
 

 

Assessing Learning Progression in 
the Domain of Fractions 

by 

Bakir Haryanto 

Thesis 
Submitted to Flinders University 

for the degree of 

Doctor of Philosophy 
College of Education, Psychology and Social Work 

November 2019 
 

 



i 

ABSTRACT 

Rational numbers are an important domain of mathematics learning and one which 

many students find difficult to learn. The present research has developed and validated 

an assessment instrument to assess the progression of student learning in the domain 

of rational numbers, with an emphasis on fractions. The assessment was based on a 

cognitive model of fraction learning and was innovative in that it distinguished two 

essential dimensions of fraction knowledge, namely conceptual and procedural.  

The research has developed a hypothetical model of the two-dimensional fraction 

learning progression based on existing research. The hypothetical learning progression 

was first validated in a qualitative study, carried out through cognitive interviews. The 

results from the interviews were used to evaluate and revise the learning progression, 

which was subsequently tested in a second study with 516 students from grades 7 to 9 

in a junior high school in Bogor, Indonesia. The fraction learning progression was 

validated using Bayesian Network Analysis. Two Bayesian Networks models were 

developed. Model 1 was a single latent variable model, while Model 2 was a multiple 

hierarchical latent variables model. Model 2 was found to have a better fit with the 

students’ responses than Model 1 and had a number of innovative characteristics, such 

as incorporating the assumption of the hierarchical dependencies between the levels in 

the learning progression into a formal statistical model, measuring students’ 

competency for each level and performing pseudo-guessing item analysis.   

A confirmatory analysis was developed through Bayesian Network item level 

analysis and student level analysis to validate the hypothesized fraction learning 

progression empirically. The analysis has resulted in a learning progression with 7 

validated levels of conceptual and 7 validated levels of procedural knowledge. About 

48% of the students were grouped at very low levels of conceptual knowledge, 

indicating that the Indonesian curriculum is ineffective in developing a conceptual 

understanding of fractions beyond part-whole. In the procedural knowledge dimension, 

about 50% of the students reached the goals of the Indonesian curriculum at grade 7. 

However, the remaining students had difficulties with both additive and multiplicative 

fraction operations and often misapplied the algorithms for addition to multiplication. 
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There were substantial individual differences in the relationship between students’ 

conceptual and procedural knowledge but some important dependencies between 

conceptual and procedural knowledge were also identified. 

The present research is innovative in the area of fraction assessment research, 

because it has developed the first two-dimensional fraction learning progression based 

on conceptual and procedural knowledge and also because it has included aspects of 

fraction knowledge that were missing from previous assessments. The two-dimensional 

learning progression provided more accurate profiles of students’ progression levels 

compared with previous research, thus making a significant contribution to research 

into fraction education. Finally, the development of Bayesian Networks Models has 

made a contribution to educational measurement research both in that it has validated 

a learning progression using item and student level analysis, and in that it has developed 

Bayesian Networks analyses of item difficulty, item discrimination, and pseudo-

guessing. 
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CHAPTER 1 : INTRODUCTION 

 1.1 Aims of the research 

The present research developed and validated an assessment instrument for students’ 

progression in learning fractions. More specifically, the research (a) developed a two-

dimensional learning progression for fractions based on two hypothesized knowledge 

dimensions:  conceptual and procedural; and (b) validated the hypothesized model of 

the two-dimensional learning progression of fractions using Bayesian Network analysis.  

1.2 Why fractions? 

In mathematics learning, fractions, along with algebra and geometry, are an important 

domain of knowledge in secondary school mathematics (Wu, 2005). According to 

Torbeyns, Schneider, Xin, and Siegler (2015), it is a key factor underlying students’ 

general mathematics achievement. Moreover, fractions, together with decimals, are 

commonly found outside mathematics, in fields such as economics, science, and 

psychology. Fraction knowledge can influence success in many professions (Lortie-

Forgues, Tian, & Siegler, 2015). Despite its importance, research highlights that many 

students at secondary schools find it difficult to grasp rational number concepts (Moss 

and Case (1999). The difficulty in understanding fractions and their operations also goes 

beyond students in secondary school; it is, for example, identified in pre-service teachers 

and University students (Chinnappan & Forrester, 2014; Hanson & Hogan, 2000). 

Much research has investigated students’ difficulties with fractions (e.g. Durkin & 

Rittle-Johnson, 2015; Ni & Zhou, 2005; Robert S. Siegler, Thompson, & Schneider, 2011; 

Stafylidou & Vosniadou, 2004; Vamvakoussi, 2015; Vamvakoussi & Vosniadou, 2010; 

Van Dooren, Lehtinen, & Verschaffel, 2015). However, the research findings have not 

been translated into adequate assessments, especially formative assessments that can 

provide diagnostic information and improve teachers’ understanding of the learning 

challenges students face in the development of fraction knowledge.   
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1.3. Why a two-dimensional learning progression? 

One of the most important purposes of assessment is to provide diagnostic information 

about students’ learning (Black & Wiliam, 1998; Pellegrino et al., 2001). Such 

information is crucial to generate effective feedback on learning. However, most current 

assessments provide limited diagnostic information about students’ strengths and 

weaknesses in the domain of knowledge that is being assessed (Huff & Goodman, 2007). 

The failure of current assessments to provide adequate diagnostic information about 

learning has been referred to as the ‘assessment crisis’ by Richard J. Stiggins (2002). 

Current assessments are typically developed based on Classical Test Theory (CTT) 

and Item Response Theory (IRT). These assessments focus on estimating students’ 

general proficiency (Nichols, 1994). Based on such assessments, students can be 

ordered according to their levels of ability, usually against some curriculum standards. 

This ordering can inform summative assessment requirements and determine students’ 

grades, or which students pass and which fail a course (de la Torre & Minchen, 2014). 

However, these assessments have limitations in generating diagnostic information 

about individual students’ learning (de la Torre & Karelitz, 2009). They do not tell us why 

some students are failing and what cognitive challenges they face in their learning 

progress that influence their performance (Nichols, 1994). 

Pellegrino et al. (2001) proposed that assessments can become more diagnostic if 

they are constructed on a cognitive model of learning, which describes students’ 

representations of knowledge and the development of their competencies based on 

available theoretical frameworks and empirical research on students’ learning. In such 

assessments, the cognitive model drives the assessment tasks and guides the 

interpretation of the students’ responses. The results of assessments based on cognitive 

models can be diagnostic because they provide empirical evidence about the students’ 

knowledge/skills vis-à-vis the cognitive model.  

A learning progression1 is a cognitive model that gives information about the level 

of students’ learning against the specified progression (Pellegrino, 2014). This 

 
1 The term learning progression is similar to the term learning trajectory in terms of modelling the 
progression of student learning. However, the scope of a learning progression is wider than the learning 
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information reveals students’ successes and difficulties in their learning journey 

(Berland & McNeill, 2010) and provides “intermediate goals, or stages” that can be used 

by teachers as a strategy to improve their instruction (Kane & Bejar, 2014, p. 118). By 

specifying the level of a student in the learning progression, the assessment provides 

meaningful information to teachers that can be used to guide classroom learning. In 

addition, the levels of learning can be used by students to guide their independent study. 

On a larger scale, the education system can use learning progressions to improve the 

design of the curriculum. The present research employs a learning progression as a 

cognitive model in developing an assessment framework for the learning of fractions. 

Learning progressions usually provide unidimensional hierarchical-levels of 

students’ learning (e.g. Briggs & Alonzo, 2009; Draney, 2009; West et al., 2012; Wilson, 

2009b). Within these learning progression models, there has been little discussion so far 

about the need to introduce multiple hierarchical levels of progression in terms of the 

kinds of knowledge and skills that might underlie a given subject domain. For example, 

in mathematics, researchers have commonly argued that conceptual knowledge and 

procedural knowledge are two distinct key cognitive dimensions for mathematics 

proficiency (Crooks & Alibali, 2014; NCTM, 2000; Rittle-Johnson & Schneider, 2014). 

However, there has been no attempt to measure students’ mathematical knowledge in 

these distinct dimensions and to understand how they interact with and influence each 

other. 

The present research developed and validated a cognitive model of fraction 

learning progression based on the above-mentioned key knowledge dimensions of 

mathematical knowledge, namely conceptual and procedural knowledge of fractions. 

The development of a learning progression based on these two key dimensions of 

mathematical knowledge is a significant new step in assessment research and 

 
trajectory (Stevens, Shin, and Krajcik (2009). Indeed, the learning trajectory is a subset of a learning 
progression. A learning progression can be based on several learning trajectories (Rutstein, 2012). 
Learning progressions describe a common path in students’ learning, while learning trajectories show the 
differences in students’ paths in learning. The present resesarch focuses on learning progressions because 
they “provide the big picture of what is to be learned, support instructional planning, and act as a 
touchstone for formative assessment” (Heritage, 2008, p. 1). 
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represents an innovation in the development of learning progressions in general and of 

assessments of fraction knowledge in particular.  

1.4. Why Bayesian Networks? 

Another innovation of the present research is that it developed a measurement model 

based on Bayesian Networks to validate the two-dimensional learning progression. Two 

well-known measurement models exist in the literature to validate students’ learning 

progressions, the Rasch Model (Draney, 2009; Wilmot, Schoenfeld, Wilson, Champney, 

& Zahner, 2011; Wilson, 2009b; Wilson & Cartensen, 2007) and Bayesian Networks 

(Rutstein, 2012; Jefrey Thomas Steedle, 2008; Jeffrey T Steedle & Shavelson, 2009; West 

et al., 2012). Bayesian Networks are preferable in this research because they model the 

conditional dependency between the various knowlegde within a learning progression. 

Moreover, Bayesian Networks approaches provide information about the uncertainties 

of the parameters being considered in terms of their (marginal) posterior distributions. 

Particularly in this research, the Bayesian Networks are used to identify the uncertainties 

of the parameters of items’ levels and students’ levels through their marginal 

distribution.   

Bayesian Networks, which have been developed and implemented widely in 

educational measurement, provide a cognitive diagnostic measurement model (Mislevy, 

1995; Mislevy et al., 2002; Mislevy & Almond, 1997; Mislevy, Almond, Yan, & Steinberg, 

2000; Mislevy & Gitomer, 1996). They provide graphical probabilistic networks of the 

competencies underpinning students’ performance (Almond, Mislevy, Steinberg, Yan, & 

Williamson, 2015). Using this approach in the learning progression model, the mastery 

and non-mastery of competencies at the proposed levels can be estimated, and the 

interconnection (inter-dependency) between competency components can be 

demonstrated.  

Typically, a simple Bayesian Network with a single parameter (known as Bayesian 

Latent Class Analysis) is used to assess and validate learning progression models (Jefrey 

Thomas Steedle, 2008; Jeffrey T Steedle & Shavelson, 2009; West et al., 2010). In 

Bayesian Latent Class Analysis, the hierarchical levels of the learning progression model 

are captured by one latent variable, which has several categories referring to the levels. 
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Little attention has been given to modelling learning progressions with multiple latent 

variables, in which each level is represented by a single latent variable. The present 

research has expanded the Bayesian Networks model with a single latent variable into 

multiple latent variables based on the previous work by Rutstein (2012) and Jefrey 

Thomas Steedle (2008). Multiple latent variables are required to represent the 

hierarchical dependency between the levels. As a result, the measurement model 

developed from the Bayesian Networks model reflects the hierarchical assumption of 

the learning progression, which can lead to a more valid interpretation of the students’ 

responses.  

1.5 Participants and Design of the Research 

The present research constructed a hypothetical learning progression of fractions and 

validated it empirically using Indonesian Junior High School students. The assessment 

triangle (the interconnection between cognition, observation, and interpretation in 

assessment) was used as the framework for the assessment design.  

The research utilized a mixed methods design, consisting of two sequential 

studies, Study I (a qualitative study) and Study II (a quantitative study). Study I was 

carried out through cognitive interviews. The purpose of the interviews was to collect 

data to evaluate and revise the hypothetical model of the two-dimensional fraction 

learning progressions and corresponding items. Study II was a test of the revised fraction 

learning progression. Students’ responses were analyzed using Bayesian Networks 

modelling to validate the learning progression. Figure 1.1 shows the mixed methods 

design used in this research. 

 

Figure 1.1 The mixed methods design of developing and validating the hypothetical learning 
progression model implemented in this research 
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1.6 Significance  

The research produced a validated cognitive model of a two-dimensional fraction 

learning progression. This model captured the development of students’ conceptual and 

procedural knowledge in learning fractions. The validated conceptual knowledge 

provided empirical evidence about the progression of students’ understanding of the 

symbolic notation of fractions, while the validated procedural knowledge dimension 

showed the progression of students’ knowledge of fraction operations. This is discussed 

further in Chapters 3, 4 and 6. 

Another important result of the research was the development of two different 

measurement models based on Bayesian Networks. These measurement models 

provided information about uncertainties at both item and student levels. Model 1, 

which is known as Bayesian Latent Class Analysis, was developed based on a single latent 

variable. In this model, there was a latent variable with six categories corresponding to 

the six levels of the learning progression. Model 2 was developed based on a multiple 

latent variable measurement model. In Model 2, there were six latent variables 

corresponding to the six levels of the learning progression. These multiple latent 

variables were interrelated hierarchically to reflect the dependency between the 

competencies in each level in the learning progression model. The results showed that 

Model 2 had a better fit for measuring students’ learning progressions than Model 1. 

Moreover, Model 2 had several properties which were superior to Model 1, such as 

diagnostic analytics, guessing analysis, and detection of the deviation of students’ 

responses from the learning progression models. This is detailed further in Chapters 5 

and 6. 

The present research makes significant contributions to assessment, instruction 

and curriculum development.  In relation to assessment, the research is significant 

because it further developed the cognitive element of the assessment triangle 

(Pellegrino et al., 2001). This cognitive model of two-dimensional learning progression 

can be used as a foundation to develop diagnostic assessment of conceptual and 

procedural knowledge, particularly in mathematics. Furthermore, the Bayesian 

Networks models developed in this study contribute to the development of models for 

measuring learning progressions, particularly in expanding the Bayesian Networks 
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Model from a single latent variable into multiple latent variables, and in developing item 

analysis using Bayesian Networks to validate learning progressions. 

For instruction, the learning progression model is diagnostic because it provides a 

conceptual and procedural road map for teachers that can inform them of the learning 

difficulties students face at different levels of fraction learning. The learning challenges 

are investigated further in Chapter 7. 

For curriculum development, the learning progression model developed in this 

research provides suggestions about how to develop and structure materials that can 

facilitate fraction learning across grades. Moreover, the learning progression model 

contributes to the potential development of curriculum materials that have a balance of 

conceptual and procedural elements. The current curriculum in Indonesia favours the 

procedural components of learning and teaching fractions. The implications of this 

research for curriculum development are discussed further in Chapter 7.      

 1.7 Structure of the Thesis 

This thesis is divided into eight chapters. In Chapter 1, the aims and the background of 

the study are presented. The importance of proposing a two-dimensional knowledge of 

fraction learning progression to generate effective feedback on learning is discussed. 

Subsequently, the interconnected relationship between learning progression and 

assessment is described. The qualitative and quantitative approaches for validating the 

learning progression model within the framework of a mixed methods design are also 

reviewed. The chapter concludes with a definition of terms and an overview of the 

thesis. 

In Chapter 2, through a review of the literature, the foundation and frameworks 

of assessment are examined. The role of cognitive models of learning progression in 

assessment is discussed. The fraction sub-constructs and the conceptual and procedural 

knowledge in learning fractions are then described. This discussion is extended in 

Chapter 3 by proposing the hypothetical model of fraction learning progression. Finally, 

the measurement model using Bayesian Networks is described. This explains the 

inference in Bayesian analysis related to the assessment framework, Bayes’ theorem, 

and Bayesian Networks as a probabilistic network.  



8 

 

In Chapter 3, the theoretical foundation underlying the hypothetical learning 

progression is developed. The conceptual and procedural knowledge progressions of 

students in learning fractions are discussed. Next, the assessment tasks corresponding 

to the competencies of the learning progression model are detailed. Finally, the 

proposed model and the previous models of learning progressions are compared. 

In Chapter 4, the results of the cognitive interviews are discussed. The findings are 

used to revise the levels of the learning progression model and the corresponding items. 

A deterministic approach is used to revise or validate the learning progression model, 

based on the results of the cognitive interviews.  

In Chapter 5, the Bayesian Networks modelling that is used to measure and 

validate the learning progression model is presented. The specifications of Model 1 and 

Model 2 of Bayesian Networks are provided. 

In Chapter 6, the validation of the progression levels using Bayesian Networks is 

analyzed. The item analysis and the student level analysis are used to validate the 

learning progression model. 

In Chapter 7, the results from the Bayesian Networks analysis are discussed, in 

terms of conceptual and procedural dimensions and the relationship between them. The 

final discussion, implications for assessment, instruction and curriculum, and 

recommendations for future research are provided in Chapter 8.  

1.8 Definition of Terms 

The definition of terms, drawn from the literature review (Chapter 2) and applied in this 

research, is presented in Table 1.1. 

Table 1.1 The definition of the terms used throughout the study  

Term Definition 

Assessment triangle The three interconnected elements underpinning effective assessment; 
cognition, observation, and interpretation 

Bayesian Networks  A statistical model which generates a graphical probabilistic network of 
attributes underpinning students’ performance 

Cognition A model of learning which describes how students’ knowledge and skills are 
developed in the domain of interest 
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Competency The combination of skills, abilities and knowledge which are required to to solve 
item tasks 

Conceptual 
knowledge 

The interconnected pieces of information about ideas and principles 

Density The property of fractions that there are unlimited numbers between two 
fractions 

Fractions A symbolic notation which is denoted as two numbers separated by the dash 

Formative 
assessment 

A type of assessment which is developed to diagnose students’ successes and 
difficulties in the process of their learning 

Interpretation  Inferences about students’ cognition from the observational data 

Item Level Inference Items which were assigned at the given levels would be answered correctly by 
those students who were found to belong to this level or an upper level, but 
not by the students at lower levels 

Learning Progression 

 

A model of learning which describes developmental student understanding in 
a particular domain over time. It consists of hierarchical building blocks (levels) 
containing knowledge and skills that should be mastered sequentially in order 
to master more advanced concepts 

Levels of 
Achievement 

A hierarchical level of students’ learning from naïve understanding to more 
sophisticated levels of learning 

Measure Understanding of the symbolic notation of fractions as a scale in the number 
line 

Observation Tasks which allow students to demonstrate their proficiency regarding the 
knowledge and skills defined in the cognition element 

Part-whole relation Understanding of the symbolic notation of fractions as representation of part 
and whole 

Procedural 
Knowledge 

Knowledge of the sequential steps or the algorithm to solve mathematical tasks 

Progress variables Essential concepts of the learning domain, as they are monitored across levels 
of progressions 

Unbounded Infinity Fractions are infinite numbers  

Students’ Level of 
Inference 

The students who were assigned at a certain level in the learning progression 
would have sufficient competencies at that level and below, but not at the 
upper level(s) 

Summative 
Assessment 

A type of assessment which is developed to assess students’ achievements 
after the process of instruction is completed 
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CHAPTER 2 : LITERATURE REVIEW 

2.1 Introduction 

The purpose of this chapter is to review the literature used to develop the rationale and 

framework of the present research. It is organized into two main sections: 1) Review of 

the literature on assessment and 2) Review of the literature on mathematics assessment 

of fraction learning.  

In the first section, traditional assessments and assessments based on student 

cognitive models were compared. Subsequently, assessments based on cognitive 

models, including learning progressions, was discussed in greater detail. This sub-section 

also discussed the Bayesian Networks approach, which was used for modelling student 

learning progressions in the present research.  

In the second section, the literature on fraction learning progressions was 

described, followed by a discussion of two dimensions of mathematical knowledge – 

conceptual and procedural – on the basis of which the learning progressions were 

developed in the present research. 

2.2. Literature Review on Assessment 
2.2.1 Comparison of Traditional Assessments and Assessments Based on 
Cognitive Models  

According to Pellegrino et al. (2001), traditional assessments could be improved if they 

took into consideration cognitive models of student learning.  Incorporating a cognitive 

model of learning in an assessment is also recommended by many other assessment 

experts (Embretson & Gorin, 2001; Mislevy, 1994c; Pellegrino et al., 2001; Pellegrino, 

Wilson, Koenig, & Beatty, 2014).  

Traditional assessments have several differences from assessments based on 

cognitive models. First, traditional assessments are usually developed  based on “logical 

taxonomies and content specifications” (Nichols, 1994, p. 577). The blueprint of such an 

assessment type is derived from a sample of the content and skill areas, which is typically 

drawn from the standards stated in the curriculum. As a result, the findings obtained 

from this type of assessment are limited to what “students know and can do” (Kane & 

Bejar, 2014, p. 119), by addressing only the list of competencies stated in the curriculum. 
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These assessments do not provide information about why students are succeeding or 

failing, or where their difficulties lie.   

The second difference is in the use of formal statistical/psychometric models to 

draw inferences about students’ proficiency. Such assessments are known as 

measurement models (Pellegrino et al., 2001). The measurement models in traditional 

types of assessment are used to produce general scores, which lie on the continuum 

scale of students’ proficiency (de la Torre & Minchen, 2014). These scores are used for 

many different purposes such as “identifying a student’s level of proficiency, 

differentiating passing from non-passing students, selecting candidates for a program, 

admitting students to a college, or determining the recipients of scholarships” (de la 

Torre & Minchen, 2014, p. 89). Although these general scores represent the general 

proficiency of the students, they do not provide information about students’ strengths 

and weaknesses in their learning, which is important for diagnostic purposes (Kane & 

Bejar, 2014). Diagnostic information is important to improve teaching and learning, 

which is the main objective of the education reform (Pellegrino et al., 2001). 

In contrast, assessments based on a cognitive model of learning utilize information 

about how students “represent the knowledge and develop competence in the domain”  

(Pellegrino et al., 2001, p. 178). The cognitive model is formulated from the results of 

empirical research on learning in specific areas of expertise. This cognitive model guides 

the selection of the assessment tasks and specifies the way inferences can be drawn 

from students’ responses. Proposing a cognitive model of learning as a basis for 

developing an assessment is the critical difference between the new type of 

assessments and the traditional type of assessments discussed above (Pellegrino, 2014; 

Pellegrino et al., 2001). 

Adopting a cognitive model of learning into assessment design enables the 

assessment to produce diagnostic information about the students’ progression and their 

learning difficulties, which is consistent with the notion of formative assessment. In 

contrast, traditional types of assessment are used mainly for summative assessment and 

accountability purposes (de la Torre & Minchen, 2014). Formative assessment is a type 

of assessment that has been developed to diagnose students’ success and difficulties in 

the process of their learning, while summative assessment was developed to assess 
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students’ achievement after the process of instruction is completed (Nitko & Brookhart, 

2007). 

 Assessments based on cognitive models can provide important information for 

instruction for several reasons. First, the design of the assessment is based on empirical 

research of how students develop the learning encapsulated in the cognitive model. This 

cognitive model provides information about the levels of progression from novice to 

expert learning. The assessment can then be used to draw inferences about the 

students’ levels on such a progression of learning. The information about the levels of 

students’ learning can be used by teachers to create more effective instruction. 

Furthermore, the development of the measurement models in the new 

foundation of assessment aim to measure specific competencies or skills in the learning 

domain (de la Torre & Minchen, 2014). Information about students’ domain-specific 

skills and competencies (depending on the purpose of assessment) can inform 

educators’ decisions so they can improve their teaching practices and hence student 

learning. This is an important difference from traditional assessments.  

In summary, assessments based on cognitive models are grounded in empirical 

evidence about how students learn. These assessments have certain advantages over 

traditional types of assessment because they can provide information about where 

students are in their learning progression in specific subject matter areas and provide 

important diagnostic information to educators, which is necessary in order to produce 

effective feedback (Black and Wiliam (1998). The present research adopts the 

framework of cognitive assessments, to be discussed in more detail in the sections that 

follow. 

2.2.2. Assessments based on cognitive models 

The assessment triangle describes the interconnected elements of cognition, 

observation, and interpretation for crafting an effective assessment based on a cognitive 

model (Figure 2.1; Pellegrino et al. (2001). The cognitive model is the cornerstone of the 

assessment triangle, on the basis of which the observation and interpretation 

components are developed. Observation refers to the tasks or situations which allow 

students to demonstrate their proficiency in the knowledge and skills defined in the 
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cognition element. The tasks that are created in the assessment provide information 

about what students know and can do. These tasks should be created to reflect the 

knowledge and skills specified in the cognition element in order to obtain valid 

assessment results.   

 

 

 

 

 

  

Interpretation consists of technical tools and methods that make it possible to 

draw inferences about students’ cognition from the observational data (student 

responses to the observation tasks). The interpretation component links the students’ 

responses produced from observation to the knowledge formulated in the cognition 

component. In many cases, measurement models are used to draw inferences about 

students’ knowledge (specified by the cognition component), based on their responses 

to the tasks (specified by the observation component).  

According to Pellegrino et al. (2001) assessment is “a process of drawing 

reasonable inferences about what students know on the basis of evidence derived from 

observations”(Pellegrino et al., 2001, p. 112). What students know is organized in the 

cognition component; the evidence is obtained from the tasks specified by the 

observation component; drawing inferences from the evidence is represented by the 

interpretation component. 

The following sections discuss the three elements of the assessment triangle as a 

framework for the present study in more detail. 

 

 

 

Figure 2.1 Assessment Triangle (Pellegrino, Chudowsky, & Glaser, 2001, p. 44) 
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2.2.2.1 Cognitive Models 

Two broad categories of cognitive models have been discussed in the literature. In the 

first category, a cognitive model is thought to represent “the knowledge, processes and 

strategies” required to solve the given assessment item tasks (Gierl, Wang, & Zhou, 

2008, p. 5). This type of cognitive model is expressed in lists of “attributes” which show 

the content knowledge, the process, and the skills underlying students’ performance in 

an area of knowledge (Tatsuoka, Corter, & Tatsuoka, 2004, p. 901).  

Table 2.1, presents a list of the content, process and skill attributes that are 

thought to be associated with the mathematics items of the TIMMS-R assessment 

(Tatsuoka et al. (2004). Figure 2.2 shows an example from a geometry item in this task. 

The attributes required to answer this item (from Table 2.1) are the following: C4 (basic 

concepts and operations in two-dimensional geometry), S3 (using figures, tables, charts, 

and graphs), S5 (evaluate/verify/check options, P3 Judgmental applications of 

knowledge in arithmetic and geometry), P5 (Logical reasoning—including case 

reasoning, deductive thinking skills, if-then, necessary and sufficient, generalization 

skills), P7 (generating, visualizing, and reading figures and graphs), and P9 (management 

of data and procedures). 

Table 2.1 The content, processes and the skills underlying the mathematics items of TIMMS-R 1999 
(adopted from Tatsuoka et al., 2004, p. 907) 

Content attributes 
C1  Basic concepts and operations in whole numbers and integers 
C2  Basic concepts and operations in fractions and decimals 
C3  Basic concepts and operations in elementary algebra 
C4  Basic concepts and operations in two-dimensional geometry 
C5 Data, probability, and basic statistics 
C6  Measuring or estimating: length, time, angle, temperature, etc. 
Process attributes 
P1  Translate/formulate equations and expressions to solve a problem 
P2 Computational applications of knowledge in arithmetic and geometry 
P3  Judgmental applications of knowledge in arithmetic and geometry 
P4  Applying rules in algebra 
P5  Logical reasoning—includes case reasoning, deductive thinking skills, if-then, 
    necessary and sufficient, generalization skills 
P6  Problem search; analytic thinking, problem restructuring; inductive thinking 
P7  Generating, visualizing, and reading figures and graphs 
P8 Applying and evaluating mathematical correctness 
P9  Management of data and procedures 
P10  Quantitative and logical reading 
Skill (item type) attributes 
S1  Unit conversion 
S2 Apply number properties and relationships; number sense/number line 
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S3  Using figures, tables, charts, and graphs 
S4  Approximation/estimation 
S5  Evaluate/verify/check options 
S6  Patterns and relationships (inductive thinking skills) 
S7  Using proportional reasoning 
S8  Solving novel or unfamiliar problems 
S9  Comparison of two/or more entities 
S10  Open-ended items, in which an answer is not given 
S11  Understanding verbally posed questions 

 

 

Figure 2.2 The sample of an item taken from TIMMS-R 1999 (adopted from Tatsuoka et al., 2004, 
p. 909) 

The category of cognitive models discussed by Tatsuoka et al. (2004) does not 

assume that knowledge and skills are organised in hierarchical levels.  This implies that 

the development of those attributes can be independent of each other, meaning that a 

particular knowledge or skill does not depend on the presence of other forms of 

knowledge or skills. Contrary to this, but still in the first category of cognitive models, 

Leighton, Gierl, and Hunka (2002) proposed an attribute hierarchy to describe the 

students’ knowledge and skills. This hierarchy shows “the psychological ordering among 

the attributes required to solve a test problem” (Leighton et al., 2002, p. 5). Figure 2.3 

shows four possible attribute hierarchies: linear, convergent, divergent, and 

unstructured. As can be seen, in the linear hierarchy presented in Figure 2.3, Column A, 

attributes 1, 2 and 3, are prerequisites for attribute 4, and attributes 1, 2, 3 and 4 are 

prerequisites to attribute 5 (Leighton et al., 2002).  
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Figure 2.3 The attribute hierarchy in the cognitive model proposed by Leighton et al. (2002, p. 45) 

The second category of cognitive models provides a more detailed learning 

progression of students’ knowledge when compared with the first category. The term 

“learning progression” refers to a cognitive model that describes the development of 

student understanding in a particular subject matter area over time, based on the 

available empirical evidence (NRC, 2007).  It consists of hierarchical building blocks 

(levels) that describe the knowledge and skills that are mastered sequentially as the 

students progress in their learning (Popham, 2007). Furtak, Roberts, Morrison, Henson, 

and Malone (2010) pointed out that learning progressions are hypothetical pathways 

for learning and provide “a road map” for instruction. Consequently, teachers can 

identify student successes and difficulties over time (Berland & McNeill, 2010), and they 

can create effective strategies to improve teaching and learning (Kane & Bejar, 2014). 

According to Pellegrino (2014), a learning progression should consist of five key 

elements: 

1) “target performances” or “learning goals” which are defined in the highest level 

of the learning progression model;  

2) “progress variables” which refer to indicators of the essential concepts in the 

learning domain, monitored across levels of progressions;  

3) “levels of achievement” which describe  students’ learning from naïve 

understanding to a sophisticated level of learning;  

4) “learning performance” which describes what students can do at every level of 

the progression;  and  
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5) “assessment” which is required to monitor the progression of students’ 

learning, based on their performance in the item tasks.  

The hypothetical sequence of the progression of student learning is developed 

based on empirical research evidence. This hypothetical sequence needs to be further 

tested and validated empirically to generate a learning progression model which 

captures accurately the development of students’ understanding. Hence, a validated 

learning progression can provide a common road map of how students achieve the 

learning goals in a given subject matter area, which is supported by both theoretical and 

empirical research on learning and assessment (Popham, 2007).  

An extensive discussion of learning progression as a cognitive model of learning in 

assessment can be found in the Berkeley Evaluation and Assessment Research (BEAR) 

Assessment System (Wilson & Cartensen, 2007; Wilson & Scalise, 2006). The concept of 

construct maps is a key concept in the development of assessments based on learning 

progressions. Construct maps show “…qualitatively different levels of performance 

focusing on one characteristic” (Wilson, 2009b, p. 3), which define what students’ can 

do and know at each level (Draney, 2009). Several construct maps can be joined together 

to form a learning progression, which specifies the competencies being measured in 

great detail. Table 2.2 presents an example of two construct maps, parts of the learning 

progression in the domain of the Carbon Cycle; learning developed under the BEAR 

Assessment system. The construct maps in Table 2.2 show the increase in the 

sophistication of learning across the levels in the two topics of interest, which are: 1) the 

Hierarchy of the Carbon Cycle System, and 2) the Material Kind and Properties of Matter. 
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Table 2.2 Constructs maps of the carbon cycle in the topics of hierarchy system and material kind and 
properties of matter 

Level Hierarchy of Carbon Cycle System Material Kind & Properties of matter 

7 Describes movements of matter 
through multiple processes at multiple 
scales 

Correctly characterizes products of 
processes in terms of how they affect 
organic carbon compounds  

6 Traces elements or atoms through a 
single life process, relating multiple 
scales  

Correctly identifies reactants and products 
of a single life process 

5 Describes movements of matter in 
simple chemical changes at atomic 
molecular scale. (not just events) 

Correctly identifies reactants and products 
in simple chemical changes 

4 Describes matter movement at 
macroscopic scale. (not just events) 

Correctly identifies reactants and products 
in simple chemical changes. Identifies solids, 
liquids, but not gases involved in chemical or 
physical changes 

3 Attention to hidden mechanism. 
Describes events as changes in 
materials. 

Pays attention to hidden mechanisms but 
cannot identify any material kinds. 

2 Describes changes as events (at 
macroscopic scale) 

Identifies changes by using common sense 
of natural phenomena, but not as changes in 
materials 

1 Egocentric/naturalistic reasoning: 
respondents use human analogy to 
explain the changes in materials 

Egocentric/naturalistic reasoning: 
respondents use human analogy to explain 
the changes in materials 

From the discussion of the two categories of cognitive models discussed above, it 

can be seen that the first category developed by Tatsuoka et al. (2004) and Leighton et 

al. (2002) provides “a fine grain size”, which shows in the details the kinds of attributes 

assumed to underlie the students’ performance when they solve a given test item. The 

diagnostics analysis can be performed by identifying students’ strengths and 

weaknesses in terms of the attributes involved. This information can inform teachers, 

who can then focus their instructions to specific important attributes which might be 

difficult for students to grasp. The second category of cognitive models provides less 

information about the assumed knowledge, processes and skills underlying students’ 

performance in solving a given test item. However, because they are expressed as 

learning progressions, they provide rich information about the level of development of 

students’ learning in a given subject matter area. Such information can be used as a 

framework to assess students’ progression in learning.  As a result, the feedback and 

reports generated from this second category of assessment can inform the interested 



19 

 

parties  “where learners are in their learning at the time assessment and, ideally, what 

progress they have made over time”, which is the fundamental goal of assessment 

(Masters, 2013, p. 8). This feedback and associated reports can be used by teachers to 

improve their instruction or by other agencies to improve the curriculum. 

Pellegrino et al. (2001) highlighted that assessment, curriculum, and instruction 

should be tightly connected, and a cognitive model of learning progression can facilitate 

the interconnection between them (Wilson, 2009a). Ideally, assessment should assess 

the materials that are taught to the students through programs of instruction; and that 

instruction should teach the content knowledge specified in the curriculum. However, 

many factors can interfere with this ideal interconnection. For example, high-stake 

assessments can influence the teachers to focus on teaching the items in the test, not 

the materials in the curriculum. In such a situation, Pellegrino et al. (2001) suggests that 

teachers use a cognitive model of learning which provides a, “shared knowledge base 

about cognition and learning in the subject domain” (p. 53) that can be used to develop 

curriculum, assessment, and instruction. As a result, the curriculum, instruction, and 

assessment approach the same learning goals and can reinforce each other. 

2.2.2.2 Observation 

The observation component of the assessment triangle “represents a description or set 

of specifications for assessment tasks that will elicit illuminating responses from 

students” (Pellegrino et al., 2001). It includes the activities of constructing the tasks and 

collecting and summarizing  students’ responses (Shavelson, Ruiz-Primo, Li, & Ayala, 

2003).  These responses are the source of evidence about the students’ knowledge that 

is being assessed. The observation component provides an indirect way to measure 

students’ knowledge, which is not directly observable from the students’ brain 

(Pellegrino et al., 2001). In order to draw valid inferences about the students’ knowledge 

from the observation, the assessment tasks should be carefully designed in order to 

represent the competencies specified in the cognition model. 

Nitko and Brookhart (2007) highlighted three fundamental principles in creating 

assessment tasks. First, the assessment tasks should focus on important learning 

targets. In the context of assessments based on learning progressions, learning targets 

are the competencies specified in each level of the learning progression. This implies 
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that assessment should avoid “trivial performances and/or minor points of content” 

(Nitko & Brookhart, 2007, p. 133). Second, the assessment tasks should be created to 

obtain the competencies related to the learning targets only, meaning that if the 

students have already achieved the learning targets, then they should be able to 

perform the assessment tasks correctly. Conversely, if they have not mastered the 

learning targets, then their response errors can be used to examine their weaknesses in 

learning. Finally, the assessment tasks should be crafted by avoiding situations that can 

prevent students from demonstrating their abilities. For example, poor wording of 

questions or unclear diagrams can lead students who have the required competencies 

to answer the questions incorrectly.  

In crafting assessment tasks based on a learning progression, the items in the tasks 

should have a good discriminant power among the discrete-levels. This means that the 

items in the tasks at a particular level should be designed to be answered correctly only 

by the students at that level or higher levels (West et al., 2010). The students at lower 

levels should not be able to solve these items successfully. The items which can be used 

to differentiate students across the different levels are essential to support the empirical 

validation of the progression model. 

Another issue in designing assessment tasks in a learning progression is the 

dependency among the items. As discussed, the learning progression model describes 

the development of students’ competencies through the ordered levels. It indicates that 

the competencies at a particular level are developed based on competencies at the 

lower levels. To enhance the validity of this construct, the items in the tasks should be 

created to reflect the dependency between the levels. This means that the items in the 

tasks should be interrelated because in order to solve a task item correctly at a particular 

level, the students are expected to solve the items at the lower level.  

Different types of task are required to assess students’ conceptual and procedural 

knowledge of mathematics. For assessing conceptual knowledge, mathematical 

concepts can be  expressed using  pictorial representations (Bayazit & Aksoy, 2010). For 

example, a shaded circle (a pie diagram) can be used as a cognitive tool to represent 

fractions. Bayazit and Aksoy (2010, p. 94) highlighted that, “an image of a mathematical 

idea cannot be separated from the concept itself; and it should be regarded as an 
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essential part of thinking” (Bayazit & Aksoy, 2010, p. 94).  The symbolic notations in 

mathematics (i.e., a fraction symbol) are another form of representation that can 

represent mathematical ideas (Hiebert, 1988). For example, a symbolic notation is used 

in mathematics to represent fractions as two numbers (the numerator and the 

denominator), separated by the dash. Kieren (1980) highlighted that the symbolic 

notation of fractions can have different meanings, for example, fractions as part-whole, 

measure, operator, quotient, and ratio. 

Consistent with Bayazit and Aksoy (2010) and Hiebert (1988), Byrnes and Wasik 

(1991) identified three types of tasks that can be used to assess students’ conceptual 

knowledge. The first type of task uses pictorial representations. In this task, students are 

given a diagramatic representation of a fraction (e.g., a pie diagram) and are asked to 

select the appropriate numerical, symbolic representation for this diagram. The second 

task is simple isomorphic items. In this task, students are given a diagram which 

represents a fraction and then they are asked to match this diagram to another diagram 

which has the same value of the fraction. The third task is fraction ordering (Byrnes and 

Wasik (1991).  In this task, students’ understanding of the value of the fraction symbol 

is tested by giving them two or more fractions (using numerical, symbolic 

representation) and asking them to select which fraction is the greater.  

In order to assess students’ procedural knowledge, tasks involving arithmetic 

computation including addition, subtraction, multiplication and division can be used 

(Rittle-Johnson, Siegler, & Alibali, 2001). The purpose of these tasks is to assess students’ 

knowledge of the accuracy of the algorithms required to perform the computations 

(Rittle-Johnson & Schneider, 2014). Rittle-Johnson et al. (2001) also argued that a 

conceptual task becomes a procedural task if the students have repeated experience of 

solving this task that has resulted in making this a “routine” task (p. 349). 

2.2.2.3 Interpretation 

The interpretation component of the assessment triangle allows inferences about the 

students’ knowledge to be drawn from their responses. In psychometric terms, the 

interpretation element of the assessment triangle refers to measurement models 

(Pellegrino et al., 2001). A Bayesian Inference Network (commonly termed a Bayesian 
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Network) is a prominent measurement model that has been developed and 

implemented widely for educational measurements (see Mislevy, 1995; Mislevy et al., 

2002; Mislevy & Almond, 1997; Mislevy et al., 2000; Mislevy & Gitomer, 1996). Bayesian 

Networks are capable of handling cognitive models with complex dependencies among 

the competencies (Almond et al., 2015). This feature is relevant to the present research, 

which deals with fraction learning. 

The next sections discuss Bayesian Networks in detail, including Bayesian 

inference, Bayesian Measurement Models, and Bayesian Network Models.   

2.2.2.3.1 Bayesian Inference in Educational Assessment 

According to Mislevy (1994b), inference is “reasoning from what we know and what we 

observe to explanations, conclusions, or predictions” (p.2). In practice, the information 

that is received is “typically incomplete, inconclusive, amenable to more than one 

explanation” (Mislevy, 1994b, p. 2). Particularly, in educational testing, students’ 

responses can be considered as incomplete evidence and contain some degree of 

uncertainty.  

The source of uncertainty in educational testing comes from at least two sources. 

First, uncertainty exists about measurement errors. For example, students have a 

competency in a particular item but they can slip in answering the item, or students do 

not have competency in a particular item but can correctly guess the answer (Almond 

et al., 2015; Nichols, Chipman, & Brennan, 1995). Second, there may be uncertainty 

because of the limited number of items given to students. The items given to students 

are a representation from a hypothetical item pool (Lord, 1965; Osburn, 1968). 

Assessing students’ competency based on a limited selection of items causes some 

degree of uncertainty in the inference regarding their competencies. 

Bayesian inference refers to inference based on Bayes’ theorem, which takes into 

account uncertainty and incomplete evidence using a probabilistic approach. Bayes' 

theorem describes how to update the probabilities of parameters or hypotheses 

conditional on data or evidence. Bayesian inference provides a range of possible 

estimates about the event/parameter being investigated. It is a powerful method that 

gives “a guiding principle for building and reasoning about complex models, and 
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provides correct solutions to problems that were not tractable under the classical 

approach” (Almond et al., 2015, p. 62). 

The fundamental idea of Bayes theorem is based on a conditional probability of 

events. The notion of a conditional probability is about changing or updating beliefs. A 

belief is updated if there is new information related to the event. For example, if there 

are two related events A and B, and information about B is received, the theorem is 

concerned with how beliefs change about A after receiving this information. This change  

is denoted as 𝑃(𝐴|𝐵).  

In educational settings, the information about students’ competency is assessed 

based on available information from the students’ responses to a particular test. In this 

research, competency is defined as “the combination of skills, abilities, and knowledge 

needed to perform a specific task” (Jones & Voorhees, 2002, p. 7). Through a conditional 

probability, the relationship between students’ competency (𝜃) and their responses (𝑋) 

can be denoted as 𝑃(𝑋|𝜃), which means that the students’ correct/incorrect answers 

(𝑋)  are conditional or dependent on their competency (𝜃). The conditional probability 

of 𝑃(𝑋|𝜃) reflects deductive reasoning because it highlights that the students’ 

competency (cause) influences their correct/incorrect response (effect) (the reasoning 

goes from cause to effect). In contrast, the inference of students’ competency based on 

their correct/incorrect response reflects an inductive reasoning (the reasoning goes 

from effect to cause). These deductive and inductive reasonings are illustrated using a 

graphical representation in Figure 2.4   

 

 

 

 

 

 

Figure 2.4 The relationship between students’ knowledge/skills and their response to a 
particular item 
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The deductive reasoning is essential to structure the conditional probabilities in 

Bayesian inference. The conditional probabilities 𝑃(𝑋|𝜃) reflect the cause – effect 

relationship among a set of variables that should be built, based on an available theory 

in the field or based on the findings of previous research. In other words, building 

Bayesian models should be driven theoretically (Mislevy, 1994a).  

The Bayes theorem provides a reverse direction of the deductive reasoning 

discussed above. Bayes’ theorem facilitates inference about students’ competency given 

their responses on the test 𝑃(𝜃|𝑋). Thus, the Bayes theorem facilitates inductive 

reasoning, in which the direction of the reasoning flows from effects to plausible causes 

(Mislevy, 1994a).  

Within the Bayesian framework, deductive and inductive reasoning are 

incorporated in the assessment process, which is consistent with the assessment 

triangle  proposed by Pellegrino et al. (2001). In the assessment triangle, the observation 

component should be developed based on the competency specified in the cognitive 

model. This shows the deductive reasoning because the direction of inference is 

developed from cause to effect, i.e., from the competency to the students’ responses. 

Students who have the required competencies should be able to respond correctly to 

the assessment tasks, while students who do not have them should not be able to 

respond correctly to those tasks.  

However, the interpretation component, which shows that the inference process 

is from the students’ responses to the competency, demonstrates an inductive 

inference. This is consistent with the fundamental idea of assessment as “reasoning 

from evidence” stated by Pellegrino et al. (2001). This idea suggests that the inference 

about students’ knowledge should be drawn from the data generated from their 

responses. The direction of the reasoning from the students’ responses to what students 

know is an inductive inference.  

Because assessment as reasoning from evidence is an inductive inference, it 

therefore contains uncertainties. Eysenck and Keane (2010) highlighted that, “a key 

feature of inductive reasoning is that the conclusions of inductively valid arguments are 

probably (but not necessarily) true”, (p.533). Bayesian inference facilitates this inductive 
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inference using probabilistic models to take into account the uncertainties in the 

inductive reasoning process. The inference offers the right direction on the reasoning 

process of assessment in terms of assessment as reasoning from evidence. 

In summary, Bayesian Inference provides a framework of reasoning for building a 

complex model in assessment. Deductive reasoning guides the researcher to develop a 

hypothetical model and item tasks, which are theoretically driven. Meanwhile, inductive 

reasoning guides the researcher to draw inferences probabilistically about the students’ 

knowledge based on the observed data. This framework is consistent with the 

assessment triangle proposed by Pellegrino et al. (2001), which enhances the 

effectiveness of the assessment design in this study. 

The next section provides more technical detail about Bayesian modelling in the 

context of educational measurement. 

2.2.2.3.2 Bayesian Measurement Models  

According to West et al. (2012), modern measurement models rely on two essential 

properties: latent variables and the use of probabilistic models. Latent variables are 

unobservable variables, which represent the construction of the students’ knowledge. 

The probabilistic models provide a formal mathematical process to measure the latent 

variables based on the available observed data.  

Probabilistic models are broadly classified into two distinct approaches: Bayesian 

and frequentist approaches. In short, these two approaches differ in two basic ways. 

First, a Bayesian approach treats parameters in the models as random variables, while a 

frequentist approach treats parameters as fixed unknown quantities. Second, a Bayesian 

approach includes prior information in the estimation parameters, while a frequentist 

approach does not.  

The differences between Bayesian and frequentist approaches have implications 

for modelling the observed and latent variables. In frequentist approach, the relation 

between observed variables and the latent variables is modelled through a conditional 

probability of the observed variables given the latent variables which is expressed as 

𝑃(𝑋|𝜃). This conditional probability shows a deductive reasoning which goes from the 
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latent variables (cause) to the observed variables (effect) as discussed before in Section 

2.2.2.3.1.  

The estimation of the latent variable 𝜃 is performed through maximizing the 

likelihood function of (𝑋|𝜃). In this case, the observed variables 𝑋 are treated as random 

and the latent variables 𝜃 are treated as unknown fixed quantities. The latent variables 

𝜃 are estimated through repeated samples of the experiment (Almond et al., 2015). This 

estimation shows an inductive inference process in a frequentist approach because the 

logic of inference goes from specific events, i.e., random quantities of data 𝑋 to general 

i.e., fixed (constant) quantities of 𝜃.  

Bayesian approaches also use the likelihood function in conjunction with the prior 

𝜃, 𝑃(𝜃) . However, Bayesian approaches treat latent variables 𝜃 as random quantities 

that reflect the uncertainties of the interest variables being estimated (e.g., students’ 

competency).  

The likelihood function 𝑃(𝑋|𝜃), expresses the researcher’s belief about students’ 

competency (θ) computed from their responses on the given items. The plot in Figure 

2.5 is an example of the likelihood function generated from 10 items where the number 

of correct answers is 8. This figure follows the illustration of the likelihood function in 

Almond et al. (2015). The results show that the likelihood function gives a range of 𝜃 

that determines which value of 𝜃 is likely to be responsible for the number of correct 

responses. The likelihood function is maximised at 0.8 from the range of 0.4-1.0 of 𝜃. 

This maximised value was the estimate of the student’s 𝜃. 

 

 

Figure 2.5 The likelihood function for 𝜽 generated from 8 correct responses out of 10 items (Adapted 
from Almond et al., 2015, p. 65)  

In contrast with frequentist approaches, Bayesian approaches draw inferences 

about the latent variables 𝜃 from a posterior probability. This posterior probability is 
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generated from the conditional probability of the latent variables 𝜃 given the data X, 

𝑃(𝜃|𝑋).  Using Bayesian theorem, 𝑃(𝜃|𝑋)  is calculated as follows: 

 𝑃(𝜃|𝑋) =  𝑃(𝑋|𝜃) 𝑃(𝜃)/𝑃(𝑋). (2. 1) 

In the context of this research, 𝑃(𝜃|𝑋) is the probability of students’ competency 

conditional on their responses; this is called the posterior probability. 𝑃(𝑋|𝜃) is the 

probability of students’ responses (correct/incorrect) conditional on their competency; 

this is known as the likelihood function. 𝑃(𝜃) is the prior probability which is “the 

distribution specified by the analyst to possibly reflect substantive, a priori knowledge, 

beliefs, or assumptions about the parameters” (Levy & Mislevy, 2016, p. 27). Moreover, 

𝑃(𝑋) is the probability of the observed data unconditional with the model parameters, 

which is known as a normalizing constant. Because the normalizing constant is 

unconditional with the interest parameters, it is usually ignored in the calculation (Levy 

& Mislevy, 2016). As a result, the concern around Bayesian modelling is centred on the 

likelihood, the prior and the posterior probability. Hence, equation (2.1) can be 

presented as follows. 

 𝑃(𝜃|𝑋) ∞ 𝑃(𝑋|𝜃) 𝑃(𝜃). (2. 2) 

From equation (2.2), it can be seen that the posterior density depends on the 

likelihood and the prior. There are two types of prior in Bayesian modelling: the 

informative and the non-informative prior. The informative prior can obtained from 

experts’ information or their prior knowledge about the parameter being studied 

(Garthwaite, Kadane, & O'Hagan, 2005). On the other hand, the non-informative prior 

is, “a prior with minimal influence on the inference” (Syversveen, 1998, p. 1), for 

example, by assuming that a parameter of 𝜃 follows a uniform distribution. 

The informative prior is the subjective part of the Bayesian inference, which often 

leads to a central criticism that the inference is not objective enough. Indeed, this 

criticism originally comes from the debate between objectivist and subjectivist 

perspectives in defining probability.  Objectivism interprets probability “as real-world 

attributes of the events they refer to, unrelated to and unaffected by the extent of our 

knowledge” (Cowell, Dawid, Lauritzen, & Spiegelhalter, 1999, p. 12). In contrast, 

subjectivism considers that probability is “a numerical measure of a particular person’s 



28 

 

subjective degree of belief in A, with probability 1 representing certain belief in the truth 

of A, and probability 0 expressing certainty that A is false”(Cowell et al., 1999, p. 12). 

Moreover Cowell, Dawid, Lauritzen, and Spiegelhalter (2006) state that objectivists 

calculate probability from repeated experiments (events), while subjectivists estimate 

the probability from “singular propositions”, which is opposite to the repeated 

experiments posed by objectivists (Cowell et al., 1999, p. 11). 

Responding to the debate between subjectivists and objectivists in defining 

probability, Almond et al. (2015) argued that probability lies between the subjectivists’ 

and the objectivists’ perspectives. They defined probability as “representing a state of 

information about an unknown event” (p.46). Using this definition, the notion of 

objectivism and subjectivism can be accommodated when implementing the Bayesian 

inference. The prior probability can come from the subjective information, but then it is 

updated through the likelihood function that may come from the objective data. Hence, 

the posterior probability as the objective inference in a Bayesian approach can be 

objective enough in stating students’ knowledge when the evidence from the students’ 

performance is used to update the subjective probability of the prior.   

The conditional probability and the prior in the Bayesian modelling discussed 

above are important in building the measurement model of learning progression in this 

study. Let 𝑋 be the students’ responses and 𝜃 the level of the students in the learning 

progression model. The likelihood 𝑃(𝑋|𝜃) can be interpreted as the probability of the 

students’ answers 𝑋 (e.g. correct or incorrect responses), dependent on the students’ 

level 𝜃. In this case, the researcher might assume that the students at a particular level 

and above have a high probability of answering the items, while the students at the 

lower levels may have a low probability. This assumption is expressed through the prior 

𝑃(𝑋|𝜃) by setting the value of the prior low enough for the students at the lower levels 

and high enough for the students at the level and above the level.  

The conditional probability of the likelihood 𝑃(𝑋|𝜃) can be interpreted as the 

probability of the students’ answers 𝑋 (e.g. correct or incorrect responses), dependent 

on the students’ level 𝜃. In this case, the researcher might assume that the students at 

a particular level and above have a high probability of answering the items, while the 

students at the lower levels may have a low probability. This assumption is expressed 
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through the prior 𝑃(𝜃) by setting the value of 𝑃(𝜃) low enough for the students at the 

lower levels and high enough for the students at the level and above the level. 

The modelling discussed above allows the researcher to make two types of 

inferences: the item level and the students’ level inferences (West et al., 2010; West et 

al., 2012). Item level inference is the inference that items at a certain level would be 

answered correctly by the students at that level or the upper level, whereas the students 

at the levels below would not answer these items successfully. The students’ level 

inference is the inference that a student at a certain level would have sufficient 

competency at that level and below, but would not have enough competency at the 

upper level(s). These two types of inferences are the advantage of using Bayesian 

modelling, which was used to validate the learning progression model in the present 

study. This advantage is not found in frequentist approaches.   

The next section introduces Bayesian Networks, which are specified in greater 

detail in Chapter 5, for measuring students’ learning progression of fractions in the 

present research.  

2.2.2.3.3 Bayesian Networks 

Bayesian Networks combine Bayesian measurement models with graph theory. They 

provide a graphical probabilistic network of competencies which underpin students’ 

performances (observed variables). Using Bayesian Networks, the interconnection 

(inter-dependency) among competencies in complex cognition models can be 

demonstrated and presented in (probabilistic) profiles (Mislevy, 1994b; Mislevy et al., 

2000; West et al., 2012). 

The statistical model of Bayesian Networks is constructed based on the joint 

distribution of random variables, by specifying the conditional distribution to be 

recursive (Levy & Mislevy, 2016; Mislevy, 1994b). The recursive property refers to the 

joint distribution that “can be expressed as a product of a distribution for the first 

variable, a distribution for the second variable conditional on the first, a distribution for 

the third variable conditional on the first and second, and so on” (Levy & Mislevy, 2016, 

p. 345). The recursive representation of the joint probability for Bayesian Networks is 

formulated as follows: 
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  𝑝(𝑋ଵ, … , 𝑋௡) = 𝑝((𝑋௡|𝑋௡ିଵ, … , 𝑋ଵ) … 𝑝(𝑋ଶ|𝑋ଵ)𝑝(𝑋ଵ)  

= ∏ 𝑝൫𝑋௝ห𝑋௝ିଵ, … , 𝑋ଵ൯௡
௝ୀଵ , 

(2. 3) 

whereby, 𝑋ଵ … 𝑋௡ is a set of n random variables (Mislevy, 1994b). The term random 

variables in this research refers to both latent and observables variables. Latent 

variables are variables indirectly observed, such as students’ progression levels. 

Observed variables are variables that refer to directly observed behaviour, such as 

students’ responses to a particular item. 

Bayesian Networks are constructed based on a Directed Acyclic Graph (DAG), 

which corresponds to the latent and observed variables structured in equation (2.3). The 

graph is “directed”, which means that each variable has a conditional relationship with 

the other. “Acyclic” means that the conditional relationship never goes back to the 

variable itself. For example, there are four random variables 𝑋ଵ, 𝑋ଶ, 𝑋ଷ  and  𝑋ସ, where  

𝑋ଵ is conditional on 𝑋ଶ; 𝑋ଶ is conditional on 𝑋ଷ; and 𝑋ଷ is conditional on 𝑋ସ. The acyclic 

property prohibits 𝑋ସ from being conditional on 𝑋ଵ.  

The graph in Bayesian Networks consists of nodes and edges. The nodes represent 

the categorical variable in the model, while the edges are the arrows, which represent 

conditional relationships among variables. The nodes from which the arrows are 

originated are called “the parent”, while the nodes to which the arrows are directed are 

“the child”. The child node is a node which is conditional on the parent (Mislevy, 1994b). 

Therefore the equation 2.3 can be written as follows (Schwarz, Xie, & Yao, 2005): 

 𝑝(𝑋ଵ, … , 𝑋௡) = ∏ 𝑝൫𝑋௝ห"parents"of 𝑋௝൯௡
௝ୀଵ   (2. 4) 

The multivariate structures of Bayesian Networks in the DAG are estimated based 

on a conditional independence property. Mislevy (1994b) defined conditional 

independence as “one subset of variables which may be related in a population, but they 

are independent given the values of another subset of variables” (p.4). For example, 

variables 𝑋ଵ and 𝑋ଶ may be related, but once 𝑋ଵ and 𝑋ଶ are conditional on 𝑋ଷ, then 

𝑋ଵ and 𝑋ଶ become independent. The following figure is a simple DAG structure to 

illustrate this relationship. 
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Figure 2.6 Conditional independence between X1 and X2. 

From Figure 2.6, it can be seen that 𝑋ଵ and 𝑋ଶ are conditional on 𝑋ଷ. The 

relationship of those variables can be denoted as follows: 

 𝑝(𝑋ଵ, 𝑋ଶ|𝑋3) = 𝑝(𝑋ଵ|𝑋ଷ)𝑝(𝑋ଶ|𝑋ଷ)                                                            (2. 5) 

In practice, the relationship among complex variables can be structured and 

simplified using a conditional property. For example, the joint distribution of variables 

𝑋ଵ, 𝑋ଶ, 𝑋ଷ  and  𝑋ସ is denoted as follows (Adapted from Levy & Mislevy, 2016) 

𝑝(𝑋ଵ, 𝑋ଶ, 𝑋ଷ, 𝑋ସ) = 𝑝(𝑋ସ|𝑋ଷ, 𝑋ଶ, 𝑋ଵ)𝑝(𝑋ଷ|𝑋ଶ, 𝑋ଵ)𝑝(𝑋ଶ|𝑋ଵ)𝑝(𝑋ଵ)     (2. 6) 

Suppose that 𝑋ଵ and 𝑋ଶ refer to the basic skills that should be mastered in a certain 

domain of learning. 𝑋ଷ is a skill which is developed based on skills 𝑋ଵ and 𝑋ଶ, and skill 

𝑋ସ is developed based on skill 𝑋ଷ. Hence, using the conditional independent property, 

the joint distribution of equation (2.6) can be simplified as follows. 

𝑝(𝑋ଵ, 𝑋ଶ, 𝑋ଷ, 𝑋ସ) = 𝑝(𝑋ଷ|𝑋ଶ, 𝑋ଵ)𝑝(𝑋ସ|𝑋ଷ)𝑝(𝑋ଶ)𝑝(𝑋ଵ)                      (2. 7) 

The DAG for the joint distribution in equation 2.7 is presented in Figure 2.7. 
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Figure 2.7 A DAG diagram representing skills 𝑋ଵ, 𝑋ଶ, 𝑋ଷ  and  𝑋𝟒, where 𝑋ଵ and 𝑋ଶ are independent; 
𝑋ଷ is dependent on 𝑋ଵ and 𝑋ଶ; and 𝑋ସ is dependent on 𝑋ଷ (Adapted from Levy & Mislevy, 2016, p. 
346) 

The conditional independent property is an important feature in structuring 

variables in complex networks. However, the most important thing in developing a 

Bayesian Networks model is that structuring the joint probability of the variables should 

be built based on a “theory-driven” or “deductive-reasoning” approach (Mislevy, 1994b, 

p. 474). As a result, the sound theoretical deductive-reasoning model of the joint 

probability in Bayesian Networks supports sound inductive-reasoning drawn from the 

data (Mislevy, 1994b). The development and model specifications of Bayesian Networks 

for modelling learning progressions in this research are discussed further in Chapter 5. 

2.2.3. Summary of the Rationale 

In summary, the present assessment is developed based on a cognitive model of 

learning. This cognitive model provides a framework to design assessment tasks and to 

interpret students’ responses. A learning progression is the cognitive model developed 

in the present research. Learning progressions can guide assessment to identify where 

the students are situated in their learning journey. Hence, the feedback about learning 

can be generated based on students’ progression levels. Such feedback can be used by 

educators to improve students’ learning.  

The dependency between the levels in the learning progression model add to the 

complexity of the measurement model. The Bayesian Networks model is a probabilistic 

model that can handle the complexity and dependency of variables (levels). This 
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Bayesian model also provides deductive and inductive reasoning, which is consistent 

with the principle of assessments based on cognitive models. 

2.3. Content Domain: Fractions 

2.3.1. Fraction Learning Progression 

Existing fraction learning progressions have been based on the theoretical work of 

Kieren (Kieren, 1976, 1980). Kieren, however, proposed five sub-constructs in the 

interpretation of fractions. These sub-constructs are “part-whole”, which expresses the 

fraction concept as the equal parts of a larger whole (unit); “measure” which expresses 

fractions as measurement points in a number line; “quotient” which views a fractions as 

division; “operators” which defines fractions as a function that transforms a quantity 

(number) into another quantity (number) with a smaller or bigger value; and “ratio” 

which interprets rational numbers as a ratio to compare the two entities. 

Arieli-Attali and Cayton-Hodges (2014) adopted Kieren’s fraction sub-constructs as 

big ideas to develop a rational number learning progression. Big ideas are the “central 

concepts and principles of a discipline”, (Smith, Wiser, Anderson, & Krajcik, 2006, p. 2). 

They also used some other big ideas such as half and halving procedures, unit fraction, 

decimals, place value, and equivalent fractions. From these big ideas, they constructed 

the following progress variables: fractional unit, measure/fraction as number, additive 

structure, multiplicative structure, and strategic thinking/flexibility. Based on these 

progress variables, they structured the progression of students in rational number 

learning into six levels: prior knowledge (half and halving), early part-whole 

understanding, fraction as unit, fraction as single number and fraction as measure, 

representational fluency, and a general model of a rational number.  

Confrey, Nguyen, and Maloney (2011) developed a fraction learning trajectory 

based on the common core state standards of the American Curriculum (CCSS). The 

learning trajectory begins at grade 3 by introducing the relationship between parts and 

their referenced whole. They used equipartitioning to build a unit fraction (1/b, where 

b is a whole number). After that, a fraction a/b is introduced based on the unit fraction 

1/b. Next, students are introduced to equivalent fractions and fraction comparison with 

the same numerator or denominator. Next in grade 4, students learn how to compare 
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two fractions with different numerators and begin to understand the rule of fraction 

addition and subtraction with the same denominator. At this level, students are also 

introduced to fraction multiplication. At grade 5, comparisons of fractions with different 

denominators are introduced. Moreover, the multiplication of a fraction by a fraction 

and the division of fractions are also introduced at this level.  

In contrast to the work Arieli-Attali and Cayton-Hodges (2014) and Confrey et al. 

(2011), the proposed model of fraction learning progression combines Kieren’s 

theoretical framework and the empirical research performed by Stafylidou and 

Vosniadou (2004) to develop a learning progression of students’ understanding of both 

the numerical and symbolic notation of fractions. In their research, Stafylidou and 

Vosniadou (2004) proposed three explanatory frameworks for understanding the 

symbolic notation of fractions. The first explanatory framework is a “fraction as two 

independent natural numbers”. Within this category, students’ understanding of the 

fraction symbol is influenced by the notations of whole numbers, so that they believe 

that the fraction symbol consists of two independent numbers (the numerator and the 

denominator) and that the value of fractions increases when either the numerator or 

the denominator of a fraction increase. The second explanatory framework is associated 

with the idea that “a fraction is a part of a whole”. Within this category, students 

conceive the relationship between the numerator and the denominator of fractions as 

that of a part of a whole, where the value of a fraction is always smaller than 1. The third 

explanatory framework is the “relationship between the numerator and denominator”. 

Within this explanatory framework, students begin to understand the relationship 

between the numerator and the denominator so that they start to see a fraction as a 

number that can be bigger than one. They understand that if the numerator is bigger 

than the denominator, then the value of the fraction is also bigger and vice versa 

(Stafylidou & Vosniadou, 2004). 

Another principal understanding about fractions that is not captured explicitly in 

Kieren’s sub-constructs is the density concept of rational numbers, i.e., that “between 

any two different rational numbers there are infinitely many rational numbers” 

(Vamvakoussi and Vosniadou (2004, p. 456). Understanding the density of rational 
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numbers presupposes that students understand that fractions are numbers that can be 

located on the number line but goes beyond understanding fraction as measure. 

Combining the theoretical framework of Kieren’s fraction sub-constructs and that 

of Vosniadou and her colleagues results in building a learning progression of students’ 

understanding of the symbolic notation of fractions, which is more comprehensive than 

the previous work by Arieli-Attali and Cayton-Hodges (2014) and Confrey et al. (2011). 

This progression starts from students seeing the symbolic notation of fractions as 

representing two independent numbers until they understand the density property of 

fractions.   

2.3.2. Two-dimensional Knowledge of Fraction Learning Progression 

As detailed in Section 2.1, current learning progression models do not distinguish 

between the development of conceptual and procedural knowledge in students’ 

mathematical learning. However, mathematics learning includes two essential 

knowledge dimensions: conceptual and procedural knowledge (Hibert & Lefevre, 1986; 

Rittle-Johnson & Schneider, 2014). Rittle-Johnson and Alibali (1999) defined conceptual 

knowledge as “explicit or implicit understanding of the principles that govern a domain 

and of the interrelations between pieces of knowledge in a domain” (p. 175). 

Accordingly, Hibert and Lefevre (1986) defined conceptual knowledge as: 

“a connected web of knowledge, a network in which the linking relationships 

are as prominent as the discrete pieces of information. Relationships pervade 

the individual facts and propositions so that all the pieces of information are 

linked to some network” (p. 3).  

Both definitions are complimentary in conceiving conceptual knowledge as consisting of 

interconnected pieces of information about ideas and principles.  

In terms of understanding the symbolic notation of fractions, conceptual 

knowledge includes understanding fraction properties (e.g. understanding the 

magnitudes of fractions), understanding fraction principles (e.g. understanding the 

density of fractions) and understanding the value of fractions (Bailey et al., 2015). 

Related to understanding the (symbolic) notation of fractions, conceptual knowledge 
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includes understanding the meaning/interpretation of fraction sub-constructs, as 

discussed in Section 2.3.1.   

Rittle-Johnson et al. (2001) defined procedural knowledge as “the ability to 

execute action sequences to solve problems” (p. 346). Similarly, Star and Stylianides 

(2013) expressed procedural knowledge as “knowledge of procedures, including action 

sequences and algorithms used in problem solving” (P. 6). In learning fractions, Bailey et 

al. (2015) described procedural knowledge as the knowledge of fraction operations. 

They defined procedural knowledge as “fluency with the four fraction arithmetic 

operations: addition, subtraction, multiplication, and division” (Bailey et al., 2015, p. 69). 

Current practices for teaching and assessing mathematics emphasize procedural 

learning (Joersz, 2017; Sullivan, 2011). Teachers often introduce mathematics to 

students as procedures to solve mathematical tasks, without explaining the conceptual 

understanding underlying the procedures. In fact, some of the students’ procedural 

mistakes happen precisely because of students’ inadequate conceptual understanding. 

For example, students who perform addition across the numerator and denominator in 

fraction addition tasks see fractions as two independent whole numbers (Smith III, 2002; 

Stafylidou & Vosniadou, 2004). 

The balance of teaching and assessing conceptual and procedural knowledge can 

be supported by the cognitive model of learning, which can cover the progression of 

these two types of knowledge. This can be done by placing the cognitive model as the 

foundation of the development of the curriculum, assessment, and instructions, as 

suggested by Pellegrino et al. (2001) and Wilson (2009a). Figure 2.8 shows the 

interconnections between the curriculum, assessment and instruction, based on a 

cognitive model of learning. 
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Figure 2.8 The relationship between curriculum, pedagogy, assessment and theories of learning (Adapted 
from Wilson, 2009a, p. 6) 

The cognitive model of learning can shape the curriculum, assessment and 

pedagogy (see Figure 2.8). Hence, the construction of a cognitive model of learning, 

based on the conceptual and procedural dimension of fraction learning, can produce a 

more balanced curriculum, assessment and pedagogy. 

2.3.3. Summary of the Rationale 

In previous research, the theoretical framework of Kieren’s sub-constructs were used as 

a foundation from which to develop fraction learning progressions of the development 

of the concept of fractions. The present research differs from previous work, first 

because it developed a learning progression of the development of students’ 

understanding of the symbolic notation of fractions. Second, it used, in addition to 

Kieren’s sub-constructs, Vosniadou and colleagues’ explanatory frameworks for 

understanding fraction notation based on empirical research. Third, previous learning 

progressions did not differentiate between the conceptual and procedural knowledge 

of fractions, as was done in the present work.  

2.4 Summary of the Chapter 

This chapter discussed the literature relating to assessment, comparing traditional 

methods of assessment with assessments based on cognitive models. It was argued that 

assessments built based on cognitive models are superior to traditional assessments in 

terms of providing diagnostic information about student learning that can be used in 

instruction. Learning progression is a promising cognitive model that can be used as a 

foundation to develop diagnostic assessments because it provides information about 



38 

 

the developmental levels of students’ learning. A Bayesian Network is a statistical model 

that can be used for modelling the complexity and the hierarchical dependency between 

the levels of a learning progression. The hierarchical dependency can be modelled 

through conditional probability.  

This chapter also discussed previous research on fraction learning progressions. 

The theoretical framework from Kieren and empirical research from Vosniadou on 

fraction learning have been combined to create a more comprehensive foundation for 

building a learning progression in fractions. Moreover, distinguishing conceptual and 

procedural knowledge in the learning progression is important in order to provide 

adequate information about these different types of mathematical knowledge in 

assessment to guide both the curriculum and the instruction. 

 The next chapter discusses the development of the cognitive model of a fraction 

learning progression based on conceptual and procedural knowledge, and their 

corresponding items. 
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CHAPTER 3 : THE HYPOTHESIZED LEARNING 
PROGRESSION MODEL AND ITEM TASK 

DEVELOPMENT 

3.1 Introduction 

The purpose of this chapter is to discuss the development of the hypothetical model of 

fraction learning progression and the corresponding item tasks.  The hypothetical model 

of fraction learning progression was developed based on two dimensions of knowledge: 

conceptual and procedural. Furthermore, this chapter discusses the item tasks used to 

assess competencies for each level of the conceptual and procedural knowledge 

dimensions. It is organized into two main sections, which are: 

1. The Proposed Model of Fraction Learning Progression 

2. The Development of the Item Tasks 

3.2 The Proposed Model of Fraction Learning Progression 

Fractions are parts of the set of rational numbers, which are expressed in the form a/b, 

where a and b are integers and b is not zero (Bronshtein, Semendayev, Musiol, & Mulig, 

2015; Rosen, 2007). In the present research, Lamon (2012) definition of fractions, which 

restricts fractions to “non-negative rational numbers" (p.29) is used. Hence negative 

fractions are not included in the proposed model. Furthermore, the model focuses on 

students’ understanding of the symbolic notation of fractions, rather than on the 

development of the fraction concept as a whole. 

Fractions have a distinct symbolic notation and properties, which are different 

from those of natural numbers (Stafylidou & Vosniadou, 2004). First, natural numbers 

consist of one number only, while fractions consist of two numbers separated by a line. 

The top number is called the numerator and the number at the bottom is called the 

denominator. Second, fractions are unbounded-infinite numbers, meaning that there 

are no smallest or biggest fractions. This is different from natural numbers, where the 

unit is the smallest number. Next, no unique fraction precedes or follows another 

fraction, which means that there is always another fraction between two fractions. This 

is in contrast with natural numbers, where there is a unique number that precedes and 

follows all natural numbers. 
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Research shows that in the beginning of fraction instruction, students may not 

understand the symbolic notation of fractions. They may see fractions as two distinct 

(independent) whole numbers (Hartnett & Gelman, 1998; Smith III, 2002; Stafylidou & 

Vosniadou, 2004). They do not understand the meaning of the numerator and the 

denominator and their relationship. They treat fractions as they treat natural numbers. 

For example, in ordering fractions, they may consider that a fraction with a bigger 

numerator or denominator is a bigger fraction; in adding fractions, they may add across 

the numerator and denominator (2/3 + 1/4 = 3/7). 

As discussed in Chapter 2, fractions have several sub-constructs, and this study 

focuses on the sub-constructs of the conceptual dimension underpinning the 

hypothesized model. These sub-constructs are:  first, fractions can be seen as expressing 

the relationship of part-whole, which is “a comparison between the number of parts of 

the partitioned unit to the total number of parts in which the unit is partitioned” 

(Charalambous & Pitta-Pantazi, 2007, p. 296). Second, fractions can be seen as 

expressing “the measure assigned to some interval or region”(Lamon, 2012, p. 210). 

Hence, if there is a length l and then it is divided equally into b sub-divisions in which 

each sub-division has a length 1/b, the fraction a/b can be interpreted as “a intervals of 

length l/b” (Lamon, 2012, p. 210). Finally, fractions can be seen to represent an 

operation of division so that the fraction a/b is “used as a way of writing a ÷ b”(Behr, 

Lesh, Post, & Silver, 1983, p. 95).  

The hypothesized model of fraction learning progression that is proposed in this 

study expands the modelling approach of learning progressions from a unidimensional 

into a multidimensional model of learning progressions. The models of learning 

progressions in mathematics learning developed so far have been based on one 

dimensional knowledge, as discussed in Chapter 2. By differentiating the conceptual and 

procedural knowledge dimensions, the present hypothesized model provides a more 

detailed roadmap of students’ learning. Mathematics instructors can use this model to 

assess students’ knowledge and skills better and thus to improve their instruction of 

fractions at a classroom level. Educators can also use this model to develop or refine a 

mathematics curriculum at a state or national level.  
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Conceptual knowledge of fractions is defined as understanding the meaning of the 

symbolic notation of fractions. According to Hibert and Lefevre (1986), a symbol can 

express mathematical ideas and concepts. For fractions, the symbol a/b can be used to 

refer to several sub-constructs, as discussed before. Thus, understanding the meaning 

of the symbolic notation of fractions is related to the understanding of the various 

fraction sub-constructs. Procedural knowledge in this study is defined as knowledge of 

the series of steps or rules required to perform fraction addition, subtraction, 

multiplication and division. This definition is similar to the definition used by other 

researchers in the field, such as Rittle-Johnson and Schneider (2014), who defined a 

procedure as “a series of steps, or actions, done to accomplish a goal”, and Bailey et al. 

(2015) who identified “the four fraction arithmetic operations: addition, subtraction, 

multiplication, and division” as the procedural knowledge of fractions. Within the 

hypothesized model, the procedural levels were specified based on knowledge of the 

rules that govern fraction operations.  

The hypothesized model is constructed based on the development of several sub-

constructs which are categorized into conceptual and procedural knowledge 

dimensions. Based on the development of these fraction sub-constructs (discussed in 

Section 4.2.1), the hypothesized model of fraction learning progression is developed in 

Section 4.2.2.   

3.2.1 The Development of the Fraction Sub-constructs 

The proposed hypothetical model of fraction learning progression attempts to capture 

the development of the students’ understanding of the symbolic notation of fraction 

and of the rules and procedures which are used in fraction operations (fraction addition, 

subtraction, multiplication, and division). This hypothetical model distinguishes two 

dimensions of fraction knowledge: conceptual and procedural. The distinction between 

the two types of knowledge in this model is important because mathematics 

competencies rest on these two types of knowledge (Hibert & Lefevre, 1986; Rittle-

Johnson & Schneider, 2014). It means that mathematical competencies rest on an 

understanding of mathematical symbols which are “connected to the conceptual 

knowledge they represent”  (Hibert & Lefevre, 1986, p. 9), and on an understanding of 

the rules and procedures which are needed to execute mathematical tasks. Within each 
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dimension, a number of fraction sub-constructs are proposed. These sub-constructs are 

similar to the “progress variables” stated in Pellegrino (2014) and Arieli-Attali and 

Cayton-Hodges (2014). The development of the sub-constructs for the conceptual and 

procedural dimensions underpinning the proposed learning progression is discussed in 

this section. 

3.2.1.1 The Development of the Conceptual Sub-constructs 

Within the conceptual knowledge dimension, there are five fraction sub-constructs 

which develop across the proposed levels. Those sub-constructs are: fraction as part-

whole, fraction as measure, density of fractions, understanding fraction additive 

structure, and understanding fraction multiplicative structure. 

3.2.1.1.1 Fraction as Part-whole 

The part-whole sub-construct refers to the understanding of the symbolic notation of 

fractions as a representation of the part-whole relationship between the numerator and 

the denominator. The construction of this meaning is based on students’ experiences of 

the partitioning of continuous objects into sets of discrete and equal parts (Behr et al., 

1983; Kieren, 1980) and the linking of these experiences to fraction notation through 

instruction. In the hypothesized model, it is assumed that students may not fully 

understand the symbolic notation of fractions at the beginning of instruction, despite 

the fact they may have some understanding of part-whole relationships and may know 

that familiar fractions such as 1/2 and 1/3 refer to parts of a whole. 

A more advanced understanding of the meaning of fraction notation is 

hypothesized to develop at level 2. At level 2, students may understand that the 

denominator refers to the total number of the parts that a whole consists of and that 

the numerator refers to a sub-set of these parts. Fraction understanding at level 2 is 

limited to fractions less than 1 (proper fractions) because students think that the 

numerator, which represents the sub-set of selected parts, should always be smaller 

than or equal to the denominator, which represents the total parts of the whole. 

However, at level 2, students may not understand that the denominator refers to equal 

size partitions of the whole. This understanding is hypothesised to be a competence 

achieved at level 3. At level 3, students also begin to understand improper fractions. 

They understand that the size of a part (the numerator) can exceed the size of the 
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referenced whole (the denominator). In other words, they understand that the 

numerator can be greater than the denominator and if so, that the fraction is greater 

than the unit of the whole. 

3.2.1.1.2 Fraction as Measure  

The measure sub-construct refers to the meaning of fractions as “the measure assigned 

to some interval or region,” which can “measure the distance of a certain point on the 

number line from zero” (Lamon, 2005, p. 170). Hence, fractions a/b can be interpreted 

as “a measure of a of b congruent parts” (Kieren, 1976, p. 131). This sub-construct 

includes understanding fractions as single-numbers on the number line, fraction order, 

and equivalent fractions. Understanding fractions as measures is hypothesized to be 

established at Level 3. At this level, students must be able to recognize the magnitude 

of fractions and the scales on the number line. At the next level (Level 4) they can order 

several fractions on the number line, including improper fractions and mixed numbers.  

3.2.1.1.3 Infinity and density of fractions 

The infinity part of this sub-construct refers to the fraction properties of unbounded 

infinity and density. Unbounded infinity means that fractions are seen as infinite 

numbers; there is no smallest or biggest fraction (Stafylidou & Vosniadou, 2004). The 

density part of this sub-construct refers to the fact that there are infinite numbers 

between two fractions (Bronshtein et al., 2015). The property of density of rational 

numbers is “radically different” from the discreteness property in whole numbers 

(Vamvakoussi & Vosniadou, 2004, p. 456), and it is difficult for students to understand.   

Students at Level 3 and below may believe that there is a smallest and a biggest 

fraction, still influenced by their part-whole understanding of fractions. They also are 

not expected to understand the notion of density. They see fractions as discrete 

quantities, like whole numbers. Level 4 fraction understanding assumes that fractions 

are seen as infinite numbers, an idea that can lead students to understand the concept 

of density. They begin to see that there can be many numbers between two-pseudo 

successive fractions, but they still think that there are finite numbers between two 

fractions. Finally, students at Level 5 should have a complete understanding of the 

density property i.e. that there are infinite numbers between two-pseudo successive 

fractions. 
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3.2.1.1.4 Understanding Additive Fraction Operations 

The sub-construct of additive fraction operations refers to students’ understanding of 

the meaning of addition and subtraction of fractions. In fraction operations, the meaning 

of addition and subtraction is similar to the meaning of the additive operations with 

natural numbers. Addition of fractions always produces a bigger number and 

subtraction of fractions always produces a smaller number. This is also the case for 

natural numbers, where the addition of two natural numbers always produces a bigger 

number and thee subtraction of two natural numbers always produces a smaller 

number.  

In the beginning, students do not understand fraction addition and subtraction. 

They may understand that adding fractions means joining parts of the object, or 

subtracting fractions means separating parts of the object, but they cannot translate this 

understanding into operations using the symbolic notation of fractions. Conversely, they 

do not understand the meaning of addition and subtraction when these operations are 

represented using the symbolic notation of fractions. Next, at Level 2, students 

understand fraction addition and subtraction based on their understanding of the 

symbolic notation fraction a/b, where b represents the “size of the parts” and a 

represents the “number” of those parts (Clarke, Roche, & Mitchell, 2008, p. 375).  

3.2.1.1.5 Understanding Multiplicative Fraction Operations 

The sub-construct of understanding multiplicative fraction operations refers to 

students’ conceptual knowledge of fraction multiplication and division. The meaning of 

fraction multiplication is different from the meaning of natural number multiplication. 

In fractions, multiplication means “how much of” (Van de Walle, Karp, Bay-Williams, & 

Wray, 2015). So for example, a multiplication of 2/3 by 3/4 means how much of 2/3 in 

3/4  (see Chinnappan & Forrester, 2014). As a result, fraction multiplication does not 

always produce bigger numbers (especially when the multiplication involves a proper 

fraction, it always produces a smaller number), while in natural numbers multiplication 

always produces a bigger number. The meaning of fraction division is similar to the 

meaning of natural number division, which is finding “how many” parts of a divisor are 

in a dividend. For example, 2/3 divided by 3/4 means finding how many 3/4 in 2/3. 

However, fraction division can produce a bigger value (i.e. when the divisor is a proper 
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fraction), while in natural numbers division always produces a smaller value. Therefore, 

fraction multiplication and division are counter-intuitive for students who have prior 

knowledge of natural number operations. An understanding of fraction multiplication is 

hypothesized to emerge at the highest level of the proposed model.  

3.2.1.2 The Development of the Procedural Sub-Constructs 

The procedural knowledge dimension of the hypothesized fraction learning progression 

consists of two sub-constructs: additive operations and multiplicative operations. 

3.2.1.2.1 Additive Operations 

The sub-construct of additive operations refers to the procedural knowledge required 

in order to perform fraction addition and subtraction correctly. At level 1, students are 

not expected to have the procedural knowledge of adding or subtracting fractions, but 

they may be able to do a simple fraction addition and subtraction for fractions with the 

same denominator by transferring their knowledge of addition and subtraction from 

natural numbers – i.e., they may simply add the numerators or the denominators to get 

the answer. At Level 2, students must have developed their procedural knowledge of 

fraction addition and subtraction and must be able to perform additive fraction 

operations with unlike denominators. They are expected to know the rule that when 

adding or subtracting fractions the denominators should be the same. If the 

denominators are different, then they should manipulate the fractions (by transforming 

the fractions with a common denominator) to get the same denominator before they 

add or subtract them. At Level 3, they should expand their knowledge of the rules and 

procedures of adding and subtracting fractions at Level 2 and should be capable of 

adding and subtracting improper fractions and mixed numbers.  

3.2.1.2.2 Multiplicative Operations 

The sub-construct of multiplicative fraction operations refers to knowledge of the rules 

for fraction multiplication and division. Students at Level 3 are expected to be able  to 

perform fraction multiplication and division, but not when the operations involve 

improper fractions and mixed numbers. At level 4, they must be able to handle more 

complex multiplicative fraction operations, which involve improper fractions and mixed 

numbers. Their fluency has emerged at this level and is at Level 5.  

The summary of the sub-construct progression is presented in Table 3.1. 
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Table 3.1 The sub-construct progressions of the proposed model of fraction learning progression 

Sub-Construct Level 1 Level 2 Level 3 Level 4 Level 5 
Conceptual       
      
Part-whole Do not understand the 

relationship between the 
numerator and 
denominator.  

See fractions as a comparison 
between the number of 
selected equal parts to the 
number of all parts of their 
referenced whole, but 
consider fractions to be 
smaller than then the unit 

Understand improper 
fractions 

  

      
Measure   Understand a fraction as a 

point on the number line, 
but still limited to fractions 
smaller than the unit 

Understand a fraction as 
a point on the number 
line, including improper 
fractions and mixed 
numbers 

 

Infinity (Unbounded-
infinity and Density) 

 See fractions as discrete 
quantities 

See fractions as discrete 
quantities 

Understand that there is 
no smallest or biggest 
fraction 

Recognize that there 
are infinite numbers 
between two-pseudo 
successive fractions. 
 

 
Understanding of 
additive structure 

 
 

 
Understand the meaning of 
fraction addition/subtraction 
operations  
 

 
 

  

 
 
Understanding of 
multiplicative 
structure 

     
 
Understand the 
meaning of 
multiplicative 
fraction operations  
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Sub-Construct Level 1 Level 2 Level 3 Level 4 Level 5 
 
Procedural 
 
Additive Operations 

Do not have procedural 
knowledge of fractions 

Can do fraction additions and 
subtractions including 
fractions with unlike 
denominators but are limited 
to fractions less than 1 

Can do additive fraction 
operations with improper 
fractions or mixed numbers 
 
 

  

Multiplicative 
Operations 

  Can do multiplicative 
fraction operations  

Can do multiplicative 
fraction operations with 
improper fractions or 
mixed numbers 
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3.2.2 The Hypothesized Model of Fraction Learning Progression 

This section discusses the levels of the proposed model of fraction learning progression 

and the competencies for each level. The model is hypothesized to consist of five levels 

of conceptual knowledge dimension and four levels of procedural knowledge based on 

the development of the fraction sub-constructs, as discussed in the previous section.  

3.2.2.1 Conceptual Knowledge Dimension 

3.2.2.1.1 Level 1 – No Fraction Understanding 

No conceptual understanding of the symbolic notation of fractions found at Level 1. 

Fraction notation may be interpreted as consisting of two independent numbers with 

the exception of some familiar fractions such as 1/2 and 1/4.  

The symbols in mathematics (including the  symbolic notation of fraction a/b) 

present mathematical ideas and concepts (Hibert & Lefevre, 1986). As discussed before, 

fractions a/b have been interpreted in various ways to accommodate fractional ideas 

and concepts (See Behr et al., 1983; Charalambous & Pitta-Pantazi, 2007; Kieren, 1976, 

1980; Lamon, 2012). Students may not understand the meaning of the symbolic 

notation of fraction a/b when first exposed to fractions. They may see fraction a/b as 

two independent natural numbers (see Hartnett & Gelman, 1998; Smith III, 2002; 

Stafylidou & Vosniadou, 2004), except for familiar fractions such as 1/2 and 1/4. 

However, they may understand part-whole relationships of objects in the world on the 

basis of their prior knowledge obtained from daily life experience. A study by Mack 

(1990) showed that students had prior knowledge of fractions such as “knowledge about 

parts of wholes in real world situations …[that] was based upon knowledge of whole 

numbers” (p.3). Those students who may have no understanding of fractions and may 

treat fractions as two independent numbers are hypothesized at the lowest level in the 

proposed model. 

3.2.2.1.2 Level 2 – Part-Whole 

Students understand a fraction as a part-whole. At this level, they understand that the 

numerator represents the number of selected parts and the denominator represents 
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the number of all parts of their referenced whole. They also believe that a fraction is 

always smaller than 1 (a whole). 

Students begin to understand the relationships between the numerator and 

denominator in fractions as a part-whole relationship. They understand the basic idea 

of fractions as part-whole which is, “some whole is broken into equal parts” (Kieren, 

1980, p. 134). However, at this level they may not really understand the meaning of 

“equal size”, and may sometimes  generate pictorial representations of  fractions 

consisting of unequal parts (see Arieli-Attali & Cayton-Hodges, 2014). In addition, they 

believe that fractions should be smaller than 1 (whole) because the number of parts (the 

numerator) cannot exceed the numbers of all the parts of the whole (the denominator) 

(Stafylidou & Vosniadou, 2004). Arieli-Attali and Cayton-Hodges (2014) gave the 

example of  one student who read 6/4 and said that, “there cannot be 6 out of 4, so it 

must be 4 out of 6” (p.25).  This is the next development of students’ fraction 

understanding from level 1. In level 1 they do not understand the symbolic notation of 

fractions and may perceive the numerator and denominator as two independent 

numbers. In level 2, they understand fractions as part-whole and understand fractions 

smaller than 1. This roadmap of fraction learning may be highly related to the fact that 

fractions as part-whole are taught at the beginning of fraction instruction (Amato, 2005; 

Kieren, 1976).  

The students at this level are hypothesized to have the following conceptual 

competencies: 

1. They generate the symbolic notation of proper fractions from pie diagrams. 

Students are able to generate fraction notation from pie or other area model 

representations. However, their understanding is limited to fractions smaller than 

1. They do not understand that fractions can be bigger than the unit. Previous 

research has revealed some of the problems students at this level may have with 

improper fractions.  

2. They map proper fractions onto pie diagrams. 

At this level, students understand the symbolic notation of fraction as 

representing part-whole. This understanding allows them to map fraction notation 

onto pie diagrams, but it is limited to fractions smaller than 1. Students have 
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difficulties with understanding fractions that are greater than 1 because they do 

not understand why a part can be bigger than the whole. 

3. They generate the symbolic notation of equivalent fractions from pie diagrams. 

Students can understand equivalent fractions but are limited to fractions less than 

1. They can demonstrate this understanding by generating equivalent fraction 

notations from pie diagrams. According to (Wong & Evans, 2011), equivalent 

fractions can be represented using pie diagrams. The area of the whole is constant, 

but the number of partitions within the whole can be varied. Thus, different 

fractions (which are equivalent) can be generated corresponding to the number 

of partitions of the whole (the denominator) and the number of the shaded 

partitions (the numerator) that are created. 

4. They can order proper fractions  

Students understand the size of fractions based on part-whole understanding and 

can order proper fractions using pie diagrams. This is aligned with the study by 

Stafylidou and Vosniadou (2004), which showed that students at the explanatory 

framework of fractions as a part-whole were able to order fractions smaller than 

the unit 1. 

5. They can demonstrate correct fraction addition and subtraction using diagram 

representations. 

Arieli-Attali and Cayton-Hodges (2014) highlighted that students who have a part-

whole understanding are able to perform fraction addition and subtraction by 

adding and separating the selected (i.e. shaded) parts of diagram representations. 

Thus, students at this level are expected to be able to demonstrate fraction 

addition and subtraction with fractions with different denominators. Hence the 

conceptual understanding of adding and subtracting proper fractions with 

different denominators using diagram representations is hypothesized to emerge 

at this level. 

3.2.2.1.3 Level 3 – Improper Fractions and Fractions as Measures 

Students understand that if the numerator is greater than the denominator, then the 

fraction is greater than the referenced whole and vice versa. They also understand 

fractions as measures and conceive fractions as numbers on the number line.  
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Students begin to understand the relationship between the numerator and 

denominator beyond part-whole understanding. They understand that if the numerator 

is greater than denominator, then the fraction is greater than the referenced whole and 

vice versa. In other words, they understand that the numerator, which presents the size 

of the part, can exceed the denominator, which presents the size of the whole. On the 

other hand, they also understand fractions as measures. Behr et al. (1983) highlighted 

that understanding fractions as measures can be seen as understanding fractions as “a 

subset of the real numbers”. Hence, this is a conceptual jump from learning fractions by 

understanding fractions as a relationship between parts and the whole of objects at 

Level 2, to understanding fractions as numbers on the number line. Stafylidou and 

Vosniadou (2004, p. 513) also argued that students who understand the relationship 

between the numerator and the denominator of fractions, including fractions greater 

than 1 (the referenced unit/whole), have “radically changed their beliefs about the 

concept of fraction”. Therefore, the conceptual knowledge of fractions as measures and 

understanding fractions greater than 1 is at a different (higher) level compared with 

part-whole understanding at Level 2. 

The following are the students’ competencies hypothesized to emerge at this level. 

1. They can generate the notation of fractions from a pie diagram, which represents 

equal size partitions 

Students advance their understanding of fractions as representing part-whole at 

Level 2. In this level, they understand that the denominator should represent 

equal size partitions of the whole. Understanding “equal size” is identified as the 

next step in learning after understanding the symbolic notation of fractions as a 

representation of part and whole (as established at Level 2) (see Arieli-Attali & 

Cayton-Hodges, 2014). 

2. They can generate an improper fraction notation from a pie diagram 

Students advance their understanding of fractions as part-whole at level 2, which 

is limited to fractions less than 1, to understanding improper fractions at level 3.  

They can generate improper fractions from two circles of a pie diagram. They 

understand that the denominator of improper fractions represents the number 

of all parts of the referenced unit (whole), which is the number of all parts from 
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a pie diagram. They also understand that the numerator of improper fractions 

refers to the number of all shaded (selected) parts, even though it is larger than 

the number of all parts of the referenced unit. Hence, they understand that if a 

fraction has a numerator greater than the denominator, then it is greater than 

the whole.  

3. They generate equivalent fraction notation, greater than 1, from pie diagrams 

The students can generate  a notation of equivalent fractions for fractions 

greater than 1 from two circles of a pie diagram. This is the development of 

students’ competency on equivalent fractions that in the previous level (Level 2), 

their competency is limited to proper fractions.  

4. They generate a pie diagram to represent improper fraction notation 

This competency is similar to the competency at point 2. The difference is that 

this competency requires students to translate a symbolic notation of improper 

fractions into a pie diagram, as compared to generating a fraction from a pie 

diagram.  

5. They can correctly order fractions, including improper fractions and mixed 

numbers  

Students advance their understanding of improper fractions and mixed numbers 

at this level. They fully understand the relationship between the numerator and 

the denominator that a fraction symbol represents. Wenrick (2003) highlighted 

that understanding the relationship between a numerator and a denominator 

can produce a “quantitative notion” of fractions, which is extremely useful 

because it allows students to compare and order fractions. 

6. They can place a fraction on a number line 

Students at this level begin to understand fractions as a measure. They 

understand that fractions can be used to represent the distance between zero 

and a certain point on the number line. They also understand that the numerator 

represents the distance - how many scales from zero to the certain point on the 

number line - while the denominator represents the total number of scales 

(equal intervals) within the unit. Without this understanding, students will have 

difficulty in locating fractions on a number line (Wong, 2013). 
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3.2.2.1.4 Level 4 – Unbounded Infinite Numbers of Fractions 

Students view fractions as unbounded infinite numbers (there is no smallest or biggest 

fraction).  

Stafylidou and Vosniadou (2004, p. 513) showed that students at the explanatory 

framework of “relation between numerator and denominator” and the sub-category 

“relation of two numbers with infinity” believed that fractions are unbounded infinite 

numbers. This belief emerged as a result of understanding the relationship between the 

numerator and denominator of fractions as division (Stafylidou & Vosniadou, 2004). This 

sub-category is higher than the sub-category “relation of two numbers without infinity” 

which is hypothesized to emerge at Level 3.  

The following are the competencies which are hypothesized to emerge at this level. 

1. Students can order improper fractions on a number line 

Students advance their measure understanding of fractions at Level 3 to the case 

of improper fractions. At this level they can locate and order fractions (including 

improper fractions) with different denominators on the number line.  

2. Students understand that there is no biggest and  smallest fraction  

At this level, students understand that fractions are unbounded infinite numbers 

3.2.2.1.5 Level 5 – Density of Fractions and Understanding Multiplicative Fraction 

Operations 

Students understand the density property of fractions, i.e. that there are unlimited 

numbers between any two fractions. They also have conceptual understanding of 

multiplicative fraction operations. 

Students are able to understand that there are infinite numbers between any two 

fractions. Understanding the density concept at this level completes the students’ 

understanding of fractions as numbers. Moreover, they also begin to understand 

fraction multiplication and division, which is different from multiplication and addition 

with whole numbers. 

The following are the competencies which are hypothesized to emerge at this level 

1. Students are able to demonstrate that there are infinite numbers between any 

two fractions. 
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At this level, students are expected to understand that there are unlimited 

numbers between two pseudo-successive fractions. Vamvakoussi and Vosniadou 

(2004) grouped the students who understand the density of fractions into two 

categories: “naïve density” and “sophisticated density”. The former included 

students who believed that there are infinite numbers between two fractions or 

between two decimals or believed that there are infinite numbers between both 

fractions and decimals but not between a decimal and a fraction. Sophisticated 

density is achieved when students understand that there are infinite numbers 

between any two rational numbers, regardless of their symbolic representations. 

Because the study focuses only on fractions, the present research cannot 

differentiate between naïve and sophisticated density. 

2. Students can represent multiplicative fraction operations using diagram 

representations. 

Students at this level can demonstrate a conceptual understanding of fraction 

multiplication and division using pictorial representations like pie diagrams or 

number lines. 

3.2.2.2 Procedural Knowledge Dimension 

3.2.2.2.1 Level 1 – No Procedural Knowledge 

No procedural knowledge is expected at this level.  At Level 1, students may be able to 

add or subtract fractions with like denominators. However, their procedural knowledge 

at Level 1 may not depend on knowledge of fraction addition and subtraction, but 

knowledge of addition and subtraction with natural numbers. Since they consider 

fractions to be two independent natural numbers, they transfer their knowledge of 

natural numbers to addition with fractions. In such a situation, they can be correct on 

fraction addition or subtraction with fractions with like denominators but not when the 

denominators are different. Hansen, Jordan, and Rodrigues (2015) found that many 

students in the low growth procedures group treated numerators and denominators of 

two fractions in fraction addition and subtraction as “four separate whole 

numbers”(p.11). This is consistent with also the notion of whole number bias highlighted 

by Ni and Zhou (2005), according to which students apply whole number properties in 

cases where whole numbers do not apply, as in the case of fractions. 



55 

 

3.2.2.2.2 Level 2 – Additive Fraction Operation 

Students know the procedures of fraction additions and subtractions but are limited to 

proper fractions. Students begin to know the rules and procedures of fraction addition 

and subtraction, including fractions with unlike denominators. Confrey et al. (2011) 

pointed out a trajectory of learning additive operations, which begins from additive 

operations with fractions with like denominators and finishes with those with unlike 

denominators.  

The competencies which are hypothesized to emerge at this level are addition and 

subtraction with proper fractions, including fractions with unlike denominators. The 

students at this level know that the denominators should be the same when they add 

or subtract fractions. Moreover, if the fractions have unlike denominators, they know 

the procedure of how to transform the fractions to get equivalent fractions with a 

common denominator. However, their procedural knowledge of fraction addition and 

subtraction is limited to proper fractions. They have trouble with adding or subtracting 

improper fractions and mixed numbers. 

3.2.2.2.3 Level 3 – Additive and Multiplicative Fraction Operations 

Students expand their procedural knowledge of additive operations to include improper 

fractions and mixed numbers. They also begin to develop procedural knowledge of 

multiplicative fraction operations. The following are the procedural competencies which 

are hypothesized to emerge at this level. 

1. Students can add and subtract improper fractions and mixed numbers. 

Students develop their procedural knowledge of additive operations, which was 

limited to fractions less than 1 at level 2, to additive operations which involve 

improper fractions and mixed numbers. These competencies require procedural 

knowledge of how to transform mixed numbers into common fractions and vice 

versa, and how to transform fractions with unlike denominators into equivalent 

fractions with a common denominator. Understanding fractions greater than 1, 

which emerges at this level, helps students to learn additive operations that 

involve improper fractions and mixed numbers.  
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2. Students can multiply and divide fractions. 

Students develop their procedural knowledge from additive fraction operations 

(fraction addition and subtraction) in Level 2 to multiplicative fraction operations 

(fraction multiplication and division) at level 3. Multiplicative operations usually 

are taught in schools after additive operations (see Balitbang, 2013a; Initiative, 

2011). Therefore, the procedural knowledge of multiplicative fraction operations 

is hypothesized to emerge at this level after students learn the procedure of 

additive fraction operations at level 2. They can perform well in multiplying and 

dividing fractions for fractions less than 1, but they may have trouble when the 

operations involve improper fractions and mixed numbers. For example, when 

they multiply 2 ¼ and 1/2 they may multiply 1/4 by 1/2 and keep the whole 

number 2. They make an error by not transforming the mixed number 2 ¼ into a 

common fraction form (a/b) before proceeding to the multiplication of 2 ¼ and 

1/4. 

3.2.2.2.4 Level 4 – Advanced procedural knowledge of additive and multiplicative 

fraction operations 

Students advance their procedural knowledge of multiplicative fraction operations from 

the previous level. The fluency of performing fraction operations (for both additive and 

multiplicative operations) emerges at this level. Students’ procedural knowledge of 

fraction multiplication and division is developed at this level. In the previous level they 

begin to recognize the procedures of fraction multiplication and division, but they 

commit procedural errors when the operations involve mixed numbers, as discussed at 

level 4. At this level they can perform more complex multiplicative fraction operations 

(with not only greater complexity, but fewer procedural errors) that involve improper 

fractions and mixed numbers. They demonstrate fluency in performing fraction 

multiplication and division. The procedural competencies that are hypothesized to 

emerge at this level are that students are able to perform fraction multiplication and 

division that involves improper fractions and mixed numbers. 
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3.3 The Development of Item Tasks 

This section discusses the item tasks that are developed to test students’ level 

competencies within the proposed model of fraction learning progressions. The 

discussion is organized into two parts: conceptual item tasks and procedural item tasks. 

Some of the items were adapted from other research, while some were crafted by the 

researcher itself.  

The items are organized into groups of tasks. There are eight tasks in the 

conceptual dimension: Task 1 Generating a Fraction from a Pie Diagram; Task 2 Shading 

a Pie Diagram to Represent a Fraction; Task 3 Ordering Fractions; Task 4 Locating 

Fractions on a Number Line; Task 5 Finding the Smallest and Biggest Fractions; Task 6 

Finding how many Fractions lie between two Fractions; Task 7 Adding Fractions using 

Diagram Representation; and Task 8 Multiplying and Dividing Fractions using Diagram 

Representation. Next, the procedural knowledge dimension consists of two tasks: Task 

1 Performing Additive Fraction Operations; and Task 2 Performing Multiplicative 

Fraction Operations. 

Within each task there are items. The items are labelled using seven-digit codes. 

The first three digits of the codes refer to the conceptual and procedural dimension (Con 

for conceptual and Pro for procedural); the fourth and fifth digits refer to the task; and 

the last two digits refers to the items within the task. For example, the item code 

ConT1Q2 refer to the conceptual dimension, Task 1, Item 2. These codes are useful for 

the quantitative analysis performed in Chapter 6. 

3.3.1 Conceptual Item Tasks 

The conceptual item tasks are developed to test students’ conceptual understanding of 

the symbolic notation of fractions (which is represented in the bi-partite notation a/b 

where a and b are whole numbers) and the meaning of fraction operations.  In order to 

test students’ understanding of the symbolic notation of fractions, item tasks based on 

the sub-constructs of part-whole, measure and infinity are developed. Likewise, in order 

to test students’ understanding of the meaning of fraction operations, item tasks based 

on the sub-constructs of conceptual additive and multiplicative fraction operations are 

crafted.  
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The understanding of fractions as representing part-whole is tested using items 

that ask students to map fraction notation into pie diagrams and the opposite. Students 

are asked to generate fractions that represent the shaded parts of a pie diagram or are 

asked to shade the part of a pie diagram that corresponds to a given fraction. Pie 

diagrams are used to test students’ understanding of proper, improper and equivalent 

fractions. Students’ responses to these tasks can demonstrate whether they understand 

the symbolic notation of fractions when that symbolic notation is used to represent part-

whole relationships. In addition, students are also asked to use part-whole 

representations to compare fractions and demonstrate which fraction is bigger. These 

tasks are used to reveal students’ understanding of the numerical value of fractions 

based on part-whole representations.  

The understanding of fractions as representing measure is tested using items that 

ask students to map fraction notation into number lines. Students are asked to put a 

fraction or several fractions on the number line. In order to be able to put a fraction on 

the number line, students should understand that the denominator of fractions 

represents  the number of intervals within one unit and the numerator represents the 

number of intervals from zero to the point/mark of the fraction on the number line. 

Students’ understanding of fractions as measure is inferred from their responses as to 

how they create the intervals/scales within one unit (when the fraction is an improper 

fraction) or within more than one unit (when the fraction is an improper fraction).  

The infinity property of fractions is tested using items that ask students how many 

fractions are present between two fractions. There are two types of the infinity property 

in the hypothesized model of fraction learning progression: the unbounded infinity of 

fractions and the density of fractions. To reveal students’ understanding of the 

unbounded infinity of fractions, students are asked to write the biggest and the smallest 

fractions they know. Students who answer this item correctly may say that there are no 

biggest and smallest fractions, meaning that fractions are unlimited or infinite. The 

density of fractions is tested using item tasks which ask students to find how many 

fractions are present between two fractions (both pseudo-successive and non-

successive fractions). From their responses, it can be inferred whether they have a 
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discreteness understanding of fractions or a density understanding of fractions, or 

whether they have misconceptions.  

 

3.3.1.1 Understanding Fractions as Representing Part-Whole Relationships 

Understanding fractions as part-whole is tested using Task 1 Generating a Fraction from 

a Pie Diagram, Task 2 Shading a Pie Diagram to Represent a Fraction and Task 3 Ordering 

Fractions. 

3.3.1.1.1 Task 1 Generating a Fraction from a Pie Diagram 

To test students’ understanding of the symbolic notation of fractions as part-whole, 

students are asked to write a fraction that represents the shaded part of pie diagrams. 

Item 1 - Write the fraction for the shaded part below (Adapted from Scanlon, 2013) 

(ConT1Q1) 

 

Task 1 Item 1 asks students to write the symbolic notation of the fraction that 

represents the shaded parts of the pie diagram. To answer this item correctly, students 

should understand that the numerator represents the number of the shaded parts and 

the denominator represents the number of all parts of the pie diagram (the whole). The 

correct answer for this item 3/8. Students who answer this item correctly are put on 

level 2 (part-whole) of the hypothesized learning progression model, while students who 

answer this item incorrectly are put on level 1 (do not understand the symbolic notation 

of fractions). This item is developed to address Level 2 Competency 1 (generate the 

symbolic notation of proper fractions (fractions less than 1) from a pie diagram).  
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Item 2 - Write the numerator of the fraction for the shaded parts below (ConT1Q2)

 

Task 1 Item 2 tests the students’ understanding of equivalent fractions within the 

part-whole sub-construct. The next step of learning fractions after recognizing fraction 

notation as a representation of parts and a whole is learning equivalent fractions 

(Confrey et al., 2011). Within this concept, students recognize that the selected part of 

the object (the whole) can be represented by different fractions, which are all 

equivalent: it means that these fractions have the same numerical value (size).   

Task 1 Item 2 asks students to give a fraction that represents a half of the shaded 

area but has the denominator 16. Hence, students should understand that if a half 

shaded area, which is 1/2, is to be represented by another fraction which has the 

denominator 16, then this fraction should have the numerator 8. To answer this item 

correctly, students should know that the whole number of partitions is now 16 (because 

the denominator now is 16), and there are 8 partitions covering the shaded area, which 

is half of 16. These 8 partitions cover the same area as the area of the previous 1 

partition, which means that the 8 eight partitions are equal to the previous 1 partition. 

Hence, students should be able to infer that the fraction representing the shaded 8 

partitions is equal to the fraction which represents the previous 1 shaded partition.  In 

other words, the correct answer for this item is 8 which is the numerator of the fraction 

representing a half-shaded area of the pie diagram with the denominator 16. This 

answer is illustrated as follows: 

 

 

8

16
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By answering this item correctly, students have demonstrated that 1/2 and 8/16 

have the same value because they represent the same size of the shaded area of the pie 

diagram. Students who are able to answer this item correctly are put in Level 2 because 

understanding fractions as part-whole includes understanding equivalent fractions 

(Arieli-Attali & Cayton-Hodges, 2014; Kieren, 1980). This item is used to address level 2 

competency 3 (generate equivalent fractions from a pie diagram).  

Item 3 - Write the fraction for the shaded part below (Adapted from Pantziara & 

Philippou, 2012; Scanlon, 2013) (ConT1Q3) 

 

 

 

The correct answer for this item is 1/6 as represented in the following pie diagram. 

 

Task 1 Item 3 tests the students’ understanding of equal partitions as a foundation 

of part-whole sub-construct (Kieren, 1976, 1980; Lamon, 2005). This is a development 

of students’ understanding of the symbolic notation of fractions as part-whole at level 

2. Students at level 2 understand the symbolic notation of fractions that represents part-

whole relationships, but they may not understand that the denominator should 

represent parts in equal size. Arieli-Attali and Cayton-Hodges (2014) put students who 

understand equal partition one-level higher than those who had not acquired this 

concept. Therefore, these items are placed at level 3 of the proposed model. This item 

is used to address level 3 competency 3 (generate a fraction as equal-parts of a whole 

from a pie diagram).  

 

 

 

1

6
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Item 4 If the figure                                  is the whole, write the fraction for the shaded part 

below (ConT1Q4) 

 

 

 

 

Task 1 Item 4 tests the students’ ability to generate the symbolic notation of an 

improper fraction from a pie representation. The correct answer for this item is 5/4. In 

order to provide the correct answer, students should understand the symbolic notation 

of fractions, i.e., that the numerator represents the number of selected parts (the size 

of part) and the denominator represents the number of all parts of the whole (the size 

of whole). However, they should also understand that the size of a part can exceed the 

size of the referenced whole. For this item, students should understand that the circle 

is the referenced whole, as stated in the task. Hence the denominator is the number of 

all parts in one circle which is 4, while the numerator is the number of all the shaded 

parts from two circles, which is 5. By understanding the part and the referenced whole, 

students can understand why the numerator is bigger than the denominator. This task 

is used to address Level 3 competency 1 (generate improper fractions (fractions greater 

than 1) from pie representations).  

Item 5- If the figure                                       is the whole, write the numerator for the shaded 

part below (ConT1Q5) 

 

 

 

 

 

 
…

଼
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Task 1 Item 5 is similar to Task 1 Item 2, which asks students to find an equivalent 

fraction for 1 ½ shaded areas of the circles with the given denominator 8. However, Task 

1 Item 5 asks students to generate an equivalent fraction for an improper fraction, while 

Task 1 Item 2 asks students to generate an equivalent fraction for a proper fraction. The 

correct answer for this item is 12 which represents the numerator of the fraction 12/8 

as illustrated on the pie diagram below. 

 

To answer this item correctly, students should understand both improper fractions 

and equivalent fractions. From the pie diagram above, students who understand 

improper fractions should know that the diagram represents 3/2 or 1 1/2 because there 

are three shaded parts and 2 partitions on each circle, where one circle is the referenced 

whole.  However, they are asked to find another fraction with the denominator 8 which 

is equivalent to 3/2 or 1 1/2.  Students should understand that the denominator 8 means 

that there are 8 partitions within the referenced whole, i.e., one circle. By partitioning 

each circle into 8 parts, they can see that there are 12 parts in the shaded areas of the 

two circles and can conclude that the fraction that represents the shaded area is 12/8, 

a fraction equivalent to 3/2 or 1 1/2. Because this task requires an understanding of 

improper fractions, students are expected to answer this item correctly at level 3. This 

item addresses Level 3 competency 2 (generate equivalent fractions greater than 1 from 

pie representations).  

3.3.1.1.2 Task 2 Shading Pie Diagrams to Represent Fractions 

Previous items asked students to generate fractions from pie diagrams, while the 

following tasks ask students to shade the area of pie diagrams to represent fractions. 

The aim of these tasks is the same as the aim of the previous tasks, which is testing the 

students’ understanding of the symbolic notation of fractions as part-whole. Students 

who understand fractions as part-whole should be able to generate fractions from the 

pie diagrams and they also should be able to shade the pie diagrams to represent the 

12

8
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value expressed by the symbolic notation of fractions. So, these item tasks are created 

to gain more evidence of the students’ understanding of fractions as part-whole. 

 

Item 1 Shade the shape to show the fractions below (ConT2Q1). 

  

Task 2 Item 1 tests the students’ understanding of fraction notations (within the 

part-whole sub-construct) by asking them to shade the area of the circle that the fraction 

denotes. The following pie diagram is the correct answer of this item. 

 

To answer this item correctly, students should know that the denominator 

represents the number of all parts in the circle, while the numerator represents the 

shaded parts of the circle. If they know this, the students should be able to understand 

that they are supposed to shade two of the 3 parts of the circle. Students who answer 

this item correctly provide evidence that they understand the symbolic notation of 

fractions as part-whole. Therefore, they are put in level 2 (part-whole), while students 

who fail to answer this item correctly are put in level 1 (do not understand the symbolic 

notation of fractions) of the hypothesized model of fraction learning progression. This 

item is used to address Level 2 competency 2 (generate a pie representation from a 

proper fraction).  

Item 2 Shade the shape to show the fractions below (ConT2Q2). 

 

 
 
଻

ସ
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ask 2 Item 2 tests the students’ understanding of improper fractions. The item asks 

students to shade the fraction  ଻

ସ
  on two units (wholes) of circular representations, 

where each unit has two equal partitions. To answer this item correctly, students should 

understand that the referenced whole is represented by one circle, and they should 

understand that the denominator 4 refers to the number of partitions of one circle. 

Hence, they should create four partitions within each circle, and shade seven parts. The 

following pie diagram is the correct answer of this item. 

 

 Students who successfully answer this item show that they understand that the 

denominator of improper fractions represents the number of parts of the referenced 

whole, i.e., of one circle in the present case. They also provide evidence that they 

understand that the numerator of the fraction represents the number of selected parts, 

which can be greater than the total number of parts of the referenced whole (the 

denominator). The students who answer this item correctly are put in level 3. This item 

is used to address level 3 competency 4 (generate a pie diagram to represent an 

improper fraction).  

3.3.1.1.3 Task 3 Comparing Fractions 

Task 3 Items 1 to 3 ask students to compare fractions based on a part-whole model. 

They test the students’ understanding of the numerical value of fractions. Students who 

do not understand the symbolic notation of fractions may compare fractions based on 

their prior knowledge of whole numbers. Stafylidou and Vosniadou (2004) found that 

students in the explanatory framework of fractions as two independent natural numbers 

thought that “The numerical value of a fraction increases when either the numerator or 

the denominator increase” (p.511). Hence, students who see fractions as two 

independent numbers either compare fractions based on the size of the numerator only, 

or based on the size of the denominator only. On the other hand, students who 
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understand fractions as part-whole should be able to demonstrate the numerical value 

of fractions using a part-whole model.  

Item 1 Which is larger  ଷ

ହ
   or  

ଵ

ହ
 ?  Illustrate how you got your answer by using a model 

such as a picture or a diagram representation (Adapted from Scanlon, 2013) (ConT3Q1). 

The correct answer is 3/5 because it has more shaded parts compared to that of 

1/5 as illustrated on the pie diagrams below. 

 

Task 3 Item 1 tests the students’ understanding of the numerical value of fractions 

based on their understanding of fractions as part-whole by asking them to compare 

fractions. Students who understand that the numerator represents the number of 

selected parts and the denominator represent the number of all parts may answer that 

3/5 is greater than 1/5 because 3/5 has more selected parts compared to 1/5. Students 

may also answer this item using their procedural knowledge. They may do a cross-

product technique to determine which fraction is larger. This is because students may 

use their procedural knowledge and conceptual knowledge to solve a problem (Hallett, 

Nunes, & Bryant, 2010). This item asks students to compare fractions using pie or 

rectangle diagrams so that they can demonstrate their conceptual understanding of the 

numerical value of fractions. To compare 3/5 and 1/5 using pie or rectangle 

representations, students should compare the size of the shaded area of the pie or 

rectangle diagrams that corresponds to the fraction 3/5 and 1/5. This item is used to 

test Level 2 Competency 4 (order proper fractions using part-whole representation).  
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Item 2 Which is larger  ଶ

ଷ
  or  ଷ

ସ
 ?  Illustrate how you got your answer by using a model 

such as a picture or diagram representation (Adapted from Scanlon, 2013) (ConT3Q2). 

Task 3 Item 2 asks the students to compare two fractions smaller than 1. This item 

requires more advanced understanding than Task 3 Item 1 because the fractions 

compared have different (unlike) denominators. To compare these fractions, students 

may use their procedural knowledge by performing a cross-product technique to 

determine which fraction is bigger, or they may use previous knowledge of whole 

numbers to find the answer (3/4 is greater than 2/3 because 3 is greater than 2 and 4 is 

greater than 3). However, this item asks the students to use diagram representations 

(pies or rectangles) to demonstrate their conceptual understanding of which fraction is 

bigger. Those answers that do not address this instruction (using procedural knowledge 

or whole number knowledge) are regarded as not demonstrating the required 

competency of ordering fractions using part-whole representation and so will be coded 

as incorrect answers. 

The correct answer is 3/4 which is equivalent to 9/12. The pie diagram 

representing 9/12 has more shaded parts compared to that of 8/12 (which is equivalent 

to 2/3). 

 

 To answer correctly on this item, students should compare the sizes of the shaded 

parts of the representation of these two fractions.  These shaded parts can be compared 

directly when these two fractions have the same denominators. Thus, these fractions 

should be transformed into equivalent fractions with a common denominator. The 

fraction 2/3 becomes 8/12, and 3/4 becomes 9/12. Students should draw diagram 

representations for 8/12 and 9/12. After that students can compare the number of 
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shaded parts from these two fractions to determine which fraction is bigger. Such 

representations demonstrate that students have a conceptual understanding of the 

symbolic notation of fractions and their numerical values, based on a part-whole model. 

Therefore, this item is used to test students’ understanding of fractions as part-whole at 

level 2, particularly Competency 4 (order proper fractions using part-whole 

representation). 

Item 3:  Which is larger  ଻
ସ
   or  ଼

଺
 ?  Illustrate how you got your answer by using a model 

such as a picture or diagram representation (Adapted from Scanlon, 2013) (ConT3Q3). 

Task 3 Item 3 tests the students’ understanding of the value of fractions greater 

than 1 by asking them to compare two improper fractions. Similar to Task 3 Item 2, 

students can directly determine which fraction is greater using a cross-product 

technique. However, this item asks students to demonstrate their conceptual 

understanding of which fraction is larger using diagram representation. They are asked 

to use pie or rectangle diagrams in order to reveal their conceptual understanding of the 

numerical values of fractions based on a part-whole model. Task 3 Item 3 is more 

complex than the previous items on fraction comparison. It requires students to be able 

to draw equivalent fractions for fractions greater than 1 to justify which fraction is 

larger.  

The correct answer is 7/4 because the equivalent fraction of 7/4 which is 21/2 has 

more shaded parts compared to the equivalent fraction of 8/6 which is 16/12 as shown 

on the pie diagrams below. 

 

7

4
=  

21

12
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To answer this item correctly, first, students should understand the symbolic 

notation of improper fractions. To show 7/4 and 8/6, they should be able to draw the 

referenced whole for each and draw another pie diagram so that they can indicate the 

number of selected parts. In this case, students should know that the denominator 

represents the number of all parts within the referenced whole, while the numerator 

represents the number of all selected (shaded) parts. Second, they should be able to 

understand equivalent fractions for fractions greater than 1, because the comparison of 

the numerical values of 7/4 and 8/6 should be done when they have a common 

denominator to make sure that these fractions are compared for the same size of the 

whole. This item is used to test students’ part-whole understanding at level 3, because 

it requires an understanding of improper fractions which is hypothesized to emerge at 

this level. Specifically, this item is used to address Level 3 Competency 3 (order fractions 

including improper fractions and mixed numbers).  

3.3.1.2 Understanding Fractions as Measures 

To test the students’ understanding of fractions as measures, students are asked to map 

the symbolic notation of fractions into number lines. Students are asked to put a fraction 

or several fractions on the number line.   

3.3.1.2.1 Task 4. Locating Fractions on the Number Line 

Item 1 Show the fraction             on the number line below (ConT4Q1).  

 

 

Task 4 Item 1 tests the students’ understanding of fractions as a point on a number 

line. Students at Level 2 may have some understanding of fractions as measures. To 

answer this item correctly, students should understand that the denominator of 3/8 

indicates that the unit (1) is divided into 8 intervals, and the numerator indicates that 

 
ଷ

଼
   

8

6
=  

16

12
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the location of the fraction on the number line is on the third interval from zero. Thus, 

the students must identify where 1 is located on the number line then divide the number 

line into 8 equal partitions and finally write the fraction 3/8 on the third interval. The 

correct answer for this item was the location of 3/8 shown on the number line below. 

 

This item is used to address Level 3 Competency 6 (place a fraction on a number 

line). 

Item 2 Show the fraction  ଵ

ଶ
    on the number line below (Adapted from Scanlon, 2013) 

(ConT4Q2).  

 

 

Task 4 Item 2 is similar to Task 4 Item 1, but it requires students to put a proper 

fraction with the constraint of another fraction (with unlike denominators) on the 

number line. This item can be solved conceptually, or it can be solved using some 

procedures. To solve this item conceptually, students should find the unit of 2/3 and 

indicate where it is on the number line. Then they can divide the unit into two equal 

intervals in order to put 1/2 on the number line. The other way is to use procedural 

knowledge to find the equivalent fractions of 1/2 and 2 /3, which are 3/6 and 4/6. After 

that, they should indicate where the unit is on the number line and divided it into 6 

intervals. After that the fractions 3/6 and 4/6 can be put on the third and fourth interval 

from zero respectively on the number line.  

The number line representation is used to test students’ understanding of the 

symbolic notation of fractions as measures by asking students to map the fraction 

notation into number lines. Although students may use some of their procedural 

knowledge to help them in mapping the fractions on the number line, their responses 

are still considered as evidence of their conceptual understanding of fractions as 

measures. The correct answer for this item is the location of 1/2 presented on the 

number line below. 

 
ଶ

ଷ
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This item is used to address Level 3 Competency 6 (locate a proper fraction on a 

number line). 

Item 3 Order the fractions   
଻

ସ
  ,  

ଵ

ଷ
  and 1

ଵ

ଶ
   on the number line below (Adapted from 

Scanlon, 2013) (ConT4Q3) 

 

Task 4 Item 3 tests the students’ understanding of the magnitude and order 

property of fractions on the number line. Understanding the magnitude and order 

property of fractions is essential to understanding fractions as numbers. This item 

requires students to be able to put fractions (including improper fractions and mixed 

numbers) on the same number line. Similar to Task 4 Item 2, students may use their 

conceptual knowledge, or they may use some procedures to help them put the given 

fractions on the number line.  

To answer this item using conceptual knowledge, students should find the unit (1) 

on the number line and then divide the unit into three equal intervals to put 1/3 on the 

first interval from zero. Then, they should find the second unit (2) on the number line 

and they should divide the interval from the first unit to the second unit into four equal 

intervals and divide the interval from zero to the first unit into four equal intervals. Then, 

7/4 is put on the seventh interval from zero. To put 1 ½ on the number line, the interval 

between the first unit and the second unit should be divided into 2, and the 1 ½ is put 

on the first interval between the first unit and the second unit because 1 ½ means that 

the distance of the fraction from zero is one and a half units. Alternatively, this item can 

be answered using procedural knowledge by finding equivalent fractions with the same 

common denominator. Using this procedure, the students will find the equivalent 

fractions for 7/4, 1/3, and 1 ½  are 21/12, 4/12, and 1 6/12. After that, they can 

determine a unit which has 12 intervals, and put the second unit 12 intervals from the 

first unit. Then 7/4 is put on the 21st interval from zero, 1/3 is put on the fourth interval 
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from zero and 1 ½ is put in the sixth interval from the first unit. The correct answer for 

this item is the location of  
଻

ସ
  ,  

ଵ

ଷ
  and 1

ଵ

ଶ
   shown on the number line below. 

 

or 

 

This item is used to test Level 4 Competency 2 (order improper fractions on a number 

line). 

3.3.1.3 Unbounded Infinity 

To test the students’ understanding of the infinity property of fractions, students 

are asked to write the biggest and the smallest fractions that they know and then explain 

their answers.  

3.3.1.3.1 Task 5 Writing the Smallest and Biggest Fractions that They Can  

Item 1 Write the biggest fraction that you know. Explain your answer (Adapted from 

Stafylidou & Vosniadou, 2004) (ConT5Q1). 

Item 2 Write the smallest fraction that you know. Explain your answer (Adapted from 

Stafylidou & Vosniadou, 2004) (ConT5Q2). 

Task 5 Items 1 and 2 test the students’ understanding of the unbounded infinity 

concept of fractions. The correct answer for these items is fractions are infinite that 

there are no smallest or biggest fractions. 

Understanding the unbounded infinity of fractions is beyond students’ 

understanding of fractions as measures at Level 3. Students who understand the 

relationship between the numerator and the denominator of fractions as division are 

able to answer these items correctly (see Stafylidou & Vosniadou, 2004). By 

understanding fractions as division, students should understand that the numerator that 

becomes the dividend is infinite, meaning that there is always another bigger number 

that can be the numerator. From this, they should know that there is always another 
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bigger fraction from a given fraction, meaning that there is no biggest fraction. Similarly, 

the denominator which becomes the divisor is also infinite, so there is always a smaller 

fraction from a given fraction, meaning that there is no smallest fraction. These item 

tasks are designed to examine the students’ understanding of the unbounded infinity of 

fractions, which is hypothesized to emerge at level 4. Therefore, these items are used to 

address Level 4 Competency 1 (write the biggest and the smallest fraction they can).  

3.3.1.4 Density 

To demonstrate the students’ understanding of the density property of fractions, 

students are asked to identify how many numbers between two pseudo-successive and 

non-successive fractions and then explain their answer. 

3.3.1.4.1 Task 6 Finding How Many Fractions lie between Two Fractions 

Item 1 How many numbers lie between 
ଶ

ହ
  and  

ସ

଻
 ? Explain your answer (Adapated from 

Vamvakoussi & Vosniadou, 2004) (ConT6Q1) 

    

Item 2 How many numbers lie between ସ
଻
  and  ହ

଻
 ? Explain your answer (Adapated from 

Vamvakoussi & Vosniadou, 2004) (ConT6Q2) 

 

Task 6 Items 1 and 2 test the students’ understanding of the density concept of 

fractions. The correct answers for these items are there are infinite numbers between 
ଶ

ହ
  

and  
ସ

଻
 and between ସ

଻
  and  ହ

଻
. 

 Task 6 Item 1 is developed to examine the students’ understanding of density on 

non-successive fractions, while Task 6 Item 2 is on pseudo-successive fractions. 

Understanding density on two pseudo-successive fractions tends to be more difficult for 

students than for two non-successive fractions. Students who have a discreteness 

understanding of whole numbers may think that there are no fractions between 4/7 and 

5/7 (Task 6 Item 2). In order to understand the density of fractions, students should 

understand several sub-constructs including fractions as division, fractions as measures, 

and equivalent fractions. Understanding fractions as division may help the students to 

understand density because it gives the students an understanding of fractions as single 

quantities (the result of the division of a numerator by the denominator). Understanding 
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fractions as measures can give students the insight that fractions are quantities and can 

be ordered and treated as numbers (which can be multiplied, divided and so on). 

Understanding equivalent fractions can help students to find s(s) between two fractions 

by enlarging the common denominators. Hence, understanding fractions as division and 

as measure, and understanding equivalent fractions may help students to understand 

that between any two fractions there are an unlimited number of fractions. These items 

are used to address Level 5 Competency 1 (demonstrate that there are unlimited 

numbers between two fractions).  

3.3.1.5 Conceptual Additive Fraction Operations 

The students are asked to draw a representational model of additive fraction operations 

to demonstrate that they understand the meaning of additive fraction operations. As 

discussed before, addition and subtraction in fractions are similar to the addition and 

subtraction in whole numbers in which addition makes bigger while subtraction makes 

smaller. Using a representational model, students can show their conceptual 

understanding of addition, i.e., adding fractions means joining the (selected) parts 

towards the referenced whole, which produces bigger fractions, while subtracting 

fractions means separating parts, which produces smaller fractions .  

3.3.1.5.1 Task 7 Adding Fractions Using Diagram Representation 

Item 1 Draw a pictorial representation for the addition of fractions below. Explain your 

answer (ConT7Q1). 

ଵ

ସ
+

ଶ

ସ
    

Task 7 Item 1 tests the students’ understanding of a simple fraction addition. 

Pictorial representations (pies or rectangles) are used to demonstrate the students’ 

conceptual understanding of the meaning of fraction addition. Students are asked to 

draw a fraction addition using diagram representation. The correct representation of 

the addition 
ଵ

ସ
+

ଶ

ସ
  is illustrated as follow: 
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+ 

= 

1

4
 

2

4
 

3

4
 

   

 

 

 

 

To answer this item correctly, students should understand that the numerators 

represent the selected parts while the denominator represents the number of all parts 

of the whole. Next, they should understand that adding fractions 1/4 and 2/4 means 

that they should join the selected parts of 1/4 with the selected parts of 2/4. Using a 

pictorial representation, they should be able to demonstrate how 1 selected part from 

1/4 is added to 2 selected parts from 2/4 to produce 3 selected parts of 4 parts (which 

is 3/4 as the result). No procedural knowledge is needed to solve this item when 

students solve this item using a pictorial representation, but their procedural knowledge 

may inform students that the answer is 3/4. However, students should represent this 

fraction addition using pie or other area model representations, which can be used as 

evidence that they also understand this fraction addition conceptually. This item task is 

used to address Level 2 Competency 5 (demonstrate fraction addition and subtraction 

using diagram representation).  

Item 2 Draw a pictorial representation for the addition of fractions below. Explain your 

answer (ConT7Q2). 

ଵ

ସ
+

ଶ

ଷ
    

Task 7 Item 2 tests the students’ understanding of a fraction addition with unlike 

denominators. This item is more complex than the previous item (Task 7 Item 1) because 
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+ 

= 

1

4
=  

3

12
 

2

3
=  

8

12
 

11

12
  

the students cannot add the fractions from the diagram/pictorial representation of 1/4 

and 2/3 directly, but should draw equivalent fractions of 1/4 and 1/3 with a common 

denominator. The correct representation of the addition 
ଵ

ସ
+

ଶ

ଷ
  is illustrated as follow: 

 

 

 

 

To answer this item correctly, the students should know the meaning of fraction 

addition, which is joining the selected parts of the same whole. However, they cannot 

add fractions if the size of the whole is different. Hence, they should know about 

equivalent fractions with a common denominator, so that they can convert the fractions 

to equivalent fractions, which have the same size of whole (a common denominator). 

Student may answer this item in different ways, particularly when finding the equivalent 

fractions. Some students may use their conceptual knowledge to find the equivalent 

fractions by drawing a diagram representation, or they may use procedural knowledge 

to find the equivalent fractions. However, they are asked to demonstrate their 

understanding of fraction addition in this item by drawing pictorial representations to 

produce evidence that they have conceptual understanding of additions with unlike 

denominators. Because this item needs the students to understand equivalent fractions, 

a competency that emerges at level 2, this item is used to address Level 2 Competency 

5 (demonstrate fraction addition and subtraction using diagram representation).  
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3

4
  

ଵ

ଶ
   of  

ଷ

ସ
 

3.3.1.6 Conceptual Multiplicative Fraction Operations 

Similarly, to test students’ understanding of additive fraction operations, students are 

asked to draw a representational model of fraction multiplication and division to show 

that they understand the meaning of multiplicative fraction operations conceptually.  

3.3.1.6.1 Task 8 Multiplying and dividing fractions using diagram representation. 

Item 1 Draw a pictorial representation for the multiplication of fractions below. Explain 

your answer (ConT8Q1) 

ଵ

ଶ
×

ଷ

ସ
  

Task 8 Item 1 tests the students’ understanding of the meaning of fraction 

multiplication. The correct answer for this item is presented as follow: 

 

 

 

 

 

To solve this item, the students should know the meaning of multiplication in 

fractions, which is different from the meaning of multiplication in whole numbers. In 

this case, students should understand that 1/2 multiplied by 3/4 means “how much is 

1/2 of 3/4". To find out how much is 1/2 of 3/4, students can draw 3/4 using a pie or 

rectangle diagram and then draw 1/2 on the 3/4 diagram. The intersection between the 

area of 1/2 and 3/4 shows how much is 1/2 of 3/4. Students at Level 4 are hypothesized 

to have conceptual knowledge of fraction multiplication. This item is used to address 

Level 4 Competency 2 (represent multiplicative fraction operations using diagram 

representation).  

Item 2 Draw a pictorial representation for the division of fractions below. Explain your 

answer (ContT8Q2) 

ଵ

ଶ
÷

ଵ

ସ
    

It can be observed that 
ଵ

ଶ
 of  

ଷ

ସ
 is three 

shaded (orange) parts which is 
ଷ

଼
 of the 

whole (all parts). Hence, the result of 

multiplication 
ଵ

ଶ
 and  

ଷ

ସ
 is  

ଷ

଼
 . 
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Task 8 Item 2 tests the students’ understanding of fraction division. The correct answer 

for the division 
ଵ

ଶ
÷

ଵ

ସ
  is illustrated as follows: 

This item is counterintuitive for students who have prior knowledge of division 

operations with whole numbers because the result produces a greater value. Dividing 

1/2 by 1/4 is finding how many 1/4s are in 1/2. To represent this understanding of 

fraction division, the students can draw a picture where the 1/2 area is shaded. Then, 

this picture is partitioned into 4 parts. The answer is found by counting how many 1/4 

parts are in 1/2 the shaded area of the picture. Students at Level 4 are expected to be 

able to demonstrate their conceptual understanding of fraction division using diagram 

representations. Hence, this item is used to address Level 4 Competency 2 (They 

represent multiplicative fraction operations using diagram representation).  

3.3.2 Procedural Item Tasks 

The procedural item tasks are developed based on two type of tasks which are: Task 1 

Performing Additive Fraction Operations; and Task 2 Performing Multiplicative Fraction 

Operations. The items for testing both procedural additive operations and procedural 

multiplicative operations are adapted and extended from Newton (2008) and Newton, 

Willard, and Teufel (2014).  

3.3.2.1 Additive Operations 

3.3.2.1.1 Task 1 Performing Additive Fraction Operations 

The items are developed to demonstrate students’ procedural knowledge of fraction 

addition and subtraction. These items require the students to apply the formal 

mathematical procedures of adding and subtracting fractions to get the solutions.  

Item 1 Find the sum of the fraction addition below (ProT1Q1) 

ଷ

଼
+

ଶ

଼
  

ଵ

ଶ
÷

ଵ

ସ
 is finding how many 

ଵ

ସ
 in a half 

(
ଵ

ଶ
). It can be observed that there are 

2 parts of  
ଵ

ସ
 in 

ଵ

ଶ
 . Hence 

ଵ

ଶ
 divided by 

ଵ

ସ
 is 2. 

1

4
 

1

4
 1

2
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Task 1 Item 1 is a fraction addition with the same denominator. The correct answer 

for this item is presented as follow: 

ଷ

଼
+

ଶ

଼
=  

ହ

଼
   

To solve this item, the students should understand the rule that adding fractions 

can be executed directly by adding the numerators of fractions while keeping the 

denominator the same, in the case that the fractions have the same (like) denominator. 

If they do not know this rule, they may add across the numerators and denominators so 

that 3/8 + 2/8 is equal to 5/16. This item task is used to address Level 2 Competency 1 

(add or subtract proper fractions).  

 

Item 2 Find the sum of the fraction addition below (ProT1Q2) 

ଵସ

ଵହ
+

ଶ

ଷ
  

Task 1 Item 2 tests the students’ procedural knowledge of fraction addition with 

unlike denominators. The correct answer for this item is presented as follow: 

ଵସ

ଵହ
+

ଶ

ଷ
=

ଵସ

ଵହ
+

ଵ଴

ଵହ
=  

ଶସ

ଵହ
  

To solve Task 1 Item 2 correctly, students need to know that adding fractions can 

be executed if they have a common denominator. This means that if the fractions have 

different denominators, they should transform those fractions into equivalent fractions 

with a common denominator. Thus, they should also understand the procedure of 

transforming fractions into equivalent fractions with a common denominator. Students 

may make mistakes in this instance, such as adding across the numerator and 

denominator because they do not know how to equate the denominators. Students 

recognize equivalent fractions at Level 2. Hence, the students at Level 2 in the 

procedural knowledge progressions are expected to answer this item correctly. This 

item is used to address Level 2 Competency 1 (add or subtract proper fractions).  
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Item 3 Find the difference of subtraction below (ProT1Q3) 

5 −  
ଷ

଼
  

Task 1 Item 3 tests the students’ procedural knowledge of fraction subtraction 

with a whole number. The correct answer for this item is presented as follow: 

5 −  
ଷ

଼
=

ହ

ଵ
−  

ଷ

଼
=

ସ଴

଼
−  

ଷ

଼
=  

ସ଻

଼
 . 

 In order to answer this item correctly, students need to convert the whole number 

5 into a fraction 5/1 before they do a fraction subtraction. After that, they need to 

transform 5/1 and 3/8 into equivalent fractions with a common denominator. This item 

involves an improper fraction which is 5/1, and therefore belongs in level 3, because this 

is the level in which students are hypothesized to understand improper fractions. 

Therefore, this item is used to address Level 3 Competency 1 (add or subtract improper 

fractions or mixed numbers).  

Item 4 Find the sum of the fraction addition below (ProT1Q4) 

2
ଷ

ହ
+  

ଵ

ଶ
  

Task 1 Item 4 tests the students’ procedural knowledge of fraction addition that 

involves a mixed number. The correct answer for this item is presented as follow: 

2
ଷ

ହ
+  

ଵ

ଶ
=

ଵଷ

ହ
+

ଵ

ଶ
=

ଶ଺

ଵ଴
+

ହ

ଵ଴
=

ଷଵ

ଵ଴
   

There are two ways to answer this item correctly. First, the mixed number 2 3/5 

should be transformed into improper fractions and then added to 1/2. Second, the 

whole number in the mixed number is kept, and the fractions of 3/5 and 1/2 are added. 

The answer is produced by adding the whole number 2 with the result of the addition 

of 3/5 and 1/2. In answering this item, some students may make a mistake when 

transforming 2 3/5 into improper fractions, or they may only add the fractions without 

adding the whole number 2 in the mixed number 2 3/5. 

Students begin to recognize fractions greater than 1 and mixed numbers at Level 

3 in the proposed model. At this level, they are expected to expand their procedural 

skills at Level 2 (adding fractions less than 1 with unlike denominators) to be able to 
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perform fraction addition that involves mixed numbers and fractions greater than 1. In 

particular, they should be able to transform mixed numbers to improper fractions. 

Therefore, this item is used to address Level 3 Competency 1 (add or subtract improper 

fractions or mixed numbers).  

3.3.2.1 Multiplicative Operations 

3.3.2.1.1 Task 2 Performing Multiplicative Fraction Operations 

Task 2 Items 1-6 are developed to test the students’ procedural knowledge of fraction 

multiplication and division. Students should apply the formal procedure of multiplying 

and dividing fractions in order to get the correct answers. 

Item 1 Find the result of the fraction multiplication below 

ଶ

ଵହ
×

଻

ଵହ
  (ProT2Q1) 

Task 2 Item 1 tests the students’ procedural knowledge of multiplying fractions by 

fractions. The correct answer for this item is presented as follows: 

ଶ

ଵହ
×

଻

ଵହ
=

ଵସ

ଶଶହ
 .  

To answer this item correctly, students should understand the rules of fraction 

multiplication, which is that the numerator is multiplied by another numerator, and the 

denominator is multiplied by another denominator. Therefore, students should multiply 

2 by 7 and 15 by 15 directly to get the answer. This item is set to have the same 

denominator which is 15. The students who have procedural knowledge of fraction 

multiplication will not be affected by this situation. They will multiply a numerator with 

a numerator and multiply a denominator with a denominator. However, the students 

who do not have sufficient knowledge of the fraction multiplication procedure may 

retain the same denominator for the result. This item is used to address Level 3 

Competency 2 (multiply and divide fractions).  

Item 2 Find the result of the fraction multiplication below 

ଵ

଼
 ×  24  (ProT2Q2) 
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The item ProL3MT2 tests the students’ procedural knowledge of fraction 

multiplication with a whole number. The correct answer for this item is presented as 

follows: 

ଵ

଼
 ×  24 =

ଵ

଼
 ×  

ଶସ

ଵ
=

ଶସ

଼
= 3   

This item asks the students to multiply a fraction (1/8) by a whole number (24). To 

answer this item correctly, students should understand the rules of fraction 

multiplication, which are that that the numerator is multiplied by the numerator, and 

the denominator is multiplied by the denominator. To answer this item, students may 

convert 24 into a fraction which is 24/1 and then multiply it by 1/8, or they may multiply 

24 by 1 directly and then divide it by 8 to get the answer. This item involves the whole 

number 24, which can be represented as an improper fraction, 24/1. This item is used 

to address the procedural knowledge of fraction multiplication, which is hypothesized 

to emerge for students at Level 3. In particular, this item is used to address Level 3 

Competency 2 (multiply and divide fractions).  

Item 3 Find the result of the fraction division below 

ଽ

ଵ଴
 ÷  

ଷ

ଵ଴
 (ProT2Q3) 

Task 2 Item 3 tests the students’ procedural knowledge of fraction division. The 

correct answer for this item is presented as follow: 

ଽ

ଵ଴
 ÷ 

ଷ

ଵ଴
=

ଽ

ଵ଴
×

ଵ଴

ଷ
=

ଽ଴

ଷ଴
= 3. 

To solve this item, the students should understand the rule of flipping the divisor 

in fraction division. For this item, students should flip 3/10 to be 10/3. After that, they 

should be able to multiply 9/10 by 10/3 to get the answer. Students may make some 

mistakes in this item. For example, they may flip the dividend instead of the divisor, or 

they may directly divide 9 by 3 because the denominators are the same (10). The latter 

mistake can occur because students misapply the rules of fraction addition or 

subtraction to the case of fraction division, in which the fractions have the same 

denominator. This item is used to address Level 3 Competency 2 (multiply and divide 

fractions).  
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Item 4 Find the result of the fraction multiplication below (ProT2Q4) 

3
ହ

଻
 ×  4

ଷ

଻
   

The item Task 2 Item 4 is similar to the item Task 2 Item 1, but it involves mixed 

numbers. The correct answer for this item is presented as follow: 

3
ହ

଻
 ×  4

ଷ

଻
=

26

7
 ×  

31

7
=  

26 × 31

7 × 7
=  

806

49
 . 

To solve this item, students should understand the rule that two mixed numbers 

cannot be multiplied directly. They should transform the mixed numbers into improper 

fractions first, before multiplying them.  Students may make mistakes in this item by 

multiplying a whole number by another whole number (3X4), and by multiplying a 

fraction by another fraction (5/7 X 3/7). This item is used to address Level 4 Competency 

1 (multiply and divide improper fractions or mixed numbers).  

Item 5 Find the result of the fraction division below (ProT2Q5) 

2
ଵ

ଽ
 ÷ 3   

Task 2 Item 5 tests the students’ procedural knowledge, which is similar to Task 2 

item 3, but is applied to a mixed number and a whole number. The correct answer for 

this item is presented as follow: 

 2
ଵ

ଽ
 ÷ 3 =  

ଵଽ

ଽ
 ÷  

ଷ

ଵ
=  

ଵଽ

ଽ
 ×  

ଵ

ଷ
=  

ଵଽ × ଵ

ଽ × ଷ
=  

ଵଽ

ଶ଻
  

To answer this item correctly, students should understand the rule that in fraction 

division, mixed numbers should be transformed into improper fractions. Moreover, they 

should know that the divisor (3 or 3/1) should be flipped to become 1/3. Students may 

make mistakes in this item. They may not transform 2 1/9 into improper fractions or 

they may not flip the divisor. They may also make a mistake by only dividing 1/9 by 3 

and excluding the whole number 2. This item is used to address Level 4 Competency 1 

(multiply and divide improper fractions or mixed numbers).  



84 

 

Table 3.2 The hypothesized order of acquisition of competencies corresponding to items and tasks for fraction learning progression 

 Conceptual Competencies TASK Procedural  Competencies TASK 

Level 1 No 
Fraction 
Understanding 

No or incomplete conceptual and procedural understanding of fractions, less than what is expected at Level 2 

Level 2 Part-
Whole 

 

Students 
understand a 
fraction as 
representing a part-
whole but consider 
fractions always to 
be smaller than 1. 
They do not see a 
fraction as single 
number, but they 
see a fraction as a 
representation of 
parts and their 
referenced whole. 
 
 
 

They generate the symbolic 
notation of proper fractions 
from pie diagrams 

 

They generate a pie diagram to 
represent a proper fraction 

 

 

They order proper fractions. 

They can demonstrate proper 
fraction addition and 
subtraction using a diagram 
representation 

Task 1: Items 1, 2 

 

 

 

Task 2: Item 1 

 

 

Task 3: Items 1, 2 

 

Task 7: Items 1, 2 

Students have 
knowledge about the 
procedure for fraction 
addition and 
subtraction but are 
limited to proper 
fractions, for which 
the total is less than 
1.  
 
 
 

They add or subtract 
proper fractions 

 

 

 

 

 

Task 1: Items 1, 2 

 

 

 

Level 3 
Improper 
Fractions and 
Fractions as 
Measures 

 

Students 
understand if the 
numerator is 
greater than the 
denominator, then 
the fraction is 
greater than the 
referenced whole 
and vice versa. 
They also 

They generate the symbolic 
notation of proper fractions 
from pie representations with 
unequal partitions and the 
symbolic representation of 
improper fractions from pie 
diagrams.  

 

Task 1: Items 1, 2, 3, 4, 5 

 

 

 

 

 

Students expand their 
procedural knowledge 
of additive and 
multiplicative fraction 
operations including 
improper fractions 
and mixed numbers. 

 

They add and subtract 
improper fractions or 
mixed numbers. 

They multiply and divide 
a fraction by another 
fraction. 

 

Task 1: Items 1,2 3, 4 

 

 

Task 2: Items 1, 2, 3 
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 Conceptual Competencies TASK Procedural  Competencies TASK 

understand 
fractions as 
measures and 
conceive a fraction 
as a single number 
(not two 
independent 
numbers) on the 
number line.  

They shade a pie diagram to 
represent an improper fraction 

 

They order improper fractions 
and mixed numbers  

 

They place a proper fraction on 
a number line 

Task 2: Items 1, 2 

 

 

Task 3: Items 1, 2,  

 

 

Task 4: Item 1 

Level-4 
Unbounded 
infinite numbers 
of fractions  

 

Students view 
fractions as 
unbounded infinite 
numbers (there is 
no smallest or 
biggest fraction) 

 

They write the  biggest and the 
smallest fraction that they can 

 

 

 

They order improper fractions 
on a number line 

Task 1: Items 1, 2, 3, 4, 5 

Task 2: Items 1, 2 

Task 3: Items 1, 2, 3 

Task 5: Items 1, 2 

 

Task 4: Items 1, 2, 3 

Students advance 
their procedural 
knowledge of 
multiplicative fraction 
operations from the 
previous level. The 
fluency of performing 
fraction operations  
emerges at this level 

They multiply and divide 
improper fractions or 
mixed numbers 

Task 1: Items 1, 2, 3, 4 

Task 2: Items 1, 2, 3, 4, 
5 and 6 

Level-5 
Understanding 
the density of 
fractions and 
Fractional 
Fluency 

 

Students 
understand the 
density property of 
fractions, i.e. that 
there are unlimited 
numbers between 
any two fractions 

 

They demonstrate that there 
are unlimited numbers between 
two fractions 

 

 

They represent multiplicative 
fraction operations using a 
diagram representation 

Task 1: Items 1, 2, 3, 4, 5 

Task 2: Items 1, 2 

Task 3: Items 1, 2, 3 

Task 5: Items 1, 2 

Task 4: Items 1, 2, 3 

Task 6: Items 1, 2 

Task 8: Items 1, 2 

Students have fluency 
when performing 
additive and 
multiplicative fraction 
operations as they 
are demonstrated at 
Level 4 

 

They perform complex 
fraction operations, 
which involve additive 
and multiplicative 
operations  

 

Task 1: Items 1, 2, 3, 4 

Task 2: Items 1, 2, 3, 4, 
5 and 6 

Task 3: Items 1, 2, 3 
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3.4 Comparison with Previous Work on Fraction Learning 
Progressions 

This chapter developed the hypothesized model of fraction learning progression and the 

item tasks which are used to assess competencies within each level of the learning 

progression. The proposed model is hypothesized to consist of two knowledge 

dimensions underlying the progression of students’ learning in fractions: conceptual and 

procedural knowledge. The conceptual knowledge dimension is developed to capture 

the emergence of students’ understanding of the symbolic notation of fractions and the 

meaning of fraction operations, while the procedural knowledge dimension is 

developed to capture the development of students’ procedural knowledge of fraction 

operations (addition, subtraction, multiplication and division).  

A typical learning progression model is usually developed based on big ideas that 

summarize the essential knowledge and skills of a particular domain of learning. After 

that, progress variables are developed based on these big ideas to describe the 

progressions of specific knowledge and skills, which are organized into several 

hierarchical levels or blocks of learning development (e.g. Arieli-Attali & Cayton-Hodges, 

2014; Gunckel, Mohan, Covitt, & Anderson, 2012; Jin & Anderson, 2012). Hence, in such 

models, a learning progression is constructed based on the content knowledge of a 

domain of learning, and usually has a unidimensional knowledge progression. The 

proposed model of the fraction learning progression is developed in a different way. It 

is crafted based on the dimensions of knowledge that are supposed to underlie the 

development of students’ learning in mathematics. This knowledge is distinguished into 

two dimensions: conceptual and procedural knowledge. These two dimensions of 

mathematical knowledge are structured into the hierarchical levels of a learning 

progression. Thus, the proposed model expands the typical learning progression model 

from a unidimensional into a two-dimensional progression of knowledge.  

There are several advantages to having two knowledge dimensions - conceptual 

and procedural - in the proposed model of fraction learning progression, compared with 

the previous general learning progression models. In particular, the assessment of 

students’ knowledge and skills in this model can be more detailed and can provide 

information about the specific areas of strength and of weakness of students’ learning, 
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in terms of whether they are found in the area of conceptual or procedural knowledge. 

This type of detailed information can give more effective feedback to teachers in order 

to improve their instruction, and to students themselves to direct their self-study. 

There is some previous work that developed a fraction (rational number) learning 

progression model. Arieli-Attali and Cayton-Hodges (2014) developed a rational number 

learning progression model (including fractions) which has five levels, namely early part-

whole understanding, fractions as units, fractions as single numbers and fractions as 

measures, representational fluency, and a general model of rational numbers. Another 

work was performed by Wright (2014), who developed the Hypothetical Learning 

Trajectory (HLT) of rational numbers. He developed four hierarchical levels of rational 

number learning, which applied Kieren’s sub-constructs (measure, operator, quotient, 

and ratio). These levels (from lowest to highest) are unit forming, unit coordination, 

equivalence, and comparison. Finally, Confrey et al. (2011) developed a learning 

trajectory to capture the development of the fraction concept, based on the common 

core state standards in the American Curriculum (CCSS). They begin to introduce 

fractions as part-whole at grade 3, equivalent fractions and fraction comparison at 

grades 3 and 4, and fraction additive fraction operations at grades 4 and 5.  

All the fraction learning progression models from the previous work discussed 

above were developed to capture the development of the concept of fractions, where 

fractions can be interpreted in several sub-constructs, such as part-whole, measure, 

operator, quotient, and ratio. In contrast, the present research developed the 

hypothetical model of learning progression in order to capture the development of 

students’ understanding of the symbolic notation of fractions. Hence, for example, the 

present learning progression did not include the development of students’ concept of 

part-whole, which is a concept related to partitioning an object (continuous or discrete) 

into the same size of parts (Behr et al., 1983), and which is a prerequisite for 

understanding the concept of fractions. The present study investigated only students’ 

understanding of the symbolic notation of fractions.  

The present research also differs from prior fraction learning progressions in that 

it proposes two new levels of fraction understanding: understanding the unbounded 

infinity and density of fractions. These additional levels capture important properties of 
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fractions that are radically different from the properties of whole numbers and need to 

be included in fraction learning progressions.  

Another difference between the present research and the earlier work lies in the way 

the model was developed. For example, Arieli-Attali and Cayton-Hodges (2014) decided 

on the progress variables and structured them into the hierarchical levels of a learning 

progression, and then defined what students know and can do for each level. In contrast, 

in developing the model for this research, the sub-construct progressions were 

structured into two-dimensional knowledge progressions. Subsequently, conceptual 

competencies and procedural competencies for each level were developed. Hence, the 

present research developed a two-dimensional knowledge learning progression 

(conceptual and procedural), while the previous work developed a unidimensional 

knowledge progression.  

In the proposed model, the development of the students’ conceptual and 

procedural knowledge is differentiated, and the competencies which correspond to 

conceptual and procedural knowledge are also produced for each level. Hence, the 

progression of the students’ learning in fractions can easily be tracked, based on the 

essential knowledge in mathematics learning: conceptual and procedural knowledge. 

Identifying the development of the students’ learning in terms of conceptual and 

procedural knowledge is important for diagnostic assessment purposes and curriculum 

development. 

In summary, the proposed model of fraction learning fraction progression 

followed a different approach from the prior work in modelling the development of 

learning fractions. In the proposed model, the development of fraction knowledge is 

structured into two essential dimensions of knowledge in mathematics: conceptual and 

procedural knowledge. The conceptual knowledge dimension focuses on describing the 

development of the students’ understanding of the symbolic notation of fractions and 

the meaning of fraction operations, while the procedural knowledge dimension focuses 

on describing the development of students’ knowledge of rules or procedures for 

fraction operations. This two-dimensional knowledge of learning fractions makes the 

proposed model different from the previous work. The information on the students’ 

progression in terms of the conceptual and procedural knowledge dimensions in the 

proposed model gives more detailed information than the previous work about student 
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competencies, enabling accurate diagnostic assessment, instruction and curriculum 

development. 

3.5 Summary of the Chapter 

This chapter presented the proposed model of fraction learning progression and the 

item task development. The proposed model was developed based on two knowledge 

dimensions of mathematics learning: conceptual and procedural knowledge. The 

conceptual knowledge dimension captured the emergence of the students’ 

understanding of the symbolic notation of fractions and the meaning of fraction 

operations, while the procedural knowledge dimension captured the emergence of the 

students’ understanding of the rules and procedures of fraction operations. The 

conceptual knowledge dimension consisted of a five level progression, which were, from 

lowest to highest: no understanding of fractions, part-whole, improper fractions and 

fractions as measures, unbounded infinity, and density. Meanwhile, the procedural 

knowledge dimension consisted of four level progression which were, from lowest to 

highest: no procedural knowledge, additive fraction operations, additive and 

multiplicative fraction operations, and advanced procedural knowledge of additive and 

multiplicative fraction operations. 

The item tasks were developed to address the conceptual and procedural 

competencies for each level. For the conceptual competencies, the symbolic notation of 

fractions as representations of part-whole were tested using tasks which asked students 

to map the fraction notation into pie diagrams and vice versa. The pie diagrams were 

used to assess the students’ understanding of proper fractions, improper fractions and 

equivalent fractions. The symbolic notation of fractions as a representation of measure 

were tested using number lines. The students were asked to map fraction notation into 

number lines. The infinity of fractions was tested by asking students to write the biggest 

and the smallest fractions they know, and how many fractions are present between two 

fractions. Finally, the conceptual understanding of additive and multiplicative fraction 

operations was tested by asking students to draw a representational model of additive 

and multiplicative fraction operations. The procedural competencies were tested using 

items that required students to apply formal mathematical procedures to solve additive 

and multiplicative fraction operations.  
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The proposed model of fraction learning progression developed in this research is 

different from previous work in at least in three aspects. First, the present research 

developed a learning progression of the students’ development of the symbolic notation 

of fractions, while the previous work developed fraction learning progressions of the 

students’ development of the concept of fractions. Second, the present research 

covered properties of fractions, such as unbounded infinity and density, which were not 

covered in the previous work. Finally, the present research developed a two-

dimensional knowledge of fraction learning progression, namely conceptual and 

procedural, while the previous research developed unidimensional knowledge 

progressions. 
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CHAPTER 4 : ANALYSIS FROM THE COGNITIVE 
INTERVIEW 

4.1 Introduction 

The proposed model of fraction learning progression and the items have been 

developed and were described in Chapter 3. There are five hierarchical levels of learning 

fractions hypothesized, which are (from lowest to highest): no understanding of 

fractions, part-whole, improper fractions and fractions as measures, unbounded infinity, 

and density. These hierarchical levels are structured into two dimensions of knowledge: 

conceptual knowledge and procedural knowledge. The items have been developed to 

identify the students’ level of fraction knowledge in the learning progression. These 

items were developed based on the competencies within each level of the conceptual 

and procedural knowledge dimensions.  

The purpose of the present chapter is to present empirical evidence from a 

cognitive interview to validate the hypothesized model of fraction learning progression 

and to improve the item tasks. To validate the model, the hypothesized order of 

acquisition of fraction conceptual and procedural knowledge is examined through 

students’ responses to the items, on the tasks in which the items are classified, on the 

order of the items in the tasks, and finally on the hypothesized level progression for the 

conceptual and procedural knowledge dimensions respectively.  

Accordingly, the analysis of the results is structured into two sections: the 

conceptual knowledge dimension and the procedural knowledge dimension. Each 

section consists of four subsections. The first sub-section presents the within-item 

analysis, the purpose of which is to investigate whether the participants understood the 

instructions and the items as intended by the investigators, and whether the responses 

provided by the participants reflect the hypothesized competencies. The second sub-

section presents a within-task analysis of the items.  The purpose of this analysis is to 

investigate whether the order of acquisition of the items within each task is consistent 

with the hypothesized order.  The next sub-section discusses how the learning 

progression was used to assign the participants into levels, and to examine whether the 

within-level results agree with the hypothesized order of acquisition of the items.  More 
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specifically, the researcher is interested in finding out whether there were some 

participants who were able to respond correctly to some items at the upper levels of the 

progression but failed to exhibit understanding of the hypothesized competencies at the 

lower levels.  This type of analysis will be done first for the items in the conceptual 

knowledge dimension and then for the items at the procedural knowledge dimension. 

At the end, the relationship between conceptual and procedural knowledge is discussed.  

4.2 Method 

4.2.1 Participants 

Fifteen students from a junior high school in Bogor, Indonesia, participated in the 

cognitive interviews. They comprised 4 students at grade 7, 6 students at grade 8, and 5 

students at grade 9. The participants were approximately 13, 14, and 15 years of age for 

grades 7, 8, and 9 respectively. For each grade, the participants were selected to 

represent low, medium, and high achieving students, based on information from their 

teacher. The distribution of the participants is presented in Table 4.1 

Table 4.1 The distribution of participants across the levels and their achievement in mathematics 

No Participant Grade Achievement in 
Mathematics 

1 Participant 7-IS 7 Low 

2 Participant 14-DE 7 Medium 

3 Participant 4-JA 7 High 

4 Participant 5-RI 7 Low 

5 Participant 9-OK 8 Low 

6 Participant 8-NA 8 Medium 

7 Participant 12-AU 8 Medium 

8 Participant 13-FI 8 medium 

9 Participant 5-LA 8 High 

10 Participant 10-BA 8 Medium 

11 Participant 17-FA 9 Medium 

12 Participant 6-JO 9 High 

13 Participant 11-RE 9 High 

14 Participant 3-JI 9 High 

15 Participant 16-AKh 9 High 
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4.2.2 Materials 

The materials that were used in the cognitive interview were the conceptual and 

procedural items developed in Chapter 3. 

4.2.3 Procedure 

During the interview, the participants received one item at a time on a card. The 

participants were asked to think aloud while responding to the item on the card. In the 

introduction of the interview (Exhibit 4.1), the researcher gave an example of how to 

think aloud while answering the item.  

Exhibit 4.1 Instructions and an example of thinking aloud in the cognitive interview 

RESEARCHER: Thank you for your participation in this interview. Today I will give you some cards  
with mathematics problems. I want you to solve these problems and explain how you get the 
answers. If you find any words that you don’t understand, please let me know. Please keep talking 
aloud while answering the questions and describing what you think. You can make any notes and 
draw on the cards. I will give you an example.  

If a pizza is divided for five people, what portion of the pizza will each person get? I would answer 
the question like this.  For example, there is a pizza which is usually in a circle shape (the 
researcher made a circle). Then, it is shared by 5 people. In order to get a fair share, I divide the 
pizza into 5 equal sizes (the researcher drew lines to make 5 partitions of the circle). It means that 
each person will get 1/5 of the pizza (the researcher shaded one part of the five partitions of the 
pizza to show the final answer). 

  

The length of the interview was limited to 30 minutes. To optimize the 30 minute 

interview, the items were given adaptively to each participant. For the first item, all 

participants received Task 1 Item 1 (generating a proper fraction from a given pie 

diagram), but for the following items, the participants received different items, 

depending on their answers to the first task. If their answer was correct, they received 

an item from a higher level derived from the hypothetical model. If their answer was not 

correct, then they received another item from the other competencies at the same level. 

The interview was terminated after 30 minutes, or earlier if there was enough evidence 
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to identify the participant’s level for both the conceptual and procedural knowledge 

dimensions. 

4.3 Results 

The results from the cognitive interviews are organized into two consecutive parts: the 

conceptual and the procedural knowledge dimension. Four types of analysis are 

conducted for each part: within-item analysis; within-task analysis; assigning students 

to levels; and within-level analysis.  

4.3.1 Conceptual Knowledge Dimension 

4.3.1.1 Within-Item Analysis 

The aims of the within-item analysis are: 1) to examine whether the instructions for each 

item were understood as intended by the participants; and 2) to examine whether the 

participants’ responses to each item could be used to infer the student’s competency 

level. To achieve these goals, the correct and (or) incorrect answers for each item are 

discussed.  

By looking at the participants’ responses, overall, it can be inferred that the 

participants understood the instructions for the items as intended, and there were no 

responses that indicated that the students did not understand what they were intended 

to do. Furthermore, the participants’ responses seemed to reflect the intended 

competencies underlying each item accurately, as hypothesized in the proposed model. 

Detailed examples will be given below to demonstrate the above claims. 

As discussed in Chapter 4, section 4.3, the conceptual items are classified into 

eight tasks, namely: Task 1: generating a fraction from a pie diagram; Task 2: shading a 

pie diagram to represent a fraction; Task 3: comparing fractions; Task 4: locating 

fractions on a number line; Task 5: finding the smallest and biggest fractions; Task 6: 

finding how many fractions lie between two fractions; Task 7: adding fractions using 

diagram representation; and Task 8: multiplying and dividing fractions using diagram 

representation. The within-item analyses are presented by following the structure of the 

tasks. 
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4.3.1.1.1 Task 1 Generating a Fraction from a Pie Diagram 

Item 1 - Write the fraction for the shaded part below (Adapted from Scanlon, 2013) 

(ConT1Q1) 

 

All the participants, with one exception, answered this item correctly. Exhibit 4.2 

presents the response from participant 14-DE (medium achieving student), who 

successfully generated a fraction from a pie diagram, when responding to item 1 in task 

1. 

Exhibit 4.2 The answer of participant 14-DE on Task 1 Item 1 of the conceptual knowledge dimension 
PARTICIPANT: Write the fraction for the shaded part 
below. 
(the participant counted all parts of the circle) 
PARTICIPANT: 3/8 
RESEARCHER: Can you tell me how you got 3/8? 
PARTICIPANT: There are 8 parts, and three are 
shaded so it’s 3/8 

 

The participant determined the numerator by counting the number of shaded 

parts in the diagram, and determined the denominator by counting the number of all 

the parts in the pie diagram. From this response, it can be inferred that the participant 

understood the symbolic notation of fractions as a representation of part and whole of 

a diagram/object.  

Only one participant did not give the correct answer on item 1 in task 1. Exhibit 

4.3 shows the participant’s answer. 

Exhibit 4.3 The answer of the participant 9-OK on Task 1 Item 1 of the conceptual knowledge 
dimension 

PARTICIPANT: “These are one, two, three, four, 
five parts (the participant counted the five 
unshaded parts of the circle) and these are three 
parts (the participant pointed to the three shaded 
parts of the circle) so there are 8 parts. These are 
3 shaded parts which shows the top number, and 
these are 5 unshaded parts which shows the 
bottom number.” 
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From Exhibit 4.3, it can be seen that the participant did not know how the fraction 

symbol should be generated from the pictorial representation. The participant 

considered the number of shaded parts as the numerator and the unshaded parts as the 

denominator. Hence, the participant’s mistake was not caused by a misinterpretation of 

the task (including the instruction for the task and the picture), but by his 

misunderstanding of how to generate the fraction notation (numerator and 

denominator) from the part whole representation.  

Item 2 - Write the numerator of the fraction for the shaded parts below (ConT1Q2) 

 

From the 15 participants who received Item 2 in Task 1, 11 participants correctly 

answered the item. Exhibit 4.4 demonstrates one of the answers from Participant 17-FA 

who answered Item 2, Task 1 correctly. 

Exhibit 4.4 The answer from participant 17_FA on Task 1 Item 2 of the conceptual knowledge 
dimension 

PARTICIPANT: Write the numerator of the fraction for 
the shaded parts below 

PARTICIPANT: One, two … (the participant counted all 
parts of the circle). Draw the picture? 

RESEARCHER: Yes, you can. 

PARTICIPANT: Make more partitions like this (the 
participant drew lines to make 8 partitions on the 
shaded area of the circle). This one is also the same (the 
participant drew lines again to make 8 partitions on the 
unshaded area of the circle). So we got 8/16. 

 

From Exhibit 4.4 it can be seen that, to find the numerator, the participant made 

16 partitions on the pie diagram (8 partitions on the shaded are and 8 partitions on the 

unshaded area), and successfully determined 8 as the numerator.  This evidence shows 

that the participant understood equivalent fractions that she could generate a fraction 

8/16 for the half-shaded area of the pie diagram.  
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On the other hand, there were four participants who answered this item 

incorrectly. Exhibit 4.5 shows one of the answers. 

Exhibit 4.5 The answer from participant 12-AU on Task 1 Item 2 of the conceptual knowledge 
dimension 

PARTICIPANT: Write the numerator of the fraction for the 
shaded part below 
PARTICIPANT: One (1) 
RESEARCHER: Can you tell me how you got the answer “one”? 
PARTICIPANT: Because one is the number for this part (the 
participant pointed to a half-shaded area of the circle), and 1 
circle is 16 here (she pointed to the denominator of 16). What 
is being asked is only the numerator, which is this shaded part, 
one.  

The participant could not find the right numerator for the (equivalent) fraction to 

represent the half-shaded area of the pie diagram. The participant answered 1 as the 

numerator without considering that the denominator was 16. The participant did not 

understand the relationship between the numerator and the denominator in 

representing a shaded part of the diagram. As a result, the participant simply put 1 as 

the numerator because it represents the number of the shaded part of the pie diagram 

without taking into account the given denominator 16. Hence, it can be inferred that the 

participant’s incorrect answer in this item is because of insufficient knowledge on the 

part of the participant about the relationship between the numerator and denominator 

in representing equivalent fractions.  

Item 3 - Write the fraction for the shaded part below (Adapted from Pantziara & 

Philippou, 2012; Scanlon, 2013) (ConT1Q3) 

 

 

 

From 15 participants, 10 participants answered the item correctly. Exhibit 4.6 

demonstrates one of the participants’ answer.  
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Exhibit 4.6 The answer of participant 13-JI for Task 1 Item 3 of the conceptual knowledge dimension 
PARTICIPANT: Write the fraction for the shaded part 
below. 

PARTICIPANT: These parts have different sizes. We 
have to draw lines to make equal sizes. 

RESEARCHER: What do you mean equal sizes? 

PARTICIPANT: The parts 

(Then the participant drew lines to make equal 
partitions of the circle) 

RESEARCHER: Okay 

PARTICIPANT: There are 1, 2, 3, 4, 5, 6 parts (the 
participants counted all of the parts of the circle); the 
denominator is 6, and only one part is shaded, so the 
answer is 1/6 

 

The participant recognized that the partitions on the pie diagram were not equal 

sizes. To solve this problem, the participant drew additional lines to make six equal parts 

of the diagram. The participant determined the denominator by counting the number 

of all the equal parts in the diagram, and determined the numerator by counting the 

number of the shaded part of the diagram. From this response, it can be inferred that 

the participant understood that a fraction (both numerator and denominator) should be 

generated from the number of equal partitions of the diagram (object).  

Five participants incorrectly answered Task 1 Item 3. Exhibit 4.7 shows one of 

the participants’ answers. 

Exhibit 4.7 The answer of participant 7-IS for Task 1 Item 3 of the conceptual knowledge dimension 
PARTICIPANT: Write the fraction for the shaded part 
below. 

PARTICIPANT: The shaded only 1, 1/4 (the participant 
wrote down 1/4 as the answer on the card) 

RESEARCHER: Why is this 1/4? 

PARTICIPANT: Because the shaded part is only 1. The 4 is 
all of the parts  

 

The evidence from Exhibit 4.7 shows that the participant did not understand that 

all the parts in the pie diagram should be equal in size. The participant counted all the 

parts, regardless of their sizes, to represent the denominator. From this response, it can 

be inferred that the participant did not understand that a fraction (in this case the 

denominator) should be generated from the number of equal partitions of the diagram 
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(object). Hence, the participant’s mistake in this item reveals that he did not understand 

the equal-size principle in representing fractions.  

Item 4 If the figure                                  is the whole, write the fraction for the shaded part 

below (ConT1Q4) 

 

 

 

 

From 12 participants who received this item, five participants answered the item 

successfully. Exhibit 4.8 shows one of the participants’ answers. 

Exhibit 4.8 The answer of participant 3-JI for Task 1 Item 4 of the conceptual knowledge dimension 

PARTICIPANT: If the figure                                   

 

 

 

 

is the whole, write the fraction for the shaded part below 

PARTICIPANT: The first circle consists of 4 parts, all parts are 

shaded. So the fraction is 4/4 or 4 shaded parts of the 4 parts. 

The second circle consists of 4 parts and only 1 part is 

shaded. This is 1/4. They are joined together and it becomes 

5/4. 

 

The participant considered that the denominator is represented by the number of 

all parts in one circle (a pie diagram), and the numerator is represented by the number 

of the shaded part(s) within each circle. The participant translated the shaded part(s) for 

each circle into the symbolic notation of fractions, and joined them to get an improper 

fraction. This evidence demonstrates that the participant understood the symbolic 

notation of improper fractions as a representation of part and whole.  

Seven participants failed to answer the item correctly. Exhibit 4.9 

demonstrates one of the participants’ responses.  
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Exhibit 4.9 The answer of participant 14-DE for Task 1 Item 4 of the conceptual knowledge dimension 

 

PARTICIPANT: If the figure                                         is the  
 
 
 
whole, write the fraction for the shaded part below 
PARTICIPANT: Is it the whole? (the participant pointed to the circle in 
the task) 
RESEARCHER: Yes 
 (The participant was silent for a moment and then wrote down 1/4 on 
the card) 
PARTICIPANT: 1/4 
RESEARCHER: Can you tell me how you got the answer 1/4? 
PARTICIPANT: From the other picture (the participant pointed to the 
circle which represents 1/4) 
RESEARCHER: How about this picture? (the researcher pointed a circle 
which was fully shaded) 
PARTICIPANT: Ehmm … 
RESEARCHER: I mean, why is this fraction determined by this circle only 
(the researcher pointed to the circle where one part is shaded) and does 
not involve this fully shaded circle? 
PARTICIPANT: Because if they are fully shaded, the values are the same. 
RESEARCHER: What do you mean? 
PARTICIPANT: The circle is divided by 4, and 4 parts are shaded, so the 
numerator and the denominator are the same. So the fraction is only 
determined by the other circle which is 1/4. 

 

The evidence in Exhibit 4.9 indicates that the participant believed that fractions 

are always smaller than one. The participant ignored the pie representation which was 

fully shaded because it would have the same number for both the numerator and 

denominator. From this evidence, it can be inferred that the participant did not 

understand improper fractions as a representation of part and whole, and the 

participant’s understanding is still limited to fractions smaller than 1. 

Item 5- If the figure                                  is the whole, write the numerator for the shaded 

part below (ConT1Q5) 

 

 

 

 

 

 
…

଼
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Of the six participants who received this item, five of them answered the item 

correctly. Exhibit 4.10 represents the response from Participant 5-LA. 

Exhibit 4.10 The answer of participant 5-LA for Task 1 Item 5 of the conceptual knowledge 
dimension 

PARTICIPANT: If the figure                                  is  the whole, 

 

 

 

write the numerator of the fraction for the shaded parts below 

PARTICIPANT: Eh.. This is a full circle and it is fully shaded. Therefore 
it is 1. Since there are 8 parts, it is written here 8 (the denominator 
of the given fraction), so it is 8/8. While this one, this is a half part. 
A half part of the 8 parts is 4. Hence, we just add 8 to 4 which equals 
12. The result is 12/8 (the participant wrote down the answer). 

RESEARCHER: Could you demonstrate the answer using diagram 
representations? 

(the participant drew lines to make 8 partitions for each circle). 

 

The participant understood that the shaded parts of the pie diagram should be 

represented in a fraction with the denominator 8. Hence, she represented the value of 

the fully shaded circle as 1 and converted it to 8/8. After that she represented the value 

of a half shaded circle as 4/8, and joined the 8/8 with 4/8 to get the answer 12/8. From 

this response, it can be inferred that the participant understood equivalent fractions for 

improper fractions. 

There was one participant who answered this item incorrectly. Exhibit 4.11 

presents the answer for Participant 6-JO. 
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Exhibit 4.11 The answer of participant 6-JO on Task 1 Item 5 of the conceptual knowledge 
dimension 

PARTICIPANT: If the figure                                  is  the whole 

 

 

 

PARTICIPANT: This is already 4 parts so they are made into 8 
parts. So … these are 8 parts as the denominator. 1, 2, 3, 4, 5, 
6 parts of which are shaded. So this is 6/8 , or it can be 
simplified to 3/4. 

 

From Exhibit 4.11, it can be seen that the participant translated the denominator 

8 as the number of all parts from the two circles, and determined the numerator as the 

number of the shaded parts from both circles (after adding additional lines to separate 

each circle into four parts). This response shows that the participant did not understand 

improper fractions because the participant made an error in translating the 

denominator 8 into a pie representation. 

4.3.1.1.2 Task 2 Shading Pie Diagrams to Represent Fractions 

Item 1 Shade the shape to show the fractions below (ConT2Q1). 

  

Of the two participants who received this item, one of them answered the item 

correctly. Exhibit 4.12 demonstrates the answer from Participant 7-IS, who correctly 

shaded the pie diagram to represent a proper fraction. 
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Exhibit 4.12 The answer of participant 7-IS for Task 2 Item 1 of the conceptual knowledge 
dimension 

PARTICIPANT:  Shade the shape to show the fractions below 

(Then the participant shaded two parts of the circle) 

RESEARCHER: Can you explain how you got the answer? 

PARTICIPANT:  The parts of the circle are 3, the shaded parts 
are only 2. The unshaded part is only one. If all the parts are 
shaded, then it is 3/3. If the shaded parts are only two, then it 
is 2/3. 

 

The participant shaded two parts of the pie diagram which has three equal 

partitions to represent the fraction 2/3. This indicates that the participant understood 

the symbolic notation of fractions as representing part and whole.  

The other student (Participant 8-OK) answered the item incorrectly. Exhibit 4.13 

demonstrates his answer. 

Exhibit 4.13 The answer of participant 8-OK for Task 2 Item 1 of the conceptual knowledge 
dimension 

PARTICIPANT:  Shade the shape to show the fractions below 

PARTICIPANT:  Two-thirds. There are 3 parts in this circle. (The 
participant looked confused. Then, the participant drew lines 
to make additional partitions so that there are 5 partitions, 
and then he shaded two parts) 

RESEARCHER: Can you tell me why you made additional lines 
here? 

PARTICIPANT:  Because there are only 2 and 3 here (the 
participant pointed to the numerator and denominator of the 
fraction 2/3). Previously this picture only had 3 parts. So if the 
two parts are shaded than the remaining part is only one. I 
drew these additional lines to make 2 shaded parts, and 3 
unshaded parts. 

 

The participant’s response in Exhibit 4.13 showed that the participant did not 

know how to translate symbolic notation into a pie diagram. The participant thought 

that the numerator represents the number of the shaded parts, while the denominator 

represents the unshaded parts. Hence the participant’s incorrect answer is not because 

of misunderstanding of the instruction, but because the participant did not understand 

the top and the bottom number of a fraction notation. 
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Item 2 Shade the shape to show the fractions below (ConT2Q2). 

 

 
 

 

From the six participants who received this item, four participants answered the 

item correctly. Exhibit 4.14 presents the response from Participant 5-LA, who shaded 

the pie diagrams correctly to represent the improper fraction in Task 2 Item 2.  

Exhibit 4.14 The answer of participant 5-LA for Task 2 Item 2 of the conceptual knowledge 
dimension 

PARTICIPANT:  Shade the shape to show the fractions below 

PARTICIPANT:  7/4 means that the denominator is 4, so it 
should be divided by 4 first (the participant drew lines to make 
4 partitions for each circle). Since it is 7/4, 7 parts are shaded 
(the participant shaded the 7 parts of the circle).  

The participant made four partitions for each circle and shaded seven parts from 

both circles to represent the improper fraction 7/4. This response showed that the 

participant understood that the denominator 4 represented four partitions for each 

whole (circle) and the numerator 7 represents the number of shaded parts from these 

two circles. Hence, it can be inferred that the participant understood the symbolic 

notation of improper fractions. 

Two participants did not give a correct answer for this item. Exhibit 4.15 

demonstrates the response from Participant 10-BA, who failed to represent the 

improper fraction corresponding to Task 2 Item 2. 

The participant found the numerator bigger than the denominator. The 

participant converted the improper fraction 7/4 to a mixed number 1 3/4. To represent 

this mixed number, the participant shaded three parts of the two circles to represent 

the numerator 3. The participant considered that the two circles are the whole, and only 

represented the proper fraction (3/4) from this whole and ignoring the whole number 

in the mixed number 1 3/4. From this response it can be inferred that the participant did 

not understand the symbolic notation of either improper fractions or mixed numbers.  

 

 
଻

ସ
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Exhibit 4.15 The answer of participant 10-BA for Task 2 Item 2 of the conceptual knowledge dimension 
PARTICIPANT:  Shade the shape to show the fractions below 
RESEARCHER:  Can you tell me what the problem is in this 
task? 
PARTICIPANT:  The problem is the numerator is greater than 
the denominator 
(The participant was silent) 
RESEARCHER:  Keep talking please 
PARTICIPANT:  So the fraction should be converted to a 
mixed number, 7/4 is equal to 1 3/4. 
(After that, the participant shaded full one of the circle and 
shaded a half for the other circle) 
RESEARCHER:   Can you explain why you shaded 3 parts of 
the circles?  
PARTICIPANT:   In order to get 1 3/4 
RESEARCHER:   Can you tell me how you got 1 3/4 from this 
drawing? 
PARTICIPANT:   This is a mixed number, and the numerator is 
3, so 3 parts of the circles are shaded out of all 4 parts. 

 

4.3.1.1.3 Task 3 Comparing Fractions 

Item 1 Which is larger  ଷ

ହ
   or  

ଵ

ହ
 ?  Illustrate how you got your answer by using a model 

such as a picture or a diagram representation (Adapted from Scanlon, 2013) (ConT3Q1).. 

From the nine participants who received this item, seven participants correctly 

answered the item.  Exhibit 4.16 represents the answer from participant 17-FA, who 

successfully compared two fractions with the same denominator, using a part-whole 

representation. 

Exhibit 4.16 The answer of participant 17-FA for Task 3, Item 1 of the conceptual knowledge dimension 
PARTICIPANT:   Which is larger  ଷ

ହ
   or  ଵ

ହ
 ?  Illustrate how you got your 

answer using a picture. 

PARTICIPANT:   Can I use a picture other than a circle? 

RESEARCHER:  Yes, you can 

PARTICIPANT:   Draw a rectangle with 5 parts where 3 parts are 
shaded. Draw a second rectangle with the same parts as before, but 
where only 1 part is shaded. 

RESEARCHER:  So which one is greater? 

PARTICIPANT:   3/5, because it has more shaded parts.  

 

The participant drew a part-whole representation using rectangle diagrams to 

compare the fractions. The participant determined the bigger fraction based on the 

number of the shaded parts. This response demonstrates that the participant 
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understood the instruction and understood the size of fractions based on part-whole 

understanding.  

There were two participants who answered this item incorrectly. Exhibit 4.17 

demonstrates the answer of participant 9-OK. 

Exhibit 4.17 The answer of participant 9-OK for Task 3 Item 1 of the conceptual knowledge dimension 

PARTICIPANT:   Which is larger  ଵ
ହ
   or  ଷ

ହ
 ?  Illustrate how you got your answer 

by using a picture. 
PARTICIPANT:   3/5 and 1/5. A cross product, 3 multiplied by 5 is 15, 5 
multiplied by 1 is 5. So 1/5 is the biggest. 
RESEARCHER: Can you explain again your answer? 
PARTICIPANT:   If I do not use a cross product, the biggest is 3/5 but if I use 
a cross product the bigger is 1/5 
RESEARCHER: Can you tell me what it means? 
PARTICIPANT:   The one which does not use a cross product, 3, multiplied 
by 5, which is 15 (the participant multiplied the numerator and the 
denominator of 3/5), is greater than 1 multiplied by 5 (the participant 
multiplied the numerator and the denominator of 1/5). 
RESEARCHER: How about the cross product? 
PARTICIPANT:   3 multiplied by 5 is 15 (the participant multiplied the 
numerator of 3/5 with the denominator of 1/5) and 1 multiplied by 5, 5 
(the denominator of 3/5 was multiplied with the numerator of 1/5). So the 
biggest of them is 1/5 
RESEARCHER: So which one do you choose, a top-bottom product or a 
cross product? 
PARTICIPANT:  A cross product 
RESEARCHER: Can you determine which one is bigger using pictures? 
PARTICIPANT: Yes 
(The participant drew two circles to represent 3/5 and 1/5, but he made 
3/5 with unequal 5 partitions and drew 3/5 with 8 partitions of the circle). 
RESEARCHER: So which one is bigger? 3/5 or 1/5? 
PARTICIPANT: From the pictures it is 3/5 
RESEARCHER: Why? 
PARTICIPANT: Because for 1/5 there are 1, 2, 3, 4, 5 (he counted all of the 
parts of the circle representing 1/5). While in this one there are 1, 2, 3, 4, 
5, 6, 7, 8 (he counted all of the parts of the circle representing 3/5). 

In the beginning, the participant used procedural rules to compare the fractions. 

The participant used a cross-product technique, but he made an incorrect conclusion to 

determine which fraction is bigger. Next, the participant also used an incorrect method 

i.e., multiplying the top and the bottom number.  Finally, the participant used a diagram 

to compare the fractions, but he made mistakes in representing the fraction using a part-

whole diagram. He generated a pie diagram with eight partitions and three of them were 

shaded to represent 3/5. The participant made an error when drawing a conclusion from 
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the circle. This indicates that that the participant did not understand the size of fractions 

based on part-whole understanding.  

Item 2 Which is larger  ଶ

ଷ
  or  ଷ

ସ
 ?  Illustrate how you got your answer by using a model 

such as a picture or diagram representation (Adapted from Scanlon, 2013) (ConT3Q2). 

Seven participants from low to medium achieving students received this item. Two 

of them answered the item correctly. Exhibit 4.18 shows the answer from participant 

10-BA, who successfully generated pie diagrams to compare the fractions in Task 3 Item 

2. 

Exhibit 4.18 The answer of participant 10-BA for Task 3 Item 1 of the conceptual knowledge dimension 
PARTICIPANT:   Which is larger  ଶ

ଷ
   or  ଷ

ସ
 ?  Illustrate how you got 

your answer using a picture. 
PARTICIPANT:   The fractions should be transformed with a 
common denominator 12. So 12 divided by 3 is 4, and 4 times 2 
is 8. Then 12 divided by 3 is 3, and 3 times 3 is 9. So we have the 
fractions 8/12 and 9/12. So 3/4 is larger. 
RESEARCHER:    Can you explain your answer using diagram? 
PARTICIPANT:   Drew 12 parts … 
(The participant drew 2 circles to describe 8/12 and 9/12). 
For 8/12, 8 parts are shaded, while for 9/12, 9 parts are shaded 
RESEARCHER:    So which one is larger? 
PARTICIPANT:   3/4 
RESEARCHER:    Why? 
PARTICIPANT:   Because it has more shaded parts 
RESEARCHER:    Okay, thank you for your answer. 

 

The participants used procedural knowledge to transform the fractions to 

equivalent fractions with a common denominator. Next, the participants used 

conceptual knowledge to map the equivalent fractions to part-whole representation. 

Finally, the participant successfully determined which fraction is bigger. This response 

demonstrates that the participant understood the instruction and understood the size 

of fractions based on part-whole understanding. 

Five participants from low achieving students and some of the medium achieving 

students gave an incorrect answer for this item. Exhibit 4.19 demonstrates the response 

from participant 8-NA, who incorrectly answered the item. 
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Exhibit 4.19 The answer of participant 8-NA for Task 3 Item 2 of the conceptual knowledge dimension 

PARTICIPANT:   Which is larger  ଶ
ଷ
   or  ଷ

ସ
 ?  Illustrate how you got 

your answer using a picture. 

PARTICIPANT:   There is a circle (the participant drew a circle). 
This is for 2/3, and this is a circle again for 3/4 (the participant 
drew another circle). I divide this circle into 3 parts, and divide 
another one into 4. Here, there are two shaded parts, so this is 
2/3. Then in here the numerator of 3/4 is 3, so I shade 3 parts. I 
think 2/3 is bigger than 3/4. 

RESEARCHER: Why? 

PARTICIPANT:   Because if 2/3 is shared, the shared part is bigger  

 

The participant generated two pie diagrams to represent 2/3 and 3/4, but with 

unequal partitions representing 2/3. The participant determined that 2/3 was bigger 

than 3/4 because the participant thought that the shared part of 2/3 was bigger than 

3/4. The participant made several errors. First, the participant did not accurately 

represent 2/3 using a pie diagram. Second, the participant compared 2/3 and 3/4 

directly without making the number of parts of both pie diagrams the same. These errors 

caused participant to have a misleading conclusion to determine which fraction is bigger.  

Item 3 Which is larger  ଻

ସ
   or  ଼

଺
 ?  Illustrate how you got your answer by using a model 

such as a picture or diagram representation (Adapted from Scanlon, 2013) (ConT3Q3). 

Five participants, all high achieving students, answered the item successfully. 

Exhibit 4.20 shows participant 3-JI, who successfully answered the item. 

Exhibit 4.20 The answer of participant 3-JI for Task 3 Item 3 of the conceptual knowledge dimension 

PARTICIPANT:   Which is larger  ଻
ସ
   or  ଼

଺
 ?  Illustrate how you got 

your answer using a picture. 

(The participant drew two circles to represent 7/4 and the other 
two circles to represent 8/6) 

PARTICIPANT:   7/4 means 1 3/4, and 8/6 is 1 2/6. This is a whole 
circle, and this is too, and they should be shaded (the participant 
fully shaded one of the circles for 7/4, and one of the circles for 
8/6). This one is 3/4 (she shaded the other circle of 7/4), and this 
one is 2/6 (she shaded the other circle of 8/6). So the biggest is 
this one (she pointed to the two circles which represent 7/4). 

RESEARCHER: Why are these ones bigger? (The researcher 
pointed to the two circles which represent 7/4) 

PARTICIPANT:   Because the remaining part is only this (the 
participant pointed to the unshaded area of the circles for 7/4), 
while the other one is larger (she pointed the unshaded area of 
the circles for 6/8) 
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The participant converted the improper fractions into mixed numbers before 

mapping them to part-whole representations using pie diagrams. The participant 

successfully generated pie diagrams to represent the improper fractions, and correctly 

determined which fraction is bigger. This evidence shows that the participant 

understood the instruction, and understood the value (size) of fractions greater than 1.  

Two participants answered the item incorrectly. Exhibit 4.21 shows the answer 

by participant 17-FA. 

Exhibit 4.21 The answer of participant 17-FA for Task 3 Item 3 of the conceptual knowledge dimension 
PARTICIPANT:   Which is larger  ଻

ସ
   or  ଼

଺
 ?  Illustrate how you 

got your answer using a picture. 
PARTICIPANT:   The denominators are different so we 
transformed them with a common denominator. 7/4 equals 
21/12 and 8/6 equals 16/21. So we can draw now. 
(The participant drew a rectangle with 21 partitions) 
RESEARCHER : Why did you draw 21 partitions? 
PARTICIPANT:   Because 21 is the numerator which is larger 
than the denominator 
RESEARCHER: Okay, so what is the next step? 
PARTICIPANT:   If 21 parts are shaded, then there are no spaces 
for the 12 parts (The participant looked confused) 
RESEARCHER: Okay, we can discuss this again later. 
PARTICIPANT:   But, the largest is 7/4, because after they are 
transformed with the common denominator, 21/12, which is 
7/4, is larger than 16/12. 
RESEARCHER: Oh okay, thank you. 

The participant used procedural knowledge to transform the fractions into 

equivalent fractions with a common denominator. The participant tried to generate a 

rectangle diagram to represent the fraction, but was not successful because the 

participant was confused as to how to represent the numerator in a situation where the 

numerator is greater than the denominator. From this response, it can be inferred that 

the participant did not understood the meaning of the numerator and denominator of 

fractions greater than 1, so the participant had a difficulty in representing and 

comparing the improper fractions in Task 3 Item 3. 

4.3.1.1.4 Task 4. Locating Fractions on the Number Line 

Item 1 Show the fraction              on the number line below (ConT4Q1). 

 

 

 
ଷ

଼
   



110 

 

Six participants from the high achieving students answered the item correctly. 

Exhibit 4.22 demonstrates the response from Participant 6-JO. 

Exhibit 4.22 The answer of participant 6-JO for Task 4 Item 1 of the conceptual knowledge dimension 

PARTICIPANT:  Show the fractions on the number lines below 

PARTICIPANT:  3/8 is less than 1. This is 1 and this null, so to 
get 3/8 distance from 0 to 1 is it should be divided into eight 
jumps, so 1, 2, 3, 4, 5, 6, 7, 8 (the participant makes 8 scales 
from 0 to 1). This is not enough, so we move  1 here. So this is 
1, which means there are 1, 2, 3, 4, 5, 6, 7, 8. To get 1, there 
are 8 parts. What you requested is 3 of 8, so there are only 1, 
2, 3 (the participant circled the point 3/8 on the number line). 

RESEARCHER: Should the scales be the same size? 

PARTICIPANT:  Yes, they should be. 

RESEARCHER: Okay, thank you. 

The participant successfully placed the fraction on the number line. The 

participant used the denominator 8 to divide the length between 0 and 1 (the unit) into 

equal intervals (scales). After that, the participant used the numerator 3 to place the 

fraction on the third interval from 0. This response shows that the participant 

understood the symbolic notation of fractions as representation of measures. 

Nine participants from the low and medium achieving students did not give a 

correct answer. Exhibit 4.23 demonstrates the response from Participant 14-DE. 

Exhibit 4.23 The answer of participant 14-DE for Task 4 Item 1 of the conceptual knowledge dimension 
PARTICIPANT:  Show the fractions on the number lines below 

(The participant was silent) 

RESEARCHER: Can you tell me what the problems are in this 
task? 

PARTICIPANT:  Euh… the order, so for 3/8 … if 1/2, it’s located 
in the middle. If I do counting, it starts from the right or the 
left of the number line… 

(The participant was silent for a moment and then she made 
dot points on the number line) 

PARTICIPANT:  Here. (The participant circled the location of 
3/8) 

RESEARCHER: Can you tell me why you put 3/8 there? 

PARTICIPANT:  This is 1, I counted the dots, this is null then 
1, 2, 3, 4, 5, 6, 7, 8. I put it on the 8th dot. 

RESEARCHER: Why did you put 3/8 on the 8th dot? 

PARTICIPANT:  I am not sure, I put it there because I think I 
should put it on the last dot 
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From the evidence in Exhibit 4.23, it can be seen that initially the participant was 

confused about whether to start numbering on the number line whether from the left 

or the right. The participant put a number 1 at the end of the right side of the number 

line, and made eight dots on the number line. The participant put the fraction on the 8th 

interval, which is the denominator of the fraction 3/8. Hence, it can be inferred that the 

incorrect response from the participants is because the participant did not understand 

the symbolic notation of fractions representing measures.  

Item 2 Show the fraction         on the number line below (Adapted from Scanlon, 2013) 

(ConT4Q2)  

 

 

Only three participants from the high achieving students received this item. They 

answered the item correctly. Exhibit 4.24 shows the answer from participant 11-RE. 

Exhibit 4.24 The answer of participant 11-RE for Task 4 Item 2 of the conceptual knowledge dimension 

PARTICIPANT:  Show the fractions on the number lines 

below 

PARTICIPANT: 1/2, oh we can take this 2/3 as 4/6. So this is 

6. 1, 2, 3, 4, 5, 6. This is 1 (the participant put 1 on the sixth 

scale of the number line). So 3/6 is here. 3/6 is the same 

with 1/2. 

  

The participant converted the fractions (1/2 and 2/3) into equivalent fractions 

with a common denominator of 6. This common denominator was used to determine 

how many intervals (scales) should be created between 0 and 1 (the unit). After that, 

the fraction 1/2 (which is equal to 3/6) was put on the number line, one interval to the 

left side of the fraction 2/3 (which is equal to 4/6). This response demonstrates that the 

participant understood the instruction and understood the symbolic notation of 

fractions (smaller than 1) as representing measure.   

 

 
ଶ

ଷ
   

 
ଵ

ଶ
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Item 3 Order the fractions   
଻

ସ
   ,   

ଵ

ଷ
   and    

ଵ

ଶ
   on the number line below (Adapted from 

Scanlon, 2013) (ConT4Q3). 

 

Only five participants from the high achieving students received this item. All of 

them answered the item correctly. Exhibit 4.25 demonstrates the response from 

participant 5-LA for Task 4 Item 3. 

Exhibit 4.25 The answer of participant 5-LA for Task 4 Item 3 of the conceptual knowledge dimension 

PARTICIPANT:  Order these fractions from the smallest 
to the largest on the number line below.  

PARTICIPANT:  Eh..the denominators can be equated 
first, so for 7/4, the denominator becomes 12. 12 
divided by 4, 3 and 3 is multiplied by 7, 21. So it is 21/12. 
For 1/3, 12 divided by 3 equals to 4, and 4 multiplied by 
1 is 4, so it is 4/12. The 1 1/2 is the same as 3/2, so 12 
divided by 2 is 6; and 6 multiplied by 3, 18, so it is 18/12. 

(the participant made scales (and put 4/12, 1, 1 6/12, 
and 1 9/12 on the number line) 

 

The participants converted the fractions (including improper fraction and mixed 

numbers) into equivalent fractions with a common denominator. The participant 

created scales based on this common denominator and put all of the fractions on these 

scales. From this evidence, it can be inferred that the participant understood fractions 

(including improper fractions and mixed numbers) as representing measures.  

4.3.1.1.5 Task 5 Writing the Smallest and Biggest Fractions that they Can  

Item 1 Write the biggest fraction that you know. Explain your answer (Adapted from 

Stafylidou & Vosniadou, 2004) (ConT5Q1). 

Only six participants from the high achieving students received this item. Four 

participants answered the item correctly. Exhibit 4.26 shows the answer from 

participant 16-AK. 
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Exhibit 4.26 The answer of participant 16-AK for Task 5 Item 1 of the conceptual knowledge dimension 
PARTICIPANT:  Write the biggest fraction that you know. 
PARTICIPANT:  Hm… it could be 1/1, 1 1/2, 100/1, 1000000/1, 
an infinite number per 1 
RESEARCHER: So, what is your conclusion? 
PARTICIPANT:  Infinite  

The participant demonstrated his understanding of the infinity property of 

fractions from this item. The participant successfully concluded that there was no 

biggest fraction after he demonstrated an increasing pattern (size/value) of fractions by 

increasing the value of the numerators, while the denominator is kept constant at 1. 

From this response, it can be inferred that the participant understood that the biggest 

fraction did not exist.  

Two participants gave an incorrect answer for this item. Exhibit 4.27 demonstrates 

the response from participant 4-JA. 

Exhibit 4.27 The answer of participant 4-JA for Task 5 Item 1 of the conceptual knowledge dimension 

PARTICIPANT:  Write the biggest fraction that you know. 
PARTICIPANT:  First, a circle is drawn. The meaning of this circle 
is 1. Then, we divide it into 2 so that if we shade one of them, 
it  will become 1/2. This means that the biggest fraction is 1 
divided by 2, 1/2. 
RESEARCHER: Can you explain why 1/2 is the biggest fraction? 
PARTICIPANT:  Euh … because… 
(the participant was silent) 
RESEARCHER: Keep talking please 
PARTICIPANT:  Euh because 1/2 is the biggest fraction. 
RESEARCHER: Okay, let’s discuss this task later. 

 

The participant generated a half-shaded pie diagram (representing 1/2) to show 

the biggest fraction. The participant could not explain why 1/2 was the biggest fraction. 

From this response, it can be inferred that the participant understood the instruction, 

but did not understand the unbounded infinity of fractions. 

Item 2 Write the smallest fraction that you know. Explain your answer (Adapted from 

Stafylidou & Vosniadou, 2004) (ConT5Q2). 

Only six participants from high achieving students received this item. Four 

participants answered the item correctly. Exhibit 4.28 demonstrates the answer of 

participant 11-RE. 
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Exhibit 4.28 The answer of participant 11-RE for Task 5 Item 1 of the conceptual knowledge dimension 

PARTICIPANT:  Write the smallest fraction that you know. 
Explain your answer. 

PARTICIPANT:  Unlimited… 

RESEARCHER: Can you explain why this is unlimited? 

PARTICIPANT: Because a fraction, e.g. 1 per… (the participant 
wrote down 1 / on the card) … the denominator can be 
anything, it could be 1 million or 1 billion or also 1 trillion,  
depending on the person. 

 

The participant considered that fractions were unlimited. The participant 

represented a fraction with the numerator 1 and allowed the denominator to be filled 

with any number. The participant took an example for the denominator with the 

increasing number such as 1 million, 1 billion, and 1 trillion to show that the fraction can 

be very small, and it can be smaller than these numbers if the denominator were 

increased again. It indicates that the participant understood the relationship between 

the numerator and denominator; that the greater the increase in the denominator, the 

smaller the fraction will be. However, because the denominator can be set arbitrarily, 

the participant considered that fractions are unlimited. From this response, it can be 

inferred that the participant understood the unbounded infinity of fractions. 

Two participants answered the item incorrectly. Exhibit 4.29 demonstrates the 

response from participant 4-JA. 

Exhibit 4.29 The answer of participant 4-JA for Task 5 Item 2 of the conceptual knowledge dimension 

PARTICIPANT:  Write the smallest fraction that you know. 

PARTICIPANT:  First, draw a circle, euh 1/2, then it is divided into 
1/4, and it is divided again into 1/8, and it is divided again into 
1/16. So the smallest fraction is 1/16. 

RESEARCHER: Can you tell me  why 1/16 is the smallest fraction? 

PARTICIPANT:  Because euh… 

(The participant was silent)… 

PARTICIPANT:  Because, euh... because the circle is divided into 
16, the shaded part is 1, and there are 15 remaining parts, so 
1/16 is the smallest fraction. 

RESEARCHER: Oh okay, let’s discuss it later again 
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From Exhibit 4.29, it can be seen that the participant used a part-whole 

understanding by generating a pie diagram to determine the smallest fraction. From this 

response it can be inferred that the participant’s mistake is not because she 

misinterpreted the instruction, but because she did not understand the unbounded 

infinity of fractions.  

4.3.1.1.6 Task 6 Finding How Many Fractions lie between Two Fractions 

Item 1 How many numbers lie between 
ଶ

ହ
  and  

ସ

଻
 ? Explain your answer (Adapated from 

Vamvakoussi & Vosniadou, 2004) (ConT6Q1) 

   Only six participants from the high achieving students received this item. Three 
participants answered the item correctly. Exhibit 4.30 demonstrates the answer from 
participant 11-RE. 

Exhibit 4.30 The answer of participant 11-RE for Task 6 Item 1 of the conceptual knowledge dimension 

PARTICIPANT:  How many numbers are there between ଶ
ହ
  and  ସ

଻
 ? 

PARTICIPANT:   It depends on the denominator that we use… 

RESEARCHER: Oh, can you explain more about this?  

PARTICIPANT:   If for example … it’s also infinite … if we use 2/5 and 4/7 and  
we use 35 as the denominator. We can say that there are fractions which are 
14/35, 16/35, 17/35, 18/35, and 19/35. There are five fractions. But it can be 
extended, for example, 14/35 becomes 28/70 and 20/35 becomes 40/70. So 
there are gaps between them, and if the question is how many numbers are 
there, it can be more numbers again, so it’s infinite too… 

 

 
The participant could determine the unlimited number of fractions between two 

fractions (2/5 and 4/7). The participant transformed the fractions to equivalent fractions 

with a common denominator. By increasing the common denominator for equivalent 

fractions, the participant could see there are unlimited numbers of fractions between 

2/5 and 4/7.  From this response, it can be inferred that the participant understood the 

density property of fractions. 

Three participants gave an incorrect answer for this item. Exhibit 4.31 

demonstrates the answer from participant 6-JO. 

 

 

 

 



116 

 

Exhibit 4.31 The answer of participant 6-JO for Task 6 Item 1 of the conceptual knowledge dimension 

PARTICIPANT:  How many numbers are there between ଶ

ହ
  and  ସ

଻
 ? 

PARTICIPANT:  2/5 and 4/7, hm… these denominators need to be 
equal. So, the common denominator is 5 times 7 which is 35. 35 
divided by 5 is 7, and 7 multiplied by 2 is 14. This is 14/35. While for 
this one, 35 divided by 7 is 5, and 5 multiplied by 4 is 20. The question 
is how many numbers lie between 14/35 and 20/35. So this is the 
same as how many numbers lie between 14 and 20. There are 15, 16, 
17, 18, and 19. There are five numbers. 

 

The participant found limited (finite) numbers between 2/5 and 4/7. The 

participant transformed the fractions with a common denominator, 35, and found there 

are five fractions between 2/5 and 4/7. This evidence demonstrates that the participant 

did not understand the density property of fractions.  

Item 2 How many numbers lie between ସ
଻
  and  ହ

଻
 ? Explain your answer  (adapated from 

Vamvakoussi & Vosniadou, 2004) (ConT6Q2) 

 
Six participants from the high achieving students received this item, and four of 

them gave a correct answer for this item. Exhibit 4.32 shows the answer from participant 

11-RE. 

Exhibit 4.32 The answer of participant 11-RE for Task 6 Item 2 of the conceptual knowledge dimension 

PARTICIPANT:  How many numbers are there between ସ
଻
  and  ହ

଻
 ? 

PARTICIPANT:  This is the same. The problem is if we only look at this 
without paying deeper attention, there are no numbers between 4/7 
and 5/7 if the denominator is only 7. But if we transform them to 8/14 
and 10/14, there is 9/14. If, for example, they become 16/28 and 20/28, 
there are more numbers again, so this is infinite too. 

 

The participant found that there are unlimited numbers between 4/7 and 5/7. The 

participant transformed the fractions into equivalent fractions with a common 

denominator. The participant found that if the common denominator is increased 

(getting larger), then the number of fractions between 4/7 and 5/7 is also increased. 

This evidence shows that the participant understood the density property of fractions. 

Two participants gave an incorrect answer. Exhibit 4.33 demonstrates the answer 

from participant 6-JO. 
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Exhibit 4.33 The answer of participant 6-JO for Task 6 Item 1 of the conceptual knowledge dimension 

PARTICIPANT: How many numbers are betweenସ

଻
 and  ହ

଻
? 

PARTICIPANT: No numbers  

RESEARCHER: Can you tell me why there are no numbers? 

PARTICIPANT: This is 4/7 and this is 5/7 (the participant created a 
number line and then put 4/7 and 5/7 on the line). On this number 
line, from here, 4/7 directly jumps to 5/7, there are no numbers 
between them.     

The participant represented the fraction 4/7 and 5/7 on the number line, and 

considered that there was “a jump” between 4/7 and 5/7. This response indicates that 

the participant had a discrete understanding of the numerical value of fractions.  

4.3.1.1.7 Task 7 Adding Fractions Using Diagram Representation 

Item 1 Draw a pictorial representation for the addition of the fractions below. Explain 

your answer (ConT7Q1). 

ଵ

ସ
+

ଶ

ସ
    

Eight participants from the low and medium students received the item. All of 

these participants answered the item correctly. Exhibit 4.34 shows the answer from 

participant 15-RI. 

Exhibit 4.34 The answer of participant 15-RI for Task 6 Item 1 of the conceptual knowledge dimension 

PARTICIPANT: Draw a pictorial representation for the fraction 
addition below 

(The participant drew circles to represent the fraction addition of 1/4 
+ 2/4) 

RESEARCHER: Can you tell me how you got the answer? 

PARTICIPANT: The first circle is 1/4, the second circle is 2/4, then the 
shaded parts from these two circles are added to get the result, which 
is 3/4. 

 

The participants drew pie diagrams to represent a fraction addition with the same 

denominator. The participants added the number of the shaded parts from both pie 

diagrams to generate the pie diagram, which shows the result of this fraction addition. 

From this response, it can be inferred that the participant understood fraction addition 

with the same denominator.  
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Item 2 Draw a pictorial representation for the addition of the fractions below. Explain 

your answer (ConT7Q2). 

ଵ

ସ
+

ଶ

ଷ
    

Fourteen participants received this item. Nine of them answered the item 

correctly. Exhibit 4.35 shows the answer from participant 17-FA. 

Exhibit 4.35 The answer of participant 17-FA for Task 7 Item 1 of the conceptual knowledge dimension 

PARTICIPANT: Draw a pictorial representation for the fraction addition 
below. Explain your answer 
ଵ

ସ
+

ଶ

ଷ
    

PARTICIPANT: These should be transformed again using a common 
denominator. So 1/4 to be 3/12, and 2/3 to be 8/12. 

(The participant drew two rectangles with 12 partitions for each. Three 
parts are shaded in the first rectangle, and 8 parts are shaded for the 
second rectangle. After that, she drew one rectangle again to represent 
the result with 12 partitions where 11 parts are shaded) 

RESEARCHER: How did you get the result? 

PARTICIPANT: The shaded parts of 3/12 and 8/12 are added. 

The participant transforms the fractions into equivalent fractions with a common 

denominator and draw rectangle diagrams to show the fraction addition. The 

participant added the shaded parts of the fractions (which had already the same number 

of partitions for each whole of the fractions) to get the result. From this response, it can 

be inferred that the participant understood the meaning of fraction addition, which 

involves fractions with different denominators. 

Five participants answered the item incorrectly. Exhibit 4.36 shows the answer 

from participant 7-IS. 

Exhibit 4.36 The answer of participant 7-IS for Task 7 Item 2 of the conceptual knowledge dimension 

PARTICIPANT:  Draw a pictorial representation for the fraction addition 
below. 
(The participant drew rectangles to represent 1/4 and 2/3, and 
suddenly stopped her drawing when she tried to draw the result) 
PARTICIPANT:  I do not understand this 
RESEARCHER: Could you tell me why you do not understand? 
PARTICIPANT: I don’t understand why these are different (the 
participant pointed to the denominators of 1/4 and 2/3 which are 4 and 
3). 
RESEARCHER: Oh okay, what can you do to solve this problem? 
PARTICIPANT: I don’t know 
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The participant drew rectangle diagrams to show fraction addition of 1/4 and 2/3, 

but the participant did not continue the process because the denominators were 

different.  This evidence showed that the participant did not understand fraction 

addition, which involves fractions with different denominators.  

4.3.1.1.8 Task 8 Multiplying and dividing fractions using diagram representation 

Item 1 Draw a pictorial representation for the multiplication of the fractions below. 

Explain your answer (ConT8Q1) 

Eight participants received Task 8 Item 1. Only one participant answered the item 

correctly. Exhibit 4.37 shows the answer from participant 16-AK, who successfully 

represented fraction multiplication using diagram representation. 

Exhibit 4.37 The answer of participant 16-AK for Task 8 Item 1 of the conceptual knowledge dimension 

PARTICIPANT: Draw a pictorial representation for the fraction 
multiplication below 
PARTICIPANT: So this is 1/2 of 3/4. For example there are 1, 2, 3, 4, 
5, 6, 7, 8 (the participant drew a rectangle with 8 partitions).  3/4 is 
equal to 6/8, 6 parts are shaded. If this is multiplied by 1/2, it means 
that a half of these 6 parts. So, 1, 2, 3, parts are shaded or this is 
the same as 3/8. 
 
 

 

The participant interpreted the multiplication of 1/2 and 3/4 as “1/2 of 3/4". Based 

on this interpretation, the participant developed a diagram representation to show the 

meaning of “1/2 of 3/4". The participant converted 3/4 to 6/8 and drew the diagram 

representing 6/8. Because “1/2 of 3/4” means a half of 3/4, the participant take a half 

of the shaded parts of 6/8, which is three shaded parts. The participant considered these 

three shaded parts as the result of the fraction multiplication of 1/2 and 3/4. These three 

shaded parts were from eight parts of the whole, so the fraction for these shaded parts 

were 3/8 which is the answer of the multiplication of 1/2 and 3/4. This response 

indicates that the participant understood fraction multiplication. 

Seven participants, including several high achieving students, could not answer 

Task 8 Item 1. Exhibit 4.38 shows the answer from participant 11-RE. 
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Exhibit 4.38 The answer of participant 11-RE for Task 8 Item 1 of the conceptual knowledge dimension 

PARTICIPANT: Draw a pictorial representation for the fraction 
multiplication below 

PARTICIPANT: 1/2 is multiplied by 3/4, the answer is 3/8 but how 
I can draw it? Oh, this is 3/4 so this one is multiplied by 3 (the 
participant drew three rectangles with a half-shaded for each 
rectangle). Then eh … I don’t know how to draw this. Hmm…, it’s 
divided by 4. How to draw this … 

RESEARCHER: Can you tell me what the problems are in this 
task? 

PARTICIPANT: Eh … the drawing. The answer is already known, 
3/8, but how to draw this, hmm ... I don’t know. Wait so this is 
… eh… I don’t know. 

 

The participant tried to draw diagram representations to represent the 

multiplication of 1/2 and 3/4, but was not successful. The participant drew a three 

rectangles diagram of a half (1/2) to represent the multiplication of 1/2 and the 

numerator of 3/4. After that the participant tried to divide the result of multiplication 

1/2 and 3 (the numerator of 3/4) by 4 (the denominator of 3/4) using diagram 

representation, but was not successful. From this response, it can be inferred that the 

participant did not understand fraction multiplication. 

Item 2 Draw a pictorial representation for the division of the fractions below. Explain 

your answer (ContT8Q2) 

ଵ

ଶ
÷

ଵ

ସ
    

Only one participant (who successfully answered Task 8 Item 1) received the item. 

The participant answered the item correctly. Exhibit 4.39 demonstrates the answer from 

participant 16-AK, who successfully represented a fraction division using a diagram 

representation. 

The participant drew rectangle diagrams to represent the fraction division of 1/2 

and 1/4. The participant successfully demonstrated how many 1/4 in a half (1/2) using 

diagram representation. This is the interpretation of fraction division (See Chinnappan 

& Forrester, 2014; Van de Walle et al., 2015). This response demonstrates that the 

participant understood fraction division. 
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Exhibit 4.39 The answer of participant 16-AK for Task 8 Item 2 of the conceptual knowledge dimension 

PARTICIPANT: Draw a pictorial representation for the fraction 
division below 

PARTICIPANT: 1/2 divided by 1/4. This is a half, firstly there are 4 
parts and 1 part is shaded which is 1/4, than a half of 1/4 is taken, 
because the number is not nice, so it is multiplied by 2 which is 1, 
2, 3, 4, 5, 6, 7, 8 (The participant created a rectangle with 8 
partitions). If divided by 1/2, how many, ah …1, 2, 3, 4. How many 
of this fraction to become … (the participant looked confused) 

RESEARCHER: Can you tell me what the meaning of 1/2 divided by 
1/4 is? 

PARTICIPANT: How many 1/4 to become 1/2. 

(The participant drew a rectangle with 4 partitions and two of 
them are shaded to represent 1/2). It is the same with 2 (he 
pointed to the 2 shaded partitions). In order to become 1/2, so 
this one (he pointed one shaded area of the rectangle which 
represent 1/4) needs 2 times of itself, so the answer is 2, which is 
2 times of this part (he pointed to the rectangle which represent 
1/4). 1/4 plus 1/4 equals 2/4 or 1/2, meaning that it needs 2 times 
of 1/4 so the result is 2. 

RESEARCHER: Okay, thank you, well done 

4.3.1.2 Within-Task Analysis 

The within-task analysis was conducted for all items within a task. The aim of this 

analysis was to examine whether the obtained order of acquisition of the items is 

consistent with the hypothesized order. The within-task analysis focuses on finding 

whether there is evidence that some of the participants answered the items at the 

higher levels in the task successfully but could not answer the items at the lower levels 

of the task. This evidence would show that that the order of acquisition of the items 

within a task are not consistent with the hypothesized order.  

Table 4.2 shows the participants’ responses structured within task and level. The 

responses are coded as 0, 1, and blank. The code 1 refers to the correct response; the 

code 0 refers to the incorrect response; and the blank means that the participant did 

not receive the item. The same code is used to score the items in all conceptual and 

procedural tasks.  

Task 1 (generating a fraction from a pie diagram) consists of five items that address 

conceptual competencies at Levels 2 to 3. From Table 4.2, it can be observed that all the 

participants who answered items 3, 4, and 5 (Level 3) correctly gave correct answers for 

items 1 and 2 (Level 2). Likewise, there were no participants who could answer items 3, 
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4, and 5, which belong to level 3, correctly but could not answer item 1 or item 2 of Level 

2 correctly. This means that there are no cases where the participants answered the 

items at the lower level (Level 2) incorrectly while they answered the items at the higher 

level (Level 3) successfully.  

Task 2 (Shading a pie diagram to represent a fraction) has two items that address 

conceptual competencies at Levels 2 to 3. From the table, it can be observed that there 

are no cases where the participants answered the item at the upper level (Item 2 at 

Level 3) correctly, but answered the item at lower level (Item 1 at Level 2) incorrectly.  

Similar findings also can be observed from the participants’ responses to the other tasks 

(Task 3 – 8) of the conceptual dimension presented in Table 4.2. This result shows that 

the order of acquisition of the items within each task is consistent with the hypothesized 

order. 
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Table 4.2 The distribution of the participants’ responses within the task of the conceptual dimension 

Task Item Level 
Participant 

9-OK 7-IS 5-RI 8-NA 12-AU 13-FI 10-BA 14-DE 17-FA 4-JA 5-LA 6-JO 11-RE 3-JI 16-Ak 

Task 1 

Item 1 Level 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Item 2 Level 2 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 

Item 3 Level 3 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 

Item 4 Level 3   0 0     0 0 0 0 1 1 0 1 1 1 

Item 5 Level 3                   1 1 0 1 1 1 

Task 2 
Item 1 Level 2 0 1                           

Item 2 Level 3   0   0 0         1 1 1   1   

Task 3 

Item 1 Level 2 0 1 1 1 0 1 1 1 1             

Item 2 Level 2   0 0 0   0 1 0               

Item 3 Level 3                 0   1 1 1 1 1 

Task 4 

Item 1 Level 3 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

Item 2 Level 4                   1     1 1   

Item 3 Level 4                   1 1 1 1 1 1 

Task 5 
Item 1 Level 4                   0 0 1 1 1 1 

Item 2 Level 4                   0 0 1 1 1 1 

Task 6 
Item 1 Level 5                   0 0 0 1 1 1 

Item 2 Level 5                   0 1 0 1 1 1 

Task 7 
Item 1 Level 2 1 1 1 1 1 1 1 1               

Item 2 Level 2 0 0 0 0 0 0 1 0 1 1   1 1 1 1 

Task 8 
Item 1 Level 5             0   0 0 0 0 0 0 1 

Item 2 Level 5                             1 
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4.3.1.3 Assigning Participants into the Levels of the Conceptual Dimension and 
Changes in the Model 

The participants were assigned into the levels of the proposed model by examining their 

responses on all the conceptual items. The analysis was implemented for all 15 participants 

by comparing the order of their obtained responses with the hypothesized order, as shown 

in Table 4.3. The purpose of this analysis was to examine whether the participants’ profiles 

were in agreement with the proposed model. Moreover, the participants’ responses can be 

used to improve the models by adjusting the proposed levels, or the items within the levels, 

so that the proposed model fits well with the participants’ responses.  

Table 4.3 The hypothesized order of acquisition of items and tasks for the conceptual dimension of the 
learning progression 

Level Tasks 

Level 1 -- 

Level 2 Task 1: Items 1, 2 
Task 2: Item   1 
Task 3: Items 1, 2 
Task 7: Items 1, 2 

Level 3 Task 1: Items 3, 4, 5 
Task 2: Item   2 
Task 3: Item   3 
Task 4: Items 1, 2 

Level 4 Task 4: Item   3 
Task 5: Items 1, 2 

Level 5 Task 6: Items 1, 2 
Task 8: Items 1, 2 

The profile for all 15 participants’ responses to the conceptual level tasks is presented 

in Table 4.4, below. The participants are assigned to a certain level if they have all the 

competencies at that level and below, but they do not have enough competencies at the 

upper level.  
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Table 4.4 The distribution of participants’ responses across the level of the conceptual knowledge dimension 

Level  Task Item Description 9-
OK 

7-
IS 

5-
RI 

8-
NA 

12-
AU 

13-
FI 

10-
BA 

14-
DE 

17-
FA 

4-
JA 

5-
LA 

6-
JO 

11-
RE 

3-
JI 

16-
AK 

Level 1 - -                 

Level 2 
  
  
  
  

Task 1 Item 1 Writing a proper fraction from a pie diagram 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Task 1 Item 2 Write the numerator of an equivalent fraction for a fraction 
less than 1 

0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 

Task 2 Item 1 Shade pie diagram to represent a proper fraction 0 1                           

Task 3 Item 1 Compare a proper fraction with the same denominator 0 1 1 1 0 1 1 1 1             

Task 3 Item 2 Compare proper fractions with different denominators   0 0 0   0 1 0               

Task 7 Item 1 Add fractions with the same denominator 1 1 1 1 1 1 1 1               

Task 7 Item 2 Add fractions with different denominators 0 0 0 0 0 0 1 0 1 1   1 1 1 1 

Level 3 
  
  
  
  
  

Task 1 Item 3 Write a proper fraction from a pie diagram with unequal 
partitions 

0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 

Task 1 Item 4 Write an improper fraction from a pie diagram   0 0     0 0 0 0 1 1 0 1 1 1 

Task 1 Item 5 Write the numerator of an equivalent fraction for a fraction 
greater than 1 

                  1 1 0 1 1 1 

Task 2 Item 2 Shade a pie diagram to represent an improper fraction   0   0 0         1 1 1   1   

Task 3 Item 3 Compare improper fractions with different denominators 
using part-whole diagrams 

                0   1 1 1 1 1 

Task 4 Item 1 Put a proper fraction on a number line  0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

Task 4 Item 2 Put a proper fraction on a number line with a constraint*                   1     1 1   

Level 4 
  
  

Task 4 Item 3 Put fractions, including an improper fraction and a mixed 
number, on a number line 

                  1 1 1 1 1 1 

Task 5 Item 1 Write the biggest fraction they can                   0 0 1 1 1 1 

Task 5 Item 2 Write the smallest fraction they can                   0 0 1 1 1 1 

Level 5 
  
  
  

Task 6 Item 1 Find out how many fractions lie between two fractions                   0 0 0 1 1 1 

Task 6 Item 2 Find out how many fractions lie between two-pseudo 
successive fractions 

                  0 1 0 1 1 1 

Task 8 Item 1 Multiply fractions using a diagram representation             0   0 0 0 0 0 0 1 

Task 8 Item 2 Divide fractions using a diagram representation                             1 
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Table 4.4 shows the distribution of participants’ responses across the items, tasks 

and levels. There is one participant (9-OK) who did not answer most of the items at Level 

2 correctly. This evidence strongly indicates that the participant had no fraction 

understanding, and he should be placed at Level 1. On the other hand, two participants 

(10-BA and 17-FA) answered all the given items at Level 2 correctly. This result shows 

that the participants understood the symbolic notation of fractions as a representation 

of part-whole, equivalent fractions, fractions’ order (the size of fractions) and fraction 

addition. Thus, the participants had all the competencies required at Level 2. However, 

some participants answered several items correctly and answered the other items at 

level 2 incorrectly. For example, participants 7-IS and 8-NA answered Task 1 item 1 

(generating a fraction from pie diagram), Task 3 Item 1 (comparing proper fraction with 

the same denominator), and Task 7 Item 1 (adding fractions with the same denominator) 

correctly, but answered the other items at Level 2 such as Task 1 Item 2 (generating an 

equivalent fraction), Task 2 Item 2 (comparing proper fractions with the same 

denominator), and Task 7 Item 2 (adding fractions with different denominators) 

incorrectly. This evidence suggests that understanding part-whole with the same 

denominator has a different level of learning from understanding part-whole with 

different denominators and equivalent fractions.  

Next, at Level 3, several participants (participants 5-RI 13-FI 14-DE, and 17-FA) who 

could not answer Task 1 Item 4 (generating improper fractions from a pie diagram) and 

Task 4 Item 1 (putting a proper fraction on a number line) correctly, were able to answer 

Task I Item 3 (generating a fraction from a diagram with unequal partitions) correctly. 

This evidence suggests that understanding improper fractions and fractions as measures 

requires different levels of learning from understanding the equal size principle of 

fractions. The latter seems to have the same level of learning as level 2 because several 

participants who could answer most of the items at level 2 correctly could also generate 

a fraction from a pie diagram with unequal partitions correctly. 

At Level 4, two participants (participants 4-JA and 5-LA) were unable to answer 

Task 5 Items 1 and 2 (writing the biggest fraction and the smallest fraction respectively) 

correctly, but correctly answered Task 4 Item 3 (putting fractions, including an improper 

fraction and a mixed number, on a number line). This evidence suggests that 
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understanding the unbounded infinity of fractions requires different levels of learning 

compared with understanding fractions as measures, even though this measure requires 

advanced understanding (it incorporates improper fractions and mixed numbers). 

Indeed, the responses from participants 4-JA and 5-LA indicate that Task 4 Item 3 has 

the same level of learning as level 3, because they could answer all the given items at 

level 3 and this item (Task 4 Item 3) correctly. This result shows that understanding 

improper fractions and fractions as measures are on the same level of learning.  

At level 5, three participants (participants 3-JI, 11-RE, and 16-AK) answered both 

Task 6 Items 1 and 2 (finding how many fractions lie between two fractions, and finding 

how many fractions lie between two-pseudo successive fractions respectively) correctly, 

but could not answer Task 8 Item 1 (multiplying fractions using a diagram 

representation) and Task 8 Item 2 (dividing fractions using a diagram representation) 

correctly. This evidence shows that understanding the density property of fractions is 

likely to have a different level of learning from understanding multiplicative fraction 

operations. Understanding of the density of fractions also tends to require different 

learning from understanding the unbounded infinity of fractions at level 4, because 

participant 6-JO, who answered Task 5 Item 1 and 2 (writing the biggest fraction and the 

smallest fraction respectively) correctly, could not answer Task 6 Items 1 and 2 (finding 

how many fractions lie between two fractions, and finding how many fractions lie 

between two-pseudo successive fractions respectively) correctly.  

Based on the findings discussed above, the hypothesized conceptual knowledge 

dimension is revised as follows. Level 0 was created to capture those students who have 

no fraction understanding or do not have enough competencies at Level 1.  At this level, 

the students do not understand fraction notation, nor any relationships between a 

numerator and a denominator. They conceive fractions as two unrelated (independent) 

numbers. Next, at Level 1, students begin to understand the symbolic notation of 

fractions as a representation of part-whole but are still limited to proper fractions with 

the same denominator. At this level, students can generate a proper fraction from 

diagram representations, order proper fractions with the same denominator, and 

demonstrate fraction addition with the same denominator. At Level 2, students advance 

their part-whole understanding into equivalent fractions and fractions with different 
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denominators, but are still limited to proper fractions. They can generate equivalent 

fractions from diagram representations, order fractions with different denominators, 

and add fractions with different denominators using diagram representations. At Level 

3, students advance their part-whole understanding at Level 2 into understanding 

improper fractions and fractions as measures. At this level, students are able to generate 

improper fractions and their equivalence fractions from diagram representations, and 

put fractions on a number line. At Level 4, students understand the unbounded infinity 

of fractions, such that they can show that there is no smallest or biggest fraction. Next, 

at level 5, they advance their infinity understanding of fractions into density, such that 

they can show that there are unlimited numbers between two fractions. Finally, at level 

6, students understand multiplication and division of fractions, such that they can 

represent these operations using diagram representations. 

The changes to the model are followed by a revision of the order of acquisition of 

items, tasks and levels. Table 4.5 shows the changes to the order of acquisition of items, 

tasks, and levels from the hypothesized model into the obtained (revised) model 

suggested by the pattern of participants’ responses. Table 4.6 shows the distribution of 

participants’ responses on the revised levels of the conceptual knowledge dimension. 

Table 4.5 The hypothesized and the revised order of acquisition of items, tasks and levels for the 
conceptual dimension of the learning progression 

Hypothesized Revised 
Level Tasks Level Tasks 

 
Level 1 

 
- 

Level 0 - 
Level 1 Task 1: Item   1 

Task 2: Item   1 
Task 3: Item   1 
Task 7: Item   1 

Level 2 Task 1: Items 1, 2 
Task 2: Item   1 
Task 3: Items 1, 2 
Task 7: Items 1, 2 

Level 2 Task 1: Items 2, 3 
Task 3: Item   2 
Task 7: Item   7 

Level 3 Task 1: Items 3, 4, 5 
Task 2: Item   2 
Task 3: Item   3 
Task 4: Items 1, 2 

Level 3 Task 1: Items 4, 5 
Task 2: Item   2 
Task 3: Item   3 
Task 4: Items 1, 2, 3 

Level 4 Task 4: Item   3 
Task 5: Items 1, 2 

Level 4 Task 5: Items 1,2 

Level 5 
 

Task 6: Items 1, 2 
Task 8: Items 1, 2 

 

Level 5 Task 6: Items 1,2 
 

Level 6 Task 8: Items 1,2 
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Table 4.6 The distribution of participants’ responses across the levels of the revised conceptual knowledge dimension 

Level  Task Item Description of item 9-
OK 

7-IS 5-RI 8-
NA 

12-
AU 

13-
FI 

10-
BA 

14-
DE 

17-
FA 

4-JA 5-
LA 

6-
JO 

11-
RE 

3-JI 16-
AK 

Level - 0 - -                 

Level 1 

Task 1 Item 1 Write a proper fraction from a pie diagram 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Task 2 Item 1 Shade a pie diagram to represent a proper fraction 0 1                           

Task 3 Item 1 Compare proper fractions with the same denominator 0 1 1 1 0 1 1 1 1             

Task 7 Item 1 
Add fractions with the same denominator using diagram 
representations 

1 1 1 1 1 1 1 1               

Level 2 
  
  
  
  

Task 1 Item 2 Write an equivalent fraction for a fraction less than 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 

Task 1 Item 3 
Write a proper fraction from a pie diagram with unequal 
partitions 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 

Task 3 Item 2 Compare proper fractions with different denominators   0 0 0   0 1 0               

Task 7 Item 2 
Add fractions with different denominators via diagram 
representations 

0 0 0 0 0 0 1 0 1 1   1 1 1 1 

Level 3 
  
  
  
  
  

Task 1 Item 4 Write an improper fraction from a pie diagram   0 0     0 0 0 0 1 1 0 1 1 1 

Task 1 Item 5 Write an equivalent fraction for a fraction greater than 1                   1 1 0 1 1 1 

Task 2 Item 2 Shade a pie diagram to represent an improper fraction   0   0 0         1 1 1   1   

Task 3 Item 3 Compare improper fractions with different 
denominators using part-whole diagrams 

                0   1 1 1 1 1 

Task 4 Item 1 Put a proper fraction on a number line  0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

Task 4 Item 2 Put a proper fraction on a number line with a constraint                    1     1 1   

Task 4 Item 3 Put fractions, including an improper fraction and a mixed 
number, on a number line 

                  1 1 1 1 1 1 

Level 4 
   

Task 5 Item 1 Write the biggest fraction they can                   0 0 1 1 1 1 

Task 5 Item 2 Write the smallest fraction they can                0 0 1 1 1 1 

Level 5 
  
  

Task 6 Item 1 Find how many fractions lie between two fractions                   0 0 0 1 1 1 

Task 6 Item 2 
Find how many fractions lie between two-pseudo 
successive fractions                   0 1 0 1 1 1 

 Level 6  

Task 8 Item 1 Multiply fractions using a diagram representation             0   0 0 0 0 0 0 1 

Task 8 Item 2 Divide fractions using a diagram representation                             1 
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From Table 4.6, it can be seen that most of the participants’ responses well fit with 

the revised model. They could be assigned at a certain level where they have 

competencies at that level and below, but they do not have the competencies to be 

placed at the upper level. The distribution of participants’ levels based on the revised 

order of acquisition of items, tasks, and levels is presented in Table 4.7.  

Table 4.7 The distribution of participants’ Levels based on the revised conceptual knowledge 
dimension 

No Participant Level 

1 Participant 9-OK 0 

2 Participant 7-IS 1 

3 Participant 5-RI 1 

4 Participant 8-NA 1 

5 Participant 12-AU 1 

6 Participant 13-FI 1 

7 Participant 10-BA 2 

8 Participant 14-DE 1 

9 Participant 17-FA 2 

10 Participant 4-JA 3 

11 Participant 5-LA 3 

12 Participant 6-JO 4 

13 Participant 11-RE 5 

14 Participant 3-JI 5 

15 Participant 16-AKh 6 

However, there are some cases that show the patterns of participants’ responses 

are not in agreement with the proposed model. For example, participant 6-JO could 

answer all the given items at the upper level (Level 4), but made some errors in the lower 

level (Level 3). We cannot find any justifiable reasons to revise the model. In all other 

cases, the participants who had competencies x also had competencies y. Such 

deviations are sometimes unavoidable and show the limitations of a deterministic 

approach to scoring when used with human subjects and suggests that using a 

probabilistic model might have some advantages. 

A probabilistic approach will be explored in Chapter 6, with a larger and more 

complete dataset of students’ responses. The probabilistic response model will be 
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employed to examine the fit of students’ responses to the proposed model and to 

estimate how likely a particular student is to be at a certain level. This probabilistic 

model will show whether some “noise” and slight deviations from the model are 

acceptable. In other words, the probabilistic model “would enable one to decide 

whether a diagnosis with less than perfect fit should be considered enough” (Nichols et 

al., 1995, p. 6). A probabilistic model can take into account the stochastic aspects of 

students’ responses e.g. students have a competency on a particular item but they can 

slip in answering the item, or students do not have competency at a particular item but 

can guess the answer correctly (Almond et al., 2015; Nichols et al., 1995) . In short, the 

probabilistic response model can estimate how likely it is for the model to fit with the 

data, which is essential for empirical validation of the proposed model in this study. In 

the meantime, because the revised model tends to be well fitted with most of the 

participants’ responses on the raw data presented in Table 4.5, the revised model of the 

conceptual knowledge dimension is used as a cognitive model (see the assessment 

triangle introduced by Pellegrino et al. (2001)) to perform a large scale test and its 

analysis is discussed in Chapter 6.  

4.3.2 Procedural Dimension 

4.3.2.1 Within-Item Analysis 

The aims of within-item analysis in the procedural dimension are the same as those in 

the conceptual dimension, which are: 1) to examine whether the instruction for each 

item is understood as intended by the participants; and 2) to examine whether the 

participants’ responses to each item can be used to infer about the students’ 

competencies.  

As discussed at Chapter 4, there are two tasks within the procedural dimension: 

Task 1 Performing Additive Fraction Operations, and Task 2 Performing Multiplicative 

Fraction Operations. The discussion of within-item analysis is organised within these 

tasks. 

Overall, after examining the responses from all the participants, there were no 

cases showing that participants misinterpreted the items, meaning that they 

understood the procedural items as intended. Moreover, it can be concluded that the 
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participants’ responses to the procedural items reflected the intended competencies 

underlying each item, as hypothesized in the proposed model.  

4.3.2.1.1 Task 1 Performing additive fraction operations 

Item 1 – Find the sum of the fraction addition below (ProT1Q1) 

ଷ

଼
+

ଶ

଼
  

From four participants (three from the low achieving students and one from the 

medium achieving students) who received this item, all of them answered the item 

correctly. Exhibit 4.40 demonstrates the answer from participant 9-OK, who successfully 

added proper fractions with the same denominator. 

Exhibit 4.40 The answer of participant 9-OK on Task 1 Item 1 of the procedural knowledge dimension 

PARTICIPANT: Find the results of the fraction addition below. 
PARTICIPANT: 5/8 
RESEARCHER: Can you explain your answer? 
PARTICIPANT: If the bottom numbers are the same, they can be 
added directly, so 3 is added to 2, 5. So 5/8. 
RESEARCHER: Okay, thank you 

 

The participant added the numerators and kept the denominator the same to get 

the result of a fraction addition with the same denominator. This evidence shows that 

the participant understood the rule of adding fractions with the same denominator.  

Item 2 – Find the sum of the fraction addition below (ProT1Q2) 

ଵସ

ଵହ
+

ଶ

ଷ
  

From nine participants who received this item, six of them (medium achieving 

students) answered the item correctly. Exhibit 4.41 represents the response from 

Participant 12-AU, who successfully added proper fractions with different 

denominators. 

Exhibit 4.41 The answer of participant 12-AU for Task 1 Item 2 of the procedural knowledge dimension 
PARTICIPANT: Find the sum of the fraction 
addition below 
PARTICIPANT: These denominators should be 
equated first. The LCD (Least Common 
Denominator) from 3 and 15 is 15, so 15 divided 
by 15 is 1, and 1 times 14 is 14. Then, 15 divided 
by 3 is 5, and 5 multiplied by 2 is 10. So the result 
is 14 plus 10, per 15, which is 24/15. The result is 
simplified, so it becomes 1 9/15. 
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The participant used a least common denominator to convert the fractions into 

equivalent fractions before adding them. Then, the participant added the numerators 

and kept the common denominator the same in the result. This evidence demonstrates 

that the participant understood the rule of adding fractions with different 

denominators. 

Three participants did not give the correct answer to Task 1 Item 2. Exhibit 4.42 

shows the answer from participant 7-IS. 

Exhibit 4.42 The answer from participant 7-IS for Task 1 Item 2 of the procedural knowledge dimension 

PARTICIPANT: Find the results of the addition below 
(The participant was silent) 
PARTICIPANT : I don’t know 
RESEARCHER : Could you tell me what the problems are in 
this task? 
PARTICIPANT : The bottom numbers are not the same 
(the participant was silent, and then did a calculation and 
wrote the answer on the card) 
RESEARCHER: Could you explain the process as to why this is 
15? (the researcher pointed to the common denominator) 
PARTICIPANT : It is a repeated addition, 3 is added to 3, 6, 6 
is added to 9, 9 is added to 3, 12, 12 is added to 3, 15. 
RESEARCHER: And then… 
PARTICIPANT : I transformed 2/3 to 5/15 
RESEARCHER: Could you tell me why this is 5? (The 
researcher pointed the numerator 5 in 5/15) 
PARTICIPANT : The number 3s are counted, 1, 2, 3, 4, 5 (the 
participant counted how many 3s in the equation of 
3+3=6+3=9+3=12+3=15) 
RESEARCHER: Okay, thanks for your answer, we can discuss 
it again later. 

The participant tried to convert the fractions into equivalent fractions with a 

common denominator. However, the participant made a mistake in transforming 2/3 to 

an equivalent fraction with a common denominator of 15. From this response, it can be 

inferred that the participant understood the instruction, but the participant did not 

know the procedure for adding fractions with different denominators, especially the 

procedure for transforming the fractions to their equivalent fractions with a common 

denominator.  

Item 3 – Find the difference of the fraction subtraction below (ProT1Q3)   

5 −  
ଷ

଼
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From the 3 participants who received Item 3 in Task 1 of procedural knowledge, 

two participants demonstrated that they understood the items and answered them 

correctly. Exhibit 4.43 demonstrates one of the answers from Participant 6-JO, who 

answered correctly the item. 

Exhibit 4.43 The answer from participant 6-JO for Task 1 Item 3 of the procedural knowledge dimension 

PARTICIPANT: Find the difference of the fraction 
subtraction below 
PARTICIPANT: For 5 subtracted by 3/8, it should use per 
8. 1 equals 8/8.  So if it is 5, it is equal to 5/1. Then 8/8 
multiplied by 5/1 is 40/8. This 40/8 is subtracted by 3/8, 
so the result is 37/8 or 4 5/8. 

 

The participant converted the whole number 5 into an improper fraction (5/1) 

before being subtracted by 3/8. After that, the participant converted the improper 

fraction into an equivalent fraction with a common denominator 8 successfully, and 

therefore performed this fraction subtraction successfully. From this response, it can be 

inferred that the participant understood the procedure for subtracting fractions that 

involve a whole number. 

One participant gave an incorrect response for Task 1 Item 3 of procedural 

knowledge. Exhibit 4.44 shows the answer of participant 5-RI. 

Exhibit 4.44 The answer of participant 5-RI for Task 1 Item 3 of the procedural knowledge dimension 

PARTICIPANT: Find the difference of the fraction 
subtraction below 
 (The participant directly wrote down the answer 2/8 on 
the card) 
RESEARCHER: Can you tell me why the answer is 2/8? 
PARTICIPANT: The numerator was got from 5 minus 3, and 
the denominator doesn’t change. 

 

From Exhibit 4.44, it can be seen that the participant subtracted the whole number 

from the numerator, and kept the denominator of the fraction the same in the result. 

This response indicates that the participant’s mistake is not due to misinterpretation of 

the item, but because the participant did not know how to subtract a whole number 

from a fraction.  
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Item 4 Find the sum of the fraction addition below (ProT1Q4) 

2
ଷ

ହ
+  

ଵ

ଶ
  

The two participants who received Item 4 in Task 1 of procedural knowledge 

answered the item correctly. Exhibit 4.45 shows the response from participant 6-JO, 

who successfully answered the item. 

Exhibit 4.45 The answer of participant 6-JO for Task 1 Item 4 of the procedural knowledge dimension 
PARTICIPANT: Find the sum of the fraction addition below 
PARTICIPANT: There are two ways to answer this question. 
The easy one is keeping the 2, then the denominators of 
3/5 and 1/2 are equated. So 3/5 is added to 1/2. The 
denominators are equated with 10, so this one is 10, and 
also this one. If this is 10 and this is 5, 3 multiplied by 2 is 
6. This is 10, this is 2, so it is multiplied by 5. Hence, this is 
11/10 or 1 1/10.Next, this 1 1/10 is added to 2 to get 3 
1/10. 
RESEARCHER: Where does this 2 come from? 
PARTICIPANT: From here (the participant showed the 
number 2 which is kept from before), and it is added to 1 
because they are the same as whole numbers. 

The participant took the fraction part from the mixed number and then added it 

to the other fraction. At the end, the participant added the whole number (which was 

kept from the mixed number before) to the result of the fraction addition to get the 

solution.  From this response, it can be inferred that the participant understood the 

procedure for adding a mixed number with a fraction.  

4.3.2.1.2 Task 2 Performing multiplicative fraction operations 

Item 1 Find the result of the fraction multiplication below (ProT2Q1)     

ଶ

ଵହ
×

଻

ଵହ
   

From eight participants who received this item, four participants answered the 

item correctly. Exhibit 4.46 shows the response from participant 14-DE, who multiplied 

a fraction by a fraction successfully. 
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Exhibit 4.46 The answer of participant 14-DE for Task 2 Item 1 of the procedural knowledge dimension 
PARTICIPANT: Find the result of the fraction multiplication 
below 
PARTICIPANT: 2/15 times 7/15. Euh… so 2 times 7, and 15 
times 15. 2 times 7 equals 14, and 15 times 15 equals 225. 
So the answer is 14/225. 
RESEARCHER: Can you tell me how you did that? 
PARTICIPANT: The numerator is multiplied by the 
numerator and the denominator is multiplied by the 
denominator 

 

The participant multiplied the numerator by the other numerator, and multiplied 

the denominator by the other denominator to get the solution to the fraction 

multiplication problem. This response demonstrates that the participant understood the 

procedure for multiplying a fraction by a fraction. 

Four participants answered Task 2 Item 2 of the procedural knowledge incorrectly. 

Exhibit 4.47 shows the response from participant 12-AU, who made a procedural error 

in answering the item. 

Exhibit 4.47 The answer of participant 12-AU for Task 2 Item 1 of the procedural knowledge dimension 
PARTICIPANT: Find the results of the fraction multiplication 
below 
PARTICIPANT: Ehm.. (the participant wrote down 2/15 
multiplied by 7/15, and she put the answer 14/15) 
RESEARCHER: Can you tell me how you got the answer 
14/15? 
PARTICIPANT: Ehm … They are just multiplied, because the 
denominators are already the same, so only the 
numerators are multiplied, the result is 14. 

 

From Exhibit 4.47, it can be seen that the participant only multiplied the 

numerator with the other numerator and kept the denominator the same in the result. 

It seems that the participant misapplied the procedure for fraction addition with the 

same denominator to the case of fraction multiplication, because in fraction addition 

with the same denominator, only the numerators are added and the denominator 

remains the same in the result. From this response it can be inferred that the participant 

understood the instruction, but did not know the procedure for multiplying fractions 

with the same denominator.  

Item 2 Find the result of the fraction multiplication below 

ଵ

଼
 ×  24  (ProT2Q2) 
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Two participants received the item, and one of them answered the item correctly. 

Exhibit 4.48 shows the response from participant 10-BA, who successfully multiplied a 

fraction with a whole number.  

Exhibit 4.48 The answer of participant 10-BA for Task 2 Item 2 of the procedural knowledge dimension 
PARTICIPANT: Find the result of the fraction multiplication 
below 
PARTICIPANT: 24 can be divided by 8, which is 3, and 1/8 
becomes 1/1. So the result is 3. 

 

The participant divided the whole number by the denominator to get the solution 

for fraction multiplication with a whole number. This response shows that the 

participant understood the instruction and knew the procedure for multiplying a 

fraction by a whole number. 

One participant answered the item incorrectly. Exhibit 4.49 shows the response 

from participant 12-AU, who made a procedural error in answering the item. 

Exhibit 4.49 The answer of participant 13-FI for Task 2 Item 2 of the procedural knowledge dimension 
PARTICIPANT: Find the result of the fraction multiplication below 
PARTICIPANT: Hm … 193 
RESEARCHER: Can you tell me how you got the answer 193? 
PARTICIPANT: 24 times 8 plus 1. 24 times 8 equals 192, plus 1 is the 
same with 193. 

 

From Exhibit 4.49, it can be seen that the participant multiplied the whole number 

by the denominator and added it to the numerator to get the solution. This response 

shows that the participant understood the instruction, but made a procedural error in 

multiplying a fraction by a whole number. 

Item 3 Find the result of the fraction division below (ProT2Q3) 

ଽ

ଵ଴
 ÷  

ଷ

ଵ଴
  

Eleven participants received the item, and seven participants answered the item 

correctly. Exhibit 4.50 shows the response from participant 3-JI who found the solution 

to Task 2 Item 3 of the procedural knowledge successfully. 
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Exhibit 4.50 The answer of participant 3-JI for Task 2 Item 3 of the procedural knowledge dimension 
PARTICIPANT: In fraction division, the numbers after the division 
sign should be flipped, so 3/10 becomes 10/3. After that we 
multiply these fractions.  10 divided by 10, 1, and 9 divided by 3, 
3 so the answer is 3.   

The participant flipped the divisor and multiplied the dividend by the flipped-

divisor to get the answer. From this response, it can be inferred that the participant 

understood the procedure for dividing a fraction by a fraction. 

Two participants answered Task 2 Item 3 incorrectly. Exhibit 4.51 shows the 

response from participant 13-FI, who made a procedural error in answering the item. 

Exhibit 4.51 The answer of participant 13-FI for Task 2 Item 2 of the procedural knowledge dimension 
PARTICIPANT: Find the result of the fraction division below 
PARTICIPANT: 9 per 10 divided by 3 per 10. Euh this division is 
converted to multiplication than this one is flipped (the 
participant flipped the dividend) so 10 per 9 times 3 per 10. 10 
divided by 10, 1 then 9 divided by 3, 3. Here is 1 so this is 1/3. 

The participant flipped the dividend-fraction and multiplied by the divisor-fraction 

to get the solution for the fraction division. The participant made a procedural error by 

flipping the dividend. This response showed that the participant understood the item, 

but did not know the correct procedure for fraction division. 

Item 4 – Find the result of the fraction multiplication below (ProT2Q4) 

3
ହ

଻
 ×  4

ଷ

଻
  

Four participants received this item, and three of them answered the item 

correctly. Exhibit 4.52 shows the response from participant 10-BA, who answered the 

item successfully. 

Exhibit 4.52 The answer of participant 16-AK for Task 2 Item 4 of the procedural knowledge dimension 
PARTICIPANT: These are mixed numbers that should be 
converted first into common fractions. For 3 5/7, 7 times 3 is 21, 
and 21 plus 5 is 26. So this is 26/7. While for 4 3/7, 7 times 4 is 
28, and 28 plus 3 is 31. So this is 31/7. Now they can be 
multiplied directly. 26 times 37, per 7 times 7. (The participant 
did the calculation for 26 times 31 and 7 times 7). The result is 
806/49. 
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The participant transformed the mixed numbers into improper fractions, and then 

performed fraction multiplication on these improper fractions. This response 

demonstrates that the participant understood the procedure for multiplying mixed 

numbers. 

One participant answered the item incorrectly. Exhibit 4.53 show the participant’s 

response, revealing a procedural error in multiplying a mixed number by a mixed 

number. 

Exhibit 4.53 The answer of participant 6-JO for Task 2 Item 4 of the procedural knowledge dimension 
PARTICIPANT: Find the result of the fraction multiplication 
below 
PARTICIPANT: 3 5/7 multiplied by 4 3/7, so 3 times 4 is 12, and 5 
times 3 is 15. And then, 7 times 7 is 49.  
RESEARCHER: Can you explain how you get 12? 
PARTICIPANT: 3 times 4, because they are in the same as whole 
numbers, while 3/5 and 4/7 are the same as fractions, so a whole 
number is multiplied by a whole number, while a fraction is 
multiplied by a fraction. 
 

 

The participant multiplied a whole number with another whole number, and a 

fraction multiplied by another fraction to get the solution of the mixed number 

multiplication. It looks like the participant misapplied a mixed number addition 

algorithm to the mixed number multiplication. When adding mixed numbers, it is 

allowed to add a whole number to another whole number, and to add a fraction to 

another fraction, and then join both of the results to get the solution. From this 

response, it can be inferred that the participant’s mistake in adding mixed numbers was 

not due to misinterpretation of the result but because the participant did not know the 

correct procedure for multiplying a mixed number by a mixed number. 

Item 5 – Find the result of the fraction division below (ProT2Q5) 

2
ଵ

ଽ
 ÷ 3   

One participant received Task 2 Item 5, and answered the item correctly. Exhibit 

4.54 shows the response from participant 4-JA, who divided a mixed number by a whole 

number successfully. 
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Exhibit 4.54 The answer of participant 4-JA for Task 2 Item 4 of the procedural knowledge dimension 
PARTICIPANT: 2 1/9 is divided by 3. Because 2 1/9 is a mixed 
number so we transform this to common fraction form. 2 1/9 is 
equal to 2 multiplied by 9, 18, 18 added to 1, 19, so 19/9 divided 
by 3. We change to multiplication; 3 is the same as 3/1, but 
because it is changed to multiplication, we flip this. So 19/9 
multiplied by 1/3 is 19; 19 multiplied by 1 is 19; and 9 multiplied 
by 3 is 27, so the result is 19/27. 

 

The participant transformed a mixed number (2 1/9) and a whole number (3) into 

an improper fraction before performing a fraction division. After that, the participant 

flipped the divisor (3/1) and multiplied by the dividend (19/9). This response 

demonstrates that the participant understood the procedure for multiplying a mixed 

number with a whole number.  

4.3.2.2 Adding New Items during the Cognitive Interview 

Task 2 Items 4 to 6 were designed to test the participants at a high level of the proposed 

model (Level 4). However, the participants from the medium and high achieving 

students answered the items easily. This evidence suggests a need to create more 

complex items to test the competency of high level students, and to differentiate 

between high achieving students and medium achieving students. For these reasons, a 

new task with several items was developed during the cognitive interviews, as follows. 

4.3.2.2.1 Task 3 Complex Fraction Operations  

The items within task 3 are different from the previous tasks. In task 1 and task 2, each 

item tests competency in additive and multiplicative fraction operations separately. In 

task 3, the participants need to combine both additive and multiplicative fraction 

operations to solve the items. The operations are “nested” in the numerator or the 

denominator of fractions. For example, consider a fraction a/b. In the previous task, the 

numerator a and the denominator b are whole numbers. In Task 3, the numerator a or 

denominator b could be a fraction operation, for example if a is p/q – x/y, the fraction 

operation becomes ௣/௤ – ௫/௬

௕
 . The competency of performing such a fraction operation 

is essential in further study, especially in Algebra (See Karr, Massey, & Gustafson, 2015). 
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Item 1 – Find the result of the fraction operation below (ProT3Q1) 

  1 −  
ଶ

భ

ర
 ି ଵ

ଷ
 

   Task 3 Item 1 tests the students’ procedural knowledge of fraction operations that 
involve fraction subtraction with a whole number and a fraction division. Division of 

fraction is needed to simplify the fraction 
ଶ

భ

ర
 ି ଵ

ଷ
. To answer this item correctly, students 

should understand several rules. First, students should understand the rules of fraction 
subtraction, especially where the mixed number is subtracted by a whole number, which 

is needed to solve the operation in the numerator of the fraction  
ଶ

భ

ర
 ି ଵ

ଷ
 . Secondly, 

students should understand the rule of simplifying the fraction 
ଶ

భ

ర
 ି ଵ

ଷ
 by dividing the 

result of 2 ଵ

ସ
 −  1 by the whole number 3. Finally, the third rule is similar to the first rule, 

but in this case a whole number is subtracted by a fraction (1 minus 
ଶ

భ

ర
 ି ଵ

ଷ
, in which 

ଶ
భ

ర
 ି ଵ

ଷ
 

could be simplified to a fraction). This item is used to address the competency of 
procedural knowledge at Level 5. 

The results from the cognitive interviews show that two students gave evidence 

that they understood the instruction and answered the item correctly. Exhibit 4.56 

shows the response from participant 5-LA, who successfully solved the item. 

Exhibit 4.55 The answer of participant 5-LA for Task 3 Item 1 of the procedural knowledge dimension 
PARTICIPANT: Find the result of the fraction operation below 
(The participant was silent and then did some calculations) 
RESEARCHER: Keep talking please 
PARTICIPANT: Euh this is from the item that 2 ¼  minus 1 is 
5/4. So 1 is subtracted by 5/4 minus 1 per 3 ah.. 5/4 per 3 
means that 5/4 is divided by 3, so that it becomes 5/4 
multiplied by 1/3, which is 5/12. Hence, 1 is subtracted by 
5/12. 1 subtracted by 5/12 is equivalent with 12/12, 
subtracted by 5/12, equals 7/12 

At first, the participant solve the operation of 2
ଵ

ସ
 −  1 in the numerator of the 

fraction 
ଶ

భ

ర
 ି ଵ

ଷ
, which gave the result 5/4. Next, the participant simplified the fraction 

ହ/ସ

ଷ
, by dividing 5/4 with 1/3 which produced 5/12. Finally, the participant subtracted 

5/12 from 1 to get the answer. From this response, it can be inferred that the participant 

understood several rules to solve the item, such as fraction subtraction and fraction 

division. 
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Item 2 – Find the result of the fraction operation below (ProT3Q2) 

ଵ ÷ 
మ

య

ହ
−  

ଵ

ସ
    

Task 3 Item 2 tests the students’ procedural knowledge of fraction operations that 

involve fraction division and fraction subtraction. To solve this item correctly, students 

should understand several rules. First, students should understand the rule of dividing a 

whole number by a fraction, which is needed to solve the operation in the numerator of 

ଵ ÷ 
మ

య

ହ
 . Second, students should understand the rule of simplifying a fraction 

ଵ ÷ 
మ

య

ହ
,  in which 

the numerator is also a fraction (the result of 1 ÷  
ଶ

ଷ
 can be transformed to a fraction). 

Finally, the participants should understand the rule of fraction subtraction with different 

denominators to subtract a fraction from the result of  
ଵ ÷ 

మ

య

ହ
  by 1/4 to get the final result. 

This item is used to address competency in procedural knowledge at Level 5. 

The result from the cognitive interview shows that of the two participants who 

received this item, one participant gave evidence that he understood the instruction and 

answered the item correctly. Exhibit 4.57 shows the response from participant 10-BA, 

who solved the item successfully. 

Exhibit 4.56 The answer of participant 10-BA for Task 3 Item 1 of the procedural knowledge dimension 
PARTICIPANT: Find the result of the fraction operation below 
PARTICIPANT: 1 divided by 2/3 per 5 minus 1/4. This 1 
divided by 2/3 should be calculated first. So 1 per 1 times 3/2 
per 5 is equal to 3/2/5. Hm… what’s the next step (the 
participant was silent) 
RESEARCHER: Could you tell me what the problems are in 
this task? 
PARTICIPANT: Ehm this is double fractions 
 (After that the participant crossed out the denominator 2 of 
3/2 and the denominator 4 of 1/4). This means 3/5 minus 1/2 
are transformed with the denominator 10. So 10 divided by 
5 is 2, and 2 times 3 is 6. 10 divided by 2 is 5, and 5 times 1 is 
5. Now 6 minus 5 per 10 or 1/10. 

 

The participant solved the operation on the numerator of the fraction 
ଵ ÷ 

మ

య

ହ
  and 

successfully simplified this fraction and subtracted by 1/4 to get the result. This response 

demonstrates that the participant understood several procedures, such as fraction 

division and fraction subtraction with different denominators. 
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One participant could not answer Task 3 Item 2 correctly. Exhibit 4.58 shows the 

response from participant 8-NA who failed to solve the item. 

Exhibit 4.57 The answer of participant 8-NA for Task 3 Item 2 of the procedural knowledge dimension 
PARTICIPANT: Find the result of the fraction operation below 
PARTICIPANT: There are mixed numbers and common 
fractions and there is a fraction here but it is joined so 1 
divided by 2/3 per 5, subtracted by 1/4 is equal to 1 
multiplied by 3/2 per 5, and subtracted by 1/4. So this is 
equal to 3/2/5 ehm … . Hm… the problem is that 3/2 is 
already one unit, while the denominator, but per 5, I don’t 
know what this number belongs to. While this 1/4, I have 
already know. 
RESEARCHER: Do you want to try first? 
PARTICIPANT: this 3/2 per 5 means that this is divided, so 3/2 
multiplied by 5 is equal to 5 multiplied by 3, 15. So 15/2 is 
subtracted by 1/4. Its denominator is not the same, so it 
should be equated first with 4. 4 multiplied by 15 is 60 so 
60/4 is subtracted by ¼ which is 59/4. If it is simplified so 59 
divided by 4 (the participant divided 59 by 4 using the whole 
number division technique). The result is 14 19/4. 

 

The participant successfully executed the operation 1 ÷  
ଶ

ଷ
  as the numerator of 

ଵ ÷ 
మ

య

ହ
  to produce a fraction ଷ/ଶ

ହ
. However, the participant had difficulty in simplifying the 

fraction  ଷ/ଶ

ହ
. Next, the participant made a mistake by multiplying 3/2 by 5 to simplify ଷ/ଶ

ହ
. 

From this response, it can be inferred that the participant understood the instruction 

but did not understand the rule of simplifying a fraction in which the numerator is in a 

fraction form.  

Item 3 – Find the result of the fraction operation below (ProT3Q3) 

1 +  
ହ

଺ା 
భ

భష
భ
య

   =  

Task 3 Item 3 tests the students’ procedural knowledge of fraction operations that 

involve more nested fraction operations than Task 3 Items 1 and 2.  To solve this item, 

the participants should understand the rules of fraction addition and subtraction with a 

whole number, and understand how to use fraction division to simplify a fraction where 

the numerator or denominator contains a fraction or a fraction operation. 

The results from the cognitive interviews show that of the six participants who 

received this item, three participants gave evidence that they understood the 
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instruction and solved the item successfully. Exhibit 4.59 shows the response from 

participant 16-AK, who solved the item successfully. 

Exhibit 4.58 The answer of participant 16-AK for Task 3 Item 3 of the procedural knowledge dimension 
PARTICIPANT: Find the result of the fraction operation 
below 
PARTICIPANT: Firstly, we do the operation in the 
bottom which is 1 or 3/3 minus 1/3, which is equal to 
2/3. Then 1 divided by 2/3 or 1 times 3/2 which is 3/2. 
Next, 3/2 plus 6 equals 6 3/2, then 5 divided by 6 3/2 
which is the same as 5 divided by 15/2. It is the same as 
5 times 2/15 which is 2/3. Finally, 1 plus 2/3 which is 
equal to 1 2/3 

The participant executed the fraction operation from the denominator in the 

bottom of the operation and moved to the upper level operation by dividing the 

numerator with the denominator. For example, after calculating 1-1/3 to get 2/3 as the 

denominator of  
ଵ

ଵି
భ

య

 , the participant moved to the higher level of operation by dividing 

1 with 2/3 to get 3/2. This 3/2 is added to 6 to get 15/2, which has become the 

denominator in which the numerator is 5. The participant divided 5 by 15/2 to get 2/3. 

Finally 2/3 is added to 1 to get the final answer. This response demonstrates that the 

participant understood the instruction and understood several rules to solve complex 

fraction operations, such as fraction subtraction and fraction division that were used to 

simplify the nested fraction. 

Three participants answered Task 3 Item 3 incorrectly. Exhibit 4.59 shows the 

response from participant 17-FA. 

Exhibit 4.59 The answer of participant 17-FA for Task 3 Item 3 of the procedural knowledge dimension 
PARTICIPANT: Find the result of the fraction operation below 
(The participant was silent for a moment) 
RESEARCHER: Can you tell me what the problems are in this 
task? 
PARTICIPANT: Euh … I do not understand 5 and 1 here, but I 
think 1 is added to 5, so 1 plus 5 equals 6. 6 plus 1 equals 7 
so this is 6/7. Then 6/7 is subtracted by 1/3. The 
denominators are equated to 21. 21 divided by 7 is 3, and 3 
times 6 is 18. 21 divided by 7 is 7, and 7 times 1 is 7 so the 
result is 11/21.    

From Exhibit 4.59, it can be seen that the participant looked confused with the 

whole number 1 and the numerator 5. The participant started the calculation by adding 
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the whole number 1 to 5, and took the result as the numerator. Next, the participant 

added the whole number 6 to 1, and took the result as the denominator. Hence the 

participant got a fraction 6/7 which is subtracted later by 1/3 to get the final result. From 

this response, it can be inferred that the participant understood the instruction, but did 

not understand the rule and procedure to execute a complex (nested) fraction 

operation.  

In summary, the results of within-task analysis of the procedural knowledge 

dimension show that there are no cases where the participants made a mistake because 

of misinterpreting the instructions of the items, meaning that the participants could 

understand all the items as intended. The results also show that the participants’ 

responses reflect accurately the hypothesized competencies. Hence, the responses can 

be used to infer the participants’ procedural knowledge. Next, the hierarchical order of 

the items examined in within-task analysis are presented in the following section. 

4.3.2.3 Within-Procedural Task Analysis 

The within-task analysis was conducted for all items within a task in the procedural 

knowledge dimension. The aim of the within-task analysis of the procedural knowledge 

dimension is the same as that of the conceptual knowledge dimension, which is to 

examine whether the hierarchical order of the items within the task is consistent with 

the hypothesized order. To achieve this goal, the analysis is focused on finding whether 

there is evidence that some of the participants answered the items at the higher levels 

in the task successfully but could not answer the items at the lower levels of the task. 

Such evidence would show that there is an inconsistency between the order of the items 

within a task and the hypothesized order.  

Table 4.8 demonstrates the participants’ responses, which are structured within 

the tasks and levels of the procedural knowledge dimension. There are three tasks 

within the procedural knowledge dimension, which are: 1) performing additive fraction 

operations; 2) performing multiplicative fraction operations; and 3) performing complex 

fraction operations. From Table 4.8, it can be seen that there are no cases within tasks 

where students could answer an upper item correctly, but not a lower item. Therefore, 

it can be inferred that the hierarchical order of the procedural items is consistent with 

the hypothesized order. 
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Table 4.8 The distribution of the participants’ responses within task of the conceptual dimension 

Task Item Level 9-OK 7-IS 5-RI 8-NA 
12-
AU 

13-FI 10-BA 14-DE 17-FA 4-JA 5-LA 6-JO 11-RE 3-JI 16-AK 

Task 1  

Item 1 Level 2 1 1 1 1                       

Item 2 Level 2 0 0 0 1 1 1 1 1 1             

Item 3 Level 3     0 1               1       

Item 4 Level 3                     1 1       

Task 2  

Item 1 Level 3 0 0   1 0 0   1 1     1       

Item 2 Level 3           0 1                 

Item 3 Level 3       1 0 0   1 1   1 1   1 1 

Item 4 Level 4     0       1         0   1 1 

Item 5 Level 4                   1           

Item 6 Level 4       1                       

Task 3  

Item 1 Level 5                   1 1         

Item 2 Level 5       0     1                 

Item 3 Level 5             0 0 0     1 1   1 
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4.3.2.4 Assigning the Participants to the Levels of the Procedural Dimension and 
Changes in the Model 

The purpose of this analysis is to examine whether the participants’ profiles were in 

agreement with the proposed model. To achieve this goal, the order of the participants’ 

responses for the procedural tasks were compared with the hypothesized order of items 

and tasks nested in levels, as shown in Table 4.9 below. 

Table 4.9 The hypothesized order of acquisition of items and tasks for the procedural dimension 
of the learning progression 

Level Task 

Level 1 - 

Level 2 Task 1: Items 1, 2 

Level 3 Task 1: Items 3, 4 

Task 2: Items 1, 2, 3 

Level 4 Task 2: Items 4, 5, 6 

Level 5 Task 3: Items 1, 2, 3 

The profile for all 15 participants’ responses on the procedural knowledge 

dimension are presented in Table 4.10 below. The criteria for assigning participants into 

the procedural level is the same as that for conceptual knowledge, which is: the 

participants are assigned to a certain level if they have all the competencies at that level 

and below, but they have not enough competencies at the upper level. 

From Table 4.10, one can see the distribution of the participants’ responses across 

the items, tasks and levels in the hypothesized procedural knowledge dimension. At 

level 2, three participants (participants 9-OK, 7-IS and 5-RI) could answer Task 1 Item 1 

(adding proper fractions with the same denominator) correctly, but could not answer 

Task 1 Item 2 (adding proper fractions with different denominators) correctly. This 

evidence indicates that adding proper fractions with the same denominator is much 

easier than adding fractions with different denominators and it might be better to assign 

it to a different level in the progression 

As a result, Level 2 is revised by differentiating the levels of additive operations of proper 

fractions with the same denominator (level 1) and those of additive operations with 

different denominators. 
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Table 4.10 The distribution of participants’ responses across the levels of the procedural knowledge dimension 

Level Task Item Description of item 9-
OK 

7-
IS 

5-
RI 

8-
NA 

12-
AU 

13-
FI 

10-
BA 

14-
DE 

17-
FA 

4-
JA 

5-
LA 

6-
JO 

11-
RE 

3-
JI 

16-
Akh 

Level 1 - - -                
Level 2 
 

Task 1 Item 1 Add fractions with the same denominator 1 1 1 1            
Task 1 Item 2 Add fractions with different denominators 0 0 0 1 1 1 1 1 1       

Level 3 

Task 1 Item 3 Subtract a fraction from a whole number   0 1        1    
Task 1 Item 4 Add a fraction with a mixed number           1 1    
Task 2 Item 1 Multiply a fraction with a fraction 0 0  1 0 0  1 1   1    
Task 2 Item 2 Multiply a fraction with a whole number      0 1         
Task 2 Item 3 Divide a fraction with a fraction    1 0 0  1 1  1 1  1 1 

Level 4 
Task 2 Item 4 Multiply a mixed number with a mixed number   0    1     0  1 1 
Task 2 Item 5 Divide a mixed number with a whole number          1      
Task 2 Item 6 Divide a mixed number with a mixed number    1            

Level 5 

Task 3 Item 1 Solve a nested fraction operation where the numerator is a fraction 
subtraction 

         1 1     

Task 3 Item 2 
Solve a nested fraction operation where the numerator is a fraction 
division 

   0   1         

Task 3 Item 3 Solve a fraction operation with a two-level nested fraction       0 0 0   1 1  1 
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At level 2, two participants (participants 12-AU and 13-FI) could add proper 

fractions with different denominators (Task 1 Item 2), but could not multiply or divide a 

proper fraction by a proper fraction (Task 2 Item 1 and 3). This evidence indicates that 

additive fraction operations (for proper fractions) are easier than multiplicative fraction 

operations (for proper fractions), and therefore should belong to a different level in the 

progression.  For this reason, the levels of additive proper fraction operations (Level 2) 

is differentiated from multiplicative proper fraction operations (Level 3).  

At level 3, participant 6-JO could answer both items of proper fraction 

multiplication and division (Task 2 Item 1 and Item 3 at Level 3) correctly but could not 

answer multiplication of mixed numbers (Task 2 Item 4) correctly. This result suggests 

that it might be better to separate the competency of multiplying with a proper fraction 

from the competency of multiplying with mixed numbers. Therefore, the competency 

of multiplicative fraction operations for proper fractions is placed at level 3 and that of 

multiplicative fraction operations with mixed numbers or improper fractions is placed 

at level 4. 

At levels 4 and 5, participant 8-NA could answer Task 2 Item 6 (dividing a mixed 

number with a mixed number) correctly, but could not answer Task 3 Item 2 (solving a 

nested fraction operation with the numerator is a fraction division) correctly. This 

evidence suggests that multiplicative fraction operations require a different level of 

learning from a nested fraction operation as hypothesized in the model. This result 

confirms the order of acquisition of levels 4 and 5. 

From level 5, participant 10-BA could solve Task 3 Item 2 (solving a nested fraction 

operation with the numerator is a fraction division) correctly, but could not answer Task 

3 Item 3 (Solving a fraction operation with two-level nested fraction) correctly. This 

indicates that performing one-level nested fraction operations requires a different level 

of learning from that of two-level or more nested fractions. This result suggests that 

level 5 should be split to separate the competency of performing two-level nested 

fraction operations from the competency of performing one-level nested fraction 

operations.   



150 

 

Based on the findings discussed above, the hypothesized procedural knowledge 

dimension was changed as follows. Level 0 was created to capture students who have 

no procedural knowledge of fraction operations. Although there are no cases of 

participants who represent this level from the cognitive interview, this level was still 

created to accommodate the possibility of such cases appearing in the large study 

discussed in the next chapter (Chapter 6). At level 1, students begin to know the 

procedure for additive proper fraction operations with the same denominator.  Next, at 

level 2, they advanced their procedural knowledge of additive fraction operations into 

additive proper fraction operations with different denominators. At level 3, they 

advanced their additive operations into operations that involve improper fractions and 

mixed numbers. In addition, their competency with multiplicative fraction operations 

emerges at this level but is still limited to proper fractions. Next, at level 4, they advance 

their multiplicative fraction operations to multiplicative operations which involve 

improper fractions and mixed numbers. At level 5, they have the competency to solve 

more complex fraction operations that involve one-level nested fraction operations. 

Finally, at Level 6, they have sufficiently advanced procedural competency that they can 

solve two or more nested complex fraction operations. 

Proceeding from the changes to the hypothesized model of the procedural 

knowledge dimension, the revised order of acquisition of items, tasks, and levels is 

presented in Table 4.11 below, and the distribution of participants’ responses is 

presented in Table 4.12 

Table 4.11 The hypothesized and revised order of acquisition of items, tasks and levels for the procedural 
knowledge dimension 

Hypothesized Revised 

Level Tasks Level Tasks 

 

Level 1 

 

- 

Level 0 - 

Level 1 Task 1: Item   1 

Level 2 Task 1: Items 1, 2 Level 2 Task 1: Item   2 

Level 3 Task 1: Items 3, 4 

Task 2: Items 1, 2, 3 

Level 3 Task 1: Items 3, 4 

Task 2: Items 1, 2, 3 

Level 4 Task 2: Items 4, 5, 6 Level 4 Task 2: Items 4, 5, 6 

Level 5 

 

Task 3: Items 1, 2, 3 Level 5 Task 3: Items 1, 2 

Level 6 Task 3: Item   3 
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Table 4.12 The distribution of participants’ responses across level of the revised procedural knowledge dimension 

Level Task Item Description of item 9-
OK 

7-
IS 

5-
RI 

8-
NA 

12-
AU 

13-
FI 

10-
BA 

14-
DE 

17-
FA 

4-
JA 

5-
LA 

6-
JO 

11-
RE 

3-
JI 

16-
Akh 

Level 0 - - -                
Level 1 Task 1 Item 1 Add fractions with the same denominator 1 1 1 1            
Level 2 
 

Task 1 Item 2 Add fractions with different denominators 
0 0 0 1 1 1 1 1 1       

Level 3 

Task 1 Item 3 Subtract a fraction from a whole number   0 1        1    
Task 1 Item 4 Add a fraction with a mixed number           1 1    
Task 2 Item 1 Multiply a fraction with a fraction 0 0  1 0 0  1 1   1    
Task 2 Item 2 Multiply a fraction with a whole number      0 1         
Task 2 Item 3 Divide a fraction with a fraction    1 0 0  1 1  1 1  1 1 

Level 4 
Task 2 Item 4 Multiply a mixed number with a mixed number   0    1     0  1 1 
Task 2 Item 5 Divide a mixed number with a whole number          1      
Task 2 Item 6 Divide a mixed number with a mixed number    1            

Level 5 
Task 3 Item 1 Solve a nested fraction operation where the numerator is a fraction 

subtraction 
         1 1     

Task 3 Item 2 Solve a nested fraction operation where the numerator is a fraction 
division 

   0   1         

Level 6 Task 3 Item 3 Solve a fraction operation with a two-level nested fraction       0 0 0   1 1  1 
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From Table 4.12, it can be seen that most of the participants’ responses are in 

agreement with the revised model. The participants were assigned to a certain level if 

they demonstrated competencies at that level and below, but they did not have enough 

competencies at the upper level. The participants’ levels are presented in Table 4.13. 

However, there are some cases which show the pattern of participants’ responses are 

not perfectly in agreement with the proposed model. For example, participant 6-JO, who 

could answer an item at level 6, but made an error in answering Task 2 Item 4 at Level 

4. 

This case is similar to the case in the conceptual knowledge dimension where there 

is slight deviation from the student's answer to the hypothesized model. As discussed 

earlier, a probabilistic response model should test the goodness of fit of the 

hypothesized model with the data from the participants' responses. The purpose of the 

analysis is to test whether slight deviations from the model are accepted. This discussion 

will be conducted in Chapter 6 using the complete data set. 

Table 4.13 The distribution of participants’ Levels of the procedural knowledge dimension 

No Participant Level 

1 Participant 9-OK 1 

2 Participant 7-IS 1 

3 Participant 5-RI 1 

4 Participant 8-NA 4 

5 Participant 12-AU 2 

6 Participant 13-FI 2 

7 Participant 10-BA 4 

8 Participant 14-DE 3 

9 Participant 17-FA 3 

10 Participant 4-JA 5 

11 Participant 5-LA 5 

12 Participant 6-JO 6 

13 Participant 11-RE 6 

14 Participant 3-JI 4 

15 Participant 16-AK 6 
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4.4 Discussion of the Results 

The within-item analysis shows that the conceptual and procedural items were 

understood by the participants and they tested the intended competencies. The 

participants’ responses indicated that they understood the instructions and their 

mistakes were caused by incomplete or no knowledge. The responses from the 

participants also show that the items test the intended competencies successfully. 

  The within-task analysis also confirmed that the hierarchy of items within the 

tasks was consistent with the hypothesized order. Most of the participants who could 

answer correctly at the upper level, could also answer the items at the lower level. There 

were almost no cases where the participant successfully answered the items at the 

upper level but could not answer the items at the lower level. This evidence shows that 

the order of the items within each task is consistent with the hypothesized order.  

The analysis that tested the fit of the tasks/items with the hypothesized levels 

showed that several changes in the model were needed in order to get a better fit with 

the participants’ responses. Within the conceptual knowledge dimension, the part-

whole level of the hypothesized model was split into two levels (level 1 and level 2) 

because the participants’ responses showed that there were two different constructs 

within this level, which could not be placed on the same level of learning.  One is a level 

1 part-whole understanding, which shows some understanding of part-whole relations 

but limited to fractions with the same denominator. Level 2 in the revised model, 

represents a more advanced part-whole understanding, which extends to fractions with 

different denominators and to equivalent fractions. In addition, there was a competency 

at Level 3 – i.e., generating a fraction from a pie diagram with unequal partitions – which 

was more likely to have the same construction as the construction at Level 2 of the 

revised model. This competency was moved to level 2.  

The competency of generating improper fractions at Level 4 was moved to level 3, 

so level 3 became improper fractions and fractions as measures, and level 4 became the 

unbounded infinity of fractions. Next, understanding multiplicative fraction operations 

tends to require a different level of learning than the construction of understanding of 

the density of fractions. Hence, understanding density was placed at level 5, and 
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understanding multiplicative fraction operations was placed at level 6. Level 0 is created 

to accommodate participants who have no fraction understanding. 

For the procedural knowledge dimension, participants’ responses show that 

knowing the procedure for fraction addition with the same denominator requires a 

different level of learning than the procedure for fraction addition with different 

denominators. Hence, level 1 is adding fractions with the same denominator, while level 

2 is adding fractions with different denominators. Level 3 and level 4 remain the same 

as the hypothesized model. Level 3 covers additive improper fractions and mixed 

numbers operations, and multiplicative fraction operations limited to proper fractions, 

while level 4 is multiplicative fraction operations which involve improper fractions and 

mixed numbers. Levels 5 and 6 were created during the cognitive interview to recognise 

the procedural knowledge of high achieving students. Level 5 is one-level nested fraction 

operations, while level 6 is two-level nested fraction operations. Level 0 is created to 

accommodate the possibility of having participants who do not have procedural 

knowledge of fraction operations.  

 Most of the participants fitted well into the revised model for both the conceptual 

and procedural knowledge dimensions. Table 4.14 demonstrates the profile of the 

participants' levels for both the conceptual and procedural knowledge dimensions.  

The results show that the participants look varied in their levels for learning 

fractions. At a low level, several participants (participants 7-IS and 5-RI) have the same 

level in both the conceptual and procedural knowledge dimensions. Similarly, at a high 

level, participant 17-AK has the same level in both the conceptual and procedural 

knowledge dimensions. In the medium level, most of the participants have a higher level 

of procedural than conceptual knowledge. This evidence shows that during the 

development of fraction learning, students tend to have more knowledge about 

algorithms/procedures for fraction operations than understanding of the symbolic 

notation of fractions and the meaning underlying fraction operations. 
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Table 4.14 The distribution of participants’ Levels in the procedural knowledge dimension 

No Participant Conceptual Procedural  

1 Participant 9-OK 0 1 

2 Participant 7-IS 1 1 

3 Participant 5-RI 1 1 

4 Participant 8-NA 1 4 

5 Participant 12-AU 1 2 

6 Participant 13-FI 1 2 

7 Participant 10-BA 2 4 

8 Participant 14-DE 1 3 

9 Participant 17-FA 2 3 

10 Participant 4-JA 3 5 

11 Participant 5-LA 3 5 

12 Participant 6-JO 4 6 

13 Participant 11-RE 5 6 

14 Participant 3-JI 5 4 

15 Participant 16-AK 6 6 

In some cases, procedural knowledge helped participants to find the solutions for 

conceptual items. For example, participant 10-BA used his procedural knowledge of 

computing equivalent fractions with a common denominator to compare fractions with 

different denominators. The following exhibit (Exhibit 4.61) shows the participant’s 

responses. 

Exhibit 4.60 The answer of participant 10-BA for Task 3 Item 1 of the conceptual knowledge dimension 
PARTICIPANT:   Which is larger  ଶ

ଷ
   or  ଷ

ସ
 ?  Illustrate how you got your answer 

using a picture. 
PARTICIPANT:   The fractions should be transformed with a common 
denominator 12. So 12 divided by 3 is 4, and 4 times 2 is 8. Then 12 divided 
by 3 is 3, and 3 times 3 is 9. So we have the fractions 8/12 and 9/12. So 3/4 
is larger. 
RESEARCHER:    Can you explain your answer using diagram? 
PARTICIPANT:   Drew 12 parts … 
(The participant drew 2 circles to describe 8/12 and 9/12). 
For 8/12, 8 parts are shaded, while for 9/12, 9 parts are shaded 
RESEARCHER:    So which one is larger? 
PARTICIPANT:   3/4 
RESEARCHER:    Why? 
PARTICIPANT:   Because it has more shaded parts 
RESEARCHER:    Okay, thank you for your answer. 
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The participant activated procedural knowledge to transform the fractions 2/3 and 

3/4 into equivalent fractions with a common denominator (8/12 and 9/12). Next, the 

participant drew pie diagrams for these equivalent fractions to compare 2/3 and 3/4. 

This result shows how procedural knowledge was used effectively in tandem with 

conceptual knowledge to solve a conceptual item. The participants’ understanding of 

comparing two fractions, that the denominator should be the same, induced the 

participant to use procedural knowledge to calculate the equivalent fractions with a 

common denominator. After that, the participant used conceptual knowledge to 

compare the equivalent fractions using diagram representations to determine which 

fraction is bigger. 

In another case, the participant used a correct procedure for fraction 

multiplication but could not understand the procedure. 

Exhibit 4.61 The answer of participant 10-BA for Task 8 Item 1 of the conceptual knowledge dimension 
PARTICIPANT: Draw a pictorial representation for the fraction 
multiplication below 
PARTICIPANT: 1/2 times 3/4  is equal to 4/8. The denominator should 
not be the same, so we can draw 1/2 and ¾ directly. For 1/2, there are 
two parts and one is shaded, and for 3/4 there are four parts and three 
are shaded. So the result is 4/8 in which there are  8 parts and 4 parts 
are shaded. 

The participant successfully calculated 1/2 multiplied by 3/4 procedurally. 

However, the participant could not represent the fraction multiplication using a diagram 

representation. This result shows that the participant had procedural knowledge of 

fraction multiplication but did not understand the procedure.  

From the cases discussed above, the relationship between conceptual and 

procedural knowledge can be summarized as follows. In some cases, conceptual and 

procedural knowledge seem unrelated. In other cases, conceptual and procedural 

knowledge are intertwined. From all these cases, it may be argued that procedural 

knowledge is learned first or that conceptual knowledge is learned first. However, these 

results do not suggest that a type of knowledge (either conceptual or procedural) 

necessarily leads to or causes an increase in the other form of knowledge. These findings 

are consistent with the hypothesis of individual differences proposed by Hallett et al. 

(2010). Further investigation of the relationship between conceptual and procedural 



 

157 

 

knowledge will be performed in the next chapter using a more complete data set from 

the 516 student-data test.  

4.5 Summary of the Chapter 

This chapter discussed the empirical evidence from the cognitive interviews to validate 

the proposed model and to improve the item tasks. To achieve this goal, four type of 

analyses were implemented and discussed for each conceptual and procedural 

knowledge dimension, namely within-item analysis, within-task analysis, assigning 

participants to levels, and within-level analysis. The results showed that: 1) the 

instructions for the items were understood by the participants; 2) the participants’ 

responses reflected the intended (hypothesized) competencies; 3) the order of 

acquisition of the items was consistent with the hypothesized order; 4) the responses of 

the individual participants were consistent with the proposed levels for both the 

conceptual and the procedural knowledge dimensions; and 5) the order of acquisition 

of the levels was consistent with the hypothesized order.  

The proposed model and items revised in this chapter were used to conduct a 

larger study with 516 students at Junior Secondary School, from grades 7 to 9. The 

results of the study are presented and discussed in the following chapters.  
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CHAPTER 5 : BAYESIAN NETWORKS MODELLING FOR 
MEASURING LEARNING PROGRESSIONS 

 

5.1 Introduction 

The proposed model of fraction learning progression has been revised for both 

conceptual and procedural knowledge dimensions, based on the results of the cognitive 

interview, as discussed in Chapter 4. The revised model of the conceptual items now 

consists of the following seven levels which are (from lowest to highest): no fraction 

understanding; part-whole of proper fractions with the same denominator; part-whole 

of proper fractions with different denominator and equivalent fractions; improper 

fractions and fractions as measures; unbounded infinity; density; and understanding 

multiplicative fraction operations. The revised model of the procedural dimension also 

has seven levels, which are (from lowest to highest): no procedural knowledge; additive 

operations of proper fractions with the same denominator; additive operations of 

proper fractions with different denominators; multiplicative operations of proper 

fractions; multiplicative operations of improper fractions/mixed numbers; one-nested 

complex fraction operations; and two or more nested complex fraction operations. 

There are two main aims in this chapter. The first aim is to develop a 

measurement model to assist in the validation of the proposed model using Bayesian 

statistical approaches. Two types of Bayesian Networks models were developed to 

assess the students’ learning progression. The first model is a simple Bayesian Networks 

model with a single parameter. This model is commonly used in Bayesian Latent Class 

Analysis, which is usually applied for measuring learning progression (Jefrey Thomas 

Steedle, 2008; West et al., 2012). In the second model, a more complex Bayesian 

networks model with several parameters was developed to capture the progression 

levels in the proposed model of fraction learning progression (adapted from Rutstein, 

2012).  

The second aim is to perform a model evaluation of the Bayesian Networks 

models that are used to measure and validate the learning progression model.  Posterior 
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Predictive Model Checking (PPMC) and Entropy Statistics (Levy & Mislevy, 2016) were 

employed to perform the model validation. 

To achieve the two aims, this chapter is organized into two main sections. Section 

5.2 discusses the Bayesian Networks Model with a single latent variable (referred to as 

Model 1) followed by the Bayesian Networks Model with multiple latent variables 

(referred to as Model 2). Section 5.3 details the model evaluation of the Bayesian 

Networks using the PPMC and the Entropy Statistics. In summary, this chapter is 

designed to answer the following research question: “To what extent does the 

hypothetical model that we developed based on the distinction between conceptual and 

procedural knowledge capture the emergence of student competencies in fraction 

learning?” 

5.2 Bayesian Networks Modelling 

The general introduction of Bayesian inference in the context of educational assessment 

was presented in Chapter 2, which includes the review of the Bayesian Networks model. 

In this section, the specification of the development of Bayesian Networks model for 

measuring learning progressions is discussed. We propose two models, namely Model 1 

and Model 2 with the following details. 

5.2.1 Model 1: Bayesian Networks with a Single Latent Variable 𝜽 

The notation and the development of the Bayesian Networks Modelling in this study 

follow those of Bayesian networks as described in Levy and Mislevy (2016). Let 𝒙 = (𝑥௜௝) 

be the matrix data of the responses of n students on J items in which all the items have 

the same number of response categories, where 𝑥௜௝  is the response of the 𝑖௧௛-student 

on item j for i=1,.., n and j=1,…, J. Two sets of parameters 𝜽 and 𝝅 represent the latent 

variable of students’ level and the conditional probability of students correctly answer 

the items given that the students have the competencies at a particular level 

respectively. 

Model 1 is developed based on the assumption that the students’ level in the 

learning progression is represented by a single latent variable 𝜽 = (𝜃ଵ, … , 𝜃௡), where 𝜃௜  
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is the level of the 𝑖௧௛ student for 𝑖 = 1, … , 𝑛. In a simple 2DAG, Model 1 is represented 

in Figure 5.1. 

 

Figure 5.1 A simple DAG of a Latent Class Analysis (Adapted from Levy & Mislevy, 2016) 

The simple DAG in Figure 5.1 states that the probability of every observable 𝑥௜௝  (a 

response of the 𝑖௧௛-student on item j) is conditional on 𝜃௜  (the level of the 𝑖௧௛-student. 

This conditional probability can be expressed as 

 𝑝(𝑥௜௝|𝜃௜).  

In latent class analysis, suppose that every observable 𝑥௜௝  has 𝑘 possible values (from 𝑘 

=1,…, K, where K is the number of the response categories), then the sum of 

probabilities of the 𝑖௧௛-student for all possible 𝑘 values is 1 for a given level of 𝜃௜ = 𝑐, 

where c is the level of the 𝑖௧௛-student. This sum of probabilities can be expressed as 

follows 

 ∑ 𝑝(𝑥௜௝ = 𝑘|௄
௞ୀଵ 𝜃௜ = 𝑐) = 1. (5. 1) 

The relationship between the response of 𝑥௜௝  and the students’ category (level) in 

Equation (5.1) expresses the measurement model of the DAG. This measurement model 

can now be denoted as  

𝜋௖௝௞ = 𝑝(𝑥௜௝ = 𝑘|𝜃௜ = 𝑐), 

∑ 𝜋௖௝௞
௄
௞ୀଵ =1, where c=1,…,C. 

 

In our study, the proposed model of learning progression for both the conceptual 

and the procedural knowledge dimension has six levels (C=6) and two response 

 
2 A DAG is a directed acyclic graph, as discussed in Chapter 2, the Literature Review.  
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categories 𝑘 of the students’ answers: incorrect and correct answers (denoted as 𝑘=0,1 

respectively). Hence the conditional probability of 𝜋௖௝௞ for 𝑘=1 (a correct answer) is 

simplified as 𝜋௖௝, and for k=0 (an incorrect answer) is denoted as 1 − 𝜋௖௝. Thus 𝜋௖௝௞ in 

the above can now be simplified as 

𝜋௖௝ = 𝑝(𝑥௜௝ = 1|𝜃௜ = 𝑐), 

∑ 𝜋௖௝
௄
௞ୀଵ =1, where c=1,…,C. 

(5. 2) 

The conditional probability of 𝜋௖௝ is represented in Table 5.1. Table 5.1 is called a 

conditional probability table (CPT), which is one of the main important features in 

Bayesian networks computation (Almond et al., 2015; Levy & Mislevy, 2016). 

Table 5.1 Conditional probability 𝜋௖௝  table with two response categories and six classes of 𝜃௜ 

𝜃௜  

Response Category 

0 1 

1 1-𝜋ଵ௝  𝜋ଵ௝  

2 1-𝜋ଶ௝  𝜋ଶ௝  

3 1-𝜋ଷ௝  𝜋ଷ௝  

4 1-𝜋ସ௝  𝜋ସ௝  

5 1-𝜋ହ௝  𝜋ହ௝  

6 1-𝜋଺௝  𝜋଺௝  

Let 𝝅 = (𝝅𝟏, … , 𝝅𝑱), where 𝝅𝒋 is the collection of 𝜋௖௝  for c=1,…,C, and j=1,…,J. 

Moreover, let 𝒙𝒊 be the collection of the 𝑖௧௛-student’s answers on J items for the 𝑖௧௛-

student. The joint likelihood function of the observables 𝑥௜௝  conditional on both 𝜃௜  and 

𝜋௖௝  can be denoted as follows: 

𝑝(𝒙|𝜽, 𝝅) = ∏ 𝑝(𝒙𝒊|𝜃௜ , 𝝅) = ∏ ∏ 𝑝൫𝑥௜௝ห𝜃௜ = 𝑐, 𝝅𝒋൯
௃
௝ୀଵ

௡
௜ୀଵ

௡
௜ୀଵ ,  (5. 3) 
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where (𝑥௜௝|𝜃௜ = 𝑐, 𝝅𝒋) ~ Bernoulli(𝜋௖௝) for all possible dichotomous response values 

(incorrect and correct answers). 

As discussed in Chapter 2, Bayesian inference requires a prior specification of the 

parameters. In Model 1, there are two parameters which need prior specification, 𝜃௜  and 

𝜋௖௝  respectively. Because 𝜃௜  and 𝜋௖௝ are assumed to be independent, then the joint prior 

density function of 𝜃௜  and 𝜋௖௝ can be denoted as  

𝑝൫𝜃௜ , 𝜋௖௝൯ = 𝑝(𝜃௜)𝑝(𝜋௖௝).  

In our case, 𝜃௜  has six categories which are defined through a distribution with 

hyper-parameter 𝜸, where  𝜸 = (𝛾ଵ, … , 𝛾଺). Hence, the distribution of  𝜃௜  is assumed as 

categorical conditional on 𝜸, which is 

𝜃௜| 𝜸 ~ categorical (𝜸). (5. 4) 

As 𝜸 is unknown, the hyperparameter of 𝜸  should be specified using a conjugate 

prior density for categorical responses which have values of [0,1], such as a Dirichlet 

distribution (Levy & Mislevy, 2016). Hence, the distribution of 𝜸 can be denoted as 

𝜸~Dirichlet  (𝜶𝜸) where 𝜶𝜸 = (𝛼ଵ, … , 𝛼଺). (5. 5) 

The values of 𝜶𝜸 are set to 1s which give uninformative priors of the students’ 

level. Hence 𝜶𝜸 is denoted as 𝜶𝜸 = (1,1,1,1,1,1) which gives the same prior probability 

(about 16.67%) for all levels. These uninformative priors are chosen to allow that the 

estimates of students’ levels were produced more from the likelihood of the students’ 

responses (data) than the effects of the prior. 

Next, as the parameter of the measurement model 𝜋௖௝ is unknown, the prior 

distribution of 𝜋௖௝  should be specified. Because 𝜋௖௝  represents the probability of 

dichotomous possible outcomes of correct and incorrect response given the students’ 

class in 𝜃௜, then 𝜋௖௝ is specified to have the conjugate prior of beta distribution, as 

follows:  

𝜋௖௝~Betaቀ𝛼గ೎ೕ
, 𝛽గ೎ೕ

ቁ , 𝛼గ೎ೕ
> 0, 𝛽గ೎ೕ

> 0 . (5. 6) 
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Given that we have defined priors in (5.4), (5.5), and (5.6) and the joint likelihood 

functions in (5.3), the joint posterior distribution for Model 1 can now be defined 

follows: 

𝑝(𝜽, 𝜸, 𝝅|𝒙) ∝  𝑝(𝒙|𝜽, 𝜸, 𝝅)𝑝(𝜽, 𝜸, 𝝅)  

= 𝑝(𝒙|𝜽, 𝝅)𝑝(𝜽|𝜸)𝒑(𝜸)𝒑(𝝅), 

= ∏ ∏ 𝑝൫𝑥௜௝ห𝜃௜ , 𝝅𝒋൯𝑝
௃
௝ୀଵ

௡
௜ୀଵ (𝜃௜|𝜸)𝑝(𝜸) ∏ 𝑝(𝜋௖௝)஼

௖ୀଵ ,                                         (5. 7) 

where (𝑥௜௝|𝜃௜ = 𝑐, 𝝅𝒋)~Bernoulli (𝜋௖௝)  

𝜃௜| 𝜸 ~ categorical (𝜸), 

𝜸~Dirichlet  (𝜶𝜸) where 𝜶𝜸 = (𝛼ଵ, … , 𝛼଺), 

𝜋௖௝~Beta(𝛼௖௝, 𝛽௖௝) for 𝑖 = 1, … , n; j=1, … , J; c=1,…,C.  

The complete DAG representing the joint posterior density in Equation (5.7) is 

shown in Figure 5.2. 

 

Figure 5.2 The complete DAG of a Bayesian Network for the Latent Class Analysis in Model 1; adapted 
from Levy and Mislevy (2016). 

Having obtained the joint posterior distribution of the parameters (𝜽, 𝜸, 𝝅) for 

Model 1, as in Equation (5.6), the parameters will then be estimated using the MCMC 
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method discussed later in Section 5.2.3. However, as commonly found in statistical 

latent models, Model 1 is an unconstrained model which has an indeterminacy problem 

in labelling the class (Levy & Mislevy, 2016). Indeterminacy in LCA (Latent Class Analysis) 

refers to the problem of identifying which labels are for the class because there is no 

information obtained from the model to identify which class is called class 1, class 2 and 

so forth (Levy & Mislevy, 2016).  

One of the strategies to solve the indeterminacy in latent class model is by 

specifying the prior distribution for measurement model parameters 𝜋௖௝ (See Levy & 

Mislevy, 2016, p. 319). We set the prior distribution 𝜋௖௝  using an informative prior with 

the belief that students at a certain level c have a high probability (with a mode around 

80%) to get correct answers for the items at that level and below, and with the belief 

that the students have low probability (with a mode around 20%) to correctly answer 

the items at levels higher than level c. To translate these beliefs into our Bayesian model, 

we use the properties of Beta distribution by setting the items at a certain level (class) 

and below as follows: 

𝜋௖௝~Beta(80,20).  

Similarly for the items at a higher level than level c, we set the Beta distribution as 

follows 

𝜋௖௝~Beta(20,80). 

The density plots of Beta distribution for Beta (80,20) and Beta (20,80) are 

presented in Figures  5.3 and 5.4 respectively. 
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Figure 5.3 The density plot of Beta distribution Beta (80,20) 

 

Figure 5.4 The density plot of Beta distribution Beta (20,80) 

The distribution of Beta (𝛼, 𝛽) has a mean 𝛼/(𝛼 + 𝛽) and variance 𝛼𝛽/

[(𝛼 + 𝛽)ଶ(𝛼 + 𝛽 + 1)]. From Figures 5.3 and 5.4, it can be seen that the density 

function of Beta (80,20) is centered around its mean of 0.8, while the density function 

of Beta (20,80) is centered around its mean of 0.2. Both shapes of the densities are 

narrow, which indicate small variances around the means. These small variances reflect 

the strong belief of the researcher that students at the upper level should be able to 

answer the items at that level and below, but the students at the lower level are unlikely 

to answer the items at the upper level(s) correctly.  

By incorporating the Beta priors into the model, the Bayesian Latent Class Analysis 

performed in this study combines the researcher’s knowledge and the data through the 
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joint posterior distribution to group students to classes or levels by imposing the 

assumption of the hierarchical levels of the proposed model of fraction learning 

progression into the model. This is different with Classical Latent Class Analysis (a 

Frequentist approach) which groups students based on the data only (Levy & Mislevy, 

2016). 

5.2.2 Model 2: Bayesian Networks with Multiple Latent Variables 𝜽 

Given that the research setting on learning progression in this thesis assumes a 

hierarchy, Model 2 is extended from Model 1. Instead of modeling the levels of the 

proposed model of a learning progression in a single latent variable 𝜃௜  with discrete-

independent C classes/categories (as in Model 1), Model 2 constructs the learning 

progression with multiple latent variables 𝜽 = (𝜽𝟏, … , 𝜽𝑪), where 𝜽𝒄 is the collection of 

𝜃௖௜  for c=1,…,C and i=1,…,n.  

Model 2 assigns a latent variable 𝜃௜  for each level c (𝜃௖௜), in which 𝜃௜  in the upper 

level is conditional on the 𝜃௜  from the lower level. This conditional setting of 𝜃௜  is created 

to reflect the hierarchical levels of the knowledge/skills in the proposed model of 

learning progression for both conceptual and procedural knowledge dimensions. 

In a simple DAG representation, Model 2 is now presented in Figure 5.5 as follows. 

 

Figure 5.5 A simple DAG representation of a Bayesian Network for model 1 (Adapted from Rutstein, 2012) 

Figure 5.5 represents a simple DAG of Model 2 for both the conceptual and the 

procedural knowledge dimensions. It can be seen from this Figure that the arrows come 

from the lower level (𝜃௜) to the upper level (𝜃௜), reflecting the dependency between the 

proposed levels of the learning progression model. Consequently, we now detail the 

variables of Model 2, the observed and the latent variables respectively. 

The Latent Variables of Model 2 

The dependency between the levels is expressed through the conditional 

probabilities of the latent variables 𝜃௖௜ . Let 𝜃ଵ௜  be the parameter indicates the 
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knowledge at Level 1 as the parent of the other 𝜃’s. This is due to the setting in the 

model in Figure 5.5, which implies that students cannot proceed to the higher levels 

without having the knowledge at Level 1 (Levy & Mislevy, 2016).  

Suppose that 𝜃ଵ௜  has two z categories: 1 is the code for a student i at level 1 (has 

the knowledge of that level), and 0 is the code for the students who are not at that level 

(do not have knowledge of that level). Because 𝜃ଵ௜  has binary categories, it is then 

appropriate to assign 𝜃ଵ௜  with a Bernoulli distribution such that 

𝜃ଵ௜|𝛾ଵ~ Bernoulli (𝛾ଵ).                                            

Next, we assume that the students can be at Level 2 if they have the knowledge at 

Level 1. This dependency can be expressed as 𝜃ଶ௜  conditional on 𝜃ଵ௜. We denote this 

conditional distribution as 

(𝜃ଶ௜|𝜃ଵ௜ = z, 𝛾ଶ)~ Bernoulli (𝛾ଶ௭) for z=0,1, where 𝛾ଶ௭ = (𝛾ଶ଴, 𝛾ଶଵ).                                         

The notation 𝛾ଶ௭ expresses the probability of 𝜃ଶ௜  to have value 1 given 𝜃ଵ௜  has a value z 

(either 0 or 1). In other words, 𝛾ଶ௭ implies the probability of the students at Level 2 

conditional on the situation whether they have the knowledge at Level 1 or not. 

Likewise, we define the conditional distributions for the higher levels (Level 3 to 

Level 6) as follows: 

(𝜃ଷ௜|𝜃ଶ௜ = 𝑧, 𝛾ଷ௭)~ Bernoulli (𝛾ଷ௭) for z = 0,1,                        (5. 8)                

(𝜃ସ௜|𝜃ଷ௜ = 𝑧, 𝛾ସ௭)~ Bernoulli (𝛾ସ௭), for z = 0,1,  

(𝜃ହ௜|𝜃ସ௜ = 𝑧, 𝛾ହ௭)~ Bernoulli (𝛾ହ௭), for z = 0,1,  

(𝜃଺௜|𝜃ହ௜ = 𝑧, 𝛾଺௭)~ Bernoulli (𝛾଺௭), for z = 0,1. 

Similar to Rutstein (2012), based on the conditional distribution detailed above, 

we can identify the conditional probabilities table (CPT) of 𝜃. The CPT for level 1 only has 

two conditions that depend on the values of 𝜃ଵ itself, which are 0 and 1.  This situation 

is summarized in Table 5.2, below.  
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Table 5.2 The probability table of 𝜃ଵ௜  (level 1) in the learning progression model, where 𝛾ଵ is the probability 
of 𝜃ଵ௜=1 

𝜃ଵ௜ 𝑃(𝜃ଵ௜) 

0 1-𝛾ଵ 

1 𝛾ଵ 

For the next levels (Levels 2 to 6), the probability of 𝜃௖௜  is conditional on the values 

of 𝜃௖ିଵ,௜. To capture this conditional probability in our model, denote the probability of 

𝜃௖௜=1 conditional on 𝜃௖ିଵ,௜=1 as 𝛾௖ଵ, and the probability of 𝜃௖௜=1 conditional on 𝜃௖ିଵ,௜=0 

as 𝛾௖଴.  The CPT for Levels 2 to 6 are presented in Table 5.3, below. 

Table 5.3 The conditional probability table (CPT) of 𝜃௖௜  conditional on 𝜃௖ିଵ,௜ in the learning progression 
model, where 𝛾௖ଵ is the probability of 𝜃௖௜=1 given the value 𝜃௖ିଵ,௜=1, and 𝛾௖଴ is the probability of 𝜃௖௜=1 
given the value 𝜃௖ିଵ,௜=0 for c=2,…,6 

𝜃௖ିଵ,௜ 
𝑃(𝜃௖௜|𝜃௖ିଵ,௜) 

0 1 

0 1-𝛾ଶ଴ 𝛾ଶ଴ 

1 1- 𝛾ଶଵ 𝛾ଶଵ 

Let us denote 𝜸 = (𝛾ଵ, 𝛾ଶ଴, 𝛾ଶଵ, 𝛾ଷ଴, 𝛾ଷଵ, 𝛾ସ଴, 𝛾ସଵ, 𝛾ହ଴, 𝛾ହଵ, 𝛾଺଴, 𝛾଺ଵ). From Table 

5.3, it can be observed that the values of 𝜸 are not known. Hence, the conjugate prior 

of 𝜸 should be specified. Because 𝜃’s are the dichotomous variables, then each element 

of 𝜸 is assumed to have the conjugate prior of beta distribution, as follows (Levy & 

Mislevy, 2016):  

𝛾ଵ~Beta(𝛼ఊభ
,   𝛽ఊభ

)  

𝛾ଶ଴~ Beta(𝛼ఊమబ
, 𝛽ఊమబ

), 𝛾ଶଵ~ Beta(𝛼ఊమభ
, 𝛽ఊమభ

)  

𝛾ଷ଴~ Beta(𝛼ఊయబ
, 𝛽ఊయబ

), 𝛾ଷଵ~ Beta(𝛼ఊయభ
, 𝛽ఊయభ

)                      

𝛾ସ଴~ Beta(𝛼ఊరబ
, 𝛽ఊరబ

), 𝛾ସଵ~ Beta(𝛼ఊరభ
, 𝛽ఊరభ

)                      

𝛾ହ଴~ Beta(𝛼ఊఱబ
, 𝛽ఊఱబ

), 𝛾ହଵ~ Beta(𝛼ఊఱభ
, 𝛽ఊఱభ

)                      
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𝛾଺଴~ Beta(𝛼ఊలబ
, 𝛽ఊలబ

), 𝛾଺ଵ~ Beta(𝛼ఊలభ
, 𝛽ఊలభ

)      

In a similar way to Model 1, we use an informative prior in order to reflect the belief that 

the students who have knowledge at the lower level have a high chance to have the 

knowledge at the upper level. However, if they do not have the knowledge at the lower 

level, it is believed that they have little chance to master the knowledge at the upper 

level. To reflect this belief, we set a Beta (21,6) prior distribution (i.e. with the mean of 

21/27≈0.8) for the students who have the knowledge at the lower level and a Beta 

(6,21) prior distribution for the students who do not have the knowledge at the lower 

level (adopted from Levy & Mislevy, 2016). This Beta distribution is different from the 

Beta distribution in Model 1 because of the different parameters in Model 2. Beta 

distribution is the prior density of 𝜸 as in Equation (5.8), while the Beta distribution in 

Model 1 is the prior density for the conditional probability of the observable variables 

𝜋௖௝ , as presented in Equation (5.6).   

 Applying the conjugate prior of the Beta distribution to our learning progression 

model, we set the prior distribution of  𝛾ଵ for level 1 using the density Beta (21,6). 

However, for Level 2, because 𝜃ଶ௜  is conditional on 𝜃ଵ௜  which has two outcomes (0 

represent no knowledge at Level 1 and 1 represent has knowledge at level 1), the prior 

distribution of 𝛾ଶ௭ depends on the value of 𝜃ଵ௜. As discussed before, 𝛾ଶ଴ is the value of 

𝛾ଶ௭ when  𝜃ଵ௜=0, and 𝛾ଶଵ is the value of 𝛾ଶ௭ when  𝜃ଵ௜=1. To reflect the belief of the 

dependency of the knowledge discussed before, we set 𝛾ଶ଴~ Beta(6,21) and 𝛾ଶଵ~ 

Beta(21,6) (adapted from Levy & Mislevy, 2016).  

Similarly, the prior distributions for 𝜸 at levels 3 to 6 are assigned as 

𝛾ଷ଴~ Beta(6,21), 𝛾ଷଵ~ Beta(21,6),                      

𝛾ସ଴~ Beta(6,21), 𝛾ସଵ~ Beta(21,6),                      

𝛾ହ଴~ Beta(6,21), 𝛾ହଵ~ Beta(21,6),                      

𝛾଺଴~ Beta(6,21), 𝛾଺ଵ~ Beta(21,6).                      

Figures 5.6-5.7 are the density plots of the Beta distribution, Beta (6, 21) and Beta 

(21,6) respectively. From the plots we can see that both distributions are centered 
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around 0.2 for Beta (6,21) and 0.8 for Beta (21,6). The range of the distribution is quite 

wide,  spreading from 0 to 0.4 for Beta (6,21) and from 0.6 to 1 for Beta (21,6). This 

indicates that both distributions have moderate variances. These moderate variances 

are suitable within the context of our study, as they can accommodate the response 

uncertainties of students at a certain level, who have the knowledge at the lower level 

(Beta (21,6)). Similarly, they can also accommodate the response variances of students 

who do not have knowledge at the lower level (Beta (6,21)). A sensitivity analysis (which 

is beyond the scope of this study) needs to be performed to investigate further the 

effects of choosing different prior densities for the 𝛾 parameters, and for the other prior 

densities used in this thesis. 

 

Figure 5.6 plot of Beta distribution Beta (6,21) for prior 𝛾s 
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Figure 5.7 The density plot of Beta distribution Beta (21,6) for prior 𝛾s 

Having completed the latent variable for Model 2, we now explain the observed 

variables.  

The Conditional Probability of the Observed Variables of Model 2 

Suppose that we have J items which are distributed based on the levels as follows: 

Items at Level 1: Items 1,…,jL1 

Items at Level 2: Items jL1+1,…, jL2 

Items at Level 3: Items jL2+1,…, jL3 

Items at Level 4: Items jL3+1,…, jL4 

Items at Level 5: Items jL4+1,…, jL5 

Items at Level 3: Items jL5+1,…,J 

As discussed in Model 1, for each item we have two response categories which are a 

correct response (k=1) and an incorrect response (k=0). 

The simple DAG in Figure 5.5 shows that the students’ responses on items at every 

level (observed variables 𝑥௜௝) are conditional on the knowledge at that level (latent 

variable 𝜃௖௜). In Model 2, this conditional probability is denoted as follows: 

𝜋௖௝௭௞ = 𝑝(𝑥௜௝ = 𝑘|𝜃௖௜ = 𝑧), k= 0,1 z = 0,1.  
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As we only have two response categories (K=2), then 𝜋௖௝௭௞ can be simplified as follows:  

𝜋௖௝௭௞ = 𝜋௖௝௭ଵ = 𝜋௖௝௭ = 𝑝(𝑥௜௝ = 1|𝜃௖௜ = 𝑧), z = 0,1. (5. 9) 

The z values in Equation (5.9) are used to encode the situation that students have the 

knowledge at a certain level (z= 1), or do not have the knowledge at that level (z=0). The 

conditional probability of 𝜋௖௝௭ is represented in Table 5.8, below. 

Suppose that 𝝅𝒄𝒋 be the collection of 𝜋௖௝௭ for c=1,…,C, j=1,…,J and z = 0.1. Because 

the observed variables 𝑥௜௝ have dichotomous outcomes, we set the distribution of 𝑥௜௝  as 

a Bernoulli distribution, expressed as  

(𝑥௜௝|𝜃௖௜ = 𝑧, 𝝅𝒄𝒋) ~ Bernoulli(𝜋௖௝௭).  

As the values of 𝜋௖௝௭ are not known, 𝜋௖௝௭ is generated through a Beta distribution.  

Therefore, the prior distribution for the measurement model for each level is denoted 

as follows 

Level 1:  𝜋ଵ௝଴~Beta(𝛼గభೕబ
, 𝛽గభೕబ

), 𝜋ଵ௝ଵ~Beta(𝛼గభೕభ
,  𝛽గభೕభ

) 

Level 2:  𝜋ଶ௝଴~Beta(𝛼గమೕబ
, 𝛽గమೕబ

), 𝜋ଶ௝ଵ~Beta(𝛼గమೕభ
,  𝛽గమೕభ

) 

Level 3:  𝜋ଷ௝଴~Beta(𝛼గయೕబ
, 𝛽గయೕబ

), 𝜋ଷ௝ଵ~Beta(𝛼గయೕభ
,  𝛽గయೕభ

) 

Level 4:  𝜋ସ௝଴~Beta(𝛼గరೕబ
, 𝛽గరೕబ

), 𝜋ସ௝ଵ~Beta(𝛼గరೕభ
,  𝛽గరೕభ

) 

Level 5:  𝜋ହ௝଴~Beta(𝛼గఱೕబ
, 𝛽గఱೕబ

), 𝜋ହ௝ଵ~Beta(𝛼గఱೕభ
,  𝛽గఱೕభ

) 

Level 6:  𝜋଺௝଴~Beta(𝛼గలೕబ
, 𝛽గలೕబ

), 𝜋଺௝ଵ~Beta(𝛼గలೕభ
,  𝛽గలೕభ

) 

  

Table 5.4 Conditional Probability Table for 𝜋௖௝௭  of (5.8) for 𝜃௖௜=0,1 and z=0,1  

Level 𝜃௖௜ = 𝑧 Response Category 
(k) 

(𝑥௜௝ = 𝑘|𝜃௖௜ = 𝑧) 

Level 1 0 0 1-𝜋ଵ௝଴ 
1 𝜋ଵ௝଴ 

1 0 1-𝜋ଵ௝ଵ 
1 𝜋ଵ௝ଵ 

Level 2 0 0 1-𝜋ଶ௝଴ 
1 𝜋ଶ௝଴ 

1 0 1-𝜋ଶ௝ଵ 
1 𝜋ଶ௝ଵ 

Level 3 0 0 1-𝜋ଷ௝଴ 
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1 𝜋ଷ௝଴ 
1 0 1-𝜋ଷ௝ଵ 

1 𝜋ଷ௝ଵ 
Level 4 0 0 1-𝜋ସ௝଴ 

1 𝜋ସ௝଴ 
1 0 1-𝜋ସ௝ଵ 

1 𝜋ସ௝ଵ 
Level 5 0 0 1-𝜋ହ௝଴ 

1 𝜋ହ௝଴ 
1 0 1-𝜋ହ௝ଵ 

1 𝜋ହ௝ଵ 
Level 6 0 0 1-𝜋଺௝଴ 

1 𝜋଺௝଴ 
1 0 1-𝜋଺௝ଵ 

1 𝜋଺௝ଵ 

 The prior density of 𝜋௖௝௭ enables us to express our belief about the students’ 

responses, given that they have or have not the required knowledge. The conditional 

probability 𝜋௖௝଴ presented in Table 5.4 represents the probability of getting a correct 

answer for item j where 𝜃௖௜  is 0 (no knowledge at that level), while 𝜋௖௝ଵ states the 

probability of getting a correct answer for item j where 𝜃௖௜  is 1 (that is, the students have 

knowledge at that level). Hence, to reflect our belief that students who have the 

knowledge at that level will be highly likely to answer the items at that level correctly, 

we set the probability at 80% for 𝜋௖௝ଵ, as follows 

𝜋௖௝ଵ~Beta(80,20). 

In contrast, to reflect our belief that students who do not have the knowledge at 

a certain level are unlikely to answer the items at that level correctly, we set the 

probability at 20% for 𝜋௖௝଴, as follows 

𝜋௖௝଴~Beta(20,80). 

Having completed both the latent and observed variables, then we detail the joint 

posterior distribution of Model 2. 

The Joint Posterior Distribution of Model 2 

The following is the joint posterior distribution for Model 2: 
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𝑝(𝜽, 𝜸, 𝝅|𝒙)∞ 𝑝(𝒙|𝜽, 𝜸, 𝝅)𝑝(𝜽, 𝜸, 𝝅)                                                

 = 𝑝(𝒙|𝜽, 𝝅)𝑝(𝜽|𝜸)𝑝(𝜸)𝑝(𝝅) 

                 = ∏ ∏ ∏ 𝑝൫𝑥௜௝ห𝜃௖௜ , 𝝅𝒄𝒋൯𝑝
௃
௝ୀଵ

௡
௜ୀଵ (𝜃௖௜|𝜸)𝑝(𝜸)଺

௖ୀଵ ∏ 𝑝൫𝜋௖௝௭൯ଵ
௭ୀ଴                    

where, (𝑥௜௝|𝜃௖௜ = 𝑧, 𝝅𝒄𝒋) ~ Bernoulli(𝜋௖௝௭) for z=0,1; i=1,…,n ; j=1, … , j ; and c=1,…,6.           

𝜃ଵ|𝛾ଵ~ Bernoulli (𝛾ଵ),                                          

(𝜃ଶ௜|𝜃ଵ௜ = z, 𝛾ଶ௭)~ Bernoulli (𝛾ଶ௭),  

(𝜃ଷ௜|𝜃ଶ௜ = z, 𝛾ଷ௭)~ Bernoulli (𝛾ଷ௭),  

(𝜃ସ௜|𝜃ଷ௜ = 𝑧, 𝛾ସ௭)~ Bernoulli (𝛾ସ௭),  

(𝜃ହ௜|(𝜃ସ௜ = 𝑧, 𝛾ହ௭)~ Bernoulli (𝛾ହ௭),        

(𝜃଺௜|𝜃ହ௜ = 𝑧, 𝛾଺௭)~ Bernoulli (𝛾଺௭). 

𝛾ଵ~Beta(𝛼ఊభ
,   𝛽ఊభ

)  

𝛾ଶ଴~ Beta(𝛼ఊమబ
, 𝛽ఊమబ

), 𝛾ଶଵ~ Beta(𝛼ఊమభ
, 𝛽ఊమభ

)  

𝛾ଷ଴~ Beta(𝛼ఊయబ
, 𝛽ఊయబ

), 𝛾ଷଵ~ Beta(𝛼ఊయభ
, 𝛽ఊయభ

)                      

𝛾ସ଴~ Beta(𝛼ఊరబ
, 𝛽ఊరబ

), 𝛾ସଵ~ Beta(𝛼ఊరభ
, 𝛽ఊరభ

)                      

𝛾ହ଴~ Beta(𝛼ఊఱబ
, 𝛽ఊఱబ

), 𝛾ହଵ~ Beta(𝛼ఊఱభ
, 𝛽ఊఱభ

)                      

𝛾଺଴~ Beta(𝛼ఊలబ
, 𝛽ఊలబ

), 𝛾଺ଵ~ Beta(𝛼ఊలభ
, 𝛽ఊలభ

)          

𝜋ଵ௝଴~Beta(𝛼గభೕబ
, 𝛽గభೕబ

), 𝜋ଵ௝ଵ~Beta(𝛼గభೕభ
,  𝛽గభೕభ

) 

𝜋ଶ௝଴~Beta(𝛼గమೕబ
, 𝛽గమೕబ

), 𝜋ଶ௝ଵ~Beta(𝛼గమೕభ
,  𝛽గమೕభ

) 

𝜋ଷ௝଴~Beta(𝛼గయೕబ
, 𝛽గయೕబ

), 𝜋ଷ௝ଵ~Beta(𝛼గయೕభ
,  𝛽గయೕభ

) 

𝜋ସ௝଴~Beta(𝛼గరೕబ
, 𝛽గరೕబ

), 𝜋ସ௝ଵ~Beta(𝛼గరೕభ
,  𝛽గరೕభ

) 

𝜋ହ௝଴~Beta(𝛼గఱೕబ
, 𝛽గఱೕబ

), 𝜋ହ௝ଵ~Beta(𝛼గఱೕభ
,  𝛽గఱೕభ

) 

𝜋଺௝଴~Beta(𝛼గలೕబ
, 𝛽గలೕబ

), 𝜋଺௝ଵ~Beta(𝛼గలೕభ
,  𝛽గలೕభ

) 

The complete DAG for Model 2 is now presented in Figure 5.8 below. 
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Figure 5.8 The complete DAG for Model 2 of the Bayesian Networks Modelling for measuring learning progression. 
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5.2.3 Parameter estimation using MCMC 

5.2.3.1 MCMC Estimation Using the Gibbs Sampler Method 

Within the Bayesian Paradigm, the information of interests regarding the parameters in 

Models 1 and 2 is contained within its joint posterior distributions. Markov Chain Monte 

Carlo (MCMC) algorithms approximate the joint posterior distribution of Models 1 and 

2. 

The term Markov Chain refers to, “random variables that are generated 

sequentially over time” (Cowles, 2013, p. 123), while Monte Carlo refers to, “the process 

[that] will involve simulating (sampling, generating, drawing) values from distributions” 

(Levy & Mislevy, 2016, p. 94). To perform MCMC on our data, we use the Gibbs Sampler 

algorithm, which is the underlying parameter estimation method of BUGS (Bayesian 

Estimation using Gibbs Sampler) Software.  

Briefly, the following are the general steps in MCMC algorithms using Gibbs 

Sampler with t iterations (t=1, …, T, where T be the total number of iterations) (See 

Cowles, 2013; Levy & Mislevy, 2016). Suppose we have R parameters of 𝜃 denoted as 

𝜃ଵ, … , 𝜃ோ and matrix data X. 

Step 1 

Generate the initial values for the parameters, which are 𝜃ଵ
(଴)

, … , 𝜃ோ
(଴), either 

deterministically or randomly. 

Step 2 

Draw values for each iteration t (t=1,…,T where T is the maximum number of iterations) 

from the full conditional probability, given the most current values of the other 

parameters 𝜃. Hence for each iteration t, we draw the values as follows: 

𝜃ଵ
(௧) from 𝑝ቀ𝜃ଵቚ𝜃ଶ

(௧ିଵ)
, 𝜃ଷ

(௧ିଵ)
… , 𝜃ோ

(௧ିଵ)
, 𝐗 ቁ                               

𝜃ଶ
(௧) from 𝑝ቀ𝜃ଶቚ𝜃ଵ

(௧)
, 𝜃ଷ

(௧ିଵ)
, … , 𝜃ோ

(௧ିଵ)
, 𝐗 ቁ 

𝜃ଷ
(௧) from 𝑝ቀ𝜃ଷቚ𝜃ଵ

(௧)
, 𝜃ଶ

(௧)
, 𝜃ଷ

(௧ିଵ)
, … , 𝜃ோ

(௧ିଵ)
, 𝐗 ቁ 

. 

. 
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𝜃ோ
(௧) from 𝑝ቀ𝜃ோቚ𝜃ଵ

(௧)
, 𝜃ଶ

(௧)
, … , 𝜃ோିଵ

(௧)
, 𝐗 ቁ 

Step 3 

Repeat Step 2 until the MCMC chains converge jointly to the joint posterior distribution. 

5.2.3.2 MCMC Convergence Check 

An MCMC convergence check is an important part of MCMC estimation (Levy & Mislevy, 

2016). Although theoretically MCMC estimation is converged to a target distribution 

under some conditions, no one knows “when” the estimation is converged (Levy & 

Mislevy, 2016). According to Gelman et al. (2014), if the MCMC iterations are not run 

long enough, then the simulated values may not represent the target distribution of the 

estimation. One of prominent methods to check MCMC convergence is the Geweke test, 

proposed by Geweke (1992). The range of values in the Geweke test run from +2 to -2, 

showing a 95% confidence interval for the estimation to be converged, while the values 

out of the range indicate that the estimation has not yet converged. 

Another tool to check that MCMC iterations have already achieved good estimates 

of the probabilities of the model is using the autocorrelation of the draws generated 

from the iterative simulation in MCMC estimation. Gelman et al. (2014) highlighted that 

estimations based on correlated draws are less accurate when compared with 

estimations using independent draws. To check this, the autocorrelation function on 

various lags of iterations can be used to detect the dependency between the draws (Levy 

& Mislevy, 2016). The autocorrelation at lag 0 is always 1 because the draw is correlated 

with itself. The autocorrelation is expected always to drop close to zero by increasing 

the lags. The autocorrelations which are close to zero indicate that the draws from the 

MCMC simulations are independent.  

5.2.3.3 Software  

There are three software packages required to perform the parameter estimation of 

Models 1 and 2, which are specified in the previous sections. These three packages are 

briefly explained below. 
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5.2.3.3.1 WinBUGS 

The WinBUGS software is a commercial Bayesian estimation software run under 

Windows system. As it reveals through its name, this software mainly uses the Gibbs 

Sampler method to perform MCMC estimation (Lunn, Thomas, Best, & Spiegelhalter, 

2000).  

The WinBUGS software is used to perform an MCMC estimation to estimate the 

parameters (𝜋, 𝛾) of Models 1 and 2. The estimates of 𝜋 are then used to perform item 

analysis, as discussed in the following chapter. Moreover, the estimates of the 

parameters (𝜋, 𝛾) are used as prior inputs for the Netica Software to estimate the 

students’ levels (𝜃𝒊) in the learning progression model. 

 Table 5.5 shows the list of the parameters estimated by the WinBUGS software. 

These parameters are estimated for 516 students: 21 items for the conceptual 

dimension and 12 items for the procedural dimension.  

Due to the total number of parameters in the models and a large number of 

iterations for MCMC, WinBUGS was not able to calculate the posterior distributions for  

θs. Therefore, we also use Netica. 

5.2.3.3.2  Netica 

Netica is a commercial Bayesian Networks Software developed by Norsys Sotware Corp. 

(Application, 2014). Netica is used to estimate the posterior probabilities for students to 

be at a certain level. The results from Netica estimation are used to perform the 

students’ level analysis in Chapter 6. 

The process of assigning students at the levels of the proposed learning 

progression model is implemented by entering each individual student’s responses into 

the Networks of Bayesian Modelling created in Netica. The Netica software updated the 

prior probability of students’ levels to get the posterior probability of the individual 

student’s levels. Netica performs belief propagation using a Junction Tree Algorithm (see 

Neopolitan, 2004) to update the prior probabilities of the students’ levels. The results 

generated from Netica are the posterior probabilities of (𝜽|𝜸, 𝝅, 𝒙) for all students (516 

students) for both Model 1 and Model 2. 
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5.2.3.3.3 R Software 

The R software (Team, 2014) is an open source software for statistical computing and 

graphics analyses. This software is used to estimate the model fit/evaluation of Bayesian 

Networks for Model 1 and Model 2, as discussed in the following section. 

5.3 Model Evaluation of the Bayesian Networks Model 

We performed two methods to evaluate the models in this study, by comparing the 

observed data and the simulated/predicted data generated by the model. These 

methods are Posterior Predictive Model Checking (PPMC) and Entropy Statistics.  
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Table 5.5 The list of  parameters estimated by the WinBUGS software 

Model Dimension Parameter Number of 

Parameters 

Model 1 Conceptual 

(6 levels, 21 

items) 

𝛾 = (𝛾ଵ, 𝛾ଶ, 𝛾ଷ, 𝛾ସ, 𝛾ହ, 𝛾଺)                                                  6 

𝜋௖௝ = (𝜋11, 𝜋12, 𝜋13, 𝜋14, 𝜋15, 𝜋16, 𝜋17, 𝜋18, 𝜋19, 𝜋110, 𝜋111, 𝜋112, 𝜋113, 𝜋114, 𝜋115, 𝜋116, 𝜋117, 𝜋118, 𝜋119, 𝜋120, 𝜋121, 

         𝜋ଶଵ, 𝜋ଶଶ, 𝜋ଶଷ, 𝜋ଶସ, 𝜋ଶହ, 𝜋ଶ଺, 𝜋ଶ଻, 𝜋ଶ଼, 𝜋ଶଽ, 𝜋ଶଵ଴, 𝜋ଶଵଵ, 𝜋ଶଵଶ, 𝜋ଶଵଷ, 𝜋ଶଵସ, 𝜋ଶଵହ, 𝜋ଶଵ଺, 𝜋ଶଵ଻, 𝜋ଶଵ଼, 𝜋ଶଵଽ, 𝜋ଶଶ଴, 𝜋ଶଶଵ, 

         𝜋ଷଵ, 𝜋ଷଶ, 𝜋ଷଷ, 𝜋ଷସ, 𝜋ଷହ, 𝜋ଷ଺, 𝜋ଷ଻, 𝜋ଷ଼, 𝜋ଷଽ, 𝜋ଷଵ଴, 𝜋ଷଵଵ, 𝜋ଷଵଶ, 𝜋ଷଵଷ, 𝜋ଷଵସ, 𝜋ଷଵହ, 𝜋ଷଵ଺, 𝜋ଷଵ଻, 𝜋ଷଵ଼, 𝜋ଷଵଽ, 𝜋ଷଶ଴, 𝜋ଷଶଵ, 

         𝜋ସଵ, 𝜋ସଶ, 𝜋ସଷ, 𝜋ସସ, 𝜋ସହ, 𝜋ସ଺, 𝜋ସ଻, 𝜋ସ଼, 𝜋ସଽ, 𝜋ସଵ଴, 𝜋ସଵଵ, 𝜋ସଵଶ, 𝜋ସଵଷ, 𝜋ସଵସ, 𝜋ସଵହ, 𝜋ସଵ଺, 𝜋ସଵ଻, 𝜋ସଵ଼, 𝜋ସଵଽ, 𝜋ସଶ଴, 𝜋ସଶଵ, 

         𝜋ହଵ, 𝜋ହଶ, 𝜋ହଷ, 𝜋ହସ, 𝜋ହହ, 𝜋ହ଺, 𝜋ହ଻, 𝜋ହ଼, 𝜋ହଽ, 𝜋ହଵ଴, 𝜋ହଵଵ, 𝜋ହଵଶ, 𝜋ହଵଷ, 𝜋ହଵସ, 𝜋ହଵହ, 𝜋ହଵ଺, 𝜋ହଵ଻, 𝜋ହଵ଼, 𝜋ହଵଽ, 𝜋ହଶ଴, 𝜋ହଶଵ, 

         𝜋଺ଵ, 𝜋଺ଶ, 𝜋଺ଷ, 𝜋଺ସ, 𝜋଺ହ, 𝜋଺଺, 𝜋଺଻, 𝜋଺଼, 𝜋଺ଽ, 𝜋଺ଵ଴, 𝜋଺ଵଵ, 𝜋଺ଵଶ, 𝜋଺ଵଷ, 𝜋଺ଵସ, 𝜋଺ଵହ, 𝜋଺ଵ଺, 𝜋଺ଵ଻, 𝜋଺ଵ଼, 𝜋଺ଵଽ, 𝜋଺ଶ଴, 𝜋଺ଶଵ) 
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Procedural 

(6 levels, 12 

items) 

𝛾 = (𝛾ଵ, 𝛾ଶ, 𝛾ଷ, 𝛾ସ, 𝛾ହ, 𝛾଺)                                                  6 

𝜋௖௝ = (𝜋11, 𝜋12, 𝜋13, 𝜋14, 𝜋15, 𝜋16, 𝜋17, 𝜋18, 𝜋19, 𝜋110, 𝜋111, 𝜋112, 

         𝜋ଶଵ, 𝜋ଶଶ, 𝜋ଶଷ, 𝜋ଶସ, 𝜋ଶହ, 𝜋ଶ଺, 𝜋ଶ଻, 𝜋ଶ଼, 𝜋ଶଽ, 𝜋ଶଵ଴, 𝜋ଶଵଵ, 𝜋ଶଵଶ, 

         𝜋ଷଵ, 𝜋ଷଶ, 𝜋ଷଷ, 𝜋ଷସ, 𝜋ଷହ, 𝜋ଷ଺, 𝜋ଷ଻, 𝜋ଷ଼, 𝜋ଷଽ, 𝜋ଷଵ଴, 𝜋ଷଵଵ, 𝜋ଷଵଶ, 

         𝜋ସଵ, 𝜋ସଶ, 𝜋ସଷ, 𝜋ସସ, 𝜋ସହ, 𝜋ସ଺, 𝜋ସ଻, 𝜋ସ଼, 𝜋ସଽ, 𝜋ସଵ଴, 𝜋ସଵଵ, 𝜋ସଵଶ, 

         𝜋ହଵ, 𝜋ହଶ, 𝜋ହଷ, 𝜋ହସ, 𝜋ହହ, 𝜋ହ଺, 𝜋ହ଻, 𝜋ହ଼, 𝜋ହଽ, 𝜋ହଵ଴, 𝜋ହଵଵ, 𝜋ହଵଶ, 

         𝜋଺ଵ, 𝜋଺ଶ, 𝜋଺ଷ, 𝜋଺ସ, 𝜋଺ହ, 𝜋଺଺, 𝜋଺଻, 𝜋଺଼, 𝜋଺ଽ, 𝜋଺ଵ଴, 𝜋଺ଵଵ, 𝜋଺ଵଶ) 

 

72 

Model 2 Conceptual 

(6 levels, 21 

items) 

𝛾 = (𝛾ଵ, 𝛾ଶ଴, 𝛾ଶଵ, 𝛾ଷ଴, 𝛾ଷଵ, 𝛾ସ଴, 𝛾ସଵ, 𝛾ହ଴, 𝛾ହଵ, 𝛾଺଴, 𝛾଺ଵ)                                                  11 

𝜋௖௝௭ = (𝜋110, 𝜋120, 𝜋130, 𝜋140, 𝜋250, 𝜋260, 𝜋270, 𝜋280, 𝜋390, 𝜋3100, 𝜋3110, 𝜋3120, 𝜋3130, 𝜋3140, 𝜋3150, 𝜋4160, 𝜋4170,𝜋5180,𝜋5190, 𝜋6200,𝜋6210, 

              𝜋ଵଵଵ, 𝜋ଵଶଵ, 𝜋ଵଷଵ, 𝜋ଵସଵ, 𝜋ଶହଵ, 𝜋ଶ଺ଵ, 𝜋ଶ଻ଵ, 𝜋ଶ଼ଵ, 𝜋ଷଽଵ, 𝜋ଷଵ଴ଵ, 𝜋ଷଵଵଵ, 𝜋ଷଵଶଵ, 𝜋ଷଵଷଵ, 𝜋ଷଵସଵ, 𝜋ଷଵହଵ, 𝜋ସଵ଺ଵ, 𝜋ସଵ଻ଵ,𝜋ହଵ଼ଵ,𝜋ହଵଽଵ, 𝜋଺ଶ଴ଵ,𝜋଺ଶଵଵ, 

42 
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Procedural 

(6 levels, 12 

items) 

𝛾 = (𝛾ଵ, 𝛾ଶ଴, 𝛾ଶଵ, 𝛾ଷ଴, 𝛾ଷଵ, 𝛾ସ଴, 𝛾ସଵ, 𝛾ହ଴, 𝛾ହଵ, 𝛾଺଴, 𝛾଺ଵ)                                                  11 

𝜋௖௝௭ = (𝜋110, 𝜋120, 𝜋130, 𝜋140, 𝜋250, 𝜋260, 𝜋270, 𝜋280, 𝜋390, 𝜋3100, 𝜋3110, 𝜋3120, 

               𝜋ଵଵଵ, 𝜋ଵଶଵ, 𝜋ଵଷଵ, 𝜋ଵସଵ, 𝜋ଶହଵ, 𝜋ଶ଺ଵ, 𝜋ଶ଻ଵ, 𝜋ଶ଼ଵ, 𝜋ଷଽଵ, 𝜋ଷଵ଴ଵ, 𝜋ଷଵଵଵ, 𝜋ଷଵଶଵ) 

 

24 
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5.3.1 Posterior Predictive Model Checking (PPMC) 

PPMC is a prominent model evaluation for Bayesian modelling, which uses discrepancy 

measures to evaluate how the observed data differ from the data generated from the 

model (predicted data) (Sinharay, 2004). Levy and Mislevy (2016) described the 

discrepancy measures in PPMC in two categories. First, the discrepancy measures based 

on the observed data denoted as 𝐷 (𝐱; 𝛉) where 𝐱 = 𝑥௜௝  and 𝛉 = 𝜃𝒊. Second, the 

discrepancy measures based on the posterior predicted data denoted as 

𝐷 (𝐱௣௢௦௧௣௥௘ௗ; 𝛉), where 𝐱௣௢௦௧௣௥௘ௗ are the predicted values of 𝑥௜௝.  

If we have R number of simulations, let us define the collection of discrepancy 

measures based on the data, as follows 

𝐷 (𝐱; 𝛉(𝟏), 𝐱; 𝛉(𝟐), … , 𝐱; 𝛉(𝑹)) ,   

and the discrepancy measures based on the predictive values, as follows 

𝐷 ൫𝐱௣௢௦௧௣௥௘ௗ(ଵ); 𝛉(𝟏), 𝐱௣௢௦௧௣௥௘ௗ(ଶ); 𝛉(ଶ), . . ., 𝐱௣௢௦௧௣௥௘ௗ(ோ); 𝛉(ோ) ൯.   

The discrepancy measure D is calculated using the following formula  

𝐷 = 𝑉௜௝൫𝑥௜௝ , 𝜃௜ , 𝜋௝൯ =
(௫೔ೕି௉೔ೕ)మ

௉೔ೕ(ଵି௉೔ೕ)
 ,        (5. 10) 

where i is the index for the ith-student, j is the index for the jth-item, 𝑥௜௝  is the students’ 

responses, and Pij is the probability of getting a correct answer for the student at a 

certain level, i.e. 

  𝑃௜௝ = 𝐸(𝑥௜௝|𝜃௜ , 𝝅௝).         (5. 11) 

According to Yan, Mislevy, and Almond (2003), the discrepancy measure in 

Equation (5.10) expresses root mean square error (RMSE). The RMSE for the student fit 

can be calculated over all the items, whereas the RMSE for the item fit can be calculated 

over all the students. A lower discrepancy measure indicates a better fit. However, to 

discover to what degree this discrepancy measures indicates the model fit, we need to 

compare the discrepancy between the observed data and the posterior predictive values 

(Yan et al., 2003).  
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The posterior predictive p-values (PPP-values) are the statistics used to express 

the degree of the model fit based on the discrepancy measures (Sinharay, 2004). The 

PPP-values are estimated by comparing the discrepancy measures from the observed 

data and the discrepancy measures from the posterior predictive data, which is denoted 

as 

PPP-value = 𝑝ቀ𝐷 (𝐱௣௢௦௧௣௥௘ௗ; 𝛉 ) ≥  𝐷 (𝐱; 𝛉)ቁ.    (5. 12) 

A good fit is indicated by the PPP-values that are close to 0.5 (Gelman et al., 2014). 

A value of 0.5 means that the discrepancy measures based on the data are in the middle 

of the discrepancy measures calculated from the posterior predictive distribution. This 

implies that the data are consistent with the posterior predictive distribution. In 

contrast, the PPP-values that are close to 0 or 1 indicate that the discrepancy measures 

based on the data are on the lower tail or upper tail of the discrepancy measures based 

on the posterior predictive distribution, which suggests an inadequate fit (Levy, 2006). 

Gelman et al. (2014) highlighted that PPP-values between 0.05 and 0.95 are in a 

“reasonable range” for an adequate fit (p.151). 

5.3.2 Entropy Statistic 

The entropy statistic is used to measure the model improvement between the two 

models (Model 1 and Model 2). This method was originally proposed by Gilula and 

Haberman (2001). In applying the entropy to the Bayesian Networks, Levy and Mislevy 

(2016) described the formula to calculate the entropy based on the data (matrix) 𝐱 for a 

particular model 𝑀 (either Model 1 or Model 2) as follows: 

𝐸𝑛𝑡(𝑀) = − ∑ 𝑝(𝐱𝐢) log൫𝑝(𝐱𝐢)൯௡
௜ୀଵ .  (5. 13) 

where 𝐱𝐢 = (𝑥௜ଵ, … , 𝑥௜௃) and 𝑝(𝐱𝐢) is the probability of 𝐱𝐢 specified in the model 𝑀.  

Suppose we aim to compare two models (Model 1 and Model 2). Using the formula 

in Equation (5.13), we calculate the entropies of Model 1 (𝐸𝑛𝑡(𝑀1)) and Model 2 

(𝐸𝑛𝑡(𝑀2)). The positive values of the difference between entropy Model 1 and entropy 

Model 2 (𝐸𝑛𝑡(𝑀1) − 𝐸𝑛𝑡(𝑀2)) suggest that Model 2 has a better prediction of a new 

observation compared with Model 1 (Levy & Mislevy, 2016). 
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 The proportional improvement of Model 2 from Model 1 can be estimated using 

the following formula 

𝑑𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
𝐸𝑛𝑡(𝑀1)ି𝐸𝑛𝑡(𝑀2)

𝐸𝑛𝑡(𝑀1)
 .  (5. 14) 

The positive values of 𝑑𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (between 0 and 1) indicate the proportion of 

improvement created by Model 2 relative to Model 1, suggesting that Model 2 is better 

than Model 1 in terms of model prediction. 

5.4 Summary of the Chapter 

This chapter has discussed the specifications of the Bayesian Networks Models, which 

are used to measure students’ fraction learning progression on both conceptual and 

procedural knowledge dimensions (in the next chapter). Two types of Bayesian 

Networks models are developed in this chapter: Model 1 and Model 2. Model 1 is 

developed based on an assumption that the levels of the learning progressions are 

presented using independent categories of a single latent variable.  In contrast, Model 

2 is developed based on an assumption that the levels of the learning progressions are 

presented by multiple latent variables. Model 2 is better in terms of modelling the 

hierarchical dependency between the levels by setting up the conditional probabilities 

between the latent variables.  

In the next chapter, these two Bayesian Network Models are used to measure 

students’ levels in the learning progression model and to locate the items to the 

appropriate levels. Furthermore, an empirical comparison of Model 1 and Model 2 is 

performed in the context of validating the learning progression models, based on 516 

students’ responses on a fraction test.  
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CHAPTER 6 : BAYESIAN NETWORKS ANALYSES 

6.1 Introduction 

The main objective of the present chapter is to describe the empirical validation of the 

hypothesized model of fraction learning progression which was developed in Chapter 3 

and revised in Chapter 4, based on the results of the cognitive interview. The validation 

was conducted on students’ responses, obtained from the administration of the fraction 

learning progression instrument to a large number of middle-school students in 

Indonesia.   

The purpose of this study was to validate the proposed model of fraction learning 

using Bayesian Network analysis. The Bayesian Networks models developed in Chapter 

5 (Model 1: Bayesian Networks with a single latent variable, and Model 2: Bayesian 

Networks with multiple latent variables) were used to perform the analysis.  

Two levels of statistical inferences of the Bayesian Network analysis were 

undertaken (adapted from West et al., 2010). The first inference concerned the 

validation of the instrument at items level. The objective of this was to examine the 

hypothesis that the items at the given levels would be answered correctly by those 

students who were found to belong to this level or an upper level, but not by the 

students at lower levels. The second inference concerned the validation of the 

instrument at student level. The purpose of this was to examine the hypothesis that 

those students who were at certain level in the progression would have sufficient 

competencies at that level and below but would not have competencies at the upper 

level(s).  

This chapter is now structured into five sections: The method is presented in 

Section 6.2. This section provides details about the participants, the materials and the 

procedure of the test. In Section 6.3, the analysis of the results, which used two different 

Bayesian Network models, is presented.  The discussion of the results is presented in 

Section 6.4, which includes a comparison of Models 1 and 2 and the contribution of 

these models in the field of educational assessment and measurement. Section 6.5 

provides a summary of the chapter.  
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6.2 Method 

6.2.1 Participants 

The participants in this study were 516 students (232 male and 284 female) from a total 

of 26 classes from a public junior high school in Bogor, Indonesia. The distribution of the 

participants by school grade is presented in Table 6.1 below. The participants were 

sampled randomly, using a stratified sampling method. First, the population of students 

at the school was stratified based on grade levels. After that, several intake classes were 

drawn from each grade to participate in the study.  

Table 6.1 The number of students per grade who participated in the study 

Grade Approximate Age Number of Students 

Grade Seven 13 years old 174 

Grade Eight 14 years old 147 

Grade Nine 15 years old 195 

Total 516 

The project received approval from the Social and Behavioural Research Ethics 

Committee (SBREC), Flinders University (reference approval number: 7200).  

6.2.2 Materials  

The fraction instrument developed in Chapter 3 and validated in Chapter 4 was used to 

test all the participants. The fraction instrument is shown in the Appendix. All the items 

in the instrument were collected in one booklet, which consisted of two main sections; 

namely conceptual and procedural. All the conceptual items were presented first, 

followed by the procedural items. The items were ordered based on their levels in the 

progression. For example, in the conceptual section, the items which represented 

fractions as part-whole (Levels 1 and 2) were shown at the beginning, followed by the 

items which represented improper fractions and fractions as measures (Level 3). 

Similarly, in the procedural section, fraction additions (Levels 1 and 2) were presented 

first, followed by fraction multiplications (Level 3).  

6.2.3 Procedure  

Testing took place in the students’ classrooms and lasted approximately 90 minutes. The 

teacher told the students that the test aimed to investigate students’ knowledge of 



 

187 

 

fractions and to diagnose students’ learning difficulties in fraction learning. The teacher 

also clarified that performance on this test would not be taken into consideration in 

students’ grades.  Subsequently, the students were instructed as follows: 

1. The students were not allowed to cooperate or discuss the test with each other. 

The students were told to work on the questions independently 

2. The students were told to use a ball point pen to answer questions with clear 

handwriting 

3. The students could fill in the answers on the question sheet and do calculations 

behind the questions page 

4. The students were not allowed to use calculation aids such as calculators and 

mobile phones 

5. The student had to leave the classroom if they finished working on the questions 

before the end of the testing period test time (90 minutes). 

6.3 Results from Bayesian Network Analysis 

The analysis of the results was performed in four steps, as follows: 

Step 1. Coding the Participants’ Responses 

The participants’ responses were coded as 0, 1, and missing for all conceptual and 

procedural items. Code 1 refers to a correct response; code 0 refers to an incorrect 

response; and code missing means that the participant did not answer the item. There 

were a total of 5.57% missing responses (977 missing and 16567 valid responses).   

Step 2. Modelling the participants’ responses using Bayesian Networks.  

As described in Chapter 5, the notations 𝒙 = (𝑥௜௝) represent the matrix data of the 

responses of n students on J items, 𝑖=1,…,n, and 𝑗=1,…,J; 𝜽 represents the collection of 

𝜃௜  for Model 1 and 𝜃௖௜  for Model 2 - they represent students’ levels; 𝜸 represents the 

hyper-parameter of 𝜽; and 𝝅 represents the measurement model of the students’ 

responses and their levels in the learning progression models, i.e., the conditional 

probability of the students at a particular level correctly answer an item j. 

The Bayesian Networks models developed in Chapter 5 (Model 1 and Model 2) 

were applied to analyse the students’ responses based on the proposed model of 
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fraction learning progression. The flow charts in Figures 6.1 and 6.2 illustrate the 

processes of the Bayesian Network Analysis for Models 1 and 2 respectively. The joint 

posterior distributions of the parameters for Models 1 and 2 were estimated based on 

the student’s responses (𝒙), and the prior distributions for the parameters (𝜽, 𝜸, 𝝅). 

Subsequently, the parameters (𝜸, 𝝅) of Model 1 and Model 2 were estimated with the 

MCMC method (as described in Section 5.2.3) using WinBUGS software (Spiegelhalter, 

Thomas, & Best, 2000). The results from the WinBUGS analysis were then used for the 

item analysis. They were also used by the Netica Software to estimate the posterior 

probabilities of the students’ levels (𝜽|𝜸, 𝝅, 𝒙). 

 

 

Figure 6.1 The  flow chart of Bayesian Networks using Model 1 for the conceptual and procedural 
knowledge dimensions. 

 

Figure 6.2 The flow chart of Bayesian Networks using Model 2 for the conceptual and procedural 
knowledge dimensions. 

 

Step 3. Convergence Check of the Bayesian Networks Estimation 

A convergence check (as described in Section 5.3.2.3) was performed for the results of 

the MCMC estimations generated from WinBugs. The trace of the last 10000 iterations 

with thinning of 10, the autocorrelation functions and Geweke tests were used to 
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evaluate the convergences of the parameters (𝜸, 𝝅) produced from WinBugs. Once the 

convergence was achieved, estimates of the parameters (𝜸, 𝝅) were then presented for 

item analysis. 

Step 4. Updating Posterior Probabilities for the Individual Students 

Next, the convergence parameters generated from the WinBugs were used to build prior 

probabilities of the Bayesian Networks Model in Netica software (Corporation, 2017). 

Netica updated the posterior probabilities (𝜽|𝜸, 𝝅, 𝒙) for individual students when their 

responses were entered into the networks of Bayesian models. The students’ level 

analysis was performed based on the results from Netica. 

6.3.1 Bayesian Network Analysis: The MCMC Estimation 

The estimation was run using WinBugs Software to obtain the estimates of the 

parameters (𝜸, 𝝅 ) in Model 1 and Model 2. Based on Table 5.5 in Chapter 5, 132 

parameters (6 𝛾’s and 126 𝜋’s) and 54 parameters (6 𝛾’s and 48 𝜋’s) were estimated for 

the conceptual and procedural dimensions of Model 1 respectively. For Model 2, 53 

parameters (11 𝛾’s and 42 𝜋’s) and 35 parameters (11 𝛾’s and 24 𝜋’s) were estimated 

for the conceptual and procedural knowledge dimensions respectively. The scores 

derived from the medians from the posterior distribution 𝝅,  generated  from Models 1 

and 2, were used further for the item analysis.  

The length of the MCMC iterations were varied, depending on whether the MCMC 

chains of Model 1 and Model 2 had achieved convergence. Table 6.2 shows the length 

of iterations for each model for the conceptual and the procedural knowledge 

dimensions. 

Table 6.2 The length of iterations of the MCMC estimation 

Model Conceptual Procedural 

Model 1 100,000 150,000 

Model 2 200,000 250,000 

From the total number of MCMC iterations presented in Table 6.2, only the last 10000 

iterations were used, discarding the previous iterations as burn-in iterations to ensure 

convergence. 
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Figures 6.3 and 6.4 represent a sample of the trace of iterations for the parameters 

𝜋 and 𝛾 from Model 1 of the conceptual knowledge dimension. The trace-plots for all 

parameters (𝜸, 𝝅) of the conceptual and procedural knowledge dimensions generated 

from Model 1 and Model 2 are presented in the Appendix. The trace-plots in Figure 6.3 

exhibit the last 10000 iterations of the specific parameters 𝜋ଶସ until 𝜋ଶଽ, which are the 

probabilities of correctly answering items 4-9, given that the students are at Level 2. The 

results showed that the MCMC iterations converged to certain values. These results 

were consistent with the Geweke test which shows the Geweke values for 𝜋ଶସ,…, 𝜋ଶଽ 

are 0.784541, 0.818438, 0.726941, -1.616439, 0.913738, -0.521404 (Appendix H). These 

values are between +2 and -2, showing a 95% confidence interval. Therefore, we 

conclude that the estimation of 𝜋ଶସ,…, 𝜋ଶଽ has converged.”    

 

Figure 6.3 A sample of the last 10000 iterations of MCMC for 𝜋ଶସ,…, 𝜋ଶଽ 

 

Figure 6.4 A sample of the autocorrelation plots of the last 10000 iterations of MCMC for 𝜋ଶସ,…,𝜋ଶଽ 

 As indicated in the correlation plots in Figure 6.4, the results showed that the 

parameters 𝜋ଶସ,…, 𝜋ଶଽ had around zero autocorrelations as the lag increased. These 

results demonstrated that the draws from MCMC estimation was now independent. It 

was important to check this independence that correlated draws are less accurate when 
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compared with estimations using independent draws (Gelman et al., 2014). Similar 

results could be found on the trace and the autocorrelation plots of 𝛾ଵ, … ,𝛾଺ , which are 

presented in Figures 6.5 and 6.6 respectively. 

 

Figure 6.5 The trace of the last 10000 iterations of MCMC for the parameters 𝛾ଵ, … , 𝛾଺ 

 

Figure 6.6 The autocorrelation of the last 10000 iterations of MCMC for the parameters 𝛾ଵ, … , 𝛾଺ 

6.3.1 Model 1: Analysis of the Conceptual Knowledge Dimension 

As detailed in Chapter 5, Model 1 was developed based on the assumption that the 

students’ levels in the learning progression were represented by one latent variable 𝜽 

(Equation (5.4)). The parameter 𝜽 had six categories, which reflected the students’ levels 

in the learning progression model.  

In Model 1, students were assumed to be at a certain level if they had a high 

probability of obtaining correct answers for the items at that level and below, and had 
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a low probability of correctly answering the items at the upper level(s). This assumption 

was encapsulated in the parameter 𝜋௖௝  of Model 1 (Equation 5.2). The parameters 𝜋௖௝  

represented the conditional probability of the students being able to answer the jth-item 

correctly, given the level c of the students in the learning progression model. 

This section presents the item and the students’ level analyses for the conceptual 

knowledge dimension. The following is the item analysis based on the results of the 

Bayesian Networks estimation generated from the WinBUGS software. 

6.3.1.1 Item Analysis 

The purpose of the items analyses was to examine whether the items that were 

hypothesized to be at a certain level would be correctly answered by the students at 

that level and above, but incorrectly answered by the students at the level(s) below.  

From Equation 5.2, 𝜋௖௝ was 𝑝(𝑥௜௝ = 𝑘|𝜃௜ = 𝑐). The estimates of 𝜋௖௝  were computed 

using the MCMC method detailed in Section 5.2.3. This method represented the 

conditional probability of a student being able to answer item j “correctly”, given that 

the student was at level c in the learning progression model. Hence, the conditional 

probability of the student being able to answer item j “incorrectly”, given the student 

was at level c in the learning progression model was 1-𝜋௖௝. The findings of the analyses 

were used to locate the items along the progression levels of the model and to validate 

the competencies that were hypothesized for each level. Thus, the estimates of 𝜋௖௝  were 

used to achieve the purpose of the item analyses.  

For interpretation purposes, the cut-off points of the conditional probability 𝜋௖௝  

were defined as shown in Table 6.3. These cut-off points were developed based on how 

likely the students who had knowledge at Level c correctly answered item j. 
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Table 6.3 The cut-off points of 𝜋௖௝  to consider the items to be placed into the levels of the proposed model 
of fraction learning progression 

Interval Description 

0.65 ≤ 𝜋௖௝ ≤ 1 Item j is placed at Level c. Students at level c are highly likely to 
answer the item correctly 

0.45 ≤ 𝜋௖௝ < 0.65 Item j is ambiguous to be placed at Level c because of the 
uncertainty of the students at level c being able to answer the item 
correctly 

0 ≤ 𝜋௖௝ < 0.45 Item j is too difficult to be placed at Level c. The students at this 
level are less likely to answer the item correctly 

6.3.1.1.1 Item Analysis at Level 1  

Four conceptual items were hypothesized at Level 1 (c=1, j=1,2,3,4) for the conceptual 

knowledge dimension. These were Items ConT1Q1 (generating a fraction from a part-

whole (pie) diagram), ConT2Q1 (shading a pie diagram to represent a fraction less than 

1), ConT3Q1 (comparing two fractions less than 1 using part-whole representation), and 

ConT7Q1 (adding fractions less than 1 using a part-whole representation diagram). 

These items were designed to test students’ conceptual understanding of fractions as a 

representation of part-whole.  

The conditional probabilities 𝜋ଵ௝  were estimated and are shown in Table 6.4.  The 

results showed that the students from the lowest to the highest levels had a high 

probability (above 0.65) to answer these items correctly. It was concluded that Items 

Cont1Q1, ConT2Q1, ConT3Q1, and ConT7Q1 were suitable to be placed at Level 1.  

Table 6.4 The estimates of the conditional probabilities 𝜋ଵ௝ of the conceptual knowledge 
items of Level 1 for Model 1 

Item: ConT1Q1 (j=1)  

  
Correct 

𝜋ଵ,ଵ 

Incorrect 

1-𝜋ଵ,ଵ 

Level 1 0.8013 0.1987 

Level 2 0.9435 0.0565 

Level 3 0.8974 0.1026 

Level 4 0.8164 0.1836 

Level 5 0.8170 0.1830 

Level 6 0.8103 0.1897 
 

Item: ConT2Q1 (j=2)  

 

Correct 
𝜋ଵ,ଶ 

Incorrect 

1-𝜋ଵ,ଶ 

Level 1 0.8011 0.1989 

Level 2 0.9533 0.0467 

Level 3 0.8975 0.1025 

Level 4 0.8162 0.1838 

Level 5 0.8168 0.1832 

Level 6 0.8096 0.1904 
 

Item: ConT3Q1 (j=3)  Item: ConT7Q1 (j=4)  
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Correct 

𝜋ଵ,ଷ 

Incorrect 

1-𝜋ଵ,ଷ 

Level 1 0.7992 0.2008 

Level 2 0.7365 0.2635 

Level 3 0.8851 0.1149 

Level 4 0.8106 0.1894 

Level 5 0.8167 0.1833 

Level 6 0.8088 0.1912 
 

  

Correct 
𝜋ଵ,ସ 

Incorrect 

1-𝜋ଵ,ସ 

Level 1 0.7995 0.2005 

Level 2 0.9200 0.0800 

Level 3 0.8921 0.1079 

Level 4 0.8172 0.1828 

Level 5 0.8167 0.1833 

Level 6 0.8087 0.1913 
 

The above results support the hypothesis that the competencies underlying the 

items which require the generation of a fraction from a part-whole (pie) diagram, 

shading a pie diagram to represent a fraction less than 1, comparing two fractions less 

than 1 using a part-whole representation, and adding fractions less than 1 using a part-

whole representation diagram, are established at Level 1. This provides evidence that 

students’ part-whole understanding emerges at Level 1.  

6.3.1.1.2 Item Analysis at Level 2 

Items ConT1Q2 (generating an equivalent fraction from a pie diagram), ConT1Q3 

(generating a fraction from an unequal partition of a pie diagram), ConT3Q2 (comparing 

fractions of less than 1 with a different denominator using a part-whole diagram), 

ConT7Q2 (adding fractions with different denominators using a part-whole 

representation  diagram) were hypothesized at Level 2 (c=2, j=5,6,7,8). These items were 

created to assess students’ conceptual understanding of equivalent fractions, unequal 

partitions, and fractions as part-whole with different denominators.  

The conditional probabilities 𝜋ଶ௝ for the conceptual items at Level 2 are presented 

in Table 6.5. The results showed that students at Level 2 had a probability of 0.6668 of  

answering item Cont1Q2 correctly. This was in contrast with the probability of students 

at Level 1 doing the same, which was only 0.1971. All the students at the higher levels 

(Level 3-6) had a considerably high probability of answering this item correctly. This 

result shows that Item Cont1Q2 could differentiate students at level 1 from those at 

Levels 2 and above.  The students at Level 1 were unlikely to answer this item correctly, 

while the students at Level 2 and above were highly likely to answer the item correctly. 
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In contrast, for Item ConT1Q3, students at Level 2 had a low probability of 

answering this item correctly. The probability of getting a correct answer for this item 

for students at Level 1 was 0.3555, while the probability of getting an incorrect answer 

was 0.6445. This means that this item was too difficult for students placed at Level 2. In 

contrast, students at Level 3 and above, had a high probability of answering this item 

correctly. The results showed that this item was more suitable to be placed in Level 3, 

because it could discriminate between those students at Level 2 and those at Level 3.  

Next, for Item ConT3Q2, students at Level 2 had a probability of 0.5222 of 

answering this item correctly. This item was considered ambiguous because its 

probability lies in the range between 0.45 and 0.65, as defined in Table 6.3.  

 Finally, for item ConT7Q2, students at Level 2 were likely to answer this item 

correctly with a probability of 0.6528. This was different from students at Level 1, who 

had a low probability, of 0.1973, of answering this item correctly. Hence, Item ConT7Q2 

could discriminate those students at Level 1 and those at Level 2. 

Table 6.5 The estimates of the conditional probabilities 𝜋ଶ௝ of the conceptual knowledge 
items at Level 2 for Model 1 

Item: ConT1Q2 (j=5)   

  
Correct 

𝜋ଶ,ହ 
Incorrect 

1-𝜋ଶ,ହ 

Level 1 0.1971 0.8029 
Level 2 0.6668 0.3332 
Level 3 0.8899 0.1101 
Level 4 0.8177 0.1823 
Level 5 0.8172 0.1828 
Level 6 0.8091 0.1909 

(a) 

Item: ConT1Q3 (j=6)  

  
Correct 

𝜋ଶ,଺ 
Incorrect 
1-𝜋ଶ,଺ 

Level 1 0.1960 0.8040 
Level 2 0.3555 0.6445 
Level 3 0.7780 0.2220 
Level 4 0.7993 0.2007 
Level 5 0.8020 0.1980 
Level 6 0.8096 0.1904 

(b) 

Item: ConT3Q2 (j=7)  

  
Correct 

𝜋ଶ,଻ 
Incorrect 
1-𝜋ଶ,଻ 

Level 1 0.1963 0.8037 
Level 2 0.5222 0.4778 
Level 3 0.8421 0.1579 
Level 4 0.7951 0.2049 
Level 5 0.8158 0.1842 
Level 6 0.8088 0.1912 

(c) 

Item: ConT7Q2 (j=8)  

  
Correct 

𝜋ଶ,଼ 
Incorrect 
1-𝜋ଶ,଼ 

Level 1 0.1973 0.8027 
Level 2 0.6528 0.3472 
Level 3 0.8623 0.1377 
Level 4 0.8102 0.1898 
Level 5 0.8103 0.1897 
Level 6 0.8084 0.1916 

(c) 
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Based on the results above, items Cont1Q2 and ConT7Q2, were suitable for 

placement at Level 2. Item ConT1Q3 was too difficult for students at Level 2, therefore 

it was more suitable for placement at Level 3, while Item ConT3Q2 fell into the 

‘ambiguous item’ category. 

The results support the hypothesis that the competencies underpin items 

Cont1Q2 and ConT7Q2: generating equivalent fractions and adding fractions with 

different denominators using part-whole representation/diagrams, which emerge at 

Level 2. Meanwhile, the competency underpins item ConT1Q3, generating a fraction 

from an unequal partition, as more likely to be established at level 3. 

6.3.1.1.3 Item Analysis at Level 3  

Seven items were hypothesized at Level 3 (c=3, j=9,10,11,12,13,14,15). These items 

were items ConT1Q4 (generating an improper fraction from a pie representation), 

ConT1Q5 (Generating an equivalent of an improper fraction from a pie diagram), 

ConT2Q2 (shading a pie diagram to represent an improper fraction), ConT3Q3 

(comparing two improper fractions using part-whole representation), ConT4Q1 

(generating a fraction less than 1 on a number line), ConT4Q2 (generating a fraction less 

than 1 on a number line with a constraint), and ConT4Q3 (generating fractions greater 

than 1 on a number line). These items were designed to test students’ understanding of 

improper fractions and fractions as measurements. 

The conditional probabilities 𝜋ଷ௝  are presented in Table 6.6. The results showed 

that the items which tested improper fractions (ConT1Q4, ConT1Q5, ConT2Q2, and 

ConT3Q3) discriminated well between Levels 2 and Level 3. For example, it can be seen 

that that students at the lower levels (Levels 1 and 2) had a low probability of answering 

item ConT1Q4 correctly, while students at Level 3 and above were highly likely to answer 

this item correctly, with the probability being equal to or greater than 0.75. Similarly, 

the probability of students at Levels 1 and 2 answering Item ConT1Q5 correctly were 

also low (0.1964 and 0.0799 respectively), however students at Level 3 and above had a 

high probability of answering this item to correctly (0.6933, 0.7922, 0.8061, 0.8076).  
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Table 6.6 The estimates of the conditional probabilities 𝜋ଷ௝ of the conceptual knowledge 
items of Level 3 for Model 1 
Item: ConT1Q4 (j=9)  

  
Correct 

𝜋ଷ,ଽ 
Incorrect 

1-𝜋ଷ,ଽ 

Level 1 0.1984 0.8016 
Level 2 0.1107 0.8893 
Level 3 0.7504 0.2496 
Level 4 0.7979 0.2021 
Level 5 0.8068 0.1932 
Level 6 0.8087 0.1913 

 

Item: ConT1Q5 (j=10)  

  
Correct 

𝜋ଷ,ଵ଴ 
Incorrect 
1-𝜋ଷ,ଵ଴ 

Level 1 0.1964 0.8036 
Level 2 0.0799 0.9201 
Level 3 0.6933 0.3067 
Level 4 0.7922 0.2078 
Level 5 0.8061 0.1939 
Level 6 0.8076 0.1924 

 

Item: ConT2Q2 (j=11)  

  
Correct 

𝜋ଷ,ଵ଴ 
Incorrect 

1-𝜋ଷ,ଵ଴ 

Level 1 0.1982 0.8018 
Level 2 0.3237 0.6763 
Level 3 0.8372 0.1628 
Level 4 0.8094 0.1906 
Level 5 0.8160 0.1840 
Level 6 0.8090 0.1910 

 

Item: ConT3Q3 (j=12)  

  
Correct 

𝜋ଷ,ଵ଴ 
Incorrect 
1-𝜋ଷ,ଵ଴ 

Level 1 0.1973 0.8027 
Level 2 0.1345 0.8655 
Level 3 0.8368 0.1632 
Level 4 0.8000 0.2000 
Level 5 0.8161 0.1839 
Level 6 0.8087 0.1913 

 

Item: ConT4Q1 (j=13)  

  
Correct 

𝜋ଷ,ଵଷ 
Incorrect 

1-𝜋ଷ,ଵଷ 

Level 1 0.1969 0.8031 
Level 2 0.0711 0.9289 
Level 3 0.8538 0.1462 
Level 4 0.8144 0.1856 
Level 5 0.8105 0.1895 
Level 6 0.8092 0.1908 

 

Item: ConT4Q2 (j=14)  

  
Correct 

𝜋ଷ,ଵସ 
Incorrect 

1-𝜋ଷ,ଵସ 

Level 1 0.1960 0.8040 
Level 2 0.0429 0.9570 
Level 3 0.8682 0.1318 
Level 4 0.8076 0.1924 
Level 5 0.8101 0.1899 
Level 6 0.8088 0.1912 

 

Item: ConT4Q3 (j=15)  

  
Correct 

𝜋ଷ,ଵହ 
Incorrect 

1-𝜋ଷ,ଵହ 

Level 1 0.1965 0.8035 
Level 2 0.0480 0.9520 
Level 3 0.7796 0.2204 
Level 4 0.8026 0.1974 
Level 5 0.8088 0.1912 
Level 6 0.8091 0.1909 

 

 

 

Likewise, the items related to fractions as measures (ConT4Q1, ConT4Q2, and 

ConT4Q3) also demonstrated a good discriminatory power between students at Level 2 

and Level 3. These items had a low probability of students at Level 1 and Level 2 

answering them correctly (below 0.20), whereas students at Level 3 and above had a 

high probability of obtaining a correct answer for this item, with the probability being 

about 0.80. 
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The results discussed above indicate that items ConT1Q4, ConT1Q5, ConT2Q2, 

ConT3Q3, ConT4Q1, ConT4Q2, and ConT4Q3 are suitable for placement at Level 3. This 

supports the hypothesis that the competencies underlying these items are established 

at this level, namely generating an improper fraction from a pie diagram representation, 

generating an equivalent of an improper fraction from a pie diagram, shading a pie 

diagram to represent an improper fraction, comparing two improper fractions using 

part-whole representation, generating a fraction less than 1 on a number line, 

generating a fraction less than 1 on a number line with a constraint, and generating 

fractions greater than 1 on a number line. 

6.3.1.1.4 Item Analysis at Level 4  

Two items were hypothesized at Level 4 (c=4, j=16,17). These items were item ConT5Q1 

(writing the biggest fraction they can) and item ConT5Q2 (writing the smallest fraction 

they can). These items were used to test students’ understanding of the unbounded 

infinity of fractions (there are no smallest or biggest fractions).  

The results showed that students at Level 3 and below were likely to have an 

incorrect answer for both items ConT5Q1 and ConT5Q2 with the probabilities for being 

correct lying at lower than 0.20. In contrast, students at Level 4 and above were highly 

likely to answer these questions correctly, with the probabilities being above 0.80. These 

results showed that Item ConT5Q1 and Item ConT5Q2 could discriminate students at 

Level 3 and Level 4 effectively. The conditional probabilities 𝜋ସ௝  are presented in Table 

6.7. 

The results indicate that items ConT5Q1 and ConT5Q2 are suitable for placement 

at Level 4. These results support the hypothesis that students’ understanding of the 

unbounded infinity of fractions emerges at Level 4.  
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Table 6.7 The estimates of the conditional probabilities of the conceptual knowledge items 
of Level 4 for Model 1 
Item: ConT5Q1 
(j=16)  

  
Correct 

𝜋ସ,ଵ଺ 
Incorrect 
1-𝜋ସ,ଵ଺ 

Level 1 0.1957 0.8043 
Level 2 0.0642 0.9358 
Level 3 0.1893 0.8107 
Level 4 0.8119 0.1881 
Level 5 0.8101 0.1899 
Level 6 0.8077 0.1923 

 
 

Item: ConT5Q2 
(j=17)  

  
Correct 

𝜋ସ,ଵ଻ 
Incorrect 

1-𝜋ସ,ଵ଻ 

Level 1 0.1971 0.8029 
Level 2 0.0638 0.9362 
Level 3 0.1971 0.8029 
Level 4 0.8132 0.1868 
Level 5 0.8161 0.1839 
Level 6 0.8090 0.1910 

 

6.3.1.1.5 Item Analysis at Level 5  

Item ConT6Q1 (finding how many fractions lie between two fractions) and item 

ConT6Q2 (finding how many fractions lie between two pseudo successive fractions) 

were hypothesized as lying at Level 5 (c=5, j=18,19). These items were created to test 

students’ understanding of the density of fractions. 

The conditional probabilities 𝜋ହ௝  were estimated and are shown in Table 6.8. The 

results showed that the students at Level 5 and 6 were more likely to answer item 

ConT6Q1 and ConT6Q2 correctly, with a probability greater than 0.8, while students at 

Level 4 and below were unlikely to answer correctly, with a probability less than 0.2. 

These results showed that items ConT6Q1 and ConT6Q2 could discriminate effectively 

between those students at Level 4 and those at Level 5.  

The results discussed above indicate that items ConT6Q1 and ConT6Q2 are 

suitable for placement at Level 5. These results support the hypothesis that the 

competency of understanding the density of fractions emerges at this level. 

Table 6.8 The estimates of the conditional probabilities 𝜋ହ௝ of the conceptual knowledge 
items of Level 5 for Model 1 
Item: ConT6Q1 (j=18)  

  
Correct 

𝜋ହ,ଵ଼ 
Incorrect 
1-𝜋ହ,ଵ଼ 

Level 1 0.1978 0.8022 
Level 2 0.0412 0.9588 
Level 3 0.1047 0.8953 
Level 4 0.1872 0.8128 
Level 5 0.8102 0.1898 
Level 6 0.8076 0.1924 

 

Item: ConT6Q2 (j=19)  

  
Correct 

𝜋ହ,ଵଽ 
Incorrect 
1-𝜋ହ,ଵଽ 

Level 1 0.1971 0.8029 
Level 2 0.0393 0.9607 
Level 3 0.1277 0.8723 
Level 4 0.1904 0.8096 
Level 5 0.8120 0.1880 
Level 6 0.8077 0.1923 
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6.3.1.1.6 Item Analysis at Level 6 

Two items were hypothesized as being at Level 6 (c=6, j=20,21), namely ConT8Q1 

(multiplying fractions using a diagram representation) and ConT8Q2 (dividing fractions 

using a diagram representation). These items were designed to test students’ 

understanding of multiplicative fraction operations. 

The results showed that students at the top level of the conceptual dimension 

were likely to answer Items ConT8Q1 and ConT8Q2 correctly, with the probability being 

greater than 0.80. In contrast, students at Level 5 and below were unlikely to answer 

this item correctly, with the probability being less than 0.2. This indicates that both items 

can discriminate effectively between those students at Level 6 and those students who 

fall below this level. The conditional probabilities 𝜋଺௝ are presented in Table 6.9. 

Table 6.9 The estimates of the conditional probabilities 𝜋଺௝ of the conceptual knowledge 
items of Level 6 for Model 1 
Item: ConT8Q1 (j=20)  

  
Correct 

𝜋଺,ଶ଴ 
Incorrect 

1-𝜋଺,ଶ଴ 

Level 1 0.1960 0.8040 
Level 2 0.0395 0.9606 
Level 3 0.1072 0.8928 
Level 4 0.1843 0.8157 
Level 5 0.1877 0.8123 
Level 6 0.8074 0.1926 

 

Item: ConT8Q2 (j=21)  

  
Correct 

𝜋଺,ଶଵ 
Incorrect 
1-𝜋଺,ଶଵ 

Level 1 0.1948 0.8052 
Level 2 0.0391 0.9609 
Level 3 0.1120 0.8880 
Level 4 0.1850 0.8150 
Level 5 0.1884 0.8116 
Level 6 0.8065 0.1935 

 

The results demonstrate that items ConT8Q1 and ConT8Q2 are suitable for 

placement at Level 6. These results indicate that that the level of competency for 

understanding multiplicative fractions operations is established at this level. 

Like the results generated from other statistical models, the posterior probabilities 

of students’ correctly answering the items (𝜋௖௝) also contain some degree of uncertainty 

(random errors). Tables 6.4, 6.7 – 6.9 show that a few of the students at the higher levels 

have smaller probability to correctly answer the items at the lower levels compared to 

students at the lower levels.  

For example, in Table 6.7, the probability of students at Levels 2 and 3 to correctly 

answer item ConT5Q1 is 0.0642 and 0.1893 is lower than the students at Level 1 which 

is 0.1957.  
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However, these variations do not really matter in the context of discrete 

hierarchical analysis, because the results show that the students at the lower levels 

(Levels 1,2, and 3) were very unlikely to correctly answer item ConT5Q1, while the 

students at Level 4 were highly likely answer correctly this item with the probability 

0.8119. 

 In order to incorporate such variations, cut-off criteria were developed in Table 

6.3. Using the cut-off points, the variations of the probabilities at Levels 1-3 presented 

in Table 6.7 did not affect locating item ConT5Q1 on the progression levels of the 

conceptual knowledge dimension. 

6.3.1.2 Analysis to Estimate Students’ Levels in The Progression 

The purpose of the analyses is to estimate students’ levels in the conceptual knowledge 

dimension using Model 1. Netica Software was used to estimate the posterior 

probabilities of the students’ levels 𝑃(𝜽|𝜸, 𝝅, 𝒙), as described in Section 5.2.3.3.2. 

As described in Chapter 5, each individual student’s responses, 𝑥௜௝, were entered 

into the network using Netica. Using Netica, the responses were compiled to update the 

prior probability 𝜸 of the student being in the network. The estimates of 𝜸 as in equation 

(5.5) and 𝜋௖௝  in equation (5.2) (generated from the WinBugs software) were used as 

priors in the networks.  

Figure 6.7 presents the prior probabilities 𝜸 of the Netica graph for Model 1 on the 

conceptual knowledge dimension. This was the prior where there was no student data 

entered into the network. From this figure, the prior probabilities of students’ levels, i.e. 

the estimates of 𝜸 (displayed in the node of “Conceptual_LP”) were 77.70% (𝛾ଵ), 17.90% 

(𝛾ଶ), 1.68% (𝛾ଷ),, 1.57% (𝛾ସ), 0.84%(𝛾ହ), and 0.29% (𝛾଺). These prior estimates were 

different from the priors set for equation (5.5) which were 16.67% for all 𝜸 values. The 

priors of 𝜸 presented in Figure 6.7 showed that most of the students were at Levels 1 

and 2, and a small number of students were at the remaining levels. 

Moreover, the prior probabilities for each item were compiled in the Netica 

software based on the conditional probabilities 𝜋௖௝ obtained from the WinBugs 

estimation (as shown in Figure 6.7). The results showed that the probabilities of getting 

correct answers decreased as the levels increased. For example, the prior probability to 
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get a correct answer for the items at Level 1 (Items ConT1Q1, ConT2Q1, ConT3Q1, and 

ConT7Q1) were about 80%, while the probability to get a correct answer for the items 

at Level 6 (ConT8Q1 and ConT8Q2) were about 16%. The results showed there was an 

increasing level of difficulty of the items, which was consistent with the hierarchical 

levels of the learning progression. 

In the next step, the posterior probabilities of the students’ levels 𝑃(𝜽|𝜸, 𝝅, 𝒙) of 

516 students were estimated. As examples of the cohort, only those results obtained by 

two particular students are presented. Figures 6.8 and 6.9 show the Netica estimations 

for students ID 187 and 424, respectively. The raw scores of students ID 187 and 424 are 

presented in Tables 6.10 and 6.11, respectively.  
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Figure 6.7 A Netica Graph of the prior probability of the conceptual knowledge dimension.  
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Table 6.10 The raw sores of student with ID 187 

 

 

 

Figure 6.8 A Netica Graph of the posterior probability 𝑃(𝜃௜|𝜸, 𝝅, 𝑥௜௝) for the student with ID 187 (𝑖=187, j=1,…,21).  
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Table 6.11 The raw sores of the student with ID 424 

 

 

Figure 6.9 A Netica Graph of the posterior probability 𝑃(𝜃௜|𝜸, 𝝅, 𝑥௜௝)  for the student with ID 424 (𝑖=424, j=1,…,21).  
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From Table 6.10, it can be seen that student ID 187 could answer most of the items 

at Level 1, all the items at Level 2, and one item out of 7 items at Level 3. Based on these 

responses, the Netica software generated probabilities of each level for this student as 

follows (from level 1 to level 6): 0.38%, 99.6%, 0.003%, 0%, 0%, and 0%. As the highest 

probability of the level is at Level 2, the student with ID 187 is assigned to Level 2 in our 

model. Similarly, student ID 424, as can be observed in Table 6.11, could answer all the 

items at Level 1, most of the items at Levels 2 and 3, and all the items at Level 4. The 

Netica software produced the probability of each level for this student (from the lowest 

to the highest) as follows: 0.2%, 0%, 5.11%, 92.3%, 2.31%, and 0.47%. Hence, the student 

was assigned to Level 4 because the student had the highest probability to be placed at 

this level. 

The same procedure as was discussed above was then applied to all 516 students’ 

responses to estimate their levels. The results were summarized in Figure 6.10, which 

shows the distribution of the students’ levels in the conceptual knowledge dimension.  

The results showed that the largest percentage of the students were at Level 2 (59.11%), 

followed by the percentages at Level 1 (20.16%), Level 3 (14.92%), Level 4 (3.68%), Level 

5 (1.36%) and Level 6 (0.78%).  

 

Figure 6.10 The distribution of the students‘ levels in the conceptual knowledge dimension 
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6.3.2 Model 1: Analysis of the Procedural Knowledge Dimension  

6.3.2.1 Item Analysis 

Similar to the item analysis of the conceptual knowledge dimension using Model 1, the 

purpose of the analysis of the items included in the procedural knowledge dimension of 

the fraction progression instrument was to validate the items in the various levels of this 

knowledge dimension. 

6.3.2.1.1 Item Analysis at Level 1 

Item ProT1Q1 (adding fractions with the same denominator) was hypothesized to be 

located at Level 1 (c=1, j=1). This item was used to test students’ procedural knowledge 

of adding fractions with the same denominator. The results showed that the students 

from the lowest to the highest level were likely to answer item ProT1Q1 correctly with 

a probability above 75% at Level 1 and above 80% for Levels 2-6. Only 23% students at 

Level 1 will answer the item incorrectly. The results are shown in Table 6.12.   

The results indicate that item ProT1Q1 is suitable to be placed at Level 1 of the 

procedural knowledge dimension, supporting the hypothesis that the competency of 

adding fractions with the same denominator that underpins item ProT1Q1, is 

established at Level 1. 

Table 6.12 The estimates of the conditional probabilities 𝜋ଵ௝ of the procedural knowledge 
item falling at Level 1 for Model 1 

Item: ProT1Q1 (j=1)  

  
Correct 

𝜋ଵଵ 
Incorrect 
1-𝜋ଵଵ 

Level 1 0.7696 0.2304 
Level 2 0.8028 0.1972 
Level 3 0.8873 0.1127 
Level 4 0.9095 0.0905 
Level 5 0.8040 0.1960 
Level 6 0.8897 0.1103 

6.3.2.1.2 Item Analysis at Level 2  

Item ProT1Q2 (adding fractions with different denominators) was hypothesized to test 

students’ procedural knowledge at this level (c=2, j=2). The results showed that students 

at level 2 and above had a probability of over 80% of answering this item correctly. In 

contrast, students at Level 1 were unlikely to answer these items correctly, with a 
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probability of about 23%. The results showed that this item discriminated effectively 

between the students at level 1 and the students at level 2.  

The results indicate that Item ProT1Q2 is suitable to be placed at Level 2 in the 

proposed model of the procedural knowledge dimension.  The results support the 

hypothesis that the competency of adding fractions with the same denominator, which 

underpins item ProT1Q2, is established at level 2. 

Table 6.13 The estimates of the conditional probabilities 𝜋ଶ௝ of the procedural knowledge 
item falling at Level 2 for Model 1  

Item: ProT1Q2 (j=2)   

  
Correct 

𝜋ଶଶ 
Incorrect 

1-𝜋ଶଶ 

Level 1 0.2287 0.7713 
Level 2 0.8022 0.1978 
Level 3 0.8439 0.1561 
Level 4 0.8838 0.1162 
Level 5 0.804 0.196 
Level 6 0.875 0.125 

6.3.2.1.3 Item Analysis at Level 3  

Five items were hypothesized at Level 5 of the procedural knowledge dimension (c=3, 

j=3,4,5,6,7). These items were ProT1Q4 (adding fractions with a mixed number), 

ProT1Q3 (subtracting fraction with a whole number), ProT2Q1 (multiplying a fraction 

with a fraction), ProT2Q2 (multiplying a fraction with a whole number), and ProT2Q3 

(dividing a fraction with a fraction).  

The results showed that items ProT1Q4, ProT1Q3, ProT2Q2 and ProT2Q3 

discriminated well between students at Level 2 and Level 3. Students at Level 1 and 2 

had low probabilities (less than 31%) to answer these items correctly, while students at 

Level 3 and above had a probability of 67% of answering item ProT1Q3 correctly, and 

above an 80% probability to answer Items ProT1Q4, ProT2Q2 and ProT2Q3 correctly. 

The results are shown in Table 6.14 
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Table 6.14 The estimates of the conditional probabilities 𝜋ଷ௝ of the procedural knowledge 
item falling at Level 3 for Model 1 

Item: ProT1Q3 (j=3)  

  
Correct 

𝜋ଷଷ 
Incorrect 

1-𝜋ଷଷ 

Level 1 0.1635 0.8365 
Level 2 0.2000 0.8000 
Level 3 0.6693 0.3307 
Level 4 0.8267 0.1733 
Level 5 0.8043 0.1957 
Level 6 0.8628 0.1372 

 

Item: ProT1Q4 (j=4)  

  
Correct 

𝜋ଷସ 
Incorrect 

1-𝜋ଷସ 

Level 1 0.3108 0.6892 
Level 2 0.2019 0.7981 
Level 3 0.8642 0.1358 
Level 4 0.8998 0.1002 
Level 5 0.8053 0.1947 
Level 6 0.8931 0.1069 

 

Item: ProT2Q1 (j=5)  

  
Correct 

𝜋ଷହ 
Incorrect 
1-𝜋ଷହ 

Level 1 0.1210 0.8790 
Level 2 0.1953 0.8047 
Level 3 0.5634 0.4366 
Level 4 0.8201 0.1799 
Level 5 0.8020 0.1980 
Level 6 0.8527 0.1473 

 

Item: ProT2Q2 (j=6)  

  
Correct 

𝜋ଷ଺ 
Incorrect 

1-𝜋ଷ଺ 

Level 1 0.3036 0.6964 
Level 2 0.1978 0.8022 
Level 3 0.8389 0.1611 
Level 4 0.9100 0.09 
Level 5 0.8055 0.1945 
Level 6 0.8827 0.1173 

 

Item: ProT2Q3 (j=7)  

  
Correct 

𝜋ଷ଻ 
Incorrect 

1-𝜋ଷ଻ 

Level 1 0.1827 0.8173 
Level 2 0.1977 0.8023 
Level 3 0.8186 0.1814 
Level 4 0.9142 0.0858 
Level 5 0.8045 0.1955 
Level 6 0.8922 0.1078 

 

 

However, for item ProT2Q1, the probability for the students at Level 3 to answer 

this item correctly was 56% (referring to the ambiguous items between 0.45 and 0.65). 

The students at the lower levels (levels 1 and 2) had probabilities of less than 20% of 

answering this item correctly. In contrast, the students at level 4 and above were highly 

likely to answer this item correctly, with the probabilities lying above 80%. The results 

did not indicate that this item was better to be placed at Level 4, because the students 

at Level 3 were likely to answer this item correctly with a probability only slightly above 

50%. Hence, there was ambiguity with placing this item at Level 3. 
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The results discussed above indicate that items ProT1Q4, ProT1Q3, ProT2Q2 and 

ProT2Q3 are suitable to be placed at Level 3. These results support the hypothesis that 

the competencies that underpin these items, adding fractions with a mixed number; 

subtracting fractions with a whole number; multiplying a fraction with a whole number; 

and dividing a fraction with a fraction, are established at this level. 

6.3.2.1.4 Item Analysis at Level 4  

Two items were hypothesized at Level 4 (c=4, j=8,9). These items were ProT2Q4 

(multiplying a mixed number with a mixed number) and ProT2Q5 (dividing a mixed 

number with a whole number). These items were designed to test students’ procedural 

knowledge of multiplicative fraction operations which involve mixed numbers.   

The results showed that students at level 4 and above had probabilities of 

answering these items correctly at above 72% for item ProT2Q4 and above 78% for item 

ProT2Q5. In contrast, students at Level 3 and below were unlikely to answer these items 

correctly, with the probabilities lying at less than 20%. The results showed that these 

items discriminated well between those students at level 3 and those students at level 

4. The results are shown in Table 6.15 

Table 6.15 The estimates of the conditional probabilities 𝜋ସ௝ of the procedural knowledge 
item falling at Level 4 for Model 1 

Item: ProT2Q4 (j=8)  

  
Correct 

𝜋ସ଼ 
Incorrect 

1-𝜋ସ଼ 

Level 1 0.1227 0.8773 
Level 2 0.1959 0.8041 
Level 3 0.1898 0.8102 
Level 4 0.7357 0.2643 
Level 5 0.8002 0.1998 
Level 6 0.7289 0.2711 

 

Item: ProT2Q5 (j=9)  

  
Correct 

𝜋ସଽ 
Incorrect 

1-𝜋ସଽ 

Level 1 0.1112 0.8888 
Level 2 0.1967 0.8033 
Level 3 0.197 0.803 
Level 4 0.7809 0.2191 
Level 5 0.8024 0.1976 
Level 6 0.8589 0.1411 

 

The results indicate that items ProT2Q4 and ProT2Q5 are suitable to be placed at 

Level 4. These results support the hypothesis that the competencies for performing 

multiplicative fraction operations with a mixed number, which underpin these items, 

emerge at this level.  
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6.3.2.1.5 Item Analysis at Level 5  

The items hypothesized at Level 5 (c=5, j=10, 11) were Item ProT3Q1 (solving a nested 

fraction operation where the numerator is a fraction subtraction) and ProT3Q2 (solving 

a nested fraction operation where the numerator is a fraction division). These items 

were created to test students’ procedural knowledge of complex fractions with one-

level nested fraction operations. 

The results showed that the students at level 4 and below were unlikely to answer 

item ProT3Q1 correctly, with the probability being less than 20%. Students at Level 5 

and above were highly likely to answer this item correctly, with the probability being 

above 80%.  Similarly, the probabilities for students at Level 4 and below were less than 

24% to answer item ProT3Q2 correctly, while students at Levels 5 and 6 have a 

probability of about 80% of answering this item correctly. Hence, it is shown that these 

items could discriminate the students at Levels 4 and 5. The results are shown in Table 

6.16  

Table 6.16 The estimates of the conditional probabilities 𝜋ହ௝ of the procedural knowledge item 

falling at Level 5 for Model 1 

Item: ProT3Q1(j=10)   

  
Correct 

𝜋ହଵ଴ 
Incorrect 

1-𝜋ହଵ଴ 

Level 1 0.0952 0.9048 
Level 2 0.1950 0.8050 
Level 3 0.1400 0.8600 
Level 4 0.1875 0.8125 
Level 5 0.8025 0.1975 
Level 6 0.8732 0.1268 

 

Item: ProT3Q2(j=11)  

  
Correct 

𝜋ହଵଵ 
Incorrect 

1-𝜋ହଵଵ 

Level 1 0.1010 0.8990 
Level 2 0.1957 0.8043 
Level 3 0.1343 0.8657 
Level 4 0.2386 0.7614 
Level 5 0.8034 0.1966 
Level 6 0.7961 0.2039 

 

The results indicate that items ProT3Q1 and ProT3Q2 are suitable to be placed at 

Level 5. This supports the hypothesis that the competencies underlying items ProT3Q1 

and ProT3Q2, solving a nested fraction operation where the numerator is a fraction 

subtraction, and solving one-level nested fraction operations where the numerator is a 

fraction division, are established at this level. 

6.3.2.1.6 Item Analysis at Level 6  

Item ProT3Q3 (solving a fraction operation with a two-level nested fraction) was 

hypothesized as falling at Level 6 (c=2, j=12). This item was designed to test students’ 
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procedural knowledge of complex fraction operations with two or more nested 

operations. 

The results showed that the students at level 6 had a high probability of answering 

item ProT3Q3 correctly (about 78%), whereas students at level 5 and below had low 

probabilities of doing so, at less than 20%. Hence, Item ProT3Q3 could discriminate 

effectively between students at Level 6 and the students at the levels below.  

The results indicate that Item ProT3Q3 is suitable to be placed at Level 6. This 

confirms the hypothesis that the competency of performing a complex fraction 

operation with two level nested fraction operations is established at Level 6.  

Table 6.17 The estimates of the conditional probabilities 𝜋଺௝ of the procedural knowledge 
item falling at Level 6 for Model 1 

Item: ProT3Q3(j=12)  

  
Correct 

𝜋଺ଵଶ 
Incorrect 

1-𝜋଺ଵଶ 

Level 1 0.0945 0.9055 

Level 2 0.1949 0.8051 

Level 3 0.0907 0.9093 

Level 4 0.0922 0.9078 

Level 5 0.1971 0.8029 

Level 6 0.7819 0.2181 
 

 

6.3.2.2 Analysis to Estimate Students’ Levels in the Progression 

Similar to the analysis in the conceptual knowledge dimension, the aim of the procedural 

level analysis was to estimate students’ levels (𝜽|𝜸, 𝝅, 𝒙) in the procedural dimension. 

The prior of the networks, which was compiled by the Netica software from the 

estimates of 𝜸 as in Equation (5.5) and 𝜋௖௝  in Equation (5.2), is presented in Figure 6.11. 

The results showed that the prior probabilities for the students’ levels (estimates of 𝜸 

from Level 1 to Level 6) were 33.90%(𝛾ଵ), 26.30%(𝛾ଶ), 21.10%(𝛾ଷ), 17.90%(𝛾ସ), 

0.46%(𝛾ହ), and 0.37%(𝛾଺).    

The results also showed that the prior probabilities of items decreased with the 

increasing levels of the learning progression. For example, the prior probability for item 

ProT1Q1 at Level 1 was 82.9 %, and the prior probability for item ProT1Q1 at Level 2 was 

63.1%. The smallest prior probability was on item ProT3QT at Level 6, which was 12.3%. 

The smallest prior probability in the network showed that this item was the most difficult 

for students, which was consistent with the hierarchical level of the proposed model of 

fraction learning progression.  
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Figure 6.11 Netica Graph of the prior probability of the procedural knowledge dimension  
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Using Netica, the posterior probabilities of the levels 𝑃(𝜽|𝜸, 𝝅, 𝒙) of 516 students were 

generated. Figures 6.12 and 6.13 show an example of Bayesian Network estimation, using 

Netica from the students with ID 452 and 261, with their responses in Tables 6.18 and 6.19 

respectively. The results showed that the student with ID 452 answered the items at Level 1 

and Level 2 correctly, alongside most of the items at Level 3. The Netica software generated 

posterior probabilities of the levels for the student with ID 452 as follows: Level 1 is 0.67%; 

Level 2 is 0.57%; Level 3 is 94.7%; Level 4 is 4.09%, Level 5 is 0.002% and Level 6 is close to 

0%. From these results, it can be inferred that the student with ID 452 was estimated at Level 

3, as this student has the highest probability to be placed at this level.  

In the same way, the results showed that the student with ID 261 answered correctly 

the items at Level 1, Level 2, and most of the items at Level 3. The student made a mistake in 

one of the items at Level 4, and correctly answered all the items at Level 5 and 6. The following 

were the posterior probabilities generated from Netica, from Levels 1 to 6, which are: Level 1 

was 0.022%, Level 2 was 0.43%, Level 3 was 12.6%; Level 4 was 23%, Level 5 was 8.42%, and 

Level 6 was 55.5%. Thus, student 261 was estimated as being at Level 6. The probability for 

student 261 being at Level 6 is not particularly high (about 55%), which reflects the student’s 

errors in some items at the lower levels. 
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  Table 6.18 Raw Scores of Student 452 

 

 

 

 

Figure 6.12 A Netica Graph of the posterior probability (𝜃௜|𝜸, 𝝅, 𝑥௜௝)  for student 452 (𝑖=452, j=1,…,12). 
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Table 6.19 Raw Scores of Student 261 

 

 

 

              Figure 6.13 A Netica Graph of the posterior probability (𝜃௜|𝜸, 𝝅, 𝑥௜௝)  for student 261 (𝑖=261, j=1,…,12)..  
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The same procedure of estimation was applied to all 516 students. Figure 6.14 

depicts the distribution of the students’ procedural level generated from Model 1 of the 

Bayesian Network Modeling.  

 

Figure 6.14 The distribution of students’ level in the procedural knowledge dimension 

The results showed that the highest percentage of students was at Level 4 (29.65%), 

followed by students at Level 3 (25.97%). At the high levels, the percentage of students 

at Level 6 was 13.76%, and at Level 5 was 5.62%. At the low levels, 18.22% of students 

were at Level 1 and 6.78% at Level 2. Most of the students were concentrated in the 

medium levels of the procedural knowledge dimension, and only a small number of 

students were at Level 2 and Level 5, which connected the students from the lowest 

level to the medium level, and from the medium level to the highest level, respectively.  

6.3.3 Model 2: Analysis of the Conceptual Knowledge Dimension 

As described in Chapter 5, the levels of the learning progression model were 

represented by several parameters 𝜽 = (𝜽𝟏, … , 𝜽𝑪), where 𝜽𝒄 was the collection of 𝜃௖௜  

for c=1,…,C and i=1,…,n. The dependency between the levels was reflected in the way 

that the 𝜃௖௜  at the upper level was conditional (dependent) on the 𝜃௖௜  in the lower level. 

This dependency reflected the assumption that to achieve the competencies at the 

upper level, the students should already have the competencies at the lower level, 

which was consistent with the hierarchical levels in the learning progression. 
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For Model 2, it was assumed that the students who had competencies at a certain 

level would have a high probability of answering the items at that level correctly. In 

contrast, students who had no competencies at that level were unlikely to answer the 

items correctly. In other words, Model 2 estimated two types of conditional probabilities 

to answer the questions correctly, which were: the probabilities of students who had 

competencies (𝜃௖௜= 1) and the probabilities of the students who had no competencies 

(𝜃௖௜= 0) for each level. These conditional probabilities were incorporated into Model 2 

by the parameters 𝜋௖௝௭ i.e. 𝜋௖௝ଵ and 𝜋௖௝  respectively, as shown from Equation (5.9). 

6.3.3.1 Item Analysis 

The objective of the item analysis in Model 2 was similar to that of Model 1, which was 

to place the items along the progression levels of the proposed model. However, in 

Model 2, the item analysis was performed based on two values of 𝜋௖௝௭ , which are 𝜋௖௝ଵ 

and 𝜋௖௝  (Equation 5.9). The estimates of 𝜋௖௝ଵ represented the conditional probability 

of the students being able to answer item j “correctly” given that the student had 

competencies at a level c (𝜃௖௜ = 1). The conditional probability 𝜋௖௝ଵ was similar to the 

conditional probability 𝜋௖௝  in Model 1 in terms of measuring the difficulty of the items. 

Table 6.20 represents the intervals of 𝜋௖௝ଵ that are used as criteria to assign the items 

into the levels of the learning progression. These criteria were developed based on how 

likely the students who had competencies at Level c were to answer item j correctly. 

Table 6.20 The cut-off points of 𝜋௖௝ to consider the items to be placed into the levels of the 
proposed model of the fraction learning progression 

Interval Description 

0.65 ≤ 𝜋௖௝ଵ  ≤ 1 Item j is placed at Level c. Students at level c are highly likely 
to answer the item correctly 

0.45 ≤ 𝜋௖௝ଵ < 0.65 Item j is ambiguous to be placed at Level c because of the 
uncertainty of the students at level c to answer the item 
correctly 

0 ≤ 𝜋௖௝ଵ < 0.45 Item j is too difficult to be placed at Level c. The students at 
this level is less likely to answer the item correctly 

The estimate of 𝜋௖௝଴ represents the conditional probability of the student 

answering item j “correctly”, given that the student has no competencies at level c 
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(𝜃௖௜ = 0). In other words, 𝜋௖௝  measures the probability of the students answering the 

item correctly by chance. A large value of 𝜋௖௝  indicates that the students are highly 

likely to answer the item by chance or guesswork. Table 6.21 shows the intervals of 𝜋௖௝଴, 

which are used to consider the location of the items in the proposed levels of fraction 

learning progression. 

Table 6.21 The cut-off points of 𝜋௖௝଴ to consider the location of the items to be placed into the 
levels of the proposed model of fraction learning progression 

Interval Description 

0.65 ≤ 𝜋௖௝଴  ≤ 1 Highly likely the students at Level c answer the item correctly 
by chance 

0.45 ≤ 𝜋௖௝଴ < 0.65 Uncertain condition whether the students at Level c will 
answer the item by chance correctly or not 

0 ≤ 𝜋௖௝଴ < 0.45 Less likely that the students at Level c will answer the item 
correctly by chance 

Based on the criteria developed in Tables 6.20 and 6.21, the item analysis for each 

level was performed. 

6.3.3.1.1 Item Analysis at Level 1 

Four items were hypothesized at Level 1 for the conceptual knowledge dimension (c=1, 

j=1, 2, 3, 4). These items were items ConT1Q1 (generating a fraction from a part-whole 

(pie) diagram), ConT2Q1 (shading a pie diagram to represent a fraction less than 1), 

ConT3Q1 (comparing two fractions less than 1 using part-whole representation), and 

ConT7Q1 (adding fractions less than 1 using part-whole representation (diagram)).  

The results showed that the students who had competencies at Level 1 (θଵ௜ = 1) 

were likely to answer items ConT1Q1, ConT2Q1, ConT7Q1 correctly, with the 

probabilities being above 90%, and item ConT3Q1 correctly, with a probability of 78% 

(above the cut off point of 65%). Moreover, the students who did not have competencies 

at Level 1 (θଵ௜ = 0) had low probabilities (less than 21%) of answering the items correctly 

by chance. The results are shown in Table 6.22. 

From the results above, it can be inferred that all the items are suitable for 

placement at Level 1. These results indicate that the competencies underlying these 
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items, generating a fraction from a part-whole (pie) diagram, shading a pie diagram to 

represent a fraction less than 1, comparing two fractions less than 1 using part-whole 

representation, and adding fractions less than 1 using part-whole representation 

(diagram), are established at Level 1.  

Table 6.22 The estimates of the conditional probabilities 𝜋ଵ௝  of the conceptual knowledge 
items falling at Level 1 for Model 2 

Items 𝜃ଵ௜  = 1  𝜃ଵ௜  = 0 

  
Correct 

𝜋ଵ௝ଵ 
Incorrect 
1 − 𝜋ଵ௝ଵ 

Correct 
𝜋ଵ௝଴ 

Incorrect 
          1-𝜋ଵ௝଴ 

ConT1Q1 0.9567 0.0433 0.2045 0.7955 
ConT2Q1 0.9657 0.0343 0.1982 0.8018 
ConT3Q1 0.7837 0.2163 0.1917 0.8083 
ConT7Q1 0.9356 0.0644 0.2041 0.7959 

 

6.3.3.1.2 Item Analysis at Level 2  

Four items were hypothesized at Level 2 (c=2, j=4, 5, 6, 8). These items were items 

Cont1Q2 (generating an equivalent fraction from a pie diagram), ConT1Q3 (generating 

a fraction from an unequal partition of a pie diagram), ConT3Q2 (comparing fractions 

less than 1 with different denominators using a part-whole diagram), and ConT7Q2 

(adding fractions with different denominators using a part-whole 

representation/diagram). 

The results showed that the students who had competencies at Level 2 (θଶ௜ = 1) 

were highly likely to answer Items ConT1Q2, ConT3Q2, and ConT7Q2 correctly, with the 

probabilities being greater than 80%, while item ConT1Q3 was about 65% (the cut-off 

point of 𝜋௖௝ଵ). These probabilities were used to place each item at a particular level, as 

presented in Table 6.23. On the other hand, students who did not have competencies at 

Level 2 (θଶ௜ = 0) were less likely to answer the items correctly by chance, with the 

probability being less than 38%. The results are shown in Table 6.23. 
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Table 6.23 The estimates of the conditional probabilities 𝜋௖௝௭  of the conceptual knowledge 
items falling at Level 2 for Model 2 

Items 𝜃ଶ௜ = 1 𝜃ଶ௜  = 0 

  
Correct 

𝜋ଶ௝ଵ 
Incorrect 
1 − 𝜋ଶ௝ଵ 

Correct 
𝜋ଶ௝଴ 

Incorrect 
1-𝜋ଶ௝଴ 

ConT1Q2 0.9075 0.0925 0.3792 0.6208 
ConT1Q3 0.6558 0.3442 0.1254 0.8746 
ConT3Q2 0.8076 0.1924 0.2439 0.7561 
ConT7Q2 0.8817 0.1183 0.3666 0.6334 

 

The results discussed above indicate that item ConT1Q3 is rather ambiguous at 

Level 2 and this item could be moved to the upper level. In contrast, the results show 

that items ConT1Q2, ConT3Q2, and ConT7Q2 are suitable to be placed at Level 2. These 

results support the hypothesis that the competencies underpinning items ConT1Q2, 

ConT3Q2, and ConT7Q2 emerge at this level, namely writing an equivalent fraction for 

a fraction less than 1, comparing fractions less than 1 with different denominators using 

a part-whole diagram, and adding fractions with the different denominators using 

diagram representations.  

6.3.3.1.3 Item Analysis at Level 3  

Seven items were hypothesized at Level 3 (c=2, j=9,10,11,12,13,14,15,16,17,18). These 

items were items ConT1Q4 (generating an improper fraction from a pie representation), 

ConT1Q5 (generating an equivalent of an improper fraction from a pie diagram), 

ConT2Q2 (shading a pie diagram to represent an improper fraction), ConT3Q3 

(comparing two improper fractions using part-whole representation), ConT4Q1 

(generating a fraction less than 1 on a number line), ConT4Q2 (generating a fraction less 

than 1 on a number line with a constraint), and ConT4Q3 (generating fractions greater 

than 1 on a number line). 

The results showed that the probability for students who had competencies at 

Level 3 (θଷ௜ = 1) would answer all the items correctly were greater than 70%. Moreover, 

the probability that the students who did not have the competencies  at Level 3 (𝜃ଷ௜  = 

0) would answer the items by chance correctly were small (less than 33%). The results 

are shown in Table 6.24. 



 

 

222 

 

Table 6.24 The estimates of the conditional probabilities 𝜋ଷ௝௭ of the conceptual knowledge 
items falling at Level 3 for Model 2 

Level 3     
Items 𝜃ଷ௜  = 1 𝜃ଷ௜  = 0 

  
Correct 

𝜋ଷ௝ଵ 
Incorrect 

1-𝜋ଷ௝ଵ 
Correct 

𝜋ଷ௝଴ 
Incorrect 

1-𝜋ଷ௝଴ 

ConT1Q4 0.7573 0.2427 0.1087 0.8913 
ConT1Q5 0.7007 0.2993 0.0783 0.9217 
ConT2Q2 0.8482 0.1518 0.3213 0.6787 
ConT3Q3 0.8416 0.1584 0.1321 0.8679 
ConT4Q1 0.8585 0.1415 0.0691 0.9309 
ConT4Q2 0.8656 0.1344 0.0419 0.9582 
ConT4Q3 0.7828 0.2172 0.0474 0.9525 

Therefore, items ConT1Q4, ConT2Q2, ConT1Q5, ConT3Q3, ConT4Q1, ConT4Q2, 

and ConT4Q3 are suitable for placement at level 3. These results indicate that the 

competencies corresponding with these items, shading a pie diagram to represent an 

improper fraction, comparing improper fractions with different denominators using a 

part-whole diagram, putting a proper fraction on a number line, putting a proper 

fraction on a number line with a constraint, and putting fractions, including an improper 

fraction and a mixed number, on a number line, emerge at this level.  

6.3.3.1.4 Item Analysis at Level 4 

Two items were hypothesized at Level 4 (c=4, j=16,17). These items are ConT5Q1 

(writing the biggest fraction they can) and Item ConT5Q1 (writing the smallest fraction 

they can). 

The results showed that the students who had competencies at Level 4 (θସ௜ = 1) 

are likely to answer items ConT5Q1 and ConT5Q2 correctly with a probability greater 

than 80%. The probability students who did not have Level 4 competencies (θସ௜ = 0) 

would answer these items correctly were very small; about 5%. The results are 

presented in Table 6.25. 

From the results discussed above, it can be inferred that Items ConT5Q1 and 

ConT5Q2 are suitable for placement at Level 4. The results support the hypothesis that 

the competencies of writing the biggest fraction they can and writing the smallest 

fraction they can, are established this level.  
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Table 6.25 The estimates of the conditional probabilities 𝜋௖௝௭  of the conceptual knowledge 
items falling at Level 4 for Model 2 

Items 𝜃ସ௜= 1 𝜃ସ௜  = 0 

  
Correct 

𝜋ସ௝ଵ 
Incorrect 

1-𝜋ସ௝ଵ 
Correct 

𝜋ସ௝଴ 
Incorrect 

1-𝜋ସ௝଴ 

ConT5Q1 0.8205 0.1795 0.0516 0.9484 
ConT5Q2 0.8356 0.1644 0.0513 0.9487 

 

6.3.3.1.5 Item Analysis at Level 5  

Two items (c=5, j=18,19) were hypothesized at this level: item ConT6Q1 (finding how 

many fractions lie between two-fractions) and item ConT6Q2 (finding how many 

fractions lie between two-pseudo successive fractions). 

The results show that the students who had competencies at Level 5 (𝜃ହ = 1) had 

a high probability (greater than 80%) of answering items ConT6Q1 and ConT6Q2 

correctly. The students were unlikely to get correct answers by guessing because the 

probability of the students who had no competencies  at this level of answering these 

items correctly were very small, less than 5%. The results are shown in Table 6.26. 

Table 6.26 The estimates of the conditional probabilities 𝜋ହ௝௭ of the conceptual knowledge 
items falling at Level 5 for Model 2 

Items 𝜃ହ௜  = 1 𝜃ହ௜ = 0 

  
Correct 

𝜋ହ௝ଵ 
Incorrect 
1-𝜋௖௝ଵ 

Correct 
𝜋ହ௝଴ 

Incorrect 
1-𝜋ହ௝଴ 

ConT6Q1 0.8111 0.1889 0.0345 0.9655 
ConT6Q2 0.8164 0.1836 0.0400 0.9600 

The results from Table 6.26 indicate that items ConT6Q1 and ConT6Q2 are suitable 

for placement at Level 5. The results support the hypothesis that the competencies of 

finding how many fractions lie between two fractions, and finding how many fractions 

lie between two-pseudo in successive fractions are established at this level. 

6.3.3.1.6 Item Analysis at Level 6  

Item ConT8Q1 (multiplying fractions using a diagram representation) and ConT8Q2 

(dividing fractions using a diagram representation) were hypothesized at Level 6. 

The results showed that the students who had competencies at Level 6 (θ଺=1) had 

probabilities greater than 80% of answering items ConT8Q1 and ConT8Q2 correctly. In 
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contrast, the probability for students who had no competencies at Level 4 (θ଺ = 0) meant 

that they were unlikely to answer items ConT8Q1 and ConT8Q2 correctly, with a 

probability of less than 4%.  

Table 6.27 The estimates of the conditional probabilities 𝜋଺௝௭ of the conceptual knowledge 
items falling at Level 6 for Model 2 

Items 𝜃଺௜  = 1 𝜃଺௜ = 0 

  
Correct 

𝜋଺௝ଵ 
Incorrect 
1-𝜋଺௝ଵ 

Correct 
𝜋଺௝଴ 

Incorrect 
1-𝜋଺௝଴ 

ConT8Q1 0.8037 0.1963 0.0323 0.9677 
ConT8Q2 0.8052 0.1948 0.0340 0.9661 

 

From the results discussed above, items ConT8Q1 and ConT8Q2 are suitable for 

placement at Level 6. The results support the hypothesis that the competencies of 

multiplying fractions and dividing fractions using a diagram representation are 

established at this level. 

6.3.3.2 Analysis to Estimate Students’ Levels in the Learning Progression 

The purpose of the analysis was to estimate students’ levels in the conceptual 

knowledge dimension based on Model 2 using Bayesian Networks Modelling. As 

described in Chapter 5, the Netica software was used to estimate the posterior 

probabilities of the students’ levels (𝜽|𝜸, 𝝅, 𝒙) (Section 5.2.3.3.2). 

Figure 6.15 shows the prior of Bayesian Networks Model 2 in the Netica graph. The 

prior probabilities in the nodes of levels were compiled from the estimates of 𝜸 in 

Equation (5.8). The prior probabilities in the nodes of items were compiled from the 

estimates of 𝜋௖௝௭ in Equation (5.9). The estimates of 𝜸 and 𝜋௖௝௭ were generated from 

the WinBugs software using MCMC estimation as detailed in Section 5.2.3. 

 The results showed that the prior probabilities 𝜸 for level 1 to level 6 are about 

98%, 53%, 25%, 13%, 7%, and 6%. These prior probabilities reflected the belief about 

the proportion of students’ levels in the population. These prior probabilities were 

updated when individual student’s responses, 𝑥௜௝, were entered into the network to 

produce the posterior probabilities 𝛾 of the student. The posterior probabilities 𝛾 for 

each individual student showed the probabilities of the student having the 

competencies required for those levels. 
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The results showed that the prior probabilities of getting correct answers for each 

item (compiled in Netica, based on the estimates of 𝜋௖௝௭) were decreased from the items 

at the lowest level to the highest level. For example, the prior probabilities to answer 

items at Level 1 correctly were between 77% - 95%. However, the prior probabilities to 

answer items at Level 2 correctly were between 34%-59%; Level 3 are between 23%-45;, 

Level 4 are about 15%; Level 5 are about 10% and Level 6 are about 8%. These prior 

probabilities were consistent with the hierarchical levels of the proposed model of 

learning progression, which the items in the upper levels being more difficult than the 

lower items.
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Figure 6.15 A Netica Graph of the prior probability for the Conceptual Knowledge Dimension generated from Model 2 of Bayesian Networks Modelling.  
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The posterior probabilities of the levels 𝑃(𝜽|𝜸, 𝝅, 𝒙) of 516 students were 

estimated using the Netica software. As examples, the results of the Netica estimation 

for two particular students with IDs 44 and 301 are presented in Figures 6.16 and 6.17 

respectively. The student with ID 44 correctly answered all the items at Level 1, most of 

the items at Level 2, and only 1 item at Level 3. The scores are presented in Table 6.28. 

From these scores, the Netica generated posterior probabilities of the levels as follows: 

Level 1 was 100%, Level 2 was 83%, and Level 3 to Level 6 were less than 1%. These 

results showed that the student had a high probability of having the competencies at 

Levels 1 and 2, but small probability to have the competencies at the upper levels. Based 

on these results, the student was assigned to Level 2.  

The results showed that the student with ID 301 correctly answered all the items 

at Level 1, made a mistake at Level 2, and correctly answered the items from Levels 3 to 

5 (Table 6.29). Netica produced posterior probabilities of the levels for student 301 as 

follows: for Levels 1 to 4 they were close to 100%, while for Levels 5 and 6 they were 

less than 2%. These results showed that the student had a high probability of having the 

competencies at Levels 1 to 4, but had low probability of having the competencies at 

Levels 5 and 6. Hence, the student with ID 301 was assigned to Level 4.  

In a few extreme cases, a few students did not demonstrate their competencies 

for all the proposed levels. For example, a student with ID 61 had a correct answer for 

one item at Levels 1, 2 and 3. The posterior probabilities of the levels for this student 

are presented in Figure 6.18. The results showed that the posterior probabilities for this 

student were 13% for Level 1 and below 10% for Levels 2 to 6. These results showed that 

the student had low probabilities of having the competencies of all the levels. Hence, 

the student was assigned to Level 0. Level 0 was the level for the group of students who 

did not have sufficient competencies at Level 1 and above.   
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Table 6.28 The raw sores of the student with ID 44 

 

 

 

 

Figure 6.16 A Netica Graph of the posterior probability (𝜃௜|𝜸, 𝝅, 𝑥௜௝) for the student with ID 44 (𝑖=44, j=1,…,21).  
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Table 6.29 The raw sores of student 301 

 

 

 

Figure 6.17 A Netica Graph of the posterior probability (𝜃௜|𝜸, 𝝅, 𝑥௜௝) for the student with ID 301 (𝑖=301, j=1,…,21).  

 

 

 



 

 

230 

 

Table 6.30 The raw scores of student 61 

 

 

 

 

Figure 6.18 A Netica Graph of the posterior probability (𝜃௜|𝜸, 𝝅, 𝑥௜௝) for the student with ID 61 (𝑖=61, j=1,…,21). 
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A similar procedure for assigning students to the conceptual knowledge dimension 

discussed above was applied to assign all 516 students. The distribution of the students’ 

levels estimated using Model 2 is summarized in Figure 6.19. 

 

Figure 6.19 The distribution of students‘ levels on the conceptual knowledge dimension 
generated from Model 2 

The results showed that the highest percentage of students was at Level 1, which 

was 48.06%. After that, the number of students from Level 2 to Level 6 decreased as 

follows: 28.68%, 15.31%, 6.40%, 43.84%, 1.55% and 0.97%. The lowest percentage was 

at Level 0 which is only 0.58%.  

6.3.4 Model 2: Analysis of The Procedural Knowledge Dimension  

The previous processes being applied for Model 2 were applied for the procedural 

knowledge dimension. 

6.3.4.1 Item Analysis 

This section focuses on allocating the items across the levels of the procedural 

knowledge dimension, based on the conditional probability item analysis obtained from 

Model 2. The cut-off points presented in Tables 6.20 and 6.21 were used to assign the 

items into the levels of the learning progression.  
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6.3.4.1.1 Item Analysis at Level 1  

Item ProT1Q1 (adding fractions with the same denominator) was hypothesized at Level 

1 (c=1, j=1). This item was used to test students’ procedural competency in adding 

fractions with the same denominator. The results showed that the students who had 

competency at this level (θଵ௜ = 1) were highly likely to answer item ProT1Q1 correctly, 

with the probability being about 94%, while students who did not have the competency 

at Level 1 (θଵ௜  = 0) were unlikely to answer this item correctly, with a probability of about 

21%. The results are shown in Table 6.31. 

The results indicate that item ProT1Q1 is suitable to be placed at Level 1 of the 

procedural knowledge dimension. These results support the hypothesis that the 

competency of adding fractions with the same denominator that underpins item 

ProT1Q1 is established at Level 1. 

Table 6.31 The estimates of the conditional probabilities 𝜋ଵ௝௭  of the procedural knowledge items 
at Level 1 for Model 2 

Items 𝜃ଵ௜  = 1 𝜃ଵ௜  = 0 

  
Correct 

𝜋ଵ௝ଵ 
Incorrect 
1 − 𝜋ଵ௝ଵ 

Correct 
𝜋ଵ௝଴ 

Incorrect 
          1-𝜋ଵ௝଴ 

ProT1Q1 0.9410 0.0590 0.2070 0.7930 

 

6.3.4.1.2 Item Analysis at Level 2  

Item ProT1Q2 (adding fractions with different denominators) was hypothesized as being 

at Level 2 (c=2, j=2). This item was used to test students’ competency in adding proper 

fractions with different denominators. 

The results showed that the students who had competency at Level 2 (θଶ௜  = 1), 

had a probability of about 91% to answer the item correctly. In contrast, students who 

did not have competency at Level 2 (θଶ௜  = 0) only had about 17% probability of 

answering this item correctly. These results indicate that Item ProT1Q2 is suitable to be 

placed at Level 2, to support the hypothesis that the competency of adding proper 

fractions with different denominators is established at this level. The results are shown 

in Table 6.32. 
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Table 6.32 The estimates of the conditional probabilities 𝜋ଶ௝௭ of the procedural knowledge 
items at Level 2 for Model 2 

Items 𝜃ଶ௜  = 1 𝜃ଶ௜ = 0 

 

Correct 
𝜋ଶ௝ଵ 

Incorrect 
1 − 𝜋ଶ௝ଵ 

Correct 
𝜋ଶ௝଴ 

Incorrect 
1 − 𝜋ଶ௝଴ 

ProT1Q2 0.9112 0.0888 0.1720 0.8280 

 

6.3.4.1.3 Item Analysis at Level 3  

Four items were hypothesized at Level 3 for the procedural knowledge dimension (c=3, 

j=3, 4, 5, 6, 7). These items were ProT1Q4 (adding fractions with a mixed number), 

ProT1Q3 (subtracting a fraction from a whole number), ProT2Q1 (multiplying a fraction 

with a fraction), ProT2Q2 (multiplying a fraction with a whole number), and ProT2Q3 

(dividing a fraction with a fraction).  

The results showed that the students who had competencies at Level 3 (𝜃ଷ௜ = 1) 

were likely to answer items ProT1Q3, ProT1Q4, ProT2Q2, and ProT2Q3 correctly, with 

the probabilities being greater than 80%, while the probability for item ProT2Q1 was 

about 77%. Moreover, the students who had no competencies at Level 3 (θଷ௜  = 0) were 

unlikely to answer the items correctly, with the probabilities being less than 39%. The 

results are presented in Table 6.33. 

The results indicate that items ProT1Q3, ProT1Q4, ProT2Q1, ProT2Q2 and 

ProT2Q3 are suitable to be placed at Level 3. These results support the hypothesis that 

the competencies of subtracting a fraction from a whole number, adding a fraction with 

a mixed number, multiplying a fraction with a fraction, multiplying a fraction with a 

whole number, and dividing a fraction with a fraction, are established at Level 3. 

Table 6.33 The estimates of the conditional probabilities 𝜋ଷ௝௭ of the procedural knowledge 
items at Level 3 for Model 2 

Items 𝜃ଷ௜ = 1  𝜃ଷ௜  = 0 

 
Correct 

𝜋ଷ௝ଵ 
Incorrect 
1 − 𝜋ଷ௝ଵ 

Correct 
𝜋ଷ௝଴ 

Incorrect 
          1-𝜋ଷ௝଴ 

ProT1Q3 0.8037 0.1963 0.2017 0.7983 
ProT1Q4 0.9255 0.0745 0.3887 0.6113 
ProT2Q1 0.7685 0.2315 0.1143 0.8857 
ProT2Q2 0.9277 0.0723 0.356 0.644 
ProT2Q3 0.9351 0.0649 0.2322 0.7678 
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6.3.4.1.4 Item Analysis at Level 4  

Two items were hypothesized at Level 4 (c=4, j=8, 9). These items were ProT2Q4 

(multiplying a mixed number with a mixed number) and ProT2Q5 (dividing a mixed 

number with a whole number). 

The results showed that the students who had competencies at Level 4 (𝜃ସ௜  = 1) 

were likely to answer Items ProT2Q4 (about 70%) and ProT2Q5 (about 80%) correctly, 

while students who did not have competencies at Level 4 (θସ௜= 0) were unlikely to 

answer the items correctly, with the probability being less than 13%. The results are 

shown at Table 6.34. 

The results indicate that Items ProT2Q4 and ProT2Q5 are suitable to be placed at 

Level 4. These results support the hypothesis that the competencies of multiplying a 

mixed number with a mixed number, and dividing a mixed number with a whole number 

are established at this level. 

Table 6.34 The estimates of the conditional probabilities 𝜋ସ௝௭ of the procedural knowledge 
items at Level 5 for Model 2 

Items 𝜃ସ௜  = 1  𝜃ସ௜  = 0 

  
Correct 

𝜋ସ௝ଵ 
Incorrect 
1 − 𝜋ସ௝ଵ 

Correct 
𝜋ସ௝଴ 

Incorrect 
          1-𝜋ସ௝଴ 

ProT2Q4 0.6917 0.3083 0.1283 0.8717 
ProT2Q5 0.8032 0.1968 0.1071 0.8929 

 

6.3.4.1.5 Item Analysis at Level 5  

Items ProT3Q1 (solving a nested fraction operation with the numerator is a fraction 

subtraction) and ProT3Q2 (solving a nested fraction operation with the numerator is a 

fraction division) were hypothesized at Level 5 (c=5, j=10,11). 

The results showed that the students who had competencies at Level 5 (𝜃ହ௜  = 1) 

were highly likely to answer items ProT3Q1 and ProT3Q2 correctly, with the probabilities 

being about 85% and 77% , while students who had no procedural competencies (𝜃ହ௜  = 

0) were unlikely to answer the items correctly with the probability being less than 12%.  

The results are presented in Table 6.35. 
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The results indicate that items ProT3Q1 and ProT3Q2 were fit to be placed at Level 

5. The results support the hypothesis that the competencies underlying these items, 

solving a nested fraction operation with the numerator is a fraction subtraction, and solving 

a nested fraction operation with the numerator is a fraction division, are established at 

this level.  

Table 6.35 The estimates of the conditional probabilities 𝜋ହ௝௭ of the procedural knowledge 
items at Level 5 for Model 2 

Items 𝜃ହ௜ = 1  𝜃ହ௜  = 0 

  
Correct 

𝜋ହ௝ଵ 
Incorrect 
1 − 𝜋ହ௝ଵ 

Correct 
𝜋ହ௝଴ 

Incorrect 
          1-𝜋ହ௝଴ 

ProT3Q1 0.8451 0.1549 0.0905 0.9095 
ProT3Q2 0.7664 0.2336 0.1243 0.8757 

 

6.3.4.1.6 Item Analysis at Level 6  

Item ProT3Q3 (solving a fraction operation with a two-level nested fraction) was 

hypothesized at Level 6 (c=6, j=12). This item was designed to test students’ fluency in a 

complex fraction operation. 

The results showed that the students who had competencies at Level 6 (𝜃଺௜  = 1) 

had a high probability of answering this item correctly, at about 78%, while students 

who did not have the competencies at this level (𝜃଺௜  = 0) had a low probability (less than 

5%) of answering Item ProT3Q3 successfully. The results are presented in Table 6.36. 

The results indicate that item ProT3Q3 is suitable to be placed at Level 6. These 

results support the hypothesis that the competency underlying item ProT3Q3, solving 

complex fraction operations with two or more nested fraction operations, is established 

at this level. 

Table 6.36 The estimates of the conditional probabilities 𝜋଺௝௭ of the procedural knowledge 
items at Level 5 for Model 2 

Items 𝜃଺௜ = 1  𝜃଺௜ = 0 

  
Correct 

𝜋௖௝ଵ 
Incorrect 
1 − 𝜋௖௝ଵ 

Correct 
𝜋௖௝଴ 

Incorrect 
          1-𝜋௖௝଴ 

ProT3Q3 0.7821 0.2179 0.0454 0.9546 

6.3.4.2 Analysis to Estimate Students’ Levels in the Progression 

Similar to the process of estimating students’ levels in the conceptual knowledge 

dimension generated from Model 2 (Section 6.3.2.1.2), the prior probabilities of 
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Bayesian Networks for procedural knowledge were also built based on the estimates of 

𝜸 in Equation (5.8) and 𝜋௖௝௭ in Equation (5.9). Using the Netica software, the prior 

probabilities in the nodes of levels were compiled from the estimates of 𝜸 in Equation 

(5.8), and the prior probabilities in the nodes of items were compiled from the estimates 

of 𝜋௖௝௭ in Equation (5.9). Both 𝜸 and 𝜋௖௝௭ were generated from the WinBugs software 

using MCMC estimation, as detailed in Section 5.2.3.1. The priors of Bayesian Network 

generated from the Netica are presented in Figure 6.20. 
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Figure 6.20 A Netica Graph of the prior probability for the Procedural Knowledge Dimension generated from Model 2 of Bayesian Networks Modelling.  
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Based on the students’ responses, the Netica software updated the priors in 

Figure 6.20 to estimate the students’ levels as described in Section 5.2.3.3.2. Netica 

estimated the posterior probabilities of the levels 𝑃(𝜽|𝜸, 𝝅, 𝒙) of 516 students. Figures 

6.21 and 6.22 show the examples of Bayesian Networks’ estimation using the Netica 

software for students with IDs 110 and 376. Their raw scores are presented in Table 6.37 

and 6.38 respectively. 

The results showed that the student with ID 110 correctly answered the items at 

Level 1 and Level 2, and most of the items at Level 3. The student did not correctly 

answer all the items at Levels 4, 5 and 6. The results showed that the posterior 

probabilities for the student were: 99.6%, 99.3%, and 98.4% for Level 1 to Level 3 

respectively; 15% at Level 4; and less than 6% at Levels 5 and 6. Hence, the student was 

assigned to Level 3 because the student had high probabilities to have the competencies 

at Level 3 and below, but had low probabilities to have the competencies at the upper 

levels. The student posterior probabilities are presented in the node level of the Netica 

graph in Figure 6.21. 

Similarly, the student with ID 376 correctly answered all the items at Level 1, 

Level 2, Level 3 and Level 5 but a made a mistake in Levels 4 and 6. Using the Netica 

software, the posterior probabilities for the student with ID 376 were generated and 

presented in Figure 6.22. The results showed that the posterior probabilities for the 

student with ID 376 were greater than 90% for Level 1 to Level 5, and 39.5% for Level 6. 

Hence, because the student had a high probability to have the competencies at Level 5 

and below, but had a low probability to have the competencies at the upper level (Level 

6), the student with ID 376 was assigned to Level 5.  

In practice, students might not have competencies from all the proposed levels. In 

this situation, the students were assigned to level 0. For example, the student with ID 9 

had zero scores for all the given items (presented in Table 6.39). The posterior 

probabilities for student 9 were generated using the Netica software and are presented 

in Figure 6.23. The results showed that the posterior probabilities for the students were 

about 15% at Level 1 and less that 2 % for the upper levels. Hence, the student was 

assigned to Level 0. 
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Table 6.37 The raw sores of student with ID 110 

 

 

 

 

Figure 6.21 A Netica Graph of the posterior probability P(𝜃௜|𝜸, 𝝅, 𝑥௜௝) for the student with ID 110 (𝑖=110, j=1,…,12).  
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Table 6.38 The raw sores of the student with ID 376 

 

 

 

Figure 6.22 A Netica Graph of the posterior probability P(𝜃௜|𝜸, 𝝅, 𝑥௜௝) for the student with ID 376 (𝑖=110, j=1,…,12)..  
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Table 6.39 The raw sores of the student with ID 9 

 

 

 

Figure 6.23 A Netica Graph of the posterior probability P(𝜃௜|𝜸, 𝝅, 𝑥௜௝) for the student with ID 9 (𝑖=9, j=1,…,12).  
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The same procedure for estimating students’ levels discussed above was applied 

to all the 516 students who participated in this study. The distribution of the students’ 

levels are presented in percentage values in Figure 6.24.  

 

Figure 6.24 The distribution of the students‘ levels on the procedural knowledge dimension 
generated from Model 2 

From Figure 6.24, the majority of students were at Level 4 (about 31.20%), followed 

by students at Level 1 (about 20.35%). The percentages for students at Levels 3 and 6 

were 16.28% and 14.34% respectively, while for students at Levels 2 and 5 were 6.59% 

and 5.43%. Only about 5.81% of students were at Level 0. 

6.3.5 Validation of Fraction Learning Progression 

The aim of the empirical validation for the proposed learning progression was to seek 

evidence to support the hypothesis that the progression of students in learning fractions 

followed the hypothesized levels of the conceptual and procedural knowledge 

dimensions. Two types of analyses were performed to validate the proposed level of 

fraction learning progression: the item analysis and the analysis at student level. In the 

section that follows, the results of the item analysis produced from Models 1 and 2 were 

compared and used to validate the competencies in the progression levels. 

Subsequently, the analysis at student level was performed to examine how many 

students deviated from the order hypothesized by the learning progression.  

6.3.5.1 Validation using Item Analysis 

The item analysis collected evidence of the location of the items on the hypothesized 

levels of the conceptual and procedural knowledge dimensions. Allocating the items into 

the hypothesized levels supports the inferences about the competencies underlying the 

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Procedural 5.81% 20.35% 6.59% 16.28% 31.20% 5.43% 14.34%
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items for each level. The analysis is presented in two consecutive sections, the item 

analysis for the conceptual knowledge dimension and the item analysis for the 

procedural knowledge dimension. 

6.3.5.2 Item Analysis for the Conceptual Knowledge Dimension 

The results of the analysis using Model 1 and Model 2 showed that items Cont1Q1, 

onT2Q1, ConT3Q1, and ConT7Q1 were placed at Level 1. These items reflected the 

competencies of generating a fraction from a part-whole (pie) diagram, shading a pie 

diagram to represent a fraction less than 1, comparing two fractions less than 1 using 

part-whole representation, and adding fractions less than 1 using part-whole 

representation respectively. Hence, these results support the hypothesis that 

understanding fractions as a representation of part-whole emerge at the lowest level of 

the conceptual knowledge dimension. The results are presented in Table 6.40 

Table 6.40 Item analysis of Levels 1 to 6 of the conceptual knowledge dimension based on 
Model 1 and Model 2 

Item Model 1- Assigned Level Model 2- Assigned Level 

Cont1Q1 Level 1 Level 1 

ConT2Q1 Level 1 Level 1 

ConT3Q1 Level 1 Level 1 

ConT7Q1 Level 1 Level 1 

Cont1Q2 Level 2 Level 2 

ConT1Q3 Level 3 Level 2 

ConT3Q2 ambiguous  Level 2 

ConT7Q2 Level 2 Level 2 

ConT1Q4 Level 3 Level 3 

ConT1Q5 Level 3 Level 3 

ConT2Q2 Level 3 Level 3 

ConT3Q3 Level 3 Level 3 

ConT4Q1 Level 3 Level 3 

ConT4Q2 Level 3 Level 3 

ConT4Q3 Level 3 Level 3 

ConT5Q1 Level 4 Level 4 
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ConT5Q2 Level 4 Level 4 

ConT6Q1 Level 5 Level 5 

ConT6Q2 Level 5 Level 5 

ConT8Q1 Level 6 Level 6 

ConT8Q2 Level 6 Level 6 

The results from the item analysis from both models indicated that items ConT1Q2 

(generating an equivalent fraction from a pie diagram) and ConT7Q2 (adding fractions 

with different denominators using a part-whole representation/diagram) should be 

placed at Level 2. However, Models 1 and 2 produced different results on placing items 

ConT1Q3 and ConT3Q2. For item ConT1Q3 (generating a fraction from an unequal 

partition of a pie diagram), the results from Model 1 indicated that this item should be 

placed at Level 3, while Model 2 showed that this item should be placed at Level 2. From 

the previous tables (Tables 6.5 and 6.23), the results showed that the conditional 

probability for students at Level 2 to answer this item correctly was 35.55% for Model 1 

and 65.58% for Model 2. The result from Model 1 showed that this item was too difficult 

to be placed at Level 2, while the result from Model 2 showed an uncertainty of about 

34.42% (obtained from 100%-65.58%) to place this item at Level 2. Combining these 

results, it was decided to move item ConT1Q3 to the upper level (Level 3). 

For item ConT3Q2 (compare proper fractions with different denominators), the 

result from Model 1 showed that this item was ambiguous, while the result from Model 

2 indicated that this item should be placed at Level 2. The results from Model 1 and 

Model 2, which are presented in Tables 6.5 and 6.23, showed that the conditional 

probability for students at Level 2 to solve this item correctly was 52.22 % and 80.76% 

respectively. As the result from Model 1 did not show that Item ConT3Q2 should be 

placed at 2 or 3 (ambiguous), while the result from Model 2 clearly showed that the item 

should be placed at Level 2, it was decided that this item should be retained at Level 2. 

Based on the discussion above, items ConT1Q2, ConT3Q2, and ConT7Q2 are 

placed at Level 2. These results support the hypothesis that the competencies underpin 

the items writing an equivalent fraction for a fraction less than 1, comparing proper 
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fractions with different denominators, and adding fractions with different denominators 

in diagram representations emerge at Level 2 of the conceptual knowledge dimension. 

Table 6.41 The validated competencies for each level of the conceptual knowledge dimension 

Level Competency 

Level 1 
  
  
  

Generating a fraction from a part-whole (pie) diagram 

Shading a pie diagram to represent a fraction less than 1 

Comparing two fractions less than 1 using part-whole representation 

Adding fractions less than 1 using part-whole representation 

Level 2 
  
  

Writing an equivalent fraction for a fraction less than 1 

Comparing proper fractions with different denominators 

Adding fractions with different denominators using a diagram 

Level 3 
  
  
  
  
  

Generating a fraction from an unequal partition of a pie diagram 

Generating an improper fraction from a pie diagram representation 

Generating an equivalent of an improper fraction from a pie diagram 

Shading a pie diagram to represent an improper fraction 

Comparing improper fractions with different denominators using a part-whole diagram 

Putting a proper fraction on a number line, 

Putting a proper fraction on a number line with a constraint 

Putting fractions including an improper fraction and a mixed number on a number line 

Level 4 
  

Writing the biggest fraction they can 

Writing the smallest fraction they can 

Level 5 
  

Finding how many fractions lie between two fractions 

Finding how many fractions lie between two pseudo successive fractions  

Level 6 
  

Multiplying fractions using a diagram representation  

Dividing fractions using a diagram representation  

For the items at Levels 3 to 6, Model 1 and Model 2 produced the same results. 

For Level 3, the results from Models 1 and 2 showed that items ConT1Q4, ConT1Q5, 

ConT2Q2, ConT3Q3, ConT4Q1, ConT4Q2, and ConT4Q3 should be placed at Level 3. 

However, there was an additional item, ConT1Q3, at this level which came from Level 2. 

These results indicate that the competencies for  generating a fraction from an unequal 
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partition of a pie diagram (ConT1Q3), generating an improper fraction from a pie 

representation (ConT1Q4),  generating an equivalent of improper fraction from a pie 

diagram (ConT1Q5); shading a pie diagram to represent an improper fraction 

(ConT2Q2), comparing improper fractions with different denominators using a part-

whole diagram (ConT3Q3), putting a proper fraction on a number line (ConT4Q1),  

putting a proper fraction on a number line with a constraint (ConT4Q2), and putting 

fractions including an improper fraction and a mixed number on a number line 

(ConT4Q3) emerge at this level. 

Similarly, Models 1 and 2 had the same results, placing items ConT5Q1 and 

ConT5Q2 at Level 4, items ConT6Q1 and ConT6Q2 at Level 5, and items ConT8Q1 and 

ConT8Q2 at Level 6. These results support the hypothesis that the competencies for 

writing the biggest fraction they can (ConT5Q1), and writing the smallest fraction they 

can (ConT5Q2) emerge at Level 4; the competencies of finding how many fractions lie 

between two fractions (ConT6Q1) and finding how many fractions lie between two 

pseudo successive fractions (ConT6Q2) emerge at Level 5; and the competencies of 

multiplying fractions using a diagram representation (ConT8Q1)and dividing fractions 

using a diagram representation (ConT8Q1) emerge at Level 6. 

From the results discussed above, the revised competencies in the conceptual 

knowledge dimension, based on the location of the items in the model of fraction 

learning progression, are summarized in Table 6.41 above. 

6.3.5.3 Item Analysis for the Procedural Knowledge Dimension 

The results of procedural item analysis using Model 1 and Model 2 are presented 

in Table 6.42. The results show that both Models 1 and 2 placed item ProT1Q1 at the 

lowest level of the procedural knowledge dimension. This supports the inference that 

the competency for adding fractions with the same denominator emerges at level 1.  

Similarly, the results from both models also placed item ProT1Q2 at Level 2. These 

results support the inference that the competency of adding fractions with different 

denominator is established at Level 2. 
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Table 6.42  Item analysis of Levels 1 to 6 based on Model 1 and Model 2 in the procedural 
knowledge dimension 

Item Model 1- Assigned Level Model 2- Assigned Level 

ProT1Q1 Level 1 Level 1 

ProT1Q2 Level 2 Level 2 

ProT1Q3 Level 3 Level 3 

ProT1Q4 Level 3 Level 3 

ProT2Q1 Ambiguous Level 3 

ProT2Q2 Level 3 Level 3 

ProT2Q3 Level 3 Level 3 

ProT2Q4 Level 4 Level 4 

ProT2Q5 Level 4 Level 4 

ProT3Q1 Level 5 Level 5 

ProT3Q2 Level 5 Level 5 

ProT3Q3 Level 6 Level 6 

Next, for Level 3, the results from Model 2 placed items ProT1Q3, ProT1Q4, 

ProT2Q1, ProT2Q2, and ProT2Q3 at Level 3. However, the results from Model 1 showed 

that item ProT2Q1 was ambiguous because the students at this level had only a 56% 

probability of answering the item correctly. In contrast, Model 2 estimated students who 

had competencies at Level 3 had a 76.85% chance of answering the item correctly with 

a small probability of guessing, 11.43%. Based on these results, item ProT2Q1 was 

retained at Level 3. These results support the inference that the competencies 

underlying the items, which are adding fractions with a mixed number, subtracting a 

fraction from a whole number, multiplying a fraction with a fraction, multiplying a 

fraction with a whole number, and dividing a fraction with a fraction, emerge at this 

level. 

The analyses from Models 1 and 2 had the same results in locating the items for 

Levels 4 to 6. The results from both Models indicate that items ProT2Q4 and ProT2Q5 

should be placed at Level 4; items ProT3Q1 and ProT3Q2 at Level 5; and item ProT3Q3 

at Level 6. These results support the hypothesis that the competencies underlying items 

ProT2Q4 and ProT2Q5, multiplying a mixed number with a mixed number, and dividing 

a mixed number with a whole number, are established at Level 4; the competencies 

underlying items ProT3Q1 and ProT3Q2, solving a nested fraction operation with the 

numerator is a fraction subtraction, and solving a nested fraction operation with the 

numerator is a fraction division, are established at Level 5; and the competency 
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underlying item ProT3Q3, solving a fraction operation with two-level nested fractions, 

is established at Level 6. 

The competencies in the procedural knowledge dimension which have been 

revised based on the results of the analyses from Models 1 and 2 are presented in Table 

6.43.  

Table 6.43 The validated competencies for each level of the procedural knowledge dimension 

Level Competency 

Level 1 Adding fractions with the same denominator 

Level 2 Adding fractions with a different denominator 

Level 3 
  
  
  
  

Adding fractions with a mixed number  

Subtracting a fraction from a whole number 

Multiplying a fraction with a fraction 

Multiplying a fraction with a whole number 

Dividing a fraction with a fraction. 

Level 4 
  

Multiplying a mixed number with a mixed number  

Dividing a mixed number with a whole number 

Level 5 
  

Solving a nested fraction operation with the numerator is a fraction subtraction 

Solving a nested fraction operation with the numerator is a fraction division 

Level 6 Solving a fraction operation with two level nested fractions  

 

6.3.5.4 Validation using Students’ Level Analysis 

The proposed model of fraction learning progressions provided a hypothetical pathway 

for students learning fractions through two-dimensional knowledge dimensions, 

conceptual and procedural knowledge. In each dimension, it was hypothesized that 

students learn fractions sequentially from the lower level to the upper level. Hence, in 

the proposed model, students at the upper level should also have competencies from 

the lower levels. 

From the hypothesis underlying the proposed model discussed above, one of the 

effective ways to evaluate the hierarchical levels of the proposed model was to collect 

empirical evidence from students’ responses that students had the competencies at the 

upper level but did not have the competencies at the lower level(s). Model 2 of the 

Bayesian Networks has an important feature to facilitate this validation. 

As discussed previously, Model 2 represented a parameter 𝜃ୡ௜  for each level of the 

proposed model of fraction learning progression. Hence, there were six parameters 𝜃ୡ௜  

for each conceptual and procedural knowledge dimension. These parameters 𝜃ୡ௜  were 
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interrelated so that 𝜃ୡ௜  at the upper level was conditional on 𝜃ୡ௜  at the lower level. A 

simple DAG in Figure 6.25 reflects the dependency between the levels of 𝜃ୡ௜  in Model 2. 

 

Figure 6.25 A simple DAG which represents the dependency between the levels 𝜃ୡ௜  in Model 2 of 
the Bayesian Networks Modelling 

The posterior probabilities of 𝜃ୡ௜  represented the probability of students having 

competencies at the corresponding level of 𝜃ୡ௜. Hence, to perform a model validation 

for a student who was assigned to a certain level, the posterior probabilities of the 

student at the lower level could be checked. The low posterior probabilities indicated 

that the student did not have sufficient competencies at the lower level, which showed 

the deviation of the proposed model. If there were too many cases that showing a 

deviation from the model, it would diminish the validity of the interpretation drawn 

from the proposed model of fraction learning progression. 

As an example, Figure 6.26 depicts the student with ID 358 who deviated from the 

proposed model of fraction learning progression for the conceptual knowledge 

dimension. From Figure 6.29, it can be observed that the student had a posterior 

probability of about 98.2% at Level 3, but only had a posterior probability of about 45.7% 

at Level 2. The results showed that the student had competencies at Level 3 but did not 

have sufficient competencies at Level 2. These results challenge the validity of the model 

of fraction learning progression. 

Based on the posterior probabilities of 516 students, an R program was developed 

to assess how many students showed competencies at the upper level yet had 

insufficient competencies at the lower level(s). A cut-off point of 70% of the posterior 

probabilities was created to discriminate between students who had sufficient 

competencies at a certain level (≥ 70%) and students who had no or insufficient 

competencies at that level (< 70%). The cut-off point of 70% was chosen to get ample 

evidence that the students with a probability of 70% or above were highly likely to have 

competencies at that level, while students with a probability below 70% were less likely 

to have the competencies at that level. The results are presented in Table 6.44. 
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Table 6.44 The distribution of students who fit and deviate from the proposed levels of 
fraction learning progression using Model 2. 

  Conceptual  Procedural 

Fit with the Hypothesis 506 512 
Deviate from the 
Hypothesis 10 (1.94%) 4 (0.78%) 

The results demonstrated that ten students (students with IDs 103, 149, 204, 273, 

279, 309, 358, 423, 468, and 516) were not consistent with the assumption of the 

fraction learning progression on the conceptual knowledge dimension. It means that 

they showed competencies at the upper level but not at the lower level(s). Similarly, 

four students (student with IDs 22, 177, 451, and 459) had procedural competencies at 

the upper level but did not have sufficient competencies at the lower levels. The number 

of deviations from both the conceptual and the procedural knowledge dimension was 

relatively small, at less than 5%. Therefore, it can be concluded that the students’ 

responses are consistent with the hierarchical assumption of the proposed levels of the 

learning progression model. 
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Figure 6.26 Netica Graph for the student with ID 358 who has deviated from the proposed model of fraction learning progression 
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6.4 Discussion 

The discussion of the research findings is organized into two main sections: the 

comparison of the Bayesian Networks Models 1 and 2 (Section 6.4.1) and the research 

contribution for educational measurement and assessment (Section 6.4.2). 

6.4.1 Comparison of the Bayesian Network Models 1 and 2 

The distribution of the students’ levels for both the conceptual and the procedural 

knowledge dimensions are presented in Figures 6.27 and 6.28. The results showed that 

Models 1 and 2 produced different estimates of the students’ levels. 

 

Figure 6.27 The distribution of the students’ conceptual levels based on Model 1 and Model 2 

 

Figure 6.28 The distribution of the students’ procedural levels based on Model 1 and Model 2 

From Figure 6.27, it can be observed that Level 0 was detected by Model 2 but not 

Model 1. For the conceptual knowledge dimension (Figure 6.27, the peak was at level 2 

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Model 1 20.16% 59.11% 14.92% 3.68% 1.36% 0.78%

Model 2 0.58% 48.06% 28.68% 15.31% 4.84% 1.55% 0.97%
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for Model 1 but at Level 1 for Model 2.  For Level 3 to Level 6, both models produced 

similar estimates. Next, for the procedural knowledge dimension (Figure 6.28), Model 1 

and Model 2 produced similar results for estimating students at most of the levels, 

except at Levels 0 and 3. Model 1 categorized more students in Level 3 than Model 2.  

In the following section we will compare the fit of Models 1 and 2 in order to 

decide which one was better. Two types of statistical methods were used to compare 

the model fit: The Posterior Predictive Model Check (PPMC) and the Entropy statistic. 

Subsequently, Models 1 and 2 will be compared based on their capacity to diagnose 

students’ competencies at each level of the learning progression (diagnostic-analytic), 

and in performing item analyses such as item difficulty, item discrimination, and pseudo-

guessing item analysis.  

6.4.1.1 Model Fit Analyses for Models 1 and 2 

The Posterior Predictive Model Checking (PPMC) analysis using discrepancy measures 

(Section 5.3.1) was used first to estimate the model fit for Models 1 and 2. The PPMC 

evaluated how the observed data differ when compared with the data generated from 

the model (the predicted data) (Sinharay, 2004). The PPMC was computed based on the 

last 1000 iterations of the MCMC for Model 1 and Model 2 to compute the PPP-values. 

The PPP-values were estimated by comparing the discrepancy measures from the 

observed data and the posterior predictive data, generated from the PPMC, as 

presented in Equation (5.13). As described in Section 5.3.1,  PPP-values  greater than 

0.05 and less than 0.95 indicate a good fit, otherwise the PPP-values indicate an 

inadequate fit (Gelman et al., 2014).  

Table 6.45 summarizes the PPP-values computed for 516 students obtained from 

Model 1 and Model 2 for both the conceptual and procedural knowledge dimensions. 

Table 6.45 Person Fit of Model 1 and Model 2 for both conceptual and procedural knowledge 
dimensions 

PPP Values 

Person FIT 

Conceptual Procedural 

Model 1 Model 2 Model 1 Model 2 

> 0.05 and < 0.95 (adequate fit) 76.16% 92.83% 88.37% 92.44% 

The results showed that the student fit of the conceptual knowledge dimension 

for Model 2 is 92.83%. This was considerably higher than the person fit of Model 1 which 
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was only 76.16%. It means that Model 2 had a better fit with the students’ responses 

when compared with Model 1 in the conceptual knowledge dimension. Model 2 in the 

procedural knowledge dimension also had a higher person fit which was 92.44% 

compared with that of Model 1 which is 88.37%. This indicates that Model 2 showed a 

better fit with the students’ responses on the procedural knowledge dimension 

compared with that of Model 1.  

The model fit of Model 1 and Model 2 discussed above was consistent with the fit 

estimated by using the entropy statistic on the conceptual and procedural knowledge 

dimensions. The entropy statistic (detailed in Section 5.3.2) was calculated for both 

Model 1 and Model 2 using Equation (5.14). Based on the proportional improvement of 

Model 2 from Model 1 described in Equation (5.13), the positive difference of  the 

entropy statistics indicates that Model 2 makes a better prediction on a new observation 

compared with Model 1 (Levy & Mislevy, 2016). 

The results show that the entropy of Model 1 in the conceptual knowledge 

dimension was 2296.23, and the entropy for Model 2 on the same dimension was 

1243.38. Hence, the difference between entropy Model 1 and entropy Model 2 (Entropy 

Model 1-Entropy Model 2) in the conceptual knowledge dimension was 1052.85 

(positive).  Similarly, the difference between Entropy Model 1 and Model 2 in the 

procedural knowledge dimension was 204.75 (positive). Hence, it can be inferred that 

Model 2 makes a better prediction on a new observation compared with Model 1 for 

both the conceptual and procedural knowledge dimensions. The results are presented 

in Table 6.46. 

Table 6.46 The entropy of Model 1 and Model 2 for the conceptual and procedural knowledge 
dimensions 

Dimension 
Entropy 

Model 1 Model 2 

Conceptual 2296.23 1243.38 

Procedural 1293.11 1088.36 

The relative improvement of Model 2 towards Model 1 (denoted as 𝑑𝐸𝑛𝑡𝑟𝑜𝑝𝑦) is 

calculated based on the Equation (5.15). The results are presented in Table 6.47 below. 
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Table 6.47 𝑑𝐸𝑛𝑡𝑟𝑜𝑝𝑦 Model 1 and Model 2 for the conceptual and procedural knowledge 
dimensions 

Dimension 𝑑𝐸𝑛𝑡𝑟𝑜𝑝𝑦 

Conceptual 0.4585 

Procedural 0.1583 

The results showed that the 𝑑𝐸𝑛𝑡𝑟𝑜𝑝𝑦 of the conceptual knowledge dimension 

was 0.4585. This indicates that Model 2 improved on model 1 by about 45.85% for the 

conceptual knowledge dimension. Likewise, the 𝑑𝐸𝑛𝑡𝑟𝑜𝑝𝑦 of the procedural knowledge 

dimension was 0.1583. This indicates that Model 2 made an improvement on Model 1 

of about 15.83% for the procedural knowledge dimension. 

6.4.1.2 Diagnostic-Analytic 

Model 1 is deficient in information about the students’ strengths and weaknesses in 

their learning at the levels of the learning progression model.  This is because the low 

probabilities of the students at the lowest levels do not automatically point out that the 

students are weak at those levels. For example, the probabilities generated from Model 

1 for student with ID 416 on the conceptual knowledge dimension are presented in Table 

6.48 (the raw scores and Netica graph for this student are presented in Table 6.50 and 

Figure 6.29, respectively). This student was chosen to represent a typical result of the 

analysis generated from Model 1.  

Table 6.48 The probability of student with ID 481 for each level in the conceptual knowledge 
dimension generated from Model 1 

Level Probability for Each Level 

Level 1 0.036% 
Level 2 0.003% 
Level 3 83.100% 
Level 4 16.400% 
Level 5 0.470% 
Level 6 0.008% 

The results showed that Model 1 generated the highest probability at Level 3. 

Hence, student with ID 416 was obviously placed at Level 3. However, the low 

probabilities at the other levels below Level 3 did not necessarily show that the student 

had low competencies at those levels. For example, the student had low probabilities at 

Levels 1 and 2. In fact, from Table 6.50, the student had strong competencies at these 

two levels in that the student could correctly answer all the items at Level 1 and most of 
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the items at Level 2. Hence, the results from Model 1 are counter-intuitive if they are 

used as a diagnostic-analytic tool. 

In contrast, the analyses generated from Model 2 produced high probabilities for 

student with ID 416 at Level 1 and Level 2. These results showed that the student with 

ID 416 had strong competencies at these levels. The results are summarized in Table 

6.49. The Netica graph for this student, generated from Model 2, is presented in Figure 

6.30.  

Table 6.49 The probability of student with ID 416 for each level in the conceptual knowledge 
dimension generated from Model 2 

Level Model 2 

Level 1 100.00% 
Level 2 99.30% 
Level 3 100.00% 
Level 4 54.40% 
Level 5 0.74% 
Level 6 0.10% 

In contrast, the results showed that Model 2 generated high probabilities at Level 

1 to Level 3 which were 100%, 99.3%, and 100%, and generated low probabilities for 

levels 4, 5 and 6 which are 54.40%, 0.74% and 0.10%. From these results, it can be 

inferred that the student was highly likely to have strong competencies at Levels 1, 2, 

and 3 but low competencies at Levels 4, 5 and 6. Hence, Model 2 could show the 

students’ strength and weaknesses in the levels and that a high probability indicated 

that the student had strong competencies at that level, and a low probability showed 

that the student had weak competencies at that level. This information is essential to 

diagnose at which level the student had difficulties in learning.  

In an extreme case, for example, student with ID 61 correctly answered one item 

at Level 1 and incorrectly answered most of the rest of the conceptual items. However, 

Model 1 generated a high probability for the student achieving at Level 1, 81%, as 

presented in Figure 6.31. This is because, in Model 1, the sum of the probabilities for all 

categories should reach 100% (see Equation (5.1) in Chapter 5). Hence, Model 1 imposed 

a high probability at Level 1 to obtain the total probabilities for all categories as 100%, 

despite student 61 only having one correct answer at Level 1. This evidence shows that 

Model 1 failed to represent any situation where a student did not have enough 
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competency at any of the proposed levels. In other words, Model 1 failed to assign 

students who did not have enough competencies to achieve Level 1(+) into Level 0.  

In contrast, Model 2 used different parameters to capture the different levels of 

the proposed model of learning progression, by setting the dependency between the 

lower level and the upper level where the upper level was conditional (depends) on the 

lower level. This dependency reflected the hypothesized hierarchical progression of 

fraction learning. For each level, the model had two categories which were “yes” or “no” 

and represented the probability of these categories for students at that level. The sum 

of the probability of “yes” or “no” at a level should reach 1, and the probability of 

students for all levels was not necessarily 1. Using this strategy of modelling, the function 

of the Bayesian Network of Model 2 was not necessarily to impose or distribute the 

probabilities through all the levels, which was different from Model 1. As a result, Model 

2 could provide low probabilities for all levels for students who did not show 

competencies at the proposed levels.  From the previous example of student 61, Model 

2 generated the posterior probabilities for all the levels were less than 12%, which 

indicated that the student had not enough competencies at the proposed levels 

(presented in Figure 6.18 in section 6.3.2.1.2). Hence, using this result, student 61 was 

assigned at Level 0, unlike Model 1, which assigned this student at Level 1. 
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Table 6.50 The raw sores of student 416 

 

 

 

 

Figure 6.29 A Netica Graph of the posterior probability P(𝜃௜|𝜸, 𝝅, 𝑥௜௝) for student with ID 416 (𝑖=416, j=1,…,21) generated from Model 1.   
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Figure 6.30 A Netica Graph of the posterior probability P(𝜃௜|𝜸, 𝝅, 𝑥௜௝) for student with ID 416 (𝑖=416, j=1,…,21) generated from Model 2. 
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Figure 6.31 A Netica Graph of the posterior probability (𝜃௜|𝜸, 𝝅, 𝑥௜௝) for student with ID 61 (𝑖=61, j=1,…,21) generated from Model 1 

 

The raw scores and the posterior probabilities (𝜃௜|𝜸, 𝝅, 𝑥௜௝) for the student with ID 61 generated from Model 2 are presented in Table 6.30 

and Figure 6.18, respectively. 
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6.4.1.3 Item Difficulty Analysis 

Both Models 1 and 2 presented the conditional probabilities of the students, given the 

students had competencies at a particular level c to answer correctly an item j 

(represented by 𝜋௖௝  in Equation (5.2) for Model 1, and 𝜋௖௝ଵ in Equation (5.9) for Model 

2). These conditional probabilities demonstrate the difficulty of the item for the 

students at that level. The larger the conditional probabilities of the students given the 

level, the easier the items are for the students at that level, and vice versa.  For example, 

Table 6.51 presents the estimates of the conditional probabilities 𝜋ଷ௝  and 𝜋ଷ௝ଵ for the 

conceptual items at Level 3.  

Table 6.51 The estimates of the conditional probabilities of correctly answering the items at Level 
3 of the conceptual knowledge dimension generated from Model 1 (𝜋ଷ௝) and Model 2 (𝜋ଷ௝ଵ). 

 Item 
Model 1 

𝜋ଷ௝  
Model 2 

𝜋ଷ௝ଵ 

ConT1Q4 0.7504 0.7573 
ConT1Q5 0.6933 0.7007 
ConT2Q2 0.8372 0.8482 
ConT3Q3 0.8368 0.8416 
ConT4Q1 0.8538 0.8585 
ConT4Q2 0.8682 0.8656 
ConT4Q3 0.7796 0.7828 

The results showed that item ConT1Q5 was the most difficult item for students at 

Level 3. This was because item ConT1Q5 had the smallest conditional probabilities for 

the students at level 3 to answer this item (𝜋ଷ௝  = 0.6933, and 𝜋ଷ௝ଵ = 0.7007) correctly. 

On the other hand, item ConT4Q2 was the easiest item because it has the largest 

conditional probabilities of 𝜋ଷ௝  (0.8682) and 𝜋ଷ௝ଵ(0.8656). Both Models 1 and 2 support 

the analysis of item difficulty within the discrete-levels of the learning progression.  

6.4.1.4 Item Discrimination Analysis 

Model 1 was capable of showing item discrimination of any one item across the levels. 

This was because in Model 1, all the items were set to correspond to a single parameter 

𝜃, which captured all the proposed levels. Hence the probabilities of the students 

answering an item correctly can be evaluated from the all different levels.  For example, 

Table 6.52 show the conditional probabilities of item ConT4Q1 (c=3, j=13.  

 

 



 

262 

 

Table 6.52 The estimates of the conditional probabilities for item ConT4Q1 (𝜋ଷ௝ , 𝑗 = 13) of 
the conceptual knowledge items at Level 3 for Model 1 

 

Correct 
𝜋ଷ௝  

Incorrect 
1-𝜋ଷ௝  

Level 1 0.1969 0.8031 
Level 2 0.0711 0.9289 
Level 3 0.8538 0.1462 
Level 4 0.8144 0.1856 
Level 5 0.8105 0.1895 
Level 6 0.8092 0.1908 

The results showed that the students at low levels (Level 1 and Level 2) were 

unlikely to answer Item ConT4Q1 correctly, but students at Level 3 and above were 

highly likely to answer the item correctly. Hence, item-discriminant analysis can be 

performed using Model 1.   

Model 2 did not generate information for item-discriminant analysis. This was 

because specific items were only modeled to measure a specific level. For example, the 

results of the conditional probabilities that were estimated using Model 2 are presented 

in Table 6.53. The results showed that the probability of answering Item ConT4Q1 

correctly was only estimated at Level 3, by hypothesizing θଷ௜  = 1 (have competencies at 

level 3) and θଷ௜ = 0 (do not have competencies at level 3). Hence, Model 2 only produced 

the probability of students correctly answering the items from the corresponding level 

(Level 3). As a result, there was no information about how likely it would be for students 

to answer the items from the other levels. Model 2 could only discriminate between 

those students who had competencies at that level and those who did not have 

competencies at that level. 

Table 6.53 The estimates of the conditional probabilities for Item ConT4Q1 (𝜋ଷ௝௭ , 𝑗 = 13) 
for the conceptual knowledge items at Level 3 for Model 2 

Level 3     
Items 𝜃ଷ௜ = 1 𝜃ଷ௜  = 0 

  
Correct 

𝜋ଶ௝ଵ 
Incorrect 
1-𝜋ଶ௝ଵ 

Correct 
𝜋ଶ௝଴ 

Incorrect 
1-𝜋ଶ௝଴ 

ConT1Q4 0.6592 0.3408 0.0649 0.9351 
ConT1Q5 0.5741 0.4259 0.0351 0.9649 
ConT2Q2 0.8239 0.1761 0.2941 0.7059 
ConT3Q3 0.8065 0.1935 0.0882 0.9119 
ConT4Q1 0.8486 0.1514 0.0226 0.9774 
ConT4Q2 0.8550 0.1450 0.0022 0.9978 
ConT4Q3 0.7136 0.2864 0.0061 0.9940 
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6.4.1.5 Pseudo-guessing Item Analysis 

In terms of the Item analysis, unlike Model 1, Model 2 provided information about the 

likelihood that the students who had competencies at a particular level could correctly 

answer the items at that level by chance. This analysis was not available in Model 1. This 

analysis is in some respects similar to the pseudo-guessing item analysis in Item 

Response Theory.  Model 2 incorporated this analysis well by setting the parameter level 

𝜃௖௜  equal to 0, identifying those students who did not have competencies at that level. 

The results showed that there was a low probability of guessing. It should be pointed 

out that this innovative analysis is important in order to ensure that the students are 

not guessing the correct answers to the items. A finding that there is a high probability 

of the students with no competencies at a given level (𝜃௖௜ = 0) could correctly answer 

the items at that level would indicate that the students can guess the answer or answer 

the items correctly by chance.  

In summary, the Bayesian Network with multiple latent variables, Model 2, has 

a better fit compared with the Bayesian Networks with a single latent variable (Model 

1). Moreover, Model 2 is better than Model 1 in terms of diagnosing students’ 

competencies on the progression levels and detecting extreme cases where the 

students do not have sufficient competencies at any of the hypothesized levels of the 

learning progression. Both Models 1 and 2 can perform item difficulty analysis, which 

measures how difficult an item is to be answered by students at a particular level. Model 

1 provides a more comprehensive item discrimination analysis compared with Model 2. 

Model 1 can provide information about how likely an item is to be answered correctly 

by the students from different levels. In contrast, Model 2 only provides information 

about how an item is answered correctly by the students who have a competency at a 

particular level and not the students who have no competencies at that level. Model 2 

does not provide information about the likelihood of the students from different levels 

answering a given item correctly but does provide information about the likelihood of 

the students who have no competencies at a particular level answer a given item 

correctly by chance (pseudo-guessing analysis). 
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6.4.2 Research Contribution for Educational Measurement and Assessment 

Two contributions of the present research will be discussed in the sections that follow: 

contributions for the development of Bayesian Network Models for learning 

progressions and contributions for item analyses using Bayesian Networks.   

6.4.2.1 Contributions for the development of Bayesian Networks for Modelling 
Learning Progressions 

In previous research, learning progressions have typically been modelled using Bayesian 

Networks with a single latent variable. This is known as Bayesian Latent Class Analysis 

(Jefrey Thomas Steedle, 2008; West et al., 2010; West et al., 2012). The present research 

performed a Bayesian Networks analysis with a single latent variable and extended this 

model into a Bayesian Networks analysis with multiple latent variables. The 

development of Bayesian Networks with multiple latent variables in the present 

research was inspired by the work of Rutstein (2012), who discussed several possible 

Bayesian Network models for measuring learning progressions. Three unique aspects of 

the model developed in the present research, compared with other existing models, will 

be discussed below.  

6.4.2.1.1 Development of an Informative Prior for dichotomous responses in 

Bayesian Network modelling 

West et al. (2010) developed Bayesian Networks with a single latent variable to measure 

learning progressions. However, they did not specify the information needed prior to 

encoding the levels of the learning progression. In contrast, the development of a 

Bayesian Network with a single latent variable (Model 1) and with multiple latent 

variables (Model 2) in this study used informative prior for dichotomous responses. This 

informative prior was used to incorporate the assumption, underlying the hierarchical 

model of learning progression, that students at a certain level would have a high 

probability of obtaining correct answers for the items at that level and below, but a low 

probability of answering items at the upper level(s) correctly. This informative prior was 

also used by Jefrey Thomas Steedle (2008) to build Bayesian Networks from polytomous 

responses. In the present research, however, the informative prior was used to develop 

Bayesian Networks for dichotomous variables. No previous studies have previously been 
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undertaken to model learning progressions with informative prior on the dichotomous 

responses using Bayesian Network modelling.  

6.4.2.1.2 Use of a Confirmatory Approach to validate the hypothesized learning 

progression 

West et al. (2010) performed Bayesian Networks with a single latent variable on the 

different possible levels of a learning progression. Using this approach, they built several 

Bayesian Networks Models which corresponded to the different numbers of levels of 

the learning progression. The Bayesian Networks were applied to the data and then their 

model fits were compared. The model which had the best fit with the data was chosen 

to give information about how many levels there should be in the learning progression 

model. In this case, West et al. (2010) used an exploratory approach, namely they used 

the data to define the levels of the learning progression. 

In contrast, the present research took a confirmatory approach. The Bayesian 

Network models were run strictly, based on the number of levels defined in the 

hypothetical cognitive model of the learning progression, after they were revised 

previously through a cognitive interview. Hence, in this research, the results of Bayesian 

networks analysis were used to confirm the hypothesized model of fraction learning 

progression and not to generate the levels of the learning progressions.  This 

confirmatory approach is essential if we want to make sure that the Bayesian Network 

modelling applied to the data is theoretically driven, as suggested by Mislevy (Mislevy, 

1994a, 1994b), as opposed to data driven.  This is an important point, given that learning 

progressions developed based on the data may not be well supported by cognitive 

theory and research in learning.  

6.4.2.1.3 Modelling the Hierarchical-Dependency of the Levels and Diagnostic 

Analytics 

As discussed before, Bayesian Network models have been developed in previous 

research-modelled learning progressions, using a single latent variable with several 

classes/categories, reflecting the levels of the learning progression (Jefrey Thomas 

Steedle, 2008; Jeffrey T Steedle & Shavelson, 2009; West et al., 2012). These classes 

were assumed to be independent of each other. Consequently, the dependency 
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between the levels in the learning progression were not formulated in a formal 

statistical model.  

In contrast, the present research developed a Bayesian Network with multiple 

latent variables, i.e., Model 2. Using Model 2, the hierarchical dependency between the 

levels was expressed through the conditional probabilities of the latent variables. These 

latent variables corresponded to the levels hypothesized in the learning progression. 

Using this approach, the conditional probability of the students to have competencies 

at a particular level could be estimated. The likelihood of a student having competencies 

at a particular level can be used as a diagnostic-analytic tool to evaluate students’ 

competencies in the levels of the learning progression. This is a significant contribution 

to educational measurement, particularly in developing a diagnostic-measurement 

model of learning progression using a Bayesian Networks approach.  

In summary, the present research contributes to the development of Bayesian 

Networks in learning progressions in the following ways. First, this research developed 

a way to introduce informative prior for dichotomous responses. This informative prior 

is important to incorporate the assumption, which guided the construction of the 

learning progression, that students at a certain level would have a high probability of 

obtaining correct answers for the items at that level and below, but a low probability of 

answering items correctly at the upper level(s). Moreover, the present research 

developed a confirmatory approach for validating the learning progression. This 

confirmatory approach is essential in order to validate the hypothesized levels of 

learning progression with the empirical evidence deriving from the students’ responses. 

Finally, this present research developed Bayesian Networks with multiple latent 

variables (Model 2) to model the hierarchical dependency of the levels into a formal 

statistical model.  This model can be used as a diagnostic analytic tool for evaluating 

students’ competencies in a learning progression.  

6.5.2.2 Contributions to Item Analysis using Bayesian Networks 

Current practice for item analyses is dominated by Item Response Theory (IRT), which 

assumes that the students’ abilities are represented as a continuum on a latent scale 

(De Ayala, 2009). In contrast, learning progressions represent the progression of 

students in learning on the discrete-latent scale. Consequently, the typical item analyses 
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using IRT cannot be performed directly on the hypothesized discrete levels of learning 

progression to support the inference that students at this level and above have a high 

probability of answering the item correctly, while the students at lower levels have a 

low probability of answering the item correctly.  

Wilson (2012) performed item analysis using the Rasch Model (one of the IRT 

Models) to validate a learning progression. He plotted both the item difficulty and the 

students’ abilities on the same latent continuum scale using the Wright Map (Wilson, 

2005). Subsequently, items for each level were identified using cut off points on the 

scale. These cut off points discretized the latent continuum scale into several categories. 

These categories were then interpreted as the levels of the learning progression. Items 

which fell into these categories were placed on the corresponding levels of the learning 

progression. In this case, Wilson’s approach did not perform item analyses based 

directly on the hypothesized levels of the learning progression. In fact, the item analyses 

were performed on the empirical levels generated from the students’ responses. 

Consequently, the validation of the learning progression based on these item analyses 

seems to be more exploratory than confirmatory because the analyses of the items were 

not performed based on the hypothesized levels of the learning progression.  

To date, however, there has been little discussion about item analysis developed 

for the discrete latent scale, as assumed in the hierarchical levels of the learning 

progressions. In previous research, West et al. (2010) used Bayesian Networks with a 

single latent variable (Bayesian Latent Class Analysis) to perform item analysis in the 

context of a learning progression to support the inference that items placed at a certain 

level would be answered correctly by the students at that level, but would not be 

answered correctly by the students at lower levels. In this case, West et al. (2010) 

performed an item discrimination analysis of the items at a given level and below.  The 

present research expands the item analysis from West et al. (2010), using Bayesian 

Networks models with a single latent variable (Model 1) and multiple latent variables 

(Model 2). As discussed earlier, in Sections 6.4.1.3 - 6.4.1.5, three types of item analyses 

for discrete latent scales were developed based on these models: namely, item difficulty 

analysis, item discrimination analysis and pseudo-guessing analysis. These item analyses 

are similar to the typical item analyses in IRT models. However, the interpretation of the 
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results of the analyses are different due to the differences in the assumptions of the 

latent scales (discrete versus continuum latent scales).  

In this research, item difficulty refers to the probability of the students who have 

competencies at a particular level answering an item correctly. The higher the 

probability of a correct answer for this item, the easier the item is for the students at 

that level, and vice versa. The item is placed at a particular level if the students at that 

level have high probabilities for answering the item correctly. Hence, the item difficulty 

generated from Bayesian Networks is developed, based on the discrete levels of the 

learning progression and representing the uncertainties of item location at these levels. 

In contrast, item difficulty in IRT, known as the item parameter, is located on the 

continuum scale, so that the students’ ability is also plotted in this scale (De Ayala, 2009; 

Wilson, 2005). If the ability of the students is equal to or higher than the item difficulty, 

then the students are likely to answer the items correctly. If the ability of the students 

is less than the item difficulty, they are likely to answer the item incorrectly. Items are 

located along a continuum from negative to positive infinity. The easier items are 

located at the lower end of the continuum and the more difficult items are located 

towards the higher end (De Ayala, 2009). 

The item discrimination analysis developed in this research discriminates between 

students at different levels of the learning progression (a discrete scale). Students at a 

particular level have a high probability of answering the items at that level correctly, 

while students at the lower levels have less probability (are unlikely) to answer these 

items correctly (West et al., 2010). In contrast, the item discrimination analysis in IRT 

refers to the item discrimination parameters in the IRT model (IRT with a 2-parameter 

logistic model), which is used to differentiate students from different points on the 

continuum scale. For example, students who are at the lower end of the latent 

continuum are unlikely to answer an item that is located in the middle of the scale, but 

students at the middle and upper ends of the scale are highly likely to answer the item 

correctly. Hence, item discrimination analysis using Bayesian Networks is developed 

based on the discrete latent scale (levels in the learning progression) while item 

discrimination analysis in IRT is developed from the latent continuum scale. 
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The pseudo-guessing analysis using Bayesian Networks in this research estimates 

how likely the students who have no competencies at a particular level are to answer 

the items at that level correctly. This pseudo-guessing analysis resembles the pseudo-

guessing in the IRT model (IRT with a three parameter model) (De Ayala, 2009). 

However, the pseudo-guessing in IRT is developed based on the assumption of the 

continuum scale. The pseudo-guessing in IRT analyses the probability of the students at 

the lower end of continuum scale answering the items located in the middle or upper 

ends of the scale. 

In summary, the present research developed item analyses for the discrete latent 

scale of a learning progression. These item analyses are different from the item analyses 

in IRT, which are developed based on the latent continuum scale. The item analyses 

using Bayesian Networks are useful in order to analyze items on the hypothesized levels 

of the learning progression. These item analyses are essential in the context of an 

analytic approach that uses confirmatory analyses to validate the hypothesized learning 

progression models. This is a significant contribution to the present research in 

educational measurement, as little discussion about developing item analyses for the 

discrete latent scale of a learning progression has yet taken place. 

6.7 Summary and Conclusions 

This chapter has discussed the development of Bayesian Networks Analysis using 

Models 1 and 2 to validate a hypothesized model of fraction learning progression for a 

conceptual and a procedural knowledge dimension. The validation was performed using 

item level analysis and student level analysis to support the inferences that:  (a) an item 

at a certain level would be answered correctly by the students at that level or the upper 

level, but would not be answered correctly by the students at the lower levels; and (b) 

students assigned to a certain level would have sufficient competencies at that level and 

the levels below, but would not have enough competencies at the levels above their 

competency level. The results of the analyses produced: 1) validated levels of the 

conceptual and procedural knowledge dimensions; 2) the location of conceptual and 

procedural items along the levels of the learning progression; and 3) the location of 

students along the levels of the conceptual and procedural knowledge dimensions of 

the learning progression. 
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The comparison of Model 1 and Model 2 showed that Model 2 had a better fit 

compared with Model 1. Furthermore, Model 2 had several desirable properties which 

are superior to Model 1, such as the measurement of competency, diagnostic analytic, 

and pseudo-guessing item analysis. However, Model 1 was better than Model 2 for item 

discrimination analysis. The item analysis generated from Models 1 and 2 is an 

important innovation in this study because it is applied to the discrete levels of learning 

progression. Previous models of item analysis based on IRT were developed based on 

the assumption of a continuum latent scale of students’ ability, while the present item 

analyses, on Bayesian Network Models 1 and 2, were developed based on the 

assumption that the students’ learning progression was a discrete latent scale. Using 

Bayesian network item analyses, the hypothesized learning progression can be validated 

empirically using confirmatory analysis. To conclude, this present research contributes 

to the development of Bayesian networks for measuring learning progression by 

employing informative prior on the dichotomous responses, performing a confirmatory 

approach of analysis, and modelling the hierarchical dependency of the levels in the 

learning progression model using a Bayesian Network with multiple latent variables 

(Model 2).  

The next chapter discusses further the results of the Bayesian Networks analysis 

on the conceptual and procedural knowledge dimensions and the relationship between 

the two. 
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CHAPTER 7 : RESULTS OF STUDENT PERFORMANCE ON THE 
CONCEPTUAL AND PROCEDURAL DIMENSIONS OF THE 

LEARNING PROGRESSION AND INTERRELATIONS 

7.1 Introduction 

The purpose of this chapter is to examine and discuss the results of the Bayesian 

Networks analysis produced by Model 2 in more detail, showing the levels of student 

performance in the conceptual and procedural knowledge dimensions and the 

interrelationships between them. In Sections 1 and 2, the results from the Conceptual 

and Procedural Knowledge Dimensions of the fraction learning progression are 

discussed in the context of the 2013 Indonesian curriculum. In Section 3, the 

interrelationships between the performance of the students in the Conceptual and 

Procedural Knowledge Dimensions are discussed. A summary presentation of the 2013 

Indonesian Curriculum is included in Appendix G. 

7.2. Section 1: Student Performance on the Conceptual 
Knowledge Dimension 

The results produced by Model 2 of the Bayesian Network Analysis (shown in Table 7.1) 

indicate that about half of the students (48.06%) were located at Level 1 of the 

conceptual fraction understanding validated progression. These students could only 

deal with fractions that had the same denominator and did not know how to compare 

fractions with different denominators. In other words, half of the students could not 

understand the meaning of the fraction symbol even when dealing with fractions 

smaller than the unit.  

This result is very disappointing because it shows that these students were only 

reaching the basic fraction competence in the Indonesian curriculum for grade 3, even 

though they were in grades 7-9.  The conceptual challenge these students face is 

understanding that the value of a fraction is represented by the relationship between 

the numerator and denominator and that different fractions can be equivalent, or have 

the same value (Lamon, 2012).  
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Table 7.1 Frequency and percentage of students in the different levels on the conceptual 
knowledge dimension based on the Bayesian Network Analysis (n=516) 

Level 
Frequency and Percent 

N=516 

Level 0 – No fraction understanding (3) 0.58%  

Level 1 – Part-whole with the same denominator (248) 48.06%  

Level 2 – Part-whole with the different denominators (148) 28.68%  

Level 3 – Improper fractions and fractions as measures (79) 15.31%  

Level 4 – Unbounded infinity of fractions (25) 4.84%  

Level 5 – Density (8) 1.55%  

Level 6 – Understanding multiplicative fraction 

operations 
(5) 0.97%  

About a quarter of the students (28.68%) in the sample were found to belong to 

Level 2 in the conceptual dimension of fraction understanding. At Level 2, students have 

a good understanding of the part-whole representation of fractions and can compare 

fractions with different denominators. They can also illustrate fraction addition with 

different denominators using a part-whole diagram. Still, these students do not 

understand improper fractions. The students at Level 2 in the present learning 

progression were below the basic competence of fractions taught in the Indonesian 

curriculum at grade 4. At this grade, equivalent fractions are introduced and used to 

compare and order fractions, and to perform arithmetic fractions operations with 

different denominators. Obviously, understanding improper fractions is the main 

conceptual challenge for the students at this level. It is possible that students’ difficulties 

in dealing with this conceptual challenge is related to the strong emphasis in the 

Indonesian curriculum on the part-whole teaching of fractions and also the fact that the 

curriculum does not introduce a conceptual understanding of improper fractions.  

Findings from Arieli-Attali and Cayton-Hodges (2014)  show  that students who see 

fractions as part of a whole often find it challenging to understand how the number 

representing the part (the numerator) could be greater than the number representing 

the whole (the denominator). Consequently, the students have difficulty in accepting 

improper fractions. For example, students often do not understand an improper fraction 

such as 4/3, stating that four parts cannot be produced from dividing an object into 

three parts (Fazio & Siegler, 2011). Similar results have been obtained by Resnick et al. 
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(2016), who found that the students from grades 4, 5 and 6 in their sample consistently 

estimated both proper and improper fractions to have values between 0 and 1. Fazio 

and Siegler (2011) discussed the difficulties that might arise in the understanding of 

improper fractions when the curriculum emphasizes part-whole representations. In 

order to facilitate the understanding of improper fractions, it helps to introduce number 

line representations (fractions as measures), something which is not done in the 

Indonesian Curriculum.   

Only 15.31% of the students were found to be at Level 3 of conceptual fraction 

understanding, meaning that these students were capable of understanding improper 

fractions and representing fractions on a number line. This group of the students 

resembled the cohort of students in the explanatory framework of fractions as Relation 

between Numerator/Denominator - sub-category C1: Relation of Two Numbers Without 

Infinity (Stafylidou & Vosniadou, 2004). Although they understood the relationship 

between the numerator and denominator, these students still perceived fractions as 

finite and thought that there exists a smallest and a biggest fraction. The conceptual 

challenge the students face at this level is to understand the unbounded infinity of 

fractions. Instruction on the unbounded infinity of fractions is not included in the 

Indonesian curriculum.  

One way to assist students to  understand the unbounded infinity of fractions  is 

to introduce fractions as division. Stafylidou and Vosniadou (2004) found a group of 

students (Subcategory C2: Relation of Two Numbers with Infinity) who believed that 

fractions are infinite numbers because they saw fractions as the results of the division 

of the numerator with the denominator. Understanding fractions as division can 

facilitate the students’ understanding of the numerical values of fractions. These values 

represent the results of the division of the numerator by the denominator. The values 

are getting bigger when the numerator is increased and getting smaller when the 

denominator is decreased (in the condition that one of the numerators or denominators 

is constant). The results of the cognitive interview showed that the students who 

demonstrated fractions as division could explain effectively that there were no biggest 

and smallest fractions. However, fractions as division is also not covered in the 

Indonesian Curriculum. 
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There were very few students at levels 4 and 5 in the conceptual dimension of the 

validated fraction learning progression. Approximately 5% of the students were placed 

at Level 4. This group was similar to the group of students in the explanatory framework 

of fractions as Relation between Numerator/Denominator - sub-category C2: Relation 

of Two Numbers With Infinity (Stafylidou & Vosniadou, 2004). These students 

understood that there were no smallest or biggest fractions, but they still believed that 

there were limited or no numbers between two pseudo-fractions. In other words, these 

students had not understood the ‘no successor’ principle of rational numbers. This is a 

difficult concept to understand. Vamvakoussi and Vosniadou (2012, p. 266) have 

proposed using a ‘rubber line’ analogy – namely, to think of numbers as placed on a 

number line which can be stressed and shrunk like rubber - to introduce the idea of 

fraction density. The results of their experiments show that a rubber line analogy can 

assist students to understand the no successor principle. Again, the no successor 

principle in fractions is not taught in the Indonesian curriculum. 

Only a very small percentage of the students were placed at Level 5 (1.55%). These 

students had a complete understanding of the infinity of fractions, including unbounded 

infinity and density. In other words, they completely understood that fractions are 

infinite and dense, which is different from the finite and discreteness properties of 

whole numbers. Still these students had difficulties in understanding fraction 

multiplication and division. They had difficulties in translating the multiplication and 

division of fraction operations from symbolic notation into a diagram representation. 

The results from the cognitive interview showed that the students at this level tried to 

use their procedural knowledge to assist them in drawing the diagram representations 

but without success. Similar results were found by Chinnappan and Forrester (2014), 

who investigated the conceptual and procedural knowledge of fraction operations using 

a sample of pre-service teachers. In the case of fraction multiplication, the result 

indicated that 76.69% of the participants could solve the problems procedurally but 

could not demonstrate a conceptual understanding of fraction multiplication using 

diagram representations. These empirical results indicate that the students who can 

perform the operations of fraction multiplication and division do not understand the 

meaning of these operations. A conceptual understanding of multiplicative fraction 
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operations is not included in the Indonesian curriculum. However, the materials which 

introduce fractions using diagrams/strips (area models) can be found in the Indonesian 

mathematics text book at grade 7 (see As’ari et al., 2014). 

Fewer than 1 % of the students were placed at Level 6 in the learning progression. 

These students could demonstrate their understanding of multiplicative fraction 

operations using diagram representations. The students viewed fraction multiplication, 

for example 1/2 X 3/4, as finding how much is 1/2 of 3/4. They performed partitioning 

on 3/4 into two equal parts to get the solution of 1/2 multiplied by 3/4. The results from 

the cognitive interview show that this understanding helped the students to 

demonstrate fraction multiplication using a diagram representation. There was no issue 

of learning difficulties for the students at this level. They had a complete conceptual 

understanding of fractions, ranging from fractions as part-whole, improper fractions, 

fractions as measures, unbounded infinity of fractions, density, and understanding 

multiplicative fraction operations.   

In summary, the distribution of students in the conceptual dimension of the fraction 

learning progression indicated that most of the students had a very low level of 

conceptual knowledge of fractions. About 3/4 of the students only effectively reached 

the basic competences of fractions taught in the Indonesian curriculum in grades 3 and 

4, which is part-whole understanding. Their conceptual understanding of fractions was 

minimal, even though they were at grades 7-9. The learning challenges these students 

faced were understanding fractions greater than the unit (improper fractions) and 

fractions as measures. The students lacked a high-level conceptual understanding of 

fractions, such as unbounded infinity and density and could not understand 

multiplicative fraction operations.  

The results indicate that the Indonesian curriculum (1) was ineffective in developing 

a conceptual understanding of fractions, even when the conceptual understanding was 

part of the curriculum and (2) did not cover important areas of fraction conceptual 

knowledge that should have been included in the curriculum. 

Regarding the first point, a closer look at the Indonesian curriculum indicated that 

it did not provide clear guidance as to how teachers could develop conceptual 
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understanding of fractions in their students, even when such understanding was part of 

the curriculum goals. For example, in introducing equivalent fractions, the basic 

competence in grade 4, it was stated that students should “recognize the concept of 

equivalent fractions …” (Appendix H). However, it was not possible to find a description 

of what equivalent fractions are anywhere in the Indonesian curriculum, nor the 

different kinds of equivalent fractions that exist (e.g., simple and not simple equivalent 

fractions), or how to introduce equivalent fractions to students (for example using visual 

fraction models). Moreover, equivalent fractions were only mentioned in grade 4 and 

were not related to other relevant fraction sub-concepts or operations, such as ordering 

fractions, or adding fractions with different denominators. Because of these limitations, 

the Indonesian curriculum did not provide enough guidance to teachers about how to 

promote student conceptual understanding.  

Regarding the second point, the Indonesian curriculum did not cover important 

areas of fraction conceptual knowledge; i.e., it did not cover fractions as measures, 

improper fractions, fractions as division, and other higher-level conceptual 

understandings of fractions, such as the unbounded infinity of fractions, density and 

conceptual understanding of multiplicative fraction operations. On the contrary, the 

curriculum is dominated by a part-whole understanding of fractions. A number of 

researchers have argued that the emphasis on part-whole understanding of fractions 

can stand in the way of students’ understanding of improper fractions. Indeed, 

understanding fractions as measures, by introducing, for example, number line 

representations, can facilitate this understanding (Fazio & Siegler, 2011),  Similarly, 

introducing fractions as division can assist students to understand the density of 

fractions, as can a rubber line analogy, which can facilitate understanding of the no-

successor principle  (Vamvakoussi & Vosniadou, 2012). Understanding fraction 

multiplication and division should also be included in the curriculum and introduced to 

students using area models (diagram representations), so that the students can create 

a  conceptual understanding of these procedures (Fazio & Siegler, 2011; Van de Walle 

et al., 2015).  
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7.3 Section 2. Student Performance on the Procedural 
Knowledge Dimension 

The results of the Bayesian analysis Model 2 (Table 7.2) showed that about half of the 

students were at high levels of performance in the procedural knowledge dimension 

(50.90% of the students were at Levels 4, 5 and 6). These students had procedural skills 

such as addition, subtraction, multiplication, and division of fractions and they also could 

do fraction operations with mixed numbers. These students had effectively reached the 

goals of the Indonesian curriculum for grade 7. Moreover, about a fifth of the students 

could solve complex fraction operations, which are not specifically taught in the 

Indonesian curriculum. 

Table 7.2 Frequency and percentage of students in the different levels on the procedural 
knowledge dimension based on the Bayesian Network Analysis (n=516) 

Level 
Percentage 

N=516 

Level 0 – No procedural knowledge (30) 5.81%  

Level 1 – Additive operations with the same denominator (105) 20.35%  

Level 2 – Additive operations with different denominators (34) 6.59%  

Level 3 – Multiplicative fraction operations (84) 16.28%  

Level 4  –  Multiplicative operations with mixed numbers (161) 31.20%  

Level 5 – One nested- Complex fraction operations (28) 5.43%  

Level 6 – Two or more nested- Complex fraction operations (74) 14.34%  

Let us describe the results shown in Table 7.2 in greater detail. Although about 50% 

of the students reached a procedural competence with the fractions expected at year 7 

of the Indonesian curriculum, as mentioned above, the remaining 50% had considerable 

difficulty with fraction operations.  A small number of students (6% percent) were found 

to be incapable of performing even the simplest operations with fractions correctly. 

They had difficulties adding fractions with the same denominator (Level 0). Their 

difficulties in performing simple fraction operations could have been affected by limited 

conceptual understanding of fractions, as discussed in the previous section.  

About 20% of the students were at Level 1 of the procedural knowledge dimension. 

These students could add fractions with the same denominators, but they had 

difficulties adding fractions with different denominators. These students had only 
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effectively reached the basic competences of fraction operations at grade 3 of the 

Indonesian curriculum.  The cognitive interview data with students at this level revealed 

that they did not know the procedure for converting fractions with different 

denominators into fractions with similar denominators. This was the main obstacle for 

moving into higher levels of fraction procedural knowledge. Introducing fraction 

addition with a visual representation such as pie diagram  could help these students to 

understand why a common denominator is required for addition of fractions with  

different denominators (Fazio & Siegler, 2011; Van de Walle et al., 2015) 

Some students (about 7%) were at Level 2 in the procedural dimension, meaning 

that they could add fractions with different denominators but had difficulties adding 

fractions involving mixed numbers. This small group of students had achieved the 

Indonesian curriculum goals at grade 4 – i.e., additive fraction operations with different 

denominators - but did not know how to transform mixed numbers into improper 

fractions.  This result is consistent with the finding that about 28.68% of the students 

were at Level 2 of the conceptual knowledge progression, meaning that they had 

difficulties in understanding improper fractions. This aligns with the study by Arieli-Attali 

and Cayton-Hodges (2014), which revealed that some of students’ errors in fraction 

operations could be attributed to a lack of understanding of improper fractions.  

The students at this level also had difficulties with multiplicative fraction operations. 

The results from the cognitive interview revealed various mistakes the students made 

when multiplying fractions. Some only multiplied the numerators and not the 

denominators if the denominators of the fractions were the same. This mistake  

indicates that they erroneously applied the principle of fraction addition to the case of 

fraction multiplication (Brown & Quinn, 2006), i.e.,  they did not understand why the 

denominators are kept the same in the results of fraction addition with the same 

denominator but are multiplied in fraction multiplication (Van de Walle et al., 2015). 

Visual representations, such as pie or rectangular diagrams, can be used to illustrate 

that in fraction addition, but not in multiplication, the denominator remains the same 

in the results.  

Placing the competence of adding fractions with the same denominator at a 

different level (Level 1) from that of the competence of adding fractions with different 
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denominators (Level 2) is an innovation of the present learning progression in the 

procedural knowledge dimension. Previous fraction learning progressions (Arieli-Attali 

& Cayton-Hodges, 2014)  placed these competencies at the same level. The results from 

the present research indicate that this differentiation is useful and provides diagnostic 

information about students’ procedural difficulties. 

A considerable number of students were at level 3 (16.28%) in the procedural 

knowledge dimension. They could perform additive operations which involved mixed 

numbers and multiplicative operations of fractions. These students had reached basic 

competence for fraction operations at grades 5-6 of the Indonesian curriculum. 

However, these students had difficulties executing multiplicative operations involving 

mixed numbers. One of their prevalent mistakes was multiplying mixed numbers 

directly, without converting them into improper fractions. A direct operation of mixed 

numbers (without converting them to improper fractions) is correct in the case of 

addition of mixed numbers, but not in the case of mixed number multiplication (Newton, 

2008; Van de Walle et al., 2015). Again this error is evidence that the students 

misapplied the algorithm of addition to the multiplication of fractions with mixed 

numbers (Brown & Quinn, 2006). Similar to that in Level 2, this error indicates a 

deficiency in the students’ conceptual understanding of the procedures of addition and 

multiplication of fractions, which caused these two procedures to become swapped 

over easily.  

The remaining group, approximately 50% of the students, had reached the basic 

competences of grade 7 in the Indonesian curriculum (Levels 4, 5 and 6 of the present 

learning progression). Many students were at Level 4 (31.20%). They could execute 

additive and multiplicative fraction operations, including operations with mixed 

numbers. These students had difficulties with complex fraction operations. Specifically, 

they could not simplify nested fraction operations of fractions where either the 

numerator or the denominator was not a whole number but another fraction operation, 

as in 1 −
2

1
4

 − 1

3
. The students struggled to figure out the sequence of operations to solve 

such tasks. The evidence from the cognitive interview showed both that the students 

were confused by the representation of nested fractions and that they could not identify 
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which part of the operation is the numerator and the denominator. These students were 

thus unable to simplify the nested fractions into a common form. To assist the students 

to solve this problem, understanding the structure of complex fraction operations is 

important.  

About 5% of the students were at Level 5. They could complete one-level nested 

fraction operations in which either the numerator or denominator contained a fraction 

operation. The students at this level could develop a procedure to solve such complex 

fraction operations, which demonstrated procedural skills in an unfamiliar context 

(Brown & Quinn, 2006). However, the Bayesian Network analysis showed that the 

students at this level had difficulties solving more complex fraction operations with two 

or more levels of nested fraction operations. According to  Brown and Quinn (2006), 

memorizing algorithms to solve such complex fraction operations is not an effective 

method. Understanding the representation of the nested fraction operations is critical 

when simplifying the operations. However, the students also should have a high-level 

computational fluency to solve such a complex fraction operation. According to Russell 

(2000) this computational fluency refers to: 1) efficiency in calculation which is when 

the students are not trapped in irrelevant steps or computations in getting the solution; 

2) accuracy, so the students can avoid making careless mistakes in computation; 3) 

flexibility, which is so the students can choose a suitable computation strategy, which is 

relevant to the problem given. 

Finally, about 14% of students were at the highest level of the procedural 

knowledge dimension. The results from the cognitive interviews showed that the ability 

to perform sequential processes of fraction operations was the key in solving such 

complex operations. These results were consistent with those of Brown and Quinn 

(2006) who found that computational fluency, as discussed by Russell (2000) above, is 

required to solve complex fraction operations. Brown and Quinn (2006) found that only 

15% of the students from an elementary algebra class of high school students could 

answer complex fraction operations similar to the ones used in the present study 

correctly. 

In summary, the results showed that 50% of the students had achieved a relatively 

high-level of procedural knowledge of fraction operations, including additive and 



 

281 

 

multiplicative fractions and operations with mixed numbers. A considerable number of 

students could also perform complex fraction operations. These students had effectively 

reached most of the procedural requirements of fraction learning included in the 

Indonesian curriculum. Nevertheless, the remaining 50% had not reached the goals of 

the Indonesian curriculum for grade 7. About one-fifth of students were still identified 

as being at Level 1, i.e., they had difficulties in adding fractions with different 

denominators.  

Overall, the performance of the students in the procedural dimension of the 

learning progression was better than their performance in the conceptual knowledge 

dimension. This result can be explained in view of the fact that mathematics instruction 

in Indonesia is almost entirely procedural (Zulkardi, 2002). However, only about 50% of 

the students had reached the goals of the Indonesian curriculum at grade 7. This result 

might be attributable to several reasons. First, the Indonesian curriculum did not 

provide clear guidance that could help the development of students’ procedural 

knowledge of fractions. For example, in developing multiplicative fraction operations, 

the Indonesian curriculum at grade 5 states “perform fraction multiplication and 

division” without specifically mentioning how this should be done. For example, it could 

be mentioned that there are a number of steps in introducing fraction multiplication or 

division to students, such as multiplying a unit fraction with whole numbers, which 

should be introduced first, followed by the procedure for multiplying a fraction by 

another fraction and so forth.  

Another limitation of the Indonesian curriculum is that procedural information is 

only introduced procedurally, without regard for the students’ conceptual 

understanding. The results in the present research indicate that it was easy for students 

to misapply the procedures for fraction operations because of a lack of conceptual 

understanding of the procedures. The students who understand that a common 

denominator is required to perform additive fraction operations are more likely to recall 

the correct procedures, compared with students who do not have this conceptual 

understanding (Fazio & Siegler, 2011). Hence, teaching conceptual understanding of 

fraction operations should go hand in hand with teaching procedural knowledge of 

fraction operations. 



 

282 

 

7.4 Section 3. Interrelations in Student Performance between the 
Conceptual and the Procedural Knowledge Dimensions 

The results discussed in the previous section showed that 76% of the students were 

distributed at part-whole levels (Levels 1 and 2) on the conceptual knowledge dimension 

of the learning progression. Meanwhile, on the procedural knowledge dimension, the 

same students were distributed at several levels of performance (Levels 1, 2, 3, and 4), 

raising questions about the relationships between the students’ conceptual and 

procedural knowledge. 

The results of existing research on the relationship between conceptual and 

procedural knowledge can be summarized into four different positions or theoretical 

points of view (Hallett et al., 2010; Rittle-Johnson et al., 2001). The first position argues 

that students develop their conceptual understanding first and then use this 

understanding to learn procedures to solve problems in a particular domain of learning. 

The findings from several studies support this position. Among them is a study on 

fraction arithmetic conducted by Byrnes and Wasik (1991), which involved 72 students 

from grades four and six, and 51 students from grade five. The results showed that 

conceptual knowledge was required to support the learning of the procedure for finding 

the least common denominator (LCD) in fraction addition with different denominators. 

In another study, Byrnes (1992) investigated the relationship between conceptual and 

procedural knowledge in integer operations using a pretest-posttest design, which 

involved 27 students from grade seven. He found that the conceptual understanding of 

integers at the pretest was a good predictor of students’ computational scores at the 

posttest. The results of these two studies indicate that conceptual knowledge influences 

the development of students’ procedural knowledge.  

The second position argues that students first learn procedures and then, from 

the repeated experience of applying these procedures, they acquire conceptual 

understanding in the specific area of mathematics involved (Robert S Siegler, 1991).  In 

a study of counting with a sample of 10 three year olds, Briars and Siegler (1984) found 

that the counting procedure was developed first, before the children understood the 

counting principles. Another study by Robert S Siegler and Crowley (1994), with a sample 

of 23  kindergarten children (about 5 years old),  showed that some of the children who 
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could perform whole number addition understood the commutative principle – namely 

that the order of adding two whole numbers does not change the results –  even though 

they were not taught this principle. This result indicates that they acquired conceptual 

understanding from their experiences of adding whole numbers. Both of these studies 

support the position that procedural knowledge is developed first, before the 

development of conceptual knowledge. 

The two above-mentioned positions of the relationship between conceptual and 

procedural knowledge assume that the relationship between these two types of 

knowledge is only in one direction, either from conceptual knowledge to procedural, or 

vice versa. The third position states that there can be a bi-directional relationship 

between conceptual and procedural knowledge (Rittle-Johnson et al., 2001). This 

position argues that the development of conceptual and procedural knowledge is 

interrelated and reciprocal, and that conceptual knowledge can influence the 

development of procedural knowledge and vice versa (Rittle-Johnson & Alibali, 1999; 

Rittle-Johnson & Schneider, 2014; Rittle-Johnson et al., 2001). Some of the evidence that 

supports the third position comes from a study by Rittle-Johnson and Alibali (1999) in 

which a sample of 60 students from grade four and 29 students from grade five were 

used to investigate students’ knowledge on equivalence problems in mathematics. They 

found that students who received procedural instructions had a better conceptual 

understanding of equivalence problems. Meanwhile, the students who received 

conceptual instruction also developed a correct and flexible procedure for solving these 

problems. The authors interpreted their results to indicate that the relationship 

between conceptual and knowledge is iterative, as increasing of one type of knowledge 

influences the other type and vice versa. 

Hallett et al. (2010) proposed individual differences as the fourth position to 

explain the different and contradictory findings of the previous research. The hypothesis 

of individual differences highlights that students are different in the way they combine 

conceptual and procedural knowledge, and that some students rely more on their 

conceptual knowledge, while other students rely more on procedural knowledge. The 

individual differences position holds a similar assumption to the third position regarding 

the bi-directional relationship between procedural and conceptual knowledge but holds 

that, in addition, there are individual differences in students’ preferences for a 
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conceptual and/or procedural approach. The individual differences position is 

supported by the results of a study by Hallett et al. (2010) on fraction learning using a 

sample of 318 students from grades four and five. The results showed five clusters of 

students, reflecting different combinations of conceptual and procedural knowledge. 

Some of the students were strong in conceptual knowledge, while others were strong 

in procedural knowledge. Using a much smaller sample (seven students from grade 

nine), a case study by Bempeni and Vamvakoussi (2015) also investigated individual 

differences in conceptual and procedural knowledge in fraction learning. The results 

revealed three student profiles: students with strong conceptual and procedural 

knowledge, students with strong procedural knowledge but weak conceptual 

knowledge, and students with strong conceptual knowledge but weak procedural 

knowledge. The authors concluded that their results provided evidence for the 

individual differences position. 

The present research used a  more comprehensive test of fraction knowledge, a 

larger sample (516 students) and older students (grades 7 to 9; between 12 – 15 years 

old) compared with the Hallett et al. (2010) study. Therefore, the present research is in 

a position to provide evidence to better discriminate amongst the various positions.  In 

order to examine the data, first, a cross-tab analysis was performed to explore the 

pattern of the distribution of the students across the different levels of conceptual and 

procedural knowledge dimensions. Next, a cluster analysis was employed to investigate 

whether the levels of the conceptual and procedural knowledge dimensions could be 

grouped into clusters.  

 The results of the cross-tab analysis (Table 7.3) showed the different profiles of 

the students in terms of their conceptual and procedural levels. Almost half of the 

students (248/560 – 48% of the sample) were at Level 1 in the conceptual dimension. 

Out of these 248, 106 students were either in Level 0 in the procedural dimension 

(23/248) or Level 1 (83/248).  We could say that these students (about 20% of the whole 

sample)  had both a very limited conceptual understanding of fractions and a very 

limited procedural knowledge of fraction operations.  

A second group at Level 1 conceptual knowledge comprised 127/248 students, 

who were distributed at Levels 2 (19/248), Level 3 (44/248), and Level 4 (64/248) of the 

procedural knowledge dimension. Although the students in this group (about 25% of the 
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whole sample) also had a very limited conceptual understanding of fractions, they 

demonstrated better procedural knowledge. They could perform additive (Level 2) and 

multiplicative fraction operations (Levels 3 and 4).  

Table 7.3 Cross-tabulation of the conceptual and procedural levels of student performance on the 
fraction learning progression 

 

Procedural Total 

0 1 2 3 4 5 6  

Conceptual 0 Count 2 0 1 0 0 0 0 3 

% of Total 0.4% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.6% 

1 Count 23 83 19 44 64 8 7 248 

% of Total 4.5% 16.1% 3.7% 8.5% 12.4% 1.6% 1.4% 48.1% 

2 Count 5 14 11 30 61 6 21 148 

% of Total 1.0% 2.7% 2.1% 5.8% 11.8% 1.2% 4.1% 28.7% 

3 Count 0 3 3 9 23 11 30 79 

% of Total 0.0% 0.6% 0.6% 1.7% 4.5% 2.1% 5.8% 15.3% 

4 Count 0 5 0 1 7 2 10 25 

% of Total 0.0% 1.0% 0.0% 0.2% 1.4% 0.4% 1.9% 4.8% 

5 Count 0 0 0 0 5 1 2 8 

% of Total 0.0% 0.0% 0.0% 0.0% 1.0% 0.2% 0.4% 1.6% 

6 Count 0 0 0 0 1 0 4 5 

% of Total 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.8% 1.0% 

Total Count 30 105 34 84 161 28 74 516 

% of Total 5.8% 20.3% 6.6% 16.3% 31.2% 5.4% 14.3% 100.0% 

 

The last group at Level 1 of the conceptual knowledge dimension were a small 

number of students (15/248) who were distributed at Level 5 (8/248) and Level 6 (7/248) 

in the procedural knowledge dimension. The students in this group (about 3% of the 

whole sample) exhibited the same limited conceptual fraction understanding as in the 

two previous groups but could still perform complex fraction operations.  

The above results indicate that there can be substantial individual differences 

associated with the learning of fractions, given that the students who were at Level 1 of 

conceptual understanding ranged from no procedural knowledge of fractions to the 

performance of complex fraction operations.  

Let us now examine the results for the 148/516 students at Level 2 of conceptual 

understanding. The results showed that these students (approximately 29% of the total 
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sample) were also distributed across all the levels in the procedural knowledge 

dimension. However, a smaller percentage of the students, at Level 2 conceptual 

knowledge, were at the two lowest levels of the procedural knowledge dimension – only 

19/148 – 12.84% – compared with 106/248 – 42.74% – in the case of Level 1 conceptual 

knowledge. The bulk of the students at level 2 conceptual knowledge were grouped at 

levels 2, 3 and 4 for procedural knowledge (102/148 - 68.92%). 

The results from the analysis of the relationships between Level 2 conceptual and 

procedural knowledge again confirm a conclusion of individual differences. However, 

they also indicate some dependencies between conceptual and procedural 

understanding, given that the students at Level 2 of conceptual understanding seem to 

be a little more advanced in their procedural knowledge overall compared with the 

students at Level 1 conceptual knowledge.  

The examination of the students at Level 3 of the conceptual knowledge 

dimension shows that these students were predominantly grouped at Levels 4 (23/79 – 

29.11%), 5 (11/79 – 13.92%), and 6 (30/79 – 37.98%) of the procedural knowledge 

dimension. These results, again, confirm the presence of individual differences. 

However, some dependencies between conceptual understanding and procedural 

knowledge also can be observed. High level conceptual knowledge, understanding 

improper fractions and fractions as measures, was associated with high level procedural 

knowledge - Levels 4, 5, and 6.   

A similar pattern can be observed when examining students at Levels 4, 5, and 6 

of the conceptual knowledge dimension. Most of the students at these levels were 

grouped at Levels 4, 5, and 6 of the procedural knowledge dimension. Only 6 out of 25 

students at Level 4 of the conceptual knowledge dimension were identified at Levels 1 

(5/25) and 3 (1/25) of the procedural knowledge dimension respectively.  

The above results support the hypothesis that there are individual differences in 

learning fractions. However, the results also indicate considerable dependencies 

between conceptual and procedural knowledge. In order to investigate  these 

dependencies further, a cluster analysis was performed using the R Package ClustOfVar 

(Chavent, Kuentz, Liquet, & Saracco, 2011). 
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The results of the cluster analysis (Figure 7.1) identified three clusters. Cluster 1 

consisted of conceptual level 1 (ConL1) and procedural levels 1, 2, 3 and 4 (ProL1, ProL1, 

ProL2, ProL3, and ProL4). Cluster 2 consisted of conceptual level 2 (ConL2) and 

procedural levels 5 and 6 (ProL5 and ProL6). Cluster 3 consisted of conceptual levels 4, 

5, and 6 (ConL4, ConL5, and ConL6). 

 

Figure 7.1 A dendrogram of the  cluster analysis for the conceptual and procedural levels 
of the fraction learning progression 

Cluster 1 showed that Level 1 of the conceptual knowledge dimension was highly 

correlated with the procedural knowledge of additive and multiplicative fraction 

operations (Levels 1 to 4). This result is consistent with the crosstab analysis, which 

revealed considerable numbers of students at Levels 1 to 4 in the procedural knowledge 

dimension were at Level 1 of the conceptual knowledge dimension. This finding 

indicates that an understanding of the symbolic notation of fractions as part-whole is 

capable of supporting additive and multiplicative fraction operations.  

Clusters 2, 5 & 6 level of procedural knowledge (complex fraction operations) was 

highly correlated with Levels 2 and 3 of the conceptual knowledge dimension. These 

results align with the crosstab analysis, which showed that the number of students in 

procedural knowledge Levels 5 and 6 were concentrated in Levels 2 and 3 of the 

conceptual knowledge dimension. This finding indicates that understanding improper 
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fractions and fractions as measures is associated with procedural knowledge of complex 

fraction operations. 

Cluster 3 consisted of the three highest levels of conceptual knowledge (Levels 4, 

5 and 6) only. It did not include any levels from the procedural knowledge dimension. 

This result indicates that conceptual knowledge above Level 3 did not help the students 

to answer the procedural questions in the test. It is of course possible that the students 

with the higher conceptual understanding could potentially solve other more difficult 

procedural problems which required understanding of the density of fractions and 

multiplicative fraction operations that were not included in the present fraction learning 

progression. 

To conclude, the results confirmed that there are considerable individual 

differences in students’ procedural knowledge within every individual level of the 

conceptual knowledge dimension. These individual differences could be related to 

differences in classroom instruction (Hecht & Vagi, 2012) and/or differences in 

individual students’ learning approaches (Bempeni & Vamvakoussi, 2015). Despite the 

presence of individual differences, both the crosstab and cluster analyses indicated that 

there are also dependencies between the levels of the conceptual and procedural 

knowledge dimensions. A basic understanding of part-whole fractions was associated 

with the procedural knowledge of additive and multiplicative fraction operations, while 

conceptual understanding of improper fractions and fractions as measures was 

associated with complex fraction operations.  Conceptual understanding at higher levels 

did not contribute to increased procedural knowledge in the context of the present 

learning progression.  However, this conceptual understanding might be required for 

the development of more advanced procedural knowledge, for which an understanding 

of the density concept might be necessary. 

7.5 Summary and Conclusions  

The results of the Bayesian Network analysis showed that 48% of the students were 

grouped at part-whole levels of conceptual understanding of fractions and that only a 

small number of students could understand improper fractions, place a fraction on the 

number line or exhibit higher level conceptual knowledge, such as understanding the 
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density of factions and multiplicative fraction operations. These results were explained 

on the grounds that the Indonesian curriculum did not cover important areas of fraction 

conceptual knowledge and/or because it was ineffective in developing conceptual 

understanding, even in the areas that it covered.  It was recommended that the 

Indonesian curriculum needs to be revised to introduce alternatives to part-whole 

representations of fractions, such as number lines and also introduce fractions as 

division in order to facilitate students’ understanding of improper fractions and the 

unbounded infinity of fractions. 

The results showed that the performance of the students was better in the 

procedural knowledge dimension, compared with their conceptual knowledge. About 

50% of the students had reached the goals of the Indonesian curriculum at grade 7 and 

could perform the basic fraction operations as well as more complex operations with 

mixed numbers.  This finding was explained on the grounds that the mathematics 

instruction in Indonesia is mostly procedural. Despite that, the remaining 50% of the 

students had not reached the goals of the curriculum at grade 7 and had difficulties, 

particularly with fraction multiplication and division. This finding was explained on the 

grounds that the Indonesian curriculum did not provide clear guidance as to how to 

develop students’ procedural knowledge effectively, with procedural skills being taught 

independently of conceptual understanding. Consequently, students often made 

mistakes in the application of the procedural processes and misapplied the algorithms 

for addition and multiplication.  

The third important finding relates to the interrelationship between conceptual 

and procedural knowledge. The present research used a more comprehensive test of 

fraction knowledge, a larger sample and older students than prior research and was thus 

in a position to provide more conclusive evidence regarding the relationships between 

conceptual and procedural knowledge of fractions.  The results supported the 

hypothesis that there are considerable individual differences in how students combine 

conceptual and procedural knowledge. However, there were also important 

dependencies between conceptual and procedural knowledge, indicating that a basic 

understanding of fractions as parts of a whole can support additive and multiplicative 
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fraction operations but a higher conceptual understanding of fractions as measures and 

as division is associated with complex fraction operations. Knowledge of the density 

concept of fractions was not associated with additional procedural competencies in the 

present learning progression but it is possible that it might be associated with the 

performance of more complex fraction operations not tested in the present research. 
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CHAPTER 8 : DISCUSSION 

 

8.1 Introduction 

The research conducted in this dissertation designed and validated a two-dimensional 

learning progression of fractions. The learning progression was based on two types of 

mathematical knowledge i.e., conceptual and procedural. The empirical validation of the 

progression was conducted through two sequential stages: a qualitative study using a 

cognitive interview (Chapter 4) and a quantitative study using Bayesian Networks 

analysis (Chapter 6). The validation was guided by the assessment triangle (Pellegrino et 

al., 2001), based on a cognitive model of how students learn fractions.  

In the conceptual knowledge dimension, there were seven validated levels ranging 

from no understanding of fractions to understanding the unbounded infinity and density 

of fractions and understanding multiplicative fraction operations. In the procedural 

knowledge dimension, there were seven validated levels ranging from a lack of any 

procedural knowledge of fractions to understanding nested complex fraction 

operations. The results revealed that most of the students were at the lower levels of 

the conceptual knowledge dimension but on the higher levels of the procedural 

knowledge dimension (Chapter 7).  

An important result of the research is the development of the two measurement 

models using Bayesian Networks. These measurement models were used to assess and 

validate the learning progression at both the item and student levels. Two Bayesian 

Network models were developed, namely Model 1 - Bayesian Networks with a single 

latent variable, and Model 2 - Bayesian Networks with multiple latent variables (Chapter 

5). The results showed that Model 2 had a better fit with the students’ responses than 

Model 1 and had more desirable properties for measuring and diagnosing students’ 

learning progression (Chapter 6).  
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8.2 Discussion of the Research Findings 

8.2.1. The Development of a Cognitive Model of Two-Dimensional Fraction 
Learning Progression 

The fraction learning progression developed in this research makes a significant 

contribution to existing research on the assessment of mathematics learning. It is the 

first learning progression that has developed a two-dimensional fraction learning 

progression that distinguishes conceptual and procedural knowledge in mathematics. 

Differentiating these two types of knowledge is important because it provides additional 

information on the basis from which the students’ mathematical knowledge can be 

assessed. The resulting learning progression can provide more accurate profiles of 

students’ progression levels than previous research, which did not distinguish 

conceptual knowledge and procedural knowledge (Arieli-Attali & Cayton-Hodges, 2014; 

Confrey et al., 2011).  

The learning progression developed in this research also included essential aspects 

of fraction conceptual knowledge, such the unbounded infinity and density of rational 

numbers, and the conceptual understanding of multiplicative fraction operations. Prior 

research investigated students’ understanding of the unbounded infinity of fractions 

(Stafylidou & Vosniadou, 2004) and of density (Vamvakoussi & Vosniadou, 2004). The 

results of this research have not been utilized so far in prior assessments of students’ 

fraction knowledge. The present research utilized these research findings in order to 

develop an assessment of the students’ conceptual knowledge of fractions.  Items were 

created that tested students’ understanding of the unbounded infinity of fractions and 

of density in the context of the fraction learning progression. As a result, it was possible 

to evaluate the emergence of this knowledge and compare it with the emergence of 

other aspects of conceptual understanding of the symbolic notation of fractions, such 

as part-whole, improper fractions, fractions as measures and understanding 

multiplicative fraction operations. The results of the Bayesian Networks analysis showed 

that understanding the unbounded infinity of fractions was conditional on students’ 

understanding of improper fractions and of fractions as measures, while understanding 

fraction density was shown to be conditional on students’ understanding of the 

unbounded infinity of fractions.   
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Another innovation of the present research is that the conceptual dimension 

included items to assess students’ understanding of the operation of fraction 

multiplication. The results showed that this understanding was the last to be developed 

and that it was conditional on students’ understanding of fraction density. The empirical 

sequence of the emergence of students’ conceptual knowledge of fractions, covering 

aspects of conceptual knowledge not included in previous assessments (e.g., Arieli-Attali 

& Cayton-Hodges, 2014; Confrey et al., 2011) is a significant contribution of the present 

research. 

Let us now discuss the development of the procedural knowledge dimension of 

the learning progression in the present research. The first innovation of the present 

research was the construction of a separate scale to assess this aspect of students’ 

fraction knowledge. The second innovation was the extension of the procedural 

knowledge of fractions investigated, compared with previous research.  Although 

students’ procedural knowledge of fraction operations was not described in a separate 

scale in previous learning progressions, several aspects of this competence were 

included in previous research. These typically assessed students’ additive and 

multiplicative fraction operations (Arieli-Attali & Cayton-Hodges, 2014; Confrey et al., 

2011). Extending the progression of procedural learning from previous studies, the 

present research designed items and validated students’ additional competencies to 

perform complex fraction operations empirically, for example for nested operations of 

fractions where the numerator or denominator were not a whole number but another 

fraction operation. The results showed that about 20% of the students were at levels 

indicating competencies in performing complex fraction operations (Levels 5 and 6). The 

significant number of students at these levels demonstrates the importance of including 

these competencies in mathematics assessments.  

In terms of the investigation of the relationship between conceptual and 

procedural knowledge, the present research utilized a larger sample size and older 

students than the previous research. Moreover, it developed assessment instruments 

which covered comprehensive aspects of the conceptual and procedural knowledge of 

fraction learning, ranging from no understanding of the fraction symbols to 

understanding multiplicative fraction operations, and from no procedural knowledge to 
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procedural knowledge of complex fraction operations, respectively. Specifically, this 

research examined the relationship between conceptual and procedural knowledge 

based on a validated cognitive model of learning progression. Hence, the information 

about the relationship between conceptual and procedural knowledge of learning 

fractions obtained from this research is unique because it was contextualized in the 

progression of students’ learning. No previous studies investigated the relationsship 

between conceptual and procedural knowledge intertwined with the development of 

students’ learning. 

The results of the present research supported the hypothesis that there are 

significant individual differences in students’ conceptual and procedural knowledge 

(Hallett et al., 2010; Hallett, Nunes, Bryant, & Thorpe, 2012). However, the findings also 

showed some dependencies between the various levels of conceptual and procedural 

knowledge. More specifically, a basic understanding of fractions as a representation of 

part-whole was highly correlated with the procedural knowledge of additive and 

multiplicative fraction operations, while a conceptual understanding of improper 

fractions and fractions as measures was highly correlated with the procedural 

knowledge of complex fraction operations. These findings enrich the results of previous 

research on the relationship between conceptual and procedural knowledge in learning 

fractions. For example, Byrnes and Wasik (1991) found that conceptual knowledge and 

procedural knowledge of fractions was moderately correlated (r=0.5, p<0.01), but did 

not give more information about the nature of the specific conceptual understanding 

that correlated with the procedural knowledge of additive or multiplicative fraction 

operations. In contrast, this research provided information about how the various levels 

of conceptual understanding of fractions (part-whole, improper fractions, or fractions 

as measures) correlated with students’ procedural knowledge of fraction operations. 

The results of the present research challenge the previous research on learning 

progressions in fractions and in mathematics in general. As discussed in Chapters 2 and 

3, previous learning progressions did not differentiate conceptual and procedural 

competencies within the levels of the learning progressions (Arieli-Attali & Cayton-

Hodges, 2014; Confrey et al., 2011). For example, in the rational number learning 

progression developed by Arieli‐Attali and Cayton‐Hodges (2014), conceptual 
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knowledge of fractions as representations of part-whole emerged at Level 2, together 

with the emergence of procedural knowledge of fraction addition being limited to 

fractions with the same denominator. However, the findings from the present research 

showed that students who had limited part-whole level understanding (Level 1) in the 

conceptual knowledge dimension had large differences in their procedural knowledge. 

The findings of the present research indicate that the learning progressions developed 

from the previous studies, in which conceptual and procedural knowledge were placed 

at the same level in the progression, did not accurately represent differences in 

students’ mathematical knowledge. Therefore, the cognitive model of the two-

dimensional learning progression offers a better identification of the position of the 

students along their learning journey, which is the main goal of educational assessment 

(Masters, 2013).  

The profiles of individual differences of conceptual and procedural levels can be 

useful in order to diagnose students’ difficulties in their learning and provide 

information to teachers that enables them to identify gaps in students’ conceptual and 

procedural knowledge. This information can then be used to tailor teaching to better 

meet students’ needs (Black & Wiliam, 1998; Huff & Goodman, 2007; Pellegrino et al., 

2001; Richard J Stiggins, 2002). Hence, the analysis of individual differences in the 

relationship between conceptual and procedural knowledge is one of the significant 

contributions of this research to the development of formative assessment.  

The two-dimensional learning progression also can contribute to the development 

of assessment in modern environments such as online learning. Timms (2017) 

highlighted that the most important thing in developing assessment for online learning 

is the clarity of the learning goals. The two-dimensional learning progression not only 

provides clear learning goals in every level of students’ progression but also guides both 

instruction and assessment to achieve the learning goals. Particularly, this learning 

progression provides a guidance to achieve learning goals  on the specific knowledge 

dimensions of conceptual and procedural, which are the core knowledge of 

mathematics learning (Hiebert & Wearne, 1996; Rittle-Johnson & Schneider, 2014).  
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In summary, the development of a two-dimensional fraction learning progression 

in the present research has produced important results for (1) assessment (2) instruction 

and (3) curriculum development. In the area of assessment, the two-dimensional 

learning progression developed in this research is innovative because for the first time 

it differentiates students’ conceptual and procedural knowledge. The results showed 

that separating these two-knowledge dimensions results in more accurate assessment  

than those learning progressions that do not distinguish these two key types of 

knowledge. Specifically, the results that showed the profiles of individual differences in 

the conceptual and procedural knowledge dimensions are useful to produce diagnostic 

information about students’ progression and their learning challenges. This is a 

significant contribution to the development of formative assessments.  Moreover, the 

present research developed assessment instruments which assess important aspects of 

conceptual knowledge (including the unbounded infinity and density and understanding 

multiplicative fraction operations) and procedural knowledge (including complex 

fraction operations) comprehensively. As a consequence, the emergence of essential 

aspects of conceptual and procedural knowledge in learning fractions and their 

relationships could be examined.  

In the area of instruction, the two-dimensional learning progression provides a 

road map. In the conceptual knowledge dimension, teachers are informed about how 

students develop their conceptual understanding from no understanding of fractions 

until they reach high level conceptual understanding, such as infinity and understanding 

multiplicative fraction operations. Likewise, in the procedural knowledge dimension, 

teachers are informed about how students develop their procedural knowledge from no 

valid procedural knowledge until they can perform complex fraction operations. 

Moreover, this learning progression provides information about students’ learning 

challenges at different levels of students’ progression in learning, which can assist 

teachers to develop more effective instruction.  

In the area of curriculum development, the two-dimensional learning progression 

covered many essential aspects of conceptual and procedural knowledge of learning 

fractions. In the conceptual knowledge dimension, the learning progression includes 

understanding the symbolic notation of fractions as a representation of part-whole, 



 

297 

 

fractions as measures, the unbounded infinity of fractions and understanding 

multiplicative fraction operations. In the procedural knowledge dimension, the 

curriculum covered additive and multiplicative operations and complex fraction 

operations. All these materials are structured in the progression levels and can be used 

in the curriculum to organize these materials across grades in schools. This two-

dimensional learning progression is useful to balance the conceptual and procedural 

aspects of fraction learning, given that many curricula favour the procedural aspect of 

learning and teaching fractions. 

8.2.2 The Development of Bayesian Networks Models 

Current practice for measuring students’ learning progression typically uses 

Bayesian Networks with a single parameter/Bayesian Latent Class Analysis (Model 1) 

(Jeffrey T Steedle & Shavelson, 2009; West et al., 2012). Model 1 in the present research 

followed this tradition. The levels of learning progression were assumed to be 

independent of each other in Model 1. Consequently, the dependency between the 

levels in the learning progression were not formulated in a formal statistical model. A 

Bayesian Networks Model 2, with multiple latent variables, was developed in order to 

address the limitations of Model 1. Model 2 was developed to reflect the hierarchical 

dependency between the levels assumed in the learning progression model (Popham, 

2007).  

 Model 2 combined a cognitive model of a learning progression with a Bayesian 

statistical approach. This modelling approach is a significant contribution to the 

development of measurement models in the context of cognitive assessments 

(Pellegrino et al., 2001). The results of the present research showed that Model 2 had a 

better fit than Model 1 and superior properties in terms of the diagnostic analytics of 

students’ competencies, pseudo-guessing analysis and detecting extreme cases in 

students’ responses.  

 With respect to the validation of the learning progression, the results showed that 

both Bayesian Networks, Models 1 and 2, could be used effectively to validate both the 

item level analysis and the students’ level analysis. These analyses are important in 

order to support statistical inferences at the item level and at the student level. Item 
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level inference supports the interpretation that items that were assigned to a certain 

level would be answered correctly by the students at that level or the upper level(s). 

Student level inference supports the interpretation that students who were assigned to 

certain levels would have sufficient competencies at that level and below, but would not 

have enough competencies at the upper level(s) respectively (adapted from West et al., 

2010). These types of inferences provide a clear explanation as to why certain items or 

students were placed at certain levels. These inferences can only be performed if the 

measurement model is developed based on a discrete latent scale, so that the item and 

student analyses can be performed directly on the discrete levels of the learning 

progression. Developing these two types of inferences to validate a learning progression 

model is a significant contribution of this research. There are no previous studies that 

used a similar approach to perform the validation of a learning progression.  

Corcoran, Mosher, and Rogat (2009) considered learning progressions as “testable 

hypotheses” (p.15) of students’ learning. In order to evaluate these hypotheses a 

confirmatory approach is preferable to an exploratory approach because such an 

approach makes it possible to examine whether the hypotheses are supported by the 

data. The Bayesian Networks approach adopted in the present research can be 

considered confirmatory because the analysis was performed based on the 

predetermined levels developed  from both theory and previous empirical research on 

fraction learning. The two types of analyses that make Bayesian Networks confirmatory 

in this research are the item level analysis and the student level analysis. The item 

analysis was performed to examine whether the items that were hypothesized to be at 

a certain level would be correctly answered by the students at that level and above, but 

incorrectly answered by the students at the level(s) below; while the student level 

analysis was used to estimate students’ location on the hypothesized levels of the 

conceptual and procedural knowledge dimension. 

This confirmatory analysis is different from the exploratory approach using 

Bayesian Latent Class Analysis by West et al. (2010), which produced several Bayesian 

Networks with different levels of learning progressions and then selected the model 

with the best fit. Such an exploratory approach is also used in other methods, such as 

the Rasch Model. For example, Wilmot et al. (2011) plotted item difficulty and students’ 
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abilities on the same latent continuum scale. They then developed cut-off points based 

on the group items, which appeared on the scale to identify the levels of learning 

progression. They did not perform item analyses directly based on the hypothesized 

levels of the learning progression. In fact, the item analyses were performed on the 

empirical levels generated from students’ responses. The advantage of performing 

confirmatory analysis in the present research is the capacity to test the hypothesized 

levels of the learning progression directly.  The confirmatory approach developed in this 

research is a significant contribution to the assessment literature on learning 

progressions.  

Another significant contribution of the present research is the development of 

item analyses, such as item difficulty, item discrimination, and pseudo-guessing analysis 

using Bayesian Network models.  These item analyses have been well-established in CTT 

and IRT models (Crocker & Algina, 2008; De Ayala, 2009; Nitko & Brookhart, 2007). 

However, as discussed before in Chapter 6, the item analyses developed from CTT and 

IRT were different from the Bayesian Networks Item analyses developed in this study. 

The fundamental differences are on the assumptions of these models. The Item analyses 

in IRT and CTT were developed based on the continuum scale of latent ability, while the 

Item analyses in Bayesian Networks were developed from the assumption of a discrete 

scale of the students’ latent progression in learning. In practice, Bayesian Network Item 

analysis is preferable for validating a learning progression because the analysis can be 

applied to the discrete levels of the learning progression directly. Developing Bayesian 

Network Item analysis for validating the hierarchical levels of a learning progression is 

the most important contribution of this study to the field of educational assessment and 

measurement. 

In summary, the Bayesian Networks models (Models 1 and 2) developed in this 

research are a significant contribution to educational measurement in terms of 

measuring and validating learning progressions. First, the Bayesian Networks models 

have taken into account prior information about student knowledge into the models 

and have measured the uncertainties of each of the parameters in the models. Second, 

the Bayesian Networks Model 2, with multiple hierarchical latent variables, successfully 

addressed the limitations of Bayesian Networks Model 1 in representing the hierarchical 
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dependency between the levels by accommodating this dependency into a formal 

statistical model. Next, both models support a confirmatory approach for evaluating the 

hypothesized levels of a learning progression through two types of analyses: item level 

and student level analyses. These analyses can test the hypothesized levels of the 

learning progression directly. Finally, the present research, for the first time, has 

developed Bayesian Networks item analyses such as item difficulty, item discrimination 

and pseudo-guessing analysis, which were originally developed in CTT and IRT, in order 

to validate the hierarchical, discrete levels of a learning progression.  

8.3 Limitations and Recommendation for Further Studies 

This study has several limitations. The sample in this study was taken from just 

one of the junior public schools in Indonesia. The research findings may not represent 

the whole population of students at grades 7-9 in Indonesia or in other countries. Hence, 

a larger study sampling student from other junior public schools across the country is 

required so that the findings can be generalized into the national context of Indonesia. 

The Bayesian Networks models developed in this research are specific for a hierarchical 

setting that fits into the current context of learning progressions. Further research is 

needed to investigate different types of hierarchical settings, depending on other 

contexts.  

Moreover, the Bayesian Networks models developed here are based on specific, 

informative, prior information. The prior could affect the posterior estimates when the 

number of samples is small as found in the higher levels of the fraction learning 

progression model. Furthermore, the research context needs informative prior, not 

uninformative. It is therefore recommended to conduct a sensitivity analysis using 

different informative prior information in future research.  

Moreover, the Bayesian Networks models developed here are based on specific 

and informative prior information, which were obtained from previous studies or expert 

opinion. For complex models with many parameters such as the models developed in 

this thesis, the choice of priors and conclusions of the subsequent Bayesian analysis are 

usually validated through a prior sensitivity analysis. Given the context of this research 

that prior information is usually informative, the prior sensitivity analysis can be 
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conducted using different types of informative priors, weakly informative or strongly 

informative. This thesis used moderate informative priors. As a future work in this 

research, a prior sensitivity analysis can be performed using either weakly or strongly 

informative prior distributions. 

In Bayesian perspectives, large sample sizes become more important especially in 

the context of strong prior being that applied in the analysis. The limitation of this 

research has shown that at the higher levels, the posterior estimates are getting close 

to the priors due to a small number of students at these levels. However, it is worth to 

note that the small number of students in the high levels of fraction learning progression 

is not surprising because it is consistent with the previous research that conceptual 

understanding of fractions at high levels were difficult for students (Vamvakoussi & 

Vosniadou, 2004, 2010). Therefore, by considering the context and the theory of 

development of fraction learning, the results of Bayesian estimation are retained in this 

study by acknowledging that in some cases the prior could affect the posterior estimates 

as a limitation which is inherent in the Bayesian Network approach when dealing with 

small number of samples. This issue can be addressed by simultaneously increasing the 

sample sizes of the study and using weakly informative prior for the Bayesian Network 

models proposed in this thesis. 

The Bayesian Networks models were implemented for each dimension, 

procedural and conceptual. Future research is required to develop a bivariate analysis 

of Bayesian Networks for these two knowledge dimensions. Finally, the cut-off 

probabilities for placing items and students along the progression levels were not well-

established in the literature. Future work is needed to set a threshold of probabilities to 

be used for validating and measuring students’ learning progressions.  
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APPENDICES 
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Appendix B. Letter of Introduction for School Principals  
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Appendix C. Letter of Introduction for Parents  
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Appendix D. Information Sheet for School Principals 
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Appendix E. Information Sheet for Parents  
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Appendix F. The English Version of the Fraction Learning 
Progression Assessment Instrument 
 

 

Please answer correctly all the following questions 

 

1. Write the fraction for the shaded part below 
 

 

For example : 

 

 

 

 

 

 

              

 

 

 

 

 

 

 

 

iii).  If the figure                              is the whole, write the fraction for the 

shaded part below 

 

 

 

 

 

 

 

 

= … 

= … 

i) 

ii) 

= ଵ

ଶ
 

 

= 
…

…
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2. Write the numerator of the fraction for the shaded parts 
 

 

For example : 

 

 

 

 

 

    

 

 

 

 

ii) If the figure                           is the whole, write the numerator of the  

 

 

fraction for the shaded parts below 

 

 

 

 

 

3. Shade the shape to show the fractions below. 

. 

     

 

  For example :  

 

 

 

 

     

 

= 
…

ଵ଺
  

= 
…

଼
  

 
ଶ

ଷ
  

i) 

 

ଵ

ଶ
  

= ଶ

ସ
 

 

i) 
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4. Show the fraction on the number lines below.  

 

         For example: 

 

 

 

 

 

 

 

 

5. Show the fraction         on the number line below 

 

 

 

6. Order the fractions   
଻

ସ
  ,  

ଵ

ଷ
  and 1

ଵ

ଶ
   on the number line below  

 

 

 

7. Which is larger  
ଷ

ହ
   or  ଵ

ହ
 ?  Illustrate how you got your answer by using a model 

such as a picture or a diagram representation. 

 

 

 

 

 

ii) 
 
଻

ସ
  

 
ଵ

ଶ
  

 

 
ଷ

଼
  

 
ଵ

ଶ
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8. Which is larger  
ଶ

ଷ
  or  

ଷ

ସ
 ?  Illustrate how you got your answer by using a model 

such as a picture or a diagram representation. 

 

 

 

 

 

 

9. Which is larger 
଻

ସ
   or  ଼

଺
 ?  Illustrate how you got your answer by using a model 

such as a picture or a diagram representation. 

 

 

 

 

 

 

10. Write the biggest fraction that you know. Explain your answer 

 

 

 

 

 

 

11. Write the smallest fraction that you know. Explain your answer 
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12. How many numbers between 
ଶ

ହ
  and  

ସ

଻
 ? Explain your answer 

 

 

 

 

 

 

 

13. How many numbers between  
ସ

଻
 and 

ହ

଻
 ? Explain your answer 

 

 

 

 

14. Draw a pictorial representation for the addition and multiplication of fractions 

below.  

 

For example:  Draw a pictorial representation for the addition of fractions 

below.  

 

 

 

 

 

 

 

 

 

i) Draw a pictorial representation for the addition of fractions below. Explain 

your answer  

ଵ

ସ
+

ଶ

ସ
    

ଶ

ହ
+  

ଵ

ହ
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ii) Draw a pictorial representation for the addition of fractions below. Explain 

your answer  

ଵ

ସ
+

ଶ

ଷ
    

 

 

 

 

iii) Draw a pictorial representation for the multiplication of fractions below. 

Explain your answer  

ଵ

ଶ
×

ଷ

ସ
  

 

 

 

 

 

 

iii) Draw a pictorial representation for the division of fractions below. Explain 

your answer  

ଵ

ଶ
÷

ଵ

ସ
    

 

 

 

 

 

 

 

 

 

 



 

315 

 

14. Find the sum, difference, product, or quotient of the fraction operations in the 

table below. Show your work and write your answer in simplest form (The 

questions in Level-1 to Level 3 are adapted and extended from Newton, 2008; 

Newton et al., 2014) 

 

i)  
ଷ

଼
+

ଶ

଼
 

Answer: 

 

 

 

 

 

 

 

 

ii) 
ଵସ

ଵହ
+

ଶ

ଷ
  

Answer: 

 

 

 

iii) 5 −  
ଷ

଼
  

Answer: 

 

 

 

 

 

 

 

iv) 2
ଷ

ହ
+  

ଵ

ଶ
  

Answer: 
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v) 
ଶ

ଵହ
×

଻

ଵହ
   

Answer: 

 

 

 

 

 

 

 

vi) 
ଵ

଼
 ×  24 

Answer: 

 

 

 

 

 

 

 

 

vii) 
ଽ

ଵ଴
 ÷  

ଷ

ଵ଴
 

Answer: 

 

 

 

 

 

 

 

 

 

 

 

viii) 3
ହ

଻
 ×  4

ଷ

଻
   

Answer: 
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iX) 2
ଵ

ଽ
 ÷ 3   

 

Answer: 

 

 

 

 

 

x)    1 − 
ଶ

భ

ర
 ି ଵ

ଷ
 

 

Answer: 

 

 

 

 

 

 

xi)      
ଵ ÷ 

మ

య

ହ
−  

ଵ

ସ
  

 

Answer: 

 

 

 

 

 

 

 

 

 

 

xii)       

1 + 
5

6 +  
1

1 −
1
3

    

Answer: 

 

Good Luck ! 
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Appendix G. Fraction Learning in the Indonesian Curriculum 
 

In the Indonesian New Curriculum which is called “The 2013 Curriculum”, (Balitbang, 

2013a, 2013b) fractions are first introduced in the third grade and their instruction  

continues throughout elementary school until grade seven. In the seventh grade, 

fractions are not presented as an independent topic but are embedded in the topic of 

“numbers” which include whole numbers. After this, fractions are taught as ratios until 

grade nine. This section discusses the development of students’ learning of fractions 

(exclude ratios which are beyond the present research), based on the Indonesian 

curriculum. The discussion will be shaped in terms of the development of conceptual 

and procedural knowledge in learning fractions.  Two main resources are used in this 

discussion which are the curriculum stating the basic competence and the books 

(teacher and student’s books) which accompany the curriculum. The analysis was 

presented in Table 1. 
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Table 1. The analysis of conceptual and procedural fraction competencies outlined in the 2013 Indonesian Curriculum and the mathematics textbooks 

published by the Ministry of Education and Culture, Indonesia. 

Grade Basic Competence 
(The 2013 Curriculum) 

Conceptual Procedural 

Grade-3 3.3 Understand the concept of simple 

fractions using concrete objects / 

images, as well as determining the 

value of the smallest and largest 

fractions in these objects 

 

 

 

 

 

 

3.14 Recognize fractions and decimals, 

and perform the addition and 

subtraction of fractions with the same 

Grade 3 students begin to understand fractions 
as part-whole. They learn simple fractions such 
as 1/2, 1/3 and 1/4). Moreover, students begin 
to recognize which a fraction is bigger and 
smaller by comparing the sizes of the parts from 
the same whole. (Kurnianingsih, Assagaf, 
Muhibba, & Nurhasanah, 2015a) 
 
Students are introduced to decimal notation. 
They recognize that common fractions with the 
denominator 10 can be expressed in decimal 
notation e.g. 4/10 = 0.4 (Kurnianingsih, Assagaf, 
Muhibba, & Nurhasanah, 2015b). Moreover, 
they are introduced to simple fraction addition 
using representation as illustrated in Figure 1. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Students can add and subtract fractions with the 
same denominator for fractions less than 1 e.g. 1/3 
+ 1/3 = …, 3/5+1/5=…, 4/4 - 3/4=…, 5/6-1/6=…, etc 
(Kurnianingsih et al., 2015b) 
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Grade Basic Competence 
(The 2013 Curriculum) 

Conceptual Procedural 

denominator 

 

Figure 1. Fraction addition using diagram 
representation (Kurnianingsih et al., 2015b, p. 
121) 

Grade-4 3.1 Recognize the concept of 

equivalent fractions and perform 

arithmetic operation of fractions using 

concrete objects / images 

 

 

 

 

 

 

 

 

 

At grade 4, students begin to learn equivalent 
fractions using diagram representations, which 
are developed from the part-whole concept 
introduced in grade 3. Students use equivalent 
fraction understanding to compare and order 
fractions with different denominator, but this is 
still limited to fractions less than 1 (Afriki, Farani, 
Anggari, Wulan, Purnihastuti, Puspitawati, 
Destianti, Miga, & Maryanto, 2014). Students  
further learn how to perform fraction 
operations using diagram representations 
(which are introduced in Grade-3) including 
fractions with unlike- denominators (Afriki, 
Farani, Anggari, Wulan, Purnihastuti, 
Puspitawati, Destianti, Miga, Susilowati, et al., 
2014). 
 
 
 
 
 
 

Students are able to add and subtract fractions less 
than 1 including fractions with unlike-
denominators. They can simplify the results of 
fraction addition and subtraction (Afriki, Farani, 
Anggari, Wulan, Purnihastuti, Puspitawati, 
Destianti, Miga, Susilowati, et al., 2014).  
 
 
 
 
 
 
 
 
 
Students are introduced to converting fractions 
into decimals in several ways: by changing the 
denominator into 10 or by dividing the numerator 
with the denominator. They also learn how to 
convert a fraction into percentage by changing the 
denominator into 100 (Afriki, Farani, Anggari, 
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Grade Basic Competence 
(The 2013 Curriculum) 

Conceptual Procedural 

 

 

 

4.3 Express fractions in decimal and 

percentage form 

 

 

 Wulan, Purnihastuti, Puspitawati, Destianti, Miga, 
Susilowati, et al., 2014) 

Grade-5 3.2 Understand the different forms of 

fractions (common fractions, mixed 

numbers, decimals and percentage),  

change fractions into decimals, and 

perform fraction multiplication and 

division 

 
 
 
 

At grade-5, students are introduced to fractions 
greater than 1 and mixed numbers using 
diagram/pictorial representations. They are also 
taught that fractions can be expressed in 
different forms such as common fractions, 
mixed numbers, decimals, and percentage 
(Maryanto, Susilawati, Kusumawati, Subekti, & 
Karitas, 2014). 
 
Related to the conceptual knowledge underlying 
fraction operations, students are introduced to 
fraction multiplication and division using 
diagram representations. For example, a 

At this level, students expand the additive 
operations of fractions that they learned in Grade 3 
into multiplicative operations. They can multiply 
and divide fractions including fractions greater than 
1. Students also  learn further how to convert 
between fractions (a/b), decimals and percent 
which involve improper fractions (Maryanto et al., 
2014). 
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Grade Basic Competence 
(The 2013 Curriculum) 

Conceptual Procedural 

 
 
 
 
 
 
 
 
 
 
 
 

4.12 Express a decomposed fraction as 

two fractions which are expressed as a 

decimal and percent and which have a 

range of possible answers, using 

addition, subtraction, multiplication 

and division 

 

fraction multiplication (1/2 X 2/3) is illustrated in 
figure 2.  
 
 
 
 
Figure 2. A representation of a fraction 
multiplication 1/2 X 1/3 using rectangle 
diagrams (adopted from Maryanto et al., 2014, 
p. 30) 
 
 
 
 
 
 

 
 
 
 
 
 
Students learn that a fraction can be expressed as 
the results of fraction operations as illustrated in 
Figure 3. 
 
 
 
 
 
Figure 3. Decomposing a fraction as an addition of 
two fractions (adopted from Maryanto et al., 2014, 
p. 125) 

Grade 6 3.1 Understand the arithmetic 

operation involving various forms of 

At grade 6, students learn more about different 
representations of fractions including decimals 
and percent (Afriki et al., 2015a, 2015b). 

Students learn fractions operations (that they 
learned in previous grades) in greater depth, which 
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Grade Basic Competence 
(The 2013 Curriculum) 

Conceptual Procedural 

fractions (fractions, mixed numbers, 

decimals and percent) 

 

 

involve decimals and percentage (Afriki et al., 
2015a, 2015b). 

Grade 7 3.1 Compare and order different types 

of numbers and apply arithmetic 

operations of integers and fractions by 

using a variety of operating properties 

 

Students learn more intensively the concepts of 
fractions including part-whole, equivalent 
fractions, decimals and percent. They learn how 
to compare and order fractions, decimals and 
percent as illustrated below 
 
 
They also further learn the concept of fraction 
operations using fraction strips/diagrams (As’ari 
et al., 2014). 
 

Students learn in greater depth additive and 
multiplicative fractions that they have already 
learned in primary school (grade 3 to 6) so that they 
can solve more complex fraction operations (As’ari 
et al., 2014). 
. 
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The Indonesian 2013 curriculum covers many topics regarding the learning of 

fractions. The topics concerning the conceptual knowledge of fractions are the 

following: At grade 3, students are introduced to part whole as an entry point into 

recognizing fractions. At this level, they are also taught how to add simple fractions using 

diagram representations. After that, they are introduced to equivalent fractions at grade 

4 so that they can order and compare fractions with unlike-denominators. At grade 5, 

they are taught to recognize improper fractions, mixed numbers, decimals and 

percentage. Next, in grade 6, they are introduced more deeply on how to represent 

fractions in decimals and percentages. In grade 7, they review all the material taught on 

fractions in grades 3 to 6, and are taught how to compare and order fractions including 

decimals and percentages. They are also introduced to the concept of fraction 

operations using fraction strips/diagrams.  

Concerning the procedural knowledge of fractions, students are taught additive 

operations from grade 3 to 4, and are introduced to multiplicative operations at grade 

5. At grade, 6 they learn fraction operations which involve decimals and percentages. 

Finally, at grade 7, they are introduced in greater depth to more complex additive and 

multiplicative fraction operations. 

However, there are several essential fraction concepts which are not covered in 

the 2013 curriculum. First, the curriculum does not introduce fractions as measures. All 

the fraction concepts introduced in the curriculum have an over-emphasis on part-

whole understanding. Introducing fractions as measures is important in order for 

students to understand fractions as numbers (Arieli-Attali & Cayton-Hodges, 2014). 

Next, the curriculum does not include instruction on the “unbounded infinity” of 

fractions, meaning there is no smallest or biggest fraction (Stafylidou & Vosniadou, 

2004). Finally, the curriculum does not cover the density concept of fractions, meaning 

that there are infinite numbers between two fractions (Vamvakoussi & Vosniadou, 

2004). The 2013 curriculum could be improved by incorporating materials to further 

develop student learning in these areas. 
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Appendix H. Geweke Test Estimation for Convergence Test and 
gamma (𝜸) and pi (𝝅) parameters generated using CODA 
Package in R 
  

Geweke Test for Model 1 of the Conceptual Knowledge Dimension 

gamma[1]  gamma[2]  gamma[3]  gamma[4]  gamma[5]  gamma[6]  

 0.490712 -0.626240  0.470150  0.570294  0.005518 -1.662310  

  pi[1,1]   pi[1,2]   pi[1,3]   pi[1,4]   pi[1,5]   pi[1,6]  

 0.617808  1.286797 -0.804341  1.694752  0.527221  1.648695  

  pi[1,7]   pi[1,8]   pi[1,9]  pi[1,10]  pi[1,11]  pi[1,12]  

-0.004892 -0.860232 -0.060908  0.071053  0.625309  1.138121  

 pi[1,13]  pi[1,14]  pi[1,15]  pi[1,16]  pi[1,17]  pi[1,18]  

-0.700553 -0.005713  0.543834 -0.687961  1.172969 -0.812506  

 pi[1,19]  pi[1,20]  pi[1,21]   pi[2,1]   pi[2,2]   pi[2,3]  

-0.551563 -0.041621  1.351098  0.240884 -0.637400 -0.325650  

  pi[2,4]   pi[2,5]   pi[2,6]   pi[2,7]   pi[2,8]   pi[2,9]  

 0.784541  0.818438  0.726941 -1.616439  0.913738 -0.521404  

 pi[2,10]  pi[2,11]  pi[2,12]  pi[2,13]  pi[2,14]  pi[2,15]  

 1.130307  0.733221  0.483723 -0.093295 -0.044078 -1.642028  

 pi[2,16]  pi[2,17]  pi[2,18]  pi[2,19]  pi[2,20]  pi[2,21]  

 0.862408 -0.734300  0.145336 -0.427807 -1.337637  0.366285  

  pi[3,1]   pi[3,2]   pi[3,3]   pi[3,4]   pi[3,5]   pi[3,6]  

 1.712758  0.431907  0.444354  1.233695 -1.422345  0.877708  

  pi[3,7]   pi[3,8]   pi[3,9]  pi[3,10]  pi[3,11]  pi[3,12]  

-1.049826 -0.343016 -1.311626 -1.847013 -1.072481 -0.753578  

 pi[3,13]  pi[3,14]  pi[3,15]  pi[3,16]  pi[3,17]  pi[3,18]  

 0.120117  0.499039 -0.406753 -0.705981 -0.253896  0.101185  

 pi[3,19]  pi[3,20]  pi[3,21]   pi[4,1]   pi[4,2]   pi[4,3]  

 0.952138 -0.362436  0.841088 -0.194156 -0.418119 -0.632626  

  pi[4,4]   pi[4,5]   pi[4,6]   pi[4,7]   pi[4,8]   pi[4,9]  

 0.491605 -0.619785  0.031210 -0.661878 -0.997749 -1.790882  

 pi[4,10]  pi[4,11]  pi[4,12]  pi[4,13]  pi[4,14]  pi[4,15]  

 0.031437 -0.256421 -0.731369  0.718214  1.043495  0.110951  

 pi[4,16]  pi[4,17]  pi[4,18]  pi[4,19]  pi[4,20]  pi[4,21]  

-1.028516  0.759290 -0.295129  0.115957  0.140306 -1.236072  

  pi[5,1]   pi[5,2]   pi[5,3]   pi[5,4]   pi[5,5]   pi[5,6]  

-0.359621 -0.101860  0.188587 -1.631224 -0.147195 -1.442883  

  pi[5,7]   pi[5,8]   pi[5,9]  pi[5,10]  pi[5,11]  pi[5,12]  

 0.043249  0.800412  0.586067  0.001195  0.791922  0.348552  
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 pi[5,13]  pi[5,14]  pi[5,15]  pi[5,16]  pi[5,17]  pi[5,18]  

 0.091012  1.450053 -0.507667  0.045625 -0.428344 -1.090335  

 pi[5,19]  pi[5,20]  pi[5,21]   pi[6,1]   pi[6,2]   pi[6,3]  

 1.159484  1.641590  0.024415 -0.583123  0.147721 -0.315051  

  pi[6,4]   pi[6,5]   pi[6,6]   pi[6,7]   pi[6,8]   pi[6,9]  

-0.373097  1.770135  1.544629 -1.353087  1.994993 -0.217660  

 pi[6,10]  pi[6,11]  pi[6,12]  pi[6,13]  pi[6,14]  pi[6,15]  

-1.099212  0.252504 -0.897223 -1.408613 -0.635260 -0.857159  

 pi[6,16]  pi[6,17]  pi[6,18]  pi[6,19]  pi[6,20]  pi[6,21]  

-0.793391 -0.702598  1.022452 -0.213616 -0.645353  1.435137  
 

Geweke Test for Model 1 of the Procedural Knowledge Dimension 

gamma[1] gamma[2] gamma[3] gamma[4] gamma[5] gamma[6]  

-0.45834  0.05635  1.49298 -0.77578  0.27093 -0.94027  

pi[1,1]  pi[1,2]  pi[1,3]  pi[1,4]  pi[1,5]  pi[1,6]  

 0.29045  0.83607 -0.83498 -1.17869 -0.73040 -0.50142  

 pi[1,7]  pi[1,8]  pi[1,9] pi[1,10] pi[1,11] pi[1,12]  

-0.04321 -0.24464 -0.28280  1.38373  0.12608  0.63585  

 pi[2,1]  pi[2,2]  pi[2,3]  pi[2,4]  pi[2,5]  pi[2,6]  

 0.24597  1.07106 -0.82652 -0.05438  0.51161  1.14149  

 pi[2,7]  pi[2,8]  pi[2,9] pi[2,10] pi[2,11] pi[2,12]  

-0.70418 -1.28812 -1.60968 -0.79841 -1.57595 -1.10159  

 pi[3,1]  pi[3,2]  pi[3,3]  pi[3,4]  pi[3,5]  pi[3,6]  

-0.11682 -0.45518  0.27498  0.01856  0.23486 -0.43008  

 pi[3,7]  pi[3,8]  pi[3,9] pi[3,10] pi[3,11] pi[3,12]  

-1.09016  1.07352  1.46621  1.46780  0.98966 -0.14422  

 pi[4,1]  pi[4,2]  pi[4,3]  pi[4,4]  pi[4,5]  pi[4,6]  

-0.50054  0.87073  1.93257 -0.24542 -0.05377  0.90543  

 pi[4,7]  pi[4,8]  pi[4,9] pi[4,10] pi[4,11] pi[4,12]  

 1.01740 -0.07739  0.07472  1.13069 -1.82578  0.87120  

 pi[5,1]  pi[5,2]  pi[5,3]  pi[5,4]  pi[5,5]  pi[5,6]  

 0.49469 -0.29565 -0.17534  0.92988  0.12676  0.40917  

 pi[5,7]  pi[5,8]  pi[5,9] pi[5,10] pi[5,11] pi[5,12]  

 0.24544  0.39709  0.22877 -1.64664 -0.37963 -1.43941  

 pi[6,1]  pi[6,2]  pi[6,3]  pi[6,4]  pi[6,5]  pi[6,6]  

-0.79094 -0.10340  0.22295  1.38070  1.11238 -1.44034  

 pi[6,7]  pi[6,8]  pi[6,9] pi[6,10] pi[6,11] pi[6,12]  

 0.55105  1.84607 -0.77276 -1.65914  0.32504  1.02250 
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Geweke Test for Model 2 of the Conceptual Knowledge Dimension 

gamma_2[1]  gamma_2[2]  gamma_3[1]  gamma_3[2]  gamma_4[1]  

     0.1115      1.5192     -0.9774      0.5647      0.2747  

 gamma_4[2]  gamma_5[1]  gamma_5[2]  gamma_6[1]  gamma_6[2]  

     1.7981      0.7566     -0.7984      0.1601      0.8932  

gamma_dummy     pi[1,1]     pi[1,2]     pi[1,3]     pi[1,4]  

    -0.4589      0.9674      0.7531      0.5015     -0.4957  

    pi[1,5]     pi[1,6]     pi[1,7]     pi[1,8]     pi[1,9]  

    -0.6912     -1.5393     -0.2141     -0.6964     -1.6167  

   pi[1,10]    pi[1,11]    pi[1,12]    pi[1,13]    pi[1,14]  

    -1.2346     -0.3172     -0.1220      1.6227     -1.8265  

   pi[1,15]    pi[1,16]    pi[1,17]    pi[1,18]    pi[1,19]  

    -0.8837      0.8121      1.2048     -0.4253      0.8857  

   pi[1,20]    pi[1,21]     pi[2,1]     pi[2,2]     pi[2,3]  

    -2.0952     -0.2844     -1.6287     -1.7158     -0.4705  

    pi[2,4]     pi[2,5]     pi[2,6]     pi[2,7]     pi[2,8]  

    -0.9119      0.6819     -1.0370      0.9131     -1.2923  

    pi[2,9]    pi[2,10]    pi[2,11]    pi[2,12]    pi[2,13]  

    -0.7593      0.3629     -0.4688     -0.7845     -0.7119  

   pi[2,14]    pi[2,15]    pi[2,16]    pi[2,17]    pi[2,18]  

     0.7136     -0.1845      1.1145      1.1720     -1.1514  

   pi[2,19]    pi[2,20]    pi[2,21]  

    -1.2004      0.6283      0.1735  
 

 

Geweke Test for Model 2 of the  Procedural Knowledge Dimension 

gamma_2[1]  gamma_2[2]  gamma_3[1]  gamma_3[2]  gamma_4[1]  

    -1.6572      0.2922      1.2874      0.4322     -0.4534  

 gamma_4[2]  gamma_5[1]  gamma_5[2]  gamma_6[1]  gamma_6[2]  

    -1.1384      1.0672      1.6197      0.1683     -1.7054  

gamma_dummy     pi[1,1]     pi[1,2]     pi[1,3]     pi[1,4]  

    -0.2404     -0.0167      0.1739      0.4642     -0.2596  

    pi[1,5]     pi[1,6]     pi[1,7]     pi[1,8]     pi[1,9]  

    -1.5466      1.8681     -0.8296     -1.2827      1.4654  

   pi[1,10]    pi[1,11]    pi[1,12]     pi[2,1]     pi[2,2]  

    -1.1435      0.2722      0.7502     -1.4016     -0.9734  

    pi[2,3]     pi[2,4]     pi[2,5]     pi[2,6]     pi[2,7]  

    -1.0843      1.1791      0.3072     -1.1987      0.3351  

    pi[2,8]     pi[2,9]    pi[2,10]    pi[2,11]    pi[2,12]  

     0.5008      0.3837     -0.4126      0.5838      1.2276  
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Appendix I. The last 10000 iterations of MCMC for all parameters 
(𝜸, 𝝅) generated from Model 1 for the conceptual knowledge 
dimension 
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Appendix J. The autocorrelation plots of the last 10000 iterations 
of MCMC for for all parameters (𝜸, 𝝅) generated from Model 1 for 
the conceptual knowledge dimension 
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Appendix K. The last 10000 iterations of MCMC for all parameters 
(𝜸, 𝝅) generated from Model 1 for the procedural knowledge 
dimension 
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Appendix L. The autocorrelation plots of the last 10000 iterations 
of MCMC for for all parameters (𝜸, 𝝅) generated from Model 1 for 
the procedural knowledge dimension 
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Appendix M. The last 10000 iterations of MCMC for all 
parameters (𝜸, 𝝅) generated from Model 2 for the conceptual 
knowledge dimension 
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Appendix N. The autocorrelation plots of the last 10000 iterations 
of MCMC for for all parameters (𝜸, 𝝅) generated from Model 2 for 
the conceptual knowledge dimension 
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Appendix O. The last 10000 iterations of MCMC for all parameters 
(𝜸, 𝝅) generated from Model 2 for the procedural knowledge 
dimension 
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Appendix P. The autocorrelation plots of the last 10000 iterations 
of MCMC for for all parameters (𝜸, 𝝅) generated from Model 2 for 
the procedural knowledge dimension 
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Appendix Q. Translation of Interview with One of Participants 

 

INTRODUCTION 

RESEARCHER: Thank you for your participation in this interview. Today I will give you 

some cards of mathematics problems. I want you to solve those problems and explain 

how you get the answers. If you find any words that you don’t understand, please let 

me know. Please keep talking loudly while answering the questions and describing what 

you think. You can make any notes and (draw) on the cards. I will give you an example. 

(the researcher gave an example how to speak loudly and make any notes/drawings 

when solving the problem 

RESEARCHER: Read the question on the card. 

(The researcher read loudly the question on the card) 

RESEARCHER: If a pizza is divided for five people, what portion of pizza will each person 

get? 

RESEARCHER: I answer the question like this, for example, there is a pizza which is 

usually in a circle shape (the researcher made a circle). Then, it is shared to 5 people. In 

order to get a fair share, I divide the pizza into 5 equal sizes (the researcher drew lines 

to make 5 partitions of the circle). It means that each person will get 1/5 of the pizza.  

 

RESEARCHER: Let’s begin with the first question. 

(The researcher gave the participant the first Card (Card ConT1Q1)) 

PARTICIPANT: Write the fraction for the shaded part below. 

PARTICIPANT: The total of all parts is 8, and 3 parts are shaded, so this is 3/8. 
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RESEARCHER: What do you think if the bottom number is getting bigger, is the fraction 

getting smaller or bigger? 

PARTICIPANT: Is the top number fixed? 

RESEARCHER: Yes 

PARTICIPANT: It’s getting smaller 

RESEARCHER: If the bottom number getting smaller than what happened with the 

fraction? 

PARTICIPANT: It’s getting bigger 

RESEARCHER: Can you tell me why if the bottom number is getting bigger than the 

fraction is getting smaller? 

PARTICIPANT: Look at this example,  3/8 and 3/7. Suppose that 3/8 consists of three of 

1/8, and 3/7 consists of three of 1/7. If the denominators are equated to 56, so 1/8 

becomes 7/56 and 1/7 becomes 8/56. So if the bottom number is getting smaller, than 

the fraction will become greater than before. 

 

RESEARCHER: Thanks for answering the question well. 

(The researcher gave the participant ConT1Q3 card)  

PARTICIPANT: Write the fraction for the shaded part below. 

PARTICIPANT: If this is a half, so the number of these parts should be the same. It means 

we can give 3 parts on the left and 3 on the right. Because 1 part is shaded, and the total 

is 1,2,3,4,5,6 , so this is 1/6. 
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RESEARCHER: Can you tell me why you drew additional lines? 

PARTICIPANT: Just to make sure that the parts on the left are the same with those on 

the right 

RESEARCHER: How about the sizes of the parts, should they be the same or not? 

PARTICIPANT: Should be the same 

RESEARCHER: Okay, thanks for answering the question well. 

ConPWL3Q1(a) 

(the researcher gave the participant ConT1Q4 card) 

PARTICIPANT: If the figure                                  is the whole, write the fraction for the 

shaded part below 

 

PARTICIPANT: If this is a whole, and this is a whole (the participant pointed the two 

circles below). It means there are two wholes, but one if fully shaded or 1, and the other 

is only 1/4 shaded. Then 1 is added to 1/4,  which is 1 1/4 

RESEARCHER: So, what do these two circles show? 

PARTICIPANT: Two wholes.  

RESEARCHER: Okay, thanks for answering the question well. 
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(The researcher gave the participant ConT1Q2 card) 

PARTICIPANT: Write the numerator of the fraction for the shaded parts below 

PARTICIPANT: Oh, if the total of parts is 16 and what have been drawn here is half, so 

this is 8 (The participant wrote down 8 as the answer). 

RESEARCHER: Can you show me how you got the answer using a diagram? 

PARTICIPANT: Because this is a half part, oh for example, there are 16 parts (the 

participant drew lines to divide the circle into 16 parts), so there are 8 parts here (the 

participant pointed the shaded area of the circle) and also there are 8 here the 

participant pointed the unshaded area of the circle). So the numerator is 8, the number 

of the shaded parts. 

 

  

RESEARCHER: Okay, thanks for answering the question well. 

 

 

(the researcher gave the participant ConT1Q5 card) 

PARTICIPANT: If the figure                                  is the whole 

 

 

Write the numerator of the fraction for the shaded parts below 

PARTICIPANT: If this 1 circle representing 8, so 2 circles means 2 of 8 which is 16, but 

this circle is not fully shaded, a half of 8, meaning that this is 12. 

RESEARCHER: Can you tell me how you got 12? 
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PARTICIPANT: These are two wholes which is 1 plus 1, but this one is not fully shaded, 

1/2, which means there are 3/2 parts multiplied by 8, equals 12 which become the 

numerator. 

 

RESEARCHER: Can you simplify the result? 

PARTICIPANT: 3/2 or 1 1/2 

RESEARCHER: Okay, thanks for answering the question well. 

 (The researcher gave the participant ConT3Q3 card) 

PARTICIPANT:   Which is larger  ଻

ସ
   or  ଼

଺
 ?  Illustrate how you got your answer using a 

picture. 

PARTICIPANT:   Suppose there is 7/4, 4 parts which is fully shaded, 4/4 and 3/4. Next, 

8/6, 6/6 is one circle which is fully shaded and the remaining is 2/6 or 1/3.  

 

RESEARCHER: So based on these diagrams, which one is greater? 
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PARTICIPANT:  This one (The participant pointed the diagrams representing 7/4) 

RESEARCHER: Why? 

PARTICIPANT:  Because it has more shade parts. 

RESEARCHER: Okay, thanks for your answer, we can discuss this task again later. 

RESEARCHER: You know number lines, like this (the researcher demonstrated the 

example of a number line as follows) 

 

 

 

(the researcher gave the participant ConT4Q1 card) 

PARTICIPANT:  Show the fractions on the number lines below 

PARTICIPANT:  1,2,3,4,5,6,7,8 (The participant made 8 scales). From the left 1,2,3 (the 

participant circled the location of 3/8) 

 

 

RESEARCHER: Can you tell me how you got the answer? 

PARTICIPANT:  3/8 is smaller than 1, so we should create 8 points. Then, the third dot 

from null is the answer, 3/8 

RESEARCHER: Oh okay, thank you, well done. 

ConMSL3Q1 

(the researcher gave the participant ConT4Q3 card) 

PARTICIPANT:  Order these fractions from the smallest to the largest on the number line 

below.  
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PARTICIPANT:   Euh, first we should equate the denominators to 12. 7/4 equals 21/12, 

1/3 equals 4/12, then 1 1/2 or 3/2 equals 18/12.  

(After that the participant created 21 scales on the number line) 

Then we put these fractions on the number line. First, the smallest fraction 1/3 or 4/12 

is put here, then 18/12, finally 7/4 or 21/12 

RESEARCHER: So which one is the greatest fraction? 

PARTICIPANT:  7/4 

RESEARCHER: Oh okay, thank you, well done. 

 (The researcher gave the participant ConT5Q1  card) 

PARTICIPANT:  Write the biggest fraction that you know. 

PARTICIPANT:  Hm… it could be 1/1, 1 1/2, 100/1, 1000000/1, an infinite number per 1 

 

RESEARCHER: So, what is your conclusion? 

PARTICIPANT:  Infinite 

RESEARCHER: Okay, thanks for answering the question well. 

(The researcher gave the participant ConT5Q2  card) 

PARTICIPANT:  Write the smallest fraction that you know. 
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PARTICIPANT:  The smallest fraction that close to null. Maybe 1 per million, or 1 per 

billion, 1 per an infinite number 

 

RESEARCHER: So, what is your conclusion? 

PARTICIPANT:  The smallest fraction that close to null with the denominator is an infinite 

number. 

RESEARCHER: Thanks for answering the question well. 

(The researcher gave the participant ConT6Q1  card) 

PARTICIPANT:  How many numbers are there between ଶ
ହ
  and  ସ

଻
 ? 

PARTICIPANT:  This is for all numbers or only limited to the fraction with the 

denominator 5? 

RESEARCHER: All numbers 

PARTICIPANT:  Oh if how many numbers, they can be infinite until the unknown unit, 

but if limited within the denominator 5, oh 2/5 and 4/7 so the denominators are equated 

first to 35. So, between 14/35 and 20/35 there are 15/35, 16/35, 17/35, 18/35, and 

19/35. So there are only 5 numbers.  

RESEARCHER: You mentioned infinite, what do you mean infinite? 

PARTICIPANT:  If the denominators are made very big for example, 40,41,42,43, until oh 

… (the participant crossed out 40,41,42,43), so the denominator is for example 70. It 

means there are 28/70, 29/70, 30/70 until 39/70. If this denominator is increased, there 

will be many numbers, cannot be counted. 

RESEARCHER: Thanks for answering the question well. 
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(The researcher gave the participant ConT6Q2  card) 

PARTICIPANT:  How many numbers are there between ସ
଻
  and  ହ

଻
 ? 

PARTICIPANT:  If the denominator is not changed, than it looks there is no number 

between them, but if the denominator is made bigger than there are numbers between 

them. For example, the denominator is 35, so there will be 21/35, 22/35, 23/35, and 

24/35, or if this denominator is made bigger again than there many numbers between 

them. So they also cannot be counted. 

 

RESEARCHER: This is the example of fraction addition (the researcher demonstrated the 

example of fraction addition using diagram representations. After that, the researcher 

gave the participant ConFOL1Q1 card) 

RESEARCHER: Thanks for answering the question well. 

(The researcher gave the participant ConT7Q2card ) 

PARTICIPANT: Draw a pictorial representation for the fraction addition below 
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PARTICIPANT: 1/4 plus 1/3. For example there is 1 black man of 4 people and there are 

also.. Oh don’t use people, it’s not nice. This 1/4 is added to 2/3, so there are 12 parts 

(The participant created rectangles for each 12 partitions). 1/4 equals 3/12, while 2/3 

equals 8/12. 1, 2, 3 (The participant shaded three parts of the first recatngle to represent 

1/4 or 3/12). 1,2,3,4,5,6,7,8 (The participant shaded 8 parts of the second rectangle to 

represent 2/3 or 8/12). So the result is 1,2,3,4,5,6,7,8,9,10,11,12 (the participant created 

another rectangle with 12 partitions). There are 3 parts here (the participant shaded 

three parts of the rectangle), and there are 8 parts here (he continued shaded 8 parts of 

the same rectangle so that there were 11 part which were shaded). So the result is 11/12 

 

RESEARCHER: What were you added in this diagram representation? 

PARTICIPANT: The shaded parts or the numerator 

RESEARCHER: Okay, thanks for your excellent answer. 

(The researcher gave the participant ConT8Q1 card ) 

PARTICIPANT: Draw a pictorial representation for the fraction multiplication below 

PARTICIPANT: So this is 1/2 of 3/4. For example there are 1,2,3,4,5,6,7,8 (the participant 

drew a rectangle with 8 partitions).  3/4 is equal to 6/8, 6 parts are shaded. If this is 

multiplied by 1/2, meaning that a half of these 6 parts. So, 1,2,3, there are parts are 

shaded or this is the same with 3/8. 
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RESEARCHER: Could you tell me how you got the answer in more detail? 

PARTICIPANT: Firstly, there are 6 shaded parts of 8 parts.  The number 8 is the result of 

3/4 times 2/2 

RESEARCHER: Why did you multiply this by 2/2? 

PARTICIPANT: In order to get 8 so it become easy to be divided. 

RESEARCHER: Please continue … 

PARTICIPANT: Then 1/2 of 6 parts are 3 parts which are 3 shaded parts of the total of 8 

parts.  

RESEARCHER: Thanks for answering the question well. 

(The researcher gave the participant ConT8Q2 card ) 

PARTICIPANT: Draw a pictorial representation for the fraction division below 

PARTICIPANT: 1/2 divided by 1/4. This is a half, firstly there are 4 parts and 1 part is 

shaded which is 1/4, than a half of 1/4 is taken, because the number is not nice, so it is 

multiplied by 2 which is 1,2,3,4,5,6,7,8 (The participant created a rectangle with 8 

partitions). If divided by 1/2, how many, ah …1,2,3,4. How many of this fraction to 

become … (the participant looked confused) 
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RESEARCHER: Can you tell me what the meaning 1/2 divided by 1/4 is? 

PARTICIPANT: How many 1/4 to become 1/2. 

(The participant drew a rectangle with 4 partitions and two of them are shaded to 

represent 1/2). It is the same with 2 (he pointed to the 2 shaded partitions). In order to 

become 1/2, so this one (he pointed one shaded area of the rectangle which represent 

1/4) needs 2 times of itself, so the answer is 2, which is 2 times of this part (he pointed 

to the rectangle which represent 1/4). 1/4 plus 1/4 equals 2/4 or 1/2, meaning that it 

needs 2 times of 1/4 so the result is 2. 

RESEARCHER: Okay, thank you, well done 

(The researcher gave the participant ProT2Q4 card) 

PARTICIPANT: Find the result of the fraction multiplication below 

PARTICIPANT: First, they should be converted into a common fraction form. 3 5/7 equals 

26/7 and 4 3/7 equals 31/7, then 21 times 31 (The participant calculated 26 times 31) 

which is 806, then 7 times 7, 49 so the result is 806/49. 

 

RESEARCHER: How do you solve this task? 

PARTICIPANT: It’s transformed into common fractions, then denominator times the 

denominator and the numerator times the numerator. 
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RESEARCHER: Thanks for answering the question well. 

L3PKQ3 

(The researcher gave the participant ProT2Q3 card) 

PARTICIPANT: Find the result of the fraction division below 

PARTICIPANT: 9/10 divided by 3/10. To become easier, it changed to multiplication. 9/10 

times … because this is division so 3/10 is flipped to 10/3. Then, 9 divided by 3, 3 and 3 

divided by 3, 1. 10 divided by 10, 1 so the result is 3. 

 

RESEARCHER: Okay, thank you … 

(The researcher gave the participant ProT3Q3 card) 

PARTICIPANT: Find the result of the fraction operation below 

PARTICIPANT: Firstly, we do the operation in the bottom which is 1 or 3/3 minus 1/3, 

which is 2/3. Then 1 divided by 2/3 or 1 times 3/2 which is 3/2. Next, 3/2 plus 6 equals 

6 3/2, then 5 divided by 6 3/2 which is the same with 5 divided by 15/2. It is the same 

with 5 times 2/15 which is 2/3. Finally, 1 plus 2/3 which is equal to 1 2/3 

 

RESEARCHER: Okay, thank you, well done 
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