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Summary 

 

Groundwater models are used routinely for water resources management and 

environmental decision-making support. The recent advances in computing power 

and technology have led to the development of state-of-the-art modelling 

methodologies that are capable of supporting the application of complex and 

highly parameterised models to real-world field-scale settings. Despite this, the 

use of highly parameterised models to address practical hydrology questions is 

largely lacking. The objectives of this thesis are to: (1) demonstrate the 

application of a highly parameterised modelling approach for disentangling 

climate and human impacts for a regional setting, (2) evaluate the estimability of 

recharge and its spatial variability through calibration of field-scale steady-state 

groundwater models, and (3) assess the extent to which time-varying recharge can 

be informed through field-scale transient model calibration. 

 

First, this thesis presents the application of a highly parameterised modelling 

strategy to quantify climate and pumping contributions to aquifer depletion for a 

regional setting (Uley South Basin, USB; southern Australia). The strategy 

involves calibration-constrained model predictions of natural and pumped 

conditions. Results show that, while both climate and pumping impacts are highly 

variable in both space and time, the impact of pumping is, in general terms, 

greater than that of climate (by 2.7 times on the basis of time-averaged impacts). 

The results serve as a response to a recent Parliamentary Enquiry into the cause of 

USB groundwater-level decline. 
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Second, this thesis investigates the extent to which recharge and its spatial 

variability can be informed via the calibration of field-scale steady-state 

groundwater models. Recharge estimation by these means is known to be 

hampered by the non-uniqueness between recharge and aquifer parameter (e.g., 

hydraulic conductivity; K) values. Here, a systematic analysis of calibration-based 

recharge estimates is undertaken subject to varying degrees of hydraulic 

parameter information. Results show that, for a synthetic reality based on a highly 

parameterised model of USB, a surprisingly large amount of K information (>100 

K preferred values) is required to obtain reasonable recharge estimates (<10% 

average error). The use of pumping data reduces error in both average and 

spatially variable recharge estimates, whereas submarine groundwater discharge 

(as a calibration target) reduces average recharge error only. This study suggests 

that the estimation of recharge through calibration may be impractical for real-

world settings. 

 

Third, this thesis evaluates time-varying recharge estimability via calibration of 

transient groundwater models. Transient model calibration requires the additional 

consideration of aquifer storage parameters (e.g., specific yield; Sy). The analysis 

undertaken here is similar to that of the second study, i.e., recharge estimates, 

subject to varying degrees of aquifer parameter information and water-level data, 

are investigated. Results show that reasonable estimates of monthly recharge 

(<30% recharge root-mean-squared error) require a large amount of transient 

water-level data, and that the spatial distribution of K is known (i.e., through joint 

recharge-and-Sy estimation). Joint estimation of recharge, Sy and K, however, does 

not yield reasonable recharge values. This study indicates that the estimation of 
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recharge through calibration for real-world settings may require an impractical 

amount of water-level and hydraulic parameter data. 
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Chapter 1 

 

1. Introduction and objectives 

 

Numerical groundwater models are commonly used for the purposes of devising 

effective water management strategies, and for improving conceptual understanding 

of hydrological systems. The former usually involves the assessment of model 

predictions subject to a range of potential future climate and management scenarios 

(e.g., Scibek and Allen, 2006; Candela et al., 2009; Ferguson and Maxwell, 2012). 

The latter is often achieved by means of inverse modelling, whereby model 

parameters (and/or stresses, boundary conditions, etc.) are estimated through the 

process of calibration or history matching (i.e., the minimisation of the discrepancy 

between field measurements and model-generated outputs) (e.g., Sanford et al., 2004; 

Dausman et al., 2010a; Maneta and Wallender, 2013). 

 

Following the recent advances in computing power and technology, there has been a 

surge in the development of modelling methodologies and software. Computationally 

efficient inverse modelling approaches constitute many of these methodologies, such 

as model calibration and uncertainty analysis techniques that can be used in 

conjunction with complex field-scale groundwater models containing hundreds or 

even thousands of parameters (herein referred to as “highly parameterised models”) 

(e.g., Vrugt et al., 2003; Tonkin and Doherty, 2009; Burrows and Doherty, 2014). 

Highly parameterised models provide a basis for: (1) enhanced extraction of 

information from observation data, and (2) comprehensive evaluation of parameter 
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and predictive uncertainty (Hunt et al., 2007). Prior to the development of these 

methodologies, the computational burden associated with the calibration of highly 

parameterised models, and the quantification of the uncertainty associated with the 

predictions based on these models (both of which require a very large number of 

model runs), precluded the application of highly parameterised models for real-world 

regional-scale aquifer settings. 

 

Despite that the application of highly parameterised models for regional settings is 

supported by recently developed modelling methodologies, their use in addressing 

practical hydrology problems are largely lacking at present. This thesis investigates 

two such research problems: 

 

First, the quantification of climate and human impacts on hydrological systems is 

investigated. This has been the subject of many studies over the last two decades 

(e.g., Ye et al., 2003; von Asmuth et al., 2008; Joodaki et al., 2014). These studies 

are critical to the development of effective water management strategies. Previous 

modelling investigations of climate and human impacts adopt simple (i.e., lumped-

parameter, one-dimensional) models (e.g., Heuvelmans et al., 2011; van Loon and 

van Lanen, 2013). While simple models constitute rapid assessment tools for 

informing environmental decision-making, they preclude the representation of 

complexities that are inherent in field-scale groundwater systems such as aquifer 

heterogeneity, and spatially and temporally variable boundary conditions and 

stresses, all of which can be accounted for in spatially distributed, physically based 

models. There is therefore need to extend previous modelling studies that disentangle 
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climate and human impacts on groundwater systems by applying a highly 

parameterised and spatially distributed modelling strategy. 

 

Second, the estimation of aquifer recharge, which has been another subject of much 

hydrology research over the last two decades (e.g., Wood and Sanford, 1995; Crosbie 

et al., 2005; Wang et al., 2008), is investigated. Despite that reliable estimates of 

recharge and its temporal and spatial variability are often prerequisites for effective 

groundwater modelling and management, recharge is widely considered to be one of 

the most difficult water balance components to quantify given that it cannot be 

measured directly, and therefore must be inferred from indirect approaches (Scanlon 

et al., 2002). The estimation of recharge through groundwater model calibration is 

one such increasingly popular approach (e.g., Essaid et al., 2003; Liu et al., 2008; 

Hashemi et al., 2013). Recharge estimation by these means is hampered by the non-

uniqueness between estimated values of recharge and aquifer hydraulic properties 

such as hydraulic conductivity (K) and specific yield (Sy) (Sanford, 2002). For 

example, a unique solution for recharge and K does not exist; only their ratio can be 

estimated uniquely. Previous studies that jointly (i.e., simultaneously) estimate 

recharge and hydraulic parameters have not evaluated the ramification of non-

uniqueness in terms of recharge estimability for real-world, regional-scale aquifer 

settings. Therefore, the extent to which recharge and its variability in time and space 

can be informed through groundwater model calibration for practical situations is 

presently unknown. 
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The broad objective of this thesis is to provide insights into these practical and 

important hydrology research problems through the use of highly parameterised 

modelling strategies. More specifically, the primary objectives of the thesis are to: 

1. Demonstrate the application of a highly parameterised modelling strategy to 

quantify the relative contributions of climate variability and groundwater 

pumping to aquifer depletion within a regional-scale setting (addressed in 

Chapter 2). The Uley South Basin (USB; southern Australia), where there is 

conjecture around the causal factors of aquifer depletion (NRC, 2013), is used 

as a case study. 

2. Evaluate the estimability of recharge and its spatial variability through 

calibration of steady-state field-scale groundwater models (addressed in 

Chapter 3). To address this objective requires the investigation of the effect of 

non-uniqueness between estimates of spatially distributed recharge and K. 

3. Evaluate the estimability of time-varying recharge through transient field-

scale groundwater model calibration (addressed in Chapter 4). To address this 

objective requires the examination of the non-uniqueness between estimates 

of transient recharge and the spatially distribution of both K and Sy. 

 

This thesis contains three distinct bodies of work, presented as manuscripts (Chapters 

2, 3 and 4), the first two of which are published in Journal of Hydrology, and the 

third of which is currently under review at Journal of Hydrology. References to these 

manuscripts are given at the beginning of each chapter. The conclusions of the thesis 

are summarised in Chapter 5. 
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Chapter 2 

 

2. Quantifying climate and pumping contributions to 

aquifer depletion using a highly parameterised 

groundwater model: Uley South Basin (South Australia) 

 

This chapter is based on the following paper: 

 

Knowling, M.J., Werner, A.D., Herckenrath, D., 2015. Quantifying climate and 

pumping contributions to aquifer depletion using a highly parameterised groundwater 

model: Uley South Basin (South Australia). Journal of Hydrology 523, 515-530, doi: 

10.1016/j.jhydrol.2015.01.081. 

 

 

2.1. Abstract 

 

The relative contributions of climate and human stresses to aquifer depletion in real-

world settings are rarely quantified, particularly where complex patterns of depletion 

arise from the spatial and temporal variability in aquifer stresses. These impacts can 

be assessed using calibration-constrained model predictions of disturbed (i.e., subject 

to human activity) and undisturbed (i.e., natural) conditions. Prior investigations that 

adopt this approach employ lumped-parameter or one-dimensional models. Here, we 

extend previous studies by using a highly parameterised, spatially distributed 
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groundwater model to investigate the relative impacts of climate variability and 

pumping on aquifer depletion. The Uley South Basin (USB), South Australia, where 

there is conjecture surrounding the cause of declining groundwater levels, serves as a 

case study. The relative contributions of climate variability and pumping to USB 

depletion are shown to be highly variable in time and space. Temporal trends reflect 

variability in rainfall and pumping, as expected. Spatial trends are primarily 

dependent on the proximity to both the coastal boundary and pumping wells, and to 

the distribution of recharge and hydraulic properties. Results show that pumping 

impacts exceed those of climate between 1978 and 2012, and over the majority of the 

spatial extent of USB. The contribution of pumping to aquifer depletion is shown to 

be 2.9 and 1.4 times that of climate in terms of the time-averaged and maximum-in-

time basin-scale water budget, respectively. Confidence in model predictions is 

enhanced by the outcomes of a linear predictive uncertainty analysis, which indicates 

that predictive uncertainty is lower than climatic and pumping impacts. This study 

demonstrates the application of a relatively simple analysis that can be used in 

combination with highly parameterised, spatially distributed groundwater models to 

differentiate causal factors of aquifer depletion. 

 

2.2. Introduction 

 

Understanding the relative contributions of climatic and human impacts on 

hydrological systems is essential for developing effective water resources 

management strategies. The majority of previous attempts to distinguish between 

climatic and human impacts on hydrological systems have focused on surface water 

processes, and in particular, stream flow responses (e.g., Ma et al., 2008; Lorenzo-
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Lacruz et al., 2010; Wang and Hejazi, 2011), as reviewed recently by Wang (2014). 

However, the complex nature of groundwater systems often precludes accurate 

assessment of the contributions of different causal factors to aquifer depletion, which 

is becoming an increasingly widespread issue (Wada et al., 2010; Werner et al., 

2013). Such complexities occur in the form of spatial variability in hydraulic 

properties, intermittency in natural and human stresses, poorly constrained recharge, 

pumping and boundary condition controls, and difficulties in accurately determining 

surface water-groundwater interactions (e.g., Custodio, 2002; Skøien et al., 2003; 

Panda et al., 2007). As a result, quantification of the extent to which groundwater 

storage behaviour is impacted by various climate- and human-based controlling 

factors remains a challenge (van Loon and van Lanen, 2013). 

 

The influence of climate variability and human activity on groundwater systems has 

previously been investigated using a range of approaches, including statistical- and 

concept-based time-series analysis (e.g., Shamsudduha et al., 2009; von Asmuth et 

al., 2008), artificial neural networks (e.g., Ghose et al., 2010), satellite-based gravity 

observations (e.g., Joodaki et al., 2014), and numerical model applications (e.g., 

Heuvelmans et al., 2011). Numerical modelling approaches are increasingly applied 

in this context because they allow for: (1) the representation of system nonlinearities 

(e.g., watertable response to climate signals), and (2) generation of time series of 

state variables under natural conditions (e.g., groundwater levels not impacted by 

pumping) (van Loon and van Lanen, 2013). Model predictions of natural (i.e., in the 

absence of human activity) and human-influenced (or “disturbed”) conditions are 

used to investigate climate and human effects in a relative manner. Differences 

between simulated natural and disturbed conditions are assumed to reflect the 
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consequences of human activity, whereas climatic impacts are inferred directly from 

the variability caused by natural stresses (e.g., Ruud et al., 2004). This method 

requires the availability of: (1) well-constrained climate and anthropogenic stress 

data, and (2) historical field observations from both undisturbed and disturbed 

periods to provide confidence in the ability of the model, enhanced through 

calibration, to replicate hydrological system responses (e.g., Cong et al., 2009; Yan 

et al., 2013; van Loon and van Lanen, 2013). 

 

Prior model-based investigations of the causal factors of groundwater decline employ 

either lumped-parameter or one-dimensional models. For example, van Loon and van 

Lanen (2013) applied a lumped-parameter rainfall-runoff model (HBV; Seibert, 

2005) to the Upper-Guadiana catchment (Spain), and used an anomaly analysis to 

demonstrate that the influence of pumping on groundwater levels was, on average, 

four times higher than that of climate variability. Heuvelmans et al. (2011) used a 

one-dimensional unsaturated zone model (SWAP; Kroes et al., 2000) to investigate 

climatic and anthropogenic effects on phreatic groundwater level trends from 245 

observation wells in a catchment in northern Belgium. They emphasised the 

importance of watertable depth and the time series duration in determining the 

controls on groundwater level trends. 

 

Simple groundwater models (e.g., lumped-parameter models) provide rapid insight 

for management decision making by avoiding the large computational times and data 

requirements associated with more complex models (Refsgaard, 1997). However, 

field-scale groundwater problems require consideration of the spatial and temporal 

variability in groundwater levels, fluxes, aquifer properties and boundary conditions 
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that invariably occur. Spatially distributed, physically based groundwater models 

provide a basis for representing many commonly encountered field-scale 

complexities (Cuthbert, 2014). Given recent advances in computing power, these 

models, and highly parameterised versions thereof, have been applied in regional 

groundwater contexts (e.g., Fienen et al., 2010; Dausman et al., 2010a). Highly 

parameterised models allow for: (1) enhanced extraction of information from 

observation data, and (2) comprehensive evaluation of predictive uncertainty (Hunt 

et al., 2007). However, these have not been adopted in previous efforts to distinguish 

between climate- and human-induced groundwater impacts. 

 

The primary objective of this study is to extend previous model-based strategies for 

distinguishing between climatic and human impacts by using a highly parameterised, 

calibration-constrained groundwater model within a regional setting. A critical and 

systematic evaluation of the model is undertaken to offer new insights into the 

performance of such models for assessing causal factors of hydrological impacts. 

The analysis is applied to the investigation of the Uley South Basin (USB), southern 

Eyre Peninsula (South Australia). The sustainability of this resource is of concern 

given significant water level decline between 1970 and 2005 (Werner et al., 2011). 

Groundwater hydrographs have since stabilised at low levels relative to historical 

conditions. The causes of groundwater trends are the subject of ongoing debate, as 

indicated by a recent parliamentary inquiry (NRC, 2013) into Eyre Peninsula water 

management, which reports that “the cause of the decline of water quantity and 

quality in the limestone basins cannot be clearly attributed to either natural causes or 

over-extraction”. Moreover, the USB provides an ideal setting for the application of 

a highly parameterised, spatially distributed groundwater model given the 
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availability of relatively widespread and long-term water-level monitoring data, 

comprehensive model- and field-based recharge estimates obtained through a 

concurrent study (Ordens, 2014), relatively well-constrained groundwater extraction 

information, and a lack of persistent surface water systems and catchment runoff 

more generally (Werner et al., 2011). 

 

2.3. Study area 

 

USB is a topographically enclosed surface drainage basin of 129 km
2
 bounded by 

coastal cliffs of up to 140 m AHD (Australian Height Datum, approximately mean 

sea level) and inland reliefs of between 30 and 180 m AHD (Figure 2.1). The region 

has a temperate climate characterised by winter-dominant rainfall (May-October), 

and hot, dry summer months (November-April) (Harrington et al., 2006). Average 

annual rainfall and pan evaporation rates are 560 and 1547 mm/y, respectively 

(Bureau of Meteorology, 2010). The land surface is composed predominantly of 

exposed calcrete or skeletal soils of sandy and clayey loam (Evans, 1997). Solution 

features (e.g., sinkholes) are widespread across USB, and serve as a mechanism for 

rapid groundwater recharge (Ordens et al., 2012). USB‟s vegetation consists 

primarily of Mallee scrub, drooping she-oak and significant areas of sparse grassland 

(Ordens et al., 2012). 
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Figure 2.1. Locality map of Uley South Basin (Eyre Peninsula, South Australia). The 

location of adjacent groundwater basins Uley East, Uley Wanilla and Coffin Bay is given by 

“UE”, “UW” and “CB”, respectively. 

 

Groundwater in USB occurs predominantly within an unconfined Quaternary sand 

and limestone aquifer (QL) (Evans, 1997). The QL is underlain by a discontinuous 

Tertiary clay aquitard (TC) and a semi-confined Tertiary aquifer comprising silty and 

clayey sand (TS) (Harrington et al., 2006). These sediments overlay an Archaean 

metamorphic basement (Harrington et al., 2006). 

 

The USB constitutes the primary freshwater supply for urban, agricultural and 

industrial activity in the Eyre Peninsula (Harrington et al., 2006). Groundwater 

pumping began in 1976 (Barnett, 1978), and occurs solely from the QL aquifer. The 



 

12 

 

production well field expanded from 8 to 17 wells (Figure 2.1) in 2000 (Clarke et al., 

2003). Traditionally, USB groundwater management has been undertaken in 

accordance with a flux-based approach (Werner et al., 2011), whereby recharge 

estimates have been used to allocate extraction volumes (EPNRM, 2006). 

Specifically, 60% of the estimated recharge volume is reserved for groundwater-

dependent ecosystems; the remainder is deemed available for extraction (DFW, 

2012). 

 

The hydrostratigraphic model for USB, illustrated in Figure 2.2, is based on drill logs 

(DEWNR, 2013), cliff-face observations (Bestland, 2010) and downhole and 

airborne geophysical surveys (Fitzpatrick et al., 2009). Of particular significance is 

the airborne electromagnetic data (Fitzpatrick et al., 2009), which suggest the 

presence of a north-south trending basement ridge, which divides the USB from 

aquifers to the west. 
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Figure 2.2. Hydrostratigraphy of USB, as shown by (a) QL aquifer base elevation, (b) TC 

aquitard thickness and (c) basement elevation (which corresponds to the TS aquifer base). 

Closed markers depict borehole locations that intersect a layer‟s base, as seen in (a) and (c), 

or span its entire thickness, as seen in (b). Open markers in (b) show boreholes where TC is 

not encountered. 

 

The USB boundary is defined following previous approaches as the area of saturated 

QL material (e.g., Harrington et al., 2006; EPNRM, 2009; DFW, 2012). The extent 

of the TS aquifer is considerably greater than the region of saturated QL material, 

and hence we represent the continuation of the TS aquifer using boundary conditions. 

 

Groundwater level data (DEWNR, 2013) from 101 observation wells provide the 

basis for interpreting the hydrology of the system. The majority (approximately two-

thirds) of groundwater level observations pertain to the QL aquifer, although a 

considerable portion of observation wells are assumed to monitor both aquifers, 

particularly prior to the improvement in construction of many wells in the 1990s. The 

differences between groundwater levels in the two aquifers appear to be small, 

suggesting significant hydraulic connection, albeit there are few nested-well sites for 

obtaining vertical head gradients. Groundwater level data are of varying quality, and 
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some observations may not be representative of regional groundwater conditions. For 

example, there is uncertainty regarding which aquifer many of the wells are 

monitoring due to inadequate well-screen information, and in north-west USB, there 

appears to be a local perched watertable, although there is insufficient information to 

confirm this. 

 

Temporal groundwater behaviour is assessed on the basis of 24,507 groundwater 

level observations. Four characteristic USB hydrographs and spatially interpolated 

groundwater level distributions are given in Figure 2.3. Several distinct periods of 

groundwater level behaviour are apparent, namely: (1) a pre-development period 

(1960–1976) prior to major groundwater extraction, (2) a period of general 

groundwater level decline (1976–2005), and (3) a period of groundwater level 

stabilisation (2005–2009; referred to hereafter as “contemporary conditions”). Since 

2009, groundwater levels have either remained stable or trended upwards. 

 

 

Figure 2.3. Spatial and temporal groundwater level distributions. (Interpolated) spatial 

groundwater levels (within the QL aquifer) are shown for (a) pre-development and (b) 



 

15 

 

contemporary steady-state conditions. QL and TS groundwater level observations are 

distinguished using closed and open red markers, respectively. (c) Groundwater level 

hydrographs (in m AHD) are shown for observation wells SLE009, ULE109, ULE101 and 

LKW034 (see diamond markers on (a) for well locations). 

 

Regional groundwater flow in USB is oriented predominantly towards the ocean 

(Figure 2.3). In the north-west portion of USB, hydraulic gradients suggest complex 

flow patterns, involving north-westerly flow towards Coffin Bay (Figure 2.1), albeit 

there are few groundwater level observations in this region. Hydraulic heads at the 

coastal boundary are determined using the corrections suggested by Morgan et al. 

(2012). At the shoreline, QL density-corrected heads range from 0.017-0.668 m 

AHD, and TS density-corrected heads range from 0.020-1.441 m AHD. Tidal effects 

are not considered. 

 

USB interacts with three adjacent groundwater basins: Uley East, Uley Wanilla and 

Coffin Bay (Figure 2.1). Inflow to USB occurs from Uley East and Uley Wanilla via 

the TS aquifer (Evans, 1997; Harrington et al., 2006). USB is expected to discharge 

towards the western portion of Coffin Bay through QL sediments located north of the 

basement ridge (Figure 2.2). 

 

For the QL aquifer, eleven horizontal hydraulic conductivity (Kh) estimates have 

been obtained from pump tests in the central portion of USB that vary between 150 

and 1320 m/d (Table 2.1; Sibenaler, 1976). Shephard (1980) and Zulfic et al. (2007) 

presumed that the Kh of the QL aquifer falls within a wider range of values across the 

entire basin, namely 30-2000 and 40-1400 m/d, respectively, in developing previous 

groundwater models. A single Kh estimate of 22 m/d is available for the TS aquifer 

(Sibenalar, 1976). Morton and Steel (1968) estimated the vertical hydraulic 
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conductivity (Kv) of the TC to be 6.810
-4

 m/d. Pumping test-based estimates of QL 

specific yield (Sy) range between 0.017 and 0.35 (Table 2.1; Sibenaler, 1976). For the 

TS aquifer, a single storage property estimate of 0.007 was obtained; however, it is 

unknown whether this value represents the Sy or storativity of TS because of the 

uncertainty surrounding the degree of aquifer confinement at this location (Morton 

and Steel, 1968). 
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Table 2.1. Pumping test-based hydraulic property estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

Observation well Easting (m) Northing (m) Best estimate Range Best estimate Range 

   QL Kh (m/d) QL Sy (-) 

Pt2 551132 6153175 690 410-690 0.07 0.05-0.18 

Pt3 552176 6149817 150 - 0.10 - 

Ptu4 553530 6152134 1320 

3 

- 0.017 - 

Ptu5 549814 6151424 800 - 0.29 - 

Ptu6 548850 6154438 - >570 - - 

HDO6 551134 6152575 930 860-2040 0.14 0.03-0.15 

HDO7 551336 6152061 1050 390-1490 0.12 0.07-0.13 

HDO8 551681 6151436 370 280-470 0.026 0.02-0.10 

HDO11 551866 6151986 1170 870-1260 0.079 0.07-0.10 

HDO12 551798 6152800 1130 1130-1890 0.35 0.13-0.41 

HDO13a 551642 6153301 420 180-690 - - 

HDO22 554251 6154742 171 - - - 

   TS Kh (m/d) TS storativity (-) 

Pt1 552582 6154685 22 - 0.007 - 
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Ordens et al. (2012, 2014) used field-based and one-dimensional modelling 

approaches to investigate USB recharge. In a subsequent study, Ordens (2014) 

extend field-based estimates to the basin scale through modelling within a GIS 

framework. Their work is used to provide spatially and temporally variable recharge 

for the purpose of this investigation (Figure 2.4). They obtain a spatially and 

temporally averaged value of 84 mm/y. This estimate is within ranges obtained by 

Bresciani et al. (2014), who modified the chloride mass balance-derived estimates of 

Ordens et al. (2012) to account for chloride deposition enhancement by vegetation. 

Although Ordens (2014) accounted for evapotranspiration (ET) at the surface and 

within the unsaturated zone, ET of shallow groundwater was not simulated explicitly. 

Groundwater ET is expected to occur only in localised regions and period of shallow 

watertables (Harrington et al., 2006; Figure 2.4). 

 

 

Figure 2.4. (a) Temporal (i.e., spatially averaged) and (b) spatial (i.e., temporally averaged 

over the period 1960–2012) recharge distribution estimates. Areas of negative net recharge 

(i.e., where ET rate exceeds that of recharge) are shown. The blue line indicates the extent of 

shallow watertable conditions, which is taken as the area in which pre-development 

groundwater levels are within 8 m of the land surface. 
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Groundwater is extracted from the QL aquifer by South Australian Water 

Corporation. Well extraction rates are monitored using automated meters (Werner et 

al., 2011). Monthly extraction rates for individual wells are approximated by 

combining the metered data reported by Werner et al. (2011) and extrapolation (both 

in time and to individual wells) based on averages from historical pumping records, 

in the absence of more recent pumping figures for individual wells. Figure 2.5 

illustrates the resulting spatial distribution and time series of pumping. 

 

 

Figure 2.5. (a) Total pumping volume time series. Spatially distributed pumping proportions 

(as a % of total USB pumping) are given for periods (b) 1976–2000 and (c) 2000–2012. 

 

2.4. Methodology 

 

In order to assess the relative contribution of climatic and human impacts on 

groundwater decline in USB, we adopt a modelling strategy that involves 

comparison of simulated natural and disturbed conditions. This approach first 

requires the development of a calibration-constrained groundwater model using 

observation data from both pre-development and disturbed periods. Using the natural 

and disturbed condition predictions, in combination with observed conditions, the 

relative impact of climate variability and pumping is assessed on a temporally and 

spatially variable basis. Herein, it is assumed that climatic and human impacts are the 
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result only of recharge variability and groundwater pumping (given that USB is 

uninhabited and relatively minor land-use change has occurred during the simulation 

period; Evans, 1997), respectively. The performance of the model is evaluated using 

predictive uncertainty analysis based on linear theory. 

 

2.4.1. Groundwater model 

 

MODFLOW (Harbaugh et al., 2000) is used to simulate groundwater flow under 

both steady-state and transient conditions. It is presumed that steady-state conditions 

are a reasonable approximation of the groundwater level behaviour occurring during 

pre-development (1960–1976) and contemporary periods (2005–2009). A Newtonian 

solver (PCGN; Naff and Banta, 2008) is used to maximise the model‟s robustness in 

resolving water levels in parts of the aquifer that become dry. 

 

The finite-difference grid is comprised of 2 layers (corresponding to the QL and TS 

aquifers), 245 rows and 132 columns (Figure 2.6). A uniform horizontal model 

discretisation of 100 m by 100 m is employed. A “quasi-three-dimensional” 

approach (Chiang and Kinzelbach, 1998) is adopted whereby groundwater flow 

within the TC unit is represented implicitly (i.e., vertical flow only and no TC 

storage effects) given that preliminary USB groundwater modelling efforts revealed 

that horizontal groundwater flow and storage within the TC were negligible at the 

basin scale. 
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Figure 2.6. USB model grid, boundary conditions and parameterisation. 

 

The transient simulation spans the period January 1960 to December 2012. Transient 

model stresses are applied using monthly stress periods. Each stress period contains 

18 time steps, which increase in size starting from daily time steps. Boundary 

conditions are illustrated in Figure 2.6. Constant-head conditions are used to 

represent density-corrected mean sea-level at the shoreline. Head-dependent flux 

boundary conditions (“general-head” boundary (GHB) package; Harbaugh et al., 

2000) are used to account for inter-basin flow. GHB forcing heads are specified 

according to time-averaged groundwater levels within adjacent basins. For transient 

simulations, initial conditions are specified using the results from the pre-

development steady-state model. 

 

Spatial and temporal recharge distributions from Ordens (2014) (Figure 2.4) are 

applied to the uppermost active layer of the model. Shallow groundwater ET is 

represented using the EVT package of MODFLOW. The ET rate for groundwater 
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levels at the land surface is equal to the average annual pan evaporation rate 

multiplied by a conversion factor of 0.85 (Taylor, 2003). An extinction depth of 2 m 

is used, above which the ET rate decreases with depth linearly. 

 

2.4.2. Model calibration 

 

Model calibration, which is used to estimate model parameters on the basis of 

steady-state and transient groundwater conditions, is performed using the automatic 

parameter estimation software PEST (Doherty, 2013). PEST adopts a gradient-search 

algorithm (i.e., Gauss-Marquardt-Levenberg method) to minimise an objective 

function on the basis of the sum of squared weighted residuals (i.e., the difference 

between model outputs and corresponding field observations). The parameter 

estimation process is parallelised using BeoPEST (Schreüder, 2009; Hunt et al., 

2010). 

 

The steady-state calibration is undertaken on the basis of both the pre-development 

and contemporary steady-state models. Average groundwater levels within each of 

these periods are used as the steady-state calibration dataset. The transient calibration 

dataset includes groundwater level measurements as deviations-from-the-mean, 

rather than absolute values, to better infer aquifer storage parameters (e.g., Ackerman 

et al., 2010; Peeters et al., 2011). 

 

Weighting of groundwater level data is used as a means of ranking observations 

within the model calibration process in accordance to their credibility, whereby 

observations of higher credibility are assigned greater weights. For the steady-state 
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calibration, weights are applied to groundwater level observations based on an 

approximation of the inverse of the measurement error standard deviation (m) (e.g., 

Doherty and Hunt, 2010), which is assumed to be 0.15 m for reliable observations. 

However, low-quality observations (e.g., see Section 2.3) are assigned a higher m 

(i.e., ranging from 0.3 to 6 m). A minimum objective function value (e.g., Fienen et 

al., 2009) is specified to avoid fitting observations beyond a root-mean-squared 

weighted error (RMSE) of 0.15 m for the steady-state calibration. For transient 

model calibration, observation weights are assigned on the basis of the product of m 

(equal to weights used in the steady-state calibration) and temporal groundwater 

level measurement density (i.e., number of measurements per year). 

 

Spatial variability in both hydraulic conductivity (Kh and Kv) and storage parameters 

are specified using pilot point parameterisation (de Marsily et al., 1984). A total of 

125 pilot points are distributed in a regular grid configuration (Figure 2.6). 

Additional pilot points are located where hydraulic parameters have been inferred 

from pumping tests, as recommended by Doherty et al. (2010). Cell-by-cell hydraulic 

property variability is achieved using interpolation (kriging) of the pilot point 

parameter values. A site-specific variogram could not be defined given insufficient 

data to support such an approach. Kriging is therefore based on an isotropic 

variogram of exponential type with a range of 1200 m (which corresponds to the 

distance between pilot point locations; Doherty et al., 2010) and a nugget of zero. A 

spatially and temporally constant recharge multiplier parameter is also employed in 

the calibration process. The GHB boundary is subdivided into segments (Figure 2.6) 

of piecewise constancy in conductance. Hydraulic conductivities, GHB conductances 
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and the recharge multiplier are estimated using the steady-state model. Storage 

parameters are estimated using the transient model. 

 

Calibration of hydraulic parameters is constrained using “expert knowledge” in the 

form of likely ranges and best estimates of aquifer hydraulic properties, based on 

field evidence (Table 2.1; Section 2.3). In the absence of field estimates and 

geological information, textbook values (e.g., Fetter, 2001) that are considered 

representative of the setting are used to constrain estimation of TS Kh, Sy and Ss, and 

TC Kv. Parameter constraints are given in Table 2.2. Upper and lower parameter 

bounds are based on field estimates (Table 2.1) and typical literature values where 

reliable field estimates are lacking. 
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Table 2.2. Parameters estimated through model calibration, and their constraints. 
a
Weights assigned to preferred values are relative to those assigned to 

preferred homogeneity constraints between neighbouring pilot point parameters. 
b
Preferred Sy value weights are not comparable to preferred Kh, Kv, recharge 

multiplier and GHB conductance value weights. 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter(s) Parameterisation method Bounds Preferred values Relative weight
a
 

Horizontal hydraulic conductivity (Kh) (m/d) 

  QL Pilot points 1-10
4
 (Table 2.1) 2.0 

  TS Pilot points 0.1-1320 (Table 2.1) 2.0 

Vertical hydraulic conductivity (Kv) (TC) (m/d) Pilot points 10
-4

-1 - - 

Specific yield (Sy) (-) 

  QL Pilot points 0.007-0.41 (Table 2.1) 0.2
b
 

  TS Single value 0.005-0.3 0.15 0.2
b
 

Specific storage (Ss) (TS) (m
-1

) Pilot points 10
-7

-10
-4

 - - 

Recharge multiplier (-) Single value 0.5-1.5 1.0 2.0 

GHB conductances (m
2
/d) 

  Uley East (TS) Single value 0.36-3600 36 0.02 

  Uley Wanilla 1 (TS) Single value 0.054-540 5.4 0.02 

  Uley Wanilla 2 (TS) Single value 0.059-590 5.9 0.02 

  Uley Wanilla 3 (TS) Single value 0.23-2300 23 0.02 

  Coffin Bay 1 (TS) Single value 0.29-2900 29 0.02 

  Coffin Bay 2 (TS) Single value 0.26-2600 26 0.02 

  Coffin Bay 3 (outflow; QL) Single value 0.18-1800 18 0.02 

  South-east USB (TS) Single value 0.07-770 7.7 0.02 
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To constrain and stabilise the calibration of the USB model, Tikhonov (Tikhonov 

and Arsenin, 1977) and subspace (e.g., Aster et al., 2005) regularisation schemes are 

employed. Tikhonov regularisation involves imposition of “soft” information, 

typically in the form of preferred parameter values and relationships (e.g., Alcolea et 

al., 2006), to supplement the calibration dataset such that parameters can be 

estimated uniquely (e.g., Menke, 1989). In this way, deviation from preferred values 

and relationships will arise only to the extent that is necessary to fit the data (Moore 

and Doherty, 2006). Preferred values are imposed on pilot point parameters that 

coincide with pumping test locations (where preferred values equal the pumping test-

based hydraulic property estimates; Table 2.1 and 2.2). Estimation of hydraulic 

properties at remaining pilot points are constrained using preferred homogeneity. 

Preferred values are also assigned to boundary conductance parameters (equal to 

conductance estimates based on information pertaining to Kh and aquifer thickness, 

and the distance between the boundary and the GHB specified head) and the recharge 

multiplier (equal to unity). The relative weights used for preferred values (Table 2.2) 

reflect the degree of uncertainty in field-based estimates. 

 

Subspace regularisation, in the form of singular value decomposition (SVD), 

constrains the inverse problem through a data-informed simplification process that 

transforms the large number of estimable parameters into a highly reduced number of 

estimable data-sensitive parameter combinations referred to as “super parameters” 

(e.g., Aster et al., 2005). The subspace approach used here is described by Tonkin 

and Doherty (2005), and is implemented within the PEST suite (Doherty, 2013). The 

computational savings afforded through SVD are invoked only for the transient 

calibration, which involves significantly longer run times. Here, 265 transient model 
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parameters are estimated in the form of 160 super parameters. The number of super 

parameters employed is based on the minimisation of predictive error variance, as 

suggested by Moore and Doherty (2005). 

 

2.4.3. Distinguishing between climatic and pumping impacts 

 

To investigate the relative contributions of climatic and pumping impacts to USB 

aquifer depletion, the calibration-constrained model is used to simulate groundwater 

levels under both natural and disturbed conditions. Natural conditions are simulated 

by running the model under historical climate stresses in the absence of pumping. 

Time series of groundwater level deviations attributable to climate and pumping 

effects are calculated, respectively, as: 

 
ave
natnatc hhh  ,  (2.1a) 

 distnatp hhh  ,  (2.1b) 

 

where ∆hc (L) represents the time series of climate-induced groundwater level 

deviations, hnat (L) is the time-varying natural groundwater level, 
ave

nath  (L) is the 

time-averaged hnat, ∆hp (L) represents the time series of pumping-induced 

groundwater level declines (herein referred to as drawdown), and hdist (L) is the time-

varying disturbed groundwater level. Note that the contribution of climate to 

groundwater level decline is identified by negative values of ∆hc, and hence, we 

consider only negative ∆hc values herein. Time series of groundwater level 

deviations are obtained at every model cell for the purposes of analysing the 

variability in climate and pumping effects. Climate and pumping impacts are also 
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evaluated in terms of their contribution to basin-scale aquifer storage changes, as 

given respectively by: 

 
ave
natnatc SSS  ,  (2.2a) 

 distnatp SSS  ,  (2.2b) 

 

where ∆Sc (L
3
) represents the time series of climate-induced groundwater storage 

deviations, Snat (L
3
) is the time-varying natural groundwater storage, 

ave

natS  (L
3
) is the 

time-averaged Snat, ∆Sp (L
3
) represents the time series of pumping-induced 

groundwater storage declines, and Sdist (L
3
) is the time-varying disturbed 

groundwater storage. Only negative ∆Sc values are considered. The QL aquifer 

storage volume, S (L
3
), is calculated, for each stress period, using: 

 



n

i

iy yxbSS
1

)( ,  (2.3) 

 

where n is the number of model-grid cells, b (L) is the aquifer thickness, and ∆x∆y 

(L
2
) represents the area of the model-grid cell (each equal to 10

4
 m

2
). Here, it is 

assumed that Sy provides a reasonable surrogate for effective porosity in the absence 

of such information (e.g., Bear, 1972). Although basin-scale volumetric storage 

changes are analysed on the basis of the QL aquifer alone, this is not expected to 

influence the relative contributions of climate and pumping to groundwater depletion 

within USB. 

 

2.4.4. Predictive uncertainty 
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Predictive uncertainty analysis is undertaken following the approach of Hill and 

Tiedeman (2007), Christensen and Doherty (2008), and Dausman et al. (2010b). That 

is, linearity between model parameters and predictions is presumed, and we neglect 

model structural defects (e.g., Refsgaard, 2006). The post-calibration uncertainty of a 

prediction, based on linear theory, is given by (Christensen and Doherty, 2008): 

 ypXCεCXpXCXpCyypCy )()]()([)()( 12  tttt
s .  (2.4) 

 

In equation (2.4), σs
2
 represents the post-calibration uncertainty variance of a 

prediction s. The sensitivity of σs
2
 to the calibrated model parameters, which are 

encapsulated by the vector p (assumed to be normally distributed), is represented by 

the vector y. The innate variability of model parameters in p is expressed by the 

covariance matrix C(p). By assuming model linearity, the pre-calibration prediction 

variance can be estimated using the parameter covariance matrix C(p), as 

represented by the first term on the right-hand side of equation (2.4). The second 

term on the right-hand side of (4) represents the amount by which this prediction 

variance is reduced by constraining the model on the basis of the calibration dataset. 

Note that a post-calibration Jacobian matrix, X, which contains sensitivities of model 

outputs (that correspond to field observations) to calibrated model parameters, is 

required to compute the second term in (4). C(ε) is the covariance matrix of 

measurement error, where ε is also assumed to be normally distributed. 

 

While efficient nonlinear methods have been presented and applied to highly 

parameterised groundwater models (e.g., Tonkin et al., 2007; Tonkin and Doherty, 

2009; Herckenrath et al., 2011), linear uncertainty analysis has been shown to 

provide robust estimates of uncertainty, even if applied to nonlinear models (e.g., 
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James et al., 2009; Brunner et al., 2012). Given that the objective here is to evaluate 

the relative magnitude of predictive uncertainty with respect to climate and pumping 

impacts, linear methods are considered appropriate. 

 

The 95% confidence interval of the prediction, obtained on the basis of the standard 

deviation calculated via equation (2.4), is used to represent predictive uncertainty for 

the USB model. The Jacobian matrix used for this analysis is computed on the basis 

of all 662 parameters (at their calibrated values) involved in the steady-state and 

transient calibrations. 

 

2.5. Results 

 

2.5.1. Steady-state calibration 

 

Figure 2.7 shows simulated-versus-observed steady-state groundwater levels in the 

QL aquifer for both pre-development and contemporary conditions. The RMSE is 

reduced from 2.44 to 0.154 m through calibration of the steady-state model. The 

post-calibration RMSE is approximately equal to m, therefore indicating that the 

model is capable of reproducing groundwater levels during pre-development and 

contemporary periods to a level considered appropriate (e.g., Fienen et al., 2009). 

However, two outliers are evident in the pre-development calibration scatterplot 

(Figure 2.7a), which correspond to observation wells LKW10 and LKW11 (Figure 

2.7c). These observations were assigned a low weighting prior to calibration because: 

(1) few groundwater level measurements are available (nine for LKW10 and seven 

for LKW11), and (2) groundwater level observations at LKW10 and LKW11 are 



 

31 

 

significantly higher than surrounding measurements, perhaps due to local watertable 

perching. We nonetheless include these observations in the calibration dataset for 

completeness. 

 

 

Figure 2.7. Steady-state calibration results for the QL aquifer, including simulated-versus-

observed scatterplots of (a) pre-development and (b) contemporary conditions (where marker 

size reflects the relative weighting applied to each groundwater level observation and the line 

represents a model-to-measurement misfit of zero), and simulated (red)-versus-observed 

(black) groundwater level contours for (c) pre-development and (d) contemporary 

conditions. Observed contours are based on groundwater level observations shown in Figure 

2.3a and b. Regions showing the model grid illustrate where the QL aquifer is dry. 

 

Simulated groundwater level contours suggest that a distinct flow-divide exists in the 

QL aquifer between the north-west and central portions of USB, caused by a region 

where the QL is unsaturated (Figure 2.7c and d). These dry zones occur as a result of 

the undulating nature of the QL aquifer base. A number of observation wells in the 

north-west portion of USB, and a recent geophysical study (Davis et al., 2013), 

support the notion that the QL aquifer is dry in places. Natural discharge from USB‟s 
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QL aquifer is therefore expected to occur via two distinct pathways: (1) to the 

southern ocean, and (2) towards Coffin Bay. The lower groundwater levels during 

contemporary conditions (Figure 2.7d) cause a small reduction (1.2%) in the extent 

of saturated QL material. 

 

Calibrated Kh, Kv and boundary conductance distributions are shown in Figure 2.8. 

The greatest degree of heterogeneity introduced through calibration occurs within the 

QL Kh field (Figure 2.8a). Most notable is the high Kh feature in the western portion 

of USB where low hydraulic gradients are observed within the QL (i.e., 510
-5

 m/m; 

Figure 2.3). Here, four pilot point parameters exceed 7×10
3
 m/d. A minimum QL Kh 

value of 2 m/d in central USB is obtained, where the hydraulic gradients are 

relatively steep (i.e., 2.510
-3

 m/m; Figure 2.3). The contrast between minimum and 

maximum QL Kh values is considered reasonable given the highly heterogeneous 

nature of the USB sediments (e.g., Harrington et al., 2006). Relative to the QL, a 

reduced adjustment of the TS Kh field (Figure 2.8c) arises via calibration. Minimum 

and maximum Kh values of 1 and 100 m/d are obtained for the TS, in the north-west 

and south-central parts of USB, respectively. The spatial variability in TS Kh reflects 

differences in hydraulic gradients, in a similar manner to the calibration results for 

the QL Kh field. The calibrated TC Kv field (Figure 2.8b) largely reflects expert 

knowledge regarding the discontinuous nature of the TC (see Figure 2.2). In areas 

where the TC is known to be present, the calibrated TC Kv ranges between 2.9×10
-4

 

and 9.1×10
-4

 m/d. A high degree of variability in boundary conductance values 

across USB is obtained through calibration (Figure 2.8d). The largest modification to 

GHB conductance through calibration is 18 to 984 m
2
/d, which occurs within the 

westernmost Coffin Bay GHB reach (red line; Figure 2.6). This level of modification 
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is deemed reasonable given the uncertainty in the boundary conductance. Finally, 

recharge rates were essentially unmodified by the steady-state calibration (i.e., 3×10
-

6
% adjustment). 

 

 

Figure 2.8. Calibrated parameter distributions: (a) Kh of layer 1 (QL aquifer), (b) Kh of layer 

2 (TS aquifer), (c) Kv of the implicit TC “layer” and (d) boundary conductance for each GHB 

reach. 

 

The maximum deviation of a pilot point parameter value from its preferred value, 

through calibration, is 0.6 m/d, which occurs within the QL Kh field. The magnitude 

of this deviation is considered relatively insignificant given the degree of variability 

within the calibrated Kh field (Figure 2.8a). Here, preferred parameter values are 

hardly modified by calibration because of the high relative weighting used to impose 

field-based Kh estimates (Table 2.2). A high relative weighting is also the reason for 

the spatially uniform recharge multiplier remaining at its preferred value (of unity). 

The average relative deviation of boundary conductances from preferred values is 

734%. Such deviation is comparably large, and is due to the low relative weighting 

used to reflect the uncertainty of preferred conductance values (Table 2.2). A 
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discussion on the trade-off between fitting observation data and the imposition of 

preferred parameter values is provided in Section 2.6. 

 

Volumetric water balances for pre-development and contemporary steady-state 

conditions are given in Figure 2.9a and 2.9b, respectively. The reduction in 

groundwater discharge to the ocean from 45 ML/d (pre-development) to 18 ML/d 

(contemporary) is of particular significance given its association with increased 

vulnerability to seawater intrusion (Werner et al., 2012). Inflow through the USB 

coastal boundary is due to the application of density-corrected head conditions to the 

QL and TS aquifers. The resulting groundwater re-circulation in the coastal fringe is 

typical of the flow patterns in coastal aquifers (e.g., Post et al., 2013). The (net) 

inflow from adjacent basins is approximately 24% greater under the lower 

groundwater levels of the contemporary period than under pre-development 

conditions. ET of shallow groundwater is a relatively minor component of the water 

balance (0.012 ML/d under pre-development conditions and 0 ML/d under 

contemporary conditions), as expected, and is therefore not shown in Figure 2.9. 

 

 

Figure 2.9. Volumetric water balance for (a) pre-development and (b) contemporary steady-

state conditions. Positive fluxes indicate inflow to USB; negative fluxes indicate outflow 

from USB. 
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2.5.2. Transient calibration 

 

Figure 2.10 shows the scatterplot of simulated-versus-observed deviation-from-the-

mean groundwater levels obtained through calibration of the transient USB model. 

The RMSE is reduced from 0.25 to 0.24 m through calibration. Here, the RMSE 

value prior to transient calibration is low because it is based on parameters obtained 

from the steady-state calibration. For individual simulated-versus-observed 

(absolute) hydrographs, the bias (i.e., average weighted error) varies from -1.22 to 

0.50 m (average of 0.01 m) and the average absolute weighted error varies from 0.01 

to 1.22 m (average of 0.14 m), which indicates a reasonable level of model-to-

measurement misfit. The positive bias values indicate an overestimation of 

groundwater levels by the model. As expected, the largest model errors correspond to 

observations that are of low credibility (Section 2.4.2). The simulated and observed 

hydrographs from four representative observation wells (SLE006, ULE136, ULE112 

and LKW034) are shown in Figure 2.10. These are selected because they: (1) span a 

large spatial extent of USB, (2) have relatively long-term water level records, (3) 

represent groundwater behaviour from both aquifers, and (4) highlight variations in 

the calibration model-to-measurement misfit. Both temporal groundwater level 

fluctuations and time-average water levels are well-captured by the model at 

SLE006, ULE136 and ULE112, where average groundwater level misfits equal 0.01, 

-0.17 and -0.04 m, respectively (negative misfit indicates model underestimation). 

For LKW034, the groundwater level is overestimated, on average, by 0.40 m, which 

is commensurate with the fit obtained from the steady-state calibration. 
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Figure 2.10. Transient calibration results, as shown by the scatterplot of simulated-versus-

observed deviation-from-the-mean groundwater levels (m), along with simulated-versus-

observed (absolute) groundwater level hydrographs (m AHD) for four representative 

observation wells (SLE006, ULE136, ULE112 and LKW034). Well locations are indicated 

to the left of each hydrograph. 

 

Calibrated storage parameter fields (Sy of QL and Ss of TS) are presented in Figure 

2.11. A greater degree of adjustment occurs within the QL Sy field (Figure 2.11a). By 

visual inspection of the calibrated Sy field, a general relationship between calibrated 

Sy values and the magnitude of groundwater level fluctuation (within the QL aquifer) 

is evident whereby high values of Sy correspond to regions where relatively low 

fluctuation in groundwater levels are observed, and vice versa. For example, four 

pilot point parameters located in north-central USB reach their upper bound (0.41), 

which reflects the relatively low groundwater level fluctuation observed on the basis 

of three observation wells (ULE120, ULE121 and ULE122) located within this 

region. The lowest Sy values correspond to preferred values (Figure 2.6) imposed on 

the basis of pumping test-based Sy estimates (Table 2.1). Calibrated Sy values do not 
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deviate significantly from preferred values (i.e., the maximum deviation is 1.5×10
-3

), 

as discussed further in Section 2.6. Calibrated Ss values range from 2.43×10
-6

 to 

3.24×10
-6

 m
-1

 (Figure 2.11b), which generally reflects the variability in magnitude of 

TS groundwater level fluctuation in a similar manner to the relationship between 

calibrated Sy values and groundwater level fluctuations within the QL. 

 

 

Figure 2.11. Calibrated storage parameter fields: (a) Sy of layer 1 (QL) and (b) Ss of layer 2 

(TS). 

 

Figure 2.12 shows the transient volumetric water balance. Discharge to the ocean 

varies significantly over time (mean of 37 ML/d, with a standard deviation of 11 

ML/d or 29%). Historical discharge displays a similar trend to groundwater levels 

(e.g., decline during 1994–2004), as expected, and represents an attenuated response 

to recharge and pumping. Net inter-basin flow is relatively stable throughout the 

investigation period (mean of 10 ML/d, with a standard deviation of 1.5 ML/d or 

15%). The largest positive storage changes (i.e., in a single year) occur prior to 1994, 
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after which recharge events and resulting increases in storage are more subdued. 

Groundwater ET is not shown here due to its minor contribution to the water balance. 

 

 

Figure 2.12. Transient volumetric water balance. The time series of groundwater discharge to 

the ocean (labelled “ocean”) represents the net oceanic discharge (i.e., the difference 

between inflow and outflow through the coastal boundary; Section 2.4.1). Similarly, the time 

series of flow between adjacent basins (labelled “GHB”) represents the net inter-basin flow 

(i.e., the difference between inflow from Uley East, Uley Wanilla and Coffin Bay and 

outflow to Coffin Bay; Section 2.2). 

 

2.5.3. Climatic and pumping impacts 

 

Figure 2.13 shows the time series of hnat and hdist for wells SLE006, ULE136, 

ULE112 and LKW034. Observed groundwater levels and the uncertainty of 

simulated groundwater levels (as demonstrated using the 95% confidence interval) 

are also shown. 
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Figure 2.13. Time series of hnat and hdist at observation wells SLE006, ULE136, ULE112 and 

LKW034 (well locations shown to the left of hydrographs). 

 

The time series of hnat display distinct seasonal and inter-annual variability (Figure 

2.13). The time-varying ∆hc at these observation wells, along with the annual 

cumulative deviation-from-the-mean rainfall (CDMR; e.g., Buishand, 1982), is 

shown in Figure 2.14. Long-term hnat trends are characterised by (Figures 2.13 and 

2.14): (1) a low phase from 1960–1967 (where the mean rainfall rate during this 

period is 535 mm/y), (2) rapid increase during 1968–1969 (mean rainfall of 702 

mm/y), (3) somewhat steady decline between 1970 and 1977 (mean rainfall of 548 

mm/y), (4) gradual increase from 1978–1986 (mean rainfall of 612 mm/y), (5) 
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decline during 1987–1989 (mean rainfall of 534 mm/y), (6) mostly incline between 

1990 and 1992 (mean rainfall of 652 mm/y), (7) somewhat gradual decline during 

1993–2009 (mean rainfall of 520 mm/y), and (8) incline between 2010 and 2012 

(mean rainfall of 483 mm/y), due primarily to the 2010 annual rainfall of 656 mm 

(i.e., the largest annual rainfall since 1992). These trends generally resemble patterns 

in annual rainfall variability. Despite these fluctuations, hnat is somewhat stable over 

the 52-year simulation period, as evidenced by a regression line slope of -10
-4

 m/y. 

This is consistent with a mostly stable rainfall trend for the period of investigation 

(i.e., slope of -1.2 mm/y
2
 for 1960–2012). The largest-in-time ∆hc at SLE006, 

ULE136, ULE112 and LKW034 is 0.26, 0.86, 0.70 and 0.65 m, respectively (Figure 

2.14). These maxima occur during 2009 following the long-term below-average 

rainfall period between 1993 and 2009. Time-averaged (1960–2012) ∆hc for these 

wells is 0.10, 0.32, 0.26 and 0.27 m, respectively. 
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Figure 2.14. Time series of ∆hc at observation wells SLE006, ULE136, ULE112 and 

LKW034, and the annual cumulative deviation-from-the-mean rainfall (CDMR) (grey bars). 

 

The time series of hdist display considerable variability in ∆hp following the 

commencement of pumping in 1976 (Figure 2.13). The time-varying ∆hp in these 

wells, along with annual pumping volumes, is shown in Figure 2.15. The following 

∆hp trends are mostly consistent for ULE136, ULE112 and LKW034 (Figures 2.15): 

(1) increase between 1976 and 1988 (where the mean pumping rate during this 

period is 5161 ML/y), (2) gradual reduction from 1989–1993 (mean pumping of 

3593 ML/y), (3) steady increase from 1994–2000 (mean pumping of 5584 ML/y), (4) 

somewhat stable period from 2001–2007 (mean pumping of 7280 ML/y), and (5) 

reduction between 2008 and 2012 (mean pumping of 5608 ML/y). These trends are 

strongly correlated to the variability in annual pumping volumes. A different 

response is evident in SLE006, whereby ∆hp is mostly stable prior to a distinct 

increase in 2001. This increase in ∆hp, also clear in LKW034 (during 2000), occurs 

as a result of the pumping well-field expansion in 2000 (Figure 2.1). At this time, a 

decrease in ∆hp at ULE112 is apparent due to a significant reduction in pumping in 

central USB. In general terms, pumping and rainfall are somewhat inversely related, 
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as expected given the strong seasonality of the USB climate. This inhibits the 

interpretation of pumping and climate impacts from simple hydrograph analysis (i.e., 

in the absence of the numerical model). The maximum-in-time ∆hp at SLE006, 

ULE136, ULE112 and LKW034 is 0.24, 1.57, 1.61 and 1.28 m, and occurs during 

2007, 2000, 2000 and 2004, respectively. Time-averaged (1976–2012; i.e., the period 

of pumping) ∆hp for these wells is 0.13, 1.19, 1.16 and 0.81 m, respectively. 

 

 

Figure 2.15. Time series of ∆hp at observation wells SLE006, ULE136, ULE112 and 

LKW034, and the annual pumping volumes (grey bars). Time series are truncated prior to 

pumping (1976). 

 

The uncertainty of groundwater level predictions at SLE006, ULE136, ULE112 and 

LKW034, on average, is 0.08, 0.22, 0.30 and 0.35 m, respectively (Figure 2.13). 

Because the hnat lies mostly outside of the 95% uncertainty interval of hdist (Figure 

2.13), the relative magnitude of predictive uncertainty is generally lower than the 

relative impact of pumping. The 95% predictive uncertainty intervals are also, in 

general terms, lower than the influence of climate on groundwater levels. 
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Figure 2.16 shows time series of Snat and Sdist. Time-varying ∆Sc and ∆Sp display 

good agreement with observation well-averaged ∆hc and ∆hp trends (Figure 2.13), as 

evidenced by the combined linear regression between ∆Sc and ∆hc and ∆Sp and ∆hp, 

with a coefficient of determination (r
2
) value of 0.99. ∆Sc exceeds ∆Sp only within 

the first two years following the initiation of pumping (i.e., 1976–1978). The largest-

in-time ∆Sc of 1.1×10
4
 ML occurs during June 2009, after a period of below-average 

annual rainfall between 1993 and 2009 (Figure 2.14). The maximum-in-time ∆Sp of 

1.6×10
4
 ML (143% that of ∆Sc) occurs during January 2001, following the 

approximately equal largest annual pumping rate in 2000 (7873 ML/y; Figure 2.15). 

The time-averaged (1960–2012) ∆Sc is 4.3×10
3
 ML, compared to the time-averaged 

(1976–2012) ∆Sp of 1.2×10
4
 ML, i.e., time-averaged ∆Sp is 2.9 times that of ∆Sc. 

 

 

Figure 2.16. Time series of Snat and Sdist. 

 

Figure 2.17a and b show the spatial distribution of Δhc and Δhp during June 2009 and 

January 2001 (i.e., the times at which the largest ∆Sc and ΔSp occur), respectively. 

The spatially distributed difference between the maximum-in-time Δhc (Δhc
max) and 

Δhp (Δhp
max), on a cell-by-cell basis, is shown in Figure 2.17c. 
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Figure 2.17. The spatial distribution of (a) ∆hc during June, 2009, (b) ∆hp during January, 

2001, which correspond to the times at which maximum ∆Sc and ∆Sp occur, respectively. (c) 

The spatially distribution (on a cell-by-cell basis) of Δhc
max

−Δhp
max

. Negative Δhc
max

−Δhp
max

 

(shown in purple) values correspond to regions where the maximum ∆hp exceeds that of Δhc, 

whereas positive values (shown in blue) correspond to areas where the largest ∆hc exceeds 

that of Δhp. 

 

The spatial distribution of Δhc (within the QL aquifer) exhibits a variability of 1.1 m 

across USB during June 2009 (Figure 2.17a). Areas of relatively low Δhc values 

(<0.5 m) are found in close proximity to constant- and general-head boundary 

conditions (e.g., near Coffin Bay and Uley East GHBs, and coastal USB), where 

groundwater levels exhibit smaller fluctuation. The dampened groundwater level 

fluctuation near GHBs occurs as a result of the time-averaged nature of the inter-

basin flows. Otherwise, the spatial distribution of Δhc is related to aquifer properties 

and recharge in a complicated manner, as demonstrated by the relatively weak 

correlation between Δhc and hydraulic property values on a cell-by-cell basis (e.g., 
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the regression between cell-by-cell Δhc and Sy values produce an r
2
 value of 0.17). 

Similar Δhc trends are also found within the TS aquifer. 

 

The spatial distribution of ∆hp (within the QL aquifer) varies by 2.1 m across USB 

during January 2001 (Figure 2.17b). During this time, ∆hp exceeding 1 m spans an 

area of about 55 km
2
 around the USB pumping well field. Smaller ∆hp values (<0.5 

m) are found in regions that are: (1) restricted from the effects of pumping by 

unsaturated sediment, and (2) near head-dependent boundary conditions. In a similar 

manner to Δhc trends, the spatial distribution of Δhp exhibits complicated 

relationships with those of aquifer properties and recharge, and displays similar 

trends within the TS aquifer. 

 

Figure 2.17c shows that the spatial distribution of Δhc
max

−Δhp
max values vary between -

2.8 and 0.9 m. The variability in space of ∆hp exceeds that of Δhc because of the 

localised point-based nature of pumping stresses compared to the diffuse nature of 

recharge. Negative values of Δhc
max

−Δhp
max are found over the majority (80%) of the 

spatial area of USB. 

 

2.6. Discussion 

 

The performance of the USB model, in terms of replicating observed groundwater 

levels, is considered to be of an appropriate level given the complex nature of 

regional USB groundwater behaviour. Calibration of the steady-state models led to 

an RMSE approximately equal to the value of m assumed prior to calibration (0.15 

m; Figure 2.7). This means that the pre-defined minimum objective function is 
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achieved, thus avoiding “overfitting” (Fienen et al., 2009). The transient calibration 

produces an RMSE of 0.24 m (Figure 2.10). A systematic overview of all simulated-

versus-observed hydrographs indicates that a reasonable level of model-to-

measurement misfit is achieved. The “goodness of fit” is comparable to error 

statistics reported for the application of spatially distributed models to various 

regional-scale hydrology problems (e.g., RMSE values of 1.79-2.09 m, 0.12-2.92 m, 

1.03 m, 0.16-0.44 m and 3 m are reported by Gurwin and Lubczynski (2005), 

Reynolds and Marimuthu (2007), El Yaouti et al. (2008), Demissie et al. (2009) and 

Yihdego and Becht (2013), respectively). Significantly greater reduction in model-to-

measurement misfit is achieved through calibration of the steady-state models 

(1500% RMSE reduction) as opposed to that of the transient model (6% RMSE 

reduction). This arises partly because parameters obtained from the steady-state 

calibration are adopted in the transient calibration. 

 

Parameter values (and fields) obtained through calibration are considered to be 

geologically realistic, at least within the limits of available field evidence, because 

expert knowledge in the form of field-based hydraulic properties (Table 2.2) are 

preserved within the models‟ parameter distributions. That is, calibrated Kh and Sy 

values do not deviate significantly from their preferred values (a maximum deviation 

of approximately 1%, occurring within the QL Kh field, is obtained). Moreover, the 

high degree of heterogeneity within the calibrated QL Kh field (Figure 2.8a) is 

deemed reasonable for a setting that exhibits karstic features (e.g., Harrington et al., 

2006), where Kh values may vary over five orders of magnitude (e.g., Kiraly, 1998; 

Worthington, 1999). These outcomes highlight the advantages of the high degree of 

flexibility within the parameterisation of the USB model. That is, the use of many 
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pilot point parameters allows for an appropriate level of heterogeneity to be 

accommodated, as informed on the basis of observed groundwater level trends, 

without the need for parameters to deviate significantly from their preferred values 

(e.g., Doherty, 2003). 

 

The relative magnitude of the measurement and regularisation components of the 

minimised objective function provides some insight into the trade-off between the 

minimisation of model-to-measurement misfit and the deviation from preferred 

parameter values. For the steady-state calibration, both components are of similar 

magnitude (differing by 1.3%), thus demonstrating that an appropriate balance 

between fitting field observations and the imposition of expert knowledge regarding 

parameter values is obtained. Conversely, the measurement component of the 

transient calibration objective function is considerably larger (288%) than its 

regularisation counterpart. This arises primarily from the lack of expert knowledge of 

storage parameters. Although sophisticated techniques for optimal weight 

determination are available (e.g., Pareto analysis; Vrugt et al., 2003), their 

application to regional groundwater models is often avoided given the computational 

times required, and as such, is beyond the scope of the current study. The different 

scales that pilot point parameters and pumping test-based estimates represent (e.g., 

Maneta and Wallender, 2013) may also be an important factor in understanding the 

trade-off between fitting observation data and imposing expert knowledge. 

 

Calibration of the USB models provides other important insights into hydraulic 

parameter distributions. This is evidenced by (e.g., Figure 2.11a): (1) pilot point-Sy 

parameters reaching their upper bound, and (2) calibrated Sy values generally 
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exceeding pumping test-based estimates. These outcomes suggest, collectively, that 

calibrated Sy parameters may be assuming surrogate roles, e.g., to offset errors within 

model structure (given the nonuniqueness of the groundwater model inverse 

problem; e.g., Carrera and Neuman, 1986). The extent to which calibrated Sy (and 

Kh) values compensate for errors within spatial and temporal recharge distributions 

and boundary representations is the subject of future work. The exceedance of field-

based Sy estimates by calibrated values suggests that there may be significant, yet 

unquantified, uncertainty associated with field-based Sy estimates (Table 2.1). Also, 

by assessing the parameter combinations constructed through SVD regularisation, it 

is evident that insensitive parameter combinations are composed largely of pilot 

point Sy parameters located in data-poor areas (e.g., north-west USB). This provides 

an indication of which parameters are relatively poorly constrained (or 

“unidentifiable”; Doherty and Hunt, 2009), and where future data collection should 

potentially be focused. 

 

The model predictions on which the current investigation is based are considered to 

be of acceptable accuracy. This is highlighted by the outcomes of the linear 

uncertainty analysis, which demonstrate that predictive uncertainty of the model, in 

general terms, is significantly smaller compared to the relative contributions of 

climate and pumping impacts (Figure 2.13). 

 

Both the observation well and basin-wide storage analyses produce similar estimates 

of relative climate and pumping contributions to aquifer decline (Figure 2.13 to 

2.16), as evidenced by the fact that pumping impacts are (by considering both time-

averaged and maximum-in-time statistics) approximately 2.7 and 2.2 times that of 
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climate based on these analyses, respectively. The consistency between results from 

these analyses demonstrates that the four wells selected provide an adequate 

collective representation of basin-scale USB behaviour. The lower relative 

contribution of climate to groundwater decline from time-averaged (rather than 

maximum-in-time) values occurs because climate-induced deviations vary about zero 

(Section 2.4.3). Despite the difference between the relative climate and pumping 

impacts based on time-averaged and maximum-in-time values, these diagnostics, 

collectively, provide a basis for judging climate and pumping contributions in a 

generalised manner to inform future USB management. 

 

The modelling approach adopted in the current study can also be extended to provide 

insight into the cause of recent (i.e., since 2009) partial groundwater recovery. That 

is, a decrease in ∆Sc and ∆Sp between January 2009 and December 2012 is apparent, 

equal to 5.4×10
3
 and 2.9×10

3
 ML, respectively (Figure 2.16). Hence, the contribution 

of climate to recent groundwater storage recovery is approximately twice that of 

pumping. The models used as a basis for this investigation also provide insight into 

USB groundwater behaviour more generally. For example, the flow divide that is 

apparent in the QL aquifer (Figure 2.7) indicates that the northwest portion of the 

current USB extent should be included within the Coffin Bay QL aquifer boundary, 

and that the USB aquifer, as defined by the extent of saturated QL sediments, is 

significantly smaller than previously thought (e.g., Zulfic et al., 2007). This has 

implications for the management of USB given that groundwater extraction 

allocations have been based traditionally on a proportion of recharge volumes, which 

take into account the saturated area of the QL aquifer (DFW, 2012). 
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The primary limitation associated with model-based approaches such as those 

adopted in the current study is the requirement of reliable climate and anthropogenic 

stress data and observation data (on which calibration is based), spanning both 

natural and disturbed periods. Because long-term and well-constrained stress and 

observation data are often scarce, the application of spatially distributed models are 

sometimes avoided for preference of simpler, less data-intensive methods (e.g., 

Helsel and Hirsch, 2002; Hamed, 2008). However, the uncertainty associated with 

stress (e.g., groundwater extraction; Kerrou et al., 2013) and observation data (as 

considered in the current study) can be represented comprehensively through the use 

of highly parameterised models (e.g., Doherty et al., 2011). This avoids the need for 

highly simplified approaches (which preclude representation of physically based, 

spatially and temporally distributed hydrological response) because of data 

constraints. 

 

2.7. Conclusions 

 

There is a global need for quantification of the relative contributions of natural and 

human stresses to groundwater depletion to inform water resource management. To 

date, spatially distributed models, which provide a basis for representing many of the 

complexities associated with field-scale groundwater processes, have not been 

applied in this context. In this paper, we extend previous modelling studies through 

use of a highly parameterised, spatially distributed groundwater model to distinguish 

between the relative impacts of climate variability and pumping within a regional 

setting. 
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Results show that, for USB, the contribution of pumping to aquifer depletion is 2.9 

and 1.4 times that of climate, based on the time-averaged and maximum-in-time 

basin-wide volumetric storage changes, respectively. Pumping impacts are shown to 

exceed climate impacts between 1978 (i.e., two years after pumping initiation) and 

2012, and over the majority (80%) of the spatial area of USB. These results serve as 

a response to the recent parliamentary enquiry (NRC, 2013) into the cause of 

groundwater decline by establishing that pumping impacts are generally greater than 

climate impacts. Future USB groundwater management is expected to be enhanced 

through adaption of pumping rates to better align with the condition of the aquifer 

attributable to both climate and pumping impacts. 

 

This study demonstrates the applicability of a relatively simple modelling strategy, in 

combination with a highly parameterised, spatially distributed groundwater model, 

for quantifying the relative contribution of natural and human aquifer impacts. Use of 

spatially distributed models within this framework allow for the distinction to be 

made between the contributions of individual stresses to hydrological system 

response on a high-resolution in space and time. In this way, specific causal factors 

of groundwater response can be identified. This approach can be extended to 

quantify the relative impacts of stresses for a wide range of hydrological settings, 

which may involve different data types (e.g., stream flow, solute concentrations), and 

where human influences such as land-use change (e.g., Zhang et al., 2013) and 

reservoir regulation (e.g., Wanders and Wada, in press) are of interest. Furthermore, 

this approach can be applied within a scenario-testing framework whereby the 

contributions of various potential climate change and future water management 

scenarios are investigated. 
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Chapter 3 

 

3. Estimability of recharge through groundwater model 

calibration: Insights from a highly parameterised field-

scale steady-state example 

 

This chapter is based on the following paper: 

 

Knowling, M.J., Werner, A.D., 2016. Estimability of recharge through groundwater 

model calibration: Insights from a field-scale steady-state example. Journal of 

Hydrology, doi: 10.1016/j.jhydrol.2016.07.003. 

 

 

3.1. Abstract 

 

The ability of groundwater models to inform recharge through calibration is 

hampered by the correlation between recharge and aquifer parameters such as 

hydraulic conductivity (K), and the insufficient information content of observation 

datasets. These factors collectively result in non-uniqueness of parameter estimates. 

Previous studies that jointly estimate spatially distributed recharge and hydraulic 

parameters are limited to synthetic test cases and/or do not evaluate the effect of non-

uniqueness. The extent to which recharge can be informed by calibration is largely 

unknown for practical situations, in which complexities such as parameter 
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heterogeneities are inherent. In this study, a systematic investigation of recharge, 

inferred through model calibration, is undertaken using a series of numerical 

experiments that include varying degrees of hydraulic parameter information. The 

analysis involves the use of a synthetic reality, based on a regional-scale, highly 

parameterised, steady-state groundwater model of Uley South Basin, South 

Australia. Parameter identifiability is assessed to evaluate the ability of parameters to 

be estimated uniquely. Results show that a reasonable inference of recharge (average 

recharge error <10%) requires a surprisingly large number of preferred value 

regularisation constraints (>100 K values across the 129 km
2
 study area). The 

introduction of pumping data into the calibration reduces error in both the average 

recharge and its spatial variability, whereas submarine groundwater discharge (as a 

calibration target) reduces average recharge error only. Nonetheless, the estimation 

of steady-state recharge through inverse modelling may be impractical for real-world 

settings, limited by the need for unrealistic amounts of hydraulic parameter and 

groundwater level data. This study provides a useful benchmark for evaluating the 

extent to which field-scale groundwater models can be used to inform recharge 

subject to practical data-availability limitations. 

 

3.2. Introduction 

 

Reliable estimates of recharge and its variability in time and space are often a 

requirement for effective groundwater management. This is particularly the case 

where recharge estimates are used as a basis for allocating groundwater extraction 

rates (Werner et al., 2011). Traditionally, recharge is inferred from groundwater-

level changes (e.g., Crosbie et al., 2005), solute concentrations (e.g., Wood and 
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Sanford, 1995), unsaturated zone numerical modelling (e.g., Keese et al., 2005) 

and/or remote sensing techniques (e.g., Jackson, 2002). The reliability of these 

approaches depends on many factors, including site characteristics (e.g., climate, 

vegetation, soil, topography, depth to watertable) and the availability and accuracy of 

field data (Scanlon et al., 2002). Estimates derived from field measurements also 

require consideration of the representative spatial and temporal scales (Scanlon et al., 

2002). For these reasons, recharge is widely regarded as one of the most challenging 

water-balance components to quantify (Dripps and Bradbury, 2007). 

 

An alternative method of recharge estimation is inverse modelling using numerical 

groundwater models. This involves the inference of recharge through calibration or 

“history matching” (i.e., minimising the discrepancy between field observations and 

corresponding model-generated outputs). The application of groundwater models in 

this context is appealing because of their ability to account for important nonlinear 

interactions between recharge, discharge, evapotranspiration and changes in 

groundwater storage (Sanford, 2002). Additionally, recharge values estimated from 

groundwater models typically apply to regional scales (e.g., >25 km
2
), which are 

directly applicable to management decision making. Stoertz and Bradbury (1989) 

presented one of the first attempts at informing recharge by groundwater model 

calibration. They produced a map of recharge and discharge zones, and provided a 

range of spatially averaged net recharge rates for a basin in Wisconsin (USA). 

Groundwater model calibration has since been used frequently to inform recharge 

(e.g., D‟Agnese et al., 1999; Essaid et al., 2003; Lubczynski and Gurwin, 2005; 

Palma and Bentley, 2007; Yidana, 2011; Hashemi et al., 2013). However, the 
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uncertainty associated with groundwater model-based recharge estimates is rarely 

quantified. 

 

The primary challenge associated with recharge estimation through groundwater 

model calibration lies in the correlation between recharge and hydraulic properties 

such as hydraulic conductivity (K) and specific yield (Scanlon et al., 2002). 

Parameter correlation leads to non-uniqueness of estimated parameter values 

(Carrera and Neuman, 1986; McKenna et al., 2003). That is, multiple parameters can 

be varied in such a way that a model‟s outputs (such as the heads used in a 

calibration objective function) are unaffected. Non-uniqueness arises from the 

limited information content of observation datasets used as a basis for calibration. In 

the case where only groundwater-level observations are available, a unique solution 

for recharge and K cannot be obtained; only their ratio can be estimated uniquely 

(Scanlon and Cook, 2002). Efforts to overcome parameter non-uniqueness for the 

purposes of estimating recharge through calibration have involved several 

approaches (Sanford, 2002), including the use of flux observations (e.g., stream base 

flow; Arnold et al., 2000; Hunt et al., 2006) or seepage velocities (e.g., based on 

groundwater age; Portniaguine and Solomon, 1998; Sanford et al., 2004), either as 

prescribed stresses or as calibration targets. 

 

An alternative means to address groundwater model non-uniqueness is by imparting 

expert knowledge of aquifer hydraulic properties, such as K, through regularisation 

(Carrera et al., 2005). Regularisation refers to the stabilisation of the parameter 

estimation process such that a unique solution to an otherwise ill-posed inverse 

problem can be obtained (Engl et al., 1996). For example, Tikhonov regularisation 
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schemes involve the specification of preferred parameter values and/or relationships 

based on expert knowledge to supplement the information contained within the 

calibration dataset. Then, any deviation in parameters from preferred values will 

occur only to the extent that is necessary to achieve a target level of model-to-

measurement misfit (Tikhonov and Arsenin, 1977; Doherty and Skahill, 2006). 

Theoretically, a unique estimate of recharge may be achieved providing adequate 

constraints are imparted on K parameter values and relationships; however, the 

extent to which this is the case, for practical model calibration applications, is not 

presently understood. Aquifer hydraulic parameter distributions are often assumed to 

be homogeneous or piecewise homogeneous for the purposes of informing recharge 

(e.g., Sanford et al., 2004; Gómez et al., 2010; Cao et al., 2013). These approaches 

assume that any errors in recharge arising from the simplification of hydraulic 

parameter distributions are small (e.g., Ireson and Butler, 2013). 

 

The uncertainty in various model input parameters, in particular recharge and K, has 

led to “simultaneous” or “joint” estimation of such parameters. For example, 

Hendricks Franssen et al. (2004) jointly estimated spatially variable transmissivity 

and recharge for a simple synthetic aquifer in their study of the impact of 

transmissivity and recharge uncertainty on well capture zones. They highlighted the 

importance of regularisation for obtaining reasonable parameter estimates. This was 

also demonstrated by Friedel (2005) in an investigation of the effect of variations in 

calibration dataset information on parameter non-uniqueness for a synthetic vadose 

zone model. Despite these efforts, Hendricks Franssen et al. (2009) subsequently 

asserted that very few studies estimate multiple parameter types simultaneously 
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within complex, regional-scale groundwater models, and that this constituted an 

important direction for future research. 

 

A number of studies that jointly estimate recharge and aquifer hydraulic parameters 

for real-world settings have been presented. For example, Hendricks Franssen et al. 

(2008) used a stochastic calibration procedure to estimate spatial distributions of 

recharge and K in a groundwater model of the Chobe region, Botswana (Africa). 

They evaluated the value of remote sensing data and other data combinations by 

considering changes to ensemble recharge and K distribution statistics. However, 

their study did not investigate the influence of K constraints on calibrated estimates 

of recharge, given that stochastic methods are less likely to display parameter 

surrogacy (i.e., the process whereby parameters take on spurious values to 

compensate for other model errors; Clark and Vrugt, 2006; White et al., 2014). 

Hayley et al. (2014) estimated spatial recharge and K distributions simultaneously in 

their calibration of a highly parameterised groundwater model of north-eastern 

Alberta (Canada) using cloud computing. However, their calibrated recharge and K 

fields were evaluated separately in terms of reasonableness. That is, the effect of 

parameter non-uniqueness was not considered in their discussion of calibration 

outcomes. Carniato et al. (2015) jointly estimated the spatial distribution of recharge, 

K and specific yield as part of their development of a reactive transport model of a 

groundwater contamination field site in northern Belgium. They demonstrated that 

accurate predictions of plume concentrations and reduced uncertainty associated with 

recharge and K were obtained by incorporating both groundwater level and 

concentration data into the calibration. However, the degree to which their inverse 
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modelling outcomes were influenced by parameter non-uniqueness was not 

evaluated. 

 

Recently, Erdal and Cirpka (2016) applied the Ensemble Kalman filter (Evensen, 

1994) to jointly estimate spatially distributed recharge and K on the basis of head 

observations for a highly simplified synthetic aquifer. They showed that accurate 

values of recharge and K can be estimated simultaneously providing that a sufficient 

degree of prior information is available (i.e., the geostatistics of the true (initial 

ensemble) recharge- and K-fields are well-known). However, they discussed that 

their findings regarding the amount of prior information required for accurate 

recharge estimation may not be transferable to real-world applications, and 

recommended that more realistic cases be investigated in future studies to provide 

insights into the estimability of recharge and hydraulic parameters for practical 

situations. 

 

Presently, the extent to which groundwater models can be used to estimate recharge 

through calibration, for complex, field-scale aquifer settings, is largely unknown. 

This is despite the generally accepted notion that groundwater models can be used to 

estimate recharge provided that groundwater level distributions and other model 

parameters such as K are known “well enough”, as advocated by Sanford (2002). 

 

The objective of this study is to evaluate the ability of groundwater model calibration 

to inform recharge in the face of non-uniqueness by using a systematic inverse 

modelling approach involving a regional-scale, highly parameterised groundwater 

model of Uley South Basin (USB), South Australia. We intentionally use the most 
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common approach to groundwater model calibration, namely the application of 

gradient methods such as those adopted in PEST (Doherty, 2016) and UCODE 

(Poeter and Hill, 1998), so that the findings offer guidance to groundwater 

practitioners. A quasi-hypothetical modelling strategy, whereby a reference model 

that serves as a synthetic reality for comparing subsequent model results, is adopted. 

The current assessment focuses on the spatial distribution of time-averaged recharge 

and basin-wide recharge volumes. This is achieved based on steady-state modelling, 

as is considered in many previous investigations of recharge (e.g., Gómez-Hernández 

and Gorelick, 1989; Zhang, 2014). The USB is chosen as a case study because of the 

well-developed understanding of the regional flow system based on extensive 

observation datasets, and the availability of an existing highly parameterised 

groundwater model developed by Knowling et al. (2015). Also, spatially distributed 

recharge rates are available from field-based estimates and one-dimensional 

unsaturated zone modelling (Ordens et al., 2012; Ordens, 2014). 

 

3.3. Theoretical background 

 

Two-dimensional Dupuit-Forcheimer flow within a heterogeneous aquifer under 

steady-state conditions is described by the diffusion equation: 
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where x and y [L] are Cartesian coordinates, h [L] is the hydraulic head, b [L] is the 

saturated aquifer thickness (which varies with h in unconfined aquifer systems), W 

[L/T] is the volumetric source/sink term per unit area that expresses the combined 
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effects of groundwater recharge, pumping, leakage, etc. (positive W values indicate 

inflow), and Kx and Ky [L/T] are the hydraulic conductivities in the x and y 

directions, respectively. 

 

Equation (3.1) is solved in a piecewise manner by groundwater models that use 

numerical methods such as finite-difference or finite-element approximations (e.g., 

Harbaugh et al., 2000; Diersch, 2005). At the node scale, the computation of h is a 

function of the ratio of recharge-to-K (i.e., W/K, considering recharge as the only 

sink/source component for simplicity). It follows that a unique estimate of recharge 

and K may not be attainable based on h observations alone, and that only the ratio 

W/K may be determinable without additional information pertaining to K or 

groundwater fluxes (e.g., 
x

h
Kb




). Non-uniqueness at the scale of the model domain 

is complicated by such aspects as the spatial patterns in K, flow directions, boundary 

conditions, etc., and is therefore more challenging to characterise for practical 

situations, which are hampered by observation-data scarcity. The current study 

focuses on the estimability of recharge in the face of non-uniqueness for practical 

situations, in response to the knowledge gap identified by Hendricks Franssen et al. 

(2009). 

 

3.4. Methodology 

 

3.4.1. Study area 

 

The USB (34º76' S, 135º56' E) is a topographically enclosed coastal groundwater 

basin of area ~129 km
2
, and is located in the southern Eyre Peninsula, South 
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Australia. The region has a semi-arid climate, which is characterised by winter-

dominant rainfall (May-October), and hot, dry summer months (November-April) 

(Harrington et al., 2006). Long-term average annual rainfall and pan evaporation 

rates are 560 and 1547 mm/y, respectively (Bureau of Meteorology, 2010). The land 

surface is composed mainly of skeletal soils of sandy and clayey loam (Evans, 1997) 

and exposed calcrete, where a widespread distribution of sinkholes serve to 

redistribute surface water into the unsaturated zone (Ordens et al., 2012). USB‟s 

vegetation consists primarily of various scrub species, Mallee trees, drooping she-

oak and significant areas of sparse grassland (Bresciani et al., 2014). Groundwater in 

USB occurs predominantly within an unconfined Quaternary sand and limestone 

aquifer (QL), which is underlain by a discontinuous Tertiary clay aquitard (TC) and a 

semi-confined Tertiary aquifer comprising silty and clayey sand (TS) (Zulfic et al., 

2007). Groundwater abstraction occurs from the QL aquifer, which constitutes the 

primary freshwater supply for the Eyre Peninsula region (Harrington et al. 2006). 

Historically, allowable extraction rates have been based on a fixed proportion of 

volumetric recharge estimates (EPNRM, 2006). Despite the karst nature of some of 

the USB sediments, the aquifer behaves mostly as a single-porosity (i.e., equivalent 

porous medium) setting, at least at scales of interest to water resources management 

and regional-scale modelling (Werner, 2014). 

 

3.4.2. Groundwater model 

 

The groundwater model of USB used as a basis for the current study is described in 

detail by Knowling et al. (2015). MODFLOW (Harbaugh et al., 2000) is used to 

simulate groundwater flow within USB under steady-state conditions. The 
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assumption of steady-state conditions is considered a reasonable approximation of 

the average groundwater levels during two distinct time intervals: 1960–1976 (i.e., 

pre-development) and 2005–2009 (i.e., a period of relatively stable water levels). The 

pre-development steady-state condition is adopted in the reference USB model. The 

contemporary condition (2005-2009), which involves significant groundwater 

extraction, serves as a basis for developing an alternative steady-state model. This 

model is used to explore whether or not the addition of prescribed fluxes (i.e., 

groundwater extraction) assists in constraining the estimation of recharge. Also, 

considering two alternative steady-state models allows for an evaluation of whether 

or not the estimability of recharge is specific to a particular steady-state condition. 

Table 3.1 lists the main features of the reference USB model. Figure 3.1 shows a 

schematic of the reference model and its parameter distributions. 
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Table 3.1. Summary of reference model characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

Model characteristic Description 

Layer(s) type Unconfined upper layer (QL aquifer); 

Convertible confined/unconfined (i.e., depending on hydraulic head relative to layer top elevation) 

lower layer (TS aquifer); 

TC aquitard simulated implicitly, i.e., a “quasi-3D approach” (Chiang and Kinzelbach, 1998). 

Spatial discretisation 100 m × 100 m model-grid cells (245 rows, 132 columns; Figure 3.1a). 

K Estimated through calibration (Figure 3.1b and c) and constrained by field data (e.g., pumping test 

results) or literature values. Vertical K assumed to be 0.1 times horizontal K. 

Ocean boundary Constant-head boundary using density corrections following Morgan et al. (2012). 

Interaction with 

adjacent basins 

General-head boundaries (GHB; Harbaugh et al., 2000) used. GHB forcing heads are based on 

time-averaged groundwater levels in adjacent basins. GHB conductances (C) estimated through 

calibration (Figure 3.1d), and constrained by knowledge of K and aquifer thickness. 

Spatially distributed 

recharge 

Applied to uppermost active layer. Recharge distributions based on the modelling by Ordens 

(2014) (e.g., Figure 3.1e). Spatially averaged recharge for pre-development conditions is 100 

mm/y, and for contemporary conditions is 69 mm/y. 

Evapotranspiration 

(ET) 

ET package (EVT; Harbaugh et al., 2000) simulates shallow groundwater ET, whereas unsaturated 

zone ET is accounted for in the recharge modelling of Ordens (2014). 

Groundwater 

pumping 

Pumping rates at each well based on metered data and extrapolation (where metered data are 

unavailable) (Werner et al., 2011). No pumping occurs during pre-development conditions. Total 

pumping rate for contemporary conditions is 6.98 × 10
6
 m

3
/y. 
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Figure 3.1. Reference model characteristics: (a) model domain, grid, boundary conditions (“CHB” denotes constant-head boundary, and “GHB” denotes 

general-head boundary), extraction well and pilot point locations; (b) log(K) [m/d] of the QL aquifer; (c) log(K) [m/d] of the TS aquifer; (d) log(C) [m
2
/d] for 

each GHB reach, and (e) spatially distributed recharge rates [mm/y] (temporally averaged over the pre-development period 1960–1976) from Ordens (2014). 
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The spatial variability of K is achieved using 125 pilot points (de Marsily et al., 

1984) distributed in a regular grid configuration (Figure 3.1a). Cell-by-cell K 

variability is specified by kriging based on an isotropic, exponential variogram of 

log(K), with a sill of one, a range of 1200 m, and a nugget of zero. A single boundary 

conductance (C) is assigned to each GHB reach (Figure 3.1a). It should be noted that 

the reference model K and C distributions (Figure 3.1b, c and d) differ slightly from 

those obtained by Knowling et al. (2015). They estimated K and C parameters 

through joint calibration of the pre-development and contemporary steady-state 

models, whereas reference model K and C distributions are estimated on the basis of 

only the pre-development model in the current study. 

 

3.4.3. Model calibration 

 

Estimation of groundwater model parameters is undertaken using PEST (Doherty, 

2016). BeoPEST (Schreüder, 2009), a version of PEST that allows model-run 

parallelisation, is used to reduce computational times. PEST adopts a gradient-based 

algorithm (i.e., the Gauss-Marquardt-Levenberg (GML) method; Levenberg, 1944) 

to minimise a weighted least-squares objective function, Φ. For parameter estimation 

problems involving Tikhonov regularisation, Φ is given by: 

 )()()()( tt
dZpQdZphXpQhXp  rm    (3.2) 

 

where p is a vector containing model parameter values, h is a vector containing 

measurement observation values, X is a sensitivity (or “Jacobian”) matrix containing 

derivatives of model outputs (for which there are corresponding measurement 

observations h) with respect to p, d is a vector containing Tikhonov regularisation 
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“observations” (representing preferred parameter values and/or relationships), Z is a 

Jacobian matrix containing derivatives of model-generated counterparts to 

regularisation observations d with respect to p, µ is a regularisation weight factor 

(discussed below), and Qm and Qr are matrices whose diagonal elements are the 

square of the weights assigned to corresponding measurement and regularisation 

observations, respectively. The value of µ controls the trade-off between fitting 

observation data and the incorporation of regularisation constraints, explained in 

more detail below. 

 

Traditional calibration approaches, which involve the inference of a small number of 

parameters, minimise the measurement objective function, Φm, which is the term 

(Xp−h)
t
Qm(Xp−h) in equation (3.2). Where the inverse problem is “well-posed” or 

“over-determined”, minimisation of Φm yields a unique parameter set. The 

regularisation objective function, Φr, given by the term (Zp−d)
t
Qr(Zp−d) in equation 

(3.2), encapsulates the deviation of parameter values from those representing a 

preferred condition. A common application of Tikhonov regularisation is to include 

the difference between neighbouring pilot-point parameter values in d. By specifying 

the corresponding elements of d equal to zero, a preferred homogeneity constraint is 

enforced (Doherty, 2003). The desired level of model-to-measurement misfit (Φm) is 

user-specified as the “target measurement objective function” Φm
l
, which is obtained 

by adjusting µ. Φr is thereby minimised under the constraint that: 

 l

mm   (3.3) 

 

This process constitutes a constrained minimisation problem (e.g., deGroote-Hedlin 

and Constable, 1990), whereby Φm
l
 provides a user-specified basis for controlling the 
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degree to which the problem is regularised. This term is prescribed in accordance 

with the uncertainty associated with observation measurements. The reader is 

referred to Fienen et al. (2009) for a detailed discussion on Φm
l
 and other PEST-

specific regularisation control variables. 

 

For regularised (non-linear) model calibration problems, a parameter upgrade vector, 

∆p, as calculated iteratively using the GML procedure, is given by (Doherty and 

Skahill, 2006): 

 )()( tt1tt
sQZrQXIZQZXQXp rmrm     (3.4) 

 

where λ is the Marquardt lambda parameter, I is the identity matrix, r is a vector of 

the model-to-measurement discrepancies (Xp−h), and s is a vector of the 

regularisation discrepancies (Zp−d). The λ term is often increased such that X
t
QmX 

becomes invertible to prevent instability in the calculation of the parameter upgrade. 

Despite the ability of high λ values to impart stability, robust parameter estimation 

requires some form of regularisation (Tonkin and Doherty, 2005). The reader is 

referred to Doherty and Hunt (2010) and references cited therein for a more detailed 

description of pertinent calibration methodologies. 

 

In this study, the sensitivities of model outputs to parameter values within the X and 

Z matrices are calculated using central finite differences with a 1% perturbation of 

current parameter values following, e.g., James et al. (2009). The maximum 

parameter value upgrade factor between optimisation iterations is 20% of current 

values. The specification of Φm
l
 is dependent on initial modelling results. Weighting 

of different regularisation observation groups is achieved on the basis of total 
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composite observation-group sensitivities, which is the sum of the (weighted) 

sensitivities of all observations within a particular group to all adjustable parameters 

(Hill, 1998; 2010). Individual regularisation observations (i.e., within a group) are 

weighted uniformly. The initial λ value and the factor by which λ is adjusted during 

parameter upgrade testing is set to 10 and -3, respectively, as suggested by Doherty 

(2016). 

 

3.4.4. Parameter identifiability 

 

Parameters are evaluated in terms of their identifiability (i.e., their ability to be 

estimated uniquely through calibration). The set of parameter values obtained 

through model calibration p is represented by (Doherty et al., 2010): 

 Ghp   (3.5) 

 

where G is a matrix (sometimes referred to as the “parameter solution matrix”) 

expressing the means by which the estimated parameter values are obtained from 

measurement observations h. The formulation of G is therefore dependent on the 

regularisation method employed within the calibration process. In this study, G is 

given by the following (Doherty, 2016): 

 
mrm QXIZQZXQXG

t1tt )(    (3.6) 

 

Equation (3.6) applies to the situation of calibrated parameter values, and assumes 

that r and s are sufficiently small that they can be ignored. The relationship between 
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a set of measurement observations h and a set of true (i.e., real-world) system 

parameters p is represented by (Doherty et al., 2010): 

 εXp'h   (3.7) 

 

where ε is a vector expressing the measurement noise associated with measurements 

h. This assumes that the (linear) model X is free from structural defects. Substitution 

of (7) into (5) yields (Moore and Doherty, 2006): 

 GεRpGεGXpp  ''  (3.8) 

 

where R (= GX) is a resolution matrix. Where measurement noise is small enough 

such that it can be neglected (i.e., the Gε term on the right-hand side of (8) equals 

zero), the R matrix describes the relationship between estimated parameter values p 

and their real-world counterparts p. Each row of R contains the weights by which 

real-world parameter values are multiplied to produce a particular estimated 

parameter (commonly referred to as “integration kernel”; Vasco et al., 1997; Paradis 

et al., 2015). Note that p and p are equivalent if R equals I (and ε equals zero). The 

identifiability of parameter i (di) is defined generally as the ability of model 

calibration to constrain parameter i, and is given by (Doherty and Hunt, 2009): 

 
iiid ,][R  (3.9) 

 

where subscript i,i designates the ith diagonal element of R. The value of di can vary 

between zero (indicating that the parameter in question is completely unidentifiable) 

and one (indicating that the parameter in question is completely identifiable). Note 

that a di value of one does not necessarily mean that its estimated value will be error-
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free, due to the effects of measurement uncertainty. However, statistics such as 

parameter error variance (e.g., Moore and Doherty, 2005) are not reported in this 

current study because measurement uncertainty is assumed to be negligible (given 

the model-generated nature of the synthetic calibration dataset). To explore the 

influence of model non-linearity, two Jacobian matrices (which are required for the 

calculation of R and G) are considered based on both initial and calibrated parameter 

values. 

 

3.4.5. Inverse modelling cases 

 

Heads generated on the basis of the reference model are used as “observations” for 

the calibration dataset in subsequent calibration cases. Heads are taken at pilot point 

locations where the QL and TS sediments are saturated, resulting in a total of 217 

head observations derived from the reference model. The use of coincident 

observations and estimable parameters facilitates the comparison of reference model- 

and calibration-based recharge and K distributions at discrete locations (i.e., at pilot 

points), without the complication of kriging effects (i.e., intra-pilot point recharge 

and K variability). Head observations are weighted uniformly. 

 

Parameter value constraints in the form of upper and lower bounds, and initial values 

are given in Table 3.2. Constraints on hydraulic parameters are consistent with those 

used for the reference model. K and C parameters are log-transformed within the 

calibration process. The influence of initial K and C values on estimated values is 

explored using an alternative set of initial values equal to reference-model 

parameters. 
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Table 3.2. Parameterisation set-up for inverse modelling cases. 
a
Alternative initial recharge 

rates of 80 and 120 mm/y, and initial hydraulic parameter values from the reference model 

are used to assess the influence of initial parameter values; 
b
A recharge rate of 69 mm/y is 

used for the contemporary steady-state model; 
c
Acronyms relate to the linkages through 

which USB is connected to adjacent basins (see Knowling et al. (2015) for more details): 

“UE” refers to Uley East, “UW” refers to Uley Wanilla, “CB” refers to Coffin Bay, and 

“SE” refers to south-east. 

Model 

parameters/stresses 

Parameterisation method  

(number of parameters) 

Bounds Initial 

values
a
 

Recharge [mm/y] Pilot points (125) 0–300 100
b
 

K [m/d]    

  QL Pilot points (125) 1–10
4
 100 

  TS Pilot points (125) 0.132–1320 13.2 

C [m
2
/d]

c
    

  UE (TS) Single value 0.36–3600 36 

  UW1 (TS) Single value 0.054–540 5.4 

  UW2 (TS) Single value 0.059–590 5.9 

  UW3 (TS) Single value 0.23–2300 23 

  CB1 (TS) Single value 0.29–2900 29 

  CB2 (TS) Single value 0.26–2600 26 

  CB3 (QL) Single value 0.18–1800 18 

  SE (TS) Single value 0.07–770 7.7 

 

The spatial variability of recharge is achieved using pilot point parameters co-located 

with those used for the estimation of K. An isotropic variogram of exponential type is 

used to produce cell-by-cell recharge variability, as is the case for K variability. 

 

A spatially uniform recharge rate of 100 mm/y, which is equal to the spatially 

averaged (and temporally averaged over the pre-development period) value of 

Ordens (2014), is prescribed as an initial value (i.e., prior to calibration). This allows 

the degree to which the spatial distribution of recharge can be inferred through 

calibration to be investigated systematically. Spatially uniform recharge rates of 80 

and 120 mm/y are also considered to explore the effect of initial recharge values. For 

the contemporary steady-state model, a spatially uniform recharge rate of 69 mm/y is 
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used, which is equal to the spatially averaged value of Ordens (2014) during the 

contemporary period. 

 

Because the reference-model recharge distribution varies on a cell-by-cell basis 

compared to calibrated recharge distributions, which are based on kriging of pilot-

point values, unavoidable discrepancies exist between these distributions. For the 

purpose of generating a reference recharge distribution that is directly comparable to 

those obtained through calibration, a smoothed representation of the reference 

recharge distribution is produced by kriging pilot-point values (using a consistent 

variogram) in such a way that the difference between the original reference 

distribution and its kriged variant are minimised in a least-squares sense. The reader 

is referred to Moore (2006) for a detailed description of this approach. Figure 3.2 

shows the smoothed representation of the reference recharge distribution.
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Figure 3.2. (a) Reference-model recharge distribution, and (b) its counterpart obtained from 

kriging pilot-point values that are calculated such that cell-by-cell recharge differences with 

(a) are minimised. The circles depict pilot point locations. 

 

Three inverse modelling cases are considered initially, as summarised in Table 3.3. 

The first case (“Case 1”) involves the estimation of recharge subject to fixed 

hydraulic parameter values from the reference model. Regularisation is not used for 

Case 1, and hence, the calibration process involves the minimisation of Φm only. 

Case 1 represents a best-case scenario given that all K and C parameter values are 

known. Although Case 1 constitutes an unrealistic situation in practice (i.e., an 

excessive degree of parameter knowledge), it provides a framework for 

demonstrative and comparative purposes. 
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Table 3.3. Inverse modelling cases. 

ID Estimable 

parameters 

Description Hydraulic parameter 

information 

Regularisation 

used? 

Case 1 Recharge Perfect knowledge of 

hydraulic parameters 

K and C fixed as per 

reference model 

No 

Case 2 Recharge, 

K, C 

No prior knowledge of 

hydraulic parameters 

Parameter bounds only No 

Case 3a 

to 3k 

Recharge, 

K, C 

Varying degree of 

knowledge regarding 

hydraulic parameters 

Preferred K and C values 

(from reference model); 

preferred K-homogeneity  

Yes 

 

Case 2 involves the estimation of both recharge and hydraulic parameters in the 

absence of regularisation constraints (Table 3.3). Case 2 represents a worst-case 

scenario, whereby no expert knowledge regarding K and C is available. Because the 

Case 2 calibration involves correlated parameters that are largely unconstrained, it is 

expected that considerable parameter compensation will occur. Nevertheless, this 

case serves as a useful demonstration and for comparing subsequent cases. 

 

In Case 3, the estimation of recharge and hydraulic parameters is subject to varying 

degrees of hydraulic parameter information, imparted by regularisation. The Case 3 

calibration therefore involves the minimisation of both Φm and Φr. The Φm
l
 is 

specified such that a relatively comparable level of model-to-reference model misfit 

is obtained for all cases. This is achieved by prescribing a value for Φm
l
 that slightly 

exceeds Φm obtained for Cases 1 and 2 given that regularisation is expected to 

produce higher Φm values (due to the minimisation of both Φm and Φr). 

 

Case 3 includes eleven variants (Case 3a to 3k), which vary according to the number 

of Tikhonov regularisation constraints imposed. The first five cases (3a to 3e) 

employ preferred K and C values, which accord with the reference model. The 

number of preferred values is based on different percentages of the total number of 
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calibrated parameters (i.e., 258 parameters: 125 QL K, 125 TS K, and eight C), as 

follows: 10% (25 K and one C); 25% (62 K and two C); 50% (125 K and four C); 

75% (188 K and six C); and 90% (225 K and seven C). Figure 3.3 shows the location 

of preferred K and C values for each sub-case. Uniform weights are assigned to all 

preferred parameter values. Cases 3f to 3j are the same as Cases 3a to 3e except with 

the additional constraint of preferred homogeneity in K. The use of preferred K-

homogeneity is considered reasonable here given that the generation of reference-

model K distributions involved preferred K-homogeneity. An additional case (3k) is 

considered whereby only preferred K-homogeneity is employed (i.e., no preferred 

values). Weights on preferred homogeneity constraints are also uniform, and are 

equivalent to those assigned to preferred values. 

 

 

Figure 3.3. Distribution of preferred K and C values used for Cases 3a to 3e (and for Cases 

3f to 3j). The number of preferred values is based on the following percentages of the total 

number of adjustable hydraulic parameters: (a) 10%; (b) 25%; (c) 50%; (d) 75%; and (e) 

90%. 

 

Each of the cases described above are re-evaluated to consider an observation of total 

submarine groundwater discharge (SGD) to assess whether or not the inclusion of a 

groundwater-flux calibration target allows for an improved estimation of recharge. 
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The “observed” SGD (2.698 × 10
7
 m

3
/y) is obtained from the reference model. A 

relative observation weight of 0.01 is prescribed to account for differences between 

flux and head units. All cases are also re-evaluated in terms of recharge estimability 

for the contemporary model (which includes pumping), and using different initial 

recharge and hydraulic parameter values for the pre-development model. 

 

3.5. Results 

 

3.5.1. Case 1 

 

Table 3.4 lists model-to-reference model misfit statistics (including values of Φm and 

the corresponding calibration root-mean-squared-error (RMSE)) for all inverse 

modelling cases. The level of fit obtained for Case 1 (Φm of 1.36 m
2
, RMSE of 0.008 

m) is considered adequate. 
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Table 3.4. Model-to-reference model misfit statistics for all inverse modelling cases. 
a
Contribution to Φm from the model-to-reference model head misfit only; 

b
RMSE for the model-to-reference model head misfit and flux misfit, respectively; and 

c
Level of fit considered to be inadequate for the purpose of comparing 

recharge estimations. 

  Additional inverse modelling cases 

 Original Use of SGD 

calibration target 

Contemporary 

model 

Initial recharge of 

80 mm/y 

Initial recharge of 

120 mm/y 

Initial K, C from 

reference model 

 Φm [m
2
] 

(RMSE [m]) 

Φm [m
2
]
a
 

(RMSE [m], [m
3
/d])

b
 

Φm [m
2
] 

(RMSE [m]) 

Φm [m
2
] 

(RMSE [m]) 

Φm [m
2
] 

(RMSE [m]) 

Φm [m
2
] 

(RMSE [m]) 

Case 1 1.36 (0.008) 1.73 (0.009, 0.9) 4.2 (0.014) 0.12 (0.002) 0.11 (0.002) - 

Case 2 0.94 (0.007) 23 (0.032, 0.6) 0.58 (0.005) 6.2 (0.017) 0.68 (0.006) 0.12 (0.002) 

Case 3a 136 (0.079)
c
 15 (0.026, 5.0) 262 (0.110)

c
 2.2 (0.010) 102 (0.068)

c
 1.4 (0.008) 

Case 3b 1.9 (0.009) 5.8 (0.016, 1.4) 2.2 (0.010) 2.2 (0.010) 2.4 (0.010) 0.58 (0.005) 

Case 3c 2.3 (0.010) 9.3 (0.021, 0.3) 3.9 (0.013) 2.2 (0.010) 2.2 (0.010) 2.2 (0.010) 

Case 3d 2.2 (0.010) 2.2 (0.010, 0.1) 6.1 (0.017) 4.5 (0.014) 2.3 (0.010) 2.0 (0.009) 

Case 3e 2.2 (0.010) 1.9 (0.009, 1.4) 3.6 (0.013) 2.2 (0.010) 2.1 (0.010) 1.8 (0.009) 

Case 3f 2.3 (0.010) 2.5 (0.011, 0.1) 4.7 (0.015) 2.3 (0.010) 2.4 (0.010) 2.3 (0.010) 

Case 3g 2.4 (0.011) 3.2 (0.012, 1.2) 2.8 (0.012) 2.3 (0.010) 3.3 (0.012) 2.3 (0.010) 

Case 3h 3.3 (0.012) 7711 (0.596, 31)
c
 112 (0.072)

c
 420 (0.139)

c
 510 (0.153)

c
 3.1 (0.012) 

Case 3i 5.9 (0.016) 9.0 (0.020, 0.1) 2.6 (0.011) 280 (0.113)
c
 9.1 (0.021) 2.7 (0.011) 

Case 3j 2.2 (0.010) 2.3 (0.010, 0.4) 156 (0.085)
c
 2.2 (0.010) 2.2 (0.010) 2.5 (0.011) 

Case 3k 285 (0.115)
c
 13,804 (0.799, 100)

c
 5047 (0.482)

c
 7045 (0.570)

c
 13,958 (0.802)

c
 43 (0.045)

c
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Figure 3.4 shows the calibrated recharge (R) values, and their comparison to the 

kriged reference model recharge (R'krig) values, for Case 1. A reasonable correlation 

is evident between pilot point R and R'krig values (Figure 3.4a), as evidenced by a 

regression line-of-best-fit slope and coefficient of determination (r
2
) equal to 0.96 

and 0.66, respectively. The regression-line slope approaching unity indicates 

reasonable agreement between R and R'krig, on average, whereas the mid-range r
2
 

value suggests a moderate degree of scatter. The error in R (i.e., R–R'krig) at each pilot 

point varies from -139 to 171 mm/y, with an average error and average absolute error 

of 11 mm/y (model overestimation) and 34 mm/y, respectively. The volumetric R 

error percentage is -1.1% (a small model underestimation). The inconsistency 

between the average pilot point R error (overestimation) and volumetric R error 

(underestimation) is a consequence of kriging, as evidenced by the average R error 

obtained on a model cell-by-cell basis (-0.02 mm/y). 

 

 

Figure 3.4. (a) R-versus-R'krig scatterplot (the black line represents the 1:1 line, the red line 

represents the regression line-of-best-fit, as given by the equation shown, and the dashed line 

represents the initial uniform R value of 100 mm/y), (b) R distribution [mm/y], (c) R error 

distribution [mm/y], for Case 1. 

 

The reasonable agreement between R and R'krig is further illustrated by the similarity 

of their distributions (compare Figures 3.4b to 3.2b). The R field largely resembles 
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the R'krig distribution. The spatial distribution of R errors (Figure 3.4c) displays 

complicated patterns that are not attributable to physical factors related to recharge. 

 

Figure 3.5 shows the identifiability of recharge parameters employed in Case 1. 

Identifiability values are highly variable (ranging between zero and one). Just 23 of 

the 125 parameters are considered to be identifiable on the basis of the calibration 

dataset, indicated by identifiability values of greater than 0.8. Of the remaining 

parameters, 44 display mid-range values (0.2-0.8), and 58 display low values (<0.2). 

 

 

Figure 3.5. Recharge parameter identifiability for Case 1. The x-axis labels are names 

assigned to the 125 pilot points. 

 

3.5.2. Case 2 

 

The model-to-reference model misfit of Case 2 (Φm of 0.94 m
2
, RMSE of 0.007 m) is 

smaller than that of Case 1. This occurs because, in the absence of regularisation, the 

calibration has greater freedom to modify parameters relative to Case 1. Case 2 

represents the best fit to head observations relative to other cases that exclude flux 

data and that adopt an initial recharge value of 100 mm/y (Table 3.4). 
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Figure 3.6 shows R values, and their comparison to R'krig values, for Case 2. A 

correlation between R and R'krig is lacking, as evidenced by the regression-line slope 

of 0.06 (Figure 3.6a). The majority of R values are only marginally modified by 

calibration (67% of values lie between 80 and 120 mm/y). The average error and 

average absolute error of R at each pilot point is -14 mm/yr (model underestimation) 

and 54 mm/y, respectively. The volumetric R error percentage is -15%, which is 

consistent with the average cell-by-cell-based error (-15 mm/y). 

 

 

Figure 3.6. (a) R-versus-R'krig scatterplot, (b) R distribution [mm/y], and (c) K (QL) error 

distribution [m/d], for Case 2. In (c), the K-error is not displayed at some pilot points because 

the simulated head in the QL aquifer is below the cell-bottom elevation. 

 

The R distribution (Figure 3.6b) does not display consistent patterns compared to 

those of R'krig (Figure 3.2b). For example, the high recharge rates associated with the 

north-west (>200 mm/y) and central (>150 mm/y) regions of USB are not reflected 

in the R distribution. These inconsistencies are a result of the compensatory roles 

assumed by hydraulic parameters, i.e., spurious hydraulic parameter values are 

obtained to compensate for errors in R to maintain an equivalent level of model-to-

reference model fit. For example, in the aforementioned areas where R is less than 

R'krig, calibrated QL K values are lower than those from the reference model, as 
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evidenced by negative K (QL) errors (Figure 3.6c). The average R error of -15 mm/y 

is compensated by an average pilot-point K (QL) error of -472 m/d. 

 

Figure 3.7 shows the identifiability of hydraulic and recharge parameters employed 

in Case 2. While many of the hydraulic parameters display mid-range identifiability 

values (Figure 3.7a, b and c), only seven of the 270 hydraulic parameters are deemed 

identifiable (indicated by values of >0.8). The identifiability of all but three recharge 

parameters (which display values of 1.0, 0.64, 0.52) is low (<0.2), with the majority 

of parameters displaying values of approximately zero (Figure 3.7d). 

 

 

Figure 3.7. Identifiability of (a) QL K, (b) TS K, (c) C, and (d) recharge parameters for Case 

2. The x-axis labels are names assigned to the pilot point parameters. 
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3.5.3. Case 3 

 

A Φm
l
 value of 2.17 m

2
 is specified for Case 3 such that the corresponding calibration 

RMSE value (0.01 m) slightly exceeds that obtained for Cases 1 and 2. The model-

to-reference model misfit for seven of the eleven cases (3b, c, d, e, f, g and j) is 

within ~15% of the target (Φm values < 2.50 m
2
, RMSE values <0.0106 m) (Table 

3.4), therefore allowing for reliable comparisons of recharge estimates to be made 

between the Case 3 variants. The levels of misfit for Cases 3h and 3i are higher (Φm 

values of 3.3 and 5.9 m
2
, RMSE values of 0.012 and 0.016 m, respectively), but 

nonetheless are considered sufficient for comparative purposes. Acceptable 

calibration results, in terms of Φm, could not be obtained for Cases 3a and 3k. Higher 

Φm values are attributable to the role of regularisation within the calibration process, 

whereby Φm is penalised by the requirement to minimise Φr. 

 

Table 3.5 lists average deviations from preferred K and C values, and average 

differences between neighbouring pilot-point K values. Generally, the deviation from 

preferred hydraulic parameter values for Cases 3a to 3g is considered insignificant. 

For Cases 3f to 3i, the extent to which estimated hydraulic parameter values deviate 

from preferred values generally increases due to the introduction of preferred 

homogeneity. This occurs because the preferred smoothness counteracts the ability of 

inverse modelling to reproduce the preferred values of K. The average difference 

between neighbouring pilot-point K values for Cases 3f to 3k is considered to be 

relatively small. 
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Table 3.5. Average deviation from preferred K values [m/d] and C values [m
2
/d], and average difference between neighbouring pilot-point K values (for cases 

involving preferred homogeneity only; denoted “K-u” below) [m/d] for inverse modelling cases involving regularisation (Case 3a to 3k). 

    Additional inverse modelling cases 

 Original Use of SGD 

calibration target 

Contemporary 

model 

Initial recharge of 

80 mm/y 

Initial recharge of 

120 mm/y 

Initial K, C from 

reference model 

 K C K-u K C K-u K C K-u K C K-u K C K-u K C K-u 

Case 3a 0.73 0.008 - 31 1.2 - 1.4 0.001 - 0.003 0 - 41 0.76 - 0.004 0 - 

Case 3b 0.003 0 - 83 0.003 - 0.001 0 - 0 0 - 0.007 0 - 0 0 - 

Case 3c 0.004 0 - 133 4.2 - 16 0.71 - 0 0 - 0 0 - 0.002 0 - 

Case 3d 0.068 0.001 - 72 0.66 - 3.9 0.42 - 32 0.26 - 0.014 0 - 0.004 0 - 

Case 3e 0.044 0 - 86 1.1 - 1.3 0.03 - 0.005 0 - 0.003 0 - 0 0 - 

Case 3f 0.12 0 1.8 0.19 0.001 1.9 0.74 0 4.6 0.14 0 1.8 0.12 0 1.8 0.042 0 1.8 

Case 3g 0.30 0 1.7 12 0 1.8 1.4 0.01 5.3 0.31 0 1.7 0.34 0 1.7 0.22 0 1.7 

Case 3h 2.0 0.008 1.7 2.3 0 1.5 6.6 0.27 3.9 2.2 0.002 1.6 3.2 0.002 1.6 1.3 0.001 1.7 

Case 3i 7.5 0.21 1.7 12 0.22 1.8 13 0.03 3.0 10 0.56 1.2 19 0.80 1.2 4.0 0.009 1.2 

Case 3j 6.1 0.005 1.7 62 0.44 1.8 18 0.28 1.8 6.0 0.002 1.7 6.2 0.006 1.7 6.5 0.004 1.7 

Case 3k - - 1.4 - - 1.1 - - 1.0 - - 1.1 - - 1.2 - - 1.6 
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Figure 3.8 shows the R values, in comparison to R'krig values, for Case 3a, c, e, f, h, j 

and k (other cases are omitted for brevity). The degree to which R and R'krig are 

correlated increases from Case 3a to 3e and from Case 3f to 3j, i.e., with the number 

of preferred value constraints, as evidenced by the regression-line slopes given in 

Figure 3.8. A higher variability in R values is apparent for Cases 3f, h and j 

compared to 3a, c and e, as indicated by larger coefficients of variation (CV; i.e., 

ratio of standard deviation to mean) values (0.21, 0.44, and 0.58 compared to 0.11, 

0.22, and 0.38, respectively). 



 

86 

 

 

Figure 3.8. R-versus-R'krig scatterplots for Case 3a, c, e, f, h, j and k. 
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Figure 3.9a and b show the average error and average absolute error of R estimates 

(based on cell-by-cell values) for all cases. Cell-by-cell recharge values are assessed 

given that average errors based on these values display consistency with volumetric 

recharge error. In general terms, a reduction in R error is evident as the number of 

preferred hydraulic parameter values increases, as expected given that preferred 

values guide the calibration process closer to the parameter set of the reference case. 

A clear error reduction trend is apparent between Cases 3b and 3e, and Cases 3f and 

3k. Inconsistencies in this trend are evident for Case 3a, occurring as a result of a 

less-than-sufficient calibration fit. For cases where an adequate fit is obtained (all 

except 3a and k), the average error is 3% smaller. The average absolute error is 18% 

smaller, on average, with preferred K-homogeneity. Although errors based on Cases 

1 and 2 cannot be compared directly to those of Case 3 (given the difference in the 

calibration approaches), they display consistent patterns in error reduction with 

increasing degrees of hydraulic parameter information. 
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Figure 3.9. Average error and average absolute error of R for (a)-(b) Cases 1 to 3, (c)-(d) 

Cases 1 to 3 with a SGD calibration target, (e)-(f) Cases 1 to 3 for the contemporary steady-

state model (“contemp”), and (g)-(h) Cases 1 to 3 with initial recharge values of 80 mm/y 

(“R*0.8”) and 120 mm/y (“R*1.2”), and initial hydraulic parameter values equal to those of 

the reference-model (“ref K, C”). Errors are based on cell-by-cell recharge values. The blue 

markers and lines in (g) and (h) are results from the original cases shown in (a) and (b). Note 

the different y-axis scale on (g). 

 

3.5.4. Use of SGD as a calibration target 
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The thirteen inverse modelling cases (1 to 3k) presented above are re-evaluated with 

the addition of an SGD calibration target. The model-to-measurement misfit for 

eleven of the thirteen cases (1, 2, 3a, b, c, d, e, f, g, i and j) is considered to be 

sufficiently low to allow for reliable comparisons of recharge estimates between 

cases (RMSE values of <0.032 m (for head) and <5 m
3
/d (for flux); Table 3.4). The 

deviation from both preferred K and C values is considered large for all cases except 

3f (Table 3.5). Cases 3a, b, c, d, e and j, in particular, display very large deviations 

from preferred K values. This highlights that the inclusion of the flux target produces 

generally worse estimates of spatially distributed hydraulic parameters (and therefore 

recharge, as discussed below and in Section 3.6) due to the addition of SGD to the 

calibration objective function. 

 

Figure 3.9c and d show that a reduction in R error is generally apparent with 

increasing number of preferred hydraulic parameter values, with or without the flux 

target. Errors for Cases 3a, e, h and j do not display consistent patterns as a result of 

either a less-than-sufficient model fit (for Case 3h), or large deviations from 

preferred values (for Cases 3b, e and j). The amount by which the error is reduced 

through addition of preferred values, however, is smaller where the flux target is 

applied. In particular, the average recharge error is not reduced from Case 3f to 3j. 

This is at least partly due to the smaller average errors obtained where fewer 

preferred values are used (Cases 3a, b, f and g) (note the inadequate level of fit 

obtained for Case 3a without the flux target, therefore precluding a reliable 

comparison between Case 3a with and without the flux target). Of the ten cases 

where a reliable comparison can be made between cases with and without the 

inclusion of the flux target (i.e., where sufficient model fits are obtained; all cases 
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except 3a, h and k), the average error is smaller for cases 2, 3b, f and g (the average 

error is 25% smaller, on average, across the ten cases), and the average absolute error 

is smaller for cases 1 and 3b (the average error is 14% larger, on average, across the 

ten cases) where the flux target is used. 

 

3.5.5. Application of an alternative steady-state condition 

 

Inverse modelling cases 1 to 3k are re-evaluated for the contemporary steady-state 

model. The model-to-reference model misfit for nine of the thirteen cases (1, 2, 3b, c, 

d, e, f, g, and i) is considered adequate for the purpose of comparing recharge 

estimates between cases (RMSE values <0.017 m; Table 3.4). The deviation from 

both preferred K and C values is considered insignificant for Case 3b only (Table 

3.5). The difference between neighbouring K values, on average, for Cases 3f to 3j is 

relatively small (Table 3.5). 

 

Figure 3.9e and f show the (cell-by-cell-based) average error and average absolute 

error of R for all cases involving the contemporary steady-state model. A reduction 

in R error is apparent with increasing number of preferred hydraulic parameter 

values, similar to the error trends identified from the pre-development model. The 

error-reduction trend is particularly apparent for Case 3b to 3e and 3g to 3j (note that, 

while the average error of Cases 3g and 3h are of opposite sign, the average error 

magnitudes and the average absolute errors are comparable). For cases where a 

sufficient model fit is obtained for both the pre-development and contemporary 

models (all except 3a, h, j and k), the average error is 18% smaller, and the average 

absolute error is 9% smaller, on average, where the contemporary model is used. 
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3.5.6. Effect of initial recharge and hydraulic parameter values 

 

Cases 1 to 3k are re-evaluated using different initial recharge and hydraulic 

parameter values. The model-to-reference model misfit for 31 of the 38 cases 

(thirteen cases for an initial recharge rate of 80 mm/y, thirteen cases for an initial 

recharge rate of 120 mm/y, and twelve cases for initial hydraulic parameter values 

specified as reference-model values) is considered adequate for comparing recharge 

estimates between different cases (RMSE values <0.021 m; Table 3.4). The deviation 

from preferred hydraulic parameter values is large only for Cases 3h to 3j for each of 

the different initial parameter value sets (Table 3.5). For Cases 3f to 3j, the deviation 

from preferred K values generally increases (Table 3.5) because the imposition of 

preferred K-homogeneity counteracts that of preferred values. 

 

Figure 3.9g and h show the (cell-by-cell-based) average error and average absolute 

error of R for cases with different initial recharge and hydraulic parameter values. 

The error-reduction trend (with increasing number of preferred hydraulic parameter 

values) is generally apparent for all cases. Average R values are larger where the 

initial recharge value of 120 mm/y is applied, and smaller where the initial recharge 

value of 80 mm/y is applied, compared to the initial recharge value of 100 mm/y 

(Figure 3.9g). Relative to the original cases, the average error is 100% larger, on 

average, with an initial recharge value of 80 mm/y (excluding Cases 3a, h, i and k 

due to inadequate model-fit), and 33% smaller, on average, with an initial recharge 

value of 120 mm/y (excluding Cases 3a, h and k due to inadequate model-fit). The 

average absolute error is 2% and 8% larger, on average, for initial recharge values of 
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80 and 100 mm/y, respectively, compared to the original cases. Both the average 

error and average absolute error is smaller with the initial hydraulic parameter values 

from the reference model compared to the original cases (61% and 6% smaller, on 

average, for all cases except 3a and k, where poor fits are obtained). 

 

3.6. Discussion 

 

The level of model fit (i.e., in terms of head RMSE) and the accuracy of estimated 

recharge values displays a poor correlation amongst the various cases. This is 

evidenced by r
2
 values of 0.02 and 0.03 for regression lines representing RMSE-

average recharge error and RMSE-average absolute recharge error, respectively (for 

cases where an adequate model fit is obtained). This is consistent with previous 

studies (e.g., McKenna et al., 2003; Hill and Tiedeman, 2007) that show that the 

head match is not a proxy for accurate parameter values. The attainment of 

inaccurate recharge values despite low model misfit exemplifies the compensatory 

roles assumed by hydraulic parameters in offsetting errors in recharge, as illustrated 

by, e.g., the underestimation of K values where recharge values are lower than those 

of the reference model (Figure 3.6c). 

 

Inverse modelling results demonstrate that the ability of the calibration process to 

inform recharge varies significantly with the degree to which hydraulic parameters 

are constrained, in agreement with Sanford (2002). Where all hydraulic parameters 

are known, it is shown that spatially averaged recharge can be estimated accurately 

(average cell-by-cell error of -0.02%), whereas spatially distributed recharge is less 

well-constrained, as evidenced by the moderate degree of scatter about the regression 
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line (r
2
 value of 0.66; Figure 3.4). That is, an accurate basin-scale estimate of 

recharge does not guarantee that a reasonable recharge distribution has been obtained 

from model calibration. While failure of the calibration process to identify recharge 

spatial variability may not impact the model‟s predictability (e.g., to estimate 

drawdown) directly, there are important implications for the distribution of K values, 

which are more likely to influence the prediction of pumping impacts (e.g., Freeze 

and Cherry, 1979). Where aquifer parameters are known, discrepancies in the 

calibrated recharge distributions are caused by compensation between recharge 

parameters, as evidenced by low recharge identifiability values (Figure 3.5). 

 

The amount of hydraulic parameter information required to obtain a reasonable 

estimate of recharge, in particular its spatial variability, on the basis of the current 

findings, appears to be excessive from a practical perspective. For cases with initial 

recharge values based on the average reference-model recharge rate and literature-

derived initial hydraulic parameter values (Table 3.2), a reasonable spatially 

averaged recharge estimate generally requires at least 129 of the 258 reference-model 

hydraulic parameter values to be set as regularisation constraints (<10% average 

error is obtained for 23 of the 31 cases where an adequate model fit is obtained; 

Figure 3.9a, c and e). While average recharge can be estimated with a reasonable 

degree of accuracy for these cases, the spatial variability of recharge requires higher 

levels of hydraulic parameter information. This is evidenced by the requirement for 

at least 232 preferred hydraulic parameter values to achieve average absolute 

recharge errors of <20% (average absolute error <20% is obtained for 4 of the 31 

cases where an adequate model fit is obtained; Figure 3.9b, d and f). 
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The incorporation of preferred K-homogeneity is shown to be of benefit to the 

estimation of recharge for some cases. In particular, the imposition of K-

homogeneity is shown to produce, on average, improved estimation of average 

recharge (average error is 14% lower), and spatial variability in recharge (average 

absolute error is 15% lower), across all cases that involve regularisation where an 

adequate fit is obtained (total of 18 cases). This is because smoother K-fields lead to 

enhanced spatial variability in recharge, due to the effects of parameter compensation 

and the heterogeneous nature of the reference model (Figure 3.9b). However, the 

benefit of preferred K-homogeneity to recharge estimability for other real-world 

situations is yet to be demonstrated. 

 

The use of SGD, which can be inferred in practice from environmental tracers and 

other methods (e.g., Burnett et al., 2006; Houghham et al., 2008), is shown to be of 

variable worth as a calibration target in the estimation of recharge for the inverse 

modelling cases considered in the current study. On average, the inclusion of SGD 

improves the estimation of spatially averaged recharge (25% smaller average error; 

Figure 3.9c), but not the estimation of spatial recharge variability (14% larger 

average absolute errors; Figure 3.9d). The improvement in average recharge 

estimability occurs because of the relationship between SGD and recharge (Cheng 

and Ouazar, 1999). Such improvements occur only where relatively few (<129) 

preferred hydraulic parameter values are employed. This indicates that the constraint 

on average recharge imparted by having a large number of preferred values 

distributed over the basin is similar to that imparted by a basin-wide flux target (e.g., 

SGD). The reduction in the estimability of spatially variable recharge with the 

addition of the SGD target is consistent with the large deviations from preferred 
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hydraulic parameter values obtained with the SGD target (Table 3.5). The use of 

distributed flux data (e.g., spatial variability in SGD), while not considered here, is 

likely to improve the constraint on the spatial variability in recharge. 

 

Results from the contemporary steady-state model are, in general terms, similar to 

those obtained from the pre-development steady-state model. This indicates that 

trends in recharge estimability are not specific to a particular steady-state condition 

(Figure 3.9e and f). The findings of the current investigation are therefore somewhat 

validated, notwithstanding that both models share many similarities. The simulation 

of pumping is shown to produce, on average, lower recharge errors than the pre-

development model (average error is 18% lower and average absolute error is 9% 

lower), given that the prescribed flux provides an additional constraint to the inverse 

problem (Zhang, 2014). In general terms, the results from both the addition of SGD 

as a calibration target and pumping suggest that the ability of groundwater fluxes to 

constrain the estimation of recharge is complicated and problem-dependent. This is 

supported by Voss (2011), who advised that the incorporation of alternative data 

types (i.e., besides head) to assist in constraining the uncertainty of groundwater 

model parameters may not always be as effective as commonly thought. 

 

The degree to which hydraulic parameters must be constrained to achieve reasonable 

recharge estimates is shown to be highly dependent on initial recharge and hydraulic 

parameter values (e.g., <10% average error is obtained for initial recharge values of 

120, 100 and 80 mm/y using 0%, 50% and 90% of reference model-based preferred 

values, respectively; Figure 3.9g). The role of initial parameter values in constraining 

the calibration process is highlighted by the larger average recharge error where a 
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larger initial recharge value is specified (120 mm/y), compared to the smaller 

average recharge error where a smaller initial recharge value is specified (80 mm/y) 

(Figure 3.9g). This is in agreement with previous studies that demonstrate the 

importance of initial parameter values within traditional groundwater model 

calibration problems (e.g., Bravo et al., 2002; Bahremand and De Smedt, 2008). 

Differences in estimated parameter values due to different initial values occur 

because of the presence of multiple objective function minima (e.g., Hill and 

Tiedeman, 2007). 

 

The analysis of parameter identifiability provides insight into the degree of non-

uniqueness between parameters of both the same type and different types on a 

spatially distributed basis. For example, significantly lower recharge identifiability is 

evident where hydraulic parameters are also estimated as part of the calibration 

process (110 of the 125 recharge identifiability values <0.05; Figure 3.7c) compared 

to where hydraulic parameters are known (22 of the 125 recharge identifiability 

values <0.05; Figure 3.5). This indicates that the ability of the calibration process to 

reduce the potential for wrongness in recharge estimates is small, due to the need to 

jointly estimate hydraulic parameters on the basis of the same dataset. The spatial 

variability in identifiability values display complicated patterns that are related 

primarily to the proximity of boundary conditions (e.g., highest K-identifiabilities are 

located adjacent to the fixed-head ocean boundary) and the extent of aquifers (e.g., 

highest recharge-identifiabilities are located where recharge occurs within the TS 

aquifer, underlying unsaturated QL sediments). The distribution of observation data 

typically dominates such patterns (e.g., Fienen et al., 2010; Wallis et al., 2014); this 

is not the case here because of the evenly distributed head targets. Confidence in 
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these results is enhanced given that the effect of model non-linearity on 

identifiability values is relatively minor (values differ by 8% on average). A strong 

inverse correlation between parameter identifiability and post-calibration parameter 

error variance (r
2
 values of >0.99; not shown for brevity) is obtained given the 

assumption of negligible measurement errors, which is considered reasonable for a 

synthetic reference model (Section 3.4.4). Therefore, the identifiability values 

reported in this study can be considered as a proxy for post-calibration parameter 

uncertainty (e.g., Moore and Doherty, 2005). 

 

In this study, the ability of the calibration process to inform parameters is evaluated 

primarily with respect to the error associated with parameter estimates, which can be 

quantified through the application of a reference model. In practice, however, 

estimated parameter values cannot be evaluated in terms of error. The reasonableness 

of parameter values must therefore be assessed in terms of whether or not they can be 

considered plausible on the basis of field data such as aquifer test-derived K 

estimates (e.g., Langevin and Zygnerski, 2013; Knowling et al., 2015). Such 

assessments are limited by the need to consider the scale-dependency of hydraulic 

properties (e.g., Sánchez-Vila et al., 2006; Li et al., 2011). 

 

In studies that apply unsaturated zone models to estimate recharge, the parameters of 

recharge models are constrained using expert knowledge related to, e.g., land-surface 

and unsaturated-zone processes (Jyrkama et al., 2002; Chemingui et al., 2015). In the 

current study, recharge is estimated solely through the application of the regional-

scale groundwater model, and recharge modelling serves merely to provide the 

reference-case recharge spatial variability. We focus on aspects of the groundwater 
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model, aside from expert knowledge of recharge itself, in attempting to inform 

recharge independent of other recharge estimation techniques. Further work, 

including coupling of the recharge model with MODFLOW, is required to 

investigate the extent to which recharge can be informed by groundwater model 

calibration with varying degrees of information pertaining to both recharge (e.g., 

spatial zones of land use, soil type, etc.) and aquifer hydraulic properties. 

 

While this study shows that the estimation of recharge through calibration of field-

scale steady-state groundwater models may be limited, the estimability of recharge 

through calibration of transient groundwater models, which involves considerably 

more observations than steady-state models, yet requires the additional consideration 

of storage parameter uncertainty, remains unknown for practical situations. The 

degree to which field-scale transient model calibration can inform recharge and its 

variability in time is the subject of future work. 

 

It is expected that the findings of this study are to some degree dependent on the 

unique characteristics of the USB reference model (e.g., the lack of groundwater-

dependent streams). Application of similar analyses to other field sites, for example, 

temperate climates where surface water and groundwater are often hydraulically 

connected, may reveal an enhanced estimability of recharge due to the availability of 

stream discharge data, which may reduce parameter non-uniqueness. Therefore, the 

investigation of recharge estimability for other field sites is warranted to extend the 

current findings to a wider range of situations, in particular where measurements of 

groundwater flux are more readily attainable than is possible for USB. 
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3.7. Conclusions 

 

Non-uniqueness poses one of the primary challenges to the estimation of 

groundwater model parameters. The current study focuses on the ramifications of 

non-uniqueness between recharge and aquifer hydraulic parameter values in terms of 

recharge estimability through groundwater model calibration. Presently, the degree to 

which recharge can be informed through calibration is largely unknown for complex 

field-scale situations. This study evaluates the ability of calibration to inform 

recharge within a regional setting using a series of highly parameterised steady-state 

inverse modelling experiments containing varying degrees of hydraulic parameter 

constraints. 

 

Inverse modelling results show that the ability of the calibration process to inform 

recharge varies significantly with the degree to which hydraulic parameters are 

constrained. For the field-scale groundwater model considered, reasonable estimates 

of recharge are shown to require large amounts of hydraulic parameter information. 

For example, an average error of <10% requires that 50% of the reference-model 

hydraulic parameters are included in the calibration using preferred-value 

regularisation (>100 K values across the 129 km
2
 study area). The estimation of the 

spatial variability of recharge requires a higher level of hydraulic parameter 

information (e.g., >200 K values needed for an average absolute recharge error 

<20%). The use of both SGD (as a calibration target) and pumping data are shown to 

be of benefit to the estimation of average recharge, particularly where relatively few 

preferred hydraulic parameter values are included. The addition of pumping data also 

produces improved estimates of the spatial variability in recharge. 
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This study offers guidance to groundwater modelling practitioners by highlighting 

the potential effects of non-uniqueness in terms of recharge estimability in a real-

world modelling scenario, and by providing insight into scenarios under which 

recharge may (or may not) be informed through model calibration in practical 

situations. The findings of this study provide a useful benchmark for evaluating the 

extent to which field-scale groundwater models can be used to inform recharge under 

practical data-availability limitations. Future work in this area should evaluate the 

estimability of transient recharge through calibration, and consider field sites that 

display different characteristics (e.g., surface water-groundwater interactions). 
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Chapter 4 

 

4. Time-varying recharge estimability through field-scale 

groundwater model calibration 

 

This chapter is based on the following manuscript, which is currently under review at 

Journal of Hydrology: 

 

Knowling, M.J., Werner, A.D. Transient recharge estimability through field-scale 

groundwater model calibration. 

 

4.1. Abstract 

 

The estimation of recharge through groundwater model calibration is hampered by 

the non-uniqueness of recharge and aquifer parameter values. It has been shown 

recently that the estimability of spatially distributed recharge through calibration of 

steady-state models for practical situations (i.e., real-world, field-scale aquifer 

settings) is limited by the need for excessive amounts of hydraulic parameter and 

groundwater level data. However, the extent to which temporal recharge variability 

can be informed through transient model calibration, which requires the additional 

consideration of storage parameters compared to steady-state models, is presently 

unknown for practical situations. In this study, time-varying recharge estimates, 

inferred through calibration of a field-scale highly parameterised groundwater model, 

are systematically investigated subject to changes in (1) the degree to which 
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hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are 

constrained, (2) the number of water-level calibration targets, and (3) the temporal 

resolution on which recharge is estimated. The analysis involves the use of a 

synthetic reality, i.e., a reference model, based on a groundwater model of Uley 

South Basin, South Australia. Identifiability statistics are used to evaluate the ability 

of recharge and hydraulic parameters to be estimated uniquely. Results show that 

reasonable estimates of monthly recharge (<30% recharge root-mean-squared error) 

require a considerable amount of transient water-level data, and that the spatial 

distribution of K is known (i.e., through joint recharge-and-Sy estimation). The joint 

estimation of recharge, Sy and K, however, precludes reasonable inference of 

recharge and hydraulic parameter values. This study suggests that the estimation of 

temporal recharge variability through calibration may be impractical for real-world 

settings, limited by the requirement for both a significant amount of water-level data 

and well-constrained hydraulic parameter (in particular K) distributions. 

 

4.2. Introduction 

 

Effective groundwater management strategies often require reliable estimates of 

recharge and its variability in time and space. However, recharge is widely regarded 

as one of the most difficult water balance components to quantify given that it cannot 

be measured directly, and hence, must be inferred typically from the application of 

multiple methods (Scanlon et al., 2002). An increasingly popular recharge estimation 

method is the application of a numerical groundwater model within an inverse 

modelling framework (e.g., Essaid et al., 2003; Hashemi et al., 2013). This approach 

involves the inference of recharge through calibration or history matching (i.e., 
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minimising the discrepancy between field measurements and corresponding model-

generated outputs). 

 

The estimation of recharge through groundwater model calibration is hampered by 

the non-uniqueness between estimated values of recharge and aquifer hydraulic 

properties (Sanford, 2002). Non-uniqueness arises from the limited information 

content within field measurements and the correlation between model parameters 

(Carrera and Neuman, 1986). Recently, Erdal and Cirpka (2016) applied the 

Ensemble Kalman filter (Evensen, 1994) to jointly estimate spatially distributed 

recharge and hydraulic conductivity (K) on the basis of head observations for a 

highly simplified synthetic aquifer. They showed that accurate values of recharge 

and K can be estimated simultaneously providing that a sufficient degree of prior 

information is available (i.e., the geostatistics of the true (initial ensemble) recharge- 

and K-fields are well-known). Knowling and Werner (2016) extended the work of 

Erdal and Cirpka (2016) by jointly estimating recharge and hydraulic parameters 

(i.e., K) for a more realistic test case (i.e., a synthetic reality based on a highly 

parameterised steady-state groundwater model of a real-world field site) for the 

purpose of evaluating the estimability of recharge and its spatial distribution for 

practical situations. The results of their study indicate that the estimation of steady-

state recharge through field-scale model calibration requires unrealistic amounts of 

hydraulic parameter (K) information and groundwater level data. This suggests that 

previous steady-state groundwater modelling investigations that attempt to infer 

regional-scale, spatially variable recharge through model calibration likely produce 

non-unique and potentially erroneous estimates. 
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The investigations of Erdal and Cirpka (2016) and Knowling and Werner (2016) did 

not examine the extent to which the temporal variability of recharge can be informed, 

in the face of non-uniqueness, through groundwater model calibration. While 

transient groundwater models capture considerably more observations than steady-

state models, thereby reducing non-uniqueness, transient model calibration requires 

the additional consideration of storage parameters, such as specific yield (Sy). 

 

A small number of studies have inferred time-varying recharge through transient 

model calibration. For example, Lubczynski and Gurwin (2005) estimated recharge 

variability in their calibration of a transient groundwater model of the Sardon 

catchment (Spain). Their recharge estimates were obtained using a “trial and error” 

approach (i.e., model performance was evaluated with respect to incremental 

adjustments in recharge values), and were subject to fixed storativity and K 

distributions from preceding automated calibration of the model in which recharge 

was fixed. Liu et al. (2008) estimated time-varying recharge from their calibration of 

a transient groundwater model of the North China Plain. Their recharge rates were 

estimated simultaneously with K and boundary conductance, but were subject to a 

fixed Sy value. Dickinson et al. (2004) inferred the time-variability of mountain-front 

recharge to idealised representations of alluvial basins within the south-western 

United States from long-term groundwater levels by inverting a one-dimensional 

analytical model developed by Townley (1995). The effect of parameter non-

uniqueness on temporal recharge estimability has not been evaluated in previous 

studies. Therefore, the extent to which the temporal variability of recharge can be 

informed through groundwater model calibration, in particular for complex field-

scale aquifer settings, is presently unknown. 
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The objective of the current study is to address this knowledge gap, and extend the 

work of Knowling and Werner (2016) by evaluating the ability of groundwater 

model calibration to inform the temporal variability of recharge for practical, 

regional-scale situations. This is undertaken using a systematic, quasi-hypothetical 

inverse modelling approach involving a field-scale, highly parameterised 

groundwater model of Uley South Basin (USB), South Australia. Here, we adopt the 

most common approach to groundwater model calibration, i.e., the application of 

gradient optimisation methods (e.g., Poeter and Hill, 1999; Doherty, 2016), such that 

the findings offer guidance to groundwater modelling practitioners. The USB is 

selected as a case study because of the availability of extensive observation datasets, 

which provide a comprehensive depiction of the spatial and temporal trends in 

groundwater behaviour. These formed the basis for an existing highly parameterised 

groundwater model by Knowling et al. (2015), and the estimation of spatially and 

temporally variable recharge rates using field-based methods and one-dimensional 

unsaturated zone modelling (Ordens et al., 2012; Ordens, 2014). 

 

4.3. Theoretical background 

 

Transient two-dimensional flow within an unconfined heterogeneous aquifer is given 

by the Boussinesq equation (Boussinesq, 1904): 
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where x and y [L] are Cartesian coordinates, h [L] is the hydraulic head, b [L] is the 

saturated aquifer thickness (which varies with h), W [L/T] is the volumetric 

source/sink term per unit area expressing the combined effects of groundwater 

recharge, pumping, etc. (positive values indicate inflow), Kx and Ky [L/T] are the 

hydraulic conductivities in the x and y directions, respectively, and t [T] is time. 

 

Groundwater flow modelling codes solve equation (4.1) in a piecewise manner using 

numerical methods such as finite-difference or finite-element approximations (e.g., 

Harbaugh et al., 2000; Diersch, 2005). The computation of h at the node scale is a 

function of the ratios W/K and W/Sy. Therefore, a unique estimate of recharge (or K 

or Sy) is not attainable based on observations of h alone; only recharge-to-K and 

recharge-to-Sy ratios may be determined in the absence of additional information 

regarding K, Sy, recharge and/or groundwater fluxes. Temporal groundwater-level 

fluctuations are governed primarily by recharge, discharge (e.g., pumping) and Sy in 

climate-driven aquifers (e.g., Maréchal et al., 2006; Ordens et al., 2012; Zhou et al., 

2014). Non-uniqueness at the scale of the model domain is complicated by aspects 

such as the spatial patterns in aquifer parameters, flow directions, boundary 

conditions, etc., and hence, is more challenging to characterise for practical situations 

in which observation-data scarcity is a limiting factor. The current study focuses on 

the estimability of transient recharge in the face of non-uniqueness, i.e., uncertainty 

in Sy and K, for practical situations. 

 

4.4. Methodology 

 

4.4.1. Study area 
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The USB (~129 km
2
) is a coastal, topographically enclosed groundwater basin 

located in the southern Eyre Peninsula, South Australia (34º76' S, 135º56' E). The 

climate of the region is characterised by winter-dominant rainfall (May-October), 

and hot, dry summer months (November-April) (Harrington et al., 2006). Average 

annual rainfall and pan evaporation rates are 560 and 1547 mm/y, respectively 

(Bureau of Meteorology, 2010). Groundwater supplies are obtained from an 

unconfined Quaternary sand and limestone aquifer (QL), which overlies a 

discontinuous Tertiary aquitard and a semi-confined Tertiary aquifer comprised of 

silty and clayey sand (TS) (Zulfic et al., 2007). Despite evidence of preferential 

pathways through surface calcrete, the QL aquifer exhibits diffuse flow behaviour 

(Werner, 2014). Groundwater abstraction from the QL aquifer constitutes the 

primary freshwater resource for the Eyre Peninsula region (Werner et al., 2011). 

 

4.4.2. Groundwater model 

 

The groundwater model of USB developed by Knowling et al. (2015) constitutes the 

“reference model” that is used as a basis for analysing the inverse modelling results 

of the current study. MODFLOW (Harbaugh et al., 2000) is used to simulate 

groundwater flow within USB spanning the period January 2003 to December 2012. 

Table 4.1 lists the main features of the reference USB model. Figure 4.1 provides a 

schematic of the reference model and its parameter distributions that are pertinent to 

the current study, i.e., the hydraulic properties of the QL aquifer. The parameter 

distributions of the underlying TS aquifer (i.e., specific storage, K) are not estimated 

in this study as a means of reducing computation times associated with the parameter 
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estimation process, and are set based on the calibration results of Knowling et al. 

(2015). 

 

Table 4.1. Summary of reference model characteristics (adapted from Knowling and Werner 

(2016)). 

Model characteristic Description 

Layer(s) type Unconfined upper layer (QL aquifer), convertible 

confined/unconfined lower layer (TS aquifer). Intervening 

aquitard simulated implicitly (Chiang and Kinzelbach, 1998). 

Spatial discretisation 100 m × 100 m model-grid cells (Figure 4.1a). 

Temporal discretisation Monthly stress periods; 18 time steps per stress period. 

Sy (QL aquifer) Estimated through calibration (Figure 4.1b), constrained by 

field data and literature values. 

Specific storage (Ss) 

(TS aquifer) 

Estimated through calibration, constrained by field data and 

literature values. 

K (QL and TS aquifers) Estimated through calibration (QL K; Figure 4.1c), constrained 

by field data and literature values. Vertical K assumed 0.1 times 

horizontal K. 

Ocean boundary Constant-head boundary with density corrections (Morgan et 

al., 2012). 

Interaction with 

adjacent basins 

General-head boundaries (GHB; Harbaugh et al., 2000). GHB 

conductances (C) estimated through calibration, constrained by 

K and aquifer thickness information. 

Spatially and 

temporally variable 

recharge 

Applied to uppermost active layer. Spatial and temporal 

recharge variability based on the modelling of Ordens (2014) 

(Figure 4.2). Spatial distribution is held constant-in-time. 

Spatially and temporally averaged recharge rate is 78 mm/y. 

Evapotranspiration 

(ET) 

ET package (Harbaugh et al., 2000) simulates shallow 

groundwater ET (unsaturated zone ET accounted for in the 

recharge rates of Ordens (2014)). 

Groundwater pumping Individual pumping-well rates based on metered data and 

extrapolation (where metered data are unavailable) (Werner et 

al., 2011). 
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Figure 4.1. Reference model characteristics (adapted from Knowling and Werner (2016)): (a) 

grid, boundary conditions (“CHB” denotes constant-head boundary, and “GHB” denotes 

general-head boundary), pumping well and pilot point locations; (b) Sy of the QL aquifer; 

and (c) log(K) of the QL aquifer. 

 

The spatial variability of Sy and K is achieved using pilot points (de Marsily et al., 

1984), distributed in a regular grid configuration (Figure 4.1a). An isotropic 

exponential variogram (of Sy and log(K)), with a range of 1200 m and a nugget of 

zero, produces cell-by-cell Sy (Figure 4.1b) and K (Figure 4.1c) variability. A single 

boundary conductance (C) value (=195 m
2
/d in the reference model) is used for the 

QL GHB boundary reach. 

 

The spatial distribution of recharge, obtained from temporally averaged rates of 

Ordens (2014) over the period 2003–2012, is fixed in a relative sense in the reference 

transient model (Figure 4.2a), such that the ratio of recharge values in neighbouring 

cells remains unchanged. That is, while spatial patterns of recharge produced by 

Ordens (2014) vary in time, only transient variability is modified in the current study, 

and spatial variability is fixed, at least in relative terms. Temporal recharge 

variability is achieved by scaling the time-averaged recharge distribution such that 

(a) (b) (c) 
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the total recharge to USB is equivalent to monthly totals obtained by Ordens (2014), 

for the period 2003–2012 (Figure 4.2b). Fixing the relative spatial distribution of 

recharge in the reference case in this way allows for a significantly reduced 

computational burden during calibration, but nonetheless allows for analyses of the 

estimability of temporal recharge signals. 

 

 

Figure 4.2. (a) Spatially distributed recharge rates (averaged over the period 2003–2012), 

and (b) time series of monthly recharge (and rainfall) rates applied to the reference model. 

 

4.4.3. Model calibration 

 

Model parameters are estimated using PEST (Doherty, 2016). To reduce 

computation times, BeoPEST (Schreüder, 2009), a version of PEST that allows 

model-run parallelisation, is used. PEST adopts the Gauss-Marquardt-Levenberg 

method to minimise a least-squares objective function Φ. For parameter estimation 

problems that employ Tikhonov regularisation, Φ is given by: 

 )()()()( tt
dZpQdZphXpQhXp  rm    (4.2) 
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where p is a vector of model parameter values, h is a vector of field observations, X 

is a matrix containing sensitivities of model outputs (for which there are 

corresponding observations h) with respect to p, d is a vector of Tikhonov 

regularisation “observations”, which represent preferred parameter values and/or 

relationships, Z is a matrix containing sensitivities of model-generated counterparts 

to regularisation observations d with respect to p, µ is a regularisation weight factor, 

and Qm and Qr are diagonal matrices containing the squares of weights assigned to 

measurement and regularisation observations, respectively. 

 

The degree to which the inverse problem is regularised is controlled using a user-

specified “target measurement objective function” Φm
l
 (Fienen et al., 2009). The 

regularised inverse problem is solved via minimisation of Φr under the constraint that 

Φm≤Φm
l
. The reader is directed to Doherty and Skahill (2006), Doherty and Hunt 

(2010) and references cited therein for a detailed description of pertinent calibration 

methodologies. 

 

Sensitivities of model outputs with respect to parameter values (comprising the X 

and Z matrices) are computed using central finite differences with a 1% perturbation 

of parameter values, following James et al. (2009). The maximum parameter value 

upgrade factor used is 0.2. The specification of Φm
l
 is dependent on initial inverse 

modelling results. The reader is referred to Knowling and Werner (2016) for a more 

detailed description of the optimisation variables adopted. 

 

4.4.4. Parameter identifiability 
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Parameters are evaluated in terms of their identifiability (i.e., their ability to be 

estimated uniquely through the process of calibration). The identifiability of 

parameter i, di, is given by (Doherty and Hunt, 2009): 

 
iiid ,][R  (4.3) 

 

where R is a matrix that describes the relationship between estimated and real-world 

parameter values (commonly referred to as the “resolution matrix”) in the absence of 

significant measurement uncertainty (Moore and Doherty, 2006; Paradis et al., 

2015), and the subscript i,i designates the ith diagonal element. The construction of 

R is dependent on the regularisation technique employed; see Doherty (2016) for 

different regularisation-specific R formulations. For problems involving Tikhonov 

regularisation, R is given by (Doherty, 2016): 

 XQXIZXQXR mm

t1tt )(    (4.4) 

 

where λ is the Marquardt lambda parameter and I is the identity matrix. The value of 

di can vary between zero and one, which respectively indicate that the parameter 

under investigation is entirely unidentifiable and entirely identifiable. A di value of 

one does not mean that its estimated value will be free from error due to 

measurement uncertainty. Statistics such as parameter error variance (Moore and 

Doherty, 2005) are nevertheless not reported in the current study because 

measurement uncertainty is assumed negligible. 

 

4.4.5. Inverse modelling cases 
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The inverse modelling methodology can be subdivided into the following phases 

(Table 4.2): (1) the estimation of time-varying recharge subject to fixed hydraulic 

parameter (Sy, K and C) values from the reference model (“Case 1”), (2) the joint 

estimation of time-varying recharge and spatially distributed Sy (“Case 2”), and (3) 

the joint estimation of time-varying recharge and the spatial distribution of Sy and K, 

and C (“Case 3”). Case 1 represents a best-case scenario in terms of recharge 

estimability given that all other parameter values are “known”. Despite the use of 

error-free hydraulic parameter distributions within Cases 1 and 2, which constitutes 

an unrealistic situation in practice, these cases provide a framework for 

demonstrative and comparative purposes. The potential for parameter compensation 

is explored in Cases 2 and 3 (i.e., whereby correlated parameters are largely 

unconstrained). 

 

Table 4.2. Inverse modelling cases. 

ID Recharge Sy K, C 

Case 1 Estimated Fixed as per 

reference model 

Fixed as per 

reference model 

Case 2 Estimated Estimated Fixed as per 

reference model 

Case 3 Estimated Estimated Estimated 

 

The calibration dataset for inverse modelling cases involving the estimation of 

recharge and Sy (Cases 2 and 3) comprises deviation-from-the-mean reference-model 

heads taken at pilot point locations within the upper layer, except at places where QL 

sediments are entirely unsaturated, resulting in a total of 94 sampling locations. 

Temporal head differences are used such that the inference of time-varying recharge 

and aquifer storage parameters is enhanced (Hill and Tiedeman, 2007; Ackerman et 

al., 2010). All head-difference targets are assigned uniform weights. For cases 

involving the estimation of recharge, Sy, K and C (Case 3), an average reference-



 

114 

 

model head at each of the 94 pilot point locations is added to the calibration dataset 

given that the estimation of K and C parameters require time-averaged groundwater 

levels. Each average head target is assigned an equal weight, which is 100 times that 

of head-difference targets. 

 

The number of head-difference targets is varied to examine the effect of the 

information content of the calibration dataset on estimated parameter values. The 

following numbers of head-difference targets are considered: (1) 11,280 (head-

difference target at each sampling time, i.e., one every month; herein referred to as 

“calibration dataset A”), (2) 4980 (approximately half of the sampling times; 

“calibration dataset B”), and (3) 1222 (approximately one-tenth of the sampling 

times; “calibration dataset C”). Figure 4.3 illustrates the reference-model head 

sampling intervals. 

 

 

Figure 4.3. The three different reference-model head target sampling intervals considered. 

 

Table 4.3 lists the constraints on parameter values in the form of both upper and 

lower bounds, and initial values. Constraints on hydraulic parameters are equivalent 

to those of the reference model. Hydraulic parameters are log-transformed within the 

calibration. 

 

Table 4.3. Model parameterisation of inverse modelling cases. 
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Model 

parameters 

Parameterisation method  

(number of parameters) 

Bounds Initial 

values 

Recharge [mm/y] Varies from case-to-case 

(Table 4.3) 

0–300 78 

Sy [-] Pilot points (127) 0–0.41 0.2 

K [m/d] Pilot points (125) 1–10
4
 100 

C [m
2
/d] Single value 0.18–1800 18 

 

A temporally uniform recharge rate of 78 mm/y (equal to the spatially and 

temporally averaged value of the reference-model recharge; Section 4.4.2) is 

prescribed prior to calibration. This means that deviations from the initial time-

averaged value of recharge by calibration provide insight into the degree to which 

measurements inform the temporal recharge signal. The spatial distribution of 

recharge is equal to that of the reference model (Section 4.4.2). 

 

The temporal variability of recharge is parameterised in a number of ways, as listed 

in Table 4.4. Recharge is estimated on both a monthly (i.e., an adjustable recharge 

parameter is assigned to all 120 months within the ten-year simulation period; 

referred to as “R120” herein) and yearly basis (i.e., an adjustable recharge parameter is 

assigned to every year within the simulation period; “R10”). Recharge is also 

estimated on a combined monthly-yearly basis (i.e., an adjustable recharge parameter 

is assigned to each of the twelve months January-December and to each year within 

the simulation period; “R22”). A variant of both the R120 and R22 parameterisations is 

considered to ensure that a reasonable degree of month-to-month recharge variability 

is obtained, giving rise to two additional cases “R120U” and “R22U”, respectively. This 

is achieved by imposing Tikhonov regularisation in the form of preferred parameter 

uniformity (described below). 
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Table 4.4. Temporal recharge parameterisation schemes. 

 Temporal recharge parameterisation 

ID Description No. of recharge 

parameters 

Preferred 

uniformity? 

R120 Monthly recharge parameters 120 No 

R22 Combined monthly-yearly recharge 

parameters 

22 No 

R10 Yearly recharge parameters 10 No 

R120U Equivalent to R120, except with preferred 

recharge uniformity constraints applied 

120 Yes 

R22U Equivalent to R22, except with preferred 

recharge uniformity constraints applied 

22 Yes 

 

Preferred uniformity of recharge rates between subsequent months is used as a means 

of achieving reasonableness of calibrated recharge values. This represents a mode of 

imparting expert knowledge regarding temporal recharge variability (e.g., recharge 

rates in July are more likely to be equal to those in June and August than they are in 

May and September, March and November, etc.), without the need for “hard” data 

pertaining to relative monthly recharge rates. Where preferred-uniformity is 

employed, the Φm
l
 is set on a case-by-case basis such that the variability of calibrated 

recharge in-time appears to be reasonable, while also ensuring that adequate head 

matches are obtained. 

 

4.5. Results 

 

4.5.1. Case 1 

 

The degree of head misfit is considered to be low for all calibrations (root-mean-

squared-error (RMSE) values <0.03 m). Head-RMSE (RMSEh) values range between 

0.007 and 0.027 m. For cases involving preferred uniformity (R120U and R22U), Φm is 

within reasonable proximity to Φm
l
 (78% to 101%). Larger RMSEh values are 
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apparent where fewer recharge parameters are estimated through calibration (e.g., 

RMSEh values of 0.013, 0.018 and 0.023 m are obtained, on average, for R120, R22 

and R10, respectively), which is appropriate given the well-known relationship 

between the number of adjustable parameter employed and the degree of fit 

attainable, except for cases adopting preferred recharge uniformity on the basis of 

datasets B (RMSEh is 0.021 and 0.017 m for R120U and R22U) and C (RMSEh is 0.027 

and 0.024 m for R120U and R22U). The smaller RMSEh values for R22U compared to 

R120U occur because the increase in RMSEh arising from the imposition of preferred 

uniformity is significantly greater for cases employing a large number of parameters 

where relatively few water-level data are available (RMSEh is 64% higher for R120U 

relative to R120, compared to 9% higher for R22U relative to R22, averaged across 

datasets B and C). Larger RMSEh values are also apparent where datasets containing 

fewer water-level targets are used (RMSEh is, on average, 0.0166, 0.0168 and 0.0242 

m on the basis of dataset A, B and C, respectively). 

 

Figure 4.4 shows time series of calibrated recharge values for Case 1, and reference-

model recharge (R'). With a decreasing number of water-level targets (Figure 4.4, (a) 

to (c)), the general agreement between calibrated recharge and R' is reduced, as 

expected. This is evidenced by an RMSE in recharge (RMSER) of 28, 35 and 48 

mm/y, on average, for calibrations employing datasets A, B and C, respectively. 
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Figure 4.4. Time series of calibrated recharge values using datasets (a) A (11,280 water-level 

targets), (b) B (4980 targets), and (c) C (1222 targets), compared to that of R', for Case 1. 

Note the different scale on the y-axis of (c). 

 

The influence of the number of water-level targets on RMSEh and RMSER is 

illustrated by Figure 4.5a. RMSEh and RMSER values obtained on the basis of 

dataset C (shown in green) are, on average, located towards the top (i.e., higher 

RMSER) and to the right (i.e., higher RMSEh) of Figure 4.5a, whereas RMSEh and 

RMSER values for dataset A (shown in blue) are, on average, located towards the 
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bottom (i.e., lower RMSER) and left (i.e., lower RMSEh) of Figure 4.5a. Relatively 

accurate estimates of recharge are obtained during periods in which water-level 

targets are present (e.g., on average, RMSER is 35 mm/y for times at which water-

levels are present, compared to 52 mm/y for times at which no water-levels are 

present, where calibration dataset C is employed; Figure 4.4c). 

 

 

Figure 4.5. Scatterplots (and regression lines-of-best-fit) of recharge-RMSE versus head-

RMSE values, grouped according to (a) the different calibration datasets (A, B and C) and 

(b) the use or non-use of preferred recharge uniformity, for Case 1. 

 

The following observations can be made from calibrated recharge values where 

dataset A is used (Figure 4.4a). The most distinct features of the R' time series are 

best represented by calibrated R120 values (e.g., R' peaks during 2009 and 2010 are 

captured by only R120). However, the R120 time series displays non-physical temporal 

recharge variability, in the oscillating behaviour most evident in 2003, 2004 and 

2011. The preferred temporal recharge uniformity that was imposed in the R120U 

calibration removes these oscillations, but subsequently results in underestimation of 

peak values in the R time series. The RMSER for R120U (22 mm/y) is therefore only 

slightly smaller than that for R120 (24 mm/y). The R22 time series also suffers from 

recharge-value oscillation (displaying smaller amplitudes, but greater frequencies 

relative to R120), and fails to represent the timing of R' events (e.g., there is an offset 
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in the peaks of the R22 time series, that sometimes precedes or lags R'). However, the 

average-annual and average-monthly variability of R' is generally well-represented 

by R22 (RMSER values of 5 and 18 mm/y, respectively). Preferred uniformity 

produces a smoother time series (R22U versus R22) and thereby eliminates the artificial 

oscillations, but in doing do creates a weaker match to the original values (RMSER 

for R22U is 31 mm/y, compared to 27 mm/y for R22). While calibrated R10 values 

provide a reasonable match to average annual R' values (RMSER of 6 mm/y), the R10 

time series is simply unable to match the dynamics of the R' time series (RMSER of 

37 mm/y over the whole time-series). 

 

Collectively, these results indicate that smaller RMSER values are obtained where a 

larger number of adjustable parameters are employed, as expected, due to the 

relationship between the degrees of freedom within the calibration and the level of 

model head fit attainable, the latter of which is related to recharge error for Case 1, 

given that Sy and K are known (i.e., recharge is the only unknown). This is illustrated 

by the positive correlation between RMSEh and RMSER values for dataset A (shown 

in blue), with a regression line-of-best-fit coefficient of determination (r
2
) value of 

0.39 (Figure 4.5a). The general inverse relation between the RMSE, in terms of both 

head and recharge, and the number of parameters is also illustrated in Figure 4.5a. 

Data points pertaining to cases with few parameters are generally located toward the 

upper-right of Figure 4.5a, whereas cases employing a relatively large number of 

parameters are generally located toward the bottom-left (see marker labels for case 

descriptors). 
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Where dataset B is used for calibration (Figure 4.4b), recharge-error trends between 

different parameterisations are similar to those identified on the basis of dataset A, 

notwithstanding the generally larger errors obtained where fewer water-level targets 

are used. In particular, the RMSER value for R120 (40 mm/y) is smaller than that of 

R22 (44 mm/y), and the RMSER value for R120U (25 mm/y) is smaller than that of R22U 

(29 mm/y), which further highlights the relationship between the RMSER and the 

number of adjustable parameters employed. However, the RMSER for R10 (39 mm/y) 

is smaller than that of both R120 and R22, despite the higher RMSEh obtained for R10, 

due to the non-physical oscillation in recharge shown by R120 and R22. This is 

illustrated by Figure 4.5a, which shows that the RMSEh versus RMSER regression 

line for dataset B displays a negative correlation with an r
2
 value of 0.36 (shown in 

red). 

 

Where dataset C is used (Figure 4.4c), the relationship between RMSER and the 

number of parameters is also apparent for cases adopting preferred uniformity, i.e., 

RMSER for R120U (27 mm/y) is smaller than that for R22U (34 mm/y); however, this 

relationship is not apparent for cases without preferred uniformity on the basis of 

dataset C, as evidenced by the RMSER for R120 (77 mm/y) exceeding that of R22 (62 

mm/y), which exceeds that of R10 (39 mm/y). This is illustrated by the RMSEh versus 

RMSER regression line for dataset C, which displays a correlation with a negative 

slope ten times larger than that on the basis of dataset B, and an r
2
 value of 0.58 

(shown in green; Figure 4.5a). Noteworthy is that the differences in RMSER for R10 is 

relatively small across the different datasets (37, 37 and 39 mm/y for datasets A, B 

and C, respectively), which highlights that models with fewer parameters have lower 

data-requirement needs. 
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The benefit of preferred uniformity in terms of recharge estimation is significantly 

larger for datasets B and C compared to dataset A, as illustrated by changes in 

RMSER values (positive values indicate reduction in RMSER afforded by preferred 

uniformity), for R120U versus R120, of 15, 50, and 2 mm/y, and, for R22U versus R22, 

14, 28, and -4 mm/y (this negative value indicates that preferred uniformity does not 

improve the match of R22 to R' on the basis of dataset A) for datasets B, C and A, 

respectively. This is because of the inadequate number of water-level targets within 

datasets B and C to constrain recharge, which, without preferred uniformity, results 

in oscillatory values. Conversely, where an adequate number of water-levels are used 

for calibration, the preferred uniformity is of less or no benefit to the estimation of 

recharge. The increase in RMSER for R22U, compared to R22, on the basis of dataset A 

occurs because the imposition of preferred uniformity counteracts the expression of 

information within water-level targets. The influence of preferred uniformity on 

RMSEh and RMSER values is shown in Figure 4.5b. Relative to the cases without 

preferred uniformity (shown in blue), the cases that employ preferred uniformity 

(shown in red) are clustered toward the lower-right part of Figure 4.5b (i.e., preferred 

uniformity generally produces lower RMSER values and higher RMSEh values). 

 

Figure 4.6 shows the identifiability of recharge parameters for R120U, R22U and R10. 

The identifiability of monthly recharge parameters (R120U) varies between 0.02 and 

1.0 (Figure 4.6a). Of the 120 recharge parameters, 34 are considered to be 

identifiable (as indicated by identifiability values >0.8) on the basis of dataset A, 

whereas only 12 and 11 are considered identifiable on the basis of datasets B and C, 

respectively. The identifiability of average-monthly and yearly recharge parameters 
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(R22U) is equal to 1.0, regardless of the dataset adopted (Figure 4.6b). The 

identifiability of yearly recharge parameters (R10) is equal to 1.0 where datasets A 

and B are used, and varies between 0.45 and 1.0 where dataset C is used (Figure 

4.6c). Clearly, recharge parameters that represent larger time scales (R22U and R10) 

generally display higher identifiability. This is because the amount of information 

within the calibration dataset pertaining to each recharge parameter is larger in a 

relative sense as the temporal parameterisation resolution is reduced. Identifiability 

values are also shown to be inversely related to R' variability, to a decreasing degree 

with fewer water-level targets. This is illustrated by the R120U identifiability-versus- 

R' scatterplots, which display regression-line r
2
 values of 0.23, 0.17 and 0.02 where 

datasets A, B and C are used, respectively (Figure 4.6d). 

 

 

Figure 4.6. Identifiability of recharge parameters on the basis of datasets A, B and C for (a) 

R120U, (b) R22U and (c) R10, and (d) scatterplot (and regression lines-of-best-fit) of R120U-

identifiability versus R', for Case 1. The regression lines display r
2
 values of 0.23, 0.17 and 

0.02 for datasets A, B and C, respectively. 

 

4.5.2. Case 2 
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Only the recharge parameterisations that include preferred uniformity (R120U and 

R22U) are evaluated in the following given that they generally display superior 

performance in Case 1 (in terms of recharge-estimate accuracy) relative to those that 

do not employ preferred uniformity (R120, R22 and R10). Additionally, the benefit 

afforded by preferred uniformity in terms of recharge estimation (i.e., avoidance of 

oscillatory values) is expected to be larger where hydraulic parameters are being 

estimated simultaneously (Cases 2 and 3). 

 

The degree of head misfit is considered to be low for all Case 2 calibrations (RMSEh 

values <0.03 m). RMSEh values range between 0.013 and 0.027 m. In a similar 

manner to the results of Case 1, larger RMSEh values are apparent where fewer 

recharge parameters are estimated, as expected, on the basis of dataset A, but not on 

the basis of datasets B and C. This is because the increase in RMSEh values due to 

the use of preferred uniformity is significantly greater where a large number of 

parameters are being estimated on the basis of relatively few water-level targets. 

Larger RMSEh values are also apparent where fewer water-levels are used (RMSEh 

is, on average, 0.016, 0.021 and 0.027 m for datasets A, B and C, respectively). The 

RMSEh values obtained for four cases (R120, dataset A; R22U, dataset A; R120U, dataset 

B; R120U, dataset C) are below or equal to those of Case 1. The RMSEh values of the 

two remaining cases (R22U, dataset B and R22U, dataset C) for Case 2 (0.021 and 

0.026 m) are larger than those of Case 1 (0.017 and 0.024 m). 

 

Figure 4.7a-c compares the time series of calibrated recharge values for Case 2 to R'. 

Similar to the results obtained for Case 1, the agreement between calibrated recharge 
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and R' values generally diminishes with a decreasing number of water-level targets 

(Figure 4.7, (a) to (c)). This is evidenced by RMSER values of 25, 27 and 40 mm/y, 

on average, where datasets A, B and C are used, respectively. The variability-in-time 

of recharge estimate accuracy is related to the water-level sampling interval, in 

agreement with the results of Case 1. 
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(d) (e) 

(f) (g) 

(h) (i) 
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Figure 4.7. (pg. 126) Time series of calibrated recharge values using datasets (a) A, (b) B, 

and (c) C, compared to that of R', and Sy error distributions with dataset A for (d) R120U and 

(e) R22U, dataset B for (f) R120U and (g) R22U, and dataset C for (h) R120U and (i) R22U, for Case 

2. 

 

The superior performance of R120U relative to R22U on the basis of datasets A and B is 

consistent with the results of Case 1 (Figure 4.7a and b). That is, R120U yields lower 

RMSER values (24 and 26 mm/y) compared to those of R22U (26 and 27 mm/y) for 

datasets A and B, respectively, due to the greater ability of R120U to capture the 

variability in R'. However, in contrast to the results of Case 1 is the lesser 

performance of R120U compared to R22U for dataset C, as evidenced by the RMSER 

value for R120U (41 mm/y) exceeding that of R22U (38 mm/y) (Figure 4.7c). This is 

because of the failure of R120U to accurately reproduce the variability of R' (due to the 

sparse water-level sampling of dataset C), despite that R22U values do not display 

monthly variability, and that only annual recharge variability is well-represented 

(RMSER of 10 mm/y) (due to both the sparse water-level record of dataset C and the 

use of preferred uniformity). 

 

The match between R120U and R' for Case 2 is weaker than that of Case 1 where 

datasets A, B and C are used (RMSER values of 24 mm/y (dataset A), 26 mm/y 

(dataset B) and 41 mm/y (dataset C) for Case 2, compared to 22 mm/y (dataset A), 

25 mm/y (dataset B) and 27 mm/y (dataset C) for Case 1). The match between R22U 

and R' for Case 2 is also weaker than that of Case 1 on the basis of dataset C 

(RMSER is 38 mm/y for Case 2 compared to 34 mm/y for Case 1). Larger RMSER 

values for Case 2 are a result of the compensatory roles assumed by Sy parameters. 

That is, spurious Sy values are obtained in offsetting errors in calibrated recharge 

values to maintain an equivalent level of model-head fit. For example, the variability 
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in R120U is less than that of R' for dataset A (e.g., the standard deviation of R120U 

values is 22 mm/y, compared to that of R' of 42 mm/y), and to compensate for this, 

calibrated Sy values are, on average, lower than those of the reference model (average 

Sy error of -0.07), as illustrated by the dominance of negative values in Figure 4.7d 

(shown in green). For other cases (i.e., where R22U is estimated on the basis of 

datasets A and B), the match between calibrated recharge and R' values for Case 2 is 

stronger than that of Case 1, as evidenced by RMSER values of 26 mm/y (dataset A) 

and 27 mm/y (dataset B) for Case 2, and 31 mm/y (dataset A) and 29 mm/y (dataset 

B) for Case 1. This occurs because of the inclusion of preferred Sy-homogeneity 

constraints into the regularisation objective function for Case 2, which reduces the 

extent to which recharge uniformity constraints are imposed relative to Case 1, 

thereby allowing for enhanced representation of R' peaks and troughs in Case 2 (e.g., 

the standard deviation of R22U values for Case 2 (28 mm/y) exceeds that for Case 1 

(25 mm/y)). 

 

The spatially averaged errors in calibrated Sy values, similar to those of recharge 

values, are larger with a diminishing number of water-level targets (e.g., Sy-RMSE 

values of, on average, 0.089, 0.098 and 0.107 where datasets A, B and C are used, 

respectively; Figure 4.7d-i). Calibrated RMSER and Sy-RMSE values display a 

reasonable correlation, as evidenced by the RMSER-to-Sy-RMSE regression line r
2
 of 

0.39. This is a consequence of non-uniqueness, whereby the attainment of a 

sufficient level of model head fit through the process of calibration requires that only 

the ratio of recharge and Sy be sufficiently accurate (i.e., heads can be matched with 

recharge and Sy values that are proportionately correct, but individually in error). 
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Figure 4.8 shows the identifiability of recharge and Sy parameters for Case 2. Only 

eight and four of the R120U parameters are considered identifiable (>0.8) on the basis 

of datasets A and B, respectively, whereas none are considered identifiable on the 

basis of C (Figure 4.8a). Of the R22U parameters, 22, 20 and 9 are considered 

identifiable where datasets A, B and C are used, respectively (Figure 4.8b). The 

annual recharge parameters within R22U display higher identifiabilities than monthly 

parameters, highlighting that parameters which represent larger time scales display 

larger identifiability. Recharge identifiability values of Case 2 are, on average, less 

than those of Case 1 (0.54 and 0.42, respectively), due to the simultaneous estimation 

of Sy on the basis of the same datasets. The identifiability of spatially distributed Sy 

parameters (from R120U and R22U calibrations) varies between zero and 0.95, zero and 

0.83, and zero and 0.05 for the calibrations employing dataset A, B, and C, 

respectively (Figure 4.8(c) and (d)). A total of just three, one and zero of the Sy 

parameters are considered identifiable on the basis of dataset A, B and C, 

respectively. 
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Figure 4.8. Identifiability of recharge for (a) R120U and (b) R22U, and Sy parameters for (c) 

R120U and (d) R22U on the basis of datasets A, B, and C, for Case 2. 

 

4.5.3. Case 3 

 

The degree of head misfit is considered to be sufficiently low only for the case where 

R120U and dataset A are used for Case 3. A Φm value of 42 m
2
 is obtained for this 

case, which is made up of temporal head-difference misfits (12 m
2
), and time-

averaged water-level misfits (30 m
2
). The corresponding head-difference and average 

water-level RMSEh values are 0.033 and 0.006 m, respectively. This head-difference 

RMSEh is considerably larger than those on the basis of R120U and dataset A for Case 

1 (0.019 m) and Case 2 (0.013 m), as a result of the inclusion of time-averaged 

water-levels in the calibration dataset. Much larger misfits are obtained for the other 

cases (head-difference RMSEh values range from 0.094 to 0.222 m). A number of 

different relative weights between average-head and head-difference targets were 

trialled (1, 5, 10, 50) in an attempt to achieve a better match to head differences, but 

(c) 

(d) 

(a) (b) 
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were ultimately unsuccessful. We therefore evaluate only the results of the 

aforementioned case herein. 

 

Figure 4.9a shows the R120U time series on the basis of dataset A for Case 3 and R'. 

The match between R120U and R' for Case 3 is significantly weaker than those of 

Cases 1 and 2 (that employ R120U and dataset A). This is evidenced by a recharge-

RMSE value of 37 mm/y for Case 3, compared to those obtained for Case 1 (22 

mm/y) and Case 2 (24 mm/y). This highlights the compensatory roles assumed by 

hydraulic parameters in offsetting errors in recharge, similar to the results of Case 2. 

A larger degree of compensation is apparent in Case 3 relative to Case 2. This is 

evidenced by the underestimation of spatially averaged K (-404 m/d; Figure 4.9c), 

the average (in time) recharge error of -15 mm/y, the underestimation of spatially 

averaged Sy (-0.044; Figure 4.9b), and the R120U-variability standard deviation of 24 

mm/y below that of R'. 
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Figure 4.9. (a) Time series of R120U recharge, compared to that of R', (b) Sy error distribution, and (c) K error distribution, where R120U and dataset A are used 

for Case 3. 

(a) (b) (c) 
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Figure 4.10 shows the identifiability of recharge and hydraulic parameters for Case 

3. Eight R120U parameters are deemed identifiable (Figure 4.10a), compared to none 

of the Sy parameters (note a maximum value of 0.79 is obtained; Figure 4.10b), and 

79 of the K parameters (Figure 4.10c). An identifiability value of 0.84 is obtained for 

the C parameter. The identifiability of R120U parameters for Case 3 is generally 

smaller than those for Cases 1 and 2 (on the basis of dataset A), as evidenced by the 

average recharge identifiability of 0.49 for Case 3, compared to 0.63 and 0.55 of 

Case 1 and 2, respectively. This is expected, given that recharge is jointly estimated 

with both Sy and K (and C) in Case 3. Sy-identifiability values are, on average, 

approximately equal (0.07) for Cases 2 and 3. The spatial variability in identifiability 

values of Sy and K is related primarily to the QL aquifer geometry, i.e., highest Sy-

identifiabilities are located in close proximity to model boundaries, whereas high K-

identifiability values are located across the basin, except in proximity to unsaturated 

regions of QL sediments.
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Figure 4.10. Identifiability of (a) R120U-recharge, (b) Sy, and (c) K parameters on the basis of 

dataset A for Case 2. 

 

4.6. Discussion 

 

A significant correlation is evident between the level of model fit (i.e., head-RMSE) 

and the accuracy of recharge estimates among cases where recharge and Sy are 

estimated jointly, as evidenced by an r
2
 value of 0.78 for a regression line 

representing head-RMSE versus recharge-RMSE. Such a correlation is expected only 

for cases where hydraulic parameters are known (i.e., where recharge is the only 

unknown), as demonstrated by the head-RMSE versus recharge-RMSE regression-

line for Case 1, displaying a moderate r
2
 value of 0.39 (where dataset A is used) 

(Figure 4.5). This correlation (for Case 2) suggests that the level of model fit 

obtained via calibration is related to the accuracy of parameter estimates, which is in 

contrast to previous studies that show that the level of model fit (especially those 

(a) 

(b) 

(c) 
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where the calibration dataset is comprised of heads only) is not a proxy for accurate 

parameter estimates (e.g., McKenna et al., 2003; Pool et al., 2015; Knowling and 

Werner, 2016). This indicates that the constraints imposed through use of preferred-

Sy homogeneity and preferred recharge uniformity are adequate in guiding the 

calibration process toward reference-model parameter values. Correlation between 

head and recharge errors is not expected for other cases where different parameter 

types are being estimated jointly and where regularisation constraints are less 

informed. 

 

The temporal variability of recharge is shown to be, in practical terms, of limited 

estimability through calibration (>22% recharge-RMSE), even for cases where all 

spatially distributed hydraulic parameters are known and where monthly transient 

water-level data are available for calibration (which can be considered as “best-case” 

scenarios) (RMSE values of 36% on average; Figure 4.4a). The estimability of 

recharge is, as expected, lower still where spatially variable Sy values are 

simultaneously estimated (>24% recharge-RMSE). Larger recharge-RMSE values 

for joint recharge-and-Sy estimations exemplify the compensatory roles assumed by 

Sy parameters (e.g., where calibrated recharge variability in time is underestimated, 

calibrated Sy values are lower than those of the reference model, on average; Figure 

4.7d), as supported by the lower recharge identifiability values obtained for the joint 

estimations (19% of recharge parameters are considered identifiable for joint 

estimations, compared to 29% of recharge parameters for recharge-only estimations). 

These are somewhat unsatisfying results, and have important implications for model-

based groundwater management decision-making. For example, these results 

highlight the need for management decisions to be made on the basis of a suite of 
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models that collectively account for the uncertainty associated with model 

parameters, rather than a single, minimum error variance parameter set (e.g., Tonkin 

and Doherty, 2009; Doherty, 2015), which, as shown here, is likely to exhibit 

erroneous parameter values due to non-uniqueness, even where extensive 

observation datasets and unrealistic levels of parameter knowledge are present. 

 

The amount of transient water-level data used for calibration in some of the cases 

(e.g., 120 consecutive monthly targets) is at the upper limit of what can be 

considered reasonable from a practical perspective (e.g., monthly water-level 

measurements spanning >10 years have been reported by Ahmadi and Sedghamiz 

(2007), Shamsudduha et al. (2009), Mack et al. (2013), Cao et al. (2013)). However, 

assumptions of known hydraulic parameter distributions (K for Case 2, and Sy and K 

for Case 3) constitute less realistic scenarios. The requirement for well-constrained 

parameter (in particular K) distributions, as evident from the results of the current 

study, poses a significant challenge. For example, the estimation of spatially 

distributed K through calibration of, e.g., steady-state groundwater models for the 

purpose of subsequently estimating recharge through calibration of transient models 

is limited by the need for the spatial distribution of recharge to be sufficiently 

constrained. This highlights the importance of alternative (e.g., field-based) means to 

estimate spatial K distributions. 

 

Both the application of low-resolution (e.g., annual) recharge parameters and 

preferred recharge uniformity constraints constitute lumping mechanisms, and are 

therefore both of benefit to the estimation of recharge where a relatively small 

amount of water-level data is available. This is because of the greater number of 



 

137 

 

water-level observations on which time-varying recharge estimates are based, as 

evidenced by, e.g., high identifiability values for annual recharge parameters (Figure 

4.5). In particular, the preferred uniformity constraint appears to have the effect of 

bridging the gap between sparse (in time) water-levels (while also avoiding 

oscillatory values; Figure 4.4). Conversely, both of these mechanisms are generally 

of detriment to recharge estimation where a relatively large amount of water-level 

data is available and where Sy and K are known. This is because of the reduced extent 

to which information contained within the water-level dataset can be expressed due 

to the insufficient flexibility within these parameterisation schemes. In general terms, 

these results are consistent with previous studies that demonstrate the lower data-

requirement needs of models with simpler parameterisation schemes (e.g., Jakeman 

and Hornberger, 1993; Hill, 2006). 

 

The insufficient level of head fit obtained for five of the six cases where K is jointly 

estimated along with recharge and Sy highlights that the inclusion of time-averaged 

water-level targets extends significantly the calibration objective function, and the 

challenges facing the process of parameter estimation where excessive parameter 

correlation exists (e.g., Doherty, 2015). Nevertheless, for the case where a sufficient 

head fit is obtained (involving all water-level data and preferred uniformity), the 

estimability of time-varying recharge via the joint estimation of recharge, Sy and K is 

significantly reduced relative to cases where K, and Sy and K, are known (recharge-

RMSE value is 68% and 54% larger, respectively; Figure 4.9). This is in accordance 

with the larger degree of parameter compensation apparent for Case 3 (e.g., the 

underestimation of both K (-404 m/d) and Sy (-0.044) in conjunction with the 
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underestimation of time-averaged recharge (-15 mm/y) and recharge variability in 

time). 

 

The extent to which time-varying recharge can be reliably estimated with respect to 

the factors discussed above is expected to be dependent on initial recharge and 

hydraulic parameter values, following the results of Knowling and Werner (2016). 

The importance of initial parameter values within traditional groundwater model 

calibration problems, i.e., in constraining the gradient-based optimisation problem 

where multiple objective function minima are present (e.g., Hill and Tiedeman, 

2007), has been demonstrated by many studies (e.g., Bravo et al., 2002; Bahremand 

and De Smedt, 2008; Kannan et al., 2008). 

 

The analysis of parameter identifiability provides a means to investigate the level of 

non-uniqueness, and its ramifications in terms of parameter estimability, without the 

need to evaluate parameter values directly. While identifiability values indicate the 

degree to which the calibration process can reduce the potential for wrongness in 

estimates of recharge in general terms, the identifiability values presented in the 

present study can also be considered a proxy for post-calibration parameter 

uncertainty given the assumption of negligible measurement error due to the 

synthetic modelling approach adopted (e.g., Moore and Doherty, 2005). The 

moderate inverse correlation between recharge identifiability and reference-model 

recharge where hydraulic parameters are known (in particular where a sufficient 

amount of data is used for calibration; Figure 4.6d) indicates that large recharge 

events are relatively difficult to identify through calibration, as differentiated from 
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small events, where groundwater-level responses are less dynamic, allowing for 

better identification of recharge. 

 

A limitation of the present study is that the spatial variability of recharge (of both the 

reference model and the models undergoing calibration) is fixed in time. This 

assumption is considered to be necessary here given that the evaluation of calibrated 

recharge variability in both time and space would require an impractical amount of 

computational time. For example, the estimation of 125 pilot-point recharge 

parameters (as considered in Knowling and Werner (2016)), at each of the 120 

monthly stress periods considered in the current study, would alone require 15,000 

model runs per optimisation iteration (using two-point derivatives). This number of 

model runs per iteration is approximately 40 times larger than that of Case 3, which 

required a computational time considered to be excessive (approximately five days, 

using eight Intel i7-2600 CPUs running at 3.40 GHz, with a 64-bit operating system 

and 16.0 GB RAM). While the assumption of a constant spatial distribution of 

recharge in time does not hold in practice, it nonetheless allows for the estimability 

of the time component of recharge to be evaluated. Future work considering both 

spatially and temporally variable recharge estimation would benefit from the use of 

computationally efficient optimisation methodologies (e.g., hybrid methods that 

combine the computational savings afforded by subspace regularisation techniques 

with the increased stability achieved through the imposition of Tikhonov 

regularisation; Tonkin and Doherty, 2005). 

 

The use of a synthetic reference model allows for the calibration process to be 

evaluated in terms of its ability to inform parameters with respect to error. However, 
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estimated parameter values cannot be assessed in terms of error in practice; instead, 

parameter values must be evaluated in terms of whether or not they can be 

considered reasonable on the basis of field data (e.g., Langevin and Zygnerski, 2013; 

Knowling et al., 2015). Such assessments are complicated by the need to consider, 

e.g., the scale-dependency of hydraulic properties (e.g., Sánchez-Vila et al., 2006). 

 

The findings of this study are likely to be somewhat dependent on the unique 

characteristics of the USB reference model (e.g., the lack of surface water-

groundwater interaction). The application of similar analyses to field sites located in, 

e.g., temperate climates where surface water and groundwater are often hydraulically 

connected, may indicate that the degree to which recharge can be informed is 

enhanced given the availability of stream discharge data (Sanford, 2002; Hunt et al., 

2006). The investigation of recharge estimability for other field sites is warranted in 

order to extend the present findings to a wider range of situations, in particular where 

groundwater flux measurements are readily attainable. 

 

4.7. Conclusions 

 

The current study extends the steady-state investigation of Knowling and Werner 

(2016) by evaluating the extent to which time-varying recharge can be informed 

through calibration of field-scale transient groundwater models. The methodology 

adopted involves the use of a series of highly parameterised inverse modelling 

experiments that contain (1) varying degrees of hydraulic parameter (Sy, K) 

constraints, (2) different numbers of water-level calibration targets, and (3) different 

temporal recharge parameterisation schemes. The analysis involves the use of a 
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synthetic reality (i.e., a reference model), based on a transient groundwater model of 

USB. 

 

Results show that the estimability of transient recharge is highly dependent on the 

degree to which the spatial distribution of Sy and K are constrained, the number of 

water-level targets available for calibration, and the temporal recharge 

parameterisation scheme adopted (e.g., temporal parameter resolution). Reasonable 

estimates of recharge variability in time (<30% recharge-RMSE) are shown to 

require, for the field-scale groundwater model applied, a large amount of transient 

water-level calibration data, and that the spatial distribution of K is known. Even for 

cases representing a “best-case” scenario whereby a large amount of water-level data 

is available and the spatial distribution of both Sy and K are known, estimates of 

time-varying recharge are of only moderate quality (>22% recharge-RMSE). The 

extent to which temporally variable recharge can be determined is significantly 

diminished where recharge, Sy and K are jointly estimated. The use of larger time 

scale recharge parameters and preferred recharge uniformity are shown to be of 

potential benefit to recharge estimation where water-level data are lacking. 

 

This study exemplifies the potential ramifications of non-uniqueness in terms of 

recharge estimability, and offers insight into scenarios under which recharge can be 

reliably informed for practical real-world situations, thereby offering guidance to 

groundwater modelling practitioners. This study, in combination with Knowling and 

Werner (2016), suggests that the estimation of recharge through model calibration 

may be impractical for real-world settings, due to the requirement for excessive 

amounts of both water-level data, distributed in both space (for the purpose of 
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informing spatially distributed recharge, K and Sy) and time (for the purpose of 

informing time-varying recharge and Sy), and hydraulic parameter data. The findings 

presented here extend upon the preliminary benchmark of Knowling and Werner 

(2016) for evaluating the extent to which field-scale groundwater model calibration 

can inform recharge subject to practical data-availability limitations. 
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Chapter 5 

 

5. Conclusions 

 

This thesis focuses on the application of highly parameterised groundwater 

modelling strategies for addressing practical hydrology problems. The three studies 

in this thesis investigate in particular: (1) the quantification of climate and human 

impacts on regional aquifer settings; (2) the estimability of recharge through field-

scale steady-state groundwater model calibration; and (3) the estimability of time-

varying recharge through field-scale transient groundwater model calibration. The 

key findings of these studies are summarised below. 

 

The first study extends previous modelling approaches for disentangling climate and 

human impacts through the application of a highly parameterised groundwater 

model. The USB is used as a case study following the conjecture surrounding the 

causal factors of aquifer depletion, i.e., climate variability and/or groundwater 

pumping. Results show that, while both climate and pumping impacts vary 

significantly both spatially and temporally, the contribution of pumping to aquifer 

depletion is 2.7 and 2.2 times that of climate, based on time-averaged and maximum-

in-time impacts, respectively. Pumping impacts are shown to exceed climate impacts 

between 1978 and 2012, and over the majority (80%) of the spatial extent of USB. 

These results serve as a response to the recent South Australian parliamentary 

enquiry (NRC, 2013) into the cause of aquifer depletion. Future management of USB 

is expected to be enhanced through the adaption of pumping rates in alignment with 
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the condition of the aquifer in response to both climate and pumping impacts. This 

study demonstrates the application of a highly parameterised model, in combination 

with a relatively simple modelling framework, for quantifying the relative 

contribution of natural and human aquifer impacts. 

 

The second study evaluates the extent to which recharge and its spatial distribution 

can be informed through calibration of field-scale steady-state groundwater models. 

The ability of the calibration process to inform recharge is shown to vary 

significantly with the degree to which hydraulic parameters are constrained. Inverse 

modelling results show that, for the highly parameterised model of USB, reasonable 

estimates of recharge require excessive amounts of hydraulic parameter information. 

For example, an average error of <10% requires that 50% of the reference-model 

hydraulic parameters (>100 K values across the 129 km
2
 study area) be included in 

the calibration using preferred-value regularisation. While both SGD (as a calibration 

target) and pumping data are shown to be of benefit to the estimation of spatially 

averaged recharge, pumping data also produces improved estimates of the spatial 

variability in recharge. The findings of this study suggest that the estimation of 

recharge through calibration of steady-state models may be impractical for real-

world settings, limited by the need for unrealistic amounts of groundwater level and 

hydraulic parameter data. This study provides guidance to groundwater modelling 

practitioners by highlighting the potential ramifications of non-uniqueness in terms 

of recharge estimability for a real-world case, and by offering insight into scenarios 

under which recharge may (or may not) be informed through calibration. 
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The third study assesses the extent to which the temporal variability of recharge can 

be informed through calibration of field-scale transient groundwater models. Results 

show that the estimability of time-varying recharge varies highly with the degree to 

which the spatial distribution of Sy and K are constrained, the number of water-level 

targets available for calibration, and the temporal recharge parameterisation scheme 

adopted (e.g., the temporal resolution on which recharge is being inferred). 

Reasonable estimates of recharge variability in time (<30% recharge-RMSE) are 

shown to require, for the transient groundwater model of USB, a considerable 

amount of transient water-level targets, and that the spatial distribution of K is known 

(i.e., via joint recharge-and-Sy estimation). The extent to which time-varying 

recharge can be informed is significantly diminished where K is estimated jointly 

with recharge and Sy. The use of preferred uniformity is shown to be of benefit to 

recharge estimation for cases where relatively few water-level calibration targets are 

available. This study, in combination with the second study, suggests that the 

estimation of recharge through model calibration may be impractical for real-world 

settings, due to the requirement for excessive amounts of spatially distributed and 

transient water-level data, in addition to hydraulic parameter data. 
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