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Abstract

The molecular heterogeneity of cancers such as colorectal cancer (CRC) hinders the

effectiveness of treatments. To overcome this heterogeneity and identify better thera-

peutic targets, we require patient-specific models which can more accurately predict

the characteristics of individual tumours. Despite the availability of large scale patient-

specific data from projects such as The Cancer Genome Atlas (TCGA), integrating

data of this scale into a biologically meaningful model is a complex task. In this

thesis, I investigated multiple patient-specific and network approaches to modelling

tumour heterogeneity. I first took the approach of identifying patient-specific differ-

entially expressed genes from TCGA transcriptomics data. From these, I was able to

define prognostically relevant patient subgroups. I performed patient-specific pathway

enrichment analysis and pathway level patient clustering, identifying novel patient

clusters with significant differences in survival. Using the same patient-specific data,

I combined transcriptomic and genomic data with protein-protein interaction (PPI)

data to create patient-specific network models. I used the epidermal growth factor

receptor (EGFR) PPI network, a network critical to the progression of CRC, to demon-

strate this approach. I determined that while patient-specific network topology in the

EGFR network was not directly linked to patient survival, it did differ significantly

between patient subtypes. I developed SIFFIN, a novel tool to simulate the flow of

biological information through these patient-specific networks, which predicted sub-

stantive alterations between patients. Finally, I explored tumour heterogeneity from a

spatial perspective, aiming to develop novel network-based tools to integrate spatially-

resolved patient data. I developed InsituNet, a tool for spatial transcriptomics analysis,

enabling spatially-resolved analysis of tumour heterogeneity, and further adapted this

tool to support spatial metabolomics data.
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1. Literature Review

1.1 Colorectal cancer in summary

1.1.1 A global health burden

As one of the most common forms of cancer globally with 1.8 million new cases and

881,000 mortalities estimated in 2018 (Bray et al., 2018), colorectal cancer (CRC)

represents a growing global health burden. CRC is the second most common form

of cancer in women and third most common in men, making up 10.2% of all global

cancer incidences and 9.2% of mortalities. The incidence and mortality of CRC varies

by more than 10-fold globally, with greater than two-thirds of cases occurring in

countries with a high or very high human development index (HDI) (Arnold et al.,

2017). While the incidence of CRC is relatively stable in most high-HDI countries,

its global prevalence continues to accelerate, being strongly linked to rapid societal

and economic changes that lead to a more “Westernised” diet and lifestyle (Maule &

Merletti, 2012).

1.1.2 Demographic variations

CRC incidence and mortality rates vary across multiple different population groups.

For instance, CRC is more prevalent and fatal in men than women in Australia (Cancer

in Australia 2019), the US and UK (White et al., 2018). Black people in the US have

both the highest incidence rates of non-hereditary CRC, and are also more likely to

die from CRC than any other group (Siegel et al., 2017). Socio-economic factors which

contribute to lower rates of screening are often cited as a driver of such discrepancies

(Kwaan & Jones-Webb, 2018), with geographic analysis of CRC hotspots in the US

identifying impoverished areas as having increased CRC incidence and mortality, a

1



pattern which mirrors the increased CRC rates in economically transitioning countries

globally (Siegel et al., 2015). In both the US and Australia, the incidence of CRC

rises rapidly after the age of 50 (Siegel et al., 2017), but due to the introduction of

screening programs and awareness over the last two decades, incidence in over 50s has

remained steady. In contrast, incidence rates within those aged <50 has been steadily

increasing for reasons that remain unclear (Young et al., 2015; Feletto et al., 2019;

Siegel et al., 2019). These data highlight the need for early stage identification of

CRC, as diagnosis at later stages results in significantly less effective treatment and

poorer patient outcomes (Andrew et al., 2018).

1.1.3 Anatomical distinctions

Cancers of the large intestine include colon cancer (CC) and rectal cancer (RC) which

are together referred to as colorectal cancer (CRC). Despite this, proximal (right-

sided, consisting of the cecum, ascending colon and transverse colon) colon cancers,

distal (left-sided, consisting of the descending and sigmoid colon) colon cancers, and

rectal cancers all tend to vary in prognoses (Baran et al., 2018), surgical challenges

(RC surgery tends to impose more risk for damage to surrounding tissues (Paschke

et al., 2018)), and molecular characteristics (the proximal and distal regions can be

accurately classified based on their gene expression profiles (Glebov et al., 2003)) to

the point that some advocate for abandoning the term “colorectal cancer” entirely

(Paschke et al., 2018). Why these anatomical regions differ so much on a molecular

level is not fully understood, but factors such as the difference in bacterial load, gut

pH and exposure to nutrients and bile acids (Figure 1.1) have been put forward as

hypotheses (Murphy et al., 2011). The proximal and distal colon segments also have

distinct embryological origins, with the proximal and distal regions originating from

the midgut and hindgut respectively during development, potentially contributing to

the molecular differences in proximal and distal CC (Bhatia et al., 2020).
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Figure 1.1: Simplified diagram of the small and large intestine, adapted from Don-

aldson et al., 2016. Increased pH and bacterial load towards the distal colon has been

highlighted as a potential driver of the molecular differences between proximal and

distal cancers.

Notably, age at diagnosis has a strong effect on whether CRC presents as proximal

or distal, with proximal (right sided) CRC more commonly being diagnosed at a later

age (Mik et al., 2017). Proximal tumours are more likely to be overlooked during

screening, leading to delayed diagnosis and worsened overall prognosis for right-sided

tumours (Hansen & Jess, 2012).

The vast majority (around 96%) of CRCs are adenocarcinomas (From Greek

adēn, meaning ’gland’), developing in the intestinal epithelium from pre-cancerous

polyps (adenomas). Besides having different origins, proximal and distal tumours often

exhibit different histologies, with proximal tumours more frequently arising from sessile

serrated adenomas, a flatter and far more difficult to detect type of adenoma than

the more common tubular adenoma (Obuch et al., 2015). Regardless of their origin,

if detected, these polyps can be removed during screening via colonoscopy, making

screening an extremely powerful preventative measure.
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1.2 Molecular development and heterogeneity of CRC

1.2.1 Hypotheses to explain heterogeneity

Cancer cells differ substantially, even within the same tumour, in for example their

size, proliferation rates, susceptibility to chemotherapy, and metastatic potential. Two

distinct but not necessarily mutually exclusive hypotheses exist which explain this

heterogeneity. The clonal evolution hypothesis, first proposed by Nowell (Nowell, 1976),

is the result of understanding that cancers arise from successive genetic mutations.

Clonal evolution posits that cancer is a product of the Darwinian scenario in which

ongoing accumulation of somatic mutations in cells gives rise to subclones with a

selective growth advantage within the tumour environment (i.e. better able to compete

for resources or evade the immune system). Clonal evolution in tumours has now been

well documented (Greaves & Maley, 2012) and the hypothesis further extended. For

example, spatial analysis of tumours using whole-exome sequencing (Gerlinger et al.,

2012) revealed significant intra-tumour genetic heterogeneity, which led to an extension

of clonal evolution in which multiple subclones with similar fitness may stably coexist

in a tumour (Snuderl et al., 2011).

Despite its success, the dominance of clonal evolution has been reduced in recent

times by the emergence of the cancer stem cell (CSC) model, which proposes that

tumour growth is due to a minority of tumourigenic cancer stem cells within a given

tumour population, and that the functional heterogeneity between cells is as a result

of their differentiation status (J. Peixoto & Lima, 2018). This model implicates stem

cells found in intestinal crypts as the origin of CRC (Barker et al., 2009). Originally

thought of as a one-way hierarchy in which certain stem cells would act as progenitors

to create differentiated cancer cell types, the modern CSC model now incorporates the

plasticity of cancer cells by accepting that certain conditions may cause a reversal in

differentiated cells causing them to once again become CSCs (Prasetyanti & Medema,

2017). As typical cancer chemotherapy treatments rely on the abnormally high growth

rate of most tumour cells, the CSC model provides a compelling explanation for high

recurrence rates - such treatments are unable to target the more slowly dividing cancer
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stem cells (Khalek et al., 2010). In CRC, certain biomarkers of CSCs have been found

to be a positively correlated with patient survival in large cohorts (Badic et al., 2020).

1.2.2 Tumour development in CRC

Molecular development in CRC was described in detail by the adenoma-carcinoma

model of tumour progression proposed by Fearon & Vogelstein (Fearon & Vogelstein,

1990). This model describes a multi-step sequence of accumulative genetic aberrations

that lead to two main molecular phenotypes of CRC: the chromosomal and microsatel-

lite instability phenotypes. While most certainly an oversimplification of the true

molecular nature of CRC, it is nonetheless a useful and clinically relevant model of

carcinogenesis. This model falls neatly under Nowell’s paradigm of clonal evolution, as

it supposes that CRC development is driven mainly by monoclonal expansion within

the primary tumour. In their model of CRC, Fearon and Vogelstein predicted that at

least 7 distinct mutations were required for complete progression to carcinoma.

Recently, Fearon and Vogelstein’s model was challenged by the “Big Bang” model

of CRC tumourigenesis (Sottoriva et al., 2015). Based on the observations that clonal

selection is infrequent in advanced tumour stages and that spatial constraints in solid

tumours limit selective forces, the Big Bang model suggests that tumours primarily

grow as a single expansion following initial transformation, and that intra-tumour

heterogeneity is primarily generated early during tumour growth. The predictions of

this model align more closely to the CSC hypothesis, under which long-lived stem cell

lineages are the primary drivers of tumourigenesis. Like the CSC and clonal evolution

hypotheses, the Big Bang and Vogelstein models are not necessarily mutually exclusive,

and regardless of the exact timeline of development, at least three common mutation

pathways have been well described.
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1.3 Pathways of CRC development

1.3.1 Common molecular events

Figure 1.2: Fearon and Vogelstein’s multi-step model of CRC development, from

adenoma to carcinoma, following two major pathways of genomic instability, chromo-

somal instability (CIN) and microsatellite instability (MSI), characterised by a defect

in the DNA mismatch repair (MMR) system. Adapted from Walther et al., 2009.

In nearly all CRC cases (∼80%), the first event in the development from adenoma

to carcinoma is inactivation of the adenomatous polyposis coli (APC ) tumour sup-

pressor gene on chromosome 5q (Fearnhead et al., 2001). APC was first identified

and characterised in the context of familial adenomatous polyposis (FAP), a heritable

condition that involves germline mutations to APC and greatly increased rates of

CRC (Groden et al., 1991). APC has long been known as a key regulator of the Wnt

signalling cascade through its role in the degradation of β-catenin (Polakis, 1997)

and is integral to the regulation of many cellular functions such as cell adhesion and

apoptosis. Inactivation of APC will lead to a build-up of β-catenin and constitutive

activation of the Wnt pathway, subsequently causing transcriptional dysregulation

of various proliferation-associated genes targeted by T-cell factor/lymphoid enhancer

factor (TCF/LEF) transcription factors (Morin et al., 1997; Cadigan & Waterman,

2012). APC is however a multi-functional protein and also features microtubule- and
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end binding 1 (EB1)- binding domains at its C-terminus (Fearnhead et al., 2001), with

EB1 being a highly conserved protein that controls the plus ends of growing micro-

tubules (Tirnauer & Bierer, 2000). APC and EB1 are thought to function together to

regulate microtubule function and thus chromosome alignment during mitosis, impli-

cating APC mutations not only in the initiation of tumorigenesis through activation

of Wnt signalling, but also in driving chromosomal instability in CRC directly through

disruption of the APC-EB1 interaction (Fodde et al., 2001).

1.3.2 Chromosomal instability phenotype

The chromosomal instability (CIN) phenotype is both the most common and best

understood molecular pathway of CRC development, sometimes referred to as the

aneuploidy pathway (Upper portion of Figure 1.2). Over 70% of CRC tumours exhibit

this phenotype to some degree (Pino & Chung, 2010). It is characterised by genetic

instability on a chromosomal level, with widespread imbalances in chromosome num-

ber and loss of heterozygosity being common. Following the first step in carcinoma

development (APC inactivation) KRAS mutation is typical, and subsequent muta-

tions will accumulate until the inactivation of the p53 tumour suppressor gene on

chromosome 17p. At this point the transformation into carcinoma is complete (Figure

1.2, right). Frequently chromosome 18q will also be lost in CIN tumours, containing

the aptly named Deleted in Colorectal Cancer (DCC ) gene which likely has a role in

tumour suppression (Nguyen & Duong, 2018).

1.3.3 Microsatellite instability phenotype

An alternative form of genomic instability found in around 20% of CRC tumours is

the microsatellite instability (MSI) phenotype. Characterised by a defect in the DNA

mismatch repair system leading to instability in long stretches of DNA microsatellites

and global hypermutation, the MSI phenotype is most commonly seen in the proximal

colon and often with more difficult to detect forms of polyp, such as the sessile

serrated adenoma (which were originally not thought to be a precursor to CRC

(Leggett & Whitehall, 2010)). Global hypermutation causes MSI tumours to exhibit a
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high number of immunogenic mutations, and so these tumours will typically be found

with very high T-cell infiltration due to an increased presence of neoantigens (Baran

et al., 2018). This immune infiltration makes MSI tumours particularly susceptible to

immunotherapies such as anti PD-1 immune checkpoint inhibitor therapy (Le et al.,

2015), and is also associated with a reduced rate of metastasis (Giannakis et al., 2016).

MSI tumours are sometimes the result of hereditary defects to mismatch repair genes,

i.e. hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome (Steinke

et al., 2013), a condition that can also manifest as various other cancers, but most

frequently as CRC.

1.3.4 CpG island methylator phenotype

A newer but increasingly accepted molecular subtype of CRC is the CpG island methy-

lator phenotype (CIMP), described by Toyota et al. (Toyota et al., 1999). CpG islands

are genomic regions enriched for cytosine-phosphate-guanine (CpG) dinucleotides.

Methylation of CpG islands within promoter regions causes transcriptional silencing,

an important epigenetic mechanism for preserving genomic stability in normal tissues.

Unlike the better established genomic instability phenotypes, CIMP is characterised

by epigenetic modifications in the form of aberrant hypermethylation in specific CpG

sites, resulting in transcriptional inactivation of tumour suppressors and other tumour-

related genes (Mojarad et al., 2013). CIMP is commonly observed within a subset

of MSI-high tumours and shares some pathological characteristics with MSI such

as proximal location and high frequency of BRAF mutations, however studies in

both microsatellite stable (MSS) and MSI tumours have confirmed CIMP-high as-

sociation with these characteristics independently of MSI (Wu & Bekaii-Saab, 2012;

Weisenberger et al., 2018).
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1.4 Therapeutic approaches

1.4.1 EGFR targeted therapies

For late stage and metastatic CRC, KRAS-mutation status is an important biomarker

for targeted treatment. Mutations in KRAS are found in around 38% of colorectal

cancer cases (Oliveira et al., 2004), and are predictive of failure of epidermal growth

factor receptor (EGFR) targeted therapies. KRAS is a GTPase that operates in a

switch-like manner for signal transduction early in the EGFR network, activating

downstream effectors and ultimately regulating transcription through downstream

transcription factors. Despite considerable research, KRAS has been described as

essentially undruggable (Papke & Der, 2017). In CRC there is strong selection for

KRAS mutation as a way of essentially bypassing EGFR-dependent signalling entirely.

Despite mutant KRAS being an indicator for likely failure of anti-EGFR treatment,

even patients with wild-type KRAS are still unresponsive in the majority of cases

when undergoing anti-EGFR treatment (Amado et al., 2008). This inefficacy might

reasonably be attributed to metastatic subpopulations developing an independent

mutant KRAS genotype, however a comprehensive study of KRAS mutations in

primary and metastatic tumours in colorectal cancer patients found that KRAS

mutation status was discordant between the two in only 2% of cases (Knijn et al.,

2011). This finding is supportive of the notion that KRAS mutation is an early driver

of CRC progression – as well as highlighting the fact that it is difficult to point to a

single mutation as being the sole cause of a targeted treatment failing.

In metastatic CRC some of the most frequently prescribed treatments are EGFR

inhibitors, either tyrosine kinase inhibitors (e.g. erlotinib, gefitinib) – which bind

to the tyrosine kinase (TK) domain on the receptor, blocking EGFR activity, or

monoclonal antibodies (e.g. cetuximab, ecitumumab), which bind to the extracellular

domain and prevent EGF or other ligands from binding (Yarden & Pines, 2012).

EGFR signalling plays a critical role in tumourigenesis, mediating many processes

including transcription, cell cycle (especially through production of cyclin D due to

the transcription factor Myc) and proliferation through the RAS/RAF/MEK/ERK
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pathway, and metabolism, growth and apoptosis through PI3K/AKT/mTOR (Wee

& Z. Wang, 2017), although it has been suggested that some of the efficacy observed

from anti-EGFR treatment may in fact be due to indirect effects which alter the

immune microenvironment (Giordano et al., 2019).

1.4.2 Angiogenesis targeted therapies

Angiogenesis (blood vessel growth) is dysregulated in CRC development and progres-

sion (as tumours require excessive resources to continue to grow). Loss of angiogenesis

equilibrium is one of the hallmarks of cancer (Hanahan & Weinberg, 2000), and is

regulated to a large degree by vascular endothelial growth factor (VEGF) signalling.

VEGF / VEGF receptor (VEGFR) targeted treatments are therefore effective anti-

cancer treatments, especially in metastatic CRC (Battaglin et al., 2018). There are

five VEGF family members, with VEGF-A being the most important in tumour angio-

genesis. VEGF-A binds primarily to VEGFR-2, one of three VEGFR-family receptor

tyrosine kinases. VEGF signalling in normal and cancer cells is upregulated due to

hypoxia via the hypoxia inducible transcription factors HIF-1 and HIF-2. The first

approved treatment targeting this pathway was bevacizumab in 2004, a monoclonal

antibody which neutralises the VEGF-A ligand. Other agents which have since been

approved include regorafenib, aflibercept, and ramucirumab, all of which function

similarly to anti-EGFR treatments, i.e. inhibition strategies which target either the

TK or extracellular domains of the involved receptor.

1.4.3 Early and late stage therapies

By far the most important molecular factor for prognosis in early-stage CRC is

MSI status (Punt et al., 2017), which is associated with greatly improved outcomes

and low risk of recurrence following surgical resectioning. MSI status is used to

determine whether resectioning should be accompanied by adjuvant chemotherapy

(as surgical interventions for stage II MSI CRC have excellent prognosis without

chemotherapy) (Kawakami et al., 2015), and also to predict tumour vulnerability to

anti-PD1 immunotherapy (Punt et al., 2017).
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The standard treatment for late stage CRC is chemotherapy. Fluorouracil (5-FU)

is commonly used in combination with folinic acid, yielding a median survival of ap-

proximately 6 months, with response rates to the therapy of around 20%. Use of these

traditional therapies in parallel with sequential administration of other chemothera-

peutic drugs such as oxaliplatin, leucovorin, and irinotecan has led to improved median

survival of around 20 months (Cremolini et al., 2015). Use of these chemotherapies

in conjunction with EGFR and VEGF inhibitors improve these figures yet further

to around 30 months (Sánchez-Gundín et al., 2018). Despite targeted treatment ad-

vances, metastatic CRC is still a devastating disease, with a 5-year survival rate of

around 14% (Street, 2020).

1.5 Clinical and molecular subtyping

1.5.1 Tumour, Node, Metastasis

The CIN, MSI, and CIMP forms of genomic and epigenomic instability may be present

in varying degrees in a particular tumour, and are sometimes used to assist in prognosis.

MSI status is now frequently used for patient stratification due to the improved

immunotherapy response for such tumours (de Vries et al., 2016) and is also used

to determine whether adjuvant chemotherapy is required after surgical resectioning.

In practice however, testing for MSI or CIMP status is used in conjunction with the

tumour-node-metastasis (TNM) staging system, probably the most routine clinically

used prognostic method for classifying patients. TNM covers three primary factors:

• T: Tumour, relating to the size and extent of the primary tumour. In CRC,

this primarily refers to how deeply the tumour has grown into the lining of the

bowel.

• N: Node, relating to the extent of spread to regional lymph nodes.

• M: Metastasis, simply describing whether there are distant metastases.

These three factors can be used extremely reliably to stratify patients by their pre-

dicted survival, and to some extent by which treatments should be attempted. A
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simplified prognostic stage is commonly derived from TNM ranging from stages I-IV,

(technically stage 0 for carcinoma in situ). The presence of any metastasis will au-

tomatically place a patient in stage IV, while the middle stages effectively describe

increasing primary tumour growth and spread to lymph nodes. The intent of the prog-

nostic stage is to have fairly homogeneous survival probabilities for patients within

each stage, with each increasing stage representing a worsening of prognosis. The TNM

classification manuals from the American Joint Committee on Cancer (Edge et al.,

2010) and Union for International Cancer Control (Sobin et al., 2011) are frequently

updated.

For some cancers such as breast cancer, the most recent 8th edition of TNM

(effective as of 2017) includes molecular biomarkers including HER2 as part of the

Oncotype DX multigene panel (J. Koh & M. J. Kim, 2019). Although assays that allow

better identification of stage II-III CRC patients with a high post-surgery recurrence

probability do exist in the form of the Coloprint 18-gene assay (I. B. Tan & P. Tan,

2011) and the Oncotype DX 12-gene assay for colon cancer (You et al., 2015), neither

of these have yet been integrated into TNM.

One proposed molecular addition to TNM for CRC is immunoscore (Ros-Martínez

et al., 2020), a measure of T-cell infiltration that would better capture the influence of

the tumour microenvironment. Immunoscore increases with the density of lymphocyte

populations, and has been found to correlate very well with improved prognosis (Pagès

et al., 2018). Currently however, molecular considerations in CRC TNM are quite

limited. Fortunately, in recent years many large-scale projects have been able to

collect vast quantities of personalised molecular tumour data, leading to significant

advancements being made in molecular-based CRC subtyping.

1.5.2 The Cancer Genome Atlas

Efforts to better stratify and classify patients have been greatly aided by large-scale

projects such as The Cancer Genome Atlas (TCGA), a project of the US National

Cancer Institute and National Human Genome Research Institute. TCGA is a system-

atic analysis of multiple types of human tumours that provides DNA, RNA, protein
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and epigenetic aberration data on an individual patient level (Weinstein et al., 2013).

The publicly available data collected from this project have proved invaluable for

research into the molecular differences between different cancer types, as well as

between-patient differences, especially in CRC (The Cancer Genome Atlas Network,

2012). TCGA studies have made publicly available over 2 petabytes of data across 33

different cancer types, including from 633 colorectal adenocarcinoma patients. These

data include in-depth information on individual patients, such as clinical diagnoses,

outcomes, sequencing data, biopsy information, and more. Most cases also include

results from RNA-sequencing experiments on primary tumour tissue, and some also

include matched normal tissue samples.

Further extensions and bioinformatic analyses of the TCGA datasets have pro-

vided a wealth of supplementary information that further expands the possibilities

for using TCGA data, from proteomic studies from the Clinical Proteomic Tumor

Analysis Consortium (CPTAC) (B. Zhang et al., 2014) to comprehensive analysis of

alternative splicing within TCGA cohorts (Kahles et al., 2018). Recently, TCGA and

the International Cancer Genome Consortium (ICGC) have formed the Pan-Cancer

Analysis of Whole Genomes (PCAWG) Consortium, which has released an integrative

analysis of 2,658 cancer genomes with matched normal samples across 38 tumour

types (PCAWG Consortium, 2020), providing detailed insights into the molecular

differences between cancers.

1.5.3 Consensus molecular subtypes

The scale of transcriptomics data made available by projects such as TCGA enabled

the Colorectal Cancer Subtyping Consortium (CRCSC) to create a unified classifica-

tion system for CRC (Guinney et al., 2015). This system is based on the transcriptomic

analysis of more than 4000 individual tumour samples. Six independently developed

algorithms for classifying patients based on transcriptomic data, totalling 27 separate

groupings, were combined using a network similarity approach to create a new classifi-

cation system that defined four significant subtypes of CRC, the Consensus Molecular

Subtypes (CMS):
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• CMS1: MSI-Immune (Hypermutated, exhibiting high-MSI, high-CIMP, and im-

mune infiltration)

• CMS2: Canonical (exhibiting high-CIN with Wnt and Myc activation)

• CMS3: Metabolic (low-CIN, low-CIMP, KRAS-mutated, epithelial signature)

• CMS4: Mesenchymal (high-CIN, enrichment of epithelial–mesenchymal transi-

tion (EMT), stromal infiltration, TGFβ activation)

These transcriptomic subtypes build on the existing understanding of genomic and

epigenomic subtypes, and have important implications for patient stratification. They

also represent one of the first real efforts to perform molecular stratification of pa-

tients with non-MSI CRC tumours. CMS1 tumours have a distinctive pattern of

hypermutation and hypermethylation, (being MSI-high and CIMP-high), as well as

over-representation of BRAFV600E mutations. CMS1 is the most immunologically

active, and tends to exhibit extensive immune cell infiltration, including cytotoxic

T lymphocytes, CD3+ T helper cells, and NK cells (Dienstmann et al., 2017). Pa-

tients with CMS1 tumours typically have good general prognosis with low probability

of relapse, however if relapse occurs prognosis is poor (Figure 1.3b). In compari-

son, CMS2, 3 and 4 can be well described via Vogelstein’s CIN phenotype. CMS3

and CMS4 effectively branch off from CMS2, with CMS3 gaining KRAS mutations,

consistently lower copy number alterations, and metabolic reprogramming, versus

CMS4’s upregulation of TGFβ and EMT. CMS2 samples have upregulation of Wnt

and Myc targets, with higher expression of EGFR, ERBB2 and IGF2 (Guinney et al.,

2015). CMS4 tumours have a particularly strong angiogenic influence on the tumour

micorenvironment, with signalling activation derived from stromal cell infiltration

from adjacent cancer-associated fibroblasts (Dunne et al., 2016). In terms of patient

outcomes, CMS4 patients have the poorest overall prognosis (Figure 1.3a). Notably,

CMS4 tumours have an upregulation of genes involved in the epithelial–mesenchymal

transition (EMT) (Guinney et al., 2015). Epithelial cells which undergo the EMT

gain resistance to apoptosis and enhanced migratory capacity, greatly increasing the

likelihood of metastatic spread (Kalluri & Weinberg, 2009).
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(a) Aggregated CMS survival curves (b) Post-relapse CMS survival curves

Figure 1.3: Kaplan-Meier survival analysis of patients in the cohort used by Guinney

et al. to define CMS groups (Guinney et al., 2015). Reproduced with permission from

Springer Nature. CMS1 (yellow), CMS2 (blue), CMS3 (pink) and CMS4 (green). a)

Aggregated cohort (n = 2,129), displaying significant differences only for CMS4. b)

Post-relapse survival (n = 405), displaying multiple significant survival differences.

Currently, the CMS classification system has not been fully translated into clinical

use. While CMS-based patient stratification represents the best molecular classification

in CRC to date, it still limited in than only four subtypes are discernible - still very

far off the promise of personalised or precision medicine. Indeed, ∼13% of samples

used to create the CMS system were unable to be classified by it. While efforts

to improve the CMS classifications are ongoing (Menter et al., 2019), the extreme

molecular heterogeneity of CRC calls for alternative strategies which will enable more

patient-specific and clinically relevant classifications.

1.6 Consolidation and integration of multi-omics data

1.6.1 Data dimensionality reduction

Large scale projects such as TCGA have generated an unprecedented depth and

breadth of biological data, covering thousands of individual patients across multiple

omics sources. To analyse data of such scale, univariate methods such as ANOVA,

linear models or t-tests that are the statistical mainstay of conventional biology fall
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short, being unable to consider the multi-level relationships that exist between these

diverse forms of biological data. Some methods, such as genome-wide association

studies (GWAS), have been successfully used to identify thousands of genetic loci

associated with diseases. However, the associations these studies provide have proven

highly difficult to translate into functionally relevant biology (Tam et al., 2019).

Due to the increased number of data modalities available, a more complete charac-

terisation of the molecular status of individual tumours can be obtained. For example

while transcriptomic data provides a snapshot of gene expression, the regulation of

this expression is dependent epigenetic changes such as DNA methylation, which was

also profiled for TCGA cohorts. It is unsurprising then that multi-omics integration

of TCGA datasets has increasingly been found to outperform methods which rely

on a single omics type for patient stratification (Boehm et al., 2022). This has been

demonstrated for example by application of methods like the Cox proportional hazards

(CPH) model in glioblastoma (Network, 2015). More data is not necessarily always

better however, with adding additional data to a CPH model sometimes actually

reducing stratification performance (Z. Huang et al., 2019). For this reason, research

into methods that properly utilise and integrate these data are called for. Given the

typical complexity of these omics data, many approaches focus on simplifying or

reducing complexity and noise.

Dimensionality reduction is a common multivariate mathematical approach to

reducing complexity in high-dimensional omics datasets. Dimensionality reduction

methods can take large, complex data (such as the expression of tens of thousands of

genes) and reduce them down to two or three dimensions that capture the majority of

variance present. These methods are widely used for visualisation and analysis, and

include Principal Components Analysis (PCA), multidimensional scaling (MDS), t-

SNE (Van Der Maaten & Hinton, 2008), and UMAP (McInnes et al., 2018). Typically

dimensionality reduction methods are best applied to a single experimental dataset,

and if not, statistical methods to overcome technical differences between experiments

must be laboriously applied (i.e. batch effect correction) to integrate multiple inde-

pendent datasets. Specialised software exists for this express purpose, for example

ComBat (Johnson et al., 2007). Another important consideration of such analyses is
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how measurements of the same samples collected from different platforms should be

combined.

One tool addressing both inter-sample and inter-omic factors is mixOmics (Ro-

hart et al., 2017), a framework for integration of multi-omics that enables statistical

combination of heterogeneous omics datasets via data dimensionality reduction meth-

ods, mainly for exploration and visualisation. MixOmics applies multiple techniques

in order to classify samples, including unsupervised methods such as PCA, as well

as supervised learning methods such as partial least squares regression discriminant

analysis (PLS-DA).

Dimensionality reduction tools are powerful, but may be insufficient for classifica-

tion due to their assumption of feature independence. For example, gene expression

may be quantified on a gene-by-gene basis using RNA-seq, but in reality individual

genes very rarely, if ever, operate in an isolated way from all other genes. This means

that true biological signal may be lost among the noise of individual genes when

dimensionality reduction approaches are used as a basis for classification. This insight,

that genes are typically part of a larger process or pathway, has led to the introduction

of pathway-based methods for managing cellular complexity.

1.6.2 Classification and feature identification with PLS-DA

Performing classification of unknown samples or identifying key features that differenti-

ate classes (e.g., genes in genomics data) is a common task in the analysis of omics data.

Partial least squares-discriminant analysis (PLS-DA) is a method often recommended

for such analyses due to its ability to perform well with high-dimensionality data. In

terms of its function, PLS-DA is sometimes described as a supervised version of prin-

cipal component analysis (PCA) (Ruiz-Perez & Narasimhan, 2017). PLS-DA has been

included in software packages for omics data analysis such as mixOmics (Rohart et al.,

2017), and is frequently employed in the analysis of genomics, metabolomics, and

other data types. Despite widespread use, PLS-DA has received some criticism due to

the ease with its models can be overfitted, especially when sample sizes are small, or

poor cross-validation methodologies are employed (Rodríguez-Pérez et al., 2018). In a
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recent systematic analysis of cross-validation methods, Rodríguez-Pérez et al. found

that the leave one out (LOO) method for cross-validation which is frequently used

produces the worst overfitting, with bootstrap procedures being the most accurate.

Bootstrap methods are the most computationally expensive, with LOO being the least,

as essentially the worst-case scenario K-Fold validation, in which the training data

is divided into k equally sized partitions. For example, mixOmics recommends 5-10

fold. However, even when rigourous cross-validation is employed, if PLS-DA models

are trained using small sample sizes caution must be made when making broader

predictions beyond the study sample.

1.6.3 Machine learning approaches to data integration

Increasingly, multi-omics integration of TCGA data by more advanced machine learn-

ing approaches has been demonstrated (Boehm et al., 2022). Two main architectural

approaches for integrating multi-modal data in machine learning are early and late

fusion. Cancer Integration via Multikernel LeaRning (CIMLR) (Ramazzotti et al.,

2018) is a recent example of an early fusion architecture which combines different

data modalities before beginning any model training. A key advantage of early fusion

is the ability to learn similarities across different data types simultaneously. CIMLR

has been demonstrated to be effective for tumour subtyping across multiple cancer

types using TCGA datasets. Late fusion methods in comparison perform individual

modelling of different data types, then aggregate these in a later step. Late fusion

in comparison is more common for machine learning approaches making use of ex-

tremely heterogeneous data types. For example, Shao et al. (Shao et al., 2020) used

convolutional neural networks to extract features from histology images, and later

combined this with transcriptomic data in a late fusion approach for early-stage sur-

vival outcome prediction. Although machine learning methods for data integration

show promise, one of the biggest challenges facing this research is data availability.

For such approaches to be effective, collection and careful curation of multiple data

types across multiple patients is required at scale.
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1.7 Pathway based analysis

1.7.1 The benefit of a pathway approach

From cell surface receptor molecules to downstream transcription factors within the

nucleus, genes and proteins contribute to phenotypic effects through various interlinked

molecular signalling cascades, or pathways. For example, the canonical Wnt pathway

is involved in a diverse range of biological functions including cell homeostasis and

repair, and is nearly always hyperactivated during CRC development (Schatoff et al.,

2017). One way of determining whether genes, mutations and proteins may be acting

in concert to produce a particular phenotype or disease is to test whether they are

members of the same molecular pathways. By “zooming out” to the level of pathway

dysregulation rather than focusing too closely on individual genes or proteins, it is

possible to find commonalities in otherwise impossibly heterogeneous data. A great

variety of methods have been proposed for conducting pathway analysis, however

one particularly useful organisation of these methods originated with Khatri et al.

(Khatri et al., 2012), who grouped pathway approaches into three main classes: over-

representation analysis (ORA), functional class sorting (FCS) and pathway topology

(PT).

1.7.2 Pathway databases

A prerequisite for any pathway-based analysis is prior knowledge of pathway structure

and organisation. As such, significant effort has gone into sorting molecules into sepa-

rate signalling pathways. For example, at the time of writing the Kyoto Encyclopedia

of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) contains 537 manually

curated pathway maps representing specific biological systems and functions. Other

examples of pathway databases include WikiPathways (Pico et al., 2008), a community-

maintained pathway resource; Reactome (Jassal et al., 2020), an open source database

containing 2,423 human signalling pathways; and Gene Ontology (Ashburner et al.,

2000), an initiative to develop a controlled vocabulary for genes and gene products.
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Unlike the former databases, Gene Ontology is not strictly a pathway database, rather

it consists of three separate annotation hierarchies in which related terms are linked

in a directed graph. These hierarchies can be flattened to become equivalent to other

pathway annotations. To run pathway enrichment methods, a single database is typi-

cally chosen. However, these databases differ in the number of pathways they contain

and the size of these pathways (in terms of the level of detail and what types of

interactions are incorporated), meaning choice of database can strongly influence the

results. To address this concern, several integrative meta-databases have been created,

for example Pathway Commons (Rodchenkov et al., 2020) and MSigDB (Liberzon

et al., 2015), which consolidate multiple pathway databases in a single resource. Other

work has gone further and attempted to integrate pathway databases such that analo-

gous pathways across different databases are combined to further reduce biases when

conducting pathway enrichment (as such methods assume that pathways are inde-

pendent entities) (Mubeen et al., 2019). Despite such efforts, biologically meaningful

integration of data across multiple databases remains a significant challenge for the

effective use of pathway databases, a problem which can only really be addressed by

collaborative annotation efforts between different projects.

1.7.3 Over-representation analysis

To utilise pathway knowledge for analysis and interpretation of omics data, the usual

approach is to perform statistical enrichment analysis, i.e. pathway enrichment analysis.

Pathways in this context are sets of genes that describe particular biological processes

or functions, and typically incorporate some additional information about pathway

structure or interactions between items. While more advanced methods incorporate

this additional information, at their simplest pathways may be reduced to simple sets

of genes to which enrichment analysis methods may be applied. Perhaps the simplest

enrichment approach (in terms of ease of implementation) is over-representation anal-

ysis (ORA). Given a set of pathway genes and a set of genes that are over-represented

in a sample, an ORA will examine the gene overlap between these sets, and using a

statistical test such as the hypergeometric test, assign a statistical significance to the

overlap. When ORA is used to detect enrichment across many different pathway gene
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sets, statistical adjustment for multiple testing such as Bonferroni correction should

usually be applied to the results.

ORA has some notable limitations, such as assuming that pathways are all inde-

pendent, only making use of a subset of genes determined to be differentially expressed,

discarding any genes below an arbitrary pre-defined threshold (losing any information

on the relative strength of signals), and being sensitive to gene background. The

null hypothesis of an ORA may be described as “competitive” (i.e. genes within the

pathway do not appear more often than genes outside of the pathway) due to the

fact it depends on not only genes within the query set, but also on the genes outside

of the set (the background) (Goeman & Bühlmann, 2007). It is a common mistake

to provide an inappropriate background set of genes, and often tools will not even

state what background is being used, leading to potentially very misleading results

(Timmons et al., 2015). Despite its limitations, ORA is still widespread due to its

simplicity of implementation and use. Many web-based pathway tools provide ORA

functions, for example Enrichr (Kuleshov et al., 2016) or g:Profiler (Reimand et al.,

2007).

1.7.4 Functional class scoring

To address some of the issues of ORA, functional class scoring (FCS) pathway methods

were developed. FCS posits that coordinated changes in large sets of related genes

may have significant effects. FCS methods still suffer from the fact that all gene

sets are analysed independently, however unlike ORA, FCS does not require setting

an arbitrary threshold to determine differential gene expression, but rather assigns

an enrichment score for each pathway based on every gene in the sample. Multiple

methods using the core FCS concept have been proposed including PLAGE (Pathway

Level Analysis of Gene Expression) (Tomfohr et al., 2005) and GSEA (Gene set

enrichment analysis) (A. Subramanian et al., 2005), probably the most widespread

FCS approach. GSEA creates a list of every gene ranked by expression, then determines

whether a set of pathway genes is distributed at the top or the bottom of the ranked

list (leading to a high enrichment score), or randomly throughout (low score). A
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significance level is then assigned using a permutation procedure, and adjusted for

multiple testing.

1.7.5 Patient-specific FCS

GSEA is in effect a supervised approach - one must provide case/control labels (e.g.

tumour/normal). In contrast to the supervised binary case/control GSEA, patient-

specific enrichment FCS methods must generate sample-wise enrichment scores. Un-

supervised FCS methods in this patient-specific category include gene set variation

analysis (GSVA) (Hänzelmann et al., 2013), single sample GSEA as described by

Barbie et al., 2009, PLAGE (Tomfohr et al., 2005), and the Z-score method described

by E. Lee et al., 2008. More recent FCS methods include Singscore (Foroutan et al.,

2018), a computationally simple method with easily interpretable percentile rank

scores; LEGO (Dong et al., 2016), a method which also incorporates network infor-

mation in the form of weights in its scoring, and EGSEA (Alhamdoosh et al., 2017),

an ensemble method which combines 12 other FCS algorithms. These patient-specific

methods are less popular as they do not produce a result that can immediately be

used, their outputs of patient-specific pathway enrichment scores are typically used

as the input for further analysis, e.g. for fitting to survival models.

GSVA in particular provides single-sample scores for each query gene set using a

random-walk approach which is weighted based on the rank of each gene belonging

to the gene set in an individual sample. The result is a single score which gives a

measure of how a particular gene set or pathway is behaving within a sample, relative

to other samples in the cohort. Conventional statistical methods can then be applied

to determine the statistical significance of any change in these scores, as GSVA does

not attempt any statistical inference itself. The unsupervised approach used by GSVA

is advantageous in that no labels are required (e.g. tumour versus normal), however

it also has downsides in terms of requiring at least 10 samples to function correctly.

GSVA has two options for calculating scores, either the maximum deviation from

zero, or the difference between positive and negative scores for each pathway (such

that higher scores would only occur as the result of coordinated changes in expression
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within a particular pathway). Which approach is preferred depends on whether the

pathway database used has divided its gene sets into "up" and "down", as is the case

for MSigDB (Liberzon et al., 2015).

1.7.6 Pathway topology

Yet more sophisticated pathway approaches make use of the network topology of

pathways, known as pathway topology (PT) methods. Pathway topology methods

more fully utilise pathway information than simple enrichment analyses. ORA and

FCS consider only whether sets of genes are involved in pathways, not where these

genes exist in the pathway and which other genes they interact with. For example,

signalling pathway impact analysis (SPIA) (Tarca et al., 2009) which operates on gene

expression data, takes into account the hierarchical position of pathway genes when

calculating pathway scores, such that genes that occur “upstream” in a pathway and

may cause a larger impact to the pathway are prioritised. Another example is network-

based gene set analysis (NetGSA) (Shojaie & Michailidis, 2010; Ma et al., 2016)

which computes enrichment scores using a latent variable model of the underlying

pathway network. NetGSA may also be used for complex experimental designs beyond

the binary tumour vs. normal conditions which are assumed by most methods, such

as multiple time point experiments. A systematic comparison of multiple pathway

topology based methods (Ma et al., 2019) found that while large pathways tend to

perform equally well across methods (as is the case for genomic data), methods that

take into consideration topology including NetGSA exhibit superior performance for

smaller pathways, as is often the case for metabolomics data. A similar comparison of

pathway topology methods by Ihnatova et al. (Ihnatova et al., 2018) found that the

influence of pathway size typically outweighed that of pathway topology, owing to the

higher number of significant DE genes identified in larger pathways. Notably, they

found that multivariable methods which work with complete lists of all tested genes,

such as Clipper (Martini et al., 2013) have increased sensitivity, identifying more

significantly impacted pathways when there are only subtle changes in differentially

expressed genes between conditions. The authors suggest different methods which

may be appropriate under different conditions, with the strongest recommendation
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being for multivariable approaches being used for small sample size, subtle expression

change datasets, aand univariable methods for large scale datasets with large changes

in gene expression.

1.7.7 Patient-specific PT

In most of the PT methods mentioned so far, the inputs are from a single omics type

(generally gene expression), and the outputs are pathway enrichment scores between

some set of binary classes (e.g. tumour versus normal samples). For understanding

which pathways are enriched in an individual patient sample, more advanced patient-

specific pathway approaches must be used. Using an N-of-one for pathway activity

inference presents a technical challenge that has been addressed by fewer tools. One

method that is capable of integrating multiple levels of omics data into a sample-wise

enrichment score is PARADIGM (Vaske et al., 2010), a tool that further extends path-

way topology to multiple omics levels with a factor graph approach. In PARADIGM,

graph variables represent the state of cellular entities (genes, proteins or complexes)

with respect to a control or normal level. PARADIGM outputs an integrated pathway

activity score, which is a patient-specific estimation of pathway activity (Figure 1.4).

Figure removed due to copyright restrictions.

Figure 1.4: An overview of the PARADIGM method (Vaske et al., 2010). Structural

pathway information is combined with genomic data to provide patient-specific mea-

sures of pathway activity.

24



Analysis using PARADIGM can suffer when the pathway of interest is not well un-

derstood or incomplete, however. A different method that is more robust to incomplete

data is Pathifier (Drier et al., 2013), which takes the approach of creating a “princi-

pal curve” that captures the variation of data within each pathway, then measuring

each sample’s distance from this curve. Analysing expression data from Sheffer et al.

(Sheffer et al., 2009), Pathifier was used to identify two pathways, CXCR3-mediated

signalling and oxidative phosphorylation, which were significantly associated with

survival in CRC. A more recent example of patient-specific pathway based approaches

is Pathway RespOnsive GENes (PROGENy) (Schubert et al., 2018), a method that

incorporates publicly available drug perturbation experiments to better map the effect

of post-translational modifications and accurately infer pathway activity from gene

expression data under specific conditions.

Increasingly, the trend in large-scale data analysis in the multi-omics space is

towards an integrated, systems approach. Multi-omics exploration and visualisation is

now possible using online data portals such as cBioPortal (Cerami et al., 2012), UCSC

Xena (Goldman et al., 2020), the Genomic Data Commons (Grossman et al., 2016),

and others (I. Subramanian et al., 2020). Such portals consolidate and present multi-

omics data in a user friendly way. Some of these platforms also enable patient-specific

pathway analysis, for example UCSC Xena provides an interface for PARADIGM.

Pathway-based methods have proved extremely effective in managing the com-

plexity of multi-omics data. They allow quick summation of complex data (e.g. RNA-

sequencing) in terms of pre-existing knowledge, and may even be applied in a patient-

specific manner. Pathway approaches however are limited in terms of their pre-existing

biases, making pathway-based methods less suited for novel computational predictions.

However, their reliance on existing knowledge is also what makes pathway approaches

so intuitive, as results may immediately be linked into the context of existing literature.

In many of the more advanced pathway approaches such as PARADIGM, these path-

way analyses begin to focus more upon network-based analysis. Networks represent

an extremely powerful tool for analysis and visualisation of multi-omics datasets, and

have the potential to overcome many of the limitations of pathway approaches.
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1.8 Network and systems biology

Biological systems are organised in a hierarchical fashion, with each level resulting

in ever increasing complexity of the whole organism. Individual molecules combine

to form genes, proteins and metabolites, which interact in diverse ways to form

subcellular structures, processes and pathways (Ladiges et al., 2010). These pathways

are regulated by complex webs of interacting molecules to perform functions like cell

growth, replication, and apoptosis. Descriptions of these multi-level relationships have

been used to create hierarchically linked gene sets, for example gene ontology (GO)

(Ashburner et al., 2000). Groups of individual cells acting synergistically make up

the tissues comprising the macro-scale organs of the body, which in total consists of

trillions of individual cells (Bianconi et al., 2013). The study of molecular biology is

therefore fundamentally an attempt to decode these systems of enormous complexity

into meaningful information. The dominant approach to this problem has historically

been reductionism. The reductionist approach to understand these complex systems

is to reduce them into the smallest still-functional component such as a single isolated

protein or gene. While reductionism has been extremely effective at describing these

individual elements, it is difficult to apply such methodology to diseases that emerge

as a result of the complexity of entire systems, rather than from a fault in an individual

component (Regenmortel, 2004). The obvious example of such a disease is cancer, the

hallmarks of which stem from the countless different ways in which the cell’s own

molecular machinery can be dysregulated (Hanahan & Weinberg, 2000).

Owing to the sheer quantity of biological data now available due to technological

advances such as high throughput sequencing, it is now possible to take a systems

approach to studying biology. Under a systems approach, rather than studying iso-

lated components, the structure of entire biological systems is considered. Molecular

components are conceptualised in terms of their relationships to other components,

i.e. with which other entities do they interact, and how do networks of interacting

components together orchestrate cellular functions? When taking a systems approach,

some of the fine detail of reductionist biology is lost, as a trade-off is always made

between scale and detail (Bornholdt, 2005). The level of this simplification depends
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upon the research at hand, e.g. to understand the dynamics of a particular cellular

process a model on the scale of atoms may be required, but to understand the func-

tion of a complex disease may require an organism scale model. Due to the extreme

variability of scale and data in systems biology, network models are a particularly

attractive abstraction, as they can model the wiring of interactions between molecules,

proteins, cells, or even phenotypes at any scale (Koyutürk et al., 2012).

Networks can be defined from known molecular interactions, such as protein-

protein interactions or gene co-expression, such that network topology reflects biology.

Defining networks in this manner causes the structure to become meaningful, as ver-

tices which are connected are also likely functionally linked, a phenomenon which has

been observed in multiple types of molecular interaction (Barabási et al., 2011). These

networks provide a framework for investigating biological function, either through

simply organising and annotating groups of interacting components, or through more

advanced graph theory applications (Koyutürk et al., 2012). The full network of

interacting molecules within the cell is often referred to as the interactome.

1.8.1 Network and graph properties

Networks are versatile tools for analysing complex systems. Network theory is ef-

fectively an applied subset of mathematical graph theory. A graph consists of a set

of vertices V (otherwise known as nodes), which are connected by a set of edges E

(otherwise known as links). In a network, vertices typically represent a discrete object

or concept, and edges signify a relationship between vertices. Networks are described

as either directed or undirected, depending on whether the relationship is symmetric

or not. In the case of PPI networks, vertices are proteins, and edges represent a bi-

nary PPI. Although biological signalling often occurs with directionality, most PPI

networks remain undirected as the high throughput experimental techniques used to

determine them cannot detect this.

The defining characteristics of networks across diverse biological, sociological and

technological fields have found to be more similar than not, allowing knowledge from

better understood systems to be re-applied in the lesser known (Strogatz, 2001).
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Despite the diversity and complexity of networks found in nature and society, a key

insight into the power of network theory is that the topological characteristics of all

networks may be described by relatively simple mathematical principles.

Degree and degree distribution

Complex networks were for many years modelled using Erdos and Rényi’s random

model (Erdős & Rényi, 1960), assuming that vertices are connected at random, such

that the number of connections per vertex follows a Poisson distribution. This statistic

(connections per vertex, or number of neighbours), is the degree of a vertex. It was

found however that many real-world networks, such as the world-wide web or PPI

networks, do not follow a Poisson degree distribution. Rather, the degree of these

networks tends to approximate a power law (Barabási & Oltvai, 2004). That is, the

probability of any particular vertex having a degree k is given by P (k) ∼ k−γ. In

biological networks (including PPI networks), the value of γ tends to be between 2 and

3 (Barabási & Albert, 1999). These networks were named by Barabási as scale-free,

referring to the ability of power laws to retain their structure at any scale.
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An example network with scale-free topology (small number of high-degree hub vertices)

with vertex degree labelled b): The degree distribution (P (k)) across all vertices of the

network in a.
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An important property of scale-free networks is the existence of a small number

of extremely high degree vertices called hubs. These hubs interact with many other

vertices, but the vast majority of their interacting partners will have a much lower

degree. Hubs are a defining topological characteristic of scale-free networks, and

provide a rationale for why such networks have a robustness to random failure, but

a weakness to targeted attacks (Albert et al., 2000). In PPI networks for example,

deletion of a hub gene is far more likely to be lethal than a protein with low degree,

a phenomenon termed the centrality-lethality rule (He & J. Zhang, 2006; Mw & Ad,

2005).

Modularity

The topology of PPI networks is useful for investigating the functional structure of

cells, as well as predicting the function of proteins based upon their location within

the network (Barabási & Oltvai, 2004). Proteins which are directly interacting with

a protein involved in a specific process have a high probability of also being involved

in the same process (Hartwell et al., 1999), and thus will tend to form “modules”

of highly interlinked proteins which together share functionality. Identification of

functional modules in PPI networks is a difficult (NP-hard in terms of computational

complexity) problem for which many network clustering tools have been developed

(Dittrich et al., 2008; Reyna et al., 2018; H. W. L. Koh et al., 2019).

Path length, clustering coefficient, and the small world phenomenon

Path length counts how many edges are traversed in a path from vertex A to vertex

B. As there are usually multiple possible paths, identifying the shortest path(s) is a

common exercise which will determine the topological distance between vertices. The

average of all shortest paths between all pairs of vertices in a network is the mean

path length, a statistic which describes the overall difficulty of navigating a network.

A related statistic is the clustering coefficient, which is a measure of how interlinked

a given vertex is. The clustering coefficient C of vertex v is given by C = 2n/k(k− 1),

where n is the number of edges which connect the k neighbours of v. The probability
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distribution of any vertex having a particular clustering coefficient is then given by

C(k), where k is the degree. Along with degree distribution (P (k)), this property

is independent of the network’s size and may therefore be used to classify networks

of any scale (Barabási & Oltvai, 2004). Complex networks usually have short mean

path lengths and high average clustering coefficients, referred to as the small world

phenomenon (Watts & Strogatz, 1998). In the context of PPI networks, the small

world phenomenon means that most proteins are only a few interactions away from

each other, and so network perturbations can quite easily have far-reaching effects.

Bottlenecks

When considering all of the shortest paths between pairs of vertices in a network, the

links between network modules have the greatest number of these paths going through

them. The statistic of number of shortest paths is known as betweenness centrality,

and vertices with high betweenness centrality which link functional modules are often

referred to as bottlenecks. These bottleneck vertices have the capability to control

signal flow between modules, and very frequently represent essential proteins (H. Yu

et al., 2007).

1.8.2 Visualisation capabilities of networks

Layout algorithms

Visualisations of networks can be as varied as the data they represent, but perhaps

the most important property to consider in network visualisation is the layout, i.e. the

exact placement each vertex and edge. Although layout has no effect on the actual

topological structure of a network for analysis, choice of layout can greatly assist (or

hinder) interpretation. Manual construction of network layouts is only practical for

the smallest of networks, and so there exist a great number of layout algorithms which

automatically decide on vertex placement. For example, some classes of network are

hierarchical in nature, and thus can be visually represented in a hierarchical fashion.

However, the force-directed approach is possibly the most popular among network
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layout algorithms due to their simplicity of implementation, rapid execution time

and typically impressive and intuitive results (Fruchterman & Reingold, 1991). Force-

directed algorithms essentially simulate networks as physical systems in which edges

are springs exerting a force upon the network (either pulling it apart or together). Such

algorithms typically begin by randomising the position of all vertices, then simulating

the physical system over discrete time steps. Due to the initial randomisation, these

algorithms are non-deterministic.

Vertex and edge attributes

A wide variety of additional information can be integrated into a network in the

form of node or edge attributes such as shape, size, or colour. For example, one

might encode the expression level of a gene as a node attribute or the experimental

confidence associated with an interaction as an edge attribute. Even more complex

types of visualisations such as heatmaps or pie charts may be contained within the

network representation (Shannon et al., 2003).

Network visualisation and analysis tools

Software libraries such as iGraph (Csardi & Nepusz, n.d.), NetworkX (Hagberg et

al., 2008), and graph-tool (T. P. Peixoto, 2017) allow users with programming ex-

perience to construct network visualisations and perform network analyses. Various

free software platforms specifically tailored to biological network visualisation and

analysis also exist, including NAViGaTOR (Brown et al., 2009), VANTED (Rohn

et al., 2012), Cytoscape (Shannon et al., 2003), and many others (Gehlenborg et al.,

2010). Cytoscape in particular has been particularly highly cited due to its extensive

plugin system which allows integrative use of a diverse range of tools (Figure 1.6).

Cytoscape was created by the Institute of Systems Biology in Seattle, and is now

maintained by an international group of open source developers. It is implemented

as a Java OSGi bundle, which makes it cross platform and highly modular. For end

users, this means access to many Cytoscape “apps” which can be used together in any

combination. For developers, Cytoscape is a ready to use and open framework upon
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which network biology tools can be constructed with relative ease, with distribution

to users all integrated within the platform.

Figure 1.6: Visualisation of genes significantly modulated in CRC using Cytoscape

3.8 (Shannon et al., 2003), demonstrating force-directed layout of a large network, as

well as customised vertex and edge attributes.

1.8.3 Protein-protein interaction networks

Networks may be used to model the relationships between any molecular entities,

but among the most common of these are protein-protein interaction (PPI) networks.

A PPI is generally understood to be direct physical binding of proteins occurring

within a particular cell (Rivas & Fontanillo, 2010). Proteins do not usually function

in isolation, rather they form intricate and dynamic connections, acting as integrated

molecular machines to perform biological functions. Mapping out the complete network

of proteins that interact within living cells is therefore a fundamental task required

to facilitate systems biology (Rivas & Fontanillo, 2010).

The human PPI network is extremely large. Current estimates put the number of

human protein-coding genes at around 20,000 (Salzberg, 2018). These genes do not
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necessarily match one-to-one with particular proteins, as the total number of distinct

proteins may be further expanded and complicated by post-translational modifications

(PTMs) such as phosphorylation, and yet further by alternatively spliced isoforms.

Yang et al. were able to confirm that alternatively spliced proteins often have entirely

distinct interaction profiles (Yang et al., 2016), meaning that a major consequence

of alternative gene splicing is widespread expansion of PPI networks. Additionally,

certain proteins will only be expressed in particular subcellular contexts, at specific

developmental stages, or within certain cell types. The result of all these different

variables means there are a combinatorial number of possible states that protein

networks may assume, which alter dynamically between different conditions.

1.8.4 Collection of PPI data

High throughput screening of protein-protein interactions is achieved via methods

including yeast two-hybrid (Y2H), and affinity purification coupled with a protein

identification method like mass spectrometry (together known as AP-MS). The yeast

two-hybrid assay is now a 3 decade old technology (Fields & Song, 1989), yet is still an

extremely popular way to detect binary protein-protein interactions. It has some major

limitations however, such as spurious interactions causing high false positive rates, and

requiring a yeast host, meaning that PPIs of other species are not always detectable

due to missing PTMs (Ruffner et al., 2007; Snider et al., 2015). The requirement of

yeast host cells may be sidestepped however by using more complex mammalian 2-

hybrid approaches which better mimic actual in vivo interactions (Y. Luo et al., 1997).

AP-MS methods in comparison are based on biochemical purification of bait proteins

from cell lysates, followed by mass spectrometry identification of bound preys (Gingras

et al., 2007). This enables identification of PPIs within physiological conditions near

to those of the original cells, although the lysing process does create an unnatural

environment in which unintended disruptions may occur (Snider et al., 2015). Such

unwanted interactions may be controlled for experimentally however using empty

vector controls, and also computationally with databases of known contaminants and

other statistical methods. In contrast to Y2H, AP-MS does not necessarily provide

evidence that interaction is direct, as it also captures co-complex associations (I. W.

33



Taylor & Wrana, 2012).

Various large-scale projects have collected PPI data for public use, for example

Rolland et al., who identified an extremely large collection of binary PPIs via Y2H

screening (approximately 14,000), more than doubling the previously available number,

Huttlin et al., who used AP-MS to create the BioPlex network, which contains over

56,000 protein interactions (Huttlin et al., 2017; Huttlin et al., 2015), and Kennedy

et al., who mapped >6000 PPIs specifically within the EGFR network using AP-MS

(Kennedy et al., 2020).

1.8.5 Interaction dataset curation

The existence of so many independent PPI datasets has led to multiple curation

efforts aiming to make these data publicly available, for example IntAct (Hermjakob

et al., 2004) and BioGRID (C. Stark et al., 2006), but vast numbers of additional

resources with incompatible interfaces exist (Bader et al., 2006). In order to prevent

duplication of curation efforts and provide a common interface of non-redundant PPIs,

the International Molecular Exchange (IMEx) consortium was formed (Orchard et al.,

2012). The IMEx consortium ensures consistency of data across all member databases

by using a controlled interaction vocabulary developed by the Human Proteome

Organization Proteomics Standards Initiative (HUPO-PSI) (Sivade (Dumousseau)

et al., 2018). This ensures interactions are available in a standardised format, and may

be easily filtered using criteria like experimental strategy, host organism, or interaction

type. IMEx (and its constituent databases) has made publicly available extremely

detailed topological maps of the interactome as uncovered by countless individual

experiments. The availability of such data allows complex disease phenotypes to be

studied in terms of the dysregulation of PPI networks (Hastings et al., 2020).

1.8.6 Dynamic re-wiring of PPI networks

PPI networks are not static and unchanging, rather they may be driven by multiple

intrinsic and extrinsic factors to alter, with particular subnetworks only materialising
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in certain tissue and cell-type specific contexts (Yeger-Lotem & Sharan, 2015). Recent

studies have suggested that in fact, widespread re-wiring of network topology can

occur in cancer in response to seemingly minor genomic alterations. Protein-protein in-

teractions may be disrupted by various different types of mutation, causing widespread

interactome rewiring – in cancer, the result of rewiring is typically a bypassing of

normal regulatory controls and constitutive activation of signalling pathways (Bowler

et al., 2015). Many computational methods have been developed for predicting PPI

disrupting mutations. One such example is reKINect (Creixell, Schoof, et al., 2015),

which was used to identify network-attacking mutations within phosphorylation-based

signalling networks by mapping kinase domains and phosphorylation sites. Creixell

et al. then also developed a second tool, KINspect, a computational framework that

assists in understanding kinase-substrate interaction specificity (Creixell, Palmeri,

et al., 2015), which was used to determine if cancer mutations alter kinase specificity

and therefore cause further downstream rewiring.

Systematic experimental studies have also been performed in order to characterise

these mutations, and whether they impair PPI networks. In CRC cell lines, the

Kennedy et al. demonstrated that the dosage of mutant KRAS has widespread network

topology consequences on a physical level (Kennedy et al., 2020). This implies that

perhaps a similar effect may also exist between individuals. Sahni et al. (Sahni et al.,

2015) profiled several thousand missense mutations found across various Mendelian

disorders, using multiple interaction assays to test whether the mutations led to

perturbation of protein-protein interactions. The work by Sahni et al., along with

other studies, is included in the EBI curation of PPI disrupting mutations, which has

curated more than 28,000 instances of experimentally validated mutations (del-Toro

et al., 2019). Given the evidence for widespread network rewiring in cancers such as

CRC, it is not unreasonable to think network rewiring would also occur and be useful

for managing molecular heterogeneity on a patient-specific level.
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1.9 Networks in cancer biology

1.9.1 Integration of multi-omics data

Interpretation of large scale omics is frequently informed through use of networks,

including for identification of drivers and biomarkers, obtaining insights into the

mechanisms of tumour biology through simulation of biological signal transduction,

classification and subtyping of tumours, and developing novel therapeutic interven-

tions (Ozturk et al., 2018). Networks are used for these purposes due to several key

advantages that they provide. One of these advantages is the consistent underly-

ing mathematical structure upon which network and graph theory algorithms may

be developed. Another is the fact that networks are intrinsically well suited to a

systems-level approach to investigating tumour heterogeneity. However, one of the

most significant advantages of a network approach for studying tumour biology is the

ability to integrate diverse data sources into a single model.

Network theory is a unifying framework upon which multi-omics data (e.g. tran-

scriptomics, epigenomics, proteomics) may be integrated from large-scale projects

such as TCGA and the ICGA. Gene expression, mutation, or methylation data may

be compressed and combined into a single node, or separate network layers may be

created for each data type and mapped together. However, one weakness of such an

approach is that because interaction data is extremely dense, with the interactome

containing many millions of interactions, interactome networks will frequently turn

into “hairballs” and become very difficult to interpret. It can therefore be useful to

determine which parts of the network are most relevant given a particular cellular

context. Omics Integrator (Tuncbag et al., 2016) is an example of a tool designed

to use multi-omics data to create high confidence subnetworks which better explain

the observed data. Omics Integrator addresses many issues which are infrequently

considered in multi-omics integration, for example it is able to make use of chromatin

accessibility data, such as from DNase-Seq or ChIP-Seq, to identify transcriptional

regulators which may be responsible for observed gene expression levels or alterations

between conditions. This can be preferable to mapping gene expression to proteins
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directly, as the relationship between mRNA expression and protein levels is not linear.

Another tool designed for network integration of multi-omics is iOmicsPASS, which

uses a Z-score normalisation approach to combine different data types (H. W. L. Koh

et al., 2019). Due to the nature of network approaches however, many integrative

tools such as these have overlapping functionality, and integration of multi-omics is

often merely the first step of a network based analysis. For example, Omics Integrator

and iOmicsPASS both not only integrate multi-omics data, but also offer patient

stratification and subnetwork discovery capabilities.

1.9.2 Driver and oncogene prediction

One major application of networks in cancer biology is to the identification of driver

genes (Ozturk et al., 2018). In terms of specific somatic mutations, individual tumours

tend to be extremely heterogeneous. However, the bulk of these mutations (and

therefore much of the apparent genomic heterogeneity) is due to passenger mutations

(i.e. mutations which do not contribute to tumour development) (Vogelstein et al.,

2013). Non-passenger mutations which are causal for driving tumour development

are known as driver mutations, and are targets of significant therapeutic interest.

Networks provide significant advantages when searching for driver genes as they

allow the problem to be approached as a search for highly mutated modules, rather

than individual genes. This is due to the “disease module” hypothesis, based on the

observation that driver mutations tend to cluster in the same network neighbourhood

(Barabási et al., 2011).

Simplistic methods for determining disease-related vertices may look at direct-

interactions, implicating any vertex that is a direct neighbour of a known disease-

associated vertex in the same disease (Oti et al., 2006), or may rank potential disease-

associated vertices by examining the length of shortest-paths to known disease genes

(George et al., 2006). More advanced strategies for detection of disease modules will

commonly use a diffusion algorithm to determine a network neighbourhood of interest

(Köhler et al., 2008). Köhler et al. demonstrated that using a diffusion or random-

walk approach was superior to the more simplistic direct interaction or shortest path
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methods for detecting potential drivers, using known disease-associated genes from

the Online Mendelian Inheritance in Man (OMIM) database (Hamosh et al., 2000).

This approach was also used by Network-based integration of multi-omics data (Net-

ICS) (Dimitrakopoulos et al., 2018), a more recent example of using network diffusion

to identify drivers and biomarkers. NetICS features integration of genetic and epi-

genetic alterations to detect mediator genes which are responsible for orchestrating

downstream expression changes in an interaction network. NetICS requires a directed

interaction network from which sample-specific rankings are determined using a diffu-

sion process, which are later aggregated to gain population-level gene rankings. The

method was demonstrated to be effective in identifying infrequently implicated driver

genes in 5 different TCGA cancer datasets (Dimitrakopoulos et al., 2018).

Network approaches to driver prediction overcome the limitations of simple mu-

tation frequency tests, which suffer from the “long tail” phenomenon in which most

driver mutations are quite rare across a cohort (Kandoth et al., 2013). The ability

to detect rare drivers means that network approaches have significant potential for

patient-specific driver detection. OncoIMPACT, for example, predicts patient-specific

driver genes in multiple cancer types by linking somatic mutation and gene expression

within predefined interaction networks (Bertrand et al., 2015). OncoIMPACT aims

to explain deregulated genes in tumour samples (detected from differential expres-

sion) in terms of their connectivity to mutated genes. Under their model, mutations

which are linked to frequently deregulated genes are considered to be indicative of

the cancer phenotype, and are thus considered more likely to be potential drivers.

A different approach to predicting personalised driver genes is to create individual

networks for patients, for example Liu et al. developed a statistical approach for

creating sample-specific networks (SSN) (Liu et al., 2016). SSNs were constructed by

comparing pairwise correlations of each pair of molecules in each individual sample

against a group of control samples, using a perturbation approach to gain statistical

significance. In effect, each SSN is a sample-specific gene co-expression network. Liu

et al. found that functional driver genes could be reliably predicted from hubs in these

SSNs, using multiple different TCGA cancer datasets.
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1.9.3 Identification of disease modules

Identifying significantly altered subnetworks

Due to the disease module hypothesis, driver and oncogene prediction in networks

is effectively a sub-problem of the more general task of defining disease-relevant

subnetworks. Identification of subnetworks associated with cancer or other diseases

is often accomplished using a diffusion strategy. Using models based on physical heat

diffusion, such approaches define a set of “hot” vertices of interest from which diffusion

will begin. The “heat” then spreads to surrounding vertices, and can be used to identify

new functional modules, implicating nearby vertices in a particular process or disease.

One popular algorithm utilising this approach is TieDie (Paull et al., 2013), which

uses a tied diffusion process from two separate sets of vertices, and has been applied to

sets of transcription factors and patient specific mutations to identify cancer-related

networks that can distinguish between major breast cancer subtypes (Paull et al.,

2013).

Another widely used diffusion-based algorithm to is Hierarchical HotNet (Reyna

et al., 2018), which has been used for instance for identifying protein networks sig-

nificantly perturbed by post-translational modifications in SARS-CoV-2 infection

(Stukalov et al., 2021). Hierarchical HotNet is the most recent and best performing of

three similar algorithms designed for subnetwork identification, its predecessors being

HotNet (Vandin, Upfal, et al., 2011) and HotNet2 (Leiserson et al., 2015). While all

these algorithms are based on heat diffusion from an initial set of vertices of interest,

the implementation differs. HotNet uses a continuous diffusion kernel, while HotNet

2 and Hierarchical HotNet utilise a discrete random walk approach. In Hierarchical

HotNet, this random walk also incorporates vertex weights and directional edges.

After performing this random walk, the distribution of heat scores is used to create

a similarity matrix. Hierarchical clustering is performed on this similarity matrix,

providing clusters at multiple scales. Hierarchical HotNet then determines whether

the vertex weights are higher than would be expected by chance in particular clusters,

i.e., it identifies significantly mutated/perturbed subnetworks.
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Recently, the PCAWG consortium applied multiple network methods (including

Hierarchical HotNet) to perform an integrative analysis of drivers across 27 tumour

types from the ICGC/TCGA (Reyna et al., 2020) with a focus on identifying differ-

ential functional effects between coding and non-coding mutations. The consortium

found that certain pathways and processes are targeted more than others by specific

classes of mutation, for example RNA splicing pathways are predominantly altered

far more by non-coding mutations than others.

The over-representation of hubs

A common issue with network analyses, including during disease module identification,

is the over-representation of hubs. Hubs may link to almost all other nodes in a

network, and may therefore appear more important to a particular function than they

actually are, biasing results. There are many different approaches to solving the hub

weighting issue, some tools (e.g. OncoIMPACT (Bertrand et al., 2015)) may disregard

hubs entirely for certain calculations, while others will use algorithms which reduce

significance in proportion to the node degree (Tuncbag et al., 2016). An alternative

approach is to use additional information like differential gene expression to identify

hubs which are relevant only in a particular context, as exemplified by the Cytoscape

app CHAT (Muetze et al., 2016).

Patient-specific interaction subnetworks

Some approaches focus on leveraging multi-omics data to identify patient-specific

subnetworks within larger interaction networks. For example, recent advances have

allowed for clustering patient-specific mutations by their 3D position on protein struc-

tures to uncover patient-specific subnetworks in glioblastoma (Dincer et al., 2019).

Supervised learning approaches have also been utilised for identification of sample-

specific subnetworks. For example the iOmicsPASS tool uses nearest shrunken centroid

classification to select predictive features from Z-score normalised multi-omics data,

resulting in patient-specific network scores which can be used to define predictive

subnetworks for patients or conditions (H. W. L. Koh et al., 2019).
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1.9.4 Patient stratification

Non-network sample stratification

To devise targeted treatments, an important task is defining clinically relevant tumour

subtypes. Such classification is typically accomplished using a sample-wise cluster-

ing algorithm. For example, the Consensus Molecular Subtypes (CMS) of CRC were

derived from multiple unsupervised clustering algorithms applied to transcriptomics

data (Guinney et al., 2015) (mainly hierarchical agglomerative clustering). When con-

sidering multi-omics data however, clustering and stratification based on all available

data becomes difficult due to collection bias, noise, and sheer scale. One common

approach to overcome issues such as bias and noise is via consensus clustering (Monti

et al., 2003), in which different perturbations of the data are used to more robustly

cluster samples. Unfortunately this technique suffers from being extremely compu-

tationally intensive and does not scale well with increasing numbers of samples or

omics types. Alternative approaches sometimes utilise supervised clustering, such as

iCluster, a machine learning approach using a latent variable model for integrative

clustering (Shen et al., 2009). However, such supervised methods both require and

are particularly sensitive to feature preselection, potentially biasing analysis.

Network approaches to sample stratification

Networks may be used as a tool for stratification in multiple ways. One network

approach which shows significant utility for robust multi-omics based sample clustering

is to use patient similarity networks, as exemplified by Similarity Network Fusion (SNF)

(B. Wang et al., 2014). SNF clusters samples by creating sample-similarity networks

for each omics type, then integrating those networks into a single similarity network

via nonlinear combination, aiming to overcome bias, noise, and scale. The resulting

fused similarity networks cluster samples over multiple data types, and have been used

to detect subtypes in TCGA cancer datasets. Through analysis of survival differences

between predicted clusterings using Cox regression, SNF based clusterings consistently

provided more significant differences between groups than clustering based on any
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omics data individually (B. Wang et al., 2014). This network-based approach has

favourable performance characteristics in comparison to tools like iCluster (in which

time complexity scales exponentially with input size).

Other network approaches to subtyping aim to group similar tumour samples

based upon molecular interaction network topology, which is possible even if different

specific genes are perturbed (Vandin, Clay, et al., 2011). Network Based Stratification

(NBS) (Hofree et al., 2013) is an example of how cancer cohorts may be stratified into

clinically relevant subtypes in various cancers based on integration of multi-omics with

broader interaction networks. NBS overlays patient-specific somatic mutation data

on a gene interaction network and applies network propagation (Vanunu et al., 2010)

(a method based on random-walks) to smooth patient profiles prior to unsupervised

clustering with non-negative matrix factorisation, followed by consensus clustering.

NBS was demonstrated to be able to define subtypes which were predictive of survival

in ovarian cancer independently of other clinical covariates (such as tumour stage or

age) (Hofree et al., 2013).

1.9.5 Simulating signalling networks

Therapeutic target prediction

A key reason for using networks in cancer research is the potential for identifying novel

drug targets and combination therapies. Development of detailed models which are

able to predict patient-specific response to targeted interventions has been attempted

using multiple different mathematical formulations of cellular signalling networks. One

such formulation is a logical boolean model, in which each edge can be switched on

or off by logical operators (i.e. OR, AND, NOT). This approach has been applied

for example by Béal et al. with their multi-omics integration tool PROFILE (Béal

et al., 2019), or Eduati et al. (Eduati et al., 2020), who utilised logical networks in

order to identify optimal combination therapies within pancreatic cancer using their

tool CellNOptR (Terfve et al., 2012). Eduati et al. were able to demonstrate that a

small, well described logical apoptosis network could be “trained” using experimentally

derived drug perturbation data from biopsies or cell lines, and demonstrated that
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these trained networks could be predictive of novel combination therapies within cell

lines. Other highly detailed signalling models have been developed based on ordinary

differential equations, which model reaction kinetics of each individual interaction

(Hastings et al., 2020). Such approaches are difficult to apply on a large scale however,

due to the requirement of extensive labour-intensive experimentation to derive reaction

kinetics.

Diffusion and random walks

Many network algorithms, especially those for signal transduction simulation and

module discovery, make use of diffusion and random walks, two fundamentally similar

concepts. In general, diffusion describes the movement of something from an area

of high concentration to low concentration (i.e., along a concentration gradient), a

concept prevalent across many scientific fields. From a physical perspective, diffusion

is the result of random migration of molecules due to thermal energy (i.e, Brownian

motion). As particles move, they collide with each other, eventually reaching a state

of equilibrium in a closed system. This physical process of diffusion may be described

using differential equations (Fick’s laws of diffusion (Fick, 1855)), or modelled in a

discrete manner using random walks which simulate the seemingly random paths

of individual molecules (Berg, 1993). In graphs (and networks), a random walk is a

special case of a Markov chain, in which walkers have a certain probability of jumping

to the next vertex at every discrete step (Masuda et al., 2017). Variations on random

walks form the backbone of many algorithms used in the network analysis space due

to their helpfulness in revealing topological properties, such as which vertices are most

central given a set of important vertices, or which paths through the network are

most relevant to a particular function. Bioinformatic techniques for network analysis

including random walks are sometimes termed “network propagation” methods (Cowen

et al., 2017), which includes the related concepts of information diffusion, random

walks, and electrical resistance approaches.
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Biological information flow

Network propagation approaches have been applied to modelling biological signal

transduction and information flow within molecular signalling pathways, such as net-

works of gene regulatory relationships, the physical interactions of PPI networks, or

metabolic networks (Y.-A. Kim et al., 2011). Random walk processes are particu-

larly well suited for modelling signalling in these networks, and were employed by

Stojmirović & Y.-K. Yu to develop an approach for identifying functional information

transduction modules (ITMs) within PPI networks. Their approach initially defined

an emitting and absorbing model, in which contextually relevant proteins were selected

as either the source or sink (destination) of random walks. An important feature of

the ITM approach is the introduction of a damping factor, i.e. a certain probability of

a random walk dissipating. This limits how far a walker can proceed through the net-

work, mimicking the natural information loss that occurs in networks. A later update

of the concept introduced a channel model to better permit directed information flow,

in which both source and sink nodes could be defined (Stojmirović et al., 2012). This

makes it particularly attractive for modelling signalling between cell surface receptor

molecules and transcription factors in large PPI networks, as was done for example

by Kennedy et al. to model the dynamic signalling alterations between different CRC

cell lines (Kennedy et al., 2020). This kind of modelling of dynamic signalling has not

often been applied on a patient-specific basis, however, which is a subject that I aim

to explore more thoroughly in this thesis.

1.10 Developments in spatially resolved omics

1.10.1 Spatial transcriptomics

Cancers are not only variable between patients, but also within single tumours (intra-

tumour heterogeneity), with high levels of genomic heterogeneity within a tumour

being directly associated with poor patient outcomes (Marusyk et al., 2012). Geno-

typically unique subpopulations may exist in different geographical regions, and can
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evolve over time to have unique properties (Bedard et al., 2013). High-throughput

“bulk” RNA sequencing technology (RNA-seq) has been an indispensable tool for

examining genomic function for well over a decade, most typically through examining

differential gene expression. However, the principle limitation of bulk RNA-seq for

tumour biology research is that biopsies must be homogenised prior to sequencing.

This homogenisation results in many cells being blended together, discarding spatial

information and making information on specific cell types difficult to obtain. Thus,

standard RNA-seq experiments are insufficient to decode the complexity of many

biological systems, especially in highly structured tissues such as human brain tissue,

or extremely heterogeneous tissue such as tumour biopsies (R. Stark et al., 2019). This

need is being addressed in two major ways: one is with single-cell transcriptomics,

a technology which has surged in popularity in recent years (Suvà & Tirosh, 2019);

the other is with in situ, spatially-resolved transcriptomics methods which preserve

the spatial position of transcripts under investigation (Crosetto et al., 2015; Moor &

Itzkovitz, 2017; Burgess, 2019; Strell et al., 2019). Many competing methodologies

have been described with varying technical approaches (Lein et al., 2017). The in-

creasing popularity of these spatially-resolved methods is epitomised by the recent

awarding by Nature Methods of “Method of the Year” to spatial transcriptomics (Marx,

2021), a method originally described by Ståhl et al. (Ståhl et al., 2016).

One major class of spatially-resolved transcriptomics technologies is those based

on fluorescence in situ hybridisation (FISH). Single molecule FISH (smFISH) may

be used to perform microscopy imaging of mRNA using libraries of short, transcript-

targeted, fluorophore labelled oligonucleotide probes. This approach has been applied

to detect transcripts within individual cells (Itzkovitz & van Oudenaarden, 2011) and

mammalian tissues (Lyubimova et al., 2013). However, such applications of smFISH

lack effective multiplexing capabilities due to requiring fluorophores which remain

uniquely identifiable when used simultaneously. This limitation may be sidestepped

by attaching a combination of probes to a single transcript at multiple points, which

was demonstrated by Lubeck & Cai to be able to measure mRNA in 32 genes simul-

taneously with super resolution microscopy (Lubeck & Cai, 2012). Alternatively, an

approach which increases experimental complexity but has the potential to vastly
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extend the number of combinations is sequential (or temporal) barcoding, in which

multiple hybridisation and imaging steps are used to bind different probes along tran-

script sequences (Lubeck et al., 2014). Still, all spatial transcriptomics methods which

rely on optical readout suffer from imaging density issues, as transcript localisation

can exceed the physical limits of diffraction. The development of super-resolution

microscopy (B. Huang et al., 2009) is one option that may overcome this, however

using such technology can be cost prohibitive. An alternative low cost workaround is

through physical magnification through expansion microscopy (Wassie et al., 2019), for

example exFISH which links molecules in an expanding hydrogel, effectively increasing

the potential resolution of smFISH imaging (F. Chen et al., 2016).

Figure 1.7: Visualisation of in situ sequencing on a HER2-positive breast cancer

tissue sample by Ke et al. Reproduced with permission from Springer Nature. Each

coloured symbol represents a localised mRNA transcript detection, plotted on top of

fluorescence microscopy imaging.

Sequential barcoding has also been utilised by non-smFISH methods which use

in situ transcriptomic amplification and sequencing. Rather than binding fluorescent

probes directly, such methods synthesise cDNA in place, which is then used as a

target for amplification and sequencing by ligation. This can then be combined with

a sequential fluorescence barcoding approach, as demonstrated by Ke et al. who used

padlock probes followed by rolling-circle amplification and sequencing by ligation to
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generate fluorescently barcoded images of 39 transcripts within breast cancer tissue

samples, including 21 transcripts used within the OncoType DX prognostic panel

(Ke et al., 2013). This approach is very similar to FISSEQ (J. H. Lee et al., 2014),

which maps many more reads, albeit at lower resolution. One drawback of sequential

barcoding approaches is the potentially much lower success rate than single-cycled

smFISH, as if probes fail to bind at any single step the barcode will be incorrect

or invalid. In response to this issue, Chen et al. developed multiplexed error robust

FISH (MERFISH) (K. H. Chen et al., 2015) which utilises error-resistant encoding

schemes to reduce detection errors. This approach allows error-robust imaging of

over 100 distinct RNA species in individual cells. MERFISH is limited by the fact

that an increased number of probes must be used for error-robust encoding, so many

that only transcripts larger than ∼3kb can be targeted with the method. A more

modern sequencing-based method, spatial transcriptomics (Ståhl et al., 2016), uses

microarrays with fixed reverse transcription primers to sequence RNA from tissue

sections. A recent advance (High definition spatial transcriptomics or HDST) has

allowed this method to be extended even further to 2-µm resolution (Vickovic et al.,

2019), allowing subcellular investigation of spatial heterogeneity.

Single-cell RNA sequencing (scRNA-seq) technology has also been adapted to

obtain spatially resolved data, however this tends to be a lower-resolution approach.

For example, a development of the Drop-seq single cell sequencing approach was

developed into Slide-seq (Rodriques et al., 2019), in which an array of distinctly

barcoded beads is used to resolve spatial features to around 10 µm in preserved tissue

sections. A key advantage of Slide-seq is its ease of integration with existing pipelines

for single-cell analysis (Navarro et al., 2017). As a still developing area, analysis

methods for spatial transcriptomics are relatively limited, and so reuse of existing

RNA-seq and scRNA-seq tools is common.

1.10.2 Spatial metabolomics

Spatial metabolomics is a recently emergent field of omics research concerned with

detection and analysis of metabolites, drugs, lipids and other small molecules within
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the spatial context of cells and tissues (Alexandrov, 2020). Similarly to bulk transcrip-

tomics, bulk metabolomics requires extraction of metabolites from samples in a way

that does not preserve tissue or cellular localisation. Mass spectrometry (MS) is the

most common and effective approach to bulk metabolomics (Dettmer et al., 2007). In

contrast to the extreme diversity of spatial transcriptomics technologies, most spatial

metabolomics occurs via some form of mass spectrometry imaging (MSI). MSI allows

spatial resolution of metabolites by dividing a sample into a grid of pixels prior to

desorption of molecules within the pixel, followed by generation of a mass spectrum

for each pixel. While the particular methods of desorption vary, one of the most com-

mon methodologies is to use matrix-assisted laser desorption/ionisation (MALDI), in

which a laser is used to ionise and ablate molecules at every pixel location (Rohner

et al., 2005). This methodology has been applied to gain structural information on

tumour biology, including for example mapping lipid composition within the CRC

tumour microenvironment (Mirnezami et al., 2014), and tracking localisation of the

EGFR-targeted antibody cetuximab in 3D colon cancer cell cultures (Liu et al., 2018).

1.10.3 Analysis of spatially resolved omics

Spatially resolved omics technologies face the same analytical challenges involved

with their bulk counterparts, plus an entirely new host of challenges from the new

dimensions of data being explored. While they naturally allow for intuitive qualita-

tive visualisations, the statistical and computational methods for analysing spatially

resolved omics data are still in their infancy. Basic tools in spatial transcriptomics for

converting raw outputs into matrices of gene counts and spot positions exist, like ST

Pipeline (Navarro et al., 2017), but tools to analyse information taking into spatial

location are sparse. Some of the most promising tools make use of image analysis

and tools of geospatial statistics like point pattern analysis, for example STUtility

(Bergenstråhle et al., 2020). Highlighting the overlap between the spatial and single-

cell fields, STUtility itself is based on the Seurat framework for spatial reconstruction

of scRNA-seq data (Satija et al., 2015). A common approach to spatial omics analysis

when discrete pixels of data are available is to use unsupervised clustering algorithms

like tSNE to classify each spatial point. However, this approach is not applicable if
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discrete pixels do not exist, and does not fully utilise the spatial resolution of the

data. As a fairly recent and underdeveloped field, there is a demand for new analysis

methods. This demand could potentially open up a new space for network analysis,

due to the capability of networks to integrate diverse data sources and the need to

link spatial data to existing, better established technologies.

Following the literature review performed in this chapter, key algorithmic ap-

proaches for analysing tumour heterogeneity, as well as resources for researching

colorectal cancer specifically have been identified. In chapter 2, I will investigate the

different ways in which patient transcriptomic data can inform patient stratification

and be used to predict patient-specific outcomes. In chapter 3, I will integrate my

findings from the previous chapters to create patient-specific network models and

test methods for using these models to predict patient outcomes, with the goal of

creating an approach that integrates multiple sources of data. Finally in chapter 4,

I will leverage network analysis to investigate spatial tumour heterogeneity, a field

that is becoming more accessible due to emerging spatially-resolved technologies. A

summary of these objectives is presented in Figure 1.8.
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2. Patient-specific gene and pathway

analysis in colorectal cancer

2.1 Introduction

For decades our understanding of tumour heterogeneity, and thus stratification of

patients, has been guided primarily by pathology and histology. This is reflected

in standards such as the tumour node metastasis (TNM) staging system (Edge et

al., 2010), in which molecular-based classifications are comparatively rare. Molecular

classification systems have been viable in research since the development of microarray

technology (Perou et al., 2000), however it is only in recent years that a significant

reduction in the cost of transcriptome-wide RNA sequencing technology has made

clinical application of molecular classification a realistic possibility for patient-specific

treatment stratification and prognosis (Van den Berge et al., 2019).

Projects such as The Cancer Genome Atlas (TCGA) which has published data

on thousands of patient samples across 33 tumour types (Hoadley et al., 2018) have

made patient transcriptomics data publicly available. These data from TCGA and

other projects have been used by the Colorectal Cancer Subtyping Consortium to

create a unified classification system for colorectal cancer (CRC) called the Consensus

Molecular Subtypes (CMS) (Guinney et al., 2015), based on more than 4000 individual

tumour samples. The CMS define four subtypes of CRC, CMS1-4, which represent

the best transcriptomics-based classification of CRC to date. CMS1 encompasses the

majority of tumours exhibiting microsatellite instability (MSI), and is characterised

by expression of genes involved in immune infiltration. CMS2-3 in comparison to

CMS1 have been found to exhibit higher chromosomal instability (CIN) as measured

by somatic copy-number alterations. CMS2 is the canonical subtype, with enrichment
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of WNT and MYC downstream targets. CMS3 is described as the metabolic subtype,

featuring an over-representation of KRAS mutations which are potentially the cause

of the subtype’s characteristic enrichment of metabolism-related signatures. CMS4 is

the mesenchymal subtype, which is characterised by the upregulation of genes involved

in epithelial-to-mesenchymal transition (EMT), angiogenesis, and stromal infiltration.

Despite the CMS being the best transcriptomic-based CRC subtype classification

to date, and the first capable of distinguishing more than the MSI subtype in CRC,

much room is left for improvement. The CMS are of limited prognostic value, with the

only overall survival difference between subtypes being the notably poorer outcome

of the mesenchymal CMS4 subtype (Guinney et al., 2015). In addition, 13% of the

samples used to create the CMS were unable to be robustly classified. It has been

suggested that to improve the robustness of classifications, transcriptomics data should

be combined with other molecular data such as proteomics, metabolomics, genomics

and epigenetics, as alterations on all these levels contribute to tumour heterogeneity

(Blanco-Calvo et al., 2015). However, other avenues worth exploring may still exist

for further increasing the utility of transcriptomics data for patient stratification, as

generating such multiomics data for large numbers of samples is unlikely to be feasible

clinically.

Transcriptomic studies typically identify differentially expressed genes between

normal and tumour tissues. These sets of genes may then be used as a basis for clas-

sification. Less commonly examined is the inter-patient heterogeneity of differentially

expressed genes between different tumour samples. Comparison to normal samples is

generally desirable as this controls for non-disease patient differences and noise. From

a systems perspective however, it may not be the case that all molecular differences

which influence overall patient survival are specifically differentially expressed in tu-

mour samples. Rather, inter-patient heterogeneity which is observed between different

tumour samples may be important to consider. As inter-patient heterogeneity is a

powerful driver of differing clinical response and outcomes in cancer (Reuben et al.,

2017), being able to identify patient-specific transcriptomic differences within a cohort

may be key to improving molecular classifications and understanding the tumour

biology of CRC, potentially leading to improved patient-specific outcome predictions
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and new therapeutic targets. Furthermore, many publicly available transcriptomics

datasets lack matched normal data for the majority of samples (as is the case for

TCGA CRC data), meaning that to fully utilise these data it is necessary to identify

patient-specific differences between tumour samples.

A systems approach to improving the utility of transcriptomics data could also

involve summarising gene activity in terms of sets of functionally related genes, i.e.

biological pathways, with tools such as functional enrichment analysis (Jin et al.,

2014). While these tools have been a mainstay of bioinformatics for many years, they

are less commonly applied on a patient-specific level. When such tools do provide

measures of patient-specific pathway activities, they will generally do so with reference

to a normal or control level due to the inherent noise between samples, for instance

PARADIGM (Vaske et al., 2010). Some patient-specific tools for elucidating pathway

enrichment such as Gene Set Variation Analysis (GSVA) (Hänzelmann et al., 2013),

single sample GSEA as described by Barbie et al., 2009, or PLAGE (Tomfohr et al.,

2005) are capable of producing pathway scores which compare only within tumour

samples, but their results are typically used for tasks such as creating survival models,

and are not frequently used to assist with patient classification. Given that a pathway-

level approach is likely to provide more informative results than expression data in

isolation, the combination of focusing on patient-specific heterogeneity and subsequent

dimensionality reduction of this information in terms of significantly altered pathways

may be an effective way to increase the utility of transcriptomics data and generate

clinically relevant classifications in colorectal cancer beyond the CMS.
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2.2 Hypothesis and Aims

To elucidate between-patient molecular differences in tumour heterogeneity, novel

patient-specific methods which capture the most important differences between indi-

vidual tumour samples are needed. I hypothesised that individuals within a cohort

could be characterised by a small portion of patient-specific differentially expressed

genes. I further hypothesised that identifying these patient-specific differentially ex-

pressed (PSDE) genes would be useful for stratifying patients into clinically relevant

molecular subtypes. To address these hypotheses, I proposed the following aims:

1. Develop a method to identify genes that are differentially expressed at a patient-

specific level within a cohort of patients.

2. Test whether PSDE genes are representative of biological characteristics by

examining connections to biological pathways.

3. Use PSDEs as a basis for stratification of patients into novel subtypes, and

determine whether these subtypes are predictive of patient outcome.
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2.3 Methods

2.3.1 Patient-specific differentially expressed genes

I developed a methodology to identify genes specific to each patient tumour sample

which are expressed at a significantly different level from other patients within the

same cohort, without comparison to normal samples. These patient-specific differen-

tially expressed (PSDE) genes for a given patient therefore reveal the most extreme

inter-patient differences in gene expression characterising the individual sample. I ac-

complished this using the combination of two per-gene thresholds, a fold change and a

Z-score threshold. If the expression of a gene was outside of both of these thresholds for

a patient, that gene would be defined as a PSDE gene for that patient. The purpose of

combining the fold change and Z-score thresholds was to identify genes which increase

or decrease in specific samples by an appreciable and biologically significant amount

(hence, the fold change), and are also altered in their expression outside of what might

be considered to be the normal range of the gene in these samples (hence, the Z-score).

This logic aims to prevent genes from being classified as PSDE in too many patients,

thus reducing their usefulness. The fold change threshold F for a gene g (Fg), was

defined as a 2-fold change from the cohort median expression of that gene. The Z-score

threshold Z for a gene g (Zg) was based on a ±1.96 standard deviation from the mean

of logged counts per million (CPM), corresponding to a two-tailed significance test. A

gene g was defined as patient-specific differentially expressed (PSDE) for a particular

individual, if both Fg and Zg held true, i.e.:

PSDEg = Fg ∧ Zg (2.1)

Definition of threshold Fg, two-fold change

For each sample, the fold-change in gene expression (CPM) is given by:

FC g =
x

x̃g

(2.2)
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Where x̃g is the median CPM of gene g. Threshold Fg is then given by:

Fg = |log
2
(FC g)| > 1 (2.3)

As on a log2 scale, a unit increase or decrease corresponds to a two-fold change.

The nature of this relative threshold is to scale with the median CPM - that is, the

higher the median CPM, the higher the absolute CPM difference must be to satisfy a

two-fold change.

Definition of threshold Zg, Z-score

The gene-wise logCPM Z-score is given by:

ZS g =
x− µg

σg

(2.4)

Where x is the logged CPM value, µg the cohort mean, and σg the cohort standard

deviation. Threshold Zg, the Z-score threshold, is then given by:

Zg = |ZS g| > 1.96 (2.5)

An absolute Z-score of >1.96 corresponds to approximately 95% of the area under

the normal curve (or p < 0.05 on the cumulative normal distribution). It is important

to note the different usage of mean for Z-score, and median for fold-change calculation.

This decision was made to account for the negative binomial distribution of CPM

values, in which the mean tends to be skewed much higher than the median, in

comparison to the normal distribution of log-transformed CPM data.

PSDE genes defined in this way could then be divided further into up and down

regulated, based on whether their expression was above or below the median expression

of that gene in the cohort. The thresholds are demonstrated in Figure 2.1. Expression

of gene g in patient A falls below the thresholds, and so the gene is defined as a

down-regulated PSDE gene. Expression in patient D falls above the thresholds, and

so it is defined as an up-regulated PSDE gene for this patient.
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Figure 2.1: The distribution of logged CPM values for an example gene, g, is shown.

The expression of gene g in four patients, A, B, C and D is indicated. Gene g is

identified as a down-regulated PSDE gene for patient A, as it is expressed below both

the Z-score and fold change thresholds, while it is an up-regulated PSDE gene for

patient D. In patients B and C, this gene is not defined as a PSDE gene.

2.3.2 Patient-specific pathway enrichment

Patient-specific pathway activities were determined by performing pathway enrich-

ment analysis on up-regulated and down-regulated PSDE genes separately. Pathway

annotations were sourced from Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa & Goto, 2000), Gene Ontology (GO) (Ashburner et al., 2000), MSigDB

(Liberzon et al., 2015), WikiPathways (Slenter et al., 2018), and Reactome (Fabregat

et al., 2018). A Fisher’s Exact test was used to determine statistical significance. P

values were adjusted for multiple testing using the Benjamini-Hochberg procedure, as

implemented in the statsmodels Python package (Seabold & Perktold, 2010).

To facilitate more effective visualisation of pathway enrichment scores, I introduced

the P-derived enrichment score (ES), a simple metric representing the overall trend in

pathway activity based upon two separate P-values obtained from up-regulated and

down-regulated PSDE gene sets:

ES = (1− pup) + (pdown − 1) (2.6)
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The ES is bounded between ±1, where values close to +1 and -1 respectively

indicate increased or decreased pathway activity. A useful property of this score is to

cancel out pathways which are enriched in both up and down gene sets which prevents

pathways from appearing simultaneously up and down-regulated. The resulting single

value is similar to the enrichment score of methods such as GSEA (A. Subramanian

et al., 2005). The ES method was applied to visualise pathway activities for multiple

sample groups using heatmaps or other visualisations.

2.3.3 RNA-seq data acquisition

Colorectal cancer (CRC) patient samples from The Cancer Genome Atlas (TCGA)

were used as a test case to develop the PSDE method due to the open availability

of a large patient cohort (n=633) and because certain molecular phenotypes in CRC

such as microsatellite instability (MSI) are well characterised and would be useful to

validate findings. TCGA’s CRC cohort is comprised of two projects: TCGA-COAD

(Colon Adenocarcinoma, 461 unique individuals); and TCGA-READ (Rectum Adeno-

carcinoma, 172 unique individuals). RNA sequencing read counts as generated by the

TCGA using HTSeq2 (Anders et al., 2015) were downloaded from the NCI Genomic

Data Commons (GDC) using the GDC data transfer tool1. A file manifest for use

with the transfer tool was created by browsing the GDC web portal2 and selecting all

gene expression files available from patients in the TCGA-COAD and TCGA-READ

cohorts. Corresponding metadata for HTSeq2 counts was downloaded from both the

harmonized GDC portal and the legacy archive3 and merged with a custom script,

as not all legacy information was present in the harmonized metadata (of specific

note, information on the sequencing platform was absent). All counts were compiled

into a single table of samples (identified by TCGA barcode4) and genes (identified

by versioned Ensembl ID) as seen in Table 2.1. Ensembl ID version numbers were

stripped in order to facilitate translation into other identifier types.

1https://gdc.cancer.gov/access-data/gdc-data-transfer-tool
2https://portal.gdc.cancer.gov
3https://portal.gdc.cancer.gov/legacy-archive
4https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/
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Table 2.1: Sample of the TCGA CRC HTSeq table.

TCGA-A6-6654-01A-

21R-1839-07

TCGA-AA-3972-

01A-01R-1022-07

ENSG00000000003.13 2795 2943

ENSG00000000005.5 1 9

ENSG00000000419.11 2901 2020

ENSG00000000457.12 731 332

2.3.4 TCGA metadata analysis

To better understand the composition of the TCGA CRC cohort in preparation for

further analysis, associations between different metadata features such as tumour

grade and survival were explored through multiple measures of correlation. As both

categorical and continuous features were present in the metadata, different association

measures were employed when comparing different feature types. For example, tumour

stage, a categorical feature, has four main categories (i, ii, iii, iv), while days to death,

a continuous feature, could be any positive number. To compare tumour stage and

days to death, Pearson correlation could potentially be employed if every category was

first expanded into a dummy boolean variable (0 or 1). However, when many features

are being compared, the size of the results quickly becomes difficult to interpret. To

circumvent this, I applied measures of association that can compare across different

feature types, so that a single association matrix comparing all features could be

created. In the case that both features were continuous, Pearson correlation was used.

In the case of both being categorical, Cramer’s V (Cramér, 1999) was employed.

To examine the association between a categorical and continuous feature, Pearson’s

correlation ratio was used. This analysis made use of the dython library for python,

which I modified to handle missing values on a per-test basis5.

5The library was previously only able to respond by filling in missing values with a placeholder,

or dropping the entire sample or feature, which would produce difficult to interpret results for the

TCGA metadata, for which many features and samples have incomplete data.
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2.3.5 Preprocessing and normalisation of TCGA RNAseq read

counts

Raw counts were prepared for inter-sample analysis by converting HTSeq counts into

counts per million (CPM) using EdgeR’s cpm() function. CPM is a simple expression

unit for normalised counts that may be used to correct for inter-sample sequencing

coverage. For each sample, the CPM is given by the following equation, where rg

denotes the number of reads mapped to a gene g, and R is the total reads in the

sample:

CPM g =
rg

R
· 106 (2.7)

Genes were filtered to exclude lowly and non-expressed genes. This filtering was

achieved by excluding genes that fell below a threshold of 3 CPM in at least 100

samples, as exemplified with the following R code:

keep <− rowSums(cpm > 3) >= 100

Further count normalisation to compensate for transcriptome composition bias was

performed with edgeR’s calcNormFactors() function, using the trimmed mean of M

values with singleton pairing (TMMwsp) method, an extension of TMM which can

better handle a large proportion of zeroes (Robinson & Oshlack, 2010).

2.3.6 Obtaining consensus purity estimates

The variation in tumour purity between samples, i.e. the percentage of a sample

actually containing tumour cells, is known to influence gene expression differences

between samples (Haider et al., 2020), and so needs to be adjusted for prior to analysis.

It is not clear whether tumour purity is actually an intrinsic, biological property of

the tumour that should be examined closely, or simply an extrinsic, technical artefact

that should be treated as a batch effect. Aran et al. make arguments for both the

extrinsic and intrinsic case, citing the fact that tumour samples from the same patient

have similar purities as evidence for the latter, however by showing tumour purity is
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not well correlated with factors such as survival they suggest that it may be more of

the former. Of interest, the CMS4 subtype was found to be significantly less pure than

the other subtypes in CRC. The reality may be that tumour purity is influenced by

both intrinsic and extrinsic features, and certainly more study into this is warranted.

I obtained estimated tumour purity for the TCGA CRC samples from Supplemen-

tary Data 2 of Aran et al. 2015, in the form of consensus purity estimates (CPE).

The CPE as described by Aran et al. is a normalised consensus of four different meth-

ods for purity estimation, which includes somatic copy-number data, (ABSOLUTE),

gene expression profiles of immune and stromal genes (ESTIMATE), methylation of

immune-specific CpG sites (LUMP) and image analysis of haematoxylin and eosin

stained slides (IHC).

2.3.7 Traditional differential gene expression analysis

Identification of differentially expressed (DE) genes was conducted using edgeR for

tumour vs. normal and male vs. female comparisons, both to validate the sample

metadata, and to compare to the PSDE results. Testing of DE genes between sexes

used only tumour samples, so that the genes identified were only those specifically

DE in tumours. These tests were performed using a simple design matrix as follows:

des ign <− model . matrix (~Platform+Purity+Group )

y <− est imateDisp (y , des ign , robust=TRUE)

f i t <− glmQLFit (y , des ign )

q l f <− glmQLFTest ( f i t , c o e f =3)

topTags ( q l f )

Where Platform is sequencing platform (e.g. Illumina Hiseq or Illumina GA), Purity

is the continuous consensus purity estimate, and Group includes either sex or sample

type levels. This design models sequencing platform and purity as a batch effect, so

that contrasts between the groups of interest can be made with these effects removed.

EdgeR’s glmQLFit() was used to fit a negative binomial generalised linear model for

each gene, after which glmQLFTest() was used to perform a quasi-likelihood (QL) F-test

(Lund et al., 2012) to determine significantly differentially expressed genes between

61



the selected conditions. The QL F-test is suggested for RNAseq datasets due to its

consideration of uncertainty of gene dispersion estimates (Robinson et al., 2010).

2.3.8 Batch effect correction and transformation prior to PSDE

gene analysis

Preliminary examination of the data revealed that a significant batch effect was

present due to the two sequencing platforms used by TCGA (Illumina Hiseq and

Genome Analyser). This was corrected for using removeBatchEffect() function in limma

(Ritchie et al., 2015) which uses a linear model for adjustments. This approach was

also used to adjust for differences in tumour purity. Accounting for tumour purity

in differential expression analysis is complicated as not all genes will be DE between

the tumour and normal states, so scaling all genes by a constant factor may be

inappropriate. TCGAbiolinks for example includes a function TCGAtumor_purity(),

which simply filters samples based on whether they pass an arbitrary purity threshold

(Mounir et al., 2019), sidestepping the issue entirely. For the purposes of modelling

patient-specific gene expression, I decided that tumour purity should be adjusted for

as a technical artefact rather than considered as a biological phenomenon. Therefore,

purity was added as a continuous numeric batch effect which was compensated for in

the matrix provided to limma. The removeBatchEffect() function from limma was used

rather than ComBat (from the R sva package) (Johnson et al., 2007) due to ComBat’s

inability to correct for more than one effect at once.

Adjusted CPM values were log2 transformed so that the distribution of counts for

each gene were approximately normal (in comparison to distributions of non-logged

counts, which are better approximated by a negative binomial distribution (see Figure

2.2). PSDE genes were then identified as outlined in section 2.3.1.
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Figure 2.2: The negative binomial distribution (top) is often used to model CPM.

When counts are log-transformed, they more closely approximate and may be modelled

by a normal (Gaussian) distribution (bottom). The negative binomial distribution is

sampled here at r = 10 and p = 0.5.

2.3.9 Data exploration and cleaning

Dimensionality reduction methods including Principal Components Analysis (PCA)

(from Scikit-learn (Pedregosa et al., 2011)) and Uniform Manifold Approximation and

Projection (UMAP) (McInnes et al., 2018) were used to explore the data, identify

outliers, and to verify the effectiveness of batch correction. Sample read mapping

quality was assessed by summing reads identified as “no feature”, “multimapped”, or

“ambiguous” by HTSeq2 (Figure 2.3). Based on this, low quality samples were defined

as those with a high proportion (>50%) of reads assigned to the aforementioned

mappings, and were excluded from future analysis.
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Figure 2.3: Percentage of reads not mapped to unique gene features across all samples

(identified as “no feature”, “multimapped”, or “ambiguous”). Samples where >50% of

the reads were either multimapped, ambiguous, or aligned to no feature were considered

low-quality, and discarded.

2.3.10 Hierarchical clustering of samples based on PSDE genes

and pathways

Hierarchical linkages were constructed via agglomerative clustering using the Ward

variance minimization method (Ward, 1963) as implemented in SciPy. Hierarchical

clustering algorithms may be agglomerative or divisive - in agglomerative clustering,

every sample is initially its own cluster, and cluster pairs are iteratively merged

to construct the hierarchy. That is, clustering begins by considering local structure.

Divisive clustering is simply the inverse, in which the entire dataset starts as one cluster

and is continuously divided, i.e., clustering begins by considering global structure.

2.3.11 Consensus clustering

Consensus clustering is a resampling-based methodology to assess the robustness

of results obtained from a clustering algorithm. In short, it involves repeated sub-

sampling and re-clustering of data to create a consensus matrix representing how

frequently each pair of samples is clustered together across multiple analyses. The
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consensus matrix M may then be transformed into a distance matrix by taking 1−M ,

which can be used to calculate a final consensus hierarchical clustering.

Consensus clustering was implemented as described by Monti et al. (Monti et al.,

2003). My multithreaded implementation is written in Python with numpy arrays,

and resamples based on a given percentage of samples. Unless specifically mentioned,

all consensus clustering was run 1000 times, and was resampled to 75% of the data

for each run.

2.3.12 UMAP preprocessing for clustering

UMAP is a non-linear (in comparison to linear methods such as PCA) dimensionality

reduction tool which has become extremely popular for clustering of transcriptomics

data, especially single-cell (Becht et al., 2019). UMAP reveals global structure with-

out destroying local structure in large datasets, and has been shown to sometimes

drastically improve the accuracy of clustering (Allaoui et al., 2020). For the purpose

of preprocessing data for consensus clustering, UMAP was run independently for each

consensus fold with a different random seed. This controlled for the variability it intro-

duced as a stochastic method which can be sensitive to initial conditions. The official

Python implementation of UMAP was used for visualisation purposes (McInnes et al.,

2018), however for consensus clustering an alternative R/C++ implementation uwot6

was used as I found it had better cross-platform reproducibility. For clustering pur-

poses, n_neighbors was set to 30, and n_components reduced to 10, as recommended

in the UMAP documentation7.

2.3.13 Determination of optimal cluster number

The silhouette coefficient (Rousseeuw, 1987) was used for validating cluster compo-

sition and to assist with determining an optimal number of clusters during PSDE

gene informed clustering. The silhouette_samples() and silhouette_score() functions from

6https://github.com/jlmelville/uwot
7https://umap-learn.readthedocs.io/en/latest/clustering.html
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Scikit-learn were used to determine the silhouette coefficient from consensus clusters

at each number of clusters k.

Consensus cluster scores were also used to assist in determining an optimal k. The

cumulative area under the curve was used as described by (Monti et al., 2003) to

assess the largest improvement in consensus score, and per-item consensus scores were

also used to construct “consensus plots” similar to silhouette plots.

2.3.14 Clustering visualisation

Clustered heatmaps with row and sample dendrograms were produced by using

seaborn’s clustermap() function. Heatmaps visualised log2 CPM Z-score normalised

data on a per-gene basis. Consensus molecular subtype (CMS) labels for the TCGA

CRC cohort as defined by Guinney et al. were obtained from Synapse8 and highlighted

next to the heatmap for comparison to PSDE gene or pathway defined molecular sub-

types. To visualise how different clusterings compared, diagrams in the "alluvial" style

were generated using a Python script9.

2.3.15 Mutation analysis

Mutation data were downloaded as MAF (Mutation Annotation Format) files from

the GDC. The GDC offers MAF files generated via multiple different variant caller

algorithms, including MuSE (Fan et al., 2016), MuTect, VarScan and SomaticSniper.

MAFs as produced by the MuTect algorithm were chosen due to widespread use

and recommendation of this algorithm in the literature (Xu, 2018). MAF files for

both colorectal cancer TCGA projects (COAD and READ, for colon or rectal ade-

nocarcinoma) were downloaded and concatenated. Mutation enrichment analysis was

conducted for clusters using a Fisher’s exact test, based on the principles of pathway

over-representation analysis, to determine which specific mutations were significantly

enriched in clusters of patients compared to the wider cohort.

8https://www.synapse.org/#!Synapse:syn4978511
9https://github.com/vinsburg/alluvial_diagram
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2.3.16 Survival analysis

Kaplan-Meier analysis was employed to assess differences in patient survival. Cox

regression analysis was used to assess whether certain metadata variables influenced

survival. Both of these types of survival analysis were conducted via the Lifelines

package (Davidson-Pilon et al., 2019) for Python (version 0.25.4). Pairwise and multi-

variate logrank tests were employed to determine statistical significance. In some cases,

the assumption of proportional hazards was violated, i.e., survival curves crossed over

each other, and so survival was also compared using 5 year restricted mean survival

time (RMST) (Royston & Parmar, 2013), and tests of survival differences at the 5 year

time point assessed using a Chi-squared test, first applying log(-log) transformation

to recover additional power (Klein et al., 2007).

2.3.17 Unsupervised network partitioning of IMEx data

The graph-tool Python library (version 2.37) (T. P. Peixoto, 2017) was used to load the

IMEx PPI network as a graph data structure following filtering for human interactions,

which enabled simpler modification and filtering. All interactions in IMEx are assigned

an MIScore which represents the confidence in the experimental evidence backing

each interaction, normalised between 1 and 0 (Kerrien et al., 2012). Edges with an

MIscore <0.6 (0.6 being the minimum level regarded as high confidence interactions

by IntAct (Villaveces et al., 2015)) were removed so that only high-quality interactions

were retained. To detect large-scale topological features, the nested stochastic block

algorithm (T. P. Peixoto, 2014) was used to partition the network into unsupervised

partitions based on topology. Partitions were analysed via gene set enrichment analysis

using pathway databases including Gene Ontology (Ashburner et al., 2000) and KEGG

(Kanehisa & Goto, 2000).
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2.3.18 Localisation analysis of PSDE genes in the human high-

confidence interactome

PSDE genes as determined for each patient in The Cancer Genome Atlas’s (TCGA’s)

CRC cohort were localised to the network partitions as previously detected by graph-

tool and visualised. Ratios of up-regulated and down-regulated genes were compared

to determine whether the distribution of PSDE genes was consistent across regions

detected by unsupervised partitioning. Significance testing of ratios was performed us-

ing prop.test from R 3.6.3, adjusted for multiple testing using the Benjamini-Hochberg

procedure implemented in the statsmodels Python package (Seabold & Perktold,

2010).

2.3.19 Identification of network modules using PSDE genes

Hierarchical HotNet (Reyna et al., 2018) was used to identify topological modules

using PSDE genes as prior information. The high-confidence IMEx human interactome

was used as the base network from which modules were identified. This was performed

for up-regulated and down-regulated genes separately, using the frequency of PSDE

gene occurrence as prior information scores for HotNet.

To investigate PSDE genes in the context of patient-specific network topology,

subnetwork modules of interest were also examined for individual patients. Hierarchical

HotNet was provided with a list of PSDE genes for each patient to obtain statistically

significant PPI subnetworks. Alternative methods for module identification were also

explored, including providing prior information scores based on the frequency of

PSDEs in different subtypes (e.g. from Consensus Molecular Subtypes (Guinney et al.,

2015) or PSDE-informed clusters (see Chapter 2)), and providing these results as

inputs to the Hierarchical HotNet algorithm.

The resulting network modules were analysed using gene set enrichment analysis

using pathway databases including Gene Ontology (Ashburner et al., 2000) and KEGG

(Kanehisa & Goto, 2000). Modules were visualised using graph-tool and matplotlib

(version 3.1.3) (Hunter, 2007).
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2.3.20 PLS-DA model construction and validation

PLS-DA models were constructed using the Python-based Scikit-learn package (version

0.24.1) (Pedregosa et al., 2011). A subset of gene expression data (as informed by

PSDE analysis) was used to train models on a binary classification task (four different

models for patient survival status at 1, 3, 5 and 10 year time points). Survival data

were obtained from TCGA metadata. Cross-validation of the model was done using

the K-Fold method with 10 partitions (i.e., 10-fold cross validation). Data were split

into 10 partitions at random, and the training repeated 10 times, with each repeat

leaving out a different partition to be used as a validation. The performance of the

model at classifying the validation partitions was evaluated using area under the

receiver operating characteristic (AUROC).

2.3.21 Development environment

The majority of my exploratory code was written using Jupyter notebooks, an evolu-

tion of the IPython interactive computing environment (Perez & Granger, 2007). The

Jupyter notebook format means that both code and results (e.g. graphs) are preserved

in a single document. Code which was reused in multiple notebooks was refactored

out into a separate library, biomodule, which contains implementations of consensus

clustering, over-representation analysis, id conversion tools, and more. The tools that

have been used for data preparation and analysis are mostly from the Python (Python

Software Foundation, 2020) data science stack, such as pandas, numpy (Harris et al.,

2020), matplotlib (Hunter, 2007), and scipy (Virtanen et al., 2020). Where R (R

Development Core Team, 2013) packages were used, they were called into Python

using rpy2, so that a consistent environment was maintained even when R-exclusive

software such as edgeR (Robinson et al., 2010) was required. Many of the statistical

algorithms used (e.g. agglomerative hierarchical clustering, dimensionality reduction

algorithms, statistical measures, etc.) were those implemented in scipy. Versions of key

Python and R packages used may be found in tables 2.2 and 2.3, while the runtime

environment is summarized below:
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• CPython version 3.7.5 (2019-11-26)

• R version 3.6.3 (2020-02-29)

• Platform: x86_64-pc-linux-gnu (64-bit)

• Running under: Arch Linux

Table 2.2: Key Python modules and versions.

Version

IPython 7.9.0

numpy 1.17.4

pandas 0.25.3

scipy 1.3.3

matplotlib 3.1.3

lifelines 0.22.8

sklearn 0.21.3

rpy2 3.2.4

Table 2.3: Key R packages and versions.

Version

sva 3.34.0

BiocParallel 1.20.1

genefilter 1.68.0

mgcv 1.8-31

nlme 3.1-144

edgeR 3.28.0

limma 3.42.0

2.3.22 Availability

Full access to code, results, and documentation, including Jupyter notebooks and

standalone scripts, is available on the Lynn lab Bitbucket repository, located at
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https://bitbucket.org/lynnlab.
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2.4 Results

2.4.1 Development of a method to identify patient-specific

differentially expressed genes among CRC patients

To investigate the potential of transcriptomic inter-tumour differences to inform pa-

tient stratification, I developed a methodology to identify a set of genes for each

patient tumour which I described as patient-specific differentially expressed (PSDE)

genes. This methodology involved examining the gene expression distribution for each

gene across the entire patient cohort, and applying thresholds to these distributions to

identify genes that were unusually more highly or lowly expressed compared to other

tumour samples. I tested this method using colorectal cancer (CRC) patient RNA-seq

samples from The Cancer Genome Atlas (TCGA) (n=550 post quality control). An

advantage of using this cohort was that the Consensus Molecular Subtypes (CMS),

the current state of the art in transcriptomics-based classification in CRC (Guinney

et al., 2015), provided a pre-existing molecular stratification of these patients which

was useful for comparison to the results of the PSDE gene method.

Preprocessing of CRC RNA-seq data removes noise and batch effects

Transcriptomics data for TCGA’s CRC cohort (combined TCGA-COAD and TCGA-

READ, n=633) was downloaded from the NCI Genomic Data Commons (GDC) and

preprocessed using a pipeline based on edgeR. The PSDE gene method by its nature

is sensitive to technical artefacts and normalisation. To minimise the impact of batch

effects and technical noise on the method, stringent quality control of genes and

samples was performed, resulting in 13,558 genes across 550 unique patient tumour

samples being retained. Visualisation of the total CPM distribution before and after

filtering confirmed that this quality control was effective at removing lowly expressed

genes which would otherwise bias the PSDE results (Figure 2.4).
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Figure 2.4: Log2 CPM distribution of all genes across all samples before (A) and

after (B) quality control. Genes which were expressed at <3 CPM in at least 100

samples were excluded.

As PSDE analysis aimed to detect subtle inter-patient heterogeneity, it was ex-

tremely sensitive to noise and batch effects. TCGA sample aliquots are assigned

a 22-digit barcode (e.g., TCGA-A6-6654-01A-21R-1839-07 ), which describes tissue

source site, participant, sample type, vial number, portion, and plate number. Batch

effects within TCGA RNA sequencing samples have frequently been reported in the

literature (Lauss et al., 2013), which often include the features described in the bar-

code. Other factors such as date of sample collection and sequencing platform can

also contribute to batch effects. I was able to show, concordant with the findings of

Guinney et al. during creation of the CMS, that the effect of sequencing platform used

(Illumina Hiseq or Genome Analyser) is extremely strong within the TCGA CRC

cohort, making up the majority of the observable variation. Using a 2D UMAP em-

bedding to visualise all samples (Figure 2.5), data from the two sequencing platforms

were clustered nearly entirely separately.
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Figure 2.5: 2D UMAP embedding of log2 CPM transcriptomic data for TCGA CRC

samples before (left) and after batch effect correction with limma (right). Sequencing

platform for each sample is highlighted in red for Illumina HiSeq and blue for Illumina

Genome Analyser.

I corrected the platform effect using the removeBatchEffect() function from limma

(Ritchie et al., 2015) which uses a linear model to perform adjustments. Adjusting

for batch effects such as this was essential as they would otherwise strongly influence

inter-sample differences. I investigated other variables which are frequently cited as

contributing to batch effects within TCGA datasets, such as processing centre, portion,

and plate number, however none clearly contributed to technical variation as strongly

as the platform effect. I found that the platform effect was somewhat confounded with

“portion”, a variable indicating how samples were divided by TCGA prior to analysis,

which was likely a spurious correlation deriving mainly from the sequencing platform

effect.

Cluster analysis identifies outlying groups with high variance

Following batch correction, visualisation via UMAP was performed to ensure that the

platform effect was adjusted for appropriately (Figure 2.5). However, this also revealed

that there were still two outlier groups in the tumour samples, which were variable

enough to cluster separately from the bulk of other tumour and normal samples.
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Using UMAP followed by k-means clustering, these outlier groups were selected and

labelled as seen in Figure 2.6. PCA revealed that these two groups alone contributed

to the majority of variance in the dataset (Figure 2.6, right). For PSDE analysis it

was especially important to clean the input data thoroughly by either identifying the

cause of these outliers and performing batch correction or removing them from the

dataset. There is also precedent for excluding these samples; during creation of the

CMS, Guinney et al. discarded a similar set of outliers using a PCA-based test (the

boundary of this exclusion is shown on the right in Figure 2.6). Interestingly, the

random-forest based CMS classifier was still able to classify most of those samples,

despite them being excluded from the training data.
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Figure 2.6: Following gene filtering and batch effect correction, two outlier clusters of

patient samples were detected within the TCGA CRC data. These clusters were selected

and labelled using k-means clustering on UMAP embeddings (left). PCA revealed that

the single largest component of variance in the dataset was due to these outliers (right).

Vertical lines indicate where outliers were excluded by Guinney et al. for the creation

of the Consensus Molecular Subtypes.

It was apparent that the smaller of the two outlier groups (n=13) had an unusually

high percentage of sequencing reads that were labelled as multimapped, ambiguous,

or unmappable by HTSeq2 (Appendix Figure 6.4). Furthermore, these samples were
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almost entirely of identified as “vial A” samples (as described by the TCGA barcode).

These samples were excluded from further analysis. The remaining larger outlier

cluster (n=38) was more difficult to interpret, having no apparent explanation based

on the metadata. While the vast majority of tumour samples were broadly similar,

including the known subtypes such as metastatic and MSI subtypes, these outliers

were as distinct from other tumour samples as normal samples. To investigate further,

I looked for samples in the outlier cluster which were sequenced multiple times. One

sample in the cluster was sequenced in triplicate (TCGA-A6-2684 ), and while one

run was found within the outlier cluster, the other samples clustered within the main

group. Although it is possible this was due to mislabelling, this difference within the

same sample strongly suggests the cluster was result of an unknown technical batch

effect. Due to these observations this cluster was excluded.

Differential gene expression analysis validates patient metadata

Using differential gene expression (DGE) analysis to compare normal and tumour

samples, I verified that the data labels were correct by identifying genes known to

be overexpressed in colorectal cancer. DGE analysis revealed many genes that were

significantly up-regulated in tumour samples compared to control tissue (Figure 2.7).

Among the most significantly DE genes were CDH3, which has been identified as a

potential biomarker of CRC progression (Kumara et al., 2017), and ETV4, a tran-

scription factor known to promote CRC proliferation when over-expressed (Fonseca

et al., 2021).
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Figure 2.7: Volcano plot highlighting differentially expressed genes between tumour

and normal samples in the TCGA CRC cohort. Some of the most significantly DE

genes are annotated.

DGE analysis was also performed to compare male and female samples. 17 genes in

total were identified as being sex-specific, including the X inactive-specific transcript

XIST. XIST is usually an excellent sex-specific marker, and so was examined to verify

the sex labelling in the sample metadata. I found XIST had near zero expression

in males compared to females, at least in normal tissue (Figure 2.8, left), which

appeared to validate the metadata. Tumour tissues however displayed much more

variance in XIST expression (Figure 2.8, right), as did other sex-linked genes such as

ZFY. As these sex-specific genes could confound later patient-specific analyses they

were excluded, ensuring no sex-specific effects contributed to clustering and PSDE

gene identification. While they were excluded for this analysis, these sex-implicated

genes may in fact contribute to inter-patient tumour heterogeneity. Indeed, the Y-

linked genes may be more important to cancer development than previously believed
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(Kido & Lau, 2015). Previous research (Weakley et al., 2011) has indicated that gene

amplification of XIST occurs in microsatellite-unstable CRC tissues, however only 1

of the 21 male TCGA tumour samples with XIST expressed at >1 CPM were defined

as the microsatellite instability subtype.
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Figure 2.8: Boxplots of XIST (log2 CPM) expression in normal and tumour CRC

tumour tissues, separated by patient sex. Normal samples had very little variance

and were significantly different between sexes (p = 1.2 × 10
−9, Mann-Whitney U-

test). While the variance in tumour samples was much higher, males and females still

exhibited significantly different expression (p = 2.7× 10
−105).

Other than TNM stage, patient metadata is not predictive of outcome

TCGA metadata features corresponding to the transcriptomic samples were examined

in detail to identify any relationships not already controlled by batch effect correc-

tion that could influence later interpretation of the data, including information on

patient race, sex, survival time from diagnosis, treatment, and also details of sample

preparation. Correlations between 23 different metadata features were combined into

a single association matrix (Appendix Figure 6.1). This analysis revealed a significant

difference in days to sample collection between some metadata categories, including

race (p = 1 × 10
−11). However, this did not translate into a significant difference

in overall survival as measured by a log-rank test (p=0.99), and could potentially

be attributable to experimental delays in collecting samples depending on patient

condition and demographic.
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A correlation (Cramer’s V = 0.32) between survival and TNM stage was also

identified, as would be expected. This correlation was weak, however, the stages were

separated into sub-stages (i.e. iii, iiia, iiib etc.) which may have influenced the strength

of the correlation. After compressing stage information into only four main stages,

survival at each stage was analysed with a Kaplan-Meier plot (Appendix Figure 6.2)

and found to be significantly different between all stages except between stage iv

and samples with unreported stage. Later stages indicate increased tumour size, with

stage iv meaning distinct metastases are present. As expected, the survival probability

decreased for patients with later TNM stages.

2.4.2 Identification of patient-specific differentially expressed

(PSDE) genes

I hypothesised that once the batch effects and technical artefacts had been adjusted

for, the transcriptomic heterogeneity of each patient tumour in a given cohort could

be characterised by a small number of patient-specific differentially expressed (PSDE)

genes. PSDE genes were defined based on the intersection of two thresholds, one based

on fold change in gene expression from the median, and one based on Z-score (see

methods section for formal definition). PSDE genes defined in this way could then

be divided further into two categories, up and down regulated, based on whether a

PSDE gene’s expression was over or under-expressed relative to the median cohort

level. I found that the combination of the two thresholds was effective in preventing

too many genes per patient being identified as PSDE. For example, I found that some

genes had extremely high variance, spanning a wide range of CPM values, such as the

FGR gene (Figure 2.9). For this gene, fold changes >2 were common, however the

Z-score based threshold prevented it from being classified as a PSDE gene in too many

samples. This strategy was also effective when CPMs were quite low, where relatively

small absolute changes in gene expression could represent large fold changes.
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Figure 2.9: Distribution of FGR gene expression across 550 CRC tumour samples,

displaying the thresholds used to define PSDE genes. FGR gene expression is shown as

an example of the fold change threshold being less restrictive than the Z-score threshold.

Conversely, a gene distribution may have very low variance, leading to the z-score

thresholds representing relatively small gene expression fold changes. Such was the

case for HNRNPK (Figure 2.10). In this case, the fold change threshold prevented

these Z-score outliers from being classified as PSDE genes.
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Figure 2.10: Distribution of HNRNPK gene expression across 550 CRC tumour sam-

ples, displaying the thresholds used to define PSDE genes. HNRNPK gene expression

is shown as an example of the Z-score threshold being less restrictive than the fold

change threshold.

More commonly however, the two PSDE thresholds were positioned in approx-
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imately the same position in the distribution, as was the case for KRAS (Figure

2.11).
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Figure 2.11: Distribution of KRAS gene expression across 550 CRC tumour samples,

displaying the thresholds used to define PSDE genes. KRAS gene expression is shown

to demonstrate the thresholds being positioned in approximately the same location in

the distribution.

2.4.3 PSDE genes occur frequently within the CRC cohort

PSDE genes were identified for each of the 550 samples retained from the TCGA CRC

cohort after quality control. A median of 403 genes were defined as PSDE per patient,

with 176 up-regulated PSDEs and 227 down-regulated PSDEs (by median). The

frequency of PSDE genes in tumour samples was compared to that of normal samples

(Figure 2.12). As expected, normal samples had far fewer PSDE genes identified than

tumour samples. It was also apparent that the number of up and down regulated

PSDE genes were approximately the same. Strangely, an unusually high number of

PSDEs were defined for some samples. For example, the maximum number of PSDE

genes was 3902 for a single patient (TCGA-CM-5341 ). Interestingly, this effect was

also seen within the normal samples, however with entirely different samples. 4016

PSDEs were defined for patient TCGA-AZ-6605 in the normal samples, whereas in

the corresponding tumour samples only 40 PSDEs were found. As no specific metadata

or biological basis for these extreme outliers could be identified, they were excluded
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as outliers from further analyses.
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Figure 2.12: Histogram of genes assigned as PSDE per sample, split into up and

down regulated gene sets. Left: PSDE genes identified in normal samples, on a log scale

due to a high proportion of zeros (n=51). Right: PSDE genes identified in tumour

samples.

I examined the overall expression of the most frequently identified up and down

PSDE genes (95th percentile) to see whether genes with lower or higher overall expres-

sion tended to be identified as up or down regulated PSDEs more frequently (Figure

2.13). There were no overlaps between the genes in these two sets, although for each

of the frequent PSDE genes, on average 2.7 genes were identified as PSDE in the

opposite direction. I found that down-regulated PSDE genes did in fact tend to have

lower overall expression than average, however the distribution of up-regulated PSDE

genes was not different to the overall distribution. Given the reduced expression level

of down-regulated PSDE genes on average, I hypothesised that analyses based on

them could be more susceptible to random noise, and therefore focused more heavily

on up-regulated PSDE results in subsequent analyses.
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Figure 2.13: Left: Mean gene expression distributions for the 95th percentile of most

frequently up-regulated PSDE genes, 95th percentile of most frequently down-regulated

PSDE genes, and all genes. Right: Expression comparison of up and down regulated

PSDE genes. A Mann-Whitney U-test was used to assess statistical significance (p =

4.4−14)

2.4.4 PSDE genes are significantly enriched for pathways rele-

vant to CRC

Pathway analysis was used to identify biological pathways and processes that were

statistically enriched among PSDE genes. As most genes were identified as up or

down regulated PSDE genes at least once, I took the top 95th percentile of PSDE

genes by frequency for both up and down regulated PSDE genes to perform pathway

over-representation analysis. I examined pathways from multiple databases, including

MSigDB Hallmarks (Liberzon et al., 2015), KEGG (Kanehisa & Goto, 2000) and

Reactome (Fabregat et al., 2017), plus additional gene sets containing common tran-

scription factor interactors. More enriched pathways were identified for up-regulated

PSDE genes (Figure 2.14) than for down-regulated PSDE genes (Figure 2.15). This

was likely influenced by the on average higher expression of up-regulated PSDE genes

(Figure 2.13) which resulted in a higher signal-to-noise ratio. Some databases were

omitted in these figures due to a lack of unique pathway enrichments, i.e., the pathways

that were identified were already represented in other databases.
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Figure 2.14: Statistically enriched pathways identified among up-regulated PSDE

genes. For each pathway database, the top 10 pathways are shown, ranked by P value.

Pathways with FDR < 0.05 are highlighted in bold and with an asterisk.
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Figure 2.15: Statistically enriched pathways identified among down-regulated PSDE

genes. Only the top 5 pathways are shown due to the small number of significant

results. Pathways with FDR < 0.05 are highlighted in bold and with an asterisk.
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Up-regulated PSDE genes were significantly enriched for pathways with roles in

colorectal cancer such as MAPK signalling, a critical pathway for tumour develop-

ment. As has been noted by previous studies using TCGA data (The Cancer Genome

Atlas Network, 2012), genetic alterations in the RAS–MAPK pathway are common

in CRC. In addition, adhesion and epithelial to mesenchymal transition (EMT) path-

ways, markers of late-stage metastatic progression, were also strongly enriched, as

was the myogenesis pathway which has many genes in common with mesenchymal

pathways. Up-regulated PSDE genes were also enriched for inflammation-related path-

ways, including TNF-α and IFN-γ signalling. Among down-regulated PSDE genes,

the enrichment of interactors with the MEIS1 transcription factor was one of the most

significant results. MEIS1 is known to be methylated in CRC tumours with the BRAF

V600E mutation, which is associated with decreased expression of MEIS1 transcripts

(Dihal et al., 2013). Other pathways enriched in down-regulated PSDEs included es-

trogen signalling. ERβ (the primary estrogen receptor in CRC tissues) expression is

typically lost during disease progression in CRC, and has thus been hypothesised to

have a protective role in CRC (Caiazza et al., 2015).

A priori, there was no expectation of enrichment for pathways relevant to CRC.

The fact that both up and down PSDE genes were enriched for these key pathways

suggests that the PSDE approach identifies disease-relevant genes despite the inherent

noise of RNA-seq measurements. More importantly these data suggest that those

pathways which have known functional roles in CRC are also those with the most

inter-tumour heterogeneity. It should be emphasised that the PSDE method does not

identify differences in expression found only between tumour and normal tissues, as

there is no normal comparison made. For this reason, genes which are universally up or

down-regulated across the entire tumour cohort will not be identified as PSDE genes.

An example of this is Wnt signalling. This is a key pathway for CRC development and

progression, yet it was not identified in the pathway analysis of PSDEs due to the

relatively homogeneous activation of this pathway in all tumour samples. To show that

this was the case, I again identified PSDE genes, this time using a combined cohort

of the normal TCGA CRC samples plus a random sample of 20 tumour samples,

with the hypothesis being that from this mixed cohort the expected tumour/normal
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pathway differences would be possible to identify in a PSDE analysis. This resulted

in an extremely strong enrichment of KRAS signalling, MYC targets, and Wnt /

β-catenin signalling within the up-regulated PSDEs of the tumour samples (Figure

2.16), pathways which are not identified in the tumour-only PSDE analysis. This

demonstrated that the PSDE method would identify tumour/normal differences in a

cohort containing both tumour and normal samples.
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Figure 2.16: The top 10 most significant pathways (FDR adjusted) found to be

enriched among up-regulated PSDE genes defined from a combined analysis of 51

normal and 20 tumour TCGA CRC samples.

2.4.5 PSDEs reveal novel patient clusters

I next investigated whether PSDE genes could be useful in predicting patient outcomes.

Hierarchical clustering was performed on the 75th percentile of the most frequently

defined PSDE genes, 2,978 in total, to capture the largest contributors to inter-patient

heterogeneity. To ensure that the clustering was robust, 1000-fold consensus clustering

was applied to the PSDE-gene informed RNA-seq data, with each iteration sampling

75% of the dataset. For each random sample of the data, UMAP was applied to reduce

the dimensionality as a preprocessing step. A consensus matrix was then obtained

which was used to construct the final hierarchical clustering.

Consensus and silhouette methods were used to identify the optimal number of

clusters, k. I found the simpler "elbow" heuristic too unstable to be useful, with

different samplings of the data leading to drastically different results. Consensus

(Figure 2.17) and silhouette (Appendix Figure 6.19) methods agreed that k = 3

was most optimal for k <= 4. However, given that 4 robust divisions already exist
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in the CMS groups, this would be insufficient given the existing known variation.

In addition, the dramatic increase in maximum consensus score for k > 4 (Figure

2.17) indicated the presence of smaller clusters which would be better defined by a

higher k. The mean consensus score across all clusters is not necessarily reflective of

optimal cluster allocation, i.e., to maximise the mean consensus score, the maximum

score for any single cluster is significantly reduced. The increased number of clusters

at k = 5 led to much higher consensus scores for smaller clusters, which may be

observed by the increase in maximum consensus score relative to the mean (Figure

2.17). Given that I would expect the PSDE method to identify rarer subtypes, I

chose to prioritise smaller groups and use k = 5 for the final clustering, resulting in 5

PSDE-gene informed clusters (PICs) 1-5 (Figure 2.18, A) which included all TCGA

CRC samples that passed quality control (n=550). Notably, this included samples

which were unable to be clustered by the CMS classifier (Guinney et al., 2015). These

samples are referenced in Figure 2.18 A as "NOLBL". CRC samples that Guinney

et al. did not attempt to classify were also included, and are referenced in Figure 2.18

A as "unknown". Using UMAP to visualise gene expression data (Figure 2.18, C), it

was apparent that the variation present in the data was well captured by the PICs.
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Figure 2.17: Left: Consensus score visualised as a separated bar plot for k = 5

clusters. Each cluster is labelled on the vertical axis and assigned a unique colour. The

per-cluster mean consensus score is indicated within each cluster. Each sample within

a cluster is sorted in descending order by per-sample consensus score. Right: Mean,

maximum and minimum overall consensus scores for each k evaluated (k = 2 . . . 7).

Maximum consensus was reached at k = 5, despite mean consensus peaking at k = 3.
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Figure 2.18: A) Heatmap of PSDE gene expression. Z-score normalised log2 CPM

gene expression. The consensus dendrogram used to determine PSDE gene informed

clusters (PICs) is shown on the horizontal axis. For comparison, CMS defined subtypes

are annotated on the row below PICs. B) Pathway analysis of genes in each PIC. The

MSigDB Hallmarks pathway database was used as the source of pathway annotation.

Red dots represent pathways enriched among up-regulated PSDE genes, while blue dots

represent enriched pathways among down-regulated PSDE genes. The size of dots is

scaled proportionally with statistical significance. Yellow backgrounds indicate FDR <

0.05. C) 2D UMAP visualisation of all tumour transcriptomic data (post-QC) with

PIC clusters highlighted. D) Kaplan-Meier plot for patients as stratified by PICs.

Statistical significance was assessed using pairwise logrank tests.

Pairwise logrank tests found significant differences for PIC4 vs. PIC1 (p=0.004),
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PIC4 vs. PIC2 (p=0.017) and PIC4 vs. PIC5 (p=0.034). PIC2 was consistently the

most robust cluster in terms of clustering consensus score (Figure 2.17). Samples

in PIC2 strongly overlapped with the well-described microsatellite-instability (MSI)

subtype of CRC. Consistent with this there was also a strong overlap between PIC2 and

the CMS1 subtype. Upon examining specific PSDE genes within this cluster, I found

that MLH1, an essential component of DNA mismatch repair, was the most commonly

identified down-regulated PSDE gene in patients annotated with the PIC2 subtype

(occurring in 62% of tumours). PIC4 was a close second for consensus robustness, and

aligned closely to the mesenchymal CMS4 subtype. Beyond these two clusters with

strong molecular signatures, the remaining PICs had lower consensus scores and were

more mixed in terms of their composition of CMS samples.

Patient samples in PICs are significantly enriched for specific pathways

To characterise the different PICs, I identified pathways enriched in each PIC using

gene set enrichment analysis and the top 3 MSigDB Hallmarks pathways (by p-value)

for each PIC were visualised (Figure 2.18 B). In terms of enriched pathways from

the MSigDB Hallmarks database, some of the most significant results were identified

within the PIC4 cluster. Many of these pathways relate to metastasis, including

significant up-regulation of epithelial to mesenchymal transition (EMT), a process by

which cells gain migratory properties required for the metastasis. Another pathway

which approached FDR significance in PIC4 was upregulation of the apical junction

complex (AJC). Alterations of the AJC may disrupt the intestinal mucosal barrier

and are linked to progression and EMT in CRC (Gehren et al., 2015). Angiogeneis

and vascular endothelial growth factor (VEGF) signalling was also enriched for PIC4

patients, processes essential for proliferation of metastatic CRC. PIC4 samples also had

strong down-regulation of certain cell cycle related pathways. This notably included

the G2-M checkpoint, which prevents activation of mitosis in the presence of DNA

damage, as well as downregulation of targets of the E2F transcription factor, which

is involved in tumour suppression and in proliferation (Kurayoshi et al., 2018). PIC5

was weakly enriched for similar pathways to PIC4, notably angiogenesis, which were

not significant at FDR <0.05.
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PIC2 was strongly enriched for immune response related pathways including the

interferon alpha and gamma pathways (FDR <0.05). The main pathway enriched

for PIC3 samples was tumour necrosis factor alpha (TNF-α) signalling. TNF-α is

a cytokine with many roles, including in energy regulation and lipid homeostasis

(X. Chen et al., 2009). This signature is reflective of PIC3s overlap with the CMS3

metabolic subtype. PIC1 samples were primarily enriched for down-regulated pathways

including EMT. An interesting feature of PIC1 was the downregulation of PD-1

signalling (Appendix Figure 6.7), in comparison with its up-regulation in PIC2. Gene

Ontology enrichment analysis (Appendix Figure 6.6) further suggest that PIC1 is a

pre-metastatic, immunologically cold group, with the downregulation of cell motility

and angiogenesis related processes.

The PIC3 and PIC5 clusters were difficult to characterise using the enrichment

score method. For PIC3 this could be due to the relatively small size of the cluster

(n=63), however for PIC5 with n=147 patients, it appeared that the cluster was highly

heterogeneous on a pathway level. I further examined this heterogeneity by assessing

patient-specific (as opposed to PIC-specific) pathway enrichment. This analysis re-

vealed was that each PIC was often heterogeneous on a pathway level. For example

enrichment of the E2F targets pathway in PIC4 samples was driven by only a subset of

patients (Figure 2.19). These data revealed that even within each PSDE gene defined

subtype there is still significant heterogeneity on a gene and pathway level.

death_true

E2F targets enrichment

PIC4 Patients

Figure 2.19: Patient-specific enrichment of the E2F Targets pathway among PIC4

samples. While pathway activity was decreased in many patients (blue), there was

still considerable heterogeneity within the PIC4 cluster. Some patients in PIC4 had

increased expression of this pathway (red) and for many others, expression was not

altered (white).

91



Patient samples in PICs are significantly enriched for specific mutations

Next, I investigated whether the PICs could be used to stratify patients prognosti-

cally using Kaplan-Meier survival analysis (Figure 2.18, D). This analysis revealed

significantly poorer survival of PIC4 patients compared to all other clusters, excluding

PIC3. PIC3 is a cluster primarily made up of CMS3 (metabolic subtype) samples, but

is also the smallest PIC (n=63), making it more difficult to achieve statistical signifi-

cance in pairwise comparisons. PIC4 for the most part represents a subset of CMS4

(mesenchymal subtype) samples. The best survival outcomes were found for patients

in PIC1 and PIC2, with mean survival times of 1512 and 1519 days, respectively.

I examined the patient metadata of PICs to assess whether any variables may

explain the differences observed. For the most part clusters had approximately equal

proportion of sex, stage, and other variables. One exception was tissue of origin. PIC2

patients were significantly biased towards tumours originating from the ascending

colon and cecum (p = 2.7 × 10
−16, chi-squared test). As PIC2 patients correspond

mainly to the CMS1, MSI-high subtype (Figure 2.20), these data may be explained by

the MSI phenotype being most commonly observed in the proximal colon (Baran et al.,

2018). Another notable correlation with PICs was the proportion of stage IV patients

present in PIC4, which at roughly 30% was significantly higher (p=0.015) than in

other clusters. Given the mesenchymal subtype of PIC4, it is perhaps unsurprising

that it would consist of mainly late-stage tumours.

Some of the larger CMS clusters were split into multiple groups by PIC analysis,

including CMS2 and CMS4 (Figure 2.20. Interestingly, the CMS4 metastatic subtype

was split primarily between PIC4 and PIC5. Despite patients in PIC4 having signif-

icantly poorer survival, a difference between PIC4 and PIC5 samples could not be

identified when considering only the CMS4 samples.
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Figure 2.20: Alluvial plot of CMS cluster compared to PICs, demonstrating patient

classification through PSDE-informed clustering produces splits of certain CMS groups.

In comparison to my PSDE-based approach, only one significant difference in

survival was detected among CMS groups (CMS3 vs. CMS4) using pairwise log-rank

tests (Figure 2.21). Interestingly, the difference that was detected existed between

the metastatic CMS4 subtype and the metabolic CMS3 subtype. PIC analysis of the

CMS3 patients grouped the majority of them into PIC3, which was the only cluster

not found to have significantly increased survival when compared to PIC4. Applying a

log-rank test to CMS3 patients stratified on PIC groups found no difference in survival,

potentially indicating that the observed increased survival was merely an effect of

the small sample size. It is clear from the increased proportion of stage IV patients

in the CMS4 and PIC4 subgroups that the influence of increased progression can be

observed on a molecular level, notably through up-regulation of EMT and related

processes. However, it appeared that the metastatic samples with poorer survival were

less clearly delineated by the CMS. In analysis of CMS4 (Figure 2.21), PIC4 samples

were found to have a mean survival time of 1293 days, compared to 1376 for CMS4,

indicating poorer survival for PIC4 than the overall CMS4 cohort.
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Figure 2.21: Kaplan-Meier survival analysis of TCGA CRC patients stratified by

Consensus Molecular Subtypes.

Patients in PICs are significantly enriched for different mutations

I next investigated whether samples in different PICs were enriched for specific genomic

mutations. Using a Fisher’s exact test for over-representation analysis I identified the

most enriched deleterious mutations (as determined by SIFT score) within each PIC.

I found that KRAS mutations were most frequent with PIC1, with the Gly13Asp

mutation being the single most strongly enriched (p = 1.9 × 10
−30). PIC1 was also

strongly enriched for the Glu545Lys mutation in PIK3CA, a commonly reported

mutation in CRC which has been associated with poorer patient outcome (A.-J. Li et

al., 2018). PIC2 patients had a much lower rate of KRAS mutation. Rather, the most

significantly enriched mutations in PIC2 were Ala668Val in ITGA1 and Arg124Trp in

GPRC5A, a gene abundantly expressed in CRC (Zhou & Rigoutsos, 2014). However,

PIC2 exhibited a vastly increased mutation level generally, with >10,000 specific

mutations being enriched within this cluster. These data are consistent with the global

hypermutation associated with the MSI subtype. PIC3 in comparison had the lowest

number of enriched mutations, with 3,613 significant mutations, the strongest being the

very common mutation Glu545Lys in PIK3CA. PIC4 was strongly enriched for KRAS

mutations (p = 1.2× 10
−6), however the most significant alteration was Arg262Gln
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in TMEM74 (p = 9.6× 10
−6), a gene known to induce autophagy independently of

PI3KC3 (Sun et al., 2017). Autophagy has been demonstrated to be associated with

various tumourigenic responses in CRC, including suppressing the immune response

and driving a switch to glycolysis (Devenport & Shah, 2019). PIC5 exhibited a similar

mutation enrichment pattern to PIC1 with multiple KRAS mutations, as well as

strong enrichment for Glu545Lys mutations in PIK3CA (p = 4.7× 10
−12).
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2.4.6 Clustering on a patient-specific pathway level reveals

significant survival differences

Pathway and mutation enrichment analysis revealed substantial heterogeneity both

between and within PICs. To achieve better stratification of patients based on this

pathway heterogeneity, I next performed robust unsupervised clustering of samples

based upon pathway enrichment scores, rather than PSDE gene expression. Using

enrichment scores obtained for multiple pathway databases (e.g. MSigDB Hallmarks

and KEGG) on a patient specific basis, samples were clustered with the same unsu-

pervised consensus hierarchical clustering methodology used for constructing PICs.

Using this approach, I found KEGG to be one of the most effective pathway databases

for stratifying patients primarily due to having relatively few pathways (increasing

clustering efficiency) which still span many biological processes, and used it to define

four KEGG-informed patient clusters (KIPCs) (Figure 2.22).
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Figure 2.22: Heatmap of patient-specific enrichment scores. Enrichment analysis was

conducted using KEGG as the source database. Four KEGG-informed patient clusters

(KIPCs) were identified, K1-4. The consensus dendrogram is shown on the horizontal

axis, and KEGG-informed clusters are assigned unique colours. CMS clusters are

annotated for comparison below KIPCs.

KIPCs stratify patients differently to PICs yet still reveal significant sur-

vival differences

Kaplan-Meier survival analysis revealed significant differences in survival between

at least 3 KIPCs (K1, K2 and K4), with patients in K4 having significantly poorer

survival than patients in any other group (Figure 2.23, A). I visualised how these

clusters compared to PICs using alluvial plots (Figure 2.23, B). Interestingly, K4

contained a substantial number of samples previously annotated as PIC2. These data

demonstrate that patient-specific pathway analysis can identify a subset of patients

with significantly poorer survival which are not identified using either a PSDE gene

based approach or the CMS subtypes.
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Figure 2.23: A) Kaplan Meier plot of patient survival in each KEGG-informed

patient cluster (KIPC). Statistical significance was assessed using multivariate and

pairwise logrank tests. B) Alluvial-style plot demonstrates the relationship of KIPCs

(right) to PICs (left). Clustering based on KEGG pathway enrichment revealed differ-

ences which were not seen when clustering based on PSDE gene expression.

Examining the patient-specific enrichment scores of each KIPC revealed that the

two smallest clusters, K3 and K4, had the strongest enrichment scores. K3 was charac-

terised by a down-regulation of immune-related pathways, such as “antigen processing

and presentation” and “allograft rejection”, while K4 was effectively the inverse, with

the same pathways up-regulated. Interestingly, “hematopoetic cell lineage” was down-

regulated in K3 patients. I had previously identified the hemostasis Reactome pathway

as significantly down in PIC1 (Appendix Figure 6.7). From the alluvial plot (Figure

2.23, B), it can be observed that the K3 cluster is almost entirely a subset of PIC1

patients. Previous investigations have found that hemostatic factor activation is asso-

ciated with poor prognosis in colon cancer (Ji et al., 2018). These findings corroborate

the results found here, in which the downregulation of hemostatic-related functions

correlates with increased patient survival.
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Patient-specific pathway clustering reveals divisions of CMS1 with signifi-

cantly different survival probabilites

It was apparent that PSDE gene and patient-specific pathway derived clusters resulted

in substantially different stratification of patient survival. While the PICs were broadly

similar to the Consensus Molecular Subtypes, the pathway-guided approach identified

additional patient subgroups that were dependent on the choice of pathway database.

Notably, the patient subgroups informed by patient-specific KEGG (and also MSigDB

Hallmarks, see Appendix Figure 6.8) pathway scores resulted in a split of the CMS1 /

PIC2 subgroups. The MSI-high CMS1 / PIC2 patient cluster was split into 3 KIPCs

with significant differences in survival between CMS1_K3 and CMS1_K4 (p=0.027)

(Figure 2.24).
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Figure 2.24: The survival probabilities for CMS1 patients stratified by their patient-

specific enrichment scores from KEGG (A) and MSigDB Hallmarks (B) pathway

databases.

In the KIPCs, the majority of CMS1 patients were assigned to K4, which was

strongly enriched for immune related pathways, including up-regulation of interferon

pathways. Patients in this group had poorer survival relative to other CMS1 patients,

which had relatively poor enrichment of immune related pathways. CMS1 samples

in K2 were more strongly enriched for metabolic and cell cycle processes, while K1

patients were enriched for pathways including the VEGF, NOD-like, and Toll-like

receptor (NLR and TLR) signalling pathways. While bacterial ligands are known to

increase the expression of angiogenic factors including VEGF via the TLR pathway
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(Bhagwani et al., 2020), it is likely that up-regulation of these pathways occurred due

to ongoing immune cell infiltration. This result was interesting as in other analyses

MSI-high tumours tend to be relatively homogeneous and thus clustered together,

whereas here it is apparent that biologically and perhaps clinically distinct subgroups

exist.
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2.4.7 A PLS-DA machine learning model can identify features

predictive of patient outcome

To further assess the utility of PSDE genes to predict patient outcomes, I developed a

Partial Least Squares Discriminant Analysis (PLS-DA) machine learning model. As a

quantifiable clinical outcome, the survival time of each patient was used as a dependent

variable. I trained the model on the PSDE-informed subset of gene expression data

to predict patient survival status at 1, 3, 5 and 10 year timepoints, with accuracy

was determined using receiver operating characteristic (ROC) curve analysis. For this

binary prediction task the model proved to be most accurate at the 5-year timepoint.

Predictions of patient survival at 5 years were consistently more accurate than would

be expected by chance, with an AUC of 0.655 (Figure 2.25).
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Figure 2.25: ROC analysis of the accuracy of a PLS-DA model to predict patient

survival at 5 years. The model was trained on TCGA CRC transcriptomic data.

From this model I extracted the 95th percentile of genes most strongly corre-

lated with survival. I ran pathway enrichment analysis on both the negative and

positively correlated genes separately, and found that various pathways involved with

colorectal cancer progression were positively associated with poorer survival by this

model (Figure 2.26), including vascular endothelial growth factor (VEGF) signalling
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(WikiPathways: p=0.01, KEGG: p=0.03), key pathways for regulation of angiogenesis,

and epithelial mesenchymal transition (EMT) (MSigDB Hallmarks: p = 1.6× 10
−8).

This indicated that the model was identifying genes from biological processes which

are commonly enriched in metastatic CRC as being predictors of poorer survival.
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Figure 2.26: Most significantly enriched pathways for the 95th percentile of genes

most strongly correlated with death in a PLS-DA model trained to predict patient

outcome. For each pathway database, the top 5 pathways are displayed, ranked by P

value. Pathway enrichment at the FDR < 0.05 level is marked with an asterisk.

The pathways enriched among genes negatively correlated with survival (Figure

2.27) were primarily cell cycle related; including G2M checkpoint, essential for initia-

tion of apoptosis, and E2F transcription factor targets (p = 1.5×10
−8). DNA damage

repair and response pathways were also significantly enriched (Figure 2.18, B). Again,
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these data indicated that the model was capable of identifying genes from pathways

involved with normal cellular homeostasis and repair as important for patient survival.
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Figure 2.27: Most significantly enriched pathways for the 95th percentile of genes

most strongly correlated with survival in a PLS-DA model trained to predict patient

survival. For each pathway database, the top 5 pathways are displayed, ranked by P

value. Pathway enrichment at the FDR < 0.05 level is marked with an asterisk.

A model trained on patient metadata results in increased accuracy

Despite successfully identifying correlations with survival-linked pathways correctly,

I hypothesised that the PLS-DA model performance could be further increased by

adding more relevant data. I further tested a PLS-DA model trained on various meta-

data features instead, to see if this would lead to improved accuracy. This metadata

model included all available features, including CMS, PIC and KIPC annotations,
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excluding metadata directly related to patient survival (i.e., days to death, vital

status, etc.). In fact, I found that the metadata based model was capable of much

more accurate predictions than the bulk transcriptomics data alone, with the survival

predictions now having an AUC of 0.76 as seen in Figure 2.28.
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Figure 2.28: ROC analysis of the accuracy of a PLS-DA model to predict patient

survival at 5 years, trained on TCGA metadata and subtype annotations.

I examined the coefficients of the metadata trained PLS-DA model to determine

which features the model most strongly associated with survival (Appendix Figure

6.3). While variables such as weight, height, and age had reasonably strong negative

correlations with survival as would be expected, the most powerful predictor in the

metadata (once variables which indicated actual survival status were excluded) was

TNM stage, with stage IV TNM being strongly correlated with death and stage I

strongly with survival, a result that would be expected given the large differences

in survival time between these groups (Appendix Figure 6.2). This analysis also

revealed that PIC annotation was more strongly associated with survival time than

CMS annotation. Drug usage data was also correlated with survival, with use of

Avastin or Irinotecan especially (drugs typically employed for metastatic treatment)

correlated with poor survival. Of course, these correlations are mostly reflective of

clinical stratification and treatment, rather than causative relationships.
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2.5 Discussion

Following extensive RNA-seq quality control of the TCGA CRC cohort, including

adjusting for tumour purity, sequencing platform batch effects, and removing outliers,

I was able to identify patient-specific differentially expressed (PSDE) genes for 550

patients. I found that the up-regulated PSDE genes were enriched for pathways

known to be relevant to CRC development and progression, indicating that the PSDE

approach was capable of identifying genes relevant to the disease. I then used these

PSDE genes as a basis for patient stratification through robust consensus hierarchical

clustering, and found prognostically-relevant PSDE-informed cluster (PIC) patient

subgroups. These PICs were enriched for specific functional processes, with statistically

significant differences in survival in at least one group, PIC4, which was found to have

much poorer survival compared to patients in other PICs. Mutation analysis of PIC4

revealed that patients in this cluster frequently had KRAS mutations, a mutation

predictive of failure of epidermal growth factor receptor (EGFR) targeted therapies

found in around 38% of colorectal cancer cases (Oliveira et al., 2004). Pathway analysis

revealed that pathways related to metastasis were also strongly up-regulated in these

patients, while pathways related to the cell cycle were down-regulated. These data

suggest that the PIC4 subtype is a late-stage metastatic CRC subtype. This was

corroborated by the significantly higher proportion of stage IV patients within PIC4.

Some of the CMS defined subtypes (Guinney et al., 2015) were largely reconstructed

by the PIC defined subtypes, especially PIC2 which almost entirely overlapped with

CMS1, the microsatellite-instability (MSI), immunologically active subtype. This

subtype was the most robust to random resampling during consensus clustering,

further increasing confidence in it as a transcriptionally distinct subtype of CRC. One

limitation of this approach was the pathway methodology employed, which divided

up and downregulated gene sets before determining significantly over-represented

pathways. This is a frequently used approach which is often recommended for over-

representation analyses (Hong et al., 2014), however it does mean that a particular

pathway can be found to be both up- and down-regulated. In my analysis, I chose to

ignore such instances, finding them to be relatively rare. In this particular investigation,

105



I chose to focus specifically on pathways dysregulated in a single direction, however

it should be noted that such an analysis could easily lead to a dysregulated pathway

being overlooked.

I found that by clustering based upon patient-specific pathway enrichment in-

stead of genes, novel patient clusters with significant differences in survival could be

identified. This approach, combining PSDE genes and pathway-level hierarchical clus-

tering, was able to identify several distinct patient groups which were not revealed by

gene-level clustering. These clusters were substantially different to CMS groups. This

approach applied to KEGG pathways revealed multiple patient groups with significant

differences in survival, including the K4 subtype which was enriched for immunologi-

cal pathways. Patients in K4 had significantly poorer survival than patients in K2. I

also identified a larger cluster of patients, K3, with significantly poorer survival than

patients in K2. K3 patient samples were significantly enriched for down-regulation of

hemostasis, which has previously been identified as associated with poor prognosis in

colon cancer (Ji et al., 2018).

I also found that pathway-level clustering could subdivide patients with the MSI

subtype. Patients in both the K4 subtype and CMS1 exhibited significantly poorer

overall survival than other CMS1 patients. CMS1 samples in K2 were more strongly

enriched for metabolic and cell cycle processes, while K1 patients were enriched for

pathways including the VEGF, NOD-like, and Toll-like receptor (NLR and TLR)

signalling pathways. It is interesting to note that recently the prognostic relevance of

MSI status (the defining characteristic of CMS1 patients) in CRC has been debated (B.

Wang et al., 2019). My findings suggest that perhaps MSI status is not as biologically

homogeneous as is sometimes thought, perhaps supporting the notion that MSI is

too broad of a classification to be truly prognostically beneficial. It is important to

note that the clusters derived from this pathway-level clustering may over-emphasise

certain groups due to the redundancy of pathway members. This is less of an issue for

pathways sourced from MSigDB due to the specific focus on non-redundancy in that

pathway source, but in KEGG for example, such redundancy is quite possible. For

more robust results, a method to reduce redundancy such as SIGORA (Foroushani

et al., 2013) (an approach which uses gene pairs, rather than single genes, which tend
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to be specific to a single pathway) could be applied. In the absence of this, these

results should be interpreted with care.

Finally, I examined how well a machine learning model was able to predict patient

survival at 5 years when trained on the expression of PSDE genes, and then for

comparison when trained on various metadata factors, including PIC annotations. I

found that using the model trained on metadata resulted in more accurate predictions

than training on transcriptomics data alone, with PICs being one of the most strongly

predictive variables. Of course, this model also incorporated TNM stage, and so is

less useful as a prognostic tool and more a way to evaluate how the PIC and pathway-

derived clusters compare to CMS and TNM as predictive features.

One major finding of this work was that the heterogeneity in pathway activity in

the TCGA CRC patients is not well characterised by the CMS subtypes. While this

pathway-based approach to investigating heterogeneity was successful in uncovering

previously unknown patient sub-groups, there are many ways in which the method

could be improved. The methodology of identifying patient-specific differential ex-

pression outlined here was intended to determine the biological properties which best

identify an individual patient’s cancer given only the results of a cohort of gene ex-

pression samples. There were of course many limitations to using these data in this

way - each patient represents only a single bulk RNAseq measurement taken at a

particular point in time, whereas realistically gene expression can vary quite widely

over time (McIntyre et al., 2011). Additionally, the nature of bulk RNAseq is to

average the expression of multiple cells, meaning that some of the perhaps clinically

important information that defines the heterogeneity of these tumours cannot be

captured by this kind of experiment. One of the first pillars of precision medicine is

the creation of a taxonomy of human disease - in cancer, this importantly includes

creating molecularly-informed disease subtypes (Divaris, 2017). Ideally, this would

be accomplished using multiple layers of omics types per patient, rather than the

single transcriptomics measurement used here. Some additional information could

be collected for these patients - a combination of transcriptomics data with genomic

mutation information, protein studies from the CPTAC (B. Zhang et al., 2014), and

other types of data may result in more effective clustering when integrated using a
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tool such as PARADIGM (Vaske et al., 2010).

My initial attempts at performing patient-specific analysis were hindered due to

batch effects and other technical issues with the RNA-seq data. This may be seen

as an intrinsic weakness of the method, as results are dependent on the average

expression across the cohort of patients, making PSDE analysis highly sensitive to

outliers. The way PSDE genes are defined is therefore heavily dependent on both the

n patients in the cohort, the composition of the cohort, and the way in which data

is preprocessed. This is certainly a limitation, and indeed it meant I had to spend a

large amount of time identifying and removing technical effects and outliers before

the method would work as intended. Inherently though, this cohort-specific bias is

necessary to provide an appropriate population background with which to contrast an

individual. In comparison to the differences in survival found within the CMS groups,

I found more significant differences between PIC clusters, which may inherently be

because the PSDE method is specific to this cohort, and therefore better captures the

heterogeneity in these specific individuals.

Regarding the difference between other single-sample transcriptomic analysis tools

like GSVA (Hänzelmann et al., 2013) or ssGSEA (Barbie et al., 2009), the PSDE gene

approach distinguishes itself in multiple ways. The application of two thresholds is

intended to compensate for both absolute and relative variance (with p-value and fold-

change thresholds, respectively), and is a relatively unique approach. One limitation

of this approach, however is the ultimately arbitrary nature of these thresholds. The

thresholds for PSDE gene definition were chosen as to preserve a small but relatively

even number of PSDE genes for every patient, however by changing these thresholds,

the definition of PSDE genes can be altered. This effect might be circumvented by

using a rank-based approach, such as is implemented in tools like GSVA or Singscore

(Foroutan et al., 2018). Ranking approaches cannot provide a binary classification as

has been shown here, but benefit from retaining potentially relevant genes that may

be missed by the set position of a threshold. Although the PSDE approach differs to

Singscore and GSVA in this way, it is similar in terms of computational expense, as

all of these methods are relatively simple in comparison to more intensive methods

like ssGSEA or PARADIGM (Vaske et al., 2010).
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Beyond more complex measures of single-sample transcriptomic activity, the PSDE

method bears similarities to some pre-existing methods of outlier analysis that can

be used for identifying outlier genes and heterogeneity in cancer cohorts, for example

COPA (Tomlins et al., 2005). Regarding COPA specifically, the PSDE approach

differentiates itself by using a combination of two scaling methods (z-score and fold

change), as well as identifying outliers in both directions (the original COPA only

identified relative increases in expression). Another unique aspect of the PSDE method

is the use of specific threshold to assign significance. However, the stronger rationale for

creating the PSDE approach rather than using a pre-existing method was simply that

these more comprehensive methods do more than was required for this investigation.

The PSDE approach fundamentally differs in terms of its specific goals, which is

primarily to create a profile of genes for each sample in a cohort, resulting in a list

of specific transcriptomic variations in each individual sample from a cohort that

could then be used to compare to individual outcomes. The PSDE method also differs

from existing approaches by focusing on tumour-only data. This has the drawback

of including genes which may be highly variable in normal samples, which would be

undesirable if attempting to identify novel oncogenes or other such tasks. However, it

is possible that the activity of such genes might still contribute to the outcomes of

an individual, and would therefore be important to include in a more comprehensive

model of patient-specific cellular activity, meaning that PSDE genes should be a useful

first step for creating such models.

While they may be interesting to use for analysis of individual differences in

the CRC cohort, and did indeed assist with finding clusters which were significantly

associated with patient survival, I hypothesised that PSDE genes would become

more useful if they were linked in a functional context. I tested this here using gene

set enrichment analysis within pre-defined biological pathways, and found that the

pathway scores could be used to identify in some cases much smaller patient groups

which were clinically distinct in terms of their survival. Still, this approach is limited

by the available annotations within pathway databases, and indeed I found choice of

database strongly influenced the final results. To increase the functional background

required and make PSDE genes more informative, a more robust solution that would
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overcome this could be to integrate a less biased source of information on functional

interactions such as protein-protein interaction data, i.e., a network approach.
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3. Patient-specific network analysis

reveals a subset of colorectal cancer

patients with significantly poorer

prognosis

3.1 Background

The reductionist approach to biology supposes that biological systems may be under-

stood by breaking them down into smaller, more comprehensible parts (Regenmortel,

2004). Reductionism implicates a single or very few molecules as being responsible

for particular phenotypes, an approach that has proved highly successful in molecular

biology research, including for the development of targeted cancer therapies (Boland

& Goel, 2005). However, it is now becoming widely understood that diseases such as

cancer are to a large degree the result of multiple smaller abnormalities in the complex

wiring of the cell, and that to fully understand such systems requires a systems-level

approach (Barabási et al., 2011). In contrast to the reductionist viewpoint, a systems

approach acknowledges that complex systems have emergent properties which are not

evident from their individual components (Gonzalez-Angulo et al., 2010).

Cellular networks are not linear, and seemingly unrelated components may interact

with each other under different circumstances, leading to a complex network of inter-

linked signalling molecules (the interactome) that can alter responses to treatment

and disease outcomes in unique ways across patient populations (Y. Li et al., 2018).

Genomic information alone has seldom translated into viable new therapeutic strate-

gies, as it does not fully explain the genotype-phenotype relationship which arises from
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the complexity of the interactome (Vidal et al., 2011). A priority of modern cancer

research has therefore been to map the interactome, identify the mutations that lead

to perturbations within it, and to develop models that can predict the link between

genotype and phenotype more accurately than “one gene, one function” (Caldera et al.,

2017). The difficulty in identifying single targets for pharmaceutical intervention and

the fact that many drugs, previously assumed to be targeted treatments, have been

found to actually target multiple proteins within particular regions of the interactome

(Keiser et al., 2009), as well as the success of combination therapies which target

more than a single critical pathway in overcoming drug resistance (Bozic et al., 2013),

indicates both the validity and necessity of a systems approach to cancer research

(Junttila & de Sauvage, 2013).

Networks as an integrative tool for systems biology

A key tool for systems biology is the network. Networks allow construction of models

that incorporate information from diverse sources such as gene expression, mutations,

epigenetic markers, protein-protein interactions, and more into a single model (Son-

awane et al., 2019). Mathematical network models benefit from the analysis tools of

network and graph theory (Pavlopoulos et al., 2011) to assist with generating hypothe-

ses on both the origins of diseases and potential therapeutic interventions in a more

integrated fashion (Ozturk et al., 2018). In human cells, phenotypic heterogeneity due

to differential gene expression occurs as a result of extrinsic signals communicated

by activation or inhibition of receptors at the cell surface. This triggers a network

of proteins and metabolites which process signals through a cascade of biochemical

reactions occurring between interlinked signalling pathways. The cell responds via

activation of downstream DNA-binding transcription factors which regulate the ex-

pression of genes (Ma’ayan, 2017). Modelling this complexity is a task that networks

are well suited for. Protein-protein interaction (PPI) networks are commonly used to

represent the physical association of proteins within a cell (Rivas & Fontanillo, 2010).
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Rewiring of the EGFR network due to mutant KRAS

PPI networks are dynamic, with some interactions only occurring in specific cellular

contexts (Yeger-Lotem & Sharan, 2015). Cancer especially may cause widespread

rewiring of the interactome, bypassing normal regulatory pathways (Bowler et al.,

2015). This network rewiring as a consequence of mutation can cause a ripple effect,

influencing not only a single PPI, but causing further downstream rewiring. This

phenomenon was examined by the Protein Interaction Machines in Oncogenic EGF

Receptor Signalling (PRIMES) project, which investigated adaptive rewiring of the

Epidermal Growth Factor Receptor (EGFR) PPI network due to mutant KRAS

(Kennedy et al., 2020). EGFR is a member of the ERBB (also known as HER)

family of receptor tyrosine kinases, which have been extensively investigated as targets

for pharmacological intervention in cancer (Yarden & Pines, 2012). EGFR drives a

complex signalling cascade (the EGFR network) that modulates cellular processes

critical to cancer progression, such as proliferation and apoptosis (Figure 3.1).

Figure 3.1: Several canonical signalling pathways downstream of the epidermal growth

factor receptor (EGFR) are responsible for mediating essential oncogenic processes.

When constitutively activated by mutation, KRAS can bypass targeted inhibition of the

EGFR, resulting in tumours which are resistant to anti-EGFR therapy.
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The biological responses to EGFR signalling are ultimately mediated by the ac-

tivation of downstream transcription factors (Wee & Z. Wang, 2017). EGFR itself

is overexpressed due to gene amplification or increased translation in many types

of cancer including colorectal cancer (CRC), and is associated with poorer patient

outcomes including lower survival rates and higher recurrence (Nicholson et al., 2001).

Anti-EGFR treatments (like the monoclonal antibody cetuximab) are commonly used

in the treatment of CRC, however the efficacy of anti-EGFR treatments is severely

reduced due to mutation of the KRAS oncogene, which is found in around 38% of

colorectal cancer cases (Oliveira et al., 2004). Mutated KRAS can bypass EGFR

inhibition, resulting in secondary resistance (Knickelbein & L. Zhang, 2015). Despite

considerable research, KRAS was described as essentially undruggable for many years

(Papke & Der, 2017). It is only recently due to the success of allele-specific covalent

inhibitors against the KRASG12C mutant that the designation of “undruggable” has

been reconsidered (Moore et al., 2020).

To investigate how KRAS mutation rewires the EGFR network, the PRIMES

project experimentally mapped the EGFR protein-protein interaction network using

affinity purification mass spectrometry (AP-MS) under high and low levels of mutant

KRAS expression (Kennedy et al., 2020). Systematically mapping >6000 PPIs in the

EGFR network, these experiments revealed the structure of the EGFR network in

CRC cells and how the network is rewired at a PPI level in cells expressing high levels

of mutant KRAS.

Prediction of node removals and edgetic effects in networks

Mutations which affect PPIs do not necessarily cause an entire gene to be disrupted,

but may instead have a subtle influence on network rewiring across the interactome of

cancer cells (Yi et al., 2017). Protein interaction networks may sometimes be altered

in a knockout-like fashion (causing all interactions to be lost) but may also cause

interaction perturbation (edgetic) effects. Systematic investigations of such mutations

(Sahni et al., 2015) have aimed to characterise these mutations, and whether they

impair PPI networks. A dataset of experimentally validated PPI disrupting mutations

is curated by the EBI (del-Toro et al., 2019), and consists of more than 28,000
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specific mutations. Despite the availability of such data, the number of potentially

PPI disrupting mutations is vast. Mutations that cause PPI disruption are often

localised on the protein interface, a fact that can be exploited to predict potentially

disruptive mutations to PPI interfaces computationally (Meyer et al., 2018).

In the context of interactome models, the removal of nodes (i.e. complete loss

of gene products) may arise due from nonsense mutations, out-of-frame insertions,

deletions that result in a major truncation, gene knockouts, and RNAi-mediated gene

expression knockdowns (Charloteaux et al., 2011). In contrast to node removals, ed-

getic perturbations are those that result in the specificity of interactions between nodes

changing. These are likely caused by substitution of a single amino acid in protein-

binding sites, or truncations that preserve particular protein domains (Charloteaux

et al., 2011). Network models featuring edgetic perturbation have been proposed in

order to explain dysfunctions underlying human disease, which has led to the discovery

that edgetic perturbations have distinct functional consequences when compared to

node removal, as many cases exist in which one gene is linked to multiple disorders

(Zhong et al., 2009). Work into making global interactome rewiring analysis in cancer

possible has also included annotating cancer alleles by how mutations influence kinase

interaction edgetics (Y. Wang et al., 2015). Due to the phenotypic heterogeneity of

cancer, how network perturbations and rewiring contribute to oncogenesis is a subject

of particular interest.

Alternative splicing is another process that has been shown to lead to edgetic

remodelling of PPI networks (Ellis et al., 2012), with splice variants potentially ex-

hibiting altered interaction profiles. Alternatively spliced proteins may be highly

functionally divergent, with one study profiling hundreds of alternatively spliced pro-

tein isoform pairs finding that the majority of isoforms share less than 50% of their

interactions (Yang et al., 2016), meaning that protein interaction capabilities are

widely extended by use of alternative splicing.
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Patient-specific networks for precision medicine

Due to the availability of large-scale individualised gene expression data, many com-

putational approaches now exist that attempt to capitalise on the potential of network

approaches to inform patient-specific outcomes in cancer and other diseases (Hastings

et al., 2020). These network-based approaches make use of network and graph theory to

predict disease progression, treatment options, and patient outcomes. Patient-specific

network models further increase the potential avenues available for re-application and

combination of molecular data, and may help to reveal the functional relationships

underlying diseases (Barabási et al., 2011).

A common application of the integration of patient-specific data with networks is

to improve patient stratification by more accurately modelling inter-patient tumour

heterogeneity. For example, network-based stratification (NBS) (Hofree et al., 2013)

is a method for the integration of tumour genomes with gene networks, in which

patients with mutations in similar network regions are clustered together using an

unsupervised method. When tested on ovarian cancer datasets, heterogeneous popu-

lations of tumours could be divided into clinically meaningful subtypes determined

by molecular profiles. In a related fashion, integrative patient-specific networks are

often used to enhance regression and classification tasks. Regularisation of data with

respect to network structure (C. Li & H. Li, 2008) has been used to improve the

accuracy of disease gene classification tasks. For example, the dgSeq algorithm (P.

Luo et al., 2017) combines PPI networks and gene expression data from individuals to

train logistic regression models for this purpose. Similar logistic regression approaches

which integrate network structure have been proposed for tasks such as biomarker

prediction (K. Zhang et al., 2018), or predicting likelihood of metastasis (Chuang

et al., 2007).

Patient-specific network approaches also commonly make use of probabilistic mod-

els such as bayesian networks and factor graphs (both subclasses of probabilistic

graphical models (PGMs)). These structures encode the conditional dependency re-

lationships between random variables (such as the expression of different genes) as a

network. These mathematical structures are useful as they facilitate Bayesian inference
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of the likelihood of particular outcomes, which is especially useful when the observed

data is incomplete. PARADIGM (Vaske et al., 2010), for example, is a popular tool re-

liant on PGMs to make inferences of patient-specific pathway activities. PARADIGM

is able to determine patient-specific gene activity in particular pathways by incorpo-

rating curated pathway interactions with gene expression data in a PGM. The unique

aspect of PARADIGM is its ability to integrate any number of genomic and functional

genomic datasets to infer pathway perturbation in a single patient. A more recent

example of the application of PGMs was the model designed by Ha et al., 2018 which

performs personalised cancer-specific integrated network estimation (PRECISE) (Ha

et al., 2018). Interestingly, PRECISE uses a single topological network structure for

different cancer types, using patient-specific information including gene expression to

estimate prior probabilities in the model. A major drawback of PGMs is that making

inferences using them is computationally expensive, which is only exacerbated when

attempting to apply them on a patient-specific basis. Using such models to integrate

data on the scale of an entire PPI network would be infeasible.

Logical models are another network formalism which have been successfully adapted

to patient-specific data. These networks are generally relatively small but highly de-

tailed mechanistic models of specific biological pathways. They have been adapted to

simulate signalling downstream of the EGFR network (Samaga et al., 2009), and have

successfully been applied to stratify breast cancer patients (Béal et al., 2019) and to

predict possible patient-specific drug targets in brain tumours (Barrette et al., 2018).

A weakness of logical models is the small scale upon which they operate. Logical

networks tend to be small as a high level of detail is required for each interaction in

order to produce a valid mechanistic model.

Topological network properties in cancer

Many measures exist which quantify the topological characteristics of networks, some

of which have been directly linked to biological properties. (Breitkreutz et al., 2012)

showed that reduced network complexity corresponded to increased survival across

different cancer types. Degree distribution entropy (H) may be calculated using the

equation H = −
N−1∑

k=1

p(k) log p(k), where N is the number of nodes in the given

117



network, and p(k) is the degree distribution. To calculate degree distribution, with a

network of N nodes, nk of which have degree k, the degree distribution may be obtained

by P (k) = nk

n
. B. Wang et al. used degree distribution entropy as a measure of network

heterogeneity, finding that it was an effective measure of resilience to random failures

in scale-free networks (B. Wang et al., 2006). Reduced network complexity would

mean a more easily disrupted system. In the context of cancer signalling networks,

this could mean a network that is more easily targeted by therapeutic interventions.

Node degree, or connectivity, has been used as a measure to demonstrate that

proteins mutated in cancer on average tend to have a higher connectivity than other

proteins in PPI networks (Jonsson & Bates, 2006). Very highly connected nodes are

hubs, and typically biological networks have only a few of these nodes (Barabási,

2016). Related to degree is clustering coefficient, a measure of how likely nodes in

the network are to be connected, a metric which is generally very high in biological

networks (Barabási & Oltvai, 2004). This may be assessed locally for a given vertex

(Watts & Strogatz, 1998) or globally for a network using either the average of local

coefficients or by the ratio of closed to open node triplets (groups of three nodes

connected by 2 (open triplet) or 3 (closed triplet) edges.

Betweenness centrality is another measure frequently examined in biological net-

works which describes the number of shortest paths which pass through a given node.

It is of interest in the context of cancer networks as potential therapeutic targets and

biologically essential nodes often tend to have a high betweenness centrality (Gursoy

et al., 2008), identifying them as "bottleneck" nodes. Bottleneck nodes are signifi-

cantly less well co-expressed with their neighbours than non-bottleneck nodes in PPI

networks (H. Yu et al., 2007). There are many measures beyond betweenness which

are designed to assess “centrality” in graphs. A benchmarking of different centrality

measures by Sharma et al. suggested that PageRank may be a more useful metric than

betweenness for the task of identifying essential nodes in a network (Sharma et al.,

2016). A less common centrality metric is central point dominance, which measures

the degree to which a single node can dominate the network (Freeman, 1977).
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Modelling alterations to network topology in large networks

There are various ways in which information about network topology may be extracted

and potentially applied on a patient-specific level to investigate specific hypotheses.

Kennedy et al. for example used information flow analysis to model alterations in

signal flow from EGFR to downstream transcription factors in response to high and

low levels of mutant KRAS expression (Kennedy et al., 2020). Information flow

analysis is of particular interest as it allows assessment of which subnetworks and

downstream outputs are preferentially visited, given a particular network topology.

This is achieved by the simulation of information via random walks from a source

node to downstream sink nodes (Stojmirović & Y.-K. Yu, 2007). Random walkers

are bootstrapped multiple times, so that eventually nodes with much higher or lower

number of walkers passing through them can be identified. Information flow analysis

is a specific example of a concept in network biology sometimes called “network

propagation”, in which biological signal propagates from prior information nodes to

implicate nearby nodes. This approach relies on the key assumption that biological

molecules which are related in function tend to interact with one another (Cowen

et al., 2017). PageRank is one of the more famous examples of a network propagation

algorithm (Brin & Page, 1998). Originally designed for ranking web pages for Google,

it has also been applied to similar tasks in biology such as determining the importance

of a particular genes within biological pathway (Ozturk et al., 2018). An advantage of

network propagation algorithms is that running them even on relatively large networks

(of the order of thousands of nodes and edges) is not computationally expensive.

Modelling heat diffusion is another network propagation approach, typically used

to identify subnetworks of interest to a given condition in PPI networks. An example of

this concept is TieDIE (Paull et al., 2013) which uses a heat diffusion process to infer

the gene network structure in individuals, revealing subtype-specific networks. The

method is given one interaction network, a set of upstream nodes such as mutation

data and also a set of downstream nodes, for example transcription factors, then

concurrent diffusion processes are run from each of these sets of nodes – the core set

of nodes which are covered by both of these diffusion processes is inferred to be a gene

network relevant for the phenotype being studied. TieDIE and related approaches such
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as signalling pathway impact analysis (SPIA) (Tarca et al., 2009), HotNet (Reyna

et al., 2018) and ITM Probe (Stojmirović & Y. K. Yu, 2009) at their core all make

use of some variation of network propagation.

Previous studies have identified topological statistics such as measures of network

complexity to be significantly correlated with survival across different cancer types

(Breitkreutz et al., 2012), however a similar effect has not been demonstrated using

individual patient networks. Many other topological properties which are known to

be biologically relevant (for example node connectivity, which is increased in proteins

mutated in cancer when compared to other proteins in PPI networks (Jonsson &

Bates, 2006)) may also be relevant on a patient-specific basis, however existing studies

generally assume the same network topology across different patients. It is apparent

that there is a significant gap in the literature with regard to patient-specific network

approaches to disease which focus on individual differences in network topology on

a large scale, such as in experimentally derived PPI networks. Given the utility

of network propagation algorithms for extracting biologically relevant topological

information in large networks, applying them on a patient-specific basis may reveal

new insights into network level inter-patient heterogeneity.
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3.2 Hypothesis and Aims

Previously, I had hypothesised that stratifying patients based on patient-specific

differentially expressed (PSDE) genes would be likely to reveal clinically relevant

molecular subtypes of colorectal cancer (CRC). Increasing evidence suggests that

protein-protein interaction (PPI) networks are altered in diseases including cancer,

and that such changes contribute to pathogenesis and patient outcomes. Network

and pathway analysis provide frameworks to model the complexity of this cellular

dysregulation. To date however, most approaches are applied in a way that assumes

the same network topology in different patients.

I hypothesised that creating patient-specific networks of key signalling pathways

in CRC would allow network propagation tools such as information flow analysis

(Stojmirović et al., 2012) to stratify patients into different subgroups with altered

survival outcomes. To address this hypothesis, I proposed the following aims:

1. Combine patient-specific gene expression data from The Cancer Genome Atlas

(TCGA) with PPI data to create personalised network models of the EGFR

network in each CRC patient.

2. Identify topological properties of these patient-specific networks which are pre-

dictive of patient survival and outcomes.

3. Simulate dynamic signal flow within these patient-specific networks to identify

differential signalling to downstream transcription factors.
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3.3 Methods

3.3.1 Acquisition of protein-protein interactions

To create a network model which could later be personalised for individual patients,

a source of known protein-protein interactions (PPIs) was required. The International

Molecular Exchange (IMEx) consortium curates a non-redundant set of PPIs which can

be accessed from centralised point (Orchard et al., 2012). The entire IMEx database

was downloaded (last accessed October 2020) to obtain all publicly available binary

PPI interactions1 in Proteomics Standards Initiative - Molecular Interaction (PSI-MI)

TAB format (MITAB). The PSI-MI parser2 developed by IntAct (Orchard et al., 2014)

was used in a custom Java class to extract the human subset of IMEx PPI interactions,

defined by interactions in which each protein and the host organism were annotated

with the NCBI taxonomy ID 9606 (human). IMEx also includes some non-protein

interactors, however these were excluded as the vast majority of curated interactions

are between proteins.

3.3.2 Constructing the EGFR PPI network

The Epidermal Growth Factor Receptor (EGFR) and dysregulation of its downstream

signalling pathway is critical to the progression of colorectal cancer (CRC). This

network was the focus of the PRIMES project, which recently mapped the EGFR

pathway in the HCT116 and HKE3 CRC cell lines using affinity purification mass

spectrometry (AP-MS) (Kennedy et al., 2020). Due to the availability of these data

and the relevance of EGFR in CRC, the PRIMES HCT116 network was used as a

base network model to develop a proof-of-concept patient-specific network approach.

The PRIMES HCT116 network was used rather than the HKE3 network as HCT116

cells exhibit a transformed phenotype and express higher levels of mutant KRAS than

HKE3 cells (Kennedy et al., 2020). All proteins used as baits and identified as preys

1ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab/intact.zip
2available from https://github.com/MICommunity/psimi
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using AP-MS in the PRIMES HCT116 EGFR network formed the initial nodes of a

comprehensive EGFR PPI network.

Addition of prey-prey interactions

As AP-MS was used to map bait-prey interactions by the PRIMES project, prey-

prey interactions were unable to be identified. To fill in these missing interactions,

the network was supplemented with interactions known to occur between the prey

proteins, based on other experimental data obtained from IMEx. Quality filtering

of IMEx PPIs was performed by retaining interactions with an IntAct MI score (an

interaction confidence score normalised between 0 and 1 (Kerrien et al., 2012)) >0.3.

Addition of canonical EGFR proteins and transcription factors

Although the PRIMES network identified preys for almost 100 bait proteins, some

known members of the canonical EGFR pathway were not used as baits (due to

cost and logistical reasons). A curated list of missing canonical proteins and their

interactors in IMEx were added to supplement the PRIMES network (Appendix Table

6.2). Furthermore, 24 transcription factors known to be downstream of the EGFR

signalling pathway (Table 3.1) and their interactors were also added. The canonical

proteins and transcription factors were integrated into the comprehensive EGFR

network by identifying interactions between the additional proteins and PRIMES

prey proteins with an MI score >0.3 in the IMEx database. This extended list of

interactions was then appended to the existing network, resulting in a high quality

EGFR network model (EGFR-HQ) which included all proteins used as baits in the

PRIMES HCT116 EGFR network, plus a set of canonical EGFR network proteins

and related transcription factors (Figure 3.2).
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Table 3.1: List of the 24 transcription factor proteins that were added to the PRIMES

HCT116 EGFR network, many of which were previously identified as relevant in EGFR

by the PRIMES project (Kennedy et al., 2020).

Symbol Name ENSEMBL UniProtKB

CREB1 cAMP responsive element binding protein 1 ENSG00000118260 P16220

ELK1 ELK1, ETS transcription factor ENSG00000126767 P19419

FOS Fos proto-oncogene, AP-1 transcription factor subunit ENSG00000170345 P01100

FOXO1 Forkhead box protein O1 ENSG00000150907 Q12778

HSF1 Heat shock transcription factor 1 ENSG00000185122 Q00613

JUN Jun proto-oncogene, AP-1 transcription factor subunit ENSG00000177606 P05412

MYC MYC proto-oncogene, bHLH transcription factor ENSG00000136997 P01106

SMAD2 SMAD family member 2 ENSG00000175387 Q15796

SMAD3 SMAD family member 3 ENSG00000166949 P84022

SMAD4 SMAD family member 4 ENSG00000141646 Q13485

SP1 Sp1 transcription factor ENSG00000185591 P08047

SRF Serum response factor ENSG00000112658 P11831

STAT5A Signal transducer and activator of transcription 5A ENSG00000126561 P42229

STAT5B Signal transducer and activator of transcription 5B ENSG00000173757 P51692

STAT1 Signal transducer and activator of transcription 1 ENSG00000115415 P42224

STAT3 Signal transducer and activator of transcription 3 ENSG00000168610 P40763

TCF4 Transcription factor 4 ENSG00000196628 P15884

TCF7 Transcription factor 7 ENSG00000081059 P36402

TP53 Tumor protein p53 ENSG00000141510 P04637

FOSB FosB proto-oncogene ENSG00000125740 P53539

FOSL1 Fos-like antigen 1 ENSG00000175592 P15407

JUND JunD proto-oncogene ENSG00000130522 P17535

EGR1 Early growth response 1 ENSG00000120738 P18146

EGR2 Early growth response 2 ENSG00000122877 P11161
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Figure 3.2: Overview of the process used to construct the high quality EGFR PPI

network (EGFR-HQ). Right: Visualisation of the EGFR-HQ network using the graph-

tool Python library. To achieve the layout pictured, transcription factors and the

EGFR node were fixed in position on the circumference of a circle, then graph-tool’s

sfdp_layout function was used to layout all other nodes. Transcription factors are

highlighted in red.

3.3.3 Performing graph operations on SIF files with Sifter

Networks were saved as simple interaction format (SIF) files due to the simplicity of

the format. Editing SIF files as text is simple, however performing graph operations

on these files usually requires the use of a heavier graph-oriented library such as

NetworkX or graph-tool (T. P. Peixoto, 2017). To enable rapid graph operations on

SIF files with minimal effort, I developed a command line tool, Sifter. Sifter is able

to perform operations such as taking the union and intersection of multiple graphs,

counting nodes and edges, removing duplicate edges and self loops, and other simple

tasks. Sifter is available from the Lynn lab bitbucket repository3.

3https://bitbucket.org/lynnlab/sifter
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3.3.4 Creation of patient-specific EGFR networks

Node removal approach

To create patient-specific networks, I developed a method which personalised the

EGFR-HQ network using individual CRC patient data from The Cancer Genome

Atlas (Weinstein et al., 2013). This method used gene expression data from each

patient tumour sample to remove specific nodes which were not expressed or under-

expressed, thus personalising the topology of the network for each individual. Using

the patient-specific gene expression data from 550 TCGA CRC patient tumours as

previously described in Chapter 2, genes which were significantly under-expressed

in specific patients were identified. For each of these under-expressed genes, the

corresponding nodes in the EGFR-HQ network and their interactions were removed,

creating 550 different patient-specific EGFR network models.

The approach to detect under-expressed genes to remove from the network built

upon the method developed in Chapter 2 (originally for identification of patient-

specific differentially expressed (PSDE) genes). PSDE gene identification as previously

described used the intersection of two thresholds, fold change (Fg) and Z-score (Zg),

for each gene g in a cohort:

PSDEg = Fg ∧ Zg (3.1)

To identify under-expressed genes for node removal, the fold change threshold for

a gene (Fg) was again defined as a 2-fold change from the cohort median expression

of that gene, except that only decreases in fold change were considered as only down-

regulated genes were of interest. The original Z-score threshold Zg was a two-tailed

test, based on a ±1.96 standard deviation from the mean of logged counts per million

(CPM). For identifying node removals, only the lower tail of the distribution was of

interest. To retain a p < 0.05 test statistic the Z-score threshold was therefore set to

retain genes with Zg < −1.65.

This strategy aimed to identify genes which were expressed in specific patients at

a much lower level than the cohort average. To further include all genes which were
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essentially not expressed at all, even if they were not included in the modified PSDE

approach, an additional criterion was added. If the mean cohort expression for a gene

was at least 10 CPM, the gene would automatically be identified as a node removal

for any individual in which it was expressed at <3 CPM (the threshold previously

defined as “not expressed” during processing of gene expression data in Chapter 2).

The rationale for this additional criterion was to remove any genes from individual

networks in which the gene fell below the level of detectable expression. In addition,

any genes that were completely filtered out during the initial RNASeq quality control

steps due to their expression levels being too low were removed from all patient-specific

networks. Applying this node removal strategy, 550 patient-specific network models

were created by integrating TCGA CRC RNAseq data with the EGFR-HQ network

(Figure 3.3).

Figure 3.3: Overview of the node removal strategy used to create patient-specific

EGFR network models. CRC tumour gene expression data from TCGA was used to

remove nodes from the EGFR PPI network to create networks for each of the 550

patients. These networks were stored as Simple Interaction Format (SIF) files (a plain

text tab-delimited list of edges).
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Mapping of gene and protein identifiers

To match genes from TCGA gene expression data to proteins in the EGFR-HQ

network, mapping between different gene/protein identifiers was required. Genes in

TCGA gene expression data are identified using an Ensembl gene ID (Hubbard et al.,

2002). These gene IDs are also appended with a version number, which is incremented

when the identifier is revised in some way. This version number was removed in order

to map them to other identifiers. Ensembl BioMart4 was used to identify mappings

between Ensembl gene IDs and Uniprot protein identifiers (which are used to identify

proteins in IMEx PPI data). To prevent issues such as multiple genes matching to

one protein, node removals were only performed when an Ensembl gene ID could be

uniquely matched to a single UniProt protein ID. This also applied in the inverse,

removals were only performed if a single UniProt ID matched the Ensembl gene ID.

Identification of PPI disrupting mutations

Mutation data were downloaded as MAF (Mutation Annotation Format) files from

the GDC. The GDC offers MAF files generated via multiple different variant caller

algorithms, including MuSE (Fan et al., 2016), MuTect, VarScan and SomaticSniper.

MAFs as produced by the MuTect algorithm were chosen due to widespread use and

recommendation of this algorithm in the literature (Xu, 2018), as well as due to its use

in other tools such as CBioPortal (Cerami et al., 2012). MAF files for both colorectal

cancer TCGA projects (COAD and READ, for colon or rectal adenocarcinoma) were

downloaded and concatenated. Within these data, multiple different assessments of

mutation impact are provided – including IMPACT from the Ensembl Variant Effect

Predictor, SIFT, and PolyPhen. Using the HGVSp field from the GDC MAF files it

was possible to link to specific somatic mutations in the (del-Toro et al., 2019) dataset

of PPI disrupting mutations. The network edges corresponding to these mutations

were removed from the corresponding patient-specific network models.

4https://www.ensembl.org/biomart/martview
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Identification of domains likely to mediate PPIs

Protein domain annotations were obtained in XML format from the Pfam database

(Mistry et al., 2021). The frequency of shared protein domains occurring between bi-

nary pairs of interacting human proteins from IMEx was assessed. An over-representation

analysis was conducted using a Fisher’s exact test to identify domains which were

significantly enriched in binary interacting pairs of proteins. The Benjamini-Hochberg

procedure was used to adjust for multiple testing. Ranges within proteins containing

these domains were considered likely to mediate PPIs and were searched for mutations

with a possibly damaging SIFT score in TCGA CRC patients. Where these muta-

tions were identified, corresponding edges were removed from patient-specific network

models.

Update of common functions in the biomodule library

Various common functions required for manipulating networks and processing gene

expression data were added to my biomodule library5 to make these tasks more

efficient. This functionality included performing the ID conversions between gene and

protein identifiers. The list of unique mappings between Ensembl gene IDs in the

TCGA data and Uniprot protein IDs in the EGFR-HQ network was cached for rapid

conversion. Internally the the PyBiomart library (version 0.2.0) was used to interface

with BioMart to obtain mappings.

3.3.5 Topological network analysis and visualisation

To determine whether network topology was directly related to patient outcomes, net-

work properties including degree distribution, clustering coefficient and betweenness

centrality were assessed using the graph-tool library (version 2.37) (T. P. Peixoto,

2017). Node-specific network properties were also compared to TCGA RNA expression

using volcano plot visualisations. Cox regression analysis was used to assess whether

network properties were associated with survival. This analysis was conducted via

5https://bitbucket.org/lynnlab/biomodule
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the Lifelines package (Davidson-Pilon et al., 2019) for Python (version 0.25.4). Vi-

sualisations were also produced using graph-tool, including programmatically laying

out and rendering networks, in conjunction with matplotlib (version 3.1.3) (Hunter,

2007). Global network properties for each patient-specific network were compared

using ANOVA followed by post-hoc T-tests to identify which groups differed, and

visualised using box plots with matplotlib. Statistical analysis was conducted using

functions from SciPy (version 1.3.3) (Virtanen et al., 2020).

3.3.6 Simulating biological information flow

To model information flow through the 550 patient-specific network models, the

command-line interface of ITM probe6 was used. ITM probe was previously used by

Kennedy et al. (Kennedy et al., 2020) to simulate information flow in the EGFR

network, and has the advantage of outputting information flow scores for each node

in the network. This tool required the network to be in a specific JSON-encoded

Compressed Sparse Row (CSR) matrix format. I wrote a Python script to perform

this conversion and to run the tool manually. To facilitate easier use of the ITM

Probe tool, I also wrote a wrapper library which allows the tool to be invoked directly

from Python. This wrapper converts a Simple Interaction Format (SIF) file (or any

table with interactions in rows, i.e. a graph in adjacency list format) into the required

JSON format, and calls the ITM Probe tool with customisable parameters. The

wrapper library can output both text-based and graphical results in the form of

a network visualisation (Figure 3.4). This library is available from the Lynn lab

Bitbucket repository7.

6ftp://ftp.ncbi.nih.gov/pub/qmbpmn/qmbpmn-tools/src/qmbpmn-tools-1.5.4.tar.gz
7https://bitbucket.org/lynnlab/itm_wrapper
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Figure 3.4: A simple test of the ITM probe wrapper on a small network. Source nodes

are represented as squares (A) and sink nodes as diamonds (F and G). Information

flow scores are shown on each node, and edge weights on each edge. This test used the

emitting model with default dissipation probability (0.15).

The ITM probe software includes three different models (emitting, absorbing,

and channel) that may be used in different contexts. In each model, at least one of

either a set of sinks or sources is required. The emitting model simulates information

being emitted from a certain set of nodes, and identifies the most frequently visited

nodes. The absorbing model, given a set of nodes that will act as absorbing sinks of

information, identifies the nodes most likely to send information to them. The channel

model identifies the most likely paths between two sets of nodes, the information

sources and sinks. In the context of simulating information flow through the EGFR

network, EGFR was designated as the source node, while downstream transcription

factors were designated as sinks. Therefore, both the channel and emitting modes

were possible appropriate models, and so simulations using both modes were assessed.

Using the ITM wrapper tool, information flow analysis was run for each of the 550

patient-specific networks previously created using both emitting and channel modes.

The default dissipation factor (0.15) was used. When the channel mode was utilised,

the transcription factors were selected as sinks. After running information flow analysis,

the information flow score (IFS), representing the probability of visiting each node,

was extracted.
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Determining information flow impact

To assess the change in IFS between individual networks, an impact score was cal-

culated based on the IFS of each node in each patient-specific network. This impact

score was defined as the log2 of the ratio of the information flow score Sn for the

patient-specific network n to a baseline score Sb, where the baseline was determined

by running ITMProbe on a network with no modifications:

Impact = log2(Sn/Sb) (3.2)

The change in IFS between networks was then used to predict whether patient-

specific rewiring altered flow to downstream transcription factors. Cox regression

analysis was used to assess whether impact scores for transcription factors were asso-

ciated with survival, using the Lifelines package for Python. Further investigation of

transcription factor activity was performed by using HOMER (Heinz et al., 2010) to

detect the enrichment of motifs among up and down-regulated PSDE genes and per-

forming over-representation analysis of motifs in patients with significantly impacted

transcription factors.

Determining significant impact scores

To identify nodes which had statistically significant changes in information flow impact

score compared to the baseline network, impact scores for each node were compared

to an empirical distribution of all impact scores for all nodes across the 550 networks.

Values outside of the 95% confidence interval were identified as statistically significant.

Calibrating node removal sensitivity using random removals

A random node removal procedure was implemented to assess on average how many

nodes would need to be removed from a network before flow to each transcription

factor was significantly altered. An increasing number of nodes were randomly chosen

and removed from the EGFR-HQ network, and the process repeated 1000 times. This
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simulation resulted in a distribution of expected impact scores for each node in the

network, given a certain number of random removals. I determined on average how

many random node removals were required before information flow was significantly

altered. This information was used to calibrate the actual node removal thresholds.

3.3.7 Development of a novel algorithm for simulating infor-

mation flow

It became apparent during my use of ITM Probe and investigation of similar tools

which use a network propagation approach, that multiple difficulties existed when

attempting to apply them on a patient-specific basis. In the case of ITM Probe, this

included outputting scores which were not directly comparable when running the

algorithm across different networks (Stojmirović et al., 2012), and in other cases not

outputting scores at all (Reyna et al., 2018). There are other limitations of existing

tools including not being able to set node-specific dissipation probabilities, having

results which are difficult to interpret, and also simply being difficult to use, which

all result in issues when attempting to apply these approaches on a patient-specific

basis.

In the cases where patient-specific analysis is considered, it is generally combined

with static network topology, similarly to personalised PageRank or PARADIGM

(Vaske et al., 2010). Such tools are not well suited for the comparative analysis of

patient-specific networks where actual network topology differs between individuals.

Furthermore, most existing implementations of information flow analysis assume an

undirected network. However, many protein-protein interactions, such as those involv-

ing protein kinases, do have specific directionality. In addition, when the directionality

of interactions is not known a priori, it may also be inferred from context using

network propagation approaches with high reliability (Silverbush & Sharan, 2019).

Simulated Information Flow For Individualised Networks (SIFFIN)

As no currently available implementations of information flow analysis were able to

meet all the criteria desirable for patient-specific information flow analysis, I designed
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my own network propagation algorithm which would specifically address the patient-

specific use case. I called this algorithm Simulated Information Flow For Individualised

Networks (SIFFIN)8. Similarly to other algorithms such as ITM Probe, SIFFIN uses

a network propagation approach to predict information flow.

Information flow, diffusion, Markov chains, random walks, are all distinctly related

processes which may be represented by network propagation. The probability / flow

at vertex v at time step k is pk(v), according to:

pk(v) =
∑

u∈N(v)

pk−1(u)w(u, v) (3.3)

Where the normalised weight of vertex u to v is represented by w(u, v). This may

be more compactly represented in matrix notation as the following:

pk = Wpk−1 (3.4)

Where W is a normalised adjacency matrix of the network of interest (a transition

matrix). From this it follows that the state at a particular time point may be observed

by taking pk = W kp0, and that a simple algorithm to obtain the summed probability

at each node may be obtained by repeated iteration of pk.

It is also possible to define a random walk with dissipation by adding a smoothing

factor α:

pk = (1− α)Wpk−1 (3.5)

This is the approach used by SIFFIN to simulate random walks with dissipation,

as the summed probabilities are very easy to interpret. In this context α is essentially

an exact amount of information score lost at each step. With an extra term, this

becomes equivalent to "personalised PageRank" (a.k.a., a random walk with restart

(RWR)). The role of α is now to determine how much the prior information (source

nodes) influence the final result.

8https://bitbucket.org/lynnlab/psnr/src/master/scripts/siffin/
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pk = αp0 + (1− α)Wpk−1 (3.6)

Typical usage of personalised PageRank / RWR is to identify which nodes are most

“relevant” to a given query. As such, the probability pt at the point of convergence is

used as a final score, as this combines both the network topology and prior information

information into a single score. In comparison, to model how likely it is for information

to pass through a given node, the sum of all probabilities may be used.

Inferring edge directionality in SIFFIN

It is important to note that while SIFFIN is intended to run on a directed network,

the actual input to SIFFIN can be a partially-directed PPI network. If directed

interactions are known a priori they may be encoded as directed edges. Otherwise,

edges are assumed to be undirected and are encoded as bi-directional directed edges.

The directionality of edges is inferred using the approach described by Silverbush &

Sharan (Silverbush & Sharan, 2019). First, a RWR is run from both the set of source

nodes and set of sink nodes. Using the differential scores for each walk, the probable

direction of each edge is inferred (for any edges for which this is not already known), as

per the Diffuse2Direct algorithm (Silverbush & Sharan, 2019). An additional property

of this algorithm is that it prevents cycles existing in the resulting network, meaning

that the algorithm will converge more rapidly than in the undirected case.

Development of an improved information flow impact metric

Impact scores as previously described in section 3.3.6 identify large relative changes in

information flow from a baseline level. As this is a relative measure, they are unable

to capture large absolute changes in information flow if the baseline level is too high.

To compensate for this, I developed a new metric of information flow score changes,

scaled percentage change (SPC).

SPC =
x− b

n

√
b

(3.7)
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where b is the baseline information flow score, x is the altered information flow

score, and n is a scaling factor which determines how far the output is scaled between

relative and absolute changes (i.e., n = 1.0 is simply percentage change, and higher

values bring the score asymptotically closer to absolute change). The scaled percentage

change was centred on zero by taking the log2 of 1 + the absolute value of SPC.

3.3.8 Clustering and visualisation of network propagation re-

sults

Clustering networks using information flow

Hierarchical agglomerative clustering of information flow scores was performed using

the SciPy package (version 1.3.3), with the Ward variance minimisation method (Ward,

1963). Hierarchies were constructed separately for both log2SPC for all nodes across

all 550 networks, as well as for transcription factor nodes only. Consensus clustering

as described by Monti et al. was used to obtain robust clusters (Monti et al., 2003).

Hierarchical clustering was performed 1000 times for consensus clustering, and was

re-sampled to 75% of the data for each run.

3.3.9 Extracting clusters based on hierarchical clustering

The silhouette coefficient (Rousseeuw, 1987) and consensus cluster scores were used to

determine an optimal number of clusters (k). The silhouette coefficient (Rousseeuw,

1987) as implemented by silhouette_samples() and silhouette_score() functions from Scikit-

learn and consensus scores as described by (Monti et al., 2003) were used to determine

an optimal number of clusters (k).

Comparison of information flow clusters to CMS groups

Clusters were compared to consensus molecular subtypes (CMS) (Guinney et al., 2015)

using alluvial plots, and relative survival probabilities assessed using Kaplan-Meier

plots and pairwise log-rank tests via the Lifelines package (Davidson-Pilon et al., 2019)
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for Python (version 0.25.4). Topological properties for information flow clusters were

also assessed as per section 3.3.5.

Visualisation and analysis of information flow informed clusters

To visualise information flow scores on the networks, a network layout procedure

was developed to prioritise the visualisation of the source and sink nodes. First, all

transcription factors and the EGFR node were fixed in position on the circumference

of a circle. Next, while these nodes were held in place, graph-tool’s sfdp_layout was

used to layout all other nodes with a force-directed layout. This resulted in a tree-

like visualisation with EGFR near the top, and transcription factors arranged in a

semicircle at the bottom (Figure 3.5). Network properties such as node colour and

size were used to visualise different patient subgroups.
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Figure 3.5: Visualisation of the high quality EGFR network (EGFR-HQ) using

a "Christmas tree" style layout. EGFR (green) is at the top of the tree, while the

transcription factors (blue) are arranged in a semicircle at the bottom. Node size is

scaled in proportion with betweenness centrality.

3.3.10 Cross-validation of results

Expression of transcription factor target genes

Pypath/Omnipath (Türei et al., 2016) was used as a source of TF to target gene rela-

tionships (i.e. TF regulons). DoRothEA (the database from which Omnipath sources

its information from) Garcia-Alonso et al., 2019 integrates manually curated interac-

tions, high-throughput TF-DNA measurements (e.g. ChIP), in silico predictions, and
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predicted interactions from large-scale gene expression profiles. Identifying the genes

regulated by each transcription factor downstream of the EGFR network enabled

validation of information flow analysis results. Expression of the specific genes that

were regulated by each transcription factor was compared to predicted information

flow to the given transcription factor. Principal components analysis (PCA) was used

to summarise target gene sets, which was compared to TF log2SPC scores using Pear-

son correlation. ANOVA and pairwise T-tests were used to compare the expression

of TF-coding genes for different patient clusters defined from log2SPC scores, using

functions from SciPy (version 1.3.3) (Virtanen et al., 2020).
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3.4 Results

3.4.1 Patient-specific EGFR networks

Constructing a high-quality model of the EGFR PPI network

To investigate my hypothesis that topological heterogeneity in network structure

between individual patients is predictive of CRC patient outcomes including survival,

I combined patient-specific gene expression data from The Cancer Genome Atlas

(TCGA) with human protein-protein interaction (PPI) data from the International

Molecular Exchange Consortium (IMEx) to create patient-specific network models.

I used the Epidermal Growth Factor Receptor (EGFR) network as a base for these

models due to the relevance of the EGFR in CRC and the availability of a high-

quality experimentally derived mapping of the network, the PRIMES HCT116 dataset

(Kennedy et al., 2020).

To create a high-quality EGFR network (EGFR-HQ) which could then be person-

alised for each patient, I used the PRIMES HCT116 EGFR network as a framework.

Additional nodes were added by selecting known members of the canonical EGFR

pathway (Appendix Table 6.2) and 24 transcription factors downstream of EGFR

(Table 3.1). Edges were added using experimentally validated PPIs from IMEx (Or-

chard et al., 2012) between prey proteins, added transcription factors, and canonical

nodes in the PRIMES HCT116 EGFR network. The PPI interactions from IMEx are

manually curated, and each interaction is assigned an MI score representing confidence

in the experimental evidence supporting the interaction, normalised between 1 and 0

(Kerrien et al., 2012). I used a threshold of MI score >0.3 to retain medium confidence

interactions (Villaveces et al., 2015) to create the EGFR-HQ network.

The EGFR-HQ network consisted of 1390 vertices and 11,157 edges. In total,

8,134 additional edges from IMEx were added between PRIMES prey proteins, added

canonical nodes, and added transcription factors. To ensure that the EGFR-HQ

network was a single connected component, any nodes not connected to the largest

component were discarded. Following this, only 23 transcription factors remained,
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Figure 3.6: Log-log plot of the degree distribution (P (k)) of the EGFR-HQ network,

compared to a power law distribution fit of the data (obtained using the powerlaw

library for Python (version 1.5) (Alstott et al., 2014)).

as EGR2 had no interactions linking it to the rest of the network with an MI score

>0.3. The EGFR-HQ network exhibited a scale-free topology typical of PPI networks,

with a negative assortativity coefficient (r=−4× 10−3) (meaning nodes with similar

degrees do not tend to be connected to each other) and a degree distribution which

approximated a power law (Figure 3.6). Of interest, the gamma parameter obtained

from a power law fit of the degree distribution was 1.65, lower than the usual range

of 2-3 for scale-free networks (Barabási & Albert, 1999). This low gamma is likely

related to the way the network was constructed. Because edges were only added

between prey proteins from the PRIMES HCT116 network, most of which were of

low degree, the resulting network inevitably contained fewer nodes of low degree than

would be expected, and more nodes of slightly higher degree. Many of the nodes with

the highest centralities were PRIMES bait proteins (Table 3.2), an expected result

due to high centrality being one of the PRIMES bait protein selection criteria. The

most central hubs however were the transcription factors JUN and MYC, as well as

CDC5L, up-regulation of which has been shown to contribute to CRC progression via

regulation of human telomerase reverse transcriptase (J. Li et al., 2017).
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Table 3.2: The 10 nodes with highest degree (largest hubs) and the 10 nodes with

highest betweenness centralities (bottlenecks) in the EGFR-HQ network. PRIMES bait

proteins are shown in bold.

Degree

1 JUN 487

2 MYC 210

3 CDC5L 159

4 TUBA1A 127

5 HNRNPU 123

6 NPM1 113

7 H3C10 111

8 HSPA8 109

9 RPL10 106

10 HSP90AB1 104

Betweenness Centrality

1 JUN 0.2446

2 MYC 0.0570

3 CDC5L 0.0338

4 SH2D3C 0.0319

5 HSPA8 0.0283

6 GRB2 0.0255

7 HSP90AB1 0.0246

8 TUBA1A 0.0221

9 KSR1 0.0206

10 RAB5A 0.0187

Creation of 550 patient-specific EGFR network models using a node re-

moval strategy

To personalise the EGFR-HQ network for each individual in the TCGA CRC cohort,

I developed a node removal method which identified genes which were significantly

under-expressed in individual tumours. The corresponding nodes (and all interac-

tions) were then removed from the network for that patient. This was based on the

assumption that the nodes corresponding to genes which were not expressed (or were

significantly under-expressed) in patients would not be functional (or have significantly

reduced functionality) in terms of capacity to transmit signals in those individuals.

Nodes were removed from the EGFR-HQ network for each of the 550 patients. The

number of removals varied across networks, with on average 34 nodes (around 2.5%

of total) and their interactions being removed from the network per patient (Figure

3.7, A). Which nodes were removed also varied, with each node being removed from

different patient-specific networks 15 times on average (Figure 3.7, B). The majority

of genes were only removed in a small number of networks. Interestingly, the single
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most frequently removed node (removed in 204 networks) was the heat shock protein

HSPA6. Previous studies have reported associations between the expression of heat

shock protein genes and prognosis in CRC (Chatterjee & Burns, 2017). I did not find

an association between HSPA6 expression and prognosis in this cohort, however I did

find a significant association (Cox regression HR=0.72, (95% CI, 0.56 - 0.92), p=0.01)

between decreased expression of the related protein HSPA8, the 8th highest degree

protein in the EGFR-HQ network (Table 3.2), and poorer patient prognosis.
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Figure 3.7: Node removal frequency distributions for A) number of nodes removed

per patient-specific network and B) number of times each node was removed across

the 550 patient-specific networks.

Mutations known to disrupt PPIs are present in TCGA CRC patients

Mutations are known to sometimes disrupt PPIs, and systematic studies (Sahni et al.,

2015) have been performed to characterise these. One public dataset of experimentally

validated PPI disrupting mutations is curated by the EBI (del-Toro et al., 2019)

In addition to using transcriptomic data to inform node removal, I made use of this

dataset combined with patient-specific genomic mutation data to remove specific edges

from the patient-specific networks. Mutations in individual patients (as called by the

Mutect variant caller) were matched to the EBI dataset of PPI disrupting mutations

(del-Toro et al., 2019). In total, 344 network edges in the EGFR-HQ network were

also edges in the del-Toro et al. PPI disrupting mutations dataset. Of the mutations

present in the dataset, 9 were matched to specific mutations found in the TCGA
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CRC data (Figure 3.8). In the TCGA CRC cohort, these mutations occurred most

frequently in the BRAF and PIK3CA genes, mutations which have previously been

noted to increase in prevalence in metastatic CRC (Christensen et al., 2018). These

matched mutations corresponded to 6 different interactions which could be removed

from patient-specific networks. These specific edges were MAP2K2-BRAF, PIK3R1-

PIK3CA, GRB14-NRAS, ACTB-ACTG1, CBL-SPRY2, and ERBB3-ERBB2 (Figure

3.8). Examining each group of patients harbouring these mutations did not reveal

significant differences in patient survival between them. Interestingly, 20 genes were

found to be significantly differentially expressed. Pathway enrichment analysis (using

GO Biological Process) of these genes revealed a significant enrichment for mitotic

cell cycle phase transition (FDR = 0.04), potentially indicating changes to the cell

cycle in patients with these mutations.
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Figure 3.8: Frequency of EGFR-HQ network edge removal events due to PPI dis-

rupting mutations occurring across the entire cohort of TCGA CRC patients (n=550).

Specific protein domains are significantly enriched among binary interac-

tions

As there were relatively few specific cases of edges in patient-specific EGFR networks

that were annotated in the del-Toro et al. dataset to have PPI-disrupting mutations, I

implemented another approach to predict potential PPI disrupting mutations. Using

over-representation analysis, I first identified specific protein domains which were
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over-represented in both protein partners of binary PPIs, hypothesising that these

domains likely mediated PPIS. I identified 260 specific domains which, given their

prevalence interacting PPIs, were more likely to mediate PPIs. These domains had a

relatively high overlap with domains predicted from structural data, with 191 of them

being identified in 3DID, a database of domain-domain interactions obtained using

high-resolution three dimensional protein structural data (Mosca et al., 2014). The

most common of these domains was PF00069, a protein kinase domain containing

the catalytic function of protein kinases. The full list of significant domains is avail-

able from the Lynnlab bitbucket9. While these protein kinase domains likely do not

directly mediate interactions, protein kinases are important regulatory components of

signal transduction pathways, with phosphorylation-induced conformational changes

frequently regulating the activity of PPIs (Wee & Z. Wang, 2017).

I found that 582 nodes in the EGFR-HQ network contained at least one of these

PPI-mediating domains, with 502 interacting pairs (435 unique nodes) sharing at

least one domain. To link this information on protein domains to patient-specific data,

I examined non-synonymous mutations from the TCGA, finding 264 of the nodes

containing probable PPI mediating domains had at least one instance of possibly

damaging (as determined by SIFT score) mutations within these domains.

9https://bitbucket.org/lynnlab/mutation/src/master/significant_domains.csv
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Figure 3.9: Nodes in the EGFR-HQ network most frequently found to have non-

synonymous mutations within domains that potentially mediate PPIs .

The node most commonly mutated in this manner was BRAF, which interestingly

was also the most common PPI disrupting mutation found using the del-Toro et al.

dataset. The full list of these proteins is also available from the Lynnlab bitbucket10.

Performing pathway enrichment analysis on these nodes revealed a significant enrich-

ment for protein phosphorylation.

I found that the degree of nodes containing domains enriched in binary PPIs was

significantly higher than in other nodes (p=4.4× 10
−15). This result was expected, as

nodes with more edges had more opportunity for the enrichment analysis to identify

them. I further investigated whether the degree of nodes that additionally had TCGA

CRC patient mutations within these domains differed to the degree of nodes with

domains but no mutations. I found that nodes with mutations in domains that po-

tentially mediate PPIs were also of significantly higher degree than other nodes with

these domains without mutations in them (p=2.8 × 10
−6) (Figure 3.10). A possible

explanation of this result is that it is due to survivorship bias. Higher degree nodes

have many interacting partners, and so despite these mutations disrupting certain

10https://bitbucket.org/lynnlab/mutation/src/master/significant_proteins.csv
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interactions, signalling may continue to propagate on alternative routes. In lower

degree, less redundant nodes, mutations in these regions may cause disruptions that

are more lethal to the tumour.

mutated not mutated
100

101

102

****

Figure 3.10: Nodes in the EGFR-HQ network containing domains that likely mediate

PPIs were identified. The degree of these nodes in which TCGA CRC patient mutations

were identified within these domains, was compared to the degree nodes in which these

domains had no mutations.

More edges are impacted by PPI-disrupting mutations in MSI subtype

tumours

Matching both the PPI disrupting mutations and potentially damaging mutations

within domains suspected to be involved with PPIs, I found a total of 151 patients

with at least one network edge that was disrupted. In 83 of these cases, more than

one edge was disrupted. Among these patients, I found that there was a significant

enrichment of the hypermutated MSI subtype (p=1.6 × 10
−4, Fisher’s exact test).

In total, 151 patients had edges identified as likely disrupted, combining both the

del-Toro et al. dataset and predicted disruptions based on shared protein domains.

The highest number of disruptions in a single patient was 23, (occurring in a tumour

sample from the CMS1, MSI-high subtype). The single most common edge disruption

was the BRAF - MAP2K2 interaction, occurring 50 times across the cohort due to

the well known BRAFV600E mutation. Patients harbouring this specific mutation are
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sometimes considered a unique subgroup of CRC due to its prevalence (Molina-Cerrillo

et al., 2020). BRAFV600E is also enriched in CMS1 subtype tumours (Dienstmann

et al., 2017). Considering the total size of these networks, the total number of edges

removed by this approach was small and did little to alter overall network topology.

However, the distinct topological properties of nodes affected by these mutations and

the localisation of these mutations within specific patient subtypes suggest that these

mutations may be important for understanding the biology of these tumours.

Global network properties vary significantly between CRC patient subtypes

To determine whether the topology of these patient-specific networks was linked to

biological variation between patients, I assessed whether various measures of network

topology were significantly different between known patient subtypes, both the Con-

sensus Molecular Subtypes (Guinney et al., 2015), and the PSDE-informed clusters

(PICs) as defined in Chapter 2. I selected key parameters of network topology based

on previous studies which have indicated that topological network properties may

be predictive of patient survival. For example, Breitkreutz et al. made use of net-

work complexity measures to show that the 5-year patient survival probability with

different cancer types was correlated with network complexity (Breitkreutz et al.,

2012). Network complexity was assessed using degree distribution entropy, which was

found by Breitkreutz et al. to be negatively correlated with survival. Given this effect

was observed across different cancer types, I hypothesised that a similar effect would

likely be observed between individuals with the same cancer. These measures were

not significantly associated with patient survival, however I did find that they varied

significantly between patient subtypes.

The available literature suggested that measures of network centrality, complexity,

connectivity, and size may be linked to patient outcomes. To investigate whether

I could reproduce these findings, I calculated mean betweenness, mean PageRank,

central point dominance (measures of centrality), degree distribution entropy, assor-

tativity (measures of complexity), global and local clustering coefficient, mean degree

(measures of connectivity), and finally mean path per patient-specific network. The

number of node removals per network was also assessed as an independent property. I
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examined the distributions of these measures, and found that for the most part they

were normally distributed and were somewhat variable between individuals, although

the amount of variation was sometimes small, especially for measures like betweenness

and PageRank (Figure 3.11). As large-scale rewiring of a network would lead to alter-

ations in clustering coefficient, I hypothesised that some of the more highly mutated

tumour subgroups such as the microsatellite instability (MSI) subtype might exhibit

greater changes in local and global clustering coefficients. I also hypothesised that

the removal of bottleneck nodes, which often represent potential drug targets, thus

lowering measures of centrality, might be seen in patients with more drug-resistant

tumours. Finally, as path lengths and the shortest paths between nodes in networks

are properties which capture the way in which information spreads in a given network

(Barabási & Albert, 1999), I hypothesised that these measures may be useful to com-

pare to the results of information flow analysis, in which networks which have longer

paths between nodes should dissipate information more quickly. The rapid dissipation

that occurs in information flow analysis is due to the way dissipation is calculated,

as a reduction in total signal that occurs on each step, meaning that if the minimum

path length between a source and sink node is large, signal has a chance of dissipating

entirely before ever reaching the sink.

Examining the distribution of the chosen network properties across all 550 patient-

specific CRC networks (Figure 3.11) revealed consistent inter-patient variability, how-

ever most properties were very closely distributed around the median across all

networks. Comparison of network properties across CMS groups (Figure 3.12) us-

ing ANOVA revealed that two of these measures, central point dominance (CPD,

a measure of centrality) and mean local clustering coefficient (MCC, a measure of

connectivity) differed significantly between groups. Pairwise T-tests revealed that all

of the differences involved CMS4, the mesenchymal subtype which also has the poor-

est outcomes in terms of survival. In comparison, the analysis of PICs (Figure 3.13)

also identified differences in CPD and MCC, with additional differences identified in

both assortativity and global clustering coefficient (GCC). Pairwise T-tests of these

properties revealed that PIC1 was the group that was most frequently significantly

different to other groups, an interesting result given that PIC1 and CMS4 have almost
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Figure 3.11: Density distribution plots of network topology measures assessed across

550 patient-specific EGFR networks. Mean and standard deviation (stdev) is reported

for each measure.
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no overlap (PIC1 is mostly comprised of CMS2 (canonical subtype) samples).

CMS4 was consistently significantly lower than other groups across the measures

of CPD, MCC and GGC, while PIC1 was consistently higher. While the effect size

was relatively small (as might be expected as only small alterations were made to a

relatively large network) the statistical significance of the differences between patient

clusters was high. CPD is a measure which describes the degree to which a single node

may dominate communication in a network, in contrast to other centrality measures

such as betweenness which measure the centrality of all nodes. For a network in which

all nodes have equal centrality, this CPD will be 0, while for a star-shaped network

in which all edges connect to a single node, CPD is 1 (Freeman, 1977). A significant

reduction of CPD and LCC in the CMS4 subtype indicates the removal of higher-

degree nodes in this cluster, a factor which may contribute to the poorer prognosis of

this subtype.
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Figure 3.12: Network properties compared across different Consensus Molecular

Subtypes (CMS). One-way ANOVA was used to determine if any properties differed

significantly. If statistical significance was reached at p < 0.05 this was followed by

post-hoc pairwise T-tests to identify the different groups (∗ = p < 0.05, ∗∗ = p < 10
−2)

(Bonferroni correction for multiple testing applied).
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Figure 3.13: Network properties compared across different PSDE-informed clusters

(PICs). One-way ANOVA was used to determine if any properties differed significantly.

If statistical significance was reached at p < 0.05 this was followed by post-hoc pairwise

T-tests to identify the different groups (∗ = p < 0.05, ∗∗ = p < 10
−2, ∗ ∗ ∗ = p < 10

−3,

∗ ∗ ∗∗ = p < 10
−4) (Bonferroni correction for multiple testing applied).
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Local network properties vary significantly between patient subtypes

While global measures of network topology were variable across patient subtypes,

I also examined local node-specific network properties, with the assumption that

topological differences may be localised to certain regions of the network. Most of

these properties were stable across patients, however certain nodes showed significant

variation in topological properties such as degree. Notably the transcription factors

MYC and JUN were the most variable in terms of degree. Complete data on node-

specific properties for all 550 patient-specific networks may be downloaded from the

Lynn lab Bitbucket repository11. One notable node variable in degree was GRB2.

GRB2 is a key downstream hub protein known to coordinate multiple aspects of

EGFR signalling (Bisson et al., 2011). This node was previously found to receive a

high level of information flow score by Kennedy et al. Comparing the degree of GRB2

in different CMS groups revealed that GRB2 degree was significantly higher in CMS4

patients than most other CMS groups (Figure 3.14).
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Figure 3.14: Degree of GRB2 compared across CMS clusters. Pairwise T-tests used

to assess statistical significance (∗ = p < 0.05, ∗∗ = p < 10
−2, ∗ ∗ ∗ = p < 10

−3,

∗ ∗ ∗∗ = p < 10
−4) (Bonferroni correction for multiple testing applied).

In comparison to the global trend of decreased centralisation in CMS4 patient

networks, as seen in the global CPD and LCC measures, GRB2 degree was instead sig-

nificantly increased in CMS4 patient networks. However, as CMS4 is the mesenchymal

11https://bitbucket.org/lynnlab/psnr/output/nodespec.csv
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subtype, typically associated with late-stage metastatic CRC, the increased number

of interactions GRB2 has in CMS4 patient networks may be as a result of the critical

role GRB2 is known to play in tumour metastasis (Giubellino et al., 2008).

Measures of network topology are not directly associated with patient

prognosis

To determine whether patient prognosis could be predicted using these network prop-

erties I assessed the association between measures of network topology and patient

survival using Cox regression analysis (Figure 3.15). This revealed that there were

no significant associations between any of the topological network properties assessed

and patient survival time.

0.6 0.4 0.2 0.0 0.2 0.4 0.6
log(HR) (95% CI)

number of removals

mean path length

mean local clustering coefficient

global clustering coefficient

mean degree

assorativity
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Figure 3.15: Cox regression analysis of network properties from patient-specific EGFR

networks derived from 550 TCGA CRC patients. Log hazard ratios (HR) are shown,

with increased HR indicating higher risk.

While the subtypes themselves were associated with survival differences as de-

scribed in Chapter 2, Cox regression analysis found that these properties did not

independently predict patient outcomes. Still, EGFR network topology in different

subtypes was altered enough to change global and local network parameters. This

may suggest that substantially differential signalling through these networks should be

expected, as these network parameters are related to how signalling changes through

different networks.
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3.4.2 Modelling information flow through patient-specific net-

works

Development and validation of a novel information flow tool to investigate

between-patient differences

To assess whether patient-specific topological rewiring of the EGFR-HQ network

was likely to cause changes in signalling between networks and subsequently lead to

differences in downstream transcriptional activation, I designed a network propagation

approach to specifically address the patient-specific use case, as described in the

Methods section. I called this algorithm Simulated Information Flow For Individualised

Networks (SIFFIN). SIFFIN is able to simulate information flow between topologically

distinct networks and generate scores that are directly comparable. In addition, it is

capable of automatically inferring directionality of edges using an approach similar

to Silverbush & Sharan (Silverbush & Sharan, 2019), as well as apply node-specific

dissipation probabilities, both things that existing network propagation tools such as

ITM Probe (Stojmirović et al., 2012) do not incorporate.

To facilitate between-network comparisons, I also developed a metric to compare

information flow score differences called scaled percentage change (SPC), which rep-

resented a percentage change which was scaled between the relative and absolute

differences in information flow score between individuals using a scaling factor n.

Purely relative measures of differences like fold change were not suitable when com-

paring across all nodes as most baseline information flow scores were very low, such

that even a modest absolute change in information flow would lead to an extremely

large relative difference. As SPC does not rely purely on relative changes, it was robust

for comparing scores across entire networks. To identify nodes which had statistically

significant changes in log2SPC scores compared to the baseline network, the distribu-

tion of all log2SPC scores for all nodes across all networks was determined. Values

outside of the 95% confidence interval were considered statistically significant.

In order to test SIFFIN’s effectiveness, I directly compared it to ITM Probe (in

emitting mode) in a simulated node removal. For this comparison, I made use of a
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small, directed model of the EGFR network constructed by Samaga et al. (Samaga

et al., 2009) originally intended for use as a boolean logic network. In comparison

to the EGFR-HQ network, this network was fully directed (Figure 3.16). It also

included each of the four ERBB proteins as nodes, which I used as sources. One of the

central pathways of this model was the PI3K/AKT/mTOR signalling cascade, which

I chose to target via simulated node removal. PI3K/AKT/mTOR is often hyper-

activated in CRC, with the expression of PI3KCA, the catalytic subunit of PI3K,

commonly being mutated along with KRAS in CRC development (Cathomas, 2014).

The PI3K/AKT/mTOR pathway regulates processes such as metabolism, proliferation,

and survival (Wee & Z. Wang, 2017), meaning removing PI3K from the network should

result in significant downstream changes to signalling. With the removal of PIK3, ITM

Probe in emitting mode and SIFFIN were used to simulate information flow (Figure

3.16). Log2 scaled percentage change (SPC) scores were calculated for each node as

described in the Methods section (with a scaling factor of n = 1.5). Using ITM Probe,

two nodes with significantly different log2 SPC scores (excluding PI3K itself) were

identified, PI3KR and PI34P2. These messenger molecules (directly up and down-

stream of PI3K respectively) were predicted to receive significantly reduced flow by

this method (Figure 3.16, A). In comparison, SIFFIN predicted significantly reduced

flow only to nodes downstream of PI3K, including SOS1/EPS8/E3B1, RAC/CDC42,

VAV2, AKT, and AKTD, as well as PI34P2 (Figure 3.16, B.) The most obvious

difference between the two methods is that in the SIFFIN approach, as all edges

are considered to be directed, nodes directly downstream of removed node are more

strongly influenced than in the ITM Probe approach, in which information may flow

in both directions. The fact that significant reduction of signal to AKT (as would be

expected from removal of PI3K, a major activator of AKT (Wee & Z. Wang, 2017))

did occur in SIFFIN, and not in ITM Probe highlights a distinct advantage of the

SIFFIN approach. SIFFIN also predicted more substantial flow increases as a result

of the node removal. In SIFFIN, the removal was compensated for by a predicted

increase in the signal flow via the RAS/RAF/MEK/ERK pathway to downstream

transcription factors, resulting in increases in predicted flow to certain transcription

factors including FOS and MYC, while in ITM Probe’s results, the net downstream

effect was only to reduce total flow. In summary, this simulation indicated that SIFFIN
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had clear advantages for predicting downstream signal alterations, largely deriving

from the fact that it always modelled information flow as a uni-directional process.
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Figure 3.16: Comparison of the log2 SPC scores resulting from the removal of the

PIK3 node in the model of the EGFR network described by Samaga et al. when using

A) ITM Probe in emitting mode, and B) SIFFIN to simulate information flow from

the four ERBB proteins. The removed node, PI3K, is highlighted in yellow. Nodes

with significant log2 SPC scores are highlighted with a green border.
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Significant SIFFIN scores are correlated with network topology statistics

Using SIFFIN to simulate signal flow from the EGFR node to 23 downstream tran-

scription factors (Table 3.1) in each of the 550 patient-specific EGFR-HQ networks,

log2SPC scores were calculated for each node in each of the 550 networks. For com-

parison, SIFFIN was also run on the EGFR-HQ network without any node removals

to determine baseline score for each node. In addition to node removals, edges were

weighted according to the expression of corresponding genes to provide a more ac-

curate model of signal flow through the network. Examining the distribution of all

scores, it was apparent that they were approximately normally distributed (Figure

3.17). On average, 64 nodes per network had significantly decreased log2SPC scores,

while on average 30 nodes had significantly increased scores. The number of times

a node’s score was significantly increased was found to be positively correlated with

node PageRank (p=4.5× 10
−35) and degree (p=5.5× 10

−37). These correlations were

not identified for significantly decreased nodes, however the number of significantly

decreased nodes in a network was significantly negatively correlated with clustering

coefficient (p=3.6 × 10
−6). These results likely reflect the fact that nodes with a

lower clustering coefficient in general would have fewer alternative paths to receive

information flow in response to upstream removals.
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Figure 3.17: Distribution of log2SPC scores (with a scaling factor of n = 1.5) obtained

using SIFFIN for all nodes in 550 CRC patient-specific EGFR networks. The 95%

confidence interval is annotated with vertical lines.
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Patient clusters derived from information flow analysis have significant

differences in prognosis

To assess whether patient-specific information flow analysis using SIFFIN could iden-

tify different groups of patients with altered outcomes, I performed unsupervised

consensus hierarchical clustering of all log2 SPC scores (Figure 3.18, A). Following

analysis using consensus scores and silhouette plots to guide optimal cluster number

selection (Appendix Figure 6.19), this clustering identified five groups of patients

that were labelled flow clusters (FC1-5). These clusters overlapped with the Consen-

sus Molecular Subtypes (CMS) to an extent (Figure 3.19), notably with the largest

information flow cluster, FC1, being significantly enriched for the CMS2 canonical

subtype (p=2.1 × 10
−7). Patients in FC4 were significantly enriched for the CMS1

microsatellite instability (MSI) subtype (p=3.0× 10
−5), whereas patients in FC2 were

enriched for the CMS4 mesenchymal subtype (p=4.4× 10
−5). Despite these overlaps,

most flow clusters were composed of patients with heterogeneous CMS classification.

Kaplan-Meier analysis revealed that patients in FC2 had significantly poorer sur-

vival than patients in FC1 or FC5. Statistically significant differences in survival were

identified between FC2 and FC1 (p=0.0068) as well as FC2 and FC5 (p=0.013). These

data are consistent with poorer survival of patients classified as CMS4, the mesenchy-

mal CMS subtype (Figure 3.18, B), but also reveal additional survival differences

which were not apparent from the CMS alone, in which only patients in CMS4 had

significantly poorer survival. From these data, we can infer that information flow is

often as variable within a given subtype as it is across different subtypes. Consistent

with analysis of global topological properties, there were significant differences in pre-

dicted information flow scores in the patient-specific networks from the perspective of

CMS subtypes. Given that these global difference exist, there is strong evidence to sug-

gest that there could be differences in how signals flow through these patient-specific

networks to downstream nodes, including transcription factors.
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Figure 3.18: A) Hierarchical consensus clustering of patients using log2SPC scores

for all nodes across 550 patient-specific EGFR networks. Five clusters (FC1-5) were

defined. B) Kaplan-Meier plot of patient survival stratified by information flow derived

clusters. Statistical significance was assessed using pairwise logrank tests.
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Figure 3.19: Alluvial plot comparing the stratification of patients by Consensus

Molecular Subtypes (left) to flow clusters defined from clustering of log2SPC scores

from SIFFIN (right).

To highlight the differences between the information flow derived clusters FC1-5,

I visualised the EGFR-HQ network using a "Christmas tree" style network layout,
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and coloured nodes by the mean log2 SPC scores for each flow cluster (Figure 3.20).

From this visualisation it was apparent that the predicted information flow to tran-

scription factors (which appear at the bottom of the visualisations) was quite variable

between different information flow derived clusters, a factor that may be important

for explaining the variability in patient survival probabilities.

Figure 3.20: Visualisation of mean log2SPC scores per information flow derived

cluster, using the "Christmas tree" layout style for all nodes. Transcription factors

are arranged in a semicircle at the bottom of each network, while EGFR is at the top.
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3.4.3 Modelling the impact of patient-specific network rewiring

on information flow to downstream transcription factors

As SIFFIN demonstrated that global changes to information flow in CRC patient-

specific networks were prognostically relevant, I next assessed what changes were

predicted to downstream transcription factors (TFs), as TFs are the mediators of the

cellular responses that likely underlie the heterogeneity of outcomes between patients.

A 95% confidence interval was constructed over the distribution of the 23 TF log2

SPC scores across all 550 networks, and values outside of this interval were considered

as statistically significant. The resulting significant scores were then clustered using

hierarchical clustering and compared to both Flow Clusters and CMS subtypes (Figure

3.21, A).
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Figure 3.21: A) Clustering of patients based on log2 SPC scores (log2 of individual

SPC score to baseline SPC ratio) for each of the connected transcription factors in

patient-specific EGFR networks. B) Cox regression analysis of TF log2 SPC scores

obtained from running information flow analysis for 550 patient-specific EGFR net-

works.
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Significant increases and decreases of information flow to transcription factors

were predicted by SIFFIN, suggesting that patient-specific network rewiring alters

transcriptional programs downstream of the EGFR network. Interestingly, it appeared

that certain transcription factors were more susceptible to changes, such as JUN and

FOS which were frequently both significantly increased and decreased relative to

baseline information flow. The amount of significant changes also depended on patient

groups, increased flow to JUN for example most frequently occurred in the FC2 cluster.

Other transcription factors appeared to be more robust to these alterations, such as

STAT3, which was only significantly altered in 8 networks.

To investigate whether the differences in flow were predictive of patient outcomes,

I next performed Cox regression analysis with patient-specific log2SPC scores for

transcription factors (Figure 3.21, B). This analysis found that increased flow to

SMAD2 was positively associated with survival. As a mediator of TGFβ signalling

which regulates among other things apoptosis and growth suppression (Wee & Z.

Wang, 2017), the association of increased information flow to SMAD2 with better

prognosis appears to make biological sense. Following this, I performed Kaplan-Meier

survival analysis to compare patients with increased versus decreased predicted signal

flow for each transcription factor. This analysis found that survival outcomes were

significantly poorer for patients with predicted increased flow to ELK1 (p=0.04) and

SMAD3 (p=0.03), while outcomes were significantly better for patients with predicted

increased flow to TCF7 (p=0.03) (logrank test). (Figure 3.22). These results were

interesting, as they demonstrate that while the specific amount of information flow

to TFs is not always directly prognostic, patients may still be stratified in a survival

relevant manner based on whether the predicted information flow to a TF increases

or decreases relative to the baseline.
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Figure 3.22: The TCGA CRC cohort was divided into two groups by whether they

were found to have increased or decreased transcription factor impact score.

Random removal analysis demonstrates the significance of patient-specific

removals

To assess whether the signal flow to transcription factors downstream of the EGFR

network was modified by patient-specific rewiring was not simply due to random noise,

I next assessed what level of random rewiring was required to significantly impact

information flow. That is, how many nodes on average must be removed before a

significant effect is seen on the downstream transcription factors? Literature suggests

we should expect that scale-free networks such as PPIs to display a high level of

robustness towards random removals, but weakness to targeted attacks (Albert et al.,

2000). By randomly removing an increasing number of nodes then modelling the

downstream effect on information flow via SIFFIN, I determined the number of node

removals required to significantly impact each transcription factor (Figure 3.23). I

found that while differences could be observed from even a single removal, statistically

significant log2SPC scores for transcription factors were unlikely to occur by chance

alone until around 200 removals, well above the average number of node removals which

was used for the 550 patient-specific networks. This indicated that any significant

results found were unlikely to be due to random chance. This also demonstrated

165



that not all transcription factors have the same tolerance against random removal.

Interestingly, while each transcription factor had a tendency to either be increased

or decreased in information flow compared to baseline, the log2SPC increased or

decreased linearly with an increasing number of random node removals.
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Figure 3.23: Effect of removing an increasing number of nodes at random on log2SPC

score of selected transcription factors downstream of EGFR. Nodes were randomly

removed 1000 times for each number of removals N , and the mean score plotted for

each transcription factor. The 95% confidence interval obtained from log2SPC scores of

all nodes obtained across 550 patient-specific CRC networks (Figure 3.17) is annotated

with horizontal lines.

From the information on random node removals, it appeared that the most likely

increases in information flow would be to JUN, FOSL1 and CREB1, while the most

likely negative changes would be to SRF. Comparing this finding to the information

flow results in the 550 patient-specific CRC networks compared to random removals

(Figure 3.21, A), while some of the transcription factors with most significant results
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were those predicted by the random node removal procedure (e.g., JUN, FOSB), some

of the transcription factors predicted to reach significance more easily did not do so

very often (e.g., CREB1, SRF). In addition, the changes were not omnidirectional

as was predicted by the random node removal. In summary, the transcription factor

log2SPC scores from the patient-specific CRC networks were not the same as those

found using the random node removal approach, which suggests that they are a result

of actual biological signal rather than simply random chance.

Information flow to transcription factors is correlated with target gene

expression

To verify whether the changes predicted by information flow were reflected in the

gene expression data, I identified genes known to be regulated by the 23 transcription

factors used in my analyses. I sourced these TF-target interactions from the DoRothEA

database (Garcia-Alonso et al., 2019). Using principal components analysis (PCA) of

the log CPM values of target genes for each transcription factor, I obtained a reduced

representation of the activity of those genes. I then correlated these components

with log2 SPC scores (Figure 3.24), finding that many of the target gene sets were

significantly correlated when their variance was considered in this way, including

SMAD2, flow to which was found to be significantly associated with survival. This

is consistent with the expectation that patients with altered information flow to a

transcription factor should also have altered expression of genes regulated by that

transcription factor.

To further investigate the relationship between information flow and gene expres-

sion, I next examined the correlation of predicted information flow (log2SPC score) to

TFs with expression of those same TFs (Figure 3.25). This analysis also identified mul-

tiple significant correlations. The correlation coefficient for these correlations tended

to be relatively small, indicating that gene expression and information flow score

are not directly interchangeable. Further analysis using motif enrichment found few

signficantly enriched motifs among patients with significantly impacted transcription

factors, with the exception of SP1 and SMAD4 motifs being enriched for patients

with significant log2SPC reductions (Appendix Figure 6.21).
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Figure 3.24: Correlation of information flow score (log2 SPC) for transcription

factors with the first principal component of genes (log2 CPM) targeted by the corre-

sponding transcription factor.
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Figure 3.25: Correlation of predicted information flow (log2SPC score) for tran-

scription factors in 550 patient networks with corresponding transcription factor gene

expression (log2 CPM).
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3.5 Discussion

Here, the wealth of individualised CRC data produced by The Cancer Genome Atlas

(TCGA), was combined with large scale interactome data to create 550 models of

cellular signalling in the epidermal growth factor receptor (EGFR) network. I combined

patient-specific transcriptomic and genomic data with protein-protein interactions

(PPIs) to develop personalised network models for each tumour in each patient. I

found that transcriptomic data was relatively easy to adapt to this purpose, both for

weighting edges and removing nodes for genes with significantly reduced expression. I

also used genomic data to incorporate PPI disrupting mutations, however ultimately

found that relatively few of the mutations found in TCGA CRC patients matched

the curated PPI disrupting mutation dataset (del-Toro et al., 2019) or mutations that

I was able to identify as potentially disruptive by searching for domains enriched in

pairs of interacting proteins. Here I presented a node-removal strategy for network

creation. However, improvements to the patient-specific tailoring of networks are

certainly possible and may increase the biological relevance of results. This may also

include incorporating information on alternatively spliced protein isoforms, which

are known to occur frequently in TCGA tumour samples (Kahles et al., 2018). This

methodology was tested in CRC as a proof of concept. However, in theory, it should

be possible to re-apply these methods to other types of cancer and potentially other

diseases entirely.

I aimed to predict how these networks were rewired in different patients, and

investigated the topology of these 550 personalised models for their prognostic rele-

vance. There were significant differences in these properties between existing CRC

subtypes, both in the Consensus Molecular Subtypes (CMS) (Guinney et al., 2015)

and PSDE-informed subtypes (PICs). No associations between survival and either

global (network level) or local (node level) topological properties were found however,

demonstrating that while topological properties were variable between patients they

were not a reliable predictor of patient survival. This is in contrast to previous stud-

ies in which these properties were significantly associated with particular properties,

namely network complexity (Breitkreutz et al., 2012). This inability to reproduce
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associations with patient survival previously reported in the literature could be due

to differences in network construction, for example the networks of Breitkreutz et

al. represented multiple different cancer types, and it is entirely possible that these

findings simply did not translate well to networks representing individuals with the

same cancer. Another possible explanation for these findings is that the updates PPI

databases have received over the years since the original findings were made have

significantly changed the structure of these networks. Until quite recently with the

development of IMEx (Orchard et al., 2014), curation of PPI data was mainly per-

formed independently by multiple groups (Orchard et al., 2012). This fact, combined

with the increase in available interactions due to the development of high-throughput

screening methods such as affinity purification mass spectrometry, mean that the size

and topological properties of these networks have been significantly altered over the

last decade.

I developed a novel tool, Simulated Information Flow For Individualised Networks

(SIFFIN), which was used to simulate information flow through the 550 individualised

CRC networks. In comparison to existing tools such as ITM probe (Stojmirović et al.,

2012), SIFFIN infers the directionality of edges in undirected networks using a process

described by Silverbush & Sharan, 2019 and then simulates directed information flow

with a simple network propagation algorithm (Cowen et al., 2017). I also introduced a

new metric for inter-network information flow comparison, scaled percentage change

(SPC). I found in simulations of a small-scale EGFR network model (Samaga et

al., 2009) that SIFFIN compared favourably with ITM Probe for investigating the

downstream consequences of node removals.

SIFFIN was applied to the 550 TCGA CRC networks, and predicted substantive

rewiring of signal flow between patients. Stratifying patients on these differences, I

found some concordance between previously established subtypes such as the CMS

and patterns of information flow, but also found multiple "flow clusters" with hetero-

geneous composition of CMS classifications. Significant differences in survival were

also identified for patients in specific flow clusters, beyond what was observed in the

CMS. Given that these SIFFIN-derived clusters exhibited significant differences in

patient survival, I expected to find that the signal flow to downstream transcription
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factors (TFs) would vary substantially. Examining the predicted information flow

to TFs, I found that SIFFIN predicted the preferential activation/repression of spe-

cific transcriptional programs in different patient groups. Cox regression analysis on

TF log2 SPC scores revealed that increased flow to SMAD2 (a mediator of TGF´

signalling (Wee & Z. Wang, 2017)) was positively associated with survival. Using a

random removal approach, I found evidence that these differences were not simply the

result of random chance, as random removals resulted in very distinct downstream

alterations to transcription factors. I found specifically that the predicted information

flow to SMAD2 was significantly associated with better patient outcomes.

I found that as TFs were relatively infrequently classified as PSDE genes, it

was difficult to associate PSDE genes with significant log2 SPC changes. However,

by examining the correlation of the predicted information flow scores with gene

expression data, I found that the both the target genes and genes coding for the

transcription factors themselves were correlated to varying degrees with predicted

information flow. Given that so many correlations between the TF expression and log2

SPC score were identified, it does suggest that this approach is excessively influenced

by expression (as ideally upstream network topology, rather than individual node

expression, should influence signal flow). A potential resolution to this issue could be

to employ a rank-based edge weighting, as is found in tools such as Gene Set Variation

Analysis (Hänzelmann et al., 2013). However, the size of these correlations was overall

quite small despite their statistical significance, which demonstrates that the variance

in information flow is not entirely due to gene expression alone. This indicates that

the information flow to transcription factors was not redundant, but related to gene

expression. As both information flow scores and transcription factor activities are

directly related to gene expression, it is likely that this correlation is representative

of a meaningful biological signal. To provide further support for the hypothesis that

information flow is predictive of the activation of transcription factors, one strategy

that may be used of is the use of transcription factor binding site analysis to detect the

enrichment of motifs among perturbed, which can help identify transcription factors

likely responsible. In this instance, motif enrichment did corroborate the information

flow results seen from SP1 and SMAD4, but was not statistically significant for other
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tested transcription factors.

In conclusion, I found that using patient-specific data to predict differences in

network topology can be used to identify novel patient groups, with significant differ-

ences in survival between groups defined from log2 SPC scores identified by SIFFIN

not being observed in any previously defined CRC subtypes. This suggests that a

network approach to modelling the heterogeneity of cancer may be able to provide

unique insights that are overlooked by other approaches that do not consider network

topology.
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4. Spatially resolved exploration of intra-

tumour heterogeneity

Contributions and acknowledgements

Many people contributed to the data presented in this chapter; I would like to ac-

knowledge my principal supervisor Prof. David Lynn for assistance in development

of InsituNet and the other methods presented, Dr. Stephen Blake for leading the

mouse anti-CD40 experiments, Dr. Xiaoyan Qian, Dr. Thomas Hauling, and Prof.

Mats Nilsson for providing in situ sequencing data, Mark Van der Hoek for assistance

with RNA sequencing, Shadrack Mutuku and Prof. Lisa Butler for providing prostate

cancer biopsy data, and Dr. Marten Snel, Dr. Paul Trim and Jacob Truong for mass

spectrometry imaging. While work on InsituNet began the year prior to my PhD

candidature, development continued during my PhD candidature and the software ap-

plication was published in 2018 (Salamon et al., 2018). All other work in this chapter

was done by me during my PhD candidature.

174



4.1 Introduction

Tumours are heterogeneous not only between individuals but within a single patient,

with different cells of a tumour potentially exhibiting distinct molecular characteristics

(Dagogo-Jack & Shaw, 2018) and different tissue regions exhibiting varying levels of

immune infiltration (Fridman et al., 2011) and metabolic dysregulation (Vander Hei-

den & DeBerardinis, 2017). This cellular heterogeneity provides a population from

which resistance to treatments may arise, and should therefore be considered in the

development of any therapeutic approach. In previous chapters, I have focused on

inter-patient heterogeneity primarily due to the limitations of available data, namely

bulk RNA-sequencing data which is only capable of producing gene expression av-

eraged across multiple homogenised cells. In contrast, single-cell RNA sequencing

(scRNAseq) is capable of profiling the expression of individual cells, overcoming a

major limitation of bulk RNA sequencing experiments. Despite this advantage, most

applications of scRNAseq still lose the spatial context of the original tissue, making

such approaches suboptimal for investigating tumour heterogeneity. In recent years

however, multiple spatially-resolved technologies for multi-omics analyses on intact

tissue sections have emerged which appear likely to greatly benefit the investigation

of tumour heterogeneity.

Spatially resolved transcriptomics (or spatialomics) in particular is a rapidly ex-

panding field, with many different approaches now available to spatially assess gene

expression in tissue sections (Liao et al., 2021). Popular approaches to spatially-

resolved transcriptomics typically fall broadly under two categories; fluorescence in

situ hybridisation (FISH)-like approaches which utilise hybridisation of fluorescent

probes followed by optical imaging, and arrayed approaches which typically function

more similarly to next-generation sequencing experiments but add spatial informa-

tion using some form of 2D barcoded array. One hybridisation based method is in

situ sequencing (ISS) (Ke et al., 2013), an approach capable of detecting individ-

ual RNA fragments within sections of preserved tissue at micrometer resolution. In

situ sequencing may be multiplexed to detect around 40 different types of transcript

simultaneously, generating expression and spatial data. This method contrasts to
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other approaches such as "spatial transcriptomics" (Ståhl et al., 2016), which takes

a whole-transcriptome sequencing approach using a specialised slide containing ar-

rayed oligonucleotides with positional barcodes. This has the advantage of unbiased

sampling of the transcriptome, but results in a lower resolution spatial map than

approaches like ISS.

Spatially-aware metabolomics is now also possible using matrix-assisted laser des-

orption ionization (MALDI) mass spectrometry imaging (MALDI-MSI). MALDI-MSI

has been applied to various solid tumours (Pirman et al., 2013) enabling the investiga-

tion of the metabolomic and lipidomic tumour microenvironment in high spatial detail.

MALDI-MSI is capable of imaging across an intact 2D section of tissue, outputting an

image in which each pixel contains a record of mass-to-charge (m/z) intensity across

the mass spectrum. This technique is capable of identifying various biomolecules, in-

cluding lipids, and has been proposed as a clinical diagnostic tool for surgical pathology

(Basu et al., 2019).

The rise of spatialomics promises to enable studies of tumour heterogeneity and

the tumour immune and metabolic microenvironments in far more detail than was

previously possible. However, analysis approaches for this kind of spatial data are

still in their infancy. Tool such as ST Pipeline (Navarro et al., 2017) enable basic

processing of spatial transcriptomics in a similar fashion to scRNAseq, but tools which

are built specifically to take into account spatial location are sparse. Some promising

approaches utilise image analysis and geospatial statistical methods such as point

pattern analysis, for example STUtility (Bergenstråhle et al., 2020). Highlighting

the overlap between the spatial and single-cell fields, STUtility itself is based on

the Seurat framework for spatial reconstruction of scRNA-seq data (Satija et al.,

2015). A common approach to spatial omics analysis when discrete pixels of data

are available is to use unsupervised clustering algorithms such as Uniform Manifold

Approximation and Projection (UMAP) (McInnes et al., 2018) to classify each spatial

point. Supervised approaches can include using partial least square discriminant

analysis (PLS-DA), a machine learning approach which performs well with high-

dimensional classification tasks, a property which makes it useful for exploratory

analysis of metabolomics and mass spectrometry data (Brereton & Lloyd, 2014).
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However, this kind of pixel classification approach is not applicable if discrete pixels

do not exist, and in addition does not really utilise the spatial aspect of the data. As

a fairly recent and underdeveloped field, there is a demand for new analysis methods.

This demand could potentially open up a new space for network analysis, due to the

capability of networks to integrate diverse data sources and the need to link spatial

data to existing, better established technologies.

In this chapter I will discuss some of the software approaches I have developed to

address the current gap in spatialomics analysis methods. This includes InsituNet, an

application for network visualisation and analysis of spatially resolved transcriptomics

data. I will also describe some case studies in which I have applied various methods to

spatial data analysis to study topics including tumour heterogeneity and heterogeneity

of the tumour immune and metabolic microenvironments on a spatial, intra-tumour

level.

4.2 Hypothesis and Aims

I aimed to extend my work on inter-patient tumour heterogeneity to investigate

intra-patient heterogeneity, using recent technologies to gain insight into the spatial

dimension which is usually lost in conventional omics experiments. By building on

simple network principles, I also aimed to build a tool which would be capable of

performing integrative network analysis of spatially-resolved data, beginning with

in situ sequencing (ISS), but also be capable of analysing other spatially-resolved

data types including Spatial Transcriptomics. Furthermore, I aimed to extend this

algorithm to encompass spatial lipidomics data collected from matrix-assisted laser

desorption ionisation (MALDI) mass spectrometry imaging, in collaboration with

colleagues using this approach to assess heterogeneity in prostate cancer.
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4.3 Methods

4.3.1 A network-based approach to spatialomics with Insi-

tuNet

InsituNet is an application I developed for the investigation of spatially-resolved

transcriptomics (Salamon et al., 2018). InsituNet enables interactive exploration and

analysis of spatially resolved transcriptomics data and was one of the first tools

developed for network-based analysis of this kind of spatially resolved transcriptomics

data. InsituNet was originally developed for the analysis of in situ sequencing (ISS)

data (Ke et al., 2013), a spatially-resolved transcriptomics method which produces

extremely dense maps of gene expression, but with relatively few unique transcripts.

I had several goals for producing a tool to visualise this type of data:

1. Determine a method of determining which pairs of transcript spatial co-localisations

are unexpectedly more or less frequent than expected given the abundance of

each transcript.

2. Provide a network-based visualisation of in situ sequencing data as a form

of data dimensionality reduction, such that the most interesting relationships

between transcripts may be identified.

3. Highlight network rewiring in different spatial tissue regions, so that the problem

of comparing the transcriptional profile of different 2D areas can be solved.

I developed a simple algorithm to determine spatial co-localisation. Taking as input

processed ISS data in which each transcript is represented as a point in 2-dimensional

space, two transcripts a and b are defined as spatially co-localised if they are within

a given euclidean distance d =
√

(bx − ax)2 + (by − ay) of each other. This distance

may vary based on which features a user is interested in (i.e. intra- or inter-cellular),

and so InsituNet provides flexibility to the user to decide what this distance should

be. Once spatial co-localisation is defined in this manner, a network is constructed in

which each node is a transcript type, and each edge represents spatial co-localisation
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between the two transcripts it links. This network can be visualised directly to show

which pairs of transcripts are co-localised.

The unfiltered co-localisation networks will generally be too dense to be of practical

benefit, given that there are potentially millions of individual co-localisation events

and that in such dense data it would be normal to observe a large number of co-

localisations simply by chance. To overcome this, the edges are filtered as the network

is created in order to only show co-localisations that are statistically significant. Two

methods are provided which assess this statistical significance, a label permutation

based method and a hypergeometric approach.

Label permutation method

The label permutation method for assessing co-localisation statistical significance is

a Monte Carlo method which randomly permutes the transcript labels, aiming to

create a co-localisation frequency probability distribution which models how often

each possible pair of co-localisations would be expected to occur by chance. The

algorithm takes the following steps:

1. Randomly shuffle the labels of the transcripts (i.e., keep transcript locations

fixed, only permute transcript names)

2. Find the new number of co-localisations for all transcripts. As node positions

are unchanged these are already known, and may be recalculated easily.

3. Repeat steps 1 and 2 until a distribution of co-localisation for each transcript

pair is created (e.g., 1000 times).

4. For each each pair of co-localisations which occur with a frequency greater than

zero, find the probability of this observation given the generated distribution.

This probability is determined with a 95% confidence interval for each distribu-

tion. Co-localisations with frequencies outside of these intervals are considered to be

statistically significant.
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Hypergeometric method

As an alternative to the label permutation method which is less susceptible to over-

representing lowly expressed transcripts, the hypergeometric distribution can also be

used to assess the significance of drawing k co-localisations of transcripts a and b,

given by:

P (X = x) =
(k
x
)(N−k

n−x
)

(N
n
)

The parameters for this test are N , the total number of co-localisations between

all transcripts, k, the total number of co-localisations between two transcripts a and b,

n, the number of co-localisations involving any a transcripts, and K, the total number

of co-localisations involving any b transcripts. In comparison to the label permutation

method, the hypergeometric test fully considers the compound probability of obtaining

a certain number fo co-localisations given the abundances of each of the transcripts

in a pair.

Correction for multiple testing

Both the permutation and hypergeometric methods for assessing statistical significance

require a large number of statistical tests (one for each unique co-localised pair of

transcripts). Due to these simultaneous statistical inferences, InsituNet applies the

Bonferroni method to adjust P values for multiple testing.

Extension to other data formats

While InsituNet was developed with a focus on analysis of spatially-resolved transcrip-

tomics, specifically ISS, all the algorithm requires as input is a list of 2D points, and

therefore it may also be extended to other forms of spatialomics data with relative

ease. Many spatialomics data types, for example MALDI-MSI, do not resolve down

to individual detections at different locations, but consist of higher dimensional data

such as a mass spectrum which localises to a given region. InsituNet was limited in

that only one data point can exist at a given 2D location, and so the import of other

multi-dimensional data types was enabled by adding an optional input randomisation

180



procedure which would allow these data to be successfully imported. This allows such

data to be analysed as long as the co-localisation distance is set higher than the

randomisation distance.

Implementation details and availability

Cytoscape is an open source software platform for network visualisation and analysis

with a biological focus (Shannon et al., 2003). InsituNet is implemented as a Java

OSGi bundle "app", compatible with Cytoscape version 3.2+ (Java 8+). InsituNet is

available as a cross-platform JAR file which may be downloaded from within Cytoscape

itself, or from the InsituNet page on the Cytoscape app store1, from which links to

the source code, test datasets, and user documentation can also be found.

Various software implementation details of InsituNet allow it to perform effectively

instantaneously for moderately sized datasets (<100,000 points). InsituNet takes

a file of comma separated values (csv) as input with three columns for transcript

name, x coordinate and y coordinate. This list of points is converted into a kd-tree

data structure which allows for much faster spatial operations, including detection

of neighbours within a given euclidean distance of a point (time complexity of O(n)

in the worst case, compared to O(n2) for the naive approach of testing the distance

between each point).

The tissue viewport in which each transcript is visible was OpenGL-accelerated

to enable high performance for interactivity even when thousands of individual tran-

scripts are present. This was implemented using the JOGL library2.

The Monte Carlo label shuffle eventually converges on a general formula which

models the expected co-localisations between a and b as C(a, b) = 2knanb

N2
−N

if transcript

a is not the same as transcript b, or C(a, b) = k(n2
a−na)

N2
−N

otherwise, where the total

number of co-localisations is given by k, the total number of transcripts is N and na

and nb are the number of a and b transcripts respectively (see appendix for details).

For efficiency this formula is used by the application rather than actually performing

the permutation.

1https://apps.cytoscape.org/apps/insitunet
2https://jogamp.org
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4.3.2 Using spatial transcriptomics to profile immune infiltra-

tion into MSS-CRC tumours following immunotherapy

Background

Immune agonist antibodies (IAAs) are a class of cancer immunotherapies which target

co-stimulatory receptors on a range of immune cells, inducing immune cell infiltration

into the tumour, thus increasing sensitivity to immune checkpoint inhibitors (ICIs)

(Vonderheide, 2018; Mayes et al., 2018). ICIs are co-inhibitory targeted immunomod-

ulators which block immune checkpoints such as CTLA-4, PD1 and PDL1 to reverse

the immune resistance gained by certain tumours, restoring the anti-tumour function

of the immune system. First demonstrated in metastatic melanoma, such ICIs have

been demonstrated to be clinically effective in other highly mutated cancers with

mismatch DNA repair deficiencies, such as the microsatellite instability (MSI) sub-

type of colorectal cancer (Robert, 2020). As discussed in previous chapters, the MSI

subtype of colorectal cancer (CRC) is more susceptible to ICI immunotherapy due

to increased immune cell infiltration into the tumour. However, the majority of CRC

tumours are microsatellite stable (MSS), and are therefore usually resistant to such

therapies. Therapies which increase immune cell infiltration to sensitise tumours to

ICIs could therefore be a viable therapeutic strategy.

Experimental design

To investigate whether treatment with the IAA anti-CD40 increases immune cell

infiltration into immunologically cold MSI-CRC tumours, C57BL/6 mice were injected

by Dr. Stephen Blake with tumours orthotopically in the colon and treated with anti-

CD40 immunotherapy or PBS control once tumours were established. Tumours were a

genetically engineered microsatellite stable (MSS) AKP (Apc�/�, KrasG12D, Trp53�/�)

organoid model developed by Dr. Susan Woods and Prof. Dan Worthley (SAHMRI).

Following treatment tumours were sectioned and prepared for spatial gene expression

profiling using the Visium 10X platform, which utilises a spatial transcriptomics

method developed by Ståhl et al., which is capable of whole transcriptome sequencing
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with 100½m spatial resolution. Spatial transcriptomics was performed by staff at the

SA Genomics Centre. I performed the analysis of the spatial transcriptomics data to

assess changes in spatial gene expression in MSS-CRC tumours, following anti-CD40

treatment.

Spatial Transcriptomics

The Visium platform requires a spatially-barcoded slide with four main areas to

which tissue can be fixed. In this experiment, each of the four areas on the Visium

slide contained a separate tumour section from a different mouse, two treated with

anti-CD40, plus two untreated controls. Tissues were H&E stained and then imaged.

Paired-end sequencing was performed on the Illumina NextSeq 500 platform, gener-

ating Illumina base call files (BCLs). Once BCLs were available, I performed initial

processing using the Space Ranger tool from 10X Genomics3 (version 1.2.2), aligning

reads to the mm10 (GENCODE vM23/Ensembl 98) mouse reference transcriptome.

Using spaceranger mkfastq, the sequencing data were demultiplexed and converted to

FASTQ files. With spaceranger count, automatic slide image alignment was performed,

and unique molecular identifiers (UMIs) were counted. Finally with spaceranger aggr

each individual slide was aggregated into a single normalised dataset. Tissue regions

were manually selected with the 10X Loupe Browser, and the Space Ranger pipeline

was run with these manual alignments. Read quality metrics including number of

genes / counts per spot and mitochondrial content per spot were assessed.

Python scripts were written to automate the visualisation and analysis of the

Visium data following processing with Space Ranger. Normalisation of the data to

reduce the impact of spot-to-spot technical factors was performed using sctransform

(Hafemeister & Satija, 2019). Visualisations of features (e.g. UMI counts per spot)

superimposed on the tissue were generated using matplotlib.

Principal components analysis (PCA) from scikit-learn (Pedregosa et al., 2011)

(version 0.24.1) and uniform manifold approximation and projection (UMAP) (version

0.5.1) (McInnes et al., 2018) were used for visualisation to identify batch effects

3https://support.10xgenomics.com/spatial-gene-expression/software
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between the four tissue sections. A batch effect between the four tissues was identified

and subsequently adjusted for using the harmonypy version of Harmony (Korsunsky

et al., 2019). Harmony requires PCA-transformed counts, so clustering on the batch-

adjusted counts was performed by running UMAP on PCA components then clustering

the resulting embedding with k-means clustering. Differential gene expression between

clusters and treatments was determined using edgeR (version 3.28), using the raw

counts prior to processing with Harmony, but with a design matrix to adjust for

the tissue batch effect. Pathway enrichment analysis was performed using an over-

representation approach as implemented in my biomodule library (available on the

Lynn lab Bitbucket repository4). The top 400 most significant genes by FDR from

differential gene expression were used as a query set for pathway over-representation,

using pathway databases including Gene Ontology Biological Process (Ashburner et

al., 2000) and KEGG (Kanehisa & Goto, 2000).

4.3.3 Effects of immunotherapies in the liver

Background

IAAs have unfortunately not found widespread clinical translation due to immune-

mediated side effects including potentially fatal liver damage and cytokine release

syndrome (CRS) (Mayes et al., 2018). Recently, studies have found that the gut

microbiota play a very critical role in the efficacy of ICIs (Routy et al., 2018). Given

that the liver is a common site of IAA toxicity, it was hypothesised by Blake et al.

(Blake et al., 2021) that the gut microbiota may also be critical for mediating the

immunotoxicity of IAAs, specifically anti-CD40.

To test whether the gut microbiota mediate the immunotoxicity of IAAs, tumour-

bearing mice were untreated or treated with antibiotics (ampicillin and neomycin)

during anti-CD40 therapy. To demonstrate that the effects were mediated by the

microbiota, responses to anti-CD40 in germ-free mice were also assessed. To investigate

the mechanism by which the microbiota altered lipid metabolism in the liver, MALDI-

MSI was employed to provide a spatially-resolved profile of the lipidome in antibiotic

4https://bitbucket.org/lynnlab
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treated, germ-free and control mice. I developed a tool, MSpecView, for identifying

specific lipids which were enriched within certain tissues and visualising the resulting

spatial MSI datasets.

Experimental details

MC38 tumour cell lines donated by Dr. Susan Woods (derived from C57BL/6 murine

colon adenocarcinoma cells) were injected subcutaneously into the flank of mice.

Tumour-bearing mice were untreated or were treated with the antibiotics ampicillin

(0.5mg/ml) and neomycin (1mg/ml) dissolved in sterile drinking water for the duration

of the experiment. Water was replaced three times weekly. I.P. injection of anti-CD4-

or PBS control occurred every 4 days, starting at 3 weeks from the initial antibiotics

administration. Liver sections were collected and snap frozen at -80°C. Tissues were

placed inside a Shandon Cryotome E at -20°C for 30 minutes prior to sectioning.

Tissues were mounted with O.C.T and 10 ½m thick sections were cut for MALDI MSI.

Mass spectrometry imaging was performed by Dr. Paul Trim. Sections were imaged

using a timsTOF FleX mass spectrometer operated in negative ion mode. Imaging

data was imported into SCiLS Lab and spectra were aligned to local maxima before

exporting the data as csv.

Data analysis

I wrote custom Python scripts, available on the Lynn lab Bitbucket repository, to

process and clean mass spectra csv files as exported from SCiLS Lab. Peaks with low

intensity in all samples (< 100 AU) were excluded from analysis. Principal compo-

nents analysis (PCA) was used as an exploratory tool to quantify the variance and

heterogeneity present across each tissue section. Mean intensity of each section was

quantified for each retained m/z peak, and fold change was calculated between each

group. Peaks exhibiting a fold change >2 between untreated / antibiotics treated

groups or untreated / germ free mice were selected for further analysis. 2D visu-

alization of selected mass peaks in tissue sections was performed using matplotlib

3.4.1.
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I also developed an interactive tool I named MSpecView to visualise the three

treatment groups which rapidly produced visualisations of specific masses which were

up or down-regulated. The code for this tool is available from the Lynn lab Bitbucket.

The tool enabled rapid exploration of the mass spectrometry data by first compiling

all data into a single HDF5 (hierarchical data format) file which could be explored

visually with an interface developed on top of the pyqtgraph5 library (version 0.11.1).

Potential lipid matches to m/z peaks were annotated by searching the Lipid Maps

Structure Database (Sud et al., 2007) by mass for negative ions, with +/- 0.5 tolerance.

4.3.4 Lipid composition analysis of prostate tumours

Background

In prostate cancer (PCa), the androgen receptor plays a pivotal role, including driving

treatment resistance and dysregulation of lipid metabolism (Zadra et al., 2019). The

highly heterogeneous nature of PCa means that homogenising tissues for analysis

inevitably mixes multiple cell types in unknown ratios, causing difficulties in analysis

and entirely losing information on lipid composition in the tumour microenvironment.

Using matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging

(MALDI-MSI), it is possible to retain this spatial information.

Experimental design

MALDI-MSI was applied to assess the lipidome of prostate biopsies collected from 10

patients between the ages of 58 to 70 (Mutuku et al, under review). This study aimed

to characterise the lipidome of different tissue types present within these tumours. I

constructed a partial least squares discriminant analysis (PLS-DA) machine learning

model to integrate lipidomic mass features to test how effectively the detected lipid

signatures were for the classification of different tissue types.

5https://www.pyqtgraph.org/
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PLS-DA model construction and validation

A PLS-DA model was constructed using the Python-based Scikit-learn package (ver-

sion 0.24.1) (Pedregosa et al., 2011). PCa sections were divided into multiple "spots",

each of which consisted of a dataset of 132 m/z intensities. These spots were labelled

as tumour, benign and stroma based on pathology annotations and used to train the

PLS-DA model. Cross-validation of the model was done using the K-Fold method

with 10 partitions (i.e., 10-fold cross validation). Data were split into 10 partitions at

random, and the training repeated 10 times, with each repeat leaving out a different

partition to be used as a validation. The performance af the model at classifying the

validation partitions was evaluated using area under the receiver operating character-

istic (AUROC). Due to the small number of independent PCa sections, during each

iteration of training at least two of the PCa sections were entirely removed from the

training partition to minimise over-fitting.

Biopsy collection and imaging

Human prostate tissue was obtained with written informed consent from participants

under the South Australian Prostate Cancer BioResource collection protocol. Tissue

sections from 10 patients were collected for haematoxylin and eosin (H&E) staining

and MALDI-MSI. MSI was performed by Dr. Paul Trim and Shadrack Mutuku on a

Waters SYNAPT HDMS hybrid quadrupole orthogonal acceleration Time-of-Flight

Mass Spectrometer (Q-oa-TOF), recorded over a 400-990 m/z range.

Data analysis

Raw data were converted to MSI data files using Waters high definition imaging (HDI)

software (version 1.4). Initial processing of these files was performed by Shadrack

Mutuku using SCiLS Lab MVS Pro (Bruker Daltoniks GmBH, Germany), in which

the identified m/z intervals were aligned to local maxima, then exported as csv files.

SCiLS Lab was also used to perform segmentation of the data using k-means clustering.

Three distinct m/z segments were identified and annotated as tumour, benign, and
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stroma. I constructed a supervised partial least squares discriminant analysis (PLS-

DA) model as previously described which included 132 m/z features using MALDI-MSI

data exported from SCiLS Lab. The model was trained on regions of tissue annotated

as tumour, benign and stroma. Masses determined to contribute to matrix noise were

excluded, which were identified as those that were highly over-represented on the outer

edges of the tissue sections. The PLS-DA model was constructed using the Python-

based Scikit-learn package (version 0.24.1). 10-fold cross-validation was used to assess

the model performance using AUROC. During each test/train split, at least two of

the PCa sections were entirely different between test and training groups to minimise

over-fitting. Masses most strongly associated with a given feature were identified and

exported. Classifications of different regions predicted by the PLS-DA model were

visualised on images of the original tissue using matplotlib 3.4.1.
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4.4 Results

4.4.1 InsituNet

To demonstrate InsituNet, the application was used to analyse a published in situ

sequencing dataset profiling spatial gene expression in a HER2 transcript–positive

human fresh-frozen breast cancer tissue section (Ke et al., 2013). This dataset consisted

of 17,722 individual transcript detections for 38 different transcripts, including 21

transcripts used in the OncoType DX breast cancer prognostic expression panel

(Sparano & Paik, 2008). InsituNet imports in situ data by parsing an input file of

comma delimited values specifying individual transcript names and two-dimensional

coordinates. These data are then used to construct a space-partitioning kd-tree to

enable rapid range searching. The option of importing corresponding histological

images of the tissue section, such as hematoxylin-and-eosin (H&E) stains, is also

available to assist in navigating the tissue section (Figure 4.3). After importing data,

the user is presented with a visualisation showing the position of each transcript

detected in the tissue section (Figure 4.1, A). A unique color/symbol combination

is assigned to each uniquely-named transcript. This visualisation is presented within

an OpenGL-accelerated window, enabling efficient rendering of potentially millions of

transcripts. With a relatively small dataset (130,000 transcript detections, 26 unique

types) import and visualisation take around a second on a modern laptop (Intel Core i7

6600U processor, 16GB RAM). InsituNet’s efficient performance was confirmed using

a larger unpublished in situ sequencing dataset consisting of ∼1.5 million transcript

detections, which takes around 17 seconds to import. Transcript spatial expression

can be interactively explored using the application to pan and zoom into specific areas

of interest. For example, by exploring an example breast cancer tissue section, one can

immediately appreciate the heterogeneity in gene expression in different parts of the

section, and readily identify distinct regions of the tissue (Figure 4.1, A). However,

due to the density of in situ sequencing data it is difficult to easily identify which

specific transcripts are more expressed in which regions of the tissue section and it is

impossible to determine which transcripts are unexpectedly spatially co-expressed.
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Figure 4.1: InsituNet analysis of HER2+ breast cancer dataset from Ke et al., 2013.

Networks (B, D and F) were generated from the corresponding tissue regions (A, C and

E) (Search distance: 40px/6.6½m). (A and B) HER2 expression in the tissue section

was highlighted by selecting the HER2 node in the network. (C and D) Polygonal

search region employed to select the HER2+ region. (E and F) The (HER2-) region

was selected for comparison. Scale bars: 100½m.
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To address these challenges, InsituNet automatically generates a network-based

visualisation of the in situ sequencing data (Figure 4.1, B), which is presented in

a new window alongside the initial visualisation of transcript localizations. In the

network visualisation, nodes represent each uniquely-named transcript, with the node

size proportional to the number of detections of the transcript in the tissue section (or

selected region). This approach substantially reduces the dimensionality of the data

as potentially millions of transcript detections are represented as a correspondingly

much smaller set of nodes in the network, representing each unique transcript. Nodes

are coloured concordantly with the colours used to visualise the individual transcript

detections in the initial in situ-seq visualisation. Selecting a node(s) will highlight the

expression pattern of the corresponding transcript(s) in the in situ sequencing data

visualisation panel, allowing users to interactively explore the expression data via the

network visualisation. For example, selecting the HER2 node in the example network

highlights the HER2 transcript detections in the tissue section (all other transcripts

are hidden) (Figure 4.1, A-B).

A key goal of in situ sequencing is to identify transcripts that are preferentially

spatially co-expressed in regions of interest in a tissue section and to identify how those

co-expression profiles are altered, for example in regions of pathology. Transcripts that

are identified as significantly spatially co-expressed in InsituNet are linked by an edge

in the network visualisation. The more statistically significant the co-expression is,

the greater the weight (thickness) of the edge in the network. To identify spatially co-

expressed transcripts, InsituNet analyses the co-occurrence of transcript detections

within a user- defined Euclidean distance, for each pairwise combination of transcripts.

Transcripts that are co- expressed more than statistically expected are then identified

using either a label permutation-based approach or a hypergeometric test. The user

can choose which. In both approaches, InsituNet considers the overall abundance of

the transcripts (i.e. the number of individual times each transcript is detected) in the

selected region and the number of times that the two transcripts spatially co-occur

within the defined distance, in the wider context of all co-expressed transcripts. For

example, in the example breast cancer tissue section, housekeeping genes, such as beta

actin (ACTB) or GAPDH, are expressed throughout the tissue and are represented as
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large nodes in the network (since they are highly abundant). However, these nodes still

have relatively few edges since they are not surprisingly spatially co- expressed with

many other transcripts (given that they are expressed throughout the tissue section)

(Figure 4.1, C). InsituNet, also has the option to identify nodes that are co-expressed

with other transcripts significantly less than would be expected given their abundance.

This identifies transcripts that tend not co-occur together in the same vicinity and

these transcripts may represent specific biomarkers of different cell-types or regions

of the tissue section.

Network-based visualisations can be generated based on the expression profile of

the entire tissue section or on a subsection of the tissue selected by the user, enabling

the comparison of expression patterns in different parts of the tissue section (Figure

4.1, E-H). For example, H&E staining of this section (Figure 4.3) shows that the

region selected in Figure 4.1, C is the cancerous tissue. This is also evident from

the InsituNet analysis as HER2 expression is restricted to these regions (Figure 4.1,

D). The ability of the selection tool to select irregularly-shaped regions of the tissue

section enables the user to precisely define regions of interest. InsituNet identified a

surprisingly strong association (− log10(P ) > 10) in this region between the spatial

expression of HER2 and GAPDH. This association between GAPDH and HER2

expression is stronger if the HER2+ region is selected in InsituNet (note the increased

edge thickness in Figure 4.1, D compared to Figure 4.1, B) and is not evident at all in

the HER2- region of the section (Figure 4.1, E-F). Interestingly, GAPDH, although

widely used as a reference gene, has been shown to be correlated with ER expression

and associated with breast cancer cell proliferation and with the aggressiveness of

tumours (Révillion et al., 2000). In contrast, one can observe that vimentin (VIM)

expression, a marker of mesenchymally-derived cells, is higher in the non-tumour

region of the tissue (based on the size of the node in Figure 4.1, F compared to

Figure 4.1, D). One can also observe associations between VIM expression and other

transcripts that are not evident outside of this region of the tissue section.

Where regions of interest are not immediately evident, InsituNet also implements

an automated sliding window function (the size of the window can be defined by

the user). This function enables one to quickly compare expression profiles across
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the tissue section by generating network-based visualisations of transcript expression

in each window (Figure 4.4). InsituNet also enables network-based visualisations to

be generated for different tissue sections, for example, tissue sections from different

patients. Where multiple networks are constructed (either from different tissue sections

or from different regions within one section), InsituNet spatially synchronises their

layout to facilitate comparison. This synchronisation is achieved in a manner similar to

DyNet (Goenawan et al., 2016) and any of the layout algorithms available in Cytoscape

can be applied as desired by the user. InsituNet also facilitates the management of

multiple networks from a unified interface which tracks all networks made using the

application. This interface also allows the user to switch quickly between different

networks.

Figure 4.2: InsituNet with the HER2+ breast cancer dataset from Ke et al., 2013

imported (30px/5½m search distance, label shuffle significance filtering). The tissue

view (left) is an interactive visualisation of the tissue which represents transcripts

as coloured symbols. 2D regions can be selected from which co-localisation networks

will be constructed. The network view (right) displays a network representation of the

significant co-localisations between transcripts. Node size is proportional to abundance

within the selected region, and edge width is proportional to significance determined

by label permutation or hypergeometric methods.
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Figure 4.3: H&E stain of the tissue section shown in Figure 4.2 with in situ sequenc-

ing data overlaid using InsituNet.

InsituNet was developed as an app for the Cytoscape platform, and may be

downloaded from the Cytoscape app store6. The datasets presented here, including

the Ke et al. dataset, are available from InsituNet’s source code repository7. InsituNet’s

algorithm requires only 2D spatial coordinates. Given this, it is possible to analyse any

form of 2D data in this way. Spatially-resolved transcriptomics such as FISSEQ (J. H.

Lee et al., 2015) can also be analysed using InsituNet without any modification, as the

data already exists as discrete points. Other methods which lack specific transcript

coordinates such as Spatial Transcriptomics (Ståhl et al., 2016) instead localise many

transcripts within a given array diameter, and so require some reprocessing before they

can be analysed. To enable analysis of such data I added functionality to InsituNet

which adds a small amount of random noise to the positions of transcripts within each

array location, enabling import and analysis. In this manner, InsituNet is capable of

performing spatial network analysis on any spatially resolved transcriptomics, and to

my knowledge is one of the first applications developed for this purpose.

6https://apps.cytoscape.org/apps/insitunet
7https://bitbucket.org/lynnlab/insitunet/src/master/datasets

194

 https://apps.cytoscape.org/apps/insitunet
 https://bitbucket.org/lynnlab/insitunet/src/master/datasets 


Figure 4.4: The sliding window function of InsituNet allows users to compare spatial

co-expression across the tissue. Three rectangular regions shown represent the sliding

window regions of the tissue analysed. Search distance: 30px/5½m). Automatically

generated networks are shown on the left (A, C and E) for regions shown on the right

(B, D and F). Network node layouts are synchronised, keeping same positions across

different networks.
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4.4.2 Profiling immune infiltration of CRC with Spatial Tran-

scriptomics

Immune agonist antibodies (IAAs) target co-stimulatory receptors on a range of im-

mune cells and by inducing immune cell infiltration, increase sensitivity to immune

checkpoint inhibitors (ICIs) (Vonderheide, 2018; Mayes et al., 2018). ICIs are clinically

effective in the microsatellite instability (MSI) subtype of colorectal cancer (Robert,

2020), however, the majority of CRC tumours are microsatellite stable (MSS). To

investigate whether treatment with the IAA anti-CD40 increases immune cell infil-

tration into immunologically cold MSI-CRC tumours, which would sensitise them to

ICIs, a genetically engineered microsatellite stable (MSS) tumour organoid model was

injected into mice. Tumour sections from four of these mice were analysed using the

spatial transcriptomics method described by Ståhl et al. (Ståhl et al., 2016), two of

which had been sectioned from mice treated with the immune agonist antibody (IAA)

anti-CD40, and two untreated. Approximately 100 million reads were sequenced per

tissue section.

Each spot on a Spatial Transcriptomics dataset is an individual scRNAseq dataset,

albeit from a single spatial region 55 ½m in diameter rather than an actual single cell.

Similarly to scRNAseq data however, this generally results in a lower signal-to-noise

ratio than bulk RNA-seq, leading to a high abundance of zeroes in the final count

tables. Furthermore, the low numbers of transcripts obtained from single cells mean

that library preparation requires cDNA amplification, causing amplification bias. This

bias is mitigated by use of Unique Molecular Indicators (UMIs), which barcode each

transcript prior to amplification. Visualising UMIs superimposed on the tissue images,

it was possible to verify that there was not an unusual localisation of UMI counts

(Figure 4.5), suggesting that the procedure had been successful. Read quality for spots

appeared good, with less than 4% mitochondrial content in all spots.
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Figure 4.5: Spatially-localised UMI counts for each tissue section overlaid on H&E

stained tissue section. Data were visualised with matplotlib 3.4.1. The intensity colour

scale corresponds to absolute UMI counts per 55 ½m spatial transcriptomics spot. Each

spot represents a spatially localised whole-transcriptome RNA sequencing dataset.

Following aggregation of the four datasets, data dimensionality reduction for vi-

sualisation and clustering was performed using both linear (PCA) and non-linear

(UMAP) methods followed by k-means clustering. This analysis revealed that each

tissue section clustered almost entirely separately from the others (Figure 4.6, 1). This

was undesirable for clustering purposes, as similar areas on each tissue section would

not be possible to identify, and was clearly a batch effect. Following adjustment with

Harmony, a tool for the integration of single-cell data (Korsunsky et al., 2019), the

variation between each tissue section was adjusted for (Figure 4.6, 2 and 3).
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Figure 4.6: Aggregated data were clustered using k-means clustering. Before adjust-

ing for between-tissue batch effects, each tissue section was clearly identifiable as a

separate cluster by this process (1). Following adjustment with Harmony, the previ-

ously separated tissue areas were integrated (2), and each cluster detected by k-means

clustering was present across multiple tissue sections (3).

Following batch effect adjustment, clustering of the spatial transcriptomics data

was able to identify similar regions of tissue across the different tissue sections (Figure

4.7). Differential gene expression analysis was used to compare the two treatment

groups, and also to identify genes specific to the clusters derived from unsupervised

k-means clustering. This analysis revealed a large number of immune-related genes

which were significantly up-regulated in the two anti-CD40 treated tissue sections

(Figure 4.8). Pathway analysis confirmed the enrichment of these genes for roles in

the immune system (Figure 4.9).

Five clusters were identified which were present in varying ratios across the four

tissue samples which were found to be representative of particular cell and tissue

types following pathway enrichment using KEGG and GO Biological Process. Notably,

areas of immune infiltration were identified in both cluster 3 (Figure 4.9) (enriched

primarily for adaptive immune responses, e.g. T and B cell pathways) and cluster 1

(enriched more for innate responses, e.g. neutrophil infiltration). Cluster 3 for the most

part was prevalent within the anti-CD40 treated tissues, and especially within the

treated area tissue of area 1 (Figure 4.7, 1). Pathology annotation also indicated that

cluster 3 correlated well with areas of apparent immune infiltration. Other clusters

were strongly representative of different tissue features; cluster 4 was matched to the

muscle tissue, and epithelium for cluster 0. As these were colon sections, the centre
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of the tissue was primarily lumen, which was consistently identified as cluster 2. The

strong immune signature was present in cluster 3,including T and B cell pathways,

was also significantly up-regulated in the anti-CD40 treated tissues, indicating that

the IAA treatment had driven increased infiltration of immune cells into the tumour,

potentially sensitising it to subsequent treatment with ICIs.
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Figure 4.7: Visualisation of spatial transcriptomics data on four mouse MSS-CRC

tumour tissue sections, two anti-CD40 treated (1 and 2), and two untreated (PBS

injected, 3 and 4). 5 clusters were identified in varying ratios across each tissue

section. Clusters were defined based on gene expression data using k-means clustering.

Clusters 3 and 1 were both enriched for roles in the immune system.

199



4 2 0 2 4
log2 fold change

0

100

200

300

400

-lo
g 1
0
 F

DR

Ighg2cAng4
Ighg2b

Lyz2H2-Q7

Igkc

C3
H2-Ab1
H2-AaH2-Eb1

Cd74
Mt1C1qb

Apoe
B2mH2-K1

Ifi27l2b IghaGm47283 Mt2Mzb1IghmJchainCd52C1qaH2-D1Mfge8C1qcPsap
Slpi Saa3Rpl41Ftl1Serping1Iglc1Ccl8Actb HpClca1Slfn4

Not significant
Up in PBS
Up in antiCD40

Figure 4.8: Volcano plot of differentially expressed (DE) genes identified between

anti-CD40 treated and control (PBS treated) tumours. The most significant genes by

FDR are annotated. DE genes were identified with edgeR (3.28), and visualised with

matplotlib (3.4.1).

0 5 10 15 20 25
abs(log2(pvalue))

GO_MYELOID_LEUKOCYTE_MIGRATION
GO_RESPONSE_TO_BACTERIUM

GO_CELL_ACTIVATION
GO_GRANULOCYTE_CHEMOTAXIS

GO_DEFENSE_RESPONSE
GO_NEUTROPHIL_CHEMOTAXIS

GO_HUMORAL_IMMUNE_RESPONSE
GO_REGULATION_OF_HUMORAL_IMMUNE_RESPONSE

GO_B_CELL_RECEPTOR_SIGNALING_PATHWAY
GO_LEUKOCYTE_CHEMOTAXIS

GO_LEUKOCYTE_MIGRATION
GO_INFLAMMATORY_RESPONSE *4.8e-05

*4.8e-05
*8.8e-05

*0.00023
*0.00024
*0.00024
*0.00024
*0.00038
*0.00042
*0.00052
*0.00052
*0.00075

Upregulated in treated

0 10 20 30 40
abs(log2(pvalue))

GO_B_CELL_DIFFERENTIATION
GO_REGULATION_OF_ANTIGEN_RECEPTOR_MEDIATED_SIGNALING_PATHWAY

GO_REGULATION_OF_B_CELL_RECEPTOR_SIGNALING_PATHWAY
GO_LEUKOCYTE_DIFFERENTIATION

GO_REGULATION_OF_B_CELL_ACTIVATION
GO_REGULATION_OF_LYMPHOCYTE_ACTIVATION

GO_ANTIGEN_RECEPTOR_MEDIATED_SIGNALING_PATHWAY
GO_B_CELL_PROLIFERATION

GO_LYMPHOCYTE_DIFFERENTIATION
GO_B_CELL_RECEPTOR_SIGNALING_PATHWAY

GO_B_CELL_ACTIVATION
GO_LYMPHOCYTE_ACTIVATION *2.5e-06

*9.7e-05
*0.00075

*0.0034
*0.011
*0.013
*0.024

0.056
0.14
0.16
0.17
0.18

Upregulated in cluster 3

Figure 4.9: Up-regulated Gene Ontology Biological Process terms in anti-CD40 treated

tumour tissues (top) and in cluster 3 (bottom). Pathway enrichment analysis was

performed using the top 400 most significant differentially expressed genes for each

group.

200



To identify spatial modules of gene expression, InsituNet was used to analyse the

spatial transcriptomics data from anti-CD40 and control treated tumours. As spatial

transcriptomics datasets are extremely dense (whole-transcriptome), a reduction of

features was required to facilitate interpretation of the resulting networks. Using PCA,

gene expression was reduced into its most variant components and split into up or

down-regulated for each component. This resulted in a highly reduced, but difficult to

interpret expression map, as each component represented the variation of many genes.

To overcome this difficulty while retaining the most spatially variant genes, the top 10

genes comprising each principal component were identified and used directly as input

to InsituNet. Each gene was split into lower and higher expression before import based

on the distribution of counts for that gene, such that each gene would be represented

by two nodes in the network. Networks were created for each tissue section, and their

layouts synchronised to facilitate comparison. The networks for anti-CD40 treated

tissues were of particular interest, as they formed several treatment-specific modules

(Figure 4.10).

Certain network modules were present across treatments, in particular, a module of

genes expressed in the smooth muscle (as identified by pathology annotation) (Figure

4.10 A) corresponding strongly with cluster 4 as identified by k-means clustering

(Figure 4.7). Interestingly, while this network module was present in both treated and

untreated tissues, collagen type 1 α-1 (COL1A1 ) and collagen type 1 α-2 (COL1A2 )

genes were strongly linked with all other members of the module only in the treated

tissue. These collagen genes were expressed across all sections, but localised to muscle

tissue only in anti-CD40 treated sections. This was potentially the result of anti-CD40

treatment suppressing the expression of these collagen genes. Inhibition of the CD40-

CD154 blockade has previously been demonstrated to suppress expression of COL1A1

in dermal tissues (Kawai et al., 2008). One network module which was only present

in treated tissues (Figure 4.10 B) was localised strongly to regions overlapping with

cluster 3 (Figure 4.7). This module included high expression of CCR7, IGHM, (genes

commonly expressed by B and T lymphocytes) and LYZ2 (commonly expressed by

macrophages). Perhaps more interesting were the down-regulated genes in this module,

which included ZG16, SPINK4, MPTX1 and IGLC1. Decreased expression of SPINK4,
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a gastrointestinal peptide, has been shown to be associated with poorer prognosis

in CRC patients, as well as being related to higher TNM stage in TCGA patients

(X. Wang et al., 2019), with benign tissues exhibiting higher levels of SPINK4. ZG16

has also been shown to be significantly down-regulated in CRC, and is especially

correlated with microsatellite instability (Meng et al., 2018), indicating that the anti-

CD40 treatment appeared to have initiated molecular changes more consistent with

the MSI subtype of CRC.

Figure 4.10: InsituNet network created from anti-CD40 treated tissue sections (dis-

tance=100px, label permutation significance). Edges are highlighted in red where re-

lationships only occur in treated tissues. Two network modules of particular interest

are annotated; A) a module of genes highly localised to muscle tissue identified during

pathology annotation in both treated and untreated sections, and B) a module of genes

which only occurs in anti-CD40 treated sections, localised to regions of immune cell

infiltration.
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Figure 4.11: InsituNet tissue view of a muscle tissue related network module (i.e.,

the result of selecting the nodes in Figure 4.10 A). A) Anti-CD40 treated tumour

section B) PBS treated control tumour section. Spatial co-localisation of COL1A1 and

COL1A2 was not evident in control sections.

Figure 4.12: InsituNet tissue view of an immune infiltration related network module

(i.e., the result of selecting the nodes in Figure 4.10 B). A) Anti-CD50 treated tumour

section. B) PBS treated control tumour section.

4.4.3 A spatial omics approach to assess anti-CD40 induced

immunotoxicity in the liver

As we have shown, immune agonist antibodies (IAAs) such as anti-CD40 are a promis-

ing approach for sensitising immunologically cold tumours to ICIs. Their clinical trans-

lation, however, has been limited due to dose-limiting toxicity and serious immune-

mediated side effects including potentially fatal liver damage and cytokine release

syndrome (Mayes et al., 2018). In light of recent studies revealing that the gut micro-
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biota are critical for ICI anti-tumour efficacy (Routy et al., 2018), we hypothesised

that the gut microbiota may also mediate the immunotoxicity induced by IAAs.

As part of this study (Blake et al., 2021), mouse livers were imaged using MALDI

mass spectrometry imaging (MSI) to assess microbiota-mediated alterations to lipid

metabolism, providing a spatially-resolved map of the liver lipidome. Three anti-CD40

treated mouse liver sections were imaged (one each from the untreated (No ABX),

antibiotics treated (ABX), and germ-free (GF) mice) Both negative and positive

ion mode were used for imaging, however it was found that most non-noise features

were detectable in negative mode, and so only the negative ion results were used. To

enable rapid visual exploration of different masses, I developed a visualisation tool,

MSpecView, which can scan through each mass spectrum and identify those masses

which have a large fold change difference in any of the treatment groups (Figure 4.13).

Figure 4.13: Screenshot of the MSpecView tool, visualising the 514.285 m/z peak

(taurallocholic acid). The three panels of the tool show three liver sections from the

control, antibiotics treated, and germ-free mice, while an adjustable intensity scale and

colourbar can be seen to the right. The mass spectrum may be scanned by holding left

and right, or mousing over the spectrum graph seen at the bottom of the screen.

MSpecView me to scan through the mass spectrum, stopping on masses in which

the ABX or GF liver sections displayed a large mean intensity difference compared to

control. After identifying masses which exhibited large fold changes in intensity across

treatments, specific masses were selected for visualisation (Figure 4.14. Potential

lipid identifications were matched to the m/z peaks using the Lipid Maps Structure

204



Database (Sud et al., 2007).

I found that the livers of GF and ABX treated mice had an accumulation of

cholesterol sulfate, which has previously been reported to occur in mice depleted of

their gut microbiota (Sayin et al., 2013). These mice also had significantly reduced

levels of bioactive lipids which can be produced by gut bacteria and are important for

the modulation of inflammation in the liver, including taurallocholic acid, arachnidonic

acid, and C17 sphingosine. These data were consistent with transcriptomics analysis

of these livers and suggested that both anti-CD40 and antibiotic treatment altered

the expression of genes involved in liver bile acid metabolism. Serum levels of the pro-

inflammatory cytokines TNFα and IL6 were also significantly lower in ABX mice. To

further investigate whether bile acid levels directly influenced anti-CD40 induced liver

damage and CRS, a 2% cholestyramine diet was fed to mice to sequester bile acids in

the GI tract (Scaldaferri et al., 2013). Interestingly, mice on the cholestyramine diet

had significantly reduced levels of IL6 following anti-CD40 treatment, indicating that

the mechanism of liver damage may be mediated by TNFα instead, which was not

suppressed in the cholestyramine-fed mice. In summary, it was demonstrated that the

gut microbiota are critical mediators of the immunotoxicity induced by anti-CD40,

and importantly, that targeting the gut microbiota with antibiotics did not disrupt

the anti-tumour efficacy of anti-CD40 in combination with anti-PD1. This would

suggest that interventions targeting the gut microbiome may be an effective approach

to increasing the clinical viability of IAAs.
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Figure 4.14: Mass spectrometry imaging of liver sections from control, antibiotic

(ABX) treated, and germ-free (GF) mice. The spatial distribution of four different

m/z peaks which were identified using the MSpecView tool to be altered between the

treatment groups are shown. Intensity histograms are shown to the right, separated

into the ABX, no ABX, and GF groups. Lipid identification was performed using the

Lipid Maps Structure Database (Sud et al., 2007).
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4.4.4 Using spatial lipidomics to assess tumour heterogeneity

in prostate cancer

As clinical prostate tumours are highly heterogeneous, MALDI-MSI was used to study

the spatial chemical profile of 10 prostate cancer (PCa) patient biopsies (Mutuku et

al, in review). In order to characterise the lipid profiles of different tissue types within

the tumours, I constructed a partial least squares discriminant analysis (PLS-DA)

classification model from the mass spectra of these biopsies to determine whether

the detected lipid signatures would be useful for robust classification of different

morphological features. The PLS-DA model was trained on 132 m/z features and

contained 3 labels; benign, stroma and tumour, which were labels obtained from

pathology annotation. The features were visualised using PCA (Figure 4.15), which

resulted in reasonably distinct groupings, but did not separate the 3 groups completely.
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Figure 4.15: PCA of mass spectrometry imaging features from 10 prostate cancer

biopsies. Each point on these plots represents an individual pixel from MSI analysis.

Left) Data points are coloured based on their pathology as Benign, Tumour or Stroma.

Right) Data points are coloured based on each patient sample.

It was apparent that an outlier sample was present in the tumour samples (Figure

4.15, right) (32036l_PC). While most of the patient tumour sections were visually

distinct in PCA analysis, all of the data from this section were tightly clustered,

potentially indicating a batch effect or technical issue with the section. It was therefore

excluded from the PLS-DA training data, resulting in a much cleaner separation of
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groups (Figure 4.16).
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Figure 4.16: PCA of mass spectrometry imaging features from 9 prostate cancer

biopsies, excluding the 32036l_PC section due to batch effects. Left) Data points are

coloured based on their pathology as Benign, Stroma or Tumour, as used to train the

PLS-DA model. Right) Data points are coloured by tissue section of origin.

The masses with the highest variance and their specificity for each of the three

labels was visualised using the model biplot (Figure 4.17). This revealed that there

were specific masses strongly associated with particular labels, for example the 459.246

m/z ion, identified as lysophosphatidic acid (LPA), was most strongly associated with

benign regions (regression coefficient = 0.039). 826.563 m/z, identified as phosphatidyl-

choline (PC) (36:1) was spatially enriched in tumour regions, and strongly correlated

with the tumour label in the PLS-DA model (regression coefficient = 0.031). AR

dysregulation in PCa has been shown to cause overexpression of elongase enzymes

(M. Chen et al., 2018), and PC(36:1) is likely an elongation product of PC(34:1), the

most abundant lipid detected, highlighting a possible rationale for its presence in

tumour tissues.
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Figure 4.17: Biplot for the PLS-DA model, including feature weights on latent vari-

ables (analogous to components in PCA) 1 and 2 (LV1 and LV2), plus benign, stroma

and tumour classifications. The top 10 masses by total contribution to model variance

are labelled.

Using a 10-fold cross-validation procedure, the prediction accuracy of the PLS-

DA model was determined. Each randomisation of the dataset ensured that tumour

sections were split between test and training sets to ensure that the measured ac-

curacy would be indicative of potential performance on an entirely novel tissue sec-

tion. The most accurate prediction was of stroma (AUC=0.972), while both tumour

(AUC=0.709) and benign (AUC=0.733) prediction performed well but less accurately

than stroma (Figure 4.18). Discrimination between benign and tumour regions may

have been more difficult due to the limited sample size and the large amount of

heterogeneity between individual tumour lipid profiles. Despite reduced accuracy in

predicting tumour and benign regions compared to stroma, this model demonstrates

that the lipid profile of PCa tumours may be a useful tool to assist in the identification

of tumour regions in PCa biopsies, and has identified several lipids that are correlated

with tumour regions.
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Figure 4.18: Receiver Operating Characteristic (ROC) curve for cross-validated

PLS-DA model predictions of stroma, benign, and tumour regions on 9 prostate tissue

sections.

Finally, the PLS-DA classifier was applied to each 2D tissue section separately to

demonstrate the predictive capability of the model (Figure 4.19). Each pixel in these

images is coloured by the most likely class as determined by the PLS-DA classifier.

Model predictions were compared to histologically annotated regions to confirm that

tumour / benign classifications were accurate. The model was most confidently able

to distinguish stroma from other regions (AUC = 0.972). Much of this capability was

not due to masses uniquely identifiable in the stroma, but rather due to the absence

of certain masses. Indeed, the most discriminant mass for stroma was 534.288 m/z,

a probable lysophospholipid species which was much more strongly associated with

both tumour and benign regions than stroma (regression coefficient = -0.02). Prostate

cancer is well known for its multifocality, exhibiting high levels of molecular and

spatial heterogeneity (Tolkach & Kristiansen, 2018), meaning identifying lipidomic

profiles capable of identifying tumour regions across different patients is an inherently

more difficult task than classifying more normal tissue types. Given this, and that

the model could perform as accurately at classification of tumour as it did (AUC =
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0.709) with tumour and benign areas being quite distinct in their lipidomic profiles is

strong evidence that the lipidomic profile of PCa as detected by MALDI-MSI could

be a potentially useful clinical tool.

Finally, I investigated whether applying InsituNet to analysing MALDI-MSI data

would be possible. I converted the 31678_PC prostate tissue section into a csv file for

import into InsituNet, and generated a mass co-localisation network from the section

(Figure 4.20). As a proof of concept, this demonstrated that analysis of MALDI-MSI

data with InsituNet was possible. I found that this network very robustly separated

masses which could be considered noise into their own module (the dense module at the

top of Figure 4.20 A and B). These masses are likely an artefact of MALDI-MSI due to

only being found around the outer edge of the tissue. These noise artefacts can also be

observed in Figure 4.19, in which the outer edge of each section is labelled as stroma

with low-confidence by the PLS-DA model. In comparison, the other masses internal

to the tissue did in fact localise to pathology annotations, including several masses

circled in Figure 4.20 A which surrounded the main tumour area of the tissue, and

masses highlighted in Figure 4.20 B which were localised in regions of inflammation.

Interestingly the masses identified in Figure 4.20 A near the tumour region were not

strongly associated with the tumour label by the PLS-DA model, indicating that

this approach may be beneficial for identifying spatial relationships which were not

possible to identify using standard classification approaches.
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Figure 4.19: Visualisation of the PLS-DA model predictions for each of the prostate

tissue sections from 10 different PCa patients (with two different sections from patient

31852). Each pixel is coloured according to whichever class (benign, stroma or tumour)

had the highest probability as determined by the PLS-DA model. Pixel width = 40 ½m.
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Figure 4.20: InsituNet applied to the 31678_PC prostate tissue section reveals spa-

tially localised lipidomic profiles. Different regions of the network were highlighted (A

and B) to reveal the localisation of masses within different pathology annotations on

the tissue (C and D). The masses in A were found to mostly be present in regions

annotated as tumour (C), while the masses in B were found to be localised within

regions of immune infiltration (D).
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4.5 Discussion

The advent of spatially-resolved ’omics technologies represents a significant opportu-

nity to study biological phenomena such as tumour heterogeneity and tumour immune

and metabolic microenvironments. In this series of experiments utilising spatially-

resolved ’omics, I aimed to investigate tumour heterogeneity as well as develop tools

to better utilise the spatial dimension of these data.

While many existing analysis methods such as those for single cell RNA sequenc-

ing (scRNAseq) can be applied to spatially-resolved technologies, they do not truly

utilise the spatial dimension of these data. I have developed InsituNet, one of the first

network solutions in this space, and demonstrated its application to both fluorescence

in situ hybridisation (FISH)-like spatially-resolved transcriptomics such as in situ

sequencing (Ke et al., 2013), as well as array-based spatially-resolved transcriptomics

such as Spatial Transcriptomics (Ståhl et al., 2016). InsituNet is capable of construct-

ing network representations of spatially-resolved transcriptomics data. I found that

the resulting networks were effective for exploration and analysis of the otherwise

extremely dense and difficult to interpret spatially resolved transcriptomics data, and

were capable of highlighting spatial features which would be unclear or missed by

conventional methods which are not spatially-aware.

Using spatial transcriptomics, it was possible to see the influence of the immune

agonist antibody (IAA) anti-CD40 on microsatellite stable models of colorectal cancer.

Spatial transcriptomics analysis revealed that the anti-CD40 treated tumours were

strongly enriched for immune signatures, and that these signatures were capable of

infiltrating into the tumour, best exemplified by the localisation of cluster 3 infiltration

into the treated tissue areas 1 and 2 (Figure 4.7, 1 and 2). Furthermore, with InsituNet

a module of spatially co-localised genes within these regions which existed only within

treated tissues was identified, which notably included high levels of genes expressed by

immune cells including CCR7, IGHM, and LYZ2, but also low levels genes known to

be down-regulated in the microsatellite instability subtype of CRC, including SPINK4

and ZG16 (Meng et al., 2018; X. Wang et al., 2019), indicating that the treatment was

driving the tumours to become more similar to the microsatellite instability subtype.
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The localisation of this immune infiltration and the interactions of these genes was

only possible to observe using spatially-resolved transcriptomics.

I also demonstrated that the InsituNet approach could be extended to spatially-

resolved technologies beyond transcriptomics, with a proof-of-concept of InsituNet

analysis of spatially-resolved metabolomic data obtained via matrix-assisted laser

desorption ionisation (MALDI) mass spectrometry imaging (MALDI-MSI) (Figure

4.20). In investigating the immune-mediated side effects of IAAs, MALDI-MSI was

also applied to generate spatially-resolved metabolic maps of mouse livers. It was

found that germ-free mice and mice treated with antibiotics were protected from the

liver damage and CRS caused by anti-CD40 treatment, however the dimensionality

of mass spectrometry data proved to be difficult to overcome when doing exploratory

work. I developed a convenient tool for exploratory purposes named MSpecView for

the visualisation and comparison of MALDI-MSI datasets. Using this tool I identified

specific masses of interest, especially bile acids, which were subsequently found to

directly influence anti-CD40 induced liver damage.

More conventionally, MALDI-MSI data is analysed with tools such as partial least

squares discriminant analysis (PLS-DA) for classification purposes. I utilised the PLS-

DA approach to develop a tissue / cell type classifier trained on the lipidomic profiles of

biopsies from 10 prostate cancer patients, finding that this approach was surprisingly

effective (with a cross-validated AUC of 0.709 for classifying tumour tissue, see Figure

4.18), but limited in terms of the spatial conclusions that could be drawn for these

highly spatially heterogeneous tumour samples. A limitation of this work is that the

small sample size used to train the PLS-DA model. The PLS-DA model is useful as a

proof of concept, however given the sample size used here it is likely not useful as a

diagnostic tool to identify tumour tissue in other samples, especially given the known

susceptibility of PLS-DA to overfitting (Rodríguez-Pérez et al., 2018). In future, a

much larger cohort would be desirable to validate the current findings. In comparison

to this approach, InsituNet allows immediate feedback as to where genes, metabolites,

or other molecules are spatially distributed, and truly derives its information from the

spatial dimension of these data, rather than simply assessing each point in isolation,

a critical limitation of these other approaches.
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The ability of InsituNet to be adapted to multiple forms of spatially-resolved data

suggests that re-application to various other spatially-resolved technologies beyond

transcriptomics would be possible, and indeed I have demonstrated proof-of-concept

of this in lipidomics datasets from MALDI-MSI. The nature of spectral data how-

ever means such analyses would greatly benefit from the incorporation of some form

of intensity into the algorithm. Currently, InsituNet is only capable of representing

these data by thresholding intensities. It is likely that intensity could be incorpo-

rated into a more sophisticated algorithm to assess co-localisation significance, which

would be an excellent future direction for InsituNet. In future, combining multiple

spatially-resolved ’omics with a network framework similar to InsituNet could be a

useful systems-level approach to analysing and exploring spatial data from diverse

technologies. Potentially as multiple spatialomics technologies become available, many

different data types could be integrated onto the same network, with nodes which

represent metabolites, proteins, and genes all being presented on different levels of

the same co-localisation network, enabling a new level of integrated, spatially-resolved

analysis of tumour heterogeneity.
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5. Conclusion

The molecular heterogeneity of cancer confounds patient treatment, which is the

primary motivator of this thesis. The concepts explored here were tested in the context

of colorectal cancer (CRC) as a proof of concept. In recent years, the availability of

patient-specific molecular data on a large scale from sources such as The Cancer

Genome Atlas (TCGA) (Weinstein et al., 2013) has presented both a challenge and

opportunity to construct better predictive models of the biological differences between

patient tumours. Current cancer staging systems for CRC such as TNM incorporate

relatively little molecular data beyond a few specific biomarkers, which may be severely

limiting the scope of interventions which could otherwise be applied.

Efforts to classify tumours based on molecular data in CRC build upon the existing

literature on tumourigenesis. At least three common pathways of molecular develop-

ment have been described in CRC, chromosomal instability (essentially the canonical

multi-step process described by Fearon and Vogelstein (Fearon & Vogelstein, 1990)),

microsatellite instability (MSI), and CpG island methylation. The state of the art in

terms of transcriptomic stratification of patient tumours is the Consensus Molecular

Subtypes (CMS) (Guinney et al., 2015), which emphasise the importance of MSI, with

the MSI-high CMS1 being one of the most clearly differentiated subtypes, typically

presenting with hypermutation and immune cell infiltration. The CMS also highlight

the relevance of pathways related to metastasis such as epithelial-mesenchymal tran-

sition for defining CMS4, the subtype with poorest patient prognosis. In examining

the CMS and their application with within colorectal cancer data from TCGA, it is

apparent that differences in patient survival are only significant for patients classified

as CMS4, with other CMS subtypes lacking further prognostic resolution. I suggested

that further avenues for increasing the utility of transcriptomics data may improve

classifications. One of the most important aspects of this was to focus on inter-patient

heterogeneity, rather than bulk differences between tumour and normal samples.
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I devised a method to identify patient-specific differentially expressed genes (PSDE

genes) and applied it to the TCGA CRC cohort. I aimed to use PSDE genes to identify

changes between patient tumour samples, and use this information to create a more

robust stratification of patients. Bioinformatics tools that focus on patient-specific

analysis of transcriptomics and other data such as PARADIGM (Vaske et al., 2010)

are not frequently applied for the purposes of patient stratification. Such approaches

also generally use normal samples to control for the noise between samples. In my

identification of PSDE genes, I opted not to do this, which allowed me to include more

samples than some methods (as a minority TCGA CRC tumour samples have paired

normal samples), but also made the results more susceptible to noise. Because of these

decisions, I spent a great deal of effort attempting to clean technical artifacts and

noise from my datasets, which may be a limiting factor of this type of approach. My

decision to have a threshold level to assign significance to genes within an individual

made analysis simpler, but is perhaps less robust than providing a continuous score

for all genes, which is an approach taken by other patient-specific tools such as GSVA

(Hänzelmann et al., 2013). I identified PSDE genes in 550 patients from the TCGA

CRC cohort. Splitting these into up and down-regulated PSDE genes, I found that

the up-regulated PSDE genes tended to be ones essential to CRC development and

progression. I used PSDE genes to perform hierarchical clustering of patient samples

and found that PSDE-informed clusters were enriched for specific functional processes.

Furthermore, I uncovered that classifying patients using this approach identified novel

sets of patients with significant differences in survival, who were not identified using

the CMS subtyping approach. Specifically, patients in PSDE-informed cluster 4 (PIC4)

had significantly poorer survival than patients from multiple other PIC clusters. I next

identified pathways that were enriched in individual patients, given their PSDE genes.

After performing this analysis, I then performed hierarchical clustering on pathway

enrichment scores, finding that this pathway level approach led to novel clusters

which were not identified from gene expression alone. This included a division of the

otherwise homogeneous MSI-high CMS1 subtype with significantly different survival

in patient subgroups, a result which suggested that biologically distinct subgroups

of MSI may exist. In summary, I found that a great deal of inter-patient tumour

heterogeneity that was predictive of patient survival was still not well captured by
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the existing standards of molecular classification.

I followed up the patient-specific pathway analysis approach by investigating

whether a network approach to modelling tumour heterogeneity would be a bet-

ter representation of the varied alterations that occur within individual patients. I

had previously observed that taking a pathway-level approach to patient stratifi-

cation revealed otherwise hidden patient subgroups. These results were interesting,

however this pathway-based method of classification was heavily reliant on pathway

database annotations. I hypothesised that if I went beyond the available pathway

annotations and directly used protein-protein interaction (PPI) networks, I would be

able to uncover more otherwise hidden similarities between patients. The application

of networks to patient-specific modelling in cancer has often been touted as a way

to integrate diverse forms of data, using the network as a structural base (Hastings

et al., 2020). Using networks to create probabilistic models which are used to predict

outcomes in cancer has also been a major point of interest, but the complexity of

such networks makes their application somewhat difficult (Ozturk et al., 2018). More

broadly, network topology is suspected of being linked to biological structure. Some

authors (Breitkreutz et al., 2012) have attempted to directly link topology to patient

outcomes, an area that I investigated in relation to the patient-specific networks I cre-

ated. The Epidermal Growth Factor Receptor (EGFR) network is critical to tumour

progression in CRC, and has previously been shown to be rewired in KRAS mutant

CRC (Kennedy et al., 2020). PPI networks have been shown to be dynamically altered

in response to mutations in other contexts (Sahni et al., 2015). Mutations may lead

to interaction-specific alterations (“edgetic” effects) of variable strength, or disrupt

entire gene products, causing complete node removal and disrupting all interactions.

Using PPI data obtained from IMEx (primarily from the PRIMES project (Kennedy

et al., 2020)), I constructed a high-quality EGFR network model (EGFR-HQ). I then

used this model as a base which could be altered using individual patient data. I first

used a node-removal approach in which I deleted nodes in individual patient networks

corresponding to genes which were expressed significantly lower than the cohort me-

dian level. I then used these patient-specific networks as a base for further analysis.

I employed information flow analysis, a method of network propagation (Cowen et
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al., 2017). Using information flow analysis, I aimed to model how signals flow from

EGFR through the EGFR network to downstream transcription factors, and whether

patient-specific alterations to this network would cause significant modification to this

information flow.

I found that the node-removal strategy to remove significantly under-expressed

patient-specific genes resulted in substantial modifications to network topology. I was

able to identify topological network properties such as clustering coefficient which

were significantly different between specific patient subtypes. Patient-specific network

properties were not however directly predictive of patient survival, something I had

hypothesised might be the case due to previous studies which have identified differing

network topology in cancers with different survival rates (Breitkreutz et al., 2012).

To better model edgetic effects of mutation, I removed edges in patients in which

mutations could be matched from a database of curated PPI disrupting mutations

(del-Toro et al., 2019). Due to fairly small numbers of such matches, I aimed to

predict which specific protein domains potentially mediated PPIs. I identified 260

such domains, and supposed that edges with mutations within these domains would

likely be disrupted. Although the total number of these edge removals was still small, I

did find that the degree of nodes containing these mutations within these domains was

significantly higher than other nodes. Ultimately, edgetic effects likely contribute to

tumour heterogeneity on a network level, however modelling them may be a complex

task.

I modelled information flow through these networks from EGFR to downstream

transcription factors, initially using an existing tool, ITM Probe (Stojmirović et al.,

2012). I found however that this approach was insufficient for the particular use case

(modelling many patient-specific networks with slight alterations) and so developed

my own tool, Simulated Information Flow For Individualised Networks (SIFFIN).

SIFFIN automatically infers directionality of edges and simulates information flow

between topologically distinct networks, outputting scores that are directly compa-

rable. Using SIFFIN, I identified significant alterations in information flow between

patient networks and stratified patients based on these differences, identifying multi-

ply patient clusters. I found these clusters were distinct from the CMS. I also found
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that the alterations to information flow to transcription factors were often correlated

with changes in expression of the same transcription factors. However, it was possible

that some of this correlation was due to the edge weighting approach used rather

than the topology of the entire network. My network-propagation approach is similar

to previous models, but has the advantage of both being computationally efficient,

as well as enabling comparison between each individual in a cohort. This allows for

integration of large-scale data and comparing hundreds of patient-specific datasets.

The results of this analysis show that network approaches can uncover a significant

amount of otherwise hidden information in large-scale biological data. In conclusion,

I found that a network approach to modelling the heterogeneity of cancer may lead

to the discovery of biologically relevant insights that are not apparent when using

approaches that do not incorporate network topology.

I finally pivoted to another aspect of tumour heterogeneity, spatial heterogeneity.

Tumours are heterogeneous not only between individuals, but also within different

regions of the tissue. Spatially resolved omics are now becoming commercially available,

including spatially-resolved transcriptomics with hybridisation arrays (Ståhl et al.,

2016). However, analysis tools and methods in this field are still in their infancy,

meaning there is a demand for novel tools which better integrate the spatial dimension.

The integrative capability of networks could mean network analysis may answer this

demand. I developed a novel network approach to spatially-resolved omic data called

InsituNet (Salamon et al., 2018), a tool for analysing spatial data in a network form.

I demonstrated that this approach could convert spatial information into a network

form that could then be analysed with more conventional network tools. As I case

study I was able to use spatial transcriptomics data to analyse the influence of immune

agonist antibodies on microsatellite stable preclinical models of CRC (Blake et al.,

2021). With InsituNet, it was possible to visualise modules of spatially co-localised

genes that were unique to treated tissues. These results suggested that anti-CD40

treatment may be able to drive tumours to become more similar to the MSI subtype,

which has implications for potential approaches to otherwise treatment-resistant MSS

tumours.

InsituNet represents one of the first user-friendly tools available to map spatially-
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resolved omics into a network form, which I have demonstrated is capable of integrating

this information into informative models. InsituNet’s algorithm is sufficiently generic

that as additional spatialomics technologies become available, it should be possible

to adapt the program to support these. I demonstrated here that InsituNet could be

extended to analyse metabolomics data collected via mass spectrometry imaging. I

also investigated the use of other approaches for the analysis of spatial metabolomics

data, including machine learning methods. For example, I performed classification of

spatial regions within tumour sections using PLS-DA. This form of classification was

effective for identifying tumour tissue, but did not provide insights into the spatial

co-localisation of masses in the way InsituNet did.

The development of underlying technologies continues to provide yet higher res-

olutions and quantities of molecular data, further filling in the picture of tumour

heterogeneity and allowing for ever more detailed personalised models. Notably, Tran-

scriptomic profiling has advanced significantly in terms of throughput and cost, with

single cell and spatial methods both opening up entire new possibilities (Cieślik &

Chinnaiyan, 2018). Although the genome-wide transcriptomic data used for construct-

ing patient-specific networks here is not a standard procedure, it now seems possible

that routine sequencing and analysis of tumour biopsies could occur in the future.

Spatial methods like high definition spatial transcriptomics (Vickovic et al., 2019),

single-cell RNAseq and MALDI-MSI add additional dimensions to transcriptomic and

metabolomic data that could drastically improve the usability of these omics data,

providing crucial spatial context of cells and tissues. Given the significant interest in

such methods it seems likely this will extend to other domains in the near future. Of

course, all of these diverse and complex data represent a challenge to expand existing

predictive models to make best use of the available data.

The ever expanding quantity and quality of data represents a serious challenge for

bioinformatics research on multiple levels. In my view, one of the most essential tasks

is the collection, management and curation of public data, without which predictive

models are limited in how well they can be trained or tested. This is especially

important given the current trend towards machine learning approaches that rely

on huge sample sizes to be effective. The second crucial step is the development of
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effective methods for integrating these diverse data sources. It has been repeatedly

demonstrated that predictive models constructed using a combination of multiple

complimentary forms of data can outperform approaches that rely on a single omics

measurement (Boehm et al., 2022), but this isn’t guaranteed. I believe a network-

based approach to data integration as demonstrated in this thesis is a viable way of

performing this integration and constructing personalised models that are reflective

of tumour biology, but the trade-off between incorporating as much data as possible

and being precise is a difficult one. One thing I repeatedly noted in this thesis was

the disproportionate effect of technical noise, which will continue to be an issue that

must be addressed by bioinformatics approaches as the quantity of data increases. The

final challenge for integrative models is to provide computational means of stratifying

patients, predicting outcomes, and proposing novel therapeutic opportunities. As scale

increases, more bioinformatics approaches will be called for which can identify the

clinically significant information from these huge datasets. I expect that machine

learning methods are likely to continue to increase in prominence due to the sheer

scale of data available in the future. However, I think this is still the area most open for

innovation and novel bioinformatics approaches that can extract clinically significant

information from these huge datasets. Methods like SIFFIN and InsituNet represent

my attempts to better utilise the current immense amounts of data in novel ways.

The work presented here investigates less well studied aspects of tumour hetero-

geneity. The inter-patient variability between molecular data, as modelled by modifi-

cations to network structure, resulted in predictions of significant changes downstream

of EGFR. I was able to identify novel subtypes which were distinct from existing CRC

subtypes, many of which were prognostically relevant. One dimension absent from my

investigations in this thesis is time. Spatial and inter-patient molecular heterogeneity

is important, but it is crucial to acknowledge that what was investigated here for

the most part represented a single snapshot in time. An analysis that incorporated

for example the change PSDE genes over time could very well radically alter the re-

sults here. From investigating these different aspects of tumour heterogeneity, I found

evidence that inter-patient differences may be driving variable responses to cancer

therapies, differences which are often not well represented in existing classifications. In
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this thesis, I demonstrated that a network approach to integration can be a viable way

to construct patient-specific models which can integrate this ever-expanding amount

of patient-specific data.
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6. Appendix

6.1 TCGA patient metadata analysis
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Figure 6.1: Association matrix for 23 chosen metadata features. Pearson correlation

was used to compare continuous data with other continuous data, Cramer’s V method

was used to compare categorical data with other categorical data, and Pearson’s cor-

relation ratio was used for continuous versus categorical data. These measures were

normalised on a scale from -1 to 1, where 0 represents no association, and -1 and 1

respectively represent perfect negative or positive correlations.
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To demonstrate that large survival differences exist within this cohort, I stratified

patients based on TNM stage (Figure 6.2).
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Figure 6.2: Kaplan-Meier survival plot for patients classified by tumour stage. Us-

ing a pairwise logrank test, differences in survival time for all stages were found to

be statistically significant (p < 0.05), except for between stage iv and samples with

unreported stage. RMST at 5 years (shown in legend) was found to decrease with each

progressive stage.
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Figure 6.3: Top 25 features of a PLS-DA model trained on TCGA metadata in terms

of negative (left) and positive (right) correlation with patient survival.
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6.2 Read mapping

40 60 80
% unusable reads

0

50

100

Co
un

t

Unusable reads distribution

200 0 200
PC1

100

50

0

50

100

PC
2

Unusable reads PCA

40

60

80

%
 u

nu
sa

bl
e r

ea
ds

Figure 6.4: Multimapped, ambiguous, and unmappable sequencing reads contribute

to the unusable reads percentage. The total distribution of such reads is visualised as

a histogram on the left. When visualising the percentage of these reads on a PCA plot

(right), it is apparent that they contribute greatly to the total variance of the dataset.

6.3 Samples per gene
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Figure 6.5: Histogram of how frequently particular genes are assigned as PSDE across

the TCGA CRC cohort per gene, split into up and down gene sets.
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6.4 PSDE Cluster Enrichment Analysis
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Figure 6.6: Most significantly enriched pathways per PSDE cluster for GO Biological

Process. Dot radius is proportional to FDR significance, while pathway enrichment

significance at the FDR < 0.05 level is marked by yellow background.
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Figure 6.7: Most significantly enriched pathways per PSDE cluster for Reactome.

Pathways are selected by the top 3 most significant pathways for each cluster. Dot

radius is proportional to FDR significance, while pathway enrichment significance at

the FDR < 0.05 level is marked by yellow background.
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6.5 MSigDB Hallmarks pathway clustering
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a) Kaplan-Meier plot of Hallmarks clustering
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Figure 6.8: Novel clustering of patients based upon patient-specific MSigDB Hallmarks

enrichments produced clusters which varied substantially from PI clusters (b). Kaplan-

Meier analysis in (a) determined cluster H4 was significantly different to clusters H2

(p=0.04) and H3 (p=0.012) (pairwise logrank tests).

A database which produced interesting results for pathway-level clustering was MSigDB

Hallmarks (Figure 6.9). As with KEGG, 4 pathway clusters were obtained, H1-4.

Cluster H4 patients in particular had significantly better survival probabilities than

patients in the other clusters (Figure 6.8). This cluster featured a significant upregu-

lation of hypoxia and glycolysis, pathways, among others (Figure 6.9). As hypoxia is

known to initiate glycolytic metabolism in tumours (Kierans & C. T. Taylor, 2021),

it is possible that these two pathways are causally linked. It is interesting that this

cluster appears to have favourable survival outcomes, as hypoxia generally indicates

an immunosuppressive environment and has been linked to poorer patient outcomes

in immune-cold tumours (Craig et al., 2020). However, the MSI-high subtype of CRC

is known to develop sporadically via promoter hypermethylation of the mismatch

repair gene Mlh1 (Kawakami et al., 2015), and it has been demonstrated in vitro

that hypoxia can induce epigenetic inactivation of Mlh1 (Weisenberger et al., 2006),

pointing to a possible molecular explanation for this MSI-high cluster.
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Figure 6.9: Pathway enrichment analysis of MSigDB Hallmarks clusters. Pathways

are selected by the top 3 most significant pathways for each cluster. Dot radius is

proportional to FDR significance, while pathway enrichment significance at the FDR

< 0.05 level is marked by yellow background.
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Figure 6.10: Alluvial plot comparison of CMS1 sub-clusters as determined by patient

specific KEGG (left) and MSigDB Hallmarks (right) pathway scores.

6.6 Hierarchical clustering

Hierarchical agglomerative clustering algorithms follow a bottom-up approach: start

assuming all samples are separate clusters, then link similar clusters together until a

full hierarchy tree is produced. This type of algorithm can tend to scale poorly with

increasing data sizes, and tends to be biased towards the identification of smaller-scale

groups than larger groups. Divisive hierarchical clustering methods would have better

performance and may prove more effective when trying to identify larger clusters.

Alternative clustering methods include non-hierarchical partitioning methods such as

k-means. These are generally much faster and simple to use, however they do not

provide information on the relationship between all samples in a hierarchy. However, by

use of k-means clustering we can provide very quick assessments of cluster tendencies.

In the gene clusters defined here, a common issue encountered was small cluster sizes.

Potentially by using other clustering methods, larger clusters could be elucidated.

However, as can be seen from the various heatmaps of gene expression produced,

there really are quite a few small clusters of seemingly related patients. It is possible

that some of these are due to technical artefacts that were not fully corrected or erased
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by the filtering methods employed here. As an unsupervised approach, hierarchical

agglomerative clustering it was chosen as it has a high chance of identifying novel

clusters without any assumptions on what different clusters should look like. However,

this comes at the cost of sensitivity to such potential technical artefacts.

6.7 Alternative clustering methodologies

Rather than using hierarchical clustering, an alternative method is simple k-means

partitioning. This can be done exceedingly efficiently for a large number of genes by

firstly running principal components analysis (PCA), then applying k-means clustering

to the resulting principal components. Simply applying to two dimensions (Figure

6.11) allows for a simplistic overview of this variation, but when applied to multiple

further components (Figure 6.12), k-means yields quite similar results to hierarchical

clustering when there large sources of variation among samples.
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Figure 6.11: K-means clustering on normalised gene expression data following prin-

cipal components analysis. Only the first two components of variation were used for

clustering. Crosses indicate cluster centers.
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Figure 6.12: K-means clustering on normalised gene expression data following prin-

cipal components analysis. Ten principal components of variation were used for clus-

tering. Crosses indicate cluster centres.

6.7.1 On tumour heterogeneity

The concept of inter-tumour heterogeneity may sometimes refer to the differences

between a primary cancer and its related metastases, or to inter-patient heterogeneity

between similar tumours in different individuals, whereas intra-tumour heterogeneity

refers to the spatial and temporal alterations within a single tumour (La Rosa et al.,

2019). Inter-tumour heterogeneity exists between tumours within the same individual

(intra-patient), but this type of heterogeneity is less pronounced than the heterogene-

ity between tumours from different individuals (inter-patient) (Reuben et al., 2017).

Finally, as cancer arises and evolves through accumulation of genetic aberrations in

individual cells (Hanahan & Weinberg, 2011), heterogeneity also exists within single

tumours (intra-tumour heterogeneity). Analysis of the phylogenetic relationships be-

tween primary tumours and metastases has revealed that inter-tumour heterogeneity

also arises in the same evolutionary manner as intra-tumour heterogeneity, with acqui-

sition of metastatic potential likely being a late-evolving trait (Sanborn et al., 2015).

CRC tumours are among some of the most heavily mutated (PCAWG Consortium,

2020), and so management of the extreme heterogeneity this represents is an essential

task when considering new strategies for classification.
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6.8 GDC mutation calling

All somatic mutations are theoretically detectable in NGS data, given sufficient read

depth. However in practice, due to noise in reads, considerable effort goes into confident

variant calling. The Genomic Data Commons (GDC)’s pipeline (which is how TCGA

data is processed) takes each tumour/normal pair and produces a VCF (Variant Call

Format) file, using four different variant callers. Per-patient VCFs are then aggregated

into a MAF (Mutation Annotation Format) file for each variant caller used. Publicly

available somatic MAFs filter out lower quality calls and potential germline variants

(Figure 6.13).

Figure 6.13: Overview of the methodology used by the GDC for creation of public

mutation annotation (MAF) files.

The reasoning of the GDC behind using multiple variant callers is due to the lack

of consensus on what the best strategy for variant calling is in the literature1. Because

of this, a choice of four different variant callers is provided to users (Table 6.1). A

review of these and other algorithms for variant calling was recently conducted by Xu,

2018.

1https://gdc.cancer.gov/about-gdc/variant-calling-gdc
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Table 6.1: The four variant callers used by the GDC and the core algorithm imple-

mented by each for determining somatic mutations.

Name Core algorithm Citation Institute

MuSE Markov chain model Fan et al., 2016 MD Anderson Cancer Center

MuTect Allele frequency analysis Cibulskis et al., 2013 Broad Institute

VarScan Heuristic threshold Koboldt et al., 2012 Washington University St. Louis

SomaticSniper Joint genotype analysis Larson et al., 2012 Washington University St. Louis

6.9 Patient-specific network analysis appendices

Table 6.2: The names, descriptions and UniProt IDs of the 102 additional proteins

that were used to supplement the PRIMES HCT116 network, due to their relevance

within the canonical EGFR signalling pathway.

Symbol Name UniProtKB

1433B 14-3-3 protein beta/alpha P31946

AP2A1 AP-2 complex subunit alpha-1 O95782

APLP2 Amyloid-like protein 2 Q06481

ARF4 ADP-ribosylation factor 4 P18085

ARHG7 Rho guanine nucleotide exchange factor 7 Q14155

ASAP1 Arf-GAP with SH3 domain ANK repeat and PH domain-containing

protein 1

Q9ULH1

ATF1 Cyclic AMP-dependent TF ATF-1 P18846

BCAR1 Breast cancer anti-estrogen resistance protein 1 P56945

CBLB E3 ubiquitin-protein ligase CBL-B Q13191

CBLC Signal transduction protein CBL-C Q9ULV8

CBL E3 ubiquitin-protein ligase CBL P22681

CEAM1 Carcinoembryonic antigen-related cell adhesion molecule 1 P13688

CEBPB CCAAT/enhancer-binding protein beta P17676

CHIO Beta-chimaerin P52757

CRKL Crk-like protein P46109

CTND1 Catenin delta-1 O60716

CXA1 Gap junction alpha-1 protein P17302

DP13A DCC-interacting protein 13-alpha Q9UKG1

DYN1 Dynamin-1 Q05193
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EF1A1 Elongation factor 1-alpha 1 P68104

EGF Pro-epidermal growth factor P01133

ELF3 ETS-related TF Elf-3 P78545

EP15R Epidermal growth factor receptor substrate 15-like 1 Q9UBC2

EPN1 Epsin-1 Q9Y6I3

EPS15 Epidermal growth factor receptor substrate 15 P42566

EPS8 Epidermal growth factor receptor kinase substrate 8 Q12929

ERBB2 Receptor tyrosine-protein kinase erbB-2 P04626

ERBB3 Receptor tyrosine-protein kinase erbB-3 P21860

ERBB4 Receptor tyrosine-protein kinase erbB-4 Q15303

ERRFI ERBB receptor feedback inhibitor 1 Q9UJM3

FAK2 Protein-tyrosine kinase 2-beta Q14289

FOXN1 Forkhead box protein N1 O15353

GIT1 ARF GTPase-activating protein GIT1 Q9Y2X7

GNDS Ral guanine nucleotide dissociation stimulator Q12967

GRB14 Growth factor receptor-bound protein 14 Q14449

HD Huntingtin P42858

HIP1 Huntingtin-interacting protein 1 O00291

ITCH E3 ubiquitin-protein ligase Itchy homolog Q96J02

JAK1 Tyrosine-protein kinase JAK1 P23458

JAK2 Tyrosine-protein kinase JAK2 O60674

JUND TF jun-D P17535

K1C17 Keratin type I cytoskeletal 17 Q04695

K1C18 Keratin type I cytoskeletal 18 P05783

K2C7 Keratin type II cytoskeletal 7 P08729

K2C8 Keratin type II cytoskeletal 8 P05787

KS6A5 Ribosomal protein S6 kinase alpha-5 O75582

KSR1 Kinase suppressor of Ras 1 Q8IVT5

LIMK1 LIM domain kinase 1 P53667

M3K11 Mitogen-activated protein kinase kinase kinase 11 Q16584

M3K1 Mitogen-activated protein kinase kinase kinase 1 Q13233

M3K2 Mitogen-activated protein kinase kinase kinase 2 Q9Y2U5

M3K3 Mitogen-activated protein kinase kinase kinase 3 Q99759

M3K4 Mitogen-activated protein kinase kinase kinase 4 Q9Y6R4

MP2K4 Dual specificity mitogen-activated protein kinase kinase 4 P45985

MP2K6 Dual specificity mitogen-activated protein kinase kinase 6 P52564

MP2K7 Dual specificity mitogen-activated protein kinase kinase 7 O14733

NCK2 Cytoplasmic protein NCK2 O43639
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NDUAD NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 Q9P0J0

P3C2B Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing sub-

unit beta

O00750

P55G Phosphatidylinositol 3-kinase regulatory subunit gamma Q92569

P85A Phosphatidylinositol 3-kinase regulatory subunit alpha P27986

P85B Phosphatidylinositol 3-kinase regulatory subunit beta O00459

PIPNA Phosphatidylinositol transfer protein alpha isoform Q00169

PK3CA Phosphatidylinositol 4 5-bisphosphate 3-kinase catalytic subunit alpha

isoform

P42336

PK3CB Phosphatidylinositol 4 5-bisphosphate 3-kinase catalytic subunit beta

isoform

P42338

PK3CD Phosphatidylinositol 4 5-bisphosphate 3-kinase catalytic subunit delta

isoform

O00329

PK3CG Phosphatidylinositol 4 5-bisphosphate 3-kinase catalytic subunit

gamma isoform

P48736

PKN2 Serine/threonine-protein kinase N2 Q16513

PLCG1 1-phosphatidylinositol 4 5-bisphosphate phosphodiesterase gamma-1 P19174

PLCG2 1-phosphatidylinositol 4 5-bisphosphate phosphodiesterase gamma-2 P16885

PLD1 Phospholipase D1 Q13393

PLD2 Phospholipase D2 O14939

PLEC Plectin Q15149

PLS1 Phospholipid scramblase 1 O15162

PTN11 Tyrosine-protein phosphatase non-receptor type 11 Q06124

RALA Ras-related protein Ral-A P11233

RASH GTPase HRas P01112

RASK GTPase KRas P01116

RASN GTPase NRas P01111

RBBP7 Histone-binding protein RBBP7 Q16576

REPS1 RalBP1-associated Eps domain-containing protein 1 Q96D71

REPS2 RalBP1-associated Eps domain-containing protein 2 Q8NFH8

RGS16 Regulator of G-protein signaling 16 O15492

ROCK1 Rho-associated protein kinase 1 Q13464

SH3G2 Endophilin-A1 Q99962

SHIP2 Phosphatidylinositol 3 4 5-trisphosphate 5-phosphatase 2 O15357

SIN3A Paired amphipathic helix protein Sin3a Q96ST3

SMD2 Small nuclear ribonucleoprotein Sm D2 P62316

SOCS3 Suppressor of cytokine signaling 3 O14543

SOS1 Son of sevenless homolog 1 Q07889
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SOS2 Son of sevenless homolog 2 Q07890

SPY2 Protein sprouty homolog 2 O43597

STAT2 Signal transducer and activator of transcription 2 P52630

STXB1 Syntaxin-binding protein 1 P61764

TGIF1 Homeobox protein TGIF1 Q15583

TNIP1 TNFAIP3-interacting protein 1 Q15025

US6NL USP6 N-terminal-like protein Q92738

VAV2 Guanine nucleotide exchange factor VAV2 P52735

VAV3 Guanine nucleotide exchange factor VAV3 Q9UKW4

WASL Neural Wiskott-Aldrich syndrome protein O00401

WNK1 Serine/threonine-protein kinase WNK1 Q9H4A3

ZPR1 Zinc finger protein ZPR1 O75312

6.9.1 Excessive removal of ADH1C

When investigating the frequency of node removals, it became apparent a small number

of genes were removed an excessive amount, notably ADH1C (alcohol dehydrogenase).

This gene displays an extremely wide distribution of counts, and when visualising the

thresholds it is apparent that many samples fall below the 3CPM detection limit. A

plausible explanation for such a pattern may be copy number variation alterations.

Checking the CNVs for ADH1C, I found nothing out of the ordinary, a range of 1-6.

The literature on ADH1C suggests this pattern of expression may be to be expected

in CRC - in one investigation, later stage carcinomas were found to have significant

drops in ADH1C expression compared to normal tissues (Kropotova et al., 2014).

6.9.2 Network and graph file formats

Many different network file formats exist, some more general, some extremely specific

to certain domains. In terms of the data structures used, however, there are two main

ways in which networks are represented: as an adjacency list, or an adjacency matrix.
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Adjacency list

The adjacency list is a single list of binary pairs, in the format A interacts B. This

format is perhaps the most common and intuitive representation of a network, and

underlies common format such as Simple Interaction Format (SIF), Graphviz Dot

format, and even more complex specifications like eXtensible Graph Markup and Mod-

elling Language (XGMML). Such formats which are effectively plain text adjacency

lists are generally easy to parse and edit manually, and are quite space efficient. From

a computational perspective however the adjacency list format is not particularly

efficient, and so many analysis tools will convert networks into a matrix format.

Adjacency matrix

A network with n nodes can be represented as an adjacency matrix M with dimensions

n×n, in which MA,B is zero if there is no edge between nodes A and B. In the case that

there is an edge, MA,B is a value corresponding to the edge weight. This representation

has many advantages.

Sparse matrix

If most nodes in a network are not connected (as is usually the case), most elements

within the adjacency matrix will be zero. Storing these sparse matrices is extremely

inefficient if there are a large number of nodes but very few edges, and so various

compressed formats exist for storage of sparse matrices.

Information flow analysis with ITM probe

Multiple tools using random walks to simulate information transduction on PPI net-

works exist, such as Hierarchical HotNet, and ITM Probe. ITM probe was deemed the

most suitable as its command-line version can easily output flow scores for each node

- in comparison to other tools such as HotNet which simply output the subnetworks

identified. I used the default dissipation probability (0.15), and the normalised-channel
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mode, in which walkers are only counted if they reach sinks before dissipation (effec-

tively normalising flow to sum to 1.0 across the sinks). By comparing information flow

scores to the baseline EGFR-HQ network (in which no patient-specific modification

were made), impact scores for each transcription factor were calculated. These impact

scores were clustered and assessed for their association with patient survival using

Cox regression analysis (Appendix Figure 6.14, B).
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Figure 6.14: A) Heatmap of the information flow impact scores for transcription

factors downstream of EGFR. The normalised-channel model of ITM Probe was used

to determine IF scores. B) Log hazard ratios (HR) from Cox regression analysis of

transcription factor impact scores. FOSB, FOSL1, JUND, and STAT5A were excluded

from this analysis due to low inter-patient variance.

In terms of patient stratification (Appendix Figure 6.14, A), this was driven to a

large degree by decreased impacts, with larger impact scores correlating mostly with

higher numbers of removals. Cox regression analysis revealed that the impact score of

signal transducer and activator of transcription 5B (STAT5B) was significantly posi-

tively associated with survival. In addition, IFA predicted that signalling to STAT5B

was much more variable than the closely related STAT5A. This was primarily due to

the neighbours of STAT5A also being transcription factors (and thus, random walks

ceased before reaching the node). The predicted positive association of STAT5B im-

pact score with patient survival was consistent with the role of the TF as a regulator of

apoptosis, the expression of which has previously been identified as both being corre-
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lated with TNM stage and to be more strongly associated with regulation of apoptosis

than STAT5A in CRC (Du et al., 2012). It has also been shown that STAT5B may

be activated by epidermal growth factor in the presence of overexpressed EGFR, as

is common in CRC (Kloth et al., 2002). I investigated whether the impact score to

STAT5B correlated with EGFR expression, but found that the correlation was not

statistically significant (Pearson’s r=0.07, p=0.12). STAT5B expression however was

significantly correlated with EGFR expression (Pearson’s r=0.23, p=4.7× 10
−8).

While the ITM Probe’s channel model was able to simulate information flow to

sink nodes well, it was difficult to make use of the resulting information flow scores for

other nodes in the network. When examining the distribution of all information flow

scores to all nodes across all networks, I found that the scores were distributed very

heavily near to zero, and that higher scores were extremely rare (Appendix Figure

6.18). While this was not unexpected, what was less desirable was that higher scores

tended only to be found at the source and sink nodes (EGFR and the transcription

factors) due to the design of the model. Another limitation was that node removals

increased the total information flow to the rest of the network, resulting in impact

scores for almost all nodes being increased from the baseline (Appendix Figure 6.16).

This effect was also apparent when examining the distribution of all impact scores

(Appendix Figure 6.15), in which the mean of the distribution skewed noticeably above

zero.
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Figure 6.15: Distribution of information flow scores for all nodes in 550 CRC patient-

specific EGFR networks. To facilitate presentation, the x axis does not encompass the

entire distribution due to a long tail of negative scores. While nodes close to the source

(EGFR) tended to have higher information flow scores, most nodes have a very low

score in comparison. The 95% confidence interval is annotated with vertical lines.

Assessment of significant scores using this impact score distribution was difficult,

as while there were many cases of removals resulting in extremely low and significant

negative impact scores (for the removed nodes and any immediately downstream), the

opposite was not true, as despite most scores being slightly above zero, only a small

number of positive impact scores exceeded the confidence interval threshold.
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Figure 6.16: Clustered impact scores of information flow to all network nodes across

550 patient-specific CRC networks as predicted using the normalised-channel model of

ITM Probe. Node removal frequency per network is visualised along the top row.
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tering of log2SPC scores obtained with SIFFIN. B) Silhouette score plots used to decide

on an optimal cluster number.

245



6.10 PRIMES baits

Figure 6.20: Visualisation of the high quality EGFR network (EGFR-HQ) in which

PRIMES baits are highlighted with unique colours. Nodes connected directly to baits are

assigned the same colour, or a mix of colours if connected to multiple baits. Edges are

coloured using a gradient between the two endpoints. Node size is scaled in proportion

to betweenness centrality.
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Validation using transcription factor binding site analysis

Transcription factors bind specific DNA sequence motifs in order to modulate tran-

scription, thus target genes of particular transcription factors are enriched for these

motifs. Using HOMER (Heinz et al., 2010) to detect the enrichment of motifs among

up and down-regulated PSDE genes for each patient, I determined which transcription

factors would most likely be responsible for regulating the up and down-regulated

PSDE genes (Figure 6.21).
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Figure 6.21: Sums of patients in which each transcription factor is significantly

enriched in up-regulated and down-regulated PSDE genes, as well as the number of

significant impact scores found for each transcription factor.

All of the transcription factors retained in the EGFR-HQ network were successfully

matched to HOMER motifs. A Fisher’s exact test was used to assess whether significant

transcription factor flow corresponded to significant downregulation or upregulation

of corresponding motifs. This analysis revealed that motifs for SP1 (p=6.67× 10
−4)

and SMAD4 (p=0.02) were significantly enriched in up-regulated PSDE genes among

patients with significant reductions in flow impact more often than would be expected

by chance.
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6.10.1 Additional network analysis of PSDE genes

While patient-specific differentially expressed (PSDE) genes were a useful basis for

stratifying patients in a clinically relevant manner, far more was revealed when they

were combined with pathway information to provide biological context. However,

this approach is limited by the completeness of available pathway databases such as

KEGG. One way to escape this limitation would be to use network analysis, for which

I required a source of biological network information, i.e. experimentally determined

protein-protein interactions (PPIs). Sourcing PPI data from IMEx, (Orchard et al.,

2012), I obtained 232,167 binary human PPIs. Further filtering of these PPIs to remove

duplicate edges and retain only high-quality interactions (MI score >0.6) resulted in

a network model of the human interactome consisting of 4,747 proteins and 10,845

interactions (Figure 6.22).

Figure 6.22: Visualisation all high quality (MI score >0.6) human protein-protein

interactions (PPIs) publicly available from the IMEx database. Each node (red) repre-

sents a unique protein, and each connected edge represents a PPI. The network layout

visualisation was produced using the Scalable Force Directed Placement (sfdp) layout

algorithm.
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PSDE genes in the wider interactome

Using a force-directed algorithm to produce a network layout of the interactome net-

work resulted in a “hairball” layout (Figure 6.22). To create an alternative visualisation

of the interactome network which would also be useful for analysis purposes, I applied

the nested stochastic block algorithm (T. P. Peixoto, 2014) to perform unsupervised

hierarchical partitioning, resulting in 16 network partitions.

Figure 6.23: Network of high-quality protein-protein interactions from IMEx, clus-

tered into partitions using hierarchical partitioning. Visualisation and partitioning was

performed using graph-tool (T. P. Peixoto, 2017). The proportion of frequently (95th

percentile) up-regulated (red) and down-regulated (blue) PSDE genes is annotated as

a pie chart for each partition. Clusters statistically enriched in up-regulated or down-

regulated PSDE genes (Chi-squared tests, Benjamini-Hochberg FDR adjusted) were

highlighted in yellow.
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I found that only one of the 16 network partitions contained a significantly larger

number of up-regulated PSDEs than down-regulated PSDEs. The proportion of up-

regulated to down-regulated PSDE genes was equal across the remaining 15 partitions.

Next, pathway enrichment analysis was used to characterise each of the 16 partitions

using KEGG pathways. Partition number 9 (the only partition found to have a

significantly higher proportion of up-regulated PSDE genes) was found to be highly

enriched for ribosomal proteins, and in fact most of the up-regulated PSDE genes in

this network partition encoded ribosomal proteins. Some partitions were significantly

enriched for many pathways, including the ERBB signalling pathway in the case of

partition 2 (Figure 6.24), while no significant enrichments could be found for others.

Figure 6.24: Visualisation of the largest connected component of the partition 2 sub-

network. Genes in significantly enriched KEGG pathways are annotated with coloured

squares, including the KEGG ERBB signalling pathway (green) and apoptosis pathway

(blue). Network layout was produced using the sfdp layout algorithm.
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Network module discovery using PSDE genes

Given that PSDE genes did not localise specifically to any one network partition,

I took the approach of searching for network modules using PSDE genes as prior

information for input into Hierarchical HotNet (Reyna et al., 2018), a heat-diffusion

based algorithm for identifying subnetworks significantly associated with sets of input

nodes. Prior information scores were created separately for all up-regulated and down-

regulated PSDE genes, using the number of times the gene was identified across the

550 patients in the TCGA CRC cohort. Hierarchical HotNet unexpectedly identified

much larger modules when using down-regulated PSDE genes as input, compared to

up-regulated PSDE genes. The largest module found for down-regulated PSDE genes

was significantly enriched for many pathways, (Figure 6.25), including the KEGG cell

cycle and DNA replication pathways.
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Figure 6.25: The largest PPI module (253 nodes) discovered with Hierarchical HotNet

using down-regulated PSDE genes as prior information. Genes frequently identified as

down-regulated PSDE genes in different samples (95th percentile in the cohort of 550

patients) are highlighted in blue. The most significantly enriched KEGG pathways are

indicated, with annotations on specific nodes indicating membership of the specified

pathway.

Patient-specific network modules

I next aimed to identify patient-specific network modules, using PSDE genes for each

patient as weights for Hierarchical HotNet (if a gene was PSDE in a patient then

weight was set to 1.0, otherwise it was 0.0). I found that the modules identified were

quite sparse and differed substantially between patients. I retained modules with >10

vertices, and then used hierarchical clustering across all patients to identify clusters

of similar modules (Figure 6.26). This revealed that there were relatively few modules

with high similarity. From this clustering, I extracted the 3 most distinct clusters of

nodes and performed pathway enrichment analysis.
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Figure 6.26: Hierarchical clustering of nodes and patients based on patient-specific

network modules. Modules were detected using Hierarchical HotNet with PSDE genes

as input. Only modules with >10 nodes were retained. For each patient, all nodes

found to be part of PSDE-informed modules are shown in black. Cluster annotation

is shown below the dendrogram.

Cluster 1 proteins were very strongly enriched for the KEGG ribosome pathway

(p=0.0). This cluster was largely the same as partition 9 (Figure 6.23), mainly made

up of ribosomal subunit proteins. I had previously determined that many up-regulated

PSDEs were present in this cluster. Cluster 2 genes in comparison were enriched for

roles in the cell cycle (p=2× 10
−6) and the P53 signalling pathway (p=0.017), while

cluster 3 proteins were enriched for focal adhesion (p=0.009). I next examined whether

the patients comprising these clusters corresponded to PSDE-informed cluster (PIC)

subtypes, however there was no apparent overlap of these clusters.
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