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ABSTRACT

Two dimensional materials are investigated with a variety of spectroscopic methods 

including metastable (helium) induced electron spectroscopy, ultraviolet photoelectron 

spectroscopy, x-ray photoelectron spectroscopy, Raman spectroscopy and Auger electron 

spectroscopy complimented with scanning electron microscopy. Characterising the surfaces 

of materials that form interfaces within a device is imperative for the development or 

fabrication of devices with optimal performances. 

Materials such as graphene oxide, graphene and carbon nanotubes owe their electronic 

properties to their sp2 networks. Graphene oxide prepared with various annealing 

temperatures has been characterised with ultraviolet photoelectron spectroscopy and x-ray 

photoelectron spectroscopy, determining the electronic structure and the composition of the 

surface for the temperature series. It has been determined that higher annealing temperatures 

resulted in improved sp2 concentrations and hence improved charge transport properties. 

The thickness of two dimensional materials is often less than the probing depth of 

spectroscopic methods. Graphene is characterised using metastable (helium) induced electron 

spectroscopy, x-ray photoelectron spectroscopy and Raman spectroscopy to exclusively 

determine the electronic structure of the graphene layers. It was determined that the number 

of layers and defects greatly influences its electronic structure. 

A concept is developed to measure the inner coaxial tube within double wall carbon 

nanotubes utilising the difference in surface sensitivity of ultraviolet photoelectron 

spectroscopy and metastable (helium) electron spectroscopy. Defects in the outer walls are 

shown to lower the charge transport properties whilst the inner walls retain their sp2 network

and optimal charge transport properties.

MoS2 films are characterised using ultraviolet photoelectron spectroscopy, Raman 

spectroscopy, Auger electron spectroscopy and scanning electron microscopy. The electronic 

structure of non-homogenous few layer MoS2 is quantitatively determined and compared with 

bulk MoS2.
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Chapter 1

1. Introduction

Surface Science1.1.

Surface science endeavours to examine the behaviour of surfaces, interfaces or 

nanostructures. Through a better understanding of the characteristics and phenomena that 

occur at the very surface of a material; development of concepts can be made towards 

creating surfaces with desired properties and furthermore creating new and improved 

applications of these materials.

The surface of any material can be described with its physical and chemical properties. 

Physical properties refer to characteristics that can be observed without changing the 

composition of the material. Physical properties include but are not limited to: melting or 

boiling point, surface roughness, structure (islands, monolayer or porous nature), electrical 

conductivity, flexibility and hardness. Chemical properties refer to characteristics that 

describe the materials potential to change in composition. Examples of chemical properties 

include: flammability, oxidation, toxicity and radioactivity.

The aim of surface science is to localise any measurements, fabrication or modification 

specifically to the outer most layer of a solid; therefore, excluding any material below the 

first few atomic layers known as bulk material.
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Nanoscience, Nanomaterials and Nanotechnology1.2.

Nanoscience is a subsection of science that specifically studies materials and phenomena on
-9

[1]. Nanotechnology is the application of nanoscience to create technology or manipulate 

materials on the nanoscale. Nanomaterials are materials that have nanoscale dimensions or 

materials that have been fabricated using nanotechnology. Nanomaterials can further be 

classified into dimensions: 3D, 2D, 1D and 0D. With each decrease in dimension the 

structure is confined to a thickness of a few nanometres or less: 3D describes a

nanocrystalline material [2, 3]; 2D describes a sheet or thin film [4, 5]; 1D would be further 

confined in 2 dimensions to a nanowire or nanotube [6]; whilst 0D would be confined to a 

single unit such as a quantum dots or clusters [7, 8].

Properties of materials at the nanoscale are very different to macroscopic materials which are 

large enough to be viewed by eye. As nanomaterials become more prevalent in modern 

technology the importance of studying them increases. Properties such as colour, melting 

point, flexibility and hardness are known to drastically differ when comparing bulk material 

to nanomaterials [9]. One such example would be graphite (bulk) and graphene (2D 

nanomaterial); graphite found in a pencil shears off as we draw leaving behind an opaque 

line. Graphene on the other hand is a 2D materi

optically transparent.

Nanomaterials that have confined dimensions, often possess phenomena that require quantum 

physics to describe, this is known as quantum confinement. Classical physics describes 

electrons as travelling through solids as particles. Through quantum confinement the 

electrons are described by quantum physics as having wave-particle du

position is defined as a probability defined by wave functions [10]. Quantum physics is 

useful to describe phenomena such as quantum tunnelling where an electron can pass through 

an insulating material.
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Solid State Physics1.3.
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