverse left to right eye orientation (reverse z) 
            %and reposition scans in left to match right eyes 
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            if (PVside == 2)%if a left eye 
                if (Bscanline == 1) 
                   zimp{Bscanline}=flipud(zimp{Bscanline}); 
                elseif (Bscanline == 2) 
                    zimp{12} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 3) 
                    zimp{11} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 4) 
                    zimp{10} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 5) 
                    zimp{9} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 6) 
                    zimp{8} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 8) 
                    zimp{6} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 9) 
                    zimp{5} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 10) 
                    zimp{4} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 11) 
                    zimp{3} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 12) 
                    zimp{2} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                end 
            end 
            
             
     
            %now format x and z for FFT 
            x=table2cell(ximp{Bscanline}); 
            z=table2cell(zimp{Bscanline}); 
            x=cell2mat(x); 
            z=cell2mat(z); 
             
            L = length (z); 
             
            [FFTz,freq] = FFTforOCT_RMHmm(x,z);%mac hole FFT script 
            VecLen(fileNum) = length(z);%vector length(FFT already corrected) 
             
            %create matrix of residuals 
            zVlen = size (z); 
            zedres(1:zVlen,fileNum) = z; 
            %zedres = zedres(1:1024,fileNum); 
             
            %save quadratic coefficients 
            sf = 1024/6;% 6 mm scan length 
            xmm{Bscanline} = x/sf; 
            sfz = 1024/2; 
            ZMM{Bscanline} = z/sfz; 
            p{Bscanline} = polyfit(xmm{Bscanline},ZMM{Bscanline},2);% 
            Quadcoeffs (1,Bscanline) = p{Bscanline}(1); 
            Quadcoeffs (2,Bscanline) = p{Bscanline}(2); 
            Quadcoeffs (3,Bscanline) = p{Bscanline}(3); 
     
            %put FFTz, freq into matrix, one column per B scan 
            cubeFFT(1:30,Bscanline) = FFTz(1:30,1); 
            %cubeFFT(1:30,fileNum)=cubeFFT(1:30,fileNum)/VecLen(fileNuM); 
            Cubefreq(1:30,Bscanline) = freq(1:30)'; 
             
            PVKurv(Bscanline) = 2* (Quadcoeffs(1,Bscanline));%unrotated K 
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%{     
%this section (356 - 377)creates rotated BFCvK 
             
%p1 is the best fit line to the curve 
p1{Bscanline} = polyfit(xmm{Bscanline},ZMM{Bscanline},1);%first element p1 is 
gradient 
  
%rotate that line to the horizontal 
angleA(Bscanline) = -atan(p1{Bscanline}(1));%angle for rotation 
  
%rotate the curve by the same angle 
  
%rotation matrix 
R = [cos(angleA(Bscanline)) -sin(angleA(Bscanline)); sin(angleA(Bscanline)) 
cos(angleA(Bscanline))]; 
  
PVRotCd{Bscanline} = (cat(2,xmm{Bscanline},ZMM{Bscanline}))';%combine x & z in one 
array 
PVOdisp{Bscanline}(1) = mean(nonzeros(PVRotCd{Bscanline}(1,:))); 
PVOdisp{Bscanline}(2) = mean(nonzeros(PVRotCd{Bscanline}(2,:))); 
PVRotCd{Bscanline} = PVRotCd{Bscanline} - PVOdisp{Bscanline}';%move to origin for 
rotation  
  
PVRotCd{Bscanline} = R*PVRotCd{Bscanline};%rotated coordinates 
PVRotCd{Bscanline} = PVRotCd{Bscanline} + PVOdisp{Bscanline}';%translate to 
original position 
PVRotp2{Bscanline} = polyfit(PVRotCd{Bscanline}(1,:),PVRotCd{Bscanline}(2,:),2); 
PVRotKurv(Bscanline) = 2* PVRotp2{Bscanline}(1);%rotated BFCvK 
 %}            
            
     end 
        cubeFFT(cubeFFT==0) = NaN; 
        PVcubeFFTvec{CurFol} = cubeFFT; 
        MedFPV(CurFol) = median (sum(cubeFFT)); 
        IqrFPV(CurFol) = iqr (sum(cubeFFT)); 
        MeanFPV(CurFol) = mean (sum(cubeFFT)); 
        stdFPV(CurFol) = std (sum(cubeFFT)); 
        VarFPV(CurFol) = var (sum(cubeFFT)); 
        PVbfccoeff{CurFol} = Quadcoeffs; 
        PVK{CurFol} = PVKurv; 
        MedKPV(CurFol) = median (PVKurv); 
        IqrKPV(CurFol) = iqr (PVKurv); 
        MeanKPV(CurFol) = mean (PVKurv);%mean K per eye PVD 
        stdKPV(CurFol) = std (PVKurv); 
        VarKPV(CurFol) = var (PVKurv); 
        %{ 
        PVRotK{CurFol} = PVRotKurv; 
        MedKPVRot(CurFol) = median (PVRotKurv); 
        IqrKPVRot(CurFol) = iqr (PVRotKurv); 
        VarKPVRot(CurFol) = var (PVRotKurv); 
        %} 
         
        cd ../  
         
        PVID{CurFol} = PVnam(4:5); 
        %nowSide = PVIID(nowPVID,str2double(PVside)+1); 
        PVside(CurFol) = PVnam(2); 
end 
  
  
%stat tests for difference between groups: two tailed Mann Whitney 
[pFI,hIF] = ranksum(IqrFPV,IqrFMH); 
[pKI,hIK] = ranksum(IqrKPV,IqrKMH); 
[pVF,hVF] = ranksum(VarFPV,VarFMH); 
[pVK,hVK] = ranksum(VarKPV,VarKMH); 
[pMF,hMF] = ranksum(MedFPV,MedFMH); 
[pMK,hMK] = ranksum(MedKPV,MedKMH); 
  
%parametric t test for CI (95%) 
[hVKt,pVKt,ciVK,statsVK] = ttest2(VarKPV,VarKMH); 
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[hVFt,pVFt,ciVF,statsVF] = ttest2(VarFPV,VarFMH); 
[hIKt,pIKt,ciIK,statsIK] = ttest2(IqrKPV,IqrKMH); 
[hIFt,pIFt,ciIF,statsIF] = ttest2(IqrFPV,IqrFMH); 
[hSKt,pSKt,ciSK,statsSK] = ttest2(stdKPV,stdKMH); 
[hSFt,pSFt,ciSF,statsSF] = ttest2(stdFPV,stdFMH); 
[hmKt,pmKt,cimK,statsmK] = ttest2(MeanKPV,MeanKMH);%compare mean K per eyes between 
grps 
[hmFt,pmFt,cimF,statsmF] = ttest2(MeanFPV,MeanFMH);%compare mean F 
  
%Cohen's D effect size  
dVK = (mean(VarKPV)-mean(VarKMH))/std(VarKPV); 
dVF = (mean(VarFPV)-mean(VarFMH))/std(VarFPV); 
dIK = (mean(IqrKPV)-mean(IqrKMH))/std(IqrKPV); 
dIF = (mean(IqrFPV)-mean(IqrFMH))/std(IqrFPV); 
dsK = (mean(stdKPV)-mean(stdKMH))/std(stdKPV); 
dsF = (mean(stdFPV)-mean(stdFMH))/std(stdFPV); 
dmK = (mean(MeanKPV)-mean(MeanKMH))/std(MeanKPV); 
dmF = (mean(MeanFPV)-mean(MeanFMH))/std(MeanFPV); 
  
%{ 
[pKrotI,hIKrot] = ranksum(IqrKPVRot,IqrKMHRot,'tail','right');%for rotated BFCvK 
[pVKrot,hVKrot] = ranksum(VarKPVRot,VarKMHRot,'tail','right'); 
[pMKrot,hMKrot] = ranksum(MedKPVRot,MedKMHRot,'tail','right'); 
%} 
  
  
%signrank all the FTR/K per group in a single vector 
for EcPV=1:PVNum 
    
    SUMFFTPV{EcPV} = sum(PVcubeFFTvec{EcPV}); 
     
    KallPV{EcPV} = 2*PVbfccoeff{EcPV}(1,:); 
     
    %this section for range of variables 
    SUMFFTPVbyeye{EcPV} = sum(PVcubeFFTvec{EcPV});%res by eye 
     
    [~,locFmxPV(EcPV)] = max(SUMFFTPVbyeye{EcPV}); 
     
    [~,locFminPV(EcPV)] = min(SUMFFTPVbyeye{EcPV}); 
     
    MdiffresPV(EcPV) = range(SUMFFTPVbyeye{EcPV});%tange res by eye 
     
    KallPVbyeye{EcPV} = 2*PVbfccoeff{EcPV}(1,:);% K by eye 
     
    [~,locKmxPV(EcPV)] = max(KallPVbyeye{EcPV}); 
     
    [~,locKminPV(EcPV)] = min(KallPVbyeye{EcPV}); 
     
    MdiffKPV(EcPV) = range(KallPVbyeye{EcPV});%range K by eye 
     
     
end 
  
for EcMH=1:MHNum 
    
    SUMFFTMH{EcMH} = sum(MHcubeFFTvec{EcMH}); 
    
    KallMH{EcMH} = 2*MHbfccoeff{EcMH}(1,:); 
     
    %this section for range of variables 
    SUMFFTMHbyeye{EcMH} = sum(MHcubeFFTvec{EcMH});% res by eye 
     
    [~,locFmxMH(EcMH)] = max(SUMFFTMHbyeye{EcMH}); 
     
    [~,locFminMH(EcMH)] = min(SUMFFTMHbyeye{EcMH}); 
    
    MdiffresMH (EcMH) = range(SUMFFTMHbyeye{EcMH}); 
    
    KallMHbyeye{EcMH} = 2*MHbfccoeff{EcMH}(1,:);%k by eye 
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    [~,locKmxMH(EcMH)] = max(KallMHbyeye{EcMH}); 
     
    [~,locKminMH(EcMH)] = min(KallMHbyeye{EcMH}); 
     
    MdiffKMH(EcMH) = range(KallMHbyeye{EcMH}); 
     
end 
  
SUMFFTMH = [SUMFFTMH{:}];%vector of all B scan FTR30 
SUMFFTPV = [SUMFFTPV{:}]; 
KallMH = [KallMH{:}];%vector of all B scan Ks 
KallPV = [KallPV{:}]; 
  
[pFsum,hFsum] = ranksum(SUMFFTMH,SUMFFTPV); 
[pKall,hKall] = ranksum(KallMH,KallPV); 
  
%{ 
%range of variables test (cf astigmatism) 
[~,RangeKPVvnoTT, ciRangeK,~] = ttest2(MdiffKMH,MdiffKPV); 
[~,RangeresPVvnoTT, ciRangeres,~] = ttest2(MdiffresMH, MdiffresPV); 
%range cohens d 
dRK = (mean(MdiffKPV)-mean(MdiffKMH))/sqrt((std(MdiffKPV).^2 + 
std(MdiffKMH).^2)/2); 
dRF = (mean(MdiffresPV)-mean(MdiffresMH))/sqrt((std(MdiffresPV).^2 + 
std(MdiffresMH).^2)/2); 
%} 
%difference in location max and min axes (ie are they perpendicular to each 
%other) pre to post PVD 
KaxesMH = abs(locKmxMH- locKminMH); 
FaxesMH = abs(locFmxMH - locFminMH); 
KaxesPV = abs(locKmxPV - locKminPV); 
FaxesPV = abs(locFmxPV - locFminPV); 
num48PVK = find(KaxesPV>3 & KaxesPV<9); 
num48MHK = find(KaxesMH>3 & KaxesMH<9); 
num48K = length(num48PVK) + length(num48MHK);%number  4-8 scans apart K 
num48PVF = find(FaxesPV>3 & FaxesPV<9); 
num48MHF = find(FaxesMH>3 & FaxesMH<9); 
num48F = length(num48PVF) + length(num48MHF);%number  4-8 scans apart F 
  
num57PVK = find(KaxesPV>4 & KaxesPV<8); 
num57MHK = find(KaxesMH>4 & KaxesMH<8); 
num57K = length(num57PVK) + length(num57MHK);%number  5-7 scans apart K 
num57PVF = find(FaxesPV>4 & FaxesPV<8); 
num57MHF = find(FaxesMH>4 & FaxesMH<8); 
num57F = length(num57PVF) + length(num57MHF);%number  5-7 scans apart F 
  
[~,axKMxmnp, ciKMxmn,~] = ttest2(KaxesMH,KaxesPV);%diff in spread 
[~,axresMxmnp, ciresMxMn,~] = ttest2(FaxesMH,FaxesPV); 
  
[~,axKmxp,ciaxKmxp,~] = ttest2(locKmxMH, locKmxPV);%DIFF IN MAX LOCATION K 
diffKmax = mean(locKmxMH,'omitnan') - mean(locKmxPV,'omitnan'); 
mnlocKmxMH = mean(locKmxMH,'omitnan'); 
mnlocKmxPV = mean(locKmxPV,'omitnan'); 
[~,axKminp,ciaxKminp,~] = ttest2(locKminMH, locKminPV);%min K 
  
[~,axFmxp,ciaxFmxp,~] = ttest2(locFmxMH, locFmxPV);% diff in max loc F 
[~,axFminp,ciaxFminp,~] = ttest2(locFminMH, locFminPV);%minF 
  
%HERE!!!!!!!!!!!!! 
%two sample t test range K and residual pre v post 
[~,RangeKMHprpopaiTT, ciRangepK,~] = ttest2(MdiffKMH,MdiffKPV); 
[~,RangeresprpopaiTT, ciRangepres,~] = ttest2(MdiffresMH, MdiffresPV); 
  
%size of difference in ranges, PVD v noPVD 
rangediffK = mean(MdiffKPV,'omitnan')-mean(MdiffKMH,'omitnan');%diff in mean range 
K 
rangediffF = mean(MdiffresPV,'omitnan')-mean(MdiffresMH,'omitnan');%diff in mean 
range K 
  
meanKPV = mean(KallPV);%mean K PVD eyes 
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meanKMH = mean(KallMH);%mean K no pVD eyes 
meanFTR30PV = mean(SUMFFTPV);%mean  FTR30 PVD 
meanFTR30MH = mean(SUMFFTMH);%mean FTR30 no PVD 
diffKpvnPV = meanKPV-meanKMH;%diff between means to go with CI 
diffFpvnPV= meanFTR30PV - meanFTR30MH;% diff means to go with CI 
sdKPV = std(KallPV); 
sdKMH = std(KallMH); 
sdFPV = std(SUMFFTPV); 
sdFMH = std(SUMFFTMH); 
[~,pttKPVnPV,KallCI,~] = ttest2(KallPV,KallMH);%ttest compare K PVD v noPVD 
[~,pttFPVnPV, FallCI] = ttest2(SUMFFTPV,SUMFFTMH);% tests compare F PVD v no 
%Cohens d of effect of PVD on K and F 
dK = (meanKPV-meanKMH)/sqrt((sdKMH.^2 + sdKPV.^2)/2);%effect size of PVD on K 
dF = (meanFTR30PV-meanFTR30MH)/sqrt((sdFMH.^2 + sdFPV.^2)/2);%effect size of PVD on 
F 
  
pMWUKPVnPV = ranksum(KallPV,KallMH);%MWU compare K PVD v noPVD 
pMWUFPVnPV = ranksum(SUMFFTPV,SUMFFTMH);% MWU tests compare F PVD v no 
tablen = length(MeanKPV); 
AL0pvd = zeros(tablen,1); 
ALpvd = zeros (tablen,1);%(KMH to make it same length 
PVDnames = cell(tablen,1); 
PVDnames(1:length(PVnames)) = PVnames; 
  
%match smaller group veclength to longer 
ALpvd(end+1:tablen)=NaN; 
MHnames{tablen}=[]; 
MdiffKMH(end+1:tablen)=NaN; 
MdiffresMH(end+1:tablen)=NaN; 
MeanKMH(end+1:tablen)=NaN; 
MeanFMH(end+1:tablen)=NaN; 
  
%create table, add AL vlues manually 
PVDnoPVDsum = table(MHnames', AL0pvd, MdiffKMH', MdiffresMH', MeanKMH', MeanFMH', 
... 
    PVDnames, ALpvd, MdiffKPV', MdiffresPV', MeanKPV', MeanFPV',... 
    'VariableNames',{'noPVDID','noPVDAL','noPVDrangeK','noPVDrangeres'... 
    'noPVDmeanK', 'noPVDmeanres','PVDID','PVDAL','PVDrangeK','PVDrangeres'... 
    'PVDmeanK', 'PVDmeanres'}); 
  
%HERE!!!!!!!!!!!!! 
%now compare mean K/res noPVD v PVD, paired t test 
[~,meanKMHprpopaiTT, cimeanpK,~] = ttest2(PVDnoPVDsum.PVDmeanK, 
PVDnoPVDsum.noPVDmeanK); 
[~,meanresprpopaiTT, cimeanpres,~] = ttest2(PVDnoPVDsum.PVDmeanres, 
PVDnoPVDsum.noPVDmeanres); 
diffMK = mean(PVDnoPVDsum.PVDmeanK, 'omitnan') - 
mean(PVDnoPVDsum.noPVDmeanK,'omitnan');%diffe pre v post K 
diffMres = mean(PVDnoPVDsum.PVDmeanres,'omitnan')-
mean(PVDnoPVDsum.noPVDmeanres,'omitnan'); 
  
  
[~,pttALPVnPV,ALallCI,~] = 
ttest2(PVDnoPVDsum.noPVDAL(9:end),PVDnoPVDsum.PVDAL);%ttest compare AL PVD v noPVD 
  
  
%added summary values - mean & SD, pre & post range & mean K & res 
%Here!!!!!!!!!!! 
mrngpreMHK=mean(PVDnoPVDsum.noPVDrangeK); 
mrngpostMHK=mean(PVDnoPVDsum.PVDrangeK); 
mrngpreMHres =mean(PVDnoPVDsum.noPVDrangeres); 
mrngpostMHres =mean(PVDnoPVDsum.PVDrangeres); 
  
meanpreMHK=mean(PVDnoPVDsum.noPVDmeanK); 
meanpostMHK=mean(PVDnoPVDsum.PVDmeanK); 
meanpreMHres =mean(PVDnoPVDsum.noPVDmeanres); 
meanpostMHres =mean(PVDnoPVDsum.PVDmeanres); 
  
sdrngpreMHK=std(PVDnoPVDsum.noPVDrangeK); 
sdrngpostMHK=std(PVDnoPVDsum.PVDrangeK); 
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sdrngpreMHres =std(PVDnoPVDsum.noPVDrangeres); 
sdrngpostMHres =std(PVDnoPVDsum.PVDrangeres); 
  
sdmnpreMHK=std(PVDnoPVDsum.noPVDmeanK); 
sdmnpostMHK=std(PVDnoPVDsum.PVDmeanK); 
sdmnpreMHres =std(PVDnoPVDsum.noPVDmeanres); 
sdmnpostMHres =std(PVDnoPVDsum.PVDmeanres); 
  
figure 
hold on 
scatter(PVDnoPVDsum.noPVDrangeres,PVDnoPVDsum.PVDrangeres,[],'b') 
scatter(PVDnoPVDsum.noPVDmeanres,PVDnoPVDsum.PVDmeanres,[],'c') 
%text(MedKPV +dx2,MedFPV + dy2,PVID); 
title('No PVD v PVD radial macula hole OCT mean and range irregularity');%FTI = FT 
of irregularity 
xlabel('No PVD'); 
ylabel('PVD'); 
refline(1,0); 
legend('range res','mean res'); 
  
%check AL vector prior to this 
%[ALH,ALP,ALCI,ALSTATS] = ttest2(PVDnoPVDsum.noPVDAL,PVDnoPVDsum.PVDAL); 
%load other matrix for the next 
%[ageH,ageP,ageCI,ageSTATS] =ttest2(NoPVDages.age,PVDages.age); 
%meanAGEPVD = mean(PVDages.age); 
%meanAGEnoPVD = mean(NoPVDages.age); 
%stdAGEPVD = std(PVDages.age); 
%stdAGEnoPVD = std(NoPVDages.age); 
%meanALPVD = mean(PVDnoPVDsum.PVDAL,'omitnan'); 
%meanALnoPVD = mean(PVDnoPVDsum.noPVDAL,'omitnan'); 
%stdALPVD = std(PVDnoPVDsum.PVDAL,'omitnan'); 
%stdALnoPVD = std(PVDnoPVDsum.noPVDAL,'omitnan'); 
%{ 
%scatter plot variance of K and FFT,MH v PV, rotated K 
dx=0.000001;%label displacement 
dy=0.1; 
figure 
hold on 
scatter(VarKMHRot,VarFMH,[],'r') 
%text(VarKMH +dx,VarFMH + dy,MHID); 
scatter(VarKPVRot, VarFPV,[],'b') 
%text(VarKPV +dx,VarFPV + dy,PVID); 
title('No PVD v PVD radial macula cube rotated K v FFT variance'); 
xlabel('Krot var'); 
ylabel('FFT var'); 
%} 
  
%scatter plot variance of K and FFT,MH v PV 
dx=0.000001;%label displacement 
dy=0.1; 
figure 
hold on 
scatter(VarKMH,VarFMH,[],'r') 
%text(VarKMH +dx,VarFMH + dy,MHID); 
scatter(VarKPV, VarFPV,[],'b') 
%text(VarKPV +dx,VarFPV + dy,PVID); 
title('No PVD v PVD radial macula cube K and FFT variance'); 
xlabel('K var'); 
ylabel('FFT var'); 
  
%scatter plot median K v FFT 
figure 
dx2=0.005; 
dy2=0.1; 
hold on 
scatter(MedKMH,MedFMH,[],'r') 
%text(MedKMH +dx2,MedFMH + dy2,MHID); 
scatter(MedKPV, MedFPV,[],'b') 
%text(MedKPV +dx2,MedFPV + dy2,PVID); 
title('No PVD v PVD radial macula cube median K and FFT'); 
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xlabel('K med'); 
ylabel('FFT med'); 
  
%scatter plot iqr K & FFT 
figure 
dx3=0.0001; 
dy3=0.1; 
hold on 
scatter(IqrKMH,IqrFMH,[],'r') 
%text(IqrKMH +dx3,IqrFMH + dy3,MHID); 
scatter(IqrKPV, IqrFPV,[],'b') 
%text(IqrKPV +dx3,IqrFPV + dy3,PVID); 
title('No PVD v PVD radial macula cube iqr K and FFT'); 
xlabel('iqr K'); 
ylabel('iqr FFT'); 
  
%scatter plot K v FFT for all B scans 
allBSfig = figure; 
hold on 
scatter(KallPV,SUMFFTPV,[],'r') 
%text(MedKMH +dx2,MedFMH + dy2,MHID); 
scatter(KallMH, SUMFFTMH,[],'b','+') 
%text(MedKPV +dx2,MedFPV + dy2,PVID); 
title('No PVD (blue) v PVD (red) radial macula B scan K and irregularity'); 
xlabel('K (/mm)'); 
ylabel('Irregularity (mm)'); 
%allBSfig.Visible = 'off'; 
  
  
 
2. prepostMHcomp 
%compare curvature for pre (MH) xz (or, see line 8) to post (MH) xz files (radial 
HD 12) 
%CHANGE: line 8 & 213, plus figure labels, savename 620 
%takes data from MH pre xz (or no PVD radial xz) (line 8) and MH post xz (or PV xz) 
(line 213) and calculates FFT and K 
%plus median, var, and iqr sum bins  
%plus median, iqr, and variance K 
clear 
%load MH data 
str1 = '/Users/stewartlake/Documents/MH contour/pre op for post op xz V eyes/';%MH 
eyes in folder with MH suffix to this 
cd (str1); 
  
MHinfo = dir; 
MHinfo = MHinfo(~ismember({MHinfo.name},{'.','..','.DS_Store'})); 
MHnames = {MHinfo.name}; 
  
MHNum = size (MHnames,2);%number MH eyes 
MHcubeFFTvec = cell(1,MHNum);%One eye per cell %each cell 30 bins x 12 B scans 
MHbfccoeff = cell(1,MHNum); 
MHK = cell(1,MHNum); % best fit curve vertex curvature.One eye per cell 
MHID = cell(1,MHNum); 
MHside = zeros(1,MHNum); 
MedKMH = zeros(1,MHNum); %median MH K 
IqrKMH = zeros(1,MHNum);%iqr MH K 
VarKMH = zeros(1,MHNum);% variance MH K 
MedFMH = zeros(1,MHNum);% median FFT bins 1-30 
IqrFMH = zeros(1,MHNum);%iqr FFT bins 
VarFMH = zeros(1,MHNum);%variance FFT bins 
  
  
%generate data for MH maculae 
for CurFol=1:MHNum 
     
    MHnam = MHnames {1,CurFol}(1:5);%eye ID 
    MHside = MHnames {1,CurFol}(2);%eye laterality 
    MHprefix = MHnames {1,CurFol}(1:2);%first two characters for textfile str 
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    %open cube of data 
    nowFolderMH=MHnames{1,CurFol}; 
     
    cd (nowFolderMH);%open cube xz data folder 
  
    %get directory of textfile (B scan) names 
    MHdinfo = dir; 
    MHnames_cell = {MHdinfo.name}; 
%gives a matrix called names_cell where each column has a filename 
%then: 
    outMH=regexp(MHnames_cell,'\d+','match'); 
    outMH=str2double(cat(1,outMH{:})); 
%gives a matrix called out in which each row has a number from an original filename 
%these are in column 2 if text file header has a number, column 1 if it 
%doesn't. 
  
%script alpha. takes a cube of data and 
%Puts x and z coordinate values into an array (myData), each cell a line of data. 
%Then separates this into arrays for x, and z. 
    numFiles = size(outMH, 1);%number of B scans in cube 
    startRow = 1; 
    endRow = inf; 
    myData = cell(1,12); 
    ximp = cell (1, 12);%this cubes x data 
    zimp = cell (1, 12);%this cubes Z data 
    cubeFFT = zeros (30, 12); 
    Cubefreq = zeros (30, 12); 
    MHKurv = zeros (12,1); 
      
    fileName = cell(1); 
     
    zedres = zeros(1024,numFiles); 
    Quadcoeffs = zeros(3, 12); 
    VecLen = zeros (1, numFiles); 
     
     
     for fileNum = 1:numFiles %work through B scan xz txt files 
            Bscanline = outMH(fileNum,end); 
            %This loop is for a single cube 
            fileName =[]; 
            fileName1 = sprintf('-%04d.txt',Bscanline); 
            fileName = [MHprefix fileName1]; 
            myData{Bscanline} = importfile(fileName,startRow,endRow); 
             
            ximp{Bscanline}=myData{Bscanline}(:,1); 
            zimp{Bscanline}=myData{Bscanline}(:,2); 
             
            %now reverse left to right eye orientation (reverse z) 
            %and reposition scans in left to match right eyes 
            if (MHside == 2)%if a left eye 
                if (Bscanline == 1) 
                   zimp{Bscanline}=flipud(zimp{Bscanline}); 
                elseif (Bscanline == 2) 
                    zimp{12} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 3) 
                    zimp{11} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 4) 
                    zimp{10} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 5) 
                    zimp{9} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 6) 
                    zimp{8} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 8) 
                    zimp{6} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
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                elseif (Bscanline == 9) 
                    zimp{5} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 10) 
                    zimp{4} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 11) 
                    zimp{3} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 12) 
                    zimp{2} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                end 
            end 
            
             
     
            %now format x and z for FFT 
            x=table2cell(ximp{Bscanline}); 
            z=table2cell(zimp{Bscanline}); 
            x=cell2mat(x); 
            z=cell2mat(z); 
             
            L = length (z); 
             
            [FFTz,freq] = FFTforOCT_RMHmm(x,z);%mac hole FFT script 
            VecLen(fileNum) = length(z);%vector length(FFT already corrected) 
             
            %create matrix of residuals 
            zVlen = size (z); 
            zedres(1:zVlen,fileNum) = z; 
            %zedres = zedres(1:1024,fileNum); 
             
            %save quadratic coefficients 
            sf = 1024/6;% 6 mm scan length 
            xmm{Bscanline} = x/sf;%convert to mm 
            sfz = 1024/2; 
            ZMM{Bscanline} = z/sfz; 
            p{Bscanline} = polyfit(xmm{Bscanline},ZMM{Bscanline},2);% 
            Quadcoeffs (1,Bscanline) = p{Bscanline}(1); 
            Quadcoeffs (2,Bscanline) = p{Bscanline}(2); 
            Quadcoeffs (3,Bscanline) = p{Bscanline}(3); 
     
            %put FFTz, freq into matrix, one column per B scan 
            cubeFFT(1:30,Bscanline) = FFTz(1:30,1); 
            %cubeFFT(1:30,fileNum)=cubeFFT(1:30,fileNum)/VecLen(fileNuM); 
            Cubefreq(1:30,Bscanline) = freq(1:30)'; 
             
            MHKurv(Bscanline) = 2* (Quadcoeffs(1,Bscanline));%unrotated K 
             
 %{            
            %this section (155 - 176)creates rotated BFCvK 
             
%p1 is the best fit line to the curve, to determine rotation angle 
MHp1{Bscanline} = polyfit(xmm{Bscanline},ZMM{Bscanline},1);%first element p1 is 
gradient 
  
%rotate that line to the horizontal 
angleA(Bscanline) = -atan(MHp1{Bscanline}(1));%angle for rotation 
  
%rotate the curve by the same angle 
  
%rotation matrix 
R = [cos(angleA(Bscanline)) -sin(angleA(Bscanline)); sin(angleA(Bscanline)) 
cos(angleA(Bscanline))]; 
  
MHRotCd{Bscanline} = (cat(2,xmm{Bscanline},ZMM{Bscanline}))';%combine x & z in one 
array 
MHOdisp{Bscanline}(1) = mean(nonzeros(MHRotCd{Bscanline}(1,:))); 
MHOdisp{Bscanline}(2) = mean(nonzeros(MHRotCd{Bscanline}(2,:))); 
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MHRotCd{Bscanline} = MHRotCd{Bscanline} - MHOdisp{Bscanline}';%move to origin for 
rotation  
  
MHRotCd{Bscanline} = R*MHRotCd{Bscanline};%rotated coordinates 
MHRotCd{Bscanline} = MHRotCd{Bscanline} + MHOdisp{Bscanline}';%translate to 
original position 
MHRotp2{Bscanline} = polyfit(MHRotCd{Bscanline}(1,:),MHRotCd{Bscanline}(2,:),2); 
MHRotKurv(Bscanline) = 2* MHRotp2{Bscanline}(1);%rotated BFCvK 
  %}   
            
     end 
      
        cubeFFT(cubeFFT==0) = NaN;%30 rows for bins, 12 columns for B scans 
        MHcubeFFTvec{CurFol} = cubeFFT;%each cell 30 bins x 12 B scans 
        MedFMH(CurFol) = median (sum(cubeFFT)); 
        IqrFMH(CurFol) = iqr (sum(cubeFFT)); 
        VarFMH(CurFol) = var (sum(cubeFFT)); 
        MeanFMH(CurFol) = mean (sum(cubeFFT)); 
         
        MHbfccoeff{CurFol} = Quadcoeffs; 
         
        MedKMH(CurFol) = median (MHKurv); 
        IqrKMH(CurFol) = iqr (MHKurv); 
        VarKMH(CurFol) = var (MHKurv); 
        MeanKMH(CurFol) = mean (MHKurv); 
        MHK{CurFol} = MHKurv; 
        %{ 
        MHRotK{CurFol} = MHRotKurv; 
        MedKMHRot(CurFol) = median (MHRotKurv); 
        IqrKMHRot(CurFol) = iqr (MHRotKurv); 
        VarKMHRot(CurFol) = var (MHRotKurv); 
        %} 
        cd ../  
         
        MHID{CurFol} = MHnam(4:5); 
        %nowSide = MHIID(nowMHID,str2double(MHside)+1); 
        MHside(CurFol) = MHnam(2); 
end 
  
  
  
%% 
%load PV data (PVD eyes) 
str1 = '/Users/stewartlake/Documents/MH contour/post op xz V eyes/';%end here for 
MH 
cd (str1); 
  
PVinfo = dir; 
PVinfo = PVinfo(~ismember({PVinfo.name},{'.','..','.DS_Store'})); 
PVnames = {PVinfo.name}; 
  
PVNum = size (PVnames,2);%number PVD eyes 
PVcubeFFTvec = cell(1,PVNum);%PVD FFT data 
PVbfccoeff = cell(1,PVNum); 
PVK = cell(1,PVNum);% best fit curve vertex curvature 
PVID = cell(1,PVNum); 
PVside = zeros(1,PVNum); 
MedKPV = zeros(1,PVNum); %median MH K 
IqrKPV = zeros(1,PVNum);%iqr MH K 
VarKPV = zeros(1,PVNum);% variance MH K 
MedFPV = zeros(1,PVNum);% median FFT bins 1-30 
IqrFPV = zeros(1,PVNum);%iqr FFT bins 
VarFPV = zeros(1,PVNum);%variance FFT bins 
  
%generate data for PVD maculae 
for CurFol=1:PVNum 
     
    PVnam = PVnames {1,CurFol}(1:5);%eye ID 
    PVside = PVnames {1,CurFol}(2);%eye laterality 
    PVprefix = PVnames {1,CurFol}(1:2);%first two characters for textfile str 
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    %open cube of data 
    nowFolderPV=PVnames{1,CurFol}; 
     
    cd (nowFolderPV);%open cube xz data folder 
  
    %get directory of textfile (B scan) names 
    PVdinfo = dir; 
    PVnames_cell = {PVdinfo.name}; 
%gives a matrix called names_cell where each column has a filename 
%then: 
    outPV=regexp(PVnames_cell,'\d+','match'); 
    outPV=str2double(cat(1,outPV{:})); 
%gives a matrix called out in which each row has a number from an original filename 
%these are in column 2 if text file header has a number, column 1 if it 
%doesn't. 
  
%script alpha. takes a cube of data and 
%Puts x and z coordinate values into an array (myData), each cell a line of data. 
%Then separates this into arrays for x, and z. 
    numFiles = size(outPV, 1);%number of B scans in cube 
    startRow = 1; 
    endRow = inf; 
    myData = cell(1,12); 
    ximp = cell (1, 12);%this cubes x data 
    zimp = cell (1, 12);%this cubes Z data 
    cubeFFT = zeros (30, 12); 
    Cubefreq = zeros (30, 12); 
    PVKurv = zeros (12,1); 
      
    fileName = cell(1); 
     
    zedres = zeros(1024,numFiles); 
    Quadcoeffs = zeros(3, 12); 
    VecLen = zeros (1, numFiles); 
     
     
     for fileNum = 1:numFiles %work through B scan xz txt files 
            Bscanline = outPV(fileNum,end); 
            %This loop is for a single cube 
            fileName =[]; 
            fileName1 = sprintf('-%04d.txt',Bscanline); 
            fileName = [PVprefix fileName1]; 
            myData{Bscanline} = importfile(fileName,startRow,endRow); 
             
            ximp{Bscanline}=myData{Bscanline}(:,1); 
            zimp{Bscanline}=myData{Bscanline}(:,2); 
             
            %now reverse left to right eye orientation (reverse z) 
            %and reposition scans in left to match right eyes 
            if (PVside == 2)%if a left eye 
                if (Bscanline == 1) 
                   zimp{Bscanline}=flipud(zimp{Bscanline}); 
                elseif (Bscanline == 2) 
                    zimp{12} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 3) 
                    zimp{11} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 4) 
                    zimp{10} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 5) 
                    zimp{9} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 6) 
                    zimp{8} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 8) 
                    zimp{6} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
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                elseif (Bscanline == 9) 
                    zimp{5} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 10) 
                    zimp{4} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 11) 
                    zimp{3} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                elseif (Bscanline == 12) 
                    zimp{2} = flipud(zimp{Bscanline}); 
                    zimp{Bscanline}=[]; 
                end 
            end 
            
             
     
            %now format x and z for FFT 
            x=table2cell(ximp{Bscanline}); 
            z=table2cell(zimp{Bscanline}); 
            x=cell2mat(x); 
            z=cell2mat(z); 
             
            L = length (z); 
             
            [FFTz,freq] = FFTforOCT_RMHmm(x,z);%mac hole FFT script 
            VecLen(fileNum) = length(z);%vector length(FFT already corrected) 
             
            %create matrix of residuals 
            zVlen = size (z); 
            zedres(1:zVlen,fileNum) = z; 
            %zedres = zedres(1:1024,fileNum); 
             
            %save quadratic coefficients 
            sf = 1024/6;% 6 mm scan length 
            xmm{Bscanline} = x/sf; 
            sfz = 1024/2; 
            ZMM{Bscanline} = z/sfz; 
            p{Bscanline} = polyfit(xmm{Bscanline},ZMM{Bscanline},2);% 
            Quadcoeffs (1,Bscanline) = p{Bscanline}(1); 
            Quadcoeffs (2,Bscanline) = p{Bscanline}(2); 
            Quadcoeffs (3,Bscanline) = p{Bscanline}(3); 
     
            %put FFTz, freq into matrix, one column per B scan 
            cubeFFT(1:30,Bscanline) = FFTz(1:30,1); 
            %cubeFFT(1:30,fileNum)=cubeFFT(1:30,fileNum)/VecLen(fileNuM); 
            Cubefreq(1:30,Bscanline) = freq(1:30)'; 
             
            PVKurv(Bscanline) = 2* (Quadcoeffs(1,Bscanline));%unrotated K 
%{     
%this section (356 - 377)creates rotated BFCvK 
             
%p1 is the best fit line to the curve 
p1{Bscanline} = polyfit(xmm{Bscanline},ZMM{Bscanline},1);%first element p1 is 
gradient 
  
%rotate that line to the horizontal 
angleA(Bscanline) = -atan(p1{Bscanline}(1));%angle for rotation 
  
%rotate the curve by the same angle 
  
%rotation matrix 
R = [cos(angleA(Bscanline)) -sin(angleA(Bscanline)); sin(angleA(Bscanline)) 
cos(angleA(Bscanline))]; 
  
PVRotCd{Bscanline} = (cat(2,xmm{Bscanline},ZMM{Bscanline}))';%combine x & z in one 
array 
PVOdisp{Bscanline}(1) = mean(nonzeros(PVRotCd{Bscanline}(1,:))); 
PVOdisp{Bscanline}(2) = mean(nonzeros(PVRotCd{Bscanline}(2,:))); 
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PVRotCd{Bscanline} = PVRotCd{Bscanline} - PVOdisp{Bscanline}';%move to origin for 
rotation  
  
PVRotCd{Bscanline} = R*PVRotCd{Bscanline};%rotated coordinates 
PVRotCd{Bscanline} = PVRotCd{Bscanline} + PVOdisp{Bscanline}';%translate to 
original position 
PVRotp2{Bscanline} = polyfit(PVRotCd{Bscanline}(1,:),PVRotCd{Bscanline}(2,:),2); 
PVRotKurv(Bscanline) = 2* PVRotp2{Bscanline}(1);%rotated BFCvK 
 %}            
            
     end 
        cubeFFT(cubeFFT==0) = NaN; 
        PVcubeFFTvec{CurFol} = cubeFFT; 
        MedFPV(CurFol) = median (sum(cubeFFT)); 
        IqrFPV(CurFol) = iqr (sum(cubeFFT)); 
        MeanFPV(CurFol) = mean (sum(cubeFFT)); 
        VarFPV(CurFol) = var (sum(cubeFFT)); 
        PVbfccoeff{CurFol} = Quadcoeffs; 
        PVK{CurFol} = PVKurv; 
        MedKPV(CurFol) = median (PVKurv); 
        IqrKPV(CurFol) = iqr (PVKurv); 
        MeanKPV(CurFol) = mean (PVKurv);%mean K per eye PVD 
        VarKPV(CurFol) = var (PVKurv); 
        %{ 
        PVRotK{CurFol} = PVRotKurv; 
        MedKPVRot(CurFol) = median (PVRotKurv); 
        IqrKPVRot(CurFol) = iqr (PVRotKurv); 
        VarKPVRot(CurFol) = var (PVRotKurv); 
        %} 
         
        cd ../  
         
        PVID{CurFol} = PVnam(4:5); 
        %nowSide = PVIID(nowPVID,str2double(PVside)+1); 
        PVside(CurFol) = PVnam(2); 
end 
%% 
  
%stat tests for difference between groups: one tailed Mann Whitney 
[pFI,hIF] = ranksum(IqrFPV,IqrFMH,'tail','right'); 
[pKI,hIK] = ranksum(IqrKPV,IqrKMH,'tail','right'); 
[pVF,hVF] = ranksum(VarFPV,VarFMH,'tail','right'); 
[pVK,hVK] = ranksum(VarKPV,VarKMH,'tail','right'); 
[pMF,hMF] = ranksum(MedFPV,MedFMH,'tail','right'); 
[pMK,hMK] = ranksum(MedKPV,MedKMH,'tail','right'); 
  
%{ 
[pKrotI,hIKrot] = ranksum(IqrKPVRot,IqrKMHRot,'tail','right');%for rotated BFCvK 
[pVKrot,hVKrot] = ranksum(VarKPVRot,VarKMHRot,'tail','right'); 
[pMKrot,hMKrot] = ranksum(MedKPVRot,MedKMHRot,'tail','right'); 
%} 
  
  
%signrank all the FTR/K per group in a single vector 
for EcPV=1:PVNum 
    
    SUMFFTPV{EcPV} = sum(PVcubeFFTvec{EcPV});%sum all FFT bins for each Bscan 
     
    KallPV{EcPV} = 2*PVbfccoeff{EcPV}(1,:);% BFCvK for each eye 
     
     %this section for range of variables 
    SUMFFTPVbyeye{EcPV} = sum(PVcubeFFTvec{EcPV});%sum res by Bscan (1-12) 
     
    [~,locFmxPV(EcPV)] = max(SUMFFTPVbyeye{EcPV});%loc max res 
     
    [~,locFminPV(EcPV)] = min(SUMFFTPVbyeye{EcPV});%B scan loc min res 
     
    MdiffresPV(EcPV) = range(SUMFFTPVbyeye{EcPV});%range res by eye 
     
    KallPVbyeye{EcPV} = 2*PVbfccoeff{EcPV}(1,:);% K by eye 
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    [~,locKmxPV(EcPV)] = max(KallPVbyeye{EcPV}); 
     
    [~,locKminPV(EcPV)] = min(KallPVbyeye{EcPV}); 
     
    MdiffKPV(EcPV) = range(KallPVbyeye{EcPV});%range K by eye 
     
     
end 
  
for EcMH=1:MHNum 
    
    SUMFFTMH{EcMH} = sum(MHcubeFFTvec{EcMH}); 
    
    KallMH{EcMH} = 2*MHbfccoeff{EcMH}(1,:); 
     
    %this section for range of variables 
    SUMFFTMHbyeye{EcMH} = sum(MHcubeFFTvec{EcMH});% res by eye 
     
    [~,locFmxMH(EcMH)] = max(SUMFFTMHbyeye{EcMH}); 
     
    [~,locFminMH(EcMH)] = min(SUMFFTMHbyeye{EcMH}); 
    
    MdiffresMH (EcMH) = range(SUMFFTMHbyeye{EcMH});%range res pre-op 
    
    KallMHbyeye{EcMH} = 2*MHbfccoeff{EcMH}(1,:);%k by eye 
     
    [~,locKmxMH(EcMH)] = max(KallMHbyeye{EcMH}); 
     
    [~,locKminMH(EcMH)] = min(KallMHbyeye{EcMH}); 
     
    MdiffKMH(EcMH) = range(KallMHbyeye{EcMH});%range K pre-op 
     
end 
  
SUMFFTMH = [SUMFFTMH{:}];%vector of all B scan FTR30 
SUMFFTPV = [SUMFFTPV{:}]; 
KallMH = [KallMH{:}];%vector of all B scan Ks 
KallPV = [KallPV{:}]; 
  
[pFsum,hFsum] = ranksum(SUMFFTMH,SUMFFTPV); 
[pKall,hKall] = ranksum(KallMH,KallPV); 
  
  
%difference in location max and min axes (ie are they perpendicular to each 
%other) pre and post OP 
  
KaxesMH = abs(locKmxMH- locKminMH)'; 
FaxesMH = abs(locFmxMH - locFminMH)'; 
KaxesPV = abs(locKmxPV - locKminPV)'; 
FaxesPV = abs(locFmxPV - locFminPV)'; 
num48PVK = find(KaxesPV>3 & KaxesPV<9); 
num48MHK = find(KaxesMH>3 & KaxesMH<9); 
num48K = length(num48PVK) + length(num48MHK);%number  4-8 scans apart K 
num48PVF = find(FaxesPV>3 & FaxesPV<9); 
num48MHF = find(FaxesMH>3 & FaxesMH<9); 
num48F = length(num48PVF) + length(num48MHF);%number  4-8 scans apart F 
  
num57PVK = find(KaxesPV>4 & KaxesPV<8); 
num57MHK = find(KaxesMH>4 & KaxesMH<8); 
num57K = length(num57PVK) + length(num57MHK);%number  5-7 scans apart K 
num57PVF = find(FaxesPV>4 & FaxesPV<8); 
num57MHF = find(FaxesMH>4 & FaxesMH<8); 
num57F = length(num57PVF) + length(num57MHF);%number  5-7 scans apart F 
  
[~,axKMxmnp, ciKMxmn,~] = ttest(KaxesMH,KaxesPV); 
[~,axresMxmnp, ciresMxMn,~] = ttest(FaxesMH,FaxesPV); 
  
[~,axKmxp,ciaxKmxp,~] = ttest(locKmxMH, locKmxPV);%DIFF IN MAX LOCATION K 
[~,axKminp,ciaxKminp,~] = ttest(locKminMH, locKminPV);%min K 
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[~,axFmxp,ciaxFmxp,~] = ttest(locFmxMH, locFmxPV);% diff in max loc F 
[~,axFminp,ciaxFminp,~] = ttest(locFminMH, locFminPV);%minF 
  
%HERE!!!!!!!!!!!!! 
%paired t test range K and residual pre v post 
[~,RangeKMHprpopaiTT, ciRangepK,~] = ttest(MdiffKMH,MdiffKPV); 
[~,RangeresprpopaiTT, ciRangepres,~] = ttest(MdiffresMH, MdiffresPV); 
  
%size of difference in ranges, pre v post 
rangediffK = mean(MdiffKPV,'omitnan')-mean(MdiffKMH,'omitnan');%diff in mean range 
K 
rangediffF = mean(MdiffresPV,'omitnan')-mean(MdiffresMH,'omitnan');%diff in mean 
range res 
  
meanKPV = mean(KallPV);%mean K Post op eyes 
meanKMH = mean(KallMH);%mean K MH eyes 
meanFTR30PV = mean(SUMFFTPV);%mean  FTR30 PVD 
meanFTR30MH = mean(SUMFFTMH);%mean FTR30 no PVD 
diffKpvnPV = meanKPV-meanKMH;%diff between means to go with CI 
diffFpvnPV= meanFTR30PV - meanFTR30MH;% diff means to go with CI 
sdKPV = std(KallPV); 
sdKMH = std(KallMH); 
sdFPV = std(SUMFFTPV); 
sdFMH = std(SUMFFTMH); 
[~,pttKPVnPV,KallCI,~] = ttest(KallPV,KallMH);%paired ttest compare  meanK pre op v 
post op all Bscans 
[~,pttFPVnPV, FallCI] = ttest(SUMFFTPV,SUMFFTMH);% tests compare F pre v post 
%Cohens d of effect of PVD on K and F 
dK = (meanKPV-meanKMH)/sqrt((sdKMH.^2 + sdKPV.^2)/2);%effect size of PVD on K 
dF = (meanFTR30PV-meanFTR30MH)/sqrt((sdFMH.^2 + sdFPV.^2)/2);%effect size of PVD on 
F 
  
pMWUKPVnPV = ranksum(KallPV,KallMH);%MWU compare K PVD v noPVD 
pMWUFPVnPV = ranksum(SUMFFTPV,SUMFFTMH);% MWU tests compare F PVD v no 
tablen = length(MeanKMH); 
AL0pvd = zeros(tablen,1); 
ALpvd = zeros (tablen,1);%(KMH to make it same length 
PVDnames = cell(tablen,1); 
PVDnames(1:length(PVnames)) = PVnames; 
  
  
%create table, add AL values manually after 
PrevPostMHsum = table(MHnames', AL0pvd, MdiffKMH', MdiffresMH', MeanKMH', MeanFMH', 
... 
    PVDnames, ALpvd, MdiffKPV', MdiffresPV', MeanKPV', MeanFPV',... 
    'VariableNames',{'preID','preAL','prerangeK','prerangeres'... 
    'premeanK', 'premeanres','PostID','PostAL','PostrangeK','Postrangeres'... 
    'PostmeanK', 'Postmeanres'}); 
  
%HERE!!!!!!!!!!!!! 
%now compare mean K/res pre-op v post-op, paired t test 
[~,meanKMHprpopaiTT, cimeanpK,~] = ttest(PrevPostMHsum.premeanK, 
PrevPostMHsum.PostmeanK); 
[~,meanresprpopaiTT, cimeanpres,~] = ttest(PrevPostMHsum.premeanres, 
PrevPostMHsum.Postmeanres); 
diffMK = mean(PrevPostMHsum.premeanK, 'omitnan') - 
mean(PrevPostMHsum.PostmeanK,'omitnan');%diffe pre v post K 
diffMres = mean(PrevPostMHsum.premeanres,'omitnan')-
mean(PrevPostMHsum.Postmeanres,'omitnan'); 
  
%load no PVD data 
load('/Users/stewartlake/Documents/MH contour/CSEHDR19data2.mat', 'PVDnoPVDsum'); 
%Here!!!!!!!!!!!!!! 
noPVDmeanrngK = mean(PVDnoPVDsum.noPVDrangeK(9:end));%mean range K, excl MH eyes 
noPVDmeanrngres = mean(PVDnoPVDsum.noPVDrangeres(9:end));%mean range res 
noPVDmeanK = mean(PVDnoPVDsum.noPVDmeanK(9:end));%mean K, excl MH eyes 
noPVDmeanres = mean(PVDnoPVDsum.noPVDmeanres(9:end));%mean res 
%noPVDrangeK = range(PVDnoPVDsum.noPVDrangeK(9:end)); 
%noPVDrangeres = range(PVDnoPVDsum.noPVDrangeres(9:end)); 
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preopMHmeanrngK = mean(PrevPostMHsum.prerangeK); 
preopMHmeanrngres = mean(PrevPostMHsum.prerangeres); 
  
%ttests 2 range K & res, meanK & res, (mean & range K excl myopic MH,)for noPVD v 
%pre op MH HERE!!!!!!!!!! 
[~,noPVvMHkp,noPVvMHkci,~]= 
ttest2(PVDnoPVDsum.noPVDrangeK(9:end),PrevPostMHsum.prerangeK);%range K 
[~,noPVvMHrep,noPVvMHreci,~]= 
ttest2(PVDnoPVDsum.noPVDrangeres(9:end),PrevPostMHsum.prerangeres);%range res 
[~,noPVvMHkmeanp,noPVvMHkmeanci,~]= 
ttest2(PVDnoPVDsum.noPVDmeanK(9:end),PrevPostMHsum.premeanK);%mean K 
[~,noPVvMHkno19p,noPVvMHkno19ci,~]= 
ttest2(PVDnoPVDsum.noPVDrangeK(9:end),PrevPostMHsum.prerangeK([1:3,5:end],:)); 
[~,noPVvMHkmeanno19p,noPVvMHkmeanno19ci,~]= 
ttest2(PVDnoPVDsum.noPVDmeanK(9:end),PrevPostMHsum.premeanK([1:3,5:end],:)); 
[~,noPVvMHmnresp, 
noPVvMHmnresci,~]=ttest2(PVDnoPVDsum.noPVDmeanres(9:end),PrevPostMHsum.premeanres);
%mean res 
[~,noPVvMHmnrespno19, 
noPVvMHmnrescino19,~]=ttest2(PVDnoPVDsum.noPVDmeanres(9:end),PrevPostMHsum.premeanr
es([1:3,5:end],:));%mean res 
  
%added summary values - mean & SD, pre & post range & mean K & res 
%Here!!!!!!!!!!! 
mrngpreMHK=mean(PrevPostMHsum.prerangeK); 
mrngpostMHK=mean(PrevPostMHsum.PostrangeK); 
mrngpreMHres =mean(PrevPostMHsum.prerangeres); 
mrngpostMHres =mean(PrevPostMHsum.Postrangeres); 
  
meanpreMHK=mean(PrevPostMHsum.premeanK); 
meanpostMHK=mean(PrevPostMHsum.PostmeanK); 
meanpreMHres =mean(PrevPostMHsum.premeanres); 
meanpreMHresno19 =mean(PrevPostMHsum.premeanres([1:3,5:end],:)); 
meanpostMHres =mean(PrevPostMHsum.Postmeanres); 
  
sdrngpreMHK=std(PrevPostMHsum.prerangeK); 
sdrngpostMHK=std(PrevPostMHsum.PostrangeK); 
sdrngpreMHres =std(PrevPostMHsum.prerangeres); 
sdrngpostMHres =std(PrevPostMHsum.Postrangeres); 
  
sdmnpreMHK=std(PrevPostMHsum.premeanK); 
sdmnpostMHK=std(PrevPostMHsum.PostmeanK); 
sdmnpreMHres =std(PrevPostMHsum.premeanres); 
sdmnpostMHres =std(PrevPostMHsum.Postmeanres); 
  
  
  
save('/Users/stewartlake/Documents/MH contour/PreVpostPVD'); 
  
figure 
hold on 
scatter(PrevPostMHsum.prerangeK,PrevPostMHsum.PostrangeK,[],'r') 
scatter(PrevPostMHsum.premeanK,PrevPostMHsum.PostmeanK,[],'m') 
title('Pre v post PVD radial OCT mean and range K'); 
xlabel('pre-op'); 
ylabel('post-op'); 
refline(1,0); 
legend('range K','mean K'); 
%text(MedKMH +dx2,MedFMH + dy2,MHID); 
  
figure 
hold on 
scatter(PrevPostMHsum.prerangeres,PrevPostMHsum.Postrangeres,[],'b') 
scatter(PrevPostMHsum.premeanres,PrevPostMHsum.Postmeanres,[],'c') 
%text(MedKPV +dx2,MedFPV + dy2,PVID); 
title('Pre v post PVD radial OCT mean and range irregularity');%FTI = FT of 
irregularity 
xlabel('pre-op'); 
ylabel('post-op'); 
refline(1,0); 
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legend('range res','mean res'); 
  
  
%{ 
%scatter plot variance of K and FFT,MH v PV, rotated K 
dx=0.000001;%label displacement 
dy=0.1; 
figure 
hold on 
scatter(VarKMHRot,VarFMH,[],'r') 
%text(VarKMH +dx,VarFMH + dy,MHID); 
scatter(VarKPVRot, VarFPV,[],'b') 
%text(VarKPV +dx,VarFPV + dy,PVID); 
title('No PVD v PVD radial macula cube rotated K v FFT variance'); 
xlabel('Krot var'); 
ylabel('FFT var'); 
%} 
  
%scatter plot variance of K and FFT,MH v PV 
dx=0.000001;%label displacement 
dy=0.1; 
figure 
hold on 
scatter(VarKMH,VarFMH,[],'r') 
%text(VarKMH +dx,VarFMH + dy,MHID); 
scatter(VarKPV, VarFPV,[],'b') 
%text(VarKPV +dx,VarFPV + dy,PVID); 
title('Pre v post PVD radial macula K & FFT variance'); 
xlabel('K var'); 
ylabel('FFT var'); 
  
%scatter plot median K v FFT 
figure 
dx2=0.005; 
dy2=0.1; 
hold on 
scatter(MedKMH,MedFMH,[],'r') 
%text(MedKMH +dx2,MedFMH + dy2,MHID); 
scatter(MedKPV, MedFPV,[],'b') 
%text(MedKPV +dx2,MedFPV + dy2,PVID); 
title('Pre v post PVD radial macula hole median K & FFT'); 
xlabel('K med'); 
ylabel('FFT med'); 
  
%scatter plot iqr K & FFT 
figure 
dx3=0.0001; 
dy3=0.1; 
hold on 
scatter(IqrKMH,IqrFMH,[],'r') 
%text(IqrKMH +dx3,IqrFMH + dy3,MHID); 
scatter(IqrKPV, IqrFPV,[],'b') 
%text(IqrKPV +dx3,IqrFPV + dy3,PVID); 
title('Pre v post PVD radial macula iqr K & FFT'); 
xlabel('iqr K'); 
ylabel('iqr FFT'); 
  
%scatter plot K v FFT for all B scans 
allBSfig = figure; 
hold on 
scatter(KallPV,SUMFFTPV,[],'r') 
%text(MedKMH +dx2,MedFMH + dy2,MHID); 
scatter(KallMH, SUMFFTMH,[],'b','+') 
%text(MedKPV +dx2,MedFPV + dy2,PVID); 
title('Pre- (blue) v post- PVD (red) radial macula B scan K and irregularity'); 
xlabel('K (/mm)'); 
ylabel('Irregularity (mm)'); 
%allBSfig.Visible = 'off'; 
  
%loads summary mn/rng/me/sd for PVD v NoPVD, prevpost PVD and Pre v post MH 
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load('/Users/stewartlake/Documents/MH contour/radial kImr table mnsd.mat'); 
Xid(7)={'.'}; 
Yk = cat(2,ymK,yrK);%mean K and range K 
YI = cat(2,ymI,yrI);%mean I and range I 
ERRk = cat(2,smK,srK);%?sd average K and SD range K 
ERRI = cat(2,smI,srI);%?sd average I and range I 
%above rows in order pvd v no pvd, pre v post pvd and pre v post mh 
CoVK = ERRk./Yk; 
CoVI = ERRI./YI; 
  
%xK=[1:2:11;1.2:2:11.2]'; 
%xI=[0.5:2:10.5;0.7:2:10.7]'; 
  
xK=[1:6;8:13]'; 
xI=[15:20;22:27]'; 
  
EBcolor6=[0 0.4470 0.7410;0.3010 0.7450 0.9330;0.8500 0.3250 0.0980;... 
0.9290 0.6940 0.1250;0.4940 0.1840 0.5560;0.6350 0.0780 0.1840]; 
Summns=figure; 
for sm=1:6 
yyaxis left 
ee(1)=errorbar(xK(sm,1),Yk(sm,1),ERRk(sm,1),'vertical','s');%average K 
  
hold on 
ee(2)=errorbar(xK(sm,2),Yk(sm,2),ERRk(sm,2),'vertical','d');%range K 
ylabel('Curvature'); 
yyaxis right 
ee(3)=errorbar(xI(sm,1),YI(sm,1),ERRI(sm,1),'vertical','+');% average I 
hold on 
ee(4)=errorbar(xI(sm,2),YI(sm,2),ERRI(sm,2),'vertical','x');%range I 
set(ee,'Color',EBcolor6(sm,:)); 
ylabel('Irregularity'); 
end 
  
  
  
xticks([3.5 10.5 17.5 24.5]); 
xticklabels({'average K','range K','average I','range I'}); 
title('Average (SD) and range (SD) of curvature and irregularity'); 
text(1.4,-0.075,'PVD','Color',[0 0.4470 0.7410]); 
text(3.5,-0.075,'no PVD','Color',[0.3010 0.7450 0.9330]); 
text(6.5,-0.075,'pre PVD','Color',[0.8500 0.3250 0.0980]); 
text(10,-0.075,'post PVD','Color',[0.9290 0.6940 0.1250]); 
text(1.4,-0.4,'pre MH','Color',[0.4940 0.1840 0.5560]); 
text(4.5,-0.4,'post MH','Color',[0.6350 0.0780 0.1840]); 
  
xline(7,':') 
xline(14,'-') 
xline(21,':') 
  
%% 
%plot error bars with 95% CI 
%where x is the data vector 
%CIFcn = @(xx,pp)prctile(xx,abs([0,100]-(100-pp)/2));% p = 95 for 95% 
%see shape - macula hole & PVD v no PVD.doc 
Yk = cat(2,ymK,yrK);%mean K and range K 
YI = cat(2,ymI,yrI);%mean I and range I 
  
%all above rows in order pvd v no pvd, pre v post pvd and pre v post mh 
  
xK=[1:6;8:13]'; 
xI=[15:20;22:27]'; 
  
EBcolor6=[0 0.4470 0.7410;0.3010 0.7450 0.9330;0.8500 0.3250 0.0980;... 
0.9290 0.6940 0.1250;0.4940 0.1840 0.5560;0.6350 0.0780 0.1840]; 
Summns=figure; 
for sm=1:6 
yyaxis left 
ee(1)=errorbar(xK(sm,1),Yk(sm,1),Yk(sm,1)-meanK(sm,1),meanK(sm,2)-
Yk(sm,1),'vertical','s');%average K 
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hold on 
ee(2)=errorbar(xK(sm,2),Yk(sm,2),Yk(sm,2)-rangeK(sm,1),rangeK(sm,2)-
Yk(sm,2),'vertical','d');%range K 
ylabel('Curvature'); 
yyaxis right 
ee(3)=errorbar(xI(sm,1),YI(sm,1),YI(sm,1)-meanI(sm,1),meanI(sm,2)-
YI(sm,1),'vertical','+');% average I 
hold on 
ee(4)=errorbar(xI(sm,2),YI(sm,2),YI(sm,2)-rangeI(sm,1),rangeI(sm,2)-
YI(sm,2),'vertical','x');%range I 
set(ee,'Color',EBcolor6(sm,:)); 
ylabel('Irregularity'); 
end 
  
  
  
xticks([3.5 10.5 17.5 24.5]); 
xticklabels({'average K','range K','average I','range I'}); 
title('Average and range of curvature and irregularity (95% CI)'); 
text(26,14,'PVD','Color',[0 0.4470 0.7410]); 
text(26,13,'no PVD','Color',[0.3010 0.7450 0.9330]); 
text(26,12,'pre PVD','Color',[0.8500 0.3250 0.0980]); 
text(26,11,'post PVD','Color',[0.9290 0.6940 0.1250]); 
text(26,10,'pre MH','Color',[0.4940 0.1840 0.5560]); 
text(26,9,'post MH','Color',[0.6350 0.0780 0.1840]); 
  
xline(7,':') 
xline(14,':') 
xline(21,':') 
 
 
3. Regdescr 
%cross validate RD,PVD balanced in each fold, mm data 
%equally distributed by AL. Plus FE 
%  
%Col 11 data to identify index of max/min for location 
%for regional analysis of MaxE and its indices 
%Normalised FFT moduli by length of retinal vector -  
% FFTmm, saved in column 11 FFTconcat 
% 
%corrected for empty B scans 
%FFTconcat, and AllIKurv loaded 
% 
%see RD compared to PVD 2.doc in /notes 
% 
% 
  
%key indices are    RDID,RDSD,RDMx11,RDIndM,PVDID,PVDSD,PVDMx11,PVDIndM 
%SD11 hols all anomaly values: n per fold x region x 21 
% K values are not from column 11 so absent!! 
%these are numbered 1-17 for the region of the eye (column in column 11) 
  
load('/Users/stewartlake/Documents/MATLAB/FFTconcat'); 
load('/Users/stewartlake/Documents/MATLAB/AllIKurv'); 
  
NumPVD = size (PVDFb,1); % number of PVD eyes in array 
NumRD = size (RDFb,1); % number of RD eyes 
  
k = 5; %number of folds 
%Nrow = 30; %no rows must = Veye (max number eyes per subset)  
%Sumdiff11 = cell (Nrow,k);  
%absdiff11 = cell (Nrow,k); 
  SD11 = cell(k,1); %sumdiff by fold 
  abs11 = cell(k,1); 
  Grpdata = cell(k,1); 
  Mxe11 = cell(k,1); 
  IndMe11 = cell(k,1); 
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      RDID = cell(1,1); 
      RDSD = cell(1,17); 
      RDMx11 = cell(1,17); 
      RDabs11 = cell(1,17); 
      RDIndM = cell(1,17); 
      PVDID = cell(1,1); 
      PVDSD = cell(1,17); 
      PVDMx11 = cell(1,17); 
      PVDIndM = cell(1,17); 
      PVDabs11 = cell(1,17); 
      FEID = cell(1,1); 
      FESD = cell(1,17); 
      FEMx11 = cell(1,17); 
      FEIndM = cell(1,17); 
      FEabs11 = cell(1,17); 
      nALPVD(1,:) = zeros(1,1);%new AL/age to match folded shaped data 
      nAgePVD(1,:) =zeros(1,1); 
      nALRD(1,:) = zeros(1,1); 
      nAgeRD(1,:) = zeros(1,1); 
      nALFE(1,:) = zeros(1,1); 
      nAgeFE(1,:) = zeros(1,1); 
       
meanBS = cell(5,1); %average b scan bin values for each fold 
  
%get age and AL vector to match RDFb 
AgevecRD = zeros(size(RDFb,1),1); 
IDFblistRD = RDFb(:,1);%eye ID 
ALvecRD = zeros(size(RDFb,1),1); 
for findage=1:size(RDFb,1) 
    sIde = str2double(IDFblistRD{findage,1}(2)); 
     
    AgevecRD(findage) = RDFb{findage,4}(3); 
    ALvecRD(findage) = RDFb{findage,4}(sIde); 
     
    RDcurrI11 = RDFb{findage,11};%replace empty regions with 30 x 21 NaN array 
    for cellregionRD=2:18 
         
    if isempty(RDcurrI11{1,cellregionRD}) 
        RDcurrI11{1,cellregionRD} = NaN(30,21);%replace empty regions with NaN 
    end  
     
    end 
    RDFb{findage,11} = RDcurrI11(2:18);%and removes eye ID from array 
end 
  
%get age and AL vector to match PVDFb 
AgevecPVD = zeros(size(PVDFb,1),1); 
IDFblistPVD = PVDFb(:,1);%eye ID 
ALvecPVD = zeros(size(PVDFb,1),1); 
for findage=1:size(PVDFb,1) 
    sIde = str2double(IDFblistPVD{findage,1}(2)); 
     
    AgevecPVD(findage) = PVDFb{findage,4}(3); 
    ALvecPVD(findage) = PVDFb{findage,4}(sIde); 
     
    PVDcurrI11 = PVDFb{findage,11};%replace empty regions with 30 x 21 NaN array 
    for cellregionPVD=2:18 
         
    if isempty(PVDcurrI11{1,cellregionPVD}) 
        PVDcurrI11{1,cellregionPVD} = NaN(30,21); 
    end    
    end 
    PVDFb{findage,11} = PVDcurrI11(2:18); 
     
end 
  
  
%age and AL vec for FEFb 
AgevecFE = zeros(size(FEFb,1),1); 
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IDFblistFE = FEFb(:,1);%eye ID 
ALvecFE = zeros(size(FEFb,1),1); 
for findage=1:size(FEFb,1) 
    sIde = str2double(IDFblistFE{findage,1}(2)); 
     
    AgevecFE(findage) = FEFb{findage,4}(3); 
    ALvecFE(findage) = FEFb{findage,4}(sIde); 
     
    FEcurrI11 = FEFb{findage,11};%replace empty regions with 30 x 21 NaN array 
    for cellregionFE=2:18 
         
    if isempty(FEcurrI11{1,cellregionFE}) 
        FEcurrI11{1,cellregionFE} = NaN(30,21); 
    end    
    end 
    FEFb{findage,11} = FEcurrI11(2:18); 
  
  
  
end 
  
%sort FEFb by AL 
[sALvecFE,ALorderFE]=sort(ALvecFE);% ascending order of AL 
sFEFb=FEFb(ALorderFE,:); 
sAgevecFE = AgevecFE(ALorderFE,:); 
  
sALvecFE(sALvecFE==0,:) = NaN; 
  
  
%randomly distribute FE eyes  
NumIpfoldFE = floor(size(sFEFb,1)/k);%number of eyes per k folds 
RemFE=mod(size(sFEFb,1),k);%plus the remainder not divisible by k 
RanselFE = zeros(k,NumIpfoldFE); 
for Ranrun=1:NumIpfoldFE 
     
    RanselFE(:,Ranrun) = randperm(k)'; 
end 
RanremFE=randperm(RemFE)'; 
RanselFE = cat(1,RanselFE(:),RanremFE);%these are the indices to divide into folds 
  
  
  
%sort RDFb by AL 
[sALvecRD,ALorderRD]=sort(ALvecRD);% ascending order of AL 
sRDFb=RDFb(ALorderRD,:); 
sAgevecRD = AgevecRD(ALorderRD,:); 
%sRDFb(sALvecRD==0,:) = [];%remove all eyes with no AL 
%sAgevecRD(sALvecRD==0,:) = []; 
sALvecRD(sALvecRD==0,:) = NaN;%keep "no AL" eyes 
  
%sort PVDFb by AL 
[sALvecPVD,ALorderPVD]=sort(ALvecPVD);% ascending order of AL 
sPVDFb=PVDFb(ALorderPVD,:); 
sAgevecPVD = AgevecPVD(ALorderPVD,:); 
%sPVDFb(sALvecPVD==0,:) = [];%remove all eyes with no AL 
%sAgevecPVD(sALvecPVD==0,:) = []; 
sALvecPVD(sALvecPVD==0,:) = NaN; 
  
%generate random distribution into 5 folds for RD 
NumIpfoldRD = floor(size(sRDFb,1)/k);%number of eyes per k folds 
RemRD=mod(size(sRDFb,1),k);%plus the remainder not divisible by k 
RanselRD = zeros(k,NumIpfoldRD); 
for Ranrun=1:NumIpfoldRD 
     
    RanselRD(:,Ranrun) = randperm(k)'; 
end 
RanremRD=randperm(RemRD)'; 
RanselRD = cat(1,RanselRD(:),RanremRD);%these are the indices to divide into folds 
  
%generate random distribution into 5 folds for PVD 
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NumIpfoldPVD = floor(size(sPVDFb,1)/k);%number of eyes per k folds 
RemPVD=mod(size(sPVDFb,1),k);%plus the remainder not divisible by k 
RanselPVD = zeros(k,NumIpfoldPVD); 
for Ranrun=1:NumIpfoldPVD 
     
    RanselPVD(:,Ranrun) = randperm(k)'; 
end 
RanremPVD=randperm(RemPVD)'; 
RanselPVD = cat(1,RanselPVD(:),RanremPVD);%these are the indices to divide into 
folds 
  
  
%create five subsets for cross validation 
Grps11 = cell(k,1); %the '11'reflects the column where the data is stored 
GrpIID11 = cell (k,1); 
MnGrp11 = cell (k,1); 
ColVec = cell (k,1); 
ALvec = cell (k,1); 
Agevec = cell (k,1); 
Diag = cell (k,1); 
  
  
for n = 1:k %data in 5 folds to calculate anomaly cf to 80% sample 
  Grps11{n} = 
[sPVDFb(RanselPVD==n,11);sRDFb(RanselRD==n,11);sFEFb(RanselFE==n,11)]; % puts each 
subset coll 11 into a cell in Grps 
  GrpIID11 {n} = 
[sPVDFb(RanselPVD==n,1);sRDFb(RanselRD==n,1);sFEFb(RanselFE==n,1)]; %eye 
identifiers of the validation set 
  MnGrp11{n} = [sPVDFb(RanselPVD~=n,11); 
sRDFb(RanselRD~=n,11);sFEFb(RanselFE~=n,11)]; % selects not subset n: the training 
set for Grps(n) 
  ALvec{n} = [sALvecPVD(RanselPVD==n);sALvecRD(RanselRD==n);sALvecFE(RanselFE==n)]; 
  Agevec{n} = 
[sAgevecPVD(RanselPVD==n);sAgevecRD(RanselRD==n);sAgevecFE(RanselFE==n)]; 
  Diag{n} = 
[repelem(1,nnz(RanselPVD==n),1);repelem(2,nnz(RanselRD==n),1);repelem(3,nnz(RanselF
E==n),1)]; 
  %create colour vector to match GrpIID8 
  ColVec{n} = [repelem([0 0 1],nnz(RanselPVD==n),1);repelem([1 0 
0],nnz(RanselRD==n),1)]; 
   
   
  %set for average scan creation (4/5 folds) 
  TMnGrp11 = cat(2,MnGrp11{n}{:}); %note multiples by 4 (each eye counted 4 times) 
   
  for Feyes = 1:length(TMnGrp11) 
      
         Indcube = TMnGrp11{Feyes}; 
         Indcube(Indcube==0)=NaN;%replaces all 0 with NaN in FFT data 
         TMnGrp11{Feyes} = Indcube; 
      
  end 
   
  TMnGrp11 = cat (2, TMnGrp11{:}); %concatenates all cubes from all eyes from 
MnGrp{n} 
   
  FoldMnBV11 =  var(TMnGrp11,0,2,'omitnan');%30 x 1 x X array, x=number of cubes 
  TFMnBV11 = mean (FoldMnBV11,3,'omitnan');%30 x 1 mean fold bin Var 
   
  TSbmn11 = nanmean (TMnGrp11,2); %creates bin mean B scan (all regional data) 
   
  meanBS{n} = TSbmn11;%save average B scan bins 
   
  %The number of eyes in this subset Grps(n) 
  SzC11 = size (Grps11{n},1); % SzC = number of eyes in this subset 
  Grpcubes = cell(SzC11,17);%recreate blank to avoid retaining longer array in 
shorter fold 
   
  for Grprun = 1:SzC11 
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   %collect fold region cubes in an array, one col per region, row per eye  
   Grpcubes(Grprun,1:17) = Grps11{n}{Grprun}; 
     
  end 
  
  absdiff11 = cell(SzC11,17); 
  Sumdiff11 = cell(SzC11,17); 
  MaxE11 = cell(SzC11,17); 
  IndMaxe11 = cell(SzC11,17); 
   
   
  for Metcal = 1:(SzC11*17)%work through entire array 
      
      nowcube = Grpcubes {Metcal};%single region cube 
      nowcube(nowcube==0) = NaN; 
      Grpcubes{Metcal} = nowcube; 
       
      absdiff11{Metcal} = abs(nowcube - TSbmn11);%each cell bins x B scans 
      Sumdiff11 {Metcal} = sum(absdiff11{Metcal});% each cell 1 x 21 
      [MaxE11{Metcal},IndMaxe11{Metcal}] = max(absdiff11{Metcal});%1 x 21 
       
  end 
   
   
  SD11{n} = Sumdiff11;%record data from each fold this holds all anomaly 
  abs11{n} = absdiff11; 
  Grpdata{n} = Grpcubes; 
  Mxe11{n} = MaxE11; 
  IndMe11{n} = IndMaxe11; 
   
   
end 
   
  for revert = 1:k %put data back to diagnosis arrays 
       
      
      RDPVDeyes = cell2mat(Diag(revert)); 
      RDID = cat(1,RDID, GrpIID11{revert}(RDPVDeyes==2)); 
      RDSD = cat(1,RDSD, SD11{revert}(RDPVDeyes==2,:)); 
      RDMx11 = cat(1,RDMx11, Mxe11{revert}(RDPVDeyes==2,:)); 
      RDIndM = cat(1,RDIndM, IndMe11{revert}(RDPVDeyes==2,:)); 
      RDabs11 = cat(1,RDabs11,abs11{revert}(RDPVDeyes==2,:)); 
      nALRD = cat(1,nALRD,ALvec{revert}(RDPVDeyes==2,:)); 
      nAgeRD = cat(1,nAgeRD,Agevec{revert}(RDPVDeyes==2,:)); 
       
      PVDID = cat(1,PVDID, GrpIID11{revert}(RDPVDeyes==1)); 
      PVDSD = cat(1,PVDSD, SD11{revert}(RDPVDeyes==1,:)); 
      PVDMx11 = cat(1,PVDMx11, Mxe11{revert}(RDPVDeyes==1,:)); 
      PVDIndM = cat(1,PVDIndM, IndMe11{revert}(RDPVDeyes==1,:)); 
      PVDabs11 = cat(1,PVDabs11,abs11{revert}(RDPVDeyes==1,:));%eachbin by Bs by 
cube 
      nALPVD = cat(1,nALPVD,ALvec{revert}(RDPVDeyes==1,:)); 
      nAgePVD = cat(1,nAgePVD,Agevec{revert}(RDPVDeyes==1,:)); 
       
      FEID = cat(1,FEID, GrpIID11{revert}(RDPVDeyes==3)); 
      FESD = cat(1,FESD, SD11{revert}(RDPVDeyes==3,:)); 
      FEMx11 = cat(1,FEMx11, Mxe11{revert}(RDPVDeyes==3,:)); 
      FEIndM = cat(1,FEIndM, IndMe11{revert}(RDPVDeyes==3,:)); 
      FEabs11 = cat(1,FEabs11,abs11{revert}(RDPVDeyes==3,:)); 
      nALFE = cat(1,nALFE,ALvec{revert}(RDPVDeyes==3,:)); 
      nAgeFE = cat(1,nAgeFE,Agevec{revert}(RDPVDeyes==3,:)); 
       
  end 
   
      RDID(1) = [];%remove (empty) initiating cells of arrays 
      RDSD(1,:) = []; 
      RDMx11(1,:) = []; 
      RDIndM(1,:) = []; 
      RDabs11(1,:) = []; 
      PVDID(1) = []; 
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      PVDSD(1,:) = []; 
      PVDMx11(1,:) = []; 
      PVDIndM(1,:) = []; 
      PVDabs11(1,:) = []; 
      FEID(1) = []; 
      FESD(1,:) = []; 
      FEMx11(1,:) = []; 
      FEIndM(1,:) = []; 
      FEabs11(1,:) = []; 
      nALPVD(1,:) = []; 
      nAgePVD(1,:) = []; 
      nALRD(1,:) = []; 
      nAgeRD(1,:) = []; 
      nALFE(1,:) = []; 
      nAgeFE(1,:) = []; 
   
       
 for Thr = 1:10   
   for Reg = 1:17 
       
        
       Rbsall{Reg} = [BSreg{:,Reg}]';%all BS for each region 
       rbs = Rbsall{Reg}; 
       rbs(isnan(rbs)|rbs==0) = []; 
       Numgt(Reg,Thr) = nnz(find(rbs>Thr)); 
       Frgt(Reg,Thr) = Numgt(Reg,Thr)/length(rbs);% fraction Bs with anomaly gt 5 
        
        
   end 
   allrBS = [Rbsall{:}]; 
   allrBS(isnan(allrBS)|allrBS==0) = []; 
   allgt(Thr) = nnz(find(allrBS>Thr)); 
   frallgt(Thr) = allgt(Thr)/numel(allrBS);%fraction all  
  
 end     
       
       
       
%histogram of MaxE indices, RD v PVD 
h1 = histogram([RDIndM{:}],'FaceColor','r'); 
hold on 
h2 = histogram([PVDIndM{:}],'FaceColor','b'); 
h1.Normalization = 'probability'; 
h2.Normalization = 'probability'; 
legend('RD','PVD') 
title('Bin location MaxE'); 
       
       
 %subplot of maxE indices by region 
 figure 
for regions = 1:17 
    h(regions) = subplot (6,3,regions); 
    RDreg = RDIndM(:,regions); 
    allRDinds = [RDreg{:}]; 
    PVDreg = PVDIndM(:,regions); 
    allPVDinds = [PVDreg{:}]; 
    h1 = histogram(allRDinds,'FaceColor','r'); 
    hold on 
    h2 = histogram(allPVDinds,'FaceColor','b'); 
    h1.Normalization = 'probability'; 
    h2.Normalization = 'probability'; 
    str  = ['Region',num2str(regions)]; 
    text(6,0.6,str); 
     
end 
  
linkaxes(h(:),'xy'); 
 h(2).XLim = [0,8];      
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%histogram for Indices Maxe including only B scans with SD >= 5 
figure 
RDsdv = [RDSD{:}]'; 
RDindV = [RDIndM{:}]'; 
RDindV(RDsdv<5)=NaN; 
numRDbs = sum(~isnan(RDindV)); 
  
PVDsdv = [PVDSD{:}]'; 
PVDindV = [PVDIndM{:}]'; 
PVDindV(PVDsdv<5)=NaN; 
numPVDbs = sum(~isnan(PVDindV)); 
  
h1 = histogram(RDindV,'FaceColor','r'); 
hold on 
h2 = histogram(PVDindV,'FaceColor','b'); 
h1.Normalization = 'probability'; 
h2.Normalization = 'probability'; 
legend(sprintf('RD sd >= 5, n = %d',numRDbs),sprintf('PVD sd >= 5, n = %d', 
numPVDbs))  
  
%total no real B scans, RD & PVD 
numrealRDbs = sum(~isnan(RDsdv)); 
numrealPVDbs = sum(~isnan(PVDsdv)); 
  
  
%histogram for Indices Maxe including only B scans with maxe > 0.55 
figure 
RDmxev = [RDMx11{:}]';%vector of MaxE table 
RDindmxV = [RDIndM{:}]';%vector INdices of MaxE 
RDindmxV(RDmxev<0.55)=NaN;%make all indices of MaxE < 0.55 NaN 
numRDbsmx = sum(~isnan(RDindmxV));%count number B scans left 
  
PVDmxev = [PVDMx11{:}]'; 
PVDindmxV = [PVDIndM{:}]'; 
PVDindmxV(PVDmxev<0.55)=NaN; 
numPVDbsmx = sum(~isnan(PVDindmxV)); 
  
%histogram([RDmxev',PVDmxev']);%used to identify MaxE distribution 
  
h1 = histogram(RDindmxV,'FaceColor','r'); 
hold on 
h2 = histogram(PVDindmxV,'FaceColor','b'); 
h1.Normalization = 'probability'; 
h2.Normalization = 'probability'; 
legend(sprintf('RD mxE >= 0.55, n = %d', numRDbsmx),sprintf('PVD mxE >= 0.55, n = 
%d', numPVDbsmx))  
  
  
   
   
  
 
 
4. Regdescre3D 
%create 3D double of metric arrays. Uses data created by Regdescr and converts  
%arrays to doubles: row = eyes, columns = regions (17), z = B scans (21) 
%for each region 
  
%set limits for filtering variables 
Sdlim = 5; 
Mxlim = 0.55; 
  
%RD 
for yy=1:(size(RDSD,1)) 
     
    for xx = 1:17 
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    RD3dSD(yy,xx,1:21) = RDSD{yy,xx}; 
    RD3dMxe(yy,xx,1:21) = RDMx11{yy,xx}; 
    RD3dInd(yy,xx,1:21) = RDIndM{yy,xx}; 
     
    end 
end 
  
%PVD 
for yyp=1:(size(PVDSD,1)) 
     
    for xxp = 1:17 
    
    PVD3dSD(yyp,xxp,1:21) = PVDSD{yyp,xxp};%eye x region x B scan 
    PVD3dMxe(yyp,xxp,1:21) = PVDMx11{yyp,xxp}; 
    PVD3dInd(yyp,xxp,1:21) = PVDIndM{yyp,xxp}; 
     
    end 
end 
  
%%  
%data metrics 
%find number retinal B scans in each double. 
numRDBscan = sum(~isnan(RD3dInd),3); 
numPVDBscan = sum(~isnan(PVD3dInd),3); 
  
numRDBSreg = sum(~isnan(RD3dInd),[1 3]);%no Bscans by region, RD 
numPVDBSreg = sum(~isnan(PVD3dInd),[1 3]); 
numRDPVDBSreg = numRDBSreg + numPVDBSreg; 
%% 
%find elements with larger values of SD AND MaxE 
IndRDsd5mx55 = RD3dInd; 
IndPVDsd5mx55 = PVD3dInd; 
IndRDsd5mx55(RD3dSD<Sdlim | RD3dMxe<Mxlim)=NaN;%indices double for large SD/MxE 
IndPVDsd5mx55(PVD3dSD<Sdlim | PVD3dMxe<Mxlim)=NaN; 
  
IndRDsd5 = RD3dInd; 
IndPVDsd5 = PVD3dInd; 
IndRDsd5(RD3dSD<Sdlim)=NaN;%indices double for large SD 
IndPVDsd5(PVD3dSD<Sdlim)=NaN; 
  
RDlargeMxe = RD3dMxe; 
PVDlargeMxe = PVD3dMxe; 
RDlargeMxe(RD3dSD<Sdlim | RD3dMxe<Mxlim)=NaN;%Larger MxE/SD MaxE elements 
PVDlargeMxe(PVD3dSD<Sdlim | PVD3dMxe<Mxlim)=NaN; 
  
%numbers of large sd/MxE by region and by eye 
EyesumRD = sum(~isnan(IndRDsd5mx55),[2 3],'omitnan');%number largeSD/MxE by eye 
EyesumPVD = sum(~isnan(IndPVDsd5mx55),[2 3],'omitnan'); 
regionsumRD = sum(~isnan(IndRDsd5mx55),[1 3],'omitnan');%number largeSD/MxE by 
region 
regionsumPVD = sum(~isnan(IndPVDsd5mx55),[1 3],'omitnan');% 
  
regionsumRD5 = sum(~isnan(IndRDsd5),[1 3],'omitnan');%number Bscans largeSD by 
region 
regionsumPVD5 = sum(~isnan(IndPVDsd5),[1 3],'omitnan');% 
  
regionsumPVDRD5 = regionsumPVD5 + regionsumRD5; 
PCPBDRDbs5reg = (regionsumPVDRD5*100)./numRDPVDBSreg; % %bscan each region gtr 
Sdlim 
  
PVDpcBsGT5 = regionsumPVD5/numPVDBSreg;%PVD Bs > sdlim 
RDpcBsGT5 = regionsumRD5/numRDBSreg; %RD Bs > sdlim 
  
EyeregsumRD = sum(~isnan(IndRDsd5mx55), 3,'omitnan');%table eye x region outliers 
EyeregsumPVD = sum(~isnan(IndPVDsd5mx55), 3,'omitnan');%total numbers not indices 
  
%need to account 4 denominator (no B Sc) - numRDBscan, numPVDBscan 
propRDlarge = EyeregsumRD ./ numRDBscan;% must all be 0-1 
propPVDlarge = EyeregsumPVD ./ numPVDBscan;% 
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propRDlarge(propRDlarge==0) = NaN; 
propPVDlarge(propPVDlarge==0) = NaN; 
rangeRDlgeprop  = range(propRDlarge); %range proportion large for each region 
rangePVDlgeprop = range(propPVDlarge); 
  
  
%rest of this is cardinal point (+ and X regions) analysis 
xvec = [1:17];%scatter plot range of proportion of high MxE/SD by region by 
diagnosis 
scatter(xvec, rangeRDlgeprop, [], 'r'); 
hold on 
scatter((xvec+0.1), rangePVDlgeprop, [], 'b'); 
legend('RD','PVD','Location', 'east') 
text(14,0.7,['SD > ',num2str(Sdlim), ', MaxE > ',num2str(Mxlim)]); 
xlabel('Region') 
  
%% 
%Use the above to plot in 3D: MaxE and its index, by region 
  
EyeCRD = zeros(8,3,length(RDID));%sheet = eye, row = region, col = axis coordinate 
x,y,z 
EyeCPVD = zeros(8,3,length(PVDID)); 
Iird = zeros(length(RDID),17); 
Iipvd = zeros(length(PVDID),17); 
  
for nRD=1:length(RDID) 
     
    %see tables in RD compared to PVD 2, each sheet matches those 
    %RD, upright cross 
    [EyeCRD(1,3,nRD),Iird(nRD,3)] = max(RDlargeMxe(nRD,3,:));%region col 3 
    EyeCRD(1,2,nRD) = IndRDsd5mx55(nRD,3,Iird(nRD,3)); 
     
    [EyeCRD(3,3,nRD),Iird(nRD,7)] = max(RDlargeMxe(nRD,7,:));%region col 7 
    EyeCRD(3,1,nRD) = -IndRDsd5mx55(nRD,7,Iird(nRD,7)); 
     
    [EyeCRD(5,3,nRD),Iird(nRD,11)] = max(RDlargeMxe(nRD,11,:));%region col 11 
    EyeCRD(5,2,nRD) = -IndRDsd5mx55(nRD,11,Iird(nRD,11)); 
     
    [EyeCRD(7,3,nRD),Iird(nRD,15)] = max(RDlargeMxe(nRD,15,:));%region col 15 
    EyeCRD(7,1,nRD) = IndRDsd5mx55(nRD,15,Iird(nRD,15)); 
     
     
    %RD, diagonal crosses/regions 
    [EyeCRD(2,3,nRD),Iird(nRD,5)] = max(RDlargeMxe(nRD,5,:));%region col 5 
    EyeCRD(2,2,nRD) = IndRDsd5mx55(nRD,5,Iird(nRD,5))*sqrt(2); 
    EyeCRD(2,1,nRD) = -IndRDsd5mx55(nRD,5,Iird(nRD,5))*sqrt(2); 
     
    [EyeCRD(4,3,nRD),Iird(nRD,9)] = max(RDlargeMxe(nRD,9,:));%region col 9 
    EyeCRD(4,1,nRD) = -IndRDsd5mx55(nRD,9,Iird(nRD,9))*sqrt(2); 
    EyeCRD(4,2,nRD) = -IndRDsd5mx55(nRD,9,Iird(nRD,9))*sqrt(2); 
     
    [EyeCRD(6,3,nRD),Iird(nRD,13)] = max(RDlargeMxe(nRD,13,:));%region col 13 
    EyeCRD(6,2,nRD) = -IndRDsd5mx55(nRD,13,Iird(nRD,13))*sqrt(2); 
    EyeCRD(6,1,nRD) = IndRDsd5mx55(nRD,13,Iird(nRD,13))*sqrt(2); 
     
    [EyeCRD(8,3,nRD),Iird(nRD,17)] = max(RDlargeMxe(nRD,17,:));%region col 17 
    EyeCRD(8,1,nRD) = IndRDsd5mx55(nRD,17,Iird(nRD,17))*sqrt(2); 
    EyeCRD(8,2,nRD) = IndRDsd5mx55(nRD,17,Iird(nRD,17))*sqrt(2); 
  
  
end 
  
  
  
for nPV=1:length(PVDID) 
     
    %see tables in RD compared to PVD 2 
    %PVD, upright cross 
    [EyeCPVD(1,3,nPV),Iipvd(nPV,3)] = max(PVDlargeMxe(nPV,3,:));%region col 3 
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    EyeCPVD(1,2,nPV) = IndPVDsd5mx55(nPV,3,Iipvd(nPV,3)); 
     
    [EyeCPVD(3,3,nPV),Iipvd(nPV,7)] = max(PVDlargeMxe(nPV,7,:));%region col 7 
    EyeCPVD(3,1,nPV) = -IndPVDsd5mx55(nPV,7,Iipvd(nPV,7)); 
     
    [EyeCPVD(5,3,nPV),Iipvd(nPV,11)] = max(PVDlargeMxe(nPV,11,:));%region col 11 
    EyeCPVD(5,2,nPV) = -IndPVDsd5mx55(nPV,11,Iipvd(nPV,11)); 
     
    [EyeCPVD(7,3,nPV),Iipvd(nPV,15)] = max(PVDlargeMxe(nPV,15,:));%region col 15 
    EyeCPVD(7,1,nPV) = IndPVDsd5mx55(nPV,15,Iipvd(nPV,15)); 
     
     
     
    %PVD, diagonal crosses/regions 
    [EyeCPVD(2,3,nPV),Iipvd(nPV,5)] = max(PVDlargeMxe(nPV,5,:));%region col 5 
    EyeCPVD(2,2,nPV) = IndPVDsd5mx55(nPV,5,Iipvd(nPV,5))*sqrt(2); 
    EyeCPVD(2,1,nPV) = -IndPVDsd5mx55(nPV,5,Iipvd(nPV,5))*sqrt(2); 
     
    [EyeCPVD(4,3,nPV),Iipvd(nPV,9)] = max(PVDlargeMxe(nPV,9,:));%region col 9 
    EyeCPVD(4,1,nPV) = -IndPVDsd5mx55(nPV,9,Iipvd(nPV,9))*sqrt(2); 
    EyeCPVD(4,2,nPV) = -IndPVDsd5mx55(nPV,9,Iipvd(nPV,9))*sqrt(2); 
     
    [EyeCPVD(6,3,nPV),Iipvd(nPV,13)] = max(PVDlargeMxe(nPV,13,:));%region col 13 
    EyeCPVD(6,2,nPV) = -IndPVDsd5mx55(nPV,13,Iipvd(nPV,13))*sqrt(2); 
    EyeCPVD(6,1,nPV) = IndPVDsd5mx55(nPV,13,Iipvd(nPV,13))*sqrt(2); 
     
    [EyeCPVD(8,3,nPV),Iipvd(nPV,17)] = max(PVDlargeMxe(nPV,17,:));%region col 17 
    EyeCPVD(8,1,nPV) = IndPVDsd5mx55(nPV,17,Iipvd(nPV,17)); 
    EyeCPVD(8,2,nPV) = IndPVDsd5mx55(nPV,17,Iipvd(nPV,17)); 
  
  
end 
  
  
%% 
%{ 
%Use the doubles of ALL data (not just the larger values) to plot in 3D:  
%MaxE and its index, by region 
  
EyeCRDa = zeros(8,3,length(RDID));%sheet = eye, row = region, col = axis coordinate 
x,y,z 
EyeCPVDa = zeros(8,3,length(PVDID)); 
Iirda = zeros(length(RDID),17); 
Iipvda = zeros(length(PVDID),17); 
PVDk3 = cell(length(PVDID),1); 
PVDvol3 = zeros(length(PVDID),1); 
RDk3 = cell(length(RDID),1); 
RDvol3 = zeros(length(RDID),1); 
  
for nRD=1:length(RDID) 
     
    %see tables in RD compared to PVD 2, each sheet matches those 
    %RD, upright cross 
    [EyeCRDa(1,3,nRD),Iirda(nRD,3)] = max(RD3dMxe(nRD,3,:));%region col 3 
    EyeCRDa(1,2,nRD) = RD3dInd(nRD,3,Iirda(nRD,3)); 
     
    [EyeCRDa(3,3,nRD),Iirda(nRD,7)] = max(RD3dMxe(nRD,7,:));%region col 7 
    EyeCRDa(3,1,nRD) = -RD3dInd(nRD,7,Iirda(nRD,7)); 
     
    [EyeCRDa(5,3,nRD),Iirda(nRD,11)] = max(RD3dMxe(nRD,11,:));%region col 11 
    EyeCRDa(5,2,nRD) = -RD3dInd(nRD,11,Iirda(nRD,11)); 
     
    [EyeCRDa(7,3,nRD),Iirda(nRD,15)] = max(RD3dMxe(nRD,15,:));%region col 15 
    EyeCRDa(7,1,nRD) = RD3dInd(nRD,15,Iirda(nRD,15)); 
     
     
    %RD, diagonal crosses/regions 
    [EyeCRDa(2,3,nRD),Iirda(nRD,5)] = max(RD3dMxe(nRD,5,:));%region col 5 
    EyeCRDa(2,2,nRD) = RD3dInd(nRD,5,Iirda(nRD,5))*sqrt(2); 
    EyeCRDa(2,1,nRD) = -RD3dInd(nRD,5,Iirda(nRD,5))*sqrt(2); 
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    [EyeCRDa(4,3,nRD),Iirda(nRD,9)] = max(RD3dMxe(nRD,9,:));%region col 9 
    EyeCRDa(4,1,nRD) = -RD3dInd(nRD,9,Iirda(nRD,9))*sqrt(2); 
    EyeCRDa(4,2,nRD) = -RD3dInd(nRD,9,Iirda(nRD,9))*sqrt(2); 
     
    [EyeCRDa(6,3,nRD),Iirda(nRD,13)] = max(RD3dMxe(nRD,13,:));%region col 13 
    EyeCRDa(6,2,nRD) = -RD3dInd(nRD,13,Iirda(nRD,13))*sqrt(2); 
    EyeCRDa(6,1,nRD) = RD3dInd(nRD,13,Iirda(nRD,13))*sqrt(2); 
     
    [EyeCRDa(8,3,nRD),Iirda(nRD,17)] = max(RD3dMxe(nRD,17,:));%region col 17 
    EyeCRDa(8,1,nRD) = RD3dInd(nRD,17,Iirda(nRD,17))*sqrt(2); 
    EyeCRDa(8,2,nRD) = RD3dInd(nRD,17,Iirda(nRD,17))*sqrt(2); 
     
    if ~any(isnan(EyeCRDa(:,:,nRD))) 
    [RDk3{nRD},RDvol3(nRD)]= 
convhull(EyeCRDa(:,1,nRD),EyeCRDa(:,2,nRD),EyeCRDa(:,3,nRD)); 
    %RDvol3 is the convex hull volume enclosed by the coordinates for eye nRD 
    [RDk2xv{nRD},RDvol2xv(nRD)]= convhull(abs(EyeCRDa([1 3 5 7],1,nRD)+EyeCRDa([1 3 
5 7],2,nRD)),EyeCRDa([1 3 5 7],3,nRD)); 
    %RDvol2xv area enclosed by vertical cross regions 
    [RDk2xd{nRD},RDvol2xd(nRD)]= convhull(abs(EyeCRDa([2 4 6 8],1,nRD)),EyeCRDa([2 
4 6 8],3,nRD)); 
    %RDvol2xd area enclosed by diagonal cross regions 
    end 
  
  
end 
  
  
  
for nPV=1:length(PVDID) 
     
    %see tables in RD compared to PVD 2 
    %PVD, upright cross 
    [EyeCPVDa(1,3,nPV),Iipvda(nPV,3)] = max(PVD3dMxe(nPV,3,:));%region col 3 
    EyeCPVDa(1,2,nPV) = PVD3dInd(nPV,3,Iipvda(nPV,3)); 
     
    [EyeCPVDa(3,3,nPV),Iipvda(nPV,7)] = max(PVD3dMxe(nPV,7,:));%region col 7 
    EyeCPVDa(3,1,nPV) = -PVD3dInd(nPV,7,Iipvda(nPV,7)); 
     
    [EyeCPVDa(5,3,nPV),Iipvda(nPV,11)] = max(PVD3dMxe(nPV,11,:));%region col 11 
    EyeCPVDa(5,2,nPV) = -PVD3dInd(nPV,11,Iipvda(nPV,11)); 
     
    [EyeCPVDa(7,3,nPV),Iipvda(nPV,15)] = max(PVD3dMxe(nPV,15,:));%region col 15 
    EyeCPVDa(7,1,nPV) = PVD3dInd(nPV,15,Iipvda(nPV,15)); 
     
     
     
    %PVD, diagonal crosses/regions 
    [EyeCPVDa(2,3,nPV),Iipvda(nPV,5)] = max(PVD3dMxe(nPV,5,:));%region col 5 
    EyeCPVDa(2,2,nPV) = PVD3dInd(nPV,5,Iipvda(nPV,5))*sqrt(2); 
    EyeCPVDa(2,1,nPV) = -PVD3dInd(nPV,5,Iipvda(nPV,5))*sqrt(2); 
     
    [EyeCPVDa(4,3,nPV),Iipvda(nPV,9)] = max(PVD3dMxe(nPV,9,:));%region col 9 
    EyeCPVDa(4,1,nPV) = -PVD3dInd(nPV,9,Iipvda(nPV,9))*sqrt(2); 
    EyeCPVDa(4,2,nPV) = -PVD3dInd(nPV,9,Iipvda(nPV,9))*sqrt(2); 
     
    [EyeCPVDa(6,3,nPV),Iipvda(nPV,13)] = max(PVD3dMxe(nPV,13,:));%region col 13 
    EyeCPVDa(6,2,nPV) = -PVD3dInd(nPV,13,Iipvda(nPV,13))*sqrt(2); 
    EyeCPVDa(6,1,nPV) = PVD3dInd(nPV,13,Iipvda(nPV,13))*sqrt(2); 
     
    [EyeCPVDa(8,3,nPV),Iipvda(nPV,17)] = max(PVD3dMxe(nPV,17,:));%region col 17 
    EyeCPVDa(8,1,nPV) = PVD3dInd(nPV,17,Iipvda(nPV,17)); 
    EyeCPVDa(8,2,nPV) = PVD3dInd(nPV,17,Iipvda(nPV,17)); 
     
     
    if ~any(isnan(EyeCPVDa(:,:,nPV))) 
    [PVDk3{nPV},PVDvol3(nPV)]= 
convhull(EyeCPVDa(:,1,nPV),EyeCPVDa(:,2,nPV),EyeCPVDa(:,3,nPV)); 
    %PVDvol3 is the convex hull enclosed by the coordinates for eye nPV 
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    [PVDk2xv{nPV},PVDvol2xv(nPV)]= convhull(abs(EyeCPVDa([1 3 5 
7],1,nPV)+EyeCPVDa([1 3 5 7],2,nPV)),EyeCPVDa([1 3 5 7],3,nPV)); 
    %PVDvol2xv area enclosed by vertical cross regions 
    [PVDk2xd{nPV},PVDvol2xd(nPV)]= convhull(abs(EyeCPVDa([2 4 6 
8],1,nPV)),EyeCPVDa([2 4 6 8],3,nPV)); 
    %PVDvol2xd area enclosed by diagonal cross regions 
    end 
  
  
  
end 
  
  
  
  
%plot distribution of these values by eye 
for showIp = 1:16 
  
    subplot(4,4,showIp) 
    scatter(EyeCPVDa([2 4 6 8],1,showIp),EyeCPVDa([2 4 6 8],3,showIp).*EyeCPVDa([2 
4 6 8],2,showIp)./abs(EyeCPVDa([2 4 6 8],2,showIp)),'b') 
    view(0,0) 
    %xlim([-20 10]) 
    %ylim([-10 20]) 
    %zlim([0 5]) 
end 
  
figure 
for showIr = 1:16 
  
    subplot(4,4,showIr) 
    scatter(EyeCRDa([2 4 6 8],1,showIr),EyeCRDa([2 4 6 8],3,showIr).*EyeCRDa([2 4 6 
8],2,showIr)./EyeCRDa([2 4 6 8],2,showIr),'r') 
    view(0,0) 
    %xlim([-20 10]) 
    %ylim([-10 20]) 
    %zlim([0 5]) 
end 
  
  
%plot RDvol/PVDvol (the volume enclosed by these 3D points convex hull) 
xRD = 1:length(RDID); 
xPV = 1:length(PVDID); 
  
figure 
scatter(RDvol2xv,RDvol2xd,'r'); 
hold on 
scatter(PVDvol2xv,PVDvol2xd,'b'); 
%} 
%% 
%new method to 
%determine values of vertical and diagonal regions (maxE & Index) 
%for a simple four quandrant distribution of metrics 
xVc = [3 7 11 15];%columns for vertical cross 
xDc = [5 9 13 17];%diagonal cross 
  
for regcol = 1:4 
  
for nRD = 1:length(RDID) 
    %MaxE value, RD, vertical cross, row per eye, col = region 
[IRDcMvalV(nRD,regcol), IndIRDcV(nRD,regcol)] = max(RD3dMxe(nRD,xVc(regcol),:)); 
% index for maxE value 
IRDcMindV(nRD,regcol) = RD3dInd(nRD,xVc(regcol),IndIRDcV(nRD,regcol)); 
  
[IRDcMvalD(nRD,regcol), IndIRDcD(nRD,regcol)] = max(RD3dMxe(nRD,xDc(regcol),:)); 
IRDcMindD(nRD,regcol) = RD3dInd(nRD,xDc(regcol),IndIRDcD(nRD,regcol)); 
end 
  
% 
for nPV = 1:length(PVDID) 
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[IPVDcMvalV(nPV,regcol), IndIPVDcV(nPV,regcol)] = max(PVD3dMxe(nPV,xVc(regcol),:)); 
IPVDcMindV(nPV,regcol) = PVD3dInd(nPV,xVc(regcol),IndIPVDcV(nPV,regcol)); 
  
[IPVDcMvalD(nPV,regcol), IndIPVDcD(nPV,regcol)] = max(PVD3dMxe(nPV,xDc(regcol),:)); 
IPVDcMindD(nPV,regcol) = PVD3dInd(nPV,xDc(regcol),IndIPVDcD(nPV,regcol)); 
end 
  
end 
  
  
%distribute to quadrants:  
%vertical cross 
IRDcMvalV(:,1:2) = - IRDcMvalV(:,1:2);%MaxE value 
IRDcMindV(:,2:3) = - IRDcMindV(:,2:3);%MaxE index 
IPVDcMvalV(:,1:2) = - IPVDcMvalV(:,1:2); 
IPVDcMindV(:,2:3) = - IPVDcMindV(:,2:3); 
  
%polar coords, vertical cross 
[thRDV, RhoRDV] = cart2pol(IRDcMvalV,IRDcMindV);%polar coords RD vert cross 
[thPVDV,RhoPVDV] = cart2pol(IPVDcMvalV,IPVDcMindV); 
  
polRD = complex(RhoRDV, thRDV);%polar coords as complex number 
polPVD = complex(RhoPVDV, thPVDV);%still row = eye, col = region 
  
  
  
%diagonal cross 
IRDcMvalD(:,1:2) = - IRDcMvalD(:,1:2); 
IRDcMindD(:,2:3) = - IRDcMindD(:,2:3); 
IPVDcMvalD(:,1:2) = - IPVDcMvalD(:,1:2); 
IPVDcMindD(:,2:3) = - IPVDcMindD(:,2:3); 
  
  
figure 
  
for showIr = 1:16 
  
    subplot(4,4,showIr) 
    scatter(IRDcMvalV(showIr+16,:),IRDcMindV(showIr+16,:),'r') 
     
    xlim([-4 4]) 
    ylim([-10 10]) 
    %zlim([0 5]) 
end 
  
figure 
for showIp = 1:16 
  
    subplot(4,4,showIp) 
    scatter(IPVDcMvalV(showIp+16,:),IPVDcMindV(showIp+16,:),'b') 
     
    xlim([-4 4]) 
    ylim([-10 10]) 
    %zlim([0 5]) 
end 
  
  
%create DA models from polar coordinates - vertical cross 
DiagRD = ones(length(polRD),1);%RD = 1 
DiagPVD = zeros(length(polPVD),1);%PVD = 0 
Diagall = cat(1, DiagRD, DiagPVD); 
allpol = cat(1, polRD, polPVD); 
%NEED MATCHING AL: 
AllAL = cat(1,nALRD,nALPVD); 
  
%create random selection: 75/25 
Split = cvpartition(size(allpol,1),'HoldOut', 0.25); 
SplitID = Split.test; 
  
Trainset = allpol(~SplitID,:); 
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Testset = allpol(SplitID,:); 
TrsetD = Diagall(~SplitID,:);%training set label 
TesetD = Diagall(SplitID,:);%test set label 
TrsetAL = AllAL(~SplitID,:); 
TesetAL = AllAL(SplitID,:); 
  
Trainset = cat(2, Trainset,TrsetAL);%makes col5 = AL 
Testset = cat(2, Testset, TesetAL); 
  
for Ln = 1:size(Trainset,2) %single variable models to find best results 
    %this examines use of 4 quadrant MaxE/Ind utility, and AL 
     
    sinquadmod{Ln} = fitcdiscr(Trainset(:,Ln),TrsetD,'DiscrimType','quadratic'); 
    %determine single variable (quadrant) ability 
     
    Trsetdistr{Ln} = confusionmat(sinquadmod{Ln}.Y,resubPredict(sinquadmod{Ln})); 
     
    SCSTrset{Ln} = (Trsetdistr{Ln}(1)+Trsetdistr{Ln}(4))/sum(Trsetdistr{Ln}(1:4)); 
    %success rate of training set allocation: 
     
    valres{Ln} = predict(sinquadmod{Ln},Testset(:,Ln)); 
    %test set prediction 
     
    RDscs{Ln} = nnz(valres{Ln}==1 & TesetD==1);%RD labels correct 
    PVDfl{Ln} = nnz(valres{Ln}==1 & TesetD==0);%PVD incorrect 
     
end 
  
%try 5 variable model 
quad5mdl = fitcdiscr(Trainset,TrsetD,'DiscrimType','quadratic'); 
quad5mdldistr = confusionmat(quad5mdl.Y,resubPredict(quad5mdl)); 
val5res = predict(quad5mdl,Testset); 
RDscs5 = nnz(val5res==1 & TesetD==1);%RD labels correct 
PVDfl5 = nnz(val5res==1 & TesetD==0);%PVD incorrect 
  
%then 5 variables with adjusted known prior 
quad5mdl.Prior = [50 1]; 
val5resP50 = predict(quad5mdl,Testset); 
RDscs5P50 = nnz(val5resP50==1 & TesetD==1);%RD labels correct 
PVDfl5P50 = nnz(val5resP50==1 & TesetD==0);%PVD incorrect 
  
quad5mdl.Prior = [20 1]; 
val5resP20 = predict(quad5mdl,Testset); 
RDscs5P20 = nnz(val5resP20==1 & TesetD==1);%RD labels correct 
PVDfl5P20 = nnz(val5resP20==1 & TesetD==0);%PVD incorrect 
  
quad5mdl.Prior = [6 1]; 
val5resP6 = predict(quad5mdl,Testset); 
RDscs5P6 = nnz(val5resP6==1 & TesetD==1);%RD labels correct 
PVDfl5P6 = nnz(val5resP6==1 & TesetD==0);%PVD incorrect 
  
  
%% 
%combine the most successful single regions from both vertical and diagonal 
%crosses: SN, S, IN, I.  
  
%vert cols 1 & 3 
  
%Diag cols 3 & 4 
  
NasregsVRD = cat(2,IRDcMvalV(:,[1 3]),IRDcMvalD(:,[3 4])); 
NasregsIRD = cat(2,IRDcMindV(:,[1 3]),IRDcMindD(:,[3 4])); 
  
NasregsVPVD = cat(2,IPVDcMvalV(:,[1 3]),IPVDcMvalD(:,[3 4])); 
NasregsIPVD = cat(2,IPVDcMindV(:,[1 3]),IPVDcMindD(:,[3 4])); 
  
[thRDn, RhoRDn] = cart2pol(NasregsVRD,NasregsIRD);%polar coords RD vert cross 
[thPVDn,RhoPVDn] = cart2pol(NasregsVPVD,NasregsIPVD); 
  
polRDn = complex(RhoRDn, thRDn);%polar coords as complex number 
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polPVDn = complex(RhoPVDn, thPVDn);%still row = eye, col = region 
  
%create DA models from polar coordinates - vertical cross 
DiagRDn = ones(length(polRDn),1);%RD = 1 
DiagPVDn = zeros(length(polPVDn),1);%PVD = 0 
Diagalln = cat(1, DiagRDn, DiagPVDn); 
allpoln = cat(1, polRDn, polPVDn); 
%NEED MATCHING AL: 
AllALn = cat(1,nALRD,nALPVD); 
  
%create random selection: 75/25 
Splitn = cvpartition(size(allpoln,1),'HoldOut', 0.25); 
SplitIDn = Splitn.test; 
  
Trainsetn = allpoln(~SplitIDn,:); 
Testsetn = allpoln(SplitIDn,:); 
TrsetDn = Diagalln(~SplitIDn,:);%training set label 
TesetDn = Diagalln(SplitIDn,:);%test set label 
TrsetALn = AllALn(~SplitIDn,:); 
TesetALn = AllALn(SplitIDn,:); 
  
Trainsetn = cat(2, Trainsetn,TrsetALn);%makes col5 = AL 
Testsetn = cat(2, Testsetn, TesetALn); 
  
for Lnn = 1:size(Trainsetn,2) %single variable models to find best results 
    %this examines use of 4 quadrant MaxE/Ind utility, and AL 
     
    sinquadmodn{Lnn} = 
fitcdiscr(Trainsetn(:,Lnn),TrsetDn,'DiscrimType','quadratic'); 
    %determine single variable (quadrant) ability 
     
    Trsetdistrn{Lnn} = 
confusionmat(sinquadmodn{Lnn}.Y,resubPredict(sinquadmodn{Lnn})); 
     
    SCSTrsetn{Lnn} = 
(Trsetdistrn{Lnn}(1)+Trsetdistrn{Lnn}(4))/sum(Trsetdistrn{Lnn}(1:4)); 
    %success rate of training set allocation: 
     
    valresn{Lnn} = predict(sinquadmodn{Lnn},Testsetn(:,Lnn)); 
    %test set prediction 
     
    RDscsn{Lnn} = nnz(valresn{Lnn}==1 & TesetDn==1);%RD labels correct 
    PVDfln{Lnn} = nnz(valresn{Lnn}==1 & TesetDn==0);%PVD incorrect 
     
end 
  
%try 5 variable model 
quad5mdln = fitcdiscr(Trainsetn,TrsetDn,'DiscrimType','quadratic'); 
quad5mdldistrn = confusionmat(quad5mdln.Y,resubPredict(quad5mdln)); 
val5resn = predict(quad5mdln,Testsetn); 
RDscs5n = nnz(val5resn==1 & TesetDn==1);%RD labels correct 
PVDfl5n = nnz(val5resn==1 & TesetDn==0);%PVD incorrect 
  
%then 5 variables with adjusted known prior 
quad5mdln.Prior = [50 1]; 
val5resP50n = predict(quad5mdln,Testsetn); 
RDscs5P50n = nnz(val5resP50n==1 & TesetDn==1);%RD labels correct 
PVDfl5P50n = nnz(val5resP50n==1 & TesetDn==0);%PVD incorrect 
  
quad5mdln.Prior = [20 1]; 
val5resP20n = predict(quad5mdln,Testsetn); 
RDscs5P20n = nnz(val5resP20n==1 & TesetDn==1);%RD labels correct 
PVDfl5P20n = nnz(val5resP20n==1 & TesetDn==0);%PVD incorrect 
  
quad5mdln.Prior = [6 1]; 
val5resP6n = predict(quad5mdln,Testsetn); 
RDscs5P6n = nnz(val5resP6n==1 & TesetDn==1);%RD labels correct 
PVDfl5P6n = nnz(val5resP6n==1 & TesetDn==0);%PVD incorrect 
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5. ClsXval 
%cross validate a model - RD eyes  
%CHANGE save file name to reflect modelled data (line 14) in final line 
%CHANGE data in 14 and vectors in 17 to match 14 
% Use data from XvalRDPVDbyALmm eg LDA/qdaRDPVDmetrV, with Diagv (diagnosis),  
% to create a classifier. 
% Randomly (AL stratified) split the data (and diagv) into 5 five folds.  
% Run new model on 4 folds, predict on 5th fold.  
% Compare predict results to the folds Diagv to score result.  
% Calculate success rate for each fold. 
% Standard deviation of success rates. 
%runs validation set on whole classifier 
%now runs 100 x to get multiple SDs etc 
  
Clsdata = cat(2, ALvecv, RDPVDvars5noK(:,3:6));% the modelled data/observations 
Clsdiag = Diagv;% labels for each eye/row 
%final validation data  
Valset = cat(2,valsetALvecv, valsetrms10maxv, valsetrms10minv,... 
    valsetMaxe10maxv, valsetMaxe10minv);%concat matching features for line 12 
  
FEset = cat(2,FEALvecv, FErms10maxv, FErms10minv,... 
    FEMaxe10maxv, FEMaxe10minv); 
  
k = 5; %number of folds 
NumR=100; %number of iterations 
SDCls = zeros(NumR,1); 
rSDCls= zeros(NumR,1); 
SDCls50 = zeros(NumR,1); 
rSDCls50 = zeros(NumR,1); 
SDCls20 = zeros(NumR,1); 
rSDCls20= zeros(NumR,1); 
SDCls6 = zeros(NumR,1); 
rSDCls6= zeros(NumR,1); 
SDCls75 = zeros(NumR,1); 
rSDCls75= zeros(NumR,1); 
SDClsC = zeros(20,NumR); 
rSDClsC = zeros(20,NumR); 
TSclassall = cell (NumR,1); 
valsetlbls20 = cell (NumR,1); 
valsetlbls6 = cell (NumR,1); 
valsetlbls50 = cell (NumR,1); 
valsetlbls75 = cell (NumR,1); 
FElbls20 = cell (NumR,1); 
FElbls6 = cell (NumR,1); 
FElbls50 = cell (NumR,1); 
FElbls75 = cell (NumR,1); 
TSconmat = cell (NumR,1); 
NumIpfold = zeros(NumR,1); 
ValIfeat = cell (k,NumR); 
ValIdiag = cell (k,NumR); 
TSfeat = cell (k,NumR); 
TSdiag = cell (k,NumR); 
TSclass = cell(k,NumR);  
VSdiag = cell(k,NumR);  
Rtlbl = cell(k,NumR);  
Wrglbl = cell(k,NumR);  
PVDrt = cell(k,NumR);  
RDrt = cell(k,NumR);  
PVDwrg = cell(k,NumR);  
RDwrg = cell(k,NumR);  
Scsrate=zeros(k,NumR); 
VSdiag50 = cell(k,NumR);  
Rtlbl50 = cell(k,NumR);  
Wrglbl50 = cell(k,NumR);  
PVDrt50 = cell(k,NumR);  
RDrt50 = cell(k,NumR);  
PVDwrg50 = cell(k,NumR);  
RDwrg50 = cell(k,NumR);  
Scsrate50 = zeros(k,NumR); 
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VSdiag6 = cell(k,NumR);  
Rtlbl6 = cell(k,NumR);  
Wrglbl6 = cell(k,NumR);  
PVDrt6 = cell(k,NumR);  
RDrt6 = cell(k,NumR);  
PVDwrg6 = cell(k,NumR);  
RDwrg6 = cell(k,NumR);  
Scsrate6 = zeros(k,NumR);  
VSdiag20 = cell(k,NumR);  
Rtlbl20 = cell(k,NumR);  
Wrglbl20 = cell(k,NumR);  
PVDrt20 = cell(k,NumR);  
RDrt20 = cell(k,NumR);  
PVDwrg20 = cell(k,NumR);  
RDwrg20 = cell(k,NumR);  
Scsrate20 = zeros(k,NumR); 
VSdiag75 = cell(k,NumR);  
Rtlbl75  = cell(k,NumR);  
Wrglbl75 = cell(k,NumR);  
PVDrt75 = cell(k,NumR);  
RDrt75 = cell(k,NumR);  
RDwrg75 = cell(k,NumR);  
PVDwrg75 = cell(k,NumR); 
Scsrate75 = zeros(k,NumR); 
VSdiagC = cell (k,20,NumR); 
RtlblC = cell (k,20,NumR); 
WrglblC = cell (k,20,NumR); 
PVDrtC = cell (k,20,NumR); 
RDrtC = cell (k,20,NumR); 
PVDwrgC = cell (k,20,NumR); 
RDwrgC = cell (k,20,NumR); 
ScsrateC = zeros (k,20,NumR); 
  
  
%run 100 times 
for Rpt=1:NumR 
  
%the full classifier to run the validation set on 
TSclassall{Rpt} = fitcdiscr(Clsdata,Clsdiag,'DiscrimType','quadratic'); 
TSconmat{Rpt}=confusionmat(TSclassall{Rpt}.Y, resubPredict(TSclassall{Rpt})); 
  
%validation sets and FE predictions 
valsetlblsvanilla{Rpt} = predict(TSclassall{Rpt},Valset); 
FElblsvanilla{Rpt} = predict(TSclassall{Rpt},FEset); 
  
TSclassall{Rpt}.Prior = [6 1]; 
valsetlbls6{Rpt} = predict(TSclassall{Rpt},Valset); 
FElbls6{Rpt} = predict(TSclassall{Rpt},FEset); 
  
TSclassall{Rpt}.Prior = [20 1]; 
valsetlbls20{Rpt} = predict(TSclassall{Rpt},Valset); 
FElbls20{Rpt} = predict(TSclassall{Rpt},FEset); 
  
TSclassall{Rpt}.Prior = [50 1]; 
valsetlbls50{Rpt} = predict(TSclassall{Rpt},Valset); 
FElbls50{Rpt} = predict(TSclassall{Rpt},FEset); 
  
TSclassall{Rpt}.Prior = [75 1]; 
valsetlbls75{Rpt} = predict(TSclassall{Rpt},Valset); 
FElbls75{Rpt} = predict(TSclassall{Rpt},FEset); 
  
TSclassall{Rpt}.Prior = [0.64 0.36]; 
valsetlblsOpti{Rpt} = predict(TSclassall{Rpt},Valset); 
FElblsOpti{Rpt} = predict(TSclassall{Rpt},FEset); 
%randomly allocate to 5 folds 
%generate random distribution into 5 folds for RD SD etc 
  
NumIpfold(Rpt) = floor(size(Clsdata,1)/k);%number of eyes per k folds 
RemI=mod(size(Clsdata,1),k);%plus the remainder not divisible by k 
RanselI = zeros(k,NumIpfold(Rpt)); 
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for Ranrun=1:NumIpfold(Rpt) 
     
    RanselI(:,Ranrun) = randperm(k)'; 
end 
RanremI=randperm(RemI)'; 
RanselI = cat(1,RanselI(:),RanremI);%these are the indices to divide into folds 
  
%now divide into k folds 
%validating sets here are a fold of the training set 
for n =1:k 
    ValIfeat{n,Rpt} = Clsdata(RanselI==n,:);%validation set 
    ValIdiag{n,Rpt} = Clsdiag(RanselI==n,:); 
    TSfeat {n,Rpt} = Clsdata(RanselI~=n,:);%training set 
    TSdiag {n,Rpt} = Clsdiag(RanselI~=n,:); 
     
    %create classifier 
    TSclass{n,Rpt} = 
fitcdiscr(TSfeat{n,Rpt},TSdiag{n,Rpt},'DiscrimType','quadratic'); 
     
    %test classifier with validation set (= SINGLE FOLD) 
    VSdiag{n,Rpt} = predict(TSclass{n,Rpt},ValIfeat{n,Rpt}); 
     
    %number right/wrong in validation set 
    Rtlbl{n,Rpt} = nnz(VSdiag{n,Rpt}==ValIdiag{n,Rpt}); 
    Wrglbl{n,Rpt} = nnz(VSdiag{n,Rpt}~=ValIdiag{n,Rpt}); 
     
    %correct label by diagnosis 
    PVDrt{n,Rpt}=nnz((ValIdiag{n,Rpt}==1)&(VSdiag{n,Rpt}==ValIdiag{n,Rpt})); 
    RDrt{n,Rpt}=nnz((ValIdiag{n,Rpt}==2)&(VSdiag{n,Rpt}==ValIdiag{n,Rpt})); 
     
    %incorrect label by diagnosis 
    PVDwrg{n,Rpt}=nnz((ValIdiag{n,Rpt}==1)&(VSdiag{n,Rpt}~=ValIdiag{n,Rpt})); 
    RDwrg{n,Rpt}=nnz((ValIdiag{n,Rpt}==2)&(VSdiag{n,Rpt}~=ValIdiag{n,Rpt})); 
     
    Scsrate(n,Rpt) = Rtlbl{n,Rpt}/(Rtlbl{n,Rpt}+Wrglbl{n,Rpt}); 
     
     
    %next section NOT NEEDED (to line 264) 
    %change prior probability 
    TSclass{n,Rpt}.Prior = [50 1]; 
     
    %test classifier with validation set 
    VSdiag50{n,Rpt} = predict(TSclass{n,Rpt},ValIfeat{n,Rpt}); 
     
    %number right/wrong in validation set 
    Rtlbl50{n,Rpt} = nnz(VSdiag50{n,Rpt}==ValIdiag{n,Rpt}); 
    Wrglbl50{n,Rpt} = nnz(VSdiag50{n,Rpt}~=ValIdiag{n,Rpt}); 
     
    %correct label by diagnosis 
    PVDrt50{n,Rpt}=nnz((ValIdiag{n,Rpt}==1)&(VSdiag50{n,Rpt}==ValIdiag{n,Rpt})); 
    RDrt50{n,Rpt}=nnz((ValIdiag{n,Rpt}==2)&(VSdiag50{n,Rpt}==ValIdiag{n,Rpt})); 
     
    %incorrect label by diagnosis 
    PVDwrg50{n,Rpt}=nnz((ValIdiag{n,Rpt}==1)&(VSdiag50{n,Rpt}~=ValIdiag{n,Rpt})); 
    RDwrg50{n,Rpt}=nnz((ValIdiag{n,Rpt}==2)&(VSdiag50{n,Rpt}~=ValIdiag{n,Rpt})); 
     
    Scsrate50(n,Rpt) = Rtlbl50{n,Rpt}/(Rtlbl50{n,Rpt}+Wrglbl50{n,Rpt}); 
     
     
    %change prior probability 
    TSclass{n,Rpt}.Prior = [6 1]; 
     
    %test classifier with validation set 
    VSdiag6{n,Rpt} = predict(TSclass{n,Rpt},ValIfeat{n,Rpt}); 
     
    %number right/wrong in validation set 
    Rtlbl6{n,Rpt} = nnz(VSdiag6{n,Rpt}==ValIdiag{n,Rpt}); 
    Wrglbl6{n,Rpt} = nnz(VSdiag6{n,Rpt}~=ValIdiag{n,Rpt}); 
     
    %correct label by diagnosis 



  310 

    PVDrt6{n,Rpt}=nnz((ValIdiag{n,Rpt}==1)&(VSdiag6{n,Rpt}==ValIdiag{n,Rpt})); 
    RDrt6{n,Rpt}=nnz((ValIdiag{n,Rpt}==2)&(VSdiag6{n,Rpt}==ValIdiag{n,Rpt})); 
     
    %incorrect label by diagnosis 
    PVDwrg6{n,Rpt}=nnz((ValIdiag{n,Rpt}==1)&(VSdiag6{n,Rpt}~=ValIdiag{n,Rpt})); 
    RDwrg6{n,Rpt}=nnz((ValIdiag{n,Rpt}==2)&(VSdiag6{n,Rpt}~=ValIdiag{n,Rpt})); 
     
    Scsrate6(n,Rpt) = Rtlbl6{n,Rpt}/(Rtlbl6{n,Rpt}+Wrglbl6{n,Rpt}); 
     
     
     
    %change prior probability 
    TSclass{n,Rpt}.Prior = [20 1]; 
     
    %test classifier with validation set 
    VSdiag20{n,Rpt} = predict(TSclass{n,Rpt},ValIfeat{n,Rpt}); 
     
    %number right/wrong in validation set 
    Rtlbl20{n,Rpt} = nnz(VSdiag20{n,Rpt}==ValIdiag{n,Rpt}); 
    Wrglbl20{n,Rpt} = nnz(VSdiag20{n,Rpt}~=ValIdiag{n,Rpt}); 
     
    %correct label by diagnosis 
    PVDrt20{n,Rpt}=nnz((ValIdiag{n,Rpt}==1)&(VSdiag20{n,Rpt}==ValIdiag{n,Rpt})); 
    RDrt20{n,Rpt}=nnz((ValIdiag{n,Rpt}==2)&(VSdiag20{n,Rpt}==ValIdiag{n,Rpt})); 
     
    %incorrect label by diagnosis 
    PVDwrg20{n,Rpt}=nnz((ValIdiag{n,Rpt}==1)&(VSdiag20{n,Rpt}~=ValIdiag{n,Rpt})); 
    RDwrg20{n,Rpt}=nnz((ValIdiag{n,Rpt}==2)&(VSdiag20{n,Rpt}~=ValIdiag{n,Rpt})); 
     
    Scsrate20(n,Rpt) = Rtlbl20{n,Rpt}/(Rtlbl20{n,Rpt}+Wrglbl20{n,Rpt}); 
     
     
    %change prior probability to 75 
    TSclass{n,Rpt}.Prior = [75 1]; 
     
    %test classifier with validation set 
    VSdiag75{n,Rpt} = predict(TSclass{n,Rpt},ValIfeat{n,Rpt}); 
     
    %number right/wrong in validation set 
    Rtlbl75{n,Rpt} = nnz(VSdiag75{n,Rpt}==ValIdiag{n,Rpt}); 
    Wrglbl75{n,Rpt} = nnz(VSdiag75{n,Rpt}~=ValIdiag{n,Rpt}); 
     
    %correct label by diagnosis 
    PVDrt75{n,Rpt}=nnz((ValIdiag{n,Rpt}==1)&(VSdiag75{n,Rpt}==ValIdiag{n,Rpt})); 
    RDrt75{n,Rpt}=nnz((ValIdiag{n,Rpt}==2)&(VSdiag75{n,Rpt}==ValIdiag{n,Rpt})); 
     
    %incorrect label by diagnosis 
    PVDwrg75{n,Rpt}=nnz((ValIdiag{n,Rpt}==1)&(VSdiag75{n,Rpt}~=ValIdiag{n,Rpt})); 
    RDwrg75{n,Rpt}=nnz((ValIdiag{n,Rpt}==2)&(VSdiag75{n,Rpt}~=ValIdiag{n,Rpt})); 
     
    Scsrate75(n,Rpt) = Rtlbl75{n,Rpt}/(Rtlbl75{n,Rpt}+Wrglbl75{n,Rpt}); 
     
    
     
    for cOst = 1:10 
        %vary cost to create points for an ROC 
         
        TSclassall{Rpt}.Cost(1,2) = cOst*2;%increase cost of misclassifying PVD 
        
        %change prior 
        TSclassall{Rpt}.Prior = [50 1]; 
        valsetlbls50roc{Rpt,cOst} = predict(TSclassall{Rpt},Valset); 
        RDTP50(Rpt,cOst)=nnz(valsetlbls50roc{Rpt,cOst}==2 & valsetDiagv==2); 
        PVDFP50(Rpt,cOst)=nnz(valsetlbls50roc{Rpt,cOst}==2 & valsetDiagv==1); 
        RDFN50(Rpt,cOst)=nnz(valsetlbls50roc{Rpt,cOst}==1 & valsetDiagv==2); 
        PVDTN50(Rpt,cOst)=nnz(valsetlbls50roc{Rpt,cOst}==1 & valsetDiagv==1); 
         
        falposx50(Rpt,cOst) = 
PVDFP50(Rpt,cOst)/(PVDFP50(Rpt,cOst)+PVDTN50(Rpt,cOst)); 
        truposy50(Rpt,cOst) = RDTP50(Rpt,cOst)/(RDTP50(Rpt,cOst)+RDFN50(Rpt,cOst)); 
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        %change prior 
        TSclassall{Rpt}.Prior = [6 1]; 
        valsetlbls6roc{Rpt,cOst} = predict(TSclassall{Rpt},Valset); 
        RDTP6(Rpt,cOst)=nnz(valsetlbls6roc{Rpt,cOst}==2 & valsetDiagv==2); 
        PVDFP6(Rpt,cOst)=nnz(valsetlbls6roc{Rpt,cOst}==2 & valsetDiagv==1); 
        RDFN6(Rpt,cOst)=nnz(valsetlbls6roc{Rpt,cOst}==1 & valsetDiagv==2); 
        PVDTN6(Rpt,cOst)=nnz(valsetlbls6roc{Rpt,cOst}==1 & valsetDiagv==1); 
         
        falposx6(Rpt,cOst) = PVDFP6(Rpt,cOst)/(PVDFP6(Rpt,cOst)+PVDTN6(Rpt,cOst)); 
        truposy50(Rpt,cOst) = RDTP50(Rpt,cOst)/(RDTP50(Rpt,cOst)+RDFN50(Rpt,cOst)); 
        
         
         
    end 
     
     
end 
  
  
%standard deviation of success rate of the folds 
SDCls(Rpt) = std (Scsrate(:,Rpt)); 
rSDCls(Rpt)= SDCls(Rpt)/(mean(Scsrate(:,Rpt)));%relative SD = coefficient of 
variation 
  
SDCls50(Rpt) = std (Scsrate50(:,Rpt)); 
rSDCls50(Rpt) = SDCls50(Rpt)/(mean(Scsrate50(:,Rpt))); 
  
SDCls20(Rpt) = std (Scsrate20(:,Rpt)); 
rSDCls20(Rpt)= SDCls20(Rpt)/(mean(Scsrate20(:,Rpt))); 
  
SDCls6(Rpt) = std (Scsrate6(:,Rpt)); 
rSDCls6(Rpt)= SDCls6(Rpt)/(mean(Scsrate6(:,Rpt))); 
  
SDCls75(Rpt) = std (Scsrate75(:,Rpt)); 
rSDCls75(Rpt)= SDCls75(Rpt)/(mean(Scsrate75(:,Rpt))); 
  
for cOst = 1:10 
    SDClsC(cOst,Rpt) = std (ScsrateC(:,cOst,Rpt)); 
    rSDClsC(cOst,Rpt)= SDClsC(cOst)/(mean(ScsrateC(:,cOst,Rpt))); 
end 
  
end 
  
%average entries of classifier confusion matrix 
vecPVDwrg=cell2mat(PVDwrg); 
vecPVDrt=cell2mat(PVDrt); 
vecRDwrg=cell2mat(RDwrg); 
vecRDrt=cell2mat(RDrt); 
  
sumFvecPVDwrg=sum(vecPVDwrg); 
sumFvecPVDrt=sum(vecPVDrt); 
sumFvecRDwrg=sum(vecRDwrg); 
sumFvecRDrt=sum(vecRDrt); 
  
MeanPVDwrg = mean(sumFvecPVDwrg); 
MeanRDwrg = mean(sumFvecRDwrg); 
MeanPVDrt = mean(sumFvecPVDrt); 
MeanRDrt = mean(sumFvecRDrt); 
  
%mean SD of X validated classifiers 
SDClsMn = mean(SDCls(:)); 
SDCls6Mn = mean(SDCls6(:)); 
SDCls20Mn = mean(SDCls20(:)); 
SDCls50Mn = mean(SDCls50(:)); 
SDCls75Mn = mean(SDCls75(:)); 
  
%validation set results 
CMres=1; 
%number correctly labelled RD 
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    RDscs6(CMres)=nnz(valsetlbls6{CMres}==2 & valsetDiagv==2); 
    RDscs20(CMres)=nnz(valsetlbls20{CMres}==2 & valsetDiagv==2); 
    RDscs50(CMres)=nnz(valsetlbls50{CMres}==2 & valsetDiagv==2); 
    RDscs75(CMres)=nnz(valsetlbls75{CMres}==2 & valsetDiagv==2); 
    RDscsVanilla(CMres)=nnz(valsetlblsvanilla{CMres}==2 & valsetDiagv==2); 
    RDscsOpti(CMres)=nnz(valsetlblsOpti{CMres}==2 & valsetDiagv==2); 
     
    %Number of PVDs incorrectly labelled (same each) (FP) 
    PVDfl6(CMres)=nnz(valsetlbls6{CMres}==2 & valsetDiagv==1); 
    PVDfl20(CMres)=nnz(valsetlbls20{CMres}==2 & valsetDiagv==1); 
    PVDfl50(CMres)=nnz(valsetlbls50{CMres}==2 & valsetDiagv==1); 
    PVDfl75(CMres)=nnz(valsetlbls75{CMres}==2 & valsetDiagv==1); 
    PVDflvanilla(CMres)=nnz(valsetlblsvanilla{CMres}==2 & valsetDiagv==1); 
    PVDflOpti(CMres)=nnz(valsetlblsOpti{CMres}==2 & valsetDiagv==1); 
  
%incorrect RD 
    RDflVanilla(CMres)=nnz(valsetlblsvanilla{CMres}==1 & valsetDiagv==2); 
    RDflOpti(CMres)=nnz(valsetlblsOpti{CMres}==1 & valsetDiagv==2); 
%correct PVD 
    PVDscsvanilla(CMres)=nnz(valsetlblsvanilla{CMres}==1 & valsetDiagv==1); 
    PVDscsOpti(CMres)=nnz(valsetlblsOpti{CMres}==1 & valsetDiagv==1); 
     
%table lists the predictions by prior probability     
FErestable = table(FEGrpIID10v,FElbls6{1}, FElbls20{1}, FElbls50{1},FElbls75{1},... 
    'VariableNames',{'ID','prior6','prior20', 'prior50', 'prior75'}); 
%RD success ID 
RDscsID6 = valsetGrpIID10v(valsetlbls6{CMres}==2 & valsetDiagv==2); 
RDscsID20 = valsetGrpIID10v(valsetlbls20{CMres}==2 & valsetDiagv==2); 
RDscsID50 = valsetGrpIID10v(valsetlbls50{CMres}==2 & valsetDiagv==2); 
RDscsID75 = valsetGrpIID10v(valsetlbls75{CMres}==2 & valsetDiagv==2); 
%PVD fail ID 
PVDflID6 = valsetGrpIID10v(valsetlbls6{CMres}==2 & valsetDiagv==1); 
PVDflID20 = valsetGrpIID10v(valsetlbls20{CMres}==2 & valsetDiagv==1); 
PVDflID50 = valsetGrpIID10v(valsetlbls50{CMres}==2 & valsetDiagv==1); 
PVDflID75 = valsetGrpIID10v(valsetlbls75{CMres}==2 & valsetDiagv==1); 
  
%save ('/Users/stewartlake/Documents/Retinalcontour/LDA/Rpt 
S107/DAXvalRD5MmS107FEkb'); 
 
 
 
6. BSspec 
%BSspec - explore the difference in B scan spectra difference from the 
%normal, comparing RD & PVD. Uses Regdescr data 
%Uses data determined by Regdescr, which calculate RDabs11 and PVDabs11, FE 
%create mean FT distribution for larger values sumdiff 
%sets sumdiff == 1 to look at relative distribution (RD/PVDspecnormI) 
%non normalised data for magnitude analysis is RD/PVDmeanspecI 
%the aim is to look for areas of difference between RD & PVD 
%ADJUST: RUN TO LINE 169 AND ADJUST Sdlim, ie feature selection and 
%training different 
%ADJUST:then run single var mdl, then multi variable model from that 
Sdlim = 0.001;%SD threshold below which B scans are ignored (low for training, 
higher for feature selection 
%CHANGE Feats (line 285) to select model predictors from possible (R,I) 
%variable 
%This creates models with only B scans > Sdlim. To include all B scans run 
%once to line 169 to find regions,bin colmns, set these in mdldata, and run 
%again from beginning with Sdlim set very low (0.001?) 
%classifier saved - classifiers/reg bin QDA/ Fs5Trs3v.mat 
%full data saved in classifiers/reg bin QDA/BSspec110520 
%RD 
for yy=1:(size(RDSD,1)) 
     
    for xx = 1:17 
    
    RD3dSD(yy,xx,1:21) = RDSD{yy,xx}; 
    RD3dMxe(yy,xx,1:21) = RDMx11{yy,xx}; 
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    RD3dInd(yy,xx,1:21) = RDIndM{yy,xx}; 
    for absr = 1:21 
    RD3dabs11(yy,xx,absr,1:30) = RDabs11{yy,xx}(:,absr);%4D double contains B scan 
30 bins 
    end 
    end 
end 
  
%PVD 
for yyp=1:(size(PVDSD,1)) 
     
    for xxp = 1:17 
    
    PVD3dSD(yyp,xxp,1:21) = PVDSD{yyp,xxp};%eye x region x B scan 
    PVD3dMxe(yyp,xxp,1:21) = PVDMx11{yyp,xxp}; 
    PVD3dInd(yyp,xxp,1:21) = PVDIndM{yyp,xxp}; 
    for absp = 1:21 
    PVD3dabs11(yyp,xxp,absp,1:30) = PVDabs11{yyp,xxp}(:,absp); 
    end 
    end 
end 
  
  
%FE 
for yyf=1:(size(FESD,1)) 
     
    for xxf = 1:17 
    
    FE3dSD(yyf,xxf,1:21) = FESD{yyf,xxf}; 
    FE3dMxe(yyf,xxf,1:21) = FEMx11{yyf,xxf}; 
    FE3dInd(yyf,xxf,1:21) = FEIndM{yyf,xxf}; 
    for absf = 1:21 
    FE3dabs11(yyf,xxf,absf,1:30) = FEabs11{yyf,xxf}(:,absf);%4D double contains B 
scan 30 bins 
    end 
    end 
end 
  
%% 
%data metrics 
%{ 
%to get training set numbers: 
RDsplit = SplitID(1:53); 
PVDSplit = SplitID(54:end); 
  
RD3dSD(RDsplit==1,:,:)=[]; 
PVD3dSD(PVDSplit==1,:,:)=[]; 
%} 
  
%find number retinal B scans in each double. 
numRDBscan = sum(~isnan(RD3dInd),3); 
numPVDBscan = sum(~isnan(PVD3dInd),3); 
  
numRDBSreg = sum(~isnan(RD3dInd),[1 3]);%no Bscans by region, RD 
numPVDBSreg = sum(~isnan(PVD3dInd),[1 3]); 
numRDPVDBSreg = numRDBSreg + numPVDBSreg; 
  
IndRDsd5 = RD3dInd; 
IndPVDsd5 = PVD3dInd; 
IndRDsd5(RD3dSD<Sdlim)=NaN;%indices double for large SD 
IndPVDsd5(PVD3dSD<Sdlim)=NaN; 
  
regionsumRD5 = sum(~isnan(IndRDsd5),[1 3],'omitnan');%number Bscans largeSD by 
region 
regionsumPVD5 = sum(~isnan(IndPVDsd5),[1 3],'omitnan');% 
  
regionsumPVDRD5 = regionsumPVD5 + regionsumRD5; 
PCPBDRDbs5reg = (regionsumPVDRD5*100)./numRDPVDBSreg; % %bscan each region gtr 
Sdlim 
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PVDpcBsGT5 = regionsumPVD5/numPVDBSreg;%PVD Bs > sdlim 
RDpcBsGT5 = regionsumRD5/numRDBSreg; %RD Bs > sdlim 
  
  
%number B scans over threshold, per eye 
numRDOT = sum(RD3dSD>Sdlim,[2 3]); 
numPVDOT = sum(PVD3dSD>Sdlim,[2 3]); 
numFEOT = sum(FE3dSD>Sdlim,[2 3]); 
%get location of SD<Sdlim 
%[RDr,RDc,RDp] = ind2sub(size(RD3dSD),find(RD3dSD<Sdlim)); 
%[PVDr,PVDc,PVDp] = ind2sub(size(PVD3dSD),find(PVD3dSD<Sdlim)); 
totRDOT = sum(numRDOT(:)); 
totPVDOT = sum(numPVDOT(:)); 
  
%% 
RD4dabs11 = reshape(RD3dabs11,[],30); 
RD3dSDv = reshape(RD3dSD,[],1); 
IndRDlo = find(RD3dSDv<Sdlim); 
RD4dabs11(IndRDlo,:) = NaN; 
RD5abs = reshape(RD4dabs11,size(RDID,1),17,21,30);%only B scans greater than Sdlim 
  
PVD4dabs11 = reshape(PVD3dabs11,[],30); 
PVD3dSDv = reshape(PVD3dSD,[],1); 
IndPVDlo = find(PVD3dSDv<Sdlim); 
PVD4dabs11(IndPVDlo,:) = NaN; 
PVD5abs = reshape(PVD4dabs11,size(PVDID,1),17,21,30); 
  
FE4dabs11 = reshape(FE3dabs11,[],30); 
FE3dSDv = reshape(FE3dSD,[],1); 
IndFElo = find(FE3dSDv<Sdlim); 
FE4dabs11(IndFElo,:) = NaN; 
FE5abs = reshape(FE4dabs11,size(FEID,1),17,21,30); 
  
DiagRD = ones(size(RD5abs,1),1);%RD = 1 
DiagPVD = zeros(size(PVD5abs,1),1);%PVD = 0 
Diagall = cat(1, DiagRD, DiagPVD); 
  
  
%create random selection: 70/30 
Split = cvpartition(size(Diagall,1),'HoldOut', 0.30); 
SplitID = Split.test;%test set 
  
%how many Bscans SD>5: sizes of IndSD5/allSD 
allSD = cat(1, RD3dSDv, PVD3dSDv,FE3dSDv);%? include FE 
allSDsorted = sort(allSD); 
IndSD5 = find(allSDsorted>5); 
IndSD2 = find(allSDsorted>2); 
  
figure 
HistRDPVD = histogram(allSD); 
%HistRDPVD.BinLimits = [0 10];%if required to illustrate lower bins 
figure%distribution of sd by diagnosis 
HistRD = histogram(RD3dSDv,'FaceColor','r'); 
hold on  
HistPVD = histogram(PVD3dSDv,'FaceColor','b'); 
HistRD.Normalization = 'probability'; 
HistPVD.Normalization = 'probability'; 
  
RDmeanspecI=mean(RD5abs,[1 3], 'omitnan');%so mean B scan value per cube 
RDmeanspecI= reshape(RDmeanspecI,[17,30]);%17 x 30 array mean region x bin 
  
PVDmeanspecI=mean(PVD5abs,[1 3],'omitnan');%mean bin value 
PVDmeanspecI= reshape(PVDmeanspecI,[17,30]);%row per region, column = bin 
  
FEmeanspecI=mean(FE5abs,[1 3],'omitnan'); 
FEmeanspecI= reshape(FEmeanspecI,[17,30]);%17 x 30 array mean region x bin 
  
  
RDspecnormI = RDmeanspecI./sum(RDmeanspecI,2);%normalise to sum=1  
PVDspecnormI = PVDmeanspecI./sum(PVDmeanspecI,2);% 
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FEspecnormI = FEmeanspecI./sum(FEmeanspecI,2);%normalise to sum=1  
  
%find indices of maximum differences of regional bins 
diffRDPVDn = abs(RDspecnormI-PVDspecnormI);%normalised diff 
[Mdiffn,IndMdiffn] = maxk(diffRDPVDn(:),6);%4 largest differences 
[Rdiffn,Cdiffn] = ind2sub([17 30],IndMdiffn); 
  
diffRDPVD = abs(RDmeanspecI-PVDmeanspecI);%absolute diff 
[Mdiff,IndMdiff] = maxk(diffRDPVD(:),6);%4 largest differences 
[Rdiff,Cdiff] = ind2sub([17 30],IndMdiff); 
  
  
  
%% 
%here the data is split to use only the training set data for feature 
%selection. e.g., for Sdlim=2, with differences in the 
%regions, if not the bin indices: 
%region (all I) 4 1 2 1 2 14 
%region (feature/trining set) 4 5 1 4 14 3 
%norm region (all I) 2 3 14 9 1 13 
%norm region (feat/Tr set) 3 5 9 14 10 1  
%so end up with 1 region different: 5 instead of 1 
  
FeatIDsetRD = RD5abs(~SplitID(1:length(RD5abs)),:,:,:);%not test set = training 
FeatIDsetPVD = PVD5abs(~SplitID(length(RD5abs)+1:end),:,:,:); 
  
  
RDmeanspecIf=mean(FeatIDsetRD,[1 3],'omitnan'); 
RDmeanspecIf= reshape(RDmeanspecIf,[17,30]);%17 x 30 array mean region x bin 
  
PVDmeanspecIf=mean(FeatIDsetPVD,[1 3],'omitnan');%mean bin value 
PVDmeanspecIf= reshape(PVDmeanspecIf,[17,30]);%row per region, column = bin 
  
RDspecnormIf = RDmeanspecIf./sum(RDmeanspecIf,2);%normalise to sum=1  
PVDspecnormIf = PVDmeanspecIf./sum(PVDmeanspecIf,2); 
  
  
%find indices of maximum differences of regional bins 
diffRDPVDnf = abs(RDspecnormIf-PVDspecnormIf);%normalised diff 
[Mdiffnf,IndMdiffnf] = maxk(diffRDPVDnf(:),6);%6 largest differences 
[Rdiffnf,Cdiffnf] = ind2sub([17 30],IndMdiffnf); 
  
diffRDPVDf = abs(RDmeanspecIf-PVDmeanspecIf);%absolute diff 
[Mdifff,IndMdifff] = maxk(diffRDPVDf(:),6);%6 largest differences 
[Rdifff,Cdifff] = ind2sub([17 30],IndMdifff); 
  
%STOP HERE TO SELECT COLUMNS/STRINGS FROM R/CDIFFF(N) FOR BELOW 
%% 
%now construct DA models from the (region,bins) with the largest difference 
%between PVD and RD eyes (feature selection Sdliminted, above) 
%arrays with large value SD are RD5abs and PVD5abs. If not enough elements 
%in these include all values SD using RD/PVD3dabs11 (ie training set from 
%all data) 
%these arrays are eyes x regions x B scans x bins 
%((cols and pages selected from lines 76 & 80 Cdiff(n) & Rdiff(n))) 
%BETTER to select features from training set only: R/Cdifff(n) 
%where R = region, C = bin (vector 2 & 4 in RD5abs respectively) 
%model data, MAX single value for each eye from any B scan in region/bin 
RDmdldata(1:size(RD5abs,1),1) = max(squeeze(RD5abs(:,8,:,3)),[],2,'omitnan');%eyes 
in rows, first region 
RDmdldata(1:size(RD5abs,1),2) = max(squeeze(RD5abs(:,3,:,2)),[],2,'omitnan'); 
RDmdldata(1:size(RD5abs,1),3) = max(squeeze(RD5abs(:,5,:,3)),[],2,'omitnan'); 
RDmdldata(1:size(RD5abs,1),4) = max(squeeze(RD5abs(:,3,:,3)),[],2,'omitnan'); 
RDmdldata(1:size(RD5abs,1),5) = max(squeeze(RD5abs(:,16,:,3)),[],2,'omitnan'); 
RDmdldata(1:size(RD5abs,1),6) = max(squeeze(RD5abs(:,6,:,2)),[],2,'omitnan'); 
%RDmdldata(1:size(RD5abs,1),7) = max(squeeze(RD5abs(:,3,:,2)),[],2,'omitnan'); 
  
PVDmdldata(1:size(PVD5abs,1),1) = 
max(squeeze(PVD5abs(:,8,:,3)),[],2,'omitnan');%eyes x b scans, first region 
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PVDmdldata(1:size(PVD5abs,1),2) = max(squeeze(PVD5abs(:,3,:,2)),[],2,'omitnan'); 
PVDmdldata(1:size(PVD5abs,1),3) = max(squeeze(PVD5abs(:,5,:,3)),[],2,'omitnan'); 
PVDmdldata(1:size(PVD5abs,1),4) = max(squeeze(PVD5abs(:,3,:,3)),[],2,'omitnan'); 
PVDmdldata(1:size(PVD5abs,1),5) = max(squeeze(PVD5abs(:,16,:,3)),[],2,'omitnan'); 
PVDmdldata(1:size(PVD5abs,1),6) = max(squeeze(PVD5abs(:,6,:,2)),[],2,'omitnan'); 
%PVDmdldata(1:size(PVD5abs,1),7) = max(squeeze(PVD5abs(:,3,:,2)),[],2,'omitnan'); 
  
  
FEmdldata(1:size(FE5abs,1),1) = max(squeeze(FE5abs(:,8,:,3)),[],2,'omitnan');%eyes 
in rows, first region 
FEmdldata(1:size(FE5abs,1),2) = max(squeeze(FE5abs(:,3,:,2)),[],2,'omitnan'); 
FEmdldata(1:size(FE5abs,1),3) = max(squeeze(FE5abs(:,5,:,3)),[],2,'omitnan'); 
FEmdldata(1:size(FE5abs,1),4) = max(squeeze(FE5abs(:,3,:,3)),[],2,'omitnan'); 
FEmdldata(1:size(FE5abs,1),5) = max(squeeze(FE5abs(:,16,:,3)),[],2,'omitnan'); 
FEmdldata(1:size(FE5abs,1),6) = max(squeeze(FE5abs(:,6,:,2)),[],2,'omitnan'); 
%FEmdldata(1:size(FE5abs,1),7) = max(squeeze(FE5abs(:,3,:,2)),[],2,'omitnan'); 
  
%training set 
alldata = cat(1, RDmdldata, PVDmdldata);%Dont need FE as FE is an additional 
testing set 
%NEED MATCHING AL: 
AllAL = cat(1,nALRD,nALPVD);%the n prefix ensures correct alignment AL with data 
allID = cat(1, RDID, PVDID); 
Allage = cat(1,nAgeRD,nAgePVD); 
  
Trainset = alldata(~SplitID,:);%the training set 
Testset = alldata(SplitID,:); 
TrsetD = Diagall(~SplitID,:);%training set group diagnostic category 
TesetD = Diagall(SplitID,:);%test set group 
TrsetAL = AllAL(~SplitID,:); 
TesetAL = AllAL(SplitID,:); 
TesetID = allID(SplitID,:); 
Trainset = cat(2, Trainset,TrsetAL);%makes col7 = AL 
Testset = cat(2, Testset, TesetAL); 
Feset = cat(2,FEmdldata,nALFE); 
TrsetID = allID(~SplitID,:); 
TrsetAge = Allage(~SplitID,:); 
TesetAge = Allage(SplitID,:); 
for Ln1 = 1:size(Trainset,2) %single variable models to find best results 
    %((this examined use of 4 quadrant MaxE/Ind utility, and AL (from 
    %Regdescr3D))) 
    sinquadmod1{Ln1} = fitcdiscr(Trainset(:,Ln1),TrsetD,'DiscrimType','quadratic'); 
    %determine single variable (quadrant) ability 
     
    Trsetdistr1{Ln1} = 
confusionmat(sinquadmod1{Ln1}.Y,resubPredict(sinquadmod1{Ln1})); 
     
    SCSTrset1{Ln1} = 
(Trsetdistr1{Ln1}(1)+Trsetdistr1{Ln1}(4))/sum(Trsetdistr1{Ln1}(1:4)); 
    %success rate of training set allocation: 
     
    valres1{Ln1} = predict(sinquadmod1{Ln1},Testset(:,Ln1)); 
    %test set prediction, single variable models 
     
    RDscs1{Ln1} = nnz(valres1{Ln1}==1 & TesetD==1);%RD labels correct 
    PVDfl1{Ln1} = nnz(valres1{Ln1}==1 & TesetD==0);%PVD incorrect 
     
end 
%Feats = [2 3 7] is [3,2], [5,3], AL (see RDmdldata lines 221-226) 
Feats = [3 7];%variables to use as features (from Trainset/Teset) 
%try n variable model. n= number of vars(columns) taken from Trainset) 
quad4mdl1 = fitcdiscr(Trainset(:,Feats),TrsetD,'DiscrimType','quadratic'); 
quad4mdldistr1 = confusionmat(quad4mdl1.Y,resubPredict(quad4mdl1)); 
%added predict FE here 
val4res1 = predict(quad4mdl1,Testset(:,Feats));%vanilla 
FE4pre1 = predict(quad4mdl1,Feset(:,Feats)); 
RDscs41 = nnz(val4res1==1 & TesetD==1);%RD labels correct 
PVDfl41 = nnz(val4res1==1 & TesetD==0);%PVD incorrect 
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%added predict FE after each valres 
%then 4 variables with adjusted known prior 
quad4mdl1.Prior = [50 1]; 
val4resP501 = predict(quad4mdl1,Testset(:,Feats));%test sets 
FepreP501 = predict(quad4mdl1,Feset(:,Feats)); 
RDscs4P501 = nnz(val4resP501==1 & TesetD==1);%RD labels correct 
PVDfl4P501 = nnz(val4resP501==1 & TesetD==0);%PVD incorrect 
  
quad4mdl1.Prior = [20 1]; 
val4resP201 = predict(quad4mdl1,Testset(:,Feats)); 
FepreP201 = predict(quad4mdl1,Feset(:,Feats)); 
RDscs4P201 = nnz(val4resP201==1 & TesetD==1);%RD labels correct 
PVDfl4P201 = nnz(val4resP201==1 & TesetD==0);%PVD incorrect 
  
quad4mdl1.Prior = [6 1]; 
val4resP61 = predict(quad4mdl1,Testset(:,Feats)); 
FepreP61 = predict(quad4mdl1,Feset(:,Feats)); 
RDscs4P61 = nnz(val4resP61==1 & TesetD==1);%RD labels correct 
PVDfl4P61 = nnz(val4resP61==1 & TesetD==0);%PVD incorrect 
  
quad4mdl1.Prior = [0.64 0.36]; 
val4resPopti = predict(quad4mdl1,Testset(:,Feats));%wt optimised test set results 
FeprePopti = predict(quad4mdl1,Feset(:,Feats)); 
RDscs4Popti = nnz(val4resPopti==1 & TesetD==1);%RD labels correct 
PVDfl4Popti = nnz(val4resPopti==1 & TesetD==0);%PVD incorrect 
RDfl4Popti = nnz(val4resPopti==0 & TesetD==1);%RD labels incorrect 
PVDscs4Popti = nnz(val4resPopti==0 & TesetD==0);%PVD correct 
Tesetlble1 = TesetID(val4resPopti==1);%ID of test set labelled '1' 
  
  
RDvset = Testset(TesetD==1,Feats);%RD variables 
%develop sens/spec for different weighting - see CreROCTS 
%{ 
for Wtp = 1:50 
quad4mdl1.Prior = [Wtp 1]; 
val4resPWt{Wtp} = predict(quad4mdl1,Testset(:,Feats)); 
nowresvec = []; 
nowresvec = val4resPWt{Wtp}; 
FeprePWt{Wtp} = predict(quad4mdl1,Feset(:,Feats)); 
RDscs1Wt(Wtp) = nnz(nowresvec==1 & TesetD==1);%RD labels correct 
PVDfl1Wt(Wtp) = nnz(nowresvec==1 & TesetD==0);%PVD incorrect 
PVDsc1Wt(Wtp) = nnz(nowresvec==0 & TesetD==0);%PVD correct 
  
Wtscs(Wtp) = (RDscs1Wt(Wtp)+PVDsc1Wt(Wtp))/size(TesetD,1);%success rate 
Wtsens(Wtp) = RDscs1Wt(Wtp)/nnz(TesetD==1);%sensitivity 
Wtspec(Wtp) = PVDsc1Wt(Wtp)/nnz(TesetD==0);%specificity 
  
end 
  
for WtR = 1:50 
quad4mdl1.Prior = [1 WtR]; 
val4resRWt{WtR} = predict(quad4mdl1,Testset(:,Feats)); 
nowresvec = []; 
nowresvec = val4resRWt{WtR}; 
FepreRWt{WtR} = predict(quad4mdl1,Feset(:,Feats)); 
RDscs1WtR(WtR) = nnz(nowresvec==1 & TesetD==1);%RD labels correct 
PVDfl1WtR(WtR) = nnz(nowresvec==1 & TesetD==0);%PVD incorrect 
PVDsc1WtR(WtR) = nnz(nowresvec==0 & TesetD==0);%PVD correct 
  
WtscsR(WtR) = (RDscs1WtR(WtR)+PVDsc1WtR(WtR))/size(TesetD,1);%success rate 
WtsensR(WtR) = RDscs1WtR(WtR)/nnz(TesetD==1);%sensitivity 
WtspecR(WtR) = PVDsc1WtR(WtR)/nnz(TesetD==0);%specificity 
  
end 
%} 
%% 
spsz=18;%figure spot size 
figure%mean bin distribution difference across all of eyes 
scatter(1:30,mean(RDspecnormI,'omitnan'),spsz,'r','x'); 
hold on 
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scatter(1:30,mean(PVDspecnormI,'omitnan'),spsz,'b','+'); 
title('Mean value all regions'); 
ylabel('Normalised bin magnitude'); 
xlabel('Bin (0.11 cycles/mm per bin)'); 
legend('RD','PVD'); 
  
  
  
figure %tiled plot of regional bin distribution 
regfig = tiledlayout(5,5,'TileSpacing','none','Padding', 'none'); 
  
Rfig(1) = nexttile(1); 
scatter(1:30,RDspecnormI(5,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(5,:),spsz,'b','+'); 
  
Rfig(2) = nexttile(3); 
scatter(1:30,RDspecnormI(3,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(3,:),spsz,'b','+'); 
  
Rfig(3) = nexttile(5); 
scatter(1:30,RDspecnormI(17,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(17,:),spsz,'b','+'); 
  
Rfig(4) = nexttile(7); 
scatter(1:30,RDspecnormI(4,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(4,:),spsz,'b','+'); 
  
Rfig(5) = nexttile(8); 
scatter(1:30,RDspecnormI(2,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(2,:),spsz,'b','+'); 
  
Rfig(6) = nexttile(9); 
scatter(1:30,RDspecnormI(16,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(16,:),spsz,'b','+'); 
  
Rfig(7) = nexttile(11); 
scatter(1:30,RDspecnormI(6,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(6,:),spsz,'b','+'); 
  
Rfig(8) = nexttile(12); 
scatter(1:30,RDspecnormI(6,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(6,:),spsz,'b','+'); 
  
Rfig(9) = nexttile(13); 
scatter(1:30,RDspecnormI(1,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(1,:),spsz,'b','+'); 
  
Rfig(10) = nexttile(14); 
scatter(1:30,RDspecnormI(14,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(14,:),spsz,'b','+'); 
  
Rfig(11) = nexttile(15); 
scatter(1:30,RDspecnormI(15,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(15,:),spsz,'b','+'); 
  
Rfig(12) = nexttile(17); 
scatter(1:30,RDspecnormI(8,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(8,:),spsz,'b','+'); 
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Rfig(13) = nexttile(18); 
scatter(1:30,RDspecnormI(10,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(10,:),spsz,'b','+'); 
  
Rfig(14) = nexttile(19); 
scatter(1:30,RDspecnormI(12,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(12,:),spsz,'b','+'); 
  
Rfig(15) = nexttile(21); 
scatter(1:30,RDspecnormI(9,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(9,:),spsz,'b','+'); 
  
Rfig(16) = nexttile(23); 
scatter(1:30,RDspecnormI(11,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(11,:),spsz,'b','+'); 
  
Rfig(17) = nexttile(25); 
scatter(1:30,RDspecnormI(13,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormI(13,:),spsz,'b','+'); 
  
linkaxes(Rfig(:),'xy');%link axes limits 
Rfig(1).XLim = [0 10];%remove bins 11-30 
  
title(regfig,['Region bin variation, RD & PVD, for B scans SD>' num2str(Sdlim)]); 
ylabel(regfig,'Mean (normalised) bin, difference from average'); 
xlabel(regfig,'Bin number (0.11 cycles/mm)'); 
  
  
%% 
%demographic stats of groups - better to see RTDPVDdem as combines sets 
PVDalmean = mean(nALPVD,'omitnan'); 
PVDagemean = mean(nAgePVD,'omitnan'); 
PVDalsd = std(nALPVD, 'omitnan'); 
PVDagesd = std(nAgePVD, 'omitnan'); 
  
RDalmean = mean(nALRD,'omitnan'); 
RDagemean = mean(nAgeRD,'omitnan'); 
RDalsd = std(nALRD, 'omitnan'); 
RDagesd = std(nAgeRD, 'omitnan'); 
  
TeRDalmean = mean(TesetAL(TesetD==1),'omitnan'); 
TeRDagemean = mean(TesetAge(TesetD==1),'omitnan'); 
TeRDalsd = std(TesetAL(TesetD==1), 'omitnan'); 
TeRDagesd = std(TesetAge(TesetD==1), 'omitnan'); 
  
TrRDalmean = mean(TrsetAL(TrsetD==1),'omitnan'); 
TrRDagemean = mean(TrsetAge(TrsetD==1),'omitnan'); 
TrRDalsd = std(TrsetAL(TrsetD==1), 'omitnan'); 
TrRDagesd = std(TrsetAge(TrsetD==1), 'omitnan'); 
  
TrPVDalmean = mean(TrsetAL(TrsetD==0),'omitnan'); 
TrPVDagemean = mean(TrsetAge(TrsetD==0),'omitnan'); 
TrPVDalsd = std(TrsetAL(TrsetD==0), 'omitnan'); 
TrPVDagesd = std(TrsetAge(TrsetD==0), 'omitnan'); 
  
TePVDalmean = mean(TesetAL(TesetD==0),'omitnan'); 
TePVDagemean = mean(TesetAge(TesetD==0),'omitnan'); 
TePVDalsd = std(TesetAL(TesetD==0), 'omitnan'); 
TePVDagesd = std(TesetAge(TesetD==0), 'omitnan'); 
  
[hAL,pAL,ciAL,stAL] = ttest2(nALRD,nALPVD);%are RD/PVD the same AL? 
  
[hAge,pAge,ciAge,stAge] = ttest2(nAgeRD,nAgePVD);%are RD/PVD the same Age? 
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%Identify eyes incorreclty labelled as PVD 
TesetRDfl1 = TesetID;%validation set IDs 
TesetRDfl1(TesetD==0) = {NaN};%remove IDs of PVD eyes 
TesetRDfl1(val4res1==1) = {NaN}; %remove IDS of successfully labelled 
  
%% 
spsz=18; 
figure %tiled plot of regional bin distribution training set 
regfigts = tiledlayout(5,5,'TileSpacing','none','Padding', 'none'); 
  
Rfigts(1) = nexttile(1); 
scatter(1:30,RDspecnormIf(5,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(5,:),spsz,'b','+'); 
  
Rfigts(2) = nexttile(3); 
scatter(1:30,RDspecnormIf(3,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(3,:),spsz,'b','+'); 
  
Rfigts(3) = nexttile(5); 
scatter(1:30,RDspecnormIf(17,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(17,:),spsz,'b','+'); 
  
Rfigts(4) = nexttile(7); 
scatter(1:30,RDspecnormIf(4,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(4,:),spsz,'b','+'); 
  
Rfigts(5) = nexttile(8); 
scatter(1:30,RDspecnormIf(2,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(2,:),spsz,'b','+'); 
  
Rfigts(6) = nexttile(9); 
scatter(1:30,RDspecnormIf(16,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(16,:),spsz,'b','+'); 
  
Rfigts(7) = nexttile(11); 
scatter(1:30,RDspecnormIf(6,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(6,:),spsz,'b','+'); 
  
Rfigts(8) = nexttile(12); 
scatter(1:30,RDspecnormIf(6,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(6,:),spsz,'b','+'); 
  
Rfigts(9) = nexttile(13); 
scatter(1:30,RDspecnormIf(1,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(1,:),spsz,'b','+'); 
  
Rfigts(10) = nexttile(14); 
scatter(1:30,RDspecnormIf(14,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(14,:),spsz,'b','+'); 
  
Rfigts(11) = nexttile(15); 
scatter(1:30,RDspecnormIf(15,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(15,:),spsz,'b','+'); 
  
Rfigts(12) = nexttile(17); 
scatter(1:30,RDspecnormIf(8,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(8,:),spsz,'b','+'); 
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Rfigts(13) = nexttile(18); 
scatter(1:30,RDspecnormIf(10,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(10,:),spsz,'b','+'); 
  
Rfigts(14) = nexttile(19); 
scatter(1:30,RDspecnormIf(12,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(12,:),spsz,'b','+'); 
  
Rfigts(15) = nexttile(21); 
scatter(1:30,RDspecnormIf(9,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(9,:),spsz,'b','+'); 
  
Rfigts(16) = nexttile(23); 
scatter(1:30,RDspecnormIf(11,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(11,:),spsz,'b','+'); 
  
Rfigts(17) = nexttile(25); 
scatter(1:30,RDspecnormIf(13,:),spsz,'r','x'); 
hold on 
scatter(1:30,PVDspecnormIf(13,:),spsz,'b','+'); 
  
linkaxes(Rfigts(:),'xy');%link axes limits 
Rfigts(1).XLim = [0 10];%remove bins 11-30 
  
title(regfigts,['Region bin variation, RD & PVD, for B scans SD>' num2str(Sdlim)]); 
ylabel(regfigts,'Mean (normalised) bin, difference from average'); 
xlabel(regfigts,'Bin number (0.11 cycles/mm)'); 
set(gca, 'LineWidth', 1, 'FontWeight', 'bold', 'FontSize', 10); 
  
%surf plots of bin/region anomaly differences between diagnosis 
xG=1:30; 
yG = 1:17; 
[Xgrid,Ygrid] = meshgrid(xG,yG); 
figure 
surf(Xgrid,Ygrid,abs(RDspecnormI-PVDspecnormI));%normalised 
xlabel('frequency bin'); 
ylabel('region'); 
zlabel('anomaly'); 
  
figure 
surf(Xgrid,Ygrid,abs(RDmeanspecI-PVDmeanspecI));%real values 
xlabel('frequency bin'); 
ylabel('region'); 
zlabel('anomaly'); 
  
PVDmnbin = mean(PVDmeanspecI); 
RDmnbin = mean(RDmeanspecI); 
bindiff = RDmnbin-PVDmnbin; 
  
%ttests of signififcant bin differences between groups 
[hA2, pA2, ciA2, ~] = ttest2(PVDmeanspecI(:,2), RDmeanspecI(:,2)); 
[hA3, pA3, ciA3, ~] = ttest2(PVDmeanspecI(:,3), RDmeanspecI(:,3)); 
PVDbins23 = cat(1, PVDmeanspecI(:,2),PVDmeanspecI(:,3)); 
RDbins23 = cat(1, RDmeanspecI(:,2),RDmeanspecI(:,3)); 
[hA23, pA23, ciA23, ~] = ttest2(PVDbins23,RDbins23); 
  
%% 
%{ 
%settings used for tech paper figure: 
spsz=32; 
scatter(1:30,RDspecnormIf(3,:),spsz,[0.6350 0.0780 0.1840],'d','LineWidth', 1.5); 
hold on 
scatter(1:30,PVDspecnormIf(3,:),spsz,[0 0.4470 0.7410],'x','LineWidth', 1.5); 
ylabel('Mean (normalised) anomaly (mm)'); 
xlabel('Bin number (0.11 cycles/mm per bin)'); 
set(gca, 'LineWidth', 1, 'FontWeight', 'bold', 'FontSize', 12); 
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%} 

 
 
7. CreROCTS 
%ROC curve generation, from training set RD c PVD c/RD53PVD61xt2.mat data 
%weights the classifier training set results from BSspec data  
%vectors go from RD 50 x PVD incidence, to 1:1, to PVD 50x RD, so all vectors 
%99 elements long 
%training set to get the optimum weighting for the validation set 
  
load('/Users/stewartlake/Documents/Retinalcontour/RD c PVD 2/RD53PVD61xt2.mat'); 
  
Feats=[2 3 7]; 
%TrsetD is the training set diagnosis, RD = 1, PVD = 0 
nRDts = nnz(TrsetD==1);%number Tr set RD eyes 
nPVDts = nnz(TrsetD==0);%number PVD eyes in Tr set 
for WtR = 1:99 
    Wt= (0.01*WtR); 
quad4mdl1 = 
fitcdiscr(Trainset(:,Feats),TrsetD,'DiscrimType','quadratic','Prior',[1-Wt Wt]); 
quad4mdldistr1 = confusionmat(quad4mdl1.Y,resubPredict(quad4mdl1)); 
CmatR{WtR,1} = quad4mdldistr1; 
  
SensR(WtR,1) = CmatR{WtR,1}(4)/(CmatR{WtR,1}(2) + CmatR{WtR,1}(4));%training set 
SpecR(WtR,1) = CmatR{WtR,1}(1)/(CmatR{WtR,1}(1) + CmatR{WtR,1}(3)); 
  
scsR(WtR) = (quad4mdldistr1(1) + quad4mdldistr1(4))/sum(quad4mdldistr1(1:4));% = 
accuracy 
RDsR(WtR) = CmatR{WtR,1}(4); 
PVDfR(WtR) = CmatR{WtR,1}(3); 
RDsrate(WtR) = RDsR(WtR)/nRDts;%fratcion success rate RD 
PVDfrate(WtR) = PVDfR(WtR)/nPVDts;%fraction failure rate PVD 
end 
  
AUC = trapz(1-SpecR,SensR);% AUC of ROC 
  
%Total sensitivity/specificity range: 
x=fliplr(0.01:0.01:0.99); 
  
figure 
plot(1-SpecR,SensR,'r'); 
refline(1,0) 
title('ROC curve, 3 variable model training set'); 
xlabel('1-Specificity'); 
ylabel('Sensitivity'); 
  
  
%plot RD success  and PVD fail on same graph 
%represents RDs and PVDfl as fractions against their denominator = no of 
%each group in the training set 
figure 
yyaxis left 
%plot(x,RDsrate,'m:');%same as sensitivity 
hold on  
%plot(x,PVDfrate,'-.k','LineWidth', 1); 
%plot(x, RDsrate-PVDfrate,'k'); 
plot(x, SensR, 'r-.','LineWidth', 1); 
plot(x, SpecR, 'b-.','LineWidth', 1); 
set(gca, 'XDir','reverse') 
set(gca, 'LineWidth', 1, 'FontWeight', 'bold', 'FontSize', 10); 
xlabel({'Class weighting';'<--PVD weight increased RD weight-->'}); 
ylabel('proportion of eyes'); 
  
yyaxis right 
plot(x, scsR,'Color',[0.8500 0.3250 0.0980]); 
ylabel('Accuracy'); 
legend('Sensitivity', 'Specificity', 'Accuracy', 'Location'... 
    ,'southoutside','Orientation', 'horizontal'); 
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title('Training set performance by class weighting') 
  
%{ 
%this version uses absolute number of eyes for RDs/PVDf. the above uses 
rate 
%plot RD success and PVD fail on same graph 
figure 
yyaxis left 
plot(x,RDsR,'m'); 
hold on  
plot(x,PVDfR,'b'); 
plot(x, RDsR-PVDfR,'k'); 
set(gca, 'XDir','reverse') 
xlabel({'PVD weighting';'<--PVD weighted RD weighted-->'}); 
ylabel('No. of eyes'); 
  
yyaxis right 
plot(x, scsR,'Color',[0.8500 0.3250 0.0980]); 
ylabel('success rate'); 
legend('RD success', 'PVD fail', 'difference', 'success rate'); 
title('Classifier RD success and PVD failure rate') 
  
%} 
  
 
 
8. CreClsImg 
%create 3D image of classifier results. 
  
%Variable max/mins from AL and the alldata arrays from BSspec 
%can load in from Retinalcontour/classifiers/reg bin QDA 
  
%this creates a 3 var classifier image: 
%load('/Users/stewartlake/Documents/Retinalcontour/classifiers/reg bin 
QDA/Fs5Trs3v.mat'); 
  
%this creates the 2 variable classifier image: 
%load('/Users/stewartlake/Documents/Retinalcontour/classifiers/reg bin 
QDA/BSspec110520.mat'); 
  
Alax = linspace(21.11, 28.09, 50); 
R3ax = linspace(0.2, 2.88, 50); 
R5ax = linspace(0.39, 4.45, 50); 
  
[R3v, R5v, Alv] = meshgrid(R3ax, R5ax, Alax); 
  
Mdlcoord = cat(2, R3v(:), R5v(:), Alv(:));%three col array to match mdl data 
  
  
quad4mdl1.Prior = [1 1];%in case it needs changing 
Mdlspace = predict(quad4mdl1, Mdlcoord);% 0s and 1s 
  
RDvol = Mdlcoord;%the region occupied by RD label  
RDvol(Mdlspace==1,:) = [];%this is removing RD region as its larger than PVD! 
  
%{ 
figure% this figure marks out the PVD group 
scatter3(RDvol(:,1), RDvol(:,2), RDvol(:,3),750, '.'); 
xlabel('Region 3'); 
ylabel('Region 5'); 
zlabel('Axial length'); 
xlim([0.20 2.88]); 
ylim([0.39 4.45]); 
zlim([21.11 28.09]); 
title('Volume of classifier space occupied by PVD') 
  
  
figure - does not work 
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TD=delaunay(RDvol(:,1), RDvol(:,2), RDvol(:,3)); 
trisurf(TD,RDvol(:,1), RDvol(:,2), RDvol(:,3), 'EdgeColor','none', 
'FaceColor','b'); 
xlabel('Region 3'); 
ylabel('Region 5'); 
zlabel('Axial length'); 
xlim([0.20 2.88]); 
ylim([0.39 4.45]); 
zlim([21.11 28.09]); 
title('Volume of classifier space occupied by PVD') 
%} 
  
SurfC = Mdlcoord;  
  
SurfC(~ischange(Mdlspace),:) = [];%remove all points in mdlspace not the surface 
%between 0 (PVD) and 1 (RD) space 
  
  
[xq,yq] = 
meshgrid(min(SurfC(:,1)):range(SurfC(:,1))/75:max(SurfC(:,1)),min(SurfC(:,2)):range
(SurfC(:,2))/75:max(SurfC(:,2))); 
Surfres = griddata(SurfC(:,1),SurfC(:,2),SurfC(:,3),xq,yq); 
  
mesh(xq(1,:), yq(:,1), Surfres); 
xlabel('Region 3'); 
ylabel('Region 5'); 
zlabel('Axial length'); 
xlim([0.20 2.88]);%max and min of each variable 
ylim([0.39 4.45]); 
zlim([21.11 28.09]); 
title('Region of classifier space occupied by PVD') 
  
%{ 
% alternative image - point cloud 
ptC = pointCloud([xq(:) yq(:) Surfres(:)]); 
pcshow(ptC); 
xlabel('Retinal region 3'); 
ylabel('Retinal region 5'); 
zlabel('Axial length'); 
%xticks(0.20:0.2:2.88); 
xlim([0.20 2.88]);%max and min of each variable 
ylim([0.39 4.45]); 
zlim([21.11 28.09]); 
title('Region of classifier space occupied by PVD') 
%pbaspect([8 2 1]); 
%}  
%% 
%this creates a 2 D classifier image, as an example 
%Variable max/mins from AL and the alldata arrays from BSspec 
  
Alax2 = linspace(21.11, 28.09, 50); 
R3ax2 = linspace(0.2, 2.88, 50); 
  
  
[R3v2, Alv2] = meshgrid(R3ax2, Alax2); 
  
Mdlcoord2 = cat(2, R3v2(:), Alv2(:));%two col array to match mdl data 
  
quad2mdl = fitcdiscr(Trainset(:,[2 7]),TrsetD,'DiscrimType','quadratic'); 
%quad4mdl1.Prior = [1 1];%in case it needs changing 
[Mdlspace2,scoreMdl2,~] = predict(quad2mdl, Mdlcoord2);% 0s and 1s 
  
figure 
scatter3(Mdlcoord2(:,2), Mdlcoord2(:,1), scoreMdl2(:,1),'b'); 
hold on 
scatter3(Mdlcoord2(:,2), Mdlcoord2(:,1), scoreMdl2(:,2),'r'); 
xlabel('Axial length'); 
ylabel('Region 3'); 
zlabel('Probability'); 
view(40,43); 
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%title('Disciminant analysis surfaces, 2 variable model') 

 
 
9. A2FFT. Lines 78-191 were written by Tyra Lange 
%IMG to test result, (3,2) (5,3) AL QDA classifier function 
%save xz data from tyra lange's graph theory shape identification A2; 
%now works if img files are in Current folder, will ask for axial length, region3 
cube 
%name, then region 5 cube name. reports result in Command window. 
%Works on Zeiss Cirrus HD 21 9 mm x 0.4 mm cubes, from superior and supero-temporal 
retina  
%CHANGE: have img folder on current folder 
%CHANGE str2 line 24 (if not T data folder) 
%ONCE cube x,z saved, edited length by accuracy on IMGs. Then FFT  
%Typical run takes 9 minutes 
%For each B scan mark the start (left hand side) and end (RHS) of 
%accurately identified contour. 
%If B scan is empty/no data/not wanted, enter start to the Right of the end 
%Locates points by A scan, so only x index needed (z position does not need 
%to be accurate) 
%Graph theory & Dijkstra'a algorithm 
%% Determine Number of Bscans in Cube  
clear 
prompt0 = 'Enter Eye ID: '; 
EyeID = input(prompt0,'s'); 
prompt1 = 'Enter axial length: '; 
AL1 = input(prompt1); 
prompt2{1} = 'Enter name superior region cube IMG (eg T2 038 13-59-47.img: '; 
prompt2{2} = 'Enter name superotemporal region cube IMG (eg T2 038 13-59-47.img: '; 
str2 = '/Users/stewartlake/Documents/OCT RT T data/'; 
Ncubes = 2; 
McubeFFT = cell(Ncubes,1); 
%mkdir ([EyeID ' tiff']); 
  
for Rc = 1:Ncubes 
  
NowC{Rc} = input(prompt2{Rc},'s');  
  
%% 
%This section converts input IMG file to tiff for next section 
IMGnm = [NowC{Rc} '.img']; 
IMGfileID = fopen(IMGnm); 
IMGfile = fread(IMGfileID); 
%next line HD21 = [1024 1024 21], mac cube  = [512 1024 128],MChidef = [1024 1024 
2] 
IMGfile1 = uint8(reshape(IMGfile,[1024 1024 21])); 
TsaveN = [EyeID ' ' IMGnm(30:end-27) '.tif']; %cube ID 
%{ 
if (~exist([EyeID ' tiff/' ],'dir')) 
       mkdir ([EyeID ' tiff/' ]);%creates tiff folder if not present  
end 
  
oldFolder = cd([EyeID ' tiff/' ]); 
%} 
for mt = 1:21 
  
if mt==1 
    imwrite(IMGfile1(:,:,mt)',TsaveN);%mac cube change mt to mt*6 
else 
    imwrite(IMGfile1(:,:,mt)',TsaveN,'WriteMode','append'); 
       
end 
%cd (oldFolder) 
  
end 
  
%% 
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%FileTif = 'T2 028 13-59-47.tif'; %Insert cube tiff name here 
FileTif = TsaveN; 
InfoImage=imfinfo(FileTif); 
NumberImages=length(InfoImage); 
Xc1 = cell(NumberImages,1); 
Zc1 = cell(NumberImages,1); 
cubeFFT = NaN(30, NumberImages); 
Cubefreq = NaN(30, NumberImages); 
nowI = FileTif(1:6);%eye ID  
startXY = NaN(NumberImages, 2); 
finXY = NaN(NumberImages, 2); 
DirChk = [str2 nowI '/FFTA2']; 
if (~exist(DirChk,'dir')) 
       mkdir (DirChk);%creates FFTA2 folder if not present 
end 
  
for i1=1:NumberImages 
I = imread(FileTif, 'Index', i1); 
  
%% Preprocessing 
  
img = imfilter(I,fspecial('gaussian',[15 15],11));            % Blur Image 
img = img > 0.75*max(img);                                    % 
  
% Insert Vertical Column of Zeros (Both Sides) 
size1 = size(img);                                            % Determine Size 
(1024 x 1024) 
img1 = zeros([size1(1) size1(2)+2]);                          % Matrix of Zeros 
(Rows by Columns +2) (1024 x 1026) 
img1(:,2:1+size1(2)) = img;                                   % Insert image from 
2nd column to 2nd last column which is 1 more than img columns 
                                                              % size is size of new 
img with two extra columns (308 x 310)  
sizeNew = size(img1); 
%% Determine Graph Gradients (Graph Weights)   
  
% get  vertical gradient image 
G = nan(sizeNew);                                   % Matrix of NaN values of 308 x 
310 
  
for i3 = 1:sizeNew(2)                                % For columns 
    G(:,i3) = -1*gradient(img1(:,i3),2);              % Positive vertical gradient 
between 2 pixels 
end 
  
G = (G-min(G(:)))/(max(G(:))-min(G(:)));  
  
G2 = G*-1+1;                                        % Get the "invert" of the 
gradient image 
  
%% Generate Adjacency Matrix  
  
minWeight = 1E-5;                                   % Minimum weight 
  
MW_pos = nan([numel(img1(:)) 8]);                   % Array to store positive 
weights  
MW_neg = nan([numel(img1(:)) 8]);                   % Array to store negative 
weights 
MX = nan([numel(img1(:)) 8]);                       % Array to store point A 
locations 
MY = nan([numel(img1(:)) 8]);                       % Array to store point B 
locations 
  
%Each node is associated with only its eight nearest neighbors 
  
n = [1 1  1 0  0 -1 -1 -1; 1 0 -1 1 -1  1  0 -1]; 
             
%fill in the above arrays 
  
szMW_pos = size(MW_pos); 
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ind = 1; 
  
  
while ind ~= szMW_pos(1)*szMW_pos(2) %While ind not = col * row (not = 8404992) 
     
    [i2, j] = ind2sub(szMW_pos,ind);  % i = 1050624x8, j = 1 
    [iX,iY] = ind2sub(sizeNew,i2); 
     
    jX = iX + n(1,j);                                     
    jY  = iY + n(2,j); 
     
     if jX >=1 && jX <= sizeNew(1) && jY >=1 && jY <= sizeNew(2) % 1024 , 1026 
         %save weight 
          
         % set to minimum if on the sides 
         if jY == 1 || jY == sizeNew(2) 
            MW_pos(i2,j) = minWeight; 
            MW_neg(i2,j) = minWeight; 
             
         % else, calculate the actual weights 
         else 
            MW_pos(i2,j) = 2 - G(iX,iY) - G(jX,jY) + minWeight; 
            MW_neg(i2,j) = 2 - G2(iX,iY) - G2(jX,jY) + minWeight; 
         end 
          
        %save the subscript of the corresponding nodes 
        MX(i2,j) = sub2ind(sizeNew,iX,iY); 
        MY(i2,j) = sub2ind(sizeNew,jX,jY); 
    end 
    ind = ind+1; 
     
end 
  
%assemble the adjacency matrix 
keepInd = ~isnan(MW_pos(:)) & ~isnan(MX(:)) & ~isnan(MY(:)) & ~isnan(MW_neg(:)); 
MW_pos = MW_pos(keepInd); 
MW_neg = MW_neg(keepInd); 
MX = MX(keepInd); 
MY = MY(keepInd); 
  
%sparse matrices, based on eq 1 with the gradient, 
adjMatrixW = sparse(MX(:),MY(:),MW_pos(:),numel(img1(:)),numel(img1(:))); 
                    % and the invert of gradient. 
adjMatrixMW = sparse(MX(:),MY(:),MW_neg(:),numel(img1(:)),numel(img1(:))); 
  
%% Shortest Path 
  
% get layer going from light to dark 
[ dist,path{1} ] = graphshortestpath( adjMatrixW, 1, numel(img1(:)) ); 
[pathX,pathY] = ind2sub(sizeNew,path{1}); 
  
% get rid of first and last few points that is by the image borders 
pathX =pathX(gradient(pathY)~=0); 
pathY =pathY(gradient(pathY)~=0); 
  
Xc1{i1} = pathY; 
Zc1{i1} = pathX; 
  
%% Succesful RPE Delineation  
  
BSfig = figure; 
%BSfig.WindowState = 'maximized'; 
imagesc(I); axis image; colormap('gray'); hold on; 
plot(pathY,pathX,'g-','linewidth',1.5); hold on; 
legend({'rpe'}); 
  
  
[startXY(i1,1),startXY(i1,2)] = ginput(1);%start X,Y and finish X,Y from image 
[finXY(i1,1),finXY(i1,2)] = ginput(1); 
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end 
  
close all 
  
%% 
%set(startfinXY,'WindowStyle','normal');%attempt to undock and show 
%variable 
  
%edit above results with startXY and finXY 
  
%data in Xc, Zc corrected by manually completed matrices startfinXY using 
%ginput 
  
% 
startXY = fix(startXY); 
finXY = fix(finXY); 
%to remove a Bscan data,  
%make startfinXY (Bs,1) one greater then startfin(BS,3), eg 513 and 512 
%complete then run A2FFTa 
Xc = cell(NumberImages,1); 
Zc = cell(NumberImages,1); 
  
for Tr = 1:NumberImages 
     
    BsX = Xc1{Tr}; 
    BsZ = Zc1{Tr}; 
    
    StrtX = find(BsX == startXY(Tr,1));  
    Fin1X = find(BsX == finXY(Tr,1)); 
    
    
   if StrtX(end)>Fin1X(1) 
       
       Xc{Tr} = NaN(size(Xc1{Tr}'));%empty B scan vector if not wanted 
       Zc{Tr} = NaN(size(Zc1{Tr}')); 
        
   else 
        
       BsX(Fin1X(1)+1:end) = []; 
       BsZ(Fin1X(1)+1:end) = [];  
    
       BsX(1:StrtX(end)-1) = []; 
       BsZ(1:StrtX(end)-1) = []; 
    
       Xc{Tr} = BsX'; 
       Zc{Tr} = BsZ'; 
        
   end 
    
end 
  
  
%% 
%A2FFTPt2 follows on from A2FFT & A2FFTa. From Tyra's A2 function 
%Performs FFT on Xc, Zc,  
%one cube a time, with length Xc/Zc curated by accuracy in images from 
%A2FFT second section 
%this is from FFT4Eye to process FFT for OCT_R3 data 
VecLen = NaN(NumberImages); 
for Bs = 1:NumberImages 
     
    if (~isnan(Zc{Bs})) 
            L = length (Zc{Bs}); 
             
            [FFTz,freq] = FFTforOCT_R3mm(Xc{Bs},Zc{Bs}); 
            VecLen(Bs) = length(Zc{Bs});%vector length(FFT already corrected) 
             
            %create matrix of residuals 
            zVlen = size (Zc{Bs},1); 
            zedres(1:zVlen,Bs) = Zc{Bs}; 
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            %zedres = zedres(1:1024,fileNum); 
             
            %save quadratic coefficients 
            sf = 1024/9; 
            xmm = Xc{Bs}/sf; 
            sfz = 1024/2; 
            ZMM = Zc{Bs}/sfz; 
            p = polyfit(xmm,ZMM,2);% 
            Quadcoeffs (1,Bs) = p(1); 
            Quadcoeffs (2,Bs) = p(2); 
            Quadcoeffs (3,Bs) = p(3); 
     
            %put FFTz, freq into matrix, one column per B scan, bins by 
            %rows 
            cubeFFT(1:30,Bs) = FFTz(1:30); 
            %cubeFFT(1:30,fileNum)=cubeFFT(1:30,fileNum)/VecLen(fileNuM); 
            Cubefreq(1:30,Bs) = freq(1:30)'; 
             
            %now determine the relative proportion of each frequency bin to the 
signal 
            TSig(1,Bs) = sum (cubeFFT(:,Bs)); 
            CubeSigPror(1:30,Bs) = FFTz(1:30)'/TSig(1,Bs); 
            
            %find number of bins to make 50% signal 
            binprorV = CubeSigPror (1:30,Bs); 
            BScusu (1:30) = cumsum (binprorV); 
            NumBin50(1,Bs) = find (BScusu > 0.5, 1); 
             
    else 
        cubeFFT(1:30,Bs) = NaN(30,1); 
%} 
    end  
  
  
end 
%look like x vector = pathY, z-vector is pathX 
%so save these two columns for use in new FFT processing above 
%cubeFFT is for one cube 
McubeFFT{Rc} = cubeFFT;%bins x B scans 
  
        %now save each cube's data 
        str4 = FileTif(1:end-4);% cube ID 
        str6 = [DirChk '/' str4]; 
        save (str6, '-
regexp','^(?!(adjMatrixMW|adjMatrixW|G|G2|img|img1|MW_neg|MW_pos|MX|MY)$).'); 
  
end 
  
load('/Users/stewartlake/Documents/Retinalcontour/classifiers/reg bin 
QDA/Fs5Trs3v.mat'); 
  
%generate mean BS from average of 5 folds of RD/PVD eyes 
for bl =1:5 
    bsM(1:30,bl) = meanBS{bl}; 
end 
bsMmean = mean(bsM,2);%average bin value from classifier data 
bsMsd = std(bsM,0,2); 
bsmsdall = mean(bsMsd); 
bsMcoev = bsMsd./bsMmean; 
bsMmncov = mean(bsMcoev); 
  
%variables for model data 
%if (3,2) and (5,3) 
%(3,2) is first input cube bin 2: max(McubeFFT{1}(2,:))  
%assuming r/c = bins/B scans 
%(5,3) is second cube input bin 3: max(McubeFFT{2}(3,:)) 
%model data = cat((3,2),(5,3) Axl,) 
  
  
numTeyes = 1; 
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Dcat = cell(numTeyes,2);%col 1 category labels, col 2 number of each category 
Tvalvars = NaN(numTeyes,3);%variables for classifier 
     
    %get bin diff by subtracting max val from  
    Tvalvars(numTeyes,1) = max(abs(McubeFFT{1}(2,:) - 
bsMmean(2)),[],'omitnan');%(3,2) 
    Tvalvars(numTeyes,2) = max(abs(McubeFFT{2}(3,:) - 
bsMmean(3)),[],'omitnan');%(5,3) 
     
    Tvalvars(numTeyes,3) = AL1;%AxL 
     
  
  
%then  
quad4mdl1.Prior = [1 1];% change prior here as required 
[Ttestlabels1,Tscore1] = predict (quad4mdl1,Tvalvars); 
Rep = ['0 = not RD, 1 = RD, Eye ' EyeID]; 
Unwtrep = 'prior 1:1 test result'; 
Wtrep = 'prior 6:1 test result'; 
OWtrep = 'optimised prior, test result'; 
  
disp(Rep); 
disp(Unwtrep); 
disp(Ttestlabels1); 
  
quad4mdl1.Prior = [6 1];% change prior here as required 
[Ttestlabels6,Tscore6] = predict (quad4mdl1,Tvalvars); 
disp(Wtrep); 
disp(Ttestlabels6); 
  
quad4mdl1.Prior = [0.64 0.36];% change prior here as required 
[TtestlabelsO,TscoreO] = predict (quad4mdl1,Tvalvars); 
disp(OWtrep); 
disp(TtestlabelsO); 
 
 
 
10. AnnotSLO 
%AnnotSLO marks up the SLO images, changing the green/blue B scan marker 
%lines to red where retinal signal is present in the B scan 
  
%it assumes the pdfs have been merged into a single tiff file in the host 
%eye folder named e.g., 'Q2 03 pdftif' (the 17 region identified cubes) 
  
%a directory named 'png pdfs' is created in the eye folder 
%THIS works, but do an eye at a time (set EyE manually) 
%CHANGE  
%CHANGE directory line 17, Eye line 28 
locVec = [13 8 3 7 1 12 11 17 21 18 23 19 25 14 15 9 5]; 
%loc vec is the positions in a tiledlayout(5,5) corresponding to the index of 
%FFT(:,6). So macula = cube 1 region = position 13 in (5,5) 
load ('/Users/stewartlake/Documents/MATLAB/FFTconcat'); 
AllIconcat = cat(1,PVDFb,RDFb,RTFb,RepFb,MYFb,MHFb,GRTFb); 
  
str1 = '/Users/stewartlake/Documents/OCT RT S data/'; 
cd (str1); 
Einfo = dir; 
Einfo = Einfo(~ismember({Einfo.name},{'.','..','.DS_Store'})); 
Enames = {Einfo.name};%list of eye names 
%{ 
Enames(47:end) = [];% left sided eyes remove first 
Enames(1:36) = [];% RH eyes. these 2 line remove uncompleted eyes 
%} 
ENum = size (Enames,2); 
  
for EyE = 26%:ENum %runs through the eye folders, or select individual 
    Cprefix2 = Enames{EyE}(~isspace(Enames{EyE})); 
    Cprefix=Cprefix2(1:2);%eye letter and laterality 
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    nowI = [str1, Enames{EyE},'/']; 
    cd (nowI);%opens an eye folder 
    %the merged tiff file of all the pdfs should be here 
     
    if (~exist('png pdfs','dir')) 
       mkdir ('png pdfs');%creates dir to place image files 
    end 
     
    %open the tiff and take each tiff sheet separately 
    %import a tiff file 
    Filetifnamestr= [Enames{EyE} ' pdftif.tiff']; 
     
    if (exist(Filetifnamestr,'file')==2)%check pdftif created. If not, skip 
         
    FileTif = Filetifnamestr; %puts eye pdf tiff file here 
    %[~,cubenamestr,~]=fileparts(FileTif);%get cube name NOPE! 
    InfoImage=imfinfo(FileTif); 
    mImage=InfoImage(1).Width; 
    nImage=InfoImage(1).Height; 
    NumberImages=length(InfoImage); 
    %FinalImage=zeros(nImage,mImage,NumberImages,'uint32'); 
    %FinalImage=cell(NumberImages,1); 
    TifLink = Tiff(FileTif, 'r'); 
    cd ('png pdfs'); 
    for imi=1:NumberImages 
        TifLink.setDirectory(imi); 
        savename=['image', num2str(imi), '.png']; 
        IMG1=TifLink.read(); 
        imwrite(IMG1(:,:,1:3), savename);%the set of tiff images from the  
        %cube, saved in /png pdfs,  
    end 
    TifLink.close(); 
    mkdir ('Annot');%save folder for annotated pngs 
     
    for cubescans=1:NumberImages%working through each tiff sheet 
     
        savename=['image', num2str(cubescans), '.png']; 
       Curimg=imread(savename); 
       %Input file Curimg is current tiff sheet of pdfs 
     
       SLOpart=imcrop(Curimg,[849 1355 1855 1543]);%copy SLO image: [205 333 483 
400] 
     
      %[imi, 
j]=find((SLOpart(:,:,1)~=SLOpart(:,:,2))&(SLOpart(:,:,1)~=SLOpart(:,:,3))); 
      %grey pixels have (approx)= sheet values in 1,2,3, so not equal is a colour 
       
      [imi, 
j]=find(((SLOpart(:,:,1)+9)<SLOpart(:,:,2))|((SLOpart(:,:,1)+9)<SLOpart(:,:,3))); 
      %G or B greater than R by 10 is a line. 
       
      %first and last of j are the start and end column of the SLO line 
      BSfirst = j(1); 
      BSlast = j(end); 
  
      [uniI,iaI,icI]=unique(imi); 
      Icounts=accumarray(icI,1); 
      valcountsI=[uniI,Icounts];%col2 > 400 has horizontal line y coordinate in 
col1 
      LongI=uniI(Icounts>400);%y coords of the coloured lines 
  
      SLOpicnew=SLOpart;%copy of image 
  
      %now find distinct lines 
      GaP=find(diff(LongI)>3);%20 break points for 21 lines 
  
      xzstr=[nowI, Enames{EyE},' xz']; 
      xzdir=dir(xzstr);%list of xz data files 
      xzdir = xzdir(~ismember({xzdir.name},{'.','..','.DS_Store'})); 
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      xznames={xzdir.name}; 
      xzcubestr=[xzstr,'/', xznames{cubescans}]; 
  
      %{ 
      Finfo=dir; 
      Finfo = Finfo(~ismember({Finfo.name},{'.','..','.DS_Store'})); 
      Fnames={Finfo.name}; 
      FoldNum=size(Fnames,2);%number of cubes 
      %} 
  
      oldfolder = cd (xzcubestr); 
      dinfo = dir(xzcubestr); 
      names_cell = {dinfo.name}; 
  
      out=regexp(names_cell,'\d+','match'); 
      out=str2double(cat(1,out{:})); 
      numFiles = size(out, 1);%number of Bscan data files 
      outR = flipud(out);%reversed as top B scan is number 21 
  
       
      startRow = 1; 
      endRow = inf; 
  
for fileNum = 1:numFiles 
            Bscanline = outR(fileNum,end); 
            %This loop is for a single cube xz data 
            %outR is the line to highlight, Bscanline the data to match 
            fileNamea = sprintf('-%04d.txt',Bscanline); 
            fileName = [Cprefix fileNamea]; 
            myData{Bscanline} = importfile(fileName,startRow,endRow); 
             
            ximp{Bscanline}=myData{Bscanline}(:,1); 
            zimp{Bscanline}=myData{Bscanline}(:,2); 
             
            %now format x and z for FFT 
            x=table2cell(ximp{Bscanline}); 
            z=table2cell(zimp{Bscanline}); 
            x=cell2mat(x); 
            z=cell2mat(z); 
             
            x1=x(1);%first element coordinate from livewire; 
            xn=x(end);%last element from Livewire 
  
    %startL:GaP(Bscanline) is current Bscan rows in image 
     
    %SLO green line length  
    %livewire vector is x1 to xn out of 1-1024 
    %so xz is (x*BSlength/1024)-38 in this image (which is j values) 
    %reverse with f(x)=(max+min)-x as B scans are inverted 
    %image is 484 columns (line 70) 
    BSlength = BSlast - BSfirst; 
    imgwidth=size(SLOpicnew,2); 
    BSbegin = imgwidth-BSlast; 
    xend=floor(imgwidth - (x1*BSlength/1024)-BSbegin); 
    xstart=floor(imgwidth - (xn*BSlength/1024)-BSbegin); 
     
    if Bscanline==21 
        if LongI(1) == 1 
            LongI(1) = 2; 
        end 
       SLOpicnew(LongI(1)-1:LongI(GaP(1))+1,xstart:xend,1)=255; 
       SLOpicnew(LongI(1)-1:LongI(GaP(1))+1,xstart:xend,2)=0; 
       SLOpicnew(LongI(1)-1:LongI(GaP(1))+1,xstart:xend,3)=0; 
       
    elseif Bscanline==1 
       SLOpicnew(LongI(GaP(end)+1)-1:LongI(end)+1,xstart:xend,1)=255; 
       SLOpicnew(LongI(GaP(end)+1)-1:LongI(end)+1,xstart:xend,2)=0; 
       SLOpicnew(LongI(GaP(end)+1)-1:LongI(end)+1,xstart:xend,3)=0;        
        
    else 
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       SLOpicnew(LongI(GaP(21-Bscanline)+1)-1:LongI(GaP(22-
Bscanline))+1,xstart:xend,1)=255; 
       SLOpicnew(LongI(GaP(21-Bscanline)+1)-1:LongI(GaP(22-
Bscanline))+1,xstart:xend,2)=0; 
       SLOpicnew(LongI(GaP(21-Bscanline)+1)-1:LongI(GaP(22-
Bscanline))+1,xstart:xend,3)=0; 
       %-1/+1 at end of SLOpicnew row range is to thicken the lines 
    end 
     
end 
  
savestr= [nowI, 'png pdfs/Annot/', xznames{cubescans}, '.png']; 
cd(oldfolder);%go back to png pdfs folder 
imwrite(SLOpicnew, savestr); 
  
  
    end 
    %{ 
    %block out here if not matching 
    cd('Annot'); 
    picinfo=dir; 
    picinfo = picinfo(~ismember({picinfo.name},{'.','..','.DS_Store'})); 
    picnames = {picinfo.name};%list of eye names 
    picNum = size (picnames,2); 
     
    for pic = 1:picNum 
        Cprefix3 = picnames{pic}(1:5); 
        Cprefix3 = Cprefix3(~isspace(Cprefix3)); 
         
        Irow = find(strcmp(Cprefix3,AllIconcat(:,1)));%the concat row of current 
eye 
        SplNm=strsplit(picnames{pic}); 
        CubeNum=SplNm(3);%the number of the cube image 
         
        Pe = locVec(find(isequal(CubeNum{1}, AllIconcat{Irow,6}(:)))); 
       %Pe is subplot location of this cube 
       if ~isempty(Pe) 
           subplot(5,5,Pe) 
           imshow(SLOpicnew) 
       end 
    end 
         
    savefigstr=[Enames{EyE}, 'SLOmosaic']; 
    savefig(savefigstr);%saves mosaic in png pdfs folder 
    %end block out here if not matching 
    %} 
    end 
end 
  
%create SLOmap 
cd([str1 Cprefix2(1:2) ' ' Cprefix2(3:4) '/png pdfs/Annot/']); 
colSLO = dir; 
colSLO = colSLO(~ismember({colSLO.name},{'.','..','.DS_Store'})); 
SLOnames = {colSLO.name};%list of eye names 
SLOmap = tiledlayout(5,5); 
SLOmap.TileSpacing = 'none'; 
SLOmap.Padding = 'none'; 
nexttile 
imshow(SLOnames{5}); 
  
nexttile(3) 
imshow(SLOnames{3}); 
  
nexttile(5) 
imshow(SLOnames{17}); 
  
nexttile(7) 
imshow(SLOnames{4}); 
  
nexttile(8) 
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imshow(SLOnames{2}); 
  
nexttile(9) 
imshow(SLOnames{16}); 
  
nexttile(11) 
imshow(SLOnames{7}); 
  
nexttile(12) 
imshow(SLOnames{6}); 
  
nexttile(13) 
imshow(SLOnames{1}); 
  
nexttile(14) 
imshow(SLOnames{14}); 
  
nexttile(15) 
imshow(SLOnames{15}); 
  
nexttile(17) 
imshow(SLOnames{8}); 
  
nexttile(18) 
imshow(SLOnames{10}); 
  
nexttile(19) 
imshow(SLOnames{12}); 
  
nexttile(21) 
imshow(SLOnames{9}); 
  
nexttile(23) 
imshow(SLOnames{11}); 
  
nexttile(25) 
imshow(SLOnames{13}); 
  
namefig = [str1 Cprefix2(1:2) ' ' Cprefix2(3:4) '/' Cprefix2 ' SLOmap']; 
savefig(namefig); 

 
 
11. Comprep  
%to compare RepFb eyes by cube region 
%compared to a "training set" of the PVD eyes 
%Have MATLAB as current folder: FFTconcat and AllIKurv are loaded 
% 
clear 
load('/Users/stewartlake/Documents/MATLAB/FFTconcat'); 
load('/Users/stewartlake/Documents/MATLAB/AllIKurv'); 
  
NumRep = size (RepFb, 1); 
NumPVD = size (PVDFb, 1); 
  
RepeyeID=repmat(RepFb(:,1),[1,18]);%vector of Rep eye names 
PVDeyeID = repmat(PVDFb(:,1),[1,18]);% 
  
Repcols = cell(NumRep,18); 
RepRegcubeID = cell(NumRep,18); 
KurvrowRep = cell(NumRep,18); 
PVDcols = cell(NumPVD,18); 
PVDRegcubeID = cell(NumPVD,18); 
KurvrowPVD = cell(NumPVD,18); 
  
absdiffRep = cell(NumRep,18); 
maxabsd = cell(NumRep,18); 
SumdiffRep = cell(NumRep,18); 
maxeBsRep = cell(NumRep,18); 
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IndMeBsRep = cell(NumRep,18); 
rmsdRep = cell(NumRep,18); 
IKurv = cell(NumRep,18);%whole eye Kurv data 
CKurv = cell(NumRep,18);%cube curve data to match sumdiff etc 
MedCkurv = zeros(NumRep,18);%features, row per eye... 
MedMaxe = zeros(NumRep,18);%column per cube region... 
MedSD = zeros(NumRep,18);%first column will be empty 
Medrmsd = zeros(NumRep,18); 
MaxCkurv = zeros(NumRep,18); 
MaxMaxe = zeros(NumRep,18); 
MaxSD = zeros(NumRep,18); 
Maxrmsd = zeros(NumRep,18); 
MinCkurv = zeros(NumRep,18); 
MinMaxe = zeros(NumRep,18); 
MinSD = zeros(NumRep,18); 
Minrmsd = zeros(NumRep,18); 
iqrCkurv = zeros(NumRep,18); 
iqrMaxe = zeros(NumRep,18); 
iqrSD = zeros(NumRep,18); 
iqrrmsd = zeros(NumRep,18); 
  
for Region = 2:18 %Region should be 2-18 - columns of locFFT/column 11 of Fb 
  
  
%This section gets the cubes for this region 
for Iye = 1:NumRep %size(RepFb,1) 
     
    Repcols(Iye,Region)=RepFb{Iye,11}(Region);%vector of Repcube FFT data for 
region 
    Repcols{Iye,Region}=Repcols{Iye,Region}(:,any(Repcols{Iye,Region}));%removes 
empty Bscan columns 
    RepRegcubeID(Iye,Region) = RepFb{Iye,6}(Region-1); 
    if RepRegcubeID{Iye,Region}~=0 
        KurvrowRep{Iye,Region} = 
find(contains(RepFb{Iye,5}(:),num2str(RepRegcubeID{Iye,Region}))); 
    end 
end 
  
for Iye=1:NumPVD %size(PVDFb,1) 
     
    PVDcols(Iye,Region)=PVDFb{Iye,11}(Region);%vector of all PVD cube FFTs this 
region 
    PVDRegcubeID(Iye,Region) = PVDFb{Iye,6}(Region-1); 
    if PVDRegcubeID{Iye,Region}~=0 
        KurvrowPVD{Iye,Region} = 
find(contains(PVDFb{Iye,5}(:),num2str(PVDRegcubeID{Iye,Region}))); 
    end 
end 
  
%remove empty values 
Tempcurv=KurvrowRep(:,Region); 
Tempcurv(cellfun('isempty',Repcols(:,Region)))={NaN}; 
KurvrowRep(:,Region)=Tempcurv; 
  
TemprepID=RepeyeID(:,Region); 
TemprepID(cellfun('isempty',Repcols(:,Region)))={NaN}; 
RepeyeID(:,Region)=TemprepID; 
  
Temprepcols=Repcols(:,Region); 
Temprepcols(cellfun('isempty',Repcols(:,Region)))={NaN(30,1)}; 
Repcols(:,Region)=Temprepcols; 
  
%remove empty values 
TempKPVD=KurvrowPVD(:,Region); 
TempKPVD(cellfun('isempty', PVDcols(:,Region)))={NaN}; 
KurvrowPVD(:,Region)=TempKPVD; 
  
TempPVDID=PVDeyeID(:,Region); 
TempPVDID(cellfun('isempty', PVDcols(:,Region)))={NaN}; 
PVDeyeID(:,Region)=TempPVDID; 
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TempPVDcols=PVDcols(:,Region); 
TempPVDcols(cellfun('isempty', PVDcols(:,Region)))={NaN(30,21)}; 
PVDcols(:,Region)=TempPVDcols; 
  
PVDset = cat (2,PVDcols{:,Region});%all PVD cubes in a strip 
PVDset(PVDset==0) = NaN; 
TSbmn = mean(PVDset,2,'omitnan');%mean bin value for PVD cubes 
  
  
for n=1:NumRep 
     
    %the objective is to compare matched values for rescanned eyes 
    %matched values should be pairs of n(1&2, 3&4, 5&6, 7&8) 
    absdiffRep {n,Region} = abs(Repcols{n,Region} - TSbmn);%30 bin x 21 Bscans 
    maxabsd{n,Region} = max(absdiffRep {n,Region},[],2,'omitnan');%vector max each 
bin in cube 
    SumdiffRep {n,Region} = sum(absdiffRep{n,Region}); %total value per B scan 
    %SumdiffRep {n,Region} = permute (SumdiffRep{n,Region}, [3 2 1]); %sumabsdiff 
moduli, 1 cube x Bs 
  
    [maxeBsRep{n,Region}, IndMeBsRep{n,Region}] = max(abs(Repcols{n,Region} - 
TSbmn)); 
     
    %maxeBsRep {n,Region} = permute (maxeBsRep {n,Region}, [3 2 1]);% 
    %IndMeBsRep{n,Region} = permute (IndMeBsRep{n,Region}, [3 2 1]); 
     
    rmsdRep {n,Region} = sqrt ((sum 
(absdiffRep{n,Region}.*absdiffRep{n,Region}))/30); 
     
    %match curvature array sheet with current eye/cube sumdiff 
    Kurvmatch=find(strncmp(RepeyeID{n},AllIEyenames2,4)); 
    IKurv{n,Region} = AllIBsKurv(:,:,Kurvmatch); 
    IKurv{n,Region} = IKurv{n,Region}(any(IKurv{n,Region},2),:);%removes empty rows 
    if ~isnan(KurvrowRep{n,Region}) 
    CKurv{n,Region} = IKurv{n,Region}(KurvrowRep{n,Region},:); 
    else  
    CKurv{n,Region} = NaN; 
    end 
     
    MedCkurv(n,Region) = median(CKurv{n,Region}(:),'omitnan'); 
    MedMaxe(n,Region) = median(maxeBsRep{n,Region}(:),'omitnan'); 
    MedSD(n,Region) = median(SumdiffRep{n,Region}(:),'omitnan'); 
    Medrmsd(n,Region) = median(rmsdRep{n,Region}(:),'omitnan'); 
     
    MaxCkurv(n,Region) = max(CKurv{n,Region}(:),[],'omitnan'); 
    MaxMaxe(n,Region) = max(maxeBsRep{n,Region}(:),[],'omitnan'); 
    MaxSD(n,Region) = max(SumdiffRep{n,Region}(:),[],'omitnan'); 
    Maxrmsd(n,Region) = max(rmsdRep{n,Region}(:),[],'omitnan'); 
     
    MinCkurv(n,Region) = min(CKurv{n,Region}(:),[],'omitnan'); 
    MinMaxe(n,Region) = min(maxeBsRep{n,Region}(:),[],'omitnan'); 
    MinSD(n,Region) = min(SumdiffRep{n,Region}(:),[],'omitnan'); 
    Minrmsd(n,Region) = min(rmsdRep{n,Region}(:),[],'omitnan'); 
     
    iqrCkurv(n,Region) = iqr(CKurv{n,Region}(:)); 
    iqrMaxe(n,Region) = iqr(maxeBsRep{n,Region}(:)); 
    iqrSD(n,Region) = iqr(SumdiffRep{n,Region}(:)); 
    iqrrmsd(n,Region) = iqr(rmsdRep{n,Region}(:)); 
     
end 
  
  
end 
  
save ('/Users/stewartlake/Documents/Retinalcontour/Retest eyes/Region retest 
summary 2'); 
  
  
%{ 
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%1. to compare eye retests by ICC 
colfirst = cell(NumRep/2,1); 
col2d = cell(NumRep/2,1); 
for Rowrun = 1:2:NumRep-1 
  
colfirst{(Rowrun+1)/2} = [MedSD(Rowrun,2:end) MaxSD(Rowrun,2:end) 
MinSD(Rowrun,2:end)... 
 iqrSD(Rowrun,2:end) MedMaxe(Rowrun,2:end) MaxMaxe(Rowrun,2:end)... 
 MinMaxe(Rowrun,2:end) iqrMaxe(Rowrun,2:end)... 
 Medrmsd(Rowrun,2:end) Maxrmsd(Rowrun,2:end) Minrmsd(Rowrun,2:end)... 
 iqrrmsd(Rowrun,2:end) MedCkurv(Rowrun,2:end) MaxCkurv(Rowrun,2:end)... 
 MinCkurv(Rowrun,2:end) iqrCkurv(Rowrun,2:end)]'; 
  
end 
  
for Reprun = 2:2:NumRep 
  
%creates arrays for each eye 
  
col2d{Reprun/2} = [MedSD(Reprun,2:end) MaxSD(Reprun,2:end) MinSD(Reprun,2:end)... 
 iqrSD(Reprun,2:end) MedMaxe(Reprun,2:end) MaxMaxe(Reprun,2:end)... 
 MinMaxe(Reprun,2:end) iqrMaxe(Reprun,2:end) Medrmsd(Reprun,2:end)... 
 Maxrmsd(Reprun,2:end) Minrmsd(Reprun,2:end) iqrrmsd(Reprun,2:end)... 
 MedCkurv(Reprun,2:end) MaxCkurv(Reprun,2:end) MinCkurv(Reprun,2:end) 
iqrCkurv(Reprun,2:end)]'; 
  
%for ICC need to compare columns, so colfirst/2d contents in single column 
  
  
  
end 
  
for runICC = 1:length(col2d) 
     
    for Others = 1:length(col2d) 
    CurI = cat(2,colfirst{runICC},col2d{Others}); 
    origsize(runICC) = size(CurI,1); 
    CurI(any(isnan(CurI), 2), :) = [];%remove any metrics where no matching data 
(NaN) 
    corsize(runICC) = size(CurI,1); 
  
    Numdleted(runICC) = origsize(runICC) - corsize(runICC); 
  
    ICCres(runICC,Others) = icc21(CurI); 
     
   end  
end 
%} 
  
  
  
  
  
  
%{ 
2. to compare eye retests by signrank 
for Rowrun = 1:2:NumRep-1 
  
Eyerun1st = Rowrun;% the row no first eye run 
  
for Reprun = 2:2:NumRep 
  
Eyerun2d = Reprun;%row number 2d eye run 
%creates  
colfirst = [MedSD(Eyerun1st,2:18) MaxSD(Eyerun1st,2:18) MinSD(Eyerun1st,2:18)... 
 iqrSD(Eyerun1st,2:18) MedMaxe(Eyerun1st,2:18) MaxMaxe(Eyerun1st,2:18)... 
 MinMaxe(Eyerun1st,2:18) iqrMaxe(Eyerun1st,2:18)... 
 Medrmsd(Eyerun1st,2:18) Maxrmsd(Eyerun1st,2:18) Minrmsd(Eyerun1st,2:18)... 
 iqrrmsd(Eyerun1st,2:18) MedCkurv(Eyerun1st,2:18) MaxCkurv(Eyerun1st,2:18)... 
 MinCkurv(Eyerun1st,2:18) iqrCkurv(Eyerun1st,2:18)]; 
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col2d = [MedSD(Eyerun2d,2:18) MaxSD(Eyerun2d,2:18) MinSD(Eyerun2d,2:18)... 
 iqrSD(Eyerun2d,2:18) MedMaxe(Eyerun2d,2:18) MaxMaxe(Eyerun2d,2:18)... 
 MinMaxe(Eyerun2d,2:18) iqrMaxe(Eyerun2d,2:18) Medrmsd(Eyerun2d,2:18)... 
 Maxrmsd(Eyerun2d,2:18) Minrmsd(Eyerun2d,2:18) iqrrmsd(Eyerun2d,2:18)... 
 MedCkurv(Eyerun2d,2:18) MaxCkurv(Eyerun2d,2:18) MinCkurv(Eyerun2d,2:18) 
iqrCkurv(Eyerun2d,2:18)]; 
  
p(Rowrun,Reprun)=signrank(colfirst,col2d); 
  
storeI2{Reprun/2} = col2d; 
storeI1{Reprun/2} = colfirst; 
  
end 
  
  
end 
%} 
 
 
12. ComprepBA 
%analyse rep eye data from CompRep,using Bland Altman plots. Saved in BA plots 
folder 
% stored in Retest eyes/Region retest summary 2 
%CHANGE LoAhi, LoAlo for upper and lower LoA found after running once lines 
%CHANGE 101-102. then re-run final outlyer analysis plot, 
%CHANGE eye/symbols 200-203, 278-279 
%see Does PVD or RD change all of eye metrics.doc for guide 
%needed for BA function. Not sure 
Gnames = {'test1', 'test2', 'test3', 'test4', 'test5', 'test6', 'test7', 'test8', 
'test9','test10'}; 
%black(k) = control eyes, blue (c/b) = PVD, red (r/m) = RD 
%% 
%organise data 
for Rowrun = 1:2:NumRep-1 
  
Eyerun1st = Rowrun;% the row no first eye run 
  
for Reprun = 2:2:NumRep 
  
Eyerun2d = Reprun;%row number 2d eye run 
%creates  
colfirst = [MedSD(Eyerun1st,2:18) MaxSD(Eyerun1st,2:18) MinSD(Eyerun1st,2:18)... 
 iqrSD(Eyerun1st,2:18) MedMaxe(Eyerun1st,2:18) MaxMaxe(Eyerun1st,2:18)... 
 MinMaxe(Eyerun1st,2:18) iqrMaxe(Eyerun1st,2:18)... 
 Medrmsd(Eyerun1st,2:18) Maxrmsd(Eyerun1st,2:18) Minrmsd(Eyerun1st,2:18)... 
 iqrrmsd(Eyerun1st,2:18) MedCkurv(Eyerun1st,2:18) MaxCkurv(Eyerun1st,2:18)... 
 MinCkurv(Eyerun1st,2:18) iqrCkurv(Eyerun1st,2:18)]; 
  
col2d = [MedSD(Eyerun2d,2:18) MaxSD(Eyerun2d,2:18) MinSD(Eyerun2d,2:18)... 
 iqrSD(Eyerun2d,2:18) MedMaxe(Eyerun2d,2:18) MaxMaxe(Eyerun2d,2:18)... 
 MinMaxe(Eyerun2d,2:18) iqrMaxe(Eyerun2d,2:18) Medrmsd(Eyerun2d,2:18)... 
 Maxrmsd(Eyerun2d,2:18) Minrmsd(Eyerun2d,2:18) iqrrmsd(Eyerun2d,2:18)... 
 MedCkurv(Eyerun2d,2:18) MaxCkurv(Eyerun2d,2:18) MinCkurv(Eyerun2d,2:18) 
iqrCkurv(Eyerun2d,2:18)]; 
  
p(Rowrun,Reprun)=signrank(colfirst,col2d); 
  
  
  
storeI2{Reprun/2} = col2d; 
storeI1{Reprun/2} = colfirst; 
end 
  
  
end 
  
%below values are row number for pairs of eyes in RepFb 
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bincol1= maxabsd([1 3 5 7 9 11 13 15 17 19 21 23 25],2:end);%bin maxima for each 
region and eye image 1 
bincol2= maxabsd([2 4 6 8 10 12 14 16 18 20 22 24 26],2:end);%second image set of 
eye. Increase as more eyes added 
binrangemin =2;%max & min bins to be used in BA plot 
binrangemax = 20; 
for obin = 1:13%eye pairs - increase as eyes added to RepFb 
    for obinc = 1:17%regions 
         
    Ibin3d1(1:(binrangemax-binrangemin)+1,obinc,obin) = 
bincol1{obin,obinc}(binrangemin:binrangemax);%array for BA plot 
    Ibin3d2(1:(binrangemax-binrangemin)+1,obinc,obin) = 
bincol2{obin,obinc}(binrangemin:binrangemax);%bins x regions x eye 
    end 
end 
%% 
  
for Drw = 1:NumRep/2 
     
    %BlandAltman(storeI1{Drw}',storeI2{Drw}','baStatsMode','Non-parametric', 
'diffValueMode','percent'); 
    %namsav = RepeyeID{Drw*2,1}; 
    %plots and saves each eye BA individually 
    %savefig(namsav) 
     
    %data for single BA for all eyes/data 
    sqI1a(1:17,1:16,Drw) = reshape(storeI1{Drw},[17,16]);%raw data arrays, eye 
test1 
    sqI2a(1:17,1:16,Drw) = reshape(storeI2{Drw},[17,16]);% and eye test 2 (med/mean 
SD etc) 
    %region x vars (1-16 - colfirst & 2d) x eye 
     
    Xmeanval{Drw}=(storeI1{Drw}'+storeI2{Drw}')/2;%X coord BA (mean) 
    Ydiffval{Drw} = (storeI1{Drw}-storeI2{Drw})';%y coords for BA (diff) 
   
     
end 
  
sqI1 = permute(sqI1a,[2 1 3]);%convert to vars x regions x eye 
    
sqI2 = permute(sqI2a,[2 1 3]); 
  
%% 
%First BA method 
%all eye data BA plot: difference (not ratio) to value 
%{ 
BlandAltman(sqI1, sqI2,Gnames, 'baStatsMode','Non-parametric',... 
    'symbols','Num','colors','rbgmckyw','markerSize',7); 
%this for colfirst/2d data ie stat sumar variables 
  
  
set(gca, 'color', [0.6 0.6 0.6]); %set background colour to grey (to see white) 
%} 
%% 
Ydiffs= sqI2 - sqI1;%the y coordinates of the BA plot 
  
%tables give variable/region/eye of outlying values 
[Yhi{1},Yhi{2},Yhi{3}] = ind2sub(size(Ydiffs),find(Ydiffs>1.3));%row/col = 
variable/region of outliers 
Yhitab = table(Yhi{1},Yhi{2},Yhi{3}, 'Variablenames',{'variable','region','eye'}); 
  
[Ylow{1},Ylow{2},Ylow{3}] = ind2sub(size(Ydiffs),find(Ydiffs<-1.2)); 
Ylowtab = table(Ylow{1},Ylow{2},Ylow{3}, 
'Variablenames',{'variable','region','eye'}); 
  
LoAhi = 0.97; 
LoAlo = -0.92; 
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%% 
%creates arrays of the X, Y data (mean/diff) for the eyes 
Nm = repelem(17,16); 
tabrownm = {'MedSD'; 'MaxSD'; 'MinSD';... 
 'iqrSD'; 'MedMaxe'; 'MaxMaxe';... 
 'MinMaxe'; 'iqrMaxe';... 
 'Medrmsd'; 'Maxrmsd'; 'Minrmsd';... 
 'iqrrmsd'; 'MedCkurv'; 'MaxCkurv';... 
 'MinCkurv'; 'iqrCkurv'}; 
Tabroenames = repelem(tabrownm,Nm); 
  
%convert variable number to name in outlier tables Yhi Ylow 
for Getname=1:length(Yhitab.eye) 
    outliersourcehi{Getname} = tabrownm(Yhitab.variable(Getname)); 
end 
Yhitab.varname=outliersourcehi'; 
  
for Getnamelow=1:length(Ylowtab.eye) 
    outliersourcelow{Getnamelow} = tabrownm(Ylowtab.variable(Getnamelow)); 
end 
Ylowtab.varname=outliersourcelow'; 
  
%{ 
%hist plot of BA outliers by region 
figure 
outlyreg = histogram ([Yhitab.region; Ylowtab.region]); 
xticks(1:17); 
  
%hist plot BA variable (number corr to name in tabrownm) 
figure 
outlyvar = histogram ([Yhitab.variable; Ylowtab.variable]); 
xticks([1 2 3 4 5 6 7 8]); 
xticklabels({'MedSD', 'MaxSD', 'MinSD',... 
 'iqrSD', 'MedMaxe', 'MaxMaxe','MinMaxe', 'iqrMaxe'}); 
  
%} 
%% 
%Second BA method: analysis of log 2 BA plot, stats variables (col1st/2d) 
%uncommment 150-151, 174-189 to use 
indi1 = find(sqI1<0); 
indi2 = find(sqI2<0); 
  
logsq1 = log2(abs(sqI1)); 
logsq2 = log2(abs(sqI2)); 
logsq1(:,:,10:12)=[];%this removed second last eye (PVD =9, or 10 for first RD, or 
11 for 2d RD, 12 2d PVD) eye) 
logsq2(:,:,10:12)=[];% 13 is S2/4 10 - PVD 
%BlandAltman(logsq1, logsq2,Gnames, 'baStatsMode','Non-parametric',... 
%    'symbols','Num','colors','kkkkkkkkbrmc','markerSize',7); 
  
  
logYdiffs= logsq2 - logsq1;%the log2 y coordinates of the BA plot 
  
%tables give variable/region/eye of outlying values (log2) 
[YhiL{1},YhiL{2},YhiL{3}] = ind2sub(size(logYdiffs),find(logYdiffs>2));%row/col = 
variable/region of outliers 
YhiLtab = table(YhiL{1},YhiL{2},YhiL{3}, 
'Variablenames',{'variable','region','eye'}); 
  
[YlowL{1},YlowL{2},YlowL{3}] = ind2sub(size(logYdiffs),find(logYdiffs<-2.1)); 
YlowLtab = table(YlowL{1},YlowL{2},YlowL{3}, 
'Variablenames',{'variable','region','eye'}); 
  
%convert variable number to name in outlier tables Yhi Ylow (log 2) 
for GetnameL=1:length(YhiLtab.eye) 
    outliersourcehiL{GetnameL} = tabrownm(YhiLtab.variable(GetnameL)); 
end 
YhiLtab.varname=outliersourcehiL'; 
  
for GetnamelowL=1:length(YlowLtab.eye) 
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    outliersourcelowL{GetnamelowL} = tabrownm(YlowLtab.variable(GetnamelowL)); 
end 
YlowLtab.varname=outliersourcelowL'; 
  
%{ 
%hist plot of BA log outliers by region 
figure 
outlyregL = histogram ([YhiLtab.region; YlowLtab.region]); 
xticks(1:17); 
  
%hist plot BA log variable (number corr to name in tabrownm) 
figure 
outlyvarL = histogram ([YhiLtab.variable; YlowLtab.variable]); 
xticks(1:16); 
xticklabels({'MedSD', 'MaxSD', 'MinSD',... 
 'iqrSD', 'MedMaxe', 'MaxMaxe','MinMaxe', 'iqrMaxe',... 
 'Medrmsd', 'Maxrmsd', 'Minrmsd','iqrrmsd', 'MedCkurv', 'MaxCkurv',... 
 'MinCkurv', 'iqrCkurv'}); 
title('LoA outliers of summary metrics'); 
%} 
  
%% 
%Second BA method: analysis of log 2 BA plot of bin maxima each cube 
indi1bin = find(Ibin3d1<0);%this from maxabsd (from compRep), the cube max diff 
indi2bin = find(Ibin3d2<0);% from average Bscan for each bin 
  
logbin1 = log2(abs(Ibin3d1)); 
logbin2 = log2(abs(Ibin3d2)); 
logbin1(:,:,[9:12])=[];%this removes eyes (PVD =9/12, or 10/11 for RD) eye) 
logbin2(:,:,[9:12])=[];%13 is S2/4 10 = PVD 
BlandAltman(logbin1, logbin2,Gnames, 'Pre/post PVD','Non-parametric',... 
    'symbols','.................','colors','kkkkkkkkrbmcr','markerSize',7); 
%BlandAltman(logbin1, logbin2,Gnames, 'Pre/post PVD S113/125','Non-parametric',... 
%    'symbols','Num','colors','kkkkkkkkbrmc','markerSize',7); 
%with 199-200 used, the colour of studied eye is the ninth letter in colors 
  
  
logYdiffsbn= logbin2 - logbin1;%the log2 y coordinates of the BA plot 
  
%tables give variable/region/eye of outlying values (log2) 
%the numbers after > & < taken from viewing the range values in BA plot 
[YhiLb{1},YhiLb{2},YhiLb{3}] = 
ind2sub(size(logYdiffsbn),find(logYdiffsbn>LoAhi));%row/col = variable/region of 
outliers 
YhiLtabbn = table(YhiLb{1},YhiLb{2},YhiLb{3}, 
'Variablenames',{'bin','region','eye'}); 
  
  
[YlowLb{1},YlowLb{2},YlowLb{3}] = 
ind2sub(size(logYdiffsbn),find(logYdiffsbn<LoAlo)); 
YlowLtabbn = table(YlowLb{1},YlowLb{2},YlowLb{3}, 
'Variablenames',{'bin','region','eye'}); 
  
  
%hist plot of BA log outliers by region 
figure 
outlyregLb = histogram ([YhiLtabbn.region; YlowLtabbn.region]); 
xticks(1:17); 
title('LoA anomaly outliers by frequency region'); 
  
%hist plot BA log variable (number corr to name in tabrownm)by bin??? 
figure 
outlyvarLb = histogram ([YhiLtabbn.bin; YlowLtabbn.bin]); 
xticks(1:30); 
title('LoA anomaly outliers by frequency bin'); 
%xticklabels(); 
%% 
 BAXvals = 
table(Tabroenames,Xmeanval{1},Xmeanval{2},Xmeanval{3},Xmeanval{4},Xmeanval{5},Xmean
val{6},... 



  342 

     Xmeanval{7},Xmeanval{8}); 
  
 BAXarray = 
cat(2,Xmeanval{1},Xmeanval{2},Xmeanval{3},Xmeanval{4},Xmeanval{5},Xmeanval{6},... 
     Xmeanval{7},Xmeanval{8});%the mean of each value across the 2 tests 
  
  BAYarray = 
cat(2,Ydiffval{1},Ydiffval{2},Ydiffval{3},Ydiffval{4},Ydiffval{5},Ydiffval{6},... 
     Ydiffval{7},Ydiffval{8});%the mean of each value across the 2 tests 
  
  
  
  
 for flipX=1:16 
      
     lreg=17*flipX; 
     freg=lreg-16; 
      
     BAXcube(flipX,:,1:17)=permute(BAXarray(freg:lreg,1:8),[3 2 1]); 
     BAYcube(flipX,:,1:17)=permute(BAYarray(freg:lreg,1:8),[3 2 1]); 
     %variable(med/max etc) x eye x region 
      
      
  
 end 
  
 %% 
 %plot outliers from LoA 
 figure 
 Eye = 9; %eye indexm usually 9 
 Hival = (YhiLtabbn.eye==Eye); 
 Loval = (YlowLtabbn.eye==Eye); 
 scatter (YhiLtabbn.region(Hival), YhiLtabbn.bin(Hival)+1,50,'+m');%+1 for 2-20 
from 1-19 
 hold on 
 scatter (YlowLtabbn.region(Loval), YlowLtabbn.bin(Loval)+1,50,'xr'); 
 ylim([0 21]); 
 xlim([0 18]); 
 legend({'Above LoA','Below LoA'},'Location','best'); 
 xlabel('Region'); 
 ylabel('Bin'); 
 title('Anomaly values for study eye outside LoA'); 
  
 %identify outliying LoA anomaly values. MATCH Ibin3d1/2 to lines199-200 
hivals = find(logYdiffsbn>LoAhi); 
hivals(hivals<2584) = [];%19 x 17 x 8 = 2584, remove rep eyes 
anomsused1 = Ibin3d1(:,:,[1:8,13]);%1:8 plus the eye used in 200-202 
anomsused2 = Ibin3d2(:,:,[1:8,13]); 
hianom1 = anomsused1(hivals); 
hianom2 = anomsused2(hivals); 
  
lovals = find(logYdiffsbn<LoAlo); 
lovals(lovals<2584) = []; 
loanom1 = anomsused1(lovals); 
loanom2 = anomsused2(lovals); 
  
figure 
His1 = histogram([hianom1; loanom1]); 
hold on 
His2 = histogram([hianom2; loanom2]); 
xlabel('Anomaly value'); 
ylabel('No. of variables'); 
title('Histogram of anomaly moduli outside limits of agreement'); 
legend({'First exam','Second exam'}); 
His1.BinWidth=His2.BinWidth; 
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Chapter 6.  
1. CretiffSS 
%convert IMG to tiff - for a directory of IMG files (SS OCT, UHD spot) 
%Part 1 gets directory current folder, and its IMG names 
%Part 2 converts IMG to tiff stack (use in SSA2FFT). Creates eye folder 
%OPEN Eye IMG directory (named after eye ID) in Current folder  
%CHANGE dims line 39 (if not UHD spot), CCtime 2021 to current year line 42 
%also saves SLO images and IRIS image. Creates host eye folder itself 
%% 
clear 
Currfold = pwd; 
IMGinfoR = dir; 
IMGinfo = IMGinfoR(contains({IMGinfoR.name},'.img'));%add z to .img for cubes 
LSOinfo = IMGinfoR(contains({IMGinfoR.name},'lslo.bin'));%add z to .img for cubes 
IRISinfo = IMGinfoR(contains({IMGinfoR.name},'iris.bin'));%add z to .img for cubes 
LSOnames = {LSOinfo.name}; 
IMGnames = {IMGinfo.name}; 
IRISnames = {IRISinfo.name}; 
%IRISnames(1)=[];%CHECK need to remove first iris.bin all cases11 
NumIMG = size(IMGnames,2); 
Dirstr = '/Users/stewartlake/Documents/SS OCT eyes/'; 
EyeID = Currfold(end-7:end);%Eye ID (eg 'SS1 0028') 
nDir = [Dirstr EyeID '/' EyeID ' tiff']; 
sloDir = [Dirstr EyeID '/' EyeID ' lslo']; 
irisDir = [Dirstr EyeID '/' EyeID ' iris']; 
if (~exist(nDir,'dir')) 
    mkdir ([Dirstr EyeID]); 
    mkdir (nDir);  
    mkdir (sloDir); 
    mkdir (irisDir) 
end 
  
  
for NxIMG = 1:NumIMG 
%% 
IMGnm = IMGnames{NxIMG}; 
IMGfileID = fopen(IMGnm); 
IMGfile = fread(IMGfileID); 
%dims: UHDspotlight = [2047 3072 1], cube512  = [512 1536 512], 
%angio15x9 = [500 1536 834], cubes 800 = [800 1536 800] 
dims = [2047 3072 1]; 
IMGfile1 = uint8(reshape(IMGfile,dims)); 
%IMGnm time stamp created below 
CCtime = regexp(IMGnm,'(?<=2021_)\d*\S\d*\S\d*','all','match');%'11-4-42' 
TsaveN = [nDir '/' EyeID ' ' CCtime{1} '.tif']; %tiff cube name 
  
%slo tiff creation 
SLOnm = LSOnames{NxIMG}; 
SLOfileID = fopen(SLOnm); 
SLOfile = fread(SLOfileID); 
  
dimslo = [664 512]; 
SLOfile1 = uint8(reshape(SLOfile,dimslo));% 
  
%iris tiff creation 
IRISnm = IRISnames{NxIMG}; 
IRISfileID = fopen(IRISnm); 
IRISfile = fread(IRISfileID); 
  
dimiris = [640 480]; 
IRISfile1 = flipud(uint8(reshape(IRISfile,dimiris)));%orient R/L correctly with 
flipud 
  
%IMGnm selction 48:55 12x12 cube 
TsaveNslo = [sloDir '/' EyeID ' ' CCtime{1} '.tif']; %tiff cube name 
TsaveNiris = [irisDir '/' EyeID ' ' CCtime{1} '.tif']; %tiff cube name 
  
for mt = 1:dims(3) 
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if mt==1 
    imwrite(IMGfile1(:,:,mt)',TsaveN);% 
    imwrite(SLOfile1',TsaveNslo); 
    imwrite(IRISfile1',TsaveNiris); 
else 
    imwrite(IMGfile1(:,:,mt)',TsaveN,'WriteMode','append'); 
       
end 
  
end 
  
end 

 
2. SSA2FFT 

Lines 95-204 are function A2.m, written by Tyra Lange, Flinders University  

Lines 274-457 are function FFTforOCT.m, written by Associate Professor Murk Bottema, 

Flinders University 
%SS OCT tiff contour extraction  
%saves xz data from tyra lange's graph theory shape identification A2; 
%works on tiff files in Current folder, will ask for axial length, B scan 
%width and depth (mm & pixels) - *16 6 2047 3072 for UHD spotlight* 
%Works on Zeiss SS OCT cube tiffs from CretiffSS or similar,   
%CHANGE: have tiff folder open in current folder 
%CHANGE str2 line 31 if required if not SS OCT 
%ONCE cube x,z saved, edited length by accuracy on tiffs. Then FFT  
%Typical run takes 3:30 for 4 UHD, 10:30 for 2 x 25 Bs cubes 
%For each B scan mark the start (left hand side) and end (RHS) of 
%accurately identified contour. 
%If B scan is empty/no data/not wanted, enter start to the Right of the end 
%Locates points by A scan, so only x index needed (z position does not need 
%to be accurate)  *12 3 512 1536 for 12 x 12 cube* 
%Graph theory & Dijkstra's algorithm 
%FFTforOCT is included in this script to allow adjustment of B scan size 
%% Determine Number of Bscans in Cube  
clear 
%prompt0 = 'Enter Eye ID: '; 
%EyeID = input(prompt0,'s'); 
prompt1 = 'Enter axial length: '; 
AL1 = input(prompt1); 
prompt2{1} = 'Enter B scan width (mm):'; 
prompt2{2} = 'Enter B scan depth (mm):'; 
BSw = input(prompt2{1}); 
BSd = input(prompt2{2}); 
prompt2{3} = 'Enter B scan width (pixels):'; 
prompt2{4} = 'Enter B scan depth (pixels):'; 
BSpw = input(prompt2{3}); 
BSpd = input(prompt2{4}); 
str2 = '/Users/stewartlake/Documents/SS OCT eyes/'; 
  
Currfold = pwd; 
tiffinfo = dir; 
tiffinfo = tiffinfo(~ismember({tiffinfo.name},{'.','..','.DS_Store'})); 
tiffnames = {tiffinfo.name}; 
Numtiff = size(tiffnames,2); 
  
McubeFFT = cell(Numtiff,1); 
%mkdir ([EyeID ' tiff']); 
  
for Rc = 1:Numtiff 
  
%NowC{Rc} = tiffnames{Rc};  
  
%% 
%{ 
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%This section converts input IMG file to tiff for next section 
IMGnm = [NowC{Rc} '.img']; 
IMGfileID = fopen(IMGnm); 
IMGfile = fread(IMGfileID); 
%next line HD21 = [1024 1024 21], mac cube  = [512 1024 128],MChidef = [1024 1024 
2] 
IMGfile1 = uint8(reshape(IMGfile,[1024 1024 21])); 
TsaveN = [EyeID ' ' IMGnm(30:end-27) '.tif']; %cube ID 
%{ 
if (~exist([EyeID ' tiff/' ],'dir')) 
       mkdir ([EyeID ' tiff/' ]);%creates tiff folder if not present  
end 
  
oldFolder = cd([EyeID ' tiff/' ]); 
%} 
for mt = 1:21 
  
if mt==1 
    imwrite(IMGfile1(:,:,mt)',TsaveN);%mac cube change mt to mt*6 
else 
    imwrite(IMGfile1(:,:,mt)',TsaveN,'WriteMode','append'); 
       
end 
%cd (oldFolder) 
  
end 
%} 
%% 
  
%FileTif = 'T2 028 13-59-47.tif'; %Insert cube tiff name here 
FileTif = tiffnames{Rc}; 
InfoImage=imfinfo(FileTif); 
NumberImages=length(InfoImage); 
Xc1 = cell(NumberImages,1); 
Zc1 = cell(NumberImages,1); 
cubeFFT = NaN(30, NumberImages); 
Cubefreq = NaN(30, NumberImages); 
nowI = FileTif(1:8);%eye ID  
startXY = NaN(NumberImages, 2); 
finXY = NaN(NumberImages, 2); 
DirChk = [str2 nowI '/FFTA2']; 
if (~exist(DirChk,'dir')) 
       mkdir (DirChk);%creates FFTA2 folder if not present 
end 
  
for i1=1:NumberImages 
I = imread(FileTif, 'Index', i1); 
  
%% Preprocessing 
  
img = imfilter(I,fspecial('gaussian',[15 15],11));            % Blur Image 
img = img > 0.75*max(img);                                    % 
  
% Insert Vertical Column of Zeros (Both Sides) 
size1 = size(img);                                            % Determine Size 
(1024 x 1024) 
img1 = zeros([size1(1) size1(2)+2]);                          % Matrix of Zeros 
(Rows by Columns +2) (1024 x 1026) 
img1(:,2:1+size1(2)) = img;                                   % Insert image from 
2nd column to 2nd last column which is 1 more than img columns 
                                                              % size is size of new 
img with two extra columns (308 x 310)  
sizeNew = size(img1); 
%% Determine Graph Gradients (Graph Weights)   
  
% get  vertical gradient image 
G = nan(sizeNew);                                   % Matrix of NaN values of 308 x 
310 
  
for i3 = 1:sizeNew(2)                                % For columns 
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    G(:,i3) = -1*gradient(img1(:,i3),2);              % Positive vertical gradient 
between 2 pixels 
end 
  
G = (G-min(G(:)))/(max(G(:))-min(G(:)));  
  
G2 = G*-1+1;                                        % Get the "invert" of the 
gradient image 
  
%% Generate Adjacency Matrix  
  
minWeight = 1E-5;                                   % Minimum weight 
  
MW_pos = nan([numel(img1(:)) 8]);                   % Array to store positive 
weights  
MW_neg = nan([numel(img1(:)) 8]);                   % Array to store negative 
weights 
MX = nan([numel(img1(:)) 8]);                       % Array to store point A 
locations 
MY = nan([numel(img1(:)) 8]);                       % Array to store point B 
locations 
  
%Each node is associated with only its eight nearest neighbors 
  
n = [1 1  1 0  0 -1 -1 -1; 1 0 -1 1 -1  1  0 -1]; 
             
%fill in the above arrays 
  
szMW_pos = size(MW_pos); 
ind = 1; 
  
  
while ind ~= szMW_pos(1)*szMW_pos(2) %While ind not = col * row (not = 8404992) 
     
    [i2, j] = ind2sub(szMW_pos,ind);  % i = 1050624x8, j = 1 
    [iX,iY] = ind2sub(sizeNew,i2); 
     
    jX = iX + n(1,j);                                     
    jY  = iY + n(2,j); 
     
     if jX >=1 && jX <= sizeNew(1) && jY >=1 && jY <= sizeNew(2) % 1024 , 1026 
         %save weight 
          
         % set to minimum if on the sides 
         if jY == 1 || jY == sizeNew(2) 
            MW_pos(i2,j) = minWeight; 
            MW_neg(i2,j) = minWeight; 
             
         % else, calculate the actual weights 
         else 
            MW_pos(i2,j) = 2 - G(iX,iY) - G(jX,jY) + minWeight; 
            MW_neg(i2,j) = 2 - G2(iX,iY) - G2(jX,jY) + minWeight; 
         end 
          
        %save the subscript of the corresponding nodes 
        MX(i2,j) = sub2ind(sizeNew,iX,iY); 
        MY(i2,j) = sub2ind(sizeNew,jX,jY); 
    end 
    ind = ind+1; 
     
end 
  
%assemble the adjacency matrix 
keepInd = ~isnan(MW_pos(:)) & ~isnan(MX(:)) & ~isnan(MY(:)) & ~isnan(MW_neg(:)); 
MW_pos = MW_pos(keepInd); 
MW_neg = MW_neg(keepInd); 
MX = MX(keepInd); 
MY = MY(keepInd); 
  
%sparse matrices, based on eq 1 with the gradient, 
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adjMatrixW = sparse(MX(:),MY(:),MW_pos(:),numel(img1(:)),numel(img1(:))); 
                    % and the invert of gradient. 
adjMatrixMW = sparse(MX(:),MY(:),MW_neg(:),numel(img1(:)),numel(img1(:))); 
  
%% Shortest Path 
  
% get layer going from light to dark 
[ dist,path{1} ] = graphshortestpath( adjMatrixW, 1, numel(img1(:)) ); 
[pathX,pathY] = ind2sub(sizeNew,path{1}); 
  
% get rid of first and last few points that is by the image borders 
pathX =pathX(gradient(pathY)~=0); 
pathY =pathY(gradient(pathY)~=0); 
  
Xc1{i1} = pathY; 
Zc1{i1} = pathX; 
  
%% Succesful RPE Delineation  
  
BSfig = figure; 
%BSfig.WindowState = 'maximized'; 
imagesc(I); axis image; colormap('gray'); hold on; 
plot(pathY,pathX,'g-','linewidth',1.5); hold on; 
legend({'rpe'}); 
  
  
[startXY(i1,1),startXY(i1,2)] = ginput(1);%start X,Y and finish X,Y from image 
[finXY(i1,1),finXY(i1,2)] = ginput(1); 
  
end 
  
close all 
  
%% 
%set(startfinXY,'WindowStyle','normal');%attempt to undock and show 
%variable 
  
%edit above results with startXY and finXY 
  
%data in Xc, Zc corrected by manually completed matrices startfinXY using 
%ginput 
  
% 
startXY = fix(startXY); 
finXY = fix(finXY); 
%to remove a Bscan data,  
%make startfinXY (Bs,1) one greater then startfin(BS,3), eg 513 and 512 
%complete then run A2FFTa 
Xc = cell(NumberImages,1); 
Zc = cell(NumberImages,1); 
  
for Tr = 1:NumberImages 
     
    BsX = Xc1{Tr}; 
    BsZ = Zc1{Tr}; 
    
    StrtX = find(BsX == startXY(Tr,1));  
    Fin1X = find(BsX == finXY(Tr,1)); 
    
    
   if StrtX(end)>Fin1X(1) 
       
       Xc{Tr} = NaN(size(Xc1{Tr}'));%empty B scan vector if not wanted 
       Zc{Tr} = NaN(size(Zc1{Tr}')); 
        
   else 
        
       BsX(Fin1X(1)+1:end) = []; 
       BsZ(Fin1X(1)+1:end) = [];  
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       BsX(1:StrtX(end)-1) = []; 
       BsZ(1:StrtX(end)-1) = []; 
    
       Xc{Tr} = BsX'; 
       Zc{Tr} = BsZ'; 
        
   end 
    
end 
  
  
%% 
%Pt2 follows on from Tyra's A2 function 
%Performs FFT on Xc, Zc,  
%one cube a time, with length Xc/Zc curated by accuracy in images from 
%A2FFT second section 
%this is from FFT4Eye to process FFT for OCT_R3 data 
VecLen = NaN(NumberImages); 
Quadcoeffs = zeros(3,NumberImages); 
TSig = zeros(1,NumberImages); 
CubeSigPror = zeros(30,NumberImages); 
NumBin50 = zeros(1,NumberImages); 
  
for Bs = 1:NumberImages 
     
    if (~isnan(Zc{Bs})) 
            %L = length (Zc{Bs}); 
            %Written by A/Prof Murk Bottema 
             
            %[FFTz,freq] = FFTforOCT_R3mm(Xc{Bs},Zc{Bs}); 
            %FFTforOCT inserted here instead of calling function 
            %to allow for varying B scan size         
            %FFTforR3 convert x and z to mm for consistency and results 
            %R2 is normalised FFT bins by Veclen 
            % allows adjustment B scan size 
            % 
            % Further revision to normalise data by vector length Veclen line 186 & 
222 
            % February 23, 2018 
% 
            % Compute FFT so that the output is comparable regardless of the length 
of 
            % the retinal data. Adjust for possible missing or repeated measurement 
locations 
            % (x-values). Express the results as spacial frequency in terms of 
cycles 
            % per mm. 
% 
            % The spacing in x is width pixels/width mm,  
            % which determines sampling frequency (sf). 
% 
            % Step 1. If there are duplicated values of x, then a single z value is 
            % attached to this x value equal to the mean of the z values recorded 
for 
            % the duplicate x values. 
% 
            % Step 2. If there are gaps in the sequence of x values, these are 
filled 
            % by interpolation. 
% 
            % Step 3. The best quadratic fit to the signal is removed to avoid 
            % contamination of the FT by mismatches at the endpoints of the signal. 
% 
            % Step 4. If the signal is less than 1024(BSwp) points long, then the 
signal is 
            % padded by zeros to attain length 1024. If the signal si more than 
1024 
            % points long, the ends are cut to attain a length of 1024. 
% 
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            % Step 5. The Fourier transform is computed. The values of the modulus 
or 
            % the transformed signal are recorded for frequencies 1 to Ny (Nyquist 
            % frequency) at pixel width/2 points. These values constitute the 
output vector FFTz. 
% 
% 
            % FFTz is the Fourier transform of z. freq is the vector of spatial 
            % frequency values.  
            % This is now normalised by Veclen final line 
%  
            % retain the original values of x and z for display purposes 
            %xold = x; 
            %zold = z; 
  
            % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % Step 0.5. Sort the data according to the first column. This step is 
new 
            % to this version and is meant to fix the fault in FFTforOCT.m in the 
            % header for this version. 
            % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
            [sortx,sortind] = sort(Xc{Bs}); 
            sortz = Zc{Bs}(sortind); 
            x = sortx; 
            z = sortz; 
  
  
            % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % Step 1. Replace multiple z values for a single x by the mean 
            % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
            Dflag = 1; 
            while Dflag == 1 
                L = length(x); 
                Dx = x(2:L) - x(1:L-1);    % differences of consecutive x values 
                zeroDx = find(Dx == 0);    % find places where x does not change 
                 if isempty(zeroDx) == 0    % if repeated values are found: 
                   indxr = zeroDx(1);     % index of first repeated value 
                    xr = x(zeroDx(1));     % the first repeated value 
                    vecr = find(x == xr);  % find all x's with this value 
                    Lxr = length(vecr);    % the number of these repeats 
                    meanz = mean(z(vecr)); % the mean of the z values 
         
                    % construct the new x and z vectors 
                 if indxr > 1 
                    x = [x(1:indxr) ; x(indxr+Lxr:L)];  
                    z = [z(1:indxr-1) ; meanz ; z(indxr+Lxr:L)]; 
                 else  
                    x = [x(1)  ; x(1+Lxr:L)]; 
                    z = [meanz ; z(1+Lxr:L)]; 
                 end 
           
                 else 
                    Dflag = 0;          % if no repeats are found end the process 
                 end 
            end 
  
            % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
            % Diagnostic steps 
            %sizex = size(x) 
            %roundz = round(z); 
            %disp([x roundz]) 
  
            % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % Step 3. Remove the quadratic approximation of the background 
            % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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            sf = BSpw/BSw; 
            sfz = BSpd/BSd; 
            xmm = x/sf; 
            ZMM = z/sfz; 
            p = polyfit(xmm,ZMM,2); 
            B = p(1)*(xmm.^2) + p(2)*xmm + p(3); 
  
            z = ZMM - B; 
  
  
            %pixel BFC 
            Bspz = p(1)*(x.^2) + p(2)*x + p(3); 
  
            % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % Step 2. Fill any gaps in the data 
            % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
            L = length(x); 
            x1 = x(1); 
            xL = x(L); 
            runvec = (x1:1:xL)';  % this works because the values of x are integers 
            LENRUNVEC = length(runvec); 
  
    for kL = 1:L-1 
        D = x(kL+1) - x(kL); 
        if D ~= 1 
            disp(['Here is a problem']) 
            disp([x(kL) x(kL+1)]) 
        end 
     
     
    end 
  
    if L ~= length(runvec) 
        z = interp1(x,z,runvec); 
    end 
    x = runvec; 
  
    % retain the adjusted x vector, z vector and quadratic background B for 
    % display 
    zmm = z; 
    Bmm = B; 
  
    % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Step 4. Adjust the length of the signal to be B scan width points long 
    % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Veclen = length (z); 
    L = length(z); 
    if L < BSpw   % If too short, pad by zeros at each end 
        D = BSpw - L; 
        w = floor(D/2); 
        v = D - w; 
        newz = [zeros(w,1); z ; zeros(v,1)]; 
        z = newz; 
    end 
  
    if L > BSpw  % if too long, remove points at each end 
        D = L - BSpw; 
        w = floor(D/2); 
        %v = D - w; 
        newz = z(w+1:w+BSpw); 
        z = newz; 
    end 
  
  
    % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Step 5. Compute the fast Fourier transform 
    % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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    % Set the sampling frequency 
    L = length(z); 
    Ny = sf/2;                       % Nyquist frequency 
    freqvec = linspace(-Ny,Ny,L+1); 
    freqvec = freqvec(1:L);          % frequency vector 
  
    % Compute the Fourier transform 
    Fz = fft(z);                     % Fourier transform (FFT) 
    AFz = abs(Fz);                   % modulus of FFT 
  
    % Retain only frequencies 0 to Nyquist 
    L2 = floor(L/2); 
    FFTz = AFz(1:L2); 
    freq = freqvec(L2+1:L); 
    FFTz = FFTz*(sf/Veclen);%correct FFTz for length - sf to keep veclen in mm 
  
             
            VecLen(Bs) = length(Zc{Bs});%vector length(FFT already corrected) 
            %note VecLen uncorrected length and Veclen for FFT correction 
            %create matrix of residuals 
            zVlen = size (Zc{Bs},1); 
            zedres(1:zVlen,Bs) = Zc{Bs}; 
            %zedres = zedres(1:1024,fileNum); 
             
            %save quadratic coefficients 
            %sf = 1024/BSw;%already used, above 
            %xmm = Xc{Bs}/sf; 
            %sfz = 1024/BSd; 
            %ZMM = Zc{Bs}/sfz; 
            %p = polyfit(xmm,ZMM,2);% 
            Quadcoeffs (1,Bs) = p(1); 
            Quadcoeffs (2,Bs) = p(2); 
            Quadcoeffs (3,Bs) = p(3); 
     
            %put FFTz, freq into matrix, one column per B scan, bins by 
            %rows 
            cubeFFT(1:30,Bs) = FFTz(1:30); 
            %cubeFFT(1:30,fileNum)=cubeFFT(1:30,fileNum)/VecLen(fileNuM); 
            Cubefreq(1:30,Bs) = freq(1:30)'; 
             
            %now determine the relative proportion of each frequency bin to the 
signal 
            TSig(1,Bs) = sum (cubeFFT(:,Bs)); 
            CubeSigPror(1:30,Bs) = FFTz(1:30)'/TSig(1,Bs); 
            
            %find number of bins to make 50% signal 
            binprorV = CubeSigPror (1:30,Bs); 
            BScusu (1:30) = cumsum (binprorV); 
            NumBin50(1,Bs) = find (BScusu > 0.5, 1); 
             
    else 
        cubeFFT(1:30,Bs) = NaN(30,1); 
%} 
    end  
  
  
end 
%look like x vector = pathY, z-vector is pathX 
%so save these two columns for use in new FFT processing above 
%cubeFFT is for one cube 
McubeFFT{Rc} = cubeFFT;%bins x B scans 
  
        %now save each cube's data 
        str4 = FileTif(1:end-4);% cube ID 
        str6 = [DirChk '/' str4]; 
        save (str6, '-
regexp','^(?!(adjMatrixMW|adjMatrixW|G|G2|img|img1|MW_neg|MW_pos|MX|MY)$).'); 
  
end 
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%% 
%{ 
%classifier  
load('/Users/stewartlake/Documents/Retinalcontour/classifiers/reg bin 
QDA/Fs5Trs3v.mat'); 
  
%generate mean BS from average of 5 folds of RD/PVD eyes 
for bl =1:5 
    bsM(1:30,bl) = meanBS{bl}; 
end 
bsMmean = mean(bsM,2);%average bin value from classifier data 
bsMsd = std(bsM,0,2); 
bsmsdall = mean(bsMsd); 
bsMcoev = bsMsd./bsMmean; 
bsMmncov = mean(bsMcoev); 
  
%variables for model data 
%if (3,2) and (5,3) 
%(3,2) is first input cube bin 2: max(McubeFFT{1}(2,:))  
%assuming r/c = bins/B scans 
%(5,3) is second cube input bin 3: max(McubeFFT{2}(3,:)) 
%model data = cat((3,2),(5,3) Axl,) 
  
  
numTeyes = 1; 
Dcat = cell(numTeyes,2);%col 1 category labels, col 2 number of each category 
Tvalvars = NaN(numTeyes,3);%variables for classifier 
     
    %get bin diff by subtracting max val from  
    Tvalvars(numTeyes,1) = max(abs(McubeFFT{1}(2,:) - 
bsMmean(2)),[],'omitnan');%(3,2) 
    Tvalvars(numTeyes,2) = max(abs(McubeFFT{2}(3,:) - 
bsMmean(3)),[],'omitnan');%(5,3) 
     
    Tvalvars(numTeyes,3) = AL1;%AxL 
     
  
  
%then  
quad4mdl1.Prior = [1 1];% change prior here as required 
[Ttestlabels1,Tscore1] = predict (quad4mdl1,Tvalvars); 
Rep = ['0 = not RD, 1 = RD, Eye ' EyeID]; 
Unwtrep = 'prior 1:1 test result'; 
Wtrep = 'prior 6:1 test result'; 
  
disp(Rep); 
disp(Unwtrep); 
disp(Ttestlabels1); 
  
quad4mdl1.Prior = [6 1];% change prior here as required 
[Ttestlabels6,Tscore6] = predict (quad4mdl1,Tvalvars); 
disp(Wtrep); 
disp(Ttestlabels6); 
  
%} 

 
 
3. SStabFFT 
%populate SSOCTeyes.mat table with FFT data from FFTA2 in eye folders 
%individual variables/columns for M U D R L, (can also add NSWE) 
%also BFCvC,  
%START: Use import data to import SS OCT eyes.xlsx to a table with the useful 
columns. 
%ID, diagnostic category, AAL, Age, UHDspot1 
%For the UHDspot key column (‘MUDRL’) import as text, so it is a string (if 
%imported as a category need another step % below). 
%Gets FFT data from /FFTA2, so this (SSA2FFT) needs completion. 
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SSOCTeyes3=[];%change this to the table to be used 
clear 
load('/Users/stewartlake/Documents/MATLAB/SSOCT eyes.mat'); 
a1={'M';'U';'D';'R';'L'}; 
NumpGrp = groupcounts(SSOCTeyes3,'category');%No. per category 
str2 = '/Users/stewartlake/Documents/SS OCT eyes/'; 
cd (str2) 
SSIR = dir; 
%SSIR([149:150,289:290],:)=[];%change rows to remove incomplete eyes 
SSI = SSIR(contains({SSIR.name},{'SS1', 'SS2'})); 
SSInm = {SSI.name}; 
numI = size(SSInm,2); 
sIdeI = cellfun(@(x)x(3),SSInm);%laterality 
SSOCTeyes3.timeID(:) = {[]}; 
SSOCTeyes3.BFCvC(:) = {[]}; 
SSOCTeyes3.up(:) = {[]}; 
SSOCTeyes3.down(:) = {[]}; 
SSOCTeyes3.nasal(:) = {[]}; 
SSOCTeyes3.temp(:) = {[]}; 
SSOCTeyes3.mac(:) = {[]}; 
SSOCTeyes3.BFCup(:) = {[]}; 
SSOCTeyes3.BFCdown(:) = {[]}; 
SSOCTeyes3.BFCnasal(:) = {[]}; 
SSOCTeyes3.BFCtemp(:) = {[]}; 
SSOCTeyes3.BFCmac(:) = {[]}; 
 
 
for Eyes = 1:numI 
 eyedir = cd ([SSInm{Eyes} '/FFTA2']); 
    Row = find(strcmp(SSOCTeyes3.ID,SSInm{Eyes}));%find table row to match current 
eye 
    %Row (in SSOCTeyes table) matches Eyes (in SSInm) 
    UHDkey=SSOCTeyes3.UHDSpot1(Row); 
    BSloc=num2cell(UHDkey{:});% array of UHDkey 
     
    %indices for columns in table 
    Out = cellfun(@(s)find(~cellfun('isempty',strfind(BSloc,s))),a1,'uni',0); 
     
     
    BSinfoR = dir; 
    BSinfo = BSinfoR(contains({BSinfoR.name},'.mat'));%get .mat files 
    nms = {BSinfo.name}; 
    SStime = 
string(cellfun(@(s)regexp(s,'\d*\S\d*\S\d*(?=.mat)','all','match'),nms)); 
    numbs = size(nms,2); 
    Tformat(Eyes,1:numbs) = datetime(SStime,'InputFormat', 'HH-mm-ss');% 
     
 
 
        for BS = 1:numbs 
        load(nms{BS}, 'cubeFFT','Quadcoeffs'); 
 
     Ibsfft{Eyes,BS} = cubeFFT;%rows = eyes, cols = Bscans 
           QC(Eyes,BS) = 2*Quadcoeffs(1); 
  
        end 
 
 cd (eyedir) 
     
    [tsort(Eyes,1:numbs),Its(Eyes,1:numbs)] = sort(Tformat(Eyes,1:numbs));%ID time 
sorted 
    allcubeFFTs = Ibsfft(Eyes,1:numbs);%this is cubeFFTs sorted into time order for 
allocation with Out 
    allcubeFFTs = allcubeFFTs(Its(Eyes,1:numbs)); 
    QC1(Eyes,1:numbs) = QC(Eyes,Its(Eyes,1:numbs));%sorted BFCvC 
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    SSOCTeyes3.timeID{Row} = tsort(Eyes,:);%time ID sorted in time order 
    SSOCTeyes3.BFCvC{Row} = QC1(Eyes,:);%BFCvC 
    % So macular B scans data 
        if ~isempty(Out{1}) 
    SSOCTeyes3.mac{Row} = allcubeFFTs(Out{1});%number Out from M U D R L 
    SSOCTeyes3.BFCmac{Row}=QC1(Out{1});% Best fit curve vertex curvature 
        end 
     
        if ~isempty(Out{2}) 
    SSOCTeyes3.up{Row} = allcubeFFTs(Out{2}); 
    SSOCTeyes3.BFCup{Row}=QC1(Out{2});% 
        end 
     
        if ~isempty(Out{3}) 
    SSOCTeyes3.down{Row} = allcubeFFTs(Out{3}); 
    SSOCTeyes3.BFCdown{Row}=QC1(Out{3}); 
        end 
     
    if sIdeI(Eyes) == 2 %left eyes 
        if ~isempty(Out{4}) 
    SSOCTeyes3.nasal{Row} = allcubeFFTs(Out{4}); 
    SSOCTeyes3.BFCnasal{Row}=QC1(Out{4}); 
        end  
        if ~isempty(Out{5}) 
    SSOCTeyes3.temp{Row} = allcubeFFTs(Out{5}); 
    SSOCTeyes3.BFCtemp{Row}=QC1(Out{5}); 
        end  
     
         
    else  % right eye 
             
        if ~isempty(Out{5}) 
    SSOCTeyes3.nasal{Row} = allcubeFFTs(Out{5}); 
    SSOCTeyes3.BFCnasal{Row}=QC1(Out{5}); 
        end 
     
        if ~isempty(Out{4}) 
    SSOCTeyes3.temp{Row} = allcubeFFTs(Out{4}); 
    SSOCTeyes3.BFCtemp{Row}=QC1(Out{4}); 
        end 
     
    end 
     
end 
     
%Summary data 
Meanage = mean(SSOCTeyes3.age,'omitnan'); 
MeanAL = mean(SSOCTeyes3.AAL,'omitnan'); 
SDage = std(SSOCTeyes3.age,'omitnan'); 
SDAL = std(SSOCTeyes3.AAL,'omitnan'); 
%meanBFCr = mean(SSOCTeyes2{:,13:17},'omitnan');%incs multiple B scans in a region 
%SDBFCr = std(SSOCTeyes2(:,13:17),'omitnan'); 
 
%for anomaly determination 
% see SStabana 
 
 
4. SStabana 
%analyse SStabfft output - save in MATLAB/SSOCT eyes.mat 
%identifies eyes by category 
%calculates anomaly from an average B scan of 80% sample (mBs) AL stratified 
%selects highest irregularity B scan if multiple present in any region 
%irregularity = Allis 
%anomaly = Anom 
%plots anomaly/irregularity by region and diagnosis 
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%histograms of RD PVD anom/irreg distribution by region and  
%total irreg/anom for all eyes 
%% 
%collate all scans  
SSOCTeyes2=[];%the table to use 
clear 
load('/Users/stewartlake/Documents/MATLAB/SSOCT eyes.mat'); 
SSOCTeyes2(139,:)=[];%remove any empty rows 
NumpGrp = groupcounts(SSOCTeyes2,'category');%No. per category 
Allis=SSOCTeyes2{:,8:11};%this is FFT bins 
BFCs = table2array(SSOCTeyes2(:,13:16));%this is bfc 
BFCsize = size(BFCs); 
BFC = NaN(BFCsize);%Best fit curve numerical array 
AxL = SSOCTeyes2.AAL; 
iel=0;%this just keeps track of regions with multiple B scans 
for Ai = 1:numel(Allis) 
    
    if numel(Allis{Ai})==1 
        AllBs(Ai,1:30)=Allis{Ai}{1}; 
        Allis{Ai} = cell2mat(Allis{Ai}); 
        BFC(Ai) = BFCs{Ai}; 
           
    elseif numel(Allis{Ai})>1 
        %clean multiple-B scan regions to hold max irreg B scan data 
        iel = iel+1; 
        iMel(iel)=Ai;%indices of multiple B scan regions 
        Regsel = cell2mat(Allis{Ai}); 
        Regselt=sum(Regsel); 
        [~,iMc]=max(Regselt); 
        AllBs(Ai,1:30)=Regsel(:,iMc);%max irregularity B scan from region 
        Allis{Ai}=Regsel(:,iMc); 
        BFC(Ai) = BFCs{Ai}(iMc); 
           
    else 
        AllBs(Ai,1:30)=NaN(1,30);%empty (0) region 
    end 
     
end 
 
 
RDis = ismember(SSOCTeyes2.category,{'RD'}); 
RTis = ismember(SSOCTeyes2.category,{'RT'}); 
PVDis = ismember(SSOCTeyes2.category,{'PVD'}); 
FEis = ismember(SSOCTeyes2.category,{'FE'}); 
FPVDis = ismember(SSOCTeyes2.category,{'FPVD'}); 
notPVDis = ismember(SSOCTeyes2.category,{'no PVD'}); 
Stis = ismember(SSOCTeyes2.category,{'St'}); 
 
PVDirreg=Allis(PVDis,:); 
PVDAxL = AxL(PVDis,:); 
%meanBs = mean(AllBs,'omitnan');%do not use: use 5 fold averages, below 
%% 
%create anomaly values by 5 fold averages, create mean Bscan from PVD eyes 
[sALvec,ALorder]=sort(SSOCTeyes2.AAL);% ascending order of AL 
%{ 
%original mean Bscan from all eyes 
%AL sorted 
%sort eyes by AL 
 
sAllis=Allis(ALorder,:); 
sAgevec = SSOCTeyes1.age(ALorder); 
sALvec(sALvec==0) = NaN;%keep "no AL" eyes 
 
%generate random distribution into 5 folds 
k=5; 
NumIpfold = floor(size(sAllis,1)/k);%number of eyes per k folds 
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Remis=mod(size(sAllis,1),k);%plus the remainder not divisible by k 
Ranselis = zeros(k,NumIpfold); 
for Ranrun=1:NumIpfold 
     
    Ranselis(:,Ranrun) = randperm(k)'; 
end 
Ranremis=randperm(Remis)'; 
Ranselis = cat(1,Ranselis(:),Ranremis);%these are the row indices to divide ALLis 
into 1-5 folds 
 
for n=1:k 
    
    Fis{n} = sAllis(Ranselis==n,:); 
    notFis{n} = sAllis(Ranselis~=n,:); 
    ALvec{n} = sALvec(Ranselis==n); 
     
    notFisX = notFis{n};%only works if each consists only of one cell 
    notFisd=horzcat(notFisX{:})';%Bs x 30 double 
    mBs(n,1:30)=mean(notFisd,'omitnan');%mean B scan irregularity 
     
end 
 
uRanselis(ALorder)=Ranselis;%'unsort' the randomisation to match Anom/Allis 
Anom=Allis; 
 
for rr=1:size(Allis,1)% 
    %aim to subtract the correct means Bs from each row Allis 
   Anom(rr,:)=cellfun(@(x) abs(x-mBs(uRanselis(rr),:)'), Anom(rr,:), 'un', 0); 
     
end 
%} 
 
%create anomaly values by 5 fold averages, create mean Bscan from PVD eyes 
%AL sorted 
%sort PVD eyes by AL 
PVDgrp = SSOCTeyes2(PVDis,:); 
 
[sALvecP,ALorderP]=sort(PVDgrp.AAL);% ascending order of AL 
sAllpvdis=PVDirreg(ALorderP,:); 
sAgevecP = PVDgrp.age(ALorderP); 
sALvecP(sALvecP==0) = NaN;%keep "no AL" eyes 
 
%generate random distribution into 5 folds 
k=5; 
 
%PVD 
NumIpfoldp = floor(size(sAllpvdis,1)/k);%number of eyes per k folds 
Remisp=mod(size(sAllpvdis,1),k);%plus the remainder not divisible by k 
RanselisP = zeros(k,NumIpfoldp); 
for RanrunP=1:NumIpfoldp 
     
    RanselisP(:,RanrunP) = randperm(k)'; 
end 
Ranremisp=randperm(Remisp)'; 
RanselisP = cat(1,RanselisP(:),Ranremisp);%these are the row indices to divide 
ALLis into 1-5 folds 
 
%All eyes 
NumIpfold = floor(size(Allis,1)/k);%number of eyes per k folds 
Remis=mod(size(Allis,1),k);%plus the remainder not divisible by k 
Ranselis = zeros(k,NumIpfold); 
for Ranrun=1:NumIpfold 
     
    Ranselis(:,Ranrun) = randperm(k)'; 
end 
Ranremis=randperm(Remis)'; 
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Ranselis = cat(1,Ranselis(:),Ranremis);%these are the row indices to divide ALLis 
into 1-5 folds 
 
%calculate 5 average irregularity scans 
for n=1:k 
    
    FisP{n} = sAllpvdis(RanselisP==n,:); 
    notFisP{n} = sAllpvdis(RanselisP~=n,:); 
    ALvecP{n} = sALvecP(RanselisP==n); 
     
    notFisXP = notFisP{n};%only works if each consists only of one cell 
    notFisdP=horzcat(notFisXP{:})';%Bs x 30 double 
    mBs(n,1:30)=mean(notFisdP,'omitnan');%Average B scan irregularity from PVD eyes 
     
end 
sdmBs = std(mBs); 
MnmBs = mean(mBs); 
mBsCoV = sdmBs./MnmBs;%Coefficients of variation of average b scan  bins 
MnCoVmBs = mean(mBsCoV); %average CoV of average b scan bins 
 
uRanselis(ALorder)=Ranselis;%'unsort' the randomisation to match Anom/Allis (not 
necessary) 
%uRanselisP(ALorderP)=RanselisP;%'unsort' the randomisation to match Anom/Allis 
Anom=Allis; 
 
for rr=1:size(Allis,1)% 
    %aim to subtract the correct means Bs from each row Allis 
   Anom(rr,:)=cellfun(@(x) abs(x-mBs(uRanselis(rr),:)'), Anom(rr,:), 'un', 0); 
    %creates the anomaly values for all eyes & scans 
end 
 
%% 
%Anomaly, irregularity, axial length, age and BFC collection for each group 
RDirreg=Allis(RDis,:); 
RDanom = Anom(RDis,:); 
RDAxL = AxL(RDis,:); 
RDage = SSOCTeyes2.age(RDis); 
RDbfc = BFC(RDis,:); 
RDID = SSOCTeyes2.ID(RDis); 
for RDi = 1:length(RDirreg) 
     
   RDupi(RDi,1:30) = RDirreg{RDi,1}; 
   RDupa(RDi,1:30) = RDanom{RDi,1}; 
   RDdowni(RDi,1:30) = RDirreg{RDi,2}; 
   RDdowna(RDi,1:30) = RDanom{RDi,2}; 
   RDnasali(RDi,1:30) = RDirreg{RDi,3}; 
   RDnasala(RDi,1:30) = RDanom{RDi,3}; 
   RDtempi(RDi,1:30) = RDirreg{RDi,4}; 
   RDtempa(RDi,1:30) = RDanom{RDi,4}; 
    
end 
 
mRDui = mean(RDupi,'omitnan'); 
mRDdi = mean(RDdowni,'omitnan'); 
mRDni = mean(RDnasali,'omitnan'); 
mRDti = mean(RDtempi,'omitnan'); 
 
mRDua = mean(RDupa,'omitnan'); 
mRDda = mean(RDdowna,'omitnan'); 
mRDna = mean(RDnasala,'omitnan'); 
mRDta = mean(RDtempa,'omitnan'); 
 
allRDBsanom = [RDanom{:}]; 
avRDanom = mean(allRDBsanom,2,'omitnan');%mean of all RD B scans 
 
RTirreg=Allis(RTis,:); 
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RTanom = Anom(RTis,:); 
RTAxL = AxL(RTis,:); 
RTage = SSOCTeyes2.age(RTis); 
RTbfc = BFC(RTis,:); 
RTID = SSOCTeyes2.ID(RTis); 
for RTi = 1:length(RTirreg) 
    
   RTupi(RTi,1:30) = RTirreg{RTi,1}; 
   RTupa(RTi,1:30) = RTanom{RTi,1}; 
   RTdowni(RTi,1:30) = RTirreg{RTi,2}; 
   RTdowna(RTi,1:30) = RTanom{RTi,2}; 
   RTnasali(RTi,1:30) = RTirreg{RTi,3}; 
   RTnasala(RTi,1:30) = RTanom{RTi,3}; 
   RTtempi(RTi,1:30) = RTirreg{RTi,4}; 
   RTtempa(RTi,1:30) = RTanom{RTi,4}; 
    
end 
 
mRTui = mean(RTupi,'omitnan'); 
mRTdi = mean(RTdowni,'omitnan'); 
mRTni = mean(RTnasali,'omitnan'); 
mRTti = mean(RTtempi,'omitnan'); 
 
mRTua = mean(RTupa,'omitnan'); 
mRTda = mean(RTdowna,'omitnan'); 
mRTna = mean(RTnasala,'omitnan'); 
mRTta = mean(RTtempa,'omitnan'); 
 
%PVDirreg=Allis(PVDis,:);%moved up for Mean B scan calculation 
PVDanom = Anom(PVDis,:); 
allPVDBsanom = [PVDanom{:}]; 
avPVDanom = mean(allPVDBsanom,2,'omitnan');%mean of all RD B scans 
PVDAxL = AxL(PVDis,:); 
PVDage = SSOCTeyes2.age(PVDis); 
PVDbfc = BFC(PVDis,:); 
PVDID = SSOCTeyes2.ID(PVDis); 
 
for PVDi = 1:length(PVDirreg) 
    
   PVDupi(PVDi,1:30) = PVDirreg{PVDi,1}; 
   PVDupa(PVDi,1:30) = PVDanom{PVDi,1}; 
   PVDdowni(PVDi,1:30) = PVDirreg{PVDi,2}; 
   PVDdowna(PVDi,1:30) = PVDanom{PVDi,2}; 
   PVDnasali(PVDi,1:30) = PVDirreg{PVDi,3}; 
   PVDnasala(PVDi,1:30) = PVDanom{PVDi,3}; 
   PVDtempi(PVDi,1:30) = PVDirreg{PVDi,4}; 
   PVDtempa(PVDi,1:30) = PVDanom{PVDi,4}; 
    
end 
 
mPVDui = mean(PVDupi,'omitnan'); 
mPVDdi = mean(PVDdowni,'omitnan'); 
mPVDni = mean(PVDnasali,'omitnan'); 
mPVDti = mean(PVDtempi,'omitnan'); 
 
mPVDua = mean(PVDupa,'omitnan'); 
mPVDda = mean(PVDdowna,'omitnan'); 
mPVDna = mean(PVDnasala,'omitnan'); 
mPVDta = mean(PVDtempa,'omitnan'); 
 
FEirreg=Allis(FEis,:); 
FEanom = Anom(FEis,:); 
FEAxL = AxL(FEis,:); 
FEage = SSOCTeyes2.age(FEis); 
FEbfc = BFC(FEis,:); 
for FEi = 1:length(FEirreg) 
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   FEupi(FEi,1:30) = FEirreg{FEi,1}; 
   FEupa(FEi,1:30) = FEanom{FEi,1}; 
   FEdowni(FEi,1:30) = FEirreg{FEi,2}; 
   FEdowna(FEi,1:30) = FEanom{FEi,2}; 
   FEnasali(FEi,1:30) = FEirreg{FEi,3}; 
   FEnasala(FEi,1:30) = FEanom{FEi,3}; 
   FEtempi(FEi,1:30) = FEirreg{FEi,4}; 
   FEtempa(FEi,1:30) = FEanom{FEi,4}; 
   
end 
 
mFEui = mean(FEupi,'omitnan'); 
mFEdi = mean(FEdowni,'omitnan'); 
mFEni = mean(FEnasali,'omitnan'); 
mFEti = mean(FEtempi,'omitnan'); 
 
mFEua = mean(FEupa,'omitnan'); 
mFEda = mean(FEdowna,'omitnan'); 
mFEna = mean(FEnasala,'omitnan'); 
mFEta = mean(FEtempa,'omitnan'); 
 
 
FPVDirreg=Allis(FPVDis,:); 
FPVDanom = Anom(FPVDis,:); 
FPVDAxL = AxL(FPVDis,:); 
FPVDage = SSOCTeyes2.age(FPVDis); 
FPVDbfc = BFC(FPVDis,:); 
for FPVDi = 1:length(FPVDirreg) 
    
   FPVDupi(FPVDi,1:30) = FPVDirreg{FPVDi,1}; 
   FPVDupa(FPVDi,1:30) = FPVDanom{FPVDi,1}; 
   FPVDdowni(FPVDi,1:30) = FPVDirreg{FPVDi,2}; 
   FPVDdowna(FPVDi,1:30) = FPVDanom{FPVDi,2}; 
   FPVDnasali(FPVDi,1:30) = FPVDirreg{FPVDi,3}; 
   FPVDnasala(FPVDi,1:30) = FPVDanom{FPVDi,3}; 
   FPVDtempi(FPVDi,1:30) = FPVDirreg{FPVDi,4}; 
   FPVDtempa(FPVDi,1:30) = FPVDanom{FPVDi,4}; 
    
end 
 
mFPVDui = mean(FPVDupi,'omitnan'); 
mFPVDdi = mean(FPVDdowni,'omitnan'); 
mFPVDni = mean(FPVDnasali,'omitnan'); 
mFPVDti = mean(FPVDtempi,'omitnan'); 
 
mFPVDua = mean(FPVDupa,'omitnan'); 
mFPVDda = mean(FPVDdowna,'omitnan'); 
mFPVDna = mean(FPVDnasala,'omitnan'); 
mFPVDta = mean(FPVDtempa,'omitnan'); 
 
notPVDirreg=Allis(notPVDis,:); 
notPVDanom = Anom(notPVDis,:); 
notPVDAxL = AxL(notPVDis,:); 
notPVDage = SSOCTeyes2.age(notPVDis); 
notPVDbfc = BFC(notPVDis,:); 
for notPVDi = 1:length(notPVDirreg) 
    
   notPVDupi(notPVDi,1:30) = notPVDirreg{notPVDi,1}; 
   notPVDupa(notPVDi,1:30) = notPVDanom{notPVDi,1}; 
   notPVDdowni(notPVDi,1:30) = notPVDirreg{notPVDi,2}; 
   notPVDdowna(notPVDi,1:30) = notPVDanom{notPVDi,2}; 
   notPVDnasali(notPVDi,1:30) = notPVDirreg{notPVDi,3}; 
   notPVDnasala(notPVDi,1:30) = notPVDanom{notPVDi,3}; 
   notPVDtempi(notPVDi,1:30) = notPVDirreg{notPVDi,4}; 
   notPVDtempa(notPVDi,1:30) = notPVDanom{notPVDi,4}; 
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end 
 
mnotPVDui = mean(notPVDupi,'omitnan'); 
mnotPVDdi = mean(notPVDdowni,'omitnan'); 
mnotPVDni = mean(notPVDnasali,'omitnan'); 
mnotPVDti = mean(notPVDtempi,'omitnan'); 
 
mnotPVDua = mean(notPVDupa,'omitnan'); 
mnotPVDda = mean(notPVDdowna,'omitnan'); 
mnotPVDna = mean(notPVDnasala,'omitnan'); 
mnotPVDta = mean(notPVDtempa,'omitnan'); 
 
Stirreg=Allis(Stis,:); 
Stanom = Anom(Stis,:); 
StAxL = AxL(Stis,:); 
Stage = SSOCTeyes2.age(Stis); 
Stbfc = BFC(Stis,:); 
for Sti = 1:length(Stirreg) 
    
   Stupi(Sti,1:30) = Stirreg{Sti,1}; 
   Stupa(Sti,1:30) = Stanom{Sti,1}; 
   Stdowni(Sti,1:30) = Stirreg{Sti,2}; 
   Stdowna(Sti,1:30) = Stanom{Sti,2}; 
   Stnasali(Sti,1:30) = Stirreg{Sti,3}; 
   Stnasala(Sti,1:30) = Stanom{Sti,3}; 
   Sttempi(Sti,1:30) = Stirreg{Sti,4}; 
   Sttempa(Sti,1:30) = Stanom{Sti,4}; 
    
end 
 
mStui = mean(Stupi,'omitnan'); 
mStdi = mean(Stdowni,'omitnan'); 
mStni = mean(Stnasali,'omitnan'); 
mStti = mean(Sttempi,'omitnan'); 
 
mStua = mean(Stupa,'omitnan'); 
mStda = mean(Stdowna,'omitnan'); 
mStna = mean(Stnasala,'omitnan'); 
mStta = mean(Sttempa,'omitnan'); 
 
%all PVD (aPVD), combined PVD and FPVD 
aPVDirreg=Allis(PVDis|FPVDis,:);%moved up for Mean B scan calculation 
aPVDanom = Anom(PVDis|FPVDis,:); 
aallPVDBsanom = [aPVDanom{:}]; 
aavPVDanom = mean(aallPVDBsanom,2,'omitnan');%mean of all RD B scans 
aPVDAxL = AxL(PVDis|FPVDis,:); 
aPVDage = SSOCTeyes2.age(PVDis|FPVDis); 
aPVDbfc = BFC(PVDis|FPVDis,:); 
 
for aPVDi = 1:length(aPVDirreg) 
    
   aPVDupi(aPVDi,1:30) = aPVDirreg{aPVDi,1}; 
   aPVDupa(aPVDi,1:30) = aPVDanom{aPVDi,1}; 
   aPVDdowni(aPVDi,1:30) = aPVDirreg{aPVDi,2}; 
   aPVDdowna(aPVDi,1:30) = aPVDanom{aPVDi,2}; 
   aPVDnasali(aPVDi,1:30) = aPVDirreg{aPVDi,3}; 
   aPVDnasala(aPVDi,1:30) = aPVDanom{aPVDi,3}; 
   aPVDtempi(aPVDi,1:30) = aPVDirreg{aPVDi,4}; 
   aPVDtempa(aPVDi,1:30) = aPVDanom{aPVDi,4}; 
    
end 
 
maPVDui = mean(aPVDupi,'omitnan'); 
maPVDdi = mean(aPVDdowni,'omitnan'); 
maPVDni = mean(aPVDnasali,'omitnan'); 
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maPVDti = mean(aPVDtempi,'omitnan'); 
 
maPVDua = mean(aPVDupa,'omitnan'); 
maPVDda = mean(aPVDdowna,'omitnan'); 
maPVDna = mean(aPVDnasala,'omitnan'); 
maPVDta = mean(aPVDtempa,'omitnan'); 
 
%% 
% 
% PVD eyes (aPVD), Use this section to check if results differ when not including 
FPVD 
% revertd to PVD only: no FPVD 
aPVDirreg = PVDirreg;%moved up for Mean B scan calculation 
aPVDanom = PVDanom; 
aallPVDBsanom = [aPVDanom{:}]; 
aavPVDanom = mean(aallPVDBsanom,2,'omitnan');%mean of all RD B scans 
aPVDAxL = PVDAxL; 
aPVDage = PVDage; 
aPVDbfc = PVDbfc; 
  
    
   aPVDupi = PVDupi; 
   aPVDupa = PVDupa; 
   aPVDdowni = PVDdowni; 
   aPVDdowna = PVDdowna; 
   aPVDnasali = PVDnasali; 
   aPVDnasala = PVDnasala; 
   aPVDtempi = PVDtempi; 
   aPVDtempa = PVDtempa; 
    
 
maPVDui = mean(aPVDupi,'omitnan'); 
maPVDdi = mean(aPVDdowni,'omitnan'); 
maPVDni = mean(aPVDnasali,'omitnan'); 
maPVDti = mean(aPVDtempi,'omitnan'); 
  
maPVDua = mean(aPVDupa,'omitnan'); 
maPVDda = mean(aPVDdowna,'omitnan'); 
maPVDna = mean(aPVDnasala,'omitnan'); 
maPVDta = mean(aPVDtempa,'omitnan'); 
% 
 
%% 
 
Tirr = sum(AllBs,2);%total scan irrregularity 
figure 
histogram(Tirr) 
title('All eyes, total irregularity distribution'); 
 
TAnom = cell2mat(cellfun(@(x1) sum(x1), Anom, 'un', 0));%total scan anomaly 
figure 
histogram(TAnom); 
title('All eyes, total anomaly distribution'); 
 
figure 
[tAn,edges] = histcounts(TAnom(:,3)); 
tAd=histcounts(TAnom(:,2),edges); 
tAu=histcounts(TAnom(:,1),edges); 
tAt=histcounts(TAnom(:,4),edges); 
ctrs = (edges(1:end-1)+edges(2:end))/2; % Calculate the bin centers 
bar(ctrs, [tAu' tAd' tAn' tAt'],1,'stacked','FaceAlpha',0.6); 
title('All scans total anomaly by region'); 
legend('Up','Down','Nasal','Temporal'); 
xlabel('anomaly, mm'); 
ylabel('No. of scans'); 
%% 
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%irregularity plot 
figure 
ti=tiledlayout(2,2,'TileSpacing','none','Padding','none'); 
 
ti(1) = nexttile(1); 
hold on 
plot(1:30,mFEui,'g'); 
plot(1:30,mRDui,'r'); 
plot(1:30,mRTui,'m'); 
plot(1:30,mPVDui,'b'); 
plot(1:30,mFPVDui,'c'); 
plot(1:30,mnotPVDui,'k'); 
plot(1:30,mStui,'y'); 
%legend('FE','RD','RT','PVD'); 
title('Up'); 
 
ti(4) = nexttile(4); 
hold on 
plot(1:30,mFEdi,'g'); 
plot(1:30,mRDdi,'r'); 
plot(1:30,mRTdi,'m'); 
plot(1:30,mPVDdi,'b'); 
plot(1:30,mFPVDui,'c'); 
plot(1:30,mnotPVDui,'k'); 
plot(1:30,mStui,'y'); 
legend('FE','RD','RT','PVD', 'FE PVD', 'not PVD', 'Stickler'); 
title('Down'); 
 
ti(3) = nexttile(3); 
hold on 
plot(1:30,mFEni,'g'); 
plot(1:30,mRDni,'r'); 
plot(1:30,mRTni,'m'); 
plot(1:30,mPVDni,'b'); 
plot(1:30,mFPVDui,'c'); 
plot(1:30,mnotPVDui,'k'); 
plot(1:30,mStui,'y'); 
%legend('FE','RD','RT','PVD'); 
title('Nasal'); 
 
ti(2) = nexttile(2); 
hold on 
plot(1:30,mFEti,'g'); 
plot(1:30,mRDti,'r'); 
plot(1:30,mRTti,'m'); 
plot(1:30,mPVDti,'b'); 
plot(1:30,mFPVDui,'c'); 
plot(1:30,mnotPVDui,'k'); 
plot(1:30,mStui,'y'); 
%legend('FE','RD','RT','PVD'); 
title('Temporal'); 
%ti.Title.String = 'Irregularity by region'; 
 
xlabel(ti,'Bin number','FontWeight','bold'); 
ylabel(ti,'Irregularity modulus, mm','FontWeight','bold'); 
 
linkaxes(ti,'xy'); 
 
%% 
%irregularity plot, RD RT and PVD only for thesis 
figure 
ti=tiledlayout(2,2,'TileSpacing','tight','Padding','tight'); 
 
ti(1) = nexttile(1); 
hold on 
%plot(1:30,mFEui,'g'); 
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plot(1:30,mRDui,'r'); 
plot(1:30,mRTui,'m'); 
plot(1:30,mPVDui,'b'); 
%plot(1:30,mFPVDui,'c'); 
%plot(1:30,mnotPVDui,'k'); 
%plot(1:30,mStui,'y'); 
%legend('FE','RD','RT','PVD'); 
title('Up'); 
 
ti(4) = nexttile(4); 
hold on 
%plot(1:30,mFEdi,'g'); 
plot(1:30,mRDdi,'r'); 
plot(1:30,mRTdi,'m'); 
plot(1:30,mPVDdi,'b'); 
%plot(1:30,mFPVDui,'c'); 
%plot(1:30,mnotPVDui,'k'); 
%plot(1:30,mStui,'y'); 
legend('RD','RT','PVD'); 
title('Down'); 
 
ti(3) = nexttile(3); 
hold on 
%plot(1:30,mFEni,'g'); 
plot(1:30,mRDni,'r'); 
plot(1:30,mRTni,'m'); 
plot(1:30,mPVDni,'b'); 
%plot(1:30,mFPVDui,'c'); 
%plot(1:30,mnotPVDui,'k'); 
%plot(1:30,mStui,'y'); 
%legend('FE','RD','RT','PVD'); 
title('Nasal'); 
 
ti(2) = nexttile(2); 
hold on 
%plot(1:30,mFEti,'g'); 
plot(1:30,mRDti,'r'); 
plot(1:30,mRTti,'m'); 
plot(1:30,mPVDti,'b'); 
%plot(1:30,mFPVDui,'c'); 
%plot(1:30,mnotPVDui,'k'); 
%plot(1:30,mStui,'y'); 
%legend('FE','RD','RT','PVD'); 
title('Temporal'); 
%ti.Title.String = 'Irregularity by region'; 
 
xlabel(ti,'Bin number','FontWeight','bold'); 
ylabel(ti,'Irregularity modulus, mm','FontWeight','bold'); 
 
linkaxes(ti,'xy'); 
%% 
%anomaly plot 
figure 
ta=tiledlayout(2,2,'TileSpacing','none','Padding','none'); 
 
ta(1) = nexttile(1); 
hold on 
plot(1:30,mFEua,'g'); 
plot(1:30,mRDua,'r'); 
plot(1:30,mRTua,'m'); 
plot(1:30,mPVDua,'b'); 
plot(1:30,mFPVDua,'c'); 
plot(1:30,mnotPVDua,'k'); 
plot(1:30,mStua,'y'); 
%legend('FE','RD','RT','PVD'); 
title('Up'); 
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ta(4) = nexttile(4); 
hold on 
plot(1:30,mFEda,'g'); 
plot(1:30,mRDda,'r'); 
plot(1:30,mRTda,'m'); 
plot(1:30,mPVDda,'b'); 
plot(1:30,mFPVDda,'c'); 
plot(1:30,mnotPVDda,'k'); 
plot(1:30,mStda,'y'); 
legend('FE','RD','RT','PVD', 'FE PVD', 'not PVD', 'Stickler'); 
title('Down'); 
 
ta(3) = nexttile(3); 
hold on 
plot(1:30,mFEna,'g'); 
plot(1:30,mRDna,'r'); 
plot(1:30,mRTna,'m'); 
plot(1:30,mPVDna,'b'); 
plot(1:30,mFPVDna,'c'); 
plot(1:30,mnotPVDna,'k'); 
plot(1:30,mStna,'y'); 
%legend('FE','RD','RT','PVD'); 
title('Nasal'); 
 
ta(2) = nexttile(2); 
hold on 
plot(1:30,mFEta,'g'); 
plot(1:30,mRDta,'r'); 
plot(1:30,mRTta,'m'); 
plot(1:30,mPVDta,'b'); 
plot(1:30,mFPVDta,'c'); 
plot(1:30,mnotPVDta,'k'); 
plot(1:30,mStta,'y'); 
%legend('FE','RD','RT','PVD'); 
title('Temporal'); 
%title(ta,'Anomaly by region','FontWeight','bold'); 
xlabel(ta,'Bin number','FontWeight','bold'); 
ylabel(ta,'Anomaly, mm','FontWeight','bold'); 
 
linkaxes(ta,'xy'); 
%% 
%anomaly plot, RD/PVD only 
figure 
ta=tiledlayout(2,2,'TileSpacing','none','Padding','none'); 
 
ta(1) = nexttile(1); 
hold on 
plot(1:30,mRDua,'r'); 
plot(1:30,mPVDua,'b'); 
%legend('FE','RD','RT','PVD'); 
title('Up'); 
 
ta(4) = nexttile(4); 
hold on 
plot(1:30,mRDda,'r'); 
plot(1:30,mPVDda,'b'); 
legend('RD','PVD'); 
title('Down'); 
 
ta(3) = nexttile(3); 
hold on 
plot(1:30,mRDna,'r'); 
plot(1:30,mPVDna,'b'); 
title('Nasal'); 
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ta(2) = nexttile(2); 
hold on 
plot(1:30,mRDta,'r'); 
plot(1:30,mPVDta,'b'); 
title('Temporal'); 
 
xlabel(ta,'Bin number','FontWeight','bold'); 
ylabel(ta,'Anomaly, mm','FontWeight','bold'); 
 
linkaxes(ta,'xy'); 
 
figure%average RD and PVD anomaly, all B scans 
hold on 
plot(1:30,avRDanom,'r'); 
plot(1:30,avPVDanom,'b'); 
xlabel('Bin number','FontWeight','bold'); 
ylabel('Anomaly, mm','FontWeight','bold'); 
legend('RD anomaly','PVD anomaly'); 
%% 
 
%now look at total irregulrity 
%start by looking at total irregularity = sum of rows 
tRDu = sum(RDupi,2); 
tRDd = sum(RDdowni,2); 
tRDn = sum(RDnasali,2); 
tRDt = sum(RDtempi,2); 
 
tRTu = sum(RTupi,2); 
tRTd = sum(RTdowni,2); 
tRTn = sum(RTnasali,2); 
tRTt = sum(RTtempi,2); 
 
tPVDu = sum(PVDupi,2); 
tPVDd = sum(PVDdowni,2); 
tPVDn = sum(PVDnasali,2); 
tPVDt = sum(PVDtempi,2); 
 
tFEu = sum(FEupi,2); 
tFEd = sum(FEdowni,2); 
tFEn = sum(FEnasali,2); 
tFEt = sum(FEtempi,2); 
 
tFPVDu = sum(FPVDupi,2); 
tFPVDd = sum(FPVDdowni,2); 
tFPVDn = sum(FPVDnasali,2); 
tFPVDt = sum(FPVDtempi,2); 
 
tnotPVDu = sum(notPVDupi,2); 
tnotPVDd = sum(notPVDdowni,2); 
tnotPVDn = sum(notPVDnasali,2); 
tnotPVDt = sum(notPVDtempi,2); 
 
tStu = sum(Stupi,2); 
tStd = sum(Stdowni,2); 
tStn = sum(Stnasali,2); 
tStt = sum(Sttempi,2); 
%{ 
tiledlayout(1,2,'TileSpacing','none','Padding','none') 
h=nexttile; 
h(1)=histogram(tRDu); 
hold on 
h(2)=histogram(tRDd); 
h(3)=histogram(tRDn); 
h(4)=histogram(tRDt); 
h(2).BinWidth=5; 
title('RD eyes total irregularity'); 



  366 

 
h1=nexttile; 
h1(1)=histogram(tPVDu); 
hold on 
h1(2)=histogram(tPVDd); 
h1(3)=histogram(tPVDn); 
h1(4)=histogram(tPVDt); 
h1(1).BinWidth=5; 
h1(2).BinWidth=5; 
h1(3).BinWidth=5; 
h1(4).BinWidth=5; 
title('PVD eyes total irregularity'); 
linkaxes([h(1:4), h1(1:4)],'xy'); 
%} 
figure 
HiT=tiledlayout(1,2,'TileSpacing','none','Padding','none'); 
 
H1=nexttile; 
[tDd,edges] = histcounts(tRDd); 
tDu=histcounts(tRDu,edges); 
tDn=histcounts(tRDn,edges); 
tDt=histcounts(tRDt,edges); 
ctrs = (edges(1:end-1)+edges(2:end))/2; % Calculate the bin centers 
bar(ctrs, [tDu' tDd' tDn' tDt'],1,'stacked','FaceAlpha',0.6); 
xticks([5 15 25 35 45 55]); 
title('RD eyes total irregularity'); 
legend('Up','Down','Nasal','Temporal'); 
 
H2=nexttile; 
[tPDd,edgesP] = histcounts(tPVDd); 
tPDu=histcounts(tPVDu,edgesP); 
tPDn=histcounts(tPVDn,edgesP); 
tPDt=histcounts(tPVDt,edgesP); 
ctrsP = (edgesP(1:end-1)+edgesP(2:end))/2; % Calculate the bin centers 
bar(ctrsP, [tPDu' tPDd' tPDn' tPDt'],1,'stacked','FaceAlpha',0.6); 
title('PVD eyes total irregularity'); 
title(HiT,'Irregularity by diagnosis and region','FontWeight','bold'); 
xlabel(HiT,'Irregularity, mm','FontWeight','bold'); 
ylabel(HiT,'Number of scans','FontWeight','bold'); 
linkaxes([H1 H2],'xy'); 
%bler =cat(2,tPVDu, tPVDd, tPVDn, tPVDt); 
%% 
%now look at total anomaly 
%start by looking at total anomaly = sum of rows 
tRDua = sum(RDupa,2); 
tRDda = sum(RDdowna,2); 
tRDna = sum(RDnasala,2); 
tRDta = sum(RDtempa,2); 
 
tRTua = sum(RTupa,2); 
tRTda = sum(RTdowna,2); 
tRTna = sum(RTnasala,2); 
tRTta = sum(RTtempa,2); 
 
tPVDua = sum(PVDupa,2); 
tPVDda = sum(PVDdowna,2); 
tPVDna = sum(PVDnasala,2); 
tPVDta = sum(PVDtempa,2); 
 
tFEua = sum(FEupa,2); 
tFEda = sum(FEdowna,2); 
tFEna = sum(FEnasala,2); 
tFEta = sum(FEtempa,2); 
 
figure 
HiA=tiledlayout(1,2,'TileSpacing','none','Padding','none'); 
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H3=nexttile; 
[tDda,edgesa] = histcounts(tRDda); 
tDua=histcounts(tRDua,edgesa); 
tDna=histcounts(tRDna,edgesa); 
tDta=histcounts(tRDta,edgesa); 
ctrsa = (edgesa(1:end-1)+edgesa(2:end))/2; % Calculate the bin centers 
bar(ctrsa, [tDua' tDda' tDna' tDta'],1,'stacked','FaceAlpha',0.6); 
title('RD eyes total anomaly'); 
legend('Up','Down','Nasal','Temporal'); 
 
%{ 
H4=nexttile; 
[tPDda,edgesPa] = histcounts(tPVDda); 
tPDua=histcounts(tPVDua,edgesPa); 
tPDna=histcounts(tPVDna,edgesPa); 
tPDta=histcounts(tPVDta,edgesPa); 
ctrsPa = (edgesPa(1:end-1)+edgesPa(2:end))/2; % Calculate the bin centers 
bar(ctrsPa, [tPDua' tPDda' tPDna' tPDta'],1,'stacked','FaceAlpha',0.6); 
title('PVD eyes total anomaly'); 
xticks([0 10 20 30 40]); 
%} 
 
H4=nexttile; 
[tPDda,edgesPa] = histcounts(tPVDda,edgesa);%makes hist bars same as RD group 
tPDua=histcounts(tPVDua,edgesPa); 
tPDna=histcounts(tPVDna,edgesPa); 
tPDta=histcounts(tPVDta,edgesPa); 
ctrsPa = (edgesPa(1:end-1)+edgesPa(2:end))/2; % Calculate the bin centers 
bar(ctrsPa, [tPDua' tPDda' tPDna' tPDta'],1,'stacked','FaceAlpha',0.6); 
title('PVD eyes total anomaly'); 
%xticks([0 10 20 30 40]); 
 
title(HiA,'Scan total Anomaly by diagnosis and region','FontWeight','bold'); 
xlabel(HiA,'Anomaly, mm','FontWeight','bold'); 
ylabel(HiA,'Number of scans','FontWeight','bold'); 
linkaxes([H3 H4],'xy'); 
 
%% 
 
 
 
%% 
%Part 2 
 
%create array with each eye in a row (all 4 scans in row) 
%matching Response vector 
%1 = no PVD 
%2 = PVD 
%3 = RD 
%4 = RT 
%5 = FE 
 
RDallBsBn=cat(2,RDupa, RDdowna, RDtempa, RDnasala); 
aPVDallBsBn=cat(2,aPVDupa, aPVDdowna, aPVDtempa, aPVDnasala); 
RTallBsBn=cat(2,RTupa, RTdowna, RTtempa, RTnasala); 
 
RDfts = cat(2, RDallBsBn,RDbfc, RDAxL, RDage); 
aPVDfts = cat(2, aPVDallBsBn, aPVDbfc, aPVDAxL, aPVDage); 
RTfts = cat(2, RTallBsBn, RTbfc, RTAxL, RTage); 
 
RDlbl=ones(size(RDallBsBn,1),1)*3; 
aPVDlbl=ones(size(aPVDallBsBn,1),1)*2; 
RTlbl=ones(size(RTallBsBn,1),1)*4; 
 
Allfeats = cat(1, aPVDfts, RDfts);% features (bins, AxL, Age, BFC) 
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Alllbls = cat(1, aPVDlbl, RDlbl);%response labels 
AllID = cat(1,PVDID, RDID); 
 
%Part 2a: split into training and testing 
%create random selection: 70/30 
Split = cvpartition(size(Alllbls,1),'HoldOut', 0.30); 
Splittest = test(Split);%test set indices 
Splittrain = training(Split);%training indices 
 
Avbins = mean(Allfeats, 'omitnan');%mean anomaly 
AvbinsTr = mean(Allfeats(Splittrain,:), 'omitnan');%mean anomaly, training 
 
AvbinsRD = mean(Allfeats(Alllbls==3,:), 'omitnan');%mean anomaly, RD 
AvbinsPVD = mean(Allfeats(Alllbls==2,:), 'omitnan');%mean anomaly, RD 
 
%Do age, AXLm differ between groups (all eyes) 
[~,pAge] = ttest2(RDage, aPVDage); 
[~,pAxL] = ttest2(RDAxL, aPVDAxL); 
% Axl and age difference between training set groups 
[~,pAgAlTr] = ttest2(Allfeats(Alllbls==3 & Splittrain==1,end-
1:end),Allfeats(Alllbls==2 & Splittrain==1,end-1:end)); 
MnRDage = mean(RDage, 'omitnan');% for all eyes 
MnPVDage = mean(aPVDage, 'omitnan'); 
MnRDAxL = mean(RDAxL, 'omitnan'); 
MnPVDAxL = mean(aPVDAxL, 'omitnan'); 
sdRDage = std(RDage, 'omitnan'); 
sdPVDage = std(aPVDage, 'omitnan'); 
sdRDAxL = std(RDAxL, 'omitnan'); 
sdPVDAxL = std(aPVDAxL, 'omitnan'); 
 
MnRTfts = mean(RTfts, 'omitnan'); 
sdRTfts = std(RTfts, 'omitnan'); 
 
[~,pAgeTR] = ttest2(RDage, RTfts(:,126)); 
[~,pAxLTR] = ttest2(RDAxL, RTfts(:,125));%RT to RD 
 
[~,pAgePT] = ttest2(aPVDage,RTfts(:,126)); 
[~,pAxLPT] = ttest2(aPVDAxL,RTfts(:,125));%PVD to RT 
 
%Feature selection methods 
% performed on all eyes: 
allRDiA = cat(1, mRDua', mRDda', mRDta', mRDna');%mean anomaly 
allPVDiA = cat(1,maPVDua', maPVDda', maPVDta', maPVDna'); 
RDa = cell2mat(RDanom(:)); 
aPVDa = cell2mat(aPVDanom(:)); 
RDat = reshape(RDa,30,[]); 
aPVDat = reshape(aPVDa, 30, []); 
[~,prAnomall] = ttest2(RDat',aPVDat');%sig diff between anom all region? ALL 
eyes.Ignore 
diffRDPVD = allRDiA - allPVDiA;%difference between av anomaly RD & PVD 
[sdiffRDPVD, IdxRDPVDdiff] = sort(abs(diffRDPVD), 'descend');%indices of greatest 
difference in anomaly 
 
%training set eyes 
mRDTra = mean(Allfeats(Alllbls==3 & Splittrain==1,:),'omitnan');%mean training set 
features 
maPVDTra = mean(Allfeats(Alllbls==2 & Splittrain==1,:),'omitnan');%126 columns 
sdRDTra = std(Allfeats(Alllbls==3 & Splittrain==1,:),'omitnan');%STD training set 
features 
sdaPVDTra = std(Allfeats(Alllbls==2 & Splittrain==1,:),'omitnan');%126 columns 
[~,prAnTr] = ttest2(Allfeats(Alllbls==3 & Splittrain==1,:),Allfeats(Alllbls==2 & 
Splittrain==1,:)); 
diffRDPVDTrS = abs(mRDTra - maPVDTra)./maPVDTra;%difference between av anomaly RD & 
PVD, training set 
[sdiffRDPVDTrS, IdxRDPVDdiffTrS] = sort(abs(diffRDPVDTrS), 'descend');%indices of 
greatest difference in anomaly 
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%Use MRMR to select best features - training set 
%[Featidxmrmr, scFeatsmrmr] = fscmrmr(Allfeats, Alllbls);%this is all eyes 
[Featidxmrmr, scFeatsmrmr] = fscmrmr(Allfeats(Splittrain,:), 
Alllbls(Splittrain));%this is training set eyes 
%Featidxmrmr lists in order the best features for prediction 
 
figure 
Brcht = bar(scFeatsmrmr(Featidxmrmr(1:10)));%show top 10 features 
xlabel('Predictor rank') 
ylabel('Predictor importance score') 
title('Best features for prediction, MRMR - training set') 
xtips1 = Brcht.XEndPoints; 
ytips1 = Brcht.YEndPoints; 
labelsBar = string(Brcht.YData); 
%text(xtips1,ytips1,num2str(Featidx(1:10))) 
 
 
%Use chi2 to select best features 
[Featidxchi2, scFeatschi2] = fscchi2(Allfeats(Splittrain,:), Alllbls(Splittrain)); 
%Featidxchi2 lists in order the best features for prediction 
figure 
Brcht2 = bar(scFeatschi2(Featidxchi2));%show top 10 features 
xlabel('Predictor rank') 
ylabel('Predictor importance score') 
title('Best features for prediction, Chi2 - training set') 
 
%Use relieff to select best features 
[Featidxrlf, scFeatscrlf] = relieff(Allfeats(Splittrain,:), Alllbls(Splittrain), 
10, 'method', 'classification'); 
%Featidxrlf lists in order the best features for prediction 
figure 
Brcht3 = bar(scFeatscrlf(Featidxrlf));%show top 10 features 
xlabel('Predictor rank') 
ylabel('Predictor importance score') 
title('Best features for prediction, relieff, training set') 
 
%use fscnca (neighborhood component analysis) for classification 
NCAmdl = fscnca(Allfeats(Splittrain,:), Alllbls(Splittrain)); 
figure 
plot(NCAmdl.FeatureWeights,'ro') 
grid on 
xlabel('Feature index') 
ylabel('Feature weight') 
[BestNCAfeats, IdxNCAb] = sort(NCAmdl.FeatureWeights, 'descend'); 
%IdxNCAb lists in order the best features for prediction 
 
 
%maximum variance 
VarTrfts = var(Allfeats(Splittrain,:),'omitnan'); 
[BestVarTr,IdxBVar] = sort(VarTrfts,'descend'); 
 
%Kendall's rank coefficient for predictor ranks 
rhoKen = corr(Allfeats(Splittrain,:),Alllbls(Splittrain),'type','Kendall'); 
[BestKenrho, IdxBKr] = sort(rhoKen,'ascend');%want least correlated? 
 
%Univariate feature ranking with F-tests 
idxFtest = fsrftest(Allfeats(Splittrain,:), Alllbls(Splittrain)); 
 
%LASSO regularisation 
[Blasso fitinfoB] = lasso(Allfeats(Splittrain,:), Alllbls(Splittrain), 
'Lambda',linspace(0,1),'CV',10); 
[Alasso fitinfoA] = lasso(Allfeats(Splittrain,:), Alllbls(Splittrain), 
'Lambda',linspace(0,1),'Alpha',0.5,'CV',10); 
%Best features the indices of columns with most zeros.Row indices = vars 
VaridxA = cell(100,1); 
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VaridxB = cell(100,1); 
LCol0A=NaN(100,1); 
LCol0B=NaN(100,1); 
for La0=1:100 
   LCol0A(La0)=nnz(Alasso(:,La0)); 
   VaridxA{La0}=find(Alasso(:,La0)~=0); 
   LCol0B(La0)=nnz(Blasso(:,La0)); 
   VaridxB{La0}=find(Blasso(:,La0)~=0); 
end 
[~,IdxLA]=sort(LCol0A,'ascend'); 
[~,IdxLB]=sort(LCol0B,'ascend');%top indices here = look at non zero rows for vars 
sVaridxA=VaridxA(IdxLA); 
sVaridxB=VaridxB(IdxLB);%check this 
 
%ANOVA 
[pANOVA,tblAn, statsAN] = anova1(Allfeats(Splittrain,:)); 
Canova = multcompare(statsAN);  
[BestpAN, IdxBAn] = sort(Canova(:,6),'ascend'); 
AnovMD(:,1:2)=Canova(IdxBAn,1:2);%list variables most dissimlar by ANOVA (low p 
value) 
 
%as ANOVA has 1765 var combinations with p<0.05 
SelAnovVar= AnovMD(1:1765,:); 
[selVAn,NSelAn] = groupcounts(SelAnovVar(:)); 
[~,IdxselAn] = sort(selVAn,'descend'); 
BselVAn = NSelAn(IdxselAn);%the most commonly seen Vars in ANOVA 
 
 
5. SSTrTst 
%from SStabana candidate feature reduction, explore to select features from  
%training set to progress to classifier development 
%Allfeats/Alllbls is all anomaly, BFC, age & Axl in an array arranged: 
%(eyes in rows, 30 bins in columns x 4) 
%  PVDupa, PVDdowna, PVDtempa, PVDnasala, BFC(up,d,t,n), axl, Age 
%  RDupa, RDdowna, RDtempa, RDnasala, , BFC(up,d,t,n), axl, Age 
%Part 0 
ALLiAxL = cat(1,PVDAxL,RDAxL); 
AxLTrS = ALLiAxL(Splittrain==1); 
IdXCfeats = [2 3 4 8 12 15  16 28 32 33 34
 35 36 44 56 63 71 72 79 82 83 85 90
 92 93 96 97 100 102 111 118 119 121 123 124
 125 126]; 
%candidate features indices (column numbers of Allfeats) 
Candfeats = Allfeats(Splittrain==1,IdXCfeats);%training set variables 
CandFlbls = Alllbls(Splittrain==1); 
 
% 
%Use training set only 
 
%%Use this section to reduce number of candidate features 
%determine coefficient of variation of each candidate feature 
RDmns = mean(Candfeats(CandFlbls==3,:),'omitnan');%column vector 
PVDmns = mean(Candfeats(CandFlbls==2,:),'omitnan'); 
RDsds = std(Candfeats(CandFlbls==3,:),'omitnan'); 
PVDsds = std(Candfeats(CandFlbls==2,:),'omitnan'); 
RDcv = RDsds./RDmns;%coefficient of variation, RD anomalies 
PVDcv = PVDsds./RDmns; 
%what Cv is acceptable? (certainly) not >1 
 
%how about 1 or 2 x sd > average difference between groups 
dfeatRDPVD = mRDTra-maPVDTra; 
dfeatRDPVDCF = dfeatRDPVD(IdXCfeats); 
featDiffSD=cat(1,dfeatRDPVDCF,RDsds, PVDsds);%displays RD,PVD average difference v 
SD 
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%or just two sample ttest the variables from PVD & RD? 
[~, pRP, ciRP,~]=ttest2(Candfeats(CandFlbls==3,:),Candfeats(CandFlbls==2,:)); 
 
%A further method of feature selection is from an independent set. This could be 
%the SD OCT eye information 
 
%% 
%Part 1.1.a Section: featarray 
%Featredx is the final selcted variables. there are 12 
Featredx = [2 4 8 16 79 82 83 85 90 125 ]; 
CFperm = cell(12,1); 
for Vc = 1:12 
   %CFperm holds all the possible combinations of variables  
   CFperm{Vc} = nchoosek(Featredx,Vc); 
     
end 
Mdl12p = cell(12,924); 
RDPVD12v = cell(12,924); 
RDPVD12vsens = NaN(12,924); 
RDPVD12vspec = NaN(12,924); 
RDPVD12caccu = NaN(12,924); 
for CFc = 1:12 
   for CFr = 1:size(CFperm{CFc},1) 
       MdlfeatsIdx = CFperm{CFc}(CFr,:); 
       Mdlfeats = Allfeats(Splittrain,MdlfeatsIdx); 
       Mdl12p{CFc,CFr} = fitcdiscr(Mdlfeats,CandFlbls,'DiscrimType','quadratic'); 
        
       RDPVD12v{CFc,CFr} = 
confusionmat(Mdl12p{CFc,CFr}.Y,resubPredict(Mdl12p{CFc,CFr})); 
       RDPVD12vsens(CFc,CFr) = 
RDPVD12v{CFc,CFr}(2,2)/(RDPVD12v{CFc,CFr}(2,1)+RDPVD12v{CFc,CFr}(2,2)); 
       RDPVD12vspec(CFc,CFr) = 
RDPVD12v{CFc,CFr}(1,1)/(RDPVD12v{CFc,CFr}(1,1)+RDPVD12v{CFc,CFr}(1,2)); 
       RDPVD12caccu(CFc,CFr) = sum(RDPVD12v{CFc,CFr}([1 
4]))/sum(RDPVD12v{CFc,CFr}(:));%accuracy 
         
         
   end 
     
end 
 
RDPVD12avsens = mean(RDPVD12vsens(:), 'omitnan'); 
RDPVD12avspec = mean(RDPVD12vspec(:), 'omitnan'); 
RDPVD12avacc = mean(RDPVD12caccu(:), 'omitnan'); 
 
figure 
mesh(RDPVD12vsens,'FaceAlpha','0.5','LineStyle','none'); 
hold on 
mesh(RDPVD12vspec,'FaceAlpha','0.5'); 
mesh(RDPVD12caccu,'FaceAlpha','0.5','LineStyle','none'); 
 
figure 
surf(RDPVD12vsens,'FaceAlpha','0.3','LineStyle','none', 'FaceColor','g', 
'FaceLighting', 'gouraud'); 
hold on 
surf(RDPVD12vspec,'FaceAlpha','0.3', 'FaceColor','b', 'FaceLighting', 'flat'); 
surf(RDPVD12caccu,'FaceAlpha','0.3','LineStyle','none', 'FaceColor','m', 
'FaceLighting', 'gouraud'); 
 
SPec90Idx=find(RDPVD12vspec>0.9);%specificity > .9 models 
[SeSp90R,SeSp90C] = ind2sub([12 924],SPec90Idx); 
L4featsIdx = find(SeSp90R<4);%models with 3 or fewer variable and spec> 0.9 
CmR = SeSp90R(L4featsIdx);%CFperm cell number 
CmC = SeSp90C(L4featsIdx);%CFperm row number in Cell CmR 
SS90Idx=sub2ind([12 924],CmR,CmC); 
SensSpec90 = cat(2,RDPVD12vspec(SS90Idx),RDPVD12vsens(SS90Idx)); 
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feat90 = cell(length(CmR),1);%the best feaure combins for SensSpec90 
for getVars=1:length(CmR) 
   feat90{getVars} = CFperm{CmR(getVars)}(CmC(getVars),:);  
end 
 
%% 
%Part 1.1.b Section: featarray for larger bins 2-4 (4 quads) + AxL 
%Featredx is the final selected variables. there are 13 
Featredx13 = [2 3 4 32 33 34 62 63 64 92 93 94 125]; 
CFperm13 = cell(13,1); 
for Vc13 = 1:13 
   %CFperm holds all the possible combinations of variables  
   CFperm13{Vc13} = nchoosek(Featredx13,Vc13); 
     
end 
Mdl13p = cell(13,1716); 
RDPVD13v = cell(13,1716); 
RDPVD13vsens = NaN(13,1716); 
RDPVD13vspec = NaN(13,1716); 
RDPVD13caccu = NaN(13,1716); 
for CFc13 = 1:13 
   for CFr13 = 1:size(CFperm13{CFc13},1) 
       MdlfeatsIdx13 = CFperm13{CFc13}(CFr13,:); 
       Mdlfeats13 = Allfeats(Splittrain,MdlfeatsIdx13); 
       Mdl13p{CFc13,CFr13} = 
fitcdiscr(Mdlfeats13,CandFlbls,'DiscrimType','quadratic'); 
        
       RDPVD13v{CFc13,CFr13} = 
confusionmat(Mdl13p{CFc13,CFr13}.Y,resubPredict(Mdl13p{CFc13,CFr13})); 
       RDPVD13vsens(CFc13,CFr13) = 
RDPVD13v{CFc13,CFr13}(2,2)/(RDPVD13v{CFc13,CFr13}(2,1)+RDPVD13v{CFc13,CFr13}(2,2)); 
       RDPVD13vspec(CFc13,CFr13) = 
RDPVD13v{CFc13,CFr13}(1,1)/(RDPVD13v{CFc13,CFr13}(1,1)+RDPVD13v{CFc13,CFr13}(1,2)); 
       RDPVD13caccu(CFc13,CFr13) = sum(RDPVD13v{CFc13,CFr13}([1 
4]))/sum(RDPVD13v{CFc13,CFr13}(:));%accuracy 
         
         
   end 
     
end 
 
RDPVD13avsens = mean(RDPVD13vsens(:), 'omitnan'); 
RDPVD13avspec = mean(RDPVD13vspec(:), 'omitnan'); 
RDPVD13avacc = mean(RDPVD13caccu(:), 'omitnan'); 
 
figure 
mesh(RDPVD13vsens,'FaceAlpha','0.5','LineStyle','--'); 
hold on 
mesh(RDPVD13vspec,'FaceAlpha','0.5'); 
mesh(RDPVD13caccu,'FaceAlpha','0.5','LineStyle',':'); 
 
figure 
surf(RDPVD13vsens,'FaceAlpha','0.3','LineStyle','--', 'FaceColor','g'); 
hold on 
surf(RDPVD13vspec,'FaceAlpha','0.3', 'FaceColor','b'); 
surf(RDPVD13caccu,'FaceAlpha','0.3','LineStyle',':', 'FaceColor','m'); 
 
SPec90Idx13=find(RDPVD13vspec>0.90);%specificity > .95 models 
[SeSp90R13,SeSp90C13] = ind2sub([13 1716],SPec90Idx13); 
L4featsIdx13 = find(SeSp90R13<4);%models with 3 or fewer variable and spec> 0.9 
CmR13 = SeSp90R13(L4featsIdx13);%CFperm cell number 
CmC13 = SeSp90C13(L4featsIdx13);%CFperm row number in Cell CmR 
SS90Idx13=sub2ind([13 1716],CmR13,CmC13); 
SensSpec9013 = cat(2,RDPVD13vspec(SS90Idx13),RDPVD13vsens(SS90Idx13)); 
feat90b = cell(length(CmR13),1); 
for getVars=1:length(CmR13) 
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   feat90b{getVars} = CFperm13{CmR13(getVars)}(CmC13(getVars),:);  
end 
 
 
%% 
%% 
%Part 1.1. c Lasso Section: (featarray for larger bins 2-4 (4 quads) + AxL) 
%Featredx is the final selected variables. there are 6 
Featredx6 = [4 36 79 83 86 125]; 
CFperm6 = cell(6,1); 
for Vc6 = 1:6 
   %CFperm holds all the possible combinations of variables  
   CFperm6{Vc6} = nchoosek(Featredx6,Vc6); 
     
end 
 
Mdl6p = cell(6,58); 
RDPVD6v = cell(6,58); 
RDPVD6vsens = NaN(6,58); 
RDPVD6vspec = NaN(6,58); 
RDPVD6caccu = NaN(6,58); 
for CFc6 = 1:6 
   for CFr6 = 1:size(CFperm6{CFc6},1) 
       MdlfeatsIdx6 = CFperm6{CFc6}(CFr6,:); 
       Mdlfeats6 = Allfeats(Splittrain,MdlfeatsIdx6); 
       Mdl6p{CFc6,CFr6} = fitcdiscr(Mdlfeats6,CandFlbls,'DiscrimType','quadratic'); 
        
       RDPVD6v{CFc6,CFr6} = 
confusionmat(Mdl6p{CFc6,CFr6}.Y,resubPredict(Mdl6p{CFc6,CFr6})); 
       RDPVD6vsens(CFc6,CFr6) = 
RDPVD6v{CFc6,CFr6}(2,2)/(RDPVD6v{CFc6,CFr6}(2,1)+RDPVD6v{CFc6,CFr6}(2,2)); 
       RDPVD6vspec(CFc6,CFr6) = 
RDPVD6v{CFc6,CFr6}(1,1)/(RDPVD6v{CFc6,CFr6}(1,1)+RDPVD6v{CFc6,CFr6}(1,2)); 
       RDPVD6caccu(CFc6,CFr6) = sum(RDPVD6v{CFc6,CFr6}([1 
4]))/sum(RDPVD6v{CFc6,CFr6}(:));%accuracy 
         
         
   end 
     
end 
 
RDPVD6avsens = mean(RDPVD6vsens(:), 'omitnan'); 
RDPVD6avspec = mean(RDPVD6vspec(:), 'omitnan'); 
RDPVD6avacc = mean(RDPVD6caccu(:), 'omitnan'); 
 
figure 
mesh(RDPVD6vsens,'FaceAlpha','0.5','LineStyle','--'); 
hold on 
mesh(RDPVD6vspec,'FaceAlpha','0.5'); 
mesh(RDPVD6caccu,'FaceAlpha','0.5','LineStyle',':'); 
 
figure 
surf(RDPVD6vsens,'FaceAlpha','0.3','LineStyle','--', 'FaceColor','g'); 
hold on 
surf(RDPVD6vspec,'FaceAlpha','0.3', 'FaceColor','b'); 
surf(RDPVD6caccu,'FaceAlpha','0.3','LineStyle',':', 'FaceColor','m'); 
 
 
SPec90Idx6=find(RDPVD6vspec>0.90);%specificity > .90 models 
[SeSp90R6,SeSp90C6] = ind2sub([6 58],SPec90Idx6); 
L4featsIdx6 = find(SeSp90R6<4);%models with 3 or fewer variable and spec> 0.9 
CmR6 = SeSp90R6(L4featsIdx6);%CFperm cell number 
CmC6 = SeSp90C6(L4featsIdx6);%CFperm row number in Cell CmR 
SS90Idx6=sub2ind([6 58],CmR6,CmC6); 
SensSpec906 = cat(2,RDPVD6vspec(SS90Idx6),RDPVD6vsens(SS90Idx6)); 
feat90bL = cell(length(CmR6),1); 
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for getVars=1:length(CmR6) 
   feat90bL{getVars} = CFperm6{CmR6(getVars)}(CmC6(getVars),:);  
end 
 
%% 
%Part 1.1.c Section: featarray from Table 3 (CoV candidate features) 
%Featredx14 is the final selected variables. there are 14 
Featredx14 = [2 3 4 32 33 62 63 93 121 122 123 124 125 126 ]; 
CFperm14 = cell(14,1); 
for Vc14 = 1:14 
   %CFperm holds all the possible combinations of variables  
   CFperm14{Vc14} = nchoosek(Featredx14,Vc14); 
     
end 
Mdl14p = cell(14,3432); 
RDPVD14v = cell(14,3432); 
RDPVD14vsens = NaN(14,3432); 
RDPVD14vspec = NaN(14,3432); 
RDPVD14caccu = NaN(14,3432); 
for CFc14 = 1:14 
   for CFr14 = 1:size(CFperm14{CFc14},1) 
       MdlfeatsIdx14 = CFperm14{CFc14}(CFr14,:); 
       Mdlfeats14 = Allfeats(Splittrain,MdlfeatsIdx14); 
       Mdl14p{CFc14,CFr14} = 
fitcdiscr(Mdlfeats14,CandFlbls,'DiscrimType','quadratic'); 
        
       RDPVD14v{CFc14,CFr14} = 
confusionmat(Mdl14p{CFc14,CFr14}.Y,resubPredict(Mdl14p{CFc14,CFr14})); 
       RDPVD14vsens(CFc14,CFr14) = 
RDPVD14v{CFc14,CFr14}(2,2)/(RDPVD14v{CFc14,CFr14}(2,1)+RDPVD14v{CFc14,CFr14}(2,2)); 
       RDPVD14vspec(CFc14,CFr14) = 
RDPVD14v{CFc14,CFr14}(1,1)/(RDPVD14v{CFc14,CFr14}(1,1)+RDPVD14v{CFc14,CFr14}(1,2)); 
       RDPVD14caccu(CFc14,CFr14) = sum(RDPVD14v{CFc14,CFr14}([1 
4]))/sum(RDPVD14v{CFc14,CFr14}(:));%accuracy 
         
         
   end 
     
end 
 
RDPVD14avsens = mean(RDPVD14vsens(:), 'omitnan'); 
RDPVD14avspec = mean(RDPVD14vspec(:), 'omitnan'); 
RDPVD14avacc = mean(RDPVD14caccu(:), 'omitnan'); 
 
figure 
mesh(RDPVD14vsens,'FaceAlpha','0.5','LineStyle','--'); 
hold on 
mesh(RDPVD14vspec,'FaceAlpha','0.5'); 
mesh(RDPVD14caccu,'FaceAlpha','0.5','LineStyle',':'); 
 
figure 
surf(RDPVD14vsens,'FaceAlpha','0.3','LineStyle','--', 'FaceColor','g'); 
hold on 
surf(RDPVD14vspec,'FaceAlpha','0.3', 'FaceColor','b'); 
surf(RDPVD14caccu,'FaceAlpha','0.3','LineStyle',':', 'FaceColor','m'); 
 
SPec90Idx14=find(RDPVD14vspec>0.90);%specificity > .95 models 
[SeSp90R14,SeSp90C14] = ind2sub([14,3432],SPec90Idx14); 
L4featsIdx14 = find(SeSp90R14<4);%models with 3 or fewer variable and spec> 0.9 
CmR14 = SeSp90R14(L4featsIdx14);%CFperm cell number 
CmC14 = SeSp90C14(L4featsIdx14);%CFperm row number in Cell CmR 
SS90Idx14=sub2ind([14,3432],CmR14,CmC14); 
SensSpec9014 = cat(2,RDPVD14vspec(SS90Idx14),RDPVD14vsens(SS90Idx14)); 
feat90c = cell(length(CmR14),1); 
for getVars=1:length(CmR14) 
   feat90c{getVars} = CFperm14{CmR14(getVars)}(CmC14(getVars),:);  
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end 
 
%% 
%{ 
%Part 1.2. Feature reduction. 
 
%7 variable model 
 
DaTavarsmaxK7a = Candfeats; 
           
MdlRDPVDmaxK7 = fitcdiscr(DaTavarsmaxK7a,CandFlbls,'DiscrimType','quadratic'); 
            
 RDPVD7v = confusionmat(MdlRDPVDmaxK7.Y,resubPredict(MdlRDPVDmaxK7)); 
 RDPVD7vsens = RDPVD7v(2,2)/(RDPVD7v(2,1)+RDPVD7v(2,2)); 
 RDPVD7vspec = RDPVD7v(1,1)/(RDPVD7v(1,1)+RDPVD7v(1,2)); 
 RDPVD7caccu = sum(RDPVD7v([1 4]))/sum(RDPVD7v(:));%accuracy 
         
 
 
%6 var model   
RDPVD6v = cell (7,1);%array of confusion matrices 
MdlRDPVDmaxK6 = cell(7,1);%models array 
RDPVD6vsens = NaN(7,1); 
RDPVD6vspec = NaN(7,1); 
RDPVDvarsmaxK6 = Candfeats; 
 
%6 variable model 
for CoLs = 1:7 
        DaTavarsmaxK6a = RDPVDvarsmaxK6; 
        DaTavarsmaxK6a(:,CoLs)=[];%removes one variable 
         
        MdlRDPVDmaxK6{CoLs} = 
fitcdiscr(DaTavarsmaxK6a,CandFlbls,'DiscrimType','quadratic'); 
         
        RDPVD6v{CoLs} = 
confusionmat(MdlRDPVDmaxK6{CoLs}.Y,resubPredict(MdlRDPVDmaxK6{CoLs})); 
        RDPVD6vsens(CoLs) = 
RDPVD6v{CoLs}(2,2)/(RDPVD6v{CoLs}(2,1)+RDPVD6v{CoLs}(2,2)); 
        RDPVD6vspec(CoLs) = 
RDPVD6v{CoLs}(1,1)/(RDPVD6v{CoLs}(1,1)+RDPVD6v{CoLs}(1,2)); 
        RDPVD6caccu(CoLs) = sum(RDPVD6v{CoLs}([1 
4]))/sum(RDPVD6v{CoLs}(:));%accuracy 
         
end 
 
RDPVD6avsens = mean(RDPVD6vsens(:), 'omitnan'); 
RDPVD6avspec = mean(RDPVD6vspec(:), 'omitnan'); 
RDPVD6avacc = mean(RDPVD6caccu(:), 'omitnan'); 
 
%5 var model   
RDPVD5v = cell (7,6);%array of confusion matrices 
MdlRDPVDmaxK5 = cell(7,6);%models array 
RDPVD5vsens = NaN(7,6); 
RDPVD5vspec = NaN(7,6); 
RDPVDvarsmaxK5 = Candfeats; 
 
%5 variable model 
for CoLs = 1:7 
        DaTavarsmaxK5a = RDPVDvarsmaxK5; 
        DaTavarsmaxK5a(:,CoLs)=[];%removes one variable 
         
     for C2 = 1:6   
          
         DaTavarsmaxK5a1 = DaTavarsmaxK5a; 
         DaTavarsmaxK5a1(:,C2)=[]; 
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        MdlRDPVDmaxK5{CoLs,C2} = 
fitcdiscr(DaTavarsmaxK5a1,CandFlbls,'DiscrimType','quadratic'); 
         
        RDPVD5v{CoLs,C2} = 
confusionmat(MdlRDPVDmaxK5{CoLs,C2}.Y,resubPredict(MdlRDPVDmaxK5{CoLs,C2})); 
        RDPVD5vsens(CoLs,C2) = 
RDPVD5v{CoLs,C2}(2,2)/(RDPVD5v{CoLs,C2}(2,1)+RDPVD5v{CoLs,C2}(2,2)); 
        RDPVD5vspec(CoLs,C2) = 
RDPVD5v{CoLs,C2}(1,1)/(RDPVD5v{CoLs,C2}(1,1)+RDPVD5v{CoLs,C2}(1,2)); 
        RDPVD5caccu(CoLs,C2) = sum(RDPVD5v{CoLs,C2}([1 
4]))/sum(RDPVD5v{CoLs,C2}(:));%accuracy 
         
     end   
end 
 
RDPVD5avsens = mean(RDPVD5vsens(:), 'omitnan'); 
RDPVD5avspec = mean(RDPVD5vspec(:), 'omitnan'); 
RDPVD5avacc = mean(RDPVD5caccu(:), 'omitnan'); 
 
 
%4 var model   
RDPVD4v = cell (7,6,5);%array of confusion matrices 
MdlRDPVDmaxK4 = cell(7,6,5);%models array 
RDPVD4vsens = NaN(7,6,5); 
RDPVD4vspec = NaN(7,6,5); 
RDPVDvarsmaxK4 = Candfeats; 
 
%4 variable model 
for CoLs = 1:7 
        DaTavarsmaxK4a = RDPVDvarsmaxK4; 
        DaTavarsmaxK4a(:,CoLs)=[];%removes one variable 
         
     for C2 = 1:6   
          
         DaTavarsmaxK4a1 = DaTavarsmaxK4a; 
         DaTavarsmaxK4a1(:,C2)=[]; 
          
         for C3 = 1:5 
              
         DaTavarsmaxK4a2 = DaTavarsmaxK4a1; 
         DaTavarsmaxK4a2(:,C3)=[]; 
         
        MdlRDPVDmaxK4{CoLs,C2,C3} = 
fitcdiscr(DaTavarsmaxK4a2,CandFlbls,'DiscrimType','quadratic'); 
         
        RDPVD4v{CoLs,C2,C3} = 
confusionmat(MdlRDPVDmaxK4{CoLs,C2,C3}.Y,resubPredict(MdlRDPVDmaxK4{CoLs,C2,C3})); 
        RDPVD4vsens(CoLs,C2,C3) = 
RDPVD4v{CoLs,C2,C3}(2,2)/(RDPVD4v{CoLs,C2,C3}(2,1)+RDPVD4v{CoLs,C2,C3}(2,2)); 
        RDPVD4vspec(CoLs,C2,C3) = 
RDPVD4v{CoLs,C2,C3}(1,1)/(RDPVD4v{CoLs,C2,C3}(1,1)+RDPVD4v{CoLs,C2,C3}(1,2)); 
        RDPVD4caccu(CoLs,C2,C3) = sum(RDPVD4v{CoLs,C2,C3}([1 
4]))/sum(RDPVD4v{CoLs,C2,C3}(:));%accuracy 
         
         end 
     end   
end 
 
RDPVD4avsens = mean(RDPVD4vsens(:), 'omitnan'); 
RDPVD4avspec = mean(RDPVD4vspec(:), 'omitnan'); 
RDPVD4avacc = mean(RDPVD4caccu(:), 'omitnan'); 
 
 
%3 var model   
RDPVD3v = cell (7,6,5,4);%array of confusion matrices 
MdlRDPVDmaxK3 = cell(7,6,5,4);%models array 



  377 

RDPVD3vsens = NaN(7,6,5,4); 
RDPVD3vspec = NaN(7,6,5,4); 
RDPVDvarsmaxK3 = Candfeats; 
 
%3 variable model 
for CoLs = 1:7 
        DaTavarsmaxK3a = RDPVDvarsmaxK3; 
        DaTavarsmaxK3a(:,CoLs)=[];%removes one variable 
         
     for C2 = 1:6   
          
         DaTavarsmaxK3a1 = DaTavarsmaxK3a; 
         DaTavarsmaxK3a1(:,C2)=[]; 
          
         for C3 = 1:5 
              
         DaTavarsmaxK3a2 = DaTavarsmaxK3a1; 
         DaTavarsmaxK3a2(:,C3)=[]; 
          
         for C4 = 1:4 
              
         DaTavarsmaxK3a3 = DaTavarsmaxK3a2; 
         DaTavarsmaxK3a3(:,C4)=[]; 
         
        MdlRDPVDmaxK3{CoLs,C2,C3,C4} = 
fitcdiscr(DaTavarsmaxK3a3,CandFlbls,'DiscrimType','quadratic'); 
         
        RDPVD3v{CoLs,C2,C3,C4} = 
confusionmat(MdlRDPVDmaxK3{CoLs,C2,C3,C4}.Y,resubPredict(MdlRDPVDmaxK3{CoLs,C2,C3,C
4})); 
        RDPVD3vsens(CoLs,C2,C3,C4) = 
RDPVD3v{CoLs,C2,C3,C4}(2,2)/(RDPVD3v{CoLs,C2,C3,C4}(2,1)+RDPVD3v{CoLs,C2,C3,C4}(2,2
)); 
        RDPVD3vspec(CoLs,C2,C3,C4) = 
RDPVD3v{CoLs,C2,C3,C4}(1,1)/(RDPVD3v{CoLs,C2,C3,C4}(1,1)+RDPVD3v{CoLs,C2,C3,C4}(1,2
)); 
        RDPVD3caccu(CoLs,C2,C3,C4) = sum(RDPVD3v{CoLs,C2,C3,C4}([1 
4]))/sum(RDPVD3v{CoLs,C2,C3,C4}(:));%accuracy 
         
         end 
         end 
     end   
end 
 
%see results: array 7*5, 6*4 (r x sheets, cols X 4D) 
%v3sens=NaN(35,24); 
v3sens = reshape(RDPVD3vsens,[35,24]); 
v3spec = reshape(RDPVD3vspec,[35,24]); 
 
MxAcc3 = max(RDPVD3caccu(:));%max accuracy 
IMxAcc3 = find(RDPVD3caccu==MxAcc3);%index max accuracy 
SeSpmxAc3=NaN(length(IMxAcc3),3); 
SeSpmxAc3(:,1) = RDPVD3vsens(IMxAcc3); 
SeSpmxAc3(:,2) = RDPVD3vspec(IMxAcc3); 
SeSpmxAc3(:,3) = RDPVD3caccu(IMxAcc3);%Max acc sens spe accuracy array 
 
Mxspec3 = max(RDPVD3vspec(:)); 
MxIspec3 = find(RDPVD3vspec==Mxspec3);%indices of max spec 3 vars 
sensMxspec = RDPVD3vsens(MxIspec3);%sens of maximal spec 
[r3,c3,s,d3]= ind2sub([7 6 5 4],MxIspec3); 
v3subs=cat(2,r3,c3,s,d3);%row col sheet dim4 location of max spec 3 var model 
 
 Afeats=1:7; 
 RegBin3 = cell(length(MxIspec3),1); 
 %determine which [region,bin] are indexed by v3subs 
 %Regbin3 numbers refer to which Trainset columns are retained. 
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for subs3 = 1:length(MxIspec3) 
   nowfeat=Afeats; 
    for Swr=1:4 
         
        nowfeat(v3subs(subs3,Swr))=[]; 
     
    end 
    RegBin3{subs3}=nowfeat; 
end 
 
Mxsens3 = max(RDPVD3vsens(:)); 
MxIsens3 = find(RDPVD3vsens==Mxsens3); 
 
%bler = 1:35*24; 
%bler4d = reshape(bler, [7,6,5,4]); 
%bler2d= reshape(bler4d,[35,24]); 
 
RDPVD3avsens = mean(RDPVD3vsens(:), 'omitnan'); 
RDPVD3avspec = mean(RDPVD3vspec(:), 'omitnan'); 
RDPVD3avacc = mean(RDPVD3caccu(:), 'omitnan'); 
 
 
%2 var model   
 
RDPVD2v = cell (7,1);%array of confusion matrices 
MdlRDPVDmaxK2 = cell(7,1);%models array 
RDPVD2vsens = NaN(7,1); 
RDPVD2vspec = NaN(7,1); 
RDPVDvarsmaxK2 = Candfeats; 
 
%2 variable model 
for CoLs = 1:7 
        DaTavarsmaxK2a = RDPVDvarsmaxK2(:,CoLs);%adds one var 
        nDaTavarsmaxK2a = RDPVDvarsmaxK2; 
        nDaTavarsmaxK2a(:,CoLs)=[]; 
         
     for C2 = 1:6   
          
         DaTavarsmaxK2a1 = []; 
         DaTavarsmaxK2a1 = cat(2,DaTavarsmaxK2a,nDaTavarsmaxK2a(:,C2)); 
          
         
        MdlRDPVDmaxK2{CoLs,C2} = 
fitcdiscr(DaTavarsmaxK2a1,CandFlbls,'DiscrimType','quadratic'); 
         
        RDPVD2v{CoLs,C2} = 
confusionmat(MdlRDPVDmaxK2{CoLs,C2}.Y,resubPredict(MdlRDPVDmaxK2{CoLs,C2})); 
        RDPVD2vsens(CoLs,C2) = 
RDPVD2v{CoLs,C2}(2,2)/(RDPVD2v{CoLs,C2}(2,1)+RDPVD2v{CoLs,C2}(2,2)); 
        RDPVD2vspec(CoLs,C2) = 
RDPVD2v{CoLs,C2}(1,1)/(RDPVD2v{CoLs,C2}(1,1)+RDPVD2v{CoLs,C2}(1,2)); 
        RDPVD2caccu(CoLs,C2) = sum(RDPVD2v{CoLs,C2}([1 
4]))/sum(RDPVD2v{CoLs,C2}(:));%accuracy 
         
     end   
end 
 
RDPVD2avsens = mean(RDPVD2vsens(:), 'omitnan'); 
RDPVD2avspec = mean(RDPVD2vspec(:), 'omitnan'); 
RDPVD2avacc = mean(RDPVD2caccu(:), 'omitnan'); 
 
 
[F2msens,F2mIsens] = max(RDPVD2vsens(:),[],'omitnan');% max sensitivity, for 
[F3msens,F3mIsens] = max(RDPVD3vsens(:),[],'omitnan');% each number of vars 
[F4msens,F4mIsens] = max(RDPVD4vsens(:),[],'omitnan'); 
[F5msens,F5mIsens] = max(RDPVD5vsens(:),[],'omitnan'); 
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[F6msens,F6mIsens] = max(RDPVD6vsens(:),[],'omitnan'); 
 
[F2mspec,F2mIspec] = max(RDPVD2vspec(:),[],'omitnan'); 
[F3mspec,F3mIspec] = max(RDPVD3vspec(:),[],'omitnan'); 
[F4mspec,F4mIspec] = max(RDPVD4vspec(:),[],'omitnan'); 
[F5mspec,F5mIspec] = max(RDPVD5vspec(:),[],'omitnan'); 
[F6mspec,F6mIspec] = max(RDPVD6vspec(:),[],'omitnan'); 
 
%table of average sens/spec, 7 to 2 
senspecAc = NaN(6,3); 
senspecAc(1,1) = RDPVD7vsens; 
senspecAc(1,2) = RDPVD7vspec; 
senspecAc(2,1) = RDPVD6avsens; 
senspecAc(2,2) = RDPVD6avspec; 
senspecAc(3,1) = RDPVD5avsens; 
senspecAc(3,2) = RDPVD5avspec; 
senspecAc(4,1) = RDPVD4avsens; 
senspecAc(4,2) = RDPVD4avspec; 
senspecAc(5,1) = RDPVD3avsens; 
senspecAc(5,2) = RDPVD3avspec; 
senspecAc(6,1) = RDPVD2avsens; 
senspecAc(6,2) = RDPVD2avspec; 
senspecAc(1,3) = RDPVD7caccu; 
senspecAc(2,3) = RDPVD6avacc; 
senspecAc(3,3) = RDPVD5avacc; 
senspecAc(4,3) = RDPVD4avacc; 
senspecAc(5,3) = RDPVD3avacc; 
senspecAc(6,3) = RDPVD2avacc; 
%} 
%% 
%{ 
%Part 1.2b 
Xinds = repmat(1:7,7,1); 
Yinds = repmat(1:7,7,1)'; 
 
figure 
%classifier sensitivity by number of variable  
hold on 
plot3 ([1:7],[1:7], RDPVD7vsens,'go') 
plot3 (Xinds(1:7,1:7),[2], RDPVD6vsens,'go') 
plot3 (Xinds(1:7,1:6),Yinds(1:6, 1:7), RDPVD5vsens,'go') 
plot3 (Xinds(1:7,1:6),Yinds(1:6, 1:5), RDPVD4vsens,'go') 
plot3 (Xinds(1:7,1:6),Yinds(1:5, 1:4), RDPVD3vsens,'go') 
plot3 (Xinds(1:7,1:7),Yinds(1:6, 1:6), RDPVD2vsens,'go') 
title('sensitivity') 
hold off 
 
figure 
%classifier specificity by number of variable  
hold on 
plot3 ([1:7],[1:7], RDPVD7vspec,'go') 
plot3 (Xinds(1:7,1:7),[2], RDPVD6vspec,'go') 
plot3 (Xinds(1:7,1:6),Yinds(1:6, 1:7), RDPVD5vspec,'go') 
plot3 (Xinds(1:7,1:6),Yinds(1:6, 1:5), RDPVD4vspec,'go') 
plot3 (Xinds(1:7,1:6),Yinds(1:5, 1:4), RDPVD3vspec,'go') 
plot3 (Xinds(1:7,1:7),Yinds(1:6, 1:6), RDPVD2vspec,'go') 
title('specificity') 
hold off 
 
 
figure 
hold on 
plot(RDPVD7vsens,RDPVD7vspec,'go') 
plot(RDPVD6vsens,RDPVD6vspec,'g+') 
plot(RDPVD5vsens,RDPVD5vspec,'bo') 
plot(RDPVD4vsens,RDPVD4vspec,'b+') 
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plot(RDPVD3vsens,RDPVD3vspec,'mo') 
plot(RDPVD2vsens,RDPVD2vspec,'m+') 
xlabel('sensitivity') 
ylabel('specificity') 
%} 
%% 
%Part 2 
%This section is for optimisation selection of class weighting from 
%training set data 
%Selectedfeatures = the selected features for training and testing from 
%Candfeats not Allfeats 
%CandFlbls is the training set diagnosis, RD = 3, PVD = 2 
nRDts = nnz(CandFlbls==3);%number Tr set RD eyes 
nPVDts = nnz(CandFlbls==2);%number PVD eyes in Tr set 
Selectedfeatures = [4,83,86];%feat90c{41};%Indices from Allfeats NOT Candfeats: 
final variables chosen 
for WtR = 1:99 
    Wt= (0.01*WtR); 
quad4mdl1 = 
fitcdiscr(Allfeats(Splittrain,Selectedfeatures),CandFlbls,'DiscrimType','quadratic'
,'Prior',[1-Wt Wt]); 
quad4mdldistr1 = confusionmat(quad4mdl1.Y,resubPredict(quad4mdl1)); 
CmatR{WtR,1} = quad4mdldistr1; 
 
SensR(WtR,1) = CmatR{WtR,1}(4)/(CmatR{WtR,1}(2) + CmatR{WtR,1}(4));%training set 
SpecR(WtR,1) = CmatR{WtR,1}(1)/(CmatR{WtR,1}(1) + CmatR{WtR,1}(3)); 
 
scsR(WtR) = (quad4mdldistr1(1) + quad4mdldistr1(4))/sum(quad4mdldistr1(1:4));% = 
accuracy 
RDsR(WtR) = CmatR{WtR,1}(4); 
PVDfR(WtR) = CmatR{WtR,1}(3); 
RDsrate(WtR) = RDsR(WtR)/nRDts;%fratcion success rate RD 
PVDfrate(WtR) = PVDfR(WtR)/nPVDts;%fraction failure rate PVD 
end 
 
AUC = trapz(1-SpecR,SensR);% AUC of ROC 
 
%Total sensitivity/specificity range: 
x=fliplr(0.01:0.01:0.99); 
 
figure 
plot(1-SpecR,SensR,'r'); 
refline(1,0) 
title('ROC curve, 3 variable model training set'); 
xlabel('1-Specificity'); 
ylabel('Sensitivity'); 
 
 
%plot RD success  and PVD fail on same graph 
%represents RDs and PVDfl as fractions against their denominator = no of 
%each group in the training set 
figure 
yyaxis left 
%plot(x,RDsrate,'m:');%same as sensitivity 
hold on  
%plot(x,PVDfrate,'-.k','LineWidth', 1); 
%plot(x, RDsrate-PVDfrate,'k'); 
plot(x, SensR, 'r-.','LineWidth', 1); 
plot(x, SpecR, 'b-.','LineWidth', 1); 
set(gca, 'XDir','reverse') 
set(gca, 'LineWidth', 1, 'FontWeight', 'bold', 'FontSize', 10); 
xlabel({'Class weighting';'<--PVD weight increased RD weight-->'}); 
ylabel('proportion of eyes'); 
 
yyaxis right 
plot(x, scsR,'Color',[0.8500 0.3250 0.0980]); 
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ylabel('Accuracy'); 
legend('Sensitivity', 'Specificity', 'Accuracy', 'Location'... 
    ,'southoutside','Orientation', 'horizontal'); 
title('Training set performance by class weighting') 
 
%% 
%Part 3 
%Now test the classifier 
OptiWt = [0.58 0.42];% optimised classifier weighting 
Valset = Allfeats(Splittest==1,Selectedfeatures); 
Vallbls = Alllbls(Splittest==1,:);%sample class 
 
%Candfeats/Allfeats is training set. Use only final selected features 
SSOCTmdl = 
fitcdiscr(Allfeats(Splittrain,Selectedfeatures),CandFlbls,'DiscrimType','quadratic'
,'Prior',OptiWt); 
 
Valsetlbls = predict(SSOCTmdl,Valset); 
VSsens= (nnz(Valsetlbls==3 & Vallbls==3))/nnz(Vallbls==3); 
VSspec= (nnz(Valsetlbls==2 & Vallbls==2))/nnz(Vallbls==2); 
 
VSTP = nnz(Valsetlbls==3 & Vallbls==3);%true positive, D in conf matrix 
VDTN = nnz(Valsetlbls==2 & Vallbls==2);%true negatives, A in conf matrix 
VStpfn = nnz(Vallbls==3);%TP + FN, D+C in conf matrix 
VStnfp = nnz(Vallbls==2);%TN+FP, A+B on conf matrix 
 
MdlperfRD= classperf(Vallbls,Valsetlbls); 
VSID = AllID(Splittest==1); %test set eyes 
VSTPID = VSID(Valsetlbls==3 & Vallbls==3);%TP ID 
VSTNID = VSID(Valsetlbls==2 & Vallbls==2);%TN ID 
 
%retinal tear eyes 
%RTvalset = RTfts(:,Selectedfeatures);%RT candidate features 
RTvalfts = RTfts(:,Selectedfeatures);%RT features for classifier 
RTtestlbls = ones(size(RTvalfts,1))*3;%labelling RT as 3 for test results 
 
RTtesting = predict(SSOCTmdl,RTvalfts); 
RTsens=(nnz(RTtesting==3))/length(RTtesting); 
%MdlperfRT = classperf(RTtestlbls,RTtesting);%performance with RT eyes 
 
 
 
%% 
%Part 4 
%correlation betweeen values - Axl & anomaly 
 
%PVD vars corr c AxL 
[rhocPVD,pcPVD] = corr(aPVDfts(:,1:end-2),aPVDfts(:,end-1),'Type', 
'Spearman','rows','pairwise'); 
%RD vars corr c AxL 
[rhocRD,pcRD] = corr(RDfts(:,1:end-2),RDfts(:,end-1),'Type', 
'Spearman','rows','pairwise'); 
%RT vars corr c AxL 
[rhocRT,pcRT] = corr(RTfts(:,1:end-2),RTfts(:,end-1),'Type', 
'Spearman','rows','pairwise'); 
%PVD + RD vars corr c AxL 
[rhocPR,pcPR] = corr(Allfeats(:,1:end-2),Allfeats(:,end-1),'Type', 
'Spearman','rows','pairwise'); 
%PVD, RT & RD corr c AxL 
PRTfeats = cat(1,Allfeats,RTfts); 
[rhocPRR,pcPRR] = corr(PRTfeats(:,1:end-2),PRTfeats(:,end-1),'Type', 
'Spearman','rows','pairwise'); 
 
 
%Total anomaly 
tAnRD = cellfun(@sum,RDanom); 
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tAnRT = cellfun(@sum,RTanom); 
tAnPVD = cellfun(@sum,aPVDanom); 
 
tAnPR = cat(1,tAnPVD,tAnRD); 
tAnbAAPR = cat(2,tAnPR,Allfeats(:,121:126));%T anom, BFC, AxL, Age PVD & RD 
tAnbAAPRR = cat(1,tAnbAAPR,cat(2,tAnRT,RTfts(:,121:126)));%PVD, RD, RT  
%all eyes - these look at each region 
[rhoctAPRR,pctAPRR] = corr(tAnbAAPRR(:,[1:end-2,end]),tAnbAAPRR(:,end-1),'Type', 
'Spearman','rows','pairwise'); 
%PVD 
[rhoctAP,pctAP] = corr(tAnPVD,aPVDAxL,'Type', 'Spearman','rows','pairwise'); 
%RD 
[rhoctARD,pctARD] = corr(tAnRD,RDAxL,'Type', 'Spearman','rows','pairwise'); 
%RT 
[rhoctART,pctART] = corr(tAnRT,RTAxL,'Type', 'Spearman','rows','pairwise'); 
 
%all eyes - these look at average of each bin - all regions 
[rhoctMnAPRR,pctMnAPRR] = corr(mean(tAnbAAPRR(:,1:4),2,'omitnan'),tAnbAAPRR(:,end-
1),'Type', 'Spearman','rows','pairwise'); 
%PVD 
[rhoctMnAP,pctMnAP] = corr(mean(tAnPVD,2,'omitnan'),aPVDAxL,'Type', 
'Spearman','rows','pairwise'); 
%RD 
[rhoctMnARD,pctMnARD] = corr(mean(tAnRD,2,'omitnan'),RDAxL,'Type', 
'Spearman','rows','pairwise'); 
%RT 
[rhoctMnART,pctMnART] = corr(mean(tAnRT,2,'omitnan'),RTAxL,'Type', 
'Spearman','rows','pairwise'); 
 
 
%BH correction for SS OCT correlation 
 
AllrhoSS = cat(1, 
rhoctMnAPRR,rhoctMnAP,rhoctMnARD,rhoctMnART,rhoctAPRR(1:4),rhoctAP(1:4),rhoctARD(1:
4),rhoctART(1:4)); 
AllpvSS = cat(1, 
pctMnAPRR,pctMnAP,pctMnARD,pctMnART,pctAPRR(1:4),pctAP(1:4),pctARD(1:4),pctART(1:4)
); 
 
 
%BH correction 
[sAllpvSS,psortSS] = sort(AllpvSS); 
sAllrhoSS = AllrhoSS(psortSS); 
 
m=length(sAllrhoSS); 
alpha = 0.05; 
BH=zeros(m,1); 
for list=1:m 
    BH(list) = alpha/(m-(list-1)); 
end 
 
SummT= cat(2,sAllpvSS,BH,psortSS,sAllrhoSS); 
 
 
figure 
scatter(repmat(aPVDAxL,4,1),tAnPVD(:)); 
 
 
6. SSneweyetest 
%test all new eyes and create array of labels/features, plus ROC 
clear 
SSOCTeyes3=[];%the table to use 
 
%average B scan, classifier, feature indices 
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load('/Users/stewartlake/Documents/retinalcontour/SS OCT 
notes/SSOCT2mdls3var0FLasso.mat'... 
    ,'MnmBs','SSOCTmdl','Selectedfeatures', 'Vallbls', 'Valset','VSID','VSTPID', 
'VSTNID'); 
%Valset = predictors fr each sample - original test set 
%Vallbls = class for each sample - original test set 
%SSOCTmdl  = model 
 
%load eye data 
load('/Users/stewartlake/Documents/MATLAB/SSOCT eyes.mat'); 
 
%Identify new eyes 
nSSi = ismember(SSOCTeyes3.ID,SSOCTeyes2.ID,'rows'); 
newSS = SSOCTeyes3(~nSSi,:); 
 
ftiBs = NaN(4,30); 
%% 
%Test new eyes (irrespective of diagnosis) 
for Ai = 1:size(newSS,1) 
 
   EyeId= table2array(newSS(Ai,1)); 
   AxI = table2array(newSS(Ai,4)); %axial length 
   AgeI = table2array(newSS(Ai,3)); %age 
 
   %get irregularity and BFC 
   for Regs=8:11 
      if numel(newSS{Ai,Regs})==1 
           ftiBs(Regs-7,1:30)=cell2mat(newSS{Ai,Regs}{1});%region irreg FFT in rows 
         
           BFCt(Regs-7) = newSS{Ai,Regs+5}; 
           
       elseif numel(newSS{Ai,Regs})>1 
         
           Regsel = cell2mat(newSS{Ai,Regs}); 
           Regselt=sum(Regsel); 
           [~,iMc]=max(Regselt); 
           ftiBs(Regs-7,1:30)=Regsel(:,iMc);%max irregularity B scan from region 
        
           BFCt(Regs-7) = newSS{Ai,Regs+5}(iMc); 
           
       else 
           ftiBs(Regs-7,1:30)=NaN(1,30);%empty (0) region 
           BFCt(Regs-7) = NaN; 
      end 
 
       
   end 
 
   Tianom(1:4,1:30) = abs(ftiBs(:,1:30) - MnmBs);%anomaly of this eye, rows = 
region x 1:30 cols 
 
   %in vector, order up down temp nasal (SSOCT table order U D N T) 
   Teyev(Ai,1:126) = cat(2, Tianom(1,:), Tianom(2,:),Tianom(4,:),Tianom(3,:),... 
       BFCt{1:2}, BFCt{4}, BFCt{3},AxI,AgeI); 
 
 
end 
 
%% 
   nSScllbl= predict(SSOCTmdl,Teyev(:,Selectedfeatures)); 
 
 
nnRdPvdI = find(newSS.category=='PVD'|newSS.category=='RD');%new RD/PVD 
nnGrpRDPVD = newSS(nnRdPvdI,:);%new RD PVD table data 
 
nnSSfeats = Teyev(nnRdPvdI,:);%new RD PVD features 
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nnD = NaN(size(nnRdPvdI,1),1);%new RD PVD eyes diagnostic labels 
nnD(nnGrpRDPVD.category=='PVD')=2; 
nnD(nnGrpRDPVD.category=='RD')=3; 
 
%% 
%create ROC for entre test set 
 
allSSdiag = cat(1,Vallbls, nnD);%observation diagnoses, RD & PVD test set 
allSSfeats = cat(1, Valset,nnSSfeats(:,Selectedfeatures));%observation features 
allSSID = cat(1, VSID, nnGrpRDPVD.ID); 
 
[SSLbl, SSscore,~] = predict(SSOCTmdl,allSSfeats); 
 
[ROCXSS, ROCYSS, TSS,AUCSS, OptptSS] = 
perfcurve(allSSdiag,SSscore(:,2),'3','NBoot',5000,'XVals',[0:0.05:1]); 
 
figure 
hold on  
ssROC = errorbar(ROCXSS(:,1),ROCYSS(:,1),ROCYSS(:,1)-ROCYSS(:,2),ROCYSS(:,3)-
ROCYSS(:,1), 'LineWidth',1.5); 
ssROC.Color = [0.8500 0.3250 0.0980]; 
%plot(Optpttr(1),Optpttr(2),'ro') 
xlabel('False positive rate')  
ylabel('True positive rate') 
 
hold off 
 
%% 
%ROC v2.0 now ROC corrected by median (see Ho 2017) 
CoSSscor2 = (SSscore(:,2) - median(SSscore(:,2),'omitnan')).^2; 
 
[cROCXSS, cROCYSS, cTSS,cAUCSS, cOptptSS] = 
perfcurve(allSSdiag,CoSSscor2,'3','NBoot',5000,'XVals',[0:0.05:1]); 
 
figure 
hold on  
cssROC = errorbar(cROCXSS(:,1),cROCYSS(:,1),cROCYSS(:,1)-cROCYSS(:,2),cROCYSS(:,3)-
cROCYSS(:,1), 'LineWidth',1.5); 
cssROC.Color = [0.8500 0.3250 0.0980]; 
%plot(Optpttr(1),Optpttr(2),'ro') 
xlabel('False positive rate')  
ylabel('True positive rate') 
 
hold off 
 
%% 
save('/Users/stewartlake/Documents/retinalcontour/SS OCT notes/Newtesteyesets',... 
    'ssROC',"nSScllbl", 'allSSdiag','allSSfeats','allSSID','SSLbl','SSscore',... 
    'ROCXSS', 'ROCYSS', 'AUCSS','nnD','nnRdPvdI', 'nnGrpRDPVD','nnSSfeats',... 
    'Teyev','newSS'); 
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