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Abstract 

In neuroscience, there is considerable current interest in investigating the connections between 

different parts of the brain. EEG is one modality for examining brain function, with advantages 

such as high temporal resolution and low cost. Many measures of connectivity have been 

proposed, but which is the best measure to use? In this thesis, we address the following 

question: which measure is best able to detect connections between signals, in the challenging 

situation of non-stationary and noisy data from nonlinear systems, like EEG? 

The problem with using EEG is that we don’t known when a measure is giving the “right” 

answer. Hence we choose to apply connectivity measures to simulated data that is similar to 

EEG rather than EEG itself, so we always know the “right” answer. 

We compare almost all of the most widely used or most promising measures, in total 26 

functional connectivity measures and 20 effective connectivity measures. The performance of 

functional connectivity measures is tested on simulated data from two systems: two coupled 

Hénon maps; and two channels of simulated EEG. The performance of effective connectivity 

measures is tested on simulated data from three systems: three coupled Hénon maps; a 

multivariate autoregressive (MVAR) model with and without EEG as an exogenous input; and 

simulated EEG. To determine whether connectivity is detected, surrogate data were generated 

and analysed, and a threshold determined from the surrogate ensemble. 

No measure performed best in all tested situations. In the comparison of the functional 

connectivity measures, correlation and coherence performed best on stationary data with many 

samples, in both high and low noise. S-estimator, correntropy coefficient, mean-phase 
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coherence (Hilbert), mutual information (kernel), nonlinear interdependence (S) and nonlinear 

interdependence (N) performed most reliably on non-stationary data with small to medium 

window sizes, in both high and low noise. Of these, correlation and S-estimator have execution 

times that scale slower with the number of channels and the number of samples. In the 

comparison of effective connectivity measures, the measures that model the data as MVAR 

perform well when the data are drawn from that model. Frequency domain measures perform 

well when the data have a clearly defined band of interest. When neither of these are true, 

information theoretic measures perform well, as does Copula Granger causality.  
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CHAPTER 1 INTRODUCTION 

The identification of hidden dependencies among simultaneously observed time series from a 

complex dynamical system is an essential and challenging task in many scientific fields [1], 

and is of particular significance for brain dynamics. Representing patterns of interactions 

between different brain areas could be a major step to understanding the functional aspects of 

normal and pathological brain processes, such as the determination of the source of neuronal 

activity in epilepsy [2]. There has been wide-ranging research aimed at detecting underlying 

relationships (which may be nonlinear and/or nonstationary) in multi-output dynamic systems, 

to give useful insight into their spatio-temporal organisation [3]. Two significant approaches 

to defining dynamical links within a distributed system, such as the brain, are functional and 

effective connectivity. Effective connectivity refers to the influence that one neural system has 

over another [4]. Functional connectivity refers to the link between different brain regions that 

do similar things at similar times [5]. There has been recent explosive growth in the number of 

measures developed for studying brain functional and effective connectivity. They aim to 

characterise brain connectivity patterns using brain signals such: 

• Functional magnetic resonance imaging (fMRI): mapping brain activity by detecting 

changes related to blood flow, using the electromagnetic properties of oxygenated 

blood; 

• Magnetoencephalography (MEG): mapping brain activity by measuring the magnetic 

fields produced by the electrical currents which naturally occur in the brain; 

• Near-infrared spectroscopy (NIRS): mapping brain activity by measuring blood flow 

changes, using infrared light to measures oxygenation levels; and 

• Electroencephalography (EEG): mapping brain activity by recording brain electrical 

activity through electrodes placed on the scalp. 
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EEG has several clear advantages for studying the brain.  Firstly, changes in the brain’s 

electrical activity happen very quickly, and so a very high time resolution system is required 

to accurately capture these electrical events. EEG technology can precisely detect brain activity 

with high time resolution, e.g. milliseconds or less. Secondly, EEG electrodes are simply 

attached on the scalp. It is therefore a non-invasive procedure which allows relatively easy 

access to the human brain.  Thirdly, in comparison to most other modalities, EEG equipment 

is relatively inexpensive and simple to use. Fourthly, EEG measures neuronal brain activity 

directly, not blood flow that is reacting to brain activity, ie it is a direct measurement not an 

indirect measurement. Hence our focus in this thesis is on the modality of EEG.   

The evaluation of connectivity measures on EEG presents several challenges. Human brains 

are complex dynamic nonlinear systems, and so EEG signals generated by the brain are 

typically nonlinear and nonstationary. Another big challenge in using EEG is the very small 

signal-to-noise ratio of the recordings, due to contamination of brain signals by a wide variety 

of noise sources. Although some techniques have been developed for reducing some sources 

of noise, there will always be sources of noise affecting our signals. Therefore, it is extremely 

important that a connectivity measure for EEG should be robust to noise, as well as be able to 

detect both nonlinear and nonstationary relationships between signals.  

When there are more than two signals, which will always be the case for EEG, another 

significant challenge arises: the possibility of detecting “connections” that are not truly there. 

For example, the coupling scheme in Figure 1-1  (left) may give the same pattern of 

connectivity as the scheme in Figure 1-1 (right). Another example is where one signal drives a 

second signal, and the second signal drives a third. Effective connectivity may incorrectly 

detect a causal influence from the first signal to the third signal. Ideally, we seek measures that 

are able to disambiguate these situations.  
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Figure 1-1: Two distinct connectivity pattern among three signals. A pairwise effective connectivity analysis 
may not distinguish these two patterns.  

Some publications use real EEG for the comparison of measures [6]. The difficulty with using 

EEG is that we don’t know when a measure is giving the “right” answer. We claim that there 

is merit in comparing measures on simulated data where the true connections are known, rather 

than on real EEG data where our understanding is imperfect.  

Hence in this thesis, we focus on simulated systems that mimic EEG in some way, where we 

have some knowledge or control of the level of nonlinearity, nonstationary and noise, and 

where we know the true connectivity patterns. 

Some measures use linear approaches and measures the linear interaction among signals in the 

time domain or in the frequency domain. Linear measures have generally been assumed to only 

capture linear relationships, and these measures have rarely been tested on nonlinear 

relationships. Some linear measures first fit a linear model to the time series and then evaluate 

connectivity between the times series. For example, an MVAR model is used for many 

measures based on the concepts of Granger causality or coherence. An alternative nonlinear 

approach that has the advantage of being model-free is based on information theory. These 

measures estimate information shared or transferred between time series. Other measures are 

based on the phase relationship between time series, and hence are nonlinear. Another approach 

reconstructs the phase space of the signals, then measures the connectivity between the 

temporal evolution of the two trajectories described by the time series. And finally, there are 

measures based on the relative timings of predefined types of events extracted from the time 

series. Note that this thesis is focused on the comparison of measures, not on defining new 
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measures. Therefore, all measures are briefly outlined following the literature, and references 

are provided for more information. Some changes have been made where any inconsistency in 

notation may cause any confusion or misunderstanding. 

There are several publications that compare many measures that include both functional (ie 

non-directed) measures and effective (i.e. directed) measures [6-8]. Some of the measures they 

include are effective connectivity measures, i.e. directed by definition. Others are based on 

functional connectivity measures, but are adapted to provide directional information as well.  

We argue that there are significant difficulties with comparing directed and nondirected 

measures. For example, we can generate data from a simulated system with directed 

connections, and compare the connections detected by a directed measure to the truth. But for 

a non-directed measure, we have only a single connection between two signals, so we either 

compare to both the directed connections or to the combination of them. In the first case, the 

non-directed measure can never detect the truth unless the connection is bidirectional, and in 

the second case the non-directed measure has half the comparisons of the directed measure. 

Hence neither comparison is clearly fair, and so in this thesis we compare functional 

connectivity measures and effective connectivity measures separately.  

In addition, the literature generally takes a simplistic view that linear measures won’t perform 

well on nonlinear datasets, but provides little evidence supporting this. It is therefore not 

sufficient to characterise the strength of the “linear component” in a nonlinear dataset, as a 

linear measure may not be totally insensitive to the “nonlinear component”, and different 

measures may be differentially sensitive. Hence we have chosen to test all measures on all 

datasets and let the results speak. 

Previous studies of coupled identical and nonidentical systems mostly have focused on a few 

measures [3, 9-14]. Many of the comparative studies of connectivity measures have focused 



5 
 

on bivariate tests e.g. [15], while some studies have considered the effectiveness of only model-

based measures, e.g. [2, 16] or information theoretic measures, e.g. [17-19]. Hence we claim 

that there is no thorough comparison of many measures on simulated data, and so we adopt this 

approach in this thesis. 

Another significant issue is that different measures do not calculate values on the same scale. 

A higher value of connectivity in one measure may indicate no connection between two signals, 

whereas a lower value in a different measure may indicate a connection between the signals. 

Because they are not measuring on the same scale, significant variation in the raw values can 

be seen across measures. Hence to reliably compare different measures we need a statistical 

approach to identify when a connectivity value is significantly different from its background 

level. 

To test the statistical significance of a connectivity value and determine whether connectivity 

is detected, we generate surrogates to give data with the same statistical properties as the 

simulated data but without the dependencies between signals. A collection of surrogate data 

can be analysed with the connectivity measure to obtain a distribution of connectivity values 

corresponding to signals without connectivity, and a threshold determined from the surrogate 

ensemble. If the connectivity measure calculated on the original data exceeds this threshold, 

then it is regarded as statistically significant.  

While the use of surrogates is not new, the literature only has studies using surrogates with a 

very limited number of measures. Hence the combination of surrogates with many measures in 

this thesis is a novel contribution. 

In summary, the overall goal of the analyses is to provide a detailed comparison of many 

connectivity measures on simulated data, Measures from multiple families of measures, some 

linear and some non-linear, will be considered, and functional and effective connectivity 

measures will be compared separately. A careful statistical approach to evaluate the 
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significance of connectivity calculations will be used, to remove subjectivity from the 

comparisons. 

This thesis is organised as follows. In Chapter 2, we review the literature on EEG and brain 

connectivity, describe the various families of both functional and effective connectivity 

measures, and review the use of surrogates for identifying significant connections. In Chapter 

3, we apply the functional connectivity measures to simulated data generated from a pair of 

unidirectionally coupled Hénon maps, looking at the effects of increasing coupling strength, 

nonstationary coupling, and the influence of noise. In this chapter, we also apply the measures 

to simulated EEG signals.  In Chapter 4, we apply effective connectivity measures first to a 

well-understood nonlinear system (three coupled Hénon maps), then an MVAR model with 

and without exogenous inputs, and finally we apply all measures to simulated EEG.  In Chapter 

5, we address the question of the selection of the parameters of connectivity measures, such as 

model order and time lag. Additionally, we consider the effect of data length.  Finally, in 

Chapter 6, we summarise the results, discuss them, and present our conclusions. 
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CHAPTER 2 LITERATURE REVIEW 

In this section we will give an introduction to EEG signals, and the different forms of brain 

connectivity. We then review the literature on connectivity measures, and the use of surrogates 

for detecting significant connections.  

2.1 EEG and brain connectivity 

2.1.1 Electroencephalography (EEG) 

The post-synaptic ionic current flows within neurons produce an electrical field, which can be 

measured on the surface of head. Electrical activity of the brain is measured on the scalp is 

called electroencephalography (EEG).   

The amplitude of the EEG is of the order of 100 µV. Clinically EEG typically considers 

frequencies from 0 to 30 Hz, but in research frequencies up to 100 Hz and beyond are now 

considered important.  
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In order to taking measurements on the head, small electrodes are placed on the scalp in 

standard locations with standard labels1. The voltage difference between an electrode and the 

reference electrode is called an EEG channel and uses the label of the electrode.  

 
Figure 2-1:  10-20 system with large equidistant 34-channel arrangement [21] 

Because the signals recorded at these channels are due to the synapsing of billions of neurons 

interacting in complex and varying ways, the signals are necessarily nonlinear and 

nonstationary.  

                                              
1 The 10-20 system is a standard that labels and describes the location of scalp electrodes for typical clinical EEG 
use. “The "10" and "20" refer to the fact that the actual distances between adjacent electrodes are either 10% or 
20% of the total front–back or right–left distance across the skull” [20] Y. Li, J. Huang, H. Zhou, and N. Zhong, 
"Human Emotion Recognition with Electroencephalographic Multidimensional Features by Hybrid Deep Neural 
Networks," Applied Sciences, vol. 7, p. 1060, 2017. 



9 
 

EEG recording also is highly vulnerable to a wide variety of forms and sources of noises. Some 

noises are external, i.e. come from the environment, such as electromagnetic interference from 

AC power, lighting and electronic equipment. Other noises are internal, i.e. are generated by 

various physiological sources. The most common physiological noises are cardiac signals 

(electrocardiogram, ECG), muscle artefacts (electromyogram, EMG) and ocular artefacts 

(electro-oculogram, EOG). While several methods have been designed and developed to reduce 

and remove these noises (both at the time of recording as well as during processing), some 

noise will always remain. Thus, in addition to EEG signals being nonlinear and nonstationary, 

they are also noisy.  

Recording the EEG is like recording audio using many microphones in a stadium. You can’t 

tell what any individual is doing but you can get an idea of what a group is doing, if they are 

synchronised and there are sufficiently many. In EEG, location and orientation of neurons is 

also important [22].  

“This image has been removed due to copyright restrictions.” 
Figure 2-2 :  Audio analogy of EEG: recording EEG is like recording audio using many microphones in a 
stadium. 
 

2.1.2 Brain connectivity  

The identification of dependencies among simultaneously observed time series from a complex 

dynamical system is an essential and challenging task in many scientific fields [1], and is of 

particular significance for brain dynamics. Representing patterns of interactions between 

different brain areas could be a major step to understanding the brain. These connectivity 

patterns may let us assess the differences in normal and pathological brain processes, such as 

located the source of focal epileptic activity [23]. It may also indicate how different areas of 

the brain communicate. This may lead to understanding how information is transmitted within 

the brain, or how the different nervous system units interact to give rise to perception or 
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behaviour Brain connectivity patterns can be formed by the structural links i.e. synapses or 

fiber pathways (anatomical connectivity), synchronous dependencies (functional connectivity) 

and causal interactions (effective connectivity) between individual neurons, neuronal 

populations or anatomically separated brain regions. 

2.1.2.1 Anatomical connectivity  

Anatomical connectivity refers to the presence and structural integrity between neighbouring 

neurons through synaptic contacts or fiber tracks connecting neuron pools in spatially distant 

brain areas i.e. white matter tracts connecting [24]. 

2.1.2.2 Functional connectivity  

Functional connectivity refers to the link between different brain regions that do similar things 

at similar times. More precisely, it can be defined as “temporal correlations between spatially 

remote neurophysiological events” [25]. Functional connectivity is symmetric, and so 

evaluates the strength of the interaction without considering its direction.  

2.1.2.3 Effective connectivity  

Effective connectivity refers to the influence that one neural system has over another [4]. 

Effective connectivity is asymmetric, evaluating the strength of interaction in a particular 

direction, independent of the interaction in the other direction.  Aertsen and Preissl in [26] 

proposed that ‘‘effective connectivity should be understood as the experiment- and time-

dependent, simplest possible circuit diagram that would replicate the observed timing 

relationships between the recorded neurons.’’  

“This image has been removed due to copyright restrictions.” 

Figure 2-3: Types of brain connectivity.Structural connectivity (fiber pathways), functional connectivity 
(correlations), and effective connectivity (information flow) among four brain regions in macaque cortex [27]. 
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2.2 Connectivity measures  

Connectivity measures or estimators are mathematical formulations which have been 

developed to evaluate connectivity between time series. These estimators are either functional 

or effective connectivity measures. Functional connectivity measures evaluate similarit ies 

between time series, identifying non-directional relationships between time series. In contrast, 

effective connectivity measures evaluate the influence that one time series has over another, 

i.e. identifying directional relationships between time series. 

One of the most interesting uses of connectivity measures is in neuroscience, for example EEG, 

the modality that is the focus of this thesis. In section 2.1.1 we saw that EEG is a noisy, non-

stationary signal with many interfering sources. Therefore a good connectivity measure for 

EEG should be insensitive to noise, including non-brain signals, as well as being able to detect 

linear, nonlinear and nonstationary relationships between signals.   

2.2.1 Functional connectivity measures (synchronisation measures) 

Synchronisation is a basic phenomenon which occurs in nearly all sciences. This phenomenon 

was first reported in the 17th century by Christiaan Huygens on his observation of the 

synchronisation of two pendulum clocks [28]. “In the classical sense, synchronisation means 

adjustment of frequencies of periodic self-sustained oscillators due to weak interaction”[29]. 

The concept of synchronisation has been generalised to the case of chaotic oscillatory systems 

with irregular behaviour. The study of synchronisation between signals from such systems has 

been a topic of increasing interest, and has found applications in areas such as laser dynamics, 

solid state physics, electronics, biology, medicine, communication and even economics.  

Synchronisation can manifest itself in different ways, hence a large variety of measures have 

been proposed to quantify synchronisation between signals. The classical measures use linear 

approaches to provide information about interacting systems in terms of their time delay 
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(correlation); in particular correlation coefficient [30] and coherence[30] are clearly the 

measures most used so far. Linear measures have generally been assumed to only capture linear 

relationships, and so these measures are rarely used to detect nonlinear relationships in 

synthetic data [3, 14]. 

In contrast to classical methods, new measures typically are nonlinear. Some measures are 

nonlinear extensions of linear measures, most commonly correlation. The correntropy 

coefficient is an extension of the correlation coefficient which is sensitive to a higher-order 

statistical and/or nonlinear relationship between the signals [12]. The coh-entropy coefficient 

can be approximately interpreted as an adaption of correntropy coefficient to the frequency 

domain, or as a non-linear extension of the coherence function [6]. It has been demonstrated 

that the wavelet transform is an effective and handy tool for EEG analysis [31]. Hence 

correntropy coefficient has also been extended to the time-frequency domain by substituting 

the wavelet transforms for the signals in the definition of correntropy coefficient yielding wave 

entropy [31, 32]. 

Event synchronisation (EVS) is based on the relative timings of predefined events extracted 

from signals. These events can be any repetitive feature, e.g. spikes in single-neuron 

recordings, epileptiform spikes in EEG, zero-crossings, local extrema.  To perform event 

synchronisation, one needs to process the input signals 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛) to indicator signals 

𝑒𝑒𝑥𝑥(𝑛𝑛) and𝑒𝑒𝑦𝑦(𝑛𝑛), whose values are zero everywhere except when an event occurs, where the 

value of the indicator signal is one. The event could be the occurrence of a local maximum (a 

peak), or local minimum (a trough), or zero crossing (positive-going or negative-going, or both) 

[33, 34]. 

In some cases, the phases of two signals are related even when their amplitudes are 

independent. Phase synchrony measures were specifically formulated to estimate any phase 

relationship between signals independent of their amplitude. To calculate phase synchrony, one 
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first needs to extract the instantaneous phase of signals. The two methods commonly used in 

the literature use the Hilbert transform [35] and the wavelet transform [36], yielding mean 

phase coherence (Hilbert) and mean phase coherence (wavelet). Alternatively, phase can be 

extracted from a signal using the previously outlined events approach [34], yielding mean 

phase coherence (event). Phase coherence value (PCV) is another approach to define phase 

synchronisation, based on the Shannon entropy of the distribution of phase difference [37-39]. 

As the signals’ phases can be unwrapped or wrapped (removing or retaining phase jumps of 

2), we obtain two PCV measures: phase coherence value unwrapped and phase coherence 

value wrapped. It is also possible to define phase synchronisation using conditional probability 

[38, 39], yielding conditional probability based phase synchrony (𝜆𝜆). 

The information-theoretic measures analyse information flow between two systems or between 

constituent subsystems of a complex system. These methods do not explicitly model the 

underlying interaction, and hence do not make any assumption about the underlying system 

[40, 41]. There are two groups of information-theoretic approaches for measuring 

interdependencies between signals: similarity measures, based on mutual information; and 

dissimilarity measures, that quantify the information divergence between two signals. Mutual 

information quantifies the amount of shared information between two random variables [42]. 

Mutual information is traditionally calculated from estimates of the joint, marginal and/or 

conditional probability density functions of one or more signals. The density estimation can be 

done simply using a histogram. In this paper, we test two measures: mutual information 

(histograms) (𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) uses uniform bin widths, and mutual information (adaptive 

histograms) (𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) uses non-uniform bin widths. Density estimation can be also 

done with more advanced techniques, such as kernel density estimation [43]. Histograms are 

inherently discontinuous, and if the distribution is known to be smooth it may be beneficial to 

estimate it using kernels, where the smoothness is inherent in the model, yielding mutual 
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information (kernel) (𝐼𝐼𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘). Alternatively, maximum likelihood mutual information (MLMI) 

[44] does not estimate several densities individually, but instead estimates the required ratio of 

densities directly, thereby avoiding the potential for magnifying estimation errors when 

dividing. Finally, we also estimate mutual information directly from samples using an estimator 

based on a sample’s k-nearest-neighbours: nearest-neighbour mutual information (KNN) [45]. 

Another alternative in estimating an information theoretic measure is to substitute the 

probability density function with a time-frequency distribution (TFD). With an appropriate 

choice of kernel function, the TFD can have the desirable properties of preserving energy and 

the marginal distributions. If a spectrogram is used, then the TFD is also non-negative, which 

is necessary for calculating information theoretic measures [41, 46]. Here we use mutual 

information (time-frequency) (𝐼𝐼𝜔𝜔). 

The second group of information theoretic measures estimate a dissimilarity between the two 

signals, where minimum dissimilarity corresponds to maximum similarity. Hence, following 

[47], we have normalised and inverted these measures so that zero corresponds to no synchrony 

and one corresponds to maximum synchrony. Kullback-Leibler divergence (KL) [48] and 

Jensen-Shannon divergence [41] are extensions of entropy that measure the distance between 

two distributions. Rényi divergence [6, 49] and Jensen-Rényi divergence [41] are non-linear 

variations on the same idea. 

The final approach reconstructs the phase space of the signals, then measures the 

synchronisation between the temporal evolution of the two trajectories described by the signals 

[50, 51]. This yields four measures: nonlinear interdependence (𝐻𝐻𝑘𝑘), nonlinear 

interdependence (𝑆𝑆𝑘𝑘), nonlinear interdependence (𝑁𝑁𝑘𝑘), and S-estimator. 

In this section, we describe every functional connectivity (synchronisation) measure used in 

the thesis, arranged in groups of measures that are conceptually related. 
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2.2.1.1 Correlation coefficient and related measures 

Correlation, coherence and related measures have been widely used in the literature to estimate 

synchronisation in the time and frequency domains. 

2.2.1.1.1 Correlation coefficient 

The correlation coefficient is one of the most well-known linear synchrony measures. It 

quantifies the linear correlation between two discrete-time signals 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛) and is defined 

as [30]: 

𝑟𝑟 =
1
𝑁𝑁�

(𝑥𝑥(𝑛𝑛) −𝑥𝑥̅)(𝑦𝑦(𝑛𝑛) −𝑦𝑦�)
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

𝑁𝑁

𝑛𝑛=1

 2-1 
 

where 𝑁𝑁 is the length the signals, 𝑥𝑥̅ and 𝜎𝜎𝑥𝑥 are the mean and standard deviation of the signal 

𝑥𝑥(𝑛𝑛); and similarly for 𝑦𝑦(𝑛𝑛). If the two signals 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛) are not linearly correlated (no 

synchrony), 𝑟𝑟 will be close to zero. When signals are identical (maximal synchrony), then 𝑟𝑟 =

1. 

2.2.1.1.2 Coherence 

Linear correlations can also be computed in the frequency domain by means of the cross 

spectrum: 

𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) = 𝐸𝐸[𝑋𝑋(𝑓𝑓)𝑌𝑌∗(𝑓𝑓)] 2-2 
 

where 𝐸𝐸[. ] is the expectation operator, 𝑋𝑋(𝑓𝑓) is the (discrete) Fourier transform of 𝑥𝑥(𝑛𝑛), the 

asterisk indicates complex conjugation, and 𝑓𝑓  is frequency. In practice, a finite number of 

samples will give a noisy estimate of (cross- and auto-) spectra. To reduce the noise, signals 

are segmented into equal length pieces, and the spectra of each segment is averaged (Welch’s 

method [52] 
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The coherence function 𝑐𝑐(𝑓𝑓) is the square of the cross spectrum, normalised by the auto-spectra 

of the two signals [30]: 

𝑐𝑐(𝑓𝑓) =
�〈𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓)〉�2

|〈𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓)〉|�〈𝐶𝐶𝑦𝑦𝑦𝑦(𝑓𝑓)〉� 
2-3 

 

where 〈. 〉 stands for average over the segments. This measure is particularly useful when the 

correlation between signals is limited to a particular frequency band [53].  

Where the angled brackets indicate an average over segments. This measure is particularly 

useful when correlation between signals is limited to some particular frequency band [53].  

2.2.1.1.3 Correntropy coefficient  

The correntropy coefficient is an extension of the correlation coefficient which is sensitive to 

a higher-order statistical and/or nonlinear relationship between the signals. Just as correlation 

is a normalisation of covariance, the correntropy coefficient 𝑟𝑟𝐸𝐸 for signals 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛) is a 

normalisation of a generalisation of covariance known as centred cross-correntropy coefficient 

𝑈𝑈(𝑥𝑥, 𝑦𝑦)  [12]: 

𝑈𝑈(𝑥𝑥 ,𝑦𝑦) =
1
𝑁𝑁�𝑘𝑘�𝑥𝑥(𝑖𝑖), 𝑦𝑦(𝑖𝑖)� −

1
𝑁𝑁2�𝑘𝑘�𝑥𝑥(𝑖𝑖), 𝑦𝑦(𝑗𝑗)�

𝑁𝑁

𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑖𝑖=1
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where 𝑁𝑁 is the number of samples,  and 𝑘𝑘(∙) is a symmetric positive-definite kernel function  

e.g. Gaussian, sigmoidal, or polynomial kernel [54]. The correntropy coefficient is therefore: 

𝑟𝑟𝐸𝐸 =
𝑈𝑈(𝑥𝑥, 𝑦𝑦)

�𝑈𝑈(𝑥𝑥 , 𝑥𝑥)�𝑈𝑈(𝑦𝑦, 𝑦𝑦)
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The kernel has a significant effect on the result, and so must be chosen carefully. In this paper 

we use the Gaussian kernel: 𝑘𝑘(𝑥𝑥 , 𝑦𝑦) =  𝑒𝑒
−(𝑥𝑥−𝑦𝑦)2 2𝜎𝜎2⁄

√2𝜋𝜋𝜋𝜋
. For this kernel, the choice of kernel width 
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𝜎𝜎 is critical. The recommended approach is Silverman’s rule of thumb [55]:  𝜎𝜎 = 0.9𝐴𝐴𝑁𝑁−1 5⁄ , 

where 𝐴𝐴 is the smaller value of the standard deviation of the data and the data interquartile 

range scaled by 1.34, and 𝑁𝑁 is the number of data samples. 

2.2.1.1.4 Coh-entropy coefficient  

The coh-entropy coefficient can be approximately interpreted as an adaption of correntropy 

coefficient to the frequency domain, or as a non-linear extension of the coherence function. 

Coh-entropy 𝐶𝐶𝐸𝐸 is given by [6]: 

𝐶𝐶𝐸𝐸(𝑓𝑓) =
〈𝑘𝑘�𝑋𝑋(𝑓𝑓), 𝑌𝑌(𝑓𝑓)�〉

𝑘𝑘(0)  
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where 〈∙〉 stands for average over the segments, 𝑋𝑋(𝑓𝑓) and 𝑌𝑌(𝑓𝑓) are the Fourier transforms of 

segments of the signals 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛) respectively, and 𝑘𝑘(∙) is a kernel function. Following 

the literature, e.g.[12], in this paper we use a Gaussian kernel with Silverman’s rule. As our 

calculations of coh-entropy coefficient normalises both signals 𝑋𝑋(𝑓𝑓) and 𝑌𝑌(𝑓𝑓) by mean and 

standard deviation before evaluating 𝐶𝐶𝐸𝐸, Silverman’s rule determines the width to be 𝜎𝜎 = 0.4. 

2.2.1.1.5 Wav-entropy coefficient  

It has been demonstrated that the wavelet transform is an effective and handy tool for EEG 

analysis [31]. Hence correntropy coefficient has also been extended to the time-frequency 

domain by substituting the wavelet transforms 𝑊𝑊𝑥𝑥
𝜓𝜓(𝑠𝑠,𝜏𝜏) and 𝑊𝑊𝑦𝑦

𝜓𝜓(𝑠𝑠,𝜏𝜏) for the signals 𝑥𝑥(𝑡𝑡) and 

𝑦𝑦(𝑡𝑡) respectively in the definition of correntropy coefficient, yielding the wav-entropy 

coefficient 𝑊𝑊𝐸𝐸 (𝑓𝑓). The (continuous) wavelet transform of 𝑥𝑥(𝑡𝑡) is given by [31, 32]: 

𝑊𝑊𝑥𝑥
𝜓𝜓(𝑠𝑠,𝜏𝜏) = 𝐴𝐴𝜓𝜓 �𝜓𝜓∗ �𝑡𝑡 − 𝜏𝜏

𝑠𝑠
� 𝑥𝑥(𝑡𝑡)𝑑𝑑𝑑𝑑 

 
2-7 
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where 𝜓𝜓∗(𝑡𝑡) indicates the complex conjugation of the mother wavelet 𝜓𝜓(𝑡𝑡), 𝜏𝜏 is the wavelet 

translation parameter, and 𝑠𝑠 is the wavelet scaling factor. Values of scale 𝑠𝑠 can be mapped to 

frequency, viz 𝑓𝑓 = 1 𝑠𝑠⁄ . In this study , we use the complex Morlet wavelet, as given in [32]: 

𝜓𝜓(𝑡𝑡) =
𝑒𝑒−𝑡𝑡2 2𝜎𝜎𝑡𝑡

2⁄ 𝑒𝑒2𝜋𝜋𝜋𝜋𝑓𝑓0𝑡𝑡

�2𝜋𝜋𝜎𝜎𝑡𝑡2
 2-8 

 

where 𝜎𝜎𝑡𝑡 represents the bandwidth parameter and 𝑓𝑓0 the central frequency of the wavelet. 

Following [32], we set the wavenumber 𝜔𝜔0 = 2𝜋𝜋𝑓𝑓0𝜎𝜎𝑡𝑡 = 6. 

2.2.1.1.6 Partial coherence 

Traditionally the partial coherence between a pair of signals is calculated using a multivariate 

autoregressive model (MVAR). The MVAR model of a set of 𝑛𝑛 signals 𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), . . . ,𝑥𝑥𝑛𝑛(𝑡𝑡) 

is given by [56]: 

�
𝑥𝑥1(𝑡𝑡)
⋮

𝑥𝑥𝑛𝑛(𝑡𝑡)
� = �𝐴𝐴𝑙𝑙�

𝑥𝑥1(𝑡𝑡 − 𝑙𝑙)
⋮

𝑥𝑥𝑛𝑛(𝑡𝑡 − 𝑙𝑙)
�

𝑃𝑃

𝑙𝑙=1

+ �
𝑒𝑒1(𝑡𝑡)
⋮

𝑒𝑒𝑛𝑛(𝑡𝑡)
� 2-9 

 

where 𝑃𝑃 is the model order, the model coefficients 𝐴𝐴𝑖𝑖 are 𝑛𝑛 × 𝑛𝑛 matrices, and each 𝑒𝑒𝑖𝑖(𝑡𝑡) is a 

zero-mean Gaussian random process. According to this model, each signal is assumed to 

linearly dependent on its own 𝑝𝑝 past values and the 𝑝𝑝 past values of the other signals, plus an 

innovation or noise input. Transforming to the frequency domain gives 𝑋𝑋(𝑓𝑓)[𝐼𝐼 − 𝐴𝐴(𝑓𝑓)] =

𝐸𝐸(𝑓𝑓), where 𝐴𝐴(𝑓𝑓) = ∑ 𝐴𝐴𝑙𝑙𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑃𝑃
𝑙𝑙=1 , and hence the covariance matrix 𝑆𝑆(𝑓𝑓) of the model signals 

is 𝑆𝑆(𝑓𝑓) = 𝐻𝐻(𝑓𝑓)𝑉𝑉𝐻𝐻(𝑓𝑓)𝐻𝐻, where 𝐻𝐻(𝑓𝑓) = [𝐼𝐼 − 𝐴𝐴(𝑓𝑓)]−1 and 𝑉𝑉 is the prediction error covariance 

matrix [56]. Note that in principal Fourier analysis or other spectral estimation approaches can 

be used to calculate spectral density matrix, and so the calculation of partial coherence does 

not necessarily involve an MVAR model. 

Then the partial coherence between 𝑥𝑥𝑖𝑖(𝑡𝑡) and 𝑥𝑥𝑗𝑗(𝑡𝑡) is defined using 𝑀𝑀𝑖𝑖𝑖𝑖(𝑓𝑓), the (𝑖𝑖, 𝑗𝑗)th minor 

of 𝑆𝑆(𝑓𝑓), as [56, 57]: 
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𝐶𝐶𝑖𝑖𝑖𝑖(𝑓𝑓) =
𝑀𝑀𝑖𝑖𝑖𝑖(𝑓𝑓)

�𝑀𝑀𝑖𝑖𝑖𝑖(𝑓𝑓)�𝑀𝑀𝑗𝑗𝑗𝑗(𝑓𝑓)
 

 

2-10 
 

The partial coherence 𝐶𝐶𝑖𝑖𝑖𝑖(𝑓𝑓) estimates the coherence of a pair signals 𝑥𝑥𝑖𝑖(𝑡𝑡) and 𝑥𝑥𝑗𝑗(𝑡𝑡) at each 

frequency 𝑓𝑓 with the influence of other signals statistically eliminated. 

2.2.1.2 Event synchronisation 

Event synchronisation is based on the relative timings of predefined events extracted from 

signals. These events can be any repetitive feature, e.g. spikes in single-neuron recordings, 

epileptiform spikes in EEG, zero-crossings, local extrema.  To perform event synchronisation, 

one needs to process the input signals 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛) to indicator signals 𝑒𝑒𝑥𝑥(𝑛𝑛) and 𝑒𝑒𝑦𝑦(𝑛𝑛), 

whose values are zero everywhere except when an event occurs, where the value of the 

indicator signal is one. The event could be the occurrence of a local maximum (a peak), or local 

minimum (a trough), or zero crossing (positive-going or negative-going, or both).  

Local maxima and minima [34]: The signal 𝑥𝑥(𝑛𝑛) has local maxima and local minima if 𝑥𝑥(𝑛𝑛) >

𝑥𝑥(𝑛𝑛 ± 1) and 𝑥𝑥(𝑛𝑛) < 𝑥𝑥(𝑛𝑛 ± 1) respectively. These can be identified from the signal 𝑆𝑆𝑥𝑥(𝑛𝑛) 

defined as: 

𝑆𝑆𝑥𝑥(𝑛𝑛)  =  sgn(𝑥𝑥(𝑛𝑛)− 𝑥𝑥(𝑛𝑛 − 1)) + sgn(𝑥𝑥(𝑛𝑛) −𝑥𝑥(𝑛𝑛 + 1)) 

where sgn(∙) denotes the signum function. 𝑆𝑆𝑥𝑥(𝑛𝑛) = −2 for local minima, 𝑆𝑆𝑥𝑥(𝑛𝑛) = 2 for local 

maxima, and zero otherwise. We can form an indicator signal for a local maximum as: 

𝑒𝑒𝑥𝑥max(𝑛𝑛) = 1 + sgn(𝑆𝑆𝑥𝑥(𝑛𝑛)− 2) 
2-11 
 

and similarly an indicator signal for a local minimum is: 

𝑒𝑒𝑥𝑥min(𝑛𝑛) = 1− sgn(𝑆𝑆𝑥𝑥(𝑛𝑛) + 2) 2-12 
 

Zero crossings: The signal 𝑥𝑥(𝑛𝑛) has a positive-going zero crossing if 𝑥𝑥(𝑛𝑛) < 0 and 𝑥𝑥(𝑛𝑛 + 1) >

0. These can be identified from the signal 𝑍𝑍𝑥𝑥(𝑛𝑛) defined as: 
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𝑍𝑍𝑥𝑥(𝑛𝑛) = sgn(𝑥𝑥(𝑛𝑛)) − sgn(𝑥𝑥(𝑛𝑛 − 1)) 

𝑍𝑍𝑥𝑥(𝑛𝑛) = +2 for positive-going zero crossings, 𝑍𝑍𝑥𝑥(𝑛𝑛) = −2 for negative-going zero crossings, 

and ±1 or zero otherwise. Hence an indicator signal for positive-going zero crossings is: 

𝑒𝑒𝑥𝑥+𝑧𝑧(𝑛𝑛) = 1 + sgn(𝑍𝑍𝑥𝑥(𝑛𝑛)− 2) 2-13 
 

And similarly for a negative-going zero crossings: 

𝑒𝑒𝑥𝑥−𝑧𝑧(𝑛𝑛) = 1− sgn(𝑍𝑍𝑥𝑥(𝑛𝑛) + 2) 
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or for any zero-crossing: 

𝑒𝑒𝑥𝑥𝑧𝑧(𝑛𝑛) = 2 + sgn(𝑍𝑍𝑥𝑥(𝑛𝑛)− 2) − sgn(𝑍𝑍𝑥𝑥(𝑛𝑛) + 2) 
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Measuring event synchronisation [33, 34]: Given two indicator signals 𝑒𝑒𝑥𝑥(𝑛𝑛) and 𝑒𝑒𝑦𝑦(𝑛𝑛), we 

measure event synchronisation by counting how often an event in one signal is preceded by an 

event in the other signal within a specified time 𝜏𝜏. The count can be computed as: 

𝐶𝐶𝜏𝜏(𝑥𝑥|𝑦𝑦) = �� 𝑒𝑒(𝑘𝑘)𝑒𝑒(𝑘𝑘 − 𝑑𝑑)
𝜏𝜏

𝑑𝑑=1

𝑁𝑁

𝑘𝑘=1

 

Event synchronisation is then calculated from this count and it symmetric 

counterpart 𝐶𝐶𝜏𝜏(𝑦𝑦|𝑥𝑥) : 

𝐸𝐸𝐸𝐸𝐸𝐸 =
𝐶𝐶𝜏𝜏(𝑥𝑥|𝑦𝑦) + 𝐶𝐶𝜏𝜏(𝑦𝑦|𝑥𝑥)

2�𝐸𝐸𝑥𝑥𝐸𝐸𝑦𝑦
 2-16 

 

 

where 𝐸𝐸𝑥𝑥 and 𝐸𝐸𝑦𝑦 are the total number of events in the signals 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛), ie 

𝐸𝐸𝑥𝑥 = � 𝑒𝑒𝑥𝑥(𝑘𝑘)
𝑁𝑁

𝑘𝑘=1

 

In this study, these events used will be local maxima, local minima, and zero crossings 
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2.2.1.3 Phase synchrony 

In some cases, the phase of two signals are related even when their amplitudes are independent. 

Phase synchrony measures were specifically formulated to estimate any phase relationship 

between signals independent of their amplitude. To calculate phase synchrony, one first needs 

to extract the instantaneous phase of signals. The two methods commonly used in the literature 

use the Hilbert transform [35] or the wavelet transform [36]. The Hilbert transform can be 

written as a convolution: 

𝑥𝑥�(𝑡𝑡) =
1
𝜋𝜋𝜋𝜋 ∗ 𝑥𝑥(𝑡𝑡) 
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It calculates the imaginary component of the analytic signal 𝑥𝑥𝑎𝑎(𝑡𝑡): 

𝑥𝑥𝑎𝑎(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝑖𝑖𝑥𝑥�(𝑡𝑡) 
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Finally,𝜑𝜑𝑥𝑥𝐻𝐻(𝑡𝑡), the instantaneous phase of the signal, is given by: 

𝜑𝜑𝑥𝑥𝐻𝐻(𝑡𝑡) = arg(𝑥𝑥(𝑡𝑡) + 𝑖𝑖𝑥𝑥�(𝑡𝑡)) = arctan �
𝑥𝑥�(𝑡𝑡)
𝑥𝑥(𝑡𝑡)

� 
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For narrowband signals, this formulation using the Hilbert transform can work well. For 

broadband signals, like EEG, it is recommended that a bandpass filter is used to select the 

frequency band of interest before calculating the Hilbert transform [58]. Another well-known 

phase extraction approach uses the wavelet phase transform of signal. In this case, the phase is 

extracted from the convolution of the signal with a wavelet function 𝜓𝜓(𝑡𝑡) [59]: 

𝑋𝑋(𝑡𝑡) = � 𝜓𝜓(𝜏𝜏)𝑥𝑥(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑
∞

−∞
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and the phase calculated as before: 𝜑𝜑𝑥𝑥𝑊𝑊(𝑡𝑡) = arg(𝑋𝑋(𝑡𝑡)). Both of these quantities depend on 

the chosen wavelet, which is traditionally a complex Morlet wavelet, used here with 

wavenumber 𝜔𝜔0 = 2𝜋𝜋𝑓𝑓0𝜎𝜎𝑡𝑡 = 6 as before. Unlike the Hilbert transform, the wavelet transform 

is effectively a bandpass filter, so it works for both narrowband and broadband signals [60]. 
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Alternatively, phase can be extracted from a signal using the previously defined events 

approach. Suppose 𝑡𝑡𝑘𝑘 are a sequence of times where a certain event appears once per cycle, 

then the phase can be defined as: 𝜑𝜑�𝑡𝑡𝑗𝑗� = 2𝜋𝜋(𝑗𝑗 − 1). Effectively, the phase is defined at the 

times of the events’ occurrences and interpolated linearly in between. The phase estimate is 

then a uniform sampling of this waveform, at the same sampling rate as the original signal [34]. 

2.2.1.3.1 Mean phase coherence 

Let 𝜑𝜑𝑥𝑥(𝑡𝑡) and 𝜑𝜑𝑦𝑦(𝑡𝑡) be the extracted phase from signals 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) respectively, via one 

of the techniques described above. Then, the (𝑛𝑛,𝑚𝑚) phase difference of the signals, where 𝑛𝑛 

and 𝑚𝑚 are integers, can be defined as [28, 38]: 

 

Δ𝜑𝜑(𝑡𝑡) = 𝑛𝑛𝜑𝜑𝑥𝑥(𝑡𝑡)− 𝑚𝑚𝜑𝜑𝑦𝑦(𝑡𝑡) 
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If the (𝑛𝑛,𝑚𝑚) phase difference of the signals remains bounded, then the signals are said to be 

𝑛𝑛:𝑚𝑚 synchronised. In the most cases, only 𝑚𝑚 = 𝑛𝑛 = 1 is considered [52]. The mean phase 

coherence, also known as phase synchronisation index, 𝑅𝑅 is given by [28, 52, 61, 62]: 

𝑅𝑅 = 〈𝑒𝑒−𝑖𝑖Δ𝜑𝜑(𝑡𝑡)〉 = �〈cos(Δ𝜑𝜑(𝑡𝑡))〉2 + 〈sin(Δ𝜑𝜑(𝑡𝑡))〉2 2-22 
 

where the angle brackets represent an average over time. The mean phase coherence will be 

zero if the phases are not synchronised and will be one for a constant phase difference. 

2.2.1.3.2 Phase coherence value 

It is also possible to define phase synchronisation from the Shannon entropy of the distribution 

of phase difference. The phase coherence value 𝑃𝑃𝑃𝑃𝑃𝑃 is defined as [37-39]: 

𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑆𝑆max− 𝑆𝑆
𝑆𝑆max
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where 𝑆𝑆 = −∑ 𝜌𝜌𝑘𝑘𝑙𝑙𝑙𝑙𝜌𝜌𝑘𝑘𝑁𝑁
k=1  and 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = ln (𝑁𝑁) is the maximal entropy, where 𝑁𝑁 is the number 

of bins in the histogram of the phase difference, and 𝜌𝜌𝑘𝑘 is the relative frequency of phase 
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differences in the 𝑘𝑘𝑡𝑡ℎ bin. The standard approach to estimating the number of bins is N=…., 

where M is the number of samples is 𝑁𝑁 = 𝑒𝑒𝑒𝑒𝑒𝑒[0.626 + 0.4𝑙𝑙𝑙𝑙(𝑀𝑀− 1)], where 𝑀𝑀  is the 

number of samples [63]. 𝑃𝑃𝐶𝐶𝑉𝑉 ranges from 𝑃𝑃𝑃𝑃𝑃𝑃 = 0, corresponding to a uniform distribution 

of phase differences (no synchronisation), to 𝑃𝑃𝑃𝑃𝑃𝑃 = 1,  corresponding to a Dirac-like 

distribution of phase differences (constant phase difference or maximal synchronisation). 

2.2.1.3.3 Conditional probability based phase synchrony 

Suppose that two phases 𝜑𝜑𝑥𝑥(𝑡𝑡𝑘𝑘) and 𝜑𝜑𝑦𝑦(𝑡𝑡𝑘𝑘) are extracted from signals 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡), and the 

phases are quantised into 𝑀𝑀 bins on the ranges [0, 𝑛𝑛2𝜋𝜋] and [0,𝑚𝑚2𝜋𝜋] respectively. The phase 

synchrony index based on conditional probability is defined as [38, 39]: 

𝜆𝜆 =
1
𝑀𝑀�|𝑟𝑟𝑙𝑙|

𝑀𝑀

𝑙𝑙=1
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𝑟𝑟𝑙𝑙 =
1
𝑀𝑀𝑙𝑙

� 𝑒𝑒𝑖𝑖𝜑𝜑𝑥𝑥(𝑡𝑡𝑘𝑘)

𝑘𝑘∈𝐾𝐾𝑙𝑙
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where 𝐾𝐾𝑙𝑙 is the set of all time indices such that 𝜑𝜑𝑦𝑦(𝑡𝑡) belongs to bin 𝑙𝑙 , and 𝑀𝑀𝑙𝑙 is the number of 

indices in the set. In other words, 𝑟𝑟𝑙𝑙 is the average of the unit vectors of the phase of 𝑥𝑥(𝑡𝑡) for 

those times when the unit vectors of 𝑦𝑦(𝑡𝑡) point in approximately the same direction. It will 

have a magnitude of one when the phase relationship is consistent, and a small magnitude when 

the phase relationship is random. 𝜆𝜆 is the average across the bins, and hence approaches 1 when 

the phase relationship is consistent, and tends to zero when the phase relationship is random. 

2.2.1.4 Information-theoretic measures 

The information-theoretic measures analyse information flow between two systems or between 

constituent subsystems of a complex system. These methods do not explicitly model the 

underlying interaction, and hence do not make any assumption about the underlying system 

[40, 41]. 
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In this section, we provide a detailed overview of two groups of information-theoret ic 

approaches for measuring interdependencies between signals: similarity measures, based on 

mutual information; and dissimilarity measures, that quantify the information divergence 

between two signals. As these measures estimate a dissimilarity, their minimum corresponds 

to maximum similarity. Hence, following [47], we have normalised and inverted these 

measures so that zero corresponds to no synchrony and one corresponds to maximum 

synchrony. 

We first introduce the concept of entropy which measures the uncertainty of a discrete random 

variable. Let 𝑋𝑋 and 𝑌𝑌 be random variables with probability density functions 𝜌𝜌(𝑥𝑥) =

𝑃𝑃𝑟𝑟{𝑋𝑋 = 𝑥𝑥}  and 𝜌𝜌(𝑦𝑦) = 𝑃𝑃𝑟𝑟{𝑌𝑌 = 𝑦𝑦} , then the Shannon entropy 𝐻𝐻(𝑋𝑋) measures the average 

amount of information gained from and observation of 𝑋𝑋. It is defined as: 

𝐻𝐻(𝑋𝑋) = −�𝜌𝜌(𝑥𝑥)log(𝜌𝜌(𝑥𝑥))
𝑥𝑥
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Similarly, the joint entropy 𝐻𝐻(𝑋𝑋,𝑌𝑌) is: 

𝐻𝐻(𝑋𝑋,𝑌𝑌) = −��𝜌𝜌(𝑥𝑥, 𝑦𝑦)log(𝜌𝜌(𝑥𝑥 ,𝑦𝑦))
𝑦𝑦𝑥𝑥

 

 

2-27 
 

 

where 𝜌𝜌(𝑥𝑥 ,𝑦𝑦) = 𝑃𝑃𝑟𝑟{𝑋𝑋 = 𝑥𝑥, 𝑌𝑌 = 𝑦𝑦} is the joint probability of these values occurring together. 

Finally, the conditional entropy 𝐻𝐻(𝑋𝑋|𝑌𝑌) of 𝑋𝑋 given 𝑌𝑌 is defined using the conditiona l 

probability 𝜌𝜌(𝑥𝑥|𝑦𝑦) = 𝑃𝑃𝑟𝑟{𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦} as: 

𝐻𝐻(𝑋𝑋|𝑌𝑌) = −��𝜌𝜌(𝑥𝑥 ,𝑦𝑦)log�𝜌𝜌(𝑥𝑥|𝑦𝑦)�
𝑦𝑦𝑥𝑥
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The joint entropy can be expressed in terms of the conditional entropy and the Shannon entropy 

as 𝐻𝐻(𝑋𝑋, 𝑌𝑌) = 𝐻𝐻(𝑋𝑋|𝑌𝑌) +𝐻𝐻(𝑌𝑌). Mutual information 𝐼𝐼(𝑋𝑋;𝑌𝑌) quantifies the amount of shared 

information between 𝑋𝑋 and 𝑌𝑌 [42]: 



25 
 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = ��𝜌𝜌(𝑥𝑥, 𝑦𝑦)log �
𝜌𝜌(𝑥𝑥 ,𝑦𝑦)
𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦)

�
𝑦𝑦𝑥𝑥
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Mutual information can be equivalently expressed as 

𝐼𝐼(𝑋𝑋;𝑌𝑌) = 𝐻𝐻(𝑋𝑋) −𝐻𝐻(𝑋𝑋|𝑌𝑌) = 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋) = 𝐻𝐻(𝑋𝑋) + 𝐻𝐻(𝑌𝑌) −𝐻𝐻(𝑋𝑋 ,𝑌𝑌)

= 𝐻𝐻(𝑋𝑋, 𝑌𝑌) −𝐻𝐻(𝑋𝑋|𝑌𝑌) −𝐻𝐻(𝑌𝑌|𝑋𝑋) 
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Mutual information is not normalised, so to use it as a measure of synchronisation we need to 

normalise it. Several normalisations have been proposed, including 𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿 by Lancichinetti et 

al in [64]: 

𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿 = 1−
1
2
�𝐻𝐻

(𝑋𝑋|𝑌𝑌)
𝐻𝐻(𝑋𝑋) +

𝐻𝐻(𝑌𝑌|𝑋𝑋)
𝐻𝐻(𝑌𝑌)

� 
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and the normalised mutual information 𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 by Fred and Jain in [65]: 

𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 =
2𝐼𝐼(𝑋𝑋;𝑌𝑌)

𝐻𝐻(𝑋𝑋) + 𝐻𝐻(𝑌𝑌) 
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In this paper we use 𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹. 

Mutual information is traditionally calculated from estimates of the joint, marginal and/or 

conditional probability density functions of one or more signals. The density estimation can be 

done simply using a histogram, or with a more advanced technique such as kernel density 

estimation [43]. Maximum likelihood mutual information does not estimate several densities 

individually, but instead estimates the required ratio of densities directly, thereby avoiding the 

potential for magnifying estimation errors when dividing.  We also examine new approaches 

to estimate mutual information directly from samples using k-nearest-neighbour (kNN) based 

estimators [45]. 

Another alternative is to substitute the probability density function with a time-frequency 

distribution (TFD). With an appropriate choice of kernel function, the TFD can have the 
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desirable properties of preserving energy and the marginal distributions. If a spectrogram is 

used, then the TFD is also non-negative, which is necessary for calculating information 

theoretic measures [41, 46]. 

2.2.1.4.1 Mutual information using histograms 

The histogram is the oldest and the most straightforward approach for estimating probability 

density functions. This method involves in partitioning the samples into 𝑛𝑛 bins 𝑏𝑏𝑖𝑖 of finite size. 

Then probability density function (PDF) can be estimated by counting the number of samples 

falling into each bin 𝑏𝑏𝑖𝑖, and dividing each by the total number of samples. Assume we have 

random variable 𝑋𝑋, and the number of samples falling into the 𝑖𝑖𝑡𝑡ℎ bin of  𝑋𝑋  is 𝐵𝐵𝑖𝑖 , then the 

histogram approximation of the density is: 

𝜌𝜌(𝑥𝑥) =
𝐵𝐵𝑖𝑖
𝑁𝑁 ,𝑥𝑥 ∈ 𝑏𝑏𝑖𝑖 
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where 𝑁𝑁 = ∑ 𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1  is the total number of samples. 

Optimal bin size selection is crucial in achieving sufficient samples in each bin to obtain a 

reliable estimate of the PDF. There are various theoretical rules for determining bin sizes, 

which can be uniform or non-uniform. In this thesis, we use the Freedman-Diaconis rule [66] 

to obtain a suitable width for uniformly-sized bins, and adaptive partitioning [67] for 

optimising the sizes of the bins when using non-uniform bins, referred to as mutual information 

(histograms) and mutual information (adaptive histograms) respectively. 

2.2.1.4.2 Mutual information using kernels 

Histograms are inherently discontinuous, and if the distribution is known to be smooth it may 

be beneficial to estimate it using kernels, where the smoothness is inherent in the model. Kernel 

estimators place a scaled kernel function (a non-negative real-valued integrable symmetric 

function) at each of 𝑁𝑁 data points to smooth out the contribution of each observed data point 
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over a local neighbourhood [55]. If we denote the kernel function as 𝑘𝑘(𝑢𝑢) where ∫ 𝑘𝑘(𝑢𝑢)𝑑𝑑𝑑𝑑 =∞
−∞

1, the estimated density at any point x is: 

𝜌𝜌(𝑥𝑥) =
1
𝑁𝑁ℎ�𝑘𝑘�

𝑥𝑥 − 𝑥𝑥𝑖𝑖
ℎ �

𝑁𝑁

𝑖𝑖 1
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where ℎ is the bandwidth, a parameter that determines the smoothness of the estimated pdf. 

There are many possible kernel functions. In this study, we again use the Gaussian kernel 

function 𝑘𝑘(𝑢𝑢) = 𝑒𝑒−𝑢𝑢2 2⁄ √2𝜋𝜋⁄ . The choice of the bandwidth is critical to good estimation. 

Again, a common method to choose the optimal bandwidth is Silverman’s rule of thumb [55]. 

2.2.1.4.3 Maximum likelihood mutual information (MLMI)   

The methods discussed so far all estimate the probability densities directly. Instead, MLMI 

directly models the density ratio: 

𝜔𝜔(𝑥𝑥, 𝑦𝑦) =
𝜌𝜌(𝑥𝑥 ,𝑦𝑦)
𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦) 
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From an estimate of this ratio 𝜔𝜔�(𝑥𝑥 ,𝑦𝑦) and 𝑁𝑁 samples of 𝑋𝑋 and 𝑌𝑌, MI can be approximated by 
[44]: 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = � log(𝜔𝜔(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖))
𝑁𝑁

𝑖𝑖 1
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2.2.1.4.4 Nearest-neighbour mutual information 

The Kraskov, Stögbauer, and Grassberger mutual information estimator [45] is a widely used 

measure based on entropy estimates from 𝑘𝑘 nearest-neighbour distances (KNN). Distances are 

measured in three ways, distances between samples in 𝑋𝑋, distances between samples in 𝑌𝑌, and 

the maximum of these two distances for corresponding samples, commonly referred to as a 

distance in 𝑍𝑍. For a time, point indicated by the subscript 𝑖𝑖 , we can determine the distance 𝑑𝑑𝑍𝑍(𝑖𝑖) 

in 𝑍𝑍 between the sample 𝑍𝑍𝑖𝑖 and 𝑍𝑍𝑘𝑘, its k th nearest neighbour. We then determine 𝑛𝑛𝑥𝑥(𝑖𝑖) as the 
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number of points 𝑋𝑋𝑗𝑗 whose distance from 𝑋𝑋𝑖𝑖  is strictly less than 𝑑𝑑𝑍𝑍(𝑖𝑖), and similarly for 𝑛𝑛𝑥𝑥(𝑖𝑖). 

Then the nearest neighbour mutual information is given by: 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝜓𝜓(𝑘𝑘) − 〈𝜓𝜓(𝑛𝑛𝑥𝑥 + 1) +𝜓𝜓�𝑛𝑛𝑦𝑦 + 1�〉+ 𝜓𝜓(𝑁𝑁) 2-37 

 
where 〈∙〉 denotes averaging over all 𝑖𝑖 ∈ [1,⋯ ,𝑁𝑁] and 𝜓𝜓(𝑥𝑥) is the digamma function 𝜓𝜓(𝑥𝑥) =

𝑑𝑑 ln(𝛤𝛤(𝑥𝑥)) 𝑑𝑑𝑑𝑑⁄ , ie the logarithmic derivative of the gamma function 𝛤𝛤(𝑥𝑥) [45, 68]. 

2.2.1.4.5 Mutual information on the time-frequency plane 

Mutual information can be calculated from TFDs as [46]: 

𝐼𝐼(𝐶𝐶𝑥𝑥 ,𝐶𝐶𝑦𝑦) = �𝐶𝐶𝑥𝑥,𝑦𝑦(𝑛𝑛,𝑓𝑓)log �
𝐶𝐶𝑥𝑥𝑥𝑥(𝑛𝑛,𝑓𝑓)

𝐶𝐶𝑥𝑥(𝑛𝑛,𝑓𝑓)𝐶𝐶𝑦𝑦(𝑛𝑛,𝑓𝑓)
�

𝑛𝑛,𝑓𝑓
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where 𝐶𝐶𝑥𝑥(𝑛𝑛,𝑓𝑓) and 𝐶𝐶𝑥𝑥𝑥𝑥(𝑛𝑛,𝑓𝑓) are the normalised auto- and cross- time-frequency distributions 

respectively, and can be calculated from the spectrogram 𝑆𝑆𝑥𝑥(𝑛𝑛,𝑓𝑓) as: 

𝐶𝐶𝑥𝑥(𝑛𝑛,𝑓𝑓) =
|𝑆𝑆𝑥𝑥(𝑛𝑛,𝑓𝑓)|2

∑ |𝑆𝑆𝑥𝑥(𝑛𝑛,𝑓𝑓)|2𝑛𝑛,𝑓𝑓
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𝐶𝐶𝑥𝑥𝑥𝑥(𝑛𝑛,𝑓𝑓) =

�𝑆𝑆𝑥𝑥(𝑛𝑛,𝑓𝑓)𝑆𝑆𝑦𝑦∗(𝑛𝑛,𝑓𝑓)�
∑ �𝑆𝑆𝑥𝑥(𝑛𝑛,𝑓𝑓)𝑆𝑆𝑦𝑦∗(𝑛𝑛,𝑓𝑓)�𝑛𝑛,𝑓𝑓
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In this paper, we calculate the spectrogram using the short-term Fourier transform with a 

Hamming window. 

2.2.1.4.6 Kullback-Leibler divergence 

For densities 𝑃𝑃 and 𝑄𝑄, the Kullback-Leibler divergence is given by [48]: 

𝐾𝐾(𝑃𝑃|𝑄𝑄) = �𝑃𝑃𝑖𝑖log�
𝑃𝑃𝑖𝑖
𝑄𝑄𝑖𝑖
�

𝑖𝑖
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Rather than use pdfs, here we use the TFDs [6, 47]: 

𝐾𝐾(𝐶𝐶𝑥𝑥,𝐶𝐶𝑦𝑦) = �𝐶𝐶𝑥𝑥(𝑛𝑛,𝑓𝑓)log �
𝐶𝐶𝑥𝑥(𝑛𝑛,𝑓𝑓)
𝐶𝐶𝑦𝑦(𝑛𝑛,𝑓𝑓)

�
𝑛𝑛,𝑓𝑓
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The Kullback-Leibler divergence is an asymmetric measure, but it can be symmetrised by 

taking the average of 𝐾𝐾(𝐶𝐶𝑥𝑥,𝐶𝐶𝑦𝑦) and 𝐾𝐾(𝐶𝐶𝑦𝑦 ,𝐶𝐶𝑥𝑥) [69]. 

𝐾𝐾�𝐶𝐶𝑥𝑥;𝐶𝐶𝑦𝑦� =
𝐾𝐾�𝐶𝐶𝑥𝑥,𝐶𝐶𝑦𝑦�+𝐾𝐾(𝐶𝐶𝑦𝑦 ,𝐶𝐶𝑥𝑥)

2  
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2.2.1.4.7 Rényi divergence 

The Rényi divergence of order 𝛼𝛼 is defined as [6, 49]: 

𝐷𝐷𝛼𝛼(𝐶𝐶𝑥𝑥,𝐶𝐶𝑦𝑦) =
1

𝛼𝛼 − 1 log��[𝐶𝐶𝑥𝑥(𝑛𝑛,𝑓𝑓)]𝛼𝛼�𝐶𝐶𝑦𝑦(𝑛𝑛,𝑓𝑓)�
(1−𝛼𝛼)

𝑛𝑛,𝑓𝑓

� 
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It is a generalisation of the Kullback–Leibler divergence, and as 𝛼𝛼 → 1 it equals the Kullback-

Leibler divergence [70]. This measure is asymmetric measure except for 𝛼𝛼 = 0.5, which is the 

value used in this paper. 

2.2.1.4.8 Jensen-Shannon divergence 

Jensen-Shannon divergence is a way of deriving distance measures from entropy. The Jensen-

Shannon divergence of two time-frequency distributions 𝐶𝐶𝑥𝑥(𝑛𝑛,𝑓𝑓) and 𝐶𝐶𝑦𝑦(𝑛𝑛,𝑓𝑓) is given by 

[41]: 

𝐽𝐽�𝐶𝐶𝑥𝑥,𝐶𝐶𝑦𝑦� = 𝐻𝐻 �
𝐶𝐶𝑥𝑥 + 𝐶𝐶𝑦𝑦

2
�−

𝐻𝐻(𝐶𝐶𝑥𝑥) +𝐻𝐻(𝐶𝐶𝑦𝑦)
2  

 

2-45 
 

 
where 𝐻𝐻 denotes the Shannon entropy given by: 

𝐻𝐻(𝐶𝐶𝑥𝑥) = �𝐶𝐶𝑥𝑥(𝑛𝑛,𝑓𝑓)log𝐶𝐶𝑥𝑥(𝑛𝑛,𝑓𝑓)
𝑛𝑛,𝑓𝑓
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2.2.1.4.9 Jensen-Rényi divergence 

Jensen-Rényi divergence is modification of the Jensen-Shannon divergence from an arithmetic 

to a geometric mean [41]: 

𝐽𝐽�𝐶𝐶𝑥𝑥,𝐶𝐶𝑦𝑦� = 𝐻𝐻𝛼𝛼 ��𝐶𝐶𝑥𝑥𝐶𝐶𝑦𝑦�−
𝐻𝐻𝛼𝛼(𝐶𝐶𝑥𝑥) +𝐻𝐻𝛼𝛼(𝐶𝐶𝑦𝑦)

2  
2-47 
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where 𝐻𝐻𝛼𝛼 denotes the Rényi entropy given by: 

𝐻𝐻𝛼𝛼(𝐶𝐶𝑥𝑥) =
1

𝛼𝛼 − 1 log�(𝐶𝐶(𝑛𝑛,𝑓𝑓))𝛼𝛼
𝑛𝑛,𝑓𝑓
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2.2.1.5 Synchronisation based on state space  

Synchronisation can be measured by calculating the interdependence between the signals in 

state space. Therefore, the first step is to project the signals into state space, a procedure known 

as state space reconstruction. The method of delays is one of the important state space 

reconstruction techniques.  For a signal 𝑥𝑥(𝑛𝑛), we reconstruct a state space vector as: 

𝑥𝑥(𝑛𝑛) = [𝑥𝑥(𝑛𝑛), 𝑥𝑥(𝑛𝑛 − 𝜏𝜏),⋯ ,𝑥𝑥(𝑛𝑛 − (𝑚𝑚− 1)𝜏𝜏)]𝑇𝑇 
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 where 𝑚𝑚 is the embedding dimension and 𝜏𝜏 denotes the time lag. With N samples of 𝑥𝑥(𝑛𝑛), we 

can create 𝑁𝑁 − (𝑚𝑚− 1)𝜏𝜏 state space vectors. Each state space vector can be considered as a 

point in an m-dimensional space, and the set of 𝑁𝑁− (𝑚𝑚− 1)𝜏𝜏 state space vectors traces out a 

trajectory in this space [50, 71]. 

2.2.1.5.1 Nonlinear interdependence 

For each state space vector 𝑥𝑥(𝑖𝑖), we can measure the average squared Euclidean distance to all 

other state space vectors as: 

𝑅𝑅𝑖𝑖(𝑋𝑋) =
1

𝑁𝑁 − (𝑚𝑚− 1)𝜏𝜏�
(𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑗𝑗))𝑇𝑇(𝑥𝑥(𝑖𝑖) −𝑥𝑥(𝑗𝑗))

𝑗𝑗≠𝑖𝑖
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Now we can identify the 𝑘𝑘 other state space vectors that are closest, ie the 𝑘𝑘 nearest neighbours, 

and denote the time indices of these neighbours by 𝑟𝑟𝑖𝑖,𝑗𝑗, 𝑗𝑗 = 1,2,⋯ , 𝑘𝑘. Then for each state space 

vector 𝑥𝑥(𝑖𝑖), the average squared Euclidian distance to its k nearest neighbours is defined as: 

𝑅𝑅𝑖𝑖
(𝑘𝑘)(𝑋𝑋) =

1
𝑘𝑘�

�𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑟𝑟𝑖𝑖 ,𝑗𝑗)�
𝑇𝑇�𝑥𝑥(𝑖𝑖) −𝑥𝑥(𝑟𝑟𝑖𝑖 ,𝑗𝑗)�

𝑘𝑘

𝑗𝑗 1
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We can similarly define 𝑅𝑅𝑖𝑖(𝑌𝑌) and 𝑅𝑅𝑖𝑖

(𝑘𝑘)(𝑌𝑌). In addition, we can identify the 𝑘𝑘 state space 

vectors 𝑦𝑦(𝑗𝑗) that are closest to the state space vector 𝑥𝑥(𝑖𝑖), and denote the time indices of these 
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neighbours by si,j, j = 1,2,⋯ , k. We then measure the average squared Euclidean distance 

from 𝑥𝑥(𝑖𝑖) to the k  state space vectors 𝑥𝑥�𝑠𝑠𝑖𝑖,𝑗𝑗�, ie the time-partners of the nearest neighbours of 

the state space vectors 𝑦𝑦(𝑗𝑗). This gives the 𝑌𝑌-conditioned average squared Euclidean distance 

defined as: 

𝑅𝑅𝑖𝑖
(𝑘𝑘) (𝑋𝑋|𝑌𝑌) =

1
𝑘𝑘
��𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑠𝑠𝑖𝑖,𝑗𝑗)�

𝑇𝑇�𝑥𝑥(𝑖𝑖) −𝑥𝑥(𝑠𝑠𝑖𝑖,𝑗𝑗)�
𝑘𝑘

𝑗𝑗=1

 

 

2-52 
 

 
The nonlinear interdependency 𝑆𝑆(𝑘𝑘) can be defined in terms of these distances [6, 50, 60]: 

𝑆𝑆(𝑘𝑘) (𝑋𝑋|𝑌𝑌) =
1

𝑁𝑁− (𝑚𝑚− 1)𝜏𝜏
�

𝑅𝑅𝑖𝑖
(𝑘𝑘)(𝑋𝑋)

𝑅𝑅𝑖𝑖
(𝑘𝑘)(𝑋𝑋|𝑌𝑌)

𝑁𝑁

𝑖𝑖=1+(𝑚𝑚−1)𝜏𝜏
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By definition, 𝑅𝑅𝑖𝑖
(𝑘𝑘) (𝑋𝑋|𝑌𝑌) ≥ 𝑅𝑅𝑖𝑖

(𝑘𝑘)(𝑋𝑋), thus  0 < 𝑆𝑆(𝑘𝑘)(𝑋𝑋|𝑌𝑌) ≤ 1, ie the measure is normalised. 

Low values of 𝑆𝑆(𝑘𝑘)(𝑋𝑋|𝑌𝑌) represent independence between the two signals 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛), 

while 𝑆𝑆(𝑘𝑘)(𝑋𝑋|𝑌𝑌) → 1 indicates the two signals are highly synchronised. 

We can also define 

𝐻𝐻(𝑘𝑘)(𝑋𝑋|𝑌𝑌) =
1

𝑁𝑁 − (𝑚𝑚− 1)𝜏𝜏
� log

𝑅𝑅𝑖𝑖(𝑋𝑋)
𝑅𝑅𝑖𝑖

(𝑘𝑘)(𝑋𝑋|𝑌𝑌)

𝑁𝑁

𝑖𝑖=1+(𝑚𝑚−1)𝜏𝜏
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𝑁𝑁(𝑘𝑘)(𝑋𝑋|𝑌𝑌) =
1

𝑁𝑁 − (𝑚𝑚− 1)𝜏𝜏
�

𝑅𝑅𝑖𝑖(𝑋𝑋)− 𝑅𝑅𝑖𝑖
(𝑘𝑘) (𝑋𝑋|𝑌𝑌)

𝑅𝑅𝑖𝑖(𝑋𝑋)

𝑁𝑁

𝑖𝑖=1+(𝑚𝑚−1)𝜏𝜏
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𝐻𝐻(𝑘𝑘) (𝑋𝑋|𝑌𝑌) is not normalised, as 𝑅𝑅𝑖𝑖(𝑋𝑋|𝑌𝑌) ≥ 0 and 𝑅𝑅𝑖𝑖
(𝑘𝑘) (𝑋𝑋|𝑌𝑌) ≥ 0, but we cannot conclude 

which is larger in general. Arnhold et al [50] note that it is very unlikely for 𝐻𝐻(𝑘𝑘)(𝑋𝑋|𝑌𝑌) to be 

negative. 𝑁𝑁(𝑘𝑘)(𝑋𝑋|𝑌𝑌) is a normalisation of 𝐻𝐻(𝑘𝑘)(𝑋𝑋|𝑌𝑌) [6] 
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2.2.1.5.2 Omega complexity and s-estimator 

Omega complexity measures the dissimilarity of correlations in the trajectory of state space 

vectors. First we calculate the covariance matrix of the concatenated state space vectors of the 

two signals 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛), ie 𝐶𝐶 = 𝐸𝐸[𝑧𝑧𝑇𝑇(𝑛𝑛)𝑧𝑧(𝑛𝑛)], where 𝑧𝑧(𝑛𝑛) = [𝑥𝑥𝑇𝑇(𝑛𝑛),𝑦𝑦𝑇𝑇(𝑛𝑛)]𝑇𝑇.  Then the 

normalised eigenvalues 𝜆̂𝜆𝑖𝑖 of the covariance matrix 𝐶𝐶 are calculated 

𝜆̂𝜆𝑖𝑖 =
𝜆𝜆𝑖𝑖

∑ 𝜆𝜆𝑖𝑖2𝑚𝑚
𝑖𝑖=1

= 𝜆𝜆𝑖𝑖 �𝜆𝜆𝑖𝑖

2𝑚𝑚

𝑖𝑖=1

�  
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where 𝜆𝜆𝑖𝑖 are the eigenvalues of C. Then omega complexity Ω is defined as [72]: 

Ω = exp�−�𝜆̂𝜆𝑖𝑖log 𝜆̂𝜆𝑖𝑖

2𝑚𝑚

𝑖𝑖=1

� 
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The S-estimator is a normalisation of Ω, defined as [51]: 

S𝑒𝑒𝑒𝑒𝑒𝑒 = 1 +
1

log (2𝑚𝑚)�𝜆̂𝜆𝑖𝑖log 𝜆̂𝜆𝑖𝑖

2𝑚𝑚

𝑖𝑖=1
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When the signals are identical, the spectrum of eigenvalues is degenerate (all eigenvalues 

except one are equal to zero), giving the smallest value of  Ω = 1 and  𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = 1, corresponding 

to maximum synchrony. The largest value of  Ω = 2𝑚𝑚 indicates a uniform distribution of the 

spectrum of eigenvalues, and corresponds to independent signals and  𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = 0. 

2.2.2 Effective connectivity measures (directional connectivity) 

Effective connectivity refers to the influence that one neural system has over another [4]. 

Influence of one time series on another was first proposed by Norbert Wiener who conceived 

the notion that if the prediction of one time series 𝑥𝑥(𝑡𝑡) could be improved by incorporating the 

knowledge of a second one 𝑦𝑦(𝑡𝑡), then the second series is said to have a causal influence on 

the first [73]. Later, in 1969, Granger used Wiener’s idea to establish a mathematical 

formulation in the context of linear stochastic modelling of time series, so defining Granger 
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causality  (GC) [74]. According to the Granger formulation, 𝑥𝑥(𝑡𝑡) is influenced by 𝑦𝑦(𝑡𝑡) if the 

variance of the autoregressive prediction error of 𝑥𝑥(𝑡𝑡) is reduced by the inclusion of past 

measurements of 𝑦𝑦(𝑡𝑡). 

Granger causality is a measure based on multiple autoregressive models. An alternative 

approach that has the advantage of being model-free is based on information theory. Two such 

measures are transfer entropy (TE) [17, 75] and Kullback–Leibler (KL) divergence [76]. 

Transfer entropy quantifies the average information about x(t) obtained from the past of 𝑦𝑦(𝑡𝑡)  

that is not already contained in the past of 𝑥𝑥(𝑡𝑡) [77]. Transfer entropy can be viewed as 

conditional mutual information (CMI) [78] which could be interpreted  as the diversity of state 

transitions in the destination minus associative noise between those state transitions and the 

state of the source [79, 80]  

For three or more time series (the multivariate situation), one approach is reducing the 

situation to a set of bivariate situations by performing pair-wise analysis. This approach has 

some inherent limitations because bivariate measures may falsely detect (direct) causal 

connection between two time series when the influence is mediated by a third time series. For 

example, causal interaction between two time series may be erroneously detected by bivariate 

measures if they are both influenced by a third time series but with different delays [81, 82]. 

To address this problem, conditional Granger causality (CGC) has emerged as an extension of 

bivariate Granger causality for three time series [83]. Here, 𝑦𝑦(𝑡𝑡) influences 𝑥𝑥(𝑡𝑡) if the 

prediction error variance of 𝑥𝑥(𝑡𝑡) is reduced after including the past of y(t) in the model, when 

the past of the third time series 𝑧𝑧(𝑡𝑡) is included in both cases [84, 85].  

TE also has been extended to include the conditioning effect of a third signal on the 

measurement of influence of the driving signal on the response signal, by including the third 

signal in the conditioning term of conditional mutual information. This is partial transfer 
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entropy (PTE) [78, 86, 87]. A natural extension of mutual information also accounts for the 

presence of a confounding signal. It measures the information shared between two time series 

that is not contained in third one, and is called partial mutual information (PMI) [19, 88]. 

Directed coherence (DC) and directed transfer function (DTF) also uses an MVAR model to 

describe the data, but viewed in the frequency domain. Both measure the relationship from one 

signal to the other as the normalised transfer function between the signals, but they use different 

normalisations) [15]. Partial directed coherence (PDC) is similar but is designed to only reflect 

direct relationships between signals [16, 56, 89]. Granger causality can also be reinterpreted in 

the frequency domain, yielding frequency-domain Granger causality (FGC) [90]. 

The MVAR model used in the original PDC approach only accounts for lagged effects among 

the time series and ignores instantaneous effects. Zero-lag interactions are likely to occur 

among simultaneously recorded signals. Therefore, DC and PDC derived from traditional 

MVAR modelling may produce ambiguous causal interaction. To identify the correct 

connectivity patterns in such situations, extended directed coherence (EDC) and extended 

partial directed coherence (EPDC), using an extension of the MVAR model that includes 

instantaneous effects, have been proposed [89]. “A disadvantage of the PDC is that it is not 

scale invariant” [91], so generalised partial directed coherence (GPDC) has been introduced to 

circumvent the numerical problem associated with time series scaling. 

Granger causality is based on a linear frame work and is naturally inferred parametrically 

through autoregressive models of time series data, therefore it does not quantify high-order 

causality and is limited to detecting linear causality only [17]. A model-free Granger causality 

measure estimated using conditional copula has been introduced to consider nonlinear and 

high-order causality (QGC) [29]. 
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Granger causality is based on a linear frame work and is naturally inferred parametrically 

through autoregressive models of time series data, therefore it does not quantify high-order 

causality and is limited to detecting linear causality only [85]. A model-free Granger causality 

measure estimated using conditional copula has been introduced to consider nonlinear and 

high-order causality (QGC) [92]. 

It is still a major concern that the ability of the above connectivity measures to estimate indirect 

interactions depends considerably on the ability to measure all related variables in a system. 

This is often impossible, because a system can be affected by both exogenous (unmeasured 

external noises) and latent variables (unmeasured underlying signals) [93].  

To address the problem of exogenous inputs and latent variables, partial Granger causality 

(PGC) has been recently introduced, inspired by the definition of partial correlation in statistics. 

The variance of the common input is required to compute partial correlation and this variance 

can be accurately known when the common inputs are measurable, which is not the case for 

exogenous inputs or latent variables. PGC uses conditional variance to discount the effect of 

the latent and exogenous variable [94]. The multivariate Granger causality (MVGC) and 

spectral multivariate Granger causality (SMVGC) have also been recently proposed. These 

approaches to Granger causality are based on multiple equivalent representations of a vector 

autoregressive (VAR) model [95] in the time and frequency domains respectively 

In contrast, directed phase-locking value (PLV) searches for a consistent phase relationship 

between two time series at a range of lags, choosing the largest [87]. 

2.2.2.1 Granger causality and extended measures  

Granger causality is one of the most popular methods for measuring causal connectivity in 

neuronal time series [96-99].  
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According to the Granger causality formulation, an autoregressive model is fitted to each of 

the time series separately. This model is then compared with a bivariate autoregressive model, 

ie one where the past of both time series is included in the model. If the variance of the 

autoregressive prediction error of the first time series is statistically significantly decreased by 

the inclusion of past measurements from the second time series, then the second time series is 

said to have a causal influence on the first one. 

Now we give the mathematical formulation of Granger causality and then proceed to define 

conditional, partial and multivariate Granger causality. Let 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) be two stationary 

time series, then they individually can be represented by autoregressive models  

𝑥𝑥(𝑡𝑡) = �𝐴𝐴11ℓ

𝑝𝑝

ℓ=1

𝑥𝑥(𝑡𝑡 − ℓ) + 𝜂𝜂1(𝑡𝑡)       , 𝑣𝑣𝑣𝑣𝑣𝑣(𝜂𝜂1𝑡𝑡) = ∑1 

𝑦𝑦(𝑡𝑡) = �𝐴𝐴22ℓ

𝑝𝑝

ℓ=1

𝑦𝑦(𝑡𝑡 − ℓ) + 𝜂𝜂2(𝑡𝑡)        ,𝑣𝑣𝑣𝑣𝑣𝑣(𝜂𝜂2𝑡𝑡) = ∑2
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and jointly they can be represented by the following bivariate autoregressive model  

 

𝑥𝑥(𝑡𝑡) = �𝐴𝐴11ℓ

𝑃𝑃

ℓ=1

𝑥𝑥(𝑡𝑡 − ℓ) +𝐴𝐴12ℓ𝑦𝑦(𝑡𝑡 − ℓ) + 𝑒𝑒𝑥𝑥(𝑡𝑡)

𝑦𝑦(𝑡𝑡) = �𝐴𝐴21ℓ

𝑝𝑝

𝑗𝑗=1

𝑥𝑥(𝑡𝑡 − ℓ) +𝐴𝐴22ℓ𝑦𝑦(𝑡𝑡 − ℓ) + 𝑒𝑒𝑦𝑦(𝑡𝑡)
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where the noises 𝜂𝜂1(𝑡𝑡), 𝜂𝜂2(𝑡𝑡), 𝑒𝑒𝑥𝑥(𝑡𝑡) and 𝑒𝑒𝑦𝑦(𝑡𝑡) are individually zero mean and uncorrelated, , 

i.e. 𝔼𝔼{𝜂𝜂𝑖𝑖(𝑡𝑡)𝜂𝜂𝑖𝑖(𝑡𝑡 − 𝜏𝜏)} = 0, and 𝔼𝔼{𝑒𝑒𝛼𝛼(𝑡𝑡)𝑒𝑒𝛼𝛼(𝑡𝑡 − 𝜏𝜏)} = 0 for all 𝜏𝜏 ≠ 0, 𝑖𝑖 = 1,2, and 𝛼𝛼 = 𝑥𝑥 ,𝑦𝑦 

Let 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑒𝑒𝑥𝑥(𝑡𝑡), 𝑒𝑒𝑦𝑦(𝑡𝑡)� = ∑𝑥𝑥𝑥𝑥 then their noise covariance matrix can be presented as 

 

∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �
∑𝑥𝑥𝑥𝑥 ∑𝑥𝑥𝑥𝑥
∑𝑦𝑦𝑦𝑦 ∑𝑦𝑦𝑦𝑦

� 2-61 
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The overall interdependence between two time series can be evaluated as: 

𝐹𝐹𝑥𝑥,𝑦𝑦 = 𝑙𝑙𝑙𝑙
∑1∑2

|∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛| 
2-62 

where |. | denotes the determinant of the enclosed matrix. 𝐹𝐹𝑥𝑥,𝑦𝑦 is non-zero if the two time series 

are dependent i.e. partial correlation between 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) (conditional on the past of those 

value) is zero. It is equal to the zero when two time series are independent [90] . 𝐹𝐹𝑋𝑋,𝑌𝑌  can be 

decomposed into three components  

𝐹𝐹𝑥𝑥,𝑦𝑦 = 𝐹𝐹𝑦𝑦→𝑥𝑥 + 𝐹𝐹𝑥𝑥→𝑦𝑦 + 𝐹𝐹𝑥𝑥.𝑦𝑦 2-63 

where 𝐹𝐹𝑦𝑦→𝑥𝑥 is the measure of linear causality from 𝑥𝑥(𝑡𝑡) to 𝑦𝑦(𝑡𝑡) , given by  

𝐹𝐹𝑦𝑦→𝑥𝑥 = 𝑙𝑙𝑙𝑙
∑1
∑𝑥𝑥𝑥𝑥

 
2-64 

and 𝐹𝐹𝑥𝑥→𝑦𝑦  is the measure of linear causality from 𝑥𝑥(𝑡𝑡) to 𝑦𝑦(𝑡𝑡) , given by  

𝐹𝐹𝑥𝑥→𝑦𝑦 = 𝑙𝑙𝑙𝑙
∑2
∑𝑦𝑦𝑦𝑦
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and 𝐹𝐹𝑥𝑥.𝑦𝑦 is a measure of the instantaneous causality, given by 

𝐹𝐹𝑥𝑥.𝑦𝑦 = 𝑙𝑙𝑙𝑙
∑𝑥𝑥𝑥𝑥∑𝑦𝑦𝑦𝑦
|∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛| 

All measures are zero when the two time series are independent, and non-zero if and only if 

they are dependent.   

2.2.2.1.1 Time domain conditional Granger causality  

For three or more time series, we can reduce the problem to the bivariate scheme and perform 

pairwise analysis. But as discussed earlier, a pairwise analysis has some inherent limitations. 

The conditional Granger causality (CGC) is the one of the well-known extensions that directly 
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addresses these limitations [15, 83, 100]. CGC estimates the influence of one signal on another 

given knowledge of a third.  Let 𝑊𝑊(𝑡𝑡) = [𝜔𝜔1(𝑡𝑡),𝜔𝜔2(𝑡𝑡), … ,𝜔𝜔𝑛𝑛(𝑡𝑡)]𝑇𝑇  be a set of 𝑛𝑛 stationary 

time series, where 𝑇𝑇 indicates matrix transposition. Suppose that 𝑊𝑊(𝑡𝑡) has been decomposed 

into three non-overlapping sets of time series 𝑥𝑥(𝑡𝑡), 𝑦𝑦(𝑡𝑡) and 𝑧𝑧(𝑡𝑡) with dimensions 𝑘𝑘, 𝑙𝑙 and 

𝑚𝑚 respectively, where 𝑚𝑚 + 𝑙𝑙 + 𝑘𝑘 = 𝑛𝑛. The conditional Granger causality from 𝑦𝑦(𝑡𝑡) to 𝑥𝑥(𝑡𝑡) 

given 𝑧𝑧(𝑡𝑡) is defined as:  

𝐹𝐹𝑦𝑦→𝑥𝑥|𝑧𝑧

= ln
𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥(𝑡𝑡)|𝑥𝑥(𝑡𝑡 − 1),𝑥𝑥(𝑡𝑡 − 2),⋯ ,𝑧𝑧(𝑡𝑡 − 1),𝑧𝑧(𝑡𝑡 − 2)⋯ )

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥(𝑡𝑡)|𝑥𝑥(𝑡𝑡 − 1),𝑥𝑥(𝑡𝑡 − 2)⋯ , 𝑦𝑦(𝑡𝑡 − 1)𝑦𝑦(𝑡𝑡 − 2),⋯ , 𝑧𝑧(𝑡𝑡 − 1)𝑧𝑧(𝑡𝑡 − 2),⋯ ) 
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The above time domain definition can be achieved by combining two autoregressive models. 

First 𝑥𝑥(𝑡𝑡) and 𝑧𝑧(𝑡𝑡) are supposed to be related by the following bivariate model. 

𝑥𝑥(𝑡𝑡) = �𝐷𝐷11ℓ

𝑃𝑃

ℓ=1

𝑥𝑥(𝑡𝑡 − ℓ) + 𝐷𝐷13ℓ𝑧𝑧(𝑡𝑡 − ℓ) + 𝛩𝛩(𝑡𝑡)

𝑧𝑧(𝑡𝑡) = �𝐷𝐷31ℓ

𝑃𝑃

ℓ=1

𝑥𝑥(𝑡𝑡 − ℓ) + 𝐷𝐷33ℓ𝑧𝑧(𝑡𝑡 − ℓ) + 𝛹𝛹(𝑡𝑡)
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where the noises 𝛩𝛩(𝑡𝑡) and 𝛹𝛹(𝑡𝑡)are zero mean and uncorrelated over time. 

Let  𝑐𝑐𝑐𝑐𝑐𝑐(𝛩𝛩(𝑡𝑡),𝛹𝛹(𝑡𝑡)) = ∑𝛹𝛹𝛹𝛹 then the noise covariance matrix for the bivariate model can be 

presented as  

∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(1) = �∑𝛩𝛩𝛩𝛩 ∑𝛩𝛩𝛩𝛩
∑𝛹𝛹𝛹𝛹 ∑𝛹𝛹𝛹𝛹

� 2-68 

 
The second autoregressive model is the following trivariate model involving 𝑥𝑥(𝑡𝑡), 𝑦𝑦(𝑡𝑡) and 

𝑧𝑧(𝑡𝑡)  
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𝑥𝑥(𝑡𝑡) = �𝐵𝐵11ℓ

𝑃𝑃

ℓ=1

𝑥𝑥(𝑡𝑡 − ℓ) +𝐵𝐵12ℓ𝑦𝑦(𝑡𝑡 − ℓ) + 𝐵𝐵13ℓ𝑧𝑧(𝑡𝑡 − ℓ) + 𝑒𝑒𝑥𝑥(𝑡𝑡)

𝑦𝑦(𝑡𝑡) = �𝐵𝐵21ℓ

𝑃𝑃

ℓ=1

𝑥𝑥(𝑡𝑡 − ℓ) + 𝐵𝐵22ℓ𝑦𝑦(𝑡𝑡 − ℓ) + 𝐵𝐵23ℓ𝑧𝑧(𝑡𝑡 − ℓ) + 𝑒𝑒𝑦𝑦(𝑡𝑡)

𝑧𝑧(𝑡𝑡) = �𝐵𝐵31ℓ

𝑃𝑃

ℓ=1

𝑥𝑥(𝑡𝑡 − ℓ) + 𝐵𝐵32ℓ𝑦𝑦(𝑡𝑡 − ℓ) + 𝐵𝐵33ℓ𝑧𝑧(𝑡𝑡 − ℓ) + 𝑒𝑒𝑧𝑧(𝑡𝑡)
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where the noises 𝑒𝑒𝑥𝑥(𝑡𝑡), 𝑒𝑒𝑦𝑦(𝑡𝑡)and 𝑒𝑒𝑧𝑧(𝑡𝑡) are again supposed to be zero mean and uncorrelated 

over time.  

Let 𝑐𝑐𝑐𝑐𝑐𝑐�𝑒𝑒𝑥𝑥(𝑡𝑡),𝑒𝑒𝑦𝑦(𝑡𝑡)� = ∑𝑥𝑥𝑥𝑥 then the covariance of all the noises is given by: 

∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(2) = �
∑𝑥𝑥𝑥𝑥 ∑𝑥𝑥𝑥𝑥 ∑𝑥𝑥𝑥𝑥
∑𝑦𝑦𝑦𝑦
∑𝑧𝑧𝑧𝑧

∑𝑦𝑦𝑦𝑦 ∑𝑦𝑦𝑦𝑦
∑𝑧𝑧𝑧𝑧 ∑𝑧𝑧𝑧𝑧

� 
2-70 

The conditional Granger causality from 𝑦𝑦(𝑡𝑡) to 𝑥𝑥(𝑡𝑡) given 𝑧𝑧(𝑡𝑡) is defined as:  

𝐹𝐹𝑦𝑦→𝑥𝑥|𝑧𝑧 = ln
|∑𝛩𝛩𝛩𝛩|
|∑𝑥𝑥𝑥𝑥| 

2-71 

If the inclusion of 𝑦𝑦(𝑡𝑡) results in improved prediction of 𝑥𝑥(𝑡𝑡) (𝑦𝑦(𝑡𝑡) has a direct influence 

on 𝑥𝑥(𝑡𝑡) ), |∑𝛩𝛩𝛩𝛩| > |∑𝑥𝑥𝑥𝑥| and  𝐹𝐹𝑦𝑦→𝑥𝑥|𝑧𝑧 > 0 . In contrast if 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) are independent, 

|∑𝛩𝛩𝛩𝛩| = |∑𝑥𝑥𝑥𝑥| and 𝐹𝐹𝑦𝑦→𝑥𝑥|𝑧𝑧 = 0 [101]. 

2.2.2.1.2 Conditional frequency domain Granger causality 

The time-domain conditional Granger causality can be decomposed into its spectral domain. 

First, we normalise both bivariate and trivariate models in equation 2-68 and equation 2-70.  

Normalisation will remove the correlation between noises in bivariate and noises in trivariate 

models and ensure that the causality is the result of the interactions between the regression 

terms in trivariate model only.   
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For normalisation both equation of the bivariate model are pre-multiplied by the following 

transformation matrix  

𝑞𝑞 = �
𝑞𝑞11 𝑞𝑞12
𝑞𝑞21 𝑞𝑞22� 

2-72 
 

where 𝑞𝑞11 = 𝐼𝐼𝑚𝑚 , 𝑞𝑞12 = 0, 𝑞𝑞21=∑𝛹𝛹𝛹𝛹∑𝛹𝛹𝛹𝛹
−1  and 𝑞𝑞22 = 𝐼𝐼𝑘𝑘 

and both side of the trivariate model are pre-multiplied by  

𝑝𝑝1 = �
 𝑝𝑝11 𝑝𝑝12 𝑝𝑝13
𝑝𝑝21 𝑝𝑝22 𝑝𝑝23
𝑝𝑝31 𝑝𝑝32 𝑝𝑝33

� 
2-73 

where 𝑝𝑝11 = 𝐼𝐼𝑚𝑚, 𝑝𝑝12 = 0, 𝑝𝑝13 = 0, 𝑝𝑝21 = −∑𝑦𝑦𝑦𝑦∑𝑥𝑥𝑥𝑥
−1, 𝑝𝑝22 = 𝐼𝐼𝑛𝑛, 𝑝𝑝23 = 0, 𝑝𝑝31 =

(∑𝑦𝑦𝑦𝑦∑𝑥𝑥𝑥𝑥−1)(∑𝑧𝑧𝑧𝑧 −∑𝑧𝑧𝑧𝑧∑𝑥𝑥𝑥𝑥−1∑𝑥𝑥𝑥𝑥)(∑𝑦𝑦𝑦𝑦 −∑𝑦𝑦𝑦𝑦∑𝑥𝑥𝑥𝑥
−1∑𝑥𝑥𝑥𝑥)−1−∑𝑧𝑧𝑧𝑧∑−1𝑥𝑥𝑥𝑥, 𝑝𝑝32 = −(∑𝑧𝑧𝑧𝑧 −

∑𝑧𝑧𝑧𝑧∑𝑥𝑥𝑥𝑥
−1∑𝑥𝑥𝑥𝑥)(∑𝑦𝑦𝑦𝑦 −∑𝑦𝑦𝑦𝑦∑𝑥𝑥𝑥𝑥

−1∑𝑥𝑥𝑥𝑥)−1 and 𝑝𝑝33 = 𝐼𝐼𝑘𝑘 

The time domain conditional Granger causality can be expressed in the frequency domain as 

[84, 93, 100]. 

𝐹𝐹𝑦𝑦→𝑥𝑥|𝑧𝑧(𝑓𝑓) = ln
|∑𝛩𝛩|

|𝑄𝑄𝑥𝑥𝑥𝑥(𝑓𝑓)∑𝑥𝑥𝑥𝑥𝑄𝑄𝑥𝑥𝑥𝑥∗ (𝑓𝑓) |  
2-74 

where 

            𝑄𝑄(𝑓𝑓) = �
𝑄𝑄𝑥𝑥𝑥𝑥(𝑓𝑓) 𝑄𝑄𝑥𝑥𝑥𝑥(𝑓𝑓) 𝑄𝑄𝑥𝑥𝑥𝑥(𝑓𝑓)
𝑄𝑄𝑦𝑦𝑦𝑦(𝑓𝑓) 𝑄𝑄𝑦𝑦𝑦𝑦(𝑓𝑓) 𝑄𝑄𝑦𝑦𝑦𝑦(𝑓𝑓)
𝑄𝑄𝑧𝑧𝑧𝑧(𝑓𝑓) 𝑄𝑄𝑧𝑧𝑧𝑧(𝑓𝑓) 𝑄𝑄𝑧𝑧𝑧𝑧(𝑓𝑓)

�        

                                                               = �
𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) 0 𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)

0 1 0
𝐺𝐺𝑧𝑧𝑧𝑧(𝑓𝑓) 0 𝐺𝐺𝑧𝑧𝑧𝑧(𝑓𝑓)

�

−1

�
𝐻𝐻𝑥𝑥𝑥𝑥(𝑓𝑓) 𝐻𝐻𝑥𝑥𝑥𝑥(𝑓𝑓) 𝐻𝐻𝑥𝑥𝑥𝑥(𝑓𝑓)
𝐻𝐻𝑦𝑦𝑦𝑦(𝑓𝑓) 𝐻𝐻𝑦𝑦𝑦𝑦(𝑓𝑓) 𝐻𝐻𝑦𝑦𝑦𝑦(𝑓𝑓)
𝐻𝐻𝑧𝑧𝑧𝑧(𝑓𝑓) 𝐻𝐻𝑧𝑧𝑧𝑧(𝑓𝑓) 𝐻𝐻𝑧𝑧𝑧𝑧(𝑓𝑓)

�  

and  |∑𝛩𝛩| =  𝑄𝑄𝑥𝑥𝑥𝑥(𝑓𝑓)∑𝑥𝑥𝑥𝑥𝑄𝑄𝑥𝑥𝑥𝑥∗ (𝑓𝑓) + 𝑄𝑄𝑥𝑥𝑥𝑥(𝑓𝑓)∑𝑦𝑦𝑦𝑦𝑄𝑄𝑥𝑥𝑥𝑥∗ (𝑓𝑓) +𝑄𝑄x𝑧𝑧(𝑓𝑓)∑𝑧𝑧𝑧𝑧𝑄𝑄𝑥𝑥𝑥𝑥∗ (𝑓𝑓)  

The quantities in the above expression come from 𝐺𝐺(𝑓𝑓) and 𝐻𝐻(𝑓𝑓) which are the transfer 

function matrices for the normalised bivariate and trivariate models respectively, i.e. 𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)

𝐷𝐷𝐷𝐷𝐷𝐷
�� 𝐵𝐵11𝑙𝑙, 𝐻𝐻𝑥𝑥𝑥𝑥(f)

𝐷𝐷𝐷𝐷𝐷𝐷
�� 𝐷𝐷11𝑙𝑙 and similar. 
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2.2.2.1.3 Partial Granger causality  

The ability of the conditional Granger causality to measure causal influence of one signal on 

another signal and deal with indirect interactions seriously depends on the all relevant variable 

in the system. Often it is impossible to measure all variables involved in the system due to the 

existence of the both exogenous and latent inputs. Thus, dealing with these unmeasured 

variables is the critical challenge when conditional Granger causality is applied to the signals 

in the real world. To confront this problem, the partial Granger causality has been proposed 

[94].  

The partial Granger causality between 𝑥𝑥(𝑡𝑡)  and 𝑦𝑦(𝑡𝑡) by removing all the effects of 𝑧𝑧(𝑡𝑡), can 

be evaluated by partitioning the noise covariance matrix ∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(1) (introduced in equation 2-10 

) 

∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(1) = � ∑𝛩𝛩𝛩𝛩|  ∑𝛩𝛩𝛩𝛩
  ∑𝛹𝛹𝛹𝛹|    ∑𝛹𝛹𝛹𝛹

� = �∑𝛩𝛩𝛩𝛩 ∑𝛩𝛩𝛩𝛩
∑𝛹𝛹𝛹𝛹 ∑𝛹𝛹𝛹𝛹

� 
2-75 

 
Hence the variance of 𝛩𝛩 by eliminating the influence of 𝛹𝛹 can be defined as: 

𝑐𝑐𝑐𝑐𝑐𝑐(𝛩𝛩,𝛩𝛩) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝛩𝛩,𝛹𝛹)𝑐𝑐𝑐𝑐𝑐𝑐(𝛹𝛹,𝛹𝛹) −1𝑐𝑐𝑐𝑐𝑐𝑐(𝛹𝛹,𝛩𝛩) = ∑𝛩𝛩𝛩𝛩− ∑𝛩𝛩𝛩𝛩∑𝛹𝛹𝛹𝛹
−1∑𝛹𝛹𝛹𝛹 2-76 

 
Similarly, we can partition ∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(2)   
 

∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(2) = � ∑𝑥𝑥𝑥𝑥 |  ∑𝑥𝑥𝑥𝑥
∑𝑧𝑧𝑧𝑧  |    ∑𝑧𝑧𝑧𝑧

� 
2-77 

 

 
Similarly, the variance of the 𝑒𝑒𝑥𝑥(𝑡𝑡) by eliminating the influence the  𝑒𝑒𝑧𝑧(𝑡𝑡) is given by  

𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒𝑥𝑥(𝑡𝑡), 𝑒𝑒𝑥𝑥(𝑡𝑡))− 𝑐𝑐𝑐𝑐𝑐𝑐�𝑒𝑒𝑥𝑥(𝑡𝑡),𝑒𝑒𝑧𝑧(𝑡𝑡)�𝑐𝑐𝑐𝑐𝑐𝑐�𝑒𝑒𝑧𝑧(𝑡𝑡),𝑒𝑒𝑧𝑧(𝑡𝑡)�
−1
𝑐𝑐𝑐𝑐𝑐𝑐�𝑒𝑒𝑧𝑧(𝑡𝑡),𝑒𝑒𝑥𝑥(𝑡𝑡)�  

= ∑𝑥𝑥𝑥𝑥 −∑𝑥𝑥𝑥𝑥∑𝑧𝑧𝑧𝑧−1∑𝑧𝑧𝑧𝑧 

2-78 
 

Hence the measure for partial Granger causality from 𝑦𝑦(𝑡𝑡)  to 𝑥𝑥(𝑡𝑡) by eliminating the effect of 
𝑧𝑧(𝑡𝑡) can be expressed as 

𝐹𝐹𝑦𝑦→𝑥𝑥|𝑧𝑧 = ln �
∑𝛩𝛩𝛩𝛩 −∑𝛩𝛩𝛩𝛩∑𝛹𝛹𝛹𝛹

−1∑𝛹𝛹𝛹𝛹
∑𝑥𝑥𝑥𝑥 −∑𝑥𝑥𝑥𝑥∑𝑧𝑧𝑧𝑧−1∑𝑧𝑧𝑧𝑧

� 
2-79 



42 
 

2.2.2.1.4 Copula-based Granger causality 

Let we have a set of time series 𝑥𝑥1(𝑡𝑡), , … , 𝑥𝑥𝑛𝑛(𝑡𝑡) . First the marginal distribution of each time 

series, 𝐹𝐹�𝑖𝑖 are estimated. Next the observations are mapped to the Gaussian copula domain as 

𝑓𝑓𝑖𝑖�𝑥𝑥𝑖𝑖(𝑡𝑡)� = 𝜇𝜇�𝑖𝑖 + 𝜎𝜎�𝑖𝑖Φ−1�𝐹𝐹�𝑖𝑖 (𝑥𝑥𝑖𝑖(𝑡𝑡))� , where 𝜇𝜇 and 𝜎𝜎 are the mean and variance and Φ(∙) is the 

cdf of the unit Gaussian distribution. Finally, the Granger causality among the 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖(𝑡𝑡)) is 

estimated [102]. 

Based on the copula method, the marginal properties of the data are separated from its 

dependency structure. But the interdependence between the mapped time series in the copula 

space are the same as the interdependence between the original time series [103]. Bahadori and 

liu in [102] showed that copula-based Granger causality is consistent in high dimensions, 

unlike Granger causality, and that it is able to efficiently capture non-linearity in the data. 

2.2.2.1.5 Multivariate Granger causality  

So far, we have considered pairwise Granger causality and its extensions (CGC and PGC), 

which consider at most three time series at a time. They can be applied to more time series, but 

this is done by repeated application to all sets of two or three time series as appropriate. In this 

section we define multivariate Granger causality, which analyses all signals simultaneously to 

determine direct and indirect connections involving more than three signals. 

Let 𝑥𝑥(𝑡𝑡) =  [𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), …𝑥𝑥𝑛𝑛(𝑡𝑡)] be an 𝑛𝑛-dimensional multivariate stochastic process. The 

influence of the time series 𝑥𝑥𝑗𝑗(𝑡𝑡) on 𝑥𝑥𝑖𝑖(𝑡𝑡) can be calculated as:  

𝐹𝐹𝑥𝑥𝑗𝑗(𝑡𝑡)→𝑥𝑥𝑖𝑖(𝑡𝑡) =
∑𝑥𝑥𝑖𝑖(𝑡𝑡)|𝑥𝑥1(𝑡𝑡),⋯𝑥𝑥𝑗𝑗−1(𝑡𝑡)𝑥𝑥𝑗𝑗+1(𝑡𝑡),⋯𝑥𝑥𝑛𝑛(𝑡𝑡)

∑𝑥𝑥𝑖𝑖(𝑡𝑡)|𝑥𝑥1(𝑡𝑡)⋯𝑥𝑥𝑛𝑛(𝑡𝑡)
 

2-80 

This is similar to conditional Granger causality, but we are conditioning on all other time series, 

not simply one time series. 
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2.2.2.1.6 Multivariate frequency domain Granger causality  

The calculation of the multivariate Granger causality can also be performed in the spectral 

domain using a factorisation theorem that specifies that any given spectral density matrix 𝑆𝑆(𝑓𝑓) 

can be decomposed into a set of unique minimum-phase functions 𝜓𝜓(𝑓𝑓) [104, 105]. 

𝑆𝑆(𝑓𝑓) = 𝜓𝜓(𝑓𝑓)𝜓𝜓𝐻𝐻(𝑓𝑓) 2-81 

Using a Fourier-like analysis on the minimum-phase functions, we can calculate the noise 

covariance matrix ∑ and minimum phase- transfer function 𝐻𝐻(𝑓𝑓) as   

𝜓𝜓(𝑓𝑓) =  �𝑅𝑅𝑘𝑘

∞

𝑘𝑘=0

𝑒𝑒𝑖𝑖𝑖𝑖2𝜋𝜋𝜋𝜋          ∑ = 𝑅𝑅0𝑅𝑅0𝑇𝑇             𝐻𝐻(𝑓𝑓) = 𝜓𝜓(𝑓𝑓)𝑅𝑅0−1 
2-82 
 

where T stands for matrix transposition. 

As discussed in section 2.2.1.1.6 after fitting the MVAR model to the time series and Fourier 

transforming, the overall spectral density matrix can be calculated as  

𝑆𝑆(𝑓𝑓) = 𝐻𝐻(𝑓𝑓)∑𝐻𝐻𝐻𝐻(𝑓𝑓) 

where 𝐻𝐻  denotes Hermitian transpose and  ∑ is the covariance matrix of the noise vector. 

The conditional Granger causality needs to compare this estimate of the noise covariance with 

noise covariance from a model that excludes the jth time series. We obtain this by taking the 

overall spectral density matrix 𝑆𝑆(𝑓𝑓) and removing the jth row and columns. The reduced 

spectral density matrix 𝑆𝑆̅(𝑓𝑓) can now be factorised:  

𝑆𝑆̅(𝑓𝑓) = 𝐺𝐺(𝑓𝑓) ∑�𝐺𝐺𝐻𝐻(𝑓𝑓) 2-83 

where 𝐺𝐺(𝑓𝑓) is the transfer function matrix and ∑�  is the noise covariance matrix for the selected 

subsystem. To calculate the normalisation matrix Q(f), we need to extend the transfer function 

matrix G(f) by inserting zeros for the jth row and column, but with 1 at their intersection: 

𝑄𝑄(𝑓𝑓) = �
𝐺𝐺(1…𝑗𝑗−1)(1…𝑗𝑗−1) (𝑓𝑓) 0 𝐺𝐺(1…𝑗𝑗−1)(1…𝑗𝑗−1) (𝑓𝑓)

0 … 0 1 0 … 0
𝐺𝐺(𝑗𝑗+1…𝑛𝑛)(1…𝑗𝑗−1)(𝑓𝑓) 0 𝐺𝐺(𝑗𝑗+1…𝑛𝑛)(𝑗𝑗+1…𝑛𝑛) (𝑓𝑓)

�

−1

𝐻𝐻(𝑓𝑓) 
2-84 

Finally, we can use equation 2-74 and calculate the conditional Granger causality from the 𝑗𝑗th 

time series to the 𝑖𝑖th time series as 
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𝐹𝐹𝑗𝑗→𝑖𝑖(𝑓𝑓) = ln
|Σ�𝑖𝑖𝑖𝑖|

�𝑄𝑄𝑖𝑖𝑖𝑖(𝑓𝑓)∑𝑖𝑖𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖∗ (𝑓𝑓) � 
 

2-85 

2.2.2.2 Directional measures based on coherence  

It is useful to define the inverse of the spectral density matrix and decompose it as  

𝑃𝑃(𝑓𝑓) = 𝑆𝑆−1(𝑓𝑓) =  𝐴𝐴̅𝐻𝐻(𝑓𝑓)∑−1𝐴̅𝐴(𝑓𝑓) 2-86 

The 𝑖𝑖𝑖𝑖th element of 𝑆𝑆(𝑓𝑓) and 𝑃𝑃(𝑓𝑓) can be represented as  

𝑆𝑆𝑖𝑖𝑖𝑖(𝑓𝑓) = ℎ𝑖𝑖(𝑓𝑓)∑ℎ𝑗𝑗𝐻𝐻, 𝑃𝑃𝑖𝑖𝑖𝑖(𝑓𝑓) = 𝑎𝑎�𝑖𝑖𝐻𝐻(𝑓𝑓)∑−1𝑎𝑎�𝑗𝑗(𝑓𝑓) 2-87 

where ℎ𝑚𝑚(𝑓𝑓)  and 𝑎𝑎�𝑚𝑚 are the mth rows of the transfer function matrix 𝐻𝐻(𝑓𝑓) =

[ℎ1(𝑓𝑓),⋯ℎ𝑛𝑛(𝑓𝑓)]𝑇𝑇  and coefficient matrix 𝐴𝐴̅(𝑓𝑓) = [𝑎𝑎�1(𝑓𝑓),⋯𝑎𝑎�𝑛𝑛(𝑓𝑓)]𝑇𝑇. Since the input white 

noises are uncorrelated even at lag zero, their covariance matrix 𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒(𝑡𝑡))  reduces to diagonal 

form as 

∑ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎𝑘𝑘2) 

and its inverse to diagonal matrix  

∑−1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �
1
𝜎𝜎𝑘𝑘2

� 

where 𝜎𝜎𝑘𝑘2 is the variance of 𝑒𝑒𝑘𝑘(𝑡𝑡). 𝑆𝑆𝑖𝑖𝑖𝑖(𝑓𝑓) and 𝑃𝑃𝑖𝑖𝑖𝑖(𝑓𝑓) can be factorised into:  

 

𝑆𝑆𝑖𝑖𝑖𝑖(𝑓𝑓) = � 𝜎𝜎𝑚𝑚2𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)𝐻𝐻𝑗𝑗𝑗𝑗

𝑛𝑛

𝑚𝑚=1

(𝑓𝑓) 
2-88 

  

   𝑃𝑃𝑖𝑖𝑖𝑖(𝑓𝑓) = �
1
𝜎𝜎𝑚𝑚2 𝐴𝐴𝐻̅𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)𝐴𝐴𝑗̅𝑗𝑗𝑗

𝑛𝑛

𝑚𝑚=1

(𝑓𝑓) 
2-89 

2.2.2.2.1 Directed coherence (DC)  

By substituting for  𝑆𝑆𝑖𝑖𝑖𝑖(𝑓𝑓) and from equations 2-30 in the coherence equations defined in the 

section 2.2.1.1.6, the following directional coherence can be obtained 
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𝑐𝑐𝑖𝑖𝑖𝑖(𝑓𝑓) =  
ℎ𝑖𝑖(𝑓𝑓)∑ℎ𝑗𝑗𝐻𝐻(𝑓𝑓)

�ℎ𝑖𝑖(𝑓𝑓)∑ℎ𝑖𝑖𝐻𝐻(𝑓𝑓)�ℎ𝑗𝑗(𝑓𝑓)∑ℎ𝑗𝑗𝐻𝐻(𝑓𝑓)
= �

𝜎𝜎𝑚𝑚𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)
�𝑆𝑆𝑖𝑖𝑖𝑖(𝑓𝑓)

𝑛𝑛

𝑚𝑚=1

𝜎𝜎𝑚𝑚𝐻𝐻𝐻𝐻
𝑗𝑗𝑗𝑗(𝑓𝑓)

�𝑆𝑆𝑗𝑗𝑗𝑗(𝑓𝑓)

= � 𝛾𝛾𝑖𝑖𝑖𝑖

𝑛𝑛

𝑚𝑚=1

𝛾𝛾𝑗𝑗𝑗𝑗∗   

2-90 

 

The term 𝛾𝛾𝑖𝑖𝑖𝑖  in the above equation measures the influence of 𝑥𝑥𝑗𝑗 on 𝑥𝑥𝑖𝑖 , the so-called directed 

coherence DC [56] 

𝛾𝛾𝑖𝑖𝑖𝑖(𝑓𝑓) =
𝜎𝜎𝑗𝑗𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)
�𝑆𝑆𝑖𝑖𝑖𝑖(𝑓𝑓)

 
2-91 

where 𝑆𝑆𝑖𝑖𝑖𝑖(𝑓𝑓) = ∑ 𝜎𝜎𝑚𝑚2 |𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)|2𝑛𝑛
𝑚𝑚=1  

DC can be normalised as �𝛾𝛾𝑖𝑖𝑖𝑖(𝑓𝑓)�2, which gives 0 in the absence of any directed influence from 

𝑥𝑥𝑗𝑗 on 𝑥𝑥𝑖𝑖 at the frequency 𝑓𝑓, and achieves 1 in the presence of maximum influence. 

2.2.2.2.2 Directed transfer function (DTF)  

DTF also uses the transfer function matrix 𝐻𝐻(𝑓𝑓), but normalises it in a simpler way [106]:  

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 =
𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)

�∑ |𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)|2𝑛𝑛
𝑚𝑚=1

 
2-92 

                                             
DTF can be considered as a particular case of DC in which all input variances are 1 ( 𝜎𝜎12 =
𝜎𝜎22 = ⋯𝜎𝜎𝑛𝑛2 = 1). 

2.2.2.2.3 Partial directed coherence (PDC) and generalised PDC (GPDC) 

In the complex network where there are both direct and indirect pathways between two time 

series, both DC and DTF represent a balance of signal power that spreads from one time series 

to another via any of these pathways. In other words, a non-zero DC from time series 𝑥𝑥𝑗𝑗 to 𝑥𝑥𝑖𝑖  

can be the result of either indirect or direct influence. To confront these issues, the measure 

partial coherence has been proposed.  
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Following section 2.2.2.2.1, we can substitute for  𝑃𝑃𝑖𝑖𝑖𝑖(𝑓𝑓) from equation 2-31 into the 

expression for partial coherence in equation 2-10, and write: 

Π𝑖𝑖𝑖𝑖(𝑓𝑓) =  
𝑎𝑎�𝑖𝑖𝐻𝐻(𝑓𝑓)∑−1𝑎𝑎�𝑗𝑗(𝑓𝑓)

�𝑎𝑎�𝑗𝑗𝐻𝐻(𝑓𝑓)∑−1𝑎𝑎�𝑗𝑗(𝑓𝑓)�𝑎𝑎�𝑖𝑖𝐻𝐻(𝑓𝑓)∑−1𝑎𝑎�𝑖𝑖(𝑓𝑓)
= �

1
𝜎𝜎𝑚𝑚

𝐴𝐴𝑚̅𝑚𝑚𝑚(𝑓𝑓)

�𝑃𝑃𝑗𝑗𝑗𝑗(𝑓𝑓)

𝑛𝑛

𝑚𝑚=1

1
𝜎𝜎𝑚𝑚 

𝐴𝐴𝑚̅𝑚𝑚𝑚𝐻𝐻 (𝑓𝑓)

�𝑃𝑃𝑖𝑖𝑖𝑖(𝑓𝑓)

= �𝜋𝜋𝑖𝑖𝑖𝑖

𝑛𝑛

𝑚𝑚=1

𝜋𝜋𝑗𝑗𝑚𝑚𝐻𝐻   

2-93 

The term 𝜋𝜋𝑖𝑖𝑗𝑗  in the above equation measures the influence of 𝑥𝑥𝑗𝑗 on 𝑥𝑥𝑖𝑖, namely generalised 

partial directional coherency GPDC [107]. 

𝜋𝜋𝑖𝑖𝑖𝑖 =

1
𝜎𝜎𝑚𝑚

𝐴𝐴𝑖̅𝑖𝑖𝑖(𝑓𝑓)

�𝑃𝑃𝑗𝑗𝑗𝑗(𝑓𝑓)
 

2-94 

where �𝑃𝑃𝑗𝑗𝑗𝑗(𝑓𝑓) = �∑ 1
(𝜎𝜎𝑚𝑚)2

�𝐴𝐴𝑗̅𝑗𝑗𝑗(𝑓𝑓)�
2𝑛𝑛

𝑚𝑚=1    

The original version of the equation () introduced in [56] did not include the input noise 

variance and was named PDC. The PDC is thus given by:  

𝜋𝜋𝑖𝑖𝑖𝑖𝜔𝜔 =
𝐴𝐴̅𝑖𝑖𝑖𝑖(𝑓𝑓)

�∑ �𝐴𝐴̅𝑚𝑚𝑚𝑚(𝑓𝑓)�2𝑛𝑛
𝑚𝑚=1   

 
2-95 

2.2.2.2.4 Direct directed transfer function (DDTF) 

To distinguish between direct causal connections between two signals and connections which 

are mediated by another signal, the directed directed transfer function (DDTF) was introduced 

[108]. It is defined by multiplying the directed transfer function by the partial coherence. The 

DDTF from signal 𝑗𝑗 to signal 𝑖𝑖 is defined as: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 = 𝜋𝜋𝑖𝑖𝑖𝑖𝜔𝜔  𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 2-96 
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2.2.2.2.5 Extended directed coherence (EDC) and extended partial directed coherence 

(EPDC) 

The MVAR model introduced in equation 2-9 use lagged versions of the time series in the regression 

model. In other word this model describes the effect of the past of one time series on another, but it 

does not account for instantaneous (not lagged) effects among time series. 

Faes and Nollo proposed in [109] an alternative multivariate autoregressive model that includes 

instantaneous effects into the model of the time series. 

Consider the following extended MVAR model with 0 lag inclusion  

𝑥𝑥(𝑡𝑡) =  �𝐵𝐵
𝑃𝑃

ℓ=0

(ℓ)𝑥𝑥(𝑡𝑡 − ℓ) + 𝑢𝑢(𝑡𝑡) 
2-97 

where 𝑢𝑢(𝑡𝑡) = [𝑢𝑢1(𝑡𝑡),𝑢𝑢2(𝑡𝑡),⋯ ,𝑢𝑢𝑚𝑚(𝑡𝑡)]𝑇𝑇 is a vector of zero-mean uncorrelated white noise processes 

with diagonal covariance matrix ∑� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎�𝑘𝑘
2), and the diagonal of 𝐵𝐵(0) is constrained to be 

zero. 

We can rewrite equation 2-38 as 

𝑥𝑥(𝑡𝑡) = 𝐵𝐵(0)𝑥𝑥(𝑡𝑡) +  �𝐵𝐵
𝑃𝑃

ℓ=1

(ℓ)𝑥𝑥(𝑡𝑡 − ℓ) + 𝑢𝑢(𝑡𝑡) 

To find the relationship between the above extended MVAR model and the classic MVAR model in 

equation (), the term 𝐵𝐵(0)𝑥𝑥(𝑡𝑡) is moved to the left 

𝑥𝑥(𝑡𝑡)[𝐼𝐼 − 𝐵𝐵(0)] =  �𝐵𝐵
𝑃𝑃

ℓ=1

(ℓ)𝑥𝑥(𝑡𝑡 − ℓ) + 𝑢𝑢(𝑡𝑡) 

Substituting for 𝑥𝑥(𝑡𝑡) in this equation with 𝑥𝑥(𝑡𝑡) from original MVAR models yields: 

�𝐴𝐴
𝑃𝑃

𝑗𝑗=1

(ℓ)𝑥𝑥(𝑡𝑡 − ℓ) + 𝑒𝑒(𝑡𝑡)[𝐼𝐼 − 𝐵𝐵(0)] =  �𝐵𝐵
𝑃𝑃

ℓ=1

(ℓ)𝑥𝑥(𝑡𝑡 − ℓ) + 𝑢𝑢(𝑡𝑡) 

Therefore  𝐵𝐵(ℓ) = 𝐿𝐿𝐿𝐿(ℓ) and 𝑢𝑢(𝑡𝑡) = 𝐿𝐿𝐿𝐿(𝑡𝑡) where 𝐿𝐿 = [𝐼𝐼 −𝐵𝐵(0)]−1  and ∑ = 𝐿𝐿 ∑�  𝐿𝐿𝑇𝑇 
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Hence the following algorithm can be used for forming the extended MVAR model to describe causal 

interactions among time series including instantaneous influence.  

1. The noise covariance matrix ∑ and 𝐴𝐴(ℓ) for the classic MVAR model are calculated.  

2. The noise covariance matrix ∑ is decomposed to yield the diagonal noise covariance 

matrix ∑�  and the lower triangular matrix 𝐿𝐿. 

3. The instantaneous effects matrix 𝐵𝐵(0) and coefficient matrices 𝐵𝐵(ℓ) can be calculated 

using above outlined relationships. 

In the spectral domain we can represent the extended MVAR model by the Fourier transform 

of equation 2-38 as  

𝑋𝑋(𝑓𝑓) =  𝐵𝐵(𝑓𝑓)𝑋𝑋(𝑓𝑓) + 𝑈𝑈(𝑓𝑓) 2-98 

where 𝐵𝐵(𝑓𝑓) is the coefficient matrix in frequency domain  

𝐵𝐵(𝑓𝑓) = 𝐵𝐵(0) +�𝐵𝐵(ℓ)𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋ℓ𝑇𝑇
𝑃𝑃

ℓ=1

 

The spectral matrix 𝑆𝑆(𝑓𝑓) and its inverse 𝑃𝑃(𝑓𝑓) of the extended MVAR model can be expressed as:  

𝑆𝑆(𝑓𝑓) = 𝐺𝐺(𝑓𝑓)∑�𝐺𝐺𝐻𝐻(𝑓𝑓) ,𝑃𝑃(𝑓𝑓) = 𝐵𝐵� 𝐻𝐻(𝑓𝑓)∑�−1𝐵𝐵�(𝑓𝑓)  2-99 

where the transfer function 𝐺𝐺(𝑓𝑓) =[𝐼𝐼 − 𝐵𝐵(𝑓𝑓)]−1. 

Following the procedure described for GDC and GPDC, we can define the extended directional 

coherence (EDC) 𝜉𝜉𝑖𝑖𝑖𝑖 and extended partial directed coherence (EPDC) 𝜒𝜒𝑖𝑖𝑖𝑖 from 𝑥𝑥𝑗𝑗 to 𝑥𝑥𝑖𝑖 as[110]:  

𝜉𝜉𝑖𝑖𝑖𝑖(𝑓𝑓) =
𝜎𝜎�𝑗𝑗𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)

�∑ 𝜎𝜎�𝑚𝑚2 |𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)|2𝑛𝑛
𝑚𝑚=1

 2-100 

 

𝜒𝜒𝑖𝑖𝑖𝑖 =

1
𝜎𝜎�𝑗𝑗
𝐵𝐵�𝑖𝑖𝑖𝑖(𝑓𝑓)

�∑ 1
(𝜎𝜎�𝑚𝑚)2 �𝐵𝐵

�𝑚𝑚𝑚𝑚(𝑓𝑓)�
2

𝑛𝑛
𝑚𝑚=1   

 
2-101 
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2.2.2.3 Information theoretic measures 

In the following, we define information theoretic measures which allows to detect causal 

relationship between time series.   

2.2.2.3.1 Transfer entropy  

In section 2.2.1.4, we described information theoretic measures as the model-free measures for 

estimating functional interaction among time series. Mutual information is one of these 

measures which quantifies the amount of information that can be obtained about one time series 

by looking at another. However mutual information is a symmetric measure that describes 

shared information and not causal relationships. To obtain a causal measure within the 

information theoretic framework, transfer entropy (TE) has been proposed [111]. 

TE can be defined in terms of conditional mutual information [111-113], we can say that 

random variable  𝑋𝑋 cause 𝑌𝑌 if the uncertainty about 𝑌𝑌 is decreased by the past knowledge of 

𝑋𝑋.  

The conditional mutual information 𝐼𝐼(𝑋𝑋;𝑌𝑌|𝑍𝑍) of the random variables 𝑋𝑋 and 𝑌𝑌 given the 

variable 𝑍𝑍 is defined as [114]  

𝐼𝐼(𝑋𝑋; 𝑌𝑌|𝑍𝑍) =  𝐻𝐻(𝑋𝑋|𝑍𝑍) +  𝐻𝐻(𝑌𝑌|𝑍𝑍) −𝐻𝐻(𝑋𝑋, 𝑌𝑌|𝑍𝑍) 2-102 

where 𝐻𝐻(𝑋𝑋|𝑍𝑍) is the conditional entropy of 𝑋𝑋 given 𝑍𝑍, as defined in section 2.2.1.4. 

The transfer entropy from 𝑋𝑋 to 𝑌𝑌 then corresponds to the conditional mutual information 

𝐼𝐼(𝑌𝑌𝑡𝑡;𝑋𝑋𝑡𝑡−1:𝑡𝑡−ℓ|𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ), which quantifies the information about the current state of the response 

system, 𝑌𝑌𝑡𝑡, obtained from the past of the driving system, 𝑋𝑋𝑡𝑡−1:𝑡𝑡−ℓ, that is not already contained 

in the past of the response system 𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ. Thus TE in terms of entropy is given by 

𝑇𝑇𝑇𝑇𝑋𝑋→𝑌𝑌 = 𝐻𝐻(𝑌𝑌𝑡𝑡|𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ) + 𝐻𝐻(𝑋𝑋𝑡𝑡−1:𝑡𝑡−ℓ|𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ)−  𝐻𝐻(𝑌𝑌𝑡𝑡 ,𝑋𝑋𝑡𝑡−1:𝑡𝑡−ℓ|𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ) 2-103 

Since 𝐻𝐻(𝑋𝑋|𝑌𝑌) = 𝐻𝐻(𝑋𝑋,𝑌𝑌) − 𝐻𝐻(𝑌𝑌) , where 𝐻𝐻(𝑋𝑋, 𝑌𝑌) denotes the joint entropy is outlined in section 

2.2.1.4, the preceding expressions can be also written in the following form: 
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𝑇𝑇𝑇𝑇𝑋𝑋→𝑌𝑌 = 𝐻𝐻(𝑌𝑌𝑡𝑡 ,𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ)−𝐻𝐻(𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ) +𝐻𝐻(𝑋𝑋𝑡𝑡−1:𝑡𝑡−ℓ,𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ)
− 𝐻𝐻(𝑌𝑌𝑡𝑡 ,𝑋𝑋𝑡𝑡−1:𝑡𝑡−ℓ ,𝑋𝑋𝑡𝑡−1:𝑡𝑡−ℓ) 

2-104 

There are several algorithms for calculating TE, but many are prohibitively slow at calculating 

the required three-dimensional entropy. In this study, we used the binning method. The method 

is based on the discretisation of the time series into 𝑄𝑄 equiquantal bins, ie bins with equal 

counts and therefore different widths. Conditional mutual information can then be calculated 

by a simple box-counting algorithm based on equiqantal marginal bin [115]  

2.2.2.3.2 Partial transfer entropy  

In the previous sections, we described transfer entropy as a causality measure in terms of the 

entropy between two time series, ignoring all other time series. If two time series are a part of 

a bigger interacting system, e.g. three interacting time series 𝑋𝑋, 𝑌𝑌 and 𝑍𝑍, then transfer entropy 

will estimate not only direct interactions between them, but also estimate indirect interactions 

including a third time series. To estimate only the information transferred directly between 

the two time series, we need to take into account the influence of the third time series. Partial 

transfer entropy (PTE) is the extension of TE designed for measuring the influence of 𝑋𝑋 on 𝑌𝑌 

conditioned on Z[116]. In other words, TE has been extended to include the effect of the past 

of Z on the current state of the response 𝑌𝑌 and the past of 𝑋𝑋. This can be done by including 

the past of 𝑍𝑍 to the condition term of the conditional mutual information [18, 116]: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑋𝑋→𝑌𝑌|𝑍𝑍 = I (𝑌𝑌𝑡𝑡;𝑋𝑋𝑡𝑡−1:𝑡𝑡−ℓ|𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ,𝑍𝑍𝑡𝑡−1:𝑡𝑡−ℓ) 2-105 

In terms of entropy, PTE is defined as 

𝑃𝑃𝑃𝑃𝑃𝑃𝑋𝑋→𝑌𝑌|𝑍𝑍 = 𝐻𝐻  (𝑋𝑋𝑡𝑡−1:𝑡𝑡−ℓ ,𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ,𝑍𝑍𝑡𝑡−1:𝑡𝑡−ℓ)
− 𝐻𝐻 (𝑌𝑌𝑡𝑡 ,𝑋𝑋𝑡𝑡−1:𝑡𝑡−ℓ ,𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ,𝑍𝑍𝑡𝑡−1:𝑡𝑡−ℓ) + 𝐻𝐻 (𝑌𝑌𝑡𝑡 ,𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ ,𝑍𝑍𝑡𝑡−1:𝑡𝑡−ℓ)
− 𝐻𝐻 (𝑌𝑌𝑡𝑡−1:𝑡𝑡−ℓ ,𝑍𝑍𝑡𝑡−1:𝑡𝑡−ℓ) 

2-106 
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2.2.2.3.3 Partial mutual information  

As we described earlier mutual information measures information shared between two time 

series. The partial mutual information 𝐼𝐼(𝑋𝑋, 𝑌𝑌|𝑍𝑍) represent the part of mutual information 

𝐼𝐼(𝑋𝑋, 𝑌𝑌) that is not also shared with a third signal 𝑍𝑍. 

2.2.2.3.4 Symbolic transfer entropy (STE) and partial symbolic transfer entropy (PSTE) 

The symbolic transfer entropy (STE) and partial symbolic transfer entropy (PSTE) are defined 

similarly to TE and PTE, but the calculations use the ranks of the amplitudes rather than the 

amplitudes themselves [18, 117]. Using ranks rather than amplitudes can assist in fine-tuning 

parameters, as the distribution of the data is known in advance.  

2.2.2.3.5 Kullback-Leibler divergence 

As described in section 2.2.1.4.6, Kullback-Leibler divergence is an asymmetric measure in its 

original form, and so is a directional measure.  

2.2.2.3.6 Directional phase-locking value (dPLV)  

In section 2.2.1.3.1 we described mean phase coherence (or phase-locking value) as a measure 

that quantifies the (symmetrical) phase relationship between two time series. dPLV extends 

this to give directional information by delaying one signal, hence calculating mean phase 

coherence between 𝑦𝑦(𝑡𝑡) and a lagged version of time series 𝑥𝑥(𝑡𝑡 − 𝑙𝑙). dPLV is determined by 

calculating these mean phase coherences for a range of lags and selecting then maximum value 

as the result. As only one signal is lagged, this introduces an asymmetry which allows access 

to the directional relationship between two signals.  

Δ𝜑𝜑(𝑡𝑡) = 𝑛𝑛𝜑𝜑𝑥𝑥(𝑡𝑡 − 𝑙𝑙)− 𝑚𝑚𝜑𝜑𝑦𝑦(𝑡𝑡) 
𝑅𝑅(𝑙𝑙) = 〈𝑒𝑒−𝑖𝑖Δ𝜑𝜑(𝑡𝑡)〉= �〈cos(Δ𝜑𝜑(𝑡𝑡))〉2 + 〈sin(Δ𝜑𝜑(𝑡𝑡))〉2 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = max
𝑙𝑙=1,…,𝐿𝐿

𝑅𝑅(𝑙𝑙) 

2-107 
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2.3 Significance analysis 

2.3.1 Surrogate data 

Surrogate data analysis was originally proposed to evaluate the existence of nonlinear 

dynamics [118]. Recently it has been used as an important way to provide a threshold for 

significance for connectivity measures [111, 119, 120]. Surrogate data are artificial data 

which mimic specific data properties of an original signal but randomise other properties of 

interest of the original signal.  

The surrogates throughout this study are generated using iteratively refined amplitude 

adjusted Fourier transform (IAAFT) [121]. These surrogate data have the same Fourier 

amplitudes as the original data but with random phases, and also have the same distribution 

of time-domain amplitudes. Since the conventional power spectral density is the modulus 

squared amplitude of the Fourier transform, the original data and its surrogate generated by 

this technique have the same power spectral densities. Any underlying nonlinear interaction 

within the original data set is destroyed using phase randomisation. This type of surrogate, 

which maintains both the power spectrum and the amplitude distribution of the original data, 

is well suited to analyse the nonlinearity and complexity of signals [122, 123].  

2.3.2 Methodology  

The following steps were performed in order to identify when two signals have a statistically 

significant connection  

1. IAAFT surrogate data was generated to give data with the same statistical properties as 

the original data but with the nonlinear dependencies between signals destroyed by the 

phase randomisation  

2. The connectivity measures were computed for 100 surrogate realisations, and averaged 

over the 150 or 100 realisations of the original data.  
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3. This yielded 100 measurements of synchronisation on surrogate data, which we use as 

an estimate of the distribution of the measure in the absence of any synchronisation.  

4. The fifth largest surrogate measurement was selected as the threshold to give a 5% 

significance level. 

5. If the connectivity measure calculated on the original data exceeded this threshold, then 

it is regarded as statistically significant [87, 116, 118, 122].  

Under this design, the false positive rate should be controlled at 5%. In order to check this, 

we ran the method under the null hypothesis for one of the simulated datasets (Hénon map) 

outlined in the following chapter when there is no coupling between time series. Results for 

1000 iterations on five functional connectivity measures, one measure from each family, are 

recorded in Table 2-1. These results should be 0.05 +/- 0.007, using the binomial distribution 

for 1000 iterations. show that the false positive rate is always too small and less than or equal 

to the 0.05. 
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Table 2-1: False positive rates for five functional connectivity measures under the null hypothesis that there is 
no connectivity. Due to the use of surrogates to identify significance, these rates should be controlled to be 5%. 
The simulation uses 1000 iterations, and hence using the binomial distribution the results should be 0.05 ± 0.007. 

Measure False positive rate 
Correlation coefficient 0.056 
Mutual information (histograms) 0.050 
Phase synchronisation Hilbert  0.054 
Omega Complexity 0.056 
Event synchronisation 0.044 
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CHAPTER 3 FUNCTIONAL CONNECTIVITY MEASURES 

Content from this chapter is similar to content in published paper ((IEE 2014 Middle East 

Conference on Biomedical Engineering, © 2014 IEEE. In reference to IEEE copyrighted 

material which is used with permission in this thesis, the IEEE does not endorse any of Flinders 

University's products or services. Internal or personal use of this material is permitted. If 

interested in reprinting/republishing IEEE copyrighted material for advertising or 

promotional purposes or for creating new collective works for resale or redistribution, please 

go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn 

how to obtain a License from RightsLink ), and paper published in the journal Computers in 

Biology and Medicine (https://doi.org/10.1016/j.compbiomed.2018.12.005) . Details can be 

seen in Appendix A-1 and A-4  

In this section, we use simulated data, where we know the “truth”, to compare different 

functional connectivity measures. Note that we are not optimizing any of the connectivity 

measures, we are using them as described in the literature review and using thresholds and other 

parameters as recommended by the proposers or users of the measures. 

3.1 Uni-directionally coupled Hénon maps  

Our first simulations to examine functional connectivity generate data from two coupled 

systems 𝑋𝑋 and 𝑌𝑌, a pair of unidirectionally coupled Hénon maps given by the following 

equations 
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These coupled equations for driver 𝑋𝑋 and response 𝑌𝑌 are linked with the coupling strength 𝜇𝜇, 

which varies from 0 to 1. Following the literature, we analyse three standard cases, commonly 

referred to as identical systems (𝑏𝑏 = 𝑑𝑑 = 0.3), and nonidentical systems (𝑏𝑏 = 0.3, 𝑑𝑑 = 0.1) 

and (𝑏𝑏 = 0.1, 𝑑𝑑 = 0.3) [13, 14, 124-129]. Throughout this thesis, we refer to these systems as 

IS, NS1 and NS2 respectively. 

3.1.1 Variation of measures against coupling strength 

We vary the strength of a relationship between signals by varying the coupling strength μ. For 

all cases we varied the coupling strength from 𝜇𝜇 = 0 (no coupling) to 𝜇𝜇 = 1 (complete 

coupling) in steps of 0.1 [13, 14, 124-129]. Simulations generated 10,000 data points but 

excised the first 1000 samples to avoid transient start up effects. The generation process was 

repeated 150 times with different random initial conditions, with the calculated synchronisation 

measures averaged over the 150 realisations 

3.1.1.1 Identical systems 

Figure 3-1 shows plots of 𝑥𝑥(𝑘𝑘) versus 𝑦𝑦(𝑘𝑘) for identical systems, for coupling strengths from 

0 to 1. The plots show an increase in synchronisation as the coupling strength increases, but 

from 𝜇𝜇 = 0.7 the system switches to perfect synchronisation, i.e. 𝑥𝑥(𝑘𝑘) = 𝑦𝑦(𝑘𝑘) as the maximum 

sub-Lyapunov exponent goes negative [124]. This can be seen in the figure where the synchrony 

becomes increasingly apparent as the coupling strength approaches 0.7, and perfect synchrony 

is achieved for coupling strengths above 0.7.  
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Figure 3-1:  Plots of 𝑥𝑥(𝑘𝑘)  vs 𝑦𝑦(𝑘𝑘)  for identical systems for coupling strengths 𝜇𝜇 from zero to one. Identical 
synchronisation between the systems takes place for sufficiently high levels of coupling, as indicated by the 
straight line at 45º for 𝜇𝜇 ≥ 0.7. 
 



58 
 

A plot of the largest sub-Lyapunov exponent calculated from the response system as a function 

of the coupling 𝜇𝜇 for identical systems is shown in Figure 3.1.2-2 (a). To examine identical 

synchronisation and understand its relation to sub-Lyapunov component, we also calculate the 

difference between two outputs of the response system 𝑦𝑦(𝑘𝑘) and 𝑦𝑦′(𝑘𝑘) that were driven with 

the same driver system output 𝑥𝑥(𝑘𝑘), but with different initial conditions for the response 

system. Figure 3-2 (b) shows a plot of this difference with the first 1000 data points deleted. If 

two responses are synchronised at a particular coupling strength, the difference should be zero. 

Figure 3-2 (a) and (b) indicate that the difference goes to zero when the largest sub-Lyapunov 

exponent becomes negative, i.e. at 0.47 ≲ 𝜇𝜇 ≲ 0.52 and 𝜇𝜇 ≳ 0.7. 

“This image has been removed due to copyright restrictions.” 
(a) 

 
(b) 

Figure 3-2: The largest sub-Lyapunov exponent for identical systems.  (a) Plot of the largest sub-Lyapunov 
exponent as a function of coupling strength for identical systems[14] (b) Plot of the difference between two outputs 
of the response system, 𝑦𝑦(𝑘𝑘)−𝑦𝑦′(𝑘𝑘), calculated with the same driver system but different initial conditions in the 
response system, against increasing coupling strength. 

3.1.1.2 Results for identical systems 

Figure 3-3 shows the calculation of 29 synchronisation measures against increasing coupling 

strength between two identical Hénon maps. To discuss the results, it is convenient to split the 

figures into three regions. For low coupling strengths, the measures do not exceed the threshold 

for significance set by the surrogates, and so the shape of the curve is not important. After the 

measure, has detected a statistically significant level of synchronisation, all measures increase 
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with increasing coupling strength, except for the local hump in the region 0.47 ≲ 𝜇𝜇 ≲ 0.52 due 

to the largest sub-Lyapunov exponent being negative. The final region is 𝜇𝜇 ≳ 0.7, where, as 

discussed earlier, identical synchronisation occurs [124]. In the final region all measures show 

the sharp increase at point C ≈ 0.7 corresponds to the point when the identical synchronisation 

between the systems takes place and detect the synchronisation as expected. 

Table 3-1 shows the lowest value of the coupling strength for which a measure detects 

significant synchrony. Four measures, viz partial coherence, mutual information (adaptive 

histograms), nonlinear interdependence (𝐻𝐻𝑘𝑘) and nonlinear Interdependence (𝑁𝑁𝑘𝑘), detect 

significant synchrony for  𝜇𝜇 ≥ 0.1, and so can be considered as robust measures for detecting 

weak coupling in this simulation. We also observe that correlation coefficient, coherence, mean 

phase coherence (wavelet), mutual information (kernels) detect synchronisation for 𝜇𝜇 ≥ 0.2,  

and correntropy coefficient, coh-entropy and nearest-neighbour mutual information detect 

synchronisation for 𝜇𝜇 ≥ 0.3, suggesting they are also measures that are sensitive to weak 

coupling. On the other hand, maximum likelihood mutual information, nonlinear 

interdependence (𝑆𝑆𝑘𝑘), wave-entropy, event synchronisation, mutual information (time-

frequency plane), Kullback-Leibler divergence (histogram), Rényi divergence, Jensen-Shannon 

divergence, Jensen-Rényi divergence, omega complexity and s-estimator first detect synchrony 

at 𝜇𝜇 = 0.5 , suggesting they are less able to detect weak levels of synchronisation. 

Some measures give unsatisfactory results; Mean phase coherence (Hilbert), phase coherence 

value wrapped, conditional based phase synchrony and omega complexity detect synchrony 

when there is no coupling, suggesting that these measures are susceptible to finding synchrony 

when it is not present.  

Note that the performance of linear measures is similar to the performance of nonlinear 

measures. More specifically, the three linear measures (partial coherence, correlation coefficient 
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and coherence) first detect synchronisation at a coupling strength of 0.1, 0.2 and 0.2 

respectively. Hence, we conclude that linear measures are able to detect synchronisation in 

nonlinear systems, a point not acknowledged in the literature. 

 
Figure 3-3: Functional connectivity measures for IS with no added measurement noise.  Functional connectivity 
measures calculated from the original data (blue) and the threshold based on surrogate data (red) for IS  with no 
added measurement noise, plotted against coupling strength. 
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Table 3-1: The lowest value of coupling strength that detects significant synchrony for IS.  Good and 
unsatisfactory performance outcomes are highlighted by colouring the text blue and red respectively. 

Measure Lowest 𝜇𝜇 that achieves 
significant synchrony 

Mean phase coherence (Hilbert) 0.0 
Phase coherence value wrapped 0.0 
Conditional probability based phase synchrony 0.0 
Omega Complexity 0.0 
Partial coherence 0.1 
Mutual information (adaptive histograms) 0.1 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 0.1 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 0.1 
Correlation coefficient 0.2 
Coherence 0.2 
Mean phase coherence (wavelet) 0.2 
Mutual information (kernels) 0.2 
Correntropy coefficient 0.3 
Coh-entropy coefficient 0.3 
Nearest-neighbour mutual information 0.3 
Mean phase coherence (event) 0.4 
Mutual information (histograms) 0.4 
Wave-entropy 0.5 
Event synchronisation 0.5 
Mutual information (time-frequency plane) 0.5 
Kullback Leibler divergence (histogram) 0.5 
Rényi Divergence 0.5 
Jensen-Shannon divergence 0.5 
Jensen-Rényi divergence 0.5 
S-estimator 0.5 
Maximum likelihood mutual information 0.6 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 0.6 
Phase coherence value unwrapped 0.7 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   
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3.1.1.3 Nonidentical systems type 1  

Figure 3-4 shows plots of 𝑥𝑥(𝑘𝑘) versus 𝑦𝑦(𝑘𝑘) for NS1 (𝑏𝑏 = 0.3,𝑑𝑑 = 0.1), for coupling strengths 

from 0 to 1. The identical synchronisation situation (straight line at 45º) cannot be observed 

here. The absence of identical synchronisation is one of the main features of the nonidentical 

systems [130]. A plot of the largest sub-Lyapunov exponent calculated from the response 

system as a function of the coupling strength μ is shown in Figure 3.1.2-5. To explore the 

relationship between coupling strength and the maximum sub-Lyapunov exponent for this 

system, we again calculated the difference between two-time series drawn from the response 

system where both are driven with the same driving signal 𝑥𝑥(𝑘𝑘), but with different response 

system initial conditions. The difference is shown in Figure 3-5 (b). As mentioned earlier, if 

the response signals are synchronised at a value of the coupling strength, then the difference 

should be equal to zero. As Figure 3-5 (a) shows, the largest sub-Lyapunov exponent is 

negative in two distinct regions (0.1 ≲ 𝜇𝜇 < 0.3 and ≳ 0.5) ,corresponding to the response 

signals being synchronised and their difference equalling zero. We see the difference equalling 

zero is mostly true, but not always. This is explained by transients not disappearing yet. If 

15000 samples are discarded then the “right” picture can be obtained. Here we present the plot 

which is generated using our simulations. 
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Figure 3-4: Plot of 𝑋𝑋 vs 𝑌𝑌 for NS1 for coupling strengths from 0 to 1 in separate plots. At no level of coupling 
strength is identical synchronisation achieved.  
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“This image has been removed due to copyright restrictions.” 
(a) 

 
(b) 

Figure 3-5:  Plot of largest sub-Lyapunov and difference between outputs for NS1 (a) Plot of the largest sub-
Lyapunov exponent as a function of coupling strength for NS1[14] (b) Plot of the difference between two outputs 
of the response system(y(k)-y’(k)) against increasing coupling strength. 

3.1.1.4 Results for nonidentical systems type 1 

Figure 3-6 shows the calculation of 29 measures against increasing coupling strength μ for 

NS1. As there is synchrony, albeit weak, from 𝜇𝜇 = 0.1 we would like to see a measure above 

its threshold from 𝜇𝜇 ≥ 0.1. Table 3-2 shows us when a measure first detects synchrony that is 

statistically significant. Correlation coefficient, coherence, partial coherence, mean phase 

coherence, phase coherence value unwrapped, mutual information (adaptive histograms), 

mutual information (kernels) first detect significant synchrony at 𝜇𝜇 = 0.1 , suggesting these 

measures are robust measures for detecting weak coupling. We also note that some measures, 

e.g. correlation and many others, show increasing synchrony as the coupling strength increases, 

but with a bump in the range 0.1 ≲ 𝜇𝜇 ≲  0.3. While this visually conforms to the known 

dynamics of the system, this does not provide any statistically significant evidence in favor of 

any measure. 

Some measures perform unsatisfactorily: wavelet-KL fails to detect synchrony at any coupling 

strength; wave-entropy and PCV unwrapped fail to detect synchrony at some coupling 
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strengths despite detecting it at lower coupling strengths; and Hilbert Phase, PCV wrapped and 

lambda bar detect synchrony when there is none (coupling strength equals zero).  

 
Figure 3-6:  Functional connectivity for NS1 with no added measurement noise. Functional connectivity 
measures calculated from the original data (blue) and the threshold based on surrogate data (red) for NS1 with 
no added measurement noise, plotted against coupling strength.  
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Table 3-2: The lowest value of coupling strength that detects significant synchrony for NS1Good and 
unsatisfactory performance outcomes are highlighted by colouring the text blue and red respectively. 
 

Measure Lowest 𝜇𝜇 that achieves 
significant synchrony 

Mean phase coherence (Hilbert) 0.0 
Phase coherence value wrapped 0.0 
Conditional probability based phase synchrony 0.0 
Omega Complexity 0.0 
Correlation coefficient 0.1 
Coherence 0.1 
Partial coherence 0.1 
Mean phase coherence (wavelet) 0.1 
Mean phase coherence (event) 0.1 
Phase coherence value unwrapped 0.1 
Mutual information (adaptive histograms) 0.1 
Mutual information (kernels) 0.1 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 0.1 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 0.1 
Coh-entropy coefficient 0.2 
Mutual information (histograms) 0.2 
Nearest-neighbour mutual information 0.2 
Mutual information (time-frequency plane) 0.2 
Kullback Leibler divergence (histogram) 0.2 
Rényi Divergence 0.2 
Jensen-Shannon divergence 0.2 
Jensen- Rényi divergence 0.2 
Correntropy coefficient  0.3 
wave-entropy 0.4 
Event synchronisation 0.4 
S-estimator 0.4 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 0.5 
Maximum likelihood mutual information 0.7 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   
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3.1.1.5 Nonidentical systems type 2  

Figure 3-7 shows plots of 𝑥𝑥(𝑘𝑘) versus 𝑦𝑦 (𝑘𝑘) for NS2, for coupling strengths from 0 to 1. Similar 

to the type 1 the identical synchronisation situation (straight line at 45º) cannot be observed 

here due to the absence of identical synchronisation. In Figure 3-9 we plot of 𝑥𝑥(𝑘𝑘) vs 𝑦𝑦(𝑘𝑘) for 

Hénon map for identical and both type of nonidentical systems at a coupling strength of 𝜇𝜇 =

1 . Observe that for the nonidentical systems the graph is less defined and spreads out, as shown 

in the magnified views. Note also that the nonidentical system type 2 shows more structure 

than type 1. 

Figure 3-8 (a) shows a plot of the largest sub-Lyapunov exponent calculated from the response 

system as a function of coupling strength μ for the nonidentical system type 2. It also shows a 

plot of the difference between the outputs of the response system when the initial conditions of 

the driver system are the same, but the initial conditions of the response system are different. 

It can be seen that there are regions (0.4 ≲ 𝜇𝜇 ≲ 0.55 and 𝜇𝜇 ≳ 0.6) where the response signals’ 

difference is equal to zero while the sub-Lyapunov exponent is negative for 𝜇𝜇 ≳ 0.4.  
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Figure 3-7:  Plot of 𝑋𝑋 vs 𝑌𝑌 for NS2 for coupling strengths from 0 to 1 in separate plots. At no level of the 
coupling is identical synchronisation is achieved. 
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“This image has been removed due to copyright restrictions.” 
(a) 

 
(b) 

Figure 3-8: Plot of largest sub-Lyapunov and difference between outputs for NS2. (a) Plot of the largest sub-
Lyapunov exponent as a function of coupling strength for NS2[10] (b) Plot of the difference between two outputs 
of the response system,  𝑦𝑦(𝑘𝑘)−𝑦𝑦′(𝑘𝑘) against increasing coupling strength. 
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Figure 3-9: Plot of 𝑋𝑋 vs 𝑌𝑌 for Hénon map for IS, NS1 and NS2 at a coupling strength of 𝜇𝜇 = 1. 

3.1.1.6 Results for nonidentical systems type 2 

Figure 3-10 shows the estimates of synchronisation for each functional connectivity measure 

for the NS2 against coupling strength. Table 3-3 records the value of coupling strength for 

which statistically significant synchrony detection first occurs. We observe that coherence, 

partial coherence, mean phase coherence (wavelet), mean phase coherence (event) and mutual 

information adaptive histogram detect significant synchrony at lower levels of coupling 
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strength, suggesting these measures most able to detect weak synchrony in the NS2. Many of 

the measures visually show an increase in synchronisation with coupling strength, and a 

heightened synchronisation between 𝜇𝜇 = 0.4 and 𝜇𝜇 = 0.6. This negatively correlates with the 

shape of the maximum sub-Lyapunov exponent in this region (see in fig), as expected, but this 

does not provide statistically significant evidence in favour of any measure over another. 

Some measures perform unsatisfactorily: mean phase coherence (Hilbert) and phase coherence 

value wrapped  detected synchrony when there is none (coupling strength equals zero); Hilbert 

phase, wavelet phase, event phase, phase coherence value wrapped, and omega complexity 

failed to detect synchrony at some coupling strengths despite detecting it at lower coupling 

strengths; and phase coherence value unwrapped failed to detect synchronisation at the 

strongest coupling strengths, despite detecting it a some lower strengths. 
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Figure 3-10: Functional connectivity measures for NS2. Functional connectivity measures calculated from the 
original data (blue line) and the threshold based on surrogate data (red line) for NS2 with no added measurement 
noise, plotted against coupling strength.  
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Table 3-3: The lowest value of coupling strength that detects significant synchrony for NS1. Good and 
unsatisfactory performance outcomes are highlighted by colouring the text blue and red respectively. 

Measure Lowest 𝜇𝜇 that achieves 
significant synchrony 

Mean phase coherence (Hilbert) 0.0 
Phase coherence value wrapped 0.0 
Partial coherence 0.1 
Mean phase coherence (wavelet) 0.1 
Omega Complexity 0.1 
Correlation coefficient 0.2 
Coherence 0.2 
Mean phase coherence (event) 0.2 
Mutual information (adaptive histograms) 0.2 
Phase coherence value unwrapped 0.4 
Mutual information (kernels) 0.4 
Mutual information (time-frequency plane) 0.4 
Kullback Leibler divergence (histogram) 0.4 
Rényi Divergence 0.4 
Jensen-Shannon divergence 0.4 
Jensen-Rényi divergence 0.4 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 0.4 
Nearest-neighbour mutual information 0.5 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 0.5 
Mutual information (histograms) 0.6 
Correntropy coefficient  0.7 
Coh-entropy coefficient 0.7 
Event synchronisation 0.7 
Maximum likelihood mutual information 0.7 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 0.7 
wave-entropy 0.7 
S-estimator  0.7 
 Conditional probability based phase synchrony 0.8  

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

 
 

 

 

 



74 
 

3.1.2 Detecting nonstationary relationship between signals 

A nonstationary model changes the coupling strength 𝜇𝜇 with time. Here we follow the 

methodology of [127, 131-134], and switch the coupling strength of two coupled Hénon maps 

from 𝜇𝜇 = 0.0 (no coupling) to 𝜇𝜇 = 0.9 (tightly coupling) at 𝑘𝑘 = 50 and back to 𝜇𝜇 = 0.0 at 𝑘𝑘 =

150. A sliding window of 50 samples was used to estimate the synchronisation measures. 

Simulations used 400 data samples after the first 10000 data are discarded.  

Ideally, we expect the measures to begin to detect significant synchrony from 𝑘𝑘 = 50 when 

the 0.9 coupling strength between systems 𝑋𝑋 and 𝑌𝑌 is introduced. There are two factors that 

affect this expectation. Firstly, the window size means we expect a 100 samples rectangle due 

to the model convolved with a 50 samples rectangle due to the window. Secondly, there is a 

delay as the nonlinear system moves to the new coupling regime. We don’t know how long this 

is, and it is likely asymmetric (as at 50 ms the highly coupled system drives to synchronise and 

at 150 ms the decoupled system drives to desynchronise, i.e. different systems). We can’t easily 

assess this second factor, so we don’t show an expectation, just the coupling (rectangle). In order 

to compare measures results we’d like value of the k when measures detect first significant 

synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) as close to 50 as possible, can’t say what is “right”, so smaller is better. We 

can argue that the value of the k when measures falling off back below the threshold (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) 

should be large, as smaller implies less sensitive to the persisting synchronisation. Hence best 

measure of goodness is a large difference between 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑).  

3.1.2.1 Results  

Figure 3-11 shows the results for the 29 measures for IS and Table 3-4shows the value of the 

time index 𝑘𝑘 that first detects synchrony, the value of 𝑘𝑘 that last detects synchrony, and the 

difference of these two. All measures can be seen to be sensitive to the time-dependent sudden 

change in the dynamics of the interacting systems. Two measures, correntropy coefficient and 
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coh-entropy, first detect synchrony at 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 59 and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 63 respectively, which are closest 

to the ideal value. While most measures show a decrease in synchronisation from or slightly 

later than expected value 𝑘𝑘 = 150, they do not fall below the threshold until considerably later. 

It is clear that there is a significant time required for the system to diverge from synchronisation 

and for the measure to reflect the absence of systemic synchronisation. Some measures perform 

unsatisfactorily, namely phase conditional entropy is not able to estimate significant synchrony 

for the time range 50 <  𝑘𝑘 <  150, and omega complexity detects significant synchrony for 

𝑘𝑘 <  50 and 𝑘𝑘 >  150 where no synchrony exist. In addition, coh-entropy and correntropy 

coefficient show the largest difference between the time that a measure first detects significant 

synchrony and the time that it no longer detects significant synchrony (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), recommending 

them as measures that are sensitive to nonstationary changes in synchronisation.  
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Figure 3-11: Synchrony measures against time for nonstationary IS with no added measurement noise. Result of 
synchronisation for original data (blue line); surrogate data (red line). 
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Table 3-4: The values of (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) and (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for nonstationary IS. The value of the time index k that 
first detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), the value of k  that last detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), and the difference of these two 
(𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for nonstationary IS with no added measurement noise. Good and unsatisfactory performance outcomes 
are highlighted by colouring the text blue and red respectively. 

Measure 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Correlation coefficient 72 235 163 
Coherence 76 234 158 
Correntropy coefficient  63 244 181 
Coh-entropy coefficient 59 253 194 
Wave-entropy 78 229 151 
Partial coherence 88 211 123 
Event synchronisation 70 215 145 
Mean phase coherence (Hilbert) 68 234 166 
Mean phase coherence (wavelet) 90 211 121 
Mean phase coherence (event) 78 229 151 
Phase coherence value unwrapped 68 243 175 
Phase coherence value wrapped 66 243 177 
Conditional probability based phase synchrony NaN NaN NaN 
Mutual information (histogram) 89 235 146 
Mutual information (adaptive histogram) 71 247 176 
Mutual information (kernel) 67 241 174 
Maximum likelihood mutual information 2 400 398 
Nearest-neighbour mutual information 74 237 163 
Mutual information (time-frequency plane) 72 238 166 
Kullback Leibler divergence (histogram) 72 243 171 
Rényi Divergence  72 240 168 
Jensen-Shannon divergence 72 243 171 
Jensen-Rényi divergence 72 243 171 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 66 239 173 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 81 231 150 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 67 239 172 
Omega Complexity 1 400 399 
S-estimator 67 243 176 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

Simulations for the nonidentical systems were also run. Figure 3-12 shows the results for NS1. 

Similar to the identical system, it is visually clear that all of the measures are able to detect the 

sudden introduction of strong coupling. Table 3-5 shows the value of 𝑘𝑘 when the 

synchronisation measures are above the threshold level for the first time, when they fall below 
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the threshold level for the last time, and the difference between these two points which indicates 

the length of time detecting coupling. While none of the measures can first detect synchrony at 

the ideal value of 𝑘𝑘 = 50, correntropy coefficient, coh-entropy, nonlinear interdependence H, 

nonlinear interdependence N, and S estimator all first detect synchrony close to the ideal time 

(indicated in table by the colour blue) as well as larger value of the 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Some measures 

perform unsatisfactorily: wave entropy, conditional probability based phase synchrony and 

maximum likelihood mutual information detect no significant synchrony at all; and omega 

complexity detects significant synchrony at no coupling.  
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Figure 3-12: Synchrony measures against time for nonstationary NS1 with no added measurement noise.  Result 
of synchronisation for original data (blue line); surrogate data (red line). 
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Table 3-5: The values of (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) and (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for nonstationary NS1. The value of the time index k that 
first detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), the value of k  that last detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), and the difference of these two 
(𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for nonstationary NS1 with no added measurement noise. Good and unsatisfactory performance outcomes 
are highlighted by colouring the text blue and red respectively. 

Measure 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Correlation coefficient 75 179 104 
Coherence 72 183 111 
Correntropy coefficient  69 186 117 
Coh-entropy coefficient 63 192 129 
Wave-entropy NaN NaN NaN 
Partial coherence 91 166 75 
Event synchronisation 78 162 84 
Mean phase coherence (Hilbert) 72 182 110 
Mean phase coherence (wavelet) 92 165 73 
Mean phase coherence (event) 85 172 87 
Phase coherence value unwrapped 72 184 112 
Phase coherence value wrapped 72 182 110 
Conditional probability based phase synchrony NaN NaN NaN 
Mutual information (histogram) 94 182 88 
Mutual information (adaptive histogram) 76 178 102 
Mutual information (kernels) 71 182 111 
Maximum likelihood mutual information NaN NaN NaN 
Nearest-neighbour mutual information 85 171 86 
Mutual information (time-frequency plane) 72 189 117 
Kullback Leibler divergence (histogram) 72 189 117 
Rényi Divergence  69 189 120 
Jensen-Shannon divergence 69 190 121 
Jensen-Rényi divergence 69 189 120 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 68 185 117 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 85 168 83 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 68 185 117 
Omega Complexity 1 400 399 
S-estimator 68 184 116 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

 

Figure 3-13 shows the results for NS2. It is still visually clear that all of the measures are able 

to detect the sudden introduction of strong coupling. Table 3-6 shows the value of 𝑘𝑘 when the 

synchronisation measures are above the threshold level for the first time, when they fall below 

the threshold level for the last time, and the difference between these two points which 
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indicates the length of time that coupling has been detected. While none of the measures can 

first detect synchrony at the ideal value of 𝑘𝑘 = 50, correntropy coefficient and mean phase 

coherence (Hilbert) are the closest, first detecting synchrony at 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 59 and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 63 

respectively. Additionally, these two measures also achieve the largest values of 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 

suggesting that these measures are the best at identifying strong coupling with few samples of 

data. Coh-entropy, phase coherence value (wrapped), phase coherence value (unwrapped), 

nonlinear interdependence (𝑆𝑆𝑘𝑘), omega complexity and S-estimator also perform well. The 

measure conditional probability-based phase synchrony performs unsatisfactorily: this measure 

detects no significant synchrony at all.  
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Figure 3-13: Synchrony measures against time for the nonstationary system NS2 with no added measurement 
noise, for the original data (black line) and surrogate data (red line). 
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Table 3-6: The values of (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) and (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for nonstationary NS2. The value of the time index k that 
first detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), the value of k  that last detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), and the difference of these two 
(𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for nonstationary NS2 with no added measurement noise. Good and unsatisfactory performance outcomes 
are highlighted by colouring the text blue and red respectively. 

Measure 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Correlation coefficient 78 180 102 
Coherence 79 182 103 
Correntropy coefficient  66 191 125 
Coh-entropy coefficient 70 184 114 
Wave-entropy 108 153 45 
Partial coherence 77 176 99 
Event synchronisation 68 162 94 
Mean phase coherence (Hilbert) 68 189 121 
Mean phase coherence (wavelet) 94 161 67 
Mean phase coherence (event) 79 178 99 
Phase coherence value unwrapped 71 186 115 
Phase coherence value wrapped 70 187 117 
Conditional probability based phase synchrony NaN NaN NaN 
Mutual information (histograms) 89 170 81 
Mutual information (adaptive histograms) 76 181 105 
Mutual information (kernels) 74 186 112 
Maximum likelihood mutual information 81 177 96 
Nearest-neighbour mutual information 78 176 98 
Mutual information (time-frequency plane) 77 186 109 
Kullback Leibler divergence (histogram) 78 186 108 
Rényi Divergence  78 186 108 
Jensen-Shannon divergence 77 186 109 
Jensen-Rényi divergence 76 186 110 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 87 168 81 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 72 186 114 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 75 184 109 
Omega Complexity 72 187 115 
S-estimator 71 188 117 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

 

3.1.3 Influence of noise 

Real signals are contaminated by noise, so a valuable synchronisation measure should be robust 

against noise. Here we consider only additive white Gaussian measurement noise, i.e. noise 
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added to the outputs after calculation via the Hénon map equations. The alternative, intrinsic 

noise, is added into the system hence perturbing the dynamics of the system. We are using 

simulated data to know a priori what the dynamics of the system are, hence we only consider 

measurement noise. White noise is added to the both driver 𝑋𝑋 and response 𝑌𝑌 outputs. To test 

the performance of the measures at different noise levels, we set the signal-to-noise ratio (S 

NR) at 10 dB and 1 dB. Note that we have not recalculated the Hénon map data for different 

noise levels, it is identical in all cases. 

3.1.3.1 Results for variation of measures against coupling  

Figure 3-14  shows the performance of the synchronisation measures on the IS at 10 dB SNR. 

All measures still show the sharp increase in synchronisation at μ ≈ 0.7, and detect the 

synchronisation as expected in the final region.  

Table 3-7 shows the lowest value of the coupling strength for which a measure detects 

significant synchrony. Measures mostly first detect significant synchrony at the same level of 

coupling as in the noise-free case. This suggests that when the low-level noise is added into the 

systems, the performance of the most measures is similar to the noise-free systems. Partial 

coherence, conditional entropy based phase synchrony and omega complexity first detect 

synchrony at 𝜇𝜇 = 0.1, suggesting these measures are more robust in detecting weak coupling in 

this experimental situation. Mutual information (adaptive histograms), mutual information 

(kernels), nonlinear interdependence (𝐻𝐻𝑘𝑘) and nonlinear interdependence (𝑁𝑁𝑘𝑘) first detect 

statistical significant synchrony at a coupling strength one level greater than their noise-free 
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counterparts. Phase coherence value wrapped and mean phase synchrony (Hilbert) perform 

unsatisfactorily, failing to detect synchrony at all coupling strengths. 

 
Figure 3-14: Functional connectivity measures for IS at 10 dB SNR.  Functional connectivity measures 
calculated from the original data (blue line) and the threshold based on surrogate data (red line) for IS at 10 dB 
SNR, plotted against coupling strength. 
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Table 3-7: The lowest value of coupling strength that detects synchrony for noisy IS at 10 dB SNR. Good and 
unsatisfactory performance outcomes are highlighted by colouring the text blue and red respectively. 

Measure Lowest 𝜇𝜇 that achieves 
significant synchrony 

Mean phase coherence (Hilbert) 0.0 
Phase coherence value wrapped 0.0 
Partial coherence 0.1 
Conditional probability based phase synchrony 0.1 
Omega Complexity 0.1 
Correlation coefficient 0.2 
Coherence 0.2 
Mean phase coherence (wavelet) 0.2 
Mutual information (adaptive histogram) 0.2 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 0.2 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 0.2 
Correntropy coefficient  0.3 
Coh-entropy coefficient 0.3 
Mutual information (kernels) 0.3 
Mean phase coherence (event) 0.4 
Mutual information (histograms) 0.4 
Event synchronisation 0.5 
Maximum likelihood mutual information 0.5 
Mutual information (time-frequency plane) 0.5 
Kullback Leibler divergence (histogram) 0.5 
Rényi Divergence 0.5 
Jensen-Shannon divergence 0.5 
Jensen-Rényi divergence 0.5 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 0.5 
S-estimator 0.5 
wave-entropy 0.6 
Nearest-neighbour mutual information 0.6 
Phase coherence value unwrapped 0.7 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

 

Figure 3-15 shows the same experiment at a SNR of 1 dB. Note that the measures’ curves at 1 

dB substantially mimic those in Figure 3.1.4-1 (i.e. when noise-free), but with an overall 

degradation of the estimates due to the added noise. But the sudden increase at 𝜇𝜇 ≈  0.7 is still 

observable for most measures. All measures except phase coherence value unwrapped detect 

synchronisation when the coupling is large. Table 3-8 shows the lowest value of the coupling 
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strength for which a measure detects synchrony. All measures fail to detect weak coupling 

at 𝜇𝜇 = 0.1. The table suggest partial coherence, correlation coefficient, mean phase coherence 

(wavelet), nonlinear interdependence (𝐻𝐻𝑘𝑘) and nonlinear interdependence (𝑁𝑁𝑘𝑘) are more 

robust to noise than the other measures when the systems are contaminated with high level of 

the noise.   
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Figure 3-15: Functional connectivity measures for IS at 1 dB SNR. Functional connectivity measures calculated 
from the original data (blue line) and the threshold based on surrogate data (red line) for IS at 1 dB SNR, plotted 
against coupling strength. 
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Table 3-8: The lowest value of coupling strength that detects significant synchrony for noisy IS at 1 dB SNR. 
Good and unsatisfactory performance outcomes are highlighted by colouring the text blue and red respectively.  

Measure Lowest 𝜇𝜇 that achieves 
significant synchrony 

Phase coherence value wrapped 0.0 
Omega Complexity 0.0 
Partial coherence 0.2 
Correlation coefficient 0.3 
Mean phase coherence (wavelet) 0.3 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 0.3 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 0.3 
Coherence 0.4 
Correntropy coefficient  0.4 
Coh-entropy coefficient 0.4 
Mean phase coherence (Hilbert) 0.4 
Mutual information (adaptive histogram) 0.4 
Event synchronisation 0.5 
Mean phase coherence (event) 0.5 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 0.5 
S-estimator 0.5 
Conditional probability based phase synchrony 0.6 
Mutual information (histograms) 0.6 
Maximum likelihood mutual information 0.6 
Mutual information (time-frequency plane) 0.6 
Kullback Leibler divergence (histogram) 0.6 
Rényi Divergence 0.6 
Jensen-Shannon divergence 0.6 
Jensen-Rényi divergence 0.6 
wave-entropy 0.7 
Mutual information (kernels) 0.7 
Nearest-neighbour mutual information 0.7 
Phase coherence value unwrapped NaN 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

 

Figure 3-16 shows the calculation of 29 measures against increasing coupling strength 𝜇𝜇 for 

NS1. Table 3-9 shows us when a measure first detects statistically significant synchrony. 

Correlation coefficient, coherence, partial coherence, mean phase coherence (wavelet), phase 

coherence value unwrapped, mutual information (adaptive histograms), and mutual 

information (adaptive histogram) first detect significant synchrony at 𝜇𝜇 = 0.1 , suggesting 
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these measures are robust measures for detecting weak coupling with noise. We also note that 

cross correlation, coherence, mutual information (time frequency plane), Kullback Leibler 

divergence (histogram), wavelet phase, Jensen-Rényi divergence, Jensen-Shannon divergence 

and Rényi divergence, show a bump in the range 0.1 ≲ 𝜇𝜇 ≲  0.3. As mentioned earlier, while 

this visually conforms to the known dynamics of the system, this does not provide any 

statistically significant evidence in favor of any measure. Some measures perform 

unsatisfactorily: maximum likelihood mutual information fails to detect synchrony at any 

coupling strength; and mean phase coherence (Hilbert), phase coherence value unwrapped, 

phase coherence value wrapped and conditional probability based phase synchrony detect 

synchrony when there is none (coupling strength equals zero).  
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Figure 3-16: Functional connectivity measures for NS1 at 10 dB SNR. Functional connectivity measures 
calculated from the original data (blue line) and the threshold based on surrogate data (red line) for NS1 at 10 
dB SNR, plotted against coupling strength. 
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Table 3-9:  The lowest value of coupling strength that detects significant synchrony for noisy NS1 at 10 dB 
SNR.  Good and unsatisfactory performance outcomes are highlighted by colouring the text blue and red 
respectively.  

Measure Lowest 𝜇𝜇 that achieves 
significant synchrony 

Mean phase coherence (Hilbert) 0.0 
Phase coherence value unwrapped 0.0 
Phase coherence value wrapped 0.0 
Conditional probability based phase synchrony 0.0 
Correlation coefficient 0.1 
Coherence 0.1 
Partial coherence 0.1 
Mean phase coherence (wavelet) 0.1 
Mutual information (adaptive histograms) 0.1 
Correntropy coefficient  0.2 
Coh-entropy coefficient 0.2 
Mean phase coherence (event) 0.2 
Mutual information (time-frequency plane) 0.2 
Rényi Divergence 0.2 
Jensen-Shannon divergence 0.2 
Jensen-Rényi divergence 0.2 
Event synchronisation 0.3 
Mutual information (kernels) 0.3 
Kullback Leibler divergence (histogram) 0.3 
Mutual information (histograms) 0.4 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 0.4 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 0.4 
Wave-entropy 0.5 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 0.5 
S-estimator 0.5 
Omega Complexity 0.6 
Nearest-neighbour mutual information 0.8 
Maximum likelihood mutual information NaN 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

 

Figure 3-17 shows the same experiment at a SNR of 1 dB for NS1. All correlation coefficient 

family measures and wavelet phase curves clearly show the bump in the region 0.1 ≲ 𝜇𝜇 ≲ 0.3 

which is most likely due to the negativity of the maximum sub-Lyapunov exponent in this zone. 

All measures except maximum likelihood mutual information, conditional entropy based phase 
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synchrony and phase coherence value unwrapped detect synchrony for strong coupling. Table 

3-10 records the lowest value of the coupling strength at which measures first detect synchrony. 

Correlation coefficient, partial coherence, mean phase coherence wavelet and omega 

complexity detect first statistical significant synchrony at 𝜇𝜇 = 0.1, suggesting these measures 

are more robust than other measures at detecting weak coupling when the noise at a SNR of 1 

dB is added to the NS1. The table also shows phase coherence value first detects synchrony 

at 𝜇𝜇 = 0.2 and coh-entropy coefficient, event synchronisation, mutual information adaptive 

histogram, mutual information kernel, nonlinear interdependence (𝐻𝐻𝑘𝑘) and nonlinear 

interdependence(𝑁𝑁𝑘𝑘) first detect synchrony at 𝜇𝜇 = 0.3, suggesting these measures also can be 

considered as sensitive measures for detecting weak coupling. Some measures performance is 

unsatisfactory; MLMI and phase synchrony unwrapped detect no synchrony at all and 

conditional based phase synchrony detects synchrony at 𝜇𝜇 = 0.7 only. 
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Figure 3-17: Functional connectivity measures for NS1 at 1 dB SNR. Functional connectivity measures 
calculated from the original data (blue line) and the threshold based on surrogate data (red line) for NS1 at 1 dB 
SNR, plotted against coupling strength. 
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Table 3-10: The lowest value of coupling strength that detects significant synchrony for noisy NS1 at 1 dB SNR. 
Good and unsatisfactory performance outcomes are highlighted by colouring the text blue and red respectively. 

Measure Lowest 𝜇𝜇 that achieves 
significant synchrony 

Correlation coefficient 0.1 
Partial coherence 0.1 
Mean phase coherence (wavelet) 0.1 
Omega Complexity 0.1 
Coherence 0.2 
Phase coherence value wrapped 0.2 
Coh-entropy coefficient 0.3 
Event synchronisation 0.3 
Mean phase coherence (Hilbert) 0.3 
Mean phase coherence (event) 0.3 
Mutual information (adaptive histogram) 0.3 
Mutual information (kernels) 0.3 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 0.3 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 0.3 
Correntropy coefficient  0.4 
Mutual information (time-frequency plane) 0.4 
Rényi Divergence 0.4 
Jensen-Rényi divergence 0.4 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 0.4 
Kullback Leibler divergence (histogram) 0.5 
Jensen-Shannon divergence 0.5 
S-estimator 0.5 
wave-entropy 0.6 
Mutual information (histogram) 0.6 
Conditional probability based phase synchrony at 0.7 only  
Nearest-neighbour mutual information 0.8 
Phase coherence value unwrapped NaN 
Maximum likelihood mutual information NaN 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

Figure 3-18 shows the calculation of 29 measures against increasing coupling strength 𝜇𝜇 at a 

SNR of 10 dB for NS2. Table 3-11 shows us when a measure first detects statistically 

significant synchrony. Mean phase coherence (wavelet) first detects significant synchrony at 

𝜇𝜇 = 0.1, and then correlation coefficient, partial coherence, mean phase coherence, mean phase 

coherence (event) and mutual information (adaptive histogram) first detect significant 
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synchrony at 𝜇𝜇 = 0.2, suggesting these measures are robust measures for detecting weak 

coupling in low amplitude noise. Many of the measures still visually show a heightened 

synchronisation between 𝜇𝜇 = 0.4 and 𝜇𝜇 = 0.6. As outlined earlier this negatively correlates 

with the shape of the maximum sub-Lyapunov exponent in this region, but this does not provide 

statistically significant evidence in favour of any measure over another. Some measures 

perform unsatisfactorily: wave entropy fails to detect synchrony at any coupling strength; and 

mean phase coherence (Hilbert), phase coherence value unwrapped, phase coherence value 

wrapped and conditional-probability-based phase synchrony detect synchrony when there is 

none (coupling strength equals zero).  
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Figure 3-18: Functional connectivity measures for NS2 at 10 dB SNR. Functional connectivity measures 
calculated from the original data (blue line) and the threshold based on surrogate data (red line) for NS2 at 10 
dB SNR, plotted against coupling strength. 
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Table 3-11: The lowest value of coupling strength that detects significant synchrony for noisy NS2 at 10 dB 
SNR.  Good and unsatisfactory performance outcomes are highlighted by colouring the text blue and red 
respectively. 

Measure Lowest 𝜇𝜇 that achieves 
significant synchrony 

Mean phase coherence (Hilbert) 0.0 
Phase coherence value unwrapped 0.0 
Phase coherence value wrapped 0.0 
Conditional probability based phase synchrony 0.0 
Mean phase coherence (wavelet) 0.1 
Correlation coefficient 0.2 
Partial coherence 0.2 
Mean phase coherence (event) 0.2 
Mutual information (adaptive histograms) 0.2 
Coherence 0.3 
Mutual information (kernels) 0.4 
Mutual information (time-frequency plane) 0.4 
Kullback-Leibler divergence (histogram) 0.4 
Rényi Divergence 0.4 
Jensen-Shannon divergence 0.4 
Jensen-Rényi divergence 0.4 
Nonlinear Interdependence (H) 0.6 
Nonlinear Interdependence (S) 0.6 
Nonlinear Interdependence (N) 0.6 
Correntropy coefficient  0.7 
Coh-entropy coefficient 0.7 
Event synchronisation 0.7 
Mutual information (histograms) 0.7 
Maximum likelihood mutual information 0.7 
Nearest-neighbour mutual information 0.7 
Omega Complexity 0.7 
S-estimator 0.7 
wave-entropy NaN 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

Figure 3-19 shows the calculation of 29 measures against increasing coupling strength 𝜇𝜇 at a 

SNR of 1 dB for NS2. Table 3-12 shows us when a measure first detects statistically significant 

synchrony. Correlation coefficient and partial coherence first detect significant synchrony 

at 𝜇𝜇 = 0.3 , suggesting these measures are robust measures for detecting weak coupling. 
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Correlation coefficient and many of the measures still visually show a heightened 

synchronisation between 𝜇𝜇 = 0.4 and 𝜇𝜇 = 0.6 , as expected. Some measures perform 

unsatisfactorily: Wave entropy and phase coherence value unwrapped fails to detect synchrony 

at any coupling strength; Hilbert phase, mean phase coherence (event) and PCV wrapped fail 

to detect synchrony at some coupling strengths despite detecting it at lower coupling strengths; 

nearest-neighbour mutual information, mutual information (time-frequency plane) and 

Kullback Leibler divergence fail to detect synchrony at large coupling, 𝜇𝜇 > 0.9; and 

conditional based phase synchrony detect synchrony when there is none (coupling strength 

equals zero).  
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Figure 3-19: Functional connectivity measures for NS2 at 1 dB SNR. Functional connectivity measures 
calculated from the original data (blue line) and the threshold based on surrogate data (red line) for NS2 at 1 dB 
SNR, plotted against coupling strength. 
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Table 3-12: The lowest value of coupling strength that detects significant synchrony for noisy NS2 at 1 dB SNR.  
Good and unsatisfactory performance outcomes are highlighted by colouring the text blue and red respectively.  

Measure Lowest 𝜇𝜇 that achieves 
significant synchrony 

Conditional probability based phase synchrony 0.0 
Mean phase coherence (Hilbert) 0.1 
Phase coherence value wrapped 0.1 
Correlation coefficient 0.3 
Partial coherence 0.3 
Coherence 0.4 
Mean phase coherence (event) 0.4 
Mutual information (adaptive histograms) 0.4 
Jensen-Rényi divergence 0.4 
Kullback Leibler divergence (histogram) 0.5 
Correntropy coefficient  0.7 
Coh-entropy coefficient 0.7 
Event synchronisation 0.7 
Mean phase coherence (wavelet) 0.7 
Mutual information (kernels) 0.7 
Maximum likelihood mutual information 0.7 
Mutual information (time-frequency plane) 0.7 
Nonlinear Interdependence (H) 0.7 
Nonlinear Interdependence (S) 0.7 
Nonlinear Interdependence (N) 0.7 
Omega Complexity 0.7 
S-estimator 0.7 
Mutual information (histograms) 0.8 
Nearest-neighbour mutual information 0.8 
Rényi Divergence 0.8 
Jensen-Shannon divergence 0.8 
wave-entropy NaN 
Phase coherence value unwrapped NaN 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

Figure 3-20 shows the lowest value of coupling strength that detects synchrony for three SNRs, 

and for each of IS, NS1 and NS2 as well as the ideal result. We can observe that partial 

coherence is the closest to the ideal result, so partial coherence can be considered as the most 

robust measure for detecting weak coupling in both noise free and noisy systems. Note that 

coherence and correlation also perform very well some measures show little change with 
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increasing noise, such as event synchronisation, S-estimator, and nonlinear interdependency 

(S). Although their performance is not as good as other measures, perhaps they would be a 

good choice when the noise levels are very high.  
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Figure 3-20:  The lowest value of coupling strength that detects synchrony against SNR (noise-free, SNR of 10 
dB, and SNR of 1 dB) for IS (blue diamond), NS1 (black triangle), NS2 (red square), and the ideal result (black 
asterisk). 
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3.1.3.2 Results for nonstationary systems 

Figure 3-21 shows the results when the noise at 10 dB SNR is added to the IS with 

nonstationary coupling explored in section 3.3.1. All measures still show the increase and 

decrease due to the sudden changes in the dynamics of interacting systems, caused by change 

in the coupling strength. Table 3-13 shows the value of the time index 𝑘𝑘 that first detects 

synchrony, the value of 𝑘𝑘 that last detects synchrony, and the difference of these two. Coh-

entropy first detects synchrony at 𝑘𝑘𝑚𝑚𝑖𝑖𝑖𝑖 = 64, which is closest to the ideal value. This measure 

also shows the large difference between the time that a measure first detects synchrony and the 

time that it no longer detects synchrony (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), suggesting this measure is most robust to low 

levels of noise. In addition, correntropy coefficient, mutual information kernel, nonlinear 

interdependence (H), nonlinear interdependence and S estimator also achieve a value of  𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 

close to the ideal value and a large 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, suggesting they can be also considered as good 

measures in low levels of noise. Some measures perform unsatisfactorily; maximum likelihood 

mutual information, and conditional probability based phase synchrony are not able to detect 

synchrony at all, and omega complexity detects synchrony at all-time points. 
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Figure 3-21: Synchrony measures applied to noisy IS with nonstationary coupling at 10 dB SNR.  Result of 
synchronisation for original data (blue line); surrogate data (red line). 
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Table 3-13: The values of (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) and (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for nonstationary IS at 10 dB SNR.  The value of the time 
index k that first detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), the value of k  that last detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), and the difference of 
these two (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for noisy IS with nonstationary coupling at 10 dB SNR. Good and unsatisfactory performance 
outcomes are highlighted by colouring the text blue and red respectively 

Measure 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Correlation coefficient 75 226 151 
Coherence 77 224 147 
Correntropy coefficient  67 230 163 
Coh-entropy coefficient 64 232 168 
Wave-entropy 94 206 112 
Partial coherence 100 192 92 
Event synchronisation 75 205 130 
Mean phase coherence (Hilbert) 70 227 157 
Mean phase coherence (wavelet) 92 202 110 
Mean phase coherence (event) 86 216 130 
Phase coherence value unwrapped 75 223 148 
Phase coherence value wrapped 72 228 156 
Conditional probability based phase synchrony NaN NaN NaN 
Mutual information (histograms) 93 226 133 
Mutual information (adaptive histogram) 74 225 151 
Mutual information (kernels) 69 237 168 
Maximum likelihood mutual information NaN NaN NaN 
Nearest-neighbour mutual information 87 211 124 
Mutual information (time-frequency plane) 79 229 150 
Kullback Leibler divergence (histogram) 79 228 149 
Rényi Divergence  77 228 151 
Jensen-Shannon divergence 79 228 149 
Jensen-Rényi divergence 74 230 156 
Nonlinear Interdependence (H) 69 230 161 
Nonlinear Interdependence (S) 80 221 141 
Nonlinear Interdependence (N) 70 230 160 
Omega Complexity 1 400 399 
S-estimator 69 232 163 

.  
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

Figure 3-22 shows the same experiment at a SNR of 1 dB. Measures mostly show the expected 

increase and decrease, due to the sudden changes in the coupling strength altering the dynamics 

of interacting systems, but fewer measures are able to get a value above threshold. Table 3-14 

records the values of  𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Nonlinear Interdependence (H), nonlinear 

Interdependence (S), nonlinear Interdependence (N) and S-estimator and mutual information 
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(kernel) first detect synchrony at the closer level of the coupling to the ideal value. Note that 

the 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 also is large for these measures. Thus, we can consider these measures as the best 

measures for detecting weak coupling in IS contaminated with large noise. Some measures 

perform unsatisfactorily. Wave entropy, partial coherence, mean phase coherence, conditional 

based phase synchrony, mutual information histogram, maximum likelihood mutual 

information and nearest neighbour mutual information fail to detect synchrony at all. Rényi 

divergence and event synchronisation only detect synchrony at a single time point. Omega 

complexity detects synchrony at all-time points. 
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Figure 3-22:  Synchrony measures applied to noisy IS with nonstationary coupling at 1 dB SNR. Result of   
synchronisation for original data (black line); surrogate data (red line). 
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Table 3-14: The values of (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) and (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for nonstationary IS at 1 dB SNR.  The value of the time 
index k that first detects synchrony (kmin), the value of k  that last detects synchrony (kmax), and the difference of 
these two (kdiff) for noisy IS with nonstationary coupling at 1 dB SNR. Good and unsatisfactory performance 
outcomes are highlighted by colouring the text blue and red respectively. 

Measure 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Correlation coefficient 86 209 123 
Coherence 88 207 119 
Correntropy coefficient  87 203 116 
Coh-entropy coefficient 86 207 121 
Wave-entropy NaN NaN NaN 
Partial coherence NaN NaN NaN 
Event synchronisation 162 162 0 
Mean phase coherence (Hilbert) 85 205 120 
Mean phase coherence (wavelet) 105 186 81 
Mean phase coherence (event) NaN NaN NaN 
Phase coherence value unwrapped 121 174 53 
Phase coherence value wrapped 92 204 112 
Conditional probability based phase synchrony NaN NaN NaN 
Mutual information (histograms) NaN NaN NaN 
Mutual information (adaptive histogram) 93 203 110 
Mutual information (kernels) 78 224 146 
Maximum likelihood mutual information NaN NaN NaN 
Nearest-neighbour mutual information NaN NaN NaN 
Mutual information (time-frequency plane) 152 174 22 
Kullback Leibler divergence (histogram) 128 170 42 
Rényi divergence  108 108 0 
Jensen-Shannon divergence 124 189 65 
Jensen-Rényi divergence 118 167 49 
Nonlinear Interdependence (H) 82 219 137 
Nonlinear Interdependence (S) 84 219 135 
Nonlinear Interdependence (N) 82 219 137 
Omega Complexity 1 400 399 
S-estimator 78 221 143 

  
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

Figure 3-23 shows the results of synchrony measures applied to IS with nonstationary coupling 

for three SNRs. Ideally, we would like to see a measure detect synchrony as early as possible, 

and continue to detect it for as long as possible. Hence one measure of performance is the 

length of time that a measure detects synchrony. Additionally, a good measure would reliably 
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detect synchrony through this period, not have inconsistent detection. We would also like a 

measure to have low noise on its estimate. 

Overall, we can see that only 12 measures perform satisfactorily, with details collected in Table 

3-15. In particular, we measured the length of time from first detection of synchrony to last, 

for each of the three SNRs, we qualitatively assessed the amount of noise on the estimates, and 

whether the detection of synchrony was consistent over the period of high connectivity. 

Coh-entropy generally detects the synchrony earlier than other measures, though its 

performance at high noise is not as good. S-estimator is generally very good in all situations, 

though its estimates of synchrony become quite noisy as the measurement noise increases. 

Mutual information (kernel) has clean estimates and reliably detects synchrony at all noise 

levels, but does not detect the changes as quickly as some other measures. Correntropy 

coefficient, mean phase coherence (Hilbert), phase coherence (unwrapped), nonlinear 

interdependence (H), nonlinear interdependence (S), nonlinear interdependence (N) also detect 

synchrony at all SNRs, and perform better than other measures in some limited way. 

Correlation, coherence and mutual information (adaptive histogram) also detect synchrony at 

all SNRs. 



111 
 

 
Figure 3-23:  Synchrony measures against time for nonstationary IS. Non-significant results are shown in grey 
for all SNRs, significant results for 𝑆𝑆𝑆𝑆𝑆𝑆= ∞ 𝑑𝑑𝑑𝑑 are in red, for 𝑆𝑆𝑆𝑆𝑆𝑆= 10 𝑑𝑑𝑑𝑑 are in blue, and for 𝑆𝑆𝑆𝑆𝑆𝑆= 1 𝑑𝑑𝑑𝑑 
are in magenta. 
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Table 3-15: List the connectivity measures that perform satisfactorily for IS data.  On IS data, we list the 
connectivity measures that perform satisfactorily, the length of time that synchrony is detected for no noise, 10 
dB SNR, and 1 dB SNR, plus a qualitative assessment of the amount of noise on the estimates, and whether a 
measure consistently detects synchrony during the high-connectivity period. Good performance outcomes are 
highlighted by colouring the text blue. 

Measure 
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Noise Consistency 

∞ 10 1 
Correlation coefficient 104 66 65 High Good 
Coherence 111 69 69 High Poor 
Correntropy coefficient  117 70 71 High Poor 
Coh-entropy coefficient 129 77 77 Medium Poor 
Mean phase coherence (Hilbert) 110 87 87 High Good 
Phase coherence value wrapped 110 56 56 Low Good 
Mutual information (adaptive histogram) 102 45 45 Low Good 
Mutual information (kernels) 111 109 86 Low Excellent 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 117 75 75 High Good 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 83 68 68 Low Good 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 117 75 75 High Good 
S-estimator 116 94 94 High Good 

Figure 3-24 shows the results when measurement noise at 10 dB SNR is added to the NS1 with 

nonstationary coupling. Measures mostly still show the increase and decrease due to the sudden 

changes in the dynamics of the interacting systems, caused by the changes in coupling strength. 

Table 3-16 shows the value of the time index 𝑘𝑘 that first detects synchrony, the value of 𝑘𝑘 that 

last detects synchrony, and the difference of these two. Overall only 12 measure perform 

satisfactory. Mutual information (kernel) and S-estimator first detect synchrony closest to the 

ideal value. These measures also show the largest time difference 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, suggesting these 

measures are most sensitive to NS1 in low levels of noise. In addition, correntropy coefficient, 

coh-entropy, nonlinear interdependence (𝑁𝑁𝑘𝑘), and nonlinear interdependence (𝐻𝐻𝑘𝑘) perform 

well. Some measures perform unsatisfactorily: wave entropy, event synchronisation, phase 

coherence value unwrapped, conditional probability-based phase synchrony, mutual 

information (histograms), maximum likelihood mutual information, nearest-neighbour mutual 

information (time-frequency plane), Rényi divergence, Jensen-Shannon divergence, Jensen-

Rényi divergence, and omega complexity are not able to detect synchrony at all. Mean phase 
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coherence (wavelet) and Kullback-Leibler divergence (histogram) detected significant 

synchrony at only 1 and 2 time points respectively.  

 
Figure 3-24: Synchrony measures applied to noisy NS1 with nonstationary coupling at 10 dB SNR.  Result of 
synchronisation for original data (blue line); surrogate data (red line). 
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Table 3-16: The values of (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) and (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for nonstationary NS1 at 10 dB SNR. The value of the time 
index k that first detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), the value of k  that last detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), and the difference of 
these two (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for NS1 with nonstationary coupling at 10 dB SNR. Good and unsatisfactory performance 
outcomes are highlighted by colouring the text blue and red respectively. 

Measure 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Correlation coefficient 99 165 66 
Coherence 88 157 69 
Correntropy coefficient  89 159 70 
Coh-entropy coefficient 89 166 77 
Wave-entropy NaN NaN NaN 
Partial coherence 74 172 98 
Event synchronisation NaN NaN NaN 
Mean phase coherence (Hilbert) 88 175 87 
Mean phase coherence (wavelet) 144 144 0 
Mean phase coherence (event) NaN NaN NaN 
Phase coherence value unwrapped NaN NaN NaN 
Phase coherence value wrapped 98 154 56 
Conditional probability based phase synchrony NaN NaN NaN 
Mutual information (histograms) NaN NaN NaN 
Mutual information (adaptive histograms) 114 159 45 
Mutual information (kernels) 73 182 109 
Maximum likelihood mutual information NaN NaN NaN 
Nearest-neighbour mutual information NaN NaN NaN 
Mutual information (time-frequency plane) NaN NaN NaN 
Kullback Leibler divergence (histogram) 148 150 2 
Rényi Divergence  NaN NaN NaN 
Jensen-Shannon divergence NaN NaN NaN 
Jensen-Rényi divergence NaN NaN NaN 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 91 166 75 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 91 159 68 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 91 166 75 
Omega Complexity NaN NaN NaN 
S-estimator 78 172 94 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

 

Figure 3-25 shows the results when noise at 1 dB SNR is added to the NS1 with nonstationary 

coupling.  Most measures show an increase and decrease in value corresponding to the changes 

in coupling strength, though for many measures the increase and decrease are small. However, 

fewer than half of the measures reliably exceed the threshold during the high coupling. Table 
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3-17 records the values of  𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. None of the measures first detect synchrony 

at the time close to the ideal value, nor is 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  appropriately large for any of the measures. 

Cross correlation, coherence, correntropy coefficient, coh-entropy coefficient, mean coherence 

Hilbert, mutual information kernel, nonlinear interdependence(𝐻𝐻𝑘𝑘), nonlinear interdependence 

(𝑆𝑆𝑘𝑘), nonlinear interdependence (𝑁𝑁𝑘𝑘) and S-estimator are the measures which are able to detect 

synchrony corresponding to the coupling zone, which suggests these measures are suitable for 

analysing the nonstationary NS1 contaminated with a high level of noise. 
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Figure 3-25: Synchrony measures applied to noisy NS1 with nonstationary coupling at 1 dB SNR.  Result of 
synchronisation for original data (blue line); surrogate data (red line). 
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Table 3-17: The values of (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) and (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for nonstationary NS1 at 1 dB SNR. The value of the time 
index k that first detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), the value of k  that last detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), and the difference of 
these two (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for noisy NS1 with nonstationary coupling at 1 dB SNR. Good and unsatisfactory performance 
outcomes are highlighted by colouring the text blue and red respectively. 

Measure 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Correlation coefficient 99 164 65 
Coherence 88 157 69 
Correntropy coefficient  88 159 71 
Coh-entropy coefficient 89 166 77 
Wave-entropy NaN NaN NaN 
Partial coherence NaN NaN NaN 
Event synchronisation NaN NaN NaN 
Mean phase coherence (Hilbert) 88 175 87 
Mean phase coherence (wavelet) 143 144 1 
Mean phase coherence (event) NaN NaN NaN 
Phase coherence value unwrapped NaN NaN NaN 
Phase coherence value wrapped 98 154 56 
Conditional probability based phase synchrony NaN NaN NaN 
Mutual information (histograms) NaN NaN NaN 
Mutual information (adaptive histograms) 114 159 45 
Mutual information (kernels) 85 171 86 
Maximum likelihood mutual information NaN NaN NaN 
Nearest-neighbour mutual information NaN NaN NaN 
Mutual information (time-frequency plane) NaN NaN NaN 
Kullback Leibler divergence (histogram) 148 150 2 
Rényi Divergence  NaN NaN NaN 
Jensen-Shannon divergence NaN NaN NaN 
Jensen-Rényi divergence NaN NaN NaN 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 91 166 75 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 91 159 68 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 91 166 75 
Omega Complexity 1 400 399 

S-estimator 78 172 94 
 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

 

Figure 3-26 shows the results of synchrony measures applied to NS1 with nonstationary 

coupling for three SNRs. Again, we seek low noise estimates that give early and continued 

detection of synchrony, and so use the same indicators of performance as use for the IS 

system, detailed in Table 3-18. 



118 
 

Overall we can see that only 12 measures perform satisfactorily. S-estimator and mutual 

information (kernel) perform the best of all the measures, with S-estimator generally 

detecting synchrony for longer while mutual information (kernel) has less noise on its 

estimates of synchrony. Mean phase coherence (Hilbert), phase coherence (unwrapped), 

mutual information (adaptive histogram), nonlinear interdependence (𝐻𝐻𝑘𝑘), nonlinear 

interdependence (𝑆𝑆𝑘𝑘), nonlinear interdependence (𝑁𝑁𝑘𝑘) also detect synchrony at all SNRs, and 

perform better than other measures in some limited way. Correlation, coherence, correntropy 

coefficient and coh-entropy also detect synchrony at all SNRs. 
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Figure 3-26: Synchrony measures against time for nonstationary NS1.  Non-significant results are shown in grey 
for all SNRs, significant results for 𝑆𝑆𝑆𝑆𝑆𝑆= ∞ 𝑑𝑑𝑑𝑑 are in red, for 𝑆𝑆𝑆𝑆𝑆𝑆= 10 𝑑𝑑𝑑𝑑 are in blue, and for 𝑆𝑆𝑆𝑆𝑆𝑆= 1 𝑑𝑑𝑑𝑑 
are in magenta. 
 

 



120 
 

 

Table 3-18: List the connectivity measures that perform satisfactorily for NS1 data.  On NS1 data, we list the 
connectivity measures that perform satisfactorily, the length of time that synchrony is detected for no noise, 10 
dB SNR, and 1 dB SNR, plus a qualitative assessment of the amount of noise on the estimates, and whether a 
measure consistently detects synchrony during the high-connectivity period. Good performance outcomes are 
highlighted by colouring the text blue. 

Measure 
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Noise Consistency 

∞ 10 1 
Correlation coefficient 104 66 65 High Good 
Coherence 111 69 69 High Poor 
Correntropy coefficient  117 70 71 High Poor 
Coh-entropy coefficient 129 77 77 Medium Poor 
Mean phase coherence (Hilbert) 110 87 87 High Good 
Phase coherence value wrapped 110 56 56 Low Good 
Mutual information (adaptive histogram) 102 45 45 Low Good 
Mutual information (kernels) 111 109 86 Low Excellent 
Nonlinear Interdependence (H) 117 75 75 High Good 
Nonlinear Interdependence (S) 83 68 68 Low Good 
Nonlinear Interdependence (N) 117 75 75 High Good 
S-estimator 116 94 94 High Good 

Figure 3-27 shows the results when measurement noise at 10 dB SNR is added to the NS2 with 

nonstationary coupling. All measures except wave entropy and conditional probability-based 

phase synchrony still show the increase and decrease due to the sudden changes in the dynamics 

of interacting systems, caused by change in the coupling strength. Table 3-19 shows the value 

of the time index 𝑘𝑘 that first detects synchrony, the value of 𝑘𝑘 that last detects synchrony, and 

the difference of these two. Correntropy coefficient and mean phase coherence (Hilbert) first 

detects synchrony at 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 71 and  𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 72 which are closest to the ideal value. These 

measures also show the largest time difference 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, suggesting these measures are most 

robust to low levels of noise for the NS2. In addition, mutual information kernel, nonlinear 

interdependence (𝑁𝑁𝑘𝑘), nonlinear interdependence (𝐻𝐻𝑘𝑘) and phase coherence value wrapped 

also perform well and they can be also considered as good measures in low levels of noise. 

Some measures perform unsatisfactorily; wave entropy, conditional probability-based phase 

synchrony and mutual information (Histogram) are not able to detect synchrony at all. 
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Figure 3-27: Synchrony measures applied to noisy NS2 with nonstationary coupling at 10 dB SNR. Result of 
synchronisation for original data (blue line); surrogate data (red line). 
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Table 3-19:  The values of (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) and (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for nonstationary NS2at 10 dB SNR. The value of the time 
index k that first detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), the value of k  that last detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), and the difference of 
these two (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for noisy NS2 with nonstationary coupling at 10 dB SNR. Good and unsatisfactory performance 
outcomes are highlighted by colouring the text blue and red respectively. 

Measure 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Correlation coefficient 86 173 87 
Coherence 84 174 90 
Correntropy coefficient  71 186 115 
Coh-entropy coefficient 81 176 95 
Wave-entropy NaN NaN NaN 
Partial coherence 84 171 87 
Event synchronisation 73 158 85 
Mean phase coherence (Hilbert) 72 186 114 
Mean phase coherence (wavelet) 99 157 58 
Mean phase coherence (event) 85 175 90 
Phase coherence value unwrapped 81 176 95 
Phase coherence value wrapped 78 179 101 
Conditional probability based phase synchrony NaN NaN NaN 
Mutual information (histograms) NaN NaN NaN 
Mutual information (adaptive histograms) 86 173 87 
Mutual information ( kernels) 81 180 99 
Maximum likelihood mutual information 101 157 56 
Nearest-neighbor mutual information 99 162 63 
Mutual information ( time-frequency plane) 88 182 94 
Kullback Leibler divergence (histogram) 91 182 91 
Rényi Divergence  89 178 89 
Jensen-Shannon divergence 98 179 81 
Jensen-Rényi divergence 89 178 89 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 84 173 89 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 77 184 107 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 80 183 103 
Omega Complexity 81 177 96 
S-estimator 81 179 98 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

Figure 3-28 shows the results of the same experiment when measurement noise at 1 dB SNR 

is added to NS2. The measures mostly still show the increase and decrease due to the sudden 

changes in the dynamics of interacting systems but with an overall degradation of the estimates 
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due to the extra noise. Only 10 measures are able to detect synchrony, i.e. exceed the threshold, 

corresponding to the coupling zone (50 < 𝑘𝑘 < 150). These measures fluctuate around the 

threshold, inconsistently detecting synchrony. These 10 measures are more robust to a high 

level of measurement noise for NS2 than the other 18 measures. Table 3-20 shows the values 

of the time indices 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, and their difference 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Two more column were added 

to this table to capture the inconsistent detection of synchrony. One column counts the number 

of times that the measure detects statistically significant synchrony𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠. The percentage rate 

of detections in the range of detections 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠  (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑘𝑘min ⁄ ) ∗ 100 was also calculated 

and recorded in the last column. Clearly, mean phase coherence (Hilbert) outperforms all other 

measures with the largest count 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 = 61 and rate 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 = 42 %, meaning this measure is most 

robust to high levels of noise for NS2. Omega complexity and s estimator also perform well, 

suggesting they may be also considered as good measures in high levels of noise in NS2. 18 

measures performed unsatisfactorily; they are not able to detect synchrony in this data at all. 
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Figure 3-28: Synchrony measures applied to noisy NS2 with nonstationary coupling at 1 dB SNR.  Result of 
synchronisation for original data (blue line); surrogate data (red line). 
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Table 3-20: The values of (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) , (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 for nonstationary NS2 at 1dB SNR. The value 
of the time index k that first detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), the value of k  that last detects synchrony (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚), the 
difference of these two �𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� , the number of times that the measure detects statistically significant synchrony 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠, the percentage rate of detections in the range of detections 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠= 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠  (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ⁄ )∗ 100  for noisy 
NS2 with nonstationary coupling at 1 dB SNR. Good and unsatisfactory performance outcomes are highlighted 
by colouring the text blue and red respectively. 

Measure 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠  
Correlation coefficient 102 144 42 21 9 
Coherence NaN NaN NaN 0 0 
Correntropy coefficient  102 157 55 9 5 
Coh-entropy coefficient NaN NaN NaN 0 0 
Wave-entropy NaN NaN NaN 0 0 
Partial coherence NaN NaN NaN 0 0 
Event synchronisation NaN NaN NaN 0 0 
Mean phase coherence (Hilbert) 97 165 68 61 42 
Mean phase coherence (wavelet) NaN NaN NaN 0 0 
Mean phase coherence (event) NaN NaN NaN 0 0 
Phase coherence value unwrapped NaN NaN NaN 0 0 
Phase coherence value wrapped 137 137 0  1 
Conditional probability based phase synchrony NaN NaN NaN 0 0 
Mutual information (histograms) NaN NaN NaN 0 0 
Mutual information (adaptive histograms) NaN NaN NaN 0 0 
Mutual information (kernels) 111 145 34 26 9 
Maximum likelihood mutual information NaN NaN NaN 0 0 
Nearest-neighbour mutual information NaN NaN NaN 0 0 
Mutual information (time-frequency plane) NaN NaN NaN 0 0 
Kullback Leibler divergence (histogram) NaN NaN NaN 0 0 
Rényi Divergence  NaN NaN NaN 0 0 
Jensen-Shannon divergence NaN NaN NaN 0 0 
Jensen-Rényi divergence NaN NaN NaN 0 0 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 93 120 27 18 5 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 93 118 25 8 2 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 93 118 25 8 2 
Omega Complexity 100 149 49 30 15 
S-estimator 100 149 49 32 16 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   
Information-theoretic measures   Robust       
Synchronisation based on state space   

Figure 3-29 shows the results of synchrony measures applied to NS2 with nonstationary 

coupling for three SNRs. Again, we seek low noise estimates that give early and continued 

detection of synchrony, and so use the same indicators of performance use previously, here 

detailed in Table 3-21. 
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Here, no measure can satisfactorily detect synchrony at 1 dB, though 8 measures can 

inconsistently detect it. Correntropy coefficient, mean phase coherence (Hilbert) and nonlinear 

interdependence (S) detect synchrony sooner and longer at the higher SNRs, with nonlinear 

interdependence (N) and S-estimator also doing well. Correlation, mutual information (kernel) 

and nonlinear interdependence (H) also detected synchrony at 1 dB, but were not outstanding 

at higher SNRs. 
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Figure 3-29: Synchrony measures against time for nonstationary NS2 . Non-significant results are shown in grey 
for all SNRs, significant results for 𝑆𝑆𝑆𝑆𝑆𝑆= ∞ 𝑑𝑑𝑑𝑑 are in red, for 𝑆𝑆𝑆𝑆𝑆𝑆= 10 𝑑𝑑𝑑𝑑 are in blue, and for 𝑆𝑆𝑆𝑆𝑆𝑆= 1 𝑑𝑑𝑑𝑑 
are in magenta. 
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Table 3-21: List the connectivity measures that perform satisfactorily for NS2 data.  On NS2 data, we list the 
connectivity measures that perform satisfactorily, the length of time that synchrony is detected for no noise, 10 
dB SNR, and 1 dB SNR, plus a qualitative assessment of the amount of noise on the estimates, and whether a 
measure consistently detects synchrony during the high-connectivity period. Good performance outcomes are 
highlighted by colouring the text blue. 

Measure 
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Noise Consistency 

∞ 10 1 
Correlation coefficient 102 87 42 High Poor 
Correntropy coefficient  125 115 55 High Poor 
Mean phase coherence (Hilbert) 121 114 68 High Poor 
Mutual information (kernels) 112 99 34 High Poor 
Nonlinear Interdependence (H) 81 89 27 High Poor 
Nonlinear Interdependence (S) 114 107 25 High Poor 
Nonlinear Interdependence (N) 109 103 25 High Poor 
S-estimator 117 98 49 High Poor 

3.1.4 Simulated EEG 

150 realisations of 2 channels of simulated EEG were generated, representing responses to 

repeated trials. Each trial ran from ‒1 s to +2 s, sampled at 1 kHz, with the simulated EEG 

being pink noise (ie its power spectrum is approximately proportional to 1/𝑓𝑓). An alpha burst 

(a Hamming windowed 10.7 Hz sinusoid with added pink noise at 0 dB) ran from 300 ms to 

700 ms with random timing jitter spread uniformly from ‒5 ms to +5 ms. The data were 

analysed for alpha synchrony using a sliding window of 300 ms, after pre-processing with a 

bandpass filter with corner frequencies of 5 Hz and 15 Hz. One realisation of one channel of 

simulated EEG signal, alpha burst and their superposition is shown in Figure 3-30. 

 
Figure 3-30:  Simulated eeg (left), alpha burst (middle) and superposition (right). 
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3.1.4.1 Results  

Figure 3.1.5-1 shows the results of applying the connectivity measures to the simulated EEG. 

The alpha burst envelope is shown in grey, the connectivity measure in blue, and the threshold 

from the surrogates in red. Ideally, ignoring the smearing effect of the pre-processing alpha 

filter, a measure could first detect the alpha burst at 300 ms, as the burst data first enters the 

sliding window, and last detect the burst at 1 s, as the last of the burst exits the sliding window. 

Nine measures showed good performance, with coherence, correntropy coefficient, mutual 

information (kernel), nearest-neighbour mutual information, nonlinear interdependence (S), 

nonlinear interdependence (N) and S-estimator slightly outperforming mutual information 

(histogram) and mutual information (adaptive histogram). Details of their performance are 

provided in Table 3.1.5-1. Two measures fail to detect synchrony: mean phase coherence 

(wavelet) and conditional probability based phase synchrony. Two other measures also produce 

very noisy estimates: wave-entropy and maximum likelihood mutual information. 
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Figure 3-31: Connectivity measures against time for a simulated two-channel EEG. Connectivity measures 
(blue) and threshold for significance based on surrogates (red) against time for a simulated two-channel EEG 
system. The data contains an alpha burst who envelope is shown in grey. The connectivity measures use a 300 ms 
sliding window, with the result time-locked to the last sample used in the window. 
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Table 3-22: The values of 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 for simulated EEG data. The time that synchrony is first 
detected (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ), the time that it is last detected (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚), and the period for which it is detected �𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�for simulated 
EEG data. Good performance outcomes are highlighted by colouring the text blue.  

Measure 𝑡𝑡min (𝑠𝑠) 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  (𝑠𝑠) 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑠𝑠) 
Correlation coefficient 0.331 0.959 0.628 
Coherence 0.314 0.989 0.675 
Correntropy coefficient  0.305 1.000 0.695 
Coh-entropy coefficient 0.153 1.196 1.043 
Wave-entropy 0.366 0.902 0.536 
Partial coherence 0.385 0.888 0.503 
Event synchronisation 0.409 0.792 0.383 
Mean phase coherence (Hilbert) 0.478 0.793 0.315 
Mean phase coherence (wavelet) NaN NaN NaN 
Mean phase coherence (event) 0.540 0.744 0.204 
Phase coherence value unwrapped 0.493 0.658 0.165 
Phase coherence value wrapped 0.387 0.904 0.517 
Conditional probability based phase synchrony NaN NaN NaN 
Mutual information (histogram) 0.375 0.975 0.600 
Mutual information (adaptive histogram) 0.313 0.980 0.667 
Mutual information (kernels) 0.300 0.970 0.670 
Maximum likelihood mutual information -0.601 1.935 2.536 
Nearest-neighbour mutual information 0.308 0.997 0.689 
Mutual information (time-frequency plane) 0.349 0.939 0.590 
Kullback Leibler divergence (histogram) 0.341 0.957 0.616 
Rényi Divergence  0.342 0.956 0.614 
Jensen-Shannon divergence 0.341 0.957 0.616 
Jensen-Rényi divergence 0.344 0.953 0.609 
Nonlinear Interdependence (𝐻𝐻𝑘𝑘) 0.249 1.068 0.819 
Nonlinear Interdependence (𝑆𝑆𝑘𝑘) 0.300 1.002 0.702 
Nonlinear Interdependence (𝑁𝑁𝑘𝑘) 0.302 0.999 0.697 
Omega Complexity NaN NaN NaN 
S-estimator 0.301 0.997 0.696 

 
Correlation coefficient and related measures      
Phase synchrony     Unsatisfactory   -------- 
Information-theoretic measures  Robust                -------- 
Synchronisation based on state space   
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Table 3-23: The time (seconds) required to estimate each measure for three sizes of data: few data (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
30) and few channels (𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 2), many data (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 9000) and few channels (𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 2), and few 
data (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 30) and many channels (𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 128). 

 Time (s) 

Measure 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 

30 
𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 

2 

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 
9000 

𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎= 
2 

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 
30 

𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎= 
128 

Correlation coefficient 0.002 0.010 0.909 
Coherence 0.020 0.035 66.424 
Correntropy coefficient  0.003 0.327 24.626 
Coh-entropy coefficient 0.008 0.015 1.665 
Wave-entropy 0.011 0.856 7.666 
Partial coherence 0.188 0.192 538.753 
Event synchronisation 0.003 0.013 1.665 
Mean phase coherence (Hilbert) 0.002 0.016 1.260 
Mean phase coherence (wavelet) 0.002 0.009 1.453 
Mean phase coherence (event) 0.002 0.005 0.508 
Phase coherence value unwrapped 0.003 0.138 1.724 
Phase coherence value wrapped 0.003 0.138 2.058 
Conditional probability based phase 
synchrony 

0.003 0.071 2.255 

Mutual information (histogram) 0.007 0.381 80.770 
Mutual information (adaptive histogram) 0.008 0.534 33.953 
Mutual information (kernels) 0.010 5.255 2223.419 
Maximum likelihood mutual information 0.307 38.203 15.786 
Nearest-neighbour mutual information 0.011 194.222 12.678 
Mutual information (time-frequency plane) 0.010 0.324 23.576 
Kullback Leibler divergence (histogram) 0.012 0.099 11.646 
Rényi Divergence  0.008 0.060 11.873 
Jensen-Shannon divergence 0.008 0.059 12.512 
Jensen-Rényi divergence 0.009 0.064 2.058 
Nonlinear Interdependence (H) 0.005 173.386 17.276 
Nonlinear Interdependence (S) 0.005 173.386 17.276 
Nonlinear Interdependence (N) 0.005 173.386 17.276 
Omega Complexity 0.008 0.073 1.200 
S_estimator 0.008 0.073 1.200 

3.2 Discussion and conclusion  

We compared 28 functional connectivity measures from five families using three different 

simulated data sets to identify suitable measures for detecting true connections between 

nonstationary, nonlinear and noisy signals similar to EEG. Our study differs from prima facie 

similar studies in one or more ways: 
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• Real (EEG) data does not have known connections, making comparisons between 

measures complex; 

• Comparisons of only a few measures are of limited value; 

• Comparisons of non-directional and directional measures have conceptual difficulties ; 

• Without a statistical basis, direct comparison of measures is inappropriate; 

• Use of measures as features into classifiers does not require hard decisions.  

With these differences noted, we compare our conclusions with published papers that admit 

useful comparison. 

Xu et al. [135] takes a simplistic view that linear measures, e.g. cross correlation and coherence, 

can only detect linear relationships between time series. They concluded that correntropy 

coefficient performed better than cross correlation on two unidirectionally coupled Hénon 

maps, but only provided results for correntropy coefficient to support their claim. A more 

recent study [7] compared seven connectivity measures, including cross correlation and 

nonlinear measures, using simulated EEG signals and found that cross correlation is one of the 

most reliable measures for detecting direct links between signals. Ansari-Asl et al. [136] 

compared eleven functional connectivity measures including linear and nonlinear measures, 

and also found that cross correlation performs well in all situations. They concluded that it is 

reasonable to apply cross correlation as “a first attempt to characterize the functional coupling 

in studied systems in absence of a priori information about its nature”. The results in this thesis 

support the view that cross correlation is a reliable estimator of nonlinear connectivity. 

Lachaux et al. [137] asserts that phase synchronization should be preferred to coherence on 

theoretical grounds, namely the lack of a stationarity assumption and the relative importance 

of phase over amplitude in identifying synchrony. In contrast, [59] found that phase 

synchronization was not superior to coherence in human sleep EEG. Sakkalis et al. [138] 

assessed two linear and three nonlinear synchronisation measures in inter-ictal EEG in humans 
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with epilepsy, concluding both linear and nonlinear measures were effective. In particular, 

coherence was best at identifying synchronisation at low frequencies, and nonlinear measures 

were better at higher frequencies. The review in [139] similarly concludes that both linear and 

nonlinear measures are valuable. Hence we have chosen to test all measures on all datasets and 

let the results speak. We found for the tests with stationary and nonlinear data, where data are 

plenty, coherence and correlation performed the best, and that these measures also generally 

perform well on non-stationary data. These results are consistent with the findings in [7, 136]. 

Dauwels et al. [6] is an important paper that applies many functional and effective 

connectivity measures to the EEG of patients with mild cognitive impairment (MCI) that later 

developed into Alzheimer’s disease. However there are several difficulties with comparing 

our results to this paper. In the Introduction, we argued that it was not appropriate to compare 

directed and nondirected measures. More importantly, the main purpose in [6] is to classify 

MCI (against controls), with a secondary aim of comparing measures. Finally, when using 

real EEG there is a presumption that the changes in functional connectivity are known. With 

MCI and Alzheimer’s disease, [6, 140] claim known reductions in connectivity, but [10] 

suggests some increases are also present. Given these caveats, we note that [6] states that 

using multiple measures drawn from a variety of families is advised, consistent with our 

findings. They also found several measures yielded significant results: cross correlation, 

coherence, correntropy coefficient, wave-entropy, nonlinear interdependence (𝑁𝑁𝑘𝑘), nonlinear 

interdependence (𝐻𝐻𝑘𝑘), nonlinear interdependence (𝑆𝑆𝑘𝑘), S-estimator and mean phase 

coherence. Our results also suggest that all these measures, except wave entropy, performed 

well in most situations. 

Kreuz et al. [140] compared two methods for calculating phase synchronisation, based on the 

Hilbert or wavelet transforms. Their results show that for broad-band systems like the Hénon 



135 
 

system, Hilbert phase based synchronization measure is superior. In this thesis, we also found 

that mean phase coherence (Hilbert) is the best among all phase synchronisation measures. 

Quiroga et al. [10] applied nonlinear interdependence (𝐻𝐻𝑘𝑘) and (𝑆𝑆𝑘𝑘) to both identical and non-

identical Hénon map systems to learn driver-response relationships from synchronisation 

patterns. They found that nonlinear interdependence (𝐻𝐻𝑘𝑘) is more robust than nonlinear 

interdependence (𝑆𝑆𝑘𝑘), consistent with our findings.  

In summary, it is not always straightforward to compare the results in this thesis with 

previous studies due to significant differences in methodology. However, the conclusions as 

to which measures are better than others are broadly in agreement with our conclusions. 

Additionally, our results do provide a much more comprehensive comparison of many 

measures. 

No measure consistently performs better than other measures. For the tests with stationary data, 

where data are plenty, coherence and correlation perform the best. Six measures consistently 

performed well on non-stationary and noisy datasets: correntropy coefficient, mean-phase 

coherence (Hilbert), mutual information (kernel), nonlinear interdependence (𝑆𝑆𝑘𝑘), nonlinear 

interdependence (𝑁𝑁𝑘𝑘) and S-estimator.  

The choice of measure clearly depends on several factors: noise level, stationarity of data, 

number of channels, number of samples and available time. Figure 3-32 shows a flow chart, 

synthesizing all results and conclusions in this paper, to assist in the choice of which measures 

are best in any particular situation, with examples of possible application areas. If these factors 

are not known or poorly known, selecting on the basis of “worst case” would be recommended. 

This thesis has not considered the significant issue of incorrectly detecting synchrony that is 

not truly present, and hence the results are most applicable to situations where few EEG 

channels have been recorded. 
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For situations such as using EEG in a brain-computer interface, where it is not possible to 

repeat measurements to reduce noise and decisions must be made in real-time, measures that 

are effective in high noise and fast to calculate are required. Our results would recommend 

correlation coefficient and S-estimator, preferring correlation coefficient if weak coupling is 

expected, and preferring S-estimator if the noise is particularly strong. If we are calculating 

event-related activity, then it is likely we will have many repetitions reducing the noise. If there 

is no particular limit on calculation time and we are interested in estimating the strength of 

synchrony accurately, then mutual information (kernel) would be a good choice. 

 

Figure 3-32: Flow chart to assist in choosing an appropriate measure for functional connectivity analysis. 
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CHAPTER 4 EFFECTIVE CONNECTIVITY MEASURES 

This chapter is based on the published conference paper (2014 IEEE EMBS Conference on 

Biomedical Engineering and Sciences, © 2014 IEEE. In reference to IEEE copyrighted 

material which is used with permission in this thesis, the IEEE does not endorse any of Flinders 

University's products or services. Internal or personal use of this material is permitted. If 

interested in reprinting/republishing IEEE copyrighted material for advertising or 

promotional purposes or for creating new collective works for resale or redistribution, please 

go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn 

how to obtain a License from RightsLink ), and paper published in the journal Computers in 

Biology and Medicine (https://doi.org/10.1016/j.compbiomed.2019.103329)   Details can be seen 

in Appendix A-2 

In this section we applied all effective connectivity measures defined in section 2.2.2 to linear 

and nonlinear synthetic data sets where we know the true relationship between the signals. 

First we used a well-understood nonlinear system (three coupled Hénon maps), then a 

seventh-order MVAR model with and without exogenous inputs, and finally we applied all 

measures to simulated EEG. 

The ability of measures to identify a direct causal connection was evaluated. Simulations were 

repeated 100 times with different random initial conditions and for each simulation 100 

surrogate data were generated using the surrogate method described in section 2.3. We estimate 

the causality measure from the original time series and for each surrogate time series.    A direct 

causal connection was identified if the mean of connectivity values from the original data is 

greater than the mean of the surrogates using a two-sample t-test at the 0.05 significance level. 

Results were evaluated by measuring the percentage of directed causal connections that were 

correctly identified (true positive rate) and the percentage of directed pairs that do not have a 

direct causal link that are identified incorrectly as a causal link (false positive rate). The false 

https://doi.org/10.1016/j.compbiomed.2019.103329
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positive rate includes indirect causal connections, such as when one signal influences another 

only indirectly through a third signal. 

4.1 System 1 (three coupled Hénon maps) 

The first simulation generated data from the system consists of three coupled Hénon maps with 

nonlinear couplings, X1 → X2 → X3, defined by the following equations: 

( ) ( ) ( )
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 4-1 

Simulations used 2048 data points with fixed coupling strength µ, with the coupling strength 

varying across simulations from 𝜇𝜇 = 0 (no coupling) to 𝜇𝜇 = 0.5 (strong coupling). 

Most measures have parameters that need to be selected, and that this can have a significant 

influence on their performance. Hence to optimise performance on system 1 and following 

the literature [141], we set parameters as follows: 

• For model-based measures, we set the model order P = 2. 

• For frequency measures, we used the normalised range [0.4, 0.5] where the spectra of 

the signals show peaks. 

• For measures that require a range of lags, e.g. PTE, we used the range 1 to 5 and the 

maximum value of the measure among the results was selected.  

4.2 Results for system 1 

Results for system 1 for connectivity measures versus coupling strength µ are shown in Figure 

4.1.2-1, where the blue line shows the estimated connectivity strength and the red line shows 

the threshold for significance. When significance is achieved, the area between the two lines is 

filled in blue. The best result would show connectivity (filled blue area) only in the top central 

and central right squares. As can be seen from this figure, seven measures perform well in that 
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the separation between the measure and its threshold increases with coupling strength: transfer 

entropy, partial Granger causality, conditional Granger causality, Copula-Granger causality, 

multivariate Granger causality, spectral multivariate Granger causality and partial transfer 

entropy. These measures are able to detect all casual connections (true positives) but they also 

detect some connections that do not exist (false positives). Therefore we calculated the false 

positive rates (FPR), true positive rates (TPR), false negative rate (FNR) and true negative rate 

(TNR) for a deeper understanding, and the results are shown in Figure 4.1.2-2. The measures 

in Figure 4.1.2-2 have been sorted by informedness. Informedness or bookmaker informedness 

(BM) is equal to the true positive rate minus the false positive rate. Its value ranges from -1 to 

1, where a value of 1 indicates that there we have 100% true positive rate and 0% false positive 

rate, i.e. the measure is perfect. The partial transfer entropy and transfer entropy outperform 

other measures, achieving 100% and 80% detection of causal connections respectively, and 0% 

incorrect detection of an absence of a causal connection.  Both measures obtain large positive 

values only for the two correct direct causal links, and this holds even for few data points and 

low coupling strengths µ. Extended Granger causality, Copula-based Granger causality, 

multivariate Granger causality in time and frequency domain, conditional Granger causality 

and partial Granger causality were able to detect all of the causal connections, but also 

incorrectly identified some absences of connections as connections. Extended directed 

coherence extended partial directed coherence and directed phase looking value performed 

little better than chance. Frequency domain conditional Granger causality, generalised partial 

directed coherence, partial directed coherence, directed transfer function, partial mutual 

information, generalised partial directed coherence and directed coherence displayed poor 
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performance, incorrectly identifying more than 50% of the absences of connections as causal 

connections. 

 

Figure 4-1:  Estimated connectivity measures versus coupling strength. Estimated connectivity strength (blue 
line) and threshold for significance (red line) for 18 connectivity measures versus coupling strength µ. When 
significance is achieved, the area between the two lines is filled in blue. The best result would show connectivity 
(filled blue area) only in the top central and central right squares. 
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Figure 4-2: TPR, TNR, FPR and FNR for system 1.  The percentage of directed causal connections that were 
correctly identified (true positive rate, dark blue bars), the percentage of directed pairs that do not have a causal 
link that were correctly identified (true negative rate, light blue bars), the percentage of directed pairs that do not 
have a causal link that are identified incorrectly as a causal link (false positive rate, red bars), and the percentage 
of directed causal connections that are identified incorrectly as directed pairs that do not have a causal link (false 
negative rate, orange bars) for each effective connectivity measure analysing data from system 1. © 2014 IEEE 

4.3 System 2 (MVAR model) 

The second simulation is an MVAR model, inspired by the model used in [142], represented 

by the following set of linear difference equations with 7 nodes and exogenous sources 𝑆𝑆1 and 

𝑆𝑆2. 

𝑥𝑥1(𝑘𝑘) =0.95√2𝑥𝑥1(𝑘𝑘− 1) − 0.9025𝑥𝑥1(𝑘𝑘− 2)+𝑒𝑒1(𝑘𝑘) + 𝑆𝑆1(𝑘𝑘)
𝑥𝑥2(𝑘𝑘) =0.5𝑥𝑥1(𝑘𝑘 − 1)+𝑒𝑒2(𝑘𝑘)
𝑥𝑥3(𝑘𝑘) =−0.4𝑥𝑥1(𝑘𝑘 − 3) + 𝑒𝑒3(𝑘𝑘)
𝑥𝑥4(𝑘𝑘) =−0.5𝑥𝑥1(𝑘𝑘 − 1) + 0.25√2𝑥𝑥4(𝑘𝑘− 1) + 0.25√2𝑥𝑥5(𝑘𝑘− 1)+𝑒𝑒4(𝑘𝑘)
𝑥𝑥5(𝑘𝑘) =−0.25√2𝑥𝑥4(𝑘𝑘 − 1) + 0.25√2𝑥𝑥5(𝑘𝑘 − 1) + 𝑒𝑒5(𝑘𝑘)
𝑥𝑥6(𝑘𝑘) =0.95√2𝑥𝑥6(𝑘𝑘− 1) − 0.9025𝑥𝑥6(𝑘𝑘− 2) + 𝑒𝑒6(𝑘𝑘) + 𝑆𝑆2(𝑘𝑘)
𝑥𝑥7(𝑘𝑘) =−0.1𝑥𝑥6(𝑘𝑘− 2) + 𝑒𝑒7(𝑘𝑘)

 4-2 
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Figure 4-3: The unweighted directed graph summarising the connections between signals in the MVAR model 
defined in equation(s) 4.2. 𝑥𝑥1– 𝑥𝑥7 denote the output signals of the model, and S1 and S2 denote the exogenous 
inputs (EEG signals). © 2014 IEEE 
 

System 2A sets the exogenous inputs 𝑆𝑆1 and 𝑆𝑆2to zero, whereas system 2B uses pre-processed 

EEG as the inputs. The EEG applied in the simulation was recorded at four locations (CP1, 

CP2, FC1, FC2) from a separate study during an eyes-closed resting or baseline task. The scalp 

recordings were pre-processed by filtering in the gamma frequency band (bandpass filter, 35 

to 100 Hz), and 50001 data points (25 seconds sampled at 2 kHz) were used. All 12 different 

combinations of selecting 𝑆𝑆1 and 𝑆𝑆2 from these four channels were used in simulations.  The 

averaged measure over the 12 realisations of different EEG pairs was used for analysis. 

For model-based measures, the model order was optimised with multichannel Akaike 

information criterion (AIC) and set to 𝑝𝑝 = 3 for the system 2A and set to 𝑝𝑝 = 5 for the system 

2B. For measures that optimise over a range of lags, the maximum lag was set by analogy to 

the optimised model order 𝑝𝑝. Frequency-based connectivity measures were calculated over the 

range of normalised frequencies [0, 0.4], consistent with other publications and also where the 

spectra of the signals are high.  

4.4 Results for system 2 

For systems 2A and 2B, connectivity matrices are shown in Figures 4.1.4-1 (a) and (b) 

respectively. The true/false positive/negative rates (expressed as percentages) for systems 2A 

and 2B are displayed in Figure 4.1.6-2 (a) and (b) respectively. For both systems 2A and 2B, 

partial Granger causality, conditional Granger causality, and generalised partial coherence 
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obtained the best results of all measures, with an 100% true positive rate and less than 8% false 

positive rate. Multivariate Granger causality, Copula-based Granger causality, partial directed 

coherence and directed coherence detected all causal connections correctly, but with larger 

false positive rates. The performance of directed transfer function has improved from its system 

1 performance; however transfer entropy and partial transfer entropy showed worse 

performance. Unsatisfactory results were obtained in both system 2A and 2B for extended 

directed coherence, conditional frequency domain Granger causality, extended partial directed 

coherence, Kullback-Leibler divergence, and for multivariate frequency domain Granger 

causality in system 2A. Kullback-Leibler divergence and multivariate frequency domain 

Granger causality could not identify any of the six direct causal effects for system 2A. 
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(a) 
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(b) 

Figure 4-4: Connection matrices for system 2A in (a) and for system 2B in (b).  Ground truth shows the true 
connectivity structure in the systems. Numbers on the 𝑥𝑥 and 𝑦𝑦 axes of the lower left connection matrix denote 
channel numbers, e.g. the cell at the first row and second column of each matrix indicates the connectivity result 
from channel one to channel two.     
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(a) 

 
(b) 

Figure 4-5: TPR, TNR, FPR and FNR for system 2A and system 2B. The percentage of directed causal 
connections that were correctly identified (true positive rate, dark blue bars), the percentage of directed pairs 
that do not have a causal link that were correctly identified (true negative rate, light blue bars), the percentage 
of directed pairs that do not have a causal link that are identified incorrectly as a causal link (false positive rate, 
red bars), and the percentage of directed causal connections that are identified incorrectly as directed pairs that 
do not have a causal link (false negative rate, orange bars) for each effective connectivity measure analysing data 
from system 2A in (a) and for system 2B in (b). Measures are sorted by informedness. © 2014 IEEE  
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4.5  System 3 

3 channels of simulated EEG were generated, representing responses to repeated trials. Each 

trial ran from ‒0.5 s to +1.0 s, and contained a noisy alpha burst with added pink noise at 0 

dB. The alpha burst (a Hamming windowed 10 Hz sinusoid) ran from 300 ms to 700 ms with 

random timing jitter spread uniformly from ‒5 ms to +5 ms and an additional fixed delay of 

20 ms in second channel and 40 ms in the third channel. The amplitudes of second and third 

channels were set to 0.5 and 0.2 times the amplitude of the first channel respectively. The 

three simulated EEG signals from one trial are shown in Figure 4-6. 

 

 

 

 

 

 

 

Figure 4-6: Three channels of simulated EEG and the unweighted directed graph(left).  (a) 3 channels of 
simulated EEG from one trial. The unweighted directed graph of the directional connectivity structure for system 
3, 𝑥𝑥1– 𝑥𝑥3 denote the output signals of the model(right). © 2014 IEEE 

The data of system 3 were analysed for alpha connectivity using a sliding window of width 300 

ms, sliding 50 ms between analyses. Frequency-based connectivity measures were estimated 

for the range of the alpha band (8 - 13 Hz). We averaged the measures over windows containing 

the alpha bursts (from 300 to 740 ms) where we expect measures to detect the direct causal 
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connections x1 → x2 and x1 → x3. We also analysed the system over the time frame [0, 300ms] 

where there is no causal connection between any pair of signals. 

4.6 Results for system 3 

The results from system 3 for both time ranges are displayed in Figure 4.1.6-1 and Figure 

4.1.6-2. Many measures correctly detect no connections for the time range from 0 to 300 ms as 

expected, namely transfer entropy, partial Granger causality, conditional Granger causality, 

Copula-based Granger causality, multivariate Granger causality, multivariate frequency 

domain Granger causality, partial transfer entropy and partial mutual information. During the 

alpha burst, directed coherence and directed transfer function correctly found all connections 

and no others, Copula-based Granger causality and extended directed coherence correctly 

found all connections but incorrectly identified a third connection, and partial directed 

coherence and generalised partial directed coherence found one of the two connections 

correctly. 
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(a) 
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(b) 

Figure 4-7:  Connection matrices for system 3 over the time ranges (a) 0 to 300 ms, where no causal connections 
exist, and (b) 300 to 740 ms, where direct causal connections do exist. Ground truth shows the true connectivity 
structure in the systems. Numbers on the 𝑥𝑥 and 𝑦𝑦 axes of the lower left connection matrix denote channel numbers, 
e.g. the cell at the first row and second column of each matrix indicates the connectivity result from channel one 
to channel two.     
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(a) 

 
(b) 

Figure 4-8: TPR, TNR, FPR and FNR for system 3.  The percentage of directed causal connections that were 
correctly identified (true positive rate, dark blue bars), the percentage of directed pairs that do not have a causal 
link that were correctly identified (true negative rate, light blue bars), the percentage of directed pairs that do not 
have a causal link that are identified incorrectly as a causal link (false positive rate, red bars), and the percentage 
of directed causal connections that are identified incorrectly as directed pairs that do not have a causal link (false 
negative rate, orange bars) for each effective connectivity measure analysing data from system 3, calculated over 
the time ranges (a) 0 to 300ms, where no causal connections exist, and (b) 300 to 740 ms, where direct causal 
connections do exist. All measures are sorted by informedness. © 2014 IEEE 
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4.7 Execution time 

It is important to note that different measures require different calculations that take different 

amounts of time. In particular, partial and conditional measures would reasonably be 

expected to require longer execution times. Table 4.1.7-1 lists the execution times for the 18 

effective connectivity measures under three conditions: few data and few channels, many 

data and few channels, and many data and many channels. Computations for this table were 

performed in Matlab R2017b using 128 channels of real EEG on a Windows10 PC with 16 

GB of RAM and an i7-7700 CPU running at 3.6 GHz. It is preferable, in general, for a 

measure to scale slowly with the number of samples and the number of channels, though in 

some situations this may not be necessary. Transfer entropy is the fastest measure, followed 

by frequency-domain Granger causality, multivariate Granger causality, conditional Granger 

causality and Kullback-Leibler divergence, all of which scale less well with the number of 

channels. Execution time increases significantly for partial transfer entropy and partial mutual 

information for with both the number of channels and the number of data. Partial Granger 

causality and frequency domain multivariate Granger causality scale poorly with the number 

of channels, and Copula Granger causality scales poorly with the number of data.  
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Table 4-1:  The time (seconds) required to estimate each measure for three sizes of data: few data (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
300) and few channels (𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 3), many data (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 50001) and few channels (𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 3), and 
few data (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 300) and many channels (𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 60). 

 Time (s) 

Measure 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 300 
𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 3 

 

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 50001 
𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=3 

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 300 
𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=60 

model order =max lag =5 
PGC   0.024 0.447 771.783 
FGC  0.031 0.031 10.918 
DC 0.188 0.404 19.406 
DTF 0.188 0.404 19.406 
PDC 0.188 0.404 19.406 
EPDC 0.188 0.404 19.406 
EDC 0.188 0.404 19.406 
GPDC 0.188 0.404 19.406 
QGC 0.041 14.367 3.974 
MVGC  0.025 0.029 21.562 
TE 0.013 0.017 0.960 
PMI 0.104 13.828 2864 
PTI 0.103 9.322 2718 
CGC 0.010 0.100 6.114 
SMVGC 0.030 0.039 390.264 
KL 0.046 0.066 6.133 

4.8 Discussion and conclusion  

Previous studies of effective connectivity measures have concentrated on a few measures. 

Some studies focused on model-based measures, while some studies have considered 

information theoretic measures or phase locking value or compared effective and functional 

connectivity measures. There is no thorough comparison of many effective connectivity 

measures from different families on simulated data. We include in this thesis most of the known 

effective connectivity measures from different families: namely model-based measures, 

information theoretic measures, and directional phase locking value. Because of these 

differences, it is not straightforward to compare our results with those studies. We comment 

on related papers that allow useful comparison.  
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Wu et al. [143] compared six multivariate causality measures, three of which are included in 

our study (multivariate Granger causality, directed transfer function, and partial directed 

coherence). When tested on simulated MVAR data, their conclusion was that Granger causality 

outperformed the two other measures, consistent with our finding. Additionally, both [143] and 

this study found Granger causality outperformed all other measures from the directed 

coherence family.  

Papana et al. [141] assessed the performance of six directed causality measures: conditional 

Granger causality, partial Granger causality, partial directed coherence, partial transfer entropy, 

partial symbolic transfer entropy and partial mutual information on mixed embedding. All these 

measures were included in our studies except partial mutual information, as its execution time 

is prohibitively large. The datasets used were four linear MVAR models, including one with 

latent and exogenous inputs, and three nonlinear models (including one nearly identical to the 

Hénon map system studied in this thesis). They found that conditional Granger causality, partial 

Granger causality and partial directed coherence performed better than other measures for the 

linear systems, with partial Granger causality best when latent and exogenous inputs were 

present. The non-directional measure partial mutual information on mixed embedding 

outperformed all others for the nonlinear systems. Similarly, our studies showed that Copula 

Granger causality, multivariate Granger causality, partial Granger causality and conditional 

Granger causality performed best overall for MVAR systems, whereas transfer entropy should 

be preferred for nonlinear systems. Consistent with [141], Granger causality measures perform 

best for linear models, and an information theoretic measure performs best for nonlinear 

models. 

Guo et al. [94] introduced partial Granger causality and tested partial Granger causality and 

conditional Granger causality with data from an MVAR model with exogenous and latent 

inputs. Their results demonstrated that partial Granger causality can reliably detect effective 
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connections between signals in the presence of exogenous inputs, whereas conditional Granger 

causality frequently fails. In contrast, our results show little difference between partial Granger 

causality and conditional Granger causality, though the largest difference does occur with 

System 2B, which is an MVAR model with exogenous inputs. 

Papana et al. [144] compared two effective connectivity measures, the nonlinear measure 

partial transfer entropy and the linear measure partial directed coherence, on one linear MVAR 

model and two nonlinear models (again, one being a similar Hénon map model). Their results 

showed that for the linear model, partial transfer entropy and partial directed coherence 

performed equally well, whereas for the nonlinear models partial transfer entropy performed 

better than partial directed coherence. A similar study [7] compared six connectivity measures: 

three functional connectivity measures (cross correlation, coherence and phase synchronisation 

index) and three directional measures (transfer entropy, directed transfer function and partial 

directed coherence). They used simulated data generated from an MVAR model with two 

exogenous inputs (similar to the system 2B studied in this thesis). They concluded that directed 

transfer function and partial directed coherence performed better than other measures. With 

one exception, these results are consistent with our findings, and consistent with the view that 

the best linear measures outperform the best nonlinear measures on linear data, but the best 

nonlinear measures outperform the best linear measures on data drawn from nonlinear models. 

The exception here is that [144] found that linear and nonlinear measures performed equally 

on linear data. This may be due to their use of a small three-node MVAR model with strong 

coupling, making the task of identifying connections relatively easy. Faes et al. [109] 

introduced two extensions of directed coherence, namely extended directed coherence and 

extended partial directed coherence. They claim that traditional directed coherence and partial 

directed coherence may produce misleading connectivity patterns when there are instantaneous 

links between signals. Their results show better performance using the extended measures. Our 
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results for System 1 are consistent: where there are instantaneous links between signals, the 

extended measures outperform the original measures. However, we found that for all other 

systems, where there are no instantaneous links, the extended measures performance is less 

that the original measures. Given no other studies on the extended measures, we do not 

recommend their use unless the system under consideration is known to have instantaneous 

links. 

Smit et al. [145] compared two effective connectivity measures, transfer entropy and directed 

transfer function, in high density resting state EEG data in eyes open and eyes closed tasks. 

They found that the differences between the eyes closed and eyes open condition identified by 

transfer entropy better matched the expectations from the literature than the differences found 

by DTF. Our results also found that transfer entropy outperformed DTF, and particularly when 

the data were not drawn from an MVAR model.  

In summary, we considered 18 of the best-known connectivity measures and studied their 

performance for different sets of simulated time series (S1: non-linear coupled Hénon maps, 

S2a and S2b: MVAR model without and with exogenous inputs, and S3: simulated EEG). 

Table 4.1.7-1 shows the TPR, TNR, FPR and FNR for all measures and all systems, and an 

overall measure of performance. Optimum rates are coloured green, fading to white at 

performance equal to chance, strengthening to red as performance approaches all decisions 

incorrect. Copula Granger causality, multivariate Granger causality, partial Granger causality 

and conditional Granger causality performed best overall, with good performance in almost 

every situation. Partial Granger causality was therefore the best of the “partial” measures 

(partial Granger causality, partial directed coherence, partial transfer entropy), consistent with 

the findings in [141]. 



157 
 

Partial transfer entropy and transfer entropy performed very well when the data were not 

generated from an MVAR system, but did not give as good results when the data were drawn 

from an MVAR model. Directed coherence and directed transfer function performed poorly on 

system 1, where the data are not drawn from an MVAR system and do not have energy 

concentrated in a specific frequency range. For system 2, when the data are MVAR, and system 

3, where the data are focussed in a specific frequency band, they performed well. The worst 

performance was obtained by extended directed coherence and extended partial directed 

coherence, where almost all pairs of signals are deemed to have a connection. The addition of 

exogenous EEG inputs did not have any significant effect on the TPR of any connectivity 

measure except transfer entropy, whose performance degraded. However, several measures 

showed decreases in TNR, indicating that the presence of exogenous inputs results in an 

increase in the identification of false connections. 

Our results suggest that there is not one measure that is consistently superior to all other 

measures, and that performance is critically dependent on the genesis of the data under analysis.  

Overall, the measure with the best performance in a variety of situations and a low 

computational cost is conditional Granger causality. Partial Granger causality and multivariate 

Granger causality can also be used as reliable measures, but their computational cost rises 

rapidly with the number of channels. Similarly, Copula Granger causality can also be used 

reliably, but its computational cost rises rapidly with the number of data. This may not be an 

issue if the data under analysis is epoched to handle non-stationarity. 

For EEG data, where the genesis of the data is unknowable, we recommend that using more 

than one measure is wise. Including a measure from each family, such as copula Granger 

causality or conditional Granger causality from the Granger causality family, along with 
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transfer entropy as an information theoretic measure, and directed coherence from the 

coherence family, would be an appropriate choice.  

Table 4-2: TPR, TNR, FPR and FNR for all measures and all systems , and an overall measure of performance. 
Optimum rates are coloured green, fading to white at performance equal to chance, strengthening to red as 
performance approaches all decisions incorrect. 

 

S1 : System 1  

 

S2A : System 2A  

S2B : System 2B over   

S3n : System 3 over the time frame (0 to 300)  

S3 : System 3 over the time frame (300 to 740)  

 
 

  

measure

overall S1 S2A S2B S3n S3 S1 S2A S2B S3n S3 S1 S2A S2B S3n S3 S1 S2A S2B S3n S3

55 TE 80 100 83 50 96 58 53 100 75 4 42 47 0 25 20 0 17 50

71 PGC 100 100 100 50 58 92 97 100 75 42 8 3 0 25 0 0 0 50

70 CGC 100 100 100 50 54 92 94 100 75 46 8 6 0 25 0 0 0 50

8 FCGC 100 50 100 50 23 56 31 50 25 77 44 69 50 75 0 50 0 50

77 QGC 100 100 100 100 73 75 72 100 75 27 25 28 0 25 0 0 0 0

75 MVGC 100 100 100 100 65 86 86 100 50 35 14 14 0 50 0 0 0 0

32 SMVGC 100 0 50 0 73 97 97 100 75 27 3 3 0 25 0 100 50 100

34 PDC 50 100 100 50 8 75 69 50 100 92 25 31 50 0 50 0 0 50

57 DC 50 100 100 100 15 86 86 67 100 85 14 14 33 0 50 0 0 0

8 EDC 60 100 100 100 39 8 6 0 75 62 92 94 100 25 40 0 0 0

-17 EPDC 60 100 100 50 35 3 3 0 25 65 97 97 100 75 40 0 0 50

47 DTF 60 100 100 100 12 67 58 67 100 89 33 42 33 0 40 0 0 0

43 GPDC 50 100 100 50 8 92 94 50 100 92 8 6 50 0 50 0 0 50

20 DPLV 100 100 100 100 0 53 39 50 0 100 47 61 50 100 0 0 0 0

-9 KL 70 0 67 100 39 94 42 0 0 62 6 58 100 100 30 100 33 0

35 PTE 100 50 83 0 81 64 53 100 75 19 36 47 0 25 0 50 17 100

29 DPMI 100 50 83 100 31 64 53 100 0 69 36 47 0 100 0 50 17 0

TPR TNR FPR FNR

     all correct 

chance 

 
all incorrect 
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CHAPTER 5 EXPLORING THE FREE PARAMETERS OF 

EFFECTIVE CONNECTIVITY MEASURES 

This chapter is almost identical to the publisher paper (2018 IEE EMBS Conference on 

Biomedical Engineering and Scinces, © 2018 IEEE. In reference to IEEE copyrighted material 

which is used with permission in this thesis, the IEEE does not endorse any of Flinders 

University's products or services. Internal or personal use of this material is permitted. If 

interested in reprinting/republishing IEEE copyrighted material for advertising or 

promotional purposes or for creating new collective works for resale or redistribution, please 

go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn 

how to obtain a License from RightsLink.  Details can be seen in Appendix A-3.  

So far, we have compared measures by applying them to noisy, nonstationary and nonlinear 

data set to find suitable measures for EEG. For some measures, we need to select a model order, 

and for some others we need to select a maximum lag. Therefore optimising these parameter 

for estimating connectivity is an important and essential task There are several methods that 

have been suggested for model order selection, such as Akaike information criterion (AIC) 

[146] and Bayesian information criterion (BIC) [147]. These criteria were original proposed 

for and studied on linear models, and their generalisation to any nonlinear model is not 

necessarily appropriate. Another approach to confront the problem of the model order selection 

is to use measures whose estimates of connectivity vary little with changes in model order. 

Such measures can be used with less concern about the process for selecting parameter values. 

In this chapter, therefore, we aim to identify which measures are stable, ie are not significant ly 

affected by the choice of model order (𝑝𝑝) or maximum lag (𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚). We study this question for 

short and medium data lengths (𝑁𝑁).  
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5.1 Simulation studies  

For simulation data, we again used the nonlinear system (three coupled Hénon maps), the 

seven-dimensional second-order MVAR model with and without exogenous inputs, and 

simulated EEG, as described in sections 4.1.1, 4.1.3, and 4.1.5. We varied 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑝𝑝 from 1 

to 10 for signals with lengths of 𝑁𝑁 = 512  and 𝑁𝑁 = 2048 . Here we selected the value of 10 for 

the maximum model order or maximum lag, as a compromise between execution time 

limitations and the power of the model to describe real EEG. A maximum order of 10 is large 

in comparison to many previous studies, but is possibly too small for some situations such as 

applying linear measures to nonlinear systems. Some constraints on calculation required the 

number of samples to be a multiple of 3, and some initial samples were discarded as transients 

resulting in small variations from the original 512 and 2048 samples. The ability of 15 effective 

connectivity measures to identify direct causal connections was evaluated. Simulations were 

repeated 100 times with different random initial conditions. Results were evaluated by 

measuring the TPR, FPR, FNR and TNR, and the derived measure of informedness (BM). 

We are looking for: 

1. the least variation, so choice of parameter is not really important; and 

2. the highest informedness. 

Four measures were excluded from this study. Kullback-Leibler divergence does not use lags 

or model order and so cannot be included. Similarly, directional phase locking value requires 

a maximisation over lags, and so cannot be included. Extended directed coherence and 

extended partial directed coherence performed unsatisfactorily in the most situations in Chapter 

4, and were excluded for efficiency. Two measures were included. Given the strong 

performance of transfer entropy, two variants (symbolic transfer entropy and symbolic partial 

transfer entropy) were included to see if they could outperform transfer entropy. 
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5.1.1 Results for system 1 

The results for system 1 for informedness (BM), true positive rate (TPR), and false positive 

rate (FPR) versus maximum lag 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 or model order 𝑝𝑝 are shown in Figure 5-1 (a) for signal 

length 𝑁𝑁 = 512 and (b) for signal length 𝑁𝑁 = 2048. The informedness values as percentages 

are shown in Table 5-1.Transfer entropy and extended transfer entropy measures (symbolic 

transfer entropy, partial transfer entropy, and symbolic partial transfer entropy) had the lowest 

variation of informedness among all measures for both signal lengths. Generally, measures 

based on transfer entropy outperformed those based on Granger causality. The remaining 

measures, ie based on coherence or mutual information, performed worse than chance. Transfer 

entropy and symbolic transfer entropy showed the highest informedness among all measures, 

both achieving 92.3% BM for maximum lag 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 4 for signal length 𝑁𝑁 = 2048, and 80% 

BM for maximum lag 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 1 for signal length 𝑁𝑁 = 512. However, for short data lengths 

and at a maximum lag of one, partial transfer entropy and Copula Granger causality 

outperformed the overall best measures by at least 5 

 
(a) 
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(b) 

Figure 5-1: Results of system 1 for informedness (BM) , true positive rate (TPR) and false positive rate (FPR), 
versus value of lag L for TE, STE, PTE, SPTE, PMI, QGC, CGC, MVGC and SMVGC and P for DC, PDC, GPDC, 
DTF and DDTF (a) for signal length N=512 and (b) for signal length N=2048. © 2018 IEEE. 
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Table 5-1: Table of informedness (BM) versus value of lag L for system 1. Table of informedness (BM), versus 
value of lag L and an overall measure of performance for TE, STE, PTE, SPTE, PMI, QGC, CGC, MVGC and 
SMVGC and P for DC, PDC, GPDC, DTF and DDTF (a) for signal length N=512 and signal length N=2048 for 
system 1. Optimum rates are coloured green, fading to white at performance equal to chance, strengthening to 
red as performance approaches all decisions incorrect. 

 
 

.  

   

5.1.2 Results for system 2 

For the second simulation system, frequency-based connectivity measures were calculated over 

the range of frequencies (0, 0.4), consistent with the literature and also where the spectra of the 

signals were high. For system 2A, the value of the informedness (BM), true positive rate (TPR) 

and false positive rate (FPR) versus maximum lag (𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚) are displayed in Figure 5-2 (a) for 

signal length 𝑁𝑁 = 512 and (b) for signal length 𝑁𝑁 = 2048. The informedness as percentages 

are shown in Table 5-2. The measures showing the least variation overall were generalised 

partial directed coherence, frequency domain multivariate Granger causality, partial Granger 

Overall 66.2 66.2 61.7 61.55 60.1 54.1 53.9 53 51.55 15.7 15.15 14.9 14.75 14.1 -4.65

p/L TE STE PTE SPTE QGC MVGC SMVGC PGC CGC PDC DC PMI GPDC DTF DDTF

1 80 80 86 72 85 77 77 45 37 -10 -26 -2 -10 -22 -27

2 68 68 71 53 63 57 53 53 57 -6 -6 26 -6 -6 3

3 68 68 81 77 50 44 44 48 48 10 14 -3 10 14 -34

4 71 71 65 58 53 38 34 38 38 11 -5 32 5 -5 12

5 57 57 48 52 39 28 28 28 24 35 39 26 32 35 3

6 59 59 48 55 38 30 38 34 26 30 20 25 20 16 -14

7 59 59 58 38 53 49 45 39 39 6 14 25 2 10 -10

8 55 55 44 55 67 52 55 52 52 14 10 26 18 10 -20

9 67 67 30 35 71 59 55 52 52 18 18 26 14 22 -2

10 59 59 38 34 34 81 77 73 73 37 29 5 37 29 -25

1 66 66 81 81 54 58 54 65 65 -10 -10 -2 -10 -10 -6

2 65 65 77 73 59 52 52 52 52 -13 -13 17 -13 -13 25

3 78 78 77 81 65 62 62 62 65 22 8 3 18 8 5

4 92 92 81 77 75 65 65 65 65 12 12 -6 12 12 -13

5 71 71 81 85 65 46 46 54 46 35 35 25 35 35 -8

6 59 59 58 54 65 42 50 50 42 5 13 9 5 13 22

7 67 67 46 65 77 69 69 69 69 27 28 17 25 25 -18

8 53 53 58 59 62 65 62 65 65 22 40 18 22 40 -4

9 67 67 54 58 62 58 62 62 62 34 38 3 34 34 26

10 63 63 52 69 65 50 50 54 54 35 45 28 45 35 -8

N
=5

12
N

=2
04

8

chance 

 
all incorrect 

     all correct 
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causality, conditional Granger causality, directed coherence, Copula Granger causality. 

Generalised partial directed coherence achieved the highest informedness among all measures 

for both signal lengths, achieving 100% at maximum lag 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 5  for 𝑁𝑁 = 512 and at 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 6   for 𝑁𝑁 = 2046. Extended Granger causality measures except frequency domain 

multivariate Granger causality, and directed coherence also achieved high informedness scores. 

In general, measures who rely on a signal model that is autoregressive, ie Granger causality or 

directed coherence, performed better on system 2 than on system 1. Similarly, measures 

without an autoregressive model, ie information theoretic measures, performed worse on 

system 2 than on system 1, but still satisfactorily. 
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(a) 

 
 (b) 

Figure 5-2: Results of system 2A for informedness (BM) ,true positive rate (TPR) and false positive rate (FPR), 
versus value of lag L for TE, STE, PTE, SPTE, PMI, QGC, CGC, MVGC and SMVGC and P for DC, PDC, GPDC, 
DTF and DDTF (a) for signal length 𝑁𝑁 = 512 and (b) for signal length 𝑁𝑁 = 2048. © 2018 IEEE. 
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Table 5-2:  Table of informedness (BM) versus value of lag L for system 2A.  Table of informedness (BM), 
versus value of lag L and an overall measure of performance for TE, STE, PTE, SPTE, PMI, QGC, CGC, MVGC 
and SMVGC and P for DC, PDC, GPDC, DTF and DDTF for signal length N=512 and signal length N=2048 
for system 2A. Optimum rates are coloured green, fading to white at performance equal to chance, strengthening 
to red as performance approaches all decisions incorrect. 

 
 

.  

   

The values of BM, TPR and FPR for system 2B is displayed in Figure 5-3. The informedness 

percentages are shown in Table 5-3. The ranking of measures in system 2B is substantially the 

same as in system 2A, but with lower informedness scores overall. The variation of 

informedness has increased, and some measures show low variation at one data length and high 

variation at the other. The only measure that consistently has low variation is Copula Granger 

causality.  

 

Overall 92.75 88.5 88.25 88.2 84.1 82.4 72.35 65.4 60.45 60.45 57.3 48.65 48.15 35.8 27.35

p/L GPDC CGC PGC MVGC DC QGC PDC DTF TE STE DDTF PTE SPTE SMVGC PMI

1 64 81 64 92 64 86 58 56 47 47 64 64 64 17 42

2 97 89 89 83 92 86 89 81 61 61 53 61 64 17 28

3 94 92 94 92 89 83 81 78 61 61 36 64 64 75 42

4 94 89 89 86 89 89 81 69 58 58 36 -6 -6 31 8

5 100 92 97 92 86 86 67 61 47 47 36 44 47 -3 14

6 97 92 97 89 78 81 64 61 67 67 36 61 64 11 14

7 97 97 97 94 92 86 72 64 56 56 36 72 69 47 14

8 100 100 97 94 92 83 67 61 69 69 69 -3 0 25 19

9 83 75 78 72 83 83 58 61 56 56 50 53 53 50 14

10 94 92 89 92 86 86 67 61 61 61 28 75 72 28 14

1 81 81 78 89 67 81 78 53 56 56 50 56 61 28 42

2 94 89 89 89 89 83 81 72 67 67 69 56 58 17 56

3 89 83 86 83 81 78 78 67 64 64 69 61 61 72 56

4 97 92 92 94 86 81 81 72 64 64 69 19 6 56 42

5 94 92 92 89 86 78 78 72 67 67 69 58 61 47 42

6 100 81 81 81 86 81 72 61 58 58 69 64 61 53 22

7 97 92 89 92 94 83 75 72 61 61 69 61 61 81 28

8 97 86 92 86 89 81 67 67 67 67 86 8 -3 22 14

9 94 89 89 89 81 78 64 58 64 64 69 44 42 17 22

10 92 86 86 86 72 75 69 61 58 58 83 61 64 25 14

N
=5

12
N

=2
04

8

chance 

 
all incorrect 

     all correct 
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(a) 

 
(b) 

Figure 5-3: Results of system 2B for informedness (BM) ,true positive rate (TPR) and false positive rate (FPR), 
versus value of lag L for TE, STE, PTE, SPTE, PMI, QGC, CGC, MVGC and SMVGC and P for DC, PDC, GPDC, 
DTF and DDTF (a) for signal length N=506 and (b) for signal length N=2046. © 2018 IEEE. 
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Table 5-3: Table of informedness (BM) versus value of lag L for system 2B.  Table of informedness (BM), 
versus value of lag L and an overall measure of performance for TE, STE, PTE, SPTE, PMI, QGC, CGC, MVGC 
and SMVGC and P for DC, PDC, GPDC, DTF and DDTF for signal length N=512 and signal length N=2048 
for system 2B. Optimum rates are coloured green, fading to white at performance equal to chance, strengthening 
to red as performance approaches all decisions incorrect. 

 

 
 

.  

   

5.1.3 Results for system 3 

The data for system 3 were analysed for alpha connectivity using a window of 300 ms that was 

repeatedly slid 50 ms between calculations. Frequency-based connectivity measures were 

estimated in the range of the alpha band (8–13 Hz). We averaged the measures over windows 

containing the alpha bursts (from 300 to 740 ms), where we expected measures to detect the 

direct causal connections x1 → x2  and x1 → x3. We also analysed the system over the time 

Overall 84.55 77.1 78.85 77.25 67.25 66.2 41.5 47.1 24.1 31.8 26.25 26.25 12.95 12.05 -16.1

p/L GPDC MVGC CGC PGC DC QGC DDTF PDC SMVGC DTF TE STE SPTE PTE PMI

1 44 83 50 44 31 69 44 39 6 14 33 33 28 25 0

2 92 92 92 92 81 67 39 81 -19 58 39 39 28 28 -6

3 94 81 86 83 64 69 31 61 53 50 25 25 28 25 -11

4 94 94 94 94 78 69 22 64 8 39 22 22 -28 -22 -28

5 94 72 75 78 81 72 22 42 -8 39 22 22 11 11 -22

6 89 83 89 83 75 67 22 47 -6 33 28 28 31 33 -22

7 92 75 89 83 69 72 28 33 69 17 25 25 17 31 -33

8 94 67 78 81 78 69 36 44 0 28 28 28 -8 -14 -33

9 67 47 64 67 58 64 22 33 31 25 39 39 11 28 -33

10 83 56 75 72 56 78 31 28 14 22 33 33 31 33 -39

1 53 81 61 47 31 64 14 56 -8 8 28 28 22 22 0

2 86 72 75 75 69 61 58 58 0 39 25 25 17 14 -6

3 86 75 89 89 64 61 72 56 56 42 14 14 22 11 0

4 89 83 83 83 83 58 47 47 39 36 25 25 -6 -17 -6

5 97 86 86 86 81 67 47 50 53 39 3 3 8 11 0

6 89 83 83 83 69 61 56 47 36 33 31 31 22 11 -17

7 89 78 83 86 69 64 56 39 72 31 22 22 25 6 -11

8 89 78 75 72 72 61 64 36 36 22 28 28 -36 -31 -11

9 89 78 75 75 78 67 50 42 50 36 33 33 11 11 -22

10 81 78 75 72 58 64 69 39 0 25 22 22 25 25 -22

N
=5

12
N

=2
04

8

chance 

 
all incorrect 

     all correct 
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frame 0–300 ms, where there was no causal connection between any pair of signals. Data were 

resampled to achieve data lengths of 𝑁𝑁 =  512 and 𝑁𝑁 = 2048 for the full epoch of 1.5 s. With 

no causal link, there are no true positives or false negatives, therefore the informedness has no 

meaning. Hence we can only measure performance with the false positive rate (or, equivalently , 

the true negative rate), which is ideally zero. 

The results from system 3 for the time range 0 to 300 ms (ie no causal links) are displayed in   

Figure 5-4 for both signal lengths. The false positive rates, as percentages, are shown in Table 

5-4. The measures showing the least variation overall were frequency-based multivariate 

Granger causality and transfer entropy, with Cupola Granger causality, conditional Granger 

causality, and multivariate Granger causality also showing minimal variation.  

Transfer entropy achieved the lowest false positive rate among all measures. This measure 

correctly detected no connection for most values of lag, and incorrectly identified only one link 

for a few values of lag. Cupola Granger causality and partial Granger causality also achieved 

low false positive rates. For the longer data length, Cupola Granger causality, partial Granger 

causality, partial transfer entropy and multivariate Granger causality, conditional Granger 

causality and frequency domain Granger causality correctly detected no connection for all 

value of the lags. Information theoretic measures and measure based on Granger causality 

perform better when the number of samples increased. Partial mutual information performed 

well for the longer data length, while its performance was not satisfactory for the shorter data 

length. In general, measures based on directed coherence did not perform well, though their 

performance improved as the model order increased. 
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(a) 

 
(b) 

Figure 5-4: Results of system 3 for false positive rate (FPR) versus value of lag L for TE, STE, PTE, SPTE, 
PMI, QGC, CGC, MVGC and SMVGC and P for DC, PDC, GPDC, DTF and DDTF, calculated over the time 
range 0 to 300ms, where no causal connections exist (a) for signal length N=506 and (b) for signal length 
N=2046. © 2018 IEEE. 
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Table 5-4: Table of informedness (BM) versus value of lag L for system 3 over the time range from 0 to 300ms.  
Table of informedness (BM), versus value of lag L and an overall measure of performance for TE, STE, PTE, 
SPTE, PMI, QGC, CGC, MVGC and SMVGC and P for DC, PDC, GPDC, DTF and DDTF for signal length 
N=512 and signal length N=2048 for system 3 calculated over the time range from 0 to 300ms, where no causal 
connections exist. Optimum rates are coloured green, fading to white at performance equal to chance, 
strengthening to red as performance approaches all decisions incorrect. 

 
 

.  

   

The results from system 3 for the time range 300 to 740 ms (ie causal links are present) are 

displayed in Figure 5.1.3-2 for both signal lengths. The measures showing the least variation 

overall were Copula Granger causality, transfer entropy, symbolic transfer entropy, symbolic 

partial transfer entropy, partial transfer entropy and multivariate Granger causality.  

Copula Granger causality and transfer entropy achieved the highest informedness among all 

measures. Copula Granger achieved 100% informedness at lags 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 4 and 9 for 𝑁𝑁 =

 2048 .  Transfer entropy achieved 100% informedness at  𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 2  and 9. Symbolic transfer 

Overall 3.4 4.2 5.05 7.55 8.4 8.45 16.6 18.4 19.9 22.55 28.3 31.75 45 47.45 49.1

p/L TE QGC PGC PTE MVGC STE CGC PMI SMVGC DC SPTE GPDC DDTF PDC DTF

1 0 0 0 33 33 0 50 50 50 17 33 83 33 83 83

2 0 0 0 0 33 0 33 50 33 17 67 50 50 83 83

3 17 0 0 17 17 0 33 67 33 17 67 50 50 83 50

4 17 33 0 0 17 0 33 50 33 17 33 33 50 33 50

5 17 17 0 0 17 33 33 17 50 17 0 17 50 33 50

6 0 17 17 33 17 0 33 50 50 17 0 17 50 50 50

7 0 17 33 17 17 17 17 17 50 0 0 17 50 50 50

8 0 0 17 17 0 17 17 17 33 0 0 17 50 0 50

9 0 0 17 17 17 17 33 0 33 0 0 17 50 0 50

10 0 0 17 17 0 17 50 17 33 0 0 17 50 0 33

1 0 0 0 0 0 0 0 0 0 50 50 50 67 67 67

2 0 0 0 0 0 0 0 0 0 50 50 50 50 67 67

3 17 0 0 0 0 17 0 0 0 17 50 50 50 67 50

4 0 0 0 0 0 17 0 0 0 33 50 50 50 67 50

5 0 0 0 0 0 17 0 0 0 33 50 50 50 50 50

6 0 0 0 0 0 17 0 0 0 17 33 33 50 50 50

7 0 0 0 0 0 0 0 0 0 33 33 17 33 50 33

8 0 0 0 0 0 0 0 0 0 50 33 17 33 50 33

9 0 0 0 0 0 0 0 33 0 33 17 0 17 33 33

10 0 0 0 0 0 0 0 0 0 33 0 0 17 33 0

N
=5

12
N

=2
04

8

chance 

 
all incorrect 

     all correct 
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entropy, multivariate Granger causality, partial Granger causality and partial transfer entropy 

also achieved high informedness scores. All measures from the directed coherence family, plus 

partial mutual information, performed poorly. 

 
(a) 

 
(b) 

 
Figure 5-5: Results of system 3 for False positive rate (FPR) versus value of lag L for TE, STE, PTE, SPTE, 
PMI, QGC, CGC, MVGC and SMVGC and P for DC, PDC, GPDC, DTF and DDTF for system 3, calculated over 
the time range from 300 ms to 750 ms, where direct causal connections do exist (a) for signal length N=50 and 
(b) for signal length N=2046. © 2018 IEEE. 
Detecting synchrony in EEG: A comparative study of functional connectivity measures 
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Table 5-5: Table of informedness (BM) versus value of lag L for system 3 over the time range from300 to 
740ms. Table of informedness (BM), versus value of lag L and an overall measure of performance for TE, STE, 
PTE, SPTE, PMI, QGC, CGC, MVGC and SMVGC and P for DC, PDC, GPDC, DTF and DDTF for signal length 
N=512 and signal length N=2048 for system 3 calculated over the time range from 300 to 740 ms, where causal 
connections do exist. Optimum rates are coloured green, fading to white at performance equal to chance, 
strengthening to red as performance approaches all decisions incorrect. 

 
 

.  

   

5.2 Discussion and conclusion  

In this chapter, we have looked at the variation of BM across multiple data sets for all effective 

connectivity measures. Table 5-6 summarises these results, showing the BM and interquartile 

range (IQR) for all measures and all systems. Optimum values of BM are coloured green, 

fading to white at performance equal to chance, strengthening to red as performance 

approaches all decisions incorrect. For IQR, the desired low variation of connectivity measures 

Overall 71.25 68.75 67.5 65 63.75 62.5 57.5 52.5 46.25 40 36.25 30 22.5 -6.25 -6.25

p/L QGC TE STE MVGC PGC PTE SPTE GPDC SMVGC PDC CGC DC PMI DTF DDTF

1 75 50 50 50 50 75 50 50 0 25 75 50 50 0 25

2 50 50 50 50 50 75 25 75 25 25 25 50 50 0 -50

3 75 75 75 75 50 75 75 75 25 25 25 50 0 -25 -25

4 75 75 75 75 75 25 75 50 75 25 25 50 0 25 -25

5 75 75 75 75 75 50 75 50 75 25 25 25 -25 25 25

6 75 75 75 50 25 50 75 50 50 0 25 25 25 0 0

7 75 50 50 50 25 50 50 75 50 0 25 0 50 0 0

8 75 50 50 75 25 75 50 0 50 50 25 0 50 -50 0

9 50 75 75 25 75 75 50 0 50 50 25 0 50 -50 -50

10 75 50 50 50 50 75 50 0 50 25 50 0 50 -50 -50

1 50 75 75 75 100 75 75 50 0 25 75 50 50 25 25

2 50 100 100 75 100 75 75 100 50 75 50 75 50 25 50

3 50 75 75 75 100 75 50 100 50 75 50 75 50 25 25

4 100 75 50 75 75 75 50 100 50 75 25 50 50 25 25

5 75 75 75 50 75 50 50 75 50 75 25 50 0 0 25

6 75 75 75 75 75 50 50 50 25 50 50 50 -25 0 -25

7 75 75 75 75 25 75 75 50 50 50 50 0 0 -25 -25

8 75 50 50 75 75 50 50 50 75 50 25 0 0 -25 -25

9 100 100 100 75 75 50 50 50 50 50 25 0 0 -25 -25

10 75 50 50 75 75 50 50 0 75 25 25 0 -25 -25 -25

N
=5

12
N

=2
04

8

chance 

 
all incorrect 

     all correct 



174 
 

with their parameters (𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑝𝑝) and data length is coloured green, fading to white and then 

strengthening to red as the variation increases. The measures that show the smallest IQR, or 

lowest variation of BM with parameter, are Copula Granger causality and transfer entropy. 

Wu et al. [143] compared six multivariate causality measures, three of which are included in 

our study (multivariate Granger causality, directed transfer function, and partial directed 

coherence). Simulated MVAR data was analysed using measures with model orders of 4, 8, 12 

and 16. Their results showed that the accuracy (proportion of correct decisions) of partial 

directed coherence decreased as the model order was increased, which is consistent with our 

results when the data were generated from an MVAR model.  

This study also found that multivariate Granger causality is insensitive to changes in model 

order (lag). This agrees with our results when the data are drawn from an MVAR model without 

exogenous inputs, as well as an MVAR model with exogenous inputs where data length is 

medium. But our results show that when the data are generated from an MVAR model with 

exogenous inputs and the data length is short, multivariate Granger causality performs better 

for smaller values of the model order. 

Wang et al. [8] compared measures including members of the cross correlation family, 

measures based on coherence, information theoretic measures, and Granger causality and its 

extended measures. Unlike this thesis, [8] used simulated fMRI data and simulated NIRS data, 

ie their interest does not include EEG. Additionally, performance was measured from receiver 

operator characteristics, and not from surrogate-derived thresholds. One of their findings 

showed that transfer entropy was quite robust against variation of maximum lag. Despite 

significant differences in the studies, this result is consistent with our finding in this chapter 

that transfer entropy is one of the most robust measures. 
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In summary, this chapter concludes that the optimum maximum lag or maximum model order 

depends on the data set at hand. For EEG, we don’t know the optimum values, and estimating 

them can be difficult and time-consuming. Measures that give consistent estimates of 

connectivity across a wide range of parameter values are attractive, as estimating these 

parameters becomes less critical to performance. Transfer entropy and Copula Granger 

causality are good choices, as they show low variation in connectivity estimates with variation 

of these parameter. 

Table 5-6: Table of informedness (overall BM) ; the value of  the BM for the value of the lags from 1 to 10  for 
TE, STE PTE, SPTE, QGC, MVGC and SMVGC was calculated and then averaged. The value of the BM for the 
value of the model order p from 1 to 10 for the DC, PDC, GPDC, DTF, DDTF and PMI was calculated and then 
averaged. The similar procedure has been down to evaluate IQR. Optimum rates of BM are coloured green, fading 
to white at performance equal to chance, strengthening to red as performance approaches all decisions incorrect. 
For the IQR, the low variation of the connectivity measures against variation of the parameters (L/P) and data 
length are coloured green and strengthening to red for the higher variation. 

 
  

measures

S1 S2A S2B S3n S3 S1 S2A S2B S3n S3 overall overall IQR overall BM

TE 66.2 60.45 26.25 3.4 68.75 10.5 8.5 10 0 25 164.25 10.8 43.65

STE 66.2 60.45 26.25 8.45 67.5 10.5 8.5 10 17 25 140.95 14.2 42.39

PTE 61.7 48.65 12.05 7.55 62.5 31 18.5 18 17 25 67.85 21.9 35.47

SPTE 61.55 48.15 12.95 28.3 57.5 21.5 19.5 17 50 25 18.85 26.6 30.37

QGC 60.1 88.5 66.2 4.2 71.25 13 5 6.5 0 12.5 244.85 7.4 56.37

MVGC 64.1 88.2 77.1 8.4 65 18.5 6 9.5 17 25 210 15.2 57.2

SMVGC 53.9 35.8 24.1 19.9 46.25 16.5 34.5 51.5 33 12.5 -7.85 29.6 28.03

PGC 53 88.25 77.25 5.05 63.75 17 7 12.5 8.5 25 207.2 14 55.44

CGC 51.55 88.5 78.85 16.6 36.25 24.5 7.5 12.5 13 25 156.05 16.5 47.71

PDC 15.7 72.35 47.1 47.45 40 26.5 12.5 17 34 50 -12.3 28 25.54

DC 15.15 84.1 67.25 22.25 30 30.5 8 17 16 25 77.75 19.3 34.85

GPDC 14.75 92.75 84.55 31.75 52.5 23 4 8.5 33 25 119.3 18.7 42.56

DTF 14.1 65.4 31.8 49.1 -6.25 25 33 15.5 8.5 50 -76.05 26.4 11.19

DDTF -4.95 57.3 41.5 45 -6.25 30 8.5 31 8.5 50 -85.4 25.6 8.52

PMI 14.9 27.35 -16.1 18.4 22.25 20 28 19 41.5 50 -128.5 31.7 6

overall BM across L/p IQR
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CHAPTER 6 CONCLUSION 

6.1 Thesis achievements  

Fundamentally, this thesis has achieved a large study that is a fair comparison of many 

measures. In particular, there are five approaches used in this thesis that expand on previous 

studies. 

6.1.1 Simulated data 

Some publications use real EEG for the comparison of measures [6]. The difficulty with using 

EEG is that we don’t know when a measure is giving the “right” answer. We claim that there 

is merit in comparing measures on simulated data where the true connections are known, rather 

than on real EEG data where our understanding is imperfect. Hence we use datasets that in 

some sense mimic EEG, but where we know when a measure is giving the “right” answer. 

6.1.2 Effective vs functional 

There are several publications that compare many measures that include both functional 

measures and effective measures, e.g. [6-8]. We argue that there are significant difficulties with 

comparing directed and nondirected measures. For example, we can generate data from a 

simulated system with directed connections, and compare the detected connections from a 

directed measure to the truth. But for a non-directed measure, we have only a single connection 

between two signals, so we either compare to both the directed connections or to the 

combination of them. In the first case, the non-directed measure can never detect the truth 

unless the connection is bidirectional, and in the second case the non-directed measure has half 

the comparisons of the directed measure. Hence neither comparison is clearly fair, and so in 

this thesis we compare non-directed (ie functional) measures and directional (ie effective) 

measures separately.  
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6.1.3 Linear vs nonlinear 

In addition, the literature generally takes a simplistic view that linear measures won’t perform 

well on nonlinear datasets, but provides little evidence supporting this. It is also difficult to 

usefully characterise the strength of the “linear component” in a nonlinear dataset, as a linear 

measure may not be totally insensitive to the “nonlinear component”, and different measures 

may be differentially sensitive. Hence we have chosen to test all measures on all datasets and 

let the results speak. We have demonstrated that linear synchronisation measures are able to 

detect nonlinear relationships, and in some situations they can estimate nonlinear relationships 

more reliably than nonlinear synchronisation measures. 

6.1.4 Large, multiple-family comparisons 

Previous studies have mostly focused on a few measures [3, 9-14]. Many of the comparative 

studies of connectivity measures have focused on bivariate tests e.g. [15], while some studies 

have considered the effectiveness of only model-based measures, e.g. [2, 16] or information 

theoretic measures, e.g. [17-19]. Hence we claim that there are no thorough comparisons of 

many measures on simulated data, and completing this comparison is an achievement of this 

thesis. 

6.1.5 Significance analysis  

One of the most significant issue in comparing connectivity measures is that different measures 

do not calculate values on the same scale. A higher value of connectivity in one measure may 

indicate no connection between two signals, whereas a lower value in a different measure may 

indicate a connection between the signals. Because they are not measuring on the same scale, 

significant variation in the raw values can be seen across measures. Hence to reliably compare 

different measures we need a statistical approach to identify when a connectivity value is 

significantly different from its background level. 
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To test the statistical significance of a connectivity value and determine whether connectivity 

is detected, we generate surrogate data to give data with the same statistical properties as the 

simulated data but without the dependencies between signals. A collection of surrogate data 

can be analysed with the connectivity measure to obtain a distribution of connectivity values 

corresponding to signals without connectivity, and a threshold determined from the surrogate 

ensemble. If the connectivity measure calculated on the original data exceeds this threshold, 

then it is regarded as statistically significant. There is a computational cost associated with this 

approach, but it removes the arbitrariness of selecting a threshold. 

While the use of surrogates is not new, the literature only has studies using surrogates with a 

very limited number of measures. Hence the use of surrogates to reliably manage the variation 

in raw values from many measures in this study is new. 

6.2 Further work  

6.2.1 Partial functional connectivity 

With functional connectivity, we are looking for a synchronous relationship between pairs of 

signals. If we have three signals, and signals 1 and 2 are connected, and signals 2 and 3 are 

connected, then it is reasonable to expect there will also be a relationship between signals 1 

and 3. Hence simple functional connectivity measures should find connections between all 

pairs of the three signals. A similar argument holds for a system where signal 1 drives both 

signals 2 and 3. 

There are more complex functional connectivity measures that take into account the 

involvement of a third signal. These partial measures can in principle differentiate between 

direct connections between signals from indirect connection. So in the first example above, a 

partial measure can identify that the relationship between signals 1 and 3 is completely 

explained by the intermediate signal 2.  
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There are publications that claim partial measures perform better than non-partial measures 

where the system is complex with many interconnected signals e.g. many EEG channels, or 

where there are exogenous inputs and/or latent variables. But there is a question as to whether 

it is fair to compare non-partialized functional connectivity measures with partialized 

measures. It is reasonable for a non-partial measure to detect indirect connections as being 

present, whereas it is not reasonable for a partial measure to do so. Hence in this thesis we have 

only considered non-partial functional measures. It is an open question as to how to fairly 

compare partial and non-partial function measures. 

6.2.2 A comparison of surrogate algorithms  

A variety of algorithms have been proposed to generate surrogate data. We used an algorithm 

that is well suited for testing for nonlinearity and is recommended in the literature [122, 123]. 

It is possible another algorithm is better, and a careful comparison of the performance of 

different algorithms would be a useful study. It is possible that the conclusion will depend on 

the choice of connectivity measure or measures used in the comparison. 

6.2.3 Data segmentation 

In chapters 4 and 5 we calculated connectivity measures on the whole data sample. This can 

cause difficulties with nonstationary data, as the results cannot capture the nonstationarity, and 

with sets with many data, as execution time may become prohibitive. However reducing the 

size of the data sample can also cause difficulties. If the window size is too small, the detection 

of connectivity may fail due to insufficient power. Additionally, a small window size will give 

many windows to analyse, and that may cause issues with storage and/or execution time. A 

study exploring window size to identify the minimum window size that allows good estimates 

of connectivity would be valuable. Combining this information with knowledge of the 

sampling rate of the data and its level of nonstationarity would allow an appropriate choice of 

data segmentation.  
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6.2.4 Speeding up slow measures 

Many of the measures have a significant execution time, especially measures that require phase 

space reconstruction or use k-nearest neighbour algorithms. Finding fast implementations of 

these measures would be of benefit. In particular, an online or iterative implementation of phase 

space reconstruction that updates when a new sample or block of samples arrives could be 

valuable.  

6.2.5 Directionalising functional measures 

In this literature, there are examples of functional (non-directional) measures that have been 

modified to provide directional information as well. This is typically done by selecting the 

maximum functional connectivity between two signals over a range of positive lags for an 

effective connectivity measurement in one direction, and over a range of negative lags for an 

effective connectivity measurement in the other direction. However, not all functional 

measures have been directionalised, so there is scope to consider additional directionalised 

measures, or alternative ways to directionalise measures. 

6.2.6 Partialis ing functional measures 

As discussed earlier, there are advantages in using partial measures that allow indirect 

connections to be differentiated from direct connections. A full comparison of the current 

partial measures is needed. Additionally, it may be possible to design new partial measures. 

For example, partial cross correlation is an extension of cross correlation that uses the 

correlations between all signals to discount indirect connections. Similarly, partial mutual 

information extends mutual information, and partial coherence extends coherence. Exploring 

these and other ways to partialise other functional measures may yield functional measures 

with better performance. 
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6.2.7 Simulated EEG  

In this thesis we used simulated EEG generated using pink noise to capture the spectral 

characteristic of EEG. Since real EEG is more complex than this, we think still there is scope 

to test other techniques for simulating EEG. Two possibilities proposed in the literature are 

brain electrical source analysis (BESA) [148] and neural mass models (NMMs) [149]. 

Extending the complexity of simulated EEG models would also be a further step to allow the 

findings of this thesis to be confidently applied to real EEG. Another appropriate step would 

be to rigorously test the measures on real EEG in situations where other experimental work has 

provided strong evidence for connectivity, such as in dementia [6]. 

6.3 Summary of main findings 

No measure consistently performs better than other measures. The choice of best measure 

clearly depends on several factors. This thesis has provided evidence to support a variety of 

choices depending on noise level, stationarity of data, number of channels, number of samples 

and available time. 

For functional connectivity measures:  

• Correlation coefficient and S-estimator work well in almost every situation 

o preferring correlation coefficient if weak coupling is expected 

o preferring S-estimator if the noise is particularly strong or the data are 

nonstationary; 

• If the SNR is poor and calculation time unimportant, then mutual information (kernel) 

is the best choice. 

For effective connectivity measures: 
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• The optimum maximum lag or maximum model order depends on the data set at hand. 

For EEG, we don’t know the optimum values, and estimating them can be difficult. In 

such cases, measures that show low variation in connectivity estimates with variation 

in these parameters are good choices. Most Granger causality measures, but especially 

Copula Granger causality, and transfer entropy are therefore good choices. 

• Overall, the measure with the best performance in a variety of situations and with a low 

computational cost is conditional Granger causality; 

• Partial Granger causality and multivariate Granger causality are also good measures, 

but their computational cost rises rapidly with the number of channels; 

• Copula Granger causality can also be used reliably, but its computational cost rises 

rapidly with the number of data; 

• Model-specific measures, such as in the coherence and Granger causality families, 

performed better on data generated from a matching model, and worse on data not 

generated from a matching model; 

• Frequency domain measures performed better on narrowband data; 

• Where data is broadband and from an unknown/unidentified system, model-free 

measures such as transfer entropy and partial transfer entropy may perform better; 

• For real data of unknown origin, we recommend using more than one measure from 

more than one family. 

EEG signals are nonlinear, noisy and nonstationary, and we do not have a reliable model for 

their generation. Therefore we recommend using multiple measures from more than one 

family. For functional connectivity, we recommend cross correlation, S-estimator, and mutual 

information (kernel). For effective connectivity, we recommend Copula Granger causality, 

transfer entropy and directed coherence. However, if computation time is an issue, then mutual 



183 
 

information (kernel) will be impractical and should be omitted, and conditional Granger 

causality should be used instead of Copula Granger causality. 
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APPENDIX A  PUBLISHED AND SUBMITTED PAPERS 

This appendix contains three accepted papers, and one submitted. Content from all papers is 

similar to content in the Introduction, Literature Review and Conclusion of this thesis. 

A-1 First paper  

This published conference paper (IEE 2014 Middle East Conference on Biomedical 

Engineering) is related to Chapter 3 of this thesis. In this paper we only compared 6 functional 

connectivity measures, whereas in chapter three we extended our comparison to 28 measures, 

including the addition of measures from the Granger causality and state space families and the 

event synchrony measure. In this paper we did not use surrogate analysis to provide a threshold 

for significance for connectivity measures, instead we simply compared raw connectivity 

values. Therefore, the content of this paper can be found in chapter three, but the chapter is a 

substantial extension and improvement on the paper.  
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A-2 Second paper 

Chapter 4 is based on this published conference paper (2014 IEEE EMBS Conference on 

Biomedical Engineering and Sciences). The methods and results are the same, however the 

presentation of the results has been expanded in chapter 4 to include more graphs and tables to 

give a more detailed representation. The discussion and conclusion have also been expanded.  
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A-3 Third paper 

This published paper (2018 IEEE EMBS Conference on Biomedical Engineering and Sciences) 

is almost identical to Chapter 5. Chapter 5 also contains some additional tables that enhance 

the presentation of the results, and the discussion and conclusion is expanded. 
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A-4 Fourth paper  

This article [153] removed due to copyright restriction.  
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