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ABSTRACT 

Chronic diseases of the lower airways are a leading cause of global morbidity and 

mortality. The current approach to the management of these patients relies on diagnostic labels 

based on criteria including clinical history, environmental exposures, and physiology. While 

these criteria help us to understand disease aetiology, they poorly describe the substantial 

interpersonal variation in disease trajectory and response to treatment. As most symptoms arise 

from the lower airways, an emerging approach to improve patient stratification is to precisely 

characterise the lower airway environment in a clinically informative manner. The 

pathophysiology of this environment is determined by complex disease traits, such as the 

degree and type of airway inflammation, mucus secretion, and microbial colonisation. 

However, the interactions between these traits, and how they reflect and contribute to lung 

pathophysiology are poorly understood.  

With advances in sequencing technology, the improved ability to measure the lower 

airway microbiota can identify not only pathogenic organisms that contribute to disease, but 

also compositional characteristics of the microbiota that reflect the selective conditions of the 

airways. However, it is unknown whether microbiota analysis can provide insight into the 

complex lower airway environment and stratify patients in a clinically informative manner. It 

is also unknown what lower airway determinants select the microbiota and how this affects 

disease. This dissertation aims to explore these unknowns by measuring the effect of 

determinants of the lower airway environment on the microbiota composition and assessing 

how this correlates with clinical markers of disease. 

Firstly, the selective effect of airway inflammation is explored in patients with 

persistent uncontrolled asthma. Neutrophilic inflammation, but not eosinophilic inflammation, 

was found to select a microbiota composition that has a low diversity and a high relative 
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abundance of taxa considered pathogenic. Secondly, the selective pressure of mucus 

composition is examined, where variation to mucus sugar expression is explored in relation to 

the lower airway microbiota in patients with bronchiectasis. Patients who display versatile 

sugar groups in mucosal secretions were found to select a microbiota dominated by pathogenic 

organisms, with important clinical consequences. Thirdly, the selective pressure of 

pharmaceutical treatment is assessed, through exploring the effect of long-term macrolide 

treatment on antibiotic resistance gene carriage and microbiota composition. To measure broad 

changes in resistance gene carriage, a novel shotgun metagenomic sequencing method was 

developed and tested. This identified that macrolides increase the carriage of both macrolide 

and tetracycline resistance genes. Through assessment of the selective effect of macrolides on 

microbiota composition, it was found that macrolides reduce microbiota diversity and the 

abundance of a key airway pathogen.  

Together, the results of this dissertation demonstrate the potential clinical value of 

microbiota analysis to assess the characteristics of the lower airway environment. The selective 

pressures of airway inflammation type, mucosal sugar presentation, and macrolide treatment 

have profound effects on the airway environment and can contribute to disease through their 

ability to influence the composition of the airway microbiota. These findings represent 

important steps towards a precision medicine approach based on knowledge of an individual’s 

disease characteristics. 
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CHAPTER 1: INTRODUCTION 

Sections of this chapter are excerpts from: 

Taylor, S.L., Wesselingh, S., and Rogers, G.B. (2016). Host-microbiome interactions 

in acute and chronic respiratory infections. Cellular Microbiology 18, 652-662 

Taylor, S.L., McGuckin, M.A., Wesselingh, S., and Rogers, G.B. (2018). Infection's 

Sweet Tooth: How Glycans Mediate Infection and Disease Susceptibility. Trends in 

Microbiology 26, 92-101. 

Taylor, S.L., O’Farrell H, Simpson, J.L., Yang, I.A., and Rogers, G.B. (2018). The 

contribution of respiratory microbiome analysis to a treatable traits model of care. 

Respirology Accepted. 

1.1 The Human Respiratory Tract  

The human respiratory tract is comprised of the upper respiratory tract (including the 

nasopharynx and oropharynx) and the lower respiratory tract (including the trachea, bronchi, 

bronchioles, and alveoli), with the larynx forming the conduit between the two. The airways of 

the upper respiratory tract serve primarily to conduct humidified, filtered air to the lower 

airways, however they also form the interface with the gastrointestinal tract and the site where 

taste and smell are sensed. The lower airways branch out and narrow to maximise surface area 

at the terminal alveoli where gas exchange occurs. 

Owing to the high exposure to the external environment, the respiratory tract surface is 

vulnerable to environmental insult, such as inhaled particles and pathogenic organisms. Insult 

to the respiratory tract is mitigated by the highly adapted mucous barrier that lines the 

respiratory tract as well as local immune responses. Collectively termed the respiratory 

mucosal immune system, this varies in function between the upper and lower respiratory tracts 

(Janeway et al., 2008). 

In the upper respiratory tract, submucosal glands and goblet cells secrete mucin 

glycoproteins which hydrate to form a thick mucous lining approximately 10-15 µm thick 
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(Mercer et al., 1992; Wilson and Allansmith, 1976). This mucus forms a physical barrier 

separating the external environment from the underlying epithelia, trapping inhaled foreign 

particles. Mucus is continually turned over by ciliated epithelial cells that beat in a coordinated 

manner to move mucus towards the oropharynx where it is, most commonly, swallowed with 

saliva into the gastrointestinal system (Janeway et al., 2008). 

In the lower respiratory tract, as the airways branch distally and become narrower, 

mucin production reduces, hence the coating mucus layer thins from 5 µm to 0.5 µM (Fahy 

and Dickey, 2010; Mercer et al., 1992). In healthy individuals, lower airway mucous clearance 

is effectively achieved through ciliary beating, however, owing to the greater distance to the 

oropharynx, turnover of mucus is more difficult and takes longer. Respiratory cilia of the lower 

airways can beat at a rate of 1,000 to 1,500 cycles per minute to propel mucus at progressively 

faster rates up the airways from 0.5-1 mm per minute to 5-20 mm per minute for small and 

large airways respectively (Harada and Repine, 1985). Consequently, it takes up to several 

hours to remove unwanted material from the distal airways.  

Alongside the barrier function of mucus, the cellular component of the respiratory 

immune system also mitigates insult from infectious agents. Particularly in the lower 

respiratory tract, local immune populations activate and respond to inhaled stimuli that contact 

the epithelia or are detected in the mucosal lumen. These include alveolar monocytes and 

macrophages, as well as dendritic cells, CD4+ T cells, and innate lymphoid cells that further 

clear debris from the lower airways (Janeway et al., 2008). Coughing is an additional 

mechanism by which respiratory secretions can be transported from the lower to the upper 

airways. 
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1.2 The Respiratory Microbiota 

In healthy individuals, the thick, nutrient-rich mucus of the upper airways has been 

found to support approximately 106 bacteria/mL of oral wash (Charlson et al., 2011). However, 

microbial colonisation of the lower airways is prevented by the mucosal immune system. 

Although microbes have been consistently detected in the lower airways of healthy individuals 

(Charlson et al., 2011; Dickson et al., 2015; Erb-Downward et al., 2011), this likely represents 

an ongoing process of microaspiration (from the upper airways and external environment) and 

clearance (Figure 1.1). This model of a transient lower airway microbiota is supported by the 

similarity in microbiota composition between the upper and distal airways in healthy 

individuals (Charlson et al., 2011; Venkataraman et al., 2015).  
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Figure 1.1: Respiratory mucosal surfaces in health, highlighting biogeographic diversity in 

epithelia, mucus thickness, and microbial colonisation at each site. 

Disruption to the clearance mechanisms of the lower airways, however, provides an 

opportunity for microbes to grow in the lower airway environment and to persist, which is 

evident in patients with chronic airway diseases (Fahy and Dickey, 2010). The resulting 

inflammation and mucus secretion from microbial stimulation can further impair clearance 

(Roy et al., 2014; Segal et al., 2014). As well as this, the type and degree of airway 

inflammation and mucus secretion act as selective pressures on the composition of the 

microbiota. (Dicker et al., 2018; Ehre et al., 2012; Li et al., 1997). Therefore, respiratory factors 

such as inflammation and mucus secretion are strong determinants of the lower airway 

microbiota composition (Rogers et al., 2013a). Further, prescribed antibiotics and anti-
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inflammatories that target pathogen infection and host immunity (Chung et al., 2014; Wang et 

al., 2010) can also have indirect effects on host-microbe interactions (Altenburg et al., 2011; 

Waterer et al., 2011). These drugs have therefore been found to influence the composition of 

the lower airway microbiota (Daniels et al., 2013; Goleva et al., 2013). Figure 1.2 summarises 

the described interactions, which are central to this dissertation. By understanding these 

interactions (e.g. how particular drugs and host factors influence the microbiota, and vice versa) 

we can use microbiota data to gain a deeper understanding of patients’ lower airway 

environment (Rogers et al., 2013a). While acknowledging that chronic airway diseases are 

complex and multifactorial, by exploring the lower airway interactions described in Figure 1.2 

and the clinical associations of these interactions, we can assess whether measuring the airway 

microbiota can contribute to a more effective and precise model of airway disease management. 

This dissertation aims to characterise the selective pressures of airway inflammation, mucus 

secretion, and drug treatments on the airway microbiota, and to assess the clinical implications 

of these interactions. The specific interactions explored in this dissertation relate to the chronic 

airway diseases: asthma and bronchiectasis, to which we now turn our attention. 

 

Figure 1.2: The central determinants of the lower airway environment in patients with chronic 

airway diseases  
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1.3 The Lower Airway Microbiota in Asthma 

Asthma is defined by the history of respiratory symptoms such as wheeze, shortness of 

breath, chest tightness, and cough that vary over time and in intensity with variable airflow 

limitation (Global Initiative for Asthma, 2017), affecting an estimated 235 million people 

(World Health Organisation, 2017). Severity of asthma varies greatly within this population, 

with an estimated 5-10% patients defined as having severe refractory asthma (Chung et al., 

2014). These patients experience more severe airway inflammation (Pavord et al., 1999), have 

more mucus in the central and peripheral airways (Aikawa et al., 1992), and disproportionately 

contribute to asthma-associated hospitalizations and healthcare costs (Calhoun et al., 2014; 

Ivanova et al., 2012; Wang et al., 2010). 

The main factor that contributes to asthma is considered to be immune dysfunction. 

Dysfunction that involves improper, type 2 immune response towards allergens, resulting in 

eosinophilic airway inflammation is the most common and well understood (Pavord et al., 

1999). Nonspecific anti-inflammatory drugs, such as inhaled corticosteroids (ICS) effectively 

manage overt immune responses in the majority of patients who display this inflammatory 

phenotype. However, a subpopulation of patients experience asthma symptoms in the absence 

of eosinophilic inflammation (Pavord et al., 1999; Simpson et al., 2006). While these patients 

with a non-eosinophilic phenotype occur across the spectrum of asthma severity (Green et al., 

2014; Pavord et al., 1999; Wenzel, 2012), they typically respond poorly to corticosteroids and 

do have a normal subepithelial layer thickness (Berry et al., 2007), indicating a different disease 

physiology. Indeed, based on relative numbers of sputum eosinophils and neutrophils, four 

inflammatory subtypes have been described: eosinophilic asthma, neutrophilic asthma, mixed 

granulocytic asthma, and paucigranulocytic asthma (Simpson et al., 2006).  

Owing to the variability of asthma severity, treatment regime, and immune phenotype, 

characterisation of the lower airway microbiota is difficult, as these can all affect microbiota 
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diversity. For example, the microbiota of severe asthma has been shown to feature high relative 

abundances of pathogenic taxa including Moraxella catarrhalis, Haemophilus or 

Streptococcus, with predominance associated with longer asthma disease duration and worse 

lung function (Green et al., 2014). In other severe asthma studies, bacterial composition was 

associated with body mass index and Asthma Control Questionnaire (ACQ) scores (Huang et 

al., 2015). 

The response to ICS has also been investigated in asthma. Despite ICS being a primary 

treatment option, a subset of asthma patients are ICS-resistant (Martin et al., 2007). A study 

that assessed the airway microbiome in patients with either ICS-resistant or ICS-sensitive 

asthma reported that the composition of the microbiome differed between the two groups, with 

the ICS-resistant samples featuring increased abundance of Neisseria, Haemophilus, 

Simonsiella, Campylobacter, Leptotrichia, Tropheryma, Leuconostoc and Megasphaera 

(Goleva et al., 2013). Furthermore, in vitro culture of primary human monocytes with these 

bacteria resulted in inhibited corticosteroid responses. These findings suggest that the airway 

microbiota might influence the efficacy of corticosteroid treatment. Supporting this, another 

study found oral corticosteroid use was an important factor affecting the relative abundance of 

the taxa that were significantly enriched in asthmatic patients (Denner et al., 2016). 

Regarding immune phenotype, seemingly conflicting associations have been reported. 

In steroid-free patients, the airway microbial composition was associated with airway 

eosinophilia and airway hyperresponsiveness to mannitol but not airway neutrophilia (Sverrild 

et al., 2017). However, in patients with poorly controlled asthma, neutrophilia was associated 

with reduced airway bacterial diversity (Simpson et al., 2016). As immune phenotype is linked 

with both asthma severity (Green et al., 2014; Pavord et al., 1999; Wenzel, 2012) and response 

to treatment (Berry et al., 2007), the direct effect of immune phenotype on the microbiota is 

difficult to assess. 
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In Chapter 2, the association between immune phenotype and lower airway microbiota 

composition in asthma is assessed using sputum samples obtained from adult patients with 

persistent uncontrolled asthma, recruited as part of the Asthma and Macrolides: The 

Azithromycin Efficacy and Safety (AMAZES) study (Gibson et al., 2017). These patients had 

a history and documented objective evidence of variable airflow obstruction from 

bronchodilator response (with post-bronchodilator reversibility of at least 12% and at least 200 

mL forced expiratory volume in 1 second (FEV1)), airway hyperresponsiveness, or increased 

peak flow variability (>12% of amplitude above the lowest peak expiratory flow over at least 

1 week of monitoring); and were currently symptomatic with at least partial loss of asthma 

control (asthma control score (ACQ6) ≥0.75) despite treatment with maintenance inhaled 

corticosteroids or long-acting bronchodilators. In this dissertation a second disease, 

bronchiectasis, is examined, which is now summarised. 

1.4 The Lower Airway Microbiota in Bronchiectasis 

Bronchiectasis is diagnosed by irreversible bronchial dilation, where either the internal 

diameter of the bronchus is larger than that of its accompanying vessel, or the bronchus fails to 

taper in the periphery of the chest (McGuinness and Naidich, 2002). Further, patients 

experience chronic or recurrent productive cough accompanied by frequent exacerbations of 

pulmonary symptoms. Global disease prevalence has been difficult to estimate (Chalmers et 

al., 2017), however rates of diagnosis have been shown to increase in the U.S.A (Weycker et 

al., 2017) and the U.K. (Quint et al., 2016). Accompanying bronchial dilation, patients also 

exhibit neutrophilic airway inflammation, mucus build-up, and chronic microbial infection. A 

proposed model for these bronchiectasis symptoms and pathophysiology is the vicious cycle 

model (Cole, 1986), which states that impaired mucus clearance, as a result of bronchiectasis, 

facilitates infection in the lower airways, causing host-mediated inflammatory response and 
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tissue damage, further driving airway remodelling and perpetuating irreversible bronchial 

dilation.  

As described in this vicious cycle model, colonisation by pathogenic microbes is a 

result of lower airway mucus build-up. While Haemophilus influenzae and Pseudomonas 

aeruginosa are particularly common, and the most likely species to establish long-term 

infection (Cummings et al., 2010), the isolation of Streptococcus pneumoniae, M. catarrhalis, 

Staphylococcus aureus, and non-tuberculous mycobacteria (NTM) is also widespread 

(Foweraker and Wat, 2011). Assessment of the lower airway microbiota composition has 

identified taxa common across patients and typically abundant. This core airway microbiota 

included both the recognised airway pathogens P. aeruginosa, H. influenzae and S. 

pneumoniae, and members of Veillonella, Prevotella and Neisseria genera (Rogers et al., 

2013b). In these patients, the diversity of the lower airway microbiota was found to correlate 

positively with lung function (Rogers et al., 2013b).  

A number of studies have also found that patients fall into one of three broad airway 

microbiota types: those where P. aeruginosa is numerically dominant, those where H. 

influenzae is dominant, and those in which neither of these two species predominates (Cox et 

al., 2017; Rogers et al., 2015; Rogers et al., 2014b). The former type, with predominant P. 

aeruginosa infection, have been found to have poorer lung function (Ho et al., 1998), and more 

frequent exacerbations (Rogers et al., 2014b) and hospital visits (Loebinger et al., 2009). High 

antibiotic burden and frequent exacerbations have been suggested to be strong determinants of 

predominance of P. aeruginosa in the lower airways (Garcia-Nunez et al., 2014; Zhao et al., 

2012), however whether other predictors exist is unknown.  

Chapter 3 explores host genetic effects on the lower airway microbiota composition. 

Specifically, how a common host genetic variant (related to mucus characteristics) affects 
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lower airway infection in bronchiectasis. This was assessed using samples obtained from adults 

with bronchiectasis recruited as part of the Bronchiectasis and Low-dose Erythromycin 

(BLESS) study (Serisier et al., 2013). These patients had bronchiectasis, documented by high-

resolution computed tomographic scan, at least two separate pulmonary exacerbations 

requiring supplemental systemic antibiotic therapy in the preceding 12 months, and daily 

sputum production. Patients did not have CF, current mycobacterial disease or 

bronchopulmonary aspergillosis, any reversible cause for exacerbations, maintenance oral 

antibiotic prophylaxis, prior macrolide use except short-term, changes to medications in the 

preceding four weeks, cigarette smoking within six months, and medications or comorbidities 

with the potential for important interactions with erythromycin. The specific genetic mutations 

of host mucous glycosyltransferases that are explored in Chapter 3 will now be discussed in 

more detail. 

1.5 Mucosal Glycans and The Respiratory Microbiota 

Throughout this introduction, mucus has been described as a physical barrier protecting 

the respiratory tract and its build-up in the lower airways highlighted as an important factor 

promoting lower airway microbial infection and chronic airway disease persistence. Therefore, 

the components that constitute mucus and are responsible for mucous functions may inform 

lower airway microbial infection in chronic airway disease.  

The molecular composition of mucus consists of intricate glycan structures on secreted 

proteins and lipids (McGuckin et al., 2011; Thornton et al., 2008). This glycosylation process 

is mediated by a diverse family of glycosyltransferase enzymes expressed within epithelial 

cells (Delmotte et al., 2002). In patients with chronic airway diseases, airway inflammation can 

alter the expression of glycosyltransferases, changing the glycans displayed on the respiratory 

mucosal surface (Davril et al., 1999; Schulz et al., 2007). For example, patients with chronic 
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bronchitis and CF were found to exhibit altered sialylation, fucosylation, and sulfonation of 

sputum mucin proteins (Rose and Voynow, 2006). Bacteria utilize glycans for adherence, 

nutrients and gene regulators (McGuckin et al., 2011) and are therefore affected by mucin 

glycosylation. For example, P. aeruginosa preferentially binds to highly sialylated mucin 

glycans (Scharfman et al., 1999), and hence adheres to CF mucin over non-CF mucin (Devaraj 

et al., 1994).  

The display of mucosal glycans is also dependent on functional genetic copies of 

glycosyltransferase genes. Inherited mutations in glycosyltransferase genes are common 

throughout the population and have been shown to affect the susceptibility to a variety of 

mucosal infections and chronic diseases (Cooling, 2015; Dotz and Wuhrer, 2016; Ferrer-

Admetlla et al., 2009; McGuckin et al., 2011). Of the common mutations to glycosyltransferase 

genes, those in the α(1,2)-fucosyltransferase gene, FUT2, pertain to this dissertation. 

FUT2 is expressed in mucosal tissues, by a range of secretory epithelial cell types. The 

translated α(1,2)-fucosyltransferase enzyme facilitates attachment of the L-fucose 

monosaccharide to the terminal galactose on O-linked glycan chains, producing α(1,2)-

fucosylated glycans (Cooling, 2015; Dotz and Wuhrer, 2016). This resulting α(1,2)-fucosylated 

glycan on mucosal surfaces is a highly versatile structure and can be further modified to form 

one of a number of clinically important glycans, including the A and B histo-blood group 

antigens (Cooling, 2015; Dotz and Wuhrer, 2016). Mucosal histo-blood groups are analogous 

to those found on erythrocytes, although only those secreted by mucosal surfaces are dependent 

on FUT2. For example, an individual who has an A blood type will express A-type glycans on 

erythrocytes, but will only express A-type glycans on mucosal surfaces if they have a functional 

FUT2 (Cooling, 2015). After the glycosylation process, α(1,2)-fucosylated proteins and lipids 

are either secreted from mucosal epithelium into the lumen directly, or are anchored to the 

apical cell surface membrane. Because FUT2 controls the nature of the various α(1,2)-
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fucosylated glycans secreted by mucosal surfaces, it was termed the “secretor” gene, although 

it does not regulate secretion per se (Cooling, 2015).  

1.5.1 FUT2 and infection and disease susceptibility 

A high frequency of nonsense single nucleotide polymorphisms (SNPs) exists within 

the FUT2 gene in humans (Genomes Project et al., 2015). Approximately one fifth of the global 

population harbour two non-functional alleles and are therefore unable to express α(1,2)-

fucosylated glycans on mucosal surfaces (Ferrer-Admetlla et al., 2009; Genomes Project et al., 

2015). While individuals with a functional FUT2 allele are termed “secretors”, those with loss-

of-function mutations are termed “non-secretors”.  

Multiple SNPs are found in the FUT2 coding region that confer loss, or hindered 

function, and the frequency varies with ethnicity (Ferrer-Admetlla et al., 2009; Genomes 

Project et al., 2015). The most common nonsense SNP in Caucasian, African, and central Asian 

populations is a G→A substitution at base pair 428 (rs601338), however the most common in 

east Asian populations is an A→T substitution at base pair 385 (rs1047781) (Ferrer-Admetlla 

et al., 2009; Genomes Project et al., 2015). Both SNPs occur at similar frequencies in their 

respective populations with estimates dating the emergence of the 428G→A mutation to at 

least 1.87 million years ago and the 385A→T mutation to at least 256,000 years ago (Silva et 

al., 2010). The age and frequency of these mutations suggest they are maintained in the 

genepool by balancing selection, where both secretor and non-secretor variants provide 

selective advantage. Population level genetic frequency studies suggest that the driver of this 

balancing selection is differential resistance to infection (Fumagalli et al., 2009), although 

identification of the causative infective agent is speculative. However, this phenomenon has 

been observed outside of the human population, where infection driven selection of 

glycosyltransferase variants was reported in a study of rabbit populations, where those with 
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endemic rabbit haemorrhagic disease virus had glycosyltransferase SNPs at higher frequencies 

compared to populations without the endemic virus (Guillon et al., 2009). 

A clue as to why these loss-of-function mutations are carried at such a high frequency, 

and an illustration more generally of the importance of surface glycans to infection 

susceptibility, is the major differences in rates of bacterial- and viral-mediated diseases 

between secretors and non-secretors (Table 1.1 and Table 1.2). A large number of studies have 

now reported significantly higher rates of viral infection in secretors, including life-threatening 

infections caused by Human Immunodeficiency Virus (HIV), influenza, and norovirus (Ali et 

al., 2000; Chanzu et al., 2015; Currier et al., 2015; Kindberg et al., 2007; Kindberg et al., 2006; 

Raza et al., 1991). At the same time, secretors appear to be at a reduced risk of infections caused 

by bacterial pathogens, including Streptococcus pneumoniae, Neisseria meningitidis, 

Haemophilus influenzae, and Salmonella enterica serovar Typhimurium (Blackwell et al., 

1986a; Blackwell et al., 1986b; Boren et al., 1993; Goto et al., 2014; Pickard et al., 2014). This 

dichotomy in susceptibility also extends to chronic multifactorial diseases, such as chronic 

pancreatitis (Weiss et al., 2015), and diseases of altered immune regulation, such as asthma 

(Kauffmann et al., 1996; Ronchetti et al., 2001), type 1 diabetes (Smyth et al., 2011), and 

psoriasis (Tang et al., 2014; Wei et al., 2018).  
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Table 1.1: Secretor status and susceptibility to infections 

Infection Secretors 

more 

susceptible 

Non-secretors 

more 

susceptible 

Reference 

Norovirus (GII.4) ✓  (Currier et al., 2015; 

Lopman et al., 2015) 

Rotavirus (VP8) ✓  (Hu et al., 2012; Huang et 

al., 2012; Imbert-Marcille et 

al., 2014) 

Influenza A virus ✓  (Raza et al., 1991) 

Rhinovirus ✓  (Raza et al., 1991) 

Echovirus ✓  (Raza et al., 1991) 

Respiratory syncytial virus ✓  (Raza et al., 1991) 

Human Immunodeficiency 

Virus 
✓  (Ali et al., 2000; Chanzu et 

al., 2015; Kindberg et al., 

2006) 

Helicobacter pylori ✓  (Azevedo et al., 2008; Boren 

et al., 1993; Magalhaes et al., 

2009) 

Mumps  ✓ (Azad et al., 2018; Tian et 

al., 2017) 

Candida albicans  ✓ (Hurd and Domino, 2004; 

Thom et al., 1989) 

Streptococcus pneumoniae  ✓ (Blackwell et al., 1986a) 

Neisseria meningitidis  ✓ (Blackwell et al., 1986a) 

Haemophilus influenzae  ✓ (Blackwell et al., 1986b) 

Salmonella enterica 

serovar Typhimurium* 

 ✓ (Goto et al., 2014) 

Citrobacter rodentium*  ✓ (Pickard et al., 2014) 

Campylobacter jejuni  ✓ (Morrow et al., 2004; Ruiz-

Palacios et al., 2003) 

Urinary tract infection  ✓ (Kinane et al., 1982; 

Sheinfeld et al., 1989) 

Bacteraemia (after 

hematopoietic stem cell 

transplantation) 

 ✓ (Rayes et al., 2016) 

*Demonstrated in Fut2-/- mice with no human epidemiological evidence  
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Table 1.2: Secretor status and susceptibility to diseases 

Disease Secretors 

more 

susceptible 

Non-secretors 

more 

susceptible 

Reference 

Asthma severity ✓  (Innes et al., 2011) 

Graft-versus-host disease ✓  (Rayes et al., 2016) 

Intestinal-type gastric 

cancer 

 ✓ (Duell et al., 2015) 

Primary sclerosing 

cholangitis 

 ✓ (Folseraas et al., 2012) 

Crohn’s disease  ✓ (Franke et al., 2010; 

McGovern et al., 2010) 

Coeliac disease  ✓ (Parmar et al., 2012) 

Asthma  
 

✓ (Kauffmann et al., 1996; 

Ronchetti et al., 2001) 

Type 1 diabetes  ✓ (Smyth et al., 2011) 

High plasma vitamin B12  ✓ (Hazra et al., 2008; Tanaka 

et al.; Tanwar et al., 2013) 

Chronic Pancreatitis   ✓ (Weiss et al., 2015) 

Psoriasis   ✓ (Tang et al., 2014; Wei et al., 

2018) 

Acute Uncomplicated 

Pyelonephritis 

 ✓ (Ishitoya et al., 2002) 

Behçet’s disease  ✓ (Xavier et al., 2015) 

 

Despite the well-described associations between FUT2 and a diversity of infections and 

diseases, our understanding of the mechanisms behind these relationships remains poor. 

Infection and pathogenesis are complex processes, with mucosal glycans likely influencing 

susceptibility through both direct and indirect mechanisms.  

1.5.2 FUT2 and pathogen adherence 

α(1,2)-fucosylated glycans influence infection susceptibility directly, through 

facilitating pathogen adherence. As has been reviewed in detail (Audfray et al., 2013; Goto et 

al., 2016; Pickard and Chervonsky, 2015), multiple bacteria encode specific receptors that bind 

to host α(1,2)-fucosylated glycans for pathogen adherence. A well characterised example of 

this is in Helicobacter pylori, facilitated by the BabA adhesin. BabA has a specificity for the 

“Lewis b” α(1,2)-fucosylated mucosal glycan, therefore BabA expressing H. pylori are more 
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readily able to adhere to the gastric mucosa and colonize the stomachs of secretor individuals 

(Ilver et al., 1998). BabA-encoding H. pylori and subsequent infection susceptibility is 

something of an exception, as this is the only bacterial species listed in Table 1.1 where 

susceptibility is increased in secretors (due to the specificity of BabA towards α(1,2)-

fucosylated glycans).  

More complex FUT2-dependent pathogen adherence pathways have also been 

characterised, based on glycan location. Glycosylated proteins and lipids are abundant in the 

gastrointestinal tract, either anchored to the cell-surface, secreted into the lumen, or taken in 

through ingestion. Therefore, infection susceptibility, where pathogens adhere to glycans, 

depends on the location and anchoring of the glycan. Glycans that are not attached to the 

epithelium can, in fact, reduce infection susceptibility by acting as receptor decoys. For 

example, the cell surface mucin, MUC1, carries Lewis-b glycans and is shed from the surface 

of gastric epithelial cells acting as a releasable decoy to limit adhesion by BabA-expressing H. 

pylori to other cell surface Lewis-b-expressing molecules (Linden et al., 2009). As a separate 

example, maternal secretor status affects milk glycosylation (Bode, 2012), which in turn affects 

infants’ susceptibility to Campylobacter jejuni diarrhoea (Morrow et al., 2004). This has been 

attributed to C. jejuni binding to α(1,2)-fucosylated milk glycans (Ruiz-Palacios et al., 2003), 

which act as a receptor decoy in the infant, sequestering pathogens away from the epithelium. 

As these examples demonstrate, the dynamics of how glycan-mediated adherence (either 

membrane-bound or luminal) ultimately confer susceptibility or resistance to infection is 

complex.  

1.5.3 FUT2 and the microbiota 

In addition to influencing pathogen adherence, FUT2 has been shown to also affect 

infection susceptibility indirectly. For example, mouse studies have shown that presence of 
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Fut2 reduces susceptibility to S. Typhimurium, Enterococcus faecalis and Citrobacter 

rodentium infection through the effect of α(1,2)-fucosylated glycans on the commensal gut 

microbiota (Goto et al., 2014; Pham et al., 2014; Pickard et al., 2014). Even small changes to 

microbiota composition can alter nutrient availability, profoundly affecting the ability of 

bacterial pathogens to colonise the gut (Servin, 2004). Beyond such “colonisation resistance”, 

mice studies have also shown that Fut2-dependent fucosylated glycans are an important 

endogenous nutrient for commensal microbes, facilitating rapid host recovery following 

periods of stress caused by intestinal infection or inflammation (Pickard et al., 2014). These 

findings are supported by in silico analyses of microbial structure stability using microbiota 

data from mouse Fut2 knock-out studies (Rausch et al., 2017).  

In contrast, two large studies in healthy adult humans reported no difference in faecal 

microbiota composition between secretors and non-secretors (Davenport et al., 2016; Turpin 

et al., 2018), contradicting previous, positive associations from a smaller cohort (Wacklin et 

al., 2011). However, the use of intestinal mucosal biopsies in the latter study, where a greater 

host genotype effect may be expected (Spor et al., 2011), may explain this discrepancy (Rausch 

et al., 2017). 

Differences in microbiota composition and resilience may also explain the numerous 

diseases associated with secretor status (as detailed in Table 1.2). Many of these conditions 

(including asthma, Crohn’s disease, coeliac disease and psoriasis) are associated with intestinal 

microbiota composition (Cho and Blaser, 2012; Manichanh et al., 2006; Sanz, 2015). If secretor 

status can influence gut microbiology, it is reasonable to suggest that secretor status may 

contribute to microbiota-related disease susceptibility among predisposed individuals, as 

discussed elsewhere (Dotz and Wuhrer, 2016; Goto et al., 2016; McGovern et al., 2010; Pickard 

and Chervonsky, 2015; Rausch et al., 2011; Tong et al., 2014; Wacklin et al., 2011). However, 

given the numerous confounding environmental exposures in human populations, large cohort 
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studies with detailed metadata are required to determine the contribution of secretor status to 

these complex, multifactorial diseases. In Chapter 3, analysis of secretor status in the BLESS 

cohort of patients with bronchiectasis is presented. The effect of genetic mutations to FUT2 on 

airway pathogen infection, airway microbiota composition and clinical characteristics of 

bronchiectasis severity was assessed. The final selective pressure covered in this dissertation 

relates to the effect of pharmaceuticals (specifically macrolides) on the airway microbiology. 

1.6 Managing Chronic Airway Diseases with Macrolides 

As depicted earlier in Figure 1.2, characteristic to chronic airway diseases are altered 

inflammation, mucus secretion, and airway infection. Most pharmaceuticals used to treat 

patients with chronic airway diseases act on one or more of these targets, including macrolides. 

Macrolides are drugs with a macrocyclic lactone ring of 12 or more elements (Mazzei et al., 

1993). Of these, the 14- and 15-membered macrolides are commonly used in respiratory 

medicine (Altenburg et al., 2011). Several randomised controlled trials have demonstrated that 

administration of macrolides (erythromycin or azithromycin) over a prolonged period can 

effectively reduce exacerbations and improve quality of life in patients with bronchiectasis 

(Altenburg et al., 2013; Serisier et al., 2013; Wong et al., 2012) and recently, azithromycin has 

been shown to reduce exacerbations and improve quality of life in patients with persistent 

uncontrolled asthma (Gibson et al., 2017). However, macrolides have been found to affect a 

range of host functions as well as microbial functions, making it difficult to identify the 

mechanism of action in chronic airway disease management. The effects and clinical relevance 

to chronic airway disease are briefly summarised below. 

1.6.1 Macrolides and mucus hypersecretion 

Hypersecretion of mucus is a common feature of many chronic airway diseases and can 

facilitate airway obstruction and bacterial colonisation (Fahy and Dickey, 2010). Through in 
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vitro and in vivo studies, macrolides have been shown to modulate secretion of mucus. In vitro, 

erythromycin and clarithromycin have been shown to reduce mucus secretion in a dose 

dependent manner in primary respiratory epithelial cells (Goswami et al., 1990; Shimizu et al., 

2003). In mice infected with P. aeruginosa, clarithromycin inhibited mucus production 

(Kaneko et al., 2003). In humans, clarithromycin has also been shown to improve the 

transportability of secretions in human subjects (Rubin et al., 1997; Tamaoki et al., 1995). In 

bronchiectasis, 8-week administration of erythromycin reduced sputum volume without 

significantly altering sputum bacterial density or inflammatory profiles (Tsang et al., 1999). 

1.6.2 Macrolides and immune modulation 

 Macrolides have been shown to modulate multiple areas of host immunity including: 

suppressing inflammatory mediators, moderating leukocyte recruitment, and improving 

phagocytic function (Kanoh and Rubin, 2010). Neutrophilic airway inflammation is considered 

dependent on the release of IL-8, a potent neutrophil chemoattractant and erythromycin has 

been found to reduce IL-8 from subjects with chronic airway diseases (Oishi et al., 1994; Sakito 

et al., 1996), and atopy (Kohyama et al., 1999). This is supported by in vitro studies showing 

similar suppressive effects of macrolides on IL-8 production (Khair et al., 1995; Kikuchi et al., 

2002).  

 Apart from suppressing overt IL-8 mediated inflammation, macrolides have also been 

shown to restore phagocytic function of macrophages. Alveolar macrophages are required for 

the effective clearance of apoptotic bronchial epithelial cells (efferocytosis) and certain 

bacterial species (phagocytosis) from the airways of patients with chronic airway diseases 

(Hodge et al., 2011; Hodge et al., 2003; Simpson et al., 2013; Ween et al., 2016). Uncleared 

material has been shown to have proinflammatory effects (Hodge et al., 2005).  Azithromycin 
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has been previously shown to improve macrophage efferocytic (Hodge et al., 2006; Hodge et 

al., 2008) and phagocytic (Hodge and Reynolds, 2012) functions. 

Modulation of anti-viral effects in epithelial cells have also been described. 

Azithromycin, but not erythromycin was found to significantly increase interferon response to 

rhinovirus in primary human bronchial epithelial cells (Gielen et al., 2010). Another in vitro 

study showed that erythromycin reduced rhinovirus infection of tracheal epithelial cells by 

suppression of ICAM-1, which is required for rhinovirus adherence (Suzuki et al., 2002). 

However, several randomised double-blind placebo-controlled trials have failed to show an 

effect of macrolides at reducing severity of infant viral-associated bronchiolitis (Kneyber et al., 

2008; McCallum et al., 2015; Pinto et al., 2012). Multiple other studies have demonstrated that 

14- and 15-membered macrolides elicit a range of immunomodulatory effects that would affect 

the airways of patients with chronic airway diseases. Only mechanisms relevant to this 

dissertation are mentioned here, however other immunomodulatory effects of macrolides are 

discussed elsewhere (Altenburg et al., 2011; Kanoh and Rubin, 2010).  

1.6.3 Macrolides and the effects on bacteria 

Macrolides have been shown to alter bacterial gene regulation and protein synthesis in 

patients with chronic lung disease and persistent bacterial infection. The former, bacterial gene 

regulation, is evidenced by studies demonstrating macrolides alter P. aeruginosa gene 

regulation. These studies have shown that macrolides reduce P. aeruginosa quorum sensing 

through the inhibition of lasI and rhlI expression and deactivation of the autoinducer 3-oxo-

C12-HSL (Nalca et al., 2006; Tateda et al., 2001). Quorum sensing controls many aspects of 

growth and behaviour of P. aeruginosa, including the production of elastase, pyocyanin, and 

exotoxin A (Imperi et al., 2014; Williams et al., 2000). In P. aeruginosa-infected CF mice, 
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azithromycin treatment resulted in a decreased bacterial load, neutrophil infiltration, and lung 

pathology, in part by blocking quorum sensing (Hoffmann et al., 2007). 

Along with the quorum sensing regulatory effect of macrolides, they also have broad-

spectrum bacteriostatic properties. Macrolides bind to the 23S ribosomal RNA of bacteria and 

inhibit protein synthesis (Hansen et al., 2002). For this function, macrolides are routinely 

prescribed to treat infections from nontuberculous mycobacterium (Egelund et al., 2015), and 

atypical bacteria in cases of community acquired pneumonia (Waterer et al., 2011) and sexually 

transmitted infections (Workowski et al., 2015).  

However, owing to the antibiotic properties of macrolides, prolonged administration 

has been reported to increase the carriage of macrolide-resistant bacteria (Altenburg et al., 

2013; Brusselle et al., 2013; Kastner and Guggenbichler, 2001; Malhotra-Kumar et al., 2007; 

Mustafa et al., 2017; Saiman et al., 2010; Serisier et al., 2013). While macrolide resistance has 

not been shown to directly alter the efficacy of macrolides to reduce exacerbations in patients 

(Altenburg et al., 2013), prolonged therapy might yet have deleterious wide-spread 

consequences. For example, in a post-hoc analysis of the BLESS trial in bronchiectasis, 

(Rogers et al., 2014a) low-dose erythromycin administered for 48-weeks was associated with 

altered sputum microbial composition if the baseline sputum was dominated by non P. 

aeruginosa organisms. In CF, no clinical benefit of azithromycin was found in patients after 

12 months continuous treatment, instead, all Staphylococcus aureus strains became macrolide-

resistant (Samson et al., 2016). Macrolide resistance can be acquired intrinsically, through 

genetic mutations, or extrinsically, through acquisition of transmissible macrolide resistance 

genes from a resistant organism. Acquired macrolide resistance is a global health concern, 

particularly relating to the treatment of the aforementioned infections where macrolides are 

routinely prescribed (Egelund et al., 2015; Waterer et al., 2011; Workowski et al., 2015). 

Identifying reservoirs of transmissible resistance genes is a global health strategy to limit the 
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dissemination of antibiotic resistance to the wider community (World Health Organisation, 

2018).  In Chapter 4, an undirected method is presented to assess changes to the carriage of 

antibiotic resistance genes in the BLESS cohort of bronchiectasis patients receiving 

erythromycin to reduce exacerbations. I sought to determine whether shotgun metagenomic 

sequencing, performed on a pooled sample, could be used to screen for resistance genes in 

large patient populations. This method was applied in Chapter 5 to assess changes to the 

carriage of antibiotic resistance genes in the AMAZES cohort where patients received 

azithromycin. 

1.6.4 Macrolides and the lower airway microbiota 

Through one or more of these mechanisms of action of macrolides, their use has been 

found to alter the composition of bacteria in the airways (Choo et al., 2018; Rogers et al., 2014a; 

Segal et al., 2017; Slater et al., 2014). In bronchiectasis, for example, long-term erythromycin 

treatment has been shown to reduce the relative abundance of H. influenzae and increase the 

relative abundance of the airway pathogen P. aeruginosa in the lungs (Rogers et al., 2014a). In 

asthma, analysis of five patients showed that six weeks of azithromycin reduced the airway 

microbiota diversity (Slater et al., 2014). In chronic obstructive pulmonary disease (COPD), 

analysis of 10 patients showed that eight weeks of azithromycin reduced airway microbiota 

diversity and reduced markers of airway inflammation (Segal et al., 2017). However, these 

studies do not adequately address the long-term microbiological effects of azithromycin in 

asthma. In Chapter 5, analysis of the effect of azithromycin to the airway microbiota in the 

AMAZES cohort of patients with persistent uncontrolled asthma is presented.  

1.7 Dissertation Aims  

As depicted in Figure 1.2, complex host-microbial interactions in the lower airways 

contribute to chronic airway disease persistence and severity. The objective of this dissertation 



 

23 

 

is to characterise how lower airway selective pressures contribute to airway microbiota 

composition. The selective pressure of airway inflammation is addressed in Chapter 2, where 

association between immune phenotype and lower airway microbiology is explored in baseline 

samples from the AMAZES cohort of patients with persistent symptomatic asthma. The 

selective pressure of mucus glycosylation type is addressed in Chapter 3, where association 

between FUT2 “secretor status” and lower airway infection, and microbiota composition are 

explored in the BLESS cohort of patients with bronchiectasis. Finally, the selective pressure of 

macrolide therapy is assessed in Chapter 4, through optimization of metagenomic strategies to 

measure changes to carriage of antibiotic resistance genes in the BLESS cohort. This method 

is then applied again in Chapter 5 to assess antibiotic resistance in the AMAZES cohort. 

Chapter 5 also assesses the effect of macrolide therapy on the microbiome composition. I 

hypothesise that selective pressures of the airway environment (inflammation, mucus 

glycosylation, drug intervention) have profound impacts on the airway microbiome, which in 

turn influence clinical markers of disease. 
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CHAPTER 2: INFLAMMATORY PHENOTYPE AND LUNG 

MICROBIOTA IN SEVERE ASTHMA 

The contents of this chapter have been published as part of:  

Taylor, S.L., Leong, L.E.X., Choo, J.M., Wesselingh, S., Yang, I.A., Upham, J.W., 

Reynolds, P.N., Hodge, S., James, A.L., Jenkins, C., Peters, M.J., Baraket, M., Marks, 

G.B., Gibson, P.G., Simpson, J.L., and Rogers, G.B. (2018). Inflammatory phenotypes 

in severe asthma are associated with distinct airway microbiology. The Journal of 

allergy and clinical immunology 141, 94-103 e115. 

The supplementary information has been included in Appendix 1 

2.1 Abstract 

Asthma pathophysiology and treatment responsiveness are predicted by inflammatory 

phenotype. However, the relationship between airway microbiology and asthma phenotype is 

poorly understood. I aimed to characterise airway microbiota in patients with 

symptomatic stable asthma and relate composition to airway inflammatory phenotype 

and other phenotypic characteristics.  

The microbial composition of induced sputum specimens collected from adult patients 

screened for a multicentre randomized controlled trial was determined by 16S rRNA gene 

sequencing. Inflammatory phenotypes were defined by sputum neutrophil and eosinophil cell 

proportions. Microbiota were defined using alpha and beta diversity measures, and inter-

phenotype differences identified using SIMilatiry of PERcentages (SIMPER), network 

analysis, and taxon fold change. Phenotypic predictors of airway microbiology were identified 

using multivariate linear regression. 

Microbiota composition was determined in 167 participants, classified as eosinophilic 

(n=84), neutrophilic (n=14), paucigranulocytic (n=60), or mixed neutrophilic-eosinophilic 

(n=9) phenotypes of asthma. Airway microbiology was significantly less diverse (p=0.022) and 
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more dissimilar (p=0.005) in neutrophilic compared to eosinophilic participants. Sputum 

neutrophil proportion, but not eosinophil proportion, correlated significantly with these 

diversity measures (alpha-diversity: Spearman’s r=-0.374, p<0.001, beta-diversity: r=0.238, 

p=0.002). Inter-phenotype differences were characterised by a greater frequency of pathogenic 

taxa at high relative abundance, and reduced Streptococcus, Gemella and Porphyromonas 

relative abundance in neutrophilic asthma. Multivariate regression confirmed sputum 

neutrophil proportion was the strongest predictor of microbiota composition.  

Neutrophilic asthma is associated with airway microbiology that is significantly 

different to that in other inflammatory phenotypes, particularly eosinophilic asthma. 

Differences in microbiota composition may influence response to antimicrobial and steroid 

therapies, and risk of lung infection.  

2.2 Introduction 

Asthma phenotypes, based on characteristics of airway inflammation, are increasingly 

recognised as an important prognostic indicator for asthma severity and treatment 

responsiveness (Wenzel, 2012). In addition to an allergen-induced Th2-lymphocyte, IL-5 

mediated, eosinophilic inflammatory response, asthma can also occur in the absence of 

eosinophilic inflammation (termed non-eosinophilic asthma) (Pavord et al., 1999; Simpson JL 

et al., 2006). Indeed, based on relative numbers of sputum eosinophils and neutrophils, four 

inflammatory subtypes: eosinophilic asthma, neutrophilic asthma, mixed granulocytic asthma, 

and paucigranulocytic asthma, have been described (Simpson et al., 2006).  

Unlike the relatively well-defined mechanisms that result in eosinophilic airway 

inflammation, those leading to non-eosinophilic asthma, particularly neutrophilic asthma, 

remain relatively poorly understood (Pelaia et al., 2015). Further, while non-eosinophilic 

phenotypes occur across the spectrum of asthma severity (Green et al., 2014; Pavord et al., 
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1999; Wenzel, 2012), they typically respond poorly to corticosteroids (Green et al., 2014; 

Pavord et al., 1999). Inflammatory phenotypes have also been shown to differ with respect to 

airway microbiology. Compared with other patients with asthma, those with neutrophilic 

asthma are more likely to have a potentially pathogenic organism identified, by either culture-

based (Essilfie et al., 2012) or culture-independent approaches (Green et al., 2014), and have 

reduced airway bacterial diversity (Simpson et al., 2016b). Given that airway microbiota 

composition is associated with the degree of airway hyper-responsiveness among patients with 

sub-optimally controlled asthma (Huang et al., 2011), inter-phenotype differences in airway 

microbiology are likely to be clinically important. 

The relationships between asthma inflammatory phenotypes and airway microbiology 

are likely to be complex and bi-directional. Asthma phenotypes represent immunological and 

physicochemical differences within the lower airways that are likely to be reflected, through 

their selective effect on microbial growth and airway clearance, in divergent lower airway 

microbiota (Rogers et al., 2013). Where these differences involve the increased abundance of 

particular respiratory pathogens, or a depletion of commensal populations, they could 

contribute substantially to the course of airway disease or risk of adverse treatment events, such 

as corticosteroid associated pneumonia (McKeever et al., 2013). On the other hand, the 

characteristics of airway microbiology, even in the absence of frank infection, could influence 

asthma inflammatory phenotype. Defining the relationships between inflammatory phenotype 

and lower airway microbiota would inform our understanding of asthma pathophysiology and 

could help to identify prognostic markers.  

Several previous studies have reported differences in airway microbiology in 

eosinophilic and non-eosinophilic asthma, and the existence of significant relationships 

between this microbiota composition and clinical asthma measures (Denner et al., 2016; Green 

et al., 2014; Huang et al., 2015; Simpson et al., 2016a; Zhang et al., 2016). However, while 
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providing important insight, these studies have involved relatively small and heterogeneous 

patient cohorts. This study, based on participants enrolled into the Asthma and Macrolides: the 

Azithromycin Efficacy and Safety Study (AMAZES) trial (ACTRN12609000197235), was 

over three times the size of any study performed previously and focused on a well-defined 

population of patients with severe but stable asthma, the majority of whom were treated with 

inhaled corticosteroids.  

Through the application of a systematic approach to microbiota characterisation, I 

aimed to assess whether asthma inflammatory phenotypes were associated with substantially 

different lower airway microbiology, to identify bacterial taxa that discriminate among 

inflammatory phenotypes, and to determine the contribution of patient and clinical 

characteristics to variation in the composition of the bacterial component of the microbiome. 

2.3 Methods  

2.3.1 Study population 

For full methodology see supplementary methods of Appendix 1. Analysis was 

performed on samples collected as part of the baseline screening population from AMAZES 

clinical trial (ACTRN12609000197235). Participants were recruited from eight centres across 

Australia. Pre-defined inflammatory phenotype categories, based on sputum cell counts 

relative to patient age, were assigned as published previously and detailed in the Supplementary 

Methods (Brooks et al., 2013; Simpson et al., 2006). Briefly, neutrophilic phenotype was 

defined as ≥61% neutrophils (neutrophil% cut-off dependent on age), eosinophilic phenotype 

as ≥3% eosinophils, paucigranulocytic as ≤61% neutrophils and ≤3% eosinophils and mixed 

granulocytic was defined as ≥61% neutrophils and ≥3% eosinophils.  
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2.3.2 Induced sputum sample collection 

 Sputum induction with hypertonic saline (4.5%) was performed by trained personnel as 

described previously (Gibson et al., 1998). Sputum aliquots were stored at -80°C for DNA 

extraction or dispersed using dithiothreitol for sputum cell count assessment and inflammatory 

subtype determination (Simpson et al., 2014). 

2.3.3 DNA extraction  

DNA extraction was performed on sputum sample aliquots of approximately 100 µl. 

Following the addition of 300 µl of phosphate buffered saline, samples were vortexed for 10 

seconds and placed on ice for 2 min. Bacterial cells were then pelleted by centrifugation at 

13,000 x g for 10 min. Following removal of supernatant, 300 µl of Tris-EDTA solution (10 

mM Tris-HCl, 1 mM EDTA; pH 8.0; Ambion, ThermoFisher Scientific, Victoria, Australia), 

200 µg of silica: zirconium beads (1:1 of 0.1 mm and 1.0 mm; Biospec Products, Inc., OK, 

USA), and a single chrome bead (3.2 mm, Biospec Products, Inc., OK, USA) were added to 

the tube containing the cell pellet. Samples underwent bead-beating at 6.5 m/s for 60 sec in a 

FastPrep®-24 Instrument (MP Biomedicals, CA, USA). Homogenised sample was heated to 

90 °C for 5 min, before being cooled on ice for 5 min. Lysozyme (ROCHE, ThermoFisher 

Scientific, Victoria, Australia) and lysostaphin (Sigma-Aldrich, MO, USA) were then added to 

a final concentration of 2 mg/mL and 0.1 mg/mL, respectively, and samples incubated at 37 °C 

for 1 hr. Proteinase K (Fermentas, ThermoFisher Scientific, Victoria, Australia) and sodium 

dodecyl sulphate (Sigma-Aldrich, MO, USA) were then added to a final concentration of 1.2 

mg/mL and 1.5 %, w/v, respectively. Following incubation at 30 min at 56 °C, 40 µl of 5M 

sodium chloride and 450 µl of phenol:chloroform:isoamyl alcohol (25:24:1; saline buffered at 

pH8.0; Sigma-Aldrich, MO, USA) were added and samples vortexed for 30 sec. The aqueous-

organic layers were separated by centrifugation at 13,000 x g for 10 min and 400 µl of the 
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aqueous layer was transferred to a new microfuge tube. DNA was recovered using an EZ-10 

Spin column in accordance with manufacturer’s instructions (Bio Basic, Inc., Ontario, Canada), 

following precipitation by the addition of 10 M ammonium acetate and 99% ethanol (Sigma 

Aldrich, MO, USA) in a 1:10 and 1:1 ratio with sample volume, respectively. DNA was eluted 

in 50 µl UltraPure DNase/RNase-free distilled water (Gibco, ThermoFisher Scientific, 

Victoria, Australia) and stored at -80 °C prior to analysis.   

2.3.4 16S rRNA gene amplicon sequencing 

The V1-3 hypervariable region of the bacterial 16S rRNA gene was amplified from 

sputum DNA using modified primers 27F (5'-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGRGTTTGATCMTGGCTCAG-

3') and 519R (5'-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTNTTACNGCGGCKGCTG-3'), 

with Illumina adapter overhang sequences as indicated by underline. Amplicons were 

generated, cleaned, indexed and sequenced according to the Illumina MiSeq 16S Metagenomic 

Sequencing Library Preparation protocol 

(http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.h

tml) with certain modifications. Briefly, an initial PCR reaction contained at least 12.5 ng of 

DNA, 5 μL of forward primer (1 μM), 5 μL of reverse primer (1 μM) and 12.5 μL of 2× KAPA 

HiFi Hotstart ReadyMix (KAPA Biosystems, Wilmington, MA, USA) in a total volume of 

25 μL. The PCR reaction was performed on a Veriti 96-well Thermal Cycler (Life 

Technologies) using the following program: 95 °C for 3 min, followed by 25 cycles of 95 °C 

for 30 sec, 55 °C for 30 sec and 72 °C for 30 sec and a final extension step at 72 °C for 5 min. 

Samples were multiplexed using a dual-index approach with the Nextera XT Index kit 

(Illumina Inc., San Diego, CA, USA) according to the manufacturer’s instructions. The final 

library was paired-end sequenced at 2 × 300 bp using a MiSeq Reagent Kit v3 on the Illumina 

http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
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MiSeq platform. Sequencing was performed at the David R Gunn Genomics Facility, South 

Australian Health and Medical Research Institute. 

2.3.5 16S rRNA gene qPCR 

Approximate 16S rRNA gene copy number was assessed by quantitative PCR (qPCR) 

using the 16S rRNA universal primers B331F (5'-TCCTACGGGAGGCAGCAGT-3') and 

B797R (5'-GGACTACCAGGGTATCTAATCCTGTT-3') using Platinum SYBR Green 

(ThermoFisher scientific, Vic, Australia) as previously described (Nadkarni et al., 2002). 

Reactions were performed in duplicate and averages taken. Sample total bacterial copy number 

was calculated per µL of DNA eluate against a standard curve of a known bacterial copy 

number. 

2.3.6 Sequence data processing 

The Quantitative Insights Into Microbial Ecology (QIIME, v1.8.0) software was used 

to analyse the 16S rRNA sequence generated from paired-end amplicon sequencing using 

bioinformatics pipeline as previously described (Jervis-Bardy et al., 2015). Briefly, barcoded 

forward and reverse sequencing reads were quality filtered and merged using Paired-End reAd 

mergeR (PEAR v0.9.6). Chimeras were detected and filtered from the paired-end reads using 

USEARCH (v6.1) against the 97% clustered representative sequences from the Greengenes 

database (v13.8). Operational taxonomic units (OTUs) were assigned to the reads using an 

open reference approach with UCLUST algorithm (v1.2.22q) against the SILVA database 

release 111 (July 2012) that was clustered at 97% identity. Spurious OTUs were then removed 

systematically using previous reports of common laboratory sequencing contaminants (Salter 

et al., 2014). A minimum subsampling depth of 1,732 reads was then selected for all samples.  

Where taxa assignment failed to classify to the Family or Genus level, OTU reference 

sequences (accounting for >99% of OTU reads) were separately aligned using SILVA 
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Incremental Aligner (SINA) (https://www.arb-silva.de/) which uses SILVA, RDP, 

Greengenes, LTP and EMBL sequence collections. If the alignments identified taxa to a genus 

level, and at >99% similarity, they replaced the previous taxon assignment. This occurred for 

Streptococcus II which was previously incorrectly assigned as Clostridiales;Other;Other. 

Streptococcus I refers to the OTU cluster which was assigned as Streptococcus during initial 

assignment. 

2.3.7 Diversity measurements and statistical analyses 

Five alpha diversity (within-sample variance) indices were employed to test a variety 

of parameters of within-patient taxon distribution: Faith’s phylogenetic diversity (where a 

higher value indicates a more phylogenetically diverse sample), Simpson’s and Pielou’s 

evenness indices (where a higher value indicates a more equitable distribution of taxa 

abundance), taxa richness (the total number of taxa detected), and Shannon-Weiner diversity 

(a measure incorporating both the number and equitability of detected taxa). Beta diversity 

(inter-sample variance) was determined by using two approaches: weighted UniFrac similarity 

(which accounts for phylogenetic distance) and square-root transformed Bray-Curtis similarity 

(based on the relative abundance of taxa alone). Bray-Curtis matrix was calculated based on 

sample-normalised, square root transformed relative taxon abundance. Principal coordinate 

analysis (PCoA) was used to visualize clustering of samples based on their similarity matrices 

with PCO1 and PCO2 coordinates and group centroids plotted using ggplot2 package of R 

statistical software. Distance from centroid was calculated as previously described, using 

PRIMER (Anderson et al., 2006). Permutational multivariate analysis of variance 

(PERMANOVA) (Anderson, 2001) on the beta-diversity matrices was used to test the null 

hypothesis of no difference amongst a priori-defined groups using PERMANOVA + add-on 

package for PRIMER. These a priori-defined groups were the four inflammatory phenotypes. 

The test was computed using unrestricted permutation of raw data with 9,999 random 

https://www.arb-silva.de/
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permutations and at a significance level of 0.01. Alpha and beta diversity measures were 

calculated using either QIIME (v. 1.8.0) or Primer (v. 6, PRIMER E Ltd, Plymouth, UK). 

Continuous data were tested for non-normality including skewness and kurtosis using 

the D’Agostino-Pearson omnibus test. The Kruskal-Wallis one-way ANOVA with Dunn’s post 

hoc test was used for multiple comparisons of non-normally distributed data, Mann-Whitney 

U test for pairwise comparisons, chi-squared test for categorical data, and Spearman’s test for 

correlations (GraphPad PRISM, v.7.01 GraphPad Software Inc., California, USA).  

Multivariate linear regression was performed using Faith’s phylogenetic diversity and 

UniFrac distance from centroid as two dependent variables reflecting aspects of diversity 

(SPSS v.23.0, IBM, Armonk, NY). Covariates were selected a priori and included in the model 

based on a significant correlation with either dependent variable. Confidence intervals were 

obtained by bootstrapping; resampling 1,000 times. Covariates were tested for collinearity 

using variance inflation factors. 

2.3.8 Taxon dispersion 

Variation in microbiota composition at the genus-level was assessed using multiple 

approaches. First, taxa that contributed to the overall variation between the asthma phenotypes 

were identified using SIMilarity of PERcentages (SIMPER) analysis in PRIMER. 

Subsequently, the abundance of the 13 highest ranked taxa (accounting for 50% of the 

dissimilarity between neutrophilic and eosinophilic groups) were used to generate a heatmap 

using ggplot2 package of R statistical software. Hierarchical clustering of the taxa was 

performed on Bray-Curtis dissimilarity and clustered using single linkage method. Dominance 

of Haemophilus and Moraxella was determined when the relative abundance of each taxa 

exceeded 40%. This cut-off was selected based to the distribution of the relative abundance, 

where a clear distinction between samples with >40% and <40% was evident, suggesting 
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overgrowth of these taxa. Second, strong taxon-taxon correlations were identified using 

SparCC, where absolute taxon abundances were bootstrapped 100 times to generate correlation 

p values (Friedman and Alm, 2012). Networks were then generated from selected correlations 

(r≥0.25 or r≤-0.25) and p values (p≤0.01) using Cytoscape (version 3.4.0).  

Two approaches were used to investigate the impact of pathogen overgrowth on 

microbiota composition. First, in samples where Haemophilus or Moraxella were the dominant 

taxon and represented > 40% of total reads, their relative abundance was adjusted to the mean 

value for the study cohort and the remaining relative abundance measures rescaled, as 

described previously (Rogers et al., 2015). For example, the microbiota composition of a 

sample with 50% relative abundance of Haemophilus, 20% Taxa A, 10% Taxa B, 5% Taxa C, 

5% Taxa D, 5% Taxa E, and 5% Taxa F would be rescaled to remove Haemophilus. The 

rescaled composition would comprise of 40% Taxa A, 20% Taxa B, 10% Taxa C, 10% Taxa 

D, 10% Taxa E, and 10% Taxa F. PERMANOVA analyses were then performed on the rescaled 

data. Second, pairwise comparisons between neutrophilic and eosinophilic samples were 

performed using the phyloseq R package with DEseq2 extension, based on count data (Love et 

al., 2014; McMurdie and Holmes, 2013). P values were corrected using the Benjamini-

Hochberg false discovery rate procedure and a corrected alpha value cut-off of <0.05 used for 

inclusion. 

2.4 Results 

2.4.1 Clinical characteristics and sequence data 

Induced sputum samples were obtained from 187 participants. Of these, 13 were 

excluded due to poor sample quality. Of the 174 that underwent 16S rRNA gene amplicon 

sequencing, a further seven were excluded due to an insufficient sequence read depth. The 

remaining 167 subjects were classified as one of four inflammatory phenotypes: neutrophilic 
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(n=14), eosinophilic (n=84), paucigranulocytic (n=60), or mixed granulocytic (n=9) based on 

previously described sputum inflammatory cell count percentages (Brooks et al., 2013; 

Simpson et al., 2006). There was no significant difference in age, gender distribution, atopy, 

smoking history, ICS dose, GINA treatment step, or mean ACQ6 score between these 

phenotypic groups, as assessed using multiple comparison tests (Table 2.1). There were, 

however, significant differences in lung function, as assessed by both FEV1 % predicted 

(p=0.035) and FEV1/FVC% (p=0.013). 

Following quality filtering and chimera removal, 16S rRNA gene amplicon sequencing 

resulted in a median read depth of 12,792 (q1, q3: 8060, 16595). Sequence data were sub-

sampled to a uniform depth of 1,732 reads based on rarefaction curve asymptotes and Good’s 

coverage values (Table E1.1 of Appendix 1). No significant differences in total bacterial burden 

were found between inflammatory phenotypes (p=0.51, Kruskal-Wallis test, see Figure E1.1 

of Appendix 1). 

2.4.2 Alpha diversity 

Participants with neutrophilic asthma had significantly lower Faith’s phylogenetic 

score (p=0.022) than participants with eosinophilic asthma, which resembled that of 

paucigranulocytic asthma (Figure 2.1A). Faith’s phylogenetic diversity significantly correlated 

with the sputum neutrophil % (r=-0.374, p<0.0001, Figure 2.1B) but not with sputum 

eosinophil % (r=0.146, p=0.060, Figure 2.1C). Analysis with a range of alternative alpha 

diversity indices (taxa richness, Shannon-Wiener index, Simpson’s index, and Pielou’s 

evenness, see Figures E1.2 and E1.3 of Appendix 1), resulted in consistent findings in relation 

to phenotype, sputum neutrophil % and sputum eosinophil %. Together, these results 

demonstrate a significant relationship between airway microbiota composition and sputum 

neutrophilia, but not sputum eosinophilia. 
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Table 2.1: Clinical and inflammatory cell parameters of participants  
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Figure 2.1: Faith’s phylogenetic diversity is significantly associated with sputum neutrophilia 

but not eosinophilia. A) Patients grouped by asthma phenotype. B) Neutrophil % where dotted 

line at 61% neutrophils indicates phenotype cut-off point. C) Eosinophil % where dotted line 

at 3% eosinophils indicates phenotype cut-off point. Colours represent asthma phenotype, 

where blue= >61% neutrophils, green= >3% eosinophils, yellow= <61% neutrophils and <3% 

eosinophils (paucigranulocytic), and purple= both >61% neutrophils and >3% eosinophils 

(mixed). Statistical significance was assessed by A) Kruskal-Wallis one-way ANOVA with 

Dunn’s post hoc test or B) and C) Spearman’s rank correlation.  
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2.4.3 Beta diversity 

Principal Coordinate Analysis (PCoA) of weighted UniFrac similarity distance showed 

that neutrophilic samples were distinguished from other phenotypes along the first and second 

principal coordinates, while the other phenotypes broadly clustered together (Figure 2.2A). 

Consistent with these observations, a PERMANOVA test showed that phenotype grouping 

contributed significantly to the differences in microbial composition of the samples (p=0.0004, 

pseudo-F=3.997, see Table E1.2 of Appendix 1). Pairwise PERMANOVA comparing the 

phenotype groups indicated that variance was attributed to neutrophilic vs eosinophilic 

(p=0.0001, T=3.30) and neutrophilic vs paucigranulocytic (p=0.0015, T=2.52) groups (see 

Table E1.3 of Appendix 1).  

Assessment of microbiota dispersion based on distance from centroid was consistent 

with PERMANOVA analysis, with the samples from neutrophilic phenotype participants 

having significantly higher distances from the centroid than samples from eosinophilic and 

paucigranulocytic participants (Figure 2.2B). In keeping with alpha diversity analyses, 

variance in distance from centroid was associated with sputum neutrophil %, rather than 

sputum eosinophil % (see Figure E1.4 of Appendix 1). Beta-diversity analyses using a second 

distance measure, Bray-Curtis, gave consistent findings (see Figure E1.5 of Appendix 1). 



 

50 

 

 

Figure 2.2: Microbiota dispersion grouped by asthma phenotype. A) Principal Coordinate 

Analysis (PCoA). The first two principal coordinates are plotted on the x- and y-axes, 

respectively (representing 59.9% of the total variation). B) Distance from centroid. Statistical 

significance was assessed by Kruskal-Wallis one-way ANOVA with Dunn’s post hoc test. 

2.4.4 Taxon distribution and network analysis 

SIMPER analysis was used to rank taxa according to their contribution to intergroup 

variance in microbiota composition. Thirteen taxa were identified which cumulatively 

accounted for approximately 50% of total variance between neutrophilic and eosinophilic 

samples (see Table E1.4 of Appendix 1). Hierarchical cluster analysis based on relative taxon 

abundance revealed that Moraxella and Haemophilus clustered separately from the other 

eleven taxa (Figure 2.3). In the patients with neutrophilic asthma, Moraxella and Haemophilus 
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exceeded 40% relative abundance in 6/14 (42.9%) samples compared to only 1/84 (1.19%) 

patients with eosinophilic asthma, 7/60 (11.7%) with paucigranulocytic and 1/9 (11.1%) with 

mixed (χ2=25.5, p<0.0001, Figure 2.3, Figure E1.6 of Appendix 1). Relationships between 

bacterial taxon relative abundance were further visualised by network analysis (Figure 2.4), 

revealing a bacterial community of taxa whose abundance is positively correlated in almost all 

cases. Most of these taxa were more prevalent in eosinophilic samples than in neutrophilic 

samples. Haemophilus, which had a mean abundance that was higher in neutrophilic samples, 

was the single exception, negatively correlating with other members of the sputum bacterial 

community.  

 

Figure 2.3: Relative abundance of discriminant taxa among asthma phenotypes. The 13 taxa 

that collectively contribute to approximately 50% of variance among phenotypes, as 

determined by SIMPER analysis. The clustering shows the similarity relationship of genera 

based on Bray-Curtis similarity distance and single linkage hierarchical clustering method. 

*Actinomyces sp. uncultured bacteria, #Actinomyces sp. oral clone DR002. 
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Figure 2.4: Bacterial network analysis of asthma cohort. Each edge represents a significant 

correlation coloured by either positive (blue) or negative (red). Edge width and transparency 

are proportional to the absolute value of the correlation coefficient. Node size is proportional 

to mean relative abundance. Node hue is proportional to the difference in taxon relative 

abundance between the neutrophilic phenotype group and the eosinophilic phenotype group. 

Correlations performed by SparCC with a correlation cut-off of R>0.25 or <-0.25. 

*Actinomyces sp. uncultured bacteria, #Actinomyces sp. oral clone DR002. 

Of the 13 discriminant taxa identified by SIMPER, Streptococcus II, Gemella, Rothia 

and Porphyromonas were significantly less abundant in neutrophilic than in eosinophilic and 

paucigranulocytic phenotypes (Figure 2.5A). Sputum neutrophil % positively correlated with 

the relative abundance of Moraxella and negatively correlated with the relative abundance of 

Streptococcus I, Gemella and Porphyromonas (Figure 2.5B). In contrast, Haemophilus 

negatively correlated with eosinophil %, and Streptococcus I, Neisseria and Gemella positively 

correlated with eosinophil % (see Figure E1.7 of Appendix 1). Prevotella, Actinomyces, 

Leptotrichia, and Veillonella, while identified by SIMPER and represented highly connected 
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nodes in the network analysis, did not differ between airway inflammatory phenotypes, nor 

correlate with sputum cell counts. 

2.4.5 Non-dominant microbiome 

The non-dominant microbiome was assessed to establish whether differences in 

microbiota composition between inflammatory phenotypes were explained solely by 

overgrowth of opportunistic taxa (e.g. Haemophilus and Moraxella) or, alternatively, whether 

differences existed even in the absence of pathogen predominance. Two separate approaches 

were used to investigate this; re-scaling of relative abundance data, following the exclusion of 

pathogen predominance, and assessment of ranked taxon fold change between neutrophilic and 

eosinophilic groups based on non-subsampled taxa counts. Re-scaled relative abundance data 

remained significantly different between inflammatory phenotypes (p=0.0004, pseudo-

F=2.38). Pairwise tests revealed significant differences between neutrophilic and eosinophilic 

phenotype participants (p=0.0001, T=2.31, Table E1.5 of Appendix 1) and between 

neutrophilic and paucigranulocytic participants (p=0.0002, T=2.26, Table E1.5 of Appendix 

1). Assessment of taxa count supported these findings, with significant differences in the fold 

change of taxa count between participants with neutrophilic and eosinophilic phenotypes (see 

Figure E1.8 of Appendix 1). 
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Figure 2.5: Taxa distribution differs by sputum neutrophilia. A) Taxa which significantly differ 

by patient inflammatory phenotype. B) Significant correlations between taxa and neutrophil %. 

Colours represent asthma phenotype, based on neutrophilia or eosinophilia. Dotted line at 61% 

neutrophils indicates phenotype cut-off point. Statistical significance was assessed by A) 

Kruskal-Wallis one-way ANOVA with Dunn’s post hoc test and B) Spearman’s rank 

correlation. 
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2.4.6 Clinical and inflammatory associations with microbiota composition  

In univariate analysis, Faith’s phylogenetic diversity significantly, inversely correlated 

with sputum neutrophil %, age, and ICS dose, and significantly, positively with FEV1 % (Table 

2.2). Conversely, weighted UniFrac distance from centroid significantly correlated, positively 

with sputum neutrophil %, and was significantly different based on gender and atopy but not 

with age, ICS dose, FEV1 % or previous smoking status (Table 2.2). In multivariate analysis 

sputum neutrophil % was the only variable that independently predicted both Faith’s 

phylogenetic diversity and weighted UniFrac distance from centroid (p=0.002 (95% CI=-0.07 

to -0.02) and p<0.001 (0.07 to 0.22), respectively, Table 2.3). Age and ICS dose both 

independently predicted Faith’s diversity (p=0.030 (-0.07 to -0.004) and p=0.042 (-0.001 to -

0.001), respectively) while atopy and gender independently predicted distance from centroid 

(p=0.018 (1.3 to 8.4) and p=0.039 (-7.5 to -0.30), respectively). 

Table 2.2: Comparison of patient characteristics with microbiota diversity 

    

Neutrophil 

% Age 

ICS 

Dose* 

FEV1 % 

predicted Atopy†# Gender† 

Ever 

smoked† 

Faith's 

diversity 

r -0.374 -0.309 -0.242 0.193    

p <0.001 <0.001 0.002 0.013 0.32 0.97 0.53 

UniFrac 

Distance 

r 0.24 0.015 0.096 0.034    

p 0.002 0.84 0.22 0.66 0.019 0.003 0.70 
 

Spearman correlation coefficient (r) and probability values are as indicated. 

*n=163, #n=164, †Assessed using Mann-Whitney test 
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Table 2.3: Multivariate linear regression between patient characteristics and microbiota 

diversity 

 B 95% CI p 

Faith's 

phylogenetic 

diversity 

Neutrophil % -0.046 -0.07, -0.02 0.002 

Age -0.036 -0.07, -0.004 0.030 

Gender 0.35 -0.59, 1.4 0.49 

Atopy -0.77 -1.7, 0.12 0.10 

FEV1 % predicted 0.016 -0.01, 0.04 0.23 

ICS dose -0.001 -0.001, -0.001 0.042 

UniFrac 

distance from 

centroid 

Neutrophil % 0.14 0.07, 0.22 <0.001 

Age 0.056 -0.05, 0.16 0.30 

Gender -3.9 -7.5, -0.30 0.039 

Atopy 4.8 1.3, 8.4 0.018 

FEV1 % predicted 0.049 -0.04, 0.14 0.27 

ICS dose <0.001 -0.001, 0.001 0.56 

2.5 Discussion 

To date, this is the largest study to date to assess predictors of the airway microbiota 

composition in asthma. The primary comparisons were between asthma inflammatory 

phenotypes, where significant differences were observed in the composition of airway 

microbiota. These differences were largely between neutrophilic and eosinophilic participants 

and reflected a reduced diversity and evenness of detectable bacterial taxa in the neutrophilic 

participants. Reduced microbiota diversity has been reported following acute and chronic 

airway infections in asthma (Green et al., 2014; Simpson et al., 2016b), and in other respiratory 

disorders (Cuthbertson et al., 2016; Hofstra et al., 2015; Pettigrew et al., 2016), as well as with 

the effects of exposure to antibiotics (Daniels et al., 2013; Huang et al., 2014). Importantly, 

none of the study participants reported clinical features of respiratory infection or had antibiotic 

therapy during the preceding month.  

Alpha diversity metrics were further assessed relative to continuous neutrophil and 

eosinophil count data as an alternative to categorical inflammatory phenotypes. Significant 

correlations were observed between sputum neutrophil % and each assessed alpha diversity 
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metric, with no significant interactions between any diversity metric and sputum eosinophil %, 

strongly suggesting that decreased microbiota richness, evenness, and diversity are associated 

with airway neutrophilia. Analysis of sputum microbiota beta diversity (inter-sample 

similarity) also demonstrated substantial differences between people with neutrophilic airway 

inflammation and those with other inflammatory phenotypes, consistent with the stochastic 

overgrowth of complex commensal communities by individual opportunistic pathogens 

(Tarabichi et al., 2015). 

Bacterial taxa that contributed to observed differences in microbiota composition 

between inflammatory phenotypes were identified, namely high abundance of Haemophilus 

and Moraxella in neutrophilic participants, supporting previous findings (Green et al., 2014). 

This could be interpreted as simply an increased relative abundance of airway pathogens in 

neutrophilic patients, reflecting neutrophilic influx into the airways during sub-clinical lower 

airway infection, with a reciprocal decrease in the relative abundance of commensal taxa. 

However, a group of common airway taxa correlated negatively with sputum neutrophil % 

(Gemella, Porphyromonas, and Streptococcus) and, importantly, even after high relative 

abundance of Haemophilus and Moraxella were accounted for, significant differences in the 

microbiota composition between neutrophilic and eosinophilic participants were still observed. 

This finding suggests that two separate phenomena could contribute to microbial differences 

between inflammatory phenotypes; the impact of pathogen overgrowth, and the selective 

pressure of airway inflammatory characteristics. With the former, pathogen overgrowth can 

impact the surrounding microbes through microbe-microbe interactions, independent of 

inflammatory phenotype. With the latter, a more broad-scale divergence in composition 

between neutrophilic and eosinophilic subgroups could, in turn, contributie to an increased risk 

of lower airway infection in neutrophilic patients through an increased presence of 

opportunistic pathogens.  
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This finding has clear implications for the clinical management of asthma, where low-

dose macrolide and ICS therapies have been shown to influence overgrowth by opportunistic 

respiratory pathogens and innate immune function, respectively (Denner et al., 2016; Essilfie 

et al., 2012; Rogers et al., 2014). Further, the relative lack of efficacy of ICS in patients with 

non-eosinophilic asthma (Pavord et al., 1999) may lead to use of higher doses compared to 

eosinophilic patients. The combination of underlying differences in airway microbiota 

(associated with differences in inflammatory phenotype) and inefficacious therapies being used 

at higher doses might contribute to reduced bacterial diversity (Denner et al., 2016), the high 

concentrations of Proteobacteria seen in the airways of neutrophilic patients (Simpson et al., 

2016b), a greater propensity for lung infection, and a further enhancement of the neutrophilic 

phenotype (Essilfie et al., 2012). 

While strong associations between neutrophilic phenotype and sputum microbiota 

composition were found, associations between eosinophil counts and microbiota composition 

were minimal. This contrasts with previous studies reporting increased Tropheryma associated 

with eosinophilia (Simpson et al., 2016b), and associations between bronchial biopsy 

eosinophil count and bacterial composition (Huang et al., 2015), and reduced bacterial burden 

associated with type 2-high airway inflammation (Durack et al., 2016). 

An important strength of this study was its involvement of a large group of well-defined 

participants with poorly controlled asthma, who were taking regular inhaled therapy. The 

application of detailed induced sputum microbiota characterisation from these participants then 

allowed us to assess the extent to which clinical and inflammatory characteristics 

independently associated with variations in airway microbiology using multivariate linear 

regression analysis. Multivariate regression identified sputum neutrophil % as the strongest 

predictor of microbiota variance. However, age, ICS dose, gender and atopy were also 

significant, independent predictors. Conversely, lung function (as measured by FEV1 %) and 
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smoking status were not. Of particular interest was the finding that increasing age predicted 

reduced microbiota alpha diversity, as age has been previously associated with microbiome 

composition in other chronic respiratory diseases. The airway microbiome of CF patients is 

strongly affected by age (Zhao et al., 2012), which is presumed to relate to the selective effects 

of increased antibiotic exposure over time and the changing characteristics of the airway 

environment (Rogers et al., 2013). It is interesting to speculate that the relationship between 

neutrophilia and microbiota composition may reflect the effect of age on neutrophilia (Brooks 

et al., 2013), suggesting that a tendency towards a neutrophilic phenotype and/or a 

susceptibility to opportunistic airway infections increases with age in patients with severe 

asthma.  

It is important to recognise a number of limitations of this study. Airway microbiology 

was assessed based on induced sputum, which, while shown to provide reproducible 

inflammatory cell levels in patients with moderate to severe asthma (Bacci et al., 2002; Rossall 

et al., 2014), only provides an approximation of lower airway microbiology (in common with 

other lower airway sampling strategies) (Rogers et al., 2010). It is also important to note that 

induced sputum levels of neutrophils and eosinophils may change frequently (Hancox et al., 

2012; Suarez-Cuartin et al., 2016), and that the relationships between airway microbiology and 

inflammatory phenotype reported are cross-sectional. This study is a cross-sectional design and 

hence can only report association between the microbiome and airway inflammatory 

characteristics. Detailed longitudinal analysis is now required to determine how these 

relationships change with time. Inferences about causation may be able to be made in 

longitudinal and mechanistic studies, including more sophisticated metagenomic and 

functional studies, as well as intervention trials that attempt to manipulate the pulmonary 

microbiome. Further, 16S rRNA gene amplicon sequence data was subsampled to a level that 

allowed the inclusion of the greatest number of subjects, while maintaining sufficient read 
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depth to accurately describe microbiota composition. Additional analysis, using a greater read 

depth, might however identify rare taxa that contribute to disease characteristics. While 

multivariate regression identified sputum neutrophilia as an independent predictor of 

microbiota composition, the effects of variation in ICS dose between phenotypes (although 

non-significant) should be noted. Finally, though none of the study participants received 

antibiotics in the month prior to recruitment, data on less recent exposure were not available 

and could have a lasting impact on the lower airway microbiome composition (Daniels et al., 

2013). 

The clear relationship between airway inflammatory phenotype and microbiota 

highlight the need for studies examining whether asthma treatments should be individualised 

based on both inflammatory phenotype stratification and lower airway microbiology. There is 

now a clear need to investigate the extent to which variations in the airway microbiota predict 

the risk of future asthma exacerbations, and to determine whether airway microbiota 

characterisation could be used as a basis for asthma treatment selection.  
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CHAPTER 3: FUT2 GENOTYPE IN BRONCHIECTASIS 

The contents of this chapter have been published as part of:  

Taylor, S.L., Woodman, R.J., Chen, A.C., Burr, L.D., Gordon, D.L., McGuckin, 

M.A., Wesselingh, S., and Rogers, G.B. (2017). FUT2 genotype influences lung 

function, exacerbation frequency and airway microbiota in non-CF bronchiectasis. 

Thorax 72, 304-310. 

The supplementary information has been included in Appendix 2 

3.1 Abstract 

FUT2 encodes a protein that mediates attachment of α(1,2)-fucose to mucosal glycans. 

Common polymorphisms in the FUT2 (secretor) gene have been found to influence infection 

susceptibility. Airway infections are a significant determinant of disease progression in patients 

with bronchiectasis. I aimed to assess whether disease severity and airway microbiota 

composition differed according to FUT2 genotype in bronchiectasis. 

The FUT2 gene was sequenced for polymorphisms from 112 adult bronchiectasis 

patients from the BLESS trial. Loss-of-function phenotype was verified by histochemical 

staining in endobronchial biopsies. Disease parameters and baseline sputum bacterial, fungal, 

and viral components of the microbiota (measured by 16S rRNA gene amplicon sequencing, 

quantitative PCR, and quantitative reverse transcription-PCR respectively) were compared 

according to FUT2 genotype. 

Patients were grouped by FUT2 loss-of-function genotype; categorised as non-secretors 

(n=27, sese), heterozygous secretors (n=54, Sese), or homozygous secretors (n=31, SeSe). 

FEV1 % was significantly lower in SeSe patients compared to sese patients (mean=61.6 

(SD=20.0) vs 74.5 (18.0); p=0.023). Exacerbation frequency was significantly higher in SeSe 

(mean count 5.77) compared to sese (4.07; p=0.004) and Sese (4.63; p=0.026) genotypes. The 

time until first exacerbation was significantly shorter in SeSe compared to Sese (HR=0.571 
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(95% CI=0.343-0.950); p=0.031), with a similar trend for sese patients (HR=0.577 (0.311-

1.07); p=0.081). sese had a significantly reduced frequency of Pseudomonas aeruginosa-

dominated airway infection (8.7%) compared to Sese (31%; p=0.042) and SeSe (36%; 

p=0.035). In contrast, fungal, viral, and non-dominant bacterial components of the microbiome 

were not significantly different between FUT2 genotypes. 

FUT2 genotype in bronchiectasis patients was significantly associated with disease 

outcomes, with homozygous secretors exhibiting lower lung function, higher exacerbation 

number, and a higher frequency of P. aeruginosa-dominated infection.  

3.2 Introduction 

Bronchiectasis is a chronic airway disease characterised by irreversible bronchial 

dilation and persistent bacterial infections (Cole, 1986). Owing to its multifactorial aetiology, 

a patient’s individual disease progression is difficult to predict (Shoemark et al., 2007). 

However, the composition of the airway microbiota, which differs substantially between 

patients, correlates with clinical markers of disease severity (King et al., 2007; Rogers et al., 

2013; Tunney et al., 2013). 

Most notably, patients where Pseudomonas aeruginosa numerically dominates the 

composition of the airway microbiota present with an accelerated decline in lung function, 

more frequent pulmonary exacerbations, greater sputum production, and a greater requirement 

for antibiotic therapy (Evans et al., 1996; Ho et al., 1998; Rogers et al., 2014; Shoemark et al., 

2007). Respiratory viral (Gao et al., 2015) and fungal (Maiz et al., 2015) infections have also 

been linked to bronchiectasis disease markers, which suggests that multiple infectious agents 

can contribute to the pathophysiology of bronchiectasis. While genetic loci in genes related to 

inflammation and airway remodelling have been previously investigated in bronchiectasis 

(Boyton et al., 2006; Chalmers et al., 2013; Daheshia et al., 2012; Hsieh et al., 2013; Stankovic 
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et al., 2009), little is known regarding common genetic polymorphisms that affect microbial 

acquisition in patients. 

Variability in carbohydrate expression on mucosal surfaces is high, with some 

commensal and pathogenic microbes able to utilize glycans for adherence, induction of 

pathogenicity genes, and for use as carbon sources (Audfray et al., 2013; Marcobal et al., 2013; 

McGuckin et al., 2011). Therefore variability in glycan expression in the respiratory tract 

affects susceptibility to infection with many bacteria, viruses, and fungi (Rose and Voynow, 

2006). The FUT2 (secretor) gene encodes an α(1,2)-fucosyltransferase, and homozygous loss-

of-function mutations result in the inability to express ABH, Lewisb, and Lewisy glycans on 

mucosal surfaces (Ferrer-Admetlla et al., 2009). Individuals who carry at least one functional 

copy of the FUT2 gene are known as “secretors” (Sese or SeSe based on one or two functional 

copies, respectively) while those with two non-functional copies (approximately 20% of the 

Caucasian population) are known as “non-secretors” (sese) (Ferrer-Admetlla et al., 2009; 

Genomes Project et al., 2012).  

Secretion of α(1,2)-fucosylated glycans elicits a dichotomous effect on host-microbe 

interactions, the result of which is a difference in infection susceptibility, disease susceptibility, 

and microbiome composition (Rausch et al., 2011)  between secretors and non-secretors. For 

example, non-secretors have reduced incidence of influenza A, influenza B, rhinovirus, and 

respiratory syncytial virus infections (Raza et al., 1991), but increased incidence of Neisseria 

meningitidis, Streptococcus pneumoniae (Blackwell et al., 1986), and C. albicans (Thom et al., 

1989) infections, compared to secretors. In relation to chronic respiratory conditions, non-

secretor asthma patients present with fewer exacerbations (Innes et al., 2011) and non-secretor 

cystic fibrosis patients (with severe impairment of lung function) have prolonged time until P. 

aeruginosa colonization (Taylor-Cousar et al., 2009); however non-secretors with COPD have 

a lower FEV1 % (Cohen et al., 1980). While one functional copy of FUT2 is sufficient to 
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facilitate α(1,2)-fucosylation, it is currently unclear whether heterozygote secretors (Sese) 

exhibit the same infection and disease susceptibility patterns as homozygote secretors (SeSe), 

or whether incomplete dominance presents, whereby heterozygotes display an intermediate 

phenotype. 

I hypothesised that secretor genotype is a factor underlying variation in infection type 

and disease severity in bronchiectasis. To address this, I determined secretor genotype in a 

randomised controlled trial cohort of 112 adult bronchiectasis patients and performed 

secondary analysis by determining associations between genotype and key measures of disease 

severity. Additionally, I assessed whether secretor genotype was associated with changes in 

bacterial, viral and fungal components of the airway microbiota.  

3.3 Methods 

3.3.1 Study population 

Bronchiectasis patients were recruited as part of The Bronchiectasis and Low-dose 

Erythromycin Study (BLESS) randomised controlled trial (Serisier et al., 2013). This trial 

assessed the effect of 12 months of low dose erythromycin therapy (twice-daily erythromycin 

ethylsuccinate; 400mg) on exacerbation rates in adults with bronchiectasis. Adult patients aged 

20–85 years with high-resolution CT scan-proven bronchiectasis, two or more exacerbations 

in the previous 12 months and daily sputum production were eligible. Patients were not 

receiving systemic corticosteroids, had not smoked cigarettes in the preceding six months, were 

macrolide-naïve, and were not receiving nebulized antibiotics. Full details of inclusion and 

exclusion criteria for the study are detailed in the supplementary methods of Appendix 2. 
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3.3.2 Clinical sample collection and processing 

 Sputum induction was performed as follows: Subjects were instructed to perform their 

usual chest physiotherapy regime on the morning of the sputum induction procedure. Prior to 

commencement of hypertonic saline inhalation, any spontaneous sputum expectorated was 

collected for standard culture. Sputum induction was performed after inhalation of 400 ug of 

albuterol, using 4.5% hypertonic saline nebulised from an ultrasonic nebuliser (output >1 mL/ 

min) for 20 minutes in 4 periods of 5 minutes each, according to the standardised protocol 

recommended by the European Respiratory Society taskforce (Paggiaro et al., 2002). 

Following mouth-rinsing and expectoration, sputum was collected following each nebulisation 

period, on each occasion preceded immediately by spirometry. The first sputum sample was 

refrigerated immediately following collection and frozen at -80 °C within an hour. A cold chain 

was maintained up until the point of DNA extraction. 

Ten, 15 and 20-minute samples were pooled and an aliquot from this placed on ice 

immediately and transferred for inflammatory cell count processing within 60 minutes. Sputum 

was processed according to the methods of the US Cystic Fibrosis Therapeutics Development 

Network Standard Operating Procedure (Sagel et al., 2001).  Briefly, an equal volume of sterile 

10% dithiothreitol (Sputolysin; Calbiochem-Novabiochem Corp., San Diego, CA), was added 

to the sputum, then incubated in a shaking water bath at 37° C for 5-10 min, and mixed using 

a transfer pipette at 5-min intervals. A further three times the volume of both dithiothreitol and 

phosphate-buffered saline (Dulbecco's; Gibco BRL, Grand Island, NY) was added and the 

mixture incubated again in the 37° C shaking water bath for another 5-10 min. 10 μl of 

homogenized sputum samples, mixed with Trypan Blue, was used to calculate total cell counts 

using a standard hemacytometer. A further 0.25-0.50 ml of both samples was used to prepare 

cytospin slides for differential cell counts. After staining the slides with Wright’s stain, 300 

non-squamous cells were counted and cell differentials calculated. 
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Endobronchial Biopsy Collection and Processing was performed as follows: Subjects 

were fully informed about the potential risks of the procedure and provided written consent. 

Bronchoscopy was performed as an outpatient procedure in the endoscopy unit of the operating 

theatres of the Mater Adult Hospital, South Brisbane, Australia using an Olympus flexible 

fibre-optic bronchoscope according to the safety standards of the Thoracic Society of Australia 

and New Zealand (Wood-Baker et al., 2001), with details of the research bronchoscopy 

procedure adapted from prior methods (Hattotuwa et al., 2002; Hilliard et al., 2002; Monton et 

al., 1999). Subjects fasted for 6 hours before the procedure. The procedure was performed 

transorally, under light sedation using intravenous midazolam and fentanyl to ensure patient 

comfort. Topical lignocaine was applied to the vocal cords and bronchi by instillation through 

the bronchoscope. Endbronchial biopsies were then taken from subsegmental carinae of the 

lower lobes using Boston scientific Radial Jaw 3 single-use biopsy forceps (diameter 1.8 mm), 

starting at 5th order airways and working proximally as far as the 3rd order bronchi if necessary 

(bifurcation of segmental and subsegmental bronchi). Subjects were observed for 2 hours after 

the bronchoscopy before being allowed home. 

3.3.3 Clinical measures of respiratory function and disease severity 

Clinical assessments included forced expiratory volume in one second, as a percentage 

of predicted value (FEV1 %) (O'Donnell et al., 1998),  Leicester Cough Questionnaire (LCQ) 

score (Birring et al., 2003), St. George’s Respiratory Questionnaire (SGRQ) score (Jones et al., 

1992), sputum weight over a period of 24 hours, physician defined pulmonary exacerbations 

over the 48 weeks of the trial (PDPEs), and pulmonary exacerbations in the prior 12 months 

(treated with either oral or intravenous antibiotics). During exacerbations, oral antibiotics were 

typically prescribed for milder exacerbations, where the patients were deemed well enough to 

return home, while intravenous antibiotics were prescribed if patients were deemed by the 

treating physician to have a severe exacerbation.  
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All clinical measures analysed in this study were obtained prior to commencement of 

the clinical trial, except PDPEs which were recorded over the 48 weeks of the trial. Data 

relating to PDPEs were therefore presented for the total cohort and for those receiving placebo 

alone as a sensitivity analysis, in order to remove the possibility of confounding from macrolide 

use during the trial. 

3.3.4 FUT2 Polymorphism Genotyping  

Genomic DNA was extracted from patients’ serum using Mammalian Genomic DNA 

Miniprep Kit (Sigma-Aldrich), according to manufacturer’s instructions. An 1162 bp region of 

the FUT2 gene was amplified using primers F: 5'-CGTGTCCCGTTTTCCTCCCC, R: 5'-

AGAGAGATGGGTCCTGCTCAT. Each reaction contained 5 μL of KAPA Taq HotStart 

Buffer (KAPA Biosystems, MA, USA), 2.5 μL of MgCL2, 0.5 μL of dNTP, 0.5 μL of each 

primer (10 μM), 0.2 μL KAPA Taq HotStart polymerase, 14.8 μL dH2O and 1 μL of genomic 

DNA. Cycling conditions were 95°C for 3 min followed by 40 cycles of 95°C for 30s, 60°C 

for 15s, 72°C for 30s. A final elongation was allowed at 72°C for 5 min. Successful 

amplification was confirmed by gel electrophoresis, and the PCR products were purified using 

a DNA acid phosphatase-exonuclease kit (New England BioLabs, MA, USA) according to the 

manufacturer’s instructions. 

Amplicons were then sequenced by Sanger Sequencing using two internal primers (5'-

TGCTGGTCGTTCAGATGCCT and 5'- CCATCTTCAGAATCACCCTG) by Flinders 

Sequencing Facility (SA Pathology, Bedford Park, South Australia). Readouts were aligned to 

a reference sequence using Clustal W multiple alignment using UGENE, where 

polymorphisms were detected by mismatched alignment. Polymorphisms were then cross-

referenced with the literature to determine loss-of-function polymorphisms. 
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3.3.5 Secretor Status Bronchial Phenotyping by Immunohistochemistry 

Horseradish peroxidase conjugated Ulex Europaeus lectin 1 (HRP-UEA1) (EY 

Laboratories, San Mateo, CA, USA) staining was performed on 32 endobronchial biopsies. 

After removal of paraffin and rehydration of biopsies, endogenous peroxidase was inhibited by 

20 min incubation in 3.0% H2O2. Sections were rinsed twice for 5 min in phosphate buffered 

saline (PBS)/0.3% Tween-20. Tissue was blocked with 200 μl of 1% bovine serum 

albumin/PBS for 30 min at room temperature. Sections were then incubated with 200 μl of 5 

μg/mL HRP-UEA1 for 1 hour. Sections were then rinsed in PBS/Tween-20, 3 times for 5 min, 

and AEC substrate (Vector Laboratories, Burlingame, CA, USA) added for 30 min before 

addition of haematoxylin counterstain (all steps at room temperature). 

3.3.6 Bacterial dominance 

Sputum DNA extraction and 16S rRNA gene sequencing were performed in 93 of the 

112 patients, based on the availability of suitably archived samples, as described in Chapter 2.3 

using a combined physical, enzymatic, and heat-based cell lysis, followed by phenol-

chloroform extraction and DNA recovery using EZ-10 Spin columns (Bio Basic, Inc., Ontario). 

Identification of numerically dominant species (using specific PCR-based assays) were 

performed prior to this study and described previously (Rogers et al., 2014). Patients were also 

categorised into one of three groups previously, based on the numerically dominant bacterial 

species (Rogers et al., 2014). The groups comprise of P. aeruginosa-dominated, Haemophilus 

influenzae-dominated, or dominated by a species other than these two. Previous quantification 

of the relative abundance of bacterial genera in this patient cohort has revealed that the airway 

microbiota is highly polarised in patients with H. influenzae– and P. aeruginosa–dominated 

infections, with dominance of either exceeding 80% abundance (Rogers et al., 2013). A 

summary of the dominant microbes in the patient cohort is provided in Table E2.1 of Appendix 
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2. For analysis of the non-dominant microbiota, Pseudomonas or Haemophilus taxa was 

removed (where dominant) and the remaining relative abundance measures rescaled, as 

described previously (Rogers et al., 2015). Sequence reads have been deposited to the Sequence 

Read Archive database, hosted by the National Center for Biotechnology Information, under 

the study accession number SRA066194. 

3.3.7 Fungal detection 

Detection of C. albicans and A. fumigatus were performed by quantitative PCR in 78 

patient samples, where suitably archived samples were available. Oligonucleotides and 

thermocycling conditions were performed as previously described.(Innings et al., 2007; 

Rantakokko-Jalava et al., 2003) Detection limits were defined by serial dilutions of the clinical 

isolates and approximate copy numbers calculated (see Table E2.2 of Appendix 2). 

3.3.8 Viral detection 

Detection of nine common respiratory viruses (rhinovirus, adenovirus, influenza A, 

influenza B, parainfluenza 1, 2, 3, respiratory syncytial virus, and human metapneumovirus) 

was assessed in baseline induced sputum from the same 78 patients as those where fungal 

detection was performed. Detection was performed by the diagnostic virology unit, SA 

Pathology, using routine clinical diagnostic quantitative reverse-transcriptase PCR assays. 

Sample extraction was performed on a MagNA Pure© 96 automated workstation (Roche 

Diagnostics, Castle Hill, NSW) and amplification and detection using specific in house primers 

and probes in validated PCR assays was performed on a LightCycler© 480 with an extraction 

control and multiplexed assays with a maximum of three targets per reaction. 

3.3.9 Statistical analysis 

Clinical patient characteristics were tested for non-normality including skewness and 

kurtosis using the D'Agostino & Pearson omnibus test. Continuous data were analysed by one-



 

73 

 

way analysis of variance (ANOVA) with Tukey’s post-hoc test, or by Kruskal-Wallis with 

Dunn’s post-hoc test, according to the distribution of the data. Ordinal data were analysed by 

Wilcoxon rank-sum test. Exacerbation counts were tested for Poisson distribution and 

subsequently analysed using a Wald test. Categorical data were analysed by Chi-square or 

Fisher’s exact test as appropriate. For time until first PDPE, Kaplan-Meier curves were 

produced, and Cox proportional-hazards regression analyses were performed. All analyses 

were performed using SPSS (version 23.0, IBM, Armonk, NY) or GraphPad Prism (version 

6.05; GraphPad Software, San Diego, CA). 

Alpha diversity (Simpson’s Index, Shannon-Weiner Index) and beta diversity (Bray-

Curtis similarity matrices) measures were calculated using sample-normalised, square root 

transformed relative operational taxonomic unit (OTU) abundance using PRIMER (version 

6.1.16; PRIMER-E Ltd, Plymouth, UK). Principal coordinate (PCO) analysis was used to 

visualize clustering of samples based on their similarity matrices. The two-factor permutational 

multivariate analysis of variance (PERMANOVA) on the Bray-Curtis matrix was performed 

using PERMANOVA+ package for PRIMER with 9,999 random permutations. 

3.4 Results 

3.4.1 Secretor genotype and phenotype 

FUT2 exon 2 genotype was determined in 112 patients, of whom 27 (24%) had a 

homozygous rs601338 428G→A base change (non-secretors), 54 (48%) were heterozygotes, 

and 31 (28%) were homozygous for no mutation, termed sese, Sese, and SeSe respectively. The 

minor allelic frequency of this was 0.48 and the proportions fit the Hardy-Weinberg 

distribution. Secretor phenotype, determined by histochemical staining of bronchial tissue, 

aligned with the genotype in all 32 patients with available biopsies (see Figure E2.1 of 

Appendix 2). 
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3.4.2 Clinical characteristics 

Age, gender, duration of disease, drug treatments, and comorbidities did not differ 

significantly between secretor genotypes (Table 3.1). However, of the clinical measures of 

disease severity, homozygous secretor patients (SeSe) had significantly lower FEV1 (% 

predicted) compared to non-secretor patients (sese) (mean 61.6 (95% CI=54.3 to 69.0) vs 74.5 

(67.3 to 81.6), p=0.023, Table 3.1, Figure E2.2 of Appendix 2).   
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Table 3.1: Patient demographic and clinical characteristics 

 sese (n=27) Sese (n=54) SeSe (n=31) p value 

Age (years) 64.0 (58-68) 64.5 (59-71) 64.0 (60-67) 0.77 

Females, n (%) 14 (52) 36 (67) 18 (58) 0.41 

Duration of bronchiectasis (years) 50.0 (12-55) 50.0 (16-60) 55.0 (33-60) 0.43 

Pre-bronchodilator FEV1 (L) 2.05 (0.64) 1.74 (0.60) 1.67 (0.72) 0.060 

Pre-bronchodilator FEV1 (% predicted) 74.5 (18.0) 68.2 (17.0) 61.6 (20.0) 0.030 

Post-bronchodilator FEV1 (L) 2.18 (0.65) 1.83 (0.63) 1.75 (0.71) 0.035 

Post-bronchodilator FEV1 (% 

predicted) 

79.1 (18.5) 71.6 (17.9) 64.5 (19.2) 0.013 

24-hour sputum weight (g) 19.8 (10.3) 18.5 (12.1) 11.0 (13.8) 0.051 

St George’s Respiratory Questionnaire 

score 

34.5 (13.7) 38.8 (15.0) 37.5 (15.3) 0.46 

Leicester Cough Questionnaire score 14.3 (3.35) 15.0 (3.05) 15.3 (3.09) 0.43 

6 min walk test (m) 500 (97.5) 519 (92.0) 513 (80.6) 0.67 

C-reactive protein concentration (mg/L) 3.10 (0.75-

6.8) 

3.25 (1.1-

8.7) 

3.60 (1.6-

8.4) 

0.56 

Serum immunoglobulin concentration 

(g/L) 

11.8 (3.17) 10.6 (2.34) 12.4 (3.78) 0.092 

Sputum neutrophils (% of non-

squamous cells) 

96.1 (87-98) 96.7 (94-98) 96.0 (93-97) 0.59 

Days on Antibiotics (days) 10 (0-26) 15 (0-36) 21 (6-40) 0.250 

Exacerbations     

    In the year prior to trial 4.07 (2.11) 4.63 (2.68) 5.77 (3.85) 0.011 

    Required IV antibiotics in the year 

prior to trial 

0.00 (0.00) 0.19 (0.44) 0.45 (0.82) 0.031 

    Physician defined pulmonary 

exacerbation during trial (total) 

1.15 (1.17) 1.74 (2.05) 2.03 (1.45) 0.033 

    Physician defined pulmonary 

exacerbation during trial (placebo 

group) 

1.30 (1.18) 2.30 (2.51) 2.21 (1.58) 0.11 

Drug treatments, n (%)     

    Combination (ICS plus LABA) 13 (48) 24 (44) 13 (42) 0.89 

    Inhaled LABA alone 1 (4) 2 (4) 1 (3) 0.99 

    Inhaled SABA alone 7 (26) 27 (50) 15 (48) 0.10 

    Inhaled anticholinergic drugs 2 (7) 7 (13) 5 (22) 0.60 

    Inhaled corticosteroids alone 2 (7) 6 (11) 5 (16) 0.58 

    Prednisolone 0 (0) 2 (4) 1 (3) 0.62 

    Nebulised saline 1 (4) 1 (2) 0 (0) 0.57 

    Inhaled mannitol 0 (0) 1 (2) 0 (0) 0.58 

Comorbidities, n (%)     

    Asthma 6 (23) 7 (14) 7 (23) 0.45 

    Ciliary dysfunction 1 (4) 1 (2) 1 (3) 0.87 

    Hypertension 8 (30) 21 (39) 8 (26) 0.43 

    Ischaemic heart disease 1 (4) 8 (15) 2 (6) 0.22 

    Cerebrovascular disease 0 (0) 5 (9) 1 (3) 0.18 

    Diabetes mellitus  0 (0) 1 (2) 2 (6) 0.28 
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Data are mean±SD, n (%), or median (IQR). FEV1=forced expiratory volume in 1 second. 

FEV1, % predicted=FEV1 as a percentage of the predicted value. ICS = inhaled corticosteroid, 

LABA = long-acting β agonist, SABA = short-acting β agonist. P values calculated by one-

way ANOVA, Kruskal-Wallis, Wald, or Chi-square test according to the characteristics of the 

data distribution. #Erythromycin treatment commenced during the trial period and only relates 

to total physician defined pulmonary exacerbations. 

 

The number of exacerbations over the 12-month period prior to the trial intervention 

was also significantly higher in SeSe compared to sese (incident rate ratio (IRR)=1.42 (95% 

CI=1.11 to 1.78), p=0.004), and Sese (IRR=1.25 (1.03 to 1.51), p=0.026) patients (Figure 

3.1A). Of those, exacerbations requiring IV antibiotics (broadly indicative of a more severe 

pulmonary exacerbation) also differed, with no sese patients recording an exacerbation which 

required IV antibiotic therapy over the 12 months prior to the trial compared to 29% of SeSe 

patients having at least one exacerbation requiring IV antibiotics (Figure 3.1B).  

 

Figure 3.1: Effect of FUT2 on 12-month pulmonary exacerbation count. A) Proportion of 

patients who had pulmonary exacerbations requiring any antibiotics and B) which required 

intravenous antibiotics over a 12-month period. Colour indicates number of exacerbations. P 

values calculated by Wald test.  

Erythromycin treatment during trial, n 

(%)# 

14 (52) 31 (57) 12 (39) 0.25 
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Over the course of the clinical trial, the primary outcome measures were the number of 

PDPE, as well as the time until the first PDPE. Significantly fewer sese patients recorded 

PDPEs compared to both Sese (IRR=1.52 (1.01 to 2.28), p=0.045) and SeSe (IRR=1.77 (1.15 

to 2.72), p=0.009) patients (Table 3.1). The time until the first PDPE was also significantly 

longer in the Sese compared to SeSe genotype (hazard ratio (HR)=0.571 (95% CI=0.343 to 

0.950), p=0.031), with a similar trend for sese patients compared to SeSe (HR=0.577 (0.311 to 

1.07), p=0.081) (Figure 3.2A). A similar pattern was also found in the placebo subgroup, 

however this did not reach statistical significance (Sese vs SeSe, HR=0.663 (0.329 to 1.34), 

p=0.252, sese vs SeSe HR=0.669 (0.305 to 1.60), p=0.396, Figure 3.2B). As many of the 

PDPEs were treated with antibiotic therapy, the total number of days on prescribed antibiotics 

was also tested, however was not significantly lower in sese patients compared to Sese 

(p=0.502) or SeSe (p=0.094) patients (Figure E2.3 and Figure E2.4 of Appendix 2).   
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Figure 3.2: Effect of FUT2 on time to first physician defined pulmonary exacerbation (PDPE). 

A) Total patients B) patients receiving only placebo. Kaplan-Meier curves are shown for the 

probability of remaining exacerbation-free according to FUT2 genotype. p values calculated 

by Cox proportional-hazards regression model.  

3.4.3 Airway bacterial predominance 

Of the 93 patients where airway bacterial composition was determined (23 sese, 48 

Sese, and 22 SeSe), 25 had infections dominated by P. aeruginosa, 33 by H. influenzae and 35 

by any other species. The proportion of patients with P. aeruginosa-dominated infections was 

significantly lower in sese patients compared to Sese (p=0.042) and SeSe (p=0.035) patients 

(Figure 3.3). 
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Figure 3.3: Effect of FUT2 on predominant airway infection. Proportion of patients who had 

airway infection dominated by Pseudomonas aeruginosa, Haemophilus influenzae, or any 

other species. Numbers indicate number of patients. p values calculated by Fisher’s exact test.  

3.4.4 Airway non-dominant bacterial taxa 

To determine whether non-dominant components of the microbiota differed according 

to secretor genotype, differences in the non-dominant bacterial taxa, key fungal pathogens, and 

key viral pathogens were compared. For non-dominant bacterial taxa, Shannon-Weiner Index 

and Simpson’s Index were used to assess alpha diversity. Neither differed by secretor genotype 

(p=0.78 and p=0.73, respectively, see Figure E2.5 of Appendix 2). Principal Coordinate 

Analysis (PCoA) of Bray-Curtis distances revealed no distinct clustering between secretor 

genotypes, which was confirmed by PERMANOVA test on the Bray-Curtis dissimilarity 

matrices (p=0.78, see Figure E2.6 of Appendix 2), indicating that the composition of the non-

dominant taxa did not significantly differ between patients based on FUT2 genotype.  
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3.4.4 Airway fungal and viral infection  

Of the 78 patients where C. albicans and A. fumigatus were quantified (17 sese, 39 

Sese, and 22 SeSe), C. albicans was detected in 19/78 (24%) patients and A. fumigatus in 9/78 

(11%) patients, although there was no difference in fungal presence between secretor genotypes 

(all p>0.05, see Figure E2.7 of Appendix 2). Similarly, of the nine viruses screened, only 

human rhinovirus was detected, in 4/78 (5%) patients, and there was no association with FUT2 

genotype (χ2=1.5, p=0.48). 

3.5 Discussion 

Investigations of secretor status have not been previously performed in bronchiectasis 

patients. In this cohort, the FUT2 G428A single nucleotide polymorphism (rs601338) allelic 

frequency was at 0.48. The rs601338 frequency reported in the healthy Caucasian population 

is 0.44 (Ferrer-Admetlla et al., 2009; Genomes Project et al., 2012); similar to the frequency 

reported in this cohort and suggesting that secretor status does not affect development of non-

cystic fibrosis bronchiectasis. However, within bronchiectasis, the results show that secretor 

genotype significantly affects disease severity. 

By stratifying the bronchiectasis cohort by presence of FUT2 null allele, it was revealed 

that non-secretor patients (sese) had significantly higher lung function and lower frequency of 

pulmonary exacerbations, compared to homozygous secretor (SeSe) patients. Differences in 

patients’ dominant airway microbiology (but not non-dominant microbiology, presence of 

common fungal species, or detection of viral infections) was also found, with sese patients 

exhibiting significantly decreased frequency of P. aeruginosa-dominated airway infections. 

Polymorphisms in the FUT2 gene are conserved at a high frequency in the population, 

likely driven by a dichotomous effect of α(1,2)-fucosylated glycans on mucosal infection and 



 

81 

 

disease susceptibility. In asthma for example, the frequency of a non-secretor phenotype is 

higher among Caucasian asthmatics compared to non-asthmatics (Ronchetti et al., 2001), 

however within asthma patients, those with a secretor genotype are more prone to 

exacerbations (Innes et al., 2011), analogous to the findings of this study. In COPD, patients 

who are non-secretors have a lower FEV1 % compared to secretors (Cohen et al., 1980). 

Finally, in cystic fibrosis, no difference in lung function has been found between secretor and 

non-secretor patients, however secretor patients in the smaller subset of “severe cystic fibrosis” 

patients have earlier onset of persistent P. aeruginosa infection compared to severe, non-

secretor, cystic fibrosis patients (Taylor-Cousar et al., 2009), which is consistent with the 

findings of this study in bronchiectasis. It is also worth noting that along with chronic 

respiratory diseases, secretor status also significantly influences susceptibility to many 

gastrointestinal infections and diseases (Marcobal et al., 2013). 

The results of this study are also indicative of an incomplete dominance genetic model 

for secretor status. Heterozygous patients displayed an intermediate phenotype in terms of lung 

function, total exacerbation frequency and frequency of exacerbations requiring IV antibiotics, 

despite Sese genotype considered equivalent to SeSe genotype. Previous findings also support 

incomplete dominance for FUT2, where similar, intermediate Sese genotype effects were found 

in relation to Crohn’s disease gut microbiome and premature infant mortality (Morrow et al., 

2011; Tong et al., 2014). Further research is required to determine the effect of heterozygous 

versus homozygous secretor status on glycan expression and infection/disease susceptibility. 

The precise mechanism by which secretor status affects infection and disease 

susceptibility is not entirely clear. It has been previously shown that even healthy sese 

individuals have a distinct intestinal microbiota composition from healthy Sese or SeSe 

individuals (Rausch et al., 2011), linked to selective pressure from availability of different 

carbon sources (Kashyap et al., 2013). Secretor status could therefore affect infection and 
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disease susceptibility via its effects on microbiome composition, as the microbiome has been 

shown to influence host immunity. Mechanistic insight for several gastrointestinal pathogens 

(including Helicobacter pylori and Norwalk virus) have been characterised in which specific 

binding to α(1,2)-fucosylated glycans has been characterised (McGuckin et al., 2011). 

This cohort showed an increased frequency of P. aeruginosa-dominated infection in 

both Sese and SeSe bronchiectasis patients. However, unlike H. pylori or Norwalk virus, P. 

aeruginosa does not encode any fucose catabolising genes and its fucose-specific adherence 

genes, PA-IIL and FliD, are not specific for α(1,2)-fucosylated glycans (Scharfman et al., 2001; 

Wu et al., 2006), suggesting no direct link between secretor status and P. aeruginosa infection. 

Further detailed characterisation of P. aeruginosa growth, adherence, and gene expression in 

sputum from individuals with sese and Sese/SeSe genotypes would be required to determine 

whether the effects of FUT2 provide any selective pressure. Other taxa which make up the 

respiratory microbiota could also be influenced by the presence of secretor glycans but were 

too subtle to detect by relative abundance analyses.  

Alternatively, positive secretor status may affect severity of bronchiectasis via the 

reported association with susceptibility to viral infections. Gastrointestinal viruses (Imbert-

Marcille et al., 2014) and respiratory viruses such as influenza A, influenza B, rhinovirus, and 

respiratory syncytial virus (Raza et al., 1991) are all more prevalent in individuals with a 

functional FUT2 gene. Respiratory viral infections are associated with pulmonary 

exacerbations in patients with bronchiectasis (Gao et al., 2015). Pulmonary exacerbations are 

characterised by inflammation, lung damage (which often permanently impairs lung function), 

and bacterial overgrowth, often requiring antibiotic therapy. A higher antibiotic burden has in 

turn been shown be selective for P. aeruginosa acquisition (King et al., 2007). 
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While further investigations are required to adequately test this, a model is proposed, 

whereby patients with a Sese or SeSe genotype have a greater susceptibility to respiratory viral 

infection, resulting in increased pulmonary exacerbation frequency, and leading to lower lung 

function, increased antibiotic exposure, and subsequent selection for P. aeruginosa. These 

results support this as secretors, particularly SeSe patients, had higher frequency of pulmonary 

exacerbations, lower FEV1 %, more days on antibiotic therapy, and higher frequency of P. 

aeruginosa predominance, compared to sese patients. While results of the viral analysis 

showed a low prevalence of respiratory virus carriage across all groups, samples were taken 

from patients at a stable clinical baseline and are likely to differ in the period prior-to or during 

exacerbations. Longitudinal viral detection at baseline and during exacerbations, would be 

required to adequately address this hypothesis and signifies a potential mechanism contributing 

to divergences in disease progression among bronchiectasis patients. 

Fungal colonisation was also assessed in this patient cohort. Oral and vaginal carriage 

of Candida spp. have been previously found to be higher in non-secretor individuals (Burford-

Mason et al., 1988; Thom et al., 1989). Also, A. fumigatus encodes a lectin (AFL) which 

preferentially binds α(1,2)-fucosylated Lewis glycans (Houser et al., 2013), indicating secretor 

status may affect presence of both C. albicans and A. fumigatus in bronchiectasis sputum. 

However, neither presence of C. albicans nor A. fumigatus differed significantly based on 

secretor genotype, suggesting that fungal infections do not contribute to the difference in 

clinical symptoms reported between secretors and non-secretors.  

Overall, the results of this study indicate that stratifying bronchiectasis patients based 

on secretor genotype is likely to provide substantial prognostic value. Secretor status, which 

can be determined rapidly and at low cost, could be an important determinant of frequency of 

respiratory events, such as pulmonary exacerbations. Such information is not only relevant for 
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clinical management, but also an important consideration in clinical trial design and the 

potential efficacy of vaccine strategies in different secretor groups.  

These results are not without limitation. Since the original trial was first published, 

bronchiectasis severity scores have been developed that provide a cumulative marker for 

disease. These scores have been shown to be useful for defining bronchiectasis severity, 

however could not be calculated for this cohort. The main reason for this is the absence of a 

bronchiectasis score from radiological examination. While CT scans from the patients were 

performed to confirm presence of bronchiectasis, these were not stored or scored for severity 

and cannot be retrospectively determined. Another limitation is that the data presented is from 

a small number of patients based from a single centre study with no external validation cohort. 

Furthermore, the inclusion criteria for patients in the original study selected represent a severe 

population, limiting the ability to demonstrate differences in severity of disease between the 

secretor types. Repeating this study in different, independent bronchiectasis populations, 

including a wider range of severities and potentially different bronchiectasis aetiologies, is now 

required. 

There is a growing appreciation that moving towards precision medicine is a more 

effective approach to patient care, particularly for chronic disease management. Bronchiectasis 

has a complex underlying aetiology and implementing clinically informative details about 

patients’ airway microbiology, inflammation, remodelling, and respiratory physiology, as 

exemplified in this study, will ultimately be more beneficial for the development and 

application of more precise treatment options. 
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CHAPTER 4: SCREENING FOR ANTIBIOTIC RESISTANCE 

USING POOLED-TEMPLATE SHOTGUN METAGENOMICS 

The contents of this chapter have been published as part of:  

Taylor, S.L., Leong, L.E.X., Mobegi, F.M., Choo, J.M., Burr, L.D., Wesselingh, S., 

and Rogers, G.B. (2018) Understanding the impact of antibiotic therapies on the 

respiratory tract resistome: a novel pooled-template metagenomic sequencing strategy. 

Multidisciplinary Respiratory Medicine 13, 9-14. 

The supplementary information has been included in Appendix 3 

4.1 Abstract 

Determining the effects of antimicrobial therapies on airway microbiology at a 

population-level is essential. Such analysis allows, for example, surveillance of antibiotic-

induced changes in pathogen prevalence, the emergence and spread of antibiotic resistance, 

and the transmission of multi-resistant organisms. However, current analytical strategies for 

understanding these processes are limited. Culture- and PCR-based assays for specific 

microbes require the a priori selection of targets, while antibiotic sensitivity testing typically 

provides no insight into either the molecular basis of resistance, or the carriage of resistance 

determinants by the wider commensal microbiota. Shotgun metagenomic sequencing provides 

an alternative approach that allows the microbial composition of clinical samples to be 

described in detail, including the prevalence of resistance genes and virulence traits. While 

highly informative, the application of metagenomics to large patient cohorts can be 

prohibitively expensive. I aimed to develop a novel, cost-effective strategy for screening 

patient cohorts for changes in resistance gene prevalence. By combining metagenomic 

screening of pooled DNA extracts with validatory quantitative PCR-based analysis of 

candidate markers in individual samples, population-level changes in the relative abundance of 

specific macrolide resistance genes were identified. This was tested using sputum samples from 
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a randomised placebo-controlled trial of erythromycin in adults with bronchiectasis and has the 

potential to provide an important adjunct to current analytical strategies, particularly within the 

context of antimicrobial clinical trials. 

4.2 Introduction 

As in all clinical disciplines, the management of patients with chronic respiratory 

diseases is subject to a process of ongoing refinement, including through the development of 

novel antimicrobial drugs and treatment strategies. Understanding the impact of antimicrobial 

treatments for individual recipients allows the personalisation of clinical management. 

However, determining the effects of treatments at a population level is also crucial, providing 

a means to predict shifts in the prevalence of respiratory pathogens, or the emergence of 

antimicrobial resistance, within large patient groups.  

The impact that evolving treatment strategies can have on airway microbiology can be 

seen, for example, in changes in the cystic fibrosis (CF) airway microbiota during recent 

decades. Within this context, the use of anti-pseudomonal treatments, including parenteral 

therapies and fluoroquinolones, have been implicated in the emergence of Stenotrophomonas 

maltophilia as an airway pathogen (Burns et al., 1999; Denton et al., 1996). Likewise, 

increasingly intensive antibiotic use appears to be a contributory factor in the increasing 

prevalence of non-tuberculous mycobacteria (Bar-On et al., 2015; Catherinot et al., 2013). The 

impact of antibiotic use is also reflected in the increasing frequency of multi-drug resistant 

organisms in the airways of patients with chronic respiratory disease, with an estimated 25-

45% of adult CF patients chronically infected with multi-drug resistant bacteria (Lechtzin et 

al., 2006). For example, CF-derived methicillin-resistant Staphylococcus aureus (MRSA) 

isolates increasingly show resistance to newer therapies, including linezolid (Champion et al., 
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2014; Hill et al., 2010), ceftaroline (Long et al., 2014) and tigecycline (Champion et al., 2014), 

presumably as a result of frequent and prolonged exposures (Parkins and Floto, 2015).  

Despite the importance of understanding the impact of antimicrobial exposure on the 

airway microbiome in those with respiratory disease, characterising this process remains 

challenging. Assessments of antibiotic-associated changes in microbiology are typically 

limited to a small group of predefined pathogens or resistance genes. The standard analytical 

approaches employed in clinical antibiotic trials fail to assess major aspects of antibiotic 

resistance, including shifts in the composition of the wider airway microbiota, and the carriage 

of transmissible resistance determinants by populations of commensal microbes. The absence 

of suitable strategies to determine antibiotic impact has resulted in significant gaps in our 

understanding of how widely employed therapies affect the complex microbiota of the 

respiratory tract. 

Shotgun metagenomic sequencing is an emerging technology that allows highly 

detailed characterisation of airway microbiota through the analysis of total microbial DNA 

from clinical samples, including determination of the prevalence of virulence factors and 

resistance determinants (Rogers et al., 2015). While metagenomic approaches have been shown 

to be highly effective in describing changes in the microbiome across a wide range of clinical 

contexts (Wang and Jia, 2016), the cost of its employment within population-scale studies is 

commonly prohibitive.  

This chapter describes a novel, cost-effective, strategy to inform the use of assays for 

specific resistance genes or microbial taxa, based on deep metagenomic screening of pooled 

study cohort DNA. The application of this approach is illustrated through the analysis of 

samples from a previously reported randomised controlled trial of long-term low dose 

macrolide therapy in adults with bronchiectasis. 
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4.3 Methods 

4.3.1 Study population 

The BLESS randomised placebo-controlled trial is described in detail in Chapter 3.3. 

The analysis reported here was based on paired baseline and week 48 sputum samples from 32 

members of the treatment group, and subsequent analysis between treatment group and placebo 

group subjects (n=32, and n=31, respectively). Patient baseline characteristics are described in 

Table E3.1 of Appendix 3. 

4.3.2 DNA extraction and shot metagenomic sequencing 

Sputum was collected as detailed in Chapter 3.3.2, and DNA extracted as detailed in 

Chapter 2.3.3. DNA extracts were pooled in those receiving erythromycin according to time-

point (before or after trial) and subject to microbial DNA enrichment (NEBNext® Microbiome 

DNA Enrichment Kit). DNA fragmentation was performed using TruSeq Nano DNA Library 

Prep Kit (Illumina), prior to 150bp paired-end metagenomic shotgun sequencing using an 

Illumina HiSeq 2500 system at the SA Health and Medical Research Institute, Adelaide. Reads 

have been uploaded to the NCBI Sequence Read Archive (SRA) under BioProject ID: 397083. 

4.3.3 Pooled template sequence bioinformatic processing  

Sequences were quality filtered using Trimmomatic v0.32 (Bolger et al., 2014) and 

human-derived reads removed using BBMap v35.40 (comparing reads to the NCBI human 

reference genome) (Bushnell, 2016). Contigs were de novo assembled using IDBA-UD v1.1.1 

(Peng et al., 2012), followed by identification of open-reading frames using MetaGeneMark 

v3.26 (Besemer and Borodovsky, 2005). Genes were collapsed using CDHit v4.6.6 (Fu et al., 

2012) where 39,013 genes with greater than 100 bp were identified and concatenated into a 

non-redundant gene catalogue. Blast+ v2.6.0 was used to identity antimicrobial resistance 

genes from the CARD database v1.1.7 (Jia et al., 2017) with an evalue score < 1x10-20. 
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Validation of resistance gene assignment was performed by mapping the gene-catalogue to the 

MEGARes database v1.01. Reads from each pooled sample were then aligned to the gene-

catalogue using Soap v2.21 and antimicrobial resistance genes quantified. Sample counts were 

normalised to counts per million (CPM) total reads and change in CPM (ΔCPM) was calculated 

by CPMpost treatment – CPMpre treatment. 

4.3.4 Validation of pooled-template process with qPCR 

Specific resistance genes that were identified as associated with erythromycin treatment 

through metagenomics were subsequently quantified in DNA extracts from individual sputum 

samples by qPCR. Previously published assays were used for erm(A) (Jung et al., 2009), 

erm(B) (Zhang et al., 2011), erm(C) (Martineau et al., 2000), 16S (Nadkarni et al., 2002), and 

smp(B) (Reddington et al., 2015) genes. Primers for quantification of the multi-drug efflux 

gene, hmrM, were designed within this study (see supplement of Appendix 3). For analysis of 

qPCR results, Wilcoxon rank tests were performed on fold change normalised to 16S copy 

number to compare erythromycin paired samples to placebo control paired samples (n=31 

pairs). 

4.4 Results 

4.4.1 Resistance gene carriage from pooled-template shotgun metagenomic analysis 

A schematic of the pooled-template metagenomic sequencing strategy, and subsequent 

qPCR-based validation, is shown in Figure 4.1. Following removal of low-quality reads and 

human DNA (approximately 90% of total read depth), a mean sample read depth of 12,866,780 

was achieved. Approximately half a million reads have been previously reported to analyse the 

microbial composition in individual sputum samples (Moran Losada et al., 2016). Mapping of 

sequence reads to the CARD database resulted in the detection of a total of 102 resistance-
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associated genetic determinants. The distribution of normalised reads that mapped to the 

CARD database in pre- and post-trial pooled samples is shown in Figure 4.2. Detected genes 

represented a range of resistance mechanisms, including antibiotic inactivating enzymes, efflux 

pumps, and effector site protection proteins, and conferred resistance to a number of antibiotic 

classes, including aminoglycosides, beta-lactams, glycopeptides, and tetracyclines. 

 

Figure 4.1: Principle of pooled-template metagenomic sequencing. Sample DNA extracts from 

a population of interest are pooled together according to a pre-specified variable of interest 

(such as treatment or time-point). Metagenomic sequencing is then performed on pooled 

samples and regions that discriminate between populations are determined. Targeted assays 

(such as qPCR) are then performed on individual samples for gene specific enumeration. 
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Figure 4.2: Resistome of pooled-template sputum before and after erythromycin therapy. 

Counts per million total reads (CPM) of major antibiotic resistance genes identified by the 

comprehensive antibiotic resistance gene database (CARD). Positive ΔCPM (red) indicates 

higher in samples post erythromycin. Resistance genes grouped by function, as defined by 

CARD. 
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4.4.2 Validation of chromosomal resistance gene carriage  

A substantial proportion of the genes identified through resistome analysis were 

chromosomally-encoded, non-transmissible, resistance determinants. Changes in the level of 

carriage of these genes during the trial therefore reflected shifts in the relative abundance of 

the species in whose genomes they are encoded, rather than resistance gene acquisition or loss. 

For example, the multidrug efflux pump gene, hmrM, appeared to increase in response to 

erythromycin therapy. This gene is chromosomally-encoded by H. influenzae however, and 

subsequent qPCR analysis revealed hmrM levels to be correlated with H. influenzae levels 

(r=0.74, p<0.001, Figure 4.3). The observed increase in prevalence of hmrM is therefore likely 

to simply reflect an increase in the relative abundance in H. influenzae in the assessed patient 

group (a median increase of 1.4x103 copies was observed between pre- and post-erythromycin 

samples). This phenomenon could explain apparent changes in the group-level abundance of 

other chromosomally-encoded resistance genes, such as an observed decrease in the relative 

abundance of pat(A), a chromosomally-encoded fluoroquinolone resistance gene carried by 

Streptococcus pneumoniae (El Garch et al., 2010), and aph(3’)-IIb, a chromosomally-encoded 

aminoglycoside resistance gene carried by P. aeruginosa (Stover et al., 2000).  
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Figure 4.3: Correlation between hmrM and Haemophilus influenzae. hmrM (normalised to 

total bacteria) against H. influenzae copy number (determined by comparing to known standard 

curve). Significance determined by Spearman's rank order correlation. 

4.4.3 Quantification of transmissible resistance genes 

Several of the resistance genes identified through pooled-template metagenomic 

sequencing were encoded on mobile genetic elements and have been shown previously to be 

transmissible between bacterial species. These include a number of transmissible genetic 

elements that confer resistance to a range of antibiotics. However, the key plasmid-encoded 

erythromycin resistance methylase gene, erm(B), which has previously been shown to increase 

with macrolide treatment, was not detected. To determine whether this gene was present in 

samples but not detected, or whether it was not present, erm(B) specific qPCR was performed 

on samples. 92% of patients had detectable levels of erm(B) and there was a significant increase 

in the relative abundance of erm(B) in subjects who received erythromycin (p=0.006), but not 

in those who received placebo (p=0.065, Figure 4.4). In contrast, other transmissible 

macrolide-resistance determinants were shown by follow-up qPCR analysis to not contribute 
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substantially to the post-trial resistome. For example, erm(A), a resistance gene found in 

staphylococci (Ghanbari et al., 2016), was present in only four subjects (two in the treatment 

group and two in the control group). The erm(C) resistance determinant, which is also found 

in staphylococci (Ghanbari et al., 2016), was detected more frequently (68% of subjects 

receiving placebo and 81% of subjects receiving erythromycin), however, erm(C) levels did 

not change significantly over the course of the trial. The rates of carriage of erm(A) and erm(C) 

are consistent with those reported in S. aureus clinical isolates more widely (Aktas et al., 2007; 

Ghanbari et al., 2016).  

 

Figure 4.4: Changes to erm(B) levels in erythromycin and placebo groups. Paired sample 

analysis of erm(B) (normalised to total bacteria). Significance determined by Wilcoxon signed-

rank test. 

4.5 Discussion 

This chapter describes a cost-effective approach that can be used to guide the 

assessment of changes in antibiotic resistance gene carriage, which might represent a useful 

adjunct to conventional approaches that are based on a priori target selection. As an illustration, 

the BLESS randomised placebo-controlled trial that preceded this study included an 
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assessment of whether erythromycin therapy resulted in an increased relative abundance of 

macrolide resistant oropharyngeal streptococci using culture-based proportional sensitivity 

testing (Serisier et al., 2013). While this narrow analysis identified a significant increase in the 

proportion of macrolide-resistant streptococci, neither the level of transmissible resistance gene 

carriage in non-streptococcal species, nor the molecular basis of resistance, were determined. 

The use of pooled metagenomic sequencing revealed a number of resistance determinants for 

follow-up analysis where targeted qPCR assays were subsequently applied to DNA extracts 

from individual samples. This validation step confirmed significant increases in the abundance 

of, for example, the transmissible macrolide resistance gene, erm(B), in patients receiving 

erythromycin. 

By pooling sample DNA at the pre-sequencing, rather than the post-sequencing, library-

construction stage (as performed in standard metagenomic sequencing approaches), the cost of 

the analysis is calculated to be approximately 15% of that required to analyse all of the samples 

individually (although precise costs will be influenced by sample number, processing 

methodologies, and desired sequencing depth). However, despite this substantial reduction in 

expense, it is important to be aware of some of the limitations that are inherent in this approach. 

For example, variations in bacterial load between samples from different patients mean that 

pooling DNA based on total concentration could result in the contribution of individual samples 

to meta-microbiome characteristics being unequal. In addition, the non-normal distribution of 

microbiome traits within a population could lead to the identification of traits as potential inter-

group discriminators based on their particularly high abundance in a small number of 

individuals (although the impact of this effect is likely to decrease with increasing cohort size).  

A limitation of all metagenomic sequencing is the challenge to differentiate between 

changes in the carriage of resistance determinants due to direct selective pressure versus 

changes in resistance gene carriage, because of shifts in the relative abundance of the bacterial 
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populations that encode them. Further, detection of resistance genes may not confer a resistance 

phenotype. Resistance genes may not be expressed or if expressed it may be at low levels. The 

resistance genes may also be harboured by organisms that have no clinical importance and, if 

chromosomally encoded, may not contribute to pathogenesis or clinically relevant community-

resistance. Due to such limitations, the approach described should be used as an additional 

means to identify markers for further analysis, rather than as a means to characterise antibiotic 

associated effects on airway microbiology in itself. 

As an illustration of the potential of the pooled-template metagenomic analysis, shifts 

in the airway resistome were examined. This application targeted the global health concern of 

monitoring of antibiotic resistance. Patients with chronic lung diseases have an increased 

exposure to antibiotics, with the emergence of resistance correlating closely with consumption 

(Goossens, 2009). The resistome associated with the airway microbiota in these patients is 

likely to be a substantial contributor to the emergence and expansion of populations of multi-

resistant organisms (Sherrard et al., 2014) and their potential transmission to individuals within 

the wider community. However, despite its application to the assessment of the airway 

resistome here, pooled-template metagenomic analysis can be applied equally to assessment of 

species distribution (Truong et al., 2015), or to identify changes in community level carriage 

of pathogenicity traits (for example, through alignment to virulence factor genetic databases). 

By aligning regions that encode antibiotic binding sites, it may also be possible to determine 

the relative abundance of resistance-conferring single nucleotide polymorphisms (SNPs). 

Obtaining such information could provide important clinical insight. For example, while de 

novo mutations in the 23S rRNA are the principal cause of macrolide resistance in non-

tuberculous mycobacteria (Brown-Elliott et al., 2012), relatively little is known currently about 

the dynamics of their emergence during macrolide therapy.  
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The costs of metagenomic sequencing, and the associated costs of high performance 

computing required for bioinformatic analysis, are likely to continue to fall. However, by 

providing a low-cost means to perform unbiased surveys of large patient cohorts, strategies 

such as the one described here represent a useful means of identifying potentially important 

discriminatory microbiome features for follow-up analysis.  
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CHAPTER 5: THE IMPACT OF AZITHROMYCIN ON LUNG 

MICROBIOTA AND RESISTOME IN SEVERE ASTHMA 

The contents of this chapter have been prepared for publication as part of: 

Taylor, S.L., Leong, L.E.X., Mobegi F.M., Choo, J.M., Wesselingh, S., Yang, I.A., 

Upham, J.W., Reynolds, P.N., Hodge, S., James, A.L., Jenkins, C., Peters, M.J., 

Baraket, M., Marks, G.B., Gibson, P.G., Rogers, G.B., and Simpson, J.L. Long-term 

azithromycin associated with altered airway microbiome and increased transmissible 

resistance gene carriage in severe asthma. In preparation  

The supplementary information has been included in Appendix 4 

5.1 Abstract 

 The macrolide drug, azithromycin, reduces exacerbations in adults with persistent 

symptomatic asthma. Owing to the pleotropic properties of azithromycin, unintended 

bacteriological consequences such as augmented pathogen colonisation or spread of antibiotic-

resistance organisms can occur, questioning the long-term safety of azithromycin maintenance 

therapy. I aimed to assess the effect of azithromycin on the airway microbiome, including 

the abundance of known airway pathogens, and carriage of antibiotic-resistance genes in 

persistent symptomatic asthma. 

16S rRNA gene sequencing and quantitative PCR was performed on induced sputum 

samples from participants of the AMAZES trial to assess the effect of azithromycin on 

microbiology. Pooled-template shotgun metagenomic sequencing, quantitative PCR, and 

culture isolate whole genome sequencing were performed to assess the effect of azithromycin 

of antibiotic resistance gene carriage. 

Paired sputum samples were available from 61 patients, 34 in the placebo group and 27 

in the azithromycin group. Azithromycin did not affect the total number of bacteria in the lower 

airways (p=0.37). However, azithromycin was associated with a significant decrease in the 
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total diversity of bacterial taxa (p=0.026), and a significant decline in Haemophilus influenzae 

load (p<0.001). A significant increase in macrolide-resistant organisms and the carriage of 

antibiotic resistance genes were also observed, including the macrolide resistance genes 

(erm(B), erm(F), msr(E), mef(A), and mel) and tetracycline resistance genes (tet(M) and 

tet(W)). 

In patients with persistent uncontrolled asthma, azithromycin as an add-on therapy did 

not result in a shift in the prevalence of pathogenic organisms such as Pseudomonas 

aeruginosa, as found in the analysis in other chronic respiratory diseases. However, the 

findings of this study highlight the need to examine antibiotic resistance carriage in patients 

receiving azithromycin and advocate for further research into the efficacy of non-antibiotic 

macrolides.  

5.2 Introduction 

Asthma is a global health issue affecting an estimated 235 million people worldwide 

(World Health Organisation, 2017). For the majority of patients, standard corticosteroids and 

bronchodilator therapies manage symptoms effectively. However, for an estimated 50 million 

patients, asthma is characterised as persistent and uncontrolled (Peters et al., 2006). These 

patients experience more severe airway inflammation (Chung et al., 2014), exhibit an altered 

airway microbiology (Green et al., 2014; Taylor et al., 2018), and, importantly, are at a higher 

risk of severe exacerbations, which disproportionately contributes to asthma-associated 

hospitalisations and healthcare costs (Calhoun et al., 2014; Ivanova et al., 2012; Wang et al., 

2010). Recently, long-term azithromycin therapy was shown to reduce exacerbations and 

improve quality of life in this patient population (Gibson et al., 2017), signifying azithromycin 

therapy as a valuable addition to existing regimens for treating asthma (Brusselle and Pavord, 

2017). However, though clinical side-effects from azithromycin were minimal, the potential 
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for detrimental consequences of long-term therapy on airway microbiology remains poorly 

understood. 

Azithromycin is a member of the macrolide drug class that can inhibit bacterial protein 

synthesis (Hansen et al., 2002), reduce pathogen virulence (Imperi et al., 2014) and also 

modulate multiple pathways of host immunity (Altenburg et al., 2011; Gielen et al., 2010; 

Simpson et al., 2008). The use of macrolides has therefore been found to alter the composition 

of bacteria in the airways (Choo et al., 2018; Rogers et al., 2014; Slater et al., 2014), which can 

have negative impacts, such as promoting growth of pathogenic organisms. In bronchiectasis, 

for example, 48 week treatment with erythromycin (another macrolide drug) has been shown 

to increase the relative abundance of the airway pathogen Pseudomonas aeruginosa in the 

lungs (Rogers et al., 2014). In persistent uncontrolled asthma, the lower airway microbiota is 

associated with multiple markers of asthma severity including lower lung function (Green et 

al., 2014), neutrophilic inflammation (Taylor et al., 2018), and corticosteroid resistance 

(Goleva et al., 2013), however the effect of azithromycin on the airway microbiota in these 

patients is largely unknown.  

Along with selection of airway pathogens, the administration of macrolides has been 

previously reported to increase the carriage of macrolide-resistant bacteria (Altenburg et al., 

2013; Brusselle et al., 2013; Choo et al., 2018; Kastner and Guggenbichler, 2001; Malhotra-

Kumar et al., 2007; Mustafa et al., 2017; Saiman et al., 2010; Serisier et al., 2013). Macrolide 

resistance can be acquired in bacteria intrinsically, through genetic mutations, or extrinsically, 

through acquisition of transmissible macrolide resistance genes from an existing macrolide 

resistant organism. Acquired macrolide resistance is a global health concern, particularly 

relating to the treatment of infections where macrolides are routinely prescribed, such as in 

nontuberculous mycobacterium infections (Egelund et al., 2015), and atypical infections in 

community acquired pneumonia (Waterer et al., 2011) and sexually transmitted infections 



 

107 

 

(Workowski et al., 2015). Identifying reservoirs of transmissible resistance genes is a global 

health strategy to limit the dissemination of antibiotic resistance to the wider community, 

however this has not been investigated in the patients receiving azithromycin in asthma.   

In this secondary analysis from the Asthma and Macrolides: The Azithromycin Efficacy 

and Safety (AMAZES) study, undirected approaches were used to assess whether azithromycin 

affects the abundance of opportunistic pathogens and carriage of antibiotic resistance genes in 

the airways of patients with persistent uncontrolled asthma.  

5.3 Methods 

5.3.1 Study population 

AMAZES was a 12-month, double-blind, randomised, placebo-controlled trial 

(ACTRN12609000197235) to determine whether oral azithromycin decreases the frequency 

of asthma exacerbations in adults (≥18 years) with symptomatic asthma despite current use of 

inhaled corticosteroid and long-acting bronchodilator, and who had no hearing impairment or 

abnormal prolongation of the corrected QT interval (Gibson et al., 2017). Patients were 

randomly assigned (1:1) to receive azithromycin 500 mg or placebo three times per week for 

48 weeks. Of the 420 patients recruited for the trial, sputum samples from 61 patients were 

analysed here based on available stored sputum samples. Inclusion and exclusion criteria are 

described in section 2.3.1 and Appendix 1. 

5.3.2 Sputum collection and DNA extraction 

Induced sputum was collected at baseline and after 48 weeks of the trial, as described 

in Chapter 2.3. Nucleic acid extraction was performed on frozen sputum samples as described 

in Chapter 2.3, using a combined physical, enzymatic, and heat-based cell lysis, followed by 
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phenol-chloroform extraction and DNA recovery using EZ-10 Spin columns (Bio Basic, Inc., 

Ontario, Canada). 

5.3.3 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing 

The V1-3 hypervariable region of the bacterial 16S rRNA gene was sequenced as 

described in Chapter 2.3. Shotgun metagenomic sequencing was performed on DNA extracts 

pooled by treatment group and time point as described in Chapter 4.3 with minor changes. 

Pooled template DNA was sequenced on an Illumina HiSeq 4000 with paired-end 150bp reads. 

Sequencing data are deposited in the European Nucleotide Archive database under 

PRJEB26356 for 16S sequences and PRJEB27079 for shotgun metagenomic sequences. 

5.3.4 Bioinformatic processing 

16S amplicon sequencing reads were processed using QIIME v1.9.1 and assigned 

taxonomy using the SILVA database v1.23 as a reference. Sequence data were subsampled to 

1,833 reads. Two samples from the azithromycin group did not reach this threshold and were 

removed. Microbiome diversity metrics (Faith’s phylogenetic diversity and UniFrac distances) 

were computed using QIIME v1.9.1.  

Metagenomic sequences were processed as described in Chapter 4.3. Quality filtering 

and removal of human DNA yielded an average of 6,561,275 reads per sample (Table 5.1). 

Reads were de novo assembled (Peng et al., 2012) and 50,361 genes with greater than 100 bp 

were identified and concatenated into a non-redundant gene catalogue. Screening of antibiotic 

resistance genes was performed by mapping genes to the comprehensive antibiotic resistance 

database (CARD) v1.1.7 (Jia et al., 2017) and sample counts were normalised to ΔCPM. 
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Table 5.1: Summary of pooled sample metagenomic reads 

 Total reads Quality human reads Quality non-human reads 

Azithromycin pre 112,860,634 92,617,788 6,135,414 

Azithromycin post 130,838,966 107,280,206 5,647,466 

Placebo pre 153,440,890 122,872,560 7,170,758 

Placebo post 148,938,168 126,622,016 7,291,460 

 

5.3.5 Resistance gene and bacterial species quantification  

Levels of resistance genes erm(B), erm(F), mel, msr(E), tet(M) and tet(W) were 

assessed using SYBR Green assays, and the mef gene (detecting both mef(A) and mef(E)) was 

assessed using a Taqman assay based on previously described primer pairs (Table 5.2). Levels 

of Streptococcus pneumoniae and Pseudomonas aeruginosa were quantified using SYBR 

Green assays and Haemophilus influenzae and Staphylococcus aureus were quantified using 

Taqman assays based on previously described primer pairs (Table 5.3).  

For SYBR Green qPCR assays, 1 µL of DNA extract, 0.2 µM of each primer, 17.5 µL 

of 2X Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen, Carlsbad, USA) and the 

appropriate volume of water was added to a 35 µL total reaction volume. For Taqman qPCR 

assays, 1 µL of DNA extract, 0.2 µM of each primer, 0.1 µM of target probe, 17.5 µL of 2X 

KAPA Probe Fast qPCR Master Mix (KAPA Biosystems Inc., Wilmington, USA) and the 

appropriate volume of water was added to a 35 µL total reaction volume. Quantitative real-

time PCR assays were performed on three technical replicates, at a 10 µL reaction volume per 

replicate, on a QuantStudio 6 and 7 Flex Real-Time PCR system (Applied Biosystems, 

Carlsbad, USA). Mean cycle threshold (Ct) of resistance gene replicates were normalised to 

16S mean Ct to give ΔCt. ΔCtmax-ΔCt was calculated so that a higher value represents higher 

gene carriage. Total bacteria (as determined by 16S quantification) and specific bacterial 

species were quantified to a copy number per µL of extracted DNA (copies/µL of DNA) by 

comparing the sample Ct to a standard curve with known copy numbers. 
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Table 5.2: Primers used to quantify antibiotic resistance gene carriage 

Target 

gene Sequence (5' - 3') 

Amplicon 

size (bp) 

Reference 

erm(B) 5'- GAAAGCCRTGCGTCTGACATC 105 (Zhang et al., 

2011)  5'- CGAGACTTGAGTGTGCAAGAGC 
 

erm(F) 5'-CGGGTCAGCACTTTACTATTG 466 (Choo et al., 

2018; Chung et 

al., 1999) 
 5'-GGACCTACCTCATAGACAAG 

 

mef 5'-TATGGAGCTACCTGTCTGGA 85 

(Srinivasan et al., 

2011) 

 5'-GGTACTAAAAGTGGCGTAACC 
 

 
HEX-CCGTAGCATTGGAACAGCTTTTC-

BHQ1 

 

mel 5'- GAACGTAAGAGCCAAGCTGCA 51 (Ambrose et al., 

2005)  5'- GGCACGTTCCGCAATAAATT  

msr(E) 5'- TCGATACGAAGAGGCGATGC 163 
This study  5'- CTTCTGTTTGGTGCCGGTTG 

 

tet(M) 5'- CAGAATTAGGAAGCGTGGACAA 67 (Florez et al., 

2014)  5'- CCTCTCTGACGTTCTAAAAGCGTAT  

tet(W) 5'- GAGAGCCTGCTATATGCCAGC 168 
(Tao et al., 2014) 

 5'- GGGCGTATCCACAATGTTAAC  

16S 5'-TCCTACGGGAGGCAGCAGT 466 (Nadkarni et al., 

2002)  5'-GGACTACCAGGGTATCTAATCCTGTT  

 

Table 5.3: Primers used to quantify bacterial species levels 

Organism Sequence (5' - 3') 

Amplicon 

size (bp) 

Reference 

Haemophilus 

influenzae 
5'- ATTAAATGTTGCATCAACGC 140 

(Corris et 

al., 2015) 

5'- GACTTTTGCCCACGCAC  

FAM-

ACGRTTTTACCATAGTTGCACTTTCTC-

BHQ 

 

S. pneumoniae/ 

S. pseudo-

pneumoniae 

5'-GTGCTITGAAATTCTATGCTTC 135 
(Sistek et 

al., 2012) 5'-GTGGAGCTACCTTATTTTTTAC  

Staphylococcus 

aureus 
5'-AAATTACATAAAGAACCTGCGACA 87 

(Thomas et 

al., 2007) 

5'-GAATGTCATTGGTTGACCTTTGTA  

FAM-

AATTTAACCGTATCACCATCAATCGCTTT 

-BHQ1 

 

Pseudomonas 

aeruginosa 
5'-CGAGTACAACATGGCTCTGG 117 (Feizabadi 

et al., 

2010) 
5'-ACCGGACGCTCTTTACCATA  
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5.3.6 Bacterial culture and whole genome sequencing 

Sputum was diluted and plated on horse blood agar (HBA), Choc-B agar and 

chromID™ S. aureus Elite agar (SAIDE) plates to isolate streptococci, Haemophilus species 

and Staphylococcus aureus, respectively. Plates were cultured for 18-48 h at 35 °C and with 

5% CO2 (for HBA, Choc-B plates). Individual colonies were subcultured and identified by 

Matrix Assisted Laser Desorption/Ionization-time of flight mass spectrometry (MALDI-TOF), 

using a Bruker Microflex MS score ≥2.0. Identification of S. pneumoniae was determined by 

optochin sensitivity. Azithromycin sensitivity was determined by disk-diffusion according to 

EUCAST protocols (Matuschek et al., 2014) and using EUCAST Clinical Breakpoints from v. 

8.1. This is the most current version and states the clinical breakpoint for Haemophilus is 

conflicting and should be guided by the epidemiological cut-offs. Haemophilus breakpoint 

sensitivity to azithromycin was therefore determined by comparing inhibition zones to that of 

macrolide-sensitive H. influenzae NTCC8468.  

Following disk-diffusion testing, single isolate bacterial lawns were then suspended at 

approximately 5 MacFarland, in 10% glycerol/saline solution and stored at -80 °C. DNA 

extraction was performed on 50 µL of bacterial solution using a modified AxyPrep Mag Tissue-

Blood gDNA Purification kit protocol (Corning, Big Flats, NY, USA), with an additional 2.9 

mg/ml lysozyme and 0.14 mg/ml lysostaphin (Sigma-Aldrich, St. Louis, MO, USA) 1 h at 37 

°C incubation for gram positive bacteria. Bacterial DNA was processed for whole genome 

sequencing (WGS) using Illumina Nextera XT DNA Library Preparation Kit according to 

preparation guidelines. The libraries were normalised to 2 nM and sequenced on an Illumina 

NextSeq 550. Sequences were de novo assembled using the Nullarbor pipeline v20170519 and 

antibiotic resistance gene carriage was identified from predicted protein sequences using 

Blast+ v2.6.0 against the CARD database v1.1.3 with an evalue score <1x10-20. 
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5.3.7 Statistical analysis 

All continuous data were tested for normality using GraphPad Prism v7.03. Unpaired 

parametric data were analysed by Student’s t-test, unpaired non-parametric data were analysed 

by the Mann Whitney U test, paired non-parametric data were analysed by the Wilcoxon 

matched-pairs signed rank test, and proportional data were analysed by Fisher’s exact test. 

Multivariate analysis (PERMANOVA) of 16S rRNA taxonomic profiles was performed using 

the PRIMER 6 software (PRIMER-E Ltd, Plymouth, UK). 16S rRNA taxonomic changes were 

analysed by linear discriminant analysis effect size (LEfSe) with alpha=0.05 and a “one vs all” 

test (Segata et al., 2011).  

5.4 Results 

5.4.1 Baseline demographics 

The AMAZES study took place between June 12, 2009, and Jan 31, 2015 where adults 

with persistent uncontrolled asthma (showing evidence of variable airflow obstruction and loss 

of asthma control (asthma control score (ACQ6) ≥0.75) despite treatment with maintenance 

ICS or LABA) were randomly assigned to either 500 mg of azithromycin or placebo, three 

times per week for 48 weeks (Gibson et al., 2017). Of these participants, raw sputum was 

available at both baseline and after 48 weeks from 27 patients who received azithromycin and 

34 who received placebo. There were no significantly different clinical characteristics or 

sputum microbiological measures at baseline between groups (Table 5.4), although asthma 

duration and smoking history trended towards a difference. There were also no significant 

differences in baseline sputum microbial community structure (p=0.780, pseudo-F=0.845).  
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5.4.2 Azithromycin therapy reduces sputum phylogenetic diversity 

Paired comparisons of sputum between baseline and after 48 weeks of treatment 

indicated that azithromycin was not associated with a significant change in total bacterial load 

(p=0.37, Figure 5.1A). However, bacterial diversity was significantly reduced in the 

azithromycin group (Faith’s phylogenetic, p=0.026, Figure 5.1B) but not in the placebo group 

(p=0.47, Figure E4.1 of Appendix 4). Pairwise PERMANOVA testing identified a significant 

difference in microbiome composition in the azithromycin group (p=0.014, t=1.30), which was 

not seen in the placebo group (p=0.988, t=0.827). This change was also reflected in higher 

unweighted UniFrac distance in the azithromycin group compared to the placebo group 

(p=0.022, Figure 5.1C). Together, these results demonstrate that, in the lower airways, 

azithromycin therapy reduces bacterial diversity while total bacterial levels remain. 

  



 

114 

 

Table 5.4: Characteristics of patients at baseline 

  Placebo (n=34) Azithromycin 

(n=27) 

p-value  

Age, yrs¥ 57.7 (17.4) 59.4 (12.5) 0.682 

Age asthma diagnosis, yrsΩ 9.50 (5.0-27.3) 23.0 (6.0-55.0) 0.125 

Asthma durationΩ 41.8 (24.0-56.1) 30.2 (13.3-45.5) 0.070 

Femaleϒ 12 (35.3) 15 (55.6) 0.129 

Height, cm¥ 168.2 (9.7) 167.2 (9.8) 0.699 

Weight, kgΩ 86.6 (71.6-99.7) 83.5 (74.1-96.7) 0.684 

Atopyϒ 31 (93.9) 21 (77.8) 0.124 

Ever-smokerϒ 9 (26.5) 8 (29.6) 0.999 

Pack years, yrs Ω 6.0 (1.0-9.4) 25.8(4.3-46.8) 0.059 

ACQ score ¥ 1.72 (0.81) 1.65 (0.91) 0.775 

Medications       

ICS dose, BDP mcg/day Ω 1000 (800-2000) 900 (800-2000) 0.371 

     ICS/Long-acting beta agonistϒ 32 (100) 22 (91.7) 0.179 

     Leukotriene modifierϒ 1 (3.1) 0 >0.999 

     Long-acting anti-muscarinicϒ 6 (18.8) 7 (29.2) 0.524 

     Theophyllineϒ 0 2 (8.3) 0.179 

     Oral corticosteroidϒ 0 1 (4.2) 0.429 

Pre B2 spirometry ¥       

     Pre B2 FEV1% 71.1 (16.6) 69.2 (17.0) 0.674 

     Pre B2 FVC% 81.4 (15.2) 82.3 (12.2) 0.813 

     Pre B2 FEV1/FVC% 66.8 (9.2) 66.0 (12.0) 0.751 

Blood eosinophils (× 109) per L Ω 0.3 (0.2-0.4) 0.3 (0.2-0.5) 0.585 

Sputum cell countsΩ       

     Total cell count (× 10⁶) per mL 5.8 (2.7-9.8) 4.7 (2.7-7.2) 0.637 

     Neutrophils (%) 36.8 (19.3-61.0) 37.5 (11.3-58.0) 0.794 

     Eosinophils (%) 1.75 (0.75-4.75) 2.0 (0.5-7.75) 0.741 

Sputum phenotypeϒ       

     Eosinophilic 13 (38.2) 11 (44.0) 0.862 

     Neutrophilic 7 (20.6) 3 (12.0) 0.321 

     Paucigranulocytic  12 (35.3) 10 (40.0) 0.888 

     Mixed 2 (5.9) 1 (4.0) 0.696 

Sputum bacterial count (× 105) per 

mcL of DNAΩ 

5.66 (1.49-11.67) 3.71 (1.08-9.98) 0.423 

Sputum microbiota diversity Ω       

     Faith’s phylogenetic diversity 11.48 (9.39-12.7) 11.16 (8.45-12.8)* 0.547 

    Simpson’s evenness  0.117 (0.065-0.145) 0.117 (0.09-0.167)* 0.423 

    Shannon-Wiener diversity 5.66 (4.95-6.11) 5.60 (4.79-6.14)* 0.885 

    Taxa richness 56 (41.75-62) 52 (37.5-67.5)* 0.645 
 
¥ Mean (SD), Student’s t-test; Ω Median (IQR), Mann Whitney U test; ϒ n(%),  Fisher’s 

exact test; *Data available for 25 participants 
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Figure 5.1: Effect of azithromycin on sputum microbiota composition. A) Total bacterial load 

before and after azithromycin. B) Faith’s phylogenetic diversity before and after azithromycin. 

C) Unweighted UniFrac distance in placebo and azithromycin groups, where a higher 

dissimilarity distance indicates greater change in microbiota composition between samples 

before and after placebo and azithromycin. 

5.4.3 Azithromycin therapy reduces Haemophilus influenzae load 

Of all the taxa identified in the lower airways, Gammaproteobacteria had the greatest 

reduction following azithromycin (p=0.039, log LDA score=4.68, Figure 5.2A), but not 

placebo (Figure E4.2 of Appendix 4). A range of species belong to Gammaproteobacteria, of 

which, the absolute levels of the notable opportunistic respiratory pathogen, H. influenzae, fell 

significantly in patients who received azithromycin (p<0.0001), but not placebo (p=0.62, 

Figure 5.2B). Other lower airway pathogens including S. pneumoniae, S. aureus, and P. 

aeruginosa appeared unaffected by azithromycin (Figure E4.3 of Appendix 4). 
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Figure 5.2: Effect of azithromycin on individual taxa. A) Linear discriminant analysis effect 

size (LEfSe) of taxa that significantly changed in relative abundance following azithromycin. 

Red indicates taxa that were lower, and green indicates taxa that were higher following 

azithromycin B) Haemophilus influenzae copy number before and after either placebo (left) or 

azithromycin (right). 

5.4.4 Azithromycin therapy increases carriage of antibiotic resistance genes  

Carriage of antibiotic resistance genes was screened for by pooled template shotgun 

metagenomic analysis. Out of the 89 antibiotic resistance genes detected, seven transmissible 
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genes (tet(W), mel, msr(E), tet(M), erm(F), mef(A), and erm(B)) were more highly represented 

after azithromycin but not placebo (Figure 5.3). This effect was confirmed by qPCR, with all 

seven resistance genes significantly increased following azithromycin (Figure 5.4) but not 

placebo (Figure E4.4 of Appendix 4).  
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Figure 5.3: Effect of azithromycin on antibiotic resistance genes from pooled-template shotgun metagenomic screening. Counts per million total 

reads (CPM) of reads that matched to antibiotic resistance genes from the CARD database. Change in CPM (ΔCPM) between pooled samples 

before and after azithromycin or placebo, where red indicates higher in pooled-sample post azithromycin or placebo and blue indicates lower in 

pooled-sample post azithromycin or placebo. Resistance genes are grouped by function (as defined by CARD) where: red = aminoglycoside 

resistance genes, blue = beta-lactam resistance genes, green = efflux pump resistance genes, orange = fosfomycin resistance genes, purple = 

glycopeptide resistance genes, beige = macrolide resistance genes, pink = polymyxin resistance genes, light green = tetracycline resistance genes, 

and brown = other resistance genes. * indicates transmissible genes that were increased in the azithromycin group but not in the placebo group.
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5.4.5 Macrolide resistance genes identified from sputum isolates 

To investigate which species harboured transmissible resistance genes, bacteria were 

isolated from a subgroup of patients, before and after azithromycin (n=15, based on available 

sputum) and subjected to azithromycin susceptibility testing. The total proportion of 

azithromycin-resistant isolates significantly increased following azithromycin therapy 

(p<0.0001, Table 5.5), of which viridans streptococci were the only significant sub-group 

(p=0.001, Table 5.2). WGS identified macrolide resistance genes erm(B), mel, and mef(A), as 

well as tet(W) and tet(M) in resistant viridans streptococci (Table E4.1 of Appendix 4) Six of 

the seven streptococci with both erm(B) and tet(M) were found to contain both genes on a 

Tn916 mobile genetic element. Of the four azithromycin-resistant H. parainfluenzae isolated, 

two contained the putative mutation in the 50S ribosomal protein L4 (G65A) associated with 

macrolide resistance (Peric et al., 2003) while two had no recognised genetic mechanism for 

macrolide resistance (Table E4.1 of Appendix 4). Of the two azithromycin-resistant S. aureus 

isolates, one contained erm(A) and one contained msr(C) (Table E4.1 of Appendix 4).  
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Figure 5.4: Effect of azithromycin on levels of screened antibiotic resistance genes. Levels of 

the seven antibiotic resistance genes before and after azithromycin. Genes were identified by 

pooled-template shotgun metagenomic sequencing quantified by qPCR and normalised to total 

bacteria. 



 

121 

 

Table 5.5: Proportion of azithromycin resistant isolates before and after therapy 

  Before After p-value  

Haemophilus influenzae  0/4 (0%) 0/0 (0%) >0.99 

Haemophilus parainfluenzae  2/13 (15%) 2/2 (100%) 0.057 

Viridans streptococci  24/33 (73%) 33/33 (100%) 0.001 

Staphylococcus aureus  1/2 (50%) 2/2 (100%) >0.99 

Total species 27/52 (52%) 37/37 (100%) <0.0001 

Fisher’s exact test; Data available for 15 patients 

 

5.5 Discussion 

Long-term azithromycin treatment effectively manages exacerbations in adults with 

persistent uncontrolled asthma (Gibson et al., 2017), however there are concerns about the 

potential negative effects on the lower airway microbiology and antimicrobial resistance. The 

results here show that azithromycin has a selective effect on the lower airway microbiota 

however does not alter the total bacterial levels, nor does it increase the abundance of 

pathogenic bacteria. In fact, the amount of H. influenzae significantly decreased with 

azithromycin. However, concerning antimicrobial resistance carriage, azithromycin increased 

carriage of macrolide resistance and non-macrolide resistance genes. As these results were all 

determined using undirected methods, the results presented here represent a comprehensive 

investigation of the effect of azithromycin on the airway microbiome and resistome in asthma.  

The multiple functions azithromycin elicits in chronic airway diseases make identifying 

the mechanism of action difficult. There was no significant decline in total bacterial load in 

patients receiving azithromycin, suggesting that broad antibiotic effects are minimal, however, 

the decline in phylogenetic diversity indicates a potentially selective effect of azithromycin. 

This is further evident in the weighted and unweighted UniFrac results, where unweighted 

UniFrac distance was significantly higher in azithromycin compared to placebo, however 

weighted UniFrac distance was not (p=0.74, data not shown). Unweighted UniFrac distance is 

calculated by the presence or absence of detected taxa whereas weighted UniFrac accounts for 
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relative abundance and is useful for examining differences in community structure (Lozupone 

et al., 2007). The discrepancy between weighted and unweighted UniFrac indicates 

azithromycin has specific selective effects that result in the loss of detection of certain taxa 

rather than a change in their relative abundance. The stark decline in H. influenzae load, but 

relatively unchanged S. pneumoniae load, following azithromycin exemplifies this. Results 

from LEfSe indicate that other members of the Gammaproteobacteria class are also affected 

by azithromycin. 

The selective effects of azithromycin specific to H. influenzae (and potentially other 

Gammaproteobacteria) could reflect either direct effects (for example selective bacteriocidic 

properties) or indirect effects through non-antibiotic azithromycin properties. For example, 

azithromycin may improve immune-driven clearance of H. influenzae. Azithromycin has been 

previously shown to improve macrophage phagocytic function when given to patients with 

COPD (Hodge et al., 2008). Proper clearance of non-typeable H. influenzae from the lower 

airways is dependent on macrophage phagocytosis (Hodge et al., 2017; Ween et al., 2016). 

Therefore, the reduction in H. influenzae load following azithromycin reported here may be an 

indirect result from improved macrophage phagocytic ability. 

Along with asthma, azithromycin has been shown to be an effective management option 

in a range of chronic respiratory diseases, including COPD (Albert et al., 2011), CF (Southern 

et al., 2012), and bronchiectasis (Altenburg et al., 2013; Wong et al., 2012). None of these 

studies reported significant changes to pathogen abundance. However, following long-term 

erythromycin in bronchiectasis a reduction in H. influenzae, and an increase in P. aeruginosa 

was reported (Rogers et al., 2014). No change to P. aeruginosa abundance (nor any other 

common respiratory pathogen measured) were observed, however P. aeruginosa is less 

common in asthma compared to bronchiectasis.  
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The other primary aim of this study was to assess the carriage of antibiotic resistance 

genes following azithromycin, as resistance is a known effect (Altenburg et al., 2013; Brusselle 

et al., 2013; Choo et al., 2018; Hare et al., 2015; Kastner and Guggenbichler, 2001; Malhotra-

Kumar et al., 2007; Mustafa et al., 2017; Saiman et al., 2010; Samson et al., 2016; Serisier et 

al., 2013; Tramper-Stranders et al., 2007; Valery et al., 2013). After screening for all 

characterised antibiotic resistance genes, seven transmissible resistance genes were found that 

were higher in the airways post-azithromycin (compared to baseline) but not higher in placebo, 

of which five (mel, msr(E), erm(F), mef(A), and erm(B)) confer resistance to azithromycin. 

The increase in tet(W) and tet(M) are of interest as both are tetracycline resistance genes. From 

the streptococcal WGS data, tet(M) was found on the same mobile genetic element as erm(B), 

which a well characterised mobile genetic element (Clewell et al., 1995) and has been shown 

previously to increase in streptococci following macrolide therapy (Malhotra-Kumar et al., 

2007). The observed increase in tet(W) appears to be novel in relation to macrolide therapy. 

tet(W) was detected in an azithromycin resistant Streptococcus oralis isolate however the 

further investigation is required to determine the extent of this and whether other prominent 

species carry this gene. These findings indicate the wider consequences of azithromycin 

therapy other than solely macrolide resistance and advocate for further research into the 

efficacy of non-antibiotic macrolides (Hodge et al., 2017). 

This study has several limitations. While the pooled-template shotgun metagenomics 

analysis identified the top resistance genes increased across all included patients, other 

resistance genes that were not found at high abundance across multiple patients may have been 

missed. Further, the limited culture-based analysis failed to isolate any bacteria carrying erm(F) 

and msr(E), despite their increased carriage rate. It is likely that organisms other than 

streptococci, Haemophilus and S. aureus harbour these genes, which were not cultured in this 

study. For example, sequenced Prevotella and Porphyromonas isolates, which are common in 
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the airways, have regions that map to erm(F) whereas sequenced Rothia and Pseudomonas 

isolates have regions that map to msr(E). Inability to isolate relevant respiratory pathogens, 

such as Moraxella catarrhalis and S. pneumoniae, limit the ability to determine carriage of 

resistance genes in these organisms. 

In summary, it was found that azithromycin did not affect the total amount of bacteria 

in the lower airways of patients with persistent uncontrolled asthma. However, azithromycin 

was associated with a significant decrease in the total diversity of taxa, including a significant 

decline in the pathogenic species H. influenzae. A significant increase in the carriage of 

antibiotic resistance genes was also found, which included macrolide-resistance genes and 

tetracycline-resistance genes, informing our understanding of the wider implications of long-

term azithromycin therapy. This is the first study based on a randomized, double-blind, 

placebo-controlled trial to investigate the impact of azithromycin treatment on the asthma 

airway microbiome. The absence of selective increases in pathogenic bacteria with 

azithromycin treatment suggests that long-term therapy is not associated with deleterious 

impacts on airway microbiology. Indeed, significant changes in both airway microbiota 

diversity and levels of the important respiratory pathogen, H. influenzae, in those receiving 

azithromycin identifies potential contributors to treatment-associated clinical benefit.  
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CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 

In this dissertation, I presented studies that have furthered our understanding of chronic 

airway diseases. With the lower airway environment of patients contributing to airflow 

limitation and respiratory insult, elucidating the complex ecology of the lower airways has 

opened new possibilities to characterise and target disease symptoms. Prior to this dissertation, 

it was known that the airways of patients were colonised by microbial communities and that 

the presence of microbes considered pathogenic could contribute to disease. It was further 

appreciated that the composition of the microbiota could also reflect aspects of disease and be 

potentially clinically informative, however it was poorly understood how the complex 

environment selected the microbiota and how this in-turn could affect disease symptoms.  

The research of this dissertation aimed to characterise how the lower airway 

environment affected the composition of the resident microbiota and to assess the clinical value 

of these interactions in chronic airway disease. Specifically, the effect of three lower airway 

selective pressures on the microbiota composition were assessed: airway inflammation 

phenotype, inherent mucosal glycan variation, and long-term macrolides. The aims were 

effectively tested through the analysis of two randomised controlled trials cohorts. This 

dissertation has demonstrated that specific measurable aspects of the lower airway environment 

are associated with the microbiota and can be used to reflect underlying symptoms of disease, 

inform patient stratification, and predict disease course. Together, the studies of this 

dissertation provide a deeper understanding of the contributary roles of the lower airway 

physicochemical environment and microbiota to the underlying pathophysiology and clinical 

course of chronic airways disease. These findings can be further developed to tailor clinical 

care to the specific characteristics of a patient. The clinical insight gained from these studies 

and the future research now required off the back of these studies will now be discussed. 
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In Chapter 2, the selective role of the type of airway inflammation to the lower airway 

microbiota was investigated in asthma. It was found that patients with a neutrophilic 

inflammatory phenotype had an airway microbiota composition with a lower diversity and a 

high relative abundance of either Moraxella or Haemophilus, two taxa that are associated with 

opportunistic respiratory infections. By contract, the eosinophilic inflammatory phenotype was 

not associated with microbiota diversity or pro-inflammatory taxa. These results further our 

understanding of the neutrophilic asthma phenotype, which, compared to eosinophilic asthma, 

is less characterised and is associated with a less effective response rate to conventional 

therapies (Berry et al., 2007; Cowan et al., 2010). The microbiota composition in the airways 

of neutrophilic patients indicates these patients have a more selective respiratory environment 

where higher relative abundance of pathogenic taxa may contribute to inflammation. 

The selective pressure of neutrophilic inflammation on airway microbiota diversity is 

well characterised in other chronic airway diseases, however is controversial in asthma. 

Sputum microbiota diversity of patients with COPD has been shown to inversely correlate with 

sputum neutrophilic markers (Dicker et al., 2018), with similar evidence in studies of CF 

(Zemanick et al., 2015) and bronchiectasis (Rogers et al., 2013). In asthma, eosinophilic 

inflammation (Durack et al., 2016; Huang et al., 2015; Simpson et al., 2016; Sverrild et al., 

2017) has been previously associated with the microbiota composition, however, so too has 

neutrophilic inflammation (Green et al., 2014; Zhang et al., 2016), with the results of this 

dissertation supporting the latter.  

The discrepancies between the effects of inflammation in asthma probably reflect the 

heterogeneity of the disease. To many, the diagnosis of “asthma” is an outdated term because 

it provides a restricted view of the heterogeneous mix of pathobiologically distinct mechanisms 

responsible for morbidity and mortality in patients (Pavord et al., 2018). Many subtypes of 

asthma have been defined (Wenzel, 2012), with some of these subtypes overlapping with other 
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diseases (Agusti et al., 2016; Pavord et al., 2018). The results presented in this dissertation 

support the stratification of patients with asthma by inflammatory phenotype, which has been 

previously found to be a clinically informative method (Berry et al., 2007; Cowan et al., 2010; 

Simpson et al., 2006). Large studies are now required to assess whether further stratification of 

patients by their airway microbiology is additive to clinical decision making. For example, are 

patients with neutrophilic asthma, and a reduced lower airway microbiota diversity less 

responsive to corticosteroids compared to neutrophilic patients with a higher microbiota 

diversity? Previous studies have proposed that the airway microbiota reduces corticosteroid 

efficacy through negating its anti-IL-8 effects in monocytes (Goleva et al., 2013), and in 

Chapter 2 I showed that microbiota diversity was associated with ICS dose. 

In Chapter 3, I investigated the selective role of mucosal glycosylation to the lower 

airway microbiota. Demonstrated in bronchiectasis, I showed that a common genetic mutation 

(which limits the display of fucose on the mucosal surface) was a strong predictor of lower 

airway microbiology. This secretor mucosal genotype was also strongly associated with 

exacerbation frequency and lung function. In the context of previous studies in CF (Taylor-

Cousar et al., 2009) and asthma (Innes et al., 2011; Kauffmann et al., 1996; Ronchetti et al., 

2001), these results highlight the clinically important variable of mucosal glycosylation in 

patients with chronic airway diseases, which should be considered in the clinical setting. 

Moving forward, there are several questions that now need to be addressed. As mucus 

glycosylation can influence multiple aspects of the lower airway environment (such as nutrient 

availability and adhesion sites for multiple microbes), what is/are the precise mechanism/s that 

allow secretor status to influence lower airway microbiology and disease severity in 

bronchiectasis? P. aeruginosa can bind to and metabolise many mucosal glycans, however the 

use of α(1,2)-fucosylated glycans has not been properly assessed. Studies assessing the role of 

mucus glycans on P. aeruginosa infection of the lower airways are now required, as well as 
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exploring alternative mucus glycan-related mechanisms of disease susceptibility. For instance, 

the influence of secretor status on viral infection susceptibility and the contribution of this to 

chronic airway diseases should now be investigated. 

As described in Chapter 1.5, assessment of FUT2 genotype has been found to influence 

susceptibility to a range of mucosal-associated infections and diseases. The mechanisms of 

action of this are likely to span across multiple facets of mucosal immunity, from facilitating 

pathogen infection, to microbiota-related mechanisms, such as modulation of immunity. It is 

important to know the degree to which mucosal glycosylation affects pathogen infection 

susceptibility and microbiota composition across the infection and disease spectrum. This will 

assess whether mucosal glycosylation has predictive capabilities in the clinical and public 

health settings. The increasing collection and analysis of large data repositories of populations 

provide an opportunity to explore effects of glycosylation variability on risks of infection and 

disease susceptibility at a population-level, as well as at an individual level, which should now 

be explored.  

Apart from the predictive capabilities of secretor status, another potential area of 

translation is the development of novel therapies that target mucosal glycans and glycosylation. 

For instance, can therapies be developed to simulate the non-secretor glycan phenotype in 

secretor bronchiectasis patients? Inhalation of glycans that P. aeruginosa bind to has been 

shown to reduce P. aeruginosa load in the lungs of CF patients, most likely by acting as 

receptor decoys and limiting biofilm formation and epithelial adhesion (Boukerb et al., 2014; 

Hauber et al., 2008). Specifying the use of these types of therapies, based on a patient’s mucosal 

glycosylation profile may improve efficacy. 

Further, translation options exist for mucosal glycosylation that relate to the gut 

microbiota composition and susceptibility to allergic disease. A growing number of studies are 
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showing that early-life antibiotic exposure or an early-life dysregulated microbiota is linked 

with allergen sensitisation in later life (Zeissig and Blumberg, 2014). Potentially contributing 

to this is maternal secretor status, which has been shown to influence infant microbiota 

composition (Lewis et al., 2015; Rausch et al., 2017), likely through variable glycosylation of 

breast milk. As non-secretors are more susceptible to asthma (Kauffmann et al., 1996), 

psoriasis (Tang et al., 2014), and early life eczema (Sprenger et al., 2017), the relationship 

between glycan fucosylation and the microbiome composition may contribute to the 

development of allergic conditions. This now requires further investigation and could lead to 

novel therapeutic strategies. For example, might breast milk, supplemented with α(1,2)-fucose 

reduce allergic disease susceptibility in at risk infants? Oral supplementation with α(1,2)-

fucose has been shown to be well tolerated and shifts the intestinal microbiota in healthy adults 

(Elison et al., 2016). 

In Chapter 4 and Chapter 5, I investigated the effect of macrolides on the lower airway 

microbiota. This was tested first by measuring the effect of macrolides on bacterial resistance 

gene carriage and second by measuring the effect of macrolides on the microbiota composition 

and pathogen prevalence. In assessing the carriage of resistance genes, a novel metagenomic 

approach was developed, which can improve the monitoring of antibiotic resistance globally. 

This method identifies how all antibiotic resistance genes change within a population, in a cost-

effective manner. In the AMAZES cohort, this method was applied to show that macrolide and 

tetracycline resistance genes increased following azithromycin. Future research is now 

required to determine whether this method can be applied to other populations with a high 

antibiotic burden. For example, in aged care facilities (Lim et al., 2015), agricultural practices 

(Thanner et al., 2016), and countries with poor antibiotic stewardship (Cox et al., 2017), 

antimicrobial resistance is of particular concern, however the development and transmission of 

resistance mechanisms in these populations is poorly understood (World Health Organisation, 
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2018). Further validation of this pooled-template shotgun metagenomic method is now 

required in these populations where monitoring of antibiotic resistance is warranted. 

Application of such a method can improve the early detection of emerging novel resistance 

mechanisms that would otherwise spread unnoticed.  

The results of Chapters 4 and 5 also provide important insight into the effects of 

macrolides in chronic airway disease. Currently, the use of macrolides as a maintenance 

therapy for patients with chronic airway diseases is cautioned with either the potential increase 

in carriage of macrolide resistant organisms (Chalmers et al., 2017; Yang et al., 2017), or the 

possible lower airway infection by P. aeruginosa (Chalmers et al., 2017). The results of this 

dissertation support the former caution, but do not support the latter; no increases in the relative 

abundance of pathogenic organisms were found in sputum. In fact, assessment of the lower 

airway microbiota and pathogen abundance in asthma identified a strong reduction in H. 

influenzae following azithromycin. However, the increased carriage of resistance can increase 

the pathogenicity of organisms. For example, macrolide-resistant S. aureus, which increased 

following azithromycin use in a trial of children with bronchiectasis or chronic suppurative 

disease (Valery et al., 2013), can represent a clinically important pathogen. 

It remains to be known whether the reduction in H. influenzae was due a direct antibiotic 

effect of macrolides or an indirect effect through other modulatory functions of macrolides. 

The body of literature that shows that macrolides can restore macrophage phagocytic function 

(Hodge et al., 2008) and improve H. influenzae lower airway clearance (Hodge et al., 2017; 

Ween et al., 2016), credit an indirect effect of macrolides. Future studies are now required to 

validate this non-antibiotic effect of macrolides in asthma, such as testing the clinical efficacy 

of non-antibiotic macrolides (Hodge et al., 2017) at reducing exacerbations. Non-antibiotic 

macrolides exist however have their effect at reducing exacerbations in patients with persistent, 

severe asthma has not been tested. Indeed, if non-antibiotic macrolides are effective at reducing 
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exacerbations and are adopted into clinical practice, then the concern of antibiotic resistance 

from azithromycin, as reported in Chapter 5, can be offset.  

Another clinically important question related to Chapter 5 is: does the reduction in H. 

influenzae from macrolides also reduce patient’s frequency of exacerbation? H. influenzae in 

the lower airways is associated with airway inflammation (Green et al., 2014; Huang et al., 

2015) and exacerbations (Wang et al., 2017), therefore may contribute to exacerbations in the 

AMAZES cohort. Studies are now required to determine whether patients with high levels of 

H. influenzae respond better to long-term macrolide therapy, which would be a major step 

forward in predicting macrolide treatment efficacy.  

In summary, the results presented in this dissertation contribute to our understanding of 

the complex interactions in the lower airways of patients with chronic airway disease. They 

identify the effects of inflammation, mucus composition, and pharmacological treatments on 

the airway microbiota as well as form the foundation for future research. Clinically, these 

studies also provide important insight that contributes to the ongoing effort to personalise 

disease symptoms in patients to predict disease trajectory and selection of effective treatments. 
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APPENDICES  

Appendix 1: Supplementary Material from Chapter 2 

The contents of this supplement have been published as part of: 

Taylor, S.L., Leong, L.E.X., Choo, J.M., Wesselingh, S., Yang, I.A., Upham, J.W., 

Reynolds, P.N., Hodge, S., James, A.L., Jenkins, C., Peters, M.J., Baraket, M., Marks, 

G.B., Gibson, P.G., Simpson, J.L., and Rogers, G.B. (2018). Inflammatory phenotypes 

in severe asthma are associated with distinct airway microbiology. The Journal of 

allergy and clinical immunology 141, 94-103 e115. 

Supplementary Methods 

Exclusion criteria 

Asthma diagnosis was established using American Thoracic Society guidelines based 

on current episodic respiratory symptoms, clinical diagnosis and evidence of variable airflow 

obstruction (1987). Participants with asthma were included if stable but symptomatic, despite 

being prescribed maintenance inhaled corticosteroid (ICS) and long acting bronchodilator 

treatment with an Asthma Control Questionnaire 6 (ACQ6) score >0.75 (Juniper et al., 1999). 

Participants with an FEV1 <40% predicted, current smokers, ex-smokers who had 

ceased smoking in the previous year and those with a recent (past four weeks) exacerbation or 

respiratory infection were excluded. Patients were also excluded if they had received antibiotic 

treatment in the preceding month. Those with significant smoking related air-space disease (ex-

smokers >10 pack year history and DLCO/VA <70% predicted OR smoking history >10 pack 

years and exhaled carbon monoxide >10 parts per million) were also excluded. This study was 

conducted in accordance with the amended Declaration of Helsinki. Local institutional review 

boards approved the protocol and written informed consent was obtained from all participants. 

Institutional centres 

Sputum samples were collected from eight Australian centres: 
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1. Hunter Medical Research Institute, Newcastle NSW Australia 

2. The Prince Charles Hospital, Chermside, QLD, Australia 

3. Princess Alexandra Hospital, Woolloongabba QLD, Australia 

4. Royal Adelaide Hospital, Adelaide SA, Australia 

5. Sir Charles Gairdner Hospital, Nedlands WA, Australia 

6. Woolcock Institute of Medical Research, Glebe NSW, Australia 

7. Concord Repatriation General Hospital, Concord NSW, Australia 

8. Liverpool Hospital, Liverpool NSW, Australia 

Patient inflammatory phenotyping 

Patient sputum was dispersed using dithiothreitol and inflammatory cells were counted 

as a percentage of total sputum cells. Inflammatory subtype was determined as described 

below. Neutrophilic cut-off values were age-dependent as described previously (Brooks et al., 

2013; Simpson et al., 2014).  

Neutrophilic phenotype 

Neutrophil% (<20 years old) ≥75.57% 

Neutrophil% (20-40 years old) ≥61.61% 

Neutrophil% (40-60 years old) ≥63.25% 

Neutrophil% (>60 years old)  ≥67.25% 

Eosinophilic phenotype 

Eosinophil%    ≥3% 

Paucigranulocytic phenotype 

Eosinophil%    ≤3% 
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Neutrophil% (<20 years old) ≤75.57% 

Neutrophil% (20-40 years old) ≤61.61% 

Neutrophil% (40-60 years old) ≤63.25% 

Neutrophil% (>60 years old)  ≤67.25% 

Mixed granulocytic phenotype 

Eosinophil%    ≥3% 

Neutrophil% (<20 years old) ≥75.57% 

Neutrophil% (20-40 years old) ≥61.61% 

Neutrophil% (40-60 years old) ≥63.25% 

Neutrophil% (>60 years old)  ≥67.25% 
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Table E1.1: 16S rRNA sequencing information 

 

Median read count (IQR) 12792 (8060, 16595) 

Subsample depth 1732 

Samples excluded 7 

Median Good’s coverage (IQR) 0.952 (0.942, 0.963) 

 

 

 

 

Figure E1.1: Bacterial burden as assessed by 16S rRNA gene copy number. Bars show the 

median±95% CI. Statistical significance was assessed by Kruskal-Wallis one-way ANOVA 

with Dunn’s post hoc test. No significant difference between phenotypes. 
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Figure E1.2: Alpha diversity measures among asthma phenotypes. A) Taxa richness, B) 

Shannon-Wiener index, C) Simpson’s evenness index, D) Pielou’s evenness. Bars show the 

median±95% CI. Statistical significance was assessed by Kruskal-Wallis one-way ANOVA 

with Dunn’s post hoc test.  
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Figure E1.3: Correlations between sputum neutrophil/eosinophil counts (as a percentage of 

total cell count) and alpha diversity measures. A) Neutrophil % where dotted line at 61% 

neutrophils indicates phenotype cut-off point. B) Eosinophil % where dotted line at 3% 

eosinophils indicates phenotype cut-off point. Colours represent asthma phenotype, based on 

neutrophilia or eosinophilia where blue= >61% neutrophils, green= >3% eosinophils, yellow= 

<61% neutrophils and <3% eosinophils (paucigranulocytic), and  purple= both >61% 

neutrophils and >3% eosinophils (mixed). Statistical significance was assessed by Spearman’s 

rank correlation.  
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Table E1.2: PERMANOVA analysis testing significance of variance of Weighted UniFrac and 

Bray-Curtis Distance of sputum microbiota between asthma phenotypes (permutations = 9999) 

Matrix Source Df SS MS Pseudo-F P(perm) 

Weighted 

UniFrac 

Phenotype 3 9444.4 3148.1 3.9969 0.0004 

Residual 163 128390 787.64   

Total 166 137830          

Bray-

Curtis 

Phenotype 3 8215.4 2738.5 3.3694 0.0001 

Residual 163 132480 812.74   

Total 166 140690          

 

 

Table E1.3: Pairwise PERMANOVA analysis testing significance of variance of Weighted 

UniFrac and Bray-Curtis Distance of sputum microbiota between asthma phenotypes 

(permutations = 9999) 

Matrix Groups T P(perm) Unique perms 

Weighted 

UniFrac 

Pauci vs Neutro 2.52 <0.01 9943 

Pauci vs Eosino 1.28 0.13 9928 

Pauci vs Mixed 0.80 0.62 9952 

Neutro vs Eosino 3.30 <0.0001 9924 

Neutro vs Mixed 1.20 0.21 9876 

Eosino vs Mixed 1.19 0.19 9939 

Bray-

Curtis 

Neutro vs Eosino 2.89 <0.0001 9928 

Neutro vs Pauci 2.43 <0.001 9918 

Neutro vs Mixed 1.18 0.19 9888 

Eosino vs Pauci 1.15 0.17 9921 

Eosino vs Mixed 0.96 0.50 9899 

Pauci vs Mixed 0.78 0.83 9922 
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Figure E1.4: Correlations between sputum neutrophil/eosinophil counts (as a percentage of 

total cell count) and weighted UniFrac distance from centroid. A) Neutrophil % where dotted 

line at 61% neutrophils indicates phenotype cut-off point. B) Eosinophil % where dotted line 

at 3% eosinophils indicates phenotype cut-off point. Colours represent asthma phenotype, 

based on neutrophilia or eosinophilia where blue= >61% neutrophils, green= >3% eosinophils, 

yellow= <61% neutrophils and <3% eosinophils (paucigranulocytic), and purple= both >61% 

neutrophils and >3% eosinophils (mixed). Statistical significance was assessed by Spearman’s 

rank correlation. 
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Figure E1.5: A) Principal Coordinate Analysis (PCoA) of asthma phenotype groups based on 

Bray-Curtis similarity distances. The first two principal coordinates are plotted on the x- and 

y-axes, respectively (representing 36.5% of the total variation). B) Microbiota dispersion 

grouped by asthma phenotype. Distance from centroid calculated from Bray-Curtis 

dissimilarity matrix. C,D) Correlations between sputum inflammatory cell percentages and 

distance from centroid. C) Sputum neutrophil % vs Bray-Curtis distance from centroid. D) 

Sputum eosinophil % vs Bray-Curtis distance from centroid. 
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Table E1.4: Similarity of percentages (SIMPER) analysis comparing taxa relative abundances 

between neutrophilic and eosinophilic phenotype groups. Showing thirteen top contributing 

taxa which collectively account for approximately 50% of variance between groups.  

 Neutrophilic Eosinophilic                  

Species Av. Abund Av. Abund Av. Diss Contrib % 

Haemophilus 0.41 0.2 4.49 8.89 

Prevotella 0.23 0.33 2.61 5.16 

Streptococcus II 0.13 0.27 2.58 5.11 

Streptococcus I 0.45 0.51 2.34 4.63 

Veillonella 0.2 0.22 1.98 3.91 

Moraxella 0.13 0 1.88 3.72 

Neisseria 0.11 0.19 1.65 3.26 

Rothia 0.1 0.19 1.52 3 

Actinomyces sp. uncultured 

bacterium 0.1 0.16 1.5 2.96 

Gemella 0.09 0.17 1.26 2.49 

Leptotrichia 0.08 0.11 1.2 2.38 

Actinomyces sp. oral clone 

DR002 0.05 0.08 1.1 2.17 

Porphyromonas 0.04 0.11 1.1 2.17 
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Figure E1.6: Figure legend for bacterial network analysis. Showing weight and colour 

assigned to edges and nodes. 
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Figure E1.7: Taxa which significantly correlated with eosinophil %. Colours represent asthma 

phenotype, based on neutrophilia or eosinophilia where blue= >61% neutrophils, green= >3% 

eosinophils, yellow= <61% neutrophils and <3% eosinophils (paucigranulocytic), and purple= 

both >61% neutrophils and >3% eosinophils (mixed). Dotted line at 3% eosinophils indicate 

phenotype cut-off points. Statistical significance was assessed by Spearman’s rank correlation. 
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Table E1.5: Top: PERMANOVA analysis, Bottom: Pairwise PERMANOVA on non-

dominant microbiome. Bray-Curtis Distance of sputum microbiota on the genera level, 

grouped by asthma phenotype (permutations = 9999). 

Source Df SS MS Pseudo-F P(perm) 

Phenotype 3 5381 1793.7 2.378 0.0004 

Residual 163 122950 754.3   

Total 166 128330          

Groups T P(perm) Unique perms 

Neutro vs Eosino 2.31 <0.0001 9922 

Neutro vs Pauci 2.26 <0.001 9911 

Neutro vs Mixed 1.11 0.24 9857 

Eosino vs Pauci 0.91 0.65 9904 

Eosino vs Mixed 0.79 0.86 9921 

Pauci vs Mixed 0.73 0.92 9924 
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Figure E1.8: Normalised, log2 fold changes of non-rarefied taxa read counts which 

significantly (p<0.05) differed between neutrophilic and eosinophilic phenotypes. Positive fold 

change indicates taxon which were significantly higher counts in neutrophilic participants, 

negative fold change indicates taxon which were significantly higher in eosinophilic 

participants. Showing that, when Haemophilus or Moraxella dominance do not influence data 

(due to non-rarefied count data as opposed to relative abundance), multiple taxa remain 

significantly different between neutrophilic and eosinophilic participants.  
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Appendix 2: Supplementary Material from Chapter 3 

The contents of this supplement have been published as part of: 

Taylor, S.L., Woodman, R.J., Chen, A.C., Burr, L.D., Gordon, D.L., McGuckin, 

M.A., Wesselingh, S., and Rogers, G.B. (2017). FUT2 genotype influences lung 

function, exacerbation frequency and airway microbiota in bronchiectasis. Thorax 72, 

304-310. 

Supplementary methodology  

Bronchiectasis subject inclusion criteria 

1. Able to provide written informed consent. 

2. Confirmed diagnosis of bronchiectasis by high resolution computed tomography 

within 3 years. 

3. Airways obstruction on spirometry (ratio FEV1/ FVC <0.7) and FEV1 ≥25% 

predicted. 

4. Chronic productive cough with at least 5 mLs sputum production per day. 

5. At least two exacerbations of bronchiectasis requiring either oral or intravenous 

supplemental antibiotic therapy (of at least 7 days duration on each occasion) in the 

prior 12 months. 

6. Aged 20-85 inclusive. 

7. Clinically stable for at least four weeks (defined as no symptoms of exacerbation, no 

requirement for supplemental antibiotic therapy, and FEV1 within 10% of best 

recently recorded value where available). 

Exclusion criteria 

1. Bronchiectasis as a result of CF or focal endobronchial obstruction. 

2. Currently active tuberculosis or non-tuberculous mycobacterial (NTM) infection. 

Subjects with evidence of prior pulmonary NTM infection could be included only if 
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they have completed a course of therapy that is deemed successful on the basis of 

negative NTM cultures following cessation of therapy. All subjects required a 

negative NTM culture prior to screening. 

3. Any symptoms or signs to suggest recent deterioration in respiratory disease, 

including exacerbation of pulmonary disease (as previously defined) in the preceding 

4 weeks. 

4. Any change to medications in the preceding 4 weeks. 

5. Prescription of either oral or intravenous antibiotic therapy in the preceding 4 weeks. 

6. Cigarette smoking within the preceding 6 months. 

7. Any history of malignant arrhythmia (unless in the immediate post-myocardial 

infarction period and not requiring any regular therapy) or QTc prolongation on 

baseline electrocardiogram. 

8. Any of the following within the three (3) months prior to enrolment: 

a. Acute myocardial infarction 

b. Acute cerebrovascular accident 

c. Major surgery 

9. History of any of the following: 

d. Active malignancy (excepting non-melanoma skin malignancies that have 

been treated and considered cured) 

e. Listed for transplantation 

f. Any other significant active illness likely to affect the patient’s survival within 

12 months 

g. Receiving long-term domiciliary oxygen therapy 

10. Allergy to macrolide antibiotics, other than minor, dose-related gastrointestinal 

intolerance that would not be anticipated to recur with low-dose erythromycin. 
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11. Any prescription or receipt of long-term macrolide antibiotics, or receipt of a 

treatment course within 4 weeks. 

12. Predominant diagnosis of emphysema (rather than bronchiectasis) on high-resolution 

computed tomography scan of the chest. 

13. Requirement for supplemental oxygen therapy. 

14. Inability to complete required study procedures for whatever reason (including 6-

minute walk test, hypertonic saline sputum induction). 

15. Respiratory symptoms (including cough, sputum production, recurrent exacerbations) 

not predominantly the result of bronchiectasis in the opinion of the principal 

investigator; where treatable causes for exacerbations existed, these were treated 

before considering trial enrolment. 
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Table E2.1: Summary of relative abundance of the dominant infective microbe in sputum of 

bronchiectasis patients 

Genus Number of patients % Average relative abundance (SD) 

Haemophilus 33 85.6 (18) 

Pseudomonas 25 87.0 (14) 

Veillonella 9 33.6 (8) 

Prevotella 9 40.3 (13) 

Streptococcus 4 44.2 (21) 

Pasteurella 2 93.0 (9) 

Stenotrophomonas 1 80.8  

Staphylococcus 1 25.6 

Porphyromonas 1 72.6 

Neisseria 1 18.0 

Moraxella 1 79.1 

Leptotrichia 1 34.6 

Flavobacterium 1 16.7 

Burkholderia 1 58.1 

Bordetella 1 54.2 

Achromobacter 1 52.7 

Abiotrophia 1 92.7 
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Table E2.2: Fungal Supplementary data. Samples were each assigned as either positive or 

negative for C. albicans or A. fumigatus based on qPCR CT score, referenced to culture positive 

standard curves. Details of each standard curve and detection and cut-off thresholds are detailed 

below. Approximate copy numbers for standards were calculated based on DNA concentration 

of positive control (measured by Qubit fluorometer), fungal genome size, and number of gene 

copies per genome. Samples were run in triplicate and averaged. 

C. albicans isolate standard 

Sample Copy 

number 

Average Cycle 

Threshold 

std 

Dil1:10^0a 621600 
  

Dil1:10^1 62160 22.901 0.118 

Dil1:10^2 6216 27.790 0.288 

Dil1:10^3 621.6 31.247 0.165 

Dil1:10^4 62.16 34.211 0.737 

Dil1:10^5 6.216 37.231 
 

% amplification efficiency 92.77% 

R^2 0.9879 

Detection limit of 35 CT (or 36.4 copies) assigned to C. albicans qPCR based on standard 

curve 
a 1:10^0 dilution failed to produce sufficient CT, likely due to interference with PCR inhibitors 

or buffer concentration imbalance. No samples produced a CT <27 therefore this dilution was 

ignored. 

A. fumigatus isolate standard 

Sample Copy 

number 

Average Cycle 

Threshold 

std 

Dil1:10^0 3763200 13.022 0.009 

Dil1:10^1 376320 16.392 0.003 

Dil1:10^2 37632 19.916 0.024 

Dil1:10^3 3763.2 23.392 0.107 

Dil1:10^4 376.32 27.237 0.153 

Dil1:10^5 37.632 30.927 0.500 

% amplification efficiency 90.02% 

R^2 0.9995 

Detection limit of 34 CT (or 4.76 copies) assigned to A. fumigatus qPCR based on standard 

curve  
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Figure E2.1: Endobronchial biopsy stain by FUT2 genotype. UEA-1 lectin staining, which is 

specific for α(1,2)-fucosylated Lewis glycans, of bronchial biopsies from bronchiectasis 

patients with sese (A), Sese (B), and SeSe (C) genotypes. Staining is located on apical cell 

surfaces and within secretory vesicles of Sese and SeSe, but absent in sese biopsies. There was 

no clear difference in staining intensity between biopsies from Sese and SeSe patients. 
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Figure E2.2: Effect of FUT2 genotype on FEV1 %. Box and whisker plots show median, IQR, 

and 5th and 95th percentiles (dots show outliers) of pre-bronchodilator FEV1 as a percentage 

of the predicted value. *p=0.023 by Tukey’s post-hoc test. 
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Figure E2.3: Effect of FUT2 genotype on physician defined pulmonary exacerbation count. 

Proportion of patients who had a physician defined pulmonary exacerbations (PDPE) over the 

48 weeks of the trial. Colours indicate number of PDPEs. Top –All patients, Bottom –Patients 

in the placebo group only. P values calculated by Wald test. 
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Figure E2.4: Effect of FUT2 genotype on time on antibiotics. Number of days on antibiotics 

due to pulmonary exacerbation were recorded over the course of trial. Showing total patients 

(receiving either placebo or erythromycin). Time on antibiotics in 10-day groups, for purpose 

of graphing. P values calculated by Wilcoxon rank-sum test based on ungrouped data. 
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Figure E2.5: Effect of FUT2 genotype on non-dominant taxa alpha diversity. Shannon Weiner 

Index and Simpson’s Complement Index of rescaled relative abundance (excluding 

Pseudomonas aeruginosa and Haemophilus influenzae, when dominant). P values calculated 

by ANOVA (top) and Kruskal-Wallis (bottom). This indicates no significant difference of 

within patient microbiome diversity of evenness between secretor genotypes.  
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Figure E2.6: Effect of FUT2 genotype on Bray-Curtis principal coordinate (PCO) analysis. 

PCO1 and PCO2 plot of Bray-Curtis similarity of rescaled relative abundance (excluding 

Pseudomonas aeruginosa and Haemophilus influenzae, when dominant) between sese (dark 

blue), Sese (green), and SeSe (light blue) patients. This indicates that the microbiota of patients, 

excluding P. aeruginosa and H. influenzae, when dominant, is not different. PERMANOVA 

p=0.777.   
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Figure E2.7: Effect of FUT2 genotype on airway fungal predominance. Detection of Candida 

albicans (top) and Aspergillus fumigatus (bottom). P values calculated by Fishers exact test. 
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Appendix 3: Supplementary Material from Chapter 4 

The contents of this supplement have been published as part of: 

Taylor, S.L., Leong, L.E.X., Mobegi, F., Choo, J.M., Burr, L.D., Wesselingh, S., and 

Rogers, G.B. (2018) Understanding the impact of antibiotic therapies on the respiratory 

tract resistome: a novel pooled-template metagenomic sequencing strategy. 

Multidisciplinary Respiratory Medicine 13, 9-14. 

 

Table E3.1: Characteristics of patients at baseline 

 Erythromycin (n=32) Placebo (n=31) 

Age, mean yrs (std) 63.5 (7.9) 64.1 (9.9) 

Gender, female (%) 19 (59.4) 15 (48.4) 

Duration of bronchiectasis, mean yrs (std) 45.3 (20.2) 41.4 (23.3) 

Ex-smoker, n (%) 8 (25) 7 (22.6) 

Inhaled corticosteroids, n (%) 5 (15.6) 4 (12.9) 

PDPE, median (IQR) 1 (0-2) 2 (1-3) 

FEV1/FVC, mean (std) 0.676 (0.09) 0.701 (0.09) 

FEV1 absolute, mean (std) 1.77 (0.56) 1.83 (0.78) 

FEV1 % predicted, mean (std) 65.6 (16.6) 68.3 (21.4) 

PDPE: physician defined pulmonary exacerbation 

Std: standard deviation 

IQR: interquartile range 
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hmrM primer design 

Designed using NCBI Primer BLAST and validated by performing qPCR on H. influenzae 

clinical isolate and non-Haemophilus controls. 

Forward primer:      GTGGAGAACCTGCACCCAAT   

Reverse primer:       AATTTGTTGCGAAGTGGCGT   

Product length: 182 bp 

Thermocycling conditions: 95°C for 30 s, 60°C for 60 s 
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Appendix 4: Supplementary Material from Chapter 5 

The contents of this supplement have been prepared for publication as part of: 

Taylor, S.L., Leong, L.E.X., Mobegi F., Choo, J.M., Wesselingh, S., Yang, I.A., 

Upham, J.W., Reynolds, P.N., Hodge, S., James, A.L., Jenkins, C., Peters, M.J., 

Baraket, M., Marks, G.B., Gibson, P.G., Rogers, G.B., and Simpson, J.L. Long-term 

azithromycin associated with altered airway microbiome and increased transmissible 

resistance gene carriage in severe asthma. In preparation  

 

Figure E4.1: Bacterial load and microbiota composition in placebo. (A) Total bacterial load 

before and after trial in placebo group. (B) Faith’s phylogenetic diversity before and after trial 

in placebo group. 
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Figure E4.2: Change to individual taxa in placebo. Linear discriminant analysis effect size 

(LEfSe) of taxa that significantly changed in relative abundance before and after trial in placebo 

group. Red indicates taxa that were lower and green indicates taxa that were higher. 
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Figure E4.3: Effect of azithromycin on other pathogenic species. Copy number of 

Streptococcus pneumoniae, Staphylococcus aureus and Pseudomonas aeruginosa before and 

after either placebo (left) or azithromycin (right).
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Figure E4.4: Levels of screened antibiotic resistance genes in placebo. Levels of the seven 

antibiotic resistance genes before and after trial in placebo group. Genes were identified by 

pooled-template shotgun metagenomic sequencing quantified by qPCR and normalized to total 

bacteria.
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Table E4.1: Resistance genes and detected macrolide mutations from macrolide resistant isolates 

AZM resistant species* 

AZM 

zone 

(mm) 

Weeka erm(B) mef(A) mel tet(M) tet(W) erm(A) msr(C)  
L4 

mutationb 

Haemophilus parainfluenzae 13 0                 

Haemophilus parainfluenzae 14 0                 

Haemophilus parainfluenzae 8 48               G65A 

Haemophilus parainfluenzae 13 48               G65A 

Staphylococcus aureus 11 48           ✓     

Staphylococcus aureus 6 48             ✓   

Streptococcus australia  8 0   ✓ ✓           

Streptococcus infantis  11 0   ✓ ✓           

Streptococcus infantis  11 0   ✓ ✓           

Streptococcus mitis 6 0 ✓     ✓         

Streptococcus mitis  9 0   ✓ ✓           

Streptococcus parasanguinis 11 0   ✓ ✓           

Streptococcus parasanguinis 9 0   ✓ ✓ ✓         

Streptococcus parasanguinis 9 0   ✓ ✓           

Streptococcus parasanguinis 11 0   ✓ ✓           

Streptococcus parasanguinis 9 0   ✓ ✓           

Streptococcus salivarius 7 0   ✓ ✓           

Streptococcus salivarius 8 0   ✓ ✓           

Streptococcus salivarius 6 0 ✓     ✓         
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Streptococcus salivarius 11 0   ✓ ✓ ✓         

Streptococcus anginosus group 8 48 ✓     ✓         

Streptococcus australia  10 48   ✓ ✓           

Streptococcus gordonii 9 48   ✓ ✓ ✓         

Streptococcus infantis 9 48   ✓ ✓           

Streptococcus infantis  6 48 ✓ ✓ ✓           

Streptococcus infantis  12 48   ✓ ✓ ✓         

Streptococcus infantis  10 48   ✓ ✓           

Streptococcus mitis 8 48   ✓ ✓           

Streptococcus oralis 6 48 ✓ ✓ ✓ ✓ ✓       

Streptococcus oralis 6 48 ✓ ✓ ✓ ✓         

Streptococcus oralis 6 48 ✓     ✓         

Streptococcus parasanguinis 6 48 ✓ ✓ ✓ ✓         

Streptococcus parasanguinis 10 48   ✓ ✓           

Streptococcus parasanguinis 6 48 ✓ ✓ ✓           

Streptococcus parasanguinis 8 48   ✓ ✓           

Streptococcus parasanguinis 7 48   ✓ ✓           

Streptococcus salivarius 7 48   ✓ ✓           

Streptococcus sanguinis 10 48   ✓ ✓           

 

*Defined by EUCAST Clinical Breakpoints v.8.1. Where breakpoints are not defined, the epidemiological cut-offs were used 
a Sputum sample collection week during azithromycin therapy  
b Position numbers for L4 based on H. parainfluenzae numbering system 

 


