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Abstract 

Wheelchairs can provide a sense of freedom to people who are unable to walk as many others 

can.  Producing a smarter wheelchair is a necessary step for extending this freedom to 

individuals who possess motor and/or visual impairments that cause operating a wheelchair 

difficult or impossible.  The ABC Wheelchair at flinders university is pursuing the 

development of an addon technology for powered wheelchairs that can provide autonomous 

navigation and allow for multiple input methods for users to utilise. 

This project researches the installation of SLAM on the ABC wheelchair and the development 

of a guided doorway navigator that can guide the chair through narrow doorways.  The doorway 

navigator used a LiDAR to return range information on the environment and recognise the 

position of door frames by measuring the range differences between data.  Assumptions were 

made when ranking the potential doorways detected to allow for successful detection, such as 

the navigator being triggered by an external process so doors would already be close to the 

chair.   

Using the LiDAR the system was capable of performing accurate SLAM using the 

Cartographer system by Google, mapping and localising the position of the chair over time.  

Furthermore the doorway navigator could successfully distinguish open doorways from 

LiDAR range data and a velocity controller provided safe travel through the opening. 

Additional research areas were focussed on the development of alternative input methods to 

provide accessible technology to a diverse audience through the means of developing a pupil 

detector for future gaze trackers and testing the capacity of the MyCroft voice assistant to 

control the wheelchair. 

Pupil detectors built need further development before they can be used for gaze trackers.  The 

first detector is highly accurate, finding pupil location within 1 pixel of error, however lacks 

responsiveness.  The second detector is highly responsive although has higher levels of error. 

The MyCroft voice assistant could control chair behaviour and allowed for multiple keyword 

or phrases to be used as triggers but required network access.  A local speech recogniser may 

be run on the machine to remove the need of network access however is limited by system 

resources to run the deepnet speech recognition locally, slowing down the execution of real-

time systems required for safe autonomous navigation when approaching obstacles. 
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1 Introduction 

With over one billion people in this world having some form of disability [1], it is important 

that researchers develop systems to assist the physically impaired to improve mobility and 

reduce the strain of tasks that fully able-bodied people take for granted.  The research topic for 

this thesis is an autonomous wheelchair that will be controllable from multiple inputs to assist 

people who are unable to use standard powered wheelchairs.  

Wheelchairs play an important role in mobility for people who are unable to walk. Research 

has shown that the supply of wheelchairs to people with disabilities promotes social 

development alongside improved mobility and reduced dependency [2, 3], and provides better 

quality of life to persons who previously did not possess this mobility aid [4].  The study by 

[5] showed increased mobility, dependence, and increased mood state among 519 participants

over three different countries after 12 months of receiving a wheelchair.  By adapting a powered 

wheelchair to accept alternative inputs to a joystick such as brain control or voice prompts, it 

will allow disabled populations who are unable to use joysticks to attain increased movability 

and improve quality of life. It has been noted that there are many individuals of whom are 

unable to easily use manual or powered wheelchairs and require alternate mobility aids such as 

smart wheelchairs (SW), particularly for people with impaired vision, motor impairments or 

cognitive deficits [6].  Powered wheelchairs can be difficult for people with motor and visual 

impairments to operate in confined spaces [3, 7], which is where autonomous technology can 

play a pivotal role in improving independence and reducing the strain of wheelchair operation 

on individuals. 

Research into autonomous wheelchairs can be translated into products for able-bodied 

individuals also. Such technology can be used as a mobility aid to guide people in places they 

are unfamiliar with such as airports or public malls that can be confusing to navigate and do 

not always have signage that is easily discerned, especially if you are unfamiliar with the local 

language or are illiterate. 

The project aims to deliver a system that can be installed onto new or existing electric 

wheelchairs to navigate its environment. The system is to be capable of mapping its 

environment and navigating the generated map whilst avoiding obstacles to reach a destination, 

and accept input from a user. 
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2 Background 

Initial SW were mobile robots with seats whereas modern chairs are now typically modified 

power wheelchairs with computers and sensors incorporated [6, 8] to perceive their 

environment.  SW developed in the past thirty years are commonly characterised as seated 

mobile robots, integrated prototypes or equipped wheelchairs [6, 9] 

• Seated Mobile robots: these were the initial smart wheelchairs, composed of mobile

robots that were equipped with a seat to provide alternative mobility to users.

• Integrated prototypes: prototype chairs start from an experimental wheelchair frame

upon which a wheelchair is built around to construct a fully customised smart chair.

• Equipped wheelchairs: equipped chairs are modified powered wheelchairs with

computers and sensors attached to provide ‘smart’ features to the wheelchair.  These

are a popular research topic and typically work by emulating the signals sent from the

joystick on the chair to the motor controller and using this to control the chair movement

via a computer.

Current research into modern SW have led to the development of systems with varied input 

devices, improved navigation implementing obstacle avoidance, map generation and positional 

localisation utilising an array of sensors and data fusion to produce accurate and reliable 

systems for wheelchair users to utilise [10]. 

Current development of SW can be categorised into two main branches [9, 10] 

• Human-machine navigation

• Predefined machine navigation

Human-machine navigation can be described as machine assisted human navigation. The 

human will use an input device to control direction of the wheelchair and a machine will alter 

the trajectory if it detects obstacles to avoid accidents.  This method of navigation provides 

more freedom to the user whilst easing the strain of maintained navigation and improving 

safety through recognition and avoidance of possible hazards. 

Predefined machine navigation is a setup that utilises a series of set destinations or tasks for 

users to select for navigation.  The machine will handle all navigation without any further input 

from the user.  Predefined navigation is ideal for users with high impact disabilities that make 
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accurately maintained manual navigation difficult, such as people with conditions that cause 

muscle spasms in arms/hands. 

Research from the past 13 years into SW have produced results with varying input methods 

paired with assisted or completely autonomous navigation.  A number of these ventures have 

avoided the standard joystick controller and opted for innovations such as speech recognition 

or brain signal reading, summarised in Table 1. 

Table 1: Summary of Smart Wheelchair Technology 

Wheelchair Input Method(s) Description of System 

Robotic Wheelchair 

with Dialog Manager 

[11] 

Speech 

Recognition 

A dialog managed wheelchair used for 

navigation to recognised keywords.  The dialog 

manager setup on the chair uses a learning model 

(Partially Observable Decision Process) to 

improve recognition and provide a more natural 

human interaction with the chair. 

ARTS Self Docking 

Wheelchair [12] 

Touch-screen 

Interface 

Autonomously docking wheelchair using an 

attached LIDAR to recognise a designated lift 

and navigate onto it. The LIDAR recognition 

system uses filtering and two reflector panels 

permanently affixed to limit the points of 

detection so the chair can recognise the lift and 

control the motor to navigate onto it. 

EEG-based Brain 

Controlled Robotic 

Wheelchair [13] 

Brain 

Controlled 

Interface 

Prototype hardware for controlling wheelchair 

motors using a wireless Electroencephalograph 

(EEG) device fitted to the scalp.  Brain waves are 

captured by the EEG device are processed 

through a neural network on an external PC to 

remove signal noise and translate signals into 

movement commands that are sent to the motor 

via an ARM 7 based CPU. 

Fuzzy EKF 

Controlled 

Computer 

Controlled 

Intelligent wheelchair utilising fuzzy logic to 

execute flexible and non-linear obstacle 
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Intelligent 

Wheelchair [14] 

Execution of 

Autonomous 

Navigation 

avoidance.  The wheelchair uses an Extended-

Kalman Filter (EKF) approach to fuse data from 

wheelchair sensors to enhance localisation 

capabilities and allow for autonomous navigation 

to pre-defined navigation goals. 

Gaze Driven Power 

Wheelchair Addon 

[15] 

Gaze Tracking 

Interface 

An addon gaze-tracking system for power 

wheelchairs providing alternative input control to 

traditional joystick.  The addon system controls 

the wheelchair motor using an interface with 

directional arrows superimposed on a real-time 

camera feed of the environment in front of the 

wheelchair.  The gaze-tracker determines desired 

movement based on what arrows the user is 

looking at.  The wheelchair avoids obstacles by 

staying within a real-world boundary constructed 

of reflective tape on the ground. The tape is 

detected using an optical sensor and provides a 

safety mechanism for users with motor 

impairments that may affect gaze control. 

Smart Wheelchair 

for Autonomous 

Navigation in Urban 

Environments [16] 

Computer 

Controlled 

Execution of 

Autonomous 

Navigation 

Powered wheelchair with equipped 3D Lidar for 

localisation and mapping. The chair is designed 

for autonomous navigation in urban settings. 

Localisation is generated using Extended 

Kalman Filtering to determine location based on 

recognition of recorded landmarks (trees) after 

first taking a single GPS reading before 

navigation is executed. The wheelchair using a 

cloud-based mapping service to generate 

landmark-based maps for the chair to use for path 

planning and localisation. 

 

Research into smart wheelchairs are branching away from the standard joystick approach and 

turning towards alternative input utilising human speech, movements, or brain waves to assist 
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individuals with severe motor impairments, though this is not necessarily enough to provide 

safe mobility.  Aiding wheelchair users with autonomous path planning and environmental 

recognition can provide safety measures to assure the chair can alter the user input to avoid 

obstacles and provide totally autonomous navigation to desired locations, easing the strain on 

wheelchair users with high level motor impairments.  The research into the gaze driven power 

wheelchair addon [15] reflects the ideas discussed here to enhance safety, supplying alternative 

gaze tracking input for wheelchair control paired with obstacle avoidance for altering the 

trajectory of the chair controlled by the user to avoid collisions.  This addon system is a shared 

control system between human and machine to provide safer and more efficient mobility to the 

user. This is different to the chairs described in [14, 16] where a computer controls all 

navigation to a pre-determined goal.  For complete autonomous navigation the user will only 

interact with the chair to supply a destination, upon which the chair will plan the path towards 

the goal based on a generated map of the environment and control all components of the trip to 

safely navigate to the goal. 

For systems that use autonomous navigation, it is essential that they maintain an accurate 

bearing of their location on a generated map.  This is difficult as the chairs are primarily used 

indoors and common tracking methods such as GPS are not always accurate enough to capture 

the chair coordinates within buildings [16, 17].  To overcome these issues time is spent 

incorporating a suite of sensors to detect chair movement (Odometry, IMU) and recognise 

features and landmarks (Camera, Image Recognition, LIDAR).  Each sensor on its own is 

subject to noise and does not always provide an accurate feed for predicting location, as the 

sensing equipment is often based on calculations for estimating position and not a direct 

reading.  Recognised landmarks may trigger false positives and identify the wrong location or 

wheels may experience slippage which will affect odometry readings.  To increase accuracy of 

estimated position using sensors, the readings are commonly combined using data fusion 

techniques to reduce the impact of noise on the system and account for the build up of errors 

to a degree.  One data fusion technique is with Extended Kalman Filtering (EKF) as is used in 

[14] to combine multiple sensor readings for joining however particle filters (PF) are also This

common for use in data fusion for localisation tasks [17]. 
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2.1 DIRECTION FOR ABC WHEELCHAIR 

Literature studied incorporates numerous input systems and sensing technologies to achieve a 

common goal of assisting individuals with motor impairments.  The goal for the ABC 

wheelchair is to deliver an installable system for powered chairs that assists navigation.  To 

deliver a system that is accessible to a large range of users with differing levels of motor 

impairments, it is important that there exist differing user input methods to control the chair.  

One method will be the brain control interface allowing users to control the chair via thoughts.  

Not all individuals will find such a system comfortable to control though and could be deterred 

from using the system based on the input method.  To prevent this from occurring it is important 

to focus on providing alternative methods of input for controlling the chair as well as 

developing the mapping and navigation capacities of the wheelchair. 

Particular points of interest for mapping and navigation at this point were to use a budget 

LiDAR to replace the Kinect Camera Sensor to map the environment and provide informed 

navigation through doorways that the Kinect Sensor was not capable of handling.  To 

summarise components of this project: 

• Mapping and Localisation with LiDAR technology

• Doorway Navigation

• Alternative User Input Methods

o Gaze Tracking

o Voice Control

Expanding on alternative user input methods, gaze tracking and voice control were the chosen 

methods as they can be utilised with the current technology available on the wheelchair and to 

provide a spectrum of input control.  By providing visual, vocal and thought input methods 

later on, users with high level impairments will have a suite of options to choose from for 

controlling chair operations. 
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3 Theory 

3.1 ROS ENVIRONMENT 

The platform used for the development of the ABC wheelchair is the Robotic Operating System 

(ROS).  ROS is an asynchronous framework composed where all processing is completed 

within nodes that can subscribe and publish to topics for controlling aspects of a system such 

as navigation, localisation and recognition [18].  Topics contain information like the system 

pose, state, control variables, navigation plans, landmarks, etc.  Any ROS based system 

requires a roscore to be executed which is the collection of nodes and programs necessary for 

communication via topics [19]. 

ROS utilises a graph like framework where nodes subscribe and publish to any number of 

topics to transmit the necessary data to control and monitor the system they are built for.  An 

example of this can be seen below in Figure 1 below, illustrating the communication between 

three nodes (contained by ellipse border) using three topics (contained by square border).  In 

this example the node handling odometry of the system (/odom_node) publishes to a topic 

/distance.  The /motor_controller node is subscribed to the distance topic and obstacle topics 

that is used to control the motor by publishing velocity information to a /cmd_vel topic. 

Figure 1: Example of ROS nodes communicating via topics 

ROS itself is not a real-time framework however can be setup to work like one.  Real-time 

hardware can be setup to work with nodes processing code in real-time, subscribing and 

publishing to topics with little delay to control and monitor hardware [18, 19].  This setup 

allows ROS to work as middleware for real-time robotic systems and is a popular choice for 

modern robotics. 

/odom_node

/obstacle_detector

/distance

/obstacle

/cmd_vel/motor_controller
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3.2 LOCALISATION AND MAPPING 

For robotics research looking into autonomous navigation for indoor use, it is important that 

the robotic system be able to recognise the environment as well as where it is in the 

environment.  A common method for accomplishing this is to use simultaneous localisation 

and mapping (SLAM) algorithms to create maps of the environment and match sensor readings 

to locations on the map for determining location[17, 20].  There are many types of SLAM 

algorithms with their own benefits and trade-offs. The common trade with SLAM algorithms 

is between accuracy and speed. 

Common algorithms for SLAM are based on variations of the EKF and particle filter (PF).  

EKF is typically not used on its own for SLAM due to the inaccuracy of the filter that occurs 

during the linearization process. Due to this particle filtering is often utilised as it is non-linear 

in nature and is an effective tool for localisation purposes. The particle filter works by 

comparing a sample of particles to the expected result and refactoring samples down to the 

most likely occurrence [20]. 

SLAM algorithms are typically focused on map generation and localising a robot on within a 

map, but a variant of SLAM exists called Pose SLAM which calculates only the trajectory of 

the robot to navigate environments.  The map being generated does not contain information on 

obstacles but instead the trajectory is used to record the pose of the robot. The trajectory of the 

robot used when building the map is free of obstacles and hence does not require obstacle data 

be recorded as the poses stored in the map have already been used and deemed safe and free of 

collisions [21]. 

Common SLAM software for the ROS environment are GMapping and Cartographer. Both 

software generate maps of unknown environments by taking in sensor readings from optical or 

directional sensors to estimate location and obstacle positions.  Generated maps can be used by 

path planners for autonomous navigation and support is available for exploration and mapping 

of unknown environments. 

3.3 ODOMETRY 

Odometry is a technique that uses sensor data from a machine to estimate a change in position 

over time. The most basic form of odometry is wheel odometry using encoders attached to 

wheels of a machine to estimate change in position based on the number of revolutions the 

wheels have performed. The issue with wheel odometry is that errors build up over time due to 
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wheel slippage that may occur on slippery or uneven surfaces. Wheel odometry is dependent 

on the previous odometry calculation to estimate position so when errors occur they stack and 

result in declining accuracy of pose estimations [17]. 

A more reliable form of odometry is visual odometry that uses a system of one to several 

cameras to estimate trajectory using feature extraction. This is similar to SLAM however 

focuses on estimating the local trajectory as opposed to estimating the global map and 

trajectory that are consistent with one another.  Visual odometry still has issues with error 

stacking contributing to drift in trajectory however is seen to perform more reliably than wheel 

odometry [17, 22]. 

3.4 VIRTUAL ASSISTANTS – MYCROFT 

Virtual assistants have become a common piece of technology for modern day life, with major 

companies such as Amazon and Google developing their assistants to assist with virtual tasks 

and control devices connected to an Internet of Things (IoT).  Virtual assistants are commonly 

controlled through speech input, where typically a trained neural network will process recorded 

speech and decipher to text for determining actions to perform. 

An open source voice based virtual assistant is called ‘Mycroft’ which offers developers the 

ability to create custom ‘skills’ [23].  Skills in this context are python programs executed by 

the assistant when key words or phrases are recognised.  The process works by supplying an 

intent, an action, and a dialog.  The intent is a set of phrases or keywords to be associated with 

the skill, which when detected will perform the action associated with the intent.  Skills can 

have multiple intents and actions associated to them.  The dialog is a collection of phrases for 

the assistant to speak back for each intent.  The assistant will cycle through dialog responses to 

provide more human like speech flow. 
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Figure 2: Flow of Mycroft Skill Activation 

Mycroft handles speech to text through the cloud-based Google Speech To Text (STT) engine.  

Due to this one limitation with the assistant is that it requires internet access by default to 

recognise speech [24].  The assistant can be used without an internet connection by feeding 

text directly to the assistant or by installing a local speech to text converter however these 

converters can be very large and require additional processing power. 

3.5 GAZE TRACKING 

Eye-gaze tracking is a method of discerning ocular movements to determine where an 

individual is looking, offering an alternative Human to Computer Interface (HCI) that does not 

rely on the use of limbs from the neck down [25].  Modern applications of eye-gaze tracking 

involve analysis of video streams to identify eye movement between frames, offering a non-

invasive method of measuring movement unlike earlier systems that made use of the placement 

of solids onto the eye or the attachment of electrodes around the eyes [26, 27].  Most video 

based trackers rely on infra-red sensors and multiple camera setups that are very accurate and 

provide fast response rates but the systems are complex and have high costs associated [26]. 

Modern research exists on the extraction of ocular movement from video streams using single 

cameras and image processing techniques, based largely on the extraction of features within 

the eye to discern pupil position and track movements.  Such research employs binarisation of 

video stream frames through edge or threshold filtering before employing feature detectors to 

find elements such as circles or corners within the eye as a base of reference when determining 

ocular position and movement [25, 26, 28]. 

3.5.1 Open Source Computer Vision Library - OpenCV 

OpenCV is an open source library for computer vision and machine learning, intended for the 

provision of common infrastructure for computer vision and machine perception [29].  The 

Local Computer

Neural Network
Speech to text

Voice recording Recognised intent Action Dialog response

Text output

Cloud Server
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library contains applications for image processing, providing edge detection, morphological 

operations, binarization of images and more to provide an ideal suite of tools as well as feature 

extraction and identification of faces and eyes within images [29-31]. 

3.6 ELECTROENCEPHALOGRAPHY (EEG) FOR BRAIN CONTROL INTERFACE 

(BCI) 

An electroencephalogram is a recording of brain activity, often taken using a series of metal 

pads equipped to an individual’s scalp to measure the electromagnetic radiation produced by 

the brain.  The use of EEG as in interface for controlling devices is now possible as seen by 

research into the control of artificial limbs and wheelchair systems using headsets to record 

and process brain activity to execute commands to such technology [32, 33]. 

In order to control a device the brain activity must be isolated for a particular thought.  This is 

achieved by recording the signals produced by the brain when thinking of a specific image, 

action, or word to be associated with a command, which is then used as a reference for 

recognising the thought. The signals measured are susceptible to noise and are filtered to isolate 

the brain waves from external noise for use in BCI technology.  Using the filtered brain wave 

for a particular thought, the measured brain activity of an individual can be analysed and 

matched against the particular thought as an input for a BCI [32, 34]. 
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4 Method and Results 

4.1 SIMULATING THE ABC WHEELCHAIR 

To simulate the wheelchair for testing outside of the lab and provide a virtual framework for 

SLAM software track wheelchair location, a Universal Robot Description File (URDF) was 

created.  The URDF represents the layout of the wheelchair components, specifying how pieces 

of the chair join and the dimensions and positions of components on the chair.  An URDF file 

is used to detail the robot kinematics to ROS, detailing the relationships between joint and link 

connections that is required for representing a robot in a virtual environment or real-world 

environment. 

4.2 SLAM USING CARTOGRAPHER AND LIDAR 

Previously the SLAM mapping produced by the chair was generated with a SLAM based 

mapping algorithm (Gmapping) utilising wheel odometry, IMU feedback and depth scan data 

produced by a Kinect 3D camera. Due to noise present in wheel odometry and IMU the 

localisation capabilities of the chair were hindered. To overcome these limitations visual 

odometry was generated using the Kinect sensor data which improved the localisation, though 

maps were reported as being choppy and position was not always accurately recorded due to 

the small frame and depth ranges that the Kinect is capable of detecting.  To improve the 

capacity for the ABC Wheelchair to sense and record the environment and location within 

Figure 3: Wheelchair Frames - virtual representation of wheelchair for simulations and SLAM software
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recordings, a LiDAR was integrated onto the chair to provide depth sensing of up to twelve 

metres in three-hundred and sixty degrees of view. 

4.2.1 Setting up Cartographer (SLAM) for ROS 

The Cartographer platform is available for installation within the ROS environment.  The 

resources required to install the SLAM platform are made available to the public by Google 

[35]. 

The Cartographer SLAM algorithm needs access to data on the environment from a range 

finder or similar measurement device to report depth information, specified within the 

configuration files of the ROS workspace cartographer was installed in. 

The LiDAR range output was setup to provide data on a ROS topic named ‘scan_lidar’, which 

cartographer was pointed at for range data.  The wheel odometry topic generated by the chair, 

‘wheel_odom’, was also supplied to cartographer for additional odometry information to assist 

with estimating odometry metrics. 

To provide tracking frames for the SLAM platform to establish pose and estimate odometry, 

cartographer was setup to use the chassis of the wheelchair as the tracking frame.  This was 

performed by using the URDF that provided a reference to all components of the chair, 

supplying cartographer with details on the location that range data was being generated from. 

Running Cartographer alongside the wheelchair generated the SLAM output, providing 

mapping and localisation as the wheelchair moved around the room.  The SLAM algorithm 

was tuned within the configuration file, systematically adjusting settings affecting the 

behaviour of localisation and mapping to enhance performance. 

4.2.2 Transition from Reliance on Wheel Odometry to Visual Odometry for Localisation 

The wheel odometry provided by the physical chair was not ideal for tracking position. The 

system could not accurately determine a resting position, wheel readings did not detect turns 

in most cases, and translations within a global map were not reflected accurately as error built 

up over time.  Identified errors that contributed to the unreliable odometry include wheel 

slippage on the vinyl lab floors, worn tires that have led to unevenly shaped wheels, and IMU 

sensor data containing high noise data for acceleration forwards and sideways. The odometry 



23 | P a g e

data generated through the encoders and IMU were seen to hinder SLAM algorithms due to 

the high level of inaccuracy present in data generated. The impact can be noticed visually when 

comparing the generated outputs in Figure 4 and Figure 5, both recorded in the same room 

following similar paths though the algorithm is heavily disrupted by the wheel odometry and 

IMU readings that lead to wheelchair pose estimates being heavily off target and surroundings 

not being recognised as a result. 

Figure 4: SLAM with Cartographer using LiDAR and 

Wheel Odometry to map the laboratory 

Figure 5: SLAM with Cartographer using LiDAR relying on 

generated Visual Odometry to map the laboratory 

The map and estimated poses in Figure 4 integrated the odometry produced using the wheel 

encoders and IMU readings. The Cartographer SLAM algorithm could not map the room 

accurately. This was due to the conflicting data present between the odometry generated 

through the encoders and IMU, and the odometry generated visually by the Cartographer 

SLAM algorithm using the LiDAR readings.  When the same room is mapped again without 

the IMU or wheel odometry, the output in Figure 5 was produced. The output generated was a 

far more realistic representation of the path followed by the wheelchair and the boundaries of 

the room. 

4.2.3 Effect of LiDAR resting angle on SLAM algorithm 

The LiDAR used (RPLiDAR A1) detects obstacles within a 12m radius on a single plane of 

vision. Unfortunately the world does not operate in a single plane of view and as a result 

obstacles are often missed due to an obstacle resting above or below the search range of the 
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LiDAR.  The LiDAR was tested in several positions between 0 and 45 degrees to test the 

operation of the SLAM system with a tilted range finder. 

4.2.3.1 LiDAR with 0 degree tilt 

Tuning the Cartographer SLAM algorithm, the output in Figure 6 was produced.  The tuned 

algorithm can maintain an accurate representation of the wheelchair pose utilising the lidar 

input to create visual odometry. The boundaries of the room are well defined and crisp although 

details are missing on desks and tables that were too low for the lidar to detect. 

Figure 6: Tuned SLAM output for Lidar with 0 degree tilt 

To achieve an accurate representation of pose, the algorithm was tuned to allow for a larger 

maximum rotation when matching range data received by the lidar. The lidar used had a slow 

refresh rate which contributed to greater changes of rotation and translations between lidar 

scans.  By increasing the maximum rotation allowed for matching range data, turns were more 

accurately recorded and sharp turns could be recognised by the SLAM algorithm. This was 

also performed for translation by increasing the maximum translation allowed when matching 

ranges and heavily reducing the cost of performing such rotations and translations as the range 

recognition in the SLAM algorithm was now the sole means of determining pose changes, 

allowing the algorithm to compensate for the slow refresh rate of range data. 
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Additional changes were made to improve performance of mapping capabilities and range 

matching to provide smoother transitions between poses and more accurately detail boundaries 

of the room and obstacles. This included reducing the cost of mapping features, allowing points 

that were nor consistently caught by the lidar to appear on the map output such as the tops of 

desks and chairs, as well as increasing the number of local maps utilised to build the global 

map and adjusting constraints on how well points needed to be matched.  Allowing inconsistent 

ranges to be mapped resulted in areas containing glass to be mapped with less certainty such 

as the right hand side of the room in Figure 6, allowing glass to be represented in some detail 

unlike the default algorithm which reported glass as empty space between the window frames 

detailed on the right hand side of the room in Figure 5. 

4.2.3.2 Increasing LiDAR tilt up to 30 degrees 

Increasing the tilt of the LiDAR to position the detection region closer to the ground in front 

of the wheelchair yielded promising results. As the tilt increased from 0 up to 30 degrees, local 

maps generated included more details of obstacles in front of the chair, though as the tilt 

increased the default settings for the SLAM algorithm were not able to estimate pose or provide 

an accurate representation of the global map, unlike that for LiDAR readings no tilt. 

Figure 7: Initial SLAM output for Lidar with 20 

degree tilt 

Figure 8: Tuned SLAM output for Lidar with 20 degree tilt 

Tuning the algorithm to be more forgiving when matching range data from the LiDAR, and 

increasing the maximum rotation and translation allowed when estimating pose, the output 

began to produce results similar to Figure 8 with a level LiDAR.  The global map produced by 

the Cartographer SLAM algorithm contained less details on obstacles around the room as the 

tilt of the lidar increased. A trade was made in detail present on the global and local maps, 
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where the presence of obstacles detailed on the global map was inversely proportional to the 

increased tilt and was directly proportional to the obstacles detailed within local maps. 

Using a tilt of 20 degrees with a tuned algorithm produced the most promising outputs. Maps 

generated held the shape of the rooms being mapped, local maps contained more information 

on obstacles in front of the chair than that of a level LiDAR, and the pose of the wheelchair 

was still estimated within a high degree of accuracy. The algorithm could estimate the pose of 

the chair as it circled through the room and returned to the starting position. This functionality 

was lost as the tilt on the LiDAR was increased beyond 20 degrees. 

4.2.3.3 Increasing LiDAR tilt beyond 30 degrees 

Beyond a tilt of 30 degrees the quality of range data from the LiDAR began being reduced. 

The maximum useable range captured in front of the chair was heavily impacted as the LiDAR 

scans began to coincide with the ground closer to the chair as the tilt was increased. To prevent 

the ground from being detected as an obstacle, the maximum useable range for the 

Cartographer SLAM algorithm had to be reduced from the 12-metre distance that the LiDAR 

is capable of detecting. A tilt beyond 30 degrees reduced the number of matchable points in 

the range data for the algorithm to detect, impacting visual odometry and the quality of the 

global map. At this point only the local maps were useful for detecting obstacles in front of the 

wheelchair. 

4.3 EDGE BASED DOORWAY DETECTION AND NAVIGATION 

Taking the concept of tracked navigation utilised in research by ARTS Self Docking 

Wheelchair [12] 

Using range data from the LiDAR, the layout of the environment around the wheelchair can be 

visualised and processed to distinguish features in the environment.  By identifying significant 

changes in range data between points, openings within obstacles can be isolated to estimate the 

location of a doorway and provide a reference point for the wheelchair to navigate towards and 

pass through narrow spaces. 

For the purposes of section 4.3 of this thesis, an edge is referring to a distinct change in range 

between two adjacent points.  Using edges to recognise a doorway requires understanding 
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where an ‘opening’ exists between two edges and checking whether it fits the conditions for a 

doorway.  The conditions for a doorway were defined as follows: 

1) A doorway would have two edges, where one edge is ‘rising’ and the other ‘falling’:

a. A rising edge is defined as a positive difference between the current range and

the next.

b. A falling edge is defined as a negative difference between the current range and

the previous.

2) No other obstacle would be present in the triangular area formed by the two doorway

edges and the wheelchair.

3) The doorway being detected would be of a nominated width and would only be 1.5x

larger than the nominated width as standard path planning algorithms would be capable

of traversing a space that wide.  The nominated width would be larger than the width

of the wheelchair.

4) A standard doorway is more likely to be a similar width to the wheelchair.

5) The algorithm to detect a doorway using LiDAR output would be called upon by image

recognition of camera feed, so it is safe to assume that the doorway would be close to

the wheelchair.

4.3.1 Finding edges in LiDAR output 

Doorways in the LiDAR output are distinguishable by looking for a sudden changes in range 

that leaves a gap between two regions of consistent range readings, noticeable when plotted 

against the angle of the LiDAR measurement as in Figure 9. 
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Figure 9: Finding Doorway Boundary by searching for Changes in Range above a specified Threshold of 0.5 metres 

To find all potential doorways in the LiDAR range data, the difference in range between one 

point and the next were taken and used to determine changes in range that were greater than a 

given threshold.  The data was iterated through to find and store the locations of all data points 

that started with a falling edge, then storing this point with all rising edges beyond that met the 

threshold and had no obstacles located between the two edges.   

Obstacles were found by taking the range with the largest distance, then comparing all ranges 

between the stored points to see if obstacles were present in the LiDAR output.  The result was 

a list containing pairs of edges representing possible doorways in the LiDAR output. 

To filter down the number of potential doorways, each point was converted into x,y coordinates 

and the width of the potential doorway calculated.  If the width was less than the width of the 

wheelchair then it was discarded, as were doorways with widths greater than 150% of the 

wheelchair width.  Using the same LiDAR output from Figure 9 produced the set of potential 

doorways in Figure 10 on the left side. 

Doorway, distinguished by gap between consistent range readings 
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Figure 10: Potential Doorways found using the detector (left) and Isolated Doorway after ranking (right) 

4.3.2 Ranking Potential for a Doorway 

Doorway likelihood was ranked based on assumptions 4 and 5 that the door is most likely to 

be near the wheelchair and of a similar width to the wheelchair.  The ranking system was 

designed as follows, where the potential doorway with the largest ranking is chosen as the 

navigation goal: 

𝑙𝑒𝑡 𝑤𝑑  𝑏𝑒 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑑𝑜𝑜𝑟𝑤𝑎𝑦 

𝑙𝑒𝑡 𝑤𝑐  𝑏𝑒 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑤ℎ𝑒𝑒𝑙𝑐ℎ𝑎𝑖𝑟 

𝑙𝑒𝑡 𝑟𝑑  𝑏𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑑𝑜𝑜𝑟𝑤𝑎𝑦 𝑐𝑒𝑛𝑡𝑟𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑤ℎ𝑒𝑒𝑙𝑐ℎ𝑎𝑖𝑟 

𝑙𝑒𝑡 𝑘𝑑  𝑏𝑒 𝑔𝑎𝑖𝑛 𝑓𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 

𝑙𝑒𝑡 𝑘𝑤 𝑏𝑒 𝑔𝑎𝑖𝑛 𝑓𝑜𝑟 𝑤𝑖𝑑𝑡ℎ 𝑟𝑎𝑛𝑘𝑖𝑛𝑔

This ranking system punishes doorways for being wider than the wheelchair width and for 

being far away from the chair.  The gains in place are used to balance the weighting of width 

and distance ranks, allowing control over the process of selecting the doorway.  The result was 

the isolated doorway seen on the graph on the right in Figure 10. 

4.3.3 Doorway Detector Performance and Adjustments 

Testing the doorway detection functionality in more diverse locations showed promise for use 

in larger rooms containing more details.  The wheelchair was taken through a lab environment 

containing many features that were partially undetectable by the LiDAR and could provide 

false positive detections for the doorway detector. 

The detector was able to distinguish where doorways were majority of the time, one case 

example shown in Figure 11 where three doorways were detected and a fourth false positive 

𝑙𝑒𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑛𝑘 𝑏𝑒 𝐿𝑑 , 𝑤𝑖𝑑𝑡ℎ 𝑟𝑎𝑛𝑘 𝑏𝑒 𝐿𝑤  

𝐿𝑤 = (𝑤𝑑 − 𝑤𝑐) ∗ 𝑘𝑑  

𝐿𝑑 =
𝑘𝑑

𝑘𝑤

 

𝑟𝑎𝑛𝑘 = (𝐿𝑤 + 𝐿𝑑)−1
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detected at the corner of a small room.  Due to noise present in LiDAR measurements, data did 

not always represent the true details in the room.  Sometimes points were detected where no 

data existed or weak laser reflections returning as an infinite result, leaving regions with edges 

for the detector to trigger on though no edge existed in the real world.  This allowed corners of 

rooms to be recognised as doorways and occasionally doorways were detected with offsets due 

to false readings on obstacles that do not exist. 

Figure 11: Doorway Detection results overlaid onto 2d map of the room 

To remove false doorways being detected between two readings with ‘infinite’ values, the 

detector was changed to use the previous detection which held a decimal range when searching 

for the initial rising edge of a doorway.  Passing the same range data as in Figure 11 resulted 

in detection ‘A’ being removed from the data due to removing one of the false edges caused 

by the presence of two infinite edges near one another. 

A – False doorway 

detection due to two ‘inf’ 

detections where returning 

laser signal was too weak 

to be detected by LiDAR. 

Resulted in a falling and 

rising edge at just the right 

conditions to be detected 

as a doorway. 

B – Doorway with offset 

due to detection of obstacle 

that did not exist (noise). 

C & D – Doorways 

detected accurately by the 

detector.  C was selected as 

most likely doorway by 

ranker. 

A 

B 

C D 
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Figure 12: doorway detection results using data from previous figure, preventing infinite readings being triggered as rising 

edges 

Preventing infinite readings being read as rising edges is beneficial for navigating between 

rooms where the LiDAR is no more than 12 metres from a wall visible beyond the doorway to 

provide a dataset where edges can be extracted from.  For cases where the doorway has only 

infinite detections between the edges of the doorway, such as a doorway leading into a large 

open room, the doorway will now longer be detectable. 

4.3.4 Velocity Controller 

The motor on the wheelchair is controllable by sending velocity commands through ROS.  

Velocity commands are read by an Arduino micro-controller and converted into a signal the 

motor can understand. 

The navigation goal for the wheelchair is defined by the location of isolated doorway.  The x 

and y coordinates are found for the centre of the doorway and this used to determine the forward 

and angular velocity to be sent to the chair.  An initial velocity controller was constructed using 

the distance from the doorway in the y axis as forward velocity and the distance in the x axis 

as the angular velocity.  The maximum forward velocity of the chair was found to occur when 

a value of ±2 was sent using the velocity command for linear movement along the x axis, 
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where positive values responded to forward movement and negative values responded to 

movement backwards.  Maximum angular velocity occurred when a value of ±2.8 was sent 

using velocity command for angular movement on the z axis. 

The velocity controller was setup with conditions to modify performance under different 

conditions after testing and adjusting the controller output over a series of runs, with 

simulations initially and then with the real-world wheelchair.  The logic flow of the final 

velocity controller is presented in Figure 13. 

Figure 13: Velocity Controller Logic for Doorway Navigator 

4.3.5 Navigation Performance and Adjustments 

Tests using the initial version of the velocity controller to navigate the chair through doorways 

were not compatible with real-world conditions.  It was discovered that the simulated LiDAR 

was producing range data up to ten times faster than the physical LiDAR.  Additionally, there 

was notable lag between velocity commands being produced and the motor controller on the 

wheelchair moving the wheels.  The lag was in the range of 1-2 seconds which provided issues 

alongside the slower feed of range data from the LiDAR.  The result was a system that would 

overcompensate itself by turning heavily and the path of the chair up to the doorway was near 

constantly sinusoidal in nature with no evidence of the system settling. 

The system needed to be slowed down to allow the velocity controller enough time to dampen 

oscillation and allow the wheelchair to cross through the centre of the doorway without 

colliding with the doorway frame.  This was achieved by reducing the maximum velocity of 

the wheelchair when moving forward, slowing the overall time taken for the chair to reach the 

doorway.  This version of the velocity controller allowed for navigation through doorways, so 

Distance From
Centre of Doorway 

to Wheelchair

Motor Controller

Linear X: 0.25
Angular Z: 0.25

Xd < 0.1
Yd < 0.1

Xd < 0.1
Yd < 0.4

Xd > 0.1
Yd < 0.4

Else

Linear X: Yd

Angular Z: 0 - Xd

Linear X: 0.25 
Angular Z: 0 - Xd

Linear X: Yd / 2.5
Angular Z: 0 - Xd 0.65

Velocity Controller
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long as the wheelchair was not on too great an angle to the doorway opening as with the case 

in Figure 14.  The velocity controller in Figure 14 is underdamped, evident by the mild 

oscillation occurring on the x axis distance from the wheelchair which begins to be 

compensated for by increasing the turn velocity of the wheelchair as the wheelchair moves 

forward and never stops turning inwards until the system has compensated too much at roughly 

the 90 second mark. 

Figure 14: Results of Autonomous Wheelchair Navigation through Doorways with small misalignment from doorway 

To allow the wheelchair navigation through doorways under conditions where the chair was 

more heavily misaligned with the doorway than in Figure 14, the x axis compensation was 

increased by allowing the controller to send faster angular velocity commands.  The result was 

a controller that autonomously guided the wheelchair through doorways even when misaligned 

from the door so long as the wheelchair was within 1 metre of the centre of the doorway along 

the x axis and at least 0.8m away from the door on the y axis.  A set of results are shown in 

Figure 15 depicting the path of the wheelchair through a doorway when more heavily 

misaligned. 
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Figure 15: Results of Autonomous Wheelchair Navigation through Doorway Misaligned with Wheelchair 

Sharp turns and sudden stops were seen to occur when navigating.  This occurred due to the 

motor suddenly stopping when too great a change in wheel rotation commands were sent to the 

motor, or when the front swivel wheels on the chair are not aligned appropriately.  Under these 

conditions it would take 1-3 seconds for the motor to resume movement or for the front wheels 

to be pushed back into alignment from the force of the motor.  These occurrences were seen to 

recur randomly when the chair was navigated both autonomously and manually and was the 

cause of sharp changes in the wheelchair direction present in results. 

The produced navigator does suit the requirements of navigating narrow doorways without 

collision through the aid of the doorway detector that provides input to the velocity controller 

which guides the chair towards the doorway and corrects the system to allow the chair to pass 

through the centre of the opening without touching the door frame. 

4.4 PUPIL DETECTION FOR GAZE TRACKING 

Gaze tracking can provide an alternative form of input for individuals whom are incapable of 

controlling the chair via the joystick controller.  Setting up gaze tracking alongside virtual 

controllers laid out on a video display can be used to control wheelchair movements as well as 

offer further functionality to control the environment  should the chair be capable of connecting 

with devices outside the internal environment, such as automated homes or mobile phones. 

Testing the application of web cameras installed on most laptops for the use as a gaze tracker, 

the OpenCV library was utilised to generate python scripts that could detect the location of 

pupils from webcam feeds. 
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4.4.1 Removing unnecessary features from images 

Processing an image to determine the location of pupils required the process of first discovering 

the face, then eyes before being able to apply blob or circle detectors to find pupils.  Lighting 

changes and unique facial attributes can confuse detectors by presenting as pupil-like features 

after transformations are applied to the image, confusing detectors and reducing success rates 

of finding pupils within images. 

To reduce an input image down to the region containing face and then eyes, cascade classifiers 

are employed.  The cascade classifiers are pretrained machine learning algorithms available 

open source for use with OpenCV.  Using the face cascade classifier, faces are found in the 

image and returned as locations.  For the purpose of finding the pupil of a user seated in front 

of a webcam it is assumed that the largest face region would be where the pupils are positioned, 

so only the largest detected face was kept when searching the image.  Then within the face 

region an eye cascade classifier was used to locate the positions of the eyes.  Occasionally the 

chin or nose was detected as an eye so an assumption was made regarding where eyes would 

be located within the face: 

• If the face is separated into two halves, bottom and top, then eyes will only ever be

present on the top half of the face.

Using this assumption, all eyes detected with pixels on the lower half of the face were ignored, 

allowing accurate detection of eyes from an input image as in Figure 16 below. 
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Figure 16: face and eye detection using cascade classifiers with OpenCV 

The regions found by the eye cascade classifier contained quite a bit of space above and below 

the eyes.  To remove features such as eyebrows and freckles present in the upper and lower 

regions, a set of 30 images of random individuals from a google photos search of ‘person face’ 

were passed through the cascade classifiers and used to define the portions of unnecessary 

space within the returned regions.  Each image was measured individually to determine the 

how many pixels in height the unnecessary portions above and below the eye were, then was 

divided by the total height of the region to find percentages that can be used to remove features 

regardless of region size. 

eye_1
eye_2

face_1
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Figure 17: Histograms of the percentage of unnecessary space above and below the eye within returned eye regions 

Table 2: Results of measuring 30 images to determine percentages of unnecessary space above/below returned eye region 

Unnecessary Space Std Dev Smallest Bin (Smallest Bin - Std Dev) 

Above eye 4.47% 30.00% 25.53% 

Below eye 3.25% 22.50% 19.25% 

The data in Table 2 was calculated based on the percentage of images containing unnecessary 

space.  The smallest bin minus the standard deviation of the data was used as a guide for the 

largest amount of trimmable space within the returned regions of the eye.  To remove as much 

unnecessary space as possible, the regions were manipulated to crop the top 25% and the 

bottom 20%.  These levels left eyes intact whilst removing the eyebrows and most facial 

features below the eye. 

4.4.2 Pupil Isolation Method 1: Morphological Operations and Blob Detection 

The OpenCV library has an inbuilt function for detecting dots or ‘blobs’ within images called 

the ‘blob detector’.  Using thresholding to produce a binary representation of an image 

combined with morphological operations, it is possible to convert an image of an eye to a black 

circle where the pupil is located surrounded by a series of lines and blocks where features such 

as eyelids, hair are present. 
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Figure 18: Binary Conversion of RGB image of eye, preparing for detection of pupil 

4.4.2.1 Removing unnecessary features 

Preparing the eye for blob detection, the eye was converted from colour to greyscale.  The 

OpenCV library has functions for converting colour formats of images as well as reducing to 

binary representation of pixels using thresholds.  The greyscale eye was passed through a 

histogram equaliser to enhance the contrast of the image for better visual analysis, as lighting 

can often be poor using a standard webcam. 

The greyscale image is converted to binary representation (white and black pixels) using 

thresholding, and then filtered using morphological operations to assist with removing 

horizontal lines from the image to purge features like eyelid lines and hairs. 

Figure 19: Reducing image of eye down to binary representation of the pupil 
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Performing dilation on the image with a rectangular, one by two kernel removes features with 

horizontal lines.  Repeating the operation further reduces the presence of features with 

horizontal lines.  This process leaves a shape representing the area where the pupil is located, 

as depicted in Figure 19, showing the effect repeated dilation operations with a rectangular 

kernel on a binary representation of an eye. 

4.4.2.2 Blob detector to find pupil coordinates 

Passing the processed binary image of the eye through the blob detector, the coordinates of any 

detected blobs are returned.  Circles are drawn around the coordinates of the detected blobs on 

the image, as seen in Figure 20 demonstrating the output of the python application written to 

utilise the OpenCV library for detecting pupils using morphological operations and the blob 

detector. 

Figure 20: Using OpenCV blob detector to find location of pupil and draw circle over returned coordinates 

4.4.3 Pupil Isolation Method 2: Edge Detection and Circle Detection with Hough Transform 

To better detect the coordinates of pupils from the webcam feed, the Hough Transform was 

utilised within OpenCV.  OpenCV contains functions employing the Hough Transform for 

feature detection, such as detecting circles in greyscale images.  Although the OpenCV 

applications for circle detection with the Hough Transform is compatible with greyscale 

images, to remove the presence of circular features other than the pupil the Canny edge detector 

is utilised to convert the eye to a binary representation of edges within the image. 
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4.4.3.1 Preparing Image by Finding Edges 

To prepare the image for detecting circles through the Hough Transform, a Canny edge detector 

was employed to find the edges of identified eyes.  The OpenCV library contains a Canny edge 

detector built in that accepts a greyscale image and returns a binary image based on an upper 

and lower threshold portraying the edges detected within the greyscale image.  Refer to Figure 

21 for example of the edge detector output. 

Figure 21: Edge Detection using Canny Edge Detector within OpenCV 

The upper and lower threshold values are highly dependent on the lighting conditions within 

the image.  If the thresholds are setup for a webcam capturing images of a well-lit environment, 

the system will not produce the same results for an environment with poor lighting.  Edges may 

be poorly translated and result in pupils being undetectable as the contrast between the pupil, 

iris and/or eyelid may be too poor for the detector to distinguish edges between.  To ease this 

issue the colouring in the greyscale image is more evenly dispersed through histogram 

equalisation, reducing the difference in threshold values between poor and well-lit 

environments. 

4.4.3.2 Detecting circles from edges 

Parsing the edge representation of the eye through the ‘HoughCircles()’ OpenCV function, 

circular features within the image are identified and their coordinates returned.  The function 

uses the Hough Transform to search for circular features, allowing specification of minimum 

distance between features as well as a range for the radius of circles.  Other options allow for 

further tuning by changing the upper threshold used for the greyscale image and adjusting how 

exact features need to match. 

Once coordinates are returned, circles are drawn onto the image to indicate where pupils have 

been detected.  Figure 22 demonstrates the output of the python application written to utilise 

the OpenCV library for detecting pupils using edge detection and circular feature detection. 
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Figure 22: Pupil Detection using Hough Transform to find circles in image 

4.4.4 Comparison of pupil detectors 

The detectors from Method 1 and Method 2 were both able to detect pupils from a webcam 

feed.  The detection rate and average error in pixels were analysed to understand the 

performance of the two detectors.  These results are shown in Figure 23. 

Figure 23: Average Error (in pixels, average pupil radius was 6 pixels) of Returned Pupil Coordinates and Average 

Detection Rate for Methods 1 and 2 when looking at specific sections of the computer display 
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Comparing the two pupil detectors, method 1 is considerably more accurate than method 2 in 

terms of average error.  Method 1 consistently had an error of 1 or less pixels when looking at 

majority of the computer display, suggesting that pupil distance from the centre of the camera 

does not have a noticeable effect on average error.  Method 2 results suggest that as pupils drift 

further from the camera the average error increases, where the left pupil is closer to the camera 

centre when looking at the top right of the screen and the right pupil is closer to the camera 

centre when looking at the top left of the screen. 

When comparing detection rates, Method 2 was most reliable as it always returned coordinates 

unlike Method 1 with eyes being undetectable when looking at two regions of the display.  

While Method 1 is the most accurate, near always locating the pupils within a 1-pixel error 

under ideal lighting conditions, method 2 provides better feedback. 

If applied to gaze tracking now, method 1 would likely pinpoint pupil location but 

responsiveness would be slow and not capable of using both pupils at every portion of the 

display to determine where a user is looking.  Method 2 would be more jittery but have faster 

response rate, the trade-off being responsiveness for accuracy. 

4.5 VOICE CONTROL USING THE MYCROFT AGENT 

Voice control was tested for controlling wheelchair movement.  This was executed by writing 

a simple script that would be triggered by the MyCroft agent when keywords in Table 3 were 

detected and send velocity commands to the motor controller over ROS.  To reduce the 

occurrence of unwanted commands being sent, the MyCroft agent was chosen as it allowed 

setting of a custom hot word that would need to be spoken and detected before the agent began 

listening for new commands.  The hot word was kept as ‘Hey MyCroft’ for tests. 

Scripts for controlling the chair movements in a simulated environment were successfully 

activated by the MyCroft agent when spoken commands were recognised, given that the room 

was quiet.  Testing the agent in a room with music playing, as the surrounding noise increased 

in volume the agent had trouble recognising spoken commands using the microphone built into 

the wheelchair computer.  Switching over to a standard microphone in a headset, the agent 

could recognise commands better in noisy environments, but commands were still often missed 

or incorrectly translated. 
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Table 3: Speech Recognition - Keywords/Phrases and Associated Triggers 

Keyword or Phrase Spoken Response Triggered Action 

“Forward” or 

“Move” 

“Moving forward” Run script to send velocity 

command to move chair 

forwards 

“How are you” “I’m doing well” or 

“Pretty well” or 

“I’m doing very well” 

No triggered action 

The MyCroft agent can be programmed to recognise multiple keywords or phrases for a single 

action and/or response, as well as cycle through multiple responses to provide more natural 

conversation flow.  When asked “How are you” the agent would respond with one of three 

responses.  This can be utilised to provide instructions to the user on how to use the agent. 
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5 Limitations 

Technology restraints and environmental conditions have resulted in limited success for aspects 

of the ABC wheelchair.  Due to the quarantine restrictions in the presence of COVID-19 it 

became difficult to obtain users to test the operation of the pupil detector and speech 

recognition. 

The LiDAR utilised has a view of 360 degrees, however this complete vision of the 

environment was blocked by the user sitting in the chair and partially by the chair itself.  The 

LiDAR hat to be positioned in a location where it would be able to detect obstacles around the 

room to generate maps of rooms.  If the LiDAR had been positioned above the head of the user 

then full range of measurements would be available however many features such as tables and 

chairs would be lost. 

Processing power was limited on the wheelchair computer and real-time processes had to be 

executed relatively quickly to keep the system responses up to date.  This posed issues when 

developing the edge based doorway navigator.  Ideally the edges would be detected by 

converting the LiDAR readings into a 600 by 600 grid of cells representing an area of 3cm2 

each to process for doorway detection.  The grid could be treated as a picture and an edge 

detector used to find and pair edges in two dimensions to find potential doorways, which would 

provide a more thorough search.  This process exponentially increases the calculations however 

based on the number of cells and required lengthy execution times that were not suitable to 

control the system.  As a result, the one-dimensional solution was applied to reduce the 

execution time. 

Real-time control of navigational control was hindered by the delay between velocity 

commands being sent to the motor before being executed.  The delay was often larger than one 

second which could allow the chair to collide with obstacles before it was able to correct itself.  

This posed an issue implementing the real-time doorway navigator as extra caution had to be 

used to keep the chair from travelling too fast towards walls and doorways to prevent collisions 

before correction could be employed. 

As the wheels on the front of the chair were connected on freely rotating hinges, the intended 

movement of the chair was not always executed when the front wheels were not aligned and 

had to be forced into place by the force of the motor on the rear wheels.  This resulted in sharp 

turns or generally unwanted movements which caused issues when navigating through narrow 
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spaces such as doorways and halls.  The resulted in the wheelchair needing to be slowed down 

when nearing narrow spaces to allow the system more time to correct itself and prevent 

collisions. 

Testing of pupil isolators for the future development of a gaze tracking system showed that 

both isolators were highly dependent on lighting conditions.  The system was highly dependent 

on external lighting to operate properly and required retuning when lighting conditions 

changed.  The system is not useable in dark environments and if being used as a method for 

gaze tracking would require either a light built into the chair to illuminate the face of the user 

or utilise an IR camera that could operate in both poor and well lit environments. 

The MyCroft agent was only capable of interpreting spoken commands when connected to the 

internet.  To allow for offline speech recognition a local interpreter would have to be installed.  

The deepnet neural network the agent uses is available to be run locally on a machine however 

the processing power required slowed system resources down and hindered the execution times 

of real-time systems on the machine when ran simultaneously.  As a result the agent was kept 

to do processing through the online server and required internet access to operate. 
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6 Improvements 

The processing power on the chair computer provided limitations for the demand that 

navigational resources could utilise.  By providing more processing power the edge based 

navigator could be processed within a 2 dimensional context and allow for thorough search 

algorithms to determine the locations of doorways.  The range data could be treated as an image 

processing problem to extract points where edges end and fill in details of small gaps more 

accurately as well as utilising median filtering or similar techniques that preserve edges in 

images whilst removing salt and pepper noise present from false detections of the LiDAR. 

The SLAM software can be improved by providing additional sensor data that could interpret 

range data in a 3d context, whether that be the integration of sonar or 3d laser finding from the 

Kinect Camera.  Combining this with the LiDAR would allow for detection of obstacles outside 

the LiDAR range and may remove the need for angling the LiDAR, allowing for maps to be 

produced with level of detail output by the level LiDAR and providing the necessary obstacle 

detection for objects outside the LiDAR range.  The Kinect Camera would be a good choice 

for this as it can provide 3d range data in 120 degrees of view in front of the chair to provide 

higher resolution data on obstacles in the environment as opposed to the single beam sonar 

ranges. 

The gaze tracking requires further research to first provide accurate pupil detection of both 

pupils when looking at the entire range of the computer display.  This could be achieved by 

combining the data from method 1 and 2 using a particle filter or similar.  Coordinates from 

method 1 of pupils would supply a near guaranteed location that could set all particles to a 

single location and then use coordinates from method 2 better estimate the most likely position 

by carrying over the likelihood from each stage.  This method may allow for estimations that 

find a happy medium between the accuracy of method 1 and the responsiveness of method 2.  

From this point machine learning may be employed to train a model that can correlate pupil 

locations with points on the display to achieve a first draft of the gaze tracker. 
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7 Conclusion 

The work done for the wheelchair has provided a basis for future research into an addon system 

for powered wheelchairs that can tailor for a range of users with disabilities that prevent 

standard powered chairs from being useable or comfortable to use on their own. 

SLAM utilising the cartographer system and LiDAR can produce viable maps of rooms and 

track the location of the chair as it moves around environments without the need for wheel 

odometry to support it.  The LiDAR can handle being angled downwards towards the front of 

the wheelchair up to roughly 25 degrees for greater vision of obstacles closer to the ground 

before behaviour of the SLAM system begins to poorly track location and map rooms.  The 

system has room for improvement by incorporating additional sensors to feed information on 

the environment outside the LiDAR sensing range and improve system visibility. 

The doorway navigator can successfully navigate narrow doorways without collision with the 

door frames thanks to the velocity controller.  The controller successfully corrects the 

wheelchair movement taking input from the edge based doorway detector based on range data 

received by the LiDAR to search for doorways in an environment.  The navigator can operate 

in real-time and is capable of correcting the path of the wheelchair towards the door when not 

aligned with the doorway.  There is space here for triggering the navigator when doorways are 

detected using image recognition based on the Kinect Camera feed, as well as the potential to 

produce a more robust detector using a two dimensional approach as mention in the 

improvements section. 

The pupil detectors still require further work before a gaze tracking system can be finished.  

The detectors on their own cannot accurately detect the position of pupils as the user looks 

around every extremity of the computer display.  Further work needs to be done to either 

combine the two systems as discussed previously or find an alternative method that is more 

ideal whilst still operating on ‘budget’ technology to reduce the cost of addon system for 

powered wheelchairs. 

The MyCroft agent proved to be a useful tool as an input alternative to the joystick.  More work 

will be required to develop full control of the wheelchair using the voice assistant as only basic 

testing was performed to prove that the technology could be used.  Moving forward it may be 

necessary to move the speech recognition to be performed locally.  This will benefit the user if 
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they are attempting to operate the wheelchair in environments where network connectivity is 

not available. 

The system is progressing towards an accessible power wheelchair addon that can benefit 

individuals with disabilities and impairments.  With research into brain control interfaces being 

developed by other researchers and the branches opened here on gaze tracking and speech 

control for the ABC Wheelchair, it has the potential to become a system that can suit a diverse 

range of users.  When selecting technology to aid individuals it is important to consider what 

is comfortable, suitable and viable for the individual.  By offering a powered chair with manual, 

assistive and autonomous systems in place that can be controlled via multiple input methods, 

it provides a greater audience of users the ability to attain an unknown level of freedom that 

was otherwise inaccessible to them and offer greater quality of life for the future. 
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9 Appendix A 

9.1 CODE ASSOCIATED WITH DOORWAY NAVIGATION 

Code associated with edge based doorway navigation from range data. 

9.1.1 controller.py 

#! /usr/bin/env python2 

import rospy 

import datetime 

import doorNav 

import numpy as np 

import time 

from sensor_msgs.msg import LaserScan 

from geometry_msgs.msg import Twist 

import matplotlib.pyplot as plt 

import lidarProcessor as lpr 

# redundant variables 

# front = 0 

# side = 0 

# bufferFront = 0 

# bufferFront = 0 

pub=rospy.Publisher("cmd_vel",Twist,queue_size=1) 

speed=Twist() 

forward=0 

side=0 

[theta_range_1,theta_range_2, front, side] = doorNav.setup() 

global reading 

global count 

count = 0 

global accX 

global accY 

global yOrient 

accX=[] 

accY=[] 

yOrient = [] 

plt.ion() 

#plot readings for visual of room and doorway from LiDAR 

def plotReadings(point_x,point_y,x,y,edge_x,edge_y): 

    plt.figure(2) 

    plt.plot(x,y,'go',markersize="1.5") 
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    plt.plot(edge_x,edge_y,'bo',markersize="6") 

    plt.plot(point_x,point_y,'ro',markersize="6") 

    plt.axis([-12,12,-12,12]) 

    plt.pause(0.0001) 

    plt.clf() 

def callback(msg): 

    global accX 

    global accY 

    global count 

    count = count + 1 

    measurements = doorNav.segment_measurements(msg) 

    reading = doorNav.assign_angle(msg) 

    result = lpr.edges(reading,0.1,0.9) 

    if (len(result) > 0): 

door = result[0] 

edges = result[1] 

if (count > 40): 

accX.append((door[0][0] + door[0][1])/2)#middle of door in x plane 

accY.append((door[1][0] + door[1][1])/2)#middle of door in y plane 

yOrient.append(door[1][0] - door[1][1])#0 is perpendicular to door 

np.savetxt('accX.csv',accX,delimiter=',') 

np.savetxt('accY.csv',accY,delimiter=',') 

np.savetxt('yOrient.csv',yOrient,delimiter=',') 

    else: 

door = [[0,0],[0,0]] 

edges = [0,0] 

    goalx = (door[0][0] + door[0][1])/2 

    goaly = (door[1][0] + door[1][1])/2 

    #condition 1 

    if (goaly < 0.1 and goalx < 0.1): 

forward = 0 

turn = 0 

    #condition 2 

    elif (goaly < 0.4 and goalx < 0.1): 

forward = goaly 

turn = 0 - goalx 

    #condition 3 

    elif (goaly < 0.4 and goalx > 0.1): 

forward = 0.25 
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turn = 0 - goalx 

    #condition 4 

    else: 

forward = (goaly)/2.5 

turn = 0 - goalx*0.65 

    if (count > 40): 

count = 0 

x = [] 

y = [] 

for meas in reading: 

x.append(doorNav.find_x(meas[1],meas[0]))

y.append(doorNav.find_y(meas[1],meas[0]))

plotReadings([door[0]],[door[1]],x,y,edges[0],edges[1]) 

    print (forward, turn) 

    speed.linear.x=forward/2 

    speed.angular.z=turn/2 

    pub.publish(speed) 

def callback2(msg): 

    global prev_speed 

    prev_speed = msg.linear.x 

    prev_turn = msg.angular.z 

rospy.init_node('scan_values') 

pub.publish(speed) 

sub = rospy.Subscriber('/laser', LaserScan, callback) 

rospy.spin() 
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9.1.2 lidarProcessor.py 

import math 

import numpy as np 

import matplotlib.pyplot as plt 

import doorNav 

# find edges in the captured data using change in distances 

def edges(data, threshold, width): 

    index = [] 

    degFilterStart = math.pi/2 

    degFilterEnd = math.pi*1.5 

    for i in range(len(data)-1): 

angle = data[i][1] 

# isolate to 90 -> 270 deg to prevent computer from being detected 

if (angle > degFilterStart and angle < degFilterEnd): 

ray = data[i][0]  # the current ray distance 

rayNext = data[i+1][0]  # the next ray distance 

changeInRay = rayNext - ray #change in dist btwn current and next 

#if there an increase ray distance, assume possible door opening 

if ( changeInRay > threshold ): 

   opening = i #store possible edge of door opening 

   iterator = i + 1 

   while(iterator < len(data)-1 and angle < degFilterEnd): 

iterator = iterator + 1 #increment position in data 

angle = data[iterator][1] #update angle for end condition 

ray = data[iterator-1][0] 

rayNext = data[iterator][0] 

changeInRay = rayNext - ray #for search of decreasing dist

if( changeInRay < (0 - threshold) ): 

   distance = calcDistance(data[opening],data[iterator]) 

   print(distance) 

   if ( distance < 1.5*width and distance > 0.5* width ): 

openingDistance = data[opening][0] 

iteratorDistance = data[iterator][0] 

radius = max(openingDistance, iteratorDistance) 

safe = True 

#if any point between edges has detection < radius 

for point in range( opening+1,iterator ): 

ray = data[point][0] 

if ( ray < radius ): 

  safe = False #don't apend points 

# add if no detection between two edges 

if ( safe ): 
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index.append([opening,iterator]) 

    #if edges found, rank them and return all valid edges for plotting 

    if (len(index) > 0): 

positions = rankEdges(data, index, width) 

opening = data[positions[0]] 

closing = data[positions[1]] 

x = [doorNav.find_x(opening[1],opening[0]), doorNav.find_x(closing[1],

closing[0])] 

y = [doorNav.find_y(opening[1],opening[0]), doorNav.find_y(closing[1],

closing[0])] 

xCollated = [] 

yCollated = [] 

for point in index: 

hypOpening = data[point[0]][0] 

hypClosing = data[point[1]][0] 

angleOpening = data[point[0]][1] 

angleClosing = data[point[1]][1] 

xCollated.append(doorNav.find_x(angleOpening, hypOpening)) 

xCollated.append(doorNav.find_x(angleClosing,hypClosing)) 

yCollated.append(doorNav.find_y(angleOpening,hypOpening)) 

yCollated.append(doorNav.find_y(angleClosing,hypClosing)) 

return [[x,y],[xCollated,yCollated]] 

    else: 

return [] 

#rank possible doorways 

def rankEdges(data, index, expWidth): 

    kw = 1 #higher = greater punishment on door width 

    kd = 2 #lower = greater punishment on distance 

    likelyEdges = None 

    mostLikely = None 

    for i in index: 

foundWidth = calcDistance(data[i[0]],data[i[1]]) 

widthDev = abs(foundWidth-expWidth) 

avgDistance = (data[i[0]][0] + data[i[1]][0])/2 

likelihood = (widthDev * kw) + (avgDistance / kd) 

if(likelihood < mostLikely or mostLikely is None): 

mostLikely = likelihood 

likelyEdges = i 

    return likelyEdges 

#use pythag to determine distance between two points 

def calcDistance(a,b): 

    aHyp = a[0] 

    bHyp = b[0] 

    aTheta = (a[1]) 

    bTheta = (b[1]) 



56 | P a g e

    ax = doorNav.find_x(aTheta, aHyp) 

    bx = doorNav.find_x(bTheta, bHyp) 

    ay = doorNav.find_y(aTheta, aHyp) 

    by = doorNav.find_y(bTheta, bHyp) 

    distance = math.sqrt(math.pow(ax-bx,2) + math.pow(ay-by,2)) 

    return distance 
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9.1.3 doorNav.py 

import math 

import datetime 

import numpy as np 

import json 

import time 

import matplotlib.pyplot as plt 

with open('config.json') as json_file: 

    config = json.load(json_file) 

#setup the chair dimensions and lidar range 

def setup(): 

    with open('config.json') as json_file: 

config = json.load(json_file) 

# Calculate dimensions of boundary 

front = config["front"] + config["bufferFront"] 

side = config["side"] + config["bufferSide"] 

# Calculate range for detecting objects in front 

theta_range_1 = (math.atan(front/side)) + math.pi/2 

theta_range_2 = math.pi*1.5 - math.atan(front/side) 

return [theta_range_1,theta_range_2, front, side] 

#Assigns an angle to the range and returns as array 

def assign_angle(msg): 

    measure = msg.ranges 

    data = [None]*len(measure) 

    angle = float(0) 

    inc = msg.angle_increment 

    # Collate lidar measure and angle into array data 

    for i in range(len(measure)): 

data[i] = [measure[i],angle] 

angle = angle + inc 

    return data 

#segment lidar ranges into 5 segments 

def segment_measurements(msg): 

    lidarLeft = [None]*40 

    lidarFrontLeft = [None]*40 

    lidarFront = [None]*40 

    lidarFrontRight = [None]*40 

    lidarRight = [None]*40 

    for i in range(40): 
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lidarLeft[i]=msg.ranges[i+80] 

lidarFrontLeft[i]=msg.ranges[i+120] 

lidarFront[i]=msg.ranges[i+160] 

lidarFrontRight[i]=msg.ranges[i+200] 

lidarRight[i]=msg.ranges[i+240] 

    left = round(min(lidarLeft),3) 

    frontLeft = round(min(lidarFrontLeft),3) 

    front = round(min(lidarFront),3) 

    frontRight = round(min(lidarFrontRight),3) 

    right = round(min(lidarRight),3) 

    measurements = [left, frontLeft, front, frontRight, right] #segment 1,2,3,

4,5 

    return measurements 

def compare_change(bookmark,data,window): 

    search = [] 

    for i in range(window): 

search.append(data[bookmark+i][0])#-data[bookmark+(i + 1)][0]) 

    median = np.median(search) 

    if (search[0] < 2*median): 

return True 

    else: 

return False 

def compare_change_2(first_edge,data,window): 

    index = [] 

    bookmark = first_edge + 1 

    while (data[bookmark][1] < math.pi*1.5): 

search = [] 

for i in range(window): 

search.append(data[bookmark-i][0])#-data[bookmark-(i + 1)][0]) 

median = np.median(search) 

if (search[0] < 2*median): 

radius = max(data[first_edge][0],data[bookmark][0]) 

safe = True 

for point in range(first_edge+1,bookmark): 

   if (data[point][0] < radius): 

safe = False 

if (safe): 

   index.append([first_edge,bookmark]) 

bookmark = bookmark + 1 

    return index 

def find_edges_v2(msg, threshold, width): 

    data = assign_angle(msg) 

    index = [] 

    edges = [] 
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    recordx = [] 

    recordy = [] 

    probability = None 

    edge1 = None 

    edge2 = None 

    likelyEdge = [None,None]    

    for i in range(len(data)-1): 

meas = data[i][0] 

meas_next = data[i+1][0] 

angle = data[i][1] 

if (angle > math.pi/2 and angle < math.pi*1.5): 

if(compare_change(i,data,4)): 

   index = compare_change_2(i,data,4) 

    for i in index: 

edge1 = data[i[0]] 

edge2 = data[i[1]] 

edges.append(calc_distance(edge1,edge2)) 

recordx.append(find_x(edge1[1],edge1[0])) 

recordy.append(find_y(edge2[1],edge2[0])) 

    #print("found edges:",edges) 

    for i in range(len(edges)): 

stat = abs(edges[i]-width) 

#print(stat,math.degrees(data[index[i][0]][1]),math.degrees(data[index

[i][1]][1])) 

if(stat < probability or probability is None): 

probability = stat 

point1 = index[i][0] 

point2 = index[i][1] 

likelyEdge = [data[point1],data[point2]] 

#print("--------------") 

    return (likelyEdge,recordx,recordy) 

def find_edges_v3(msg, threshold, width): 

    data = assign_angle(msg) 

    index = [] 

    edges = [] 

    recordx = [] 

    recordy = [] 

    probability = None 

    edge1 = None 

    edge2 = None 

    likelyEdge = [None,None] 
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    for i in range(len(data)-1): 

meas = data[i][0] 

meas_next = data[i+1][0] 

angle = data[i][1] 

if (angle > math.pi/2 and angle < math.pi*1.5 and meas < 4): 

if (meas_next - meas > threshold): 

   edge1 = i 

   j = i 

   while(j < len(data)-1 and data[j][1] < math.pi*1.5): 

j = j+1 

if(data[j][0] - data[j-1][0] < 0 - threshold): 

   radius = max(data[i][0],data[j][0]) 

   safe = True 

   for point in range(i+1,j): 

if (data[point][0] < radius): 

safe = False 

   distance = calc_distance(data[i],data[j]) 

   if (safe and distance < 1.6*width and distance > 0.4 *

 width): 

index.append([i,j]) 

    for i in index: 

edge1 = data[i[0]] 

edge2 = data[i[1]] 

edges.append(calc_distance(edge1,edge2)) 

recordx.append(find_x(edge1[1],edge1[0])) 

recordx.append(find_x(edge2[1],edge2[0])) 

recordy.append(find_y(edge1[1],edge1[0])) 

recordy.append(find_y(edge2[1],edge2[0])) 

    #print("found edges:",edges) 

    for i in range(len(edges)): 

stat = abs(edges[i]-width) 

#print(stat,math.degrees(data[index[i][0]][1]),math.degrees(data[index

[i][1]][1])) 

if(stat < probability or probability is None): 

probability = stat 

point1 = index[i][0] 

point2 = index[i][1] 

likelyEdge = [data[point1],data[point2]] 

#print("--------------") 

    return [likelyEdge,recordx,recordy] 

def find_edges(msg, threshold, width): 

    data = assign_angle(msg) 

    index = [] 

    edges = [] 
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    recordx = [] 

    recordy = [] 

    probability = None 

    edge1 = None 

    edge2 = None 

    likelyEdge = [None,None] 

    for i in range(len(data)-1): 

meas = data[i][0] 

meas_next = data[i+1][0] 

angle = data[i][1] 

if (angle > math.pi/2 and angle < math.pi*1.5 and meas < 4): 

if (meas_next - meas > threshold): 

   edge1 = i 

   j = i 

   while(j < len(data)-1 and data[j][1] < math.pi*1.5): 

j = j+1 

if(data[j][0] - data[j-1][0] < 0 - threshold): 

   radius = max(data[i][0],data[j][0]) 

   safe = True 

   for point in range(i+1,j): 

if (data[point][0] < radius): 

safe = False 

   if (safe): 

index.append([i,j]) 

    for i in index: 

edge1 = data[i[0]] 

edge2 = data[i[1]] 

edges.append(calc_distance(edge1,edge2)) 

recordx.append(find_x(edge1[1],edge1[0])) 

recordx.append(find_x(edge2[1],edge2[0])) 

recordy.append(find_y(edge1[1],edge1[0])) 

recordy.append(find_y(edge2[1],edge2[0])) 

    #print("found edges:",edges) 

    for i in range(len(edges)): 

stat = abs(edges[i]-width) 

#print(stat,math.degrees(data[index[i][0]][1]),math.degrees(data[index

[i][1]][1])) 

if(stat < probability or probability is None): 

probability = stat 

point1 = index[i][0] 

point2 = index[i][1] 

likelyEdge = [data[point1],data[point2]] 

#print("--------------") 
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    return [likelyEdge,recordx,recordy] 

def calc_distance(a,b): 

    aHyp = a[0] 

    bHyp = b[0] 

    aTheta = (a[1]) 

    bTheta = (b[1]) 

    ax = find_x(aTheta, aHyp) 

    bx = find_x(bTheta, bHyp) 

    ay = find_y(aTheta, aHyp) 

    by = find_y(bTheta, bHyp) 

    distance = math.sqrt(math.pow(ax-bx,2) + math.pow(ay-by,2)) 

    return distance 

def find_x(theta,hyp): 

    if (theta < math.pi/2): 

theta = (math.pi/2) - theta 

result = math.cos(theta)*hyp 

    elif (theta < math.pi): 

theta = theta - math.pi/2 

result = math.cos(theta)*hyp 

    elif (theta < 3*math.pi/2): 

theta = (3*math.pi/2) - theta 

result = -math.cos(theta)*hyp 

    else: 

theta = theta - (3*math.pi/2) 

result = -math.cos(theta)*hyp 

    return result 

def find_y(theta,hyp): 

    if (theta < math.pi/2): 

theta = (math.pi/2) - theta 

result = -math.sin(theta)*hyp 

    elif (theta < math.pi): 

theta = theta - math.pi/2 

result = math.sin(theta)*hyp 

    elif (theta < 3*math.pi/2): 

theta = (3*math.pi/2) - theta 

result = math.sin(theta)*hyp 

    else: 

theta = theta - (3*math.pi/2) 

result = -math.sin(theta)*hyp 

    return result 

#prints the segment min measurements from LiDAR 

def show_lidar_measurements(data): 

    print datetime.datetime.now().time() 
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    print data[3],"|",data[2],"|",data[1] 

    print data[4],"| o |",data[0]

    print "  x   |   x   |   x"

    print "----------------------"  

def check_if_safe(data): 

    w_safe = config["w"] 

    r_safe = w_safe/math.cos(config["a"]) - 0.1 

    #print "r_safe:",r_safe 

    f_safe = 0.25 

    ok = True 

    if data[0] < w_safe or data[4] < w_safe: 

ok = False 

    elif data[1] < r_safe or data[3] < r_safe: 

ok = False 

    elif data[2] < f_safe: 

ok = False 

    return ok 

#Return hypotenuse given adjacent side and angle    

def calc_ray(adj, angle): 

    result = adj / math.cos(angle) 

    return result 

#Placeholder for calculating the safety range for each measurement 

def calc_boundaries(data): 

    print "initialising boundaries..." 

    with open('config.json') as json_file: 

config = json.load(json_file) 

front = config["front"] + config["bufferFront"]/2 

side = config["side"] + config["bufferSide"] 

angle1 = (math.atan(front/side)) + math.pi/2 

angle2 = math.pi*1.5 - math.atan(front/side) 

result = [] 

for i in range(len(data)): 

theta = data[i][1] 

if (theta > angle1 and theta < angle2): 

   if (theta < math.pi): 

result.append( calc_ray(front, math.pi - theta) ) 

   else: 

result.append( calc_ray(front, theta - math.pi) ) 

else: 

   if (theta > math.pi/2 and theta <= angle1): 

result.append( calc_ray(side, theta - math.pi/2) ) 

   elif (theta < math.pi*1.5 and theta >= angle2): 

result.append( calc_ray(side, theta - math.pi*1.5) ) 

   else: 



64 | P a g e

result.append(0) 

return result 

def calc_chair_dimensions(data): 

    print "initialising boundaries..." 

    with open('config.json') as json_file: 

config = json.load(json_file) 

front = config["front"] + (config["bufferFront"]/3) 

side = config["side"] + (config["bufferSide"]/3) 

angle1 = (math.atan(front/side)) + math.pi/2 

angle2 = math.pi*1.5 - math.atan(front/side) 

result = [] 

for i in range(len(data)): 

theta = data[i][1] 

if (theta > angle1 and theta < angle2): 

   if (theta < math.pi): 

result.append( calc_ray(front, math.pi - theta) ) 

   else: 

result.append( calc_ray(front, theta - math.pi) ) 

else: 

   if (theta > math.pi/2 and theta <= angle1): 

result.append( calc_ray(side, theta - math.pi/2) ) 

   elif (theta < math.pi*1.5 and theta >= angle2): 

result.append( calc_ray(side, theta - math.pi*1.5) ) 

   else: 

result.append(0) 

return result 

def determine_movement(data): 

    heightLeft = math.sin(config["a"]*1.5)*data[3] 

    heightRight = math.sin(config["a"]*1.5)*data[1] 

    widthLeft = math.cos(config["a"]*1.5)*data[3] 

    widthRight = math.cos(config["a"]*1.5)*data[1] 

    forward = 0 

    turn = 0 

    with open('config.json') as json_file: 

config = json.load(json_file) 

# Calculate dimensions of boundary 

front = config["front"] + config["bufferFront"] 

side = config["side"] + config["bufferSide"] 

forward = min(data[2],heightLeft,heightRight) 

left = data[0] - 0.4 + widthLeft - 0.4 

    return [forward, turn] 
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def proceed_forward(reading, boundary): 

    result = True 

    for i in range(len(boundary)): 

        if (reading[i][0] < boundary[i]): 

            result = False 

     

    return result 

 

def navigate(reading, boundary, safety, angle1, angle2): 

    frontInBounds = True 

    leftInBounds = True 

    rightInBounds = True 

 

    leftMeasure = angle1 

    rightMeasure = angle2 

    frontMeasure = 12 

 

    left = 0 

    right = 0 

    forward = 0 

 

    for i in range(len(boundary)): 

        theta = reading[i][1] 

        distance = reading[i][0] 

        #print reading[i] 

 

        if (theta > math.pi/2 and theta < math.pi*1.5): 

            if (distance < 0.85): 

                #print(theta, "<", math.pi, theta<math.pi) 

                if (theta < math.pi): 

                    leftMeasure = max(leftMeasure,theta) 

                    #print(leftMeasure) 

                else: 

                    #print(theta, ">", math.pi, theta>math.pi) 

                    #print theta 

                    rightMeasure = min(rightMeasure, theta) 

                    #print(rightMeasure) 

 

        if (theta < angle1): 

             

            left = min(distance, left) 

            if left: 

                left = 1/left 

            if (distance < safety[i]): 

                leftInBounds = False 

 

        elif (theta > angle1 and theta < angle2): 
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if (distance < safety[i]): 

   frontInBounds = False 

else: 

   frontMeasure = min(frontMeasure,distance) 

else: 

if (distance < boundary[i] and theta < math.pi*1.5): 

   right = min(distance, right) 

   if right: 

right = 1/right 

if (distance < safety[i]): 

   rightInBounds = False 

    #if (frontInBounds & leftInBounds & rightInBounds): 

    max_speed = 0.6 

    max_distance_speed = 2 

    if (frontMeasure > max_distance_speed): 

frontMeasure = 2 

    forward = (frontMeasure*0.4) - 0.2 

    if (forward > max_speed): 

forward = max_speed 

    if (not frontInBounds): 

forward = 0 

    if (not leftInBounds and rightInBounds): 

right = 0.5 

    if (not rightInBounds and leftInBounds): 

left = 0.5 

    if (not rightInBounds and not leftInBounds): 

forward = 0 

right = 0 

left = 0 

    print("measurements",leftMeasure," ", rightMeasure) 

    print("turns",left," ", right) 

    turn = left - right 

    return[forward, turn] 

def navigate2(readings, boundary, safety, angle1, angle2): 

    leftMeasure = 12 

    rightMeasure = 12 

    forward = 0 
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    frontMeasure = 12 

 

    for i in range(len(boundary)): 

        theta = readings[i][1] 

        distance = readings[i][0] 

 

        if (theta > math.pi/2 and theta < math.pi*1.5): 

            if (theta < math.pi and distance < 1.5): 

                leftMeasure = min(distance, leftMeasure) 

                leftAngle = max 

            if (theta > math.pi and distance < 1.5): 

                rightMeasure = min(distance, rightMeasure) 

             

        if(theta > angle1 and theta < angle2): 

            if (distance < safety[i]): 

                frontInBounds = False 

            else: 

                frontMeasure = min(frontMeasure,distance) 

         

     

    if (rightMeasure > 1): 

        right = 0 

    else: 

        right = 1/rightMeasure 

 

    if (leftMeasure > 1): 

        left = 0 

    else: 

        left = 1/leftMeasure 

     

    if (frontMeasure > 3): 

        frontMeasure = 0.6 

    else: 

        frontMeasure = (frontMeasure/3) - 0.2 

     

 

    turn = left - right 

    forward = frontMeasure 

 

    return[forward, turn] 
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9.2 CODE ASSOCIATED WITH CARTOGRAPHER SLAM 

This section contains the configuration files used to tune the Cartographer SLAM system 

9.2.1 2d_lidar_0_deg_optimised_with_partial_odom.lua 

-- Copyright 2016 The Cartographer Authors 

-- 

-- Licensed under the Apache License, Version 2.0 (the "License"); 

-- you may not use this file except in compliance with the License. 

-- You may obtain a copy of the License at 

-- 

--      http://www.apache.org/licenses/LICENSE-2.0 

-- 

-- Unless required by applicable law or agreed to in writing, software 

-- distributed under the License is distributed on an "AS IS" BASIS, 

-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

-- See the License for the specific language governing permissions and 

-- limitations under the License. 

 

include "map_builder.lua" 

include "trajectory_builder.lua" 

 

options = { 

  map_builder = MAP_BUILDER, 

  trajectory_builder = TRAJECTORY_BUILDER, 

  map_frame = "map", 

  tracking_frame = "chassis", 

  published_frame = "chassis", 

  odom_frame = "wheel_odom", 

  provide_odom_frame = true, 

  publish_frame_projected_to_2d = true, 

  use_odometry = true, 

  use_nav_sat = false, 

  use_landmarks = false, 

  num_laser_scans = 1, 

  num_multi_echo_laser_scans = 0, 

  num_subdivisions_per_laser_scan = 1, 

  num_point_clouds = 0, 

  lookup_transform_timeout_sec = 0.2, 

  submap_publish_period_sec = 0.5, 

  pose_publish_period_sec = 5e-3, 

  trajectory_publish_period_sec = 30e-3, 

  rangefinder_sampling_ratio = 1., 

  odometry_sampling_ratio = 1., 

  fixed_frame_pose_sampling_ratio = 1., 

  imu_sampling_ratio = 1., 

  landmarks_sampling_ratio = 1., 

} 
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MAP_BUILDER.use_trajectory_builder_2d = true 

 

-- input stream settings 

TRAJECTORY_BUILDER_2D.min_range = 0.3 

TRAJECTORY_BUILDER_2D.max_range = 11.5 

TRAJECTORY_BUILDER_2D.missing_data_ray_length = 11.5 

TRAJECTORY_BUILDER_2D.use_imu_data= false 

TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.max_range = 11.5 

TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.max_range = 11.5 

TRAJECTORY_BUILDER_2D.num_accumulated_range_data = 1 

 

-- local slam 

TRAJECTORY_BUILDER_2D.submaps.num_range_data = 300 

 

-- ceres scan matcher 

TRAJECTORY_BUILDER_2D.motion_filter.max_angle_radians = math.rad(3.5) 

TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 1e-3 

TRAJECTORY_BUILDER_2D.ceres_scan_matcher.rotation_weight = 1e3 

TRAJECTORY_BUILDER_2D.ceres_scan_matcher.occupied_space_weight = 1e-2 

 

-- realtime scan match 

TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true 

TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.linear_search_window 

= 1e-1 

TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.translation_delta_cos

t_weight = 1e-3 

TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.rotation_delta_cost_w

eight = 1e-3 

 

--global slam 

POSE_GRAPH.constraint_builder.min_score = 0.65 

POSE_GRAPH.constraint_builder.log_matches = true 

POSE_GRAPH.constraint_builder.fast_correlative_scan_matcher.linear_search_wind

ow = 20.0 

POSE_GRAPH.constraint_builder.fast_correlative_scan_matcher.angular_search_win

dow = math.rad(10) 

POSE_GRAPH.optimization_problem.ceres_solver_options.max_num_iterations = 100 

POSE_GRAPH.constraint_builder.sampling_ratio = 1 

POSE_GRAPH.optimization_problem.log_solver_summary = true 

POSE_GRAPH.optimization_problem.huber_scale = 1e2 

POSE_GRAPH.optimize_every_n_nodes = 25 

 

-- localise weighting 

POSE_GRAPH.optimization_problem.local_slam_pose_translation_weight = 1e2 

POSE_GRAPH.optimization_problem.local_slam_pose_rotation_weight = 1e2 

POSE_GRAPH.optimization_problem.odometry_translation_weight = 1 
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POSE_GRAPH.optimization_problem.odometry_rotation_weight = 0 

return options 
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9.2.2 2d_lidar_25_deg_optimised_with_partial_odom.lua 

-- Copyright 2016 The Cartographer Authors 

-- 

-- Licensed under the Apache License, Version 2.0 (the "License"); 

-- you may not use this file except in compliance with the License. 

-- You may obtain a copy of the License at 

-- 

--      http://www.apache.org/licenses/LICENSE-2.0 

-- 

-- Unless required by applicable law or agreed to in writing, software 

-- distributed under the License is distributed on an "AS IS" BASIS, 

-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

-- See the License for the specific language governing permissions and 

-- limitations under the License. 

 

include "map_builder.lua" 

include "trajectory_builder.lua" 

 

options = { 

  map_builder = MAP_BUILDER, 

  trajectory_builder = TRAJECTORY_BUILDER, 

  map_frame = "map", 

  tracking_frame = "chassis", 

  published_frame = "chassis", 

  odom_frame = "wheel_odom", 

  provide_odom_frame = true, 

  publish_frame_projected_to_2d = true, 

  use_odometry = true, 

  use_nav_sat = false, 

  use_landmarks = false, 

  num_laser_scans = 1, 

  num_multi_echo_laser_scans = 0, 

  num_subdivisions_per_laser_scan = 1, 

  num_point_clouds = 0, 

  lookup_transform_timeout_sec = 0.2, 

  submap_publish_period_sec = 0.5, 

  pose_publish_period_sec = 5e-3, 

  trajectory_publish_period_sec = 30e-3, 

  rangefinder_sampling_ratio = 1., 

  odometry_sampling_ratio = 1., 

  fixed_frame_pose_sampling_ratio = 1., 

  imu_sampling_ratio = 1., 

  landmarks_sampling_ratio = 1., 

} 

 

MAP_BUILDER.use_trajectory_builder_2d = true 

 

-- input stream settings 
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TRAJECTORY_BUILDER_2D.min_range = 0.3 

TRAJECTORY_BUILDER_2D.max_range = 11.5 

TRAJECTORY_BUILDER_2D.missing_data_ray_length = 11.5 

TRAJECTORY_BUILDER_2D.use_imu_data= false 

TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.max_range = 11.5 

TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.max_range = 11.5 

TRAJECTORY_BUILDER_2D.num_accumulated_range_data = 1 

 

-- local slam 

TRAJECTORY_BUILDER_2D.submaps.num_range_data = 100 

 

-- ceres scan matcher 

TRAJECTORY_BUILDER_2D.motion_filter.max_angle_radians = math.rad(3.5) 

TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 1e-3 

TRAJECTORY_BUILDER_2D.ceres_scan_matcher.rotation_weight = 1e3 

TRAJECTORY_BUILDER_2D.ceres_scan_matcher.occupied_space_weight = 1e-1 

 

-- realtime scan match 

TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true 

TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.linear_search_window 

= 1e-1 

TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.translation_delta_cos

t_weight = 1e-3 

TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.rotation_delta_cost_w

eight = 1e-3 

 

--global slam 

POSE_GRAPH.constraint_builder.min_score = 0.65 

POSE_GRAPH.constraint_builder.log_matches = true 

POSE_GRAPH.constraint_builder.fast_correlative_scan_matcher.linear_search_wind

ow = 20.0 

POSE_GRAPH.constraint_builder.fast_correlative_scan_matcher.angular_search_win

dow = math.rad(10) 

POSE_GRAPH.optimization_problem.ceres_solver_options.max_num_iterations = 100 

POSE_GRAPH.constraint_builder.sampling_ratio = 1 

POSE_GRAPH.optimization_problem.log_solver_summary = true 

POSE_GRAPH.optimization_problem.huber_scale = 1e2 

POSE_GRAPH.optimize_every_n_nodes = 25 

 

-- localise weighting 

POSE_GRAPH.optimization_problem.local_slam_pose_translation_weight = 3 

POSE_GRAPH.optimization_problem.local_slam_pose_rotation_weight = 1 

POSE_GRAPH.optimization_problem.odometry_translation_weight = 1 

POSE_GRAPH.optimization_problem.odometry_rotation_weight = 0 

 

return options 
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9.3 CODE ASSOCIATED WITH PUPIL DETECTION 

This section contains the code for detecting pupils using the OpenCV library. 

9.3.1 blobDetector.py 

The program is adapted from work performed by Stepan Filanov [36]. 

import cv2 

import numpy as np 

import array 

import datetime 

img = cv2.imread("me.png") 

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') 

eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') 

detector_params = cv2.SimpleBlobDetector_Params() 

detector_params.filterByArea = True 

detector_params.maxArea = 1600 

detector = cv2.SimpleBlobDetector_create(detector_params) 

#For holding previous points of pupil values 

left_pupil = [None] * 10 

right_pupil = [None] * 10 

threshold = 20 

def cut_empty(img): 

    h, w = img.shape[:2] 

    upper_h = int(h / 4) 

    lower_h = int(h*4 / 5) 

    img = img[upper_h:lower_h, 0:w] #remove empty space above/below eye 

    return img 

def detect_eyes(img, classifier): 

    grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

    eyes = classifier.detectMultiScale(grey, 1.3, 5) # detect eyes 

    width = np.size(img, 1) # get face frame width 

    height = np.size(img, 0) # get face frame height 

    left_eye = None 

    right_eye = None 

    for (x, y, w, h) in eyes: 

if y > height / 2: 

pass 

eyecenter = x + w / 2  # get the eye center 

if eyecenter < width / 2: 

left_eye = img[y:(y + h), x:(x + w)] 

else: 

right_eye = img[y:(y + h), x:(x + w)] 

    return left_eye, right_eye 
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def detect_faces(img, classifier): 

    grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

    coords = classifier.detectMultiScale(grey, 1.3, 5) 

    if len(coords) > 1: 

max = (0, 0, 0, 0) 

for i in coords: 

if i[3] > max[3]: 

   max = i 

max = np.array([i], np.int32) 

    elif len(coords) == 1: 

max = coords 

    else: 

return None 

    for (x, y, w, h) in max: 

frame = img[y:(y + h), x:(x + w)] 

    return frame 

def blob_process(img, threshold, detector): 

    grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

    hist = cv2.equalizeHist(grey) 

    _, img = cv2.threshold(hist, threshold, 255, cv2.THRESH_BINARY) 

    horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 2)) 

    img = cv2.dilate(img, horizontal_kernel, iterations=2) 

    keypoints = detector.detect(img) 

    return [keypoints, img] 

def testing(): 

    vid = cv2.VideoCapture(0) 

    while True: 

_, frame = vid.read() 

face_frame = detect_faces(frame, face_cascade) 

if face_frame is not None: 

eyes = detect_eyes(face_frame, eye_cascade) 

for eye in eyes: 

   if eye is not None: 

eye = cut_empty(eyes[0]) 

grey = cv2.cvtColor(eye, cv2.COLOR_BGR2GRAY) 

hist = cv2.equalizeHist(grey) 

_, img = cv2.threshold(hist, threshold, 255, cv2.THRESH_BI

NARY) 

horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RE

CT, (1,2)) 

circle_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPS

E, (3,3)) 



75 | P a g e

square_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPS

E, (3,3)) 

preImg = img 

img = cv2.dilate(img, horizontal_kernel, iterations=3) 

#img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, circle_kerne

l) 

#img = cv2.morphologyEx(img, cv2.MORPH_OPEN, horizontal_ke

rnel, iterations=3) 

# repair_kernel = cv2.getStructuringElement(cv2.MORPH_RECT

, (2,4)) 

# img = 255 - cv2.morphologyEx(255 - img, cv2.MORPH_CLOSE,

 repair_kernel, iterations=1) 

# thresh = cv2.threshold(grey, 0, 255, cv2.THRESH_BINARY_I

NV + cv2.THRESH_OTSU)[1] 

# detected_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN

, horizontal_kernel, iterations=4) 

# cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNA

L, cv2.CHAIN_APPROX_SIMPLE) 

# cnts = cnts[0] if len(cnts) == 2 else cnts[1] 

# for c in cnts: 

#     cv2.drawContours(img, [c], -1, (255,255,255), 2) 

#img = cv2.dilate(img, square_kernel, iterations = 1) #1 

#img = cv2.erode(img, square_kernel, iterations=1) #2 

keypoints = detector.detect(img) 

cv2.imshow('my image 1', img1) 

cv2.imshow('my image 2', img2) 

cv2.imshow('my image 3', img3) 

cv2.imshow('my image 4', img4) 

cv2.imshow('my image 5', img5) 

cv2.imshow('my image 6', img6) 

cv2.imshow('grey',grey) 

cv2.imshow('hist',hist) 

cv2.imshow('binary pre',preImg) 

if cv2.waitKey(1) & 0xFF == ord('q'): 

break 

    vid.release() 

    cv2.destroyAllWindows() 

def nothing(x): 

    pass 

def main(): 

    frame_place = 1 

    vid = cv2.VideoCapture(0) 
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    cv2.namedWindow('image') 

    cv2.createTrackbar('threshold', 'image', 0, 255, nothing) 

    while True: 

_, frame = vid.read() 

face_frame = detect_faces(frame, face_cascade) 

if face_frame is not None: 

eyes = detect_eyes(face_frame, eye_cascade) 

i = 0 

for eye in eyes: 

   i = i+1 

   if eye is not None: 

threshold = 11 #cv2.getTrackbarPos('threshold', 'image') 

eye = cut_empty(eye) 

[keypoints,binary] = blob_process(eye, threshold, detector

) 

eye = cv2.drawKeypoints(eye, keypoints, eye, (0, 0, 255), 

cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) 

cv2.imshow(str(i) + ' binary eye',binary) 

cv2.imshow('my image', frame) 

cv2.imwrite('./blob/br'+str(frame_place)+'.jpg',frame) 

frame_place = frame_place + 1 

if cv2.waitKey(1) & 0xFF == ord('q'): 

break 

    vid.release() 

    cv2.destroyAllWindows() 

main() 
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9.3.2 houghCirclesDetector.py 

The program is adapted from work performed by Michael Wirth [37] and work performed by 

Stepan Filanov [36]. 

import cv2 

import numpy as np 

import array 

img = cv2.imread("test_1.jpg") 

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') 

eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') 

 

threshold = 20 

threshold_upper = 100 

threshold_lower = 90 

min_rad = 3 

max_rad = 8 

min_dist = 200 

global accLeftEye 

global accRightEye 

accLeftEye = [] 

accRightEye = [] 

 

def cut_empty(img): 

    h, w = img.shape[:2] 

    upper_h = int(h / 4) 

    lower_h = int(h*4 / 5) 

    img = img[upper_h:lower_h, 0:w] #remove empty space above/below eye 

    return img 

 

def find_eyes(img, classifier): 

    grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

    eyes = classifier.detectMultiScale(grey, 1.3, 5) #find eye frames 

    face_w = np.size(img, 1) #face frame width 

    face_h = np.size(img, 0) #face frame height 

    left_eye = None 

    right_eye = None 

    for (x,y,w,h) in eyes: 

        if y > (face_h / 2): 

            pass #don't use anything on bottom of face (false detections) 

         

        else: 

            center = x+w/2 #center (between the eyes) 

            if center < face_w / 2: 

                left_eye = img[y:(y + h), x:(x + w)] 

            else: 

                right_eye = img[y:(y + h), x:(x + w)] 

    return left_eye, right_eye 
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def find_face(img, classifier): 

    grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

    coords = classifier.detectMultiScale(grey, 1.3, 5) 

    if len(coords) > 1: 

        max = (0, 0, 0, 0) 

        for i in coords: 

            if i[3] > max[3]: 

                max = i 

        max = np.array([i], np.int32) 

    elif len(coords) == 1: 

        max = coords 

    else: 

        return None 

    for (x, y, w, h) in biggest: 

        frame = img[y:(y + h), x:(x + w)] 

    return frame 

 

def to_binary(img, threshold): 

    hist_frame = cv2.equalizeHist(gray_frame) 

    __, img = cv2.threshold(hist_frame, threshold, 255, cv2.THRESH_BINARY) 

    return img 

 

def grayscale(img): 

    grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

    #img = grey 

    img = cv2.equalizeHist(grey) 

    return img 

 

def get_edges(img, threshold_lower, threshold_upper): 

    img = cv2.Canny(img, threshold_lower, threshold_upper, apertureSize=3) 

    return img 

 

def find_pupils(eye, img, min_dist, min_rad, max_rad, threshold_uppper): 

    circles = cv2.HoughCircles(eye, cv2.HOUGH_GRADIENT, 1,min_dist, 

param1=threshold_upper, param2=5, minRadius=min_rad, maxRadius=max_rad) 

    circles = np.uint16(np.around(circles)) 

    for i in circles[0,:]: 

        # Planning: append to array the position of detected pupil 

        #           if array len > 10, delete position [0] 

        #           draw circle around average of positions in array 

 

        # draw the outer circle 

        cv2.circle(img,(i[0],i[1]),i[2],(0,255,0),1) 

        # draw the center of the circle 

        cv2.circle(img,(i[0],i[1]),1,(0,0,255),1) 

    return img 
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def nothing(x): 

    pass 

 

def main(): 

    vid = cv2.VideoCapture(0) 

    place = 1 

        

    while True: 

        _, camImg = vid.read() 

 

        cv2.namedWindow('camera feed') 

        cv2.createTrackbar('threshold_upper', 'camera feed', 170, 255, nothing

) 

        cv2.createTrackbar('threshold_lower', 'camera feed', 150, 255, nothing

) 

        #cv2.createTrackbar('min_rad', 'camera feed', 3, 5, nothing) 

        #cv2.createTrackbar('max_rad', 'camera feed', 10, 15, nothing) 

        #cv2.createTrackbar('min_dist', 'camera feed', 30, 50, nothing) 

 

        face = find_face(camImg, face_cascade) 

        eye_1 = None 

        if face is not None: 

            eyes = find_eyes(face, eye_cascade) 

        for eye in eyes: 

            if eye is not None: 

                threshold_upper = 255#cv2.getTrackbarPos('threshold_upper', 'c

amera feed') 

                threshold_lower = 82#cv2.getTrackbarPos('threshold_lower', 'ca

mera feed') 

                #min_rad = cv2.getTrackbarPos('min_rad', 'camera feed') 

                #max_rad = cv2.getTrackbarPos('max_rad', 'camera feed') 

                #min_dist = cv2.getTrackbarPos('min_dist', 'camera feed') 

                eye = cut_empty(eye) 

                grey = grayscale(eye) 

                edges = get_edges(grey, threshold_lower, threshold_upper) 

                pupils = find_pupils(edges, eye, min_dist, min_rad, max_rad, t

hreshold_upper) 

                if eye_1 is not None: 

                    cv2.imshow('binary eye 2', edges) 

                    cv2.imshow('greyscale eye 2',grey) 

                else: 

                    eye_1 = eye 

                    cv2.imshow('binary eye 1',edges) 

                    cv2.imshow('greyscale eye 1',grey) 

        cv2.imshow('camera feed', camImg) 

        cv2.imwrite('./hough/br'+str(place)+'.jpg',camImg) 

        place = place + 1 
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if cv2.waitKey(1) & 0xFF == ord('q'): 

break 

    vid.release() 

    cv2.destroyAllWindows() 

main() 




