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ABSTRACT

Rational numbers are an important domain of mathematics learning and one which
many students find difficult to learn. The present research has developed and validated
an assessment instrument to assess the progression of student learning in the domain
of rational numbers, with an emphasis on fractions. The assessment was based on a
cognitive model of fraction learning and was innovative in that it distinguished two

essential dimensions of fraction knowledge, namely conceptual and procedural.

The research has developed a hypothetical model of the two-dimensional fraction
learning progression based on existing research. The hypothetical learning progression
was first validated in a qualitative study, carried out through cognitive interviews. The
results from the interviews were used to evaluate and revise the learning progression,
which was subsequently tested in a second study with 516 students from grades 7 to 9
in a junior high school in Bogor, Indonesia. The fraction learning progression was
validated using Bayesian Network Analysis. Two Bayesian Networks models were
developed. Model 1 was a single latent variable model, while Model 2 was a multiple
hierarchical latent variables model. Model 2 was found to have a better fit with the
students’ responses than Model 1 and had a number of innovative characteristics, such
as incorporating the assumption of the hierarchical dependencies between the levels in
the learning progression into a formal statistical model, measuring students’

competency for each level and performing pseudo-guessing item analysis.

A confirmatory analysis was developed through Bayesian Network item level
analysis and student level analysis to validate the hypothesized fraction learning
progression empirically. The analysis has resulted in a learning progression with 7
validated levels of conceptual and 7 validated levels of procedural knowledge. About
48% of the students were grouped at very low levels of conceptual knowledge,
indicating that the Indonesian curriculum is ineffective in developing a conceptual
understanding of fractions beyond part-whole. In the procedural knowledge dimension,
about 50% of the students reached the goals of the Indonesian curriculum at grade 7.
However, the remaining students had difficulties with both additive and multiplicative

fraction operations and often misapplied the algorithms for addition to multiplication.



There were substantial individual differences in the relationship between students’
conceptual and procedural knowledge but some important dependencies between

conceptual and procedural knowledge were also identified.

The present research is innovative in the area of fraction assessment research,
because it has developed the first two-dimensional fraction learning progression based
on conceptual and procedural knowledge and also because it has included aspects of
fraction knowledge that were missing from previous assessments. The two-dimensional
learning progression provided more accurate profiles of students’ progression levels
compared with previous research, thus making a significant contribution to research
into fraction education. Finally, the development of Bayesian Networks Models has
made a contribution to educational measurement research both in that it has validated
a learning progression using item and student level analysis, and in that it has developed
Bayesian Networks analyses of item difficulty, item discrimination, and pseudo-

guessing.
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CHAPTER 1 : INTRODUCTION

1.1 Aims of the research

The present research developed and validated an assessment instrument for students’
progression in learning fractions. More specifically, the research (a) developed a two-
dimensional learning progression for fractions based on two hypothesized knowledge
dimensions: conceptual and procedural; and (b) validated the hypothesized model of

the two-dimensional learning progression of fractions using Bayesian Network analysis.

1.2 Why fractions?

In mathematics learning, fractions, along with algebra and geometry, are an important
domain of knowledge in secondary school mathematics (Wu, 2005). According to
Torbeyns, Schneider, Xin, and Siegler (2015), it is a key factor underlying students’
general mathematics achievement. Moreover, fractions, together with decimals, are
commonly found outside mathematics, in fields such as economics, science, and
psychology. Fraction knowledge can influence success in many professions (Lortie-
Forgues, Tian, & Siegler, 2015). Despite its importance, research highlights that many
students at secondary schools find it difficult to grasp rational number concepts (Moss
and Case (1999). The difficulty in understanding fractions and their operations also goes
beyond students in secondary school; it is, for example, identified in pre-service teachers

and University students (Chinnappan & Forrester, 2014; Hanson & Hogan, 2000).

Much research has investigated students’ difficulties with fractions (e.g. Durkin &
Rittle-Johnson, 2015; Ni & Zhou, 2005; Robert S. Siegler, Thompson, & Schneider, 2011;
Stafylidou & Vosniadou, 2004; Vamvakoussi, 2015; Vamvakoussi & Vosniadou, 2010;
Van Dooren, Lehtinen, & Verschaffel, 2015). However, the research findings have not
been translated into adequate assessments, especially formative assessments that can
provide diagnostic information and improve teachers’ understanding of the learning

challenges students face in the development of fraction knowledge.



1.3. Why a two-dimensional learning progression?

One of the most important purposes of assessment is to provide diagnostic information
about students’ learning (Black & Wiliam, 1998; Pellegrino et al.,, 2001). Such
information is crucial to generate effective feedback on learning. However, most current
assessments provide limited diagnostic information about students’ strengths and
weaknesses in the domain of knowledge that is being assessed (Huff & Goodman, 2007).
The failure of current assessments to provide adequate diagnostic information about

learning has been referred to as the ‘assessment crisis’ by Richard J. Stiggins (2002).

Current assessments are typically developed based on Classical Test Theory (CTT)
and Item Response Theory (IRT). These assessments focus on estimating students’
general proficiency (Nichols, 1994). Based on such assessments, students can be
ordered according to their levels of ability, usually against some curriculum standards.
This ordering can inform summative assessment requirements and determine students’
grades, or which students pass and which fail a course (de la Torre & Minchen, 2014).
However, these assessments have limitations in generating diagnostic information
about individual students’ learning (de la Torre & Karelitz, 2009). They do not tell us why
some students are failing and what cognitive challenges they face in their learning

progress that influence their performance (Nichols, 1994).

Pellegrino et al. (2001) proposed that assessments can become more diagnostic if
they are constructed on a cognitive model of learning, which describes students’
representations of knowledge and the development of their competencies based on
available theoretical frameworks and empirical research on students’ learning. In such
assessments, the cognitive model drives the assessment tasks and guides the
interpretation of the students’ responses. The results of assessments based on cognitive
models can be diagnostic because they provide empirical evidence about the students’

knowledge/skills vis-a-vis the cognitive model.

A learning progression? is a cognitive model that gives information about the level

of students’ learning against the specified progression (Pellegrino, 2014). This

T The term learning progression is similar to the term learning trajectory in terms of modelling the
progression of student learning. However, the scope of a learning progression is wider than the learning
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information reveals students’ successes and difficulties in their learning journey
(Berland & McNeill, 2010) and provides “intermediate goals, or stages” that can be used
by teachers as a strategy to improve their instruction (Kane & Bejar, 2014, p. 118). By
specifying the level of a student in the learning progression, the assessment provides
meaningful information to teachers that can be used to guide classroom learning. In
addition, the levels of learning can be used by students to guide their independent study.
On a larger scale, the education system can use learning progressions to improve the
design of the curriculum. The present research employs a learning progression as a

cognitive model in developing an assessment framework for the learning of fractions.

Learning progressions usually provide unidimensional hierarchical-levels of
students’ learning (e.g. Briggs & Alonzo, 2009; Draney, 2009; West et al., 2012; Wilson,
2009b). Within these learning progression models, there has been little discussion so far
about the need to introduce multiple hierarchical levels of progression in terms of the
kinds of knowledge and skills that might underlie a given subject domain. For example,
in mathematics, researchers have commonly argued that conceptual knowledge and
procedural knowledge are two distinct key cognitive dimensions for mathematics
proficiency (Crooks & Alibali, 2014; NCTM, 2000; Rittle-Johnson & Schneider, 2014).
However, there has been no attempt to measure students’ mathematical knowledge in
these distinct dimensions and to understand how they interact with and influence each

other.

The present research developed and validated a cognitive model of fraction
learning progression based on the above-mentioned key knowledge dimensions of
mathematical knowledge, namely conceptual and procedural knowledge of fractions.
The development of a learning progression based on these two key dimensions of

mathematical knowledge is a significant new step in assessment research and

trajectory (Stevens, Shin, and Krajcik (2009). Indeed, the learning trajectory is a subset of a learning
progression. A learning progression can be based on several learning trajectories (Rutstein, 2012).
Learning progressions describe a common path in students’ learning, while learning trajectories show the
differences in students’ paths in learning. The present resesarch focuses on learning progressions because
they “provide the big picture of what is to be learned, support instructional planning, and act as a
touchstone for formative assessment” (Heritage, 2008, p. 1).

3



represents an innovation in the development of learning progressions in general and of

assessments of fraction knowledge in particular.

1.4. Why Bayesian Networks?

Another innovation of the present research is that it developed a measurement model
based on Bayesian Networks to validate the two-dimensional learning progression. Two
well-known measurement models exist in the literature to validate students’ learning
progressions, the Rasch Model (Draney, 2009; Wilmot, Schoenfeld, Wilson, Champney,
& Zahner, 2011; Wilson, 2009b; Wilson & Cartensen, 2007) and Bayesian Networks
(Rutstein, 2012; Jefrey Thomas Steedle, 2008; Jeffrey T Steedle & Shavelson, 2009; West
et al., 2012). Bayesian Networks are preferable in this research because they model the
conditional dependency between the various knowlegde within a learning progression.
Moreover, Bayesian Networks approaches provide information about the uncertainties
of the parameters being considered in terms of their (marginal) posterior distributions.
Particularly in this research, the Bayesian Networks are used to identify the uncertainties
of the parameters of items’ levels and students’ levels through their marginal

distribution.

Bayesian Networks, which have been developed and implemented widely in
educational measurement, provide a cognitive diagnostic measurement model (Mislevy,
1995; Mislevy et al., 2002; Mislevy & Almond, 1997; Mislevy, Almond, Yan, & Steinberg,
2000; Mislevy & Gitomer, 1996). They provide graphical probabilistic networks of the
competencies underpinning students’ performance (Almond, Mislevy, Steinberg, Yan, &
Williamson, 2015). Using this approach in the learning progression model, the mastery
and non-mastery of competencies at the proposed levels can be estimated, and the
interconnection (inter-dependency) between competency components can be

demonstrated.

Typically, a simple Bayesian Network with a single parameter (known as Bayesian
Latent Class Analysis) is used to assess and validate learning progression models (Jefrey
Thomas Steedle, 2008; Jeffrey T Steedle & Shavelson, 2009; West et al., 2010). In
Bayesian Latent Class Analysis, the hierarchical levels of the learning progression model

are captured by one latent variable, which has several categories referring to the levels.



Little attention has been given to modelling learning progressions with multiple latent
variables, in which each level is represented by a single latent variable. The present
research has expanded the Bayesian Networks model with a single latent variable into
multiple latent variables based on the previous work by Rutstein (2012) and Jefrey
Thomas Steedle (2008). Multiple latent variables are required to represent the
hierarchical dependency between the levels. As a result, the measurement model
developed from the Bayesian Networks model reflects the hierarchical assumption of
the learning progression, which can lead to a more valid interpretation of the students’

responses.

1.5 Participants and Design of the Research

The present research constructed a hypothetical learning progression of fractions and
validated it empirically using Indonesian Junior High School students. The assessment
triangle (the interconnection between cognition, observation, and interpretation in

assessment) was used as the framework for the assessment design.

The research utilized a mixed methods design, consisting of two sequential
studies, Study | (a qualitative study) and Study Il (a quantitative study). Study | was
carried out through cognitive interviews. The purpose of the interviews was to collect
data to evaluate and revise the hypothetical model of the two-dimensional fraction
learning progressions and corresponding items. Study |l was a test of the revised fraction
learning progression. Students’ responses were analyzed using Bayesian Networks
modelling to validate the learning progression. Figure 1.1 shows the mixed methods

design used in this research.

STUDY I STUDY I
[Qualitative Study: Chapters 3 and 4) (Quantitative Study: Chapters 5, 6 and 7)
Cognitive Model ltem . . )

Development Development Administering Bayesian

FOLLOW UP Test Networks
Analysis
- ) || e »
Qualitative Data Qualitative Data Collection} [Interpretationl
Analysis Collection

Figure 1.1 The mixed methods design of developing and validating the hypothetical learning
progression model implemented in this research



1.6 Significance

The research produced a validated cognitive model of a two-dimensional fraction
learning progression. This model captured the development of students’ conceptual and
procedural knowledge in learning fractions. The validated conceptual knowledge
provided empirical evidence about the progression of students’ understanding of the
symbolic notation of fractions, while the validated procedural knowledge dimension
showed the progression of students’ knowledge of fraction operations. This is discussed

further in Chapters 3, 4 and 6.

Another important result of the research was the development of two different
measurement models based on Bayesian Networks. These measurement models
provided information about uncertainties at both item and student levels. Model 1,
which is known as Bayesian Latent Class Analysis, was developed based on a single latent
variable. In this model, there was a latent variable with six categories corresponding to
the six levels of the learning progression. Model 2 was developed based on a multiple
latent variable measurement model. In Model 2, there were six latent variables
corresponding to the six levels of the learning progression. These multiple latent
variables were interrelated hierarchically to reflect the dependency between the
competencies in each level in the learning progression model. The results showed that
Model 2 had a better fit for measuring students’ learning progressions than Model 1.
Moreover, Model 2 had several properties which were superior to Model 1, such as
diagnostic analytics, guessing analysis, and detection of the deviation of students’
responses from the learning progression models. This is detailed further in Chapters 5

and 6.

The present research makes significant contributions to assessment, instruction
and curriculum development. In relation to assessment, the research is significant
because it further developed the cognitive element of the assessment triangle
(Pellegrino et al., 2001). This cognitive model of two-dimensional learning progression
can be used as a foundation to develop diagnostic assessment of conceptual and
procedural knowledge, particularly in mathematics. Furthermore, the Bayesian
Networks models developed in this study contribute to the development of models for

measuring learning progressions, particularly in expanding the Bayesian Networks



Model from a single latent variable into multiple latent variables, and in developing item

analysis using Bayesian Networks to validate learning progressions.

For instruction, the learning progression model is diagnostic because it provides a
conceptual and procedural road map for teachers that can inform them of the learning
difficulties students face at different levels of fraction learning. The learning challenges

are investigated further in Chapter 7.

For curriculum development, the learning progression model developed in this
research provides suggestions about how to develop and structure materials that can
facilitate fraction learning across grades. Moreover, the learning progression model
contributes to the potential development of curriculum materials that have a balance of
conceptual and procedural elements. The current curriculum in Indonesia favours the
procedural components of learning and teaching fractions. The implications of this

research for curriculum development are discussed further in Chapter 7.

1.7 Structure of the Thesis
This thesis is divided into eight chapters. In Chapter 1, the aims and the background of
the study are presented. The importance of proposing a two-dimensional knowledge of
fraction learning progression to generate effective feedback on learning is discussed.
Subsequently, the interconnected relationship between learning progression and
assessment is described. The qualitative and quantitative approaches for validating the
learning progression model within the framework of a mixed methods design are also
reviewed. The chapter concludes with a definition of terms and an overview of the

thesis.

In Chapter 2, through a review of the literature, the foundation and frameworks
of assessment are examined. The role of cognitive models of learning progression in
assessment is discussed. The fraction sub-constructs and the conceptual and procedural
knowledge in learning fractions are then described. This discussion is extended in
Chapter 3 by proposing the hypothetical model of fraction learning progression. Finally,
the measurement model using Bayesian Networks is described. This explains the
inference in Bayesian analysis related to the assessment framework, Bayes’ theorem,

and Bayesian Networks as a probabilistic network.



In Chapter 3, the theoretical foundation underlying the hypothetical learning
progression is developed. The conceptual and procedural knowledge progressions of
students in learning fractions are discussed. Next, the assessment tasks corresponding
to the competencies of the learning progression model are detailed. Finally, the

proposed model and the previous models of learning progressions are compared.

In Chapter 4, the results of the cognitive interviews are discussed. The findings are
used to revise the levels of the learning progression model and the corresponding items.
A deterministic approach is used to revise or validate the learning progression model,

based on the results of the cognitive interviews.

In Chapter 5, the Bayesian Networks modelling that is used to measure and
validate the learning progression model is presented. The specifications of Model 1 and

Model 2 of Bayesian Networks are provided.

In Chapter 6, the validation of the progression levels using Bayesian Networks is
analyzed. The item analysis and the student level analysis are used to validate the

learning progression model.

In Chapter 7, the results from the Bayesian Networks analysis are discussed, in
terms of conceptual and procedural dimensions and the relationship between them. The
final discussion, implications for assessment, instruction and curriculum, and

recommendations for future research are provided in Chapter 8.

1.8 Definition of Terms
The definition of terms, drawn from the literature review (Chapter 2) and applied in this

research, is presented in Table 1.1.

Table 1.1 The definition of the terms used throughout the study

Term Definition

Assessment triangle | The three interconnected elements underpinning effective assessment;
cognition, observation, and interpretation

Bayesian Networks A statistical model which generates a graphical probabilistic network of
attributes underpinning students’ performance

Cognition A model of learning which describes how students’ knowledge and skills are
developed in the domain of interest




Competency The combination of skills, abilities and knowledge which are required to to solve
item tasks

Conceptual The interconnected pieces of information about ideas and principles

knowledge

Density The property of fractions that there are unlimited numbers between two
fractions

Fractions A symbolic notation which is denoted as two numbers separated by the dash

Formative A type of assessment which is developed to diagnose students’ successes and

assessment difficulties in the process of their learning

Interpretation

Inferences about students’ cognition from the observational data

Item Level Inference

Items which were assigned at the given levels would be answered correctly by
those students who were found to belong to this level or an upper level, but
not by the students at lower levels

Learning Progression

A model of learning which describes developmental student understanding in
a particular domain over time. It consists of hierarchical building blocks (levels)
containing knowledge and skills that should be mastered sequentially in order
to master more advanced concepts

Levels of
Achievement

A hierarchical level of students’ learning from naive understanding to more
sophisticated levels of learning

Measure

Understanding of the symbolic notation of fractions as a scale in the number
line

Observation

Tasks which allow students to demonstrate their proficiency regarding the
knowledge and skills defined in the cognition element

Part-whole relation

Understanding of the symbolic notation of fractions as representation of part
and whole

Procedural
Knowledge

Knowledge of the sequential steps or the algorithm to solve mathematical tasks

Progress variables

Essential concepts of the learning domain, as they are monitored across levels
of progressions

Unbounded Infinity

Fractions are infinite numbers

Students’ Level of | The students who were assigned at a certain level in the learning progression

Inference would have sufficient competencies at that level and below, but not at the
upper level(s)

Summative A type of assessment which is developed to assess students’ achievements

Assessment after the process of instruction is completed




CHAPTER 2 : LITERATURE REVIEW

2.1 Introduction

The purpose of this chapter is to review the literature used to develop the rationale and
framework of the present research. It is organized into two main sections: 1) Review of
the literature on assessment and 2) Review of the literature on mathematics assessment

of fraction learning.

In the first section, traditional assessments and assessments based on student
cognitive models were compared. Subsequently, assessments based on cognitive
models, including learning progressions, was discussed in greater detail. This sub-section
also discussed the Bayesian Networks approach, which was used for modelling student

learning progressions in the present research.

In the second section, the literature on fraction learning progressions was
described, followed by a discussion of two dimensions of mathematical knowledge —
conceptual and procedural — on the basis of which the learning progressions were

developed in the present research.

2.2. Literature Review on Assessment

2.21 Comparison of Traditional Assessments and Assessments Based on
Cognitive Models

According to Pellegrino et al. (2001), traditional assessments could be improved if they
took into consideration cognitive models of student learning. Incorporating a cognitive
model of learning in an assessment is also recommended by many other assessment
experts (Embretson & Gorin, 2001; Mislevy, 1994c; Pellegrino et al., 2001; Pellegrino,
Wilson, Koenig, & Beatty, 2014).

Traditional assessments have several differences from assessments based on
cognitive models. First, traditional assessments are usually developed based on “logical
taxonomies and content specifications” (Nichols, 1994, p. 577). The blueprint of such an
assessment type is derived from a sample of the content and skill areas, which is typically
drawn from the standards stated in the curriculum. As a result, the findings obtained
from this type of assessment are limited to what “students know and can do” (Kane &

Bejar, 2014, p. 119), by addressing only the list of competencies stated in the curriculum.
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These assessments do not provide information about why students are succeeding or

failing, or where their difficulties lie.

The second difference is in the use of formal statistical/psychometric models to
draw inferences about students’ proficiency. Such assessments are known as
measurement models (Pellegrino et al., 2001). The measurement models in traditional
types of assessment are used to produce general scores, which lie on the continuum
scale of students’ proficiency (de la Torre & Minchen, 2014). These scores are used for
many different purposes such as “identifying a student’s level of proficiency,
differentiating passing from non-passing students, selecting candidates for a program,
admitting students to a college, or determining the recipients of scholarships” (de la
Torre & Minchen, 2014, p. 89). Although these general scores represent the general
proficiency of the students, they do not provide information about students’ strengths
and weaknesses in their learning, which is important for diagnostic purposes (Kane &
Bejar, 2014). Diagnostic information is important to improve teaching and learning,

which is the main objective of the education reform (Pellegrino et al., 2001).

In contrast, assessments based on a cognitive model of learning utilize information
about how students “represent the knowledge and develop competence in the domain”
(Pellegrino et al., 2001, p. 178). The cognitive model is formulated from the results of
empirical research on learning in specific areas of expertise. This cognitive model guides
the selection of the assessment tasks and specifies the way inferences can be drawn
from students’ responses. Proposing a cognitive model of learning as a basis for
developing an assessment is the critical difference between the new type of
assessments and the traditional type of assessments discussed above (Pellegrino, 2014;

Pellegrino et al., 2001).

Adopting a cognitive model of learning into assessment design enables the
assessment to produce diagnostic information about the students’ progression and their
learning difficulties, which is consistent with the notion of formative assessment. In
contrast, traditional types of assessment are used mainly for summative assessment and
accountability purposes (de la Torre & Minchen, 2014). Formative assessment is a type
of assessment that has been developed to diagnose students’ success and difficulties in

the process of their learning, while summative assessment was developed to assess
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students’ achievement after the process of instruction is completed (Nitko & Brookhart,

2007).

Assessments based on cognitive models can provide important information for
instruction for several reasons. First, the design of the assessment is based on empirical
research of how students develop the learning encapsulated in the cognitive model. This
cognitive model provides information about the levels of progression from novice to
expert learning. The assessment can then be used to draw inferences about the
students’ levels on such a progression of learning. The information about the levels of

students’ learning can be used by teachers to create more effective instruction.

Furthermore, the development of the measurement models in the new
foundation of assessment aim to measure specific competencies or skills in the learning
domain (de la Torre & Minchen, 2014). Information about students’ domain-specific
skills and competencies (depending on the purpose of assessment) can inform
educators’ decisions so they can improve their teaching practices and hence student

learning. This is an important difference from traditional assessments.

In summary, assessments based on cognitive models are grounded in empirical
evidence about how students learn. These assessments have certain advantages over
traditional types of assessment because they can provide information about where
students are in their learning progression in specific subject matter areas and provide
important diagnostic information to educators, which is necessary in order to produce
effective feedback (Black and Wiliam (1998). The present research adopts the
framework of cognitive assessments, to be discussed in more detail in the sections that

follow.

2.2.2. Assessments based on cognitive models

The assessment triangle describes the interconnected elements of cognition,
observation, and interpretation for crafting an effective assessment based on a cognitive
model (Figure 2.1; Pellegrino et al. (2001). The cognitive model is the cornerstone of the
assessment triangle, on the basis of which the observation and interpretation
components are developed. Observation refers to the tasks or situations which allow

students to demonstrate their proficiency in the knowledge and skills defined in the
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cognition element. The tasks that are created in the assessment provide information
about what students know and can do. These tasks should be created to reflect the
knowledge and skills specified in the cognition element in order to obtain valid

assessment results.

Observation Interpretation

Cognition
Figure 2.1 Assessment Triangle (Pellegrino, Chudowsky, & Glaser, 2001, p. 44)

Interpretation consists of technical tools and methods that make it possible to
draw inferences about students’ cognition from the observational data (student
responses to the observation tasks). The interpretation component links the students’
responses produced from observation to the knowledge formulated in the cognition
component. In many cases, measurement models are used to draw inferences about
students’ knowledge (specified by the cognition component), based on their responses

to the tasks (specified by the observation component).

According to Pellegrino et al. (2001) assessment is “a process of drawing
reasonable inferences about what students know on the basis of evidence derived from
observations”(Pellegrino et al., 2001, p. 112). What students know is organized in the
cognition component; the evidence is obtained from the tasks specified by the
observation component; drawing inferences from the evidence is represented by the

interpretation component.

The following sections discuss the three elements of the assessment triangle as a

framework for the present study in more detail.
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2.2.2.1 Cognitive Models

Two broad categories of cognitive models have been discussed in the literature. In the
first category, a cognitive model is thought to represent “the knowledge, processes and
strategies” required to solve the given assessment item tasks (Gierl, Wang, & Zhou,
2008, p. 5). This type of cognitive model is expressed in lists of “attributes” which show
the content knowledge, the process, and the skills underlying students’ performance in

an area of knowledge (Tatsuoka, Corter, & Tatsuoka, 2004, p. 901).

Table 2.1, presents a list of the content, process and skill attributes that are
thought to be associated with the mathematics items of the TIMMS-R assessment
(Tatsuoka et al. (2004). Figure 2.2 shows an example from a geometry item in this task.
The attributes required to answer this item (from Table 2.1) are the following: C4 (basic
concepts and operations in two-dimensional geometry), S3 (using figures, tables, charts,
and graphs), S5 (evaluate/verify/check options, P3 Judgmental applications of
knowledge in arithmetic and geometry), P5 (Logical reasoning—including case
reasoning, deductive thinking skills, if-then, necessary and sufficient, generalization
skills), P7 (generating, visualizing, and reading figures and graphs), and P9 (management

of data and procedures).

Table 2.1 The content, processes and the skills underlying the mathematics items of TIMMS-R 1999
(adopted from Tatsuoka et al., 2004, p. 907)

Content attributes

C1 Basic concepts and operations in whole numbers and integers

Cc2 Basic concepts and operations in fractions and decimals

Cc3 Basic concepts and operations in elementary algebra

C4 Basic concepts and operations in two-dimensional geometry

Cc5 Data, probability, and basic statistics

Ccé6 Measuring or estimating: length, time, angle, temperature, etc.

Process attributes

P1 Translate/formulate equations and expressions to solve a problem

P2 Computational applications of knowledge in arithmetic and geometry

P3 Judgmental applications of knowledge in arithmetic and geometry

P4 Applying rules in algebra

P5 Logical reasoning—includes case reasoning, deductive thinking skills, if-then,
necessary and sufficient, generalization skills

P6 Problem search; analytic thinking, problem restructuring; inductive thinking

P7 Generating, visualizing, and reading figures and graphs

P8 Applying and evaluating mathematical correctness

P9 Management of data and procedures

P10 Quantitative and logical reading

Skill (item type) attributes

S1 Unit conversion

S2 Apply number properties and relationships; number sense/number line
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S3 Using figures, tables, charts, and graphs

sS4 Approximation/estimation

S5 Evaluate/verify/check options

S6 Patterns and relationships (inductive thinking skills)
S7 Using proportional reasoning

S8 Solving novel or unfamiliar problems

S9 Comparison of two/or more entities

S10 Open-ended items, in which an answer is not given

S11 Understanding verbally posed questions

m
v
(I80-By B
Which two triangles are similar?
= This is a geometry problem. .o L oC4
A Land IV Ulse PRS- oo b be  iasdiin o Y
B. land Il Must ev Llu..[;. -.1]1[m||-\ 1o get answer. ... SRR
C. I and LI Apply some property o judge “similar or nol™........... P3
D. M and 1V One angle m IV is (180 - B)® > 907, A% in [:\ L?s’Il
E Il and TV Since 1 and IT have 3 parallel sides, [ and 1T have the

same angles. Therefore, two triangles are similar.. ...
Any other paits do not hive this propetty. oo
Comprehend the relationships of figures, such as

which sides are parallel. Add a line 1o get (180 - B)®.. P7

2R

Figure 2.2 The sample of an item taken from TIMMS-R 1999 (adopted from Tatsuoka et al., 2004,
p. 909)

The category of cognitive models discussed by Tatsuoka et al. (2004) does not
assume that knowledge and skills are organised in hierarchical levels. This implies that
the development of those attributes can be independent of each other, meaning that a
particular knowledge or skill does not depend on the presence of other forms of
knowledge or skills. Contrary to this, but still in the first category of cognitive models,
Leighton, Gierl, and Hunka (2002) proposed an attribute hierarchy to describe the
students’ knowledge and skills. This hierarchy shows “the psychological ordering among
the attributes required to solve a test problem” (Leighton et al., 2002, p. 5). Figure 2.3
shows four possible attribute hierarchies: linear, convergent, divergent, and
unstructured. As can be seen, in the linear hierarchy presented in Figure 2.3, Column A,
attributes 1, 2 and 3, are prerequisites for attribute 4, and attributes 1, 2, 3 and 4 are

prerequisites to attribute 5 (Leighton et al., 2002).
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Figure 2.3 The attribute hierarchy in the cognitive model proposed by Leighton et al. (2002, p. 45)

The second category of cognitive models provides a more detailed learning
progression of students’ knowledge when compared with the first category. The term
“learning progression” refers to a cognitive model that describes the development of
student understanding in a particular subject matter area over time, based on the
available empirical evidence (NRC, 2007). It consists of hierarchical building blocks
(levels) that describe the knowledge and skills that are mastered sequentially as the
students progress in their learning (Popham, 2007). Furtak, Roberts, Morrison, Henson,
and Malone (2010) pointed out that learning progressions are hypothetical pathways
for learning and provide “a road map” for instruction. Consequently, teachers can
identify student successes and difficulties over time (Berland & McNeill, 2010), and they

can create effective strategies to improve teaching and learning (Kane & Bejar, 2014).
According to Pellegrino (2014), a learning progression should consist of five key
elements:

1) “target performances” or “learning goals” which are defined in the highest level

of the learning progression model;

2) “progress variables” which refer to indicators of the essential concepts in the

learning domain, monitored across levels of progressions;

3) “levels of achievement” which describe students’ learning from naive

understanding to a sophisticated level of learning;

4) “learning performance” which describes what students can do at every level of

the progression; and
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5) “assessment” which is required to monitor the progression of students’

learning, based on their performance in the item tasks.

The hypothetical sequence of the progression of student learning is developed
based on empirical research evidence. This hypothetical sequence needs to be further
tested and validated empirically to generate a learning progression model which
captures accurately the development of students’ understanding. Hence, a validated
learning progression can provide a common road map of how students achieve the
learning goals in a given subject matter area, which is supported by both theoretical and

empirical research on learning and assessment (Popham, 2007).

An extensive discussion of learning progression as a cognitive model of learning in
assessment can be found in the Berkeley Evaluation and Assessment Research (BEAR)
Assessment System (Wilson & Cartensen, 2007; Wilson & Scalise, 2006). The concept of
construct maps is a key concept in the development of assessments based on learning

“

progressions. Construct maps show “...qualitatively different levels of performance
focusing on one characteristic” (Wilson, 2009b, p. 3), which define what students’ can
do and know at each level (Draney, 2009). Several construct maps can be joined together
to form a learning progression, which specifies the competencies being measured in
great detail. Table 2.2 presents an example of two construct maps, parts of the learning
progression in the domain of the Carbon Cycle; learning developed under the BEAR
Assessment system. The construct maps in Table 2.2 show the increase in the

sophistication of learning across the levels in the two topics of interest, which are: 1) the

Hierarchy of the Carbon Cycle System, and 2) the Material Kind and Properties of Matter.

17



Table 2.2 Constructs maps of the carbon cycle in the topics of hierarchy system and material kind and
properties of matter

Level Hierarchy of Carbon Cycle System Material Kind & Properties of matter

7 Describes movements of matter | Correctly characterizes products of
through multiple processes at multiple | processes in terms of how they affect
scales organic carbon compounds

6 Traces elements or atoms through a | Correctly identifies reactants and products
single life process, relating multiple | of a single life process
scales

5 Describes movements of matter in | Correctly identifies reactants and products

simple chemical changes at atomic | in simple chemical changes
molecular scale. (not just events)

4 Describes matter movement at | Correctly identifies reactants and products
macroscopic scale. (not just events) in simple chemical changes. Identifies solids,
liquids, but not gases involved in chemical or
physical changes

3 Attention to hidden mechanism. | Pays attention to hidden mechanisms but
Describes events as changes in | cannotidentify any material kinds.
materials.

2 Describes changes as events (at | Identifies changes by using common sense
macroscopic scale) of natural phenomena, but not as changes in

materials

1 Egocentric/naturalistic reasoning: | Egocentric/naturalistic reasoning:
respondents use human analogy to | respondents use human analogy to explain
explain the changes in materials the changes in materials

From the discussion of the two categories of cognitive models discussed above, it
can be seen that the first category developed by Tatsuoka et al. (2004) and Leighton et
al. (2002) provides “a fine grain size”, which shows in the details the kinds of attributes
assumed to underlie the students’ performance when they solve a given test item. The
diagnostics analysis can be performed by identifying students’ strengths and
weaknesses in terms of the attributes involved. This information can inform teachers,
who can then focus their instructions to specific important attributes which might be
difficult for students to grasp. The second category of cognitive models provides less
information about the assumed knowledge, processes and skills underlying students’
performance in solving a given test item. However, because they are expressed as
learning progressions, they provide rich information about the level of development of
students’ learning in a given subject matter area. Such information can be used as a
framework to assess students’ progression in learning. As a result, the feedback and

reports generated from this second category of assessment can inform the interested
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parties “where learners are in their learning at the time assessment and, ideally, what
progress they have made over time”, which is the fundamental goal of assessment
(Masters, 2013, p. 8). This feedback and associated reports can be used by teachers to

improve their instruction or by other agencies to improve the curriculum.

Pellegrino et al. (2001) highlighted that assessment, curriculum, and instruction
should be tightly connected, and a cognitive model of learning progression can facilitate
the interconnection between them (Wilson, 2009a). Ideally, assessment should assess
the materials that are taught to the students through programs of instruction; and that
instruction should teach the content knowledge specified in the curriculum. However,
many factors can interfere with this ideal interconnection. For example, high-stake
assessments can influence the teachers to focus on teaching the items in the test, not
the materials in the curriculum. In such a situation, Pellegrino et al. (2001) suggests that
teachers use a cognitive model of learning which provides a, “shared knowledge base
about cognition and learning in the subject domain” (p. 53) that can be used to develop
curriculum, assessment, and instruction. As a result, the curriculum, instruction, and

assessment approach the same learning goals and can reinforce each other.

2.2.2.2 Observation

The observation component of the assessment triangle “represents a description or set
of specifications for assessment tasks that will elicit illuminating responses from
students” (Pellegrino et al., 2001). It includes the activities of constructing the tasks and
collecting and summarizing students’ responses (Shavelson, Ruiz-Primo, Li, & Ayala,
2003). These responses are the source of evidence about the students’ knowledge that
is being assessed. The observation component provides an indirect way to measure
students’ knowledge, which is not directly observable from the students’ brain
(Pellegrino et al., 2001). In order to draw valid inferences about the students’ knowledge
from the observation, the assessment tasks should be carefully designed in order to

represent the competencies specified in the cognition model.

Nitko and Brookhart (2007) highlighted three fundamental principles in creating
assessment tasks. First, the assessment tasks should focus on important learning
targets. In the context of assessments based on learning progressions, learning targets

are the competencies specified in each level of the learning progression. This implies
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that assessment should avoid “trivial performances and/or minor points of content”
(Nitko & Brookhart, 2007, p. 133). Second, the assessment tasks should be created to
obtain the competencies related to the learning targets only, meaning that if the
students have already achieved the learning targets, then they should be able to
perform the assessment tasks correctly. Conversely, if they have not mastered the
learning targets, then their response errors can be used to examine their weaknesses in
learning. Finally, the assessment tasks should be crafted by avoiding situations that can
prevent students from demonstrating their abilities. For example, poor wording of
guestions or unclear diagrams can lead students who have the required competencies

to answer the questions incorrectly.

In crafting assessment tasks based on a learning progression, the items in the tasks
should have a good discriminant power among the discrete-levels. This means that the
items in the tasks at a particular level should be designed to be answered correctly only
by the students at that level or higher levels (West et al., 2010). The students at lower
levels should not be able to solve these items successfully. The items which can be used
to differentiate students across the different levels are essential to support the empirical

validation of the progression model.

Another issue in designing assessment tasks in a learning progression is the
dependency among the items. As discussed, the learning progression model describes
the development of students’ competencies through the ordered levels. It indicates that
the competencies at a particular level are developed based on competencies at the
lower levels. To enhance the validity of this construct, the items in the tasks should be
created to reflect the dependency between the levels. This means that the items in the
tasks should be interrelated because in order to solve a task item correctly at a particular

level, the students are expected to solve the items at the lower level.

Different types of task are required to assess students’ conceptual and procedural
knowledge of mathematics. For assessing conceptual knowledge, mathematical
concepts can be expressed using pictorial representations (Bayazit & Aksoy, 2010). For
example, a shaded circle (a pie diagram) can be used as a cognitive tool to represent
fractions. Bayazit and Aksoy (2010, p. 94) highlighted that, “an image of a mathematical

idea cannot be separated from the concept itself; and it should be regarded as an
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essential part of thinking” (Bayazit & Aksoy, 2010, p. 94). The symbolic notations in
mathematics (i.e., a fraction symbol) are another form of representation that can
represent mathematical ideas (Hiebert, 1988). For example, a symbolic notation is used
in mathematics to represent fractions as two numbers (the numerator and the
denominator), separated by the dash. Kieren (1980) highlighted that the symbolic
notation of fractions can have different meanings, for example, fractions as part-whole,

measure, operator, quotient, and ratio.

Consistent with Bayazit and Aksoy (2010) and Hiebert (1988), Byrnes and Wasik
(1991) identified three types of tasks that can be used to assess students’ conceptual
knowledge. The first type of task uses pictorial representations. In this task, students are
given a diagramatic representation of a fraction (e.g., a pie diagram) and are asked to
select the appropriate numerical, symbolic representation for this diagram. The second
task is simple isomorphic items. In this task, students are given a diagram which
represents a fraction and then they are asked to match this diagram to another diagram
which has the same value of the fraction. The third task is fraction ordering (Byrnes and
Wasik (1991). In this task, students’ understanding of the value of the fraction symbol
is tested by giving them two or more fractions (using numerical, symbolic

representation) and asking them to select which fraction is the greater.

In order to assess students’ procedural knowledge, tasks involving arithmetic
computation including addition, subtraction, multiplication and division can be used
(Rittle-Johnson, Siegler, & Alibali, 2001). The purpose of these tasks is to assess students’
knowledge of the accuracy of the algorithms required to perform the computations
(Rittle-Johnson & Schneider, 2014). Rittle-Johnson et al. (2001) also argued that a
conceptual task becomes a procedural task if the students have repeated experience of

solving this task that has resulted in making this a “routine” task (p. 349).

2.2.2.3 Interpretation

The interpretation component of the assessment triangle allows inferences about the
students’ knowledge to be drawn from their responses. In psychometric terms, the
interpretation element of the assessment triangle refers to measurement models

(Pellegrino et al., 2001). A Bayesian Inference Network (commonly termed a Bayesian
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Network) is a prominent measurement model that has been developed and
implemented widely for educational measurements (see Mislevy, 1995; Mislevy et al.,
2002; Mislevy & Almond, 1997; Mislevy et al., 2000; Mislevy & Gitomer, 1996). Bayesian
Networks are capable of handling cognitive models with complex dependencies among
the competencies (Almond et al., 2015). This feature is relevant to the present research,

which deals with fraction learning.

The next sections discuss Bayesian Networks in detail, including Bayesian

inference, Bayesian Measurement Models, and Bayesian Network Models.

2.2.2.3.1 Bayesian Inference in Educational Assessment

According to Mislevy (1994b), inference is “reasoning from what we know and what we
observe to explanations, conclusions, or predictions” (p.2). In practice, the information
that is received is “typically incomplete, inconclusive, amenable to more than one
explanation” (Mislevy, 1994b, p. 2). Particularly, in educational testing, students’
responses can be considered as incomplete evidence and contain some degree of

uncertainty.

The source of uncertainty in educational testing comes from at least two sources.
First, uncertainty exists about measurement errors. For example, students have a
competency in a particular item but they can slip in answering the item, or students do
not have competency in a particular item but can correctly guess the answer (Almond
et al., 2015; Nichols, Chipman, & Brennan, 1995). Second, there may be uncertainty
because of the limited number of items given to students. The items given to students
are a representation from a hypothetical item pool (Lord, 1965; Osburn, 1968).
Assessing students’ competency based on a limited selection of items causes some

degree of uncertainty in the inference regarding their competencies.

Bayesian inference refers to inference based on Bayes’ theorem, which takes into
account uncertainty and incomplete evidence using a probabilistic approach. Bayes'
theorem describes how to update the probabilities of parameters or hypotheses
conditional on data or evidence. Bayesian inference provides a range of possible
estimates about the event/parameter being investigated. It is a powerful method that

gives “a guiding principle for building and reasoning about complex models, and
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provides correct solutions to problems that were not tractable under the classical

approach” (Almond et al., 2015, p. 62).

The fundamental idea of Bayes theorem is based on a conditional probability of
events. The notion of a conditional probability is about changing or updating beliefs. A
belief is updated if there is new information related to the event. For example, if there
are two related events A and B, and information about B is received, the theorem is
concerned with how beliefs change about A after receiving this information. This change

is denoted as P(4|B).

In educational settings, the information about students’ competency is assessed
based on available information from the students’ responses to a particular test. In this
research, competency is defined as “the combination of skills, abilities, and knowledge
needed to perform a specific task” (Jones & Voorhees, 2002, p. 7). Through a conditional
probability, the relationship between students’ competency () and their responses (X)
can be denoted as P(X|0), which means that the students’ correct/incorrect answers
(X) are conditional or dependent on their competency (). The conditional probability
of P(X|0) reflects deductive reasoning because it highlights that the students’
competency (cause) influences their correct/incorrect response (effect) (the reasoning
goes from cause to effect). In contrast, the inference of students’ competency based on
their correct/incorrect response reflects an inductive reasoning (the reasoning goes
from effect to cause). These deductive and inductive reasonings are illustrated using a

graphical representation in Figure 2.4

Competency

Deductive Reasoning Inductive Reasoning

A

Correct/incorrect

response (X)

Figure 2.4 The relationship between students’ knowledge/skills and their response to a
particular item
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The deductive reasoning is essential to structure the conditional probabilities in
Bayesian inference. The conditional probabilities P(X|0) reflect the cause — effect
relationship among a set of variables that should be built, based on an available theory
in the field or based on the findings of previous research. In other words, building

Bayesian models should be driven theoretically (Mislevy, 1994a).

The Bayes theorem provides a reverse direction of the deductive reasoning
discussed above. Bayes’ theorem facilitates inference about students’ competency given
their responses on the test P(8|X). Thus, the Bayes theorem facilitates inductive
reasoning, in which the direction of the reasoning flows from effects to plausible causes

(Mislevy, 1994a).

Within the Bayesian framework, deductive and inductive reasoning are
incorporated in the assessment process, which is consistent with the assessment
triangle proposed by Pellegrino et al. (2001). In the assessment triangle, the observation
component should be developed based on the competency specified in the cognitive
model. This shows the deductive reasoning because the direction of inference is
developed from cause to effect, i.e., from the competency to the students’ responses.
Students who have the required competencies should be able to respond correctly to
the assessment tasks, while students who do not have them should not be able to

respond correctly to those tasks.

However, the interpretation component, which shows that the inference process
is from the students’ responses to the competency, demonstrates an inductive
inference. This is consistent with the fundamental idea of assessment as “reasoning
from evidence” stated by Pellegrino et al. (2001). This idea suggests that the inference
about students’ knowledge should be drawn from the data generated from their
responses. The direction of the reasoning from the students’ responses to what students

know is an inductive inference.

Because assessment as reasoning from evidence is an inductive inference, it
therefore contains uncertainties. Eysenck and Keane (2010) highlighted that, “a key
feature of inductive reasoning is that the conclusions of inductively valid arguments are

probably (but not necessarily) true”, (p.533). Bayesian inference facilitates this inductive
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inference using probabilistic models to take into account the uncertainties in the
inductive reasoning process. The inference offers the right direction on the reasoning

process of assessment in terms of assessment as reasoning from evidence.

In summary, Bayesian Inference provides a framework of reasoning for building a
complex model in assessment. Deductive reasoning guides the researcher to develop a
hypothetical model and item tasks, which are theoretically driven. Meanwhile, inductive
reasoning guides the researcher to draw inferences probabilistically about the students’
knowledge based on the observed data. This framework is consistent with the
assessment triangle proposed by Pellegrino et al. (2001), which enhances the

effectiveness of the assessment design in this study.

The next section provides more technical detail about Bayesian modelling in the

context of educational measurement.

2.2.2.3.2 Bayesian Measurement Models

According to West et al. (2012), modern measurement models rely on two essential
properties: latent variables and the use of probabilistic models. Latent variables are
unobservable variables, which represent the construction of the students’ knowledge.
The probabilistic models provide a formal mathematical process to measure the latent

variables based on the available observed data.

Probabilistic models are broadly classified into two distinct approaches: Bayesian
and frequentist approaches. In short, these two approaches differ in two basic ways.
First, a Bayesian approach treats parameters in the models as random variables, while a
frequentist approach treats parameters as fixed unknown quantities. Second, a Bayesian
approach includes prior information in the estimation parameters, while a frequentist

approach does not.

The differences between Bayesian and frequentist approaches have implications
for modelling the observed and latent variables. In frequentist approach, the relation
between observed variables and the latent variables is modelled through a conditional
probability of the observed variables given the latent variables which is expressed as

P(X]6). This conditional probability shows a deductive reasoning which goes from the
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latent variables (cause) to the observed variables (effect) as discussed before in Section

2.2.2.3.1.

The estimation of the latent variable 8 is performed through maximizing the
likelihood function of (X|6). In this case, the observed variables X are treated as random
and the latent variables 6 are treated as unknown fixed quantities. The latent variables
0 are estimated through repeated samples of the experiment (Almond et al., 2015). This
estimation shows an inductive inference process in a frequentist approach because the
logic of inference goes from specific events, i.e., random quantities of data X to general

i.e., fixed (constant) quantities of 6.

Bayesian approaches also use the likelihood function in conjunction with the prior
6, P(8) . However, Bayesian approaches treat latent variables 8 as random quantities
that reflect the uncertainties of the interest variables being estimated (e.g., students’

competency).

The likelihood function P(X|60), expresses the researcher’s belief about students’
competency (0) computed from their responses on the given items. The plot in Figure
2.5 is an example of the likelihood function generated from 10 items where the number
of correct answers is 8. This figure follows the illustration of the likelihood function in
Almond et al. (2015). The results show that the likelihood function gives a range of 6
that determines which value of 8 is likely to be responsible for the number of correct
responses. The likelihood function is maximised at 0.8 from the range of 0.4-1.0 of 6.

This maximised value was the estimate of the student’s 4.
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Figure 2.5 The likelihood function for @ generated from 8 correct responses out of 10 items (Adapted
from Almond et al., 2015, p. 65)

In contrast with frequentist approaches, Bayesian approaches draw inferences
about the latent variables 8 from a posterior probability. This posterior probability is
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generated from the conditional probability of the latent variables 8 given the data X,

P(6]X). Using Bayesian theorem, P(08|X) is calculated as follows:

P(0|X) = P(X|0) P(6)/P(X). (2.1)

In the context of this research, P(6|X) is the probability of students’ competency
conditional on their responses; this is called the posterior probability. P(X|6) is the
probability of students’ responses (correct/incorrect) conditional on their competency;
this is known as the likelihood function. P(6@) is the prior probability which is “the
distribution specified by the analyst to possibly reflect substantive, a priori knowledge,
beliefs, or assumptions about the parameters” (Levy & Mislevy, 2016, p. 27). Moreover,
P(X) is the probability of the observed data unconditional with the model parameters,
which is known as a normalizing constant. Because the normalizing constant is
unconditional with the interest parameters, it is usually ignored in the calculation (Levy
& Mislevy, 2016). As a result, the concern around Bayesian modelling is centred on the
likelihood, the prior and the posterior probability. Hence, equation (2.1) can be

presented as follows.
P(08|X) o P(X|0) P(6). (2.2)

From equation (2.2), it can be seen that the posterior density depends on the
likelihood and the prior. There are two types of prior in Bayesian modelling: the
informative and the non-informative prior. The informative prior can obtained from
experts’ information or their prior knowledge about the parameter being studied
(Garthwaite, Kadane, & O'Hagan, 2005). On the other hand, the non-informative prior
is, “a prior with minimal influence on the inference” (Syversveen, 1998, p. 1), for

example, by assuming that a parameter of 8 follows a uniform distribution.

The informative prior is the subjective part of the Bayesian inference, which often
leads to a central criticism that the inference is not objective enough. Indeed, this
criticism originally comes from the debate between objectivist and subjectivist
perspectives in defining probability. Objectivism interprets probability “as real-world
attributes of the events they refer to, unrelated to and unaffected by the extent of our
knowledge” (Cowell, Dawid, Lauritzen, & Spiegelhalter, 1999, p. 12). In contrast,
subjectivism considers that probability is “a numerical measure of a particular person’s
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subjective degree of belief in A, with probability 1 representing certain belief in the truth
of A, and probability 0 expressing certainty that A is false”(Cowell et al., 1999, p. 12).
Moreover Cowell, Dawid, Lauritzen, and Spiegelhalter (2006) state that objectivists
calculate probability from repeated experiments (events), while subjectivists estimate
the probability from “singular propositions”, which is opposite to the repeated

experiments posed by objectivists (Cowell et al., 1999, p. 11).

Responding to the debate between subjectivists and objectivists in defining
probability, Almond et al. (2015) argued that probability lies between the subjectivists’
and the objectivists’ perspectives. They defined probability as “representing a state of
information about an unknown event” (p.46). Using this definition, the notion of
objectivism and subjectivism can be accommodated when implementing the Bayesian
inference. The prior probability can come from the subjective information, but then it is
updated through the likelihood function that may come from the objective data. Hence,
the posterior probability as the objective inference in a Bayesian approach can be
objective enough in stating students’ knowledge when the evidence from the students’

performance is used to update the subjective probability of the prior.

The conditional probability and the prior in the Bayesian modelling discussed
above are important in building the measurement model of learning progression in this
study. Let X be the students’ responses and 0 the level of the students in the learning
progression model. The likelihood P(X|8) can be interpreted as the probability of the
students’ answers X (e.g. correct or incorrect responses), dependent on the students’
level 6. In this case, the researcher might assume that the students at a particular level
and above have a high probability of answering the items, while the students at the
lower levels may have a low probability. This assumption is expressed through the prior
P(X]60) by setting the value of the prior low enough for the students at the lower levels

and high enough for the students at the level and above the level.

The conditional probability of the likelihood P(X|0) can be interpreted as the
probability of the students’ answers X (e.g. correct or incorrect responses), dependent
on the students’ level 6. In this case, the researcher might assume that the students at
a particular level and above have a high probability of answering the items, while the

students at the lower levels may have a low probability. This assumption is expressed
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through the prior P(8) by setting the value of P(8) low enough for the students at the

lower levels and high enough for the students at the level and above the level.

The modelling discussed above allows the researcher to make two types of
inferences: the item level and the students’ level inferences (West et al., 2010; West et
al., 2012). Item level inference is the inference that items at a certain level would be
answered correctly by the students at that level or the upper level, whereas the students
at the levels below would not answer these items successfully. The students’ level
inference is the inference that a student at a certain level would have sufficient
competency at that level and below, but would not have enough competency at the
upper level(s). These two types of inferences are the advantage of using Bayesian
modelling, which was used to validate the learning progression model in the present

study. This advantage is not found in frequentist approaches.

The next section introduces Bayesian Networks, which are specified in greater
detail in Chapter 5, for measuring students’ learning progression of fractions in the

present research.

2.2.2.3.3 Bayesian Networks

Bayesian Networks combine Bayesian measurement models with graph theory. They
provide a graphical probabilistic network of competencies which underpin students’
performances (observed variables). Using Bayesian Networks, the interconnection
(inter-dependency) among competencies in complex cognition models can be
demonstrated and presented in (probabilistic) profiles (Mislevy, 1994b; Mislevy et al.,
2000; West et al., 2012).

The statistical model of Bayesian Networks is constructed based on the joint
distribution of random variables, by specifying the conditional distribution to be
recursive (Levy & Mislevy, 2016; Mislevy, 1994b). The recursive property refers to the
joint distribution that “can be expressed as a product of a distribution for the first
variable, a distribution for the second variable conditional on the first, a distribution for
the third variable conditional on the first and second, and so on” (Levy & Mislevy, 2016,
p. 345). The recursive representation of the joint probability for Bayesian Networks is

formulated as follows:
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P(X1, s X)) = P((Xn|Xn—1, -, X1) o (K] X)) (X1) (2.3)

= =1 p(Xj|Xj-1, -, Xa),

whereby, X; ... X, is a set of n random variables (Mislevy, 1994b). The term random
variables in this research refers to both latent and observables variables. Latent
variables are variables indirectly observed, such as students’ progression levels.
Observed variables are variables that refer to directly observed behaviour, such as

students’ responses to a particular item.

Bayesian Networks are constructed based on a Directed Acyclic Graph (DAG),
which corresponds to the latent and observed variables structured in equation (2.3). The
graph is “directed”, which means that each variable has a conditional relationship with
the other. “Acyclic” means that the conditional relationship never goes back to the
variable itself. For example, there are four random variables X;, X,, X; and X,, where
X is conditional on X,; X, is conditional on X5; and X5 is conditional on X,. The acyclic

property prohibits X, from being conditional on Xj.

The graph in Bayesian Networks consists of nodes and edges. The nodes represent
the categorical variable in the model, while the edges are the arrows, which represent
conditional relationships among variables. The nodes from which the arrows are
originated are called “the parent”, while the nodes to which the arrows are directed are
“the child”. The child node is a node which is conditional on the parent (Mislevy, 1994b).

Therefore the equation 2.3 can be written as follows (Schwarz, Xie, & Yao, 2005):
p(Xy, ..., Xp) = ]’[}Llp(Xj|"parents"ofXj) (2.4)

The multivariate structures of Bayesian Networks in the DAG are estimated based
on a conditional independence property. Mislevy (1994b) defined conditional
independence as “one subset of variables which may be related in a population, but they
are independent given the values of another subset of variables” (p.4). For example,
variables X; and X, may be related, but once X; and X, are conditional on X3, then
X, and X, become independent. The following figure is a simple DAG structure to

illustrate this relationship.
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Figure 2.6 Conditional independence between X1 and X2.

From Figure 2.6, it can be seen that X; and X, are conditional on X;. The

relationship of those variables can be denoted as follows:
p(X1, X2|X3) = p(X1|X3)p(X21X53) (2.5)

In practice, the relationship among complex variables can be structured and
simplified using a conditional property. For example, the joint distribution of variables

X1,X,, X5 and X, is denoted as follows (Adapted from Levy & Mislevy, 2016)

P(X1, X2, X3,X4) = (X4l X3, X2, X0 (X531 X2, X)p (X2 | X)p(X1)  (2.6)

Suppose that X; and X, refer to the basic skills that should be mastered in a certain
domain of learning. X5 is a skill which is developed based on skills X; and X,, and skill
X, is developed based on skill X5. Hence, using the conditional independent property,

the joint distribution of equation (2.6) can be simplified as follows.

p(X1, X2, X3, X4) = p(X31X2, X)) p (X4l X3)p(X2)0(X1) (2.7)

The DAG for the joint distribution in equation 2.7 is presented in Figure 2.7.
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Figure 2.7 A DAG diagram representing skills X;, X,, X5 and X,, where X, and X, are independent;
X is dependent on X; and X,; and X, is dependent on X; (Adapted from Levy & Mislevy, 2016, p.
346)

The conditional independent property is an important feature in structuring
variables in complex networks. However, the most important thing in developing a
Bayesian Networks model is that structuring the joint probability of the variables should
be built based on a “theory-driven” or “deductive-reasoning” approach (Mislevy, 1994b,
p. 474). As a result, the sound theoretical deductive-reasoning model of the joint
probability in Bayesian Networks supports sound inductive-reasoning drawn from the
data (Mislevy, 1994b). The development and model specifications of Bayesian Networks

for modelling learning progressions in this research are discussed further in Chapter 5.

2.2.3. Summary of the Rationale

In summary, the present assessment is developed based on a cognitive model of
learning. This cognitive model provides a framework to design assessment tasks and to
interpret students’ responses. A learning progression is the cognitive model developed
in the present research. Learning progressions can guide assessment to identify where
the students are situated in their learning journey. Hence, the feedback about learning
can be generated based on students’ progression levels. Such feedback can be used by

educators to improve students’ learning.

The dependency between the levels in the learning progression model add to the
complexity of the measurement model. The Bayesian Networks model is a probabilistic

model that can handle the complexity and dependency of variables (levels). This
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Bayesian model also provides deductive and inductive reasoning, which is consistent

with the principle of assessments based on cognitive models.

2.3. Content Domain: Fractions
2.3.1. Fraction Learning Progression

Existing fraction learning progressions have been based on the theoretical work of
Kieren (Kieren, 1976, 1980). Kieren, however, proposed five sub-constructs in the
interpretation of fractions. These sub-constructs are “part-whole”, which expresses the
fraction concept as the equal parts of a larger whole (unit); “measure” which expresses
fractions as measurement points in a number line; “quotient” which views a fractions as
division; “operators” which defines fractions as a function that transforms a quantity
(number) into another quantity (number) with a smaller or bigger value; and “ratio”

which interprets rational numbers as a ratio to compare the two entities.

Arieli-Attali and Cayton-Hodges (2014) adopted Kieren’s fraction sub-constructs as
big ideas to develop a rational number learning progression. Big ideas are the “central
concepts and principles of a discipline”, (Smith, Wiser, Anderson, & Krajcik, 2006, p. 2).
They also used some other big ideas such as half and halving procedures, unit fraction,
decimals, place value, and equivalent fractions. From these big ideas, they constructed
the following progress variables: fractional unit, measure/fraction as number, additive
structure, multiplicative structure, and strategic thinking/flexibility. Based on these
progress variables, they structured the progression of students in rational number
learning into six levels: prior knowledge (half and halving), early part-whole
understanding, fraction as unit, fraction as single number and fraction as measure,

representational fluency, and a general model of a rational number.

Confrey, Nguyen, and Maloney (2011) developed a fraction learning trajectory
based on the common core state standards of the American Curriculum (CCSS). The
learning trajectory begins at grade 3 by introducing the relationship between parts and
their referenced whole. They used equipartitioning to build a unit fraction (1/b, where
b is a whole number). After that, a fraction a/b is introduced based on the unit fraction
1/b. Next, students are introduced to equivalent fractions and fraction comparison with

the same numerator or denominator. Next in grade 4, students learn how to compare
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two fractions with different numerators and begin to understand the rule of fraction
addition and subtraction with the same denominator. At this level, students are also
introduced to fraction multiplication. At grade 5, comparisons of fractions with different
denominators are introduced. Moreover, the multiplication of a fraction by a fraction
and the division of fractions are also introduced at this level.

In contrast to the work Arieli-Attali and Cayton-Hodges (2014) and Confrey et al.
(2011), the proposed model of fraction learning progression combines Kieren’s
theoretical framework and the empirical research performed by Stafylidou and
Vosniadou (2004) to develop a learning progression of students’ understanding of both
the numerical and symbolic notation of fractions. In their research, Stafylidou and
Vosniadou (2004) proposed three explanatory frameworks for understanding the
symbolic notation of fractions. The first explanatory framework is a “fraction as two
independent natural numbers”. Within this category, students’ understanding of the
fraction symbol is influenced by the notations of whole numbers, so that they believe
that the fraction symbol consists of two independent numbers (the numerator and the
denominator) and that the value of fractions increases when either the numerator or
the denominator of a fraction increase. The second explanatory framework is associated
with the idea that “a fraction is a part of a whole”. Within this category, students
conceive the relationship between the numerator and the denominator of fractions as
that of a part of a whole, where the value of a fraction is always smaller than 1. The third
explanatory framework is the “relationship between the numerator and denominator”.
Within this explanatory framework, students begin to understand the relationship
between the numerator and the denominator so that they start to see a fraction as a
number that can be bigger than one. They understand that if the numerator is bigger
than the denominator, then the value of the fraction is also bigger and vice versa

(Stafylidou & Vosniadou, 2004).

Another principal understanding about fractions that is not captured explicitly in
Kieren’s sub-constructs is the density concept of rational numbers, i.e., that “between
any two different rational numbers there are infinitely many rational numbers”

(Vamvakoussi and Vosniadou (2004, p. 456). Understanding the density of rational
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numbers presupposes that students understand that fractions are numbers that can be

located on the number line but goes beyond understanding fraction as measure.

Combining the theoretical framework of Kieren’s fraction sub-constructs and that
of Vosniadou and her colleagues results in building a learning progression of students’
understanding of the symbolic notation of fractions, which is more comprehensive than
the previous work by Arieli-Attali and Cayton-Hodges (2014) and Confrey et al. (2011).
This progression starts from students seeing the symbolic notation of fractions as
representing two independent numbers until they understand the density property of

fractions.

2.3.2. Two-dimensional Knowledge of Fraction Learning Progression

As detailed in Section 2.1, current learning progression models do not distinguish
between the development of conceptual and procedural knowledge in students’
mathematical learning. However, mathematics learning includes two essential
knowledge dimensions: conceptual and procedural knowledge (Hibert & Lefevre, 1986;
Rittle-Johnson & Schneider, 2014). Rittle-Johnson and Alibali (1999) defined conceptual
knowledge as “explicit or implicit understanding of the principles that govern a domain
and of the interrelations between pieces of knowledge in a domain” (p. 175).

Accordingly, Hibert and Lefevre (1986) defined conceptual knowledge as:

“a connected web of knowledge, a network in which the linking relationships
are as prominent as the discrete pieces of information. Relationships pervade
the individual facts and propositions so that all the pieces of information are

linked to some network” (p. 3).

Both definitions are complimentary in conceiving conceptual knowledge as consisting of

interconnected pieces of information about ideas and principles.

In terms of understanding the symbolic notation of fractions, conceptual
knowledge includes understanding fraction properties (e.g. understanding the
magnitudes of fractions), understanding fraction principles (e.g. understanding the
density of fractions) and understanding the value of fractions (Bailey et al., 2015).

Related to understanding the (symbolic) notation of fractions, conceptual knowledge
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includes understanding the meaning/interpretation of fraction sub-constructs, as

discussed in Section 2.3.1.

Rittle-Johnson et al. (2001) defined procedural knowledge as “the ability to
execute action sequences to solve problems” (p. 346). Similarly, Star and Stylianides
(2013) expressed procedural knowledge as “knowledge of procedures, including action
sequences and algorithms used in problem solving” (P. 6). In learning fractions, Bailey et
al. (2015) described procedural knowledge as the knowledge of fraction operations.
They defined procedural knowledge as “fluency with the four fraction arithmetic

operations: addition, subtraction, multiplication, and division” (Bailey et al., 2015, p. 69).

Current practices for teaching and assessing mathematics emphasize procedural
learning (Joersz, 2017; Sullivan, 2011). Teachers often introduce mathematics to
students as procedures to solve mathematical tasks, without explaining the conceptual
understanding underlying the procedures. In fact, some of the students’ procedural
mistakes happen precisely because of students’ inadequate conceptual understanding.
For example, students who perform addition across the numerator and denominator in
fraction addition tasks see fractions as two independent whole numbers (Smith Ill, 2002;

Stafylidou & Vosniadou, 2004).

The balance of teaching and assessing conceptual and procedural knowledge can
be supported by the cognitive model of learning, which can cover the progression of
these two types of knowledge. This can be done by placing the cognitive model as the
foundation of the development of the curriculum, assessment, and instructions, as
suggested by Pellegrino et al. (2001) and Wilson (2009a). Figure 2.8 shows the
interconnections between the curriculum, assessment and instruction, based on a

cognitive model of learning.
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Figure 2.8 The relationship between curriculum, pedagogy, assessment and theories of learning (Adapted
from Wilson, 20093, p. 6)

The cognitive model of learning can shape the curriculum, assessment and
pedagogy (see Figure 2.8). Hence, the construction of a cognitive model of learning,
based on the conceptual and procedural dimension of fraction learning, can produce a

more balanced curriculum, assessment and pedagogy.

2.3.3. Summary of the Rationale

In previous research, the theoretical framework of Kieren’s sub-constructs were used as
a foundation from which to develop fraction learning progressions of the development
of the concept of fractions. The present research differs from previous work, first
because it developed a learning progression of the development of students’
understanding of the symbolic notation of fractions. Second, it used, in addition to
Kieren’s sub-constructs, Vosniadou and colleagues’ explanatory frameworks for
understanding fraction notation based on empirical research. Third, previous learning
progressions did not differentiate between the conceptual and procedural knowledge

of fractions, as was done in the present work.

2.4 Summary of the Chapter

This chapter discussed the literature relating to assessment, comparing traditional
methods of assessment with assessments based on cognitive models. It was argued that
assessments built based on cognitive models are superior to traditional assessments in
terms of providing diagnostic information about student learning that can be used in
instruction. Learning progression is a promising cognitive model that can be used as a

foundation to develop diagnostic assessments because it provides information about
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the developmental levels of students’ learning. A Bayesian Network is a statistical model
that can be used for modelling the complexity and the hierarchical dependency between
the levels of a learning progression. The hierarchical dependency can be modelled

through conditional probability.

This chapter also discussed previous research on fraction learning progressions.
The theoretical framework from Kieren and empirical research from Vosniadou on
fraction learning have been combined to create a more comprehensive foundation for
building a learning progression in fractions. Moreover, distinguishing conceptual and
procedural knowledge in the learning progression is important in order to provide
adequate information about these different types of mathematical knowledge in

assessment to guide both the curriculum and the instruction.

The next chapter discusses the development of the cognitive model of a fraction
learning progression based on conceptual and procedural knowledge, and their

corresponding items.

38



CHAPTER 3 : THE HYPOTHESIZED LEARNING
PROGRESSION MODEL AND ITEM TASK
DEVELOPMENT

3.1 Introduction

The purpose of this chapter is to discuss the development of the hypothetical model of
fraction learning progression and the corresponding item tasks. The hypothetical model
of fraction learning progression was developed based on two dimensions of knowledge:
conceptual and procedural. Furthermore, this chapter discusses the item tasks used to
assess competencies for each level of the conceptual and procedural knowledge
dimensions. It is organized into two main sections, which are:

1. The Proposed Model of Fraction Learning Progression

2. The Development of the Item Tasks

3.2 The Proposed Model of Fraction Learning Progression

Fractions are parts of the set of rational numbers, which are expressed in the form a/b,
where a and b are integers and b is not zero (Bronshtein, Semendayev, Musiol, & Mulig,
2015; Rosen, 2007). In the present research, Lamon (2012) definition of fractions, which
restricts fractions to “non-negative rational numbers" (p.29) is used. Hence negative
fractions are not included in the proposed model. Furthermore, the model focuses on
students’ understanding of the symbolic notation of fractions, rather than on the
development of the fraction concept as a whole.

Fractions have a distinct symbolic notation and properties, which are different
from those of natural numbers (Stafylidou & Vosniadou, 2004). First, natural numbers
consist of one number only, while fractions consist of two numbers separated by a line.
The top number is called the numerator and the number at the bottom is called the
denominator. Second, fractions are unbounded-infinite numbers, meaning that there
are no smallest or biggest fractions. This is different from natural numbers, where the
unit is the smallest number. Next, no unique fraction precedes or follows another
fraction, which means that there is always another fraction between two fractions. This
is in contrast with natural numbers, where there is a unique number that precedes and

follows all natural numbers.
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Research shows that in the beginning of fraction instruction, students may not
understand the symbolic notation of fractions. They may see fractions as two distinct
(independent) whole numbers (Hartnett & Gelman, 1998; Smith Ill, 2002; Stafylidou &
Vosniadou, 2004). They do not understand the meaning of the numerator and the
denominator and their relationship. They treat fractions as they treat natural numbers.
For example, in ordering fractions, they may consider that a fraction with a bigger
numerator or denominator is a bigger fraction; in adding fractions, they may add across
the numerator and denominator (2/3 + 1/4 = 3/7).

As discussed in Chapter 2, fractions have several sub-constructs, and this study
focuses on the sub-constructs of the conceptual dimension underpinning the
hypothesized model. These sub-constructs are: first, fractions can be seen as expressing
the relationship of part-whole, which is “a comparison between the number of parts of
the partitioned unit to the total number of parts in which the unit is partitioned”
(Charalambous & Pitta-Pantazi, 2007, p. 296). Second, fractions can be seen as
expressing “the measure assigned to some interval or region”(Lamon, 2012, p. 210).
Hence, if there is a length / and then it is divided equally into b sub-divisions in which
each sub-division has a length 1/b, the fraction a/b can be interpreted as “a intervals of
length [/b” (Lamon, 2012, p. 210). Finally, fractions can be seen to represent an
operation of division so that the fraction a/b is “used as a way of writing a + b”(Behr,

Lesh, Post, & Silver, 1983, p. 95).

The hypothesized model of fraction learning progression that is proposed in this
study expands the modelling approach of learning progressions from a unidimensional
into a multidimensional model of learning progressions. The models of learning
progressions in mathematics learning developed so far have been based on one
dimensional knowledge, as discussed in Chapter 2. By differentiating the conceptual and
procedural knowledge dimensions, the present hypothesized model provides a more
detailed roadmap of students’ learning. Mathematics instructors can use this model to
assess students’ knowledge and skills better and thus to improve their instruction of
fractions at a classroom level. Educators can also use this model to develop or refine a

mathematics curriculum at a state or national level.
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Conceptual knowledge of fractions is defined as understanding the meaning of the
symbolic notation of fractions. According to Hibert and Lefevre (1986), a symbol can
express mathematical ideas and concepts. For fractions, the symbol a/b can be used to
refer to several sub-constructs, as discussed before. Thus, understanding the meaning
of the symbolic notation of fractions is related to the understanding of the various
fraction sub-constructs. Procedural knowledge in this study is defined as knowledge of
the series of steps or rules required to perform fraction addition, subtraction,
multiplication and division. This definition is similar to the definition used by other
researchers in the field, such as Rittle-Johnson and Schneider (2014), who defined a
procedure as “a series of steps, or actions, done to accomplish a goal”, and Bailey et al.
(2015) who identified “the four fraction arithmetic operations: addition, subtraction,
multiplication, and division” as the procedural knowledge of fractions. Within the
hypothesized model, the procedural levels were specified based on knowledge of the
rules that govern fraction operations.

The hypothesized model is constructed based on the development of several sub-
constructs which are categorized into conceptual and procedural knowledge
dimensions. Based on the development of these fraction sub-constructs (discussed in
Section 4.2.1), the hypothesized model of fraction learning progression is developed in

Section 4.2.2.

3.2.1 The Development of the Fraction Sub-constructs

The proposed hypothetical model of fraction learning progression attempts to capture
the development of the students’ understanding of the symbolic notation of fraction
and of the rules and procedures which are used in fraction operations (fraction addition,
subtraction, multiplication, and division). This hypothetical model distinguishes two
dimensions of fraction knowledge: conceptual and procedural. The distinction between
the two types of knowledge in this model is important because mathematics
competencies rest on these two types of knowledge (Hibert & Lefevre, 1986; Rittle-
Johnson & Schneider, 2014). It means that mathematical competencies rest on an
understanding of mathematical symbols which are “connected to the conceptual
knowledge they represent” (Hibert & Lefevre, 1986, p. 9), and on an understanding of

the rules and procedures which are needed to execute mathematical tasks. Within each
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dimension, a number of fraction sub-constructs are proposed. These sub-constructs are
similar to the “progress variables” stated in Pellegrino (2014) and Arieli-Attali and
Cayton-Hodges (2014). The development of the sub-constructs for the conceptual and
procedural dimensions underpinning the proposed learning progression is discussed in

this section.

3.2.1.1 The Development of the Conceptual Sub-constructs

Within the conceptual knowledge dimension, there are five fraction sub-constructs
which develop across the proposed levels. Those sub-constructs are: fraction as part-
whole, fraction as measure, density of fractions, understanding fraction additive

structure, and understanding fraction multiplicative structure.
3.2.1.1.1 Fraction as Part-whole

The part-whole sub-construct refers to the understanding of the symbolic notation of
fractions as a representation of the part-whole relationship between the numerator and
the denominator. The construction of this meaning is based on students’ experiences of
the partitioning of continuous objects into sets of discrete and equal parts (Behr et al.,
1983; Kieren, 1980) and the linking of these experiences to fraction notation through
instruction. In the hypothesized model, it is assumed that students may not fully
understand the symbolic notation of fractions at the beginning of instruction, despite
the fact they may have some understanding of part-whole relationships and may know
that familiar fractions such as 1/2 and 1/3 refer to parts of a whole.

A more advanced understanding of the meaning of fraction notation is
hypothesized to develop at level 2. At level 2, students may understand that the
denominator refers to the total number of the parts that a whole consists of and that
the numerator refers to a sub-set of these parts. Fraction understanding at level 2 is
limited to fractions less than 1 (proper fractions) because students think that the
numerator, which represents the sub-set of selected parts, should always be smaller
than or equal to the denominator, which represents the total parts of the whole.
However, at level 2, students may not understand that the denominator refers to equal
size partitions of the whole. This understanding is hypothesised to be a competence
achieved at level 3. At level 3, students also begin to understand improper fractions.

They understand that the size of a part (the numerator) can exceed the size of the
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referenced whole (the denominator). In other words, they understand that the
numerator can be greater than the denominator and if so, that the fraction is greater

than the unit of the whole.
3.2.1.1.2 Fraction as Measure

The measure sub-construct refers to the meaning of fractions as “the measure assigned
to some interval or region,” which can “measure the distance of a certain point on the
number line from zero” (Lamon, 2005, p. 170). Hence, fractions a/b can be interpreted
as “a measure of g of b congruent parts” (Kieren, 1976, p. 131). This sub-construct
includes understanding fractions as single-numbers on the number line, fraction order,
and equivalent fractions. Understanding fractions as measures is hypothesized to be
established at Level 3. At this level, students must be able to recognize the magnitude
of fractions and the scales on the number line. At the next level (Level 4) they can order

several fractions on the number line, including improper fractions and mixed numbers.
3.2.1.1.3 Infinity and density of fractions

The infinity part of this sub-construct refers to the fraction properties of unbounded
infinity and density. Unbounded infinity means that fractions are seen as infinite
numbers; there is no smallest or biggest fraction (Stafylidou & Vosniadou, 2004). The
density part of this sub-construct refers to the fact that there are infinite numbers
between two fractions (Bronshtein et al., 2015). The property of density of rational
numbers is “radically different” from the discreteness property in whole numbers
(Vamvakoussi & Vosniadou, 2004, p. 456), and it is difficult for students to understand.

Students at Level 3 and below may believe that there is a smallest and a biggest
fraction, still influenced by their part-whole understanding of fractions. They also are
not expected to understand the notion of density. They see fractions as discrete
guantities, like whole numbers. Level 4 fraction understanding assumes that fractions
are seen as infinite numbers, an idea that can lead students to understand the concept
of density. They begin to see that there can be many numbers between two-pseudo
successive fractions, but they still think that there are finite numbers between two
fractions. Finally, students at Level 5 should have a complete understanding of the
density property i.e. that there are infinite numbers between two-pseudo successive

fractions.
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3.2.1.1.4 Understanding Additive Fraction Operations

The sub-construct of additive fraction operations refers to students’ understanding of
the meaning of addition and subtraction of fractions. In fraction operations, the meaning
of addition and subtraction is similar to the meaning of the additive operations with
natural numbers. Addition of fractions always produces a bigger number and
subtraction of fractions always produces a smaller number. This is also the case for
natural numbers, where the addition of two natural numbers always produces a bigger
number and thee subtraction of two natural numbers always produces a smaller
number.

In the beginning, students do not understand fraction addition and subtraction.
They may understand that adding fractions means joining parts of the object, or
subtracting fractions means separating parts of the object, but they cannot translate this
understanding into operations using the symbolic notation of fractions. Conversely, they
do not understand the meaning of addition and subtraction when these operations are
represented using the symbolic notation of fractions. Next, at Level 2, students
understand fraction addition and subtraction based on their understanding of the
symbolic notation fraction a/b, where b represents the “size of the parts” and a

represents the “number” of those parts (Clarke, Roche, & Mitchell, 2008, p. 375).
3.2.1.1.5 Understanding Multiplicative Fraction Operations

The sub-construct of understanding multiplicative fraction operations refers to
students’ conceptual knowledge of fraction multiplication and division. The meaning of
fraction multiplication is different from the meaning of natural number multiplication.
In fractions, multiplication means “how much of” (Van de Walle, Karp, Bay-Williams, &
Woray, 2015). So for example, a multiplication of 2/3 by 3/4 means how much of 2/3 in
3/4 (see Chinnappan & Forrester, 2014). As a result, fraction multiplication does not
always produce bigger numbers (especially when the multiplication involves a proper
fraction, it always produces a smaller number), while in natural numbers multiplication
always produces a bigger number. The meaning of fraction division is similar to the
meaning of natural number division, which is finding “how many” parts of a divisor are
in a dividend. For example, 2/3 divided by 3/4 means finding how many 3/4 in 2/3.

However, fraction division can produce a bigger value (i.e. when the divisor is a proper
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fraction), while in natural numbers division always produces a smaller value. Therefore,
fraction multiplication and division are counter-intuitive for students who have prior
knowledge of natural number operations. An understanding of fraction multiplication is

hypothesized to emerge at the highest level of the proposed model.

3.2.1.2 The Development of the Procedural Sub-Constructs

The procedural knowledge dimension of the hypothesized fraction learning progression

consists of two sub-constructs: additive operations and multiplicative operations.
3.2.1.2.1 Additive Operations

The sub-construct of additive operations refers to the procedural knowledge required
in order to perform fraction addition and subtraction correctly. At level 1, students are
not expected to have the procedural knowledge of adding or subtracting fractions, but
they may be able to do a simple fraction addition and subtraction for fractions with the
same denominator by transferring their knowledge of addition and subtraction from
natural numbers —i.e., they may simply add the numerators or the denominators to get
the answer. At Level 2, students must have developed their procedural knowledge of
fraction addition and subtraction and must be able to perform additive fraction
operations with unlike denominators. They are expected to know the rule that when
adding or subtracting fractions the denominators should be the same. If the
denominators are different, then they should manipulate the fractions (by transforming
the fractions with a common denominator) to get the same denominator before they
add or subtract them. At Level 3, they should expand their knowledge of the rules and
procedures of adding and subtracting fractions at Level 2 and should be capable of

adding and subtracting improper fractions and mixed numbers.
3.2.1.2.2 Multiplicative Operations

The sub-construct of multiplicative fraction operations refers to knowledge of the rules
for fraction multiplication and division. Students at Level 3 are expected to be able to
perform fraction multiplication and division, but not when the operations involve
improper fractions and mixed numbers. At level 4, they must be able to handle more
complex multiplicative fraction operations, which involve improper fractions and mixed
numbers. Their fluency has emerged at this level and is at Level 5.
The summary of the sub-construct progression is presented in Table 3.1.
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Table 3.1 The sub-construct progressions of the proposed model of fraction learning progression

Sub-Construct

Level 1

Level 2 Level 3

Level 4

Level 5

Conceptual

Part-whole

Measure

Infinity (Unbounded-
infinity and Density)

Understanding of
additive structure

Understanding of
multiplicative
structure

Do not understand the

relationship between the

numerator and
denominator.

Understand improper
fractions

See fractions as a comparison
between the number of
selected equal parts to the
number of all parts of their
referenced whole, but
consider fractions to be
smaller than then the unit

Understand a fraction as a
point on the number line,
but still limited to fractions
smaller than the unit

See fractions as discrete
quantities

See fractions as discrete
quantities

Understand the meaning of
fraction addition/subtraction
operations

46

Understand a fraction as
a point on the number
line, including improper
fractions and mixed
numbers

Understand that there is
no smallest or biggest
fraction

Recognize that there
are infinite numbers
between two-pseudo
successive fractions.

Understand the
meaning of
multiplicative
fraction operations



Sub-Construct Level 1

Level 2

Level 3 Level 4 Level 5

Procedural
Do not have procedural
Additive Operations knowledge of fractions

Multiplicative
Operations

Can do fraction additions and
subtractions including
fractions with unlike
denominators but are limited
to fractions less than 1

Can do additive fraction
operations with improper
fractions or mixed numbers

Can do multiplicative Can do multiplicative

fraction operations fraction operations with
improper fractions or
mixed numbers
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3.2.2 The Hypothesized Model of Fraction Learning Progression

This section discusses the levels of the proposed model of fraction learning progression
and the competencies for each level. The model is hypothesized to consist of five levels
of conceptual knowledge dimension and four levels of procedural knowledge based on

the development of the fraction sub-constructs, as discussed in the previous section.

3.2.2.1 Conceptual Knowledge Dimension

3.2.2.1.1 Level 1 — No Fraction Understanding

No conceptual understanding of the symbolic notation of fractions found at Level 1.
Fraction notation may be interpreted as consisting of two independent numbers with

the exception of some familiar fractions such as 1/2 and 1/4.

The symbols in mathematics (including the symbolic notation of fraction a/b)
present mathematical ideas and concepts (Hibert & Lefevre, 1986). As discussed before,
fractions a/b have been interpreted in various ways to accommodate fractional ideas
and concepts (See Behr et al., 1983; Charalambous & Pitta-Pantazi, 2007; Kieren, 1976,
1980; Lamon, 2012). Students may not understand the meaning of the symbolic
notation of fraction a/b when first exposed to fractions. They may see fraction a/b as
two independent natural numbers (see Hartnett & Gelman, 1998; Smith I, 2002;
Stafylidou & Vosniadou, 2004), except for familiar fractions such as 1/2 and 1/4.
However, they may understand part-whole relationships of objects in the world on the
basis of their prior knowledge obtained from daily life experience. A study by Mack
(1990) showed that students had prior knowledge of fractions such as “knowledge about
parts of wholes in real world situations ...[that] was based upon knowledge of whole
numbers” (p.3). Those students who may have no understanding of fractions and may
treat fractions as two independent numbers are hypothesized at the lowest level in the

proposed model.

3.2.2.1.2 Level 2 — Part-Whole

Students understand a fraction as a part-whole. At this level, they understand that the

numerator represents the number of selected parts and the denominator represents
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the number of all parts of their referenced whole. They also believe that a fraction is
always smaller than 1 (a whole).

Students begin to understand the relationships between the numerator and
denominator in fractions as a part-whole relationship. They understand the basic idea
of fractions as part-whole which is, “some whole is broken into equal parts” (Kieren,
1980, p. 134). However, at this level they may not really understand the meaning of
“equal size”, and may sometimes generate pictorial representations of fractions
consisting of unequal parts (see Arieli-Attali & Cayton-Hodges, 2014). In addition, they
believe that fractions should be smaller than 1 (whole) because the number of parts (the
numerator) cannot exceed the numbers of all the parts of the whole (the denominator)
(Stafylidou & Vosniadou, 2004). Arieli-Attali and Cayton-Hodges (2014) gave the
example of one student who read 6/4 and said that, “there cannot be 6 out of 4, so it
must be 4 out of 6” (p.25). This is the next development of students’ fraction
understanding from level 1. In level 1 they do not understand the symbolic notation of
fractions and may perceive the numerator and denominator as two independent
numbers. In level 2, they understand fractions as part-whole and understand fractions
smaller than 1. This roadmap of fraction learning may be highly related to the fact that
fractions as part-whole are taught at the beginning of fraction instruction (Amato, 2005;
Kieren, 1976).

The students at this level are hypothesized to have the following conceptual
competencies:

1. They generate the symbolic notation of proper fractions from pie diagrams.
Students are able to generate fraction notation from pie or other area model
representations. However, their understanding is limited to fractions smaller than
1. They do not understand that fractions can be bigger than the unit. Previous
research has revealed some of the problems students at this level may have with
improper fractions.

2. They map proper fractions onto pie diagrams.

At this level, students understand the symbolic notation of fraction as
representing part-whole. This understanding allows them to map fraction notation

onto pie diagrams, but it is limited to fractions smaller than 1. Students have
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difficulties with understanding fractions that are greater than 1 because they do
not understand why a part can be bigger than the whole.

They generate the symbolic notation of equivalent fractions from pie diagrams.
Students can understand equivalent fractions but are limited to fractions less than
1. They can demonstrate this understanding by generating equivalent fraction
notations from pie diagrams. According to (Wong & Evans, 2011), equivalent
fractions can be represented using pie diagrams. The area of the whole is constant,
but the number of partitions within the whole can be varied. Thus, different
fractions (which are equivalent) can be generated corresponding to the number
of partitions of the whole (the denominator) and the number of the shaded
partitions (the numerator) that are created.

They can order proper fractions

Students understand the size of fractions based on part-whole understanding and
can order proper fractions using pie diagrams. This is aligned with the study by
Stafylidou and Vosniadou (2004), which showed that students at the explanatory
framework of fractions as a part-whole were able to order fractions smaller than
the unit 1.

They can demonstrate correct fraction addition and subtraction using diagram
representations.

Arieli-Attali and Cayton-Hodges (2014) highlighted that students who have a part-
whole understanding are able to perform fraction addition and subtraction by
adding and separating the selected (i.e. shaded) parts of diagram representations.
Thus, students at this level are expected to be able to demonstrate fraction
addition and subtraction with fractions with different denominators. Hence the
conceptual understanding of adding and subtracting proper fractions with
different denominators using diagram representations is hypothesized to emerge

at this level.

3.2.2.1.3 Level 3 — Improper Fractions and Fractions as Measures

Students understand that if the numerator is greater than the denominator, then the

fraction is greater than the referenced whole and vice versa. They also understand

fractions as measures and conceive fractions as numbers on the number line.
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Students begin to understand the relationship between the numerator and
denominator beyond part-whole understanding. They understand that if the numerator
is greater than denominator, then the fraction is greater than the referenced whole and
vice versa. In other words, they understand that the numerator, which presents the size
of the part, can exceed the denominator, which presents the size of the whole. On the
other hand, they also understand fractions as measures. Behr et al. (1983) highlighted
that understanding fractions as measures can be seen as understanding fractions as “a
subset of the real numbers”. Hence, this is a conceptual jump from learning fractions by
understanding fractions as a relationship between parts and the whole of objects at
Level 2, to understanding fractions as numbers on the number line. Stafylidou and
Vosniadou (2004, p. 513) also argued that students who understand the relationship
between the numerator and the denominator of fractions, including fractions greater
than 1 (the referenced unit/whole), have “radically changed their beliefs about the
concept of fraction”. Therefore, the conceptual knowledge of fractions as measures and
understanding fractions greater than 1 is at a different (higher) level compared with

part-whole understanding at Level 2.

The following are the students’ competencies hypothesized to emerge at this level.

1. They can generate the notation of fractions from a pie diagram, which represents
equal size partitions
Students advance their understanding of fractions as representing part-whole at
Level 2. In this level, they understand that the denominator should represent
equal size partitions of the whole. Understanding “equal size” is identified as the
next step in learning after understanding the symbolic notation of fractions as a
representation of part and whole (as established at Level 2) (see Arieli-Attali &
Cayton-Hodges, 2014).

2. They can generate an improper fraction notation from a pie diagram
Students advance their understanding of fractions as part-whole at level 2, which
is limited to fractions less than 1, to understanding improper fractions at level 3.
They can generate improper fractions from two circles of a pie diagram. They
understand that the denominator of improper fractions represents the number

of all parts of the referenced unit (whole), which is the number of all parts from
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a pie diagram. They also understand that the numerator of improper fractions
refers to the number of all shaded (selected) parts, even though it is larger than
the number of all parts of the referenced unit. Hence, they understand that if a
fraction has a numerator greater than the denominator, then it is greater than
the whole.

They generate equivalent fraction notation, greater than 1, from pie diagrams
The students can generate a notation of equivalent fractions for fractions
greater than 1 from two circles of a pie diagram. This is the development of
students’ competency on equivalent fractions that in the previous level (Level 2),
their competency is limited to proper fractions.

They generate a pie diagram to represent improper fraction notation

This competency is similar to the competency at point 2. The difference is that
this competency requires students to translate a symbolic notation of improper
fractions into a pie diagram, as compared to generating a fraction from a pie
diagram.

They can correctly order fractions, including improper fractions and mixed
numbers

Students advance their understanding of improper fractions and mixed numbers
at this level. They fully understand the relationship between the numerator and
the denominator that a fraction symbol represents. Wenrick (2003) highlighted
that understanding the relationship between a numerator and a denominator
can produce a “quantitative notion” of fractions, which is extremely useful
because it allows students to compare and order fractions.

They can place a fraction on a number line

Students at this level begin to understand fractions as a measure. They
understand that fractions can be used to represent the distance between zero
and a certain point on the number line. They also understand that the numerator
represents the distance - how many scales from zero to the certain point on the
number line - while the denominator represents the total number of scales
(equal intervals) within the unit. Without this understanding, students will have

difficulty in locating fractions on a number line (Wong, 2013).
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3.2.2.1.4 Level 4 — Unbounded Infinite Numbers of Fractions

Students view fractions as unbounded infinite numbers (there is no smallest or biggest

fraction).

Stafylidou and Vosniadou (2004, p. 513) showed that students at the explanatory
framework of “relation between numerator and denominator” and the sub-category
“relation of two numbers with infinity” believed that fractions are unbounded infinite
numbers. This belief emerged as a result of understanding the relationship between the
numerator and denominator of fractions as division (Stafylidou & Vosniadou, 2004). This
sub-category is higher than the sub-category “relation of two numbers without infinity”

which is hypothesized to emerge at Level 3.

The following are the competencies which are hypothesized to emerge at this level.

1. Students can order improper fractions on a number line

Students advance their measure understanding of fractions at Level 3 to the case
of improper fractions. At this level they can locate and order fractions (including
improper fractions) with different denominators on the number line.

2. Students understand that there is no biggest and smallest fraction

At this level, students understand that fractions are unbounded infinite numbers

3.2.2.1.5 Level 5 — Density of Fractions and Understanding Multiplicative Fraction
Operations

Students understand the density property of fractions, i.e. that there are unlimited
numbers between any two fractions. They also have conceptual understanding of

multiplicative fraction operations.

Students are able to understand that there are infinite numbers between any two
fractions. Understanding the density concept at this level completes the students’
understanding of fractions as numbers. Moreover, they also begin to understand
fraction multiplication and division, which is different from multiplication and addition

with whole numbers.

The following are the competencies which are hypothesized to emerge at this level
1. Students are able to demonstrate that there are infinite numbers between any
two fractions.
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At this level, students are expected to understand that there are unlimited
numbers between two pseudo-successive fractions. Vamvakoussi and Vosniadou
(2004) grouped the students who understand the density of fractions into two
categories: “naive density” and “sophisticated density”. The former included
students who believed that there are infinite numbers between two fractions or
between two decimals or believed that there are infinite numbers between both
fractions and decimals but not between a decimal and a fraction. Sophisticated
density is achieved when students understand that there are infinite numbers
between any two rational numbers, regardless of their symbolic representations.
Because the study focuses only on fractions, the present research cannot
differentiate between naive and sophisticated density.

2. Students can represent multiplicative fraction operations using diagram

representations.

Students at this level can demonstrate a conceptual understanding of fraction
multiplication and division using pictorial representations like pie diagrams or

number lines.

3.2.2.2 Procedural Knowledge Dimension

3.2.2.2.1 Level 1 — No Procedural Knowledge

No procedural knowledge is expected at this level. At Level 1, students may be able to
add or subtract fractions with like denominators. However, their procedural knowledge
at Level 1 may not depend on knowledge of fraction addition and subtraction, but
knowledge of addition and subtraction with natural numbers. Since they consider
fractions to be two independent natural numbers, they transfer their knowledge of
natural numbers to addition with fractions. In such a situation, they can be correct on
fraction addition or subtraction with fractions with like denominators but not when the
denominators are different. Hansen, Jordan, and Rodrigues (2015) found that many
students in the low growth procedures group treated numerators and denominators of
two fractions in fraction addition and subtraction as “four separate whole
numbers”(p.11). This is consistent with also the notion of whole number bias highlighted
by Ni and Zhou (2005), according to which students apply whole number properties in

cases where whole numbers do not apply, as in the case of fractions.
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3.2.2.2.2 Level 2 - Additive Fraction Operation

Students know the procedures of fraction additions and subtractions but are limited to
proper fractions. Students begin to know the rules and procedures of fraction addition
and subtraction, including fractions with unlike denominators. Confrey et al. (2011)
pointed out a trajectory of learning additive operations, which begins from additive
operations with fractions with like denominators and finishes with those with unlike
denominators.

The competencies which are hypothesized to emerge at this level are addition and
subtraction with proper fractions, including fractions with unlike denominators. The
students at this level know that the denominators should be the same when they add
or subtract fractions. Moreover, if the fractions have unlike denominators, they know
the procedure of how to transform the fractions to get equivalent fractions with a
common denominator. However, their procedural knowledge of fraction addition and
subtraction is limited to proper fractions. They have trouble with adding or subtracting

improper fractions and mixed numbers.

3.2.2.2.3 Level 3 — Additive and Multiplicative Fraction Operations

Students expand their procedural knowledge of additive operations to include improper
fractions and mixed numbers. They also begin to develop procedural knowledge of
multiplicative fraction operations. The following are the procedural competencies which
are hypothesized to emerge at this level.
1. Students can add and subtract improper fractions and mixed numbers.
Students develop their procedural knowledge of additive operations, which was
limited to fractions less than 1 at level 2, to additive operations which involve
improper fractions and mixed numbers. These competencies require procedural
knowledge of how to transform mixed numbers into common fractions and vice
versa, and how to transform fractions with unlike denominators into equivalent
fractions with a common denominator. Understanding fractions greater than 1,
which emerges at this level, helps students to learn additive operations that

involve improper fractions and mixed numbers.
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2. Students can multiply and divide fractions.
Students develop their procedural knowledge from additive fraction operations
(fraction addition and subtraction) in Level 2 to multiplicative fraction operations
(fraction multiplication and division) at level 3. Multiplicative operations usually
are taught in schools after additive operations (see Balitbang, 2013a; Initiative,
2011). Therefore, the procedural knowledge of multiplicative fraction operations
is hypothesized to emerge at this level after students learn the procedure of
additive fraction operations at level 2. They can perform well in multiplying and
dividing fractions for fractions less than 1, but they may have trouble when the
operations involve improper fractions and mixed numbers. For example, when
they multiply 2 % and 1/2 they may multiply 1/4 by 1/2 and keep the whole
number 2. They make an error by not transforming the mixed number 2 % into a
common fraction form (a/b) before proceeding to the multiplication of 2 % and

1/4.

3.2.2.2.4 Level 4 — Advanced procedural knowledge of additive and multiplicative
fraction operations

Students advance their procedural knowledge of multiplicative fraction operations from
the previous level. The fluency of performing fraction operations (for both additive and
multiplicative operations) emerges at this level. Students’ procedural knowledge of
fraction multiplication and division is developed at this level. In the previous level they
begin to recognize the procedures of fraction multiplication and division, but they
commit procedural errors when the operations involve mixed numbers, as discussed at
level 4. At this level they can perform more complex multiplicative fraction operations
(with not only greater complexity, but fewer procedural errors) that involve improper
fractions and mixed numbers. They demonstrate fluency in performing fraction
multiplication and division. The procedural competencies that are hypothesized to
emerge at this level are that students are able to perform fraction multiplication and

division that involves improper fractions and mixed numbers.
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3.3 The Development of Item Tasks

This section discusses the item tasks that are developed to test students’ level
competencies within the proposed model of fraction learning progressions. The
discussion is organized into two parts: conceptual item tasks and procedural item tasks.
Some of the items were adapted from other research, while some were crafted by the

researcher itself.

The items are organized into groups of tasks. There are eight tasks in the
conceptual dimension: Task 1 Generating a Fraction from a Pie Diagram; Task 2 Shading
a Pie Diagram to Represent a Fraction; Task 3 Ordering Fractions; Task 4 Locating
Fractions on a Number Line; Task 5 Finding the Smallest and Biggest Fractions; Task 6
Finding how many Fractions lie between two Fractions; Task 7 Adding Fractions using
Diagram Representation; and Task 8 Multiplying and Dividing Fractions using Diagram
Representation. Next, the procedural knowledge dimension consists of two tasks: Task
1 Performing Additive Fraction Operations; and Task 2 Performing Multiplicative

Fraction Operations.

Within each task there are items. The items are labelled using seven-digit codes.
The first three digits of the codes refer to the conceptual and procedural dimension (Con
for conceptual and Pro for procedural); the fourth and fifth digits refer to the task; and
the last two digits refers to the items within the task. For example, the item code
ConT1Q2 refer to the conceptual dimension, Task 1, Item 2. These codes are useful for

the quantitative analysis performed in Chapter 6.

3.3.1 Conceptual Item Tasks

The conceptual item tasks are developed to test students’ conceptual understanding of
the symbolic notation of fractions (which is represented in the bi-partite notation a/b
where a and b are whole numbers) and the meaning of fraction operations. In order to
test students’ understanding of the symbolic notation of fractions, item tasks based on
the sub-constructs of part-whole, measure and infinity are developed. Likewise, in order
to test students’ understanding of the meaning of fraction operations, item tasks based
on the sub-constructs of conceptual additive and multiplicative fraction operations are

crafted.
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The understanding of fractions as representing part-whole is tested using items
that ask students to map fraction notation into pie diagrams and the opposite. Students
are asked to generate fractions that represent the shaded parts of a pie diagram or are
asked to shade the part of a pie diagram that corresponds to a given fraction. Pie
diagrams are used to test students’ understanding of proper, improper and equivalent
fractions. Students’ responses to these tasks can demonstrate whether they understand
the symbolic notation of fractions when that symbolic notation is used to represent part-
whole relationships. In addition, students are also asked to use part-whole
representations to compare fractions and demonstrate which fraction is bigger. These
tasks are used to reveal students’ understanding of the numerical value of fractions

based on part-whole representations.

The understanding of fractions as representing measure is tested using items that
ask students to map fraction notation into number lines. Students are asked to put a
fraction or several fractions on the number line. In order to be able to put a fraction on
the number line, students should understand that the denominator of fractions
represents the number of intervals within one unit and the numerator represents the
number of intervals from zero to the point/mark of the fraction on the number line.
Students’ understanding of fractions as measure is inferred from their responses as to
how they create the intervals/scales within one unit (when the fraction is an improper

fraction) or within more than one unit (when the fraction is an improper fraction).

The infinity property of fractions is tested using items that ask students how many
fractions are present between two fractions. There are two types of the infinity property
in the hypothesized model of fraction learning progression: the unbounded infinity of
fractions and the density of fractions. To reveal students’ understanding of the
unbounded infinity of fractions, students are asked to write the biggest and the smallest
fractions they know. Students who answer this item correctly may say that there are no
biggest and smallest fractions, meaning that fractions are unlimited or infinite. The
density of fractions is tested using item tasks which ask students to find how many
fractions are present between two fractions (both pseudo-successive and non-

successive fractions). From their responses, it can be inferred whether they have a
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discreteness understanding of fractions or a density understanding of fractions, or

whether they have misconceptions.

3.3.1.1 Understanding Fractions as Representing Part-Whole Relationships

Understanding fractions as part-whole is tested using Task 1 Generating a Fraction from
a Pie Diagram, Task 2 Shading a Pie Diagram to Represent a Fraction and Task 3 Ordering

Fractions.

3.3.1.1.1 Task 1 Generating a Fraction from a Pie Diagram

To test students’ understanding of the symbolic notation of fractions as part-whole,

students are asked to write a fraction that represents the shaded part of pie diagrams.

Item 1 - Write the fraction for the shaded part below (Adapted from Scanlon, 2013)
(ConT1Q1)

Task 1 Item 1 asks students to write the symbolic notation of the fraction that
represents the shaded parts of the pie diagram. To answer this item correctly, students
should understand that the numerator represents the number of the shaded parts and
the denominator represents the number of all parts of the pie diagram (the whole). The
correct answer for this item 3/8. Students who answer this item correctly are put on
level 2 (part-whole) of the hypothesized learning progression model, while students who
answer this item incorrectly are put on level 1 (do not understand the symbolic notation
of fractions). This item is developed to address Level 2 Competency 1 (generate the

symbolic notation of proper fractions (fractions less than 1) from a pie diagram).
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Item 2 - Write the numerator of the fraction for the shaded parts below (ConT1Q2)

Task 1 Item 2 tests the students’ understanding of equivalent fractions within the
part-whole sub-construct. The next step of learning fractions after recognizing fraction
notation as a representation of parts and a whole is learning equivalent fractions
(Confrey et al., 2011). Within this concept, students recognize that the selected part of
the object (the whole) can be represented by different fractions, which are all

equivalent: it means that these fractions have the same numerical value (size).

Task 1 Item 2 asks students to give a fraction that represents a half of the shaded
area but has the denominator 16. Hence, students should understand that if a half
shaded area, which is 1/2, is to be represented by another fraction which has the
denominator 16, then this fraction should have the numerator 8. To answer this item
correctly, students should know that the whole number of partitions is now 16 (because
the denominator now is 16), and there are 8 partitions covering the shaded area, which
is half of 16. These 8 partitions cover the same area as the area of the previous 1
partition, which means that the 8 eight partitions are equal to the previous 1 partition.
Hence, students should be able to infer that the fraction representing the shaded 8
partitions is equal to the fraction which represents the previous 1 shaded partition. In
other words, the correct answer for this item is 8 which is the numerator of the fraction
representing a half-shaded area of the pie diagram with the denominator 16. This

answer is illustrated as follows:
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By answering this item correctly, students have demonstrated that 1/2 and 8/16
have the same value because they represent the same size of the shaded area of the pie
diagram. Students who are able to answer this item correctly are put in Level 2 because
understanding fractions as part-whole includes understanding equivalent fractions
(Arieli-Attali & Cayton-Hodges, 2014; Kieren, 1980). This item is used to address level 2

competency 3 (generate equivalent fractions from a pie diagram).

Item 3 - Write the fraction for the shaded part below (Adapted from Pantziara &
Philippou, 2012; Scanlon, 2013) (ConT1Q3)

The correct answer for this item is 1/6 as represented in the following pie diagram.

N -

Task 1 Item 3 tests the students’ understanding of equal partitions as a foundation
of part-whole sub-construct (Kieren, 1976, 1980; Lamon, 2005). This is a development
of students’ understanding of the symbolic notation of fractions as part-whole at level
2. Students at level 2 understand the symbolic notation of fractions that represents part-
whole relationships, but they may not understand that the denominator should
represent parts in equal size. Arieli-Attali and Cayton-Hodges (2014) put students who
understand equal partition one-level higher than those who had not acquired this
concept. Therefore, these items are placed at level 3 of the proposed model. This item
is used to address level 3 competency 3 (generate a fraction as equal-parts of a whole

from a pie diagram).
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Item 4 If the figure is the whole, write the fraction for the shaded part

below (ConT1Q4)

-...,..1 4 tests the students’ ability to generate the symbolic notation of an
improper fraction from a pie representation. The correct answer for this item is 5/4. In
order to provide the correct answer, students should understand the symbolic notation
of fractions, i.e., that the numerator represents the number of selected parts (the size
of part) and the denominator represents the number of all parts of the whole (the size
of whole). However, they should also understand that the size of a part can exceed the
size of the referenced whole. For this item, students should understand that the circle
is the referenced whole, as stated in the task. Hence the denominator is the number of
all parts in one circle which is 4, while the numerator is the number of all the shaded
parts from two circles, which is 5. By understanding the part and the referenced whole,
students can understand why the numerator is bigger than the denominator. This task
is used to address Level 3 competency 1 (generate improper fractions (fractions greater

than 1) from pie representations).

Item 5- If the figure is the whole, write the numerator for the shaded

part below (ConT1Q5)

© |:
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Task 1 Item 5 is similar to Task 1 Item 2, which asks students to find an equivalent
fraction for 1 % shaded areas of the circles with the given denominator 8. However, Task
1 Item 5 asks students to generate an equivalent fraction for an improper fraction, while
Task 1 Item 2 asks students to generate an equivalent fraction for a proper fraction. The
correct answer for this item is 12 which represents the numerator of the fraction 12/8

as illustrated on the pie diagram below.

To answer this item correctly, students should understand both improper fractions
and equivalent fractions. From the pie diagram above, students who understand
improper fractions should know that the diagram represents 3/2 or 1 1/2 because there
are three shaded parts and 2 partitions on each circle, where one circle is the referenced
whole. However, they are asked to find another fraction with the denominator 8 which
is equivalentto 3/2 or 1 1/2. Students should understand that the denominator 8 means
that there are 8 partitions within the referenced whole, i.e., one circle. By partitioning
each circle into 8 parts, they can see that there are 12 parts in the shaded areas of the
two circles and can conclude that the fraction that represents the shaded area is 12/8,
a fraction equivalent to 3/2 or 1 1/2. Because this task requires an understanding of
improper fractions, students are expected to answer this item correctly at level 3. This
item addresses Level 3 competency 2 (generate equivalent fractions greater than 1 from

pie representations).

3.3.1.1.2 Task 2 Shading Pie Diagrams to Represent Fractions

Previous items asked students to generate fractions from pie diagrams, while the
following tasks ask students to shade the area of pie diagrams to represent fractions.
The aim of these tasks is the same as the aim of the previous tasks, which is testing the
students’ understanding of the symbolic notation of fractions as part-whole. Students
who understand fractions as part-whole should be able to generate fractions from the

pie diagrams and they also should be able to shade the pie diagrams to represent the
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value expressed by the symbolic notation of fractions. So, these item tasks are created

to gain more evidence of the students’ understanding of fractions as part-whole.

Item 1 Shade the shape to show the fractions below (ConT2Q1).

[N I o

Task 2 Item 1 tests the students’ understanding of fraction notations (within the
part-whole sub-construct) by asking them to shade the area of the circle that the fraction

denotes. The following pie diagram is the correct answer of this item.

To answer this item correctly, students should know that the denominator
represents the number of all parts in the circle, while the numerator represents the
shaded parts of the circle. If they know this, the students should be able to understand
that they are supposed to shade two of the 3 parts of the circle. Students who answer
this item correctly provide evidence that they understand the symbolic notation of
fractions as part-whole. Therefore, they are put in level 2 (part-whole), while students
who fail to answer this item correctly are put in level 1 (do not understand the symbolic
notation of fractions) of the hypothesized model of fraction learning progression. This
item is used to address Level 2 competency 2 (generate a pie representation from a

proper fraction).

Item 2 Shade the shape to show the fractions below (ConT2Q2).
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ask 2 Item 2 tests the students’ understanding of improper fractions. The item asks
. 7 . . .
students to shade the fraction S on two units (wholes) of circular representations,

where each unit has two equal partitions. To answer this item correctly, students should
understand that the referenced whole is represented by one circle, and they should
understand that the denominator 4 refers to the number of partitions of one circle.
Hence, they should create four partitions within each circle, and shade seven parts. The

following pie diagram is the correct answer of this item.

Students who successfully answer this item show that they understand that the
denominator of improper fractions represents the number of parts of the referenced
whole, i.e., of one circle in the present case. They also provide evidence that they
understand that the numerator of the fraction represents the number of selected parts,
which can be greater than the total number of parts of the referenced whole (the
denominator). The students who answer this item correctly are put in level 3. This item
is used to address level 3 competency 4 (generate a pie diagram to represent an

improper fraction).

3.3.1.1.3 Task 3 Comparing Fractions

Task 3 Items 1 to 3 ask students to compare fractions based on a part-whole model.
They test the students’ understanding of the numerical value of fractions. Students who
do not understand the symbolic notation of fractions may compare fractions based on
their prior knowledge of whole numbers. Stafylidou and Vosniadou (2004) found that
students in the explanatory framework of fractions as two independent natural numbers
thought that “The numerical value of a fraction increases when either the numerator or
the denominator increase” (p.511). Hence, students who see fractions as two
independent numbers either compare fractions based on the size of the numerator only,

or based on the size of the denominator only. On the other hand, students who
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understand fractions as part-whole should be able to demonstrate the numerical value

of fractions using a part-whole model.

3 1
Item 1 Which is larger s or s ? lllustrate how you got your answer by using a model
such as a picture or a diagram representation (Adapted from Scanlon, 2013) (ConT3Q1).

The correct answer is 3/5 because it has more shaded parts compared to that of

1/5 as illustrated on the pie diagrams below.

3 1
5 5

Task 3 Item 1 tests the students’ understanding of the numerical value of fractions
based on their understanding of fractions as part-whole by asking them to compare
fractions. Students who understand that the numerator represents the number of
selected parts and the denominator represent the number of all parts may answer that
3/5 is greater than 1/5 because 3/5 has more selected parts compared to 1/5. Students
may also answer this item using their procedural knowledge. They may do a cross-
product technique to determine which fraction is larger. This is because students may
use their procedural knowledge and conceptual knowledge to solve a problem (Hallett,
Nunes, & Bryant, 2010). This item asks students to compare fractions using pie or
rectangle diagrams so that they can demonstrate their conceptual understanding of the
numerical value of fractions. To compare 3/5 and 1/5 using pie or rectangle
representations, students should compare the size of the shaded area of the pie or
rectangle diagrams that corresponds to the fraction 3/5 and 1/5. This item is used to

test Level 2 Competency 4 (order proper fractions using part-whole representation).
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2 3
Item 2 Which is larger 39 2 ? Illustrate how you got your answer by using a model
such as a picture or diagram representation (Adapted from Scanlon, 2013) (ConT3Q2).

Task 3 Item 2 asks the students to compare two fractions smaller than 1. This item
requires more advanced understanding than Task 3 Item 1 because the fractions
compared have different (unlike) denominators. To compare these fractions, students
may use their procedural knowledge by performing a cross-product technique to
determine which fraction is bigger, or they may use previous knowledge of whole
numbers to find the answer (3/4 is greater than 2/3 because 3 is greater than 2 and 4 is
greater than 3). However, this item asks the students to use diagram representations
(pies or rectangles) to demonstrate their conceptual understanding of which fraction is
bigger. Those answers that do not address this instruction (using procedural knowledge
or whole number knowledge) are regarded as not demonstrating the required
competency of ordering fractions using part-whole representation and so will be coded

as incorrect answers.

The correct answer is 3/4 which is equivalent to 9/12. The pie diagram
representing 9/12 has more shaded parts compared to that of 8/12 (which is equivalent

to 2/3).

12 12

To answer correctly on this item, students should compare the sizes of the shaded
parts of the representation of these two fractions. These shaded parts can be compared
directly when these two fractions have the same denominators. Thus, these fractions
should be transformed into equivalent fractions with a common denominator. The
fraction 2/3 becomes 8/12, and 3/4 becomes 9/12. Students should draw diagram

representations for 8/12 and 9/12. After that students can compare the number of
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shaded parts from these two fractions to determine which fraction is bigger. Such
representations demonstrate that students have a conceptual understanding of the
symbolic notation of fractions and their numerical values, based on a part-whole model.
Therefore, this item is used to test students’ understanding of fractions as part-whole at
level 2, particularly Competency 4 (order proper fractions using part-whole

representation).

Item 3: Which is larger Z or 2 ? lllustrate how you got your answer by using a model

such as a picture or diagram representation (Adapted from Scanlon, 2013) (ConT3Q3).

Task 3 Item 3 tests the students’ understanding of the value of fractions greater
than 1 by asking them to compare two improper fractions. Similar to Task 3 Item 2,
students can directly determine which fraction is greater using a cross-product
technique. However, this item asks students to demonstrate their conceptual
understanding of which fraction is larger using diagram representation. They are asked
to use pie or rectangle diagrams in order to reveal their conceptual understanding of the
numerical values of fractions based on a part-whole model. Task 3 ltem 3 is more
complex than the previous items on fraction comparison. It requires students to be able
to draw equivalent fractions for fractions greater than 1 to justify which fraction is

larger.

The correct answer is 7/4 because the equivalent fraction of 7/4 which is 21/2 has
more shaded parts compared to the equivalent fraction of 8/6 which is 16/12 as shown

on the pie diagrams below.
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To answer this item correctly, first, students should understand the symbolic
notation of improper fractions. To show 7/4 and 8/6, they should be able to draw the
referenced whole for each and draw another pie diagram so that they can indicate the
number of selected parts. In this case, students should know that the denominator
represents the number of all parts within the referenced whole, while the numerator
represents the number of all selected (shaded) parts. Second, they should be able to
understand equivalent fractions for fractions greater than 1, because the comparison of
the numerical values of 7/4 and 8/6 should be done when they have a common
denominator to make sure that these fractions are compared for the same size of the
whole. This item is used to test students’ part-whole understanding at level 3, because
it requires an understanding of improper fractions which is hypothesized to emerge at
this level. Specifically, this item is used to address Level 3 Competency 3 (order fractions

including improper fractions and mixed numbers).

3.3.1.2 Understanding Fractions as Measures

To test the students’ understanding of fractions as measures, students are asked to map
the symbolic notation of fractions into number lines. Students are asked to put a fraction

or several fractions on the number line.

3.3.1.2.1 Task 4. Locating Fractions on the Number Line

Item 1 Show the fraction 3 on the number line below (ConT4Q1).
8

Task 4 Item 1 tests the students’ understanding of fractions as a point on a number
line. Students at Level 2 may have some understanding of fractions as measures. To
answer this item correctly, students should understand that the denominator of 3/8

indicates that the unit (1) is divided into 8 intervals, and the numerator indicates that
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the location of the fraction on the number line is on the third interval from zero. Thus,
the students must identify where 1 is located on the number line then divide the number
line into 8 equal partitions and finally write the fraction 3/8 on the third interval. The
correct answer for this item was the location of 3/8 shown on the number line below.

1
1 1 1 | 1
1
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This item is used to address Level 3 Competency 6 (place a fraction on a number

line).

1
Item 2 Show the fraction E on the number line below (Adapted from Scanlon, 2013)

(ConT4Q2).

1]

WIN ==

Task 4 Item 2 is similar to Task 4 Item 1, but it requires students to put a proper
fraction with the constraint of another fraction (with unlike denominators) on the
number line. This item can be solved conceptually, or it can be solved using some
procedures. To solve this item conceptually, students should find the unit of 2/3 and
indicate where it is on the number line. Then they can divide the unit into two equal
intervals in order to put 1/2 on the number line. The other way is to use procedural
knowledge to find the equivalent fractions of 1/2 and 2 /3, which are 3/6 and 4/6. After
that, they should indicate where the unit is on the number line and divided it into 6
intervals. After that the fractions 3/6 and 4/6 can be put on the third and fourth interval

from zero respectively on the number line.

The number line representation is used to test students’ understanding of the
symbolic notation of fractions as measures by asking students to map the fraction
notation into number lines. Although students may use some of their procedural
knowledge to help them in mapping the fractions on the number line, their responses
are still considered as evidence of their conceptual understanding of fractions as
measures. The correct answer for this item is the location of 1/2 presented on the

number line below.
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This item is used to address Level 3 Competency 6 (locate a proper fraction on a
number line).
7 1 1
Item 3 Order the fractions 1’3 and 1 > on the number line below (Adapted from
Scanlon, 2013) (ConT4Q3)

o

Task 4 Item 3 tests the students’ understanding of the magnitude and order
property of fractions on the number line. Understanding the magnitude and order
property of fractions is essential to understanding fractions as numbers. This item
requires students to be able to put fractions (including improper fractions and mixed
numbers) on the same number line. Similar to Task 4 Item 2, students may use their
conceptual knowledge, or they may use some procedures to help them put the given

fractions on the number line.

To answer this item using conceptual knowledge, students should find the unit (1)
on the number line and then divide the unit into three equal intervals to put 1/3 on the
first interval from zero. Then, they should find the second unit (2) on the number line
and they should divide the interval from the first unit to the second unit into four equal
intervals and divide the interval from zero to the first unit into four equal intervals. Then,
7/4 is put on the seventh interval from zero. To put 1 % on the number line, the interval
between the first unit and the second unit should be divided into 2, and the 1 % is put
on the first interval between the first unit and the second unit because 1 % means that
the distance of the fraction from zero is one and a half units. Alternatively, this item can
be answered using procedural knowledge by finding equivalent fractions with the same
common denominator. Using this procedure, the students will find the equivalent
fractions for 7/4, 1/3, and 1 % are 21/12, 4/12, and 1 6/12. After that, they can
determine a unit which has 12 intervals, and put the second unit 12 intervals from the

first unit. Then 7/4 is put on the 21 interval from zero, 1/3 is put on the fourth interval
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from zero and 1 % is put in the sixth interval from the first unit. The correct answer for

7 1 1
this item is the location of Z , 5 and 1 E shown on the number line below.
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This item is used to test Level 4 Competency 2 (order improper fractions on a number

line).

3.3.1.3 Unbounded Infinity

To test the students’ understanding of the infinity property of fractions, students
are asked to write the biggest and the smallest fractions that they know and then explain

their answers.

3.3.1.3.1 Task 5 Writing the Smallest and Biggest Fractions that They Can

Item 1 Write the biggest fraction that you know. Explain your answer (Adapted from

Stafylidou & Vosniadou, 2004) (ConT5Q1).

Item 2 Write the smallest fraction that you know. Explain your answer (Adapted from

Stafylidou & Vosniadou, 2004) (ConT5Q2).

Task 5 Items 1 and 2 test the students’ understanding of the unbounded infinity
concept of fractions. The correct answer for these items is fractions are infinite that

there are no smallest or biggest fractions.

Understanding the unbounded infinity of fractions is beyond students’
understanding of fractions as measures at Level 3. Students who understand the
relationship between the numerator and the denominator of fractions as division are
able to answer these items correctly (see Stafylidou & Vosniadou, 2004). By
understanding fractions as division, students should understand that the numerator that
becomes the dividend is infinite, meaning that there is always another bigger number

that can be the numerator. From this, they should know that there is always another
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bigger fraction from a given fraction, meaning that there is no biggest fraction. Similarly,
the denominator which becomes the divisor is also infinite, so there is always a smaller
fraction from a given fraction, meaning that there is no smallest fraction. These item
tasks are designed to examine the students’ understanding of the unbounded infinity of
fractions, which is hypothesized to emerge at level 4. Therefore, these items are used to

address Level 4 Competency 1 (write the biggest and the smallest fraction they can).

3.3.1.4 Density

To demonstrate the students’ understanding of the density property of fractions,
students are asked to identify how many numbers between two pseudo-successive and

non-successive fractions and then explain their answer.
3.3.1.4.1 Task 6 Finding How Many Fractions lie between Two Fractions

2 4
Item 1 How many numbers lie between P and > ? Explain your answer (Adapated from
Vamvakoussi & Vosniadou, 2004) (ConT6Q1)

Item 2 How many numbers lie between ; and ; ? Explain your answer (Adapated from
Vamvakoussi & Vosniadou, 2004) (ConT6Q2)

Task 6 Items 1 and 2 test the students’ understanding of the density concept of

2

fractions. The correct answers for these items are there are infinite numbers between S
4 4 5
and - and between > and p

Task 6 Item 1 is developed to examine the students’ understanding of density on
non-successive fractions, while Task 6 Item 2 is on pseudo-successive fractions.
Understanding density on two pseudo-successive fractions tends to be more difficult for
students than for two non-successive fractions. Students who have a discreteness
understanding of whole numbers may think that there are no fractions between 4/7 and
5/7 (Task 6 Item 2). In order to understand the density of fractions, students should
understand several sub-constructs including fractions as division, fractions as measures,
and equivalent fractions. Understanding fractions as division may help the students to
understand density because it gives the students an understanding of fractions as single

guantities (the result of the division of a numerator by the denominator). Understanding
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fractions as measures can give students the insight that fractions are quantities and can
be ordered and treated as numbers (which can be multiplied, divided and so on).
Understanding equivalent fractions can help students to find s(s) between two fractions
by enlarging the common denominators. Hence, understanding fractions as division and
as measure, and understanding equivalent fractions may help students to understand
that between any two fractions there are an unlimited number of fractions. These items
are used to address Level 5 Competency 1 (demonstrate that there are unlimited

numbers between two fractions).

3.3.1.5 Conceptual Additive Fraction Operations

The students are asked to draw a representational model of additive fraction operations
to demonstrate that they understand the meaning of additive fraction operations. As
discussed before, addition and subtraction in fractions are similar to the addition and
subtraction in whole numbers in which addition makes bigger while subtraction makes
smaller. Using a representational model, students can show their conceptual
understanding of addition, i.e., adding fractions means joining the (selected) parts
towards the referenced whole, which produces bigger fractions, while subtracting

fractions means separating parts, which produces smaller fractions .

3.3.1.5.1 Task 7 Adding Fractions Using Diagram Representation

Item 1 Draw a pictorial representation for the addition of fractions below. Explain your

answer (ConT7Q1).

_I_
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Task 7 Item 1 tests the students’ understanding of a simple fraction addition.
Pictorial representations (pies or rectangles) are used to demonstrate the students’
conceptual understanding of the meaning of fraction addition. Students are asked to

draw a fraction addition using diagram representation. The correct representation of

1 2
the addition Z + Z is illustrated as follow:
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To answer this item correctly, students should understand that the numerators

represent the selected parts while the denominator represents the number of all parts
of the whole. Next, they should understand that adding fractions 1/4 and 2/4 means
that they should join the selected parts of 1/4 with the selected parts of 2/4. Using a
pictorial representation, they should be able to demonstrate how 1 selected part from
1/4 is added to 2 selected parts from 2/4 to produce 3 selected parts of 4 parts (which
is 3/4 as the result). No procedural knowledge is needed to solve this item when
students solve this item using a pictorial representation, but their procedural knowledge
may inform students that the answer is 3/4. However, students should represent this
fraction addition using pie or other area model representations, which can be used as
evidence that they also understand this fraction addition conceptually. This item task is
used to address Level 2 Competency 5 (demonstrate fraction addition and subtraction

using diagram representation).

Item 2 Draw a pictorial representation for the addition of fractions below. Explain your

answer (ConT7Q2).
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Task 7 Item 2 tests the students’ understanding of a fraction addition with unlike

denominators. This item is more complex than the previous item (Task 7 Item 1) because
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the students cannot add the fractions from the diagram/pictorial representation of 1/4

and 2/3 directly, but should draw equivalent fractions of 1/4 and 1/3 with a common

1 2
denominator. The correct representation of the addition " + 3 is illustrated as follow:

To answer this item correctly, the students should know the meaning of fraction
addition, which is joining the selected parts of the same whole. However, they cannot
add fractions if the size of the whole is different. Hence, they should know about
equivalent fractions with a common denominator, so that they can convert the fractions
to equivalent fractions, which have the same size of whole (a common denominator).
Student may answer this item in different ways, particularly when finding the equivalent
fractions. Some students may use their conceptual knowledge to find the equivalent
fractions by drawing a diagram representation, or they may use procedural knowledge
to find the equivalent fractions. However, they are asked to demonstrate their
understanding of fraction addition in this item by drawing pictorial representations to
produce evidence that they have conceptual understanding of additions with unlike
denominators. Because this item needs the students to understand equivalent fractions,
a competency that emerges at level 2, this item is used to address Level 2 Competency

5 (demonstrate fraction addition and subtraction using diagram representation).
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3.3.1.6 Conceptual Multiplicative Fraction Operations

Similarly, to test students’ understanding of additive fraction operations, students are
asked to draw a representational model of fraction multiplication and division to show
that they understand the meaning of multiplicative fraction operations conceptually.
3.3.1.6.1 Task 8 Multiplying and dividing fractions using diagram representation.

Item 1 Draw a pictorial representation for the multiplication of fractions below. Explain

your answer (ConT8Q1)
1 3
—x=
2 4

Task 8 Iltem 1 tests the students’ understanding of the meaning of fraction

multiplication. The correct answer for this item is presented as follow:

1 3
It can be observed that E of Z is three

3
shaded (orange) parts which is g of the

whole (all parts). Hence, the result of

. . . 1 3 . 3
multiplication — and —is —.
2 4 8

3
P of

N R
Bl w

To solve this item, the students should know the meaning of multiplication in
fractions, which is different from the meaning of multiplication in whole numbers. In
this case, students should understand that 1/2 multiplied by 3/4 means “how much is
1/2 of 3/4". To find out how much is 1/2 of 3/4, students can draw 3/4 using a pie or
rectangle diagram and then draw 1/2 on the 3/4 diagram. The intersection between the
area of 1/2 and 3/4 shows how much is 1/2 of 3/4. Students at Level 4 are hypothesized
to have conceptual knowledge of fraction multiplication. This item is used to address
Level 4 Competency 2 (represent multiplicative fraction operations using diagram

representation).

Item 2 Draw a pictorial representation for the division of fractions below. Explain your

answer (ContT8Q2)
1.1
2 4
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Task 8 Item 2 tests the students’ understanding of fraction division. The correct answer

1 1
for the division E - Z is illustrated as follows:

1 . 1 . . . 1 .

— = —is finding how many — in a half

21 4 4
1 1 1 (E) It can be observed that there are
2 4 4 1 1 1

2 parts of — in— . Hence — divided by

4 2 2

1

—is 2.

4

This item is counterintuitive for students who have prior knowledge of division
operations with whole numbers because the result produces a greater value. Dividing
1/2 by 1/4 is finding how many 1/4s are in 1/2. To represent this understanding of
fraction division, the students can draw a picture where the 1/2 area is shaded. Then,
this picture is partitioned into 4 parts. The answer is found by counting how many 1/4
parts are in 1/2 the shaded area of the picture. Students at Level 4 are expected to be
able to demonstrate their conceptual understanding of fraction division using diagram
representations. Hence, this item is used to address Level 4 Competency 2 (They

represent multiplicative fraction operations using diagram representation).

3.3.2 Procedural Item Tasks

The procedural item tasks are developed based on two type of tasks which are: Task 1
Performing Additive Fraction Operations; and Task 2 Performing Multiplicative Fraction
Operations. The items for testing both procedural additive operations and procedural
multiplicative operations are adapted and extended from Newton (2008) and Newton,

Willard, and Teufel (2014).

3.3.2.1 Additive Operations

3.3.2.1.1 Task 1 Performing Additive Fraction Operations

The items are developed to demonstrate students’ procedural knowledge of fraction
addition and subtraction. These items require the students to apply the formal

mathematical procedures of adding and subtracting fractions to get the solutions.

Item 1 Find the sum of the fraction addition below (ProT1Q1)

_|_

o|w
[e< B I \S]
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Task 1 Item 1 is a fraction addition with the same denominator. The correct answer

for this item is presented as follow:

5
+ z

©olw
©oIN

To solve this item, the students should understand the rule that adding fractions
can be executed directly by adding the numerators of fractions while keeping the
denominator the same, in the case that the fractions have the same (like) denominator.
If they do not know this rule, they may add across the numerators and denominators so
that 3/8 + 2/8 is equal to 5/16. This item task is used to address Level 2 Competency 1

(add or subtract proper fractions).

Item 2 Find the sum of the fraction addition below (ProT1Q2)
14 2

15 3

Task 1 Item 2 tests the students’ procedural knowledge of fraction addition with
unlike denominators. The correct answer for this item is presented as follow:
14 10 _ 24
15 ' 15 15

To solve Task 1 Item 2 correctly, students need to know that adding fractions can
be executed if they have a common denominator. This means that if the fractions have
different denominators, they should transform those fractions into equivalent fractions
with a common denominator. Thus, they should also understand the procedure of
transforming fractions into equivalent fractions with a common denominator. Students
may make mistakes in this instance, such as adding across the numerator and
denominator because they do not know how to equate the denominators. Students
recognize equivalent fractions at Level 2. Hence, the students at Level 2 in the
procedural knowledge progressions are expected to answer this item correctly. This

item is used to address Level 2 Competency 1 (add or subtract proper fractions).
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Item 3 Find the difference of subtraction below (ProT1Q3)

5— =
8

Task 1 Item 3 tests the students’ procedural knowledge of fraction subtraction

with a whole number. The correct answer for this item is presented as follow:

4
8

o

In order to answer this item correctly, students need to convert the whole number
5 into a fraction 5/1 before they do a fraction subtraction. After that, they need to
transform 5/1 and 3/8 into equivalent fractions with a common denominator. This item
involves an improper fraction which is 5/1, and therefore belongs in level 3, because this
is the level in which students are hypothesized to understand improper fractions.
Therefore, this item is used to address Level 3 Competency 1 (add or subtract improper
fractions or mixed numbers).

Item 4 Find the sum of the fraction addition below (ProT1Q4)
3 1
2>+ -
5 2
Task 1 Item 4 tests the students’ procedural knowledge of fraction addition that

involves a mixed number. The correct answer for this item is presented as follow:

,3,1_ 13 1_26, 5 31
5 2 5 2 10 10 10
There are two ways to answer this item correctly. First, the mixed number 2 3/5
should be transformed into improper fractions and then added to 1/2. Second, the
whole number in the mixed number is kept, and the fractions of 3/5 and 1/2 are added.
The answer is produced by adding the whole number 2 with the result of the addition
of 3/5 and 1/2. In answering this item, some students may make a mistake when

transforming 2 3/5 into improper fractions, or they may only add the fractions without

adding the whole number 2 in the mixed number 2 3/5.

Students begin to recognize fractions greater than 1 and mixed numbers at Level
3 in the proposed model. At this level, they are expected to expand their procedural

skills at Level 2 (adding fractions less than 1 with unlike denominators) to be able to
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perform fraction addition that involves mixed numbers and fractions greater than 1. In
particular, they should be able to transform mixed numbers to improper fractions.
Therefore, this item is used to address Level 3 Competency 1 (add or subtract improper

fractions or mixed numbers).

3.3.2.1 Multiplicative Operations
3.3.2.1.1 Task 2 Performing Multiplicative Fraction Operations

Task 2 Items 1-6 are developed to test the students’ procedural knowledge of fraction
multiplication and division. Students should apply the formal procedure of multiplying
and dividing fractions in order to get the correct answers.

Item 1 Find the result of the fraction multiplication below

2 7

E X E (ProT2Q1)

Task 2 Item 1 tests the students’ procedural knowledge of multiplying fractions by

fractions. The correct answer for this item is presented as follows:

2 7 14

15715 225°

To answer this item correctly, students should understand the rules of fraction
multiplication, which is that the numerator is multiplied by another numerator, and the
denominator is multiplied by another denominator. Therefore, students should multiply
2 by 7 and 15 by 15 directly to get the answer. This item is set to have the same
denominator which is 15. The students who have procedural knowledge of fraction
multiplication will not be affected by this situation. They will multiply a numerator with
a numerator and multiply a denominator with a denominator. However, the students
who do not have sufficient knowledge of the fraction multiplication procedure may
retain the same denominator for the result. This item is used to address Level 3
Competency 2 (multiply and divide fractions).

Item 2 Find the result of the fraction multiplication below

% X 24 (proT2Q2)
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The item ProL3MT2 tests the students’ procedural knowledge of fraction
multiplication with a whole number. The correct answer for this item is presented as

follows:

N

SXx24=-x==22=3

This item asks the students to multiply a fraction (1/8) by a whole number (24). To
answer this item correctly, students should understand the rules of fraction
multiplication, which are that that the numerator is multiplied by the numerator, and
the denominator is multiplied by the denominator. To answer this item, students may
convert 24 into a fraction which is 24/1 and then multiply it by 1/8, or they may multiply
24 by 1 directly and then divide it by 8 to get the answer. This item involves the whole
number 24, which can be represented as an improper fraction, 24/1. This item is used
to address the procedural knowledge of fraction multiplication, which is hypothesized
to emerge for students at Level 3. In particular, this item is used to address Level 3
Competency 2 (multiply and divide fractions).

Item 3 Find the result of the fraction division below

0 L3 (ProT2Q3)
10  107°

Task 2 Item 3 tests the students’ procedural knowledge of fraction division. The

correct answer for this item is presented as follow:

9 10 90
2 sl 3,
10 10 10 3 30

To solve this item, the students should understand the rule of flipping the divisor
in fraction division. For this item, students should flip 3/10 to be 10/3. After that, they
should be able to multiply 9/10 by 10/3 to get the answer. Students may make some
mistakes in this item. For example, they may flip the dividend instead of the divisor, or
they may directly divide 9 by 3 because the denominators are the same (10). The latter
mistake can occur because students misapply the rules of fraction addition or
subtraction to the case of fraction division, in which the fractions have the same
denominator. This item is used to address Level 3 Competency 2 (multiply and divide

fractions).
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Item 4 Find the result of the fraction multiplication below (ProT2Q4)
5 3
32 x 4=
7 7
The item Task 2 Item 4 is similar to the item Task 2 Item 1, but it involves mixed

numbers. The correct answer for this item is presented as follow:

5 3 26 31 26x31 806
3;x4;_7x7— 7x7 49 °

To solve this item, students should understand the rule that two mixed numbers
cannot be multiplied directly. They should transform the mixed numbers into improper
fractions first, before multiplying them. Students may make mistakes in this item by
multiplying a whole number by another whole number (3X4), and by multiplying a
fraction by another fraction (5/7 X 3/7). This item is used to address Level 4 Competency

1 (multiply and divide improper fractions or mixed numbers).

Item 5 Find the result of the fraction division below (ProT2Q5)
1
2 ; +3
Task 2 Item 5 tests the students’ procedural knowledge, which is similar to Task 2
item 3, but is applied to a mixed number and a whole number. The correct answer for

this item is presented as follow:

1 19 3 19 1 19x1 19

9 1 9 3 9% 3 27

To answer this item correctly, students should understand the rule that in fraction
division, mixed numbers should be transformed into improper fractions. Moreover, they
should know that the divisor (3 or 3/1) should be flipped to become 1/3. Students may
make mistakes in this item. They may not transform 2 1/9 into improper fractions or
they may not flip the divisor. They may also make a mistake by only dividing 1/9 by 3
and excluding the whole number 2. This item is used to address Level 4 Competency 1

(multiply and divide improper fractions or mixed numbers).
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Table 3.2 The hypothesized order of acquisition of competencies corresponding to items and tasks for fraction learning progression

Conceptual

Competencies

TASK

Procedural

Competencies

TASK

Level 1 No
Fraction
Understanding

No or incomplete conceptual and procedural understanding of fractions, less than what is expected at Level 2

Student . Students h
Level 2 Part- uaents They generate the symbolic | Task 1:Items 1, 2 uaents have They add or subtract | Task 1: Items 1, 2
understand a . ; knowledge about the .
Whole . notation of proper fractions ) proper fractions
fraction as S procedure for fraction
. from pie diagrams i
representing a part- addition and
whole but consider subtraction but are
fractions always to They generate a pie diagram to /Imlt?d to proper-
be smaller than 1. . fractions, for which
represent a proper fraction Task 2: Item 1 :
They do not see a the total is less than
fraction as single 1.
number, but they
see a fraction as a
representation of They order proper fractions. Task 3: Items 1, 2
parts and their
referenced whole. They can demonstrate proper
fraction addition and | Task 7: Iltems 1, 2
subtraction using a diagram
representation
Level 3 Students They generate the symbolic | Task 1:Items 1,2, 3,4,5 Students expand their | They add and subtract | Task 1: Items 1,23, 4
Improper understand if the notation of proper fractions procedural knowledge | improper fractions or
Fractions and numerator is from pie representations with of additive and mixed numbers.
Fractions as greater than the unequal partitions and the multiplicative fraction
Measures denominator, then | symbolic representation of operations including They multiply and divide Task 2: ltems 1 2. 3
the fraction is improper fractions from pie improper fractions a fraction by another ’ T
greater than the diagrams. and mixed numbers. fraction.

referenced whole
and vice versa.
They also
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Conceptual Competencies TASK Procedural Competencies TASK
understand They shade a pie diagram to | Task 2:Items 1, 2
fractions as represent an improper fraction
measures and
conceive a fraction
as a single number | They 9rder improper fractions Task 3: Items 1, 2,
(not two and mixed numbers
independent
numbers) on the
number line. They place a proper fraction on
a number line Task 4: Item 1
Level-4 Students view They write the biggest and the | Task 1: Iltems 1, 2, 3,4, 5 Students advance They multiply and divide | Task 1:Items 1, 2, 3, 4
pn_b(?unded fractions as' N smallest fraction that they can Task 2: Items 1, 2 their procedural mproper fractions or Task 2: Items 1, 2, 3, 4,
infinite numbers | unbounded infinite knowledge of mixed numbers 5and 6
of fractions numbers (there is Task 3: Items 1, 2, 3 multiplicative fraction
ng smallest qr Task 5: Items 1, 2 opergtlonsfrom the
biggest fraction) previous level. The
fluency of performing
They order @proper fractions Task 4: ltems 1, 2, 3 fraction opera't/ons
on a number line emerges at this level
Level-5 Students They demonstrate that there | Task1:ltems1,2,3,4,5 Students have fluency | They perform complex | Task 1: Items 1, 2,3, 4
Understan.dmg unde.rstand the are unllm.lted numbers between Task 2 Items 1, 2 whe.n'perform/ng fraFtlon. operatl.o.ns, Task 2: Items 1, 2, 3, 4,
the density of | density property of | two fractions additive and which involve additive 5and6
fractions  and | fractions, i.e. that Task 3: Items 1, 2, 3 multiplicative fraction | and multiplicative
Fractional there are unlimited Task 5: Items 1, 2 operations as they operations Task 3: Items 1, 2, 3
Fluency numbers between are demonstrated at
any two fractions Task 4: Items 1, 2, 3 Level 4
They represent multiplicative Task6: Items 1, 2
fraction operations using a | Task 8:ltems 1,2

diagram representation
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3.4 Comparison with Previous Work on Fraction Learning
Progressions

This chapter developed the hypothesized model of fraction learning progression and the
item tasks which are used to assess competencies within each level of the learning
progression. The proposed model is hypothesized to consist of two knowledge
dimensions underlying the progression of students’ learning in fractions: conceptual and
procedural knowledge. The conceptual knowledge dimension is developed to capture
the emergence of students’ understanding of the symbolic notation of fractions and the
meaning of fraction operations, while the procedural knowledge dimension is
developed to capture the development of students’ procedural knowledge of fraction
operations (addition, subtraction, multiplication and division).

A typical learning progression model is usually developed based on big ideas that
summarize the essential knowledge and skills of a particular domain of learning. After
that, progress variables are developed based on these big ideas to describe the
progressions of specific knowledge and skills, which are organized into several
hierarchical levels or blocks of learning development (e.g. Arieli-Attali & Cayton-Hodges,
2014; Gunckel, Mohan, Covitt, & Anderson, 2012; Jin & Anderson, 2012). Hence, in such
models, a learning progression is constructed based on the content knowledge of a
domain of learning, and usually has a unidimensional knowledge progression. The
proposed model of the fraction learning progression is developed in a different way. It
is crafted based on the dimensions of knowledge that are supposed to underlie the
development of students’ learning in mathematics. This knowledge is distinguished into
two dimensions: conceptual and procedural knowledge. These two dimensions of
mathematical knowledge are structured into the hierarchical levels of a learning
progression. Thus, the proposed model expands the typical learning progression model
from a unidimensional into a two-dimensional progression of knowledge.

There are several advantages to having two knowledge dimensions - conceptual
and procedural - in the proposed model of fraction learning progression, compared with
the previous general learning progression models. In particular, the assessment of
students’ knowledge and skills in this model can be more detailed and can provide

information about the specific areas of strength and of weakness of students’ learning,
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in terms of whether they are found in the area of conceptual or procedural knowledge.
This type of detailed information can give more effective feedback to teachers in order
to improve their instruction, and to students themselves to direct their self-study.

There is some previous work that developed a fraction (rational number) learning
progression model. Arieli-Attali and Cayton-Hodges (2014) developed a rational number
learning progression model (including fractions) which has five levels, namely early part-
whole understanding, fractions as units, fractions as single numbers and fractions as
measures, representational fluency, and a general model of rational numbers. Another
work was performed by Wright (2014), who developed the Hypothetical Learning
Trajectory (HLT) of rational numbers. He developed four hierarchical levels of rational
number learning, which applied Kieren’s sub-constructs (measure, operator, quotient,
and ratio). These levels (from lowest to highest) are unit forming, unit coordination,
equivalence, and comparison. Finally, Confrey et al. (2011) developed a learning
trajectory to capture the development of the fraction concept, based on the common
core state standards in the American Curriculum (CCSS). They begin to introduce
fractions as part-whole at grade 3, equivalent fractions and fraction comparison at
grades 3 and 4, and fraction additive fraction operations at grades 4 and 5.

All the fraction learning progression models from the previous work discussed
above were developed to capture the development of the concept of fractions, where
fractions can be interpreted in several sub-constructs, such as part-whole, measure,
operator, quotient, and ratio. In contrast, the present research developed the
hypothetical model of learning progression in order to capture the development of
students’ understanding of the symbolic notation of fractions. Hence, for example, the
present learning progression did not include the development of students’ concept of
part-whole, which is a concept related to partitioning an object (continuous or discrete)
into the same size of parts (Behr et al.,, 1983), and which is a prerequisite for
understanding the concept of fractions. The present study investigated only students’
understanding of the symbolic notation of fractions.

The present research also differs from prior fraction learning progressions in that
it proposes two new levels of fraction understanding: understanding the unbounded

infinity and density of fractions. These additional levels capture important properties of

87



fractions that are radically different from the properties of whole numbers and need to
be included in fraction learning progressions.

Another difference between the present research and the earlier work lies in the way
the model was developed. For example, Arieli-Attali and Cayton-Hodges (2014) decided
on the progress variables and structured them into the hierarchical levels of a learning
progression, and then defined what students know and can do for each level. In contrast,
in developing the model for this research, the sub-construct progressions were
structured into two-dimensional knowledge progressions. Subsequently, conceptual
competencies and procedural competencies for each level were developed. Hence, the
present research developed a two-dimensional knowledge learning progression
(conceptual and procedural), while the previous work developed a unidimensional
knowledge progression.

In the proposed model, the development of the students’ conceptual and
procedural knowledge is differentiated, and the competencies which correspond to
conceptual and procedural knowledge are also produced for each level. Hence, the
progression of the students’ learning in fractions can easily be tracked, based on the
essential knowledge in mathematics learning: conceptual and procedural knowledge.
Identifying the development of the students’ learning in terms of conceptual and
procedural knowledge is important for diagnostic assessment purposes and curriculum
development.

In summary, the proposed model of fraction learning fraction progression
followed a different approach from the prior work in modelling the development of
learning fractions. In the proposed model, the development of fraction knowledge is
structured into two essential dimensions of knowledge in mathematics: conceptual and
procedural knowledge. The conceptual knowledge dimension focuses on describing the
development of the students’ understanding of the symbolic notation of fractions and
the meaning of fraction operations, while the procedural knowledge dimension focuses
on describing the development of students’ knowledge of rules or procedures for
fraction operations. This two-dimensional knowledge of learning fractions makes the
proposed model different from the previous work. The information on the students’
progression in terms of the conceptual and procedural knowledge dimensions in the

proposed model gives more detailed information than the previous work about student
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competencies, enabling accurate diagnostic assessment, instruction and curriculum

development.

3.5 Summary of the Chapter

This chapter presented the proposed model of fraction learning progression and the
item task development. The proposed model was developed based on two knowledge
dimensions of mathematics learning: conceptual and procedural knowledge. The
conceptual knowledge dimension captured the emergence of the students’
understanding of the symbolic notation of fractions and the meaning of fraction
operations, while the procedural knowledge dimension captured the emergence of the
students’ understanding of the rules and procedures of fraction operations. The
conceptual knowledge dimension consisted of a five level progression, which were, from
lowest to highest: no understanding of fractions, part-whole, improper fractions and
fractions as measures, unbounded infinity, and density. Meanwhile, the procedural
knowledge dimension consisted of four level progression which were, from lowest to
highest: no procedural knowledge, additive fraction operations, additive and
multiplicative fraction operations, and advanced procedural knowledge of additive and
multiplicative fraction operations.

The item tasks were developed to address the conceptual and procedural
competencies for each level. For the conceptual competencies, the symbolic notation of
fractions as representations of part-whole were tested using tasks which asked students
to map the fraction notation into pie diagrams and vice versa. The pie diagrams were
used to assess the students’ understanding of proper fractions, improper fractions and
equivalent fractions. The symbolic notation of fractions as a representation of measure
were tested using number lines. The students were asked to map fraction notation into
number lines. The infinity of fractions was tested by asking students to write the biggest
and the smallest fractions they know, and how many fractions are present between two
fractions. Finally, the conceptual understanding of additive and multiplicative fraction
operations was tested by asking students to draw a representational model of additive
and multiplicative fraction operations. The procedural competencies were tested using
items that required students to apply formal mathematical procedures to solve additive

and multiplicative fraction operations.
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The proposed model of fraction learning progression developed in this research is
different from previous work in at least in three aspects. First, the present research
developed a learning progression of the students’ development of the symbolic notation
of fractions, while the previous work developed fraction learning progressions of the
students’ development of the concept of fractions. Second, the present research
covered properties of fractions, such as unbounded infinity and density, which were not
covered in the previous work. Finally, the present research developed a two-
dimensional knowledge of fraction learning progression, namely conceptual and
procedural, while the previous research developed unidimensional knowledge

progressions.
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CHAPTER 4 : ANALYSIS FROM THE COGNITIVE
INTERVIEW

4.1 Introduction

The proposed model of fraction learning progression and the items have been
developed and were described in Chapter 3. There are five hierarchical levels of learning
fractions hypothesized, which are (from lowest to highest): no understanding of
fractions, part-whole, improper fractions and fractions as measures, unbounded infinity,
and density. These hierarchical levels are structured into two dimensions of knowledge:
conceptual knowledge and procedural knowledge. The items have been developed to
identify the students’ level of fraction knowledge in the learning progression. These
items were developed based on the competencies within each level of the conceptual

and procedural knowledge dimensions.

The purpose of the present chapter is to present empirical evidence from a
cognitive interview to validate the hypothesized model of fraction learning progression
and to improve the item tasks. To validate the model, the hypothesized order of
acquisition of fraction conceptual and procedural knowledge is examined through
students’ responses to the items, on the tasks in which the items are classified, on the
order of the items in the tasks, and finally on the hypothesized level progression for the

conceptual and procedural knowledge dimensions respectively.

Accordingly, the analysis of the results is structured into two sections: the
conceptual knowledge dimension and the procedural knowledge dimension. Each
section consists of four subsections. The first sub-section presents the within-item
analysis, the purpose of which is to investigate whether the participants understood the
instructions and the items as intended by the investigators, and whether the responses
provided by the participants reflect the hypothesized competencies. The second sub-
section presents a within-task analysis of the items. The purpose of this analysis is to
investigate whether the order of acquisition of the items within each task is consistent
with the hypothesized order. The next sub-section discusses how the learning
progression was used to assign the participants into levels, and to examine whether the

within-level results agree with the hypothesized order of acquisition of the items. More
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specifically, the researcher is interested in finding out whether there were some
participants who were able to respond correctly to some items at the upper levels of the
progression but failed to exhibit understanding of the hypothesized competencies at the
lower levels. This type of analysis will be done first for the items in the conceptual
knowledge dimension and then for the items at the procedural knowledge dimension.

At the end, the relationship between conceptual and procedural knowledge is discussed.

4.2 Method

4.2.1 Participants

Fifteen students from a junior high school in Bogor, Indonesia, participated in the
cognitive interviews. They comprised 4 students at grade 7, 6 students at grade 8, and 5
students at grade 9. The participants were approximately 13, 14, and 15 years of age for
grades 7, 8, and 9 respectively. For each grade, the participants were selected to
represent low, medium, and high achieving students, based on information from their

teacher. The distribution of the participants is presented in Table 4.1

Table 4.1 The distribution of participants across the levels and their achievement in mathematics

No Participant Grade Achievement in
Mathematics

1 Participant 7-I1S 7 Low

2 Participant 14-DE 7 Medium

3 Participant 4-JA 7 High

4 Participant 5-RI 7 Low

5 Participant 9-OK 8 Low

6 Participant 8-NA 8 Medium

7 Participant 12-AU 8 Medium

8 Participant 13-Fl 8 medium

9 Participant 5-LA 8 High

10 Participant 10-BA 8 Medium
11 Participant 17-FA 9 Medium
12 Participant 6-JO 9 High

13 Participant 11-RE 9 High

14 Participant 3-JI 9 High

15 Participant 16-AKh 9 High
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4.2.2 Materials
The materials that were used in the cognitive interview were the conceptual and

procedural items developed in Chapter 3.

4.2.3 Procedure

During the interview, the participants received one item at a time on a card. The
participants were asked to think aloud while responding to the item on the card. In the
introduction of the interview (Exhibit 4.1), the researcher gave an example of how to

think aloud while answering the item.

Exhibit 4.1 Instructions and an example of thinking aloud in the cognitive interview

RESEARCHER: Thank you for your participation in this interview. Today | will give you some cards
with mathematics problems. | want you to solve these problems and explain how you get the
answers. If you find any words that you don’t understand, please let me know. Please keep talking
aloud while answering the questions and describing what you think. You can make any notes and
draw on the cards. | will give you an example.

If a pizza is divided for five people, what portion of the pizza will each person get? | would answer
the question like this. For example, there is a pizza which is usually in a circle shape (the
researcher made a circle). Then, it is shared by 5 people. In order to get a fair share, | divide the
pizza into 5 equal sizes (the researcher drew lines to make 5 partitions of the circle). It means that
each person will get 1/5 of the pizza (the researcher shaded one part of the five partitions of the
pizza to show the final answer).

The length of the interview was limited to 30 minutes. To optimize the 30 minute
interview, the items were given adaptively to each participant. For the first item, all
participants received Task 1 Item 1 (generating a proper fraction from a given pie
diagram), but for the following items, the participants received different items,
depending on their answers to the first task. If their answer was correct, they received
an item from a higher level derived from the hypothetical model. If their answer was not
correct, then they received another item from the other competencies at the same level.

The interview was terminated after 30 minutes, or earlier if there was enough evidence
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to identify the participant’s level for both the conceptual and procedural knowledge

dimensions.

4.3 Results

The results from the cognitive interviews are organized into two consecutive parts: the
conceptual and the procedural knowledge dimension. Four types of analysis are
conducted for each part: within-item analysis; within-task analysis; assigning students

to levels; and within-level analysis.

4.3.1 Conceptual Knowledge Dimension

4.3.1.1 Within-Item Analysis

The aims of the within-item analysis are: 1) to examine whether the instructions for each
item were understood as intended by the participants; and 2) to examine whether the
participants’ responses to each item could be used to infer the student’s competency
level. To achieve these goals, the correct and (or) incorrect answers for each item are

discussed.

By looking at the participants’ responses, overall, it can be inferred that the
participants understood the instructions for the items as intended, and there were no
responses that indicated that the students did not understand what they were intended
to do. Furthermore, the participants’ responses seemed to reflect the intended
competencies underlying each item accurately, as hypothesized in the proposed model.

Detailed examples will be given below to demonstrate the above claims.

As discussed in Chapter 4, section 4.3, the conceptual items are classified into
eight tasks, namely: Task 1: generating a fraction from a pie diagram; Task 2: shading a
pie diagram to represent a fraction; Task 3: comparing fractions; Task 4: locating
fractions on a number line; Task 5: finding the smallest and biggest fractions; Task 6:
finding how many fractions lie between two fractions; Task 7: adding fractions using
diagram representation; and Task 8: multiplying and dividing fractions using diagram
representation. The within-item analyses are presented by following the structure of the

tasks.
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4.3.1.1.1 Task 1 Generating a Fraction from a Pie Diagram

Item 1 - Write the fraction for the shaded part below (Adapted from Scanlon, 2013)
(ConT1Q1)

All the participants, with one exception, answered this item correctly. Exhibit 4.2
presents the response from participant 14-DE (medium achieving student), who
successfully generated a fraction from a pie diagram, when responding to item 1 in task

1.

Exhibit 4.2 The answer of participant 14-DE on Task 1 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Write the fraction for the shaded part

below.

(the participant counted all parts of the circle)
PARTICIPANT: 3/8

RESEARCHER: Can you tell me how you got 3/8?
PARTICIPANT: There are 8 parts, and three are
shaded so it’s 3/8

b At

The participant determined the numerator by counting the number of shaded
parts in the diagram, and determined the denominator by counting the number of all
the parts in the pie diagram. From this response, it can be inferred that the participant
understood the symbolic notation of fractions as a representation of part and whole of

a diagram/object.

Only one participant did not give the correct answer on item 1 in task 1. Exhibit

4.3 shows the participant’s answer.

Exhibit 4.3 The answer of the participant 9-OK on Task 1 Item 1 of the conceptual knowledge
dimension

PARTICIPANT: “These are one, two, three, four,

five parts (the participant counted the five il
5

unshaded parts of the circle) and these are three
parts (the participant pointed to the three shaded
parts of the circle) so there are 8 parts. These are
3 shaded parts which shows the top number, and
these are 5 unshaded parts which shows the
bottom number.”
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From Exhibit 4.3, it can be seen that the participant did not know how the fraction
symbol should be generated from the pictorial representation. The participant
considered the number of shaded parts as the numerator and the unshaded parts as the
denominator. Hence, the participant’s mistake was not caused by a misinterpretation of
the task (including the instruction for the task and the picture), but by his
misunderstanding of how to generate the fraction notation (numerator and

denominator) from the part whole representation.

Item 2 - Write the numerator of the fraction for the shaded parts below (ConT1Q2)

From the 15 participants who received Item 2 in Task 1, 11 participants correctly
answered the item. Exhibit 4.4 demonstrates one of the answers from Participant 17-FA

who answered Item 2, Task 1 correctly.

Exhibit 4.4 The answer from participant 17_FA on Task 1 Item 2 of the conceptual knowledge
dimension

PARTICIPANT: Write the numerator of the fraction for

the shaded parts below \‘h
PARTICIPANT: One, two ... (the participant counted all A
parts of the circle). Draw the picture? %»

RESEARCHER: Yes, you can.

\

—_—

&
16 2

PARTICIPANT: Make more partitions like this (the
participant drew lines to make 8 partitions on the
shaded area of the circle). This one is also the same (the
participant drew lines again to make 8 partitions on the
unshaded area of the circle). So we got 8/16.

From Exhibit 4.4 it can be seen that, to find the numerator, the participant made
16 partitions on the pie diagram (8 partitions on the shaded are and 8 partitions on the
unshaded area), and successfully determined 8 as the numerator. This evidence shows
that the participant understood equivalent fractions that she could generate a fraction

8/16 for the half-shaded area of the pie diagram.
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On the other hand, there were four participants who answered this item

incorrectly. Exhibit 4.5 shows one of the answers.

Exhibit 4.5 The answer from participant 12-AU on Task 1 Item 2 of the conceptual knowledge
dimension

PARTICIPANT: Write the numerator of the fraction for the
shaded part below

PARTICIPANT: One (1)

RESEARCHER: Can you tell me how you got the answer “one”?
PARTICIPANT: Because one is the number for this part (the
participant pointed to a half-shaded area of the circle), and 1
circle is 16 here (she pointed to the denominator of 16). What
is being asked is only the numerator, which is this shaded part,
one.

The participant could not find the right numerator for the (equivalent) fraction to
represent the half-shaded area of the pie diagram. The participant answered 1 as the
numerator without considering that the denominator was 16. The participant did not
understand the relationship between the numerator and the denominator in
representing a shaded part of the diagram. As a result, the participant simply put 1 as
the numerator because it represents the number of the shaded part of the pie diagram
without taking into account the given denominator 16. Hence, it can be inferred that the
participant’s incorrect answer in this item is because of insufficient knowledge on the
part of the participant about the relationship between the numerator and denominator

in representing equivalent fractions.

Item 3 - Write the fraction for the shaded part below (Adapted from Pantziara &
Philippou, 2012; Scanlon, 2013) (ConT1Q3)

From 15 participants, 10 participants answered the item correctly. Exhibit 4.6

demonstrates one of the participants’ answer.
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Exhibit 4.6 The answer of participant 13-JI for Task 1 Item 3 of the conceptual knowledge dimension

PARTICIPANT: Write the fraction for the shaded part
below.

PARTICIPANT: These parts have different sizes. We =
have to draw lines to make equal sizes. £

RESEARCHER: What do you mean equal sizes?
PARTICIPANT: The parts

(Then the participant drew lines to make equal
partitions of the circle)

RESEARCHER: Okay

PARTICIPANT: There are 1, 2, 3, 4, 5, 6 parts (the
participants counted all of the parts of the circle); the
denominator is 6, and only one part is shaded, so the
answeris 1/6

The participant recognized that the partitions on the pie diagram were not equal
sizes. To solve this problem, the participant drew additional lines to make six equal parts
of the diagram. The participant determined the denominator by counting the number
of all the equal parts in the diagram, and determined the numerator by counting the
number of the shaded part of the diagram. From this response, it can be inferred that
the participant understood that a fraction (both numerator and denominator) should be

generated from the number of equal partitions of the diagram (object).

Five participants incorrectly answered Task 1 Item 3. Exhibit 4.7 shows one of

the participants’ answers.

Exhibit 4.7 The answer of participant 7-IS for Task 1 Item 3 of the conceptual knowledge dimension

PARTICIPANT: Write the fraction for the shaded part
below.

PARTICIPANT: The shaded only 1, 1/4 (the participant
wrote down 1/4 as the answer on the card)

RESEARCHER: Why is this 1/4?

ESE

PARTICIPANT: Because the shaded part is only 1. The 4 is
all of the parts

The evidence from Exhibit 4.7 shows that the participant did not understand that
all the parts in the pie diagram should be equal in size. The participant counted all the
parts, regardless of their sizes, to represent the denominator. From this response, it can
be inferred that the participant did not understand that a fraction (in this case the

denominator) should be generated from the number of equal partitions of the diagram
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(object). Hence, the participant’s mistake in this item reveals that he did not understand

the equal-size principle in representing fractions.

Item 4 If the figure is the whole, write the fraction for the shaded part
below (ConT1Q4)

From 12 participants who received this item, five participants answered the item

successfully. Exhibit 4.8 shows one of the participants’ answers.

Exhibit 4.8 The answer of participant 3-JI for Task 1 Item 4 of the conceptual knowledge dimension

PARTICIPANT: If the figure

is the whole, write the fraction for the shaded part below

PARTICIPANT: The first circle consists of 4 parts, all parts are
shaded. So the fraction is 4/4 or 4 shaded parts of the 4 parts.
The second circle consists of 4 parts and only 1 part is
shaded. This is 1/4. They are joined together and it becomes

5/4.

The participant considered that the denominator is represented by the number of
all parts in one circle (a pie diagram), and the numerator is represented by the number
of the shaded part(s) within each circle. The participant translated the shaded part(s) for
each circle into the symbolic notation of fractions, and joined them to get an improper
fraction. This evidence demonstrates that the participant understood the symbolic

notation of improper fractions as a representation of part and whole.

Seven participants failed to answer the item correctly. Exhibit 4.9

demonstrates one of the participants’ responses.
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Exhibit 4.9 The answer of participant 14-DE for Task 1 Item 4 of the conceptual knowledge dimension

PARTICIPANT: If the figure is the

whole, write the fraction for the shaded part below

PARTICIPANT: Is it the whole? (the participant pointed to the circle in
the task)

RESEARCHER: Yes

(The participant was silent for a moment and then wrote down 1/4 on
the card)

PARTICIPANT: 1/4

RESEARCHER: Can you tell me how you got the answer 1/4?
PARTICIPANT: From the other picture (the participant pointed to the
circle which represents 1/4)

RESEARCHER: How about this picture? (the researcher pointed a circle
which was fully shaded)

PARTICIPANT: Ehmm ...

RESEARCHER: | mean, why is this fraction determined by this circle only
(the researcher pointed to the circle where one part is shaded) and does
not involve this fully shaded circle?

PARTICIPANT: Because if they are fully shaded, the values are the same.
RESEARCHER: What do you mean?

PARTICIPANT: The circle is divided by 4, and 4 parts are shaded, so the
numerator and the denominator are the same. So the fraction is only
determined by the other circle which is 1/4.

The evidence in Exhibit 4.9 indicates that the participant believed that fractions
are always smaller than one. The participant ignored the pie representation which was
fully shaded because it would have the same number for both the numerator and
denominator. From this evidence, it can be inferred that the participant did not
understand improper fractions as a representation of part and whole, and the

participant’s understanding is still limited to fractions smaller than 1.

Item 5- If the figure is the whole, write the numerator for the shaded

part below (ConT1Q5)
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Of the six participants who received this item, five of them answered the item

correctly. Exhibit 4.10 represents the response from Participant 5-LA.

Exhibit 4.10 The answer of participant 5-LA for Task 1 Item 5 of the conceptual knowledge
dimension

PARTICIPANT: If the figure is the whole,

write the numerator of the fraction for the shaded parts below

PARTICIPANT: Eh.. This is a full circle and it is fully shaded. Therefore
it is 1. Since there are 8 parts, it is written here 8 (the denominator
of the given fraction), so it is 8/8. While this one, this is a half part.
A half part of the 8 parts is 4. Hence, we just add 8 to 4 which equals
12. The result is 12/8 (the participant wrote down the answer).

RESEARCHER: Could you demonstrate the answer using diagram
representations?

(the participant drew lines to make 8 partitions for each circle).

The participant understood that the shaded parts of the pie diagram should be
represented in a fraction with the denominator 8. Hence, she represented the value of
the fully shaded circle as 1 and converted it to 8/8. After that she represented the value
of a half shaded circle as 4/8, and joined the 8/8 with 4/8 to get the answer 12/8. From
this response, it can be inferred that the participant understood equivalent fractions for

improper fractions.

There was one participant who answered this item incorrectly. Exhibit 4.11

presents the answer for Participant 6-JO.
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Exhibit 4.11 The answer of participant 6-JO on Task 1 Item 5 of the conceptual knowledge
dimension

PARTICIPANT: If the figure the whole

PARTICIPANT: This is already 4 parts so they are made into 8
parts. So ... these are 8 parts as the denominator. 1, 2, 3, 4, 5,
6 parts of which are shaded. So this is 6/8 , or it can be
simplified to 3/4.

o |

)

From Exhibit 4.11, it can be seen that the participant translated the denominator
8 as the number of all parts from the two circles, and determined the numerator as the
number of the shaded parts from both circles (after adding additional lines to separate
each circle into four parts). This response shows that the participant did not understand
improper fractions because the participant made an error in translating the

denominator 8 into a pie representation.

4.3.1.1.2 Task 2 Shading Pie Diagrams to Represent Fractions

Item 1 Shade the shape to show the fractions below (ConT2Q1).

W

Of the two participants who received this item, one of them answered the item
correctly. Exhibit 4.12 demonstrates the answer from Participant 7-1S, who correctly

shaded the pie diagram to represent a proper fraction.
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Exhibit 4.12 The answer of participant 7-IS for Task 2 Item 1 of the conceptual knowledge
dimension

PARTICIPANT: Shade the shape to show the fractions below
(Then the participant shaded two parts of the circle)

RESEARCHER: Can you explain how you got the answer?

w N

PARTICIPANT: The parts of the circle are 3, the shaded parts
are only 2. The unshaded part is only one. If all the parts are
shaded, then it is 3/3. If the shaded parts are only two, then it
is 2/3.

The participant shaded two parts of the pie diagram which has three equal
partitions to represent the fraction 2/3. This indicates that the participant understood

the symbolic notation of fractions as representing part and whole.

The other student (Participant 8-OK) answered the item incorrectly. Exhibit 4.13

demonstrates his answer.

Exhibit 4.13 The answer of participant 8-OK for Task 2 Item 1 of the conceptual knowledge
dimension

PARTICIPANT: Shade the shape to show the fractions below

PARTICIPANT: Two-thirds. There are 3 parts in this circle. (The
participant looked confused. Then, the participant drew lines

w N

to make additional partitions so that there are 5 partitions,
and then he shaded two parts)

RESEARCHER: Can you tell me why you made additional lines
here?

PARTICIPANT: Because there are only 2 and 3 here (the
participant pointed to the numerator and denominator of the
fraction 2/3). Previously this picture only had 3 parts. So if the
two parts are shaded than the remaining part is only one. |
drew these additional lines to make 2 shaded parts, and 3
unshaded parts.

The participant’s response in Exhibit 4.13 showed that the participant did not
know how to translate symbolic notation into a pie diagram. The participant thought
that the numerator represents the number of the shaded parts, while the denominator
represents the unshaded parts. Hence the participant’s incorrect answer is not because
of misunderstanding of the instruction, but because the participant did not understand

the top and the bottom number of a fraction notation.
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Item 2 Shade the shape to show the fractions below (ConT2Q2).

N

From the six participants who received this item, four participants answered the
item correctly. Exhibit 4.14 presents the response from Participant 5-LA, who shaded

the pie diagrams correctly to represent the improper fraction in Task 2 Item 2.

Exhibit 4.14 The answer of participant 5-LA for Task 2 Item 2 of the conceptual knowledge
dimension

PARTICIPANT: Shade the shape to show the fractions below

PARTICIPANT: 7/4 means that the denominator is 4, so it
should be divided by 4 first (the participant drew lines to make
4 partitions for each circle). Since it is 7/4, 7 parts are shaded
(the participant shaded the 7 parts of the circle).

The participant made four partitions for each circle and shaded seven parts from
both circles to represent the improper fraction 7/4. This response showed that the
participant understood that the denominator 4 represented four partitions for each
whole (circle) and the numerator 7 represents the number of shaded parts from these
two circles. Hence, it can be inferred that the participant understood the symbolic

notation of improper fractions.

Two participants did not give a correct answer for this item. Exhibit 4.15
demonstrates the response from Participant 10-BA, who failed to represent the

improper fraction corresponding to Task 2 ltem 2.

The participant found the numerator bigger than the denominator. The
participant converted the improper fraction 7/4 to a mixed number 1 3/4. To represent
this mixed number, the participant shaded three parts of the two circles to represent
the numerator 3. The participant considered that the two circles are the whole, and only
represented the proper fraction (3/4) from this whole and ignoring the whole number
in the mixed number 1 3/4. From this response it can be inferred that the participant did

not understand the symbolic notation of either improper fractions or mixed numbers.
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Exhibit 4.15 The answer of participant 10-BA for Task 2 Item 2 of the conceptual knowledge dimension

PARTICIPANT: Shade the shape to show the fractions below
RESEARCHER: Can you tell me what the problem is in this
task?

PARTICIPANT: The problem is the numerator is greater than
the denominator

(The participant was silent)

RESEARCHER: Keep talking please

PARTICIPANT: So the fraction should be converted to a
mixed number, 7/4 is equal to 1 3/4.

(After that, the participant shaded full one of the circle and
shaded a half for the other circle)

RESEARCHER: Can you explain why you shaded 3 parts of
the circles?

PARTICIPANT: In orderto get13/4

RESEARCHER: Can you tell me how you got 1 3/4 from this
drawing?

PARTICIPANT: This is a mixed number, and the numerator is
3, so 3 parts of the circles are shaded out of all 4 parts.

gl b
7l

4.3.1.1.3 Task 3 Comparing Fractions

3 1
Item 1 Which is larger s o ? lllustrate how you got your answer by using a model

such as a picture or a diagram representation (Adapted from Scanlon, 2013) (ConT3Q1)..

From the nine participants who received this item, seven participants correctly

answered the item. Exhibit 4.16 represents the answer from participant 17-FA, who

successfully compared two fractions with the same denominator, using a part-whole

representation.

Exhibit 4.16 The answer of participant 17-FA for Task 3, Item 1 of the conceptual knowledge dimension

answer using a picture.
PARTICIPANT: Can | use a picture other than a circle?
RESEARCHER: Yes, you can

where only 1 part is shaded.
RESEARCHER: So which one is greater?
PARTICIPANT: 3/5, because it has more shaded parts.

PARTICIPANT: Which is larger % or i? Illustrate how you got your

PARTICIPANT: Draw a rectangle with 5 parts where 3 parts are
shaded. Draw a second rectangle with the same parts as before, but

The participant drew a part-whole representation using rectangle diagrams to

compare the fractions. The participant determined the bigger fraction based on the

number of the shaded parts. This response demonstrates that the participant
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understood the instruction and understood the size of fractions based on part-whole

understanding.

There were two participants who answered this item incorrectly. Exhibit 4.17

demonstrates the answer of participant 9-OK.

Exhibit 4.17 The answer of participant 9-OK for Task 3 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Which s larger % or %? Illustrate how you got your answer
by using a picture.

PARTICIPANT: 3/5 and 1/5. A cross product, 3 multiplied by 5 is 15, 5
multiplied by 1is 5. So 1/5 is the biggest.

RESEARCHER: Can you explain again your answer?

PARTICIPANT: If I do not use a cross product, the biggest is 3/5 but if | use
a cross product the bigger is 1/5

RESEARCHER: Can you tell me what it means?

PARTICIPANT: The one which does not use a cross product, 3, multiplied
by 5, which is 15 (the participant multiplied the numerator and the
denominator of 3/5), is greater than 1 multiplied by 5 (the participant
multiplied the numerator and the denominator of 1/5).

RESEARCHER: How about the cross product?

PARTICIPANT: 3 multiplied by 5 is 15 (the participant multiplied the
numerator of 3/5 with the denominator of 1/5) and 1 multiplied by 5, 5
(the denominator of 3/5 was multiplied with the numerator of 1/5). So the
biggest of them is 1/5

RESEARCHER: So which one do you choose, a top-bottom product or a
cross product?

PARTICIPANT: A cross product

RESEARCHER: Can you determine which one is bigger using pictures?
PARTICIPANT: Yes

(The participant drew two circles to represent 3/5 and 1/5, but he made
3/5 with unequal 5 partitions and drew 3/5 with 8 partitions of the circle).
RESEARCHER: So which one is bigger? 3/5 or 1/5?

PARTICIPANT: From the pictures it is 3/5

RESEARCHER: Why?

PARTICIPANT: Because for 1/5 there are 1, 2, 3, 4, 5 (he counted all of the
parts of the circle representing 1/5). While in this one there are 1, 2, 3, 4,
5, 6, 7, 8 (he counted all of the parts of the circle representing 3/5).

//'\,
3&\_,7
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In the beginning, the participant used procedural rules to compare the fractions.

The participant used a cross-product technique, but he made an incorrect conclusion to

determine which fraction is bigger. Next, the participant also used an incorrect method

i.e., multiplying the top and the bottom number. Finally, the participant used a diagram

to compare the fractions, but he made mistakes in representing the fraction using a part-

whole diagram. He generated a pie diagram with eight partitions and three of them were

shaded to represent 3/5. The participant made an error when drawing a conclusion from
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the circle. This indicates that that the participant did not understand the size of fractions

based on part-whole understanding.

2 3
Item 2 Which is larger 30, ? lllustrate how you got your answer by using a model

such as a picture or diagram representation (Adapted from Scanlon, 2013) (ConT3Q2).

Seven participants from low to medium achieving students received this item. Two
of them answered the item correctly. Exhibit 4.18 shows the answer from participant
10-BA, who successfully generated pie diagrams to compare the fractions in Task 3 Item

2.

Exhibit 4.18 The answer of participant 10-BA for Task 3 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Which is larger 2 or %? Illustrate how you got

your answer using a picture.

PARTICIPANT: The fractions should be transformed with a
common denominator 12. So 12 divided by 3 is 4, and 4 times 2
is 8. Then 12 divided by 3 is 3, and 3 times 3 is 9. So we have the
fractions 8/12 and 9/12. So 3/4 is larger.

RESEARCHER: Can you explain your answer using diagram?
PARTICIPANT: Drew 12 parts ...

(The participant drew 2 circles to describe 8/12 and 9/12).

For 8/12, 8 parts are shaded, while for 9/12, 9 parts are shaded
RESEARCHER: So which one is larger?

PARTICIPANT: 3/4

RESEARCHER: Why?

PARTICIPANT: Because it has more shaded parts

RESEARCHER: Okay, thank you for your answer.

The participants used procedural knowledge to transform the fractions to
equivalent fractions with a common denominator. Next, the participants used
conceptual knowledge to map the equivalent fractions to part-whole representation.
Finally, the participant successfully determined which fraction is bigger. This response
demonstrates that the participant understood the instruction and understood the size

of fractions based on part-whole understanding.

Five participants from low achieving students and some of the medium achieving
students gave an incorrect answer for this item. Exhibit 4.19 demonstrates the response

from participant 8-NA, who incorrectly answered the item.
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Exhibit 4.19 The answer of participant 8-NA for Task 3 Item 2 of the conceptual knowledge dimension

PARTICIPANT: Which is larger % or %? Illustrate how you got
your answer using a picture.

PARTICIPANT: There is a circle (the participant drew a circle).
This is for 2/3, and this is a circle again for 3/4 (the participant
drew another circle). | divide this circle into 3 parts, and divide
another one into 4. Here, there are two shaded parts, so this is
2/3. Then in here the numerator of 3/4 is 3, so | shade 3 parts. |
think 2/3 is bigger than 3/4.

RESEARCHER: Why?

PARTICIPANT: Because if 2/3 is shared, the shared part is bigger

The participant generated two pie diagrams to represent 2/3 and 3/4, but with
unequal partitions representing 2/3. The participant determined that 2/3 was bigger
than 3/4 because the participant thought that the shared part of 2/3 was bigger than
3/4. The participant made several errors. First, the participant did not accurately
represent 2/3 using a pie diagram. Second, the participant compared 2/3 and 3/4
directly without making the number of parts of both pie diagrams the same. These errors

caused participant to have a misleading conclusion to determine which fraction is bigger.
Item 3 Which is larger Z or % ? lllustrate how you got your answer by using a model
such as a picture or diagram representation (Adapted from Scanlon, 2013) (ConT3Q3).

Five participants, all high achieving students, answered the item successfully.

Exhibit 4.20 shows participant 3-JI, who successfully answered the item.

Exhibit 4.20 The answer of participant 3-JI for Task 3 Item 3 of the conceptual knowledge dimension

PARTICIPANT: Which is larger % or g? Illustrate how you got

your answer using a picture.

- @3
1
(The participant drew two circles to represent 7/4 and the other

two circles to represent 8/6) = :@% %

P

PARTICIPANT: 7/4 means 13/4,and 8/6is 1 2/6. This is a whole
circle, and this is too, and they should be shaded (the participant
fully shaded one of the circles for 7/4, and one of the circles for
8/6). This one is 3/4 (she shaded the other circle of 7/4), and this
one is 2/6 (she shaded the other circle of 8/6). So the biggest is
this one (she pointed to the two circles which represent 7/4).

8

RESEARCHER: Why are these ones bigger? (The researcher
pointed to the two circles which represent 7/4)

PARTICIPANT: Because the remaining part is only this (the
participant pointed to the unshaded area of the circles for 7/4),
while the other one is larger (she pointed the unshaded area of
the circles for 6/8)
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The participant converted the improper fractions into mixed numbers before
mapping them to part-whole representations using pie diagrams. The participant
successfully generated pie diagrams to represent the improper fractions, and correctly
determined which fraction is bigger. This evidence shows that the participant

understood the instruction, and understood the value (size) of fractions greater than 1.

Two participants answered the item incorrectly. Exhibit 4.21 shows the answer

by participant 17-FA.

Exhibit 4.21 The answer of partlupant 17 FA for Task 3 Item 3 of the conceptual knowledge dimension

gambar

PARTICIPANT: Which is Iarger - or g ? lllustrate how you N U

got your answer using a plcture 2
PARTICIPANT: The denominators are different so we ) T
transformed them with a common denominator. 7/4 equals cammm RIS S
21/12 and 8/6 equals 16/21. So we can draw now.

(The participant drew a rectangle with 21 partitions)
RESEARCHER : Why did you draw 21 partitions?

PARTICIPANT: Because 21 is the numerator which is larger
than the denominator

RESEARCHER: Okay, so what is the next step?

PARTICIPANT: If 21 parts are shaded, then there are no spaces
for the 12 parts (The participant looked confused)
RESEARCHER: Okay, we can discuss this again later.
PARTICIPANT: But, the largest is 7/4, because after they are
transformed with the common denominator, 21/12, which is
7/4, is larger than 16/12.

RESEARCHER: Oh okay, thank you.

The participant used procedural knowledge to transform the fractions into
equivalent fractions with a common denominator. The participant tried to generate a
rectangle diagram to represent the fraction, but was not successful because the
participant was confused as to how to represent the numerator in a situation where the
numerator is greater than the denominator. From this response, it can be inferred that
the participant did not understood the meaning of the numerator and denominator of
fractions greater than 1, so the participant had a difficulty in representing and

comparing the improper fractions in Task 3 Item 3.

4.3.1.1.4 Task 4. Locating Fractions on the Number Line

Item 1 Show the fraction 3 on the number line below (ConT4Q1).
8
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Six participants from the high achieving students answered the item correctly.

Exhibit 4.22 demonstrates the response from Participant 6-JO.

Exhibit 4.22 The answer of participant 6-JO for Task 4 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Show the fractions on the number lines below

PARTICIPANT: 3/8 is less than 1. This is 1 and this null, so to
get 3/8 distance from 0 to 1 is it should be divided into eight
jumps, so1,2,3,4,5,6, 7, 8 (the participant makes 8 scales
from 0 to 1). This is not enough, so we move 1 here. So this is
1, which means there are 1, 2, 3, 4, 5, 6, 7, 8. To get 1, there
are 8 parts. What you requested is 3 of 8, so there are only 1,
2, 3 (the participant circled the point 3/8 on the number line).

RESEARCHER: Should the scales be the same size?
PARTICIPANT: Yes, they should be.
RESEARCHER: Okay, thank you.

The participant successfully placed the fraction on the number line. The

participant used the denominator 8 to divide the length between 0 and 1 (the unit) into

equal intervals (scales). After that, the participant used the numerator 3 to place the

fraction on the third interval from 0. This response shows that the participant

understood the symbolic notation of fractions as representation of measures.

Nine participants from the low and medium achieving students did not give a

correct answer. Exhibit 4.23 demonstrates the response from Participant 14-DE.

Exhibit 4.23 The answer of participant 14-DE for Task 4 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Show the fractions on the number lines below
(The participant was silent)

RESEARCHER: Can you tell me what the problems are in this
task?

PARTICIPANT: Euh... the order, sofor3/8...if 1/2, it’s located
in the middle. If | do counting, it starts from the right or the
left of the number line...

(The participant was silent for a moment and then she made
dot points on the number line)

PARTICIPANT: Here. (The participant circled the location of
3/8)

RESEARCHER: Can you tell me why you put 3/8 there?

PARTICIPANT: This is 1, | counted the dots, this is null then
1,2,3,4,5,6,7,8.1putit on the 8t dot.

RESEARCHER: Why did you put 3/8 on the 8t dot?

PARTICIPANT: | am not sure, | put it there because | think |
should put it on the last dot

3.
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From the evidence in Exhibit 4.23, it can be seen that initially the participant was
confused about whether to start numbering on the number line whether from the left
or the right. The participant put a number 1 at the end of the right side of the number
line, and made eight dots on the number line. The participant put the fraction on the 8t
interval, which is the denominator of the fraction 3/8. Hence, it can be inferred that the
incorrect response from the participants is because the participant did not understand

the symbolic notation of fractions representing measures.

Item 2 Show the fraction 1 on the number line below (Adapted from Scanlon, 2013)
2
(ConT4Q2)

U-)lN ——

Only three participants from the high achieving students received this item. They

answered the item correctly. Exhibit 4.24 shows the answer from participant 11-RE.

Exhibit 4.24 The answer of participant 11-RE for Task 4 Item 2 of the conceptual knowledge dimension

PARTICIPANT: Show the fractions on the number lines IS ‘ iy

below

2| =
o4~

PARTICIPANT: 1/2, oh we can take this 2/3 as 4/6. So this is
6.1,2,3,4,5,6. Thisis 1 (the participant put 1 on the sixth 3
scale of the number line). So 3/6 is here. 3/6 is the same AN

with 1/2. 4

The participant converted the fractions (1/2 and 2/3) into equivalent fractions
with a common denominator of 6. This common denominator was used to determine
how many intervals (scales) should be created between 0 and 1 (the unit). After that,
the fraction 1/2 (which is equal to 3/6) was put on the number line, one interval to the
left side of the fraction 2/3 (which is equal to 4/6). This response demonstrates that the
participant understood the instruction and understood the symbolic notation of

fractions (smaller than 1) as representing measure.
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7 1 1
Item 3 Order the fractions Z , 5 and > on the number line below (Adapted from

Scanlon, 2013) (ConT4Q3).

— -
0
Only five participants from the high achieving students received this item. All of

them answered the item correctly. Exhibit 4.25 demonstrates the response from

participant 5-LA for Task 4 Item 3.

Exhibit 4.25 The answer of participant 5-LA for Task 4 Item 3 of the conceptual knowledge dimension

PARTICIPANT: Order these fractions from the smallest
to the largest on the number line below.

PARTICIPANT: Eh..the denominators can be equated
first, so for 7/4, the denominator becomes 12. 12
divided by 4, 3 and 3 is multiplied by 7, 21. So itis 21/12.
For 1/3, 12 divided by 3 equals to 4, and 4 multiplied by
1lis 4,soitis4/12. The 1 1/2 is the same as 3/2, so 12
divided by 2 is 6; and 6 multiplied by 3, 18, so it is 18/12.

(the participant made scales (and put 4/12, 1, 1 6/12,
and 1 9/12 on the number line)

The participants converted the fractions (including improper fraction and mixed
numbers) into equivalent fractions with a common denominator. The participant
created scales based on this common denominator and put all of the fractions on these
scales. From this evidence, it can be inferred that the participant understood fractions

(including improper fractions and mixed numbers) as representing measures.

4.3.1.1.5 Task 5 Writing the Smallest and Biggest Fractions that they Can

Item 1 Write the biggest fraction that you know. Explain your answer (Adapted from
Stafylidou & Vosniadou, 2004) (ConT5Q1).

Only six participants from the high achieving students received this item. Four
participants answered the item correctly. Exhibit 4.26 shows the answer from

participant 16-AK.
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Exhibit 4.26 The answer of participant 16-AK for Task 5 Item 1 of the conceptual knowledge dimension
PARTICIPANT: Write the biggest fraction that you know.

PARTICIPANT: Hm... it could be 1/1, 1 1/2, 100/1, 1000000/1, ' | (up [ ppoch gﬁ?_
an infinite number per 1 = l: S —— l
RESEARCHER: So, what is your conclusion? I = \ ‘

PARTICIPANT: Infinite

The participant demonstrated his understanding of the infinity property of
fractions from this item. The participant successfully concluded that there was no
biggest fraction after he demonstrated an increasing pattern (size/value) of fractions by
increasing the value of the numerators, while the denominator is kept constant at 1.
From this response, it can be inferred that the participant understood that the biggest

fraction did not exist.

Two participants gave an incorrect answer for this item. Exhibit 4.27 demonstrates

the response from participant 4-JA.

Exhibit 4.27 The answer of participant 4-JA for Task 5 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Write the biggest fraction that you know. |
PARTICIPANT: First, a circle is drawn. The meaning of this circle / L/

is 1. Then, we divide it into 2 so that if we shade one of them, f
it will become 1/2. This means that the biggest fraction is 1

divided by 2, 1/2.
RESEARCHER: Can you explain why 1/2 is the biggest fraction?

PARTICIPANT: Euh ... because... /
(the participant was silent)
RESEARCHER: Keep talking please

PARTICIPANT: Euh because 1/2 is the biggest fraction.
RESEARCHER: Okay, let’s discuss this task later.

e W
2

The participant generated a half-shaded pie diagram (representing 1/2) to show
the biggest fraction. The participant could not explain why 1/2 was the biggest fraction.
From this response, it can be inferred that the participant understood the instruction,

but did not understand the unbounded infinity of fractions.

Item 2 Write the smallest fraction that you know. Explain your answer (Adapted from

Stafylidou & Vosniadou, 2004) (ConT5Q2).

Only six participants from high achieving students received this item. Four
participants answered the item correctly. Exhibit 4.28 demonstrates the answer of

participant 11-RE.
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Exhibit 4.28 The answer of participant 11-RE for Task 5 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Write the smallest fraction that you know.
Explain your answer. |

PARTICIPANT: Unlimited...
RESEARCHER: Can you explain why this is unlimited?

PARTICIPANT: Because a fraction, e.g. 1 per... (the participant
wrote down 1 / on the card) .. the denominator can be
anything, it could be 1 million or 1 billion or also 1 trillion,
depending on the person.

The participant considered that fractions were unlimited. The participant
represented a fraction with the numerator 1 and allowed the denominator to be filled
with any number. The participant took an example for the denominator with the
increasing number such as 1 million, 1 billion, and 1 trillion to show that the fraction can
be very small, and it can be smaller than these numbers if the denominator were
increased again. It indicates that the participant understood the relationship between
the numerator and denominator; that the greater the increase in the denominator, the
smaller the fraction will be. However, because the denominator can be set arbitrarily,
the participant considered that fractions are unlimited. From this response, it can be

inferred that the participant understood the unbounded infinity of fractions.

Two participants answered the item incorrectly. Exhibit 4.29 demonstrates the

response from participant 4-JA.

Exhibit 4.29 The answer of participant 4-JA for Task 5 Item 2 of the conceptual knowledge dimension

PARTICIPANT: Write the smallest fraction that you know.

PARTICIPANT: First, draw a circle, euh 1/2, then it is divided into
1/4, and it is divided again into 1/8, and it is divided again into
1/16. So the smallest fraction is 1/16.

RESEARCHER: Can you tell me why 1/16 is the smallest fraction?

PARTICIPANT: Because euh...
(The participant was silent)...

PARTICIPANT: Because, euh... because the circle is divided into
16, the shaded part is 1, and there are 15 remaining parts, so
1/16 is the smallest fraction.

RESEARCHER: Oh okay, let’s discuss it later again
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From Exhibit 4.29, it can be seen that the participant used a part-whole
understanding by generating a pie diagram to determine the smallest fraction. From this
response it can be inferred that the participant’s mistake is not because she
misinterpreted the instruction, but because she did not understand the unbounded

infinity of fractions.
4.3.1.1.6 Task 6 Finding How Many Fractions lie between Two Fractions

2 4
Item 1 How many numbers lie between S and - ? Explain your answer (Adapated from
Vamvakoussi & Vosniadou, 2004) (ConT6Q1)

Only six participants from the high achieving students received this item. Three
participants answered the item correctly. Exhibit 4.30 demonstrates the answer from
participant 11-RE.

Exhibit 4.30 The answer of participant 11-RE for Task 6 Item 1 of the conceptual knowledge dimension

PARTICIPANT: How many numbers are there between g and % ?

2 v
PARTICIPANT: It depends on the denominator that we use... 4 7
RESEARCHER: Oh, can you explain more about this? M }P
5 35
PARTICIPANT: If for example ... it’s also infinite ... if we use 2/5 and 4/7 and % o
we use 35 as the denominator. We can say that there are fractions which are }_& D =
14/35, 16/35, 17/35, 18/35, and 19/35. There are five fractions. But it can be 30 F0

extended, for example, 14/35 becomes 28/70 and 20/35 becomes 40/70. So
there are gaps between them, and if the question is how many numbers are
there, it can be more numbers again, so it’s infinite too...

The participant could determine the unlimited number of fractions between two
fractions (2/5 and 4/7). The participant transformed the fractions to equivalent fractions
with a common denominator. By increasing the common denominator for equivalent
fractions, the participant could see there are unlimited numbers of fractions between
2/5 and 4/7. From this response, it can be inferred that the participant understood the

density property of fractions.

Three participants gave an incorrect answer for this item. Exhibit 4.31

demonstrates the answer from participant 6-JO.
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Exhibit 4.31 The answer of participant 6-JO for Task 6 Item 1 of the conceptual knowledge dimension

PARTICIPANT: How many numbers are there between g and %? _%i

PARTICIPANT: 2/5 and 4/7, hm... these denominators need to be
equal. So, the common denominator is 5 times 7 which is 35. 35
divided by 5 is 7, and 7 multiplied by 2 is 14. This is 14/35. While for a5 B
this one, 35 divided by 7 is 5, and 5 multiplied by 4 is 20. The question -
is how many numbers lie between 14/35 and 20/35. So this is the l @
same as how many numbers lie between 14 and 20. There are 15, 16,
17, 18, and 19. There are five numbers.

The participant found limited (finite) numbers between 2/5 and 4/7. The
participant transformed the fractions with a common denominator, 35, and found there
are five fractions between 2/5 and 4/7. This evidence demonstrates that the participant

did not understand the density property of fractions.

Item 2 How many numbers lie between ; and ; ? Explain your answer (adapated from
Vamvakoussi & Vosniadou, 2004) (ConT6Q2)

Six participants from the high achieving students received this item, and four of

them gave a correct answer for this item. Exhibit 4.32 shows the answer from participant

11-RE.

Exhibit 4.32 The answer of participant 11-RE for Task 6 Item 2 of the conceptual knowledge dimension

PARTICIPANT: How many numbers are there between ; and ; ?

. L
33

PARTICIPANT: This is the same. The problem is if we only look at this
without paying deeper attention, there are no numbers between 4/7
and 5/7 if the denominator is only 7. But if we transform them to 8/14
and 10/14, there is 9/14. If, for example, they become 16/28 and 20/28,
there are more numbers again, so this is infinite too.

1 (9]
78

=\e=
=\
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The participant found that there are unlimited numbers between 4/7 and 5/7. The
participant transformed the fractions into equivalent fractions with a common
denominator. The participant found that if the common denominator is increased
(getting larger), then the number of fractions between 4/7 and 5/7 is also increased.

This evidence shows that the participant understood the density property of fractions.

Two participants gave an incorrect answer. Exhibit 4.33 demonstrates the answer

from participant 6-J0.
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Exhibit 4.33 The answer of participant 6-JO for Task 6 Item 1 of the conceptual knowledge dimension

PARTICIPANT: How many numbers are between% and g?

PARTICIPANT: No numbers
RESEARCHER: Can you tell me why there are no numbers?

PARTICIPANT: This is 4/7 and this is 5/7 (the participant created a
number line and then put 4/7 and 5/7 on the line). On this number
line, from here, 4/7 directly jumps to 5/7, there are no numbers
between them.

The participant represented the fraction 4/7 and 5/7 on the number line, and
considered that there was “a jump” between 4/7 and 5/7. This response indicates that

the participant had a discrete understanding of the numerical value of fractions.

4.3.1.1.7 Task 7 Adding Fractions Using Diagram Representation

Item 1 Draw a pictorial representation for the addition of the fractions below. Explain

your answer (ConT7Q1).

1 2
-4+ =
4 4
Eight participants from the low and medium students received the item. All of
these participants answered the item correctly. Exhibit 4.34 shows the answer from

participant 15-Rl.

Exhibit 4.34 The answer of participant 15-RI for Task 6 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Draw a pictorial representation for the fraction
addition below

(The participant drew circles to represent the fraction addition of 1/4
+2/4)

RESEARCHER: Can you tell me how you got the answer?

PARTICIPANT: The first circle is 1/4, the second circle is 2/4, then the
shaded parts from these two circles are added to get the result, which
is 3/4.

The participants drew pie diagrams to represent a fraction addition with the same
denominator. The participants added the number of the shaded parts from both pie
diagrams to generate the pie diagram, which shows the result of this fraction addition.
From this response, it can be inferred that the participant understood fraction addition

with the same denominator.
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Item 2 Draw a pictorial representation for the addition of the fractions below. Explain

your answer (ConT7Q2).

_|_

R
wIlN

Fourteen participants received this item. Nine of them answered the item

correctly. Exhibit 4.35 shows the answer from participant 17-FA.

Exhibit 4.35 The answer of participant 17-FA for Task 7 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Draw a pictorial representation for the fraction addition
below. Explain your answer

1,2

4 3

PARTICIPANT: These should be transformed again using a common
denominator. So 1/4 to be 3/12, and 2/3 to be 8/12.

(The participant drew two rectangles with 12 partitions for each. Three
parts are shaded in the first rectangle, and 8 parts are shaded for the
second rectangle. After that, she drew one rectangle again to represent
the result with 12 partitions where 11 parts are shaded)

RESEARCHER: How did you get the result?
PARTICIPANT: The shaded parts of 3/12 and 8/12 are added.

The participant transforms the fractions into equivalent fractions with a common

denominator and draw rectangle diagrams to show the fraction addition. The

participant added the shaded parts of the fractions (which had already the same number

of partitions for each whole of the fractions) to get the result. From this response, it can

be inferred that the participant understood the meaning of fraction addition, which

involves fractions with different denominators.

Five participants answered the item incorrectly. Exhibit 4.36 shows the answer

from participant 7-IS.

Exhibit 4.36 The answer of participant 7-IS for Task 7 Item 2 of the conceptual knowledge dimension

PARTICIPANT: Draw a pictorial representation for the fraction addition
below.

(The participant drew rectangles to represent 1/4 and 2/3, and
suddenly stopped her drawing when she tried to draw the result)
PARTICIPANT: | do not understand this

RESEARCHER: Could you tell me why you do not understand?
PARTICIPANT: | don’t understand why these are different (the
participant pointed to the denominators of 1/4 and 2/3 which are 4 and
3).

RESEARCHER: Oh okay, what can you do to solve this problem?
PARTICIPANT: | don’t know

+

- =
w i

Jawab
BT+ BELTI -7
7 3
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The participant drew rectangle diagrams to show fraction addition of 1/4 and 2/3,
but the participant did not continue the process because the denominators were
different. This evidence showed that the participant did not understand fraction

addition, which involves fractions with different denominators.

4.3.1.1.8 Task 8 Multiplying and dividing fractions using diagram representation

Item 1 Draw a pictorial representation for the multiplication of the fractions below.

Explain your answer (ConT8Q1)

Eight participants received Task 8 ltem 1. Only one participant answered the item
correctly. Exhibit 4.37 shows the answer from participant 16-AK, who successfully

represented fraction multiplication using diagram representation.

Exhibit 4.37 The answer of participant 16-AK for Task 8 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Draw a pictorial representation for the fraction
multiplication below

5, 6, 7, 8 (the participant drew a rectangle with 8 partitions). 3/4 s
equal to 6/8, 6 parts are shaded. If this is multiplied by 1/2, it means
that a half of these 6 parts. So, 1, 2, 3, parts are shaded or this is
the same as 3/8.

2 prer oy BT
PARTICIPANT: So this is 1/2 of 3/4. For example there are 1, 2, 3,4, | |2 4 %ﬁz%!.'ﬁ N g5

The participant interpreted the multiplication of 1/2 and 3/4 as “1/2 of 3/4". Based
on this interpretation, the participant developed a diagram representation to show the
meaning of “1/2 of 3/4". The participant converted 3/4 to 6/8 and drew the diagram
representing 6/8. Because “1/2 of 3/4” means a half of 3/4, the participant take a half
of the shaded parts of 6/8, which is three shaded parts. The participant considered these
three shaded parts as the result of the fraction multiplication of 1/2 and 3/4. These three
shaded parts were from eight parts of the whole, so the fraction for these shaded parts
were 3/8 which is the answer of the multiplication of 1/2 and 3/4. This response

indicates that the participant understood fraction multiplication.

Seven participants, including several high achieving students, could not answer

Task 8 Item 1. Exhibit 4.38 shows the answer from participant 11-RE.
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Exhibit 4.38 The answer of participant 11-RE for Task 8 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Draw a pictorial representation for the fraction
multiplication below

PARTICIPANT: 1/2 is multiplied by 3/4, the answer is 3/8 but how
| can draw it? Oh, this is 3/4 so this one is multiplied by 3 (the
participant drew three rectangles with a half-shaded for each
rectangle). Then eh ... 1 don’t know how to draw this. Hmm..., it’s
divided by 4. How to draw this ...

RESEARCHER: Can you tell me what the problems are in this
task?

PARTICIPANT: Eh ... the drawing. The answer is already known,
3/8, but how to draw this, hmm ... | don’t know. Wait so this is
...eh... 1 don’t know.

The participant tried to draw diagram representations to represent the
multiplication of 1/2 and 3/4, but was not successful. The participant drew a three
rectangles diagram of a half (1/2) to represent the multiplication of 1/2 and the
numerator of 3/4. After that the participant tried to divide the result of multiplication
1/2 and 3 (the numerator of 3/4) by 4 (the denominator of 3/4) using diagram
representation, but was not successful. From this response, it can be inferred that the

participant did not understand fraction multiplication.

Item 2 Draw a pictorial representation for the division of the fractions below. Explain

your answer (ContT8Q2)
1.1
2 4

Only one participant (who successfully answered Task 8 Item 1) received the item.
The participant answered the item correctly. Exhibit 4.39 demonstrates the answer from
participant 16-AK, who successfully represented a fraction division using a diagram

representation.

The participant drew rectangle diagrams to represent the fraction division of 1/2
and 1/4. The participant successfully demonstrated how many 1/4 in a half (1/2) using
diagram representation. This is the interpretation of fraction division (See Chinnappan
& Forrester, 2014; Van de Walle et al., 2015). This response demonstrates that the

participant understood fraction division.
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Exhibit 4.39 The answer of participant 16-AK for Task 8 Item 2 of the conceptual knowledge dimension

PARTICIPANT: 1/2 divided by 1/4. This is a half, firstly there are 4
parts and 1 part is shaded which is 1/4, than a half of 1/4 is taken,
because the number is not nice, so it is multiplied by 2 which is 1,
2, 3,4,5,6, 7, 8 (The participant created a rectangle with 8
partitions). If divided by 1/2, how many, ah ...1, 2, 3, 4. How many
of this fraction to become ... (the participant looked confused)

RESEARCHER: Can you tell me what the meaning of 1/2 divided by
1/4is?

PARTICIPANT: How many 1/4 to become 1/2.

(The participant drew a rectangle with 4 partitions and two of
them are shaded to represent 1/2). It is the same with 2 (he
pointed to the 2 shaded partitions). In order to become 1/2, so
this one (he pointed one shaded area of the rectangle which
represent 1/4) needs 2 times of itself, so the answer is 2, which is
2 times of this part (he pointed to the rectangle which represent
1/4). 1/4 plus 1/4 equals 2/4 or 1/2, meaning that it needs 2 times
of 1/4 so the result is 2.

RESEARCHER: Okay, thank you, well done

PARTICIPANT: Draw a pictorial representation for the fraction .
wisi , BT R g
division below 4 & _\
g 7] il Vv 4
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4.3.1.2 Within-Task Analysis

The within-task analysis was conducted for all items within a task. The aim of this
analysis was to examine whether the obtained order of acquisition of the items is
consistent with the hypothesized order. The within-task analysis focuses on finding
whether there is evidence that some of the participants answered the items at the
higher levels in the task successfully but could not answer the items at the lower levels
of the task. This evidence would show that that the order of acquisition of the items

within a task are not consistent with the hypothesized order.

Table 4.2 shows the participants’ responses structured within task and level. The
responses are coded as 0, 1, and blank. The code 1 refers to the correct response; the
code 0 refers to the incorrect response; and the blank means that the participant did
not receive the item. The same code is used to score the items in all conceptual and

procedural tasks.

Task 1 (generating a fraction from a pie diagram) consists of five items that address
conceptual competencies at Levels 2 to 3. From Table 4.2, it can be observed that all the
participants who answered items 3, 4, and 5 (Level 3) correctly gave correct answers for

items 1 and 2 (Level 2). Likewise, there were no participants who could answer items 3,
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4, and 5, which belong to level 3, correctly but could not answer item 1 or item 2 of Level
2 correctly. This means that there are no cases where the participants answered the
items at the lower level (Level 2) incorrectly while they answered the items at the higher

level (Level 3) successfully.

Task 2 (Shading a pie diagram to represent a fraction) has two items that address
conceptual competencies at Levels 2 to 3. From the table, it can be observed that there
are no cases where the participants answered the item at the upper level (Item 2 at
Level 3) correctly, but answered the item at lower level (Item 1 at Level 2) incorrectly.
Similar findings also can be observed from the participants’ responses to the other tasks
(Task 3 — 8) of the conceptual dimension presented in Table 4.2. This result shows that
the order of acquisition of the items within each task is consistent with the hypothesized

order.
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Table 4.2 The distribution of the participants’ responses within the task of the conceptual dimension

Participant
Task Item Level
9-0K | 7-IS 5-RI 8-NA 12-AU 13-FI 10-BA 14-DE 17-FA 4-JA 5-LA 6-JO 11-RE 3-J1 16-Ak
Item 1 Level 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1
Item 2 Level 2 0 1 0 1 1 1 1 1 1 1 1 1 1
Task 1 Item 3 Level 3 0 1 0 1 0 1 1 1 1 1 1 1 1
Item 4 Level 3 0 0 0 0 0 0 1 1 0 1 1 1
Item 5 Level 3 1 1 0 1 1 1
Item 1 Level 2 0 1
Task 2
Item 2 Level 3 0 0 0 1 1 1 1
Item 1 Level 2 0 1 1 1 0 1 1 1 1
Task 3 Item 2 Level 2 0 0 0 0 1 0
Item 3 Level 3 0 1 1 1 1 1
Item 1 Level 3 0 0 0 0 0 0 0 0 1 1 1 1 1 1
Task 4 Item 2 Level 4 1 1 1
Item 3 Level 4 1 1 1 1 1 1
Item 1 Level 4 0 0 1 1 1 1
Task 5
Item 2 Level 4 0 0 1 1 1 1
Item 1 Level 5 0 0 0 1 1 1
Task 6
Item 2 Level 5 0 1 0 1 1 1
Item 1 Level 2 1 1 1
Task 7
Item 2 Level 2 0 0 0 0 0 0 0 1 1 1 1 1 1
Item 1 Level 5 0 0 0 0 0 0 0 1
Task 8
Item 2 Level 5 1
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4.3.1.3 Assigning Participants into the Levels of the Conceptual Dimension and
Changes in the Model

The participants were assigned into the levels of the proposed model by examining their
responses on all the conceptual items. The analysis was implemented for all 15 participants
by comparing the order of their obtained responses with the hypothesized order, as shown
in Table 4.3. The purpose of this analysis was to examine whether the participants’ profiles
were in agreement with the proposed model. Moreover, the participants’ responses can be
used to improve the models by adjusting the proposed levels, or the items within the levels,

so that the proposed model fits well with the participants’ responses.

Table 4.3 The hypothesized order of acquisition of items and tasks for the conceptual dimension of the
learning progression

Level Tasks

Level 1 -

Level 2 Task 1: Items 1, 2
Task 2: Item 1
Task 3: Items 1, 2
Task 7: ltems 1, 2
Level 3 Task 1: Items 3,4, 5
Task 2: Item 2
Task 3: Item 3
Task 4: Items 1, 2
Level 4 Task 4: Iltem 3
Task 5: Items 1, 2
Level 5 Task 6: Items 1, 2
Task 8: Items 1, 2

The profile for all 15 participants’ responses to the conceptual level tasks is presented
in Table 4.4, below. The participants are assigned to a certain level if they have all the
competencies at that level and below, but they do not have enough competencies at the

upper level.
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Table 4.4 The distribution of participants’ responses across the level of the conceptual knowledge dimension

Level | Task | tem | Description ok |15 | R | NA | AU |Fi | oh |DE | |Ja|Laldo |RE| U | Ak
Level1l | - -
Task 1 Iltem 1 Writing a proper fraction from a pie diagram 0 1 1 1 1 1 1 1 1 1)1 1 1 1 1
Task 1 ltem 2 Write the numerator of an equivalent fraction for a fraction ol o 1 0 0 1 1 1 1 11 1 1 1 1
less than 1
Task 2 ltem 1 Shade pie diagram to represent a proper fraction 0 1
el Task 3 ltem 1 Compare a proper fraction with the same denominator 0 1 1 1 0 1 1 1 1
Task 3 Iltem 2 Compare proper fractions with different denominators 0| O 0 0 1 0
Task 7 ltem 1 Add fractions with the same denominator 1 1 1 1 1 1
Task 7 Iltem 2 Add fractions with different denominators o|0|O 0 0 0 1 0 1 1 1 1 1 1
Task 1 ltem 3 Writ.e.a proper fraction from a pie diagram with unequal 0 0 1 0 0 1 0 1 1 11 1 1 1 1
partitions
Task 1 Item 4 Write an improper fraction from a pie diagram 0 0 0 0 0 0 1 1 0 1 1 1
Task 1 ltem 5 Write the numerator of an equivalent fraction for a fraction 111 0 1 1 1
Level 3 greater than 1
Task 2 Iltem 2 Shade a pie diagram to represent an improper fraction 0 0 0 1|1 1 1
Task 3 ltem 3 (lj:)ir:gp;;itiwﬁ(r)cl);ozti‘afgrrzc;igns with different denominators 0 1 1 1 1 1
Task 4 Item 1 Put a proper fraction on a number line 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
Task 4 Item 2 Put a proper fraction on a number line with a constraint* 1 1 1
Task 4 ltem 3 Put fractions, incIuding an improper fraction and a mixed 11 1 1 1 1
Level 4 number, on a number line
Task 5 ltem 1 Write the biggest fraction they can 0| O 1 1 1 1
Task 5 Iltem 2 Write the smallest fraction they can 0|0 1 1 1 1
Task 6 Item 1 Find out how many fractions lie between two fractions 0| o0 0 1 1 1
Level 5 | Task 6 ltem 2 Find out how many fractions lie between two-pseudo ol 1 0 11111
successive fractions
Task 8 ltem 1 Multiply fractions using a diagram representation 0 0 0|0 0 0 0 1
Task 8 Iltem 2 Divide fractions using a diagram representation 1
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Table 4.4 shows the distribution of participants’ responses across the items, tasks
and levels. There is one participant (9-OK) who did not answer most of the items at Level
2 correctly. This evidence strongly indicates that the participant had no fraction
understanding, and he should be placed at Level 1. On the other hand, two participants
(10-BA and 17-FA) answered all the given items at Level 2 correctly. This result shows
that the participants understood the symbolic notation of fractions as a representation
of part-whole, equivalent fractions, fractions’ order (the size of fractions) and fraction
addition. Thus, the participants had all the competencies required at Level 2. However,
some participants answered several items correctly and answered the other items at
level 2 incorrectly. For example, participants 7-IS and 8-NA answered Task 1 item 1
(generating a fraction from pie diagram), Task 3 Item 1 (comparing proper fraction with
the same denominator), and Task 7 Item 1 (adding fractions with the same denominator)
correctly, but answered the other items at Level 2 such as Task 1 Item 2 (generating an
equivalent fraction), Task 2 Item 2 (comparing proper fractions with the same
denominator), and Task 7 Item 2 (adding fractions with different denominators)
incorrectly. This evidence suggests that understanding part-whole with the same
denominator has a different level of learning from understanding part-whole with

different denominators and equivalent fractions.

Next, at Level 3, several participants (participants 5-RI 13-FI 14-DE, and 17-FA) who
could not answer Task 1 Item 4 (generating improper fractions from a pie diagram) and
Task 4 Item 1 (putting a proper fraction on a number line) correctly, were able to answer
Task | Item 3 (generating a fraction from a diagram with unequal partitions) correctly.
This evidence suggests that understanding improper fractions and fractions as measures
requires different levels of learning from understanding the equal size principle of
fractions. The latter seems to have the same level of learning as level 2 because several
participants who could answer most of the items at level 2 correctly could also generate

a fraction from a pie diagram with unequal partitions correctly.

At Level 4, two participants (participants 4-JA and 5-LA) were unable to answer
Task 5 Items 1 and 2 (writing the biggest fraction and the smallest fraction respectively)
correctly, but correctly answered Task 4 Item 3 (putting fractions, including an improper

fraction and a mixed number, on a number line). This evidence suggests that
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understanding the unbounded infinity of fractions requires different levels of learning
compared with understanding fractions as measures, even though this measure requires
advanced understanding (it incorporates improper fractions and mixed numbers).
Indeed, the responses from participants 4-JA and 5-LA indicate that Task 4 Item 3 has
the same level of learning as level 3, because they could answer all the given items at
level 3 and this item (Task 4 Item 3) correctly. This result shows that understanding

improper fractions and fractions as measures are on the same level of learning.

At level 5, three participants (participants 3-JI, 11-RE, and 16-AK) answered both
Task 6 Items 1 and 2 (finding how many fractions lie between two fractions, and finding
how many fractions lie between two-pseudo successive fractions respectively) correctly,
but could not answer Task 8 Item 1 (multiplying fractions using a diagram
representation) and Task 8 Item 2 (dividing fractions using a diagram representation)
correctly. This evidence shows that understanding the density property of fractions is
likely to have a different level of learning from understanding multiplicative fraction
operations. Understanding of the density of fractions also tends to require different
learning from understanding the unbounded infinity of fractions at level 4, because
participant 6-JO, who answered Task 5 Item 1 and 2 (writing the biggest fraction and the
smallest fraction respectively) correctly, could not answer Task 6 Items 1 and 2 (finding
how many fractions lie between two fractions, and finding how many fractions lie

between two-pseudo successive fractions respectively) correctly.

Based on the findings discussed above, the hypothesized conceptual knowledge
dimension is revised as follows. Level 0 was created to capture those students who have
no fraction understanding or do not have enough competencies at Level 1. At this level,
the students do not understand fraction notation, nor any relationships between a
numerator and a denominator. They conceive fractions as two unrelated (independent)
numbers. Next, at Level 1, students begin to understand the symbolic notation of
fractions as a representation of part-whole but are still limited to proper fractions with
the same denominator. At this level, students can generate a proper fraction from
diagram representations, order proper fractions with the same denominator, and
demonstrate fraction addition with the same denominator. At Level 2, students advance

their part-whole understanding into equivalent fractions and fractions with different
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denominators, but are still limited to proper fractions. They can generate equivalent
fractions from diagram representations, order fractions with different denominators,
and add fractions with different denominators using diagram representations. At Level
3, students advance their part-whole understanding at Level 2 into understanding
improper fractions and fractions as measures. At this level, students are able to generate
improper fractions and their equivalence fractions from diagram representations, and
put fractions on a number line. At Level 4, students understand the unbounded infinity
of fractions, such that they can show that there is no smallest or biggest fraction. Next,
at level 5, they advance their infinity understanding of fractions into density, such that
they can show that there are unlimited numbers between two fractions. Finally, at level
6, students understand multiplication and division of fractions, such that they can

represent these operations using diagram representations.

The changes to the model are followed by a revision of the order of acquisition of
items, tasks and levels. Table 4.5 shows the changes to the order of acquisition of items,
tasks, and levels from the hypothesized model into the obtained (revised) model
suggested by the pattern of participants’ responses. Table 4.6 shows the distribution of

participants’ responses on the revised levels of the conceptual knowledge dimension.

Table 4.5 The hypothesized and the revised order of acquisition of items, tasks and levels for the
conceptual dimension of the learning progression

Hypothesized Revised
Level Tasks Level Tasks
Level O -
Level 1 - Level 1 Task 1: Item 1
Task 2: Item 1
Task 3: Item 1
Task 7: Item 1
Level 2 Task 1: Items 1, 2 Level 2 Task 1: Items 2, 3
Task 2: Item 1 Task 3: Item 2
Task 3: Items 1, 2 Task 7: Item 7
Task 7: Items 1, 2
Level 3 Task 1: Items 3,4, 5 Level 3 Task 1: Items 4, 5
Task 2: Item 2 Task 2: Item 2
Task 3: Item 3 Task 3: Item 3
Task 4: Items 1, 2 Task 4:1tems 1, 2, 3
Level 4 Task 4: Item 3 Level 4 Task 5: Items 1,2
Task 5: Items 1, 2
Level 5 Task 6: Items 1, 2 Level 5 Task 6: Items 1,2
Task 8: Items 1, 2
Level 6 Task 8: Items 1,2
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Table 4.6 The distribution of participants’ responses across the levels of the revised conceptual knowledge dimension

Level | Task ltem Description of item g'K 7-I1S | 5-RI ﬁ'A }i, :;I‘Q’ éi' é‘é‘ g 4-JA ‘E’A Jsc-) Flé 34l iGK'
Level -0 | - -
Task 1 Iltem 1 Write a proper fraction from a pie diagram 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Task 2 Iltem 1 Shade a pie diagram to represent a proper fraction 1
Level 1 | 755k 3 Item 1 Compare proper fractions with the same denominator 1 1 1 0 1 1 1 1
Task 7 ltem 1 Add fraction.s with the same denominator using diagram 1 1 1 1 1 1 1 1
representations
Task 1 Item 2 Write an equivalent fraction for a fraction less than 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1
Level 2 | Task 1 tem 3 Writ.e.a proper fraction from a pie diagram with unequal 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1
partitions
Task 3 Iltem 2 Compare proper fractions with different denominators 0 0 0 0 1 0
Task 7 ltem 2 Add fractiohs with different denominators via diagram 0 0 0 0 0 0 1 0 1 1 1 1 1 1
representations
Task 1 Iltem 4 Write an improper fraction from a pie diagram 0 0 0 0 0 0 1 1 0 1 1 1
Task 1 Iltem 5 Write an equivalent fraction for a fraction greater than 1 1 1 0 1 1 1
Task 2 Iltem 2 Shade a pie diagram to represent an improper fraction 0 0 0 1 1 1 1
s [Tas rems | g o | Jale]afa]
Task 4 Iltem 1 Put a proper fraction on a number line 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
Task 4 Iltem 2 Put a proper fraction on a number line with a constraint 1 1 1
Task 4 ltem 3 :EHLZT(;:S; i:slr}rj‘(t:lzrgli.a\nr;improper fraction and a mixed 1 1 1 1 1 1
Level 4 Task 5 Iltem 1 Write the biggest fraction they can 0 0 1 1 1 1
Task 5 Iltem 2 Write the smallest fraction they can 0 0 1 1 1 1
Level 5 | Task6 Iltem 1 Find how many fractions lie between two fractions 0 0 0 1 1 1
Task 6 ltem 2 :an(ie:sm fg:;zn:ractions lie between two-pseudo 0 1 0 1 1 1
Task 8 Iltem 1 Multiply fractions using a diagram representation 0 0 0 0 0 0 0 1
Level 6 | Task 8 Item 2 Divide fractions using a diagram representation 1
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From Table 4.6, it can be seen that most of the participants’ responses well fit with
the revised model. They could be assigned at a certain level where they have
competencies at that level and below, but they do not have the competencies to be
placed at the upper level. The distribution of participants’ levels based on the revised

order of acquisition of items, tasks, and levels is presented in Table 4.7.

Table 4.7 The distribution of participants’ Levels based on the revised conceptual knowledge

dimension
No Participant Level
1 Participant 9-OK 0
2 Participant 7-IS 1
3 Participant 5-RI 1
4 Participant 8-NA 1
5 Participant 12-AU 1
6 Participant 13-Fl 1
7 Participant 10-BA 2
8 Participant 14-DE 1
9 Participant 17-FA 2
10 Participant 4-JA 3
11 Participant 5-LA 3
12 Participant 6-JO 4
13 Participant 11-RE 5
14 Participant 3-JI 5
15 Participant 16-AKh 6

However, there are some cases that show the patterns of participants’ responses
are not in agreement with the proposed model. For example, participant 6-JO could
answer all the given items at the upper level (Level 4), but made some errors in the lower
level (Level 3). We cannot find any justifiable reasons to revise the model. In all other
cases, the participants who had competencies x also had competencies y. Such
deviations are sometimes unavoidable and show the limitations of a deterministic
approach to scoring when used with human subjects and suggests that using a

probabilistic model might have some advantages.

A probabilistic approach will be explored in Chapter 6, with a larger and more
complete dataset of students’ responses. The probabilistic response model will be
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employed to examine the fit of students’ responses to the proposed model and to
estimate how likely a particular student is to be at a certain level. This probabilistic
model will show whether some “noise” and slight deviations from the model are

| “

acceptable. In other words, the probabilistic model “would enable one to decide
whether a diagnosis with less than perfect fit should be considered enough” (Nichols et
al., 1995, p. 6). A probabilistic model can take into account the stochastic aspects of
students’ responses e.g. students have a competency on a particular item but they can
slip in answering the item, or students do not have competency at a particular item but
can guess the answer correctly (Almond et al., 2015; Nichols et al., 1995) . In short, the
probabilistic response model can estimate how likely it is for the model to fit with the
data, which is essential for empirical validation of the proposed model in this study. In
the meantime, because the revised model tends to be well fitted with most of the
participants’ responses on the raw data presented in Table 4.5, the revised model of the
conceptual knowledge dimension is used as a cognitive model (see the assessment

triangle introduced by Pellegrino et al. (2001)) to perform a large scale test and its

analysis is discussed in Chapter 6.

4.3.2 Procedural Dimension

4.3.2.1 Within-Item Analysis

The aims of within-item analysis in the procedural dimension are the same as those in
the conceptual dimension, which are: 1) to examine whether the instruction for each
item is understood as intended by the participants; and 2) to examine whether the
participants’ responses to each item can be used to infer about the students’
competencies.

As discussed at Chapter 4, there are two tasks within the procedural dimension:
Task 1 Performing Additive Fraction Operations, and Task 2 Performing Multiplicative
Fraction Operations. The discussion of within-item analysis is organised within these
tasks.

Overall, after examining the responses from all the participants, there were no
cases showing that participants misinterpreted the items, meaning that they

understood the procedural items as intended. Moreover, it can be concluded that the
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participants’ responses to the procedural items reflected the intended competencies
underlying each item, as hypothesized in the proposed model.

4.3.2.1.1 Task 1 Performing additive fraction operations

Item 1 — Find the sum of the fraction addition below (ProT1Q1)

_|_

0w
[e< B I \S]

From four participants (three from the low achieving students and one from the
medium achieving students) who received this item, all of them answered the item
correctly. Exhibit 4.40 demonstrates the answer from participant 9-OK, who successfully

added proper fractions with the same denominator.

Exhibit 4.40 The answer of participant 9-OK on Task 1 Item 1 of the procedural knowledge dimension

PARTICIPANT: Find the results of the fraction addition below.
PARTICIPANT: 5/8 §_ + _2_ = _E’__
RESEARCHER: Can you explain your answer? 8 8 ‘&
PARTICIPANT: If the bottom numbers are the same, they can be
added directly, so 3 is added to 2, 5. So 5/8.

RESEARCHER: Okay, thank you

The participant added the numerators and kept the denominator the same to get
the result of a fraction addition with the same denominator. This evidence shows that

the participant understood the rule of adding fractions with the same denominator.

Item 2 — Find the sum of the fraction addition below (ProT1Q2)
14 2
573

From nine participants who received this item, six of them (medium achieving
students) answered the item correctly. Exhibit 4.41 represents the response from
Participant 12-AU, who successfully added proper fractions with different

denominators.

Exhibit 4.41 The answer of participant 12-AU for Task 1 Item 2 of the procedural knowledge dimension

PARTICIPANT: Find the sum of the fraction i

- M
addition below e i W+ 10 Ly -'qlﬁw .
PARTICIPANT: These denominators should be E"‘ 53 T + 3 s 15 % F"f -3

equated first. The LCD (Least Common
Denominator) from 3 and 15 is 15, so 15 divided
by 15is 1, and 1 times 14 is 14. Then, 15 divided
by 3 is 5, and 5 multiplied by 2 is 10. So the result
is 14 plus 10, per 15, which is 24/15. The result is
simplified, so it becomes 1 9/15.
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The participant used a least common denominator to convert the fractions into
equivalent fractions before adding them. Then, the participant added the numerators
and kept the common denominator the same in the result. This evidence demonstrates
that the participant understood the rule of adding fractions with different

denominators.

Three participants did not give the correct answer to Task 1 Item 2. Exhibit 4.42

shows the answer from participant 7-IS.

Exhibit 4.42 The answer from participant 7-IS for Task 1 Item 2 of the procedural knowledge dimension

PARTICIPANT: Find the results of the addition below

(The participant was silent) 14 2

PARTICIPANT : | don’t know —=4-=14 .5 .9
RESEARCHER : Could you tell me what the problems are in 15 3 l IS |

this task?

PARTICIPANT : The bottom numbers are not the same

(the participant was silent, and then did a calculation and Bt b3 =9+ 321243 =13
wrote the answer on the card)

RESEARCHER: Could you explain the process as to why this is
157 (the researcher pointed to the common denominator)
PARTICIPANT : It is a repeated addition, 3 is added to 3, 6, 6
isadded to 9, 9 is added to 3, 12, 12 is added to 3, 15.
RESEARCHER: And then...

PARTICIPANT : | transformed 2/3 to 5/15

RESEARCHER: Could you tell me why this is 5? (The
researcher pointed the numerator 5 in 5/15)

PARTICIPANT : The number 3s are counted, 1, 2, 3, 4, 5 (the
participant counted how many 3s in the equation of
3+3=6+3=9+3=12+3=15)

RESEARCHER: Okay, thanks for your answer, we can discuss
it again later.

The participant tried to convert the fractions into equivalent fractions with a
common denominator. However, the participant made a mistake in transforming 2/3 to
an equivalent fraction with a common denominator of 15. From this response, it can be
inferred that the participant understood the instruction, but the participant did not
know the procedure for adding fractions with different denominators, especially the
procedure for transforming the fractions to their equivalent fractions with a common
denominator.

Item 3 — Find the difference of the fraction subtraction below (ProT1Q3)

5— =
8
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From the 3 participants who received Item 3 in Task 1 of procedural knowledge,
two participants demonstrated that they understood the items and answered them
correctly. Exhibit 4.43 demonstrates one of the answers from Participant 6-JO, who

answered correctly the item.

Exhibit 4.43 The answer from participant 6-JO for Task 1 Item 3 of the procedural knowledge dimension

PARTICIPANT: Find the difference of the fraction
subtraction below

PARTICIPANT: For 5 subtracted by 3/8, it should use per
8. 1 equals 8/8. Soif it is 5, it is equal to 5/1. Then 8/8
multiplied by 5/1 is 40/8. This 40/8 is subtracted by 3/8,
so the result is 37/8 or 4 5/8.

The participant converted the whole number 5 into an improper fraction (5/1)
before being subtracted by 3/8. After that, the participant converted the improper
fraction into an equivalent fraction with a common denominator 8 successfully, and
therefore performed this fraction subtraction successfully. From this response, it can be
inferred that the participant understood the procedure for subtracting fractions that

involve a whole number.

One participant gave an incorrect response for Task 1 Item 3 of procedural

knowledge. Exhibit 4.44 shows the answer of participant 5-RI.

Exhibit 4.44 The answer of participant 5-RI for Task 1 Item 3 of the procedural knowledge dimension

PARTICIPANT: Find the difference of the fraction
subtraction below

(The participant directly wrote down the answer 2/8 on
the card)

RESEARCHER: Can you tell me why the answer is 2/8?
PARTICIPANT: The numerator was got from 5 minus 3, and
the denominator doesn’t change.

From Exhibit 4.44, it can be seen that the participant subtracted the whole number
from the numerator, and kept the denominator of the fraction the same in the result.
This response indicates that the participant’s mistake is not due to misinterpretation of
the item, but because the participant did not know how to subtract a whole number

from a fraction.
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Item 4 Find the sum of the fraction addition below (ProT1Q4)
3 1
25+ -
5 2
The two participants who received Item 4 in Task 1 of procedural knowledge

answered the item correctly. Exhibit 4.45 shows the response from participant 6-JO,

who successfully answered the item.

Exhibit 4.45 The answer of participant 6-JO for Task 1 Item 4 of the procedural knowledge dimension

PARTICIPANT: Find the sum of the fraction addition below ["_ . 1 r_ |
PARTICIPANT: There are two ways to answer this question. 2=+ 2 = 1 )

The easy one is keeping the 2, then the denominators of
3/5 and 1/2 are equated. So 3/5 is added to 1/2. The
denominators are equated with 10, so this one is 10, and
also this one. If this is 10 and this is 5, 3 multiplied by 2 is | | S \
6. This is 10, this is 2, so it is multiplied by 5. Hence, this is | | I w
11/10 or 1 1/10.Next, this 1 1/10 is added to 2 to get 3
1/10.

RESEARCHER: Where does this 2 come from?
PARTICIPANT: From here (the participant showed the
number 2 which is kept from before), and it is added to 1
because they are the same as whole numbers.

The participant took the fraction part from the mixed number and then added it
to the other fraction. At the end, the participant added the whole number (which was
kept from the mixed number before) to the result of the fraction addition to get the
solution. From this response, it can be inferred that the participant understood the

procedure for adding a mixed number with a fraction.

4.3.2.1.2 Task 2 Performing multiplicative fraction operations

Item 1 Find the result of the fraction multiplication below (ProT2Q1)

From eight participants who received this item, four participants answered the
item correctly. Exhibit 4.46 shows the response from participant 14-DE, who multiplied

a fraction by a fraction successfully.
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Exhibit 4.46 The answer of participant 14-DE for Task 2 Item 1 of the procedural knowledge dimension

PARTICIPANT: Find the result of the fraction multiplication

below
. . . 2. T o =
PARTICIPANT: 2/15 times 7/15. Euh... so 2 times 7, and 15 —_ ¥ —_— =
times 15. 2 times 7 equals 14, and 15 times 15 equals 225. i i '1.5,
= -

So the answer is 14/225.

RESEARCHER: Can you tell me how you did that?
PARTICIPANT: The numerator is multiplied by the
numerator and the denominator is multiplied by the
denominator

The participant multiplied the numerator by the other numerator, and multiplied
the denominator by the other denominator to get the solution to the fraction
multiplication problem. This response demonstrates that the participant understood the

procedure for multiplying a fraction by a fraction.

Four participants answered Task 2 Item 2 of the procedural knowledge incorrectly.
Exhibit 4.47 shows the response from participant 12-AU, who made a procedural error

in answering the item.

Exhibit 4.47 The answer of participant 12-AU for Task 2 Item 1 of the procedural knowledge dimension

PARTICIPANT: Find the results of the fraction multiplication

below o 2y Iy
PARTICIPANT: Ehm.. (the participant wrote down 2/15 | [ 1§ 15 'ﬁi :.';’. . _f?a_

multiplied by 7/15, and she put the answer 14/15)
RESEARCHER: Can you tell me how you got the answer
14/15?

PARTICIPANT: Ehm ... They are just multiplied, because the
denominators are already the same, so only the
numerators are multiplied, the result is 14.

From Exhibit 4.47, it can be seen that the participant only multiplied the
numerator with the other numerator and kept the denominator the same in the result.
It seems that the participant misapplied the procedure for fraction addition with the
same denominator to the case of fraction multiplication, because in fraction addition
with the same denominator, only the numerators are added and the denominator
remains the same in the result. From this response it can be inferred that the participant
understood the instruction, but did not know the procedure for multiplying fractions
with the same denominator.

Item 2 Find the result of the fraction multiplication below

% X 24 (proT2Q2)
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Two participants received the item, and one of them answered the item correctly.
Exhibit 4.48 shows the response from participant 10-BA, who successfully multiplied a

fraction with a whole number.

Exhibit 4.48 The answer of participant 10-BA for Task 2 Item 2 of the procedural knowledge dimension

PARTICIPANT: Find the result of the fraction multiplication 1
below - X 24 = %
PARTICIPANT: 24 can be divided by 8, which is 3, and 1/8 ’31 %

becomes 1/1. So the result is 3.

The participant divided the whole number by the denominator to get the solution
for fraction multiplication with a whole number. This response shows that the
participant understood the instruction and knew the procedure for multiplying a

fraction by a whole number.

One participant answered the item incorrectly. Exhibit 4.49 shows the response

from participant 12-AU, who made a procedural error in answering the item.

Exhibit 4.49 The answer of participant 13-Fl for Task 2 Item 2 of the procedural knowledge dimension

PARTICIPANT: Find the result of the fraction multiplication below
> x 24=19%
PARTICIPANT: Hm ... 193 8 X =
RESEARCHER: Can you tell me how you got the answer 193?
PARTICIPANT: 24 times 8 plus 1. 24 times 8 equals 192, plus 1 is the

same with 193. guxb +1
24 191
'5 %:{ -___:1_ Ly
CERNTE

From Exhibit 4.49, it can be seen that the participant multiplied the whole number
by the denominator and added it to the numerator to get the solution. This response
shows that the participant understood the instruction, but made a procedural error in
multiplying a fraction by a whole number.

Item 3 Find the result of the fraction division below (ProT2Q3)

Eleven participants received the item, and seven participants answered the item
correctly. Exhibit 4.50 shows the response from participant 3-JI who found the solution

to Task 2 Item 3 of the procedural knowledge successfully.
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Exhibit 4.50 The answer of participant 3-JI for Task 2 Item 3 of the procedural knowledge dimension

PARTICIPANT: In fraction division, the numbers after the division 5 :
sign should be flipped, so 3/10 becomes 10/3. After that we 5 N, ., M e

multiply these fractions. 10 divided by 10, 1, and 9 divided by 3, | 126 =~ 10 S
3 so the answer is 3. : '

The participant flipped the divisor and multiplied the dividend by the flipped-
divisor to get the answer. From this response, it can be inferred that the participant

understood the procedure for dividing a fraction by a fraction.

Two participants answered Task 2 Item 3 incorrectly. Exhibit 4.51 shows the

response from participant 13-FI, who made a procedural error in answering the item.

Exhibit 4.51 The answer of participant 13-Fl for Task 2 Item 2 of the procedural knowledge dimension

PARTICIPANT: Find the result of the fraction division below
PARTICIPANT: 9 per.10. di\{ided by 3 pe.r 10. Euh thi? division is 9 3 lxj 2\ |
converted to multiplication than this one is flipped (the | [=— = — = S
participant flipped the dividend) so 10 per 9 times 3 per 10. 10 10 10 i%

divided by 10, 1 then 9 divided by 3, 3. Here is 1 so this is 1/3.

e

X3

The participant flipped the dividend-fraction and multiplied by the divisor-fraction
to get the solution for the fraction division. The participant made a procedural error by
flipping the dividend. This response showed that the participant understood the item,

but did not know the correct procedure for fraction division.

Item 4 — Find the result of the fraction multiplication below (ProT2Q4)
5 3

32 x 4=
7 7

Four participants received this item, and three of them answered the item
correctly. Exhibit 4.52 shows the response from participant 10-BA, who answered the

item successfully.

Exhibit 4.52 The answer of participant 16-AK for Task 2 Item 4 of the procedural knowledge dimension

PARTICIPANT: These are mixed numbers that should be : 5 E

converted first into common fractions. For 3 5/7, 7 times 3 is 21, 3? X 4;= ?,.b 74 g = ,di‘lb

and 21 plus 5 is 26. So this is 26/7. While for 4 3/7, 7 times 4 is g oE) s U

28, and 28 plus 3 is 31. So this is 31/7. Now they can be

multiplied directly. 26 times 37, per 7 times 7. (The participant 2

did the calculation for 26 times 31 and 7 times 7). The result is 26 %‘e

806/49. e T
-2
§ob
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The participant transformed the mixed numbers into improper fractions, and then
performed fraction multiplication on these improper fractions. This response
demonstrates that the participant understood the procedure for multiplying mixed

numbers.

One participant answered the item incorrectly. Exhibit 4.53 show the participant’s
response, revealing a procedural error in multiplying a mixed number by a mixed

number.

Exhibit 4.53 The answer of participant 6-JO for Task 2 Item 4 of the procedural knowledge dimension

PARTICIPANT: Find the result of the fraction multiplication
below

PARTICIPANT: 3 5/7 multiplied by 4 3/7, so 3 times 4is 12,and 5
times 3 is 15. And then, 7 times 7 is 49.

RESEARCHER: Can you explain how you get 12?

PARTICIPANT: 3 times 4, because they are in the same as whole
numbers, while 3/5 and 4/7 are the same as fractions, so a whole
number is multiplied by a whole number, while a fraction is
multiplied by a fraction.

The participant multiplied a whole number with another whole number, and a
fraction multiplied by another fraction to get the solution of the mixed number
multiplication. It looks like the participant misapplied a mixed number addition
algorithm to the mixed number multiplication. When adding mixed numbers, it is
allowed to add a whole number to another whole number, and to add a fraction to
another fraction, and then join both of the results to get the solution. From this
response, it can be inferred that the participant’s mistake in adding mixed numbers was
not due to misinterpretation of the result but because the participant did not know the

correct procedure for multiplying a mixed number by a mixed number.

Item 5 — Find the result of the fraction division below (ProT2Q5)
1

2- =13
9

One participant received Task 2 Item 5, and answered the item correctly. Exhibit
4.54 shows the response from participant 4-JA, who divided a mixed number by a whole

number successfully.
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Exhibit 4.54 The answer of participant 4-JA for Task 2 Item 4 of the procedural knowledge dimension

PARTICIPANT: 2 1/9 is divided by 3. Because 2 1/9 is a mixed Al
number so we transform this to common fraction form. 2 1/9 is 25 =
equal to 2 multiplied by 9, 18, 18 added to 1, 19, so 19/9 divided
by 3. We change to multiplication; 3 is the same as 3/1, but L-L & __Ii S
because it is changed to multiplication, we flip this. So 19/9 1/ 9
multiplied by 1/3 is 19; 19 multiplied by 1 is 19; and 9 multiplied =
by 3 is 27, so the result is 19/27. },‘qﬁ‘

=

,ig—- e o= 19 ._l_ =
e 2 i

14
41

The participant transformed a mixed number (2 1/9) and a whole number (3) into
an improper fraction before performing a fraction division. After that, the participant
flipped the divisor (3/1) and multiplied by the dividend (19/9). This response
demonstrates that the participant understood the procedure for multiplying a mixed

number with a whole number.

4.3.2.2 Adding New Items during the Cognitive Interview

Task 2 Items 4 to 6 were designed to test the participants at a high level of the proposed
model (Level 4). However, the participants from the medium and high achieving
students answered the items easily. This evidence suggests a need to create more
complex items to test the competency of high level students, and to differentiate
between high achieving students and medium achieving students. For these reasons, a

new task with several items was developed during the cognitive interviews, as follows.

4.3.2.2.1 Task 3 Complex Fraction Operations

The items within task 3 are different from the previous tasks. In task 1 and task 2, each
item tests competency in additive and multiplicative fraction operations separately. In
task 3, the participants need to combine both additive and multiplicative fraction
operations to solve the items. The operations are “nested” in the numerator or the
denominator of fractions. For example, consider a fraction a/b. In the previous task, the
numerator a and the denominator b are whole numbers. In Task 3, the numerator a or

denominator b could be a fraction operation, for example if a is p/g — x/y, the fraction

p/qa-x/y

operation becomes . The competency of performing such a fraction operation

is essential in further study, especially in Algebra (See Karr, Massey, & Gustafson, 2015).
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Item 1 — Find the result of the fraction operation below (ProT3Q1)

1

22—1

1—
3

Task 3 Item 1 tests the students’ procedural knowledge of fraction operations that
involve fraction subtraction with a whole number and a fraction division. Division of

2t 1
4

fraction is needed to simplify the fraction . To answer this item correctly, students

should understand several rules. First, students should understand the rules of fraction

subtraction, especially where the mixed number is subtracted by a whole number, which
1

4

is needed to solve the operation in the numerator of the fraction
1

4
3

result of 2% — 1 by the whole number 3. Finally, the third rule is similar to the first rule,

. Secondly,

students should understand the rule of simplifying the fraction by dividing the

1
2;-1 L 2r-1
, in which

but in this case a whole number is subtracted by a fraction (1 minus

could be simplified to a fraction). This item is used to address the competency of
procedural knowledge at Level 5.

The results from the cognitive interviews show that two students gave evidence
that they understood the instruction and answered the item correctly. Exhibit 4.56

shows the response from participant 5-LA, who successfully solved the item.

Exhibit 4.55 The answer of participant 5-LA for Task 3 Item 1 of the procedural knowledge dimension

PARTICIPANT: Find the result of the fraction operation below 24— 23-1:1 3
(The participant was silent and then did some calculations) 1 il = <o
RESEARCHER: Keep talking please 1 e 5
PARTICIPANT: Euh this is from the item that 2 % minus 1 is 1= Y i“
5/4. So 1 is subtracted by 5/4 minus 1 per 3 ah.. 5/4 per 3 s
means that 5/4 is divided by 3, so that it becomes 5/4 %
multiplied by 1/3, which is 5/12. Hence, 1 is subtracted by 1
5/12. 1 subtracted by 5/12 is equivalent with 12/12,
subtracted by 5/12, equals 7/12

. - . 1 .
At first, the participant solve the operation of ZZ — 1 in the numerator of the

221
4

fraction , which gave the result 5/4. Next, the participant simplified the fraction

5/4
%, by dividing 5/4 with 1/3 which produced 5/12. Finally, the participant subtracted
5/12 from 1 to get the answer. From this response, it can be inferred that the participant
understood several rules to solve the item, such as fraction subtraction and fraction
division.
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Item 2 — Find the result of the fraction operation below (ProT3Q2)

1+=
5 4
Task 3 Item 2 tests the students’ procedural knowledge of fraction operations that
involve fraction division and fraction subtraction. To solve this item correctly, students
should understand several rules. First, students should understand the rule of dividing a

whole number by a fraction, which is needed to solve the operation in the numerator of

.2 =2

1-+= :
c 2. Second, students should understand the rule of simplifying a fraction c 2 inwhich

. . 2 .
the numerator is also a fraction (the result of 1 + 5 ¢an be transformed to a fraction).

Finally, the participants should understand the rule of fraction subtraction with different

.2
~ 3

denominators to subtract a fraction from the result of by 1/4 to get the final result.

1
5
This item is used to address competency in procedural knowledge at Level 5.
The result from the cognitive interview shows that of the two participants who
received this item, one participant gave evidence that he understood the instruction and

answered the item correctly. Exhibit 4.57 shows the response from participant 10-BA,

who solved the item successfully.

Exhibit 4.56 The answer of participant 10-BA for Task 3 Item 1 of the procedural knowledge dimension

PARTICIPANT: Find the result of the fraction operation below ;
PARTICIPANT: 1 divided by 2/3 per 5 minus 1/4. This 1 —5—"3' =
divided by 2/3 should be calculated first. So 1 per 1 times 3/2
per 5 is equal to 3/2/5. Hm... what’s the next step (the \
participant was silent) -)(% . L
RESEARCHER: Could you tell me what the problems are in | 27 A l o
this task? o
PARTICIPANT: Ehm this is double fractions

(After that the participant crossed out the denominator 2 of
3/2 and the denominator 4 of 1/4). This means 3/5 minus 1/2
are transformed with the denominator 10. So 10 divided by
5is2,and 2 times 3 is 6. 10 divided by 2 is 5, and 5 times 1 is
5. Now 6 minus 5 per 10 or 1/10.

5
&

- e

.2

3 and

The participant solved the operation on the numerator of the fraction

successfully simplified this fraction and subtracted by 1/4 to get the result. This response
demonstrates that the participant understood several procedures, such as fraction

division and fraction subtraction with different denominators.
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One participant could not answer Task 3 Item 2 correctly. Exhibit 4.58 shows the

response from participant 8-NA who failed to solve the item.

Exhibit 4.57 The answer of participant 8-NA for Task 3 Item 2 of the procedural knowledge dimension

PARTICIPANT: Find the result of the fraction operation below
PARTICIPANT: There are mixed numbers and common
fractions and there is a fraction here but it is joined so 1
divided by 2/3 per 5, subtracted by 1/4 is equal to 1
multiplied by 3/2 per 5, and subtracted by 1/4. So this is
equal to 3/2/5 ehm ... . Hm... the problem is that 3/2 is
already one unit, while the denominator, but per 5, | don’t
know what this number belongs to. While this 1/4, | have
already know.

RESEARCHER: Do you want to try first?

PARTICIPANT: this 3/2 per 5 means that this is divided, so 3/2
multiplied by 5 is equal to 5 multiplied by 3, 15. So 15/2 is
subtracted by 1/4. Its denominator is not the same, so it
should be equated first with 4. 4 multiplied by 15 is 60 so
60/4 is subtracted by % which is 59/4. If it is simplified so 59
divided by 4 (the participant divided 59 by 4 using the whole
number division technique). The result is 14 19/4.

- . 2
The participant successfully executed the operation 1 + 3 as the numerator of

1+E
3

to produce a fraction % However, the participant had difficulty in simplifying the

fraction % Next, the participant made a mistake by multiplying 3/2 by 5 to simplify %

From this response, it can be inferred that the participant understood the instruction

but did not understand the rule of simplifying a fraction in which the numeratorisin a

fraction form.

Item 3 — Find the result of the fraction operation below (ProT3Q3)

Task 3 Item 3 tests the students’ procedural knowledge of fraction operations that
involve more nested fraction operations than Task 3 Items 1 and 2. To solve this item,
the participants should understand the rules of fraction addition and subtraction with a
whole number, and understand how to use fraction division to simplify a fraction where

the numerator or denominator contains a fraction or a fraction operation.

The results from the cognitive interviews show that of the six participants who

received this item, three participants gave evidence that they understood the
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instruction and solved the item successfully. Exhibit 4.59 shows the response from

participant 16-AK, who solved the item successfully.

Exhibit 4.58 The answer of participant 16-AK for Task 3 Item 3 of the procedural knowledge dimension
PARTICIPANT: Find the result of the fraction operation
below
PARTICIPANT: Firstly, we do the operation in the
bottom which is 1 or 3/3 minus 1/3, which is equal to
2/3. Then 1 divided by 2/3 or 1 times 3/2 which is 3/2.
Next, 3/2 plus 6 equals 6 3/2, then 5 divided by 6 3/2
which is the same as 5 divided by 15/2. It is the same as
5 times 2/15 which is 2/3. Finally, 1 plus 2/3 which is
equalto12/3

The participant executed the fraction operation from the denominator in the
bottom of the operation and moved to the upper level operation by dividing the

numerator with the denominator. For example, after calculating 1-1/3 to get 2/3 as the

1
denominator of T the participant moved to the higher level of operation by dividing

1 with 2/3 to get 3/2. This 3/2 is added to 6 to get 15/2, which has become the
denominator in which the numerator is 5. The participant divided 5 by 15/2 to get 2/3.
Finally 2/3 is added to 1 to get the final answer. This response demonstrates that the
participant understood the instruction and understood several rules to solve complex
fraction operations, such as fraction subtraction and fraction division that were used to

simplify the nested fraction.

Three participants answered Task 3 Item 3 incorrectly. Exhibit 4.59 shows the

response from participant 17-FA.

Exhibit 4.59 The answer of participant 17-FA for Task 3 Item 3 of the procedural knowledge dimension
PARTICIPANT: Find the result of the fraction operation below
(The participant was silent for a moment)

RESEARCHER: Can you tell me what the problems are in this
task?

PARTICIPANT: Euh ... | do not understand 5 and 1 here, but |
think 1 is added to 5, so 1 plus 5 equals 6. 6 plus 1 equals 7
so this is 6/7. Then 6/7 is subtracted by 1/3. The
denominators are equated to 21. 21 divided by 7 is 3, and 3
times 6 is 18. 21 divided by 7 is 7, and 7 times 1 is 7 so the
resultis 11/21.

From Exhibit 4.59, it can be seen that the participant looked confused with the

whole number 1 and the numerator 5. The participant started the calculation by adding
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the whole number 1 to 5, and took the result as the numerator. Next, the participant
added the whole number 6 to 1, and took the result as the denominator. Hence the
participant got a fraction 6/7 which is subtracted later by 1/3 to get the final result. From
this response, it can be inferred that the participant understood the instruction, but did
not understand the rule and procedure to execute a complex (nested) fraction
operation.

In summary, the results of within-task analysis of the procedural knowledge
dimension show that there are no cases where the participants made a mistake because
of misinterpreting the instructions of the items, meaning that the participants could
understand all the items as intended. The results also show that the participants’
responses reflect accurately the hypothesized competencies. Hence, the responses can
be used to infer the participants’ procedural knowledge. Next, the hierarchical order of

the items examined in within-task analysis are presented in the following section.
4.3.2.3 Within-Procedural Task Analysis

The within-task analysis was conducted for all items within a task in the procedural
knowledge dimension. The aim of the within-task analysis of the procedural knowledge
dimension is the same as that of the conceptual knowledge dimension, which is to
examine whether the hierarchical order of the items within the task is consistent with
the hypothesized order. To achieve this goal, the analysis is focused on finding whether
there is evidence that some of the participants answered the items at the higher levels
in the task successfully but could not answer the items at the lower levels of the task.
Such evidence would show that there is an inconsistency between the order of the items

within a task and the hypothesized order.

Table 4.8 demonstrates the participants’ responses, which are structured within
the tasks and levels of the procedural knowledge dimension. There are three tasks
within the procedural knowledge dimension, which are: 1) performing additive fraction
operations; 2) performing multiplicative fraction operations; and 3) performing complex
fraction operations. From Table 4.8, it can be seen that there are no cases within tasks
where students could answer an upper item correctly, but not a lower item. Therefore,
it can be inferred that the hierarchical order of the procedural items is consistent with

the hypothesized order.

145



Table 4.8 The distribution of the participants’ responses within task of the conceptual dimension

Task Item Level 9-OK | 7-IS | 5-RI 8-NA ii; 13-FI 10-BA | 14-DE | 17-FA | 4-JA | 5-LA 6-JO0 11-RE | 3-JI 16-AK
Item 1 Level 2 1 1 1 1
Item 2 Level 2 0 0 0 1 1 1 1 1 1
Task 1
Item 3 Level 3 0 1 1
Item 4 Level 3 1 1
Item 1 Level 3 0 0 1 0 0 1 1 1
Item 2 Level 3 1
Item 3 Level 3 1 0 1 1 1 1 1
Task 2
Item 4 Level 4 1 0 1 1
Item 5 Level 4 1
Item 6 Level 4 1
Item 1 Level 5 1
Task 3 Item 2 Level 5 0 1
Item 3 Level 5 0 0 0 1 1 1
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4.3.2.4 Assigning the Participants to the Levels of the Procedural Dimension and
Changes in the Model

The purpose of this analysis is to examine whether the participants’ profiles were in
agreement with the proposed model. To achieve this goal, the order of the participants’
responses for the procedural tasks were compared with the hypothesized order of items

and tasks nested in levels, as shown in Table 4.9 below.

Table 4.9 The hypothesized order of acquisition of items and tasks for the procedural dimension
of the learning progression

Level Task
Level 1 -
Level 2 Task 1: Items 1, 2
Level 3 Task 1: Items 3, 4
Task 2: ltems 1, 2, 3
Level 4 Task 2: Items 4, 5, 6
Level 5 Task 3: Items 1, 2, 3

The profile for all 15 participants’ responses on the procedural knowledge
dimension are presented in Table 4.10 below. The criteria for assigning participants into
the procedural level is the same as that for conceptual knowledge, which is: the
participants are assigned to a certain level if they have all the competencies at that level

and below, but they have not enough competencies at the upper level.

From Table 4.10, one can see the distribution of the participants’ responses across
the items, tasks and levels in the hypothesized procedural knowledge dimension. At
level 2, three participants (participants 9-OK, 7-1S and 5-Rl) could answer Task 1 Item 1
(adding proper fractions with the same denominator) correctly, but could not answer
Task 1 Item 2 (adding proper fractions with different denominators) correctly. This
evidence indicates that adding proper fractions with the same denominator is much
easier than adding fractions with different denominators and it might be better to assign

it to a different level in the progression

As aresult, Level 2 is revised by differentiating the levels of additive operations of proper
fractions with the same denominator (level 1) and those of additive operations with
different denominators.
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Table 4.10 The distribution of participants’ responses across the levels of the procedural knowledge dimension

Level Task Item Description of item 9- | 7-|5-| 8- 12- | 13- | 10- | 14- | 17- | 4- | 5- | 6- | 11- | 3- | 16-
OK [ IS | Rl | NA | AU | FI BA |DE |FA |JA | LA |JO | RE |JI | Akh
Level1 | - - -
Level 2 | Task1 Item 1 Add fractions with the same denominator 1 1)1 1
Task 1 Item 2 Add fractions with different denominators 0 0|0 1 1 1 1 1 1
Task 1 Item 3 Subtract a fraction from a whole number 0 1 1
Task 1 Item 4 | Add a fraction with a mixed number 1 1
Level 3 | Task2 Item 1 Multiply a fraction with a fraction 0|0 1 0 0 1 1 1
Task 2 Item 2 Multiply a fraction with a whole number 0 1
Task 2 Item 3 Divide a fraction with a fraction 1 0 0 1 1 1 1 1 1
Task 2 Item 4 Multiply a mixed number with a mixed number 0 1 0 1 1
Level 4 | Task2 Item 5 Divide a mixed number with a whole number 1
Task 2 Item 6 Divide a mixed number with a mixed number 1
Solve a nested fraction operation where the numerator is a fraction 1 1
Task 3 Item 1 .
subtraction
Level 5 Solve a nested fraction operation where the numerator is a fraction 0 1
Task 3 Item 2 S
division
Task 3 Item 3 | Solve a fraction operation with a two-level nested fraction 0 0 0 1 1 1
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At level 2, two participants (participants 12-AU and 13-Fl) could add proper
fractions with different denominators (Task 1 Item 2), but could not multiply or divide a
proper fraction by a proper fraction (Task 2 Item 1 and 3). This evidence indicates that
additive fraction operations (for proper fractions) are easier than multiplicative fraction
operations (for proper fractions), and therefore should belong to a different level in the
progression. For this reason, the levels of additive proper fraction operations (Level 2)

is differentiated from multiplicative proper fraction operations (Level 3).

At level 3, participant 6-JO could answer both items of proper fraction
multiplication and division (Task 2 Item 1 and Item 3 at Level 3) correctly but could not
answer multiplication of mixed numbers (Task 2 Item 4) correctly. This result suggests
that it might be better to separate the competency of multiplying with a proper fraction
from the competency of multiplying with mixed numbers. Therefore, the competency
of multiplicative fraction operations for proper fractions is placed at level 3 and that of
multiplicative fraction operations with mixed numbers or improper fractions is placed

at level 4.

At levels 4 and 5, participant 8-NA could answer Task 2 Item 6 (dividing a mixed
number with a mixed number) correctly, but could not answer Task 3 Item 2 (solving a
nested fraction operation with the numerator is a fraction division) correctly. This
evidence suggests that multiplicative fraction operations require a different level of
learning from a nested fraction operation as hypothesized in the model. This result

confirms the order of acquisition of levels 4 and 5.

From level 5, participant 10-BA could solve Task 3 Item 2 (solving a nested fraction
operation with the numerator is a fraction division) correctly, but could not answer Task
3 Item 3 (Solving a fraction operation with two-level nested fraction) correctly. This
indicates that performing one-level nested fraction operations requires a different level
of learning from that of two-level or more nested fractions. This result suggests that
level 5 should be split to separate the competency of performing two-level nested
fraction operations from the competency of performing one-level nested fraction

operations.
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Based on the findings discussed above, the hypothesized procedural knowledge
dimension was changed as follows. Level 0 was created to capture students who have
no procedural knowledge of fraction operations. Although there are no cases of
participants who represent this level from the cognitive interview, this level was still
created to accommodate the possibility of such cases appearing in the large study
discussed in the next chapter (Chapter 6). At level 1, students begin to know the
procedure for additive proper fraction operations with the same denominator. Next, at
level 2, they advanced their procedural knowledge of additive fraction operations into
additive proper fraction operations with different denominators. At level 3, they
advanced their additive operations into operations that involve improper fractions and
mixed numbers. In addition, their competency with multiplicative fraction operations
emerges at this level but is still limited to proper fractions. Next, at level 4, they advance
their multiplicative fraction operations to multiplicative operations which involve
improper fractions and mixed numbers. At level 5, they have the competency to solve
more complex fraction operations that involve one-level nested fraction operations.
Finally, at Level 6, they have sufficiently advanced procedural competency that they can

solve two or more nested complex fraction operations.

Proceeding from the changes to the hypothesized model of the procedural
knowledge dimension, the revised order of acquisition of items, tasks, and levels is
presented in Table 4.11 below, and the distribution of participants’ responses is

presented in Table 4.12

Table 4.11 The hypothesized and revised order of acquisition of items, tasks and levels for the procedural
knowledge dimension

Hypothesized Revised
Level Tasks Level Tasks
Level O -
Level 1 - Level 1 Task 1: Item 1
Level 2 Task 1: Items 1, 2 Level 2 Task 1: Item 2
Level 3 Task 1: Items 3, 4 Level 3 Task 1: Items 3, 4
Task 2: Items 1, 2, 3 Task 2:ltems 1, 2, 3
Level 4 Task 2: Items 4, 5, 6 Level 4 Task 2: Items 4, 5, 6
Level 5 Task 3: Items 1, 2, 3 Level 5 Task 3: Items 1, 2
Level 6 Task 3: Item 3
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Table 4.12 The distribution of participants’ responses across level of the revised procedural knowledge dimension

Level Task Item Description of item 9- [ 7- |5 8- 12- | 13- | 10- | 14- | 17- | 4- | 5- | 6- | 11- | 3- | 16-
OK | IS | Rl | NA | AU | FI BA | DE FA | JA | LA |JO | RE | Jl | Akh
Level0 | - - -
Level 1 | Task1 Item 1 Add fractions with the same denominator 1 1)1
Level 2 Task 1 Item 2 Add fractions with different denominators 0 010 ! ! ! 1 ! !
Task 1 Item 3 Subtract a fraction from a whole number 0 1 1
Task 1 Item 4 Add a fraction with a mixed number 1
Level 3 | Task2 Item 1 Multiply a fraction with a fraction 0|0 1 0 0 1 1 1
Task 2 Item 2 Multiply a fraction with a whole number 0 1
Task 2 Item 3 Divide a fraction with a fraction 1 0 0 1 1 1 1 1 1
Task 2 Item 4 Multiply a mixed number with a mixed number 0 1 0 1 1
Level 4 | Task2 Item 5 Divide a mixed number with a whole number 1
Task 2 Item 6 Divide a mixed number with a mixed number 1
Solve a nested fraction operation where the numerator is a fraction 1 1
Task 3 Item 1 .
subtraction
Level 5
Solve a nested fraction operation where the numerator is a fraction 0 1
Task 3 Item 2 L
division
Level 6 | Task 3 Item 3 Solve a fraction operation with a two-level nested fraction 0 0 0 1 1 1
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From Table 4.12, it can be seen that most of the participants’ responses are in
agreement with the revised model. The participants were assigned to a certain level if
they demonstrated competencies at that level and below, but they did not have enough
competencies at the upper level. The participants’ levels are presented in Table 4.13.
However, there are some cases which show the pattern of participants’ responses are
not perfectly in agreement with the proposed model. For example, participant 6-J0O, who
could answer an item at level 6, but made an error in answering Task 2 Item 4 at Level

4.

This case is similar to the case in the conceptual knowledge dimension where there
is slight deviation from the student's answer to the hypothesized model. As discussed
earlier, a probabilistic response model should test the goodness of fit of the
hypothesized model with the data from the participants' responses. The purpose of the
analysis is to test whether slight deviations from the model are accepted. This discussion

will be conducted in Chapter 6 using the complete data set.

Table 4.13 The distribution of participants’ Levels of the procedural knowledge dimension

No Participant Level
1 Participant 9-OK 1
2 Participant 7-IS 1
3 Participant 5-RI 1
4 Participant 8-NA 4
5 Participant 12-AU 2
6 Participant 13-Fl 2
7 Participant 10-BA 4
8 Participant 14-DE 3
9 Participant 17-FA 3
10 Participant 4-JA 5
11 Participant 5-LA 5
12 Participant 6-JO 6
13 Participant 11-RE 6
14 Participant 3-JI 4
15 Participant 16-AK 6
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4.4 Discussion of the Results

The within-item analysis shows that the conceptual and procedural items were
understood by the participants and they tested the intended competencies. The
participants’ responses indicated that they understood the instructions and their
mistakes were caused by incomplete or no knowledge. The responses from the

participants also show that the items test the intended competencies successfully.

The within-task analysis also confirmed that the hierarchy of items within the
tasks was consistent with the hypothesized order. Most of the participants who could
answer correctly at the upper level, could also answer the items at the lower level. There
were almost no cases where the participant successfully answered the items at the
upper level but could not answer the items at the lower level. This evidence shows that

the order of the items within each task is consistent with the hypothesized order.

The analysis that tested the fit of the tasks/items with the hypothesized levels
showed that several changes in the model were needed in order to get a better fit with
the participants’ responses. Within the conceptual knowledge dimension, the part-
whole level of the hypothesized model was split into two levels (level 1 and level 2)
because the participants’ responses showed that there were two different constructs
within this level, which could not be placed on the same level of learning. One is a level
1 part-whole understanding, which shows some understanding of part-whole relations
but limited to fractions with the same denominator. Level 2 in the revised model,
represents a more advanced part-whole understanding, which extends to fractions with
different denominators and to equivalent fractions. In addition, there was a competency
at Level 3-i.e., generating a fraction from a pie diagram with unequal partitions — which
was more likely to have the same construction as the construction at Level 2 of the

revised model. This competency was moved to level 2.

The competency of generating improper fractions at Level 4 was moved to level 3,
so level 3 became improper fractions and fractions as measures, and level 4 became the
unbounded infinity of fractions. Next, understanding multiplicative fraction operations
tends to require a different level of learning than the construction of understanding of

the density of fractions. Hence, understanding density was placed at level 5, and
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understanding multiplicative fraction operations was placed at level 6. Level 0 is created

to accommodate participants who have no fraction understanding.

For the procedural knowledge dimension, participants’ responses show that
knowing the procedure for fraction addition with the same denominator requires a
different level of learning than the procedure for fraction addition with different
denominators. Hence, level 1 is adding fractions with the same denominator, while level
2 is adding fractions with different denominators. Level 3 and level 4 remain the same
as the hypothesized model. Level 3 covers additive improper fractions and mixed
numbers operations, and multiplicative fraction operations limited to proper fractions,
while level 4 is multiplicative fraction operations which involve improper fractions and
mixed numbers. Levels 5 and 6 were created during the cognitive interview to recognise
the procedural knowledge of high achieving students. Level 5 is one-level nested fraction
operations, while level 6 is two-level nested fraction operations. Level O is created to
accommodate the possibility of having participants who do not have procedural

knowledge of fraction operations.

Most of the participants fitted well into the revised model for both the conceptual
and procedural knowledge dimensions. Table 4.14 demonstrates the profile of the

participants' levels for both the conceptual and procedural knowledge dimensions.

The results show that the participants look varied in their levels for learning
fractions. At a low level, several participants (participants 7-1S and 5-Rl) have the same
level in both the conceptual and procedural knowledge dimensions. Similarly, at a high
level, participant 17-AK has the same level in both the conceptual and procedural
knowledge dimensions. In the medium level, most of the participants have a higher level
of procedural than conceptual knowledge. This evidence shows that during the
development of fraction learning, students tend to have more knowledge about
algorithms/procedures for fraction operations than understanding of the symbolic

notation of fractions and the meaning underlying fraction operations.
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Table 4.14 The distribution of participants’ Levels in the procedural knowledge dimension

No Participant Conceptual Procedural
1 Participant 9-OK 0 1
2 Participant 7-IS 1 1
3 Participant 5-RI 1 1
4 Participant 8-NA 1 4
5 Participant 12-AU 1 2
6 Participant 13-Fl 1 2
7 Participant 10-BA 2 4
8 Participant 14-DE 1 3
9 Participant 17-FA 2 3
10 Participant 4-JA 3 5
11 Participant 5-LA 3 5
12 Participant 6-JO 4 6
13 Participant 11-RE 5 6
14 Participant 3-JI 5 4
15 Participant 16-AK 6 6

In some cases, procedural knowledge helped participants to find the solutions for

conceptual items. For example, participant 10-BA used his procedural knowledge of

computing equivalent fractions with a common denominator to compare fractions with

different denominators. The following exhibit (Exhibit 4.61) shows the participant’s

responses.

Exhibit 4.60 The answer of participant 10-BA for Task 3 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Which s larger § or %? Illustrate how you got your answer
using a picture.

PARTICIPANT:

The fractions should be transformed with a common

denominator 12. So 12 divided by 3 is 4, and 4 times 2 is 8. Then 12 divided
by 3 is 3, and 3 times 3 is 9. So we have the fractions 8/12 and 9/12. So 3/4

is larger.
RESEARCHER:
PARTICIPANT:

Can you explain your answer using diagram?
Drew 12 parts ...

(The participant drew 2 circles to describe 8/12 and 9/12).
For 8/12, 8 parts are shaded, while for 9/12, 9 parts are shaded

RESEARCHER:
PARTICIPANT:
RESEARCHER:
PARTICIPANT:
RESEARCHER:

So which one is larger?

3/4

Why?

Because it has more shaded parts
Okay, thank you for your answer.

'1.3::6)".-"-',@9
z 1 @ 7 e
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The participant activated procedural knowledge to transform the fractions 2/3 and
3/4 into equivalent fractions with a common denominator (8/12 and 9/12). Next, the
participant drew pie diagrams for these equivalent fractions to compare 2/3 and 3/4.
This result shows how procedural knowledge was used effectively in tandem with
conceptual knowledge to solve a conceptual item. The participants’ understanding of
comparing two fractions, that the denominator should be the same, induced the
participant to use procedural knowledge to calculate the equivalent fractions with a
common denominator. After that, the participant used conceptual knowledge to
compare the equivalent fractions using diagram representations to determine which

fraction is bigger.

In another case, the participant used a correct procedure for fraction

multiplication but could not understand the procedure.

Exhibit 4.61 The answer of participant 10-BA for Task 8 Item 1 of the conceptual knowledge dimension

PARTICIPANT: Draw a pictorial representation for the fraction 3 N
multiplication below 1237 3
PARTICIPANT: 1/2 times 3/4 is equal to 4/8. The denominator should \
not be the same, so we can draw 1/2 and % directly. For 1/2, there are okl

two parts and one is shaded, and for 3/4 there are four parts and three %D X @m 2 m[m] ﬁﬁ
are shaded. So the result is 4/8 in which there are 8 parts and 4 parts B
are shaded.

The participant successfully calculated 1/2 multiplied by 3/4 procedurally.
However, the participant could not represent the fraction multiplication using a diagram
representation. This result shows that the participant had procedural knowledge of

fraction multiplication but did not understand the procedure.

From the cases discussed above, the relationship between conceptual and
procedural knowledge can be summarized as follows. In some cases, conceptual and
procedural knowledge seem unrelated. In other cases, conceptual and procedural
knowledge are intertwined. From all these cases, it may be argued that procedural
knowledge is learned first or that conceptual knowledge is learned first. However, these
results do not suggest that a type of knowledge (either conceptual or procedural)
necessarily leads to or causes an increase in the other form of knowledge. These findings
are consistent with the hypothesis of individual differences proposed by Hallett et al.

(2010). Further investigation of the relationship between conceptual and procedural
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knowledge will be performed in the next chapter using a more complete data set from

the 516 student-data test.

4.5 Summary of the Chapter

This chapter discussed the empirical evidence from the cognitive interviews to validate
the proposed model and to improve the item tasks. To achieve this goal, four type of
analyses were implemented and discussed for each conceptual and procedural
knowledge dimension, namely within-item analysis, within-task analysis, assigning
participants to levels, and within-level analysis. The results showed that: 1) the
instructions for the items were understood by the participants; 2) the participants’
responses reflected the intended (hypothesized) competencies; 3) the order of
acquisition of the items was consistent with the hypothesized order; 4) the responses of
the individual participants were consistent with the proposed levels for both the
conceptual and the procedural knowledge dimensions; and 5) the order of acquisition

of the levels was consistent with the hypothesized order.

The proposed model and items revised in this chapter were used to conduct a
larger study with 516 students at Junior Secondary School, from grades 7 to 9. The

results of the study are presented and discussed in the following chapters.
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CHAPTER 5 : BAYESIAN NETWORKS MODELLING FOR
MEASURING LEARNING PROGRESSIONS

5.1 Introduction

The proposed model of fraction learning progression has been revised for both
conceptual and procedural knowledge dimensions, based on the results of the cognitive
interview, as discussed in Chapter 4. The revised model of the conceptual items now
consists of the following seven levels which are (from lowest to highest): no fraction
understanding; part-whole of proper fractions with the same denominator; part-whole
of proper fractions with different denominator and equivalent fractions; improper
fractions and fractions as measures; unbounded infinity; density; and understanding
multiplicative fraction operations. The revised model of the procedural dimension also
has seven levels, which are (from lowest to highest): no procedural knowledge; additive
operations of proper fractions with the same denominator; additive operations of
proper fractions with different denominators; multiplicative operations of proper
fractions; multiplicative operations of improper fractions/mixed numbers; one-nested

complex fraction operations; and two or more nested complex fraction operations.

There are two main aims in this chapter. The first aim is to develop a
measurement model to assist in the validation of the proposed model using Bayesian
statistical approaches. Two types of Bayesian Networks models were developed to
assess the students’ learning progression. The first model is a simple Bayesian Networks
model with a single parameter. This model is commonly used in Bayesian Latent Class
Analysis, which is usually applied for measuring learning progression (Jefrey Thomas
Steedle, 2008; West et al., 2012). In the second model, a more complex Bayesian
networks model with several parameters was developed to capture the progression
levels in the proposed model of fraction learning progression (adapted from Rutstein,

2012).

The second aim is to perform a model evaluation of the Bayesian Networks

models that are used to measure and validate the learning progression model. Posterior
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Predictive Model Checking (PPMC) and Entropy Statistics (Levy & Mislevy, 2016) were

employed to perform the model validation.

To achieve the two aims, this chapter is organized into two main sections. Section
5.2 discusses the Bayesian Networks Model with a single latent variable (referred to as
Model 1) followed by the Bayesian Networks Model with multiple latent variables
(referred to as Model 2). Section 5.3 details the model evaluation of the Bayesian
Networks using the PPMC and the Entropy Statistics. In summary, this chapter is
designed to answer the following research question: “To what extent does the
hypothetical model that we developed based on the distinction between conceptual and
procedural knowledge capture the emergence of student competencies in fraction

learning?”

5.2 Bayesian Networks Modelling

The general introduction of Bayesian inference in the context of educational assessment
was presented in Chapter 2, which includes the review of the Bayesian Networks model.
In this section, the specification of the development of Bayesian Networks model for
measuring learning progressions is discussed. We propose two models, namely Model 1

and Model 2 with the following details.

5.2.1 Model 1: Bayesian Networks with a Single Latent Variable 6

The notation and the development of the Bayesian Networks Modelling in this study
follow those of Bayesian networks as described in Levy and Mislevy (2016). Let x = (x;;)
be the matrix data of the responses of n students on J items in which all the items have
the same number of response categories, where x;; is the response of the ith-student
onitemjfori=1,..,nandj=1,...,J. Two sets of parameters 8 and 1 represent the latent
variable of students’ level and the conditional probability of students correctly answer
the items given that the students have the competencies at a particular level

respectively.

Model 1 is developed based on the assumption that the students’ level in the

learning progression is represented by a single latent variable @ = (6, ..., 8,,), where 6;
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is the level of the it" student for i = 1, ...,n. In a simple 2DAG, Model 1 is represented

Xi1 Xi2 Xiz3 XiJ

in Figure 5.1.

Figure 5.1 A simple DAG of a Latent Class Analysis (Adapted from Levy & Mislevy, 2016)

The simple DAG in Figure 5.1 states that the probability of every observable x;; (a
response of the i*"-student on item j) is conditional on 8; (the level of the i*"-student.

This conditional probability can be expressed as
p(x;16;).

In latent class analysis, suppose that every observable x;; has k possible values (from k
=1,.., K, where K is the number of the response categories), then the sum of
probabilities of the i*"-student for all possible k values is 1 for a given level of 8; = c,
where c is the level of the i*-student. This sum of probabilities can be expressed as

follows
h=1P(xij =k|6; =c¢) = 1. (5. 1)

The relationship between the response of x;; and the students’ category (level) in
Equation (5.1) expresses the measurement model of the DAG. This measurement model

can now be denoted as
Teje = p(xij = k|6; = ©),
K . T¢jk=1, where c=1,...,C.

In our study, the proposed model of learning progression for both the conceptual

and the procedural knowledge dimension has six levels (C=6) and two response

2 A DAG is a directed acyclic graph, as discussed in Chapter 2, the Literature Review.
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categories k of the students’ answers: incorrect and correct answers (denoted as k=0,1
respectively). Hence the conditional probability of 7, for k=1 (a correct answer) is
simplified as 7, and for k=0 (an incorrect answer) is denoted as 1 — 7.;. Thus 7 j in

the above can now be simplified as

i = p(x; = 1|6; = ¢), (5.2)
Yh=1Tc;=1, where c=1,...,C.
The conditional probability of 7t is represented in Table 5.1. Table 5.1 is called a

conditional probability table (CPT), which is one of the main important features in

Bayesian networks computation (Almond et al., 2015; Levy & Mislevy, 2016).

Table 5.1 Conditional probability Tcj table with two response categories and six classes of 6;

Response Category
0;
0 1

1 1-my Tj
2 1-1y; Tt2j
3 1-13; T3j
4 1-my j Tyj
5 1-ms; s
6 1-mg; Tej

Let ™ = (my, ..., y), where T; is the collection of Tcj for c=1,...,C, and j=1,....J.
Moreover, let x; be the collection of the it"-student’s answers on J items for the it"-
student. The joint likelihood function of the observables x;; conditional on both 6; and

T.;j can be denoted as follows:

p(x|0,m) = [[{-1 p(x:il60;, ™) = [[i=, H§=1 p(x;;|6; = ¢, m;)), (5.3)
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where (x;;16; = ¢, ;) ~ Bernoulli(rr.;) for all possible dichotomous response values

(incorrect and correct answers).

As discussed in Chapter 2, Bayesian inference requires a prior specification of the
parameters. In Model 1, there are two parameters which need prior specification, 8; and
T.j respectively. Because 6; and r.; are assumed to be independent, then the joint prior

density function of 6; and 7 can be denoted as
p(6i, ;) = p(0)p(m)).

In our case, 0; has six categories which are defined through a distribution with
hyper-parameter y, where ¥ = (y4, ..., ¥s)- Hence, the distribution of 6; is assumed as

categorical conditional on y, which is
0;| Y ~ categorical (y). (5. 4)

As ¥ is unknown, the hyperparameter of y should be specified using a conjugate
prior density for categorical responses which have values of [0,1], such as a Dirichlet

distribution (Levy & Mislevy, 2016). Hence, the distribution of ¥ can be denoted as
y~Dirichlet (a,) where a, = (ay, ..., &). (5.5)

The values of @, are set to 1s which give uninformative priors of the students’
level. Hence a, is denoted as @, = (1,1,1,1,1,1) which gives the same prior probability
(about 16.67%) for all levels. These uninformative priors are chosen to allow that the
estimates of students’ levels were produced more from the likelihood of the students’

responses (data) than the effects of the prior.

Next, as the parameter of the measurement model m.; is unknown, the prior
distribution of m.; should be specified. Because 7.; represents the probability of
dichotomous possible outcomes of correct and incorrect response given the students’
class in 6;, then m.; is specified to have the conjugate prior of beta distribution, as

follows:

ncj~Beta(ancj,ﬁﬂcj) ) O > 0, ,BHCJ. >0. (5.6)
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Given that we have defined priors in (5.4), (5.5), and (5.6) and the joint likelihood

functions in (5.3), the joint posterior distribution for Model 1 can now be defined

follows:

p(0,y,m|x) x p(x|0,y, ®)p(0,y,T)
=p(x]6, T)p(6|y)p(¥)p (1),
=[1iz4 1_[521 p(x:|60: 7)) (6: V)P () [1e=1 P (1)), (5.7)
where (x;;]6; = ¢, ;)~Bernoulli (1)

0;| y ~ categorical (y),

y~Dirichlet (a,) where a, = (a4, ..., @),

mcj~Beta(acj, Bej) fori=1, ..., n; j=1, .., J; c=1,..,C.

The complete DAG representing the joint posterior density in Equation (5.7) is

shown in Figure 5.2.

Figure 5.2 The complete DAG of a Bayesian Network for the Latent Class Analysis in Model 1; adapted
from Levy and Mislevy (2016).

Having obtained the joint posterior distribution of the parameters (0,y, ) for

Model 1, as in Equation (5.6), the parameters will then be estimated using the MCMC
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method discussed later in Section 5.2.3. However, as commonly found in statistical
latent models, Model 1 is an unconstrained model which has an indeterminacy problem
in labelling the class (Levy & Mislevy, 2016). Indeterminacy in LCA (Latent Class Analysis)
refers to the problem of identifying which labels are for the class because there is no
information obtained from the model to identify which class is called class 1, class 2 and

so forth (Levy & Mislevy, 2016).

One of the strategies to solve the indeterminacy in latent class model is by
specifying the prior distribution for measurement model parameters 7; (See Levy &
Mislevy, 2016, p. 319). We set the prior distribution 7.; using an informative prior with
the belief that students at a certain level ¢ have a high probability (with a mode around
80%) to get correct answers for the items at that level and below, and with the belief
that the students have low probability (with a mode around 20%) to correctly answer
the items at levels higher than level c. To translate these beliefs into our Bayesian model,
we use the properties of Beta distribution by setting the items at a certain level (class)

and below as follows:
m.j~Beta(80,20).

Similarly for the items at a higher level than level ¢, we set the Beta distribution as

follows
m.;~Beta(20,80).

The density plots of Beta distribution for Beta (80,20) and Beta (20,80) are

presented in Figures 5.3 and 5.4 respectively.
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Figure 5.3 The density plot of Beta distribution Beta (80,20)
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Figure 5.4 The density plot of Beta distribution Beta (20,80)
The distribution of Beta (a,f) has a mean a/(a+ ) and variance af/

[(@ + B)*(a + B + 1)]. From Figures 5.3 and 5.4, it can be seen that the density
function of Beta (80,20) is centered around its mean of 0.8, while the density function
of Beta (20,80) is centered around its mean of 0.2. Both shapes of the densities are
narrow, which indicate small variances around the means. These small variances reflect
the strong belief of the researcher that students at the upper level should be able to
answer the items at that level and below, but the students at the lower level are unlikely

to answer the items at the upper level(s) correctly.

By incorporating the Beta priors into the model, the Bayesian Latent Class Analysis

performed in this study combines the researcher’s knowledge and the data through the
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joint posterior distribution to group students to classes or levels by imposing the
assumption of the hierarchical levels of the proposed model of fraction learning
progression into the model. This is different with Classical Latent Class Analysis (a
Frequentist approach) which groups students based on the data only (Levy & Mislevy,
2016).

5.2.2 Model 2: Bayesian Networks with Multiple Latent Variables 6

Given that the research setting on learning progression in this thesis assumes a
hierarchy, Model 2 is extended from Model 1. Instead of modeling the levels of the
proposed model of a learning progression in a single latent variable 6; with discrete-
independent C classes/categories (as in Model 1), Model 2 constructs the learning
progression with multiple latent variables @ = (04, ..., 8¢), where 0. is the collection of

0.; forc=1,...,Cand i=1,...,n.

Model 2 assigns a latent variable 8; for each level ¢ (8,;), in which 8; in the upper
level is conditional on the 6; from the lower level. This conditional setting of 8; is created
to reflect the hierarchical levels of the knowledge/skills in the proposed model of

learning progression for both conceptual and procedural knowledge dimensions.

In a simple DAG representation, Model 2 is now presented in Figure 5.5 as follows.

Xi1 xijL1 xijL1+1 xijLz xijLz+1 xifLs xifL3+1 xiju xijL4+1 xijLs xUL5+1

Xijpe

Figure 5.5 A simple DAG representation of a Bayesian Network for model 1 (Adapted from Rutstein, 2012)

Figure 5.5 represents a simple DAG of Model 2 for both the conceptual and the
procedural knowledge dimensions. It can be seen from this Figure that the arrows come
from the lower level (6;) to the upper level (8;), reflecting the dependency between the
proposed levels of the learning progression model. Consequently, we now detail the

variables of Model 2, the observed and the latent variables respectively.
The Latent Variables of Model 2

The dependency between the levels is expressed through the conditional

probabilities of the latent variables 6. Let 6;; be the parameter indicates the
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knowledge at Level 1 as the parent of the other 8’s. This is due to the setting in the
model in Figure 5.5, which implies that students cannot proceed to the higher levels

without having the knowledge at Level 1 (Levy & Mislevy, 2016).

Suppose that 8;; has two z categories: 1 is the code for a student i at level 1 (has
the knowledge of that level), and O is the code for the students who are not at that level
(do not have knowledge of that level). Because 6,; has binary categories, it is then

appropriate to assign 6;; with a Bernoulli distribution such that

01;|y1~ Bernoulli (y;).

Next, we assume that the students can be at Level 2 if they have the knowledge at
Level 1. This dependency can be expressed as 8,; conditional on 6,;. We denote this

conditional distribution as

(02:161; = z,¥2)~ Bernoulli (y,,) for z=0,1, where y,, = (¥20,¥21)-

The notation y,, expresses the probability of 8,; to have value 1 given 6;; has a value z
(either 0 or 1). In other words, y,, implies the probability of the students at Level 2

conditional on the situation whether they have the knowledge at Level 1 or not.
Likewise, we define the conditional distributions for the higher levels (Level 3 to
Level 6) as follows:
(63;1602; = z,v3,)~ Bernoulli (y3,) forz=0,1, (5.8)
(64i103; = 2,v4,)~ Bernoulli (y4,), forz=0,1,
(05i164; = z,¥5,)~ Bernoulli (ys,), forz=0,1,
(66i10si = z,v6,)~ Bernoulli (y,,), forz=0,1.
Similar to Rutstein (2012), based on the conditional distribution detailed above,
we can identify the conditional probabilities table (CPT) of . The CPT for level 1 only has

two conditions that depend on the values of 8, itself, which are 0 and 1. This situation

is summarized in Table 5.2, below.
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Table 5.2 The probability table of 8,; (level 1) in the learning progression model, where y, is the probability
of 01i=1

61 P(61:)
0 1y,
1 Y1

For the next levels (Levels 2 to 6), the probability of 6,; is conditional on the values
of 8._4 ;. To capture this conditional probability in our model, denote the probability of
0.;=1 conditional on 6._; ;=1 as ¥4, and the probability of 8.,=1 conditional on 6,._, ;=0

as Yco- The CPT for Levels 2 to 6 are presented in Table 5.3, below.

Table 5.3 The conditional probability table (CPT) of 6.; conditional on 8,._, ; in the learning progression
model, where . is the probability of 6.;=1 given the value 6._;;=1, and y is the probability of 6,;=1
given the value 6,._, ;=0 for c=2,...,6

P(ecilec—l,i)
90—1,1‘
0 1
0 1-Y20 Y20
1 1-¥Y21 Y21

Let us denote ¥ = (¥1,¥20, Y21, Y30, Y31+ Y40, Y41, V50, V51, Y60, Y61)- From Table

5.3, it can be observed that the values of ¥ are not known. Hence, the conjugate prior
of ¥ should be specified. Because 0’s are the dichotomous variables, then each element
of ¥ is assumed to have the conjugate prior of beta distribution, as follows (Levy &

Mislevy, 2016):
y1~Beta(ayl, Byl)
Y20~ Beta(ay,,, By,,) Y21~ Beta(a,,,, By,,)
Y30~ Beta(ay,,, By.,) Y31~ Beta(ay,,, By.,)
Yao~ Beta(a,, , By,,), Va1~ Beta(ay,,, By,,)

V5o~ Beta(a)’so' 'B}’so)' Ys1~ Beta(a}’sﬂﬁ)’m)
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Yeo™ Beta(a)/so'ﬁ)/so)' Ye1~ Beta(aYel’IB)/sl)

In a similar way to Model 1, we use an informative prior in order to reflect the belief that
the students who have knowledge at the lower level have a high chance to have the
knowledge at the upper level. However, if they do not have the knowledge at the lower
level, it is believed that they have little chance to master the knowledge at the upper
level. To reflect this belief, we set a Beta (21,6) prior distribution (i.e. with the mean of
21/27=0.8) for the students who have the knowledge at the lower level and a Beta
(6,21) prior distribution for the students who do not have the knowledge at the lower
level (adopted from Levy & Mislevy, 2016). This Beta distribution is different from the
Beta distribution in Model 1 because of the different parameters in Model 2. Beta
distribution is the prior density of ¥ as in Equation (5.8), while the Beta distribution in
Model 1 is the prior density for the conditional probability of the observable variables

Tj, as presented in Equation (5.6).

Applying the conjugate prior of the Beta distribution to our learning progression
model, we set the prior distribution of y; for level 1 using the density Beta (21,6).
However, for Level 2, because 6,; is conditional on 8;; which has two outcomes (0
represent no knowledge at Level 1 and 1 represent has knowledge at level 1), the prior
distribution of y,, depends on the value of 8;;. As discussed before, y, is the value of
Y2z When 6;;=0, and y,; is the value of y,, when 68;;=1. To reflect the belief of the
dependency of the knowledge discussed before, we set y,,~ Beta(6,21) and y,;~

Beta(21,6) (adapted from Levy & Mislevy, 2016).
Similarly, the prior distributions for y at levels 3 to 6 are assigned as
Y30~ Beta(6,21), y31~ Beta(21,6),
Va0~ Beta(6,21), y41~ Beta(21,6),
Y50~ Beta(6,21), y51~ Beta(21,6),
Yoo~ Beta(6,21), yg1~ Beta(21,6).

Figures 5.6-5.7 are the density plots of the Beta distribution, Beta (6, 21) and Beta

(21,6) respectively. From the plots we can see that both distributions are centered
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around 0.2 for Beta (6,21) and 0.8 for Beta (21,6). The range of the distribution is quite
wide, spreading from 0 to 0.4 for Beta (6,21) and from 0.6 to 1 for Beta (21,6). This
indicates that both distributions have moderate variances. These moderate variances
are suitable within the context of our study, as they can accommodate the response
uncertainties of students at a certain level, who have the knowledge at the lower level
(Beta (21,6)). Similarly, they can also accommodate the response variances of students
who do not have knowledge at the lower level (Beta (6,21)). A sensitivity analysis (which
is beyond the scope of this study) needs to be performed to investigate further the
effects of choosing different prior densities for the y parameters, and for the other prior

densities used in this thesis.

Density of Beta
3
l

0.0 02 0.4 06 08 1.0

Figure 5.6 plot of Beta distribution Beta (6,21) for prior ys

170



Density of Beta
3
l

0.0 02 0.4 06 0.8 1.0

X

Figure 5.7 The density plot of Beta distribution Beta (21,6) for prior ys

Having completed the latent variable for Model 2, we now explain the observed

variables.
The Conditional Probability of the Observed Variables of Model 2
Suppose that we have J items which are distributed based on the levels as follows:

Items at Level 1: Items 1,...,ji1
Items at Level 2: Items ji1+1,..., ji2
Items at Level 3: Items ji2+s,..., ji3
Items at Level 4: Items ji341,..., jia
Items at Level 5: Items ji4+1,..., ji5
Items at Level 3: Items jisqs,...,J

As discussed in Model 1, for each item we have two response categories which are a

correct response (k=1) and an incorrect response (k=0).

The simple DAG in Figure 5.5 shows that the students’ responses on items at every
level (observed variables x;;) are conditional on the knowledge at that level (latent

variable 8.;). In Model 2, this conditional probability is denoted as follows:

Tejze = P(xij = k|6 = 2), k=0,12=0,1.
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As we only have two response categories (K=2), then 7., can be simplified as follows:

Tejzk = TMejz1 = Tejz = p(xij = 10, = 2),2=0,1. (5.9)

The z values in Equation (5.9) are used to encode the situation that students have the
knowledge at a certain level (z= 1), or do not have the knowledge at that level (z=0). The

conditional probability of 7., is represented in Table 5.8, below.

Suppose that ) be the collection of 7.}, for c=1,...,C, j=1,....J and z = 0.1. Because
the observed variables x;; have dichotomous outcomes, we set the distribution of x;; as

a Bernoulli distribution, expressed as
(xij10c; = z,mj) ~ Bernoulli(m,j,).

As the values of 7, are not known, 7., is generated through a Beta distribution.
Therefore, the prior distribution for the measurement model for each level is denoted

as follows

Level 1: n1j0~Beta(an1].0,ﬁn1jo), n1j1~Beta(an1].1, ,8,[1].1)
Level 2: n2j0~Beta(an2].0,ﬁn2].0), n2j1~Beta(a,T2].1, ,B,szl)
Level 3: n3j0~Beta(a,T3j0,ﬁﬂ3].0), 7T3]-1~Beta(aﬂ3j1, ,8713].1)
Level 4: n4j0~Beta(an4j0,ﬁn4j0), n4j1~Beta(an4j1, ,[3”4].1)
Level 5: n5j0~Beta(an5].0,ﬁnsj0), 7T5]-1~Beta(an5].1, ,B,Tsjl)

Level 6: n6j0~Beta(an6].0,ﬁn6].0), 7T6]-1~Beta(an6j1, ,[3”6].1)

Table 5.4 Conditional Probability Table for 7, of (5.8) for 6.,=0,1 and z=0,1

Level 0., =z Response Category (xij = k|0 = 2)
(k)
Level 1 0 0 1-TT4 jo
1 T1j0
1 0 1Ty
1 Tq1j1
Level 2 0 0 1-T2jo
1 250
1 0 151
1 21
Level 3 0 0 1-T350

172



1 T3j0

1 0 131
1 T3j1

Level 4 0 0 1-T4 5o
1 T4jo

1 0 1441
1 T4j1

Level 5 0 0 1-T5 jo
1 Ts5 0

1 0 1751
1 Tsj1

Level 6 0 0 1-Tg jo
1 Tejo

1 0 1-Tgj1
1 Tej1

The prior density of 7m.j, enables us to express our belief about the students’
responses, given that they have or have not the required knowledge. The conditional
probability 7. ;, presented in Table 5.4 represents the probability of getting a correct
answer for item j where 6; is O (no knowledge at that level), while 7.;; states the
probability of getting a correct answer for item j where 8.; is 1 (that is, the students have
knowledge at that level). Hence, to reflect our belief that students who have the
knowledge at that level will be highly likely to answer the items at that level correctly,

we set the probability at 80% for 7, as follows
T.j1~Beta(80,20).

In contrast, to reflect our belief that students who do not have the knowledge at
a certain level are unlikely to answer the items at that level correctly, we set the

probability at 20% for 7., as follows
T¢jo~Beta(20,80).

Having completed both the latent and observed variables, then we detail the joint

posterior distribution of Model 2.
The Joint Posterior Distribution of Model 2

The following is the joint posterior distribution for Model 2:
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p(0,y,|x)oo p(x|6,y, m)p(0,y, ™)

=p(x16, m)p(Bly)p(¥)p(m)
= 18- [T Iy p (x| 0ct )P (Bt V)P (V) T30 P (72
where, (x;|6.; = z,7j) ~ Bernoulli(mj,) for z=0,1; i=1,..,n ; j=1, ..., j; and c=1,...,6.

01 |y1~ Bernoulli (y;),
(02i161; = 2,¥2,)~ Bernoulli (y2,),
(03:102; = z,¥3,)~ Bernoulli (y3,),
(04:163; = z,¥4,)~ Bernoulli (v4,),
(05il(04; = z,7s5,)~ Bernoulli (vs,),
(06il0si = z,V62)~ Bernoulli (ye).
y1~Beta(ayl, ﬁyl)
Y20~ Beta(ay,,, By,,), Y21~ Beta(ay,,, By,,)
Y30~ Beta(ay,,, By,,), Y31~ Beta(a,,,, By,,)
Yao~ Beta(ay, , By,,), Va1~ Beta(ay,,, By,,)
Y50~ Beta(ay,,, By, ), Ys1~ Beta(ay,,, By, )
Yoo~ Beta(ay,,, By,), Vo1~ Beta(ay,,, By, )
11 jo ~Beta(@r, ) By o)s Trj1~Beta(dn, ) Bry,,)
mzjo~Beta(ar, o, B, ;) M2j1~Beta(ar, ., Br,;,)
m3jo~Beta(ay, ) B, ), 3j1~Beta(ar, s Bry;,)
T4jo~Beta(tr, . B, ), Taj1~Beta(n, 1, i, )
Tsjo~Beta(ng;,, Bry; ) Msjr~Beta(arg,, Bry;,)
Tejo~Beta(ayr, ) By o), Tej1~Beta(ar, ., Bry;,)

The complete DAG for Model 2 is now presented in Figure 5.8 below.
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Figure 5.8 The complete DAG for Model 2 of the Bayesian Networks Modelling for measuring learning progression.
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5.2.3 Parameter estimation using MCMC

5.2.3.1 MCMC Estimation Using the Gibbs Sampler Method

Within the Bayesian Paradigm, the information of interests regarding the parameters in
Models 1 and 2 is contained within its joint posterior distributions. Markov Chain Monte
Carlo (MCMC) algorithms approximate the joint posterior distribution of Models 1 and
2.

The term Markov Chain refers to, “random variables that are generated
sequentially over time” (Cowles, 2013, p. 123), while Monte Carlo refers to, “the process
[that] will involve simulating (sampling, generating, drawing) values from distributions”
(Levy & Mislevy, 2016, p. 94). To perform MCMC on our data, we use the Gibbs Sampler
algorithm, which is the underlying parameter estimation method of BUGS (Bayesian

Estimation using Gibbs Sampler) Software.

Briefly, the following are the general steps in MCMC algorithms using Gibbs
Sampler with t iterations (t=1, ..., T, where T be the total number of iterations) (See
Cowles, 2013; Levy & Mislevy, 2016). Suppose we have R parameters of 8 denoted as

04, ..., 05 and matrix data X.
Step 1

., 09

Generate the initial values for the parameters, which are 91(0), r » either

deterministically or randomly.
Step 2

Draw values for each iteration t (t=1,...,T where T is the maximum number of iterations)
from the full conditional probability, given the most current values of the other

parameters 8. Hence for each iteration t, we draw the values as follows:
6, from p(6: [0, 057 .., 087V, X))

65 from p(62]6(”, 657, .., 687 X )

65 from p(6; 61, 65,05, .., 687V, X )
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65 from p(6z|0{”, 67, ..., 682, X )

Step 3

Repeat Step 2 until the MCMC chains converge jointly to the joint posterior distribution.

5.2.3.2 MCMC Convergence Check
An MCMC convergence check is an important part of MCMC estimation (Levy & Mislevy,

2016). Although theoretically MCMC estimation is converged to a target distribution
under some conditions, no one knows “when” the estimation is converged (Levy &
Mislevy, 2016). According to Gelman et al. (2014), if the MCMC iterations are not run
long enough, then the simulated values may not represent the target distribution of the
estimation. One of prominent methods to check MCMC convergence is the Geweke test,
proposed by Geweke (1992). The range of values in the Geweke test run from +2 to -2,
showing a 95% confidence interval for the estimation to be converged, while the values

out of the range indicate that the estimation has not yet converged.

Another tool to check that MCMC iterations have already achieved good estimates
of the probabilities of the model is using the autocorrelation of the draws generated
from the iterative simulation in MCMC estimation. Gelman et al. (2014) highlighted that
estimations based on correlated draws are less accurate when compared with
estimations using independent draws. To check this, the autocorrelation function on
various lags of iterations can be used to detect the dependency between the draws (Levy
& Mislevy, 2016). The autocorrelation at lag 0 is always 1 because the draw is correlated
with itself. The autocorrelation is expected always to drop close to zero by increasing
the lags. The autocorrelations which are close to zero indicate that the draws from the

MCMC simulations are independent.

5.2.3.3 Software

There are three software packages required to perform the parameter estimation of
Models 1 and 2, which are specified in the previous sections. These three packages are

briefly explained below.
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5.2.3.3.1 WinBUGS

The WinBUGS software is a commercial Bayesian estimation software run under
Windows system. As it reveals through its name, this software mainly uses the Gibbs
Sampler method to perform MCMC estimation (Lunn, Thomas, Best, & Spiegelhalter,

2000).

The WinBUGS software is used to perform an MCMC estimation to estimate the
parameters (7, y) of Models 1 and 2. The estimates of  are then used to perform jitem
analysis, as discussed in the following chapter. Moreover, the estimates of the
parameters (m,y) are used as prior inputs for the Netica Software to estimate the

students’ levels (8;) in the learning progression model.

Table 5.5 shows the list of the parameters estimated by the WinBUGS software.
These parameters are estimated for 516 students: 21 items for the conceptual

dimension and 12 items for the procedural dimension.

Due to the total number of parameters in the models and a large number of
iterations for MCMC, WinBUGS was not able to calculate the posterior distributions for

Os. Therefore, we also use Netica.

5.2.3.3.2 Netica

Netica is a commercial Bayesian Networks Software developed by Norsys Sotware Corp.
(Application, 2014). Netica is used to estimate the posterior probabilities for students to
be at a certain level. The results from Netica estimation are used to perform the

students’ level analysis in Chapter 6.

The process of assigning students at the levels of the proposed learning
progression model is implemented by entering each individual student’s responses into
the Networks of Bayesian Modelling created in Netica. The Netica software updated the
prior probability of students’ levels to get the posterior probability of the individual
student’s levels. Netica performs belief propagation using a Junction Tree Algorithm (see
Neopolitan, 2004) to update the prior probabilities of the students’ levels. The results
generated from Netica are the posterior probabilities of (8]y, i, x) for all students (516

students) for both Model 1 and Model 2.
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5.2.3.3.3 R Software

The R software (Team, 2014) is an open source software for statistical computing and
graphics analyses. This software is used to estimate the model fit/evaluation of Bayesian

Networks for Model 1 and Model 2, as discussed in the following section.

5.3 Model Evaluation of the Bayesian Networks Model

We performed two methods to evaluate the models in this study, by comparing the
observed data and the simulated/predicted data generated by the model. These

methods are Posterior Predictive Model Checking (PPMC) and Entropy Statistics.
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Table 5.5 The list of parameters estimated by the WinBUGS software

Model Dimension Parameter Number of
Parameters
Model 1 | Conceptual |y = (¥1,¥2,¥3 Var Vs V) 6
i(fe::ls' 2 Ttcj = (11, T12, 13, 14, T15, M16, T17, W18, T19, M110, W11, T112, T113, 1140 U115 116 T117, T1185 119, T120, T121, 126
TT21,M22,M23,T24, 25, 26,27, 28,129, 210, 0211, 212, 0213, 214, 215, 216, 217, 218, 219, 1220, 221,
T31,M32,T33,T34, 35,136,037, 138,139,310, 70311, 312, 0313, 314, 315, 316, 1317, 318, 319, 7320, 321/
T41,T42,T043, 044,145, 26,047, 1048, 7049, 0410, 0411, 412, 0413, T0414, 415, TTa16, 0417, T0418, TTa19, 0420, 421,
T51, 52,53, M54, 55, 56, 57, M58, 59, 510, T511, 512, 0513, T514, 515, 5165 517, 518, 519, 520, 521,
T61,T62, T63) Toa T65 Mo W67) Teg T69) We10) 11 o120 613 Wo14» 615 Te16 T617) To18» 619 6205 Me21)
Procedural | y = (y1,¥2,¥3, ¥4 V5. V6) 6
i(fe::ls' " Tcj = (11, W12, 013, 14, W15, M1, T17, T18, T19, T110, T111, T1125 72

21,022,023, 24,25, 26,27, 28,29, 210, 211, 212,
T31,M32,M33,T34,735, 136,37, 38,139,310, 7311, 312/
T41,T042,T043, 44,45, 46, 047,048, 049, 410, TTa11, 412,
T51, 52,53, M54, 55, 56, 57, M58, 59, 510, T511, 512/

61, M62, 63, M4 T65 Te6) 67 o8 T69) 610 o115 T612)

Model 2 | Conceptual | y = (y1,¥20,¥21, Y30, ¥31, Y40, Y41, Y50, V51, Y60, V61) 1
(6 levels, 21
items| Tejz = (7110, 120 130, 140> 250, 260, 70270, 280, 70390 T3100, 03110, 03120, 703130 703140, 3150, 4160, TT4170,75180,75190, T6200,76210, 42
Items

111,121,131, 141, 251, 261, 271, 281, 391, 3101, 3111, 3121, 703131, 03141, 73151, a161, T4171,705181,5191, 6201, 6211,
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Procedural
(6 levels, 12

items)

Y = (}/L Y20,Y21,Y30,Y31, Y40, Y41, Y50, V51, V60, Y61)

11

Tejz = (110, 120, 130, 140, 250, 260, 270, T280» 0390, 03100, 3110 731205

T111, T121, 131, T141 251, 261, 271, M281, 0391, 3101, 3111, T3121)

24
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5.3.1 Posterior Predictive Model Checking (PPMC)

PPMC is a prominent model evaluation for Bayesian modelling, which uses discrepancy
measures to evaluate how the observed data differ from the data generated from the
model (predicted data) (Sinharay, 2004). Levy and Mislevy (2016) described the
discrepancy measures in PPMC in two categories. First, the discrepancy measures based
on the observed data denoted as D (x;0) where x = x;; and 0 = 6;. Second, the
discrepancy measures based on the posterior predicted data denoted as

D (xPostrred; @), where xPOStP¢4 are the predicted values of x;;.

If we have R number of simulations, let us define the collection of discrepancy

measures based on the data, as follows
D (x; 0 x: 0 . x; B(R)) ,
and the discrepancy measures based on the predictive values, as follows

D (Xpostpred(l); 9(1)’ Xpostpred(z); 9(2)’ . Xpostpred(R); B(R) )

The discrepancy measure D is calculated using the following formula

(xij=Pij)?

D = Vy(xi, 0;,m;) = PPy’

(5. 10)

where i is the index for the it"-student, j is the index for the jt-item, x;;j is the students’

responses, and Pj is the probability of getting a correct answer for the student at a

certain level, i.e.

According to Yan, Mislevy, and Almond (2003), the discrepancy measure in
Equation (5.10) expresses root mean square error (RMSE). The RMSE for the student fit
can be calculated over all the items, whereas the RMSE for the item fit can be calculated
over all the students. A lower discrepancy measure indicates a better fit. However, to
discover to what degree this discrepancy measures indicates the model fit, we need to
compare the discrepancy between the observed data and the posterior predictive values

(Yan et al., 2003).
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The posterior predictive p-values (PPP-values) are the statistics used to express
the degree of the model fit based on the discrepancy measures (Sinharay, 2004). The
PPP-values are estimated by comparing the discrepancy measures from the observed
data and the discrepancy measures from the posterior predictive data, which is denoted

as
PPP-value = p(D (xPostrred. ) > D (x; 9)). (5.12)

A good fit is indicated by the PPP-values that are close to 0.5 (Gelman et al., 2014).
A value of 0.5 means that the discrepancy measures based on the data are in the middle
of the discrepancy measures calculated from the posterior predictive distribution. This
implies that the data are consistent with the posterior predictive distribution. In
contrast, the PPP-values that are close to 0 or 1 indicate that the discrepancy measures
based on the data are on the lower tail or upper tail of the discrepancy measures based
on the posterior predictive distribution, which suggests an inadequate fit (Levy, 2006).
Gelman et al. (2014) highlighted that PPP-values between 0.05 and 0.95 are in a

“reasonable range” for an adequate fit (p.151).

5.3.2 Entropy Statistic

The entropy statistic is used to measure the model improvement between the two
models (Model 1 and Model 2). This method was originally proposed by Gilula and
Haberman (2001). In applying the entropy to the Bayesian Networks, Levy and Mislevy
(2016) described the formula to calculate the entropy based on the data (matrix) x for a

particular model M (either Model 1 or Model 2) as follows:

Ent(M) = — %1, p(xp) log(p(xy))- (5.13)

where X; = (x;1, ..., X;;) and p(X;) is the probability of x; specified in the model M.

Suppose we aim to compare two models (Model 1 and Model 2). Using the formula
in Equation (5.13), we calculate the entropies of Model 1 (Ent(M1)) and Model 2
(Ent(M?2)). The positive values of the difference between entropy Model 1 and entropy
Model 2 (Ent(M1) — Ent(M2)) suggest that Model 2 has a better prediction of a new
observation compared with Model 1 (Levy & Mislevy, 2016).
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The proportional improvement of Model 2 from Model 1 can be estimated using
the following formula

Ent(M1)—Ent(M2)

dEntropy = EntMD)

(5. 14)

The positive values of dEntropy (between 0 and 1) indicate the proportion of
improvement created by Model 2 relative to Model 1, suggesting that Model 2 is better

than Model 1 in terms of model prediction.

5.4 Summary of the Chapter

This chapter has discussed the specifications of the Bayesian Networks Models, which
are used to measure students’ fraction learning progression on both conceptual and
procedural knowledge dimensions (in the next chapter). Two types of Bayesian
Networks models are developed in this chapter: Model 1 and Model 2. Model 1 is
developed based on an assumption that the levels of the learning progressions are
presented using independent categories of a single latent variable. In contrast, Model
2 is developed based on an assumption that the levels of the learning progressions are
presented by multiple latent variables. Model 2 is better in terms of modelling the
hierarchical dependency between the levels by setting up the conditional probabilities

between the latent variables.

In the next chapter, these two Bayesian Network Models are used to measure
students’ levels in the learning progression model and to locate the items to the
appropriate levels. Furthermore, an empirical comparison of Model 1 and Model 2 is
performed in the context of validating the learning progression models, based on 516

students’ responses on a fraction test.

184



CHAPTER 6 : BAYESIAN NETWORKS ANALYSES

6.1 Introduction

The main objective of the present chapter is to describe the empirical validation of the
hypothesized model of fraction learning progression which was developed in Chapter 3
and revised in Chapter 4, based on the results of the cognitive interview. The validation
was conducted on students’ responses, obtained from the administration of the fraction
learning progression instrument to a large number of middle-school students in

Indonesia.

The purpose of this study was to validate the proposed model of fraction learning
using Bayesian Network analysis. The Bayesian Networks models developed in Chapter
5 (Model 1: Bayesian Networks with a single latent variable, and Model 2: Bayesian

Networks with multiple latent variables) were used to perform the analysis.

Two levels of statistical inferences of the Bayesian Network analysis were
undertaken (adapted from West et al., 2010). The first inference concerned the
validation of the instrument at items level. The objective of this was to examine the
hypothesis that the items at the given levels would be answered correctly by those
students who were found to belong to this level or an upper level, but not by the
students at lower levels. The second inference concerned the validation of the
instrument at student level. The purpose of this was to examine the hypothesis that
those students who were at certain level in the progression would have sufficient
competencies at that level and below but would not have competencies at the upper

level(s).

This chapter is now structured into five sections: The method is presented in
Section 6.2. This section provides details about the participants, the materials and the
procedure of the test. In Section 6.3, the analysis of the results, which used two different
Bayesian Network models, is presented. The discussion of the results is presented in
Section 6.4, which includes a comparison of Models 1 and 2 and the contribution of
these models in the field of educational assessment and measurement. Section 6.5

provides a summary of the chapter.
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6.2 Method

6.2.1 Participants

The participants in this study were 516 students (232 male and 284 female) from a total
of 26 classes from a public junior high school in Bogor, Indonesia. The distribution of the
participants by school grade is presented in Table 6.1 below. The participants were
sampled randomly, using a stratified sampling method. First, the population of students
at the school was stratified based on grade levels. After that, several intake classes were

drawn from each grade to participate in the study.

Table 6.1 The number of students per grade who participated in the study

Grade Approximate Age Number of Students
Grade Seven 13 years old 174
Grade Eight 14 years old 147
Grade Nine 15 years old 195
Total 516

The project received approval from the Social and Behavioural Research Ethics

Committee (SBREC), Flinders University (reference approval number: 7200).

6.2.2 Materials

The fraction instrument developed in Chapter 3 and validated in Chapter 4 was used to
test all the participants. The fraction instrument is shown in the Appendix. All the items
in the instrument were collected in one booklet, which consisted of two main sections;
namely conceptual and procedural. All the conceptual items were presented first,
followed by the procedural items. The items were ordered based on their levels in the
progression. For example, in the conceptual section, the items which represented
fractions as part-whole (Levels 1 and 2) were shown at the beginning, followed by the
items which represented improper fractions and fractions as measures (Level 3).
Similarly, in the procedural section, fraction additions (Levels 1 and 2) were presented

first, followed by fraction multiplications (Level 3).

6.2.3 Procedure
Testing took place in the students’ classrooms and lasted approximately 90 minutes. The

teacher told the students that the test aimed to investigate students’ knowledge of
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fractions and to diagnose students’ learning difficulties in fraction learning. The teacher
also clarified that performance on this test would not be taken into consideration in
students’ grades. Subsequently, the students were instructed as follows:
1. The students were not allowed to cooperate or discuss the test with each other.
The students were told to work on the questions independently
2. The students were told to use a ball point pen to answer questions with clear
handwriting
3. The students could fill in the answers on the question sheet and do calculations
behind the questions page
4. The students were not allowed to use calculation aids such as calculators and
mobile phones
5. The student had to leave the classroom if they finished working on the questions

before the end of the testing period test time (90 minutes).

6.3 Results from Bayesian Network Analysis

The analysis of the results was performed in four steps, as follows:
Step 1. Coding the Participants’ Responses

The participants’ responses were coded as 0, 1, and missing for all conceptual and
procedural items. Code 1 refers to a correct response; code 0 refers to an incorrect
response; and code missing means that the participant did not answer the item. There

were a total of 5.57% missing responses (977 missing and 16567 valid responses).
Step 2. Modelling the participants’ responses using Bayesian Networks.

As described in Chapter 5, the notations x = (x;;) represent the matrix data of the
responses of n students on J items, i=1,...,n, and j=1,...,J; @ represents the collection of
0; for Model 1 and 6.; for Model 2 - they represent students’ levels; y represents the
hyper-parameter of 8; and m represents the measurement model of the students’
responses and their levels in the learning progression models, i.e., the conditional

probability of the students at a particular level correctly answer an item j.

The Bayesian Networks models developed in Chapter 5 (Model 1 and Model 2)

were applied to analyse the students’ responses based on the proposed model of
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fraction learning progression. The flow charts in Figures 6.1 and 6.2 illustrate the
processes of the Bayesian Network Analysis for Models 1 and 2 respectively. The joint
posterior distributions of the parameters for Models 1 and 2 were estimated based on
the student’s responses (x), and the prior distributions for the parameters (8, y, ).
Subsequently, the parameters (y, ) of Model 1 and Model 2 were estimated with the
MCMC method (as described in Section 5.2.3) using WinBUGS software (Spiegelhalter,
Thomas, & Best, 2000). The results from the WinBUGS analysis were then used for the
item analysis. They were also used by the Netica Software to estimate the posterior

probabilities of the students’ levels (8|y, 1T, x).

Parameter Estimation
Joint Posterior of of (y, m)
(8, ¥, m|x) —  using WinBugs for Item Analysis
Equation (5.7} Model 1

Parameter estimation

(8]y, m, x)using Student Level
Netica for Model 1 Analysis

Section 5.2.3.2

Figure 6.1 The flow chart of Bayesian Networks using Model 1 for the conceptual and procedural
knowledge dimensions.

Parameter Estimation
loint Posterior of of (y, m)
(8,y m|x) —+  using WinBugs for Item Analysis
Equation (5.10) Model 2

Parameter estimation

(8], w, x)using Student Level
Netica for Model 2 Analysis

Section 53.2.3.2

Figure 6.2 The flow chart of Bayesian Networks using Model 2 for the conceptual and procedural
knowledge dimensions.

Step 3. Convergence Check of the Bayesian Networks Estimation

A convergence check (as described in Section 5.3.2.3) was performed for the results of
the MCMC estimations generated from WinBugs. The trace of the last 10000 iterations

with thinning of 10, the autocorrelation functions and Geweke tests were used to
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evaluate the convergences of the parameters (y, t) produced from WinBugs. Once the
convergence was achieved, estimates of the parameters (y, 7r) were then presented for

item analysis.
Step 4. Updating Posterior Probabilities for the Individual Students

Next, the convergence parameters generated from the WinBugs were used to build prior
probabilities of the Bayesian Networks Model in Netica software (Corporation, 2017).
Netica updated the posterior probabilities (8|y, r, x) for individual students when their
responses were entered into the networks of Bayesian models. The students’ level

analysis was performed based on the results from Netica.

6.3.1 Bayesian Network Analysis: The MCMC Estimation

The estimation was run using WinBugs Software to obtain the estimates of the
parameters (¥, ) in Model 1 and Model 2. Based on Table 5.5 in Chapter 5, 132
parameters (6 y’s and 126 m’s) and 54 parameters (6 ¥’s and 48 1’s) were estimated for
the conceptual and procedural dimensions of Model 1 respectively. For Model 2, 53
parameters (11 y’s and 42 1t’s) and 35 parameters (11 y’s and 24 7’s) were estimated
for the conceptual and procedural knowledge dimensions respectively. The scores
derived from the medians from the posterior distribution i, generated from Models 1

and 2, were used further for the item analysis.

The length of the MCMC iterations were varied, depending on whether the MCMC
chains of Model 1 and Model 2 had achieved convergence. Table 6.2 shows the length
of iterations for each model for the conceptual and the procedural knowledge

dimensions.

Table 6.2 The length of iterations of the MCMC estimation

Model Conceptual Procedural
Model 1 100,000 150,000
Model 2 200,000 250,000

From the total number of MCMC iterations presented in Table 6.2, only the last 10000
iterations were used, discarding the previous iterations as burn-in iterations to ensure

convergence.
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Figures 6.3 and 6.4 represent a sample of the trace of iterations for the parameters
7 and y from Model 1 of the conceptual knowledge dimension. The trace-plots for all
parameters (y, ) of the conceptual and procedural knowledge dimensions generated
from Model 1 and Model 2 are presented in the Appendix. The trace-plots in Figure 6.3
exhibit the last 10000 iterations of the specific parameters m,, until ,4, which are the
probabilities of correctly answering items 4-9, given that the students are at Level 2. The
results showed that the MCMC iterations converged to certain values. These results
were consistent with the Geweke test which shows the Geweke values for 1,y4,..., Tyq
are 0.784541,0.818438,0.726941, -1.616439, 0.913738, -0.521404 (Appendix H). These
values are between +2 and -2, showing a 95% confidence interval. Therefore, we

conclude that the estimation of 7,4,..., T, has converged.”
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Figure 6.3 A sample of the last 10000 iterations of MCMC for Ty, ..., TT29
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Figure 6.4 A sample of the autocorrelation plots of the last 10000 iterations of MCMC for m,,,..., 59

As indicated in the correlation plots in Figure 6.4, the results showed that the
parameters moy,..., Ty9 had around zero autocorrelations as the lag increased. These
results demonstrated that the draws from MCMC estimation was now independent. It

was important to check this independence that correlated draws are less accurate when
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compared with estimations using independent draws (Gelman et al., 2014). Similar
results could be found on the trace and the autocorrelation plots of ¥4, ...,y , which are

presented in Figures 6.5 and 6.6 respectively.
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Figure 6.5 The trace of the last 10000 iterations of MCMC for the parameters y4, ..., V¢
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Figure 6.6 The autocorrelation of the last 10000 iterations of MCMC for the parameters y;, ..., ¥,

6.3.1 Model 1: Analysis of the Conceptual Knowledge Dimension

As detailed in Chapter 5, Model 1 was developed based on the assumption that the
students’ levels in the learning progression were represented by one latent variable 8
(Equation (5.4)). The parameter 8 had six categories, which reflected the students’ levels

in the learning progression model.

In Model 1, students were assumed to be at a certain level if they had a high

probability of obtaining correct answers for the items at that level and below, and had
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a low probability of correctly answering the items at the upper level(s). This assumption
was encapsulated in the parameter 7.; of Model 1 (Equation 5.2). The parameters 7.;
represented the conditional probability of the students being able to answer the jf-item

correctly, given the level c of the students in the learning progression model.

This section presents the item and the students’ level analyses for the conceptual
knowledge dimension. The following is the item analysis based on the results of the
Bayesian Networks estimation generated from the WinBUGS software.

6.3.1.1 Item Analysis

The purpose of the items analyses was to examine whether the items that were
hypothesized to be at a certain level would be correctly answered by the students at
that level and above, but incorrectly answered by the students at the level(s) below.
From Equation 5.2, m.; was p(x;; = k|6; = c). The estimates of m; were computed
using the MCMC method detailed in Section 5.2.3. This method represented the
conditional probability of a student being able to answer item j “correctly”, given that
the student was at level c in the learning progression model. Hence, the conditional
probability of the student being able to answer item j “incorrectly”, given the student
was at level c in the learning progression model was 1-7;. The findings of the analyses
were used to locate the items along the progression levels of the model and to validate
the competencies that were hypothesized for each level. Thus, the estimates of .; were

used to achieve the purpose of the item analyses.

For interpretation purposes, the cut-off points of the conditional probability 7;
were defined as shown in Table 6.3. These cut-off points were developed based on how

likely the students who had knowledge at Level c correctly answered item j.
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Table 6.3 The cut-off points of 1 to consider the items to be placed into the levels of the proposed model
of fraction learning progression

Interval Description

065=<m; <1 Item j is placed at Level c. Students at level ¢ are highly likely to
answer the item correctly

0.45 < m;; < 0.65 Item j is ambiguous to be placed at Level ¢ because of the
uncertainty of the students at level ¢ being able to answer the item
correctly

0=<m; <045 Item j is too difficult to be placed at Level c. The students at this

level are less likely to answer the item correctly

6.3.1.1.1 Item Analysis at Level 1

Four conceptual items were hypothesized at Level 1 (c=1, j=1,2,3,4) for the conceptual
knowledge dimension. These were Iltems ConT1Q1 (generating a fraction from a part-
whole (pie) diagram), ConT2Q1 (shading a pie diagram to represent a fraction less than
1), ConT3Q1 (comparing two fractions less than 1 using part-whole representation), and
ConT7Q1 (adding fractions less than 1 using a part-whole representation diagram).
These items were designed to test students’ conceptual understanding of fractions as a

representation of part-whole.

The conditional probabilities 77, ; were estimated and are shown in Table 6.4. The
results showed that the students from the lowest to the highest levels had a high
probability (above 0.65) to answer these items correctly. It was concluded that Items

Cont1Q1, ConT2Q1, ConT3Q1, and ConT7Q1 were suitable to be placed at Level 1.

Table 6.4 The estimates of the conditional probabilities 7, ; of the conceptual knowledge
items of Level 1 for Model 1

Item: ConT1Q1 (j=1) Item: ConT2Q1 (j=2)

Correct Incorrect Correct  Incorrect

M1 1m, M2 1m,

Level 1 0.8013 0.1987 Level 1 0.8011 0.1989
Level 2 0.9435 0.0565 Level 2 0.9533 0.0467
Level 3 0.8974 0.1026 Level 3 0.8975 0.1025
Level 4 0.8164 0.1836 Level 4 0.8162 0.1838
Level 5 0.8170 0.1830 Level 5 0.8168 0.1832
Level 6 0.8103 0.1897 Level 6 0.8096 0.1904
Item: ConT3Q1 (j=3) Iltem: ConT7Q1 (j=4)
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Incorrect Correct Incorrect

Correct
1,3 1ms 14 1y,
Level 1 0.7992 0.2008 Level 1 0.7995 0.2005
Level 2 0.7365 0.2635 Level 2 0.9200 0.0800
Level 3 0.8851 0.1149 Level 3 0.8921 0.1079
Level 4 0.8106 0.1894 Level 4 0.8172 0.1828
Level 5 0.8167 0.1833 Level 5 0.8167 0.1833
Level 6 0.8088 0.1912 Level 6 0.8087 0.1913

The above results support the hypothesis that the competencies underlying the
items which require the generation of a fraction from a part-whole (pie) diagram,
shading a pie diagram to represent a fraction less than 1, comparing two fractions less
than 1 using a part-whole representation, and adding fractions less than 1 using a part-
whole representation diagram, are established at Level 1. This provides evidence that

students’ part-whole understanding emerges at Level 1.

6.3.1.1.2 Item Analysis at Level 2

ltems ConT1Q2 (generating an equivalent fraction from a pie diagram), ConT1Q3
(generating a fraction from an unequal partition of a pie diagram), ConT3Q2 (comparing
fractions of less than 1 with a different denominator using a part-whole diagram),
ConT7Q2 (adding fractions with different denominators using a part-whole
representation diagram) were hypothesized at Level 2 (¢=2, j=5,6,7,8). These items were
created to assess students’ conceptual understanding of equivalent fractions, unequal

partitions, and fractions as part-whole with different denominators.

The conditional probabilities 7, ; for the conceptual items at Level 2 are presented
in Table 6.5. The results showed that students at Level 2 had a probability of 0.6668 of
answering item Cont1Q2 correctly. This was in contrast with the probability of students
at Level 1 doing the same, which was only 0.1971. All the students at the higher levels
(Level 3-6) had a considerably high probability of answering this item correctly. This
result shows that Item Cont1Q2 could differentiate students at level 1 from those at
Levels 2 and above. The students at Level 1 were unlikely to answer this item correctly,

while the students at Level 2 and above were highly likely to answer the item correctly.
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In contrast, for Item ConT1Q3, students at Level 2 had a low probability of
answering this item correctly. The probability of getting a correct answer for this item
for students at Level 1 was 0.3555, while the probability of getting an incorrect answer
was 0.6445. This means that this item was too difficult for students placed at Level 2. In
contrast, students at Level 3 and above, had a high probability of answering this item
correctly. The results showed that this item was more suitable to be placed in Level 3,

because it could discriminate between those students at Level 2 and those at Level 3.

Next, for Item ConT3Q2, students at Level 2 had a probability of 0.5222 of
answering this item correctly. This item was considered ambiguous because its

probability lies in the range between 0.45 and 0.65, as defined in Table 6.3.

Finally, for item ConT7Q2, students at Level 2 were likely to answer this item
correctly with a probability of 0.6528. This was different from students at Level 1, who
had a low probability, of 0.1973, of answering this item correctly. Hence, ltem ConT7Q2

could discriminate those students at Level 1 and those at Level 2.

Table 6.5 The estimates of the conditional probabilities 7,; of the conceptual knowledge
items at Level 2 for Model 1

Item: ConT1Q2 (j=5) Iltem: ConT1Q3 (j=6)
Correct Incorrect Correct Incorrect
2,5 1mys T26 1mye
Level 1 0.1971 0.8029 Level 1 0.1960 0.8040
Level 2 0.6668 0.3332 Level 2 0.3555 0.6445
Level 3 0.8899 0.1101 Level 3 0.7780 0.2220
Level 4 0.8177 0.1823 Level 4 0.7993 0.2007
Level 5 0.8172 0.1828 Level 5 0.8020 0.1980
Level 6 0.8091 0.1909 Level 6 0.8096 0.1904
(a) (b)
Item: ConT3Q2 (j=7) Item: ConT7Q2 (j=8)
Correct Incorrect Correct Incorrect
T2,7 11y T8 11y
Level 1 0.1963 0.8037 Level 1 0.1973 0.8027
Level 2 0.5222 0.4778 Level 2 0.6528 0.3472
Level 3 0.8421 0.1579 Level 3 0.8623 0.1377
Level 4 0.7951 0.2049 Level 4 0.8102 0.1898
Level 5 0.8158 0.1842 Level 5 0.8103 0.1897
Level 6 0.8088 0.1912 Level 6 0.8084 0.1916

(c) (c)

195



Based on the results above, items Cont1lQ2 and ConT7Q2, were suitable for
placement at Level 2. ltem ConT1Q3 was too difficult for students at Level 2, therefore
it was more suitable for placement at Level 3, while Item ConT3Q2 fell into the

‘ambiguous item’ category.

The results support the hypothesis that the competencies underpin items
Cont1Q2 and ConT7Q2: generating equivalent fractions and adding fractions with
different denominators using part-whole representation/diagrams, which emerge at
Level 2. Meanwhile, the competency underpins item ConT1Q3, generating a fraction

from an unequal partition, as more likely to be established at level 3.

6.3.1.1.3 Item Analysis at Level 3
Seven items were hypothesized at Level 3 (c=3, j=9,10,11,12,13,14,15). These items

were items ConT1Q4 (generating an improper fraction from a pie representation),
ConT1Q5 (Generating an equivalent of an improper fraction from a pie diagram),
ConT2Q2 (shading a pie diagram to represent an improper fraction), ConT3Q3
(comparing two improper fractions using part-whole representation), ConT4Q1l
(generating a fraction less than 1 on a number line), ConT4Q2 (generating a fraction less
than 1 on a number line with a constraint), and ConT4Q3 (generating fractions greater
than 1 on a number line). These items were designed to test students’ understanding of

improper fractions and fractions as measurements.

The conditional probabilities 73; are presented in Table 6.6. The results showed
that the items which tested improper fractions (ConT1Q4, ConT1Q5, ConT2Q2, and
ConT3Q3) discriminated well between Levels 2 and Level 3. For example, it can be seen
that that students at the lower levels (Levels 1 and 2) had a low probability of answering
item ConT1Q4 correctly, while students at Level 3 and above were highly likely to answer
this item correctly, with the probability being equal to or greater than 0.75. Similarly,
the probability of students at Levels 1 and 2 answering Item ConT1Q5 correctly were
also low (0.1964 and 0.0799 respectively), however students at Level 3 and above had a

high probability of answering this item to correctly (0.6933, 0.7922, 0.8061, 0.8076).
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Table 6.6 The estimates of the conditional probabilities 75; of the conceptual knowledge
items of Level 3 for Model 1

Item: ConT1Q4 (j=9) Item: ConT1Q5 (j=10)
Correct Incorrect Correct Incorrect
3,9 1-msg 73,10 11349
Level 1 0.1984 0.8016 Level 1 0.1964 0.8036
Level 2 0.1107 0.8893 Level 2 0.0799 0.9201
Level 3 0.7504 0.2496 Level 3 0.6933 0.3067
Level 4 0.7979 0.2021 Level 4 0.7922 0.2078
Level 5 0.8068 0.1932 Level 5 0.8061 0.1939
Level 6 0.8087 0.1913 Level 6 0.8076 0.1924
Item: ConT2Q2 (j=11) Item: ConT3Q3 (j=12)
Correct Incorrect Correct Incorrect
3,10 11340 3,10 11349
Level 1 0.1982 0.8018 Level 1 0.1973 0.8027
Level 2 0.3237 0.6763 Level 2 0.1345 0.8655
Level 3 0.8372 0.1628 Level 3 0.8368 0.1632
Level 4 0.8094 0.1906 Level 4 0.8000 0.2000
Level 5 0.8160 0.1840 Level 5 0.8161 0.1839
Level 6 0.8090 0.1910 Level 6 0.8087 0.1913
Item: ConT4Q1 (j=13) Item: ConT4Q2 (j=14)
Correct Incorrect Correct Incorrect
73,13 1-ms43 73,14 1msq4
Level 1 0.1969 0.8031 Level 1 0.1960 0.8040
Level 2 0.0711 0.9289 Level 2 0.0429 0.9570
Level 3 0.8538 0.1462 Level 3 0.8682 0.1318
Level 4 0.8144 0.1856 Level 4 0.8076 0.1924
Level 5 0.8105 0.1895 Level 5 0.8101 0.1899
Level 6 0.8092 0.1908 Level 6 0.8088 0.1912
Item: ConT4Q3 (j=15)
Correct Incorrect
T315 1-mss
Level 1 0.1965 0.8035
Level 2 0.0480 0.9520
Level 3 0.7796 0.2204
Level 4 0.8026 0.1974
Level 5 0.8088 0.1912
Level 6 0.8091 0.1909

Likewise, the items related to fractions as measures (ConT4Q1, ConT4Q2, and
ConT4Q3) also demonstrated a good discriminatory power between students at Level 2
and Level 3. These items had a low probability of students at Level 1 and Level 2
answering them correctly (below 0.20), whereas students at Level 3 and above had a
high probability of obtaining a correct answer for this item, with the probability being

about 0.80.
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The results discussed above indicate that items ConT1Q4, ConT1Q5, ConT2Qz2,
ConT3Q3, ConT4Q1, ConT4Q2, and ConT4Q3 are suitable for placement at Level 3. This
supports the hypothesis that the competencies underlying these items are established
at this level, namely generating an improper fraction from a pie diagram representation,
generating an equivalent of an improper fraction from a pie diagram, shading a pie
diagram to represent an improper fraction, comparing two improper fractions using
part-whole representation, generating a fraction less than 1 on a number line,
generating a fraction less than 1 on a number line with a constraint, and generating

fractions greater than 1 on a number line.

6.3.1.1.4 Item Analysis at Level 4

Two items were hypothesized at Level 4 (c=4, j=16,17). These items were item ConT5Q1
(writing the biggest fraction they can) and item ConT5Q2 (writing the smallest fraction
they can). These items were used to test students’ understanding of the unbounded

infinity of fractions (there are no smallest or biggest fractions).

The results showed that students at Level 3 and below were likely to have an
incorrect answer for both items ConT5Q1 and ConT5Q2 with the probabilities for being
correct lying at lower than 0.20. In contrast, students at Level 4 and above were highly
likely to answer these questions correctly, with the probabilities being above 0.80. These
results showed that Item ConT5Q1 and Item ConT5Q2 could discriminate students at
Level 3 and Level 4 effectively. The conditional probabilities 7,; are presented in Table

6.7.

The results indicate that items ConT5Q1 and ConT5Q2 are suitable for placement
at Level 4. These results support the hypothesis that students’ understanding of the

unbounded infinity of fractions emerges at Level 4.
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Table 6.7 The estimates of the conditional probabilities of the conceptual knowledge items
of Level 4 for Model 1

Item: ConT5Q1 ltem: ConT5Q2
(j=16) (i=17)
Correct Incorrect Correct Incorrect

Ts16 1myi6 T47 1-myqy
Level 1 0.1957 0.8043 Level 1 0.1971 0.8029
Level 2 0.0642 0.9358 Level 2 0.0638 0.9362
Level 3 0.1893 0.8107 Level 3 0.1971 0.8029
Level 4 0.8119 0.1881 Level 4 0.8132 0.1868
Level 5 0.8101 0.1899 Level 5 0.8161 0.1839
Level 6 0.8077 0.1923 Level 6 0.8090 0.1910

6.3.1.1.5 Item Analysis at Level 5

ltem ConT6Ql (finding how many fractions lie between two fractions) and item
ConT6Q2 (finding how many fractions lie between two pseudo successive fractions)
were hypothesized as lying at Level 5 (c=5, j=18,19). These items were created to test

students’ understanding of the density of fractions.

The conditional probabilities 75 ; were estimated and are shown in Table 6.8. The
results showed that the students at Level 5 and 6 were more likely to answer item
ConT6Q1 and ConT6Q2 correctly, with a probability greater than 0.8, while students at
Level 4 and below were unlikely to answer correctly, with a probability less than 0.2.
These results showed that items ConT6Q1 and ConT6Q2 could discriminate effectively

between those students at Level 4 and those at Level 5.

The results discussed above indicate that items ConT6Q1 and ConT6Q2 are
suitable for placement at Level 5. These results support the hypothesis that the

competency of understanding the density of fractions emerges at this level.

Table 6.8 The estimates of the conditional probabilities 7s; of the conceptual knowledge
items of Level 5 for Model 1

Item: ConT6Q1 (j=18) Item: ConT6Q2 (j=19)
Correct Incorrect Correct Incorrect

Ts18 11548 Ts5,19 1ms,9
Level 1 0.1978 0.8022 Level 1 0.1971 0.8029
Level 2 0.0412 0.9588 Level 2 0.0393 0.9607
Level 3 0.1047 0.8953 Level 3 0.1277 0.8723
Level 4 0.1872 0.8128 Level 4 0.1904 0.8096
Level 5 0.8102 0.1898 Level 5 0.8120 0.1880
Level 6 0.8076 0.1924 Level 6 0.8077 0.1923
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6.3.1.1.6 Item Analysis at Level 6

Two items were hypothesized as being at Level 6 (c=6, j=20,21), namely ConT8Q1
(multiplying fractions using a diagram representation) and ConT8Q2 (dividing fractions
using a diagram representation). These items were designed to test students’

understanding of multiplicative fraction operations.

The results showed that students at the top level of the conceptual dimension
were likely to answer Items ConT8Q1 and ConT8Q2 correctly, with the probability being
greater than 0.80. In contrast, students at Level 5 and below were unlikely to answer
this item correctly, with the probability being less than 0.2. This indicates that both items
can discriminate effectively between those students at Level 6 and those students who

fall below this level. The conditional probabilities 774 ; are presented in Table 6.9.

Table 6.9 The estimates of the conditional probabilities 74; of the conceptual knowledge
items of Level 6 for Model 1

Item: ConT8Q1 (j=20) Item: ConT8Q2 (j=21)

Correct Incorrect Correct Incorrect

6,20 11650 6,21 1-mg5q

Level 1 0.1960 0.8040 Level 1 0.1948 0.8052
Level 2 0.0395 0.9606 Level 2 0.0391 0.9609
Level 3 0.1072 0.8928 Level 3 0.1120 0.8880
Level 4 0.1843 0.8157 Level 4 0.1850 0.8150
Level 5 0.1877 0.8123 Level 5 0.1884 0.8116
Level 6 0.8074 0.1926 Level 6 0.8065 0.1935

The results demonstrate that items ConT8Q1 and ConT8Q2 are suitable for
placement at Level 6. These results indicate that that the level of competency for

understanding multiplicative fractions operations is established at this level.

Like the results generated from other statistical models, the posterior probabilities
of students’ correctly answering the items (7r.;) also contain some degree of uncertainty
(random errors). Tables 6.4, 6.7 — 6.9 show that a few of the students at the higher levels
have smaller probability to correctly answer the items at the lower levels compared to

students at the lower levels.

For example, in Table 6.7, the probability of students at Levels 2 and 3 to correctly
answer item ConT5Q1 is 0.0642 and 0.1893 is lower than the students at Level 1 which
is 0.1957.
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However, these variations do not really matter in the context of discrete
hierarchical analysis, because the results show that the students at the lower levels
(Levels 1,2, and 3) were very unlikely to correctly answer item ConT5Q1, while the
students at Level 4 were highly likely answer correctly this item with the probability

0.8119.

In order to incorporate such variations, cut-off criteria were developed in Table
6.3. Using the cut-off points, the variations of the probabilities at Levels 1-3 presented
in Table 6.7 did not affect locating item ConT5Q1 on the progression levels of the

conceptual knowledge dimension.

6.3.1.2 Analysis to Estimate Students’ Levels in The Progression

The purpose of the analyses is to estimate students’ levels in the conceptual knowledge
dimension using Model 1. Netica Software was used to estimate the posterior

probabilities of the students’ levels P(8|y, 1T, x), as described in Section 5.2.3.3.2.

As described in Chapter 5, each individual student’s responses, x;; were entered
into the network using Netica. Using Netica, the responses were compiled to update the
prior probability y of the student being in the network. The estimates of ¥ as in equation
(5.5) and 7.; in equation (5.2) (generated from the WinBugs software) were used as

priors in the networks.

Figure 6.7 presents the prior probabilities y of the Netica graph for Model 1 on the
conceptual knowledge dimension. This was the prior where there was no student data
entered into the network. From this figure, the prior probabilities of students’ levels, i.e.
the estimates of ¥ (displayed in the node of “Conceptual_LP”) were 77.70% (y;), 17.90%
(v2), 1.68% (¥3),, 1.57% (y4), 0.84%(ys), and 0.29% (y¢). These prior estimates were
different from the priors set for equation (5.5) which were 16.67% for all y values. The
priors of ¥ presented in Figure 6.7 showed that most of the students were at Levels 1

and 2, and a small number of students were at the remaining levels.

Moreover, the prior probabilities for each item were compiled in the Netica
software based on the conditional probabilities m.; obtained from the WinBugs
estimation (as shown in Figure 6.7). The results showed that the probabilities of getting

correct answers decreased as the levels increased. For example, the prior probability to
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get a correct answer for the items at Level 1 (Items ConT1Q1, ConT2Q1, ConT3Q1, and
ConT7Q1) were about 80%, while the probability to get a correct answer for the items
at Level 6 (ConT8Q1 and ConT8Q2) were about 16%. The results showed there was an
increasing level of difficulty of the items, which was consistent with the hierarchical

levels of the learning progression.

In the next step, the posterior probabilities of the students’ levels P(8|y, &, x) of
516 students were estimated. As examples of the cohort, only those results obtained by
two particular students are presented. Figures 6.8 and 6.9 show the Netica estimations
for students ID 187 and 424, respectively. The raw scores of students ID 187 and 424 are

presented in Tables 6.10 and 6.11, respectively.
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Figure 6.7 A Netica Graph of the prior probability of the conceptual knowledge dimension.
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Table 6.10 The raw sores of student with ID 187

Level Level 1 Level 2 Lewvel 3 Level 4 Level & Level &
ltam ConT101 ConT201 ConT20L ConT70Q1 | ConT1QZ | ConT1Q3 ConT20Z | ConT702 | ConT1Q4 | ConTl1QS | ConT2Q2Z | ComT202 | ConT4Ql | ConT4QZ | ConT402 | ConTSQL | ConTSO2 | ConTEQL | ConTEQ2 | ConT2(QL | ConT2Q2
Respanse 1 pE a 1 1 1 £5 1 o o 1 4] o o o o o o 0 o o

Conceptual_LP
Level1 038| § i
Level2 996 mm
Level3 003
Level 4 0+
Level 5 a+

Level 6 0+

Incorrect 100
Correct

Incorrect

Incorrect
Correct

Correct

100

100

Incorrect
Correct

100 i Incorrect
Correct

100

Figure 6.8 A Netica Graph of the posterior probability P(6;|y, 7, x;;) for the student with ID 187 (i=187, j=1,...,21).
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Table 6.11 The raw sores of the student with ID 424

Level Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
ltem ConT101 | ConT201 | ConT301 | ConT701 | ConT1Q2 | ConT103 | ConT3Q2 | ConT702 | ConT104 | ConT1QS | ConT202 | ConT303 | ConT401 | ConT402 | ConT4Q3 | ConT5Q1 | ConT5Q2 | ConTSQ1 | ConTSQ2 | ConT8Q1 | ConT8O2
Respanse 1 1 1 1 1 1 0 o 1 1 1 0 1 1 1 1 1 0 o 0 0
Conceptual_LP
Level 1 i
Level 2
Level 3
Level 4
Level 5
Level 6
\\‘
ConT1Q2 ConT1Q3 ConT3Q2
Incorrect 0 Incorrect 0
Correct 100 Correct 100
1 1
Y,
Y
ConT3Q3 ConT4Q1
Incorrect 100 Incorrect 0
Correct 0 Correct 100
0 1
ConT6Q2 ConT8Q1
Incorrect a Incorrect 0 Incorrect Incorrect 100 Incorrect 100
Correct 100 Correct 100 Correct 100 Correct 0 Correct 0
1 1 0 0

Figure 6.9 A Netica Graph of the posterior probability P(6;|y, T, x;;) for the student with ID 424 (i=424, j=1,...,21).
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From Table 6.10, it can be seen that student ID 187 could answer most of the items
at Level 1, all the items at Level 2, and one item out of 7 items at Level 3. Based on these
responses, the Netica software generated probabilities of each level for this student as
follows (from level 1 to level 6): 0.38%, 99.6%, 0.003%, 0%, 0%, and 0%. As the highest
probability of the level is at Level 2, the student with ID 187 is assigned to Level 2 in our
model. Similarly, student ID 424, as can be observed in Table 6.11, could answer all the
items at Level 1, most of the items at Levels 2 and 3, and all the items at Level 4. The
Netica software produced the probability of each level for this student (from the lowest
to the highest) as follows: 0.2%, 0%, 5.11%, 92.3%, 2.31%, and 0.47%. Hence, the student
was assigned to Level 4 because the student had the highest probability to be placed at

this level.

The same procedure as was discussed above was then applied to all 516 students’
responses to estimate their levels. The results were summarized in Figure 6.10, which
shows the distribution of the students’ levels in the conceptual knowledge dimension.
The results showed that the largest percentage of the students were at Level 2 (59.11%),
followed by the percentages at Level 1 (20.16%), Level 3 (14.92%), Level 4 (3.68%), Level
5(1.36%) and Level 6 (0.78%).

60.00%
50.00%
40.00%

30.00%

Percentage

20.00%

10.003% '
- — A

0.00%
Level 1 Lewvel 2 Level 3 Level 4 Level 5 Level 6
| Seriesl| 20.16% 59.11% 14.92% 3.68% 1.36% 0.78%

Figure 6.10 The distribution of the students’ levels in the conceptual knowledge dimension
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6.3.2 Model 1: Analysis of the Procedural Knowledge Dimension

6.3.2.1 Item Analysis

Similar to the item analysis of the conceptual knowledge dimension using Model 1, the
purpose of the analysis of the items included in the procedural knowledge dimension of
the fraction progression instrument was to validate the items in the various levels of this

knowledge dimension.

6.3.2.1.1 Item Analysis at Level 1

Iltem ProT1Q1 (adding fractions with the same denominator) was hypothesized to be
located at Level 1 (c=1, j=1). This item was used to test students’ procedural knowledge
of adding fractions with the same denominator. The results showed that the students
from the lowest to the highest level were likely to answer item ProT1Q1 correctly with
a probability above 75% at Level 1 and above 80% for Levels 2-6. Only 23% students at

Level 1 will answer the item incorrectly. The results are shown in Table 6.12.

The results indicate that item ProT1Q1 is suitable to be placed at Level 1 of the
procedural knowledge dimension, supporting the hypothesis that the competency of
adding fractions with the same denominator that underpins item ProT1Q1, is

established at Level 1.

Table 6.12 The estimates of the conditional probabilities 7, ; of the procedural knowledge
item falling at Level 1 for Model 1

Iltem: ProT1Q1 (j=1)
Correct Incorrect
11 1-my4

Level 1 0.7696 0.2304
Level 2 0.8028 0.1972
Level 3 0.8873 0.1127
Level 4 0.9095 0.0905
Level 5 0.8040 0.1960
Level 6 0.8897 0.1103

6.3.2.1.2 Item Analysis at Level 2

Iltem ProT1Q2 (adding fractions with different denominators) was hypothesized to test
students’ procedural knowledge at this level (c=2, j=2). The results showed that students
at level 2 and above had a probability of over 80% of answering this item correctly. In

contrast, students at Level 1 were unlikely to answer these items correctly, with a
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probability of about 23%. The results showed that this item discriminated effectively

between the students at level 1 and the students at level 2.

The results indicate that Item ProT1Q2 is suitable to be placed at Level 2 in the
proposed model of the procedural knowledge dimension. The results support the
hypothesis that the competency of adding fractions with the same denominator, which

underpins item ProT1Q2, is established at level 2.

Table 6.13 The estimates of the conditional probabilities 7,; of the procedural knowledge
item falling at Level 2 for Model 1

Item: ProT1Q2 (j=2)

Correct Incorrect
22 1-m5,

Level 1 0.2287 0.7713
Level 2 0.8022 0.1978
Level 3 0.8439 0.1561
Level 4 0.8838 0.1162
Level 5 0.804 0.196
Level 6 0.875 0.125

6.3.2.1.3 Item Analysis at Level 3

Five items were hypothesized at Level 5 of the procedural knowledge dimension (c=3,
j=3,4,5,6,7). These items were ProT1Q4 (adding fractions with a mixed number),
ProT1Q3 (subtracting fraction with a whole number), ProT2Q1 (multiplying a fraction
with a fraction), ProT2Q2 (multiplying a fraction with a whole number), and ProT2Q3

(dividing a fraction with a fraction).

The results showed that items ProT1Q4, ProT1Q3, ProT2Q2 and ProT2Q3
discriminated well between students at Level 2 and Level 3. Students at Level 1 and 2
had low probabilities (less than 31%) to answer these items correctly, while students at
Level 3 and above had a probability of 67% of answering item ProT1Q3 correctly, and
above an 80% probability to answer Items ProT1Q4, ProT2Q2 and ProT2Q3 correctly.

The results are shown in Table 6.14
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Table 6.14 The estimates of the conditional probabilities 75 of the procedural knowledge
item falling at Level 3 for Model 1

Item: ProT1Q3 (j=3) Item: ProT1Q4 (j=4)
Correct Incorrect Correct Incorrect
33 1-m33 T34 1-mz,
Level 1 0.1635 0.8365 Level 1 0.3108 0.6892
Level 2 0.2000 0.8000 Level 2 0.2019 0.7981
Level 3 0.6693 0.3307 Level 3 0.8642 0.1358
Level 4 0.8267 0.1733 Level 4 0.8998 0.1002
Level 5 0.8043 0.1957 Level 5 0.8053 0.1947
Level 6 0.8628 0.1372 Level 6 0.8931 0.1069
Item: ProT2Q1 (j=5) Iltem: ProT2Q2 (j=6)
Correct Incorrect Correct Incorrect
T35 1-m3 T36 1-m36
Level 1 0.1210 0.8790 Level 1 0.3036 0.6964
Level 2 0.1953 0.8047 Level 2 0.1978 0.8022
Level 3 0.5634 0.4366 Level 3 0.8389 0.1611
Level 4 0.8201 0.1799 Level 4 0.9100 0.09
Level 5 0.8020 0.1980 Level 5 0.8055 0.1945
Level 6 0.8527 0.1473 Level 6 0.8827 0.1173
Item: ProT2Q3 (j=7)
Correct Incorrect
Tl37 1-m3y
Level 1 0.1827 0.8173
Level 2 0.1977 0.8023
Level 3 0.8186 0.1814
Level 4 0.9142 0.0858
Level 5 0.8045 0.1955
Level 6 0.8922 0.1078

However, for item ProT2Q1, the probability for the students at Level 3 to answer
this item correctly was 56% (referring to the ambiguous items between 0.45 and 0.65).
The students at the lower levels (levels 1 and 2) had probabilities of less than 20% of
answering this item correctly. In contrast, the students at level 4 and above were highly
likely to answer this item correctly, with the probabilities lying above 80%. The results
did not indicate that this item was better to be placed at Level 4, because the students
at Level 3 were likely to answer this item correctly with a probability only slightly above

50%. Hence, there was ambiguity with placing this item at Level 3.
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The results discussed above indicate that items ProT1Q4, ProT1Q3, ProT2Q2 and
ProT2Q3 are suitable to be placed at Level 3. These results support the hypothesis that
the competencies that underpin these items, adding fractions with a mixed number;
subtracting fractions with a whole number; multiplying a fraction with a whole number;

and dividing a fraction with a fraction, are established at this level.

6.3.2.1.4 Item Analysis at Level 4

Two items were hypothesized at Level 4 (c=4, j=8,9). These items were ProT2Q4
(multiplying a mixed number with a mixed number) and ProT2Q5 (dividing a mixed
number with a whole number). These items were designed to test students’ procedural

knowledge of multiplicative fraction operations which involve mixed numbers.

The results showed that students at level 4 and above had probabilities of
answering these items correctly at above 72% for item ProT2Q4 and above 78% for item
ProT2Q5. In contrast, students at Level 3 and below were unlikely to answer these items
correctly, with the probabilities lying at less than 20%. The results showed that these
items discriminated well between those students at level 3 and those students at level

4, The results are shown in Table 6.15

Table 6.15 The estimates of the conditional probabilities 7, ; of the procedural knowledge
item falling at Level 4 for Model 1

Iltem: ProT2Q4 (j=8) Item: ProT2Q5 (j=9)

Correct Incorrect Correct Incorrect

T4g 1-myg T49 1-m49

Level 1 0.1227 0.8773 Level 1 0.1112 0.8888
Level 2 0.1959 0.8041 Level 2 0.1967 0.8033
Level 3 0.1898 0.8102 Level 3 0.197 0.803
Level 4 0.7357 0.2643 Level 4 0.7809 0.2191
Level 5 0.8002 0.1998 Level 5 0.8024 0.1976
Level 6 0.7289 0.2711 Level 6 0.8589 0.1411

The results indicate that items ProT2Q4 and ProT2Q5 are suitable to be placed at
Level 4. These results support the hypothesis that the competencies for performing
multiplicative fraction operations with a mixed number, which underpin these items,

emerge at this level.
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6.3.2.1.5 Item Analysis at Level 5
The items hypothesized at Level 5 (c=5, j=10, 11) were Item ProT3Q1 (solving a nested

fraction operation where the numerator is a fraction subtraction) and ProT3Q2 (solving
a nested fraction operation where the numerator is a fraction division). These items
were created to test students’ procedural knowledge of complex fractions with one-

level nested fraction operations.

The results showed that the students at level 4 and below were unlikely to answer
item ProT3Q1 correctly, with the probability being less than 20%. Students at Level 5
and above were highly likely to answer this item correctly, with the probability being
above 80%. Similarly, the probabilities for students at Level 4 and below were less than
24% to answer item ProT3Q2 correctly, while students at Levels 5 and 6 have a
probability of about 80% of answering this item correctly. Hence, it is shown that these
items could discriminate the students at Levels 4 and 5. The results are shown in Table
6.16

Table 6.16 The estimates of the conditional probabilities 75; of the procedural knowledge item

falling at Level 5 for Model 1

Item: ProT3Q1(j=10) Item: ProT3Q2(j=11)

Correct Incorrect Correct Incorrect

Ts519 11540 Ts51q 1-msy

Level 1 0.0952 0.9048 Level 1 0.1010 0.8990
Level 2 0.1950 0.8050 Level 2 0.1957 0.8043
Level 3 0.1400 0.8600 Level 3 0.1343 0.8657
Level 4 0.1875 0.8125 Level 4 0.2386 0.7614
Level 5 0.8025 0.1975 Level 5 0.8034 0.1966
Level 6 0.8732 0.1268 Level 6 0.7961 0.2039

The results indicate that items ProT3Q1 and ProT3Q2 are suitable to be placed at
Level 5. This supports the hypothesis that the competencies underlying items ProT3Q1
and ProT3Q2, solving a nested fraction operation where the numerator is a fraction
subtraction, and solving one-level nested fraction operations where the numerator is a

fraction division, are established at this level.

6.3.2.1.6 Item Analysis at Level 6

Iltem ProT3Q3 (solving a fraction operation with a two-level nested fraction) was

hypothesized as falling at Level 6 (c=2, j=12). This item was designed to test students’
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procedural knowledge of complex fraction operations with two or more nested
operations.

The results showed that the students at level 6 had a high probability of answering
item ProT3Q3 correctly (about 78%), whereas students at level 5 and below had low
probabilities of doing so, at less than 20%. Hence, Item ProT3Q3 could discriminate
effectively between students at Level 6 and the students at the levels below.

The results indicate that Item ProT3Q3 is suitable to be placed at Level 6. This
confirms the hypothesis that the competency of performing a complex fraction

operation with two level nested fraction operations is established at Level 6.

Table 6.17 The estimates of the conditional probabilities 74 of the procedural knowledge
item falling at Level 6 for Model 1

ltem: ProT3Q3(j=12)

Correct Incorrect
Te12 1-T612

Level 1 0.0945 0.9055
Level 2 0.1949 0.8051
Level 3 0.0907 0.9093
Level 4 0.0922 0.9078
Level 5 0.1971 0.8029
Level 6 0.7819 0.2181

6.3.2.2 Analysis to Estimate Students’ Levels in the Progression

Similar to the analysis in the conceptual knowledge dimension, the aim of the procedural
level analysis was to estimate students’ levels (8|y, r, x) in the procedural dimension.
The prior of the networks, which was compiled by the Netica software from the
estimates of y as in Equation (5.5) and 7 in Equation (5.2), is presented in Figure 6.11.
The results showed that the prior probabilities for the students’ levels (estimates of y
from Level 1 to Level 6) were 33.90%(y;), 26.30%(y3), 21.10%(y3), 17.90%(y,),
0.46%(ys), and 0.37%(y)-

The results also showed that the prior probabilities of items decreased with the
increasing levels of the learning progression. For example, the prior probability for item
ProT1Q1 at Level 1 was 82.9 %, and the prior probability for item ProT1Q1 at Level 2 was
63.1%. The smallest prior probability was on item ProT3QT at Level 6, which was 12.3%.
The smallest prior probability in the network showed that this item was the most difficult
for students, which was consistent with the hierarchical level of the proposed model of
fraction learning progression.
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Figure 6.11 Netica Graph of the prior probability of the procedural knowledge dimension
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Using Netica, the posterior probabilities of the levels P(0|y, 1, x) of 516 students were
generated. Figures 6.12 and 6.13 show an example of Bayesian Network estimation, using
Netica from the students with ID 452 and 261, with their responses in Tables 6.18 and 6.19
respectively. The results showed that the student with ID 452 answered the items at Level 1
and Level 2 correctly, alongside most of the items at Level 3. The Netica software generated
posterior probabilities of the levels for the student with ID 452 as follows: Level 1 is 0.67%;
Level 2 is 0.57%; Level 3 is 94.7%; Level 4 is 4.09%, Level 5 is 0.002% and Level 6 is close to
0%. From these results, it can be inferred that the student with ID 452 was estimated at Level

3, as this student has the highest probability to be placed at this level.

In the same way, the results showed that the student with ID 261 answered correctly
the items at Level 1, Level 2, and most of the items at Level 3. The student made a mistake in
one of the items at Level 4, and correctly answered all the items at Level 5 and 6. The following
were the posterior probabilities generated from Netica, from Levels 1 to 6, which are: Level 1
was 0.022%, Level 2 was 0.43%, Level 3 was 12.6%; Level 4 was 23%, Level 5 was 8.42%, and
Level 6 was 55.5%. Thus, student 261 was estimated as being at Level 6. The probability for
student 261 being at Level 6 is not particularly high (about 55%), which reflects the student’s

errors in some items at the lower levels.
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Table 6.18 Raw Scores of Student 452

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
ProT1lQl | ProT10Q2 | ProT1Q3 | ProT1Q4 | ProT2Q1 | ProT202 | ProT2Q3 | ProT204 | ProT2Q5 | ProT3Q1 | ProT3Q2 | ProT320Q3
1 1 1 1 0 1 1 0 0 0 0 0

Procedural_LP
Levelt 067
Level2
Level3
Leveld
Levels
Levelf

ProT2Q1 T ProT2Q2
Incorrect 100 Incorrect 0
Correct 0 Comect 100

0 1

ProT3Q2 ProT3Q3
Incorrect 100 Incorrect 100
Correct 0 Correct 0

0 0

Figure 6.12 A Netica Graph of the posterior probability (6;|y, &, x;;) for student 452 (i=452, j=1,..,,12).
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Table 6.19 Raw Scores of Student 261

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
ProT1Ql | ProT1Q2 | ProT1Q3 | ProT1Q4 | ProT2Ql | ProT2Q2 | ProT203 | ProT20Q4 | ProT2Q5 | ProT3Ql | ProT3Q2 | ProT303
1 1 1 1 0 1 1 0 1 1 1 1

Procedural_LP

Level1
Level2
Level3
Leveld
Level5
Level6

Incorrect

Correct 100 B

Incorrect

Correct 100 j—

Figure 6.13 A Netica Graph of the posterior probability (6;|y, 7, x;;) for student 261 (i=261, j=1,...,12)..
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The same procedure of estimation was applied to all 516 students. Figure 6.14
depicts the distribution of the students’ procedural level generated from Model 1 of the

Bayesian Network Modeling.

30.00%

25.00%
20.00%
15.00%
10.00%
5.00% '

0.00%
Level 1 Level 2 Level 3 Level 4 Level 5 Level &
mSeriesl| 18.22% 6.78% 25.97% 29.65% 5.62% 13.76%

Percentage

Figure 6.14 The distribution of students’ level in the procedural knowledge dimension

The results showed that the highest percentage of students was at Level 4 (29.65%),
followed by students at Level 3 (25.97%). At the high levels, the percentage of students
at Level 6 was 13.76%, and at Level 5 was 5.62%. At the low levels, 18.22% of students
were at Level 1 and 6.78% at Level 2. Most of the students were concentrated in the
medium levels of the procedural knowledge dimension, and only a small number of
students were at Level 2 and Level 5, which connected the students from the lowest

level to the medium level, and from the medium level to the highest level, respectively.

6.3.3 Model 2: Analysis of the Conceptual Knowledge Dimension

As described in Chapter 5, the levels of the learning progression model were
represented by several parameters @ = (04, ..., 8¢), where 8, was the collection of 8;
for c=1,...,Cand i=1,...,n. The dependency between the levels was reflected in the way
that the 0, at the upper level was conditional (dependent) on the 8.; in the lower level.
This dependency reflected the assumption that to achieve the competencies at the
upper level, the students should already have the competencies at the lower level,

which was consistent with the hierarchical levels in the learning progression.
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For Model 2, it was assumed that the students who had competencies at a certain
level would have a high probability of answering the items at that level correctly. In
contrast, students who had no competencies at that level were unlikely to answer the
items correctly. In other words, Model 2 estimated two types of conditional probabilities
to answer the questions correctly, which were: the probabilities of students who had
competencies (0.;= 1) and the probabilities of the students who had no competencies
(8.;= 0) for each level. These conditional probabilities were incorporated into Model 2

by the parameters 7., i.e. m;j; and m.; respectively, as shown from Equation (5.9).

6.3.3.1 Item Analysis

The objective of the item analysis in Model 2 was similar to that of Model 1, which was
to place the items along the progression levels of the proposed model. However, in
Model 2, the item analysis was performed based on two values of 7.j,, which are 7.,
and ;; (Equation 5.9). The estimates of 7;; represented the conditional probability
of the students being able to answer item j “correctly” given that the student had
competencies at a level ¢ (6;; = 1). The conditional probability 7.j; was similar to the
conditional probability 7r; in Model 1 in terms of measuring the difficulty of the items.
Table 6.20 represents the intervals of 7., that are used as criteria to assign the items
into the levels of the learning progression. These criteria were developed based on how

likely the students who had competencies at Level c were to answer item j correctly.

Table 6.20 The cut-off points of 7; to consider the items to be placed into the levels of the
proposed model of the fraction learning progression
Interval Description

0.65<m; <1 Item j is placed at Level c. Students at level c are highly likely
to answer the item correctly

0.45 < m.j; <0.65 Item j is ambiguous to be placed at Level ¢ because of the
uncertainty of the students at level ¢ to answer the item
correctly

0 <mj; <045 Item j is too difficult to be placed at Level c. The students at

this level is less likely to answer the item correctly

The estimate of 7, represents the conditional probability of the student

answering item j “correctly”, given that the student has no competencies at level ¢
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(6; = 0). In other words, m;; measures the probability of the students answering the
item correctly by chance. A large value of .; indicates that the students are highly
likely to answer the item by chance or guesswork. Table 6.21 shows the intervals of 7o,
which are used to consider the location of the items in the proposed levels of fraction

learning progression.

Table 6.21 The cut-off points of 7., to consider the location of the items to be placed into the
levels of the proposed model of fraction learning progression

Interval Description
0.65<my <1 Highly likely the students at Level c answer the item correctly
by chance

0.45 < 1o < 0.65 Uncertain condition whether the students at Level c¢ will
answer the item by chance correctly or not

0 <mjp <045 Less likely that the students at Level ¢ will answer the item
correctly by chance

Based on the criteria developed in Tables 6.20 and 6.21, the item analysis for each

level was performed.

6.3.3.1.1 Item Analysis at Level 1

Four items were hypothesized at Level 1 for the conceptual knowledge dimension (c=1,
j=1, 2, 3, 4). These items were items ConT1Q1 (generating a fraction from a part-whole
(pie) diagram), ConT2Q1 (shading a pie diagram to represent a fraction less than 1),
ConT3Q1 (comparing two fractions less than 1 using part-whole representation), and

ConT7Q1 (adding fractions less than 1 using part-whole representation (diagram)).

The results showed that the students who had competencies at Level 1 (64; = 1)
were likely to answer items ConT1Ql, ConT2Ql1, ConT7Ql correctly, with the
probabilities being above 90%, and item ConT3Q1 correctly, with a probability of 78%
(above the cut off point of 65%). Moreover, the students who did not have competencies
at Level 1 (6;; = 0) had low probabilities (less than 21%) of answering the items correctly

by chance. The results are shown in Table 6.22.

From the results above, it can be inferred that all the items are suitable for

placement at Level 1. These results indicate that the competencies underlying these
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items, generating a fraction from a part-whole (pie) diagram, shading a pie diagram to
represent a fraction less than 1, comparing two fractions less than 1 using part-whole
representation, and adding fractions less than 1 using part-whole representation

(diagram), are established at Level 1.

Table 6.22 The estimates of the conditional probabilities 7z;; of the conceptual knowledge
items falling at Level 1 for Model 2

Items 0;;=1 0,;=0
Correct Incorrect Correct Incorrect
T1j1 1-—mj T1jo 1-myjo
ConT1Q1 0.9567 0.0433 0.2045 0.7955
ConT2Q1 0.9657 0.0343 0.1982 0.8018
ConT3Q1 0.7837 0.2163 0.1917 0.8083
ConT7Q1 0.9356 0.0644 0.2041 0.7959

6.3.3.1.2 Item Analysis at Level 2

Four items were hypothesized at Level 2 (c=2, j=4, 5, 6, 8). These items were items
Cont1Q2 (generating an equivalent fraction from a pie diagram), ConT1Q3 (generating
a fraction from an unequal partition of a pie diagram), ConT3Q2 (comparing fractions
less than 1 with different denominators using a part-whole diagram), and ConT7Q2
(adding  fractions  with  different denominators using a  part-whole

representation/diagram).

The results showed that the students who had competencies at Level 2 (6,; = 1)
were highly likely to answer Iltems ConT1Q2, ConT3Q2, and ConT7Q2 correctly, with the
probabilities being greater than 80%, while item ConT1Q3 was about 65% (the cut-off
point of 7 ;,). These probabilities were used to place each item at a particular level, as
presented in Table 6.23. On the other hand, students who did not have competencies at
Level 2 (0,; = 0) were less likely to answer the items correctly by chance, with the

probability being less than 38%. The results are shown in Table 6.23.
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Table 6.23 The estimates of the conditional probabilities 7z, of the conceptual knowledge
items falling at Level 2 for Model 2

Items 6, =1 6,,=0
Correct Incorrect Correct Incorrect
Taj1 1—myj T3 jo 1m0
ConT1Q2 0.9075 0.0925 0.3792 0.6208
ConT1Q3 0.6558 0.3442 0.1254 0.8746
ConT3Q2 0.8076 0.1924 0.2439 0.7561
ConT7Q2 0.8817 0.1183 0.3666 0.6334

The results discussed above indicate that item ConT1Q3 is rather ambiguous at
Level 2 and this item could be moved to the upper level. In contrast, the results show
that items ConT1Q2, ConT3Q2, and ConT7Q2 are suitable to be placed at Level 2. These
results support the hypothesis that the competencies underpinning items ConT1Q2,
ConT3Q2, and ConT7Q2 emerge at this level, namely writing an equivalent fraction for
a fraction less than 1, comparing fractions less than 1 with different denominators using
a part-whole diagram, and adding fractions with the different denominators using

diagram representations.

6.3.3.1.3 Item Analysis at Level 3

Seven items were hypothesized at Level 3 (¢=2, j=9,10,11,12,13,14,15,16,17,18). These
items were items ConT1Q4 (generating an improper fraction from a pie representation),
ConT1Q5 (generating an equivalent of an improper fraction from a pie diagram),
ConT2Q2 (shading a pie diagram to represent an improper fraction), ConT3Q3
(comparing two improper fractions using part-whole representation), ConT4Q1l
(generating a fraction less than 1 on a number line), ConT4Q2 (generating a fraction less
than 1 on a number line with a constraint), and ConT4Q3 (generating fractions greater

than 1 on a number line).

The results showed that the probability for students who had competencies at
Level 3 (B5; = 1) would answer all the items correctly were greater than 70%. Moreover,
the probability that the students who did not have the competencies at Level 3 (65; =
0) would answer the items by chance correctly were small (less than 33%). The results

are shown in Table 6.24.
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Table 6.24 The estimates of the conditional probabilities 73, of the conceptual knowledge
items falling at Level 3 for Model 2

Level 3
Items 05, =1 05;,=0
Correct Incorrect Correct Incorrect
T3j1 1-m354 T3j0 1-1359
ConT1Q4 0.7573 0.2427 0.1087 0.8913
ConT1Q5 0.7007 0.2993 0.0783 0.9217
ConT2Q2 0.8482 0.1518 0.3213 0.6787
ConT3Q3 0.8416 0.1584 0.1321 0.8679
ConT4Q1 0.8585 0.1415 0.0691 0.9309
ConT4Q2 0.8656 0.1344 0.0419 0.9582
ConT4Q3 0.7828 0.2172 0.0474 0.9525

Therefore, items ConT1Q4, ConT2Q2, ConT1Q5, ConT3Q3, ConT4Q1, ConT4Q2,
and ConT4Q3 are suitable for placement at level 3. These results indicate that the
competencies corresponding with these items, shading a pie diagram to represent an
improper fraction, comparing improper fractions with different denominators using a
part-whole diagram, putting a proper fraction on a number line, putting a proper
fraction on a number line with a constraint, and putting fractions, including an improper

fraction and a mixed number, on a number line, emerge at this level.

6.3.3.1.4 Item Analysis at Level 4

Two items were hypothesized at Level 4 (c=4, j=16,17). These items are ConT5Q1
(writing the biggest fraction they can) and Item ConT5Q1 (writing the smallest fraction

they can).

The results showed that the students who had competencies at Level 4 (0,; = 1)
are likely to answer items ConT5Q1 and ConT5Q2 correctly with a probability greater
than 80%. The probability students who did not have Level 4 competencies (0,; = 0)
would answer these items correctly were very small; about 5%. The results are

presented in Table 6.25.

From the results discussed above, it can be inferred that Items ConT5Q1 and
ConT5Q2 are suitable for placement at Level 4. The results support the hypothesis that
the competencies of writing the biggest fraction they can and writing the smallest

fraction they can, are established this level.
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Table 6.25 The estimates of the conditional probabilities 7z, of the conceptual knowledge
items falling at Level 4 for Model 2

Items 0,=1 0,;=0
Correct Incorrect Correct Incorrect
T4j1 1-myjy T4 jo 1-14jo
ConT5Q1 0.8205 0.1795 0.0516 0.9484
ConT5Q2 0.8356 0.1644 0.0513 0.9487

6.3.3.1.5 Item Analysis at Level 5

Two items (c=5, j=18,19) were hypothesized at this level: item ConT6Q1 (finding how
many fractions lie between two-fractions) and item ConT6Q2 (finding how many

fractions lie between two-pseudo successive fractions).

The results show that the students who had competencies at Level 5 (85 = 1) had
a high probability (greater than 80%) of answering items ConT6Q1 and ConT6Q2
correctly. The students were unlikely to get correct answers by guessing because the
probability of the students who had no competencies at this level of answering these

items correctly were very small, less than 5%. The results are shown in Table 6.26.

Table 6.26 The estimates of the conditional probabilities 75, of the conceptual knowledge
items falling at Level 5 for Model 2

Items 05, =1 0s;,=0
Correct Incorrect | Correct Incorrect
T5j1 1wy Ts5 jo 1-m550

ConT6Q1l 0.8111 0.1889 0.0345 0.9655
ConT6Q2 0.8164 0.1836 0.0400 0.9600

The results from Table 6.26 indicate that items ConT6Q1 and ConT6Q2 are suitable
for placement at Level 5. The results support the hypothesis that the competencies of
finding how many fractions lie between two fractions, and finding how many fractions

lie between two-pseudo in successive fractions are established at this level.

6.3.3.1.6 Item Analysis at Level 6

ltem ConT8Q1 (multiplying fractions using a diagram representation) and ConT8Q2

(dividing fractions using a diagram representation) were hypothesized at Level 6.

The results showed that the students who had competencies at Level 6 (64=1) had

probabilities greater than 80% of answering items ConT8Q1 and ConT8Q2 correctly. In
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contrast, the probability for students who had no competencies at Level 4 (84 = 0) meant
that they were unlikely to answer items ConT8Q1 and ConT8Q2 correctly, with a

probability of less than 4%.

Table 6.27 The estimates of the conditional probabilities 7 ;, of the conceptual knowledge
items falling at Level 6 for Model 2

Items 961' =1 961' =0
Correct Incorrect | Correct Incorrect
g j1 1-mg )y Ts jo 1-mgj0

ConT8Q1 0.8037 0.1963 0.0323 0.9677
ConT8Q2 0.8052 0.1948 0.0340 0.9661

From the results discussed above, items ConT8Q1 and ConT8Q2 are suitable for
placement at Level 6. The results support the hypothesis that the competencies of
multiplying fractions and dividing fractions using a diagram representation are

established at this level.

6.3.3.2 Analysis to Estimate Students’ Levels in the Learning Progression

The purpose of the analysis was to estimate students’ levels in the conceptual
knowledge dimension based on Model 2 using Bayesian Networks Modelling. As
described in Chapter 5, the Netica software was used to estimate the posterior

probabilities of the students’ levels (@|y, i, x) (Section 5.2.3.3.2).

Figure 6.15 shows the prior of Bayesian Networks Model 2 in the Netica graph. The
prior probabilities in the nodes of levels were compiled from the estimates of y in
Equation (5.8). The prior probabilities in the nodes of items were compiled from the
estimates of 7., in Equation (5.9). The estimates of y and 7., were generated from

the WinBugs software using MCMC estimation as detailed in Section 5.2.3.

The results showed that the prior probabilities y for level 1 to level 6 are about
98%, 53%, 25%, 13%, 7%, and 6%. These prior probabilities reflected the belief about
the proportion of students’ levels in the population. These prior probabilities were
updated when individual student’s responses, X;j, were entered into the network to
produce the posterior probabilities y of the student. The posterior probabilities y for
each individual student showed the probabilities of the student having the

competencies required for those levels.
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The results showed that the prior probabilities of getting correct answers for each
item (compiled in Netica, based on the estimates of ;) were decreased from the items
at the lowest level to the highest level. For example, the prior probabilities to answer
items at Level 1 correctly were between 77% - 95%. However, the prior probabilities to
answer items at Level 2 correctly were between 34%-59%; Level 3 are between 23%-45;,
Level 4 are about 15%; Level 5 are about 10% and Level 6 are about 8%. These prior
probabilities were consistent with the hierarchical levels of the proposed model of
learning progression, which the items in the upper levels being more difficult than the

lower items.
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Figure 6.15 A Netica Graph of the prior probability for the Conceptual Knowledge Dimension generated from Model 2 of Bayesian Networks Modelling.
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The posterior probabilities of the levels P(@|y,m, x) of 516 students were
estimated using the Netica software. As examples, the results of the Netica estimation
for two particular students with IDs 44 and 301 are presented in Figures 6.16 and 6.17
respectively. The student with ID 44 correctly answered all the items at Level 1, most of
the items at Level 2, and only 1 item at Level 3. The scores are presented in Table 6.28.
From these scores, the Netica generated posterior probabilities of the levels as follows:
Level 1 was 100%, Level 2 was 83%, and Level 3 to Level 6 were less than 1%. These
results showed that the student had a high probability of having the competencies at
Levels 1 and 2, but small probability to have the competencies at the upper levels. Based

on these results, the student was assigned to Level 2.

The results showed that the student with ID 301 correctly answered all the items
at Level 1, made a mistake at Level 2, and correctly answered the items from Levels 3 to
5 (Table 6.29). Netica produced posterior probabilities of the levels for student 301 as
follows: for Levels 1 to 4 they were close to 100%, while for Levels 5 and 6 they were
less than 2%. These results showed that the student had a high probability of having the
competencies at Levels 1 to 4, but had low probability of having the competencies at

Levels 5 and 6. Hence, the student with ID 301 was assigned to Level 4.

In a few extreme cases, a few students did not demonstrate their competencies
for all the proposed levels. For example, a student with ID 61 had a correct answer for
one item at Levels 1, 2 and 3. The posterior probabilities of the levels for this student
are presented in Figure 6.18. The results showed that the posterior probabilities for this
student were 13% for Level 1 and below 10% for Levels 2 to 6. These results showed that
the student had low probabilities of having the competencies of all the levels. Hence,
the student was assigned to Level 0. Level 0 was the level for the group of students who

did not have sufficient competencies at Level 1 and above.
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Table 6.28 The raw sores of the student with ID 44
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Incorrect
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Figure 6.16 A Netica Graph of the posterior probability (6;|y, 7, x;;) for the student with ID 44 (i=44, j=1,...,21).
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Table 6.29 The raw sores of student 301

Level 1 Level 2 Level 3 Level 4 Level 5 Level &
ConT201 | ConT301 | ConT701 ConT1Q3 | ConT30Q2 | ConT702 ConT202 | ConT303 ConT40Q2 | ConT403 | ConT541 | ConT502 | ConT601 | ConTeQ2 | ConT2Q1 | ConTROQ2
1 1 1 i} 1 1 1 1 1 o o
Level_1 Level_2 Level_3 Level_4 Level_5 Level_6
Yes 100 Yes 993 100 99.0 Yes 133 b Yes 0.14
No 001 | No 067 | 0+ 099 I | No 987 No 999 =
1+0.0038 0.993 £ 0.082 120 0.99.£0.099 0.013320.11 0.00141 £ 0.038
Incorrect of Riconud ; = ConT6Q1 ConT8Q1
Correct 100 correct
= Correct 100 : Comed 100 glm;a 103 lcr:lmct
0
ConT10Q4
Incorrect
Correct 100
- ConT6Q2 ' d‘:"":mw
incorrect 100 oeote
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0 0
Incorrect Incorrect
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Figure 6.17 A Netica Graph of the posterior probability (6;|y, , x;;) for the student with ID 301 (i=301, j=1,...,21).
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Table 6.30 The raw scores of student 61
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Figure 6.18 A Netica Graph of the posterior probability (6;|y, , x;;) for the student with ID 61 (i=61, j=1,...,21).
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A similar procedure for assigning students to the conceptual knowledge dimension
discussed above was applied to assign all 516 students. The distribution of the students’

levels estimated using Model 2 is summarized in Figure 6.19.
60.00%
50.00%
40.00%

30.00%

20.00%
10.00% I

Level O Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Percentage

m Conceptual  0.58% @ 48.06% @ 28.68% 15.31%  4.84% 1.55% 0.97%

Figure 6.19 The distribution of students’ levels on the conceptual knowledge dimension
generated from Model 2

The results showed that the highest percentage of students was at Level 1, which
was 48.06%. After that, the number of students from Level 2 to Level 6 decreased as
follows: 28.68%, 15.31%, 6.40%, 43.84%, 1.55% and 0.97%. The lowest percentage was
at Level 0 which is only 0.58%.

6.3.4 Model 2: Analysis of The Procedural Knowledge Dimension

The previous processes being applied for Model 2 were applied for the procedural

knowledge dimension.

6.3.4.1 Item Analysis

This section focuses on allocating the items across the levels of the procedural
knowledge dimension, based on the conditional probability item analysis obtained from
Model 2. The cut-off points presented in Tables 6.20 and 6.21 were used to assign the

items into the levels of the learning progression.
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6.3.4.1.1 Item Analysis at Level 1

Iltem ProT1Q1 (adding fractions with the same denominator) was hypothesized at Level
1 (c=1, j=1). This item was used to test students’ procedural competency in adding
fractions with the same denominator. The results showed that the students who had
competency at this level (8,; = 1) were highly likely to answer item ProT1Q1 correctly,
with the probability being about 94%, while students who did not have the competency
at Level 1 (684; = 0) were unlikely to answer this item correctly, with a probability of about

21%. The results are shown in Table 6.31.

The results indicate that item ProT1Q1 is suitable to be placed at Level 1 of the
procedural knowledge dimension. These results support the hypothesis that the
competency of adding fractions with the same denominator that underpins item

ProT1Q1l is established at Level 1.

Table 6.31 The estimates of the conditional probabilities 7t ;, of the procedural knowledge items
at Level 1 for Model 2

Items 0,i=1 0,;=0
Correct Incorrect Correct Incorrect
Tyjq 1-—mj Ty jo 1-my 50
ProT1Q1l 0.9410 0.0590 0.2070 0.7930

6.3.4.1.2 Item Analysis at Level 2

Iltem ProT1Q2 (adding fractions with different denominators) was hypothesized as being
at Level 2 (c=2, j=2). This item was used to test students’ competency in adding proper

fractions with different denominators.

The results showed that the students who had competency at Level 2 (6,; = 1),
had a probability of about 91% to answer the item correctly. In contrast, students who
did not have competency at Level 2 (68,; = 0) only had about 17% probability of
answering this item correctly. These results indicate that Item ProT1Q2 is suitable to be
placed at Level 2, to support the hypothesis that the competency of adding proper
fractions with different denominators is established at this level. The results are shown

in Table 6.32.

232



Table 6.32 The estimates of the conditional probabilities 7, , of the procedural knowledge
items at Level 2 for Model 2

Items 0, =1 6,,=0
Correct Incorrect Correct Incorrect
21 1- Tj1 250 1- 250
ProT1Q2 0.9112 0.0888 0.1720 0.8280

6.3.4.1.3 Item Analysis at Level 3

Four items were hypothesized at Level 3 for the procedural knowledge dimension (c=3,
j=3, 4, 5, 6, 7). These items were ProT1Q4 (adding fractions with a mixed number),
ProT1Q3 (subtracting a fraction from a whole number), ProT2Q1 (multiplying a fraction
with a fraction), ProT2Q2 (multiplying a fraction with a whole number), and ProT2Q3
(dividing a fraction with a fraction).

The results showed that the students who had competencies at Level 3 (63; = 1)
were likely to answer items ProT1Q3, ProT1Q4, ProT2Q2, and ProT2Q3 correctly, with
the probabilities being greater than 80%, while the probability for item ProT2Q1 was
about 77%. Moreover, the students who had no competencies at Level 3 (85; = 0) were
unlikely to answer the items correctly, with the probabilities being less than 39%. The
results are presented in Table 6.33.

The results indicate that items ProT1Q3, ProT1Q4, ProT2Q1, ProT2Q2 and
ProT2Q3 are suitable to be placed at Level 3. These results support the hypothesis that
the competencies of subtracting a fraction from a whole number, adding a fraction with
a mixed number, multiplying a fraction with a fraction, multiplying a fraction with a

whole number, and dividing a fraction with a fraction, are established at Level 3.

Table 6.33 The estimates of the conditional probabilities 75, of the procedural knowledge
items at Level 3 for Model 2

Items 65;=1 65;,=0
Correct  Incorrect | Correct Incorrect
31 1- T3j1 T3j0 1-m359
ProT1Q3 0.8037 0.1963 0.2017 0.7983
ProT1Q4 0.9255 0.0745 0.3887 0.6113
ProT2Q1 0.7685 0.2315 0.1143 0.8857
ProT2Q2 0.9277 0.0723 0.356 0.644
ProT2Q3 0.9351 0.0649 0.2322 0.7678
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6.3.4.1.4 Item Analysis at Level 4

Two items were hypothesized at Level 4 (c=4, j=8, 9). These items were ProT2Q4
(multiplying a mixed number with a mixed number) and ProT2Q5 (dividing a mixed
number with a whole number).

The results showed that the students who had competencies at Level 4 (8,; = 1)
were likely to answer Items ProT2Q4 (about 70%) and ProT2Q5 (about 80%) correctly,
while students who did not have competencies at Level 4 (84;= 0) were unlikely to
answer the items correctly, with the probability being less than 13%. The results are
shown at Table 6.34.

The results indicate that Items ProT2Q4 and ProT2Q5 are suitable to be placed at
Level 4. These results support the hypothesis that the competencies of multiplying a
mixed number with a mixed number, and dividing a mixed number with a whole number

are established at this level.

Table 6.34 The estimates of the conditional probabilities 7, , of the procedural knowledge
items at Level 5 for Model 2

Items 0, =1 0,;=0
Correct Incorrect Correct Incorrect
T4t 1-—myp T4 jo 1-m44o
ProT2Q4 0.6917 0.3083 0.1283 0.8717
ProT2Q5 0.8032 0.1968 0.1071 0.8929

6.3.4.1.5 Item Analysis at Level 5

Iltems ProT3Q1 (solving a nested fraction operation with the numerator is a fraction
subtraction) and ProT3Q2 (solving a nested fraction operation with the numerator is a

fraction division) were hypothesized at Level 5 (¢=5, j=10,11).

The results showed that the students who had competencies at Level 5 (85; = 1)
were highly likely to answer items ProT3Q1 and ProT3Q2 correctly, with the probabilities
being about 85% and 77% , while students who had no procedural competencies (8s; =
0) were unlikely to answer the items correctly with the probability being less than 12%.

The results are presented in Table 6.35.
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The results indicate that items ProT3Q1 and ProT3Q2 were fit to be placed at Level
5. The results support the hypothesis that the competencies underlying these items,
solving a nested fraction operation with the numerator is a fraction subtraction, and solving
a nested fraction operation with the numerator is a fraction division, are established at

this level.

Table 6.35 The estimates of the conditional probabilities 75, of the procedural knowledge
items at Level 5 for Model 2

Items 05, =1 65,=0
Correct Incorrect Correct Incorrect
Tsj1 1—1m55 s jo 11550
ProT3Q1 0.8451 0.1549 0.0905 0.9095
ProT3Q2 0.7664 0.2336 0.1243 0.8757

6.3.4.1.6 Item Analysis at Level 6

Iltem ProT3Q3 (solving a fraction operation with a two-level nested fraction) was
hypothesized at Level 6 (c=6, j=12). This item was designed to test students’ fluency in a

complex fraction operation.

The results showed that the students who had competencies at Level 6 (64; = 1)
had a high probability of answering this item correctly, at about 78%, while students
who did not have the competencies at this level (6¢; = 0) had a low probability (less than

5%) of answering Item ProT3Q3 successfully. The results are presented in Table 6.36.

The results indicate that item ProT3Q3 is suitable to be placed at Level 6. These
results support the hypothesis that the competency underlying item ProT3Q3, solving
complex fraction operations with two or more nested fraction operations, is established

at this level.

Table 6.36 The estimates of the conditional probabilities 74, of the procedural knowledge
items at Level 5 for Model 2

Items O =1 O6; =0
Correct Incorrect Correct Incorrect
Tej1 1- Tej1 Tcjo l'ﬂcjo
ProT3Q3 0.7821 0.2179 0.0454 0.9546

6.3.4.2 Analysis to Estimate Students’ Levels in the Progression

Similar to the process of estimating students’ levels in the conceptual knowledge

dimension generated from Model 2 (Section 6.3.2.1.2), the prior probabilities of
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Bayesian Networks for procedural knowledge were also built based on the estimates of
Y in Equation (5.8) and 7., in Equation (5.9). Using the Netica software, the prior
probabilities in the nodes of levels were compiled from the estimates of ¥ in Equation
(5.8), and the prior probabilities in the nodes of items were compiled from the estimates
of j, in Equation (5.9). Both ¥ and mr.;, were generated from the WinBugs software
using MCMC estimation, as detailed in Section 5.2.3.1. The priors of Bayesian Network

generated from the Netica are presented in Figure 6.20.
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Figure 6.20 A Netica Graph of the prior probability for the Procedural Knowledge Dimension generated from Model 2 of Bayesian Networks Modelling.
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Based on the students’ responses, the Netica software updated the priors in
Figure 6.20 to estimate the students’ levels as described in Section 5.2.3.3.2. Netica
estimated the posterior probabilities of the levels P(8|y, i, x) of 516 students. Figures
6.21 and 6.22 show the examples of Bayesian Networks’ estimation using the Netica
software for students with IDs 110 and 376. Their raw scores are presented in Table 6.37

and 6.38 respectively.

The results showed that the student with ID 110 correctly answered the items at
Level 1 and Level 2, and most of the items at Level 3. The student did not correctly
answer all the items at Levels 4, 5 and 6. The results showed that the posterior
probabilities for the student were: 99.6%, 99.3%, and 98.4% for Level 1 to Level 3
respectively; 15% at Level 4; and less than 6% at Levels 5 and 6. Hence, the student was
assigned to Level 3 because the student had high probabilities to have the competencies
at Level 3 and below, but had low probabilities to have the competencies at the upper
levels. The student posterior probabilities are presented in the node level of the Netica

graph in Figure 6.21.

Similarly, the student with ID 376 correctly answered all the items at Level 1,
Level 2, Level 3 and Level 5 but a made a mistake in Levels 4 and 6. Using the Netica
software, the posterior probabilities for the student with ID 376 were generated and
presented in Figure 6.22. The results showed that the posterior probabilities for the
student with ID 376 were greater than 90% for Level 1 to Level 5, and 39.5% for Level 6.
Hence, because the student had a high probability to have the competencies at Level 5
and below, but had a low probability to have the competencies at the upper level (Level

6), the student with ID 376 was assigned to Level 5.

In practice, students might not have competencies from all the proposed levels. In
this situation, the students were assigned to level 0. For example, the student with ID 9
had zero scores for all the given items (presented in Table 6.39). The posterior
probabilities for student 9 were generated using the Netica software and are presented
in Figure 6.23. The results showed that the posterior probabilities for the students were
about 15% at Level 1 and less that 2 % for the upper levels. Hence, the student was

assigned to Level 0.
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Table 6.37 The raw sores of student with ID 110

Level 1 Lavel 2 Level 3 Level 4 Level 5 Level 6
ProT1Q1 | ProT10Q2 | ProT1Q3 | ProT104 | ProT20Q1 | ProT20Q2 | ProT203 | ProT204 | ProT20Q5 | ProT301 | ProT30Q2 | PreT303
1 1 4] 1 1 1 1 0 ] o] 0 ]
Level_2 Level_3 Level_4 Level 5 Level_6
Yes Yes 993 jmmem Yes 00 4 je— Yes 143@m] | | Yes 027 b i | Yes 058] ¢ | |
No No 072 No 1.65 No 857 i No 997 = No 094 .
0.996 + 0.06 0.993 + 0.084 0.984+0.13 0.143+0.35 0.00269 + 0.052 0.00578 + 0.076
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1 / l
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Figure 6.21 A Netica Graph of the posterior probability P(6;|y, 7, x;;) for the student with ID 110 (i=110, j=1,...,12).
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Table 6.38 The raw sores of the student with ID 376

Figure 6.22 A Netica Graph of the posterior probability P(6;|y, T, x;;) for the student with ID 376 (i=110, j=1,...,12)..
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Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
ProT1Ql | ProT1Q2 | ProT1Q3 | ProT1Q4 | ProT201 | ProT202 | ProT2Q3 | ProT204 | ProT2Q5 | ProT3Q1 | ProT3Q2 | ProT303
1 1 1 1 1 1 1 1 0 1 1 0
Level_1 Level_2 Level 3 Level 4 Level 5 Level 6
Yes 997 - Yes 996 g Yes 100 Yes 96.8 | Yes 935 Yes 385 i
No 033| ¢ | | No 036 | No .005[ : | | No 347} i | | No 6490 | | No 605
0.997 +0.058 0.996  0.06 0.9999 = 0.0072 0.968+0.18 0.935:0.25 0.395 £ 0.49
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Incorrect IR Incorrect NEENE Incorrect o] 11 gm"ed“ 103 i
ProT1Q1 | ProT1Q2 | | comect 100 Cormect 100 Comect 100 cabl ProT3Q3
Incorrect of i T E Incorrect [IBERE 1 1 1 1 Incorect 100
Correct 100 Correct 100 Correct 0] |
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Table 6.39 The raw sores of the student with ID 9

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
ProT101 | ProT102 | ProT1Q3 | ProT1Q4 | ProT2Q1 | ProT202 | ProT203 | ProT204 | ProT205 | ProT3Q1 | ProT30Q2 | ProT303
0 0 0 0 o] 0 0 0 0 0 o] 0

Level_1 Level_2 Level_3 Level_4 Level_5 Level_6
Yes 140m| i} _[Yes 128 ] Yes 0+ ! Yes 020] ! Yes 061] | Yes 049] 1
No 851 : Noe 9387 : No 100 jme No 998 Mo 999 : No 995

01492036 0.0128+0.11 3.468-6 = 0.0019 0.002 = 0.045 0.000605 + 0.025 0.00491 + 0.07
ProT1Q4 ProT204 ProT3Q1
Incorrect Incorrect 100 Incorrect 100 Igwrred 100 —

ProT1Q1 Correct Correct 0 Correct 0 Caliinn g - ProT3Q3
incorrect 100 0 ] ) | 0 Incorect 100
Correct 0 Correct 0 [IEEEs

0 0
Y
ProT202 ProT203 ProT2Q5 Brore
Incomrect incorec 100 incarrect 100 incorect 100 Incorrect 100 m—
Correct 0 Correct o1 11| Correct o[ T 11 Correct o1 11| doll =i
0 | 0 | 0 | 0 ! y

Figure 6.23 A Netica Graph of the posterior probability P(;|y, r, x;;) for the student with ID 9 (i=9, j=1,..,,12).
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The same procedure for estimating students’ levels discussed above was applied
to all the 516 students who participated in this study. The distribution of the students’

levels are presented in percentage values in Figure 6.24.
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M Procedural 5.81% 20.35% 6.59% 16.28% 31.20% 5.43% 14.34%
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Figure 6.24 The distribution of the students’ levels on the procedural knowledge dimension
generated from Model 2

From Figure 6.24, the majority of students were at Level 4 (about 31.20%), followed
by students at Level 1 (about 20.35%). The percentages for students at Levels 3 and 6
were 16.28% and 14.34% respectively, while for students at Levels 2 and 5 were 6.59%

and 5.43%. Only about 5.81% of students were at Level 0.

6.3.5 Validation of Fraction Learning Progression

The aim of the empirical validation for the proposed learning progression was to seek
evidence to support the hypothesis that the progression of students in learning fractions
followed the hypothesized levels of the conceptual and procedural knowledge
dimensions. Two types of analyses were performed to validate the proposed level of
fraction learning progression: the item analysis and the analysis at student level. In the
section that follows, the results of the item analysis produced from Models 1 and 2 were
compared and used to validate the competencies in the progression levels.
Subsequently, the analysis at student level was performed to examine how many

students deviated from the order hypothesized by the learning progression.

6.3.5.1 Validation using Item Analysis

The item analysis collected evidence of the location of the items on the hypothesized
levels of the conceptual and procedural knowledge dimensions. Allocating the items into
the hypothesized levels supports the inferences about the competencies underlying the
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items for each level. The analysis is presented in two consecutive sections, the item
analysis for the conceptual knowledge dimension and the item analysis for the

procedural knowledge dimension.

6.3.5.2 Item Analysis for the Conceptual Knowledge Dimension

The results of the analysis using Model 1 and Model 2 showed that items Cont1Q]1,
onT2Q1, ConT3Q1, and ConT7Q1 were placed at Level 1. These items reflected the
competencies of generating a fraction from a part-whole (pie) diagram, shading a pie
diagram to represent a fraction less than 1, comparing two fractions less than 1 using
part-whole representation, and adding fractions less than 1 using part-whole
representation respectively. Hence, these results support the hypothesis that
understanding fractions as a representation of part-whole emerge at the lowest level of

the conceptual knowledge dimension. The results are presented in Table 6.40

Table 6.40 Item analysis of Levels 1 to 6 of the conceptual knowledge dimension based on
Model 1 and Model 2

Item Model 1- Assigned Level Model 2- Assigned Level
ContlQ1l Level 1 Level 1
ConT2Q1 Level 1 Level 1
ConT3Q1 Level 1 Level 1
ConT7Q1 Level 1 Level 1
Cont1Q2 Level 2 Level 2
ConT1Q3 Level 3 Level 2
ConT3Q2 ambiguous Level 2
ConT7Q2 Level 2 Level 2
ConT1Q4 Level 3 Level 3
ConT1Q5 Level 3 Level 3
ConT2Q2 Level 3 Level 3
ConT3Q3 Level 3 Level 3
ConT4Q1l Level 3 Level 3
ConT4Q2 Level 3 Level 3
ConT4Q3 Level 3 Level 3
ConT5Q1 Level 4 Level 4
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ConT5Q2 Level 4 Level 4
ConT6Q1 Level 5 Level 5
ConT6Q2 Level 5 Level 5
ConT8Q1 Level 6 Level 6
ConT8Q2 Level 6 Level 6

The results from the item analysis from both models indicated that items ConT1Q2
(generating an equivalent fraction from a pie diagram) and ConT7Q2 (adding fractions
with different denominators using a part-whole representation/diagram) should be
placed at Level 2. However, Models 1 and 2 produced different results on placing items
ConT1Q3 and ConT3Q2. For item ConT1Q3 (generating a fraction from an unequal
partition of a pie diagram), the results from Model 1 indicated that this item should be
placed at Level 3, while Model 2 showed that this item should be placed at Level 2. From
the previous tables (Tables 6.5 and 6.23), the results showed that the conditional
probability for students at Level 2 to answer this item correctly was 35.55% for Model 1
and 65.58% for Model 2. The result from Model 1 showed that this item was too difficult
to be placed at Level 2, while the result from Model 2 showed an uncertainty of about
34.42% (obtained from 100%-65.58%) to place this item at Level 2. Combining these

results, it was decided to move item ConT1Q3 to the upper level (Level 3).

For item ConT3Q2 (compare proper fractions with different denominators), the
result from Model 1 showed that this item was ambiguous, while the result from Model
2 indicated that this item should be placed at Level 2. The results from Model 1 and
Model 2, which are presented in Tables 6.5 and 6.23, showed that the conditional
probability for students at Level 2 to solve this item correctly was 52.22 % and 80.76%
respectively. As the result from Model 1 did not show that Item ConT3Q2 should be
placed at 2 or 3 (ambiguous), while the result from Model 2 clearly showed that the item

should be placed at Level 2, it was decided that this item should be retained at Level 2.

Based on the discussion above, items ConT1Q2, ConT3Q2, and ConT7Q2 are
placed at Level 2. These results support the hypothesis that the competencies underpin

the items writing an equivalent fraction for a fraction less than 1, comparing proper
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fractions with different denominators, and adding fractions with different denominators

in diagram representations emerge at Level 2 of the conceptual knowledge dimension.

Table 6.41 The validated competencies for each level of the conceptual knowledge dimension

Level

Competency

Level 1

Generating a fraction from a part-whole (pie) diagram

Shading a pie diagram to represent a fraction less than 1

Comparing two fractions less than 1 using part-whole representation

Adding fractions less than 1 using part-whole representation

Level 2

Writing an equivalent fraction for a fraction less than 1

Comparing proper fractions with different denominators

Adding fractions with different denominators using a diagram

Level 3

Generating a fraction from an unequal partition of a pie diagram

Generating an improper fraction from a pie diagram representation

Generating an equivalent of an improper fraction from a pie diagram

Shading a pie diagram to represent an improper fraction

Comparing improper fractions with different denominators using a part-whole diagram

Putting a proper fraction on a number line,

Putting a proper fraction on a number line with a constraint

Putting fractions including an improper fraction and a mixed number on a number line

Level 4

Writing the biggest fraction they can

Writing the smallest fraction they can

Level 5

Finding how many fractions lie between two fractions

Finding how many fractions lie between two pseudo successive fractions

Level 6

Multiplying fractions using a diagram representation

Dividing fractions using a diagram representation

For the items at Levels 3 to 6, Model 1 and Model 2 produced the same results.

For Level 3, the results from Models 1 and 2 showed that items ConT1Q4, ConT1Q5,

ConT2Q2, ConT3Q3, ConT4Q1, ConT4Q2, and ConT4Q3 should be placed at Level 3.

However, there was an additional item, ConT1Q3, at this level which came from Level 2.

These results indicate that the competencies for generating a fraction from an unequal
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partition of a pie diagram (ConT1Q3), generating an improper fraction from a pie
representation (ConT1Q4), generating an equivalent of improper fraction from a pie
diagram (ConT1Q5); shading a pie diagram to represent an improper fraction
(ConT2Q2), comparing improper fractions with different denominators using a part-
whole diagram (ConT3Q3), putting a proper fraction on a number line (ConT4Q1),
putting a proper fraction on a number line with a constraint (ConT4Q2), and putting
fractions including an improper fraction and a mixed number on a number line

(ConT4Q3) emerge at this level.

Similarly, Models 1 and 2 had the same results, placing items ConT5Q1 and
ConT5Q2 at Level 4, items ConT6Q1 and ConT6Q2 at Level 5, and items ConT8Q1 and
ConT8Q2 at Level 6. These results support the hypothesis that the competencies for
writing the biggest fraction they can (ConT5Q1), and writing the smallest fraction they
can (ConT5Q2) emerge at Level 4; the competencies of finding how many fractions lie
between two fractions (ConT6Q1) and finding how many fractions lie between two
pseudo successive fractions (ConT6Q2) emerge at Level 5; and the competencies of
multiplying fractions using a diagram representation (ConT8Q1)and dividing fractions

using a diagram representation (ConT8Q1) emerge at Level 6.

From the results discussed above, the revised competencies in the conceptual
knowledge dimension, based on the location of the items in the model of fraction

learning progression, are summarized in Table 6.41 above.

6.3.5.3 Item Analysis for the Procedural Knowledge Dimension

The results of procedural item analysis using Model 1 and Model 2 are presented
in Table 6.42. The results show that both Models 1 and 2 placed item ProT1Q1 at the
lowest level of the procedural knowledge dimension. This supports the inference that
the competency for adding fractions with the same denominator emerges at level 1.
Similarly, the results from both models also placed item ProT1Q2 at Level 2. These
results support the inference that the competency of adding fractions with different

denominator is established at Level 2.
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Table 6.42 Item analysis of Levels 1 to 6 based on Model 1 and Model 2 in the procedural
knowledge dimension

Item Model 1- Assigned Level Model 2- Assigned Level
ProT1Q1 Level 1 Level 1
ProT1Q2 Level 2 Level 2
ProT1Q3 Level 3 Level 3
ProT1Q4 Level 3 Level 3
ProT2Q1 Ambiguous Level 3
ProT2Q2 Level 3 Level 3
ProT2Q3 Level 3 Level 3
ProT2Q4 Level 4 Level 4
ProT2Q5 Level 4 Level 4
ProT3Q1 Level 5 Level 5
ProT3Q2 Level 5 Level 5
ProT3Q3 Level 6 Level 6

Next, for Level 3, the results from Model 2 placed items ProT1Q3, ProT1Q4,
ProT2Q1, ProT2Q2, and ProT2Q3 at Level 3. However, the results from Model 1 showed
that item ProT2Q1 was ambiguous because the students at this level had only a 56%
probability of answering the item correctly. In contrast, Model 2 estimated students who
had competencies at Level 3 had a 76.85% chance of answering the item correctly with
a small probability of guessing, 11.43%. Based on these results, item ProT2Q1 was
retained at Level 3. These results support the inference that the competencies
underlying the items, which are adding fractions with a mixed number, subtracting a
fraction from a whole number, multiplying a fraction with a fraction, multiplying a
fraction with a whole number, and dividing a fraction with a fraction, emerge at this

level.

The analyses from Models 1 and 2 had the same results in locating the items for
Levels 4 to 6. The results from both Models indicate that items ProT2Q4 and ProT2Q5
should be placed at Level 4; items ProT3Q1 and ProT3Q2 at Level 5; and item ProT3Q3
at Level 6. These results support the hypothesis that the competencies underlying items
ProT2Q4 and ProT2Q5, multiplying a mixed number with a mixed number, and dividing
a mixed number with a whole number, are established at Level 4; the competencies
underlying items ProT3Q1 and ProT3Q2, solving a nested fraction operation with the
numerator is a fraction subtraction, and solving a nested fraction operation with the

numerator is a fraction division, are established at Level 5; and the competency
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underlying item ProT3Q3, solving a fraction operation with two-level nested fractions,

is established at Level 6.

The competencies in the procedural knowledge dimension which have been
revised based on the results of the analyses from Models 1 and 2 are presented in Table

6.43.

Table 6.43 The validated competencies for each level of the procedural knowledge dimension

Level Competency
Level 1 Adding fractions with the same denominator
Level 2 Adding fractions with a different denominator

Adding fractions with a mixed number

Level 3 Subtracting a fraction from a whole number

Multiplying a fraction with a fraction

Multiplying a fraction with a whole number

Dividing a fraction with a fraction.

Level 4 Multiplying a mixed number with a mixed number

Dividing a mixed number with a whole number

Level 5 Solving a nested fraction operation with the numerator is a fraction subtraction

Solving a nested fraction operation with the numerator is a fraction division

Level 6 Solving a fraction operation with two level nested fractions

6.3.5.4 Validation using Students’ Level Analysis

The proposed model of fraction learning progressions provided a hypothetical pathway
for students learning fractions through two-dimensional knowledge dimensions,
conceptual and procedural knowledge. In each dimension, it was hypothesized that
students learn fractions sequentially from the lower level to the upper level. Hence, in
the proposed model, students at the upper level should also have competencies from

the lower levels.

From the hypothesis underlying the proposed model discussed above, one of the
effective ways to evaluate the hierarchical levels of the proposed model was to collect
empirical evidence from students’ responses that students had the competencies at the
upper level but did not have the competencies at the lower level(s). Model 2 of the

Bayesian Networks has an important feature to facilitate this validation.

As discussed previously, Model 2 represented a parameter 8.; for each level of the
proposed model of fraction learning progression. Hence, there were six parameters 6;

for each conceptual and procedural knowledge dimension. These parameters 6.; were
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interrelated so that 8.; at the upper level was conditional on 8.; at the lower level. A

simple DAG in Figure 6.25 reflects the dependency between the levels of 8.; in Model 2.

Ny

o o) N (o) :

Figure 6.25 A simple DAG which represents the dependency between the levels Hci in Model 2 of
the Bayesian Networks Modelling

The posterior probabilities of 8.; represented the probability of students having
competencies at the corresponding level of 6,;. Hence, to perform a model validation
for a student who was assigned to a certain level, the posterior probabilities of the
student at the lower level could be checked. The low posterior probabilities indicated
that the student did not have sufficient competencies at the lower level, which showed
the deviation of the proposed model. If there were too many cases that showing a
deviation from the model, it would diminish the validity of the interpretation drawn

from the proposed model of fraction learning progression.

As an example, Figure 6.26 depicts the student with ID 358 who deviated from the
proposed model of fraction learning progression for the conceptual knowledge
dimension. From Figure 6.29, it can be observed that the student had a posterior
probability of about 98.2% at Level 3, but only had a posterior probability of about 45.7%
at Level 2. The results showed that the student had competencies at Level 3 but did not
have sufficient competencies at Level 2. These results challenge the validity of the model

of fraction learning progression.

Based on the posterior probabilities of 516 students, an R program was developed
to assess how many students showed competencies at the upper level yet had
insufficient competencies at the lower level(s). A cut-off point of 70% of the posterior
probabilities was created to discriminate between students who had sufficient
competencies at a certain level (= 70%) and students who had no or insufficient
competencies at that level (< 70%). The cut-off point of 70% was chosen to get ample
evidence that the students with a probability of 70% or above were highly likely to have
competencies at that level, while students with a probability below 70% were less likely

to have the competencies at that level. The results are presented in Table 6.44.
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Table 6.44 The distribution of students who fit and deviate from the proposed levels of
fraction learning progression using Model 2.

Conceptual Procedural
Fit with the Hypothesis 506 512
Deviate from the
Hypothesis 10 (1.94%) 4 (0.78%)

The results demonstrated that ten students (students with IDs 103, 149, 204, 273,
279, 309, 358, 423, 468, and 516) were not consistent with the assumption of the
fraction learning progression on the conceptual knowledge dimension. It means that
they showed competencies at the upper level but not at the lower level(s). Similarly,
four students (student with IDs 22, 177, 451, and 459) had procedural competencies at
the upper level but did not have sufficient competencies at the lower levels. The number
of deviations from both the conceptual and the procedural knowledge dimension was
relatively small, at less than 5%. Therefore, it can be concluded that the students’
responses are consistent with the hierarchical assumption of the proposed levels of the

learning progression model.
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Figure 6.26 Netica Graph for the student with ID 358 who has deviated from the proposed model of fraction learning progression
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6.4 Discussion

The discussion of the research findings is organized into two main sections: the
comparison of the Bayesian Networks Models 1 and 2 (Section 6.4.1) and the research

contribution for educational measurement and assessment (Section 6.4.2).

6.4.1 Comparison of the Bayesian Network Models 1 and 2
The distribution of the students’ levels for both the conceptual and the procedural
knowledge dimensions are presented in Figures 6.27 and 6.28. The results showed that

Models 1 and 2 produced different estimates of the students’ levels.
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Figure 6.27 The distribution of the students’ conceptual levels based on Model 1 and Model 2
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Figure 6.28 The distribution of the students’ procedural levels based on Model 1 and Model 2

From Figure 6.27, it can be observed that Level 0 was detected by Model 2 but not

Model 1. For the conceptual knowledge dimension (Figure 6.27, the peak was at level 2
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for Model 1 but at Level 1 for Model 2. For Level 3 to Level 6, both models produced
similar estimates. Next, for the procedural knowledge dimension (Figure 6.28), Model 1
and Model 2 produced similar results for estimating students at most of the levels,

except at Levels 0 and 3. Model 1 categorized more students in Level 3 than Model 2.

In the following section we will compare the fit of Models 1 and 2 in order to
decide which one was better. Two types of statistical methods were used to compare
the model fit: The Posterior Predictive Model Check (PPMC) and the Entropy statistic.
Subsequently, Models 1 and 2 will be compared based on their capacity to diagnose
students’ competencies at each level of the learning progression (diagnostic-analytic),
and in performing item analyses such as item difficulty, item discrimination, and pseudo-

guessing item analysis.

6.4.1.1 Model Fit Analyses for Models 1 and 2

The Posterior Predictive Model Checking (PPMC) analysis using discrepancy measures
(Section 5.3.1) was used first to estimate the model fit for Models 1 and 2. The PPMC
evaluated how the observed data differ when compared with the data generated from
the model (the predicted data) (Sinharay, 2004). The PPMC was computed based on the
last 1000 iterations of the MCMC for Model 1 and Model 2 to compute the PPP-values.
The PPP-values were estimated by comparing the discrepancy measures from the
observed data and the posterior predictive data, generated from the PPMC, as
presented in Equation (5.13). As described in Section 5.3.1, PPP-values greater than
0.05 and less than 0.95 indicate a good fit, otherwise the PPP-values indicate an

inadequate fit (Gelman et al., 2014).

Table 6.45 summarizes the PPP-values computed for 516 students obtained from

Model 1 and Model 2 for both the conceptual and procedural knowledge dimensions.

Table 6.45 Person Fit of Model 1 and Model 2 for both conceptual and procedural knowledge

dimensions
Person FIT
PPP Values Conceptual Procedural
Model 1 Model 2 Model 1 Model 2
> 0.05 and < 0.95 (adequate fit) 76.16% 92.83% 88.37% 92.44%

The results showed that the student fit of the conceptual knowledge dimension

for Model 2 is 92.83%. This was considerably higher than the person fit of Model 1 which
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was only 76.16%. It means that Model 2 had a better fit with the students’ responses
when compared with Model 1 in the conceptual knowledge dimension. Model 2 in the
procedural knowledge dimension also had a higher person fit which was 92.44%
compared with that of Model 1 which is 88.37%. This indicates that Model 2 showed a
better fit with the students’ responses on the procedural knowledge dimension

compared with that of Model 1.

The model fit of Model 1 and Model 2 discussed above was consistent with the fit
estimated by using the entropy statistic on the conceptual and procedural knowledge
dimensions. The entropy statistic (detailed in Section 5.3.2) was calculated for both
Model 1 and Model 2 using Equation (5.14). Based on the proportional improvement of
Model 2 from Model 1 described in Equation (5.13), the positive difference of the
entropy statistics indicates that Model 2 makes a better prediction on a new observation

compared with Model 1 (Levy & Mislevy, 2016).

The results show that the entropy of Model 1 in the conceptual knowledge
dimension was 2296.23, and the entropy for Model 2 on the same dimension was
1243.38. Hence, the difference between entropy Model 1 and entropy Model 2 (Entropy
Model 1-Entropy Model 2) in the conceptual knowledge dimension was 1052.85
(positive). Similarly, the difference between Entropy Model 1 and Model 2 in the
procedural knowledge dimension was 204.75 (positive). Hence, it can be inferred that
Model 2 makes a better prediction on a new observation compared with Model 1 for
both the conceptual and procedural knowledge dimensions. The results are presented

in Table 6.46.

Table 6.46 The entropy of Model 1 and Model 2 for the conceptual and procedural knowledge

dimensions
Ent
Dimension reropy
Model 1 Model 2
Conceptual 2296.23 1243.38
Procedural 1293.11 1088.36

The relative improvement of Model 2 towards Model 1 (denoted as dEntropy) is

calculated based on the Equation (5.15). The results are presented in Table 6.47 below.
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Table 6.47 dEntropy Model 1 and Model 2 for the conceptual and procedural knowledge

dimensions
Dimension dEntropy
Conceptual 0.4585
Procedural 0.1583

The results showed that the dEntropy of the conceptual knowledge dimension
was 0.4585. This indicates that Model 2 improved on model 1 by about 45.85% for the
conceptual knowledge dimension. Likewise, the dEntropy of the procedural knowledge
dimension was 0.1583. This indicates that Model 2 made an improvement on Model 1

of about 15.83% for the procedural knowledge dimension.

6.4.1.2 Diagnostic-Analytic

Model 1 is deficient in information about the students’ strengths and weaknesses in
their learning at the levels of the learning progression model. This is because the low
probabilities of the students at the lowest levels do not automatically point out that the
students are weak at those levels. For example, the probabilities generated from Model
1 for student with ID 416 on the conceptual knowledge dimension are presented in Table
6.48 (the raw scores and Netica graph for this student are presented in Table 6.50 and
Figure 6.29, respectively). This student was chosen to represent a typical result of the

analysis generated from Model 1.

Table 6.48 The probability of student with ID 481 for each level in the conceptual knowledge
dimension generated from Model 1

Level Probability for Each Level
Level 1 0.036%
Level 2 0.003%
Level 3 83.100%
Level 4 16.400%
Level 5 0.470%
Level 6 0.008%

The results showed that Model 1 generated the highest probability at Level 3.
Hence, student with ID 416 was obviously placed at Level 3. However, the low
probabilities at the other levels below Level 3 did not necessarily show that the student
had low competencies at those levels. For example, the student had low probabilities at
Levels 1 and 2. In fact, from Table 6.50, the student had strong competencies at these

two levels in that the student could correctly answer all the items at Level 1 and most of
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the items at Level 2. Hence, the results from Model 1 are counter-intuitive if they are

used as a diagnostic-analytic tool.

In contrast, the analyses generated from Model 2 produced high probabilities for
student with ID 416 at Level 1 and Level 2. These results showed that the student with
ID 416 had strong competencies at these levels. The results are summarized in Table
6.49. The Netica graph for this student, generated from Model 2, is presented in Figure
6.30.

Table 6.49 The probability of student with ID 416 for each level in the conceptual knowledge
dimension generated from Model 2

Level Model 2
Level 1 100.00%
Level 2 99.30%
Level 3 100.00%
Level 4 54.40%
Level 5 0.74%
Level 6 0.10%

In contrast, the results showed that Model 2 generated high probabilities at Level
1 to Level 3 which were 100%, 99.3%, and 100%, and generated low probabilities for
levels 4, 5 and 6 which are 54.40%, 0.74% and 0.10%. From these results, it can be
inferred that the student was highly likely to have strong competencies at Levels 1, 2,
and 3 but low competencies at Levels 4, 5 and 6. Hence, Model 2 could show the
students’ strength and weaknesses in the levels and that a high probability indicated
that the student had strong competencies at that level, and a low probability showed
that the student had weak competencies at that level. This information is essential to

diagnose at which level the student had difficulties in learning.

In an extreme case, for example, student with ID 61 correctly answered one item
at Level 1 and incorrectly answered most of the rest of the conceptual items. However,
Model 1 generated a high probability for the student achieving at Level 1, 81%, as
presented in Figure 6.31. This is because, in Model 1, the sum of the probabilities for all
categories should reach 100% (see Equation (5.1) in Chapter 5). Hence, Model 1 imposed
a high probability at Level 1 to obtain the total probabilities for all categories as 100%,
despite student 61 only having one correct answer at Level 1. This evidence shows that

Model 1 failed to represent any situation where a student did not have enough
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competency at any of the proposed levels. In other words, Model 1 failed to assign

students who did not have enough competencies to achieve Level 1(+) into Level 0.

In contrast, Model 2 used different parameters to capture the different levels of
the proposed model of learning progression, by setting the dependency between the
lower level and the upper level where the upper level was conditional (depends) on the
lower level. This dependency reflected the hypothesized hierarchical progression of
fraction learning. For each level, the model had two categories which were “yes” or “no”
and represented the probability of these categories for students at that level. The sum
of the probability of “yes” or “no” at a level should reach 1, and the probability of
students for all levels was not necessarily 1. Using this strategy of modelling, the function
of the Bayesian Network of Model 2 was not necessarily to impose or distribute the
probabilities through all the levels, which was different from Model 1. As a result, Model
2 could provide low probabilities for all levels for students who did not show
competencies at the proposed levels. From the previous example of student 61, Model
2 generated the posterior probabilities for all the levels were less than 12%, which
indicated that the student had not enough competencies at the proposed levels
(presented in Figure 6.18 in section 6.3.2.1.2). Hence, using this result, student 61 was

assigned at Level 0, unlike Model 1, which assigned this student at Level 1.
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Table 6.50 The raw sores of student 416

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

ConT1Q1 | ConT2Q1 | ConT3Q1 | ConT7Q1 | ConT1Q2 | ConTlQS | ConT3Q2 | ConT7Q2 | ConT1Q4 | ConTl1Q5 | ConT2Q2 | ConT3Q3 | ConT4Ql | ConT4Q2 | ConT4Q5 | ConT501 | ConT5Q2 | ConT6Q1 | ConT6Q2 | ConTEA1 | ConTEQZ
1 1 1 1 i 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 ]

Conceptual_LP
Level1 .036
Level2 .003[ §
Level 3 B3.1 pemm—mn
Level4 164m
Level5 047
Level6 .008

Figure 6.29 A Netica Graph of the posterior probability P(6;|y, 7T, x;;) for student with ID 416 (i=416, j=1,...,21) generated from Model 1.
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Figure 6.30 A Netica Graph of the posterior probability P(6;|y, 7, x;;) for student with ID 416 (i=416, j=1,...,21) generated from Model 2.
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Figure 6.31 A Netica Graph of the posterior probability (8;|y, 7, x;;) for student with ID 61 (i=61, j=1,...,21) generated from Model 1

The raw scores and the posterior probabilities (6;|y, m, x;;) for the student with ID 61 generated from Model 2 are presented in Table 6.30

and Figure 6.18, respectively.
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6.4.1.3 Item Difficulty Analysis
Both Models 1 and 2 presented the conditional probabilities of the students, given the

students had competencies at a particular level ¢ to answer correctly an item j
(represented by 7 ; in Equation (5.2) for Model 1, and 7, in Equation (5.9) for Model
2). These conditional probabilities demonstrate the difficulty of the item for the
students at that level. The larger the conditional probabilities of the students given the
level, the easier the items are for the students at that level, and vice versa. For example,
Table 6.51 presents the estimates of the conditional probabilities 73; and 73;;, for the

conceptual items at Level 3.

Table 6.51 The estimates of the conditional probabilities of correctly answering the items at Level
3 of the conceptual knowledge dimension generated from Model 1 (3;) and Model 2 (7T3j1).

Model 1 Model 2
Item T3j T3j1
ConT1Q4 0.7504 0.7573
ConT1Q5 0.6933 0.7007
ConT2Q2 0.8372 0.8482
ConT3Q3 0.8368 0.8416
ConT4Q1 0.8538 0.8585
ConT4Q2 0.8682 0.8656
ConT4Q3 0.7796 0.7828

The results showed that item ConT1Q5 was the most difficult item for students at
Level 3. This was because item ConT1Q5 had the smallest conditional probabilities for
the students at level 3 to answer this item (m3; = 0.6933, and m5;; = 0.7007) correctly.
On the other hand, item ConT4Q2 was the easiest item because it has the largest
conditional probabilities of 75 (0.8682) and 15, (0.8656). Both Models 1 and 2 support

the analysis of item difficulty within the discrete-levels of the learning progression.

6.4.1.4 Item Discrimination Analysis

Model 1 was capable of showing item discrimination of any one item across the levels.
This was because in Model 1, all the items were set to correspond to a single parameter
6, which captured all the proposed levels. Hence the probabilities of the students
answering an item correctly can be evaluated from the all different levels. For example,

Table 6.52 show the conditional probabilities of item ConT4Q1 (c=3, j=13.
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Table 6.52 The estimates of the conditional probabilities for item ConT4Q1 (m5;,j = 13) of
the conceptual knowledge items at Level 3 for Model 1

Correct Incorrect
T3j 1-my;
Level 1 0.1969 0.8031
Level 2 0.0711 0.9289
Level 3 0.8538 0.1462
Level 4 0.8144 0.1856
Level 5 0.8105 0.1895
Level 6 0.8092 0.1908

The results showed that the students at low levels (Level 1 and Level 2) were
unlikely to answer Item ConT4Q1l correctly, but students at Level 3 and above were
highly likely to answer the item correctly. Hence, item-discriminant analysis can be

performed using Model 1.

Model 2 did not generate information for item-discriminant analysis. This was
because specific items were only modeled to measure a specific level. For example, the
results of the conditional probabilities that were estimated using Model 2 are presented
in Table 6.53. The results showed that the probability of answering Item ConT4Q1
correctly was only estimated at Level 3, by hypothesizing 85; =1 (have competencies at
level 3) and B3; = 0 (do not have competencies at level 3). Hence, Model 2 only produced
the probability of students correctly answering the items from the corresponding level
(Level 3). As a result, there was no information about how likely it would be for students
to answer the items from the other levels. Model 2 could only discriminate between
those students who had competencies at that level and those who did not have

competencies at that level.

Table 6.53 The estimates of the conditional probabilities for Item ConT4Q1 (75,,j = 13)
for the conceptual knowledge items at Level 3 for Model 2

Level 3
Iltems f5;,=1 65,=0
Correct Incorrect Correct Incorrect
TMajn  1Typ T30 1-my50

ConT1Q4 | 0.6592 0.3408 0.0649 0.9351
ConT1Q5 | 0.5741 0.4259 0.0351 0.9649
ConT2Q2 | 0.8239 0.1761 0.2941 0.7059
ConT3Q3 | 0.8065 0.1935 0.0882 0.9119
ConT4Q1 | 0.8486 0.1514 0.0226 0.9774
ConT4Q2 | 0.8550 0.1450 0.0022 0.9978
ConT4Q3 | 0.7136 0.2864 0.0061 0.9940
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6.4.1.5 Pseudo-guessing Item Analysis

In terms of the Item analysis, unlike Model 1, Model 2 provided information about the
likelihood that the students who had competencies at a particular level could correctly
answer the items at that level by chance. This analysis was not available in Model 1. This
analysis is in some respects similar to the pseudo-guessing item analysis in Item
Response Theory. Model 2 incorporated this analysis well by setting the parameter level
8.; equal to 0, identifying those students who did not have competencies at that level.
The results showed that there was a low probability of guessing. It should be pointed
out that this innovative analysis is important in order to ensure that the students are
not guessing the correct answers to the items. A finding that there is a high probability
of the students with no competencies at a given level (6.; = 0) could correctly answer
the items at that level would indicate that the students can guess the answer or answer

the items correctly by chance.

In summary, the Bayesian Network with multiple latent variables, Model 2, has
a better fit compared with the Bayesian Networks with a single latent variable (Model
1). Moreover, Model 2 is better than Model 1 in terms of diagnosing students’
competencies on the progression levels and detecting extreme cases where the
students do not have sufficient competencies at any of the hypothesized levels of the
learning progression. Both Models 1 and 2 can perform item difficulty analysis, which
measures how difficult an item is to be answered by students at a particular level. Model
1 provides a more comprehensive item discrimination analysis compared with Model 2.
Model 1 can provide information about how likely an item is to be answered correctly
by the students from different levels. In contrast, Model 2 only provides information
about how an item is answered correctly by the students who have a competency at a
particular level and not the students who have no competencies at that level. Model 2
does not provide information about the likelihood of the students from different levels
answering a given item correctly but does provide information about the likelihood of
the students who have no competencies at a particular level answer a given item

correctly by chance (pseudo-guessing analysis).
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6.4.2 Research Contribution for Educational Measurement and Assessment
Two contributions of the present research will be discussed in the sections that follow:
contributions for the development of Bayesian Network Models for learning

progressions and contributions for item analyses using Bayesian Networks.

6.4.2.1 Contributions for the development of Bayesian Networks for Modelling
Learning Progressions

In previous research, learning progressions have typically been modelled using Bayesian
Networks with a single latent variable. This is known as Bayesian Latent Class Analysis
(Jefrey Thomas Steedle, 2008; West et al., 2010; West et al., 2012). The present research
performed a Bayesian Networks analysis with a single latent variable and extended this
model into a Bayesian Networks analysis with multiple latent variables. The
development of Bayesian Networks with multiple latent variables in the present
research was inspired by the work of Rutstein (2012), who discussed several possible
Bayesian Network models for measuring learning progressions. Three unique aspects of
the model developed in the present research, compared with other existing models, will

be discussed below.

6.4.2.1.1 Development of an Informative Prior for dichotomous responses in
Bayesian Network modelling

West et al. (2010) developed Bayesian Networks with a single latent variable to measure
learning progressions. However, they did not specify the information needed prior to
encoding the levels of the learning progression. In contrast, the development of a
Bayesian Network with a single latent variable (Model 1) and with multiple latent
variables (Model 2) in this study used informative prior for dichotomous responses. This
informative prior was used to incorporate the assumption, underlying the hierarchical
model of learning progression, that students at a certain level would have a high
probability of obtaining correct answers for the items at that level and below, but a low
probability of answering items at the upper level(s) correctly. This informative prior was
also used by Jefrey Thomas Steedle (2008) to build Bayesian Networks from polytomous
responses. In the present research, however, the informative prior was used to develop

Bayesian Networks for dichotomous variables. No previous studies have previously been
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undertaken to model learning progressions with informative prior on the dichotomous

responses using Bayesian Network modelling.

6.4.2.1.2 Use of a Confirmatory Approach to validate the hypothesized learning
progression

West et al. (2010) performed Bayesian Networks with a single latent variable on the
different possible levels of a learning progression. Using this approach, they built several
Bayesian Networks Models which corresponded to the different numbers of levels of
the learning progression. The Bayesian Networks were applied to the data and then their
model fits were compared. The model which had the best fit with the data was chosen
to give information about how many levels there should be in the learning progression
model. In this case, West et al. (2010) used an exploratory approach, namely they used

the data to define the levels of the learning progression.

In contrast, the present research took a confirmatory approach. The Bayesian
Network models were run strictly, based on the number of levels defined in the
hypothetical cognitive model of the learning progression, after they were revised
previously through a cognitive interview. Hence, in this research, the results of Bayesian
networks analysis were used to confirm the hypothesized model of fraction learning
progression and not to generate the levels of the learning progressions. This
confirmatory approach is essential if we want to make sure that the Bayesian Network
modelling applied to the data is theoretically driven, as suggested by Mislevy (Mislevy,
19944, 1994b), as opposed to data driven. This is an important point, given that learning
progressions developed based on the data may not be well supported by cognitive

theory and research in learning.

6.4.2.1.3 Modelling the Hierarchical-Dependency of the Levels and Diagnostic
Analytics

As discussed before, Bayesian Network models have been developed in previous
research-modelled learning progressions, using a single latent variable with several
classes/categories, reflecting the levels of the learning progression (Jefrey Thomas
Steedle, 2008; Jeffrey T Steedle & Shavelson, 2009; West et al., 2012). These classes

were assumed to be independent of each other. Consequently, the dependency
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between the levels in the learning progression were not formulated in a formal

statistical model.

In contrast, the present research developed a Bayesian Network with multiple
latent variables, i.e., Model 2. Using Model 2, the hierarchical dependency between the
levels was expressed through the conditional probabilities of the latent variables. These
latent variables corresponded to the levels hypothesized in the learning progression.
Using this approach, the conditional probability of the students to have competencies
at a particular level could be estimated. The likelihood of a student having competencies
at a particular level can be used as a diagnostic-analytic tool to evaluate students’
competencies in the levels of the learning progression. This is a significant contribution
to educational measurement, particularly in developing a diagnostic-measurement

model of learning progression using a Bayesian Networks approach.

In summary, the present research contributes to the development of Bayesian
Networks in learning progressions in the following ways. First, this research developed
a way to introduce informative prior for dichotomous responses. This informative prior
is important to incorporate the assumption, which guided the construction of the
learning progression, that students at a certain level would have a high probability of
obtaining correct answers for the items at that level and below, but a low probability of
answering items correctly at the upper level(s). Moreover, the present research
developed a confirmatory approach for validating the learning progression. This
confirmatory approach is essential in order to validate the hypothesized levels of
learning progression with the empirical evidence deriving from the students’ responses.
Finally, this present research developed Bayesian Networks with multiple latent
variables (Model 2) to model the hierarchical dependency of the levels into a formal
statistical model. This model can be used as a diagnostic analytic tool for evaluating

students’ competencies in a learning progression.

6.5.2.2 Contributions to Item Analysis using Bayesian Networks

Current practice for item analyses is dominated by ltem Response Theory (IRT), which
assumes that the students’ abilities are represented as a continuum on a latent scale
(De Ayala, 2009). In contrast, learning progressions represent the progression of

students in learning on the discrete-latent scale. Consequently, the typical item analyses
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using IRT cannot be performed directly on the hypothesized discrete levels of learning
progression to support the inference that students at this level and above have a high
probability of answering the item correctly, while the students at lower levels have a

low probability of answering the item correctly.

Wilson (2012) performed item analysis using the Rasch Model (one of the IRT
Models) to validate a learning progression. He plotted both the item difficulty and the
students’ abilities on the same latent continuum scale using the Wright Map (Wilson,
2005). Subsequently, items for each level were identified using cut off points on the
scale. These cut off points discretized the latent continuum scale into several categories.
These categories were then interpreted as the levels of the learning progression. Items
which fell into these categories were placed on the corresponding levels of the learning
progression. In this case, Wilson’s approach did not perform item analyses based
directly on the hypothesized levels of the learning progression. In fact, the item analyses
were performed on the empirical levels generated from the students’ responses.
Consequently, the validation of the learning progression based on these item analyses
seems to be more exploratory than confirmatory because the analyses of the items were

not performed based on the hypothesized levels of the learning progression.

To date, however, there has been little discussion about item analysis developed
for the discrete latent scale, as assumed in the hierarchical levels of the learning
progressions. In previous research, West et al. (2010) used Bayesian Networks with a
single latent variable (Bayesian Latent Class Analysis) to perform item analysis in the
context of a learning progression to support the inference that items placed at a certain
level would be answered correctly by the students at that level, but would not be
answered correctly by the students at lower levels. In this case, West et al. (2010)
performed an item discrimination analysis of the items at a given level and below. The
present research expands the item analysis from West et al. (2010), using Bayesian
Networks models with a single latent variable (Model 1) and multiple latent variables
(Model 2). As discussed earlier, in Sections 6.4.1.3 - 6.4.1.5, three types of item analyses
for discrete latent scales were developed based on these models: namely, item difficulty
analysis, item discrimination analysis and pseudo-guessing analysis. These item analyses

are similar to the typical item analyses in IRT models. However, the interpretation of the
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results of the analyses are different due to the differences in the assumptions of the

latent scales (discrete versus continuum latent scales).

In this research, item difficulty refers to the probability of the students who have
competencies at a particular level answering an item correctly. The higher the
probability of a correct answer for this item, the easier the item is for the students at
that level, and vice versa. The item is placed at a particular level if the students at that
level have high probabilities for answering the item correctly. Hence, the item difficulty
generated from Bayesian Networks is developed, based on the discrete levels of the
learning progression and representing the uncertainties of item location at these levels.
In contrast, item difficulty in IRT, known as the item parameter, is located on the
continuum scale, so that the students’ ability is also plotted in this scale (De Ayala, 2009;
Wilson, 2005). If the ability of the students is equal to or higher than the item difficulty,
then the students are likely to answer the items correctly. If the ability of the students
is less than the item difficulty, they are likely to answer the item incorrectly. Items are
located along a continuum from negative to positive infinity. The easier items are
located at the lower end of the continuum and the more difficult items are located

towards the higher end (De Ayala, 2009).

The item discrimination analysis developed in this research discriminates between
students at different levels of the learning progression (a discrete scale). Students at a
particular level have a high probability of answering the items at that level correctly,
while students at the lower levels have less probability (are unlikely) to answer these
items correctly (West et al., 2010). In contrast, the item discrimination analysis in IRT
refers to the item discrimination parameters in the IRT model (IRT with a 2-parameter
logistic model), which is used to differentiate students from different points on the
continuum scale. For example, students who are at the lower end of the latent
continuum are unlikely to answer an item that is located in the middle of the scale, but
students at the middle and upper ends of the scale are highly likely to answer the item
correctly. Hence, item discrimination analysis using Bayesian Networks is developed
based on the discrete latent scale (levels in the learning progression) while item

discrimination analysis in IRT is developed from the latent continuum scale.
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The pseudo-guessing analysis using Bayesian Networks in this research estimates
how likely the students who have no competencies at a particular level are to answer
the items at that level correctly. This pseudo-guessing analysis resembles the pseudo-
guessing in the IRT model (IRT with a three parameter model) (De Ayala, 2009).
However, the pseudo-guessing in IRT is developed based on the assumption of the
continuum scale. The pseudo-guessing in IRT analyses the probability of the students at
the lower end of continuum scale answering the items located in the middle or upper

ends of the scale.

In summary, the present research developed item analyses for the discrete latent
scale of a learning progression. These item analyses are different from the item analyses
in IRT, which are developed based on the latent continuum scale. The item analyses
using Bayesian Networks are useful in order to analyze items on the hypothesized levels
of the learning progression. These item analyses are essential in the context of an
analytic approach that uses confirmatory analyses to validate the hypothesized learning
progression models. This is a significant contribution to the present research in
educational measurement, as little discussion about developing item analyses for the

discrete latent scale of a learning progression has yet taken place.

6.7 Summary and Conclusions

This chapter has discussed the development of Bayesian Networks Analysis using
Models 1 and 2 to validate a hypothesized model of fraction learning progression for a
conceptual and a procedural knowledge dimension. The validation was performed using
item level analysis and student level analysis to support the inferences that: (a) an item
at a certain level would be answered correctly by the students at that level or the upper
level, but would not be answered correctly by the students at the lower levels; and (b)
students assigned to a certain level would have sufficient competencies at that level and
the levels below, but would not have enough competencies at the levels above their
competency level. The results of the analyses produced: 1) validated levels of the
conceptual and procedural knowledge dimensions; 2) the location of conceptual and
procedural items along the levels of the learning progression; and 3) the location of
students along the levels of the conceptual and procedural knowledge dimensions of

the learning progression.
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The comparison of Model 1 and Model 2 showed that Model 2 had a better fit
compared with Model 1. Furthermore, Model 2 had several desirable properties which
are superior to Model 1, such as the measurement of competency, diagnostic analytic,
and pseudo-guessing item analysis. However, Model 1 was better than Model 2 for item
discrimination analysis. The item analysis generated from Models 1 and 2 is an
important innovation in this study because it is applied to the discrete levels of learning
progression. Previous models of item analysis based on IRT were developed based on
the assumption of a continuum latent scale of students’ ability, while the present item
analyses, on Bayesian Network Models 1 and 2, were developed based on the
assumption that the students’ learning progression was a discrete latent scale. Using
Bayesian network item analyses, the hypothesized learning progression can be validated
empirically using confirmatory analysis. To conclude, this present research contributes
to the development of Bayesian networks for measuring learning progression by
employing informative prior on the dichotomous responses, performing a confirmatory
approach of analysis, and modelling the hierarchical dependency of the levels in the
learning progression model using a Bayesian Network with multiple latent variables

(Model 2).

The next chapter discusses further the results of the Bayesian Networks analysis
on the conceptual and procedural knowledge dimensions and the relationship between

the two.
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CHAPTER 7 : RESULTS OF STUDENT PERFORMANCE ON THE
CONCEPTUAL AND PROCEDURAL DIMENSIONS OF THE
LEARNING PROGRESSION AND INTERRELATIONS

7.1 Introduction

The purpose of this chapter is to examine and discuss the results of the Bayesian
Networks analysis produced by Model 2 in more detail, showing the levels of student
performance in the conceptual and procedural knowledge dimensions and the
interrelationships between them. In Sections 1 and 2, the results from the Conceptual
and Procedural Knowledge Dimensions of the fraction learning progression are
discussed in the context of the 2013 Indonesian curriculum. In Section 3, the
interrelationships between the performance of the students in the Conceptual and
Procedural Knowledge Dimensions are discussed. A summary presentation of the 2013

Indonesian Curriculum is included in Appendix G.

7.2. Section 1: Student Performance on the Conceptual
Knowledge Dimension

The results produced by Model 2 of the Bayesian Network Analysis (shown in Table 7.1)
indicate that about half of the students (48.06%) were located at Level 1 of the
conceptual fraction understanding validated progression. These students could only
deal with fractions that had the same denominator and did not know how to compare
fractions with different denominators. In other words, half of the students could not
understand the meaning of the fraction symbol even when dealing with fractions

smaller than the unit.

This result is very disappointing because it shows that these students were only
reaching the basic fraction competence in the Indonesian curriculum for grade 3, even
though they were in grades 7-9. The conceptual challenge these students face is
understanding that the value of a fraction is represented by the relationship between
the numerator and denominator and that different fractions can be equivalent, or have

the same value (Lamon, 2012).
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Table 7.1 Frequency and percentage of students in the different levels on the conceptual
knowledge dimension based on the Bayesian Network Analysis (n=516)

Frequency and Percent
Level
N=516

Level 0 — No fraction understanding (3) 0.58%
Level 1 — Part-whole with the same denominator (248) 48.06%
Level 2 — Part-whole with the different denominators (148) 28.68%
Level 3 — Improper fractions and fractions as measures (79) 15.31%
Level 4 — Unbounded infinity of fractions (25) 4.84%
Level 5 — Density (8) 1.55%
Level 6 — Understanding multiplicative fraction

(5) 0.97%
operations

About a quarter of the students (28.68%) in the sample were found to belong to
Level 2 in the conceptual dimension of fraction understanding. At Level 2, students have
a good understanding of the part-whole representation of fractions and can compare
fractions with different denominators. They can also illustrate fraction addition with
different denominators using a part-whole diagram. Still, these students do not
understand improper fractions. The students at Level 2 in the present learning
progression were below the basic competence of fractions taught in the Indonesian
curriculum at grade 4. At this grade, equivalent fractions are introduced and used to
compare and order fractions, and to perform arithmetic fractions operations with
different denominators. Obviously, understanding improper fractions is the main
conceptual challenge for the students at this level. It is possible that students’ difficulties
in dealing with this conceptual challenge is related to the strong emphasis in the
Indonesian curriculum on the part-whole teaching of fractions and also the fact that the

curriculum does not introduce a conceptual understanding of improper fractions.

Findings from Arieli-Attali and Cayton-Hodges (2014) show that students who see
fractions as part of a whole often find it challenging to understand how the number
representing the part (the numerator) could be greater than the number representing
the whole (the denominator). Consequently, the students have difficulty in accepting
improper fractions. For example, students often do not understand an improper fraction
such as 4/3, stating that four parts cannot be produced from dividing an object into

three parts (Fazio & Siegler, 2011). Similar results have been obtained by Resnick et al.
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(2016), who found that the students from grades 4, 5 and 6 in their sample consistently
estimated both proper and improper fractions to have values between 0 and 1. Fazio
and Siegler (2011) discussed the difficulties that might arise in the understanding of
improper fractions when the curriculum emphasizes part-whole representations. In
order to facilitate the understanding of improper fractions, it helps to introduce number
line representations (fractions as measures), something which is not done in the

Indonesian Curriculum.

Only 15.31% of the students were found to be at Level 3 of conceptual fraction
understanding, meaning that these students were capable of understanding improper
fractions and representing fractions on a number line. This group of the students
resembled the cohort of students in the explanatory framework of fractions as Relation
between Numerator/Denominator - sub-category C1: Relation of Two Numbers Without
Infinity (Stafylidou & Vosniadou, 2004). Although they understood the relationship
between the numerator and denominator, these students still perceived fractions as
finite and thought that there exists a smallest and a biggest fraction. The conceptual
challenge the students face at this level is to understand the unbounded infinity of
fractions. Instruction on the unbounded infinity of fractions is not included in the

Indonesian curriculum.

One way to assist students to understand the unbounded infinity of fractions is
to introduce fractions as division. Stafylidou and Vosniadou (2004) found a group of
students (Subcategory C2: Relation of Two Numbers with Infinity) who believed that
fractions are infinite numbers because they saw fractions as the results of the division
of the numerator with the denominator. Understanding fractions as division can
facilitate the students’ understanding of the numerical values of fractions. These values
represent the results of the division of the numerator by the denominator. The values
are getting bigger when the numerator is increased and getting smaller when the
denominator is decreased (in the condition that one of the numerators or denominators
is constant). The results of the cognitive interview showed that the students who
demonstrated fractions as division could explain effectively that there were no biggest
and smallest fractions. However, fractions as division is also not covered in the

Indonesian Curriculum.
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There were very few students at levels 4 and 5 in the conceptual dimension of the
validated fraction learning progression. Approximately 5% of the students were placed
at Level 4. This group was similar to the group of students in the explanatory framework
of fractions as Relation between Numerator/Denominator - sub-category C2: Relation
of Two Numbers With Infinity (Stafylidou & Vosniadou, 2004). These students
understood that there were no smallest or biggest fractions, but they still believed that
there were limited or no numbers between two pseudo-fractions. In other words, these
students had not understood the ‘no successor’ principle of rational numbers. This is a
difficult concept to understand. Vamvakoussi and Vosniadou (2012, p. 266) have
proposed using a ‘rubber line’ analogy — namely, to think of numbers as placed on a
number line which can be stressed and shrunk like rubber - to introduce the idea of
fraction density. The results of their experiments show that a rubber line analogy can
assist students to understand the no successor principle. Again, the no successor

principle in fractions is not taught in the Indonesian curriculum.

Only a very small percentage of the students were placed at Level 5 (1.55%). These
students had a complete understanding of the infinity of fractions, including unbounded
infinity and density. In other words, they completely understood that fractions are
infinite and dense, which is different from the finite and discreteness properties of
whole numbers. Still these students had difficulties in understanding fraction
multiplication and division. They had difficulties in translating the multiplication and
division of fraction operations from symbolic notation into a diagram representation.
The results from the cognitive interview showed that the students at this level tried to
use their procedural knowledge to assist them in drawing the diagram representations
but without success. Similar results were found by Chinnappan and Forrester (2014),
who investigated the conceptual and procedural knowledge of fraction operations using
a sample of pre-service teachers. In the case of fraction multiplication, the result
indicated that 76.69% of the participants could solve the problems procedurally but
could not demonstrate a conceptual understanding of fraction multiplication using
diagram representations. These empirical results indicate that the students who can
perform the operations of fraction multiplication and division do not understand the

meaning of these operations. A conceptual understanding of multiplicative fraction
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operations is not included in the Indonesian curriculum. However, the materials which
introduce fractions using diagrams/strips (area models) can be found in the Indonesian

mathematics text book at grade 7 (see As’ari et al., 2014).

Fewer than 1 % of the students were placed at Level 6 in the learning progression.
These students could demonstrate their understanding of multiplicative fraction
operations using diagram representations. The students viewed fraction multiplication,
for example 1/2 X 3/4, as finding how much is 1/2 of 3/4. They performed partitioning
on 3/4 into two equal parts to get the solution of 1/2 multiplied by 3/4. The results from
the cognitive interview show that this understanding helped the students to
demonstrate fraction multiplication using a diagram representation. There was no issue
of learning difficulties for the students at this level. They had a complete conceptual
understanding of fractions, ranging from fractions as part-whole, improper fractions,
fractions as measures, unbounded infinity of fractions, density, and understanding

multiplicative fraction operations.

In summary, the distribution of students in the conceptual dimension of the fraction
learning progression indicated that most of the students had a very low level of
conceptual knowledge of fractions. About 3/4 of the students only effectively reached
the basic competences of fractions taught in the Indonesian curriculum in grades 3 and
4, which is part-whole understanding. Their conceptual understanding of fractions was
minimal, even though they were at grades 7-9. The learning challenges these students
faced were understanding fractions greater than the unit (improper fractions) and
fractions as measures. The students lacked a high-level conceptual understanding of
fractions, such as unbounded infinity and density and could not understand

multiplicative fraction operations.

The results indicate that the Indonesian curriculum (1) was ineffective in developing
a conceptual understanding of fractions, even when the conceptual understanding was
part of the curriculum and (2) did not cover important areas of fraction conceptual

knowledge that should have been included in the curriculum.

Regarding the first point, a closer look at the Indonesian curriculum indicated that

it did not provide clear guidance as to how teachers could develop conceptual
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understanding of fractions in their students, even when such understanding was part of
the curriculum goals. For example, in introducing equivalent fractions, the basic
competence in grade 4, it was stated that students should “recognize the concept of
equivalent fractions ...” (Appendix H). However, it was not possible to find a description
of what equivalent fractions are anywhere in the Indonesian curriculum, nor the
different kinds of equivalent fractions that exist (e.g., simple and not simple equivalent
fractions), or how to introduce equivalent fractions to students (for example using visual
fraction models). Moreover, equivalent fractions were only mentioned in grade 4 and
were not related to other relevant fraction sub-concepts or operations, such as ordering
fractions, or adding fractions with different denominators. Because of these limitations,
the Indonesian curriculum did not provide enough guidance to teachers about how to

promote student conceptual understanding.

Regarding the second point, the Indonesian curriculum did not cover important
areas of fraction conceptual knowledge; i.e., it did not cover fractions as measures,
improper fractions, fractions as division, and other higher-level conceptual
understandings of fractions, such as the unbounded infinity of fractions, density and
conceptual understanding of multiplicative fraction operations. On the contrary, the
curriculum is dominated by a part-whole understanding of fractions. A number of
researchers have argued that the emphasis on part-whole understanding of fractions
can stand in the way of students’ understanding of improper fractions. Indeed,
understanding fractions as measures, by introducing, for example, number line
representations, can facilitate this understanding (Fazio & Siegler, 2011), Similarly,
introducing fractions as division can assist students to understand the density of
fractions, as can a rubber line analogy, which can facilitate understanding of the no-
successor principle  (Vamvakoussi & Vosniadou, 2012). Understanding fraction
multiplication and division should also be included in the curriculum and introduced to
students using area models (diagram representations), so that the students can create
a conceptual understanding of these procedures (Fazio & Siegler, 2011; Van de Walle

et al., 2015).
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7.3 Section 2. Student Performance on the Procedural
Knowledge Dimension

The results of the Bayesian analysis Model 2 (Table 7.2) showed that about half of the
students were at high levels of performance in the procedural knowledge dimension
(50.90% of the students were at Levels 4, 5 and 6). These students had procedural skills
such as addition, subtraction, multiplication, and division of fractions and they also could
do fraction operations with mixed numbers. These students had effectively reached the
goals of the Indonesian curriculum for grade 7. Moreover, about a fifth of the students
could solve complex fraction operations, which are not specifically taught in the

Indonesian curriculum.

Table 7.2 Frequency and percentage of students in the different levels on the procedural
knowledge dimension based on the Bayesian Network Analysis (n=516)

Percentage
Level
N=516

Level 0 — No procedural knowledge (30) 5.81%
Level 1 — Additive operations with the same denominator (105) 20.35%
Level 2 — Additive operations with different denominators (34) 6.59%
Level 3 — Multiplicative fraction operations (84) 16.28%
Level 4 — Multiplicative operations with mixed numbers (161) 31.20%
Level 5 — One nested- Complex fraction operations (28) 5.43%
Level 6 — Two or more nested- Complex fraction operations (74) 14.34%

Let us describe the results shown in Table 7.2 in greater detail. Although about 50%
of the students reached a procedural competence with the fractions expected at year 7
of the Indonesian curriculum, as mentioned above, the remaining 50% had considerable
difficulty with fraction operations. A small number of students (6% percent) were found
to be incapable of performing even the simplest operations with fractions correctly.
They had difficulties adding fractions with the same denominator (Level 0). Their
difficulties in performing simple fraction operations could have been affected by limited

conceptual understanding of fractions, as discussed in the previous section.

About 20% of the students were at Level 1 of the procedural knowledge dimension.
These students could add fractions with the same denominators, but they had
difficulties adding fractions with different denominators. These students had only
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effectively reached the basic competences of fraction operations at grade 3 of the
Indonesian curriculum. The cognitive interview data with students at this level revealed
that they did not know the procedure for converting fractions with different
denominators into fractions with similar denominators. This was the main obstacle for
moving into higher levels of fraction procedural knowledge. Introducing fraction
addition with a visual representation such as pie diagram could help these students to
understand why a common denominator is required for addition of fractions with

different denominators (Fazio & Siegler, 2011; Van de Walle et al., 2015)

Some students (about 7%) were at Level 2 in the procedural dimension, meaning
that they could add fractions with different denominators but had difficulties adding
fractions involving mixed numbers. This small group of students had achieved the
Indonesian curriculum goals at grade 4 —i.e., additive fraction operations with different
denominators - but did not know how to transform mixed numbers into improper
fractions. This result is consistent with the finding that about 28.68% of the students
were at Level 2 of the conceptual knowledge progression, meaning that they had
difficulties in understanding improper fractions. This aligns with the study by Arieli-Attali
and Cayton-Hodges (2014), which revealed that some of students’ errors in fraction

operations could be attributed to a lack of understanding of improper fractions.

The students at this level also had difficulties with multiplicative fraction operations.
The results from the cognitive interview revealed various mistakes the students made
when multiplying fractions. Some only multiplied the numerators and not the
denominators if the denominators of the fractions were the same. This mistake
indicates that they erroneously applied the principle of fraction addition to the case of
fraction multiplication (Brown & Quinn, 2006), i.e., they did not understand why the
denominators are kept the same in the results of fraction addition with the same
denominator but are multiplied in fraction multiplication (Van de Walle et al., 2015).
Visual representations, such as pie or rectangular diagrams, can be used to illustrate
that in fraction addition, but not in multiplication, the denominator remains the same

in the results.

Placing the competence of adding fractions with the same denominator at a

different level (Level 1) from that of the competence of adding fractions with different
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denominators (Level 2) is an innovation of the present learning progression in the
procedural knowledge dimension. Previous fraction learning progressions (Arieli-Attali
& Cayton-Hodges, 2014) placed these competencies at the same level. The results from
the present research indicate that this differentiation is useful and provides diagnostic

information about students’ procedural difficulties.

A considerable number of students were at level 3 (16.28%) in the procedural
knowledge dimension. They could perform additive operations which involved mixed
numbers and multiplicative operations of fractions. These students had reached basic
competence for fraction operations at grades 5-6 of the Indonesian curriculum.
However, these students had difficulties executing multiplicative operations involving
mixed numbers. One of their prevalent mistakes was multiplying mixed numbers
directly, without converting them into improper fractions. A direct operation of mixed
numbers (without converting them to improper fractions) is correct in the case of
addition of mixed numbers, but not in the case of mixed number multiplication (Newton,
2008; Van de Walle et al.,, 2015). Again this error is evidence that the students
misapplied the algorithm of addition to the multiplication of fractions with mixed
numbers (Brown & Quinn, 2006). Similar to that in Level 2, this error indicates a
deficiency in the students’ conceptual understanding of the procedures of addition and
multiplication of fractions, which caused these two procedures to become swapped

over easily.

The remaining group, approximately 50% of the students, had reached the basic
competences of grade 7 in the Indonesian curriculum (Levels 4, 5 and 6 of the present
learning progression). Many students were at Level 4 (31.20%). They could execute
additive and multiplicative fraction operations, including operations with mixed
numbers. These students had difficulties with complex fraction operations. Specifically,
they could not simplify nested fraction operations of fractions where either the

numerator or the denominator was not a whole number but another fraction operation,

1
23

3

asinl — . The students struggled to figure out the sequence of operations to solve

such tasks. The evidence from the cognitive interview showed both that the students

were confused by the representation of nested fractions and that they could not identify
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which part of the operation is the numerator and the denominator. These students were
thus unable to simplify the nested fractions into a common form. To assist the students
to solve this problem, understanding the structure of complex fraction operations is

important.

About 5% of the students were at Level 5. They could complete one-level nested
fraction operations in which either the numerator or denominator contained a fraction
operation. The students at this level could develop a procedure to solve such complex
fraction operations, which demonstrated procedural skills in an unfamiliar context
(Brown & Quinn, 2006). However, the Bayesian Network analysis showed that the
students at this level had difficulties solving more complex fraction operations with two
or more levels of nested fraction operations. According to Brown and Quinn (2006),
memorizing algorithms to solve such complex fraction operations is not an effective
method. Understanding the representation of the nested fraction operations is critical
when simplifying the operations. However, the students also should have a high-level
computational fluency to solve such a complex fraction operation. According to Russell
(2000) this computational fluency refers to: 1) efficiency in calculation which is when
the students are not trapped in irrelevant steps or computations in getting the solution;
2) accuracy, so the students can avoid making careless mistakes in computation; 3)
flexibility, which is so the students can choose a suitable computation strategy, which is

relevant to the problem given.

Finally, about 14% of students were at the highest level of the procedural
knowledge dimension. The results from the cognitive interviews showed that the ability
to perform sequential processes of fraction operations was the key in solving such
complex operations. These results were consistent with those of Brown and Quinn
(2006) who found that computational fluency, as discussed by Russell (2000) above, is
required to solve complex fraction operations. Brown and Quinn (2006) found that only
15% of the students from an elementary algebra class of high school students could
answer complex fraction operations similar to the ones used in the present study

correctly.

In summary, the results showed that 50% of the students had achieved a relatively

high-level of procedural knowledge of fraction operations, including additive and
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multiplicative fractions and operations with mixed numbers. A considerable number of
students could also perform complex fraction operations. These students had effectively
reached most of the procedural requirements of fraction learning included in the
Indonesian curriculum. Nevertheless, the remaining 50% had not reached the goals of
the Indonesian curriculum for grade 7. About one-fifth of students were still identified
as being at Level 1, i.e., they had difficulties in adding fractions with different

denominators.

Overall, the performance of the students in the procedural dimension of the
learning progression was better than their performance in the conceptual knowledge
dimension. This result can be explained in view of the fact that mathematics instruction
in Indonesia is almost entirely procedural (Zulkardi, 2002). However, only about 50% of
the students had reached the goals of the Indonesian curriculum at grade 7. This result
might be attributable to several reasons. First, the Indonesian curriculum did not
provide clear guidance that could help the development of students’ procedural
knowledge of fractions. For example, in developing multiplicative fraction operations,
the Indonesian curriculum at grade 5 states “perform fraction multiplication and
division” without specifically mentioning how this should be done. For example, it could
be mentioned that there are a number of steps in introducing fraction multiplication or
division to students, such as multiplying a unit fraction with whole numbers, which
should be introduced first, followed by the procedure for multiplying a fraction by

another fraction and so forth.

Another limitation of the Indonesian curriculum is that procedural information is
only introduced procedurally, without regard for the students’ conceptual
understanding. The results in the present research indicate that it was easy for students
to misapply the procedures for fraction operations because of a lack of conceptual
understanding of the procedures. The students who understand that a common
denominator is required to perform additive fraction operations are more likely to recall
the correct procedures, compared with students who do not have this conceptual
understanding (Fazio & Siegler, 2011). Hence, teaching conceptual understanding of
fraction operations should go hand in hand with teaching procedural knowledge of

fraction operations.
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7.4 Section 3. Interrelations in Student Performance between the
Conceptual and the Procedural Knowledge Dimensions

The results discussed in the previous section showed that 76% of the students were
distributed at part-whole levels (Levels 1 and 2) on the conceptual knowledge dimension
of the learning progression. Meanwhile, on the procedural knowledge dimension, the
same students were distributed at several levels of performance (Levels 1, 2, 3, and 4),
raising questions about the relationships between the students’ conceptual and

procedural knowledge.

The results of existing research on the relationship between conceptual and
procedural knowledge can be summarized into four different positions or theoretical
points of view (Hallett et al., 2010; Rittle-Johnson et al., 2001). The first position argues
that students develop their conceptual understanding first and then use this
understanding to learn procedures to solve problems in a particular domain of learning.
The findings from several studies support this position. Among them is a study on
fraction arithmetic conducted by Byrnes and Wasik (1991), which involved 72 students
from grades four and six, and 51 students from grade five. The results showed that
conceptual knowledge was required to support the learning of the procedure for finding
the least common denominator (LCD) in fraction addition with different denominators.
In another study, Byrnes (1992) investigated the relationship between conceptual and
procedural knowledge in integer operations using a pretest-posttest design, which
involved 27 students from grade seven. He found that the conceptual understanding of
integers at the pretest was a good predictor of students’ computational scores at the
posttest. The results of these two studies indicate that conceptual knowledge influences

the development of students’ procedural knowledge.

The second position argues that students first learn procedures and then, from
the repeated experience of applying these procedures, they acquire conceptual
understanding in the specific area of mathematics involved (Robert S Siegler, 1991). In
a study of counting with a sample of 10 three year olds, Briars and Siegler (1984) found
that the counting procedure was developed first, before the children understood the
counting principles. Another study by Robert S Siegler and Crowley (1994), with a sample

of 23 kindergarten children (about 5 years old), showed that some of the children who
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could perform whole number addition understood the commutative principle — namely
that the order of adding two whole numbers does not change the results — even though
they were not taught this principle. This result indicates that they acquired conceptual
understanding from their experiences of adding whole numbers. Both of these studies
support the position that procedural knowledge is developed first, before the
development of conceptual knowledge.

The two above-mentioned positions of the relationship between conceptual and
procedural knowledge assume that the relationship between these two types of
knowledge is only in one direction, either from conceptual knowledge to procedural, or
vice versa. The third position states that there can be a bi-directional relationship
between conceptual and procedural knowledge (Rittle-Johnson et al., 2001). This
position argues that the development of conceptual and procedural knowledge is
interrelated and reciprocal, and that conceptual knowledge can influence the
development of procedural knowledge and vice versa (Rittle-Johnson & Alibali, 1999;
Rittle-Johnson & Schneider, 2014; Rittle-Johnson et al., 2001). Some of the evidence that
supports the third position comes from a study by Rittle-Johnson and Alibali (1999) in
which a sample of 60 students from grade four and 29 students from grade five were
used to investigate students’ knowledge on equivalence problems in mathematics. They
found that students who received procedural instructions had a better conceptual
understanding of equivalence problems. Meanwhile, the students who received
conceptual instruction also developed a correct and flexible procedure for solving these
problems. The authors interpreted their results to indicate that the relationship
between conceptual and knowledge is iterative, as increasing of one type of knowledge
influences the other type and vice versa.

Hallett et al. (2010) proposed individual differences as the fourth position to
explain the different and contradictory findings of the previous research. The hypothesis
of individual differences highlights that students are different in the way they combine
conceptual and procedural knowledge, and that some students rely more on their
conceptual knowledge, while other students rely more on procedural knowledge. The
individual differences position holds a similar assumption to the third position regarding
the bi-directional relationship between procedural and conceptual knowledge but holds

that, in addition, there are individual differences in students’ preferences for a
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conceptual and/or procedural approach. The individual differences position is
supported by the results of a study by Hallett et al. (2010) on fraction learning using a
sample of 318 students from grades four and five. The results showed five clusters of
students, reflecting different combinations of conceptual and procedural knowledge.
Some of the students were strong in conceptual knowledge, while others were strong
in procedural knowledge. Using a much smaller sample (seven students from grade
nine), a case study by Bempeni and Vamvakoussi (2015) also investigated individual
differences in conceptual and procedural knowledge in fraction learning. The results
revealed three student profiles: students with strong conceptual and procedural
knowledge, students with strong procedural knowledge but weak conceptual
knowledge, and students with strong conceptual knowledge but weak procedural
knowledge. The authors concluded that their results provided evidence for the
individual differences position.

The present research used a more comprehensive test of fraction knowledge, a
larger sample (516 students) and older students (grades 7 to 9; between 12 — 15 years
old) compared with the Hallett et al. (2010) study. Therefore, the present research is in
a position to provide evidence to better discriminate amongst the various positions. In
order to examine the data, first, a cross-tab analysis was performed to explore the
pattern of the distribution of the students across the different levels of conceptual and
procedural knowledge dimensions. Next, a cluster analysis was employed to investigate
whether the levels of the conceptual and procedural knowledge dimensions could be
grouped into clusters.

The results of the cross-tab analysis (Table 7.3) showed the different profiles of
the students in terms of their conceptual and procedural levels. Almost half of the
students (248/560 — 48% of the sample) were at Level 1 in the conceptual dimension.
Out of these 248, 106 students were either in Level 0 in the procedural dimension
(23/248) or Level 1 (83/248). We could say that these students (about 20% of the whole
sample) had both a very limited conceptual understanding of fractions and a very
limited procedural knowledge of fraction operations.

A second group at Level 1 conceptual knowledge comprised 127/248 students,
who were distributed at Levels 2 (19/248), Level 3 (44/248), and Level 4 (64/248) of the
procedural knowledge dimension. Although the students in this group (about 25% of the
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whole sample) also had a very limited conceptual understanding of fractions, they

demonstrated better procedural knowledge. They could perform additive (Level 2) and

multiplicative fraction operations (Levels 3 and 4).

Table 7.3 Cross-tabulation of the conceptual and procedural levels of student performance on the

fraction learning progression

Procedural Total
0 1 2 3 4 5 6

Conceptual 0 Count 2 0 1 0 0 0 0 3
% of Total 0.4%| 0.0%| 0.2%| 0.0%| 0.0%| 0.0%| 0.0% 0.6%

1 Count 23 83 19 44 64 8 7 248

% of Total 45%| 16.1%| 3.7%| 8.5%| 12.4% 1.6% 1.4% 48.1%

2 Count 5 14 11 30 61 6 21 148

% of Total 1.0%| 2.7% 2.1%| 5.8%| 11.8% 1.2%| 4.1% 28.7%

3 Count 0 3 3 9 23 11 30 79

% of Total 0.0%| 0.6%| 0.6% 1.7%| 45%| 2.1%| 5.8% 15.3%

4 Count 0 5 0 1 7 2 10 25

% of Total 0.0% 1.0%| 0.0%| 0.2% 1.4%| 0.4% 1.9% 4.8%

5 Count 0 0 0 0 5 1 2 8

% of Total 0.0%| 0.0%| 0.0%| 0.0% 1.0%| 0.2%| 0.4% 1.6%

6 Count 0 0 0 0 1 0 4 5

% of Total 0.0%| 0.0%| 0.0%| 0.0%| 0.2%| 0.0%| 0.8% 1.0%

Total Count 30 105 34 84 161 28 74 516
% of Total 5.8% | 20.3% 6.6%| 16.3%| 31.2%| 5.4%| 14.3%| 100.0%

The last group at Level 1 of the conceptual knowledge dimension were a small

number of students (15/248) who were distributed at Level 5 (8/248) and Level 6 (7/248)

in the procedural knowledge dimension. The students in this group (about 3% of the

whole sample) exhibited the same limited conceptual fraction understanding as in the

two previous groups but could still perform complex fraction operations.

The above results indicate that there can be substantial individual differences

associated with the learning of fractions, given that the students who were at Level 1 of

conceptual understanding ranged from no procedural knowledge of fractions to the

performance of complex fraction operations.

Let us now examine the results for the 148/516 students at Level 2 of conceptual

understanding. The results showed that these students (approximately 29% of the total
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sample) were also distributed across all the levels in the procedural knowledge
dimension. However, a smaller percentage of the students, at Level 2 conceptual
knowledge, were at the two lowest levels of the procedural knowledge dimension —only
19/148 — 12.84% — compared with 106/248 — 42.74% — in the case of Level 1 conceptual
knowledge. The bulk of the students at level 2 conceptual knowledge were grouped at

levels 2, 3 and 4 for procedural knowledge (102/148 - 68.92%).

The results from the analysis of the relationships between Level 2 conceptual and
procedural knowledge again confirm a conclusion of individual differences. However,
they also indicate some dependencies between conceptual and procedural
understanding, given that the students at Level 2 of conceptual understanding seem to
be a little more advanced in their procedural knowledge overall compared with the

students at Level 1 conceptual knowledge.

The examination of the students at Level 3 of the conceptual knowledge
dimension shows that these students were predominantly grouped at Levels 4 (23/79 —
29.11%), 5 (11/79 — 13.92%), and 6 (30/79 — 37.98%) of the procedural knowledge
dimension. These results, again, confirm the presence of individual differences.
However, some dependencies between conceptual understanding and procedural
knowledge also can be observed. High level conceptual knowledge, understanding
improper fractions and fractions as measures, was associated with high level procedural

knowledge - Levels 4, 5, and 6.

A similar pattern can be observed when examining students at Levels 4, 5, and 6
of the conceptual knowledge dimension. Most of the students at these levels were
grouped at Levels 4, 5, and 6 of the procedural knowledge dimension. Only 6 out of 25
students at Level 4 of the conceptual knowledge dimension were identified at Levels 1

(5/25) and 3 (1/25) of the procedural knowledge dimension respectively.

The above results support the hypothesis that there are individual differences in
learning fractions. However, the results also indicate considerable dependencies
between conceptual and procedural knowledge. In order to investigate these
dependencies further, a cluster analysis was performed using the R Package ClustOfVar

(Chavent, Kuentz, Liquet, & Saracco, 2011).
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The results of the cluster analysis (Figure 7.1) identified three clusters. Cluster 1
consisted of conceptual level 1 (ConlL1) and procedural levels 1, 2, 3 and 4 (ProlL1, ProlL1,
ProlL2, ProlL3, and Prol4). Cluster 2 consisted of conceptual level 2 (ConlL2) and

procedural levels 5 and 6 (ProL5 and ProL6). Cluster 3 consisted of conceptual levels 4,
5, and 6 (ConlL4, Conl5, and Conl6).

Cluster Dendrogram
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Figure 7.1 A dendrogram of the cluster analysis for the conceptual and procedural levels
of the fraction learning progression

Cluster 1 showed that Level 1 of the conceptual knowledge dimension was highly
correlated with the procedural knowledge of additive and multiplicative fraction
operations (Levels 1 to 4). This result is consistent with the crosstab analysis, which
revealed considerable numbers of students at Levels 1 to 4 in the procedural knowledge
dimension were at Level 1 of the conceptual knowledge dimension. This finding
indicates that an understanding of the symbolic notation of fractions as part-whole is

capable of supporting additive and multiplicative fraction operations.

Clusters 2, 5 & 6 level of procedural knowledge (complex fraction operations) was
highly correlated with Levels 2 and 3 of the conceptual knowledge dimension. These
results align with the crosstab analysis, which showed that the number of students in
procedural knowledge Levels 5 and 6 were concentrated in Levels 2 and 3 of the

conceptual knowledge dimension. This finding indicates that understanding improper
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fractions and fractions as measures is associated with procedural knowledge of complex

fraction operations.

Cluster 3 consisted of the three highest levels of conceptual knowledge (Levels 4,
5 and 6) only. It did not include any levels from the procedural knowledge dimension.
This result indicates that conceptual knowledge above Level 3 did not help the students
to answer the procedural questions in the test. It is of course possible that the students
with the higher conceptual understanding could potentially solve other more difficult
procedural problems which required understanding of the density of fractions and
multiplicative fraction operations that were not included in the present fraction learning

progression.

To conclude, the results confirmed that there are considerable individual
differences in students’ procedural knowledge within every individual level of the
conceptual knowledge dimension. These individual differences could be related to
differences in classroom instruction (Hecht & Vagi, 2012) and/or differences in
individual students’ learning approaches (Bempeni & Vamvakoussi, 2015). Despite the
presence of individual differences, both the crosstab and cluster analyses indicated that
there are also dependencies between the levels of the conceptual and procedural
knowledge dimensions. A basic understanding of part-whole fractions was associated
with the procedural knowledge of additive and multiplicative fraction operations, while
conceptual understanding of improper fractions and fractions as measures was
associated with complex fraction operations. Conceptual understanding at higher levels
did not contribute to increased procedural knowledge in the context of the present
learning progression. However, this conceptual understanding might be required for
the development of more advanced procedural knowledge, for which an understanding

of the density concept might be necessary.

7.5 Summary and Conclusions

The results of the Bayesian Network analysis showed that 48% of the students were
grouped at part-whole levels of conceptual understanding of fractions and that only a
small number of students could understand improper fractions, place a fraction on the

number line or exhibit higher level conceptual knowledge, such as understanding the
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density of factions and multiplicative fraction operations. These results were explained
on the grounds that the Indonesian curriculum did not cover important areas of fraction
conceptual knowledge and/or because it was ineffective in developing conceptual
understanding, even in the areas that it covered. It was recommended that the
Indonesian curriculum needs to be revised to introduce alternatives to part-whole
representations of fractions, such as number lines and also introduce fractions as
division in order to facilitate students’ understanding of improper fractions and the

unbounded infinity of fractions.

The results showed that the performance of the students was better in the
procedural knowledge dimension, compared with their conceptual knowledge. About
50% of the students had reached the goals of the Indonesian curriculum at grade 7 and
could perform the basic fraction operations as well as more complex operations with
mixed numbers. This finding was explained on the grounds that the mathematics
instruction in Indonesia is mostly procedural. Despite that, the remaining 50% of the
students had not reached the goals of the curriculum at grade 7 and had difficulties,
particularly with fraction multiplication and division. This finding was explained on the
grounds that the Indonesian curriculum did not provide clear guidance as to how to
develop students’ procedural knowledge effectively, with procedural skills being taught
independently of conceptual understanding. Consequently, students often made
mistakes in the application of the procedural processes and misapplied the algorithms

for addition and multiplication.

The third important finding relates to the interrelationship between conceptual
and procedural knowledge. The present research used a more comprehensive test of
fraction knowledge, a larger sample and older students than prior research and was thus
in a position to provide more conclusive evidence regarding the relationships between
conceptual and procedural knowledge of fractions. The results supported the
hypothesis that there are considerable individual differences in how students combine
conceptual and procedural knowledge. However, there were also important
dependencies between conceptual and procedural knowledge, indicating that a basic

understanding of fractions as parts of a whole can support additive and multiplicative
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fraction operations but a higher conceptual understanding of fractions as measures and
as division is associated with complex fraction operations. Knowledge of the density
concept of fractions was not associated with additional procedural competencies in the
present learning progression but it is possible that it might be associated with the

performance of more complex fraction operations not tested in the present research.
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CHAPTER 8 : DISCUSSION

8.1 Introduction

The research conducted in this dissertation designed and validated a two-dimensional
learning progression of fractions. The learning progression was based on two types of
mathematical knowledgei.e., conceptual and procedural. The empirical validation of the
progression was conducted through two sequential stages: a qualitative study using a
cognitive interview (Chapter 4) and a quantitative study using Bayesian Networks
analysis (Chapter 6). The validation was guided by the assessment triangle (Pellegrino et

al., 2001), based on a cognitive model of how students learn fractions.

In the conceptual knowledge dimension, there were seven validated levels ranging
from no understanding of fractions to understanding the unbounded infinity and density
of fractions and understanding multiplicative fraction operations. In the procedural
knowledge dimension, there were seven validated levels ranging from a lack of any
procedural knowledge of fractions to understanding nested complex fraction
operations. The results revealed that most of the students were at the lower levels of
the conceptual knowledge dimension but on the higher levels of the procedural

knowledge dimension (Chapter 7).

An important result of the research is the development of the two measurement
models using Bayesian Networks. These measurement models were used to assess and
validate the learning progression at both the item and student levels. Two Bayesian
Network models were developed, namely Model 1 - Bayesian Networks with a single
latent variable, and Model 2 - Bayesian Networks with multiple latent variables (Chapter
5). The results showed that Model 2 had a better fit with the students’ responses than
Model 1 and had more desirable properties for measuring and diagnosing students’

learning progression (Chapter 6).
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8.2 Discussion of the Research Findings

8.2.1. The Development of a Cognitive Model of Two-Dimensional Fraction
Learning Progression

The fraction learning progression developed in this research makes a significant
contribution to existing research on the assessment of mathematics learning. It is the
first learning progression that has developed a two-dimensional fraction learning
progression that distinguishes conceptual and procedural knowledge in mathematics.
Differentiating these two types of knowledge is important because it provides additional
information on the basis from which the students’ mathematical knowledge can be
assessed. The resulting learning progression can provide more accurate profiles of
students’ progression levels than previous research, which did not distinguish
conceptual knowledge and procedural knowledge (Arieli-Attali & Cayton-Hodges, 2014;
Confrey et al., 2011).

The learning progression developed in this research also included essential aspects
of fraction conceptual knowledge, such the unbounded infinity and density of rational
numbers, and the conceptual understanding of multiplicative fraction operations. Prior
research investigated students’ understanding of the unbounded infinity of fractions
(Stafylidou & Vosniadou, 2004) and of density (Vamvakoussi & Vosniadou, 2004). The
results of this research have not been utilized so far in prior assessments of students’
fraction knowledge. The present research utilized these research findings in order to
develop an assessment of the students’ conceptual knowledge of fractions. Items were
created that tested students’ understanding of the unbounded infinity of fractions and
of density in the context of the fraction learning progression. As a result, it was possible
to evaluate the emergence of this knowledge and compare it with the emergence of
other aspects of conceptual understanding of the symbolic notation of fractions, such
as part-whole, improper fractions, fractions as measures and understanding
multiplicative fraction operations. The results of the Bayesian Networks analysis showed
that understanding the unbounded infinity of fractions was conditional on students’
understanding of improper fractions and of fractions as measures, while understanding
fraction density was shown to be conditional on students’ understanding of the

unbounded infinity of fractions.
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Another innovation of the present research is that the conceptual dimension
included items to assess students’ understanding of the operation of fraction
multiplication. The results showed that this understanding was the last to be developed
and that it was conditional on students’ understanding of fraction density. The empirical
sequence of the emergence of students’ conceptual knowledge of fractions, covering
aspects of conceptual knowledge not included in previous assessments (e.g., Arieli-Attali
& Cayton-Hodges, 2014; Confrey et al., 2011) is a significant contribution of the present

research.

Let us now discuss the development of the procedural knowledge dimension of
the learning progression in the present research. The first innovation of the present
research was the construction of a separate scale to assess this aspect of students’
fraction knowledge. The second innovation was the extension of the procedural
knowledge of fractions investigated, compared with previous research. Although
students’ procedural knowledge of fraction operations was not described in a separate
scale in previous learning progressions, several aspects of this competence were
included in previous research. These typically assessed students’ additive and
multiplicative fraction operations (Arieli-Attali & Cayton-Hodges, 2014; Confrey et al.,
2011). Extending the progression of procedural learning from previous studies, the
present research designed items and validated students’ additional competencies to
perform complex fraction operations empirically, for example for nested operations of
fractions where the numerator or denominator were not a whole number but another
fraction operation. The results showed that about 20% of the students were at levels
indicating competencies in performing complex fraction operations (Levels 5 and 6). The
significant number of students at these levels demonstrates the importance of including

these competencies in mathematics assessments.

In terms of the investigation of the relationship between conceptual and
procedural knowledge, the present research utilized a larger sample size and older
students than the previous research. Moreover, it developed assessment instruments
which covered comprehensive aspects of the conceptual and procedural knowledge of
fraction learning, ranging from no understanding of the fraction symbols to

understanding multiplicative fraction operations, and from no procedural knowledge to
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procedural knowledge of complex fraction operations, respectively. Specifically, this
research examined the relationship between conceptual and procedural knowledge
based on a validated cognitive model of learning progression. Hence, the information
about the relationship between conceptual and procedural knowledge of learning
fractions obtained from this research is unique because it was contextualized in the
progression of students’ learning. No previous studies investigated the relationsship
between conceptual and procedural knowledge intertwined with the development of

students’ learning.

The results of the present research supported the hypothesis that there are
significant individual differences in students’ conceptual and procedural knowledge
(Hallett et al., 2010; Hallett, Nunes, Bryant, & Thorpe, 2012). However, the findings also
showed some dependencies between the various levels of conceptual and procedural
knowledge. More specifically, a basic understanding of fractions as a representation of
part-whole was highly correlated with the procedural knowledge of additive and
multiplicative fraction operations, while a conceptual understanding of improper
fractions and fractions as measures was highly correlated with the procedural
knowledge of complex fraction operations. These findings enrich the results of previous
research on the relationship between conceptual and procedural knowledge in learning
fractions. For example, Byrnes and Wasik (1991) found that conceptual knowledge and
procedural knowledge of fractions was moderately correlated (r=0.5, p<0.01), but did
not give more information about the nature of the specific conceptual understanding
that correlated with the procedural knowledge of additive or multiplicative fraction
operations. In contrast, this research provided information about how the various levels
of conceptual understanding of fractions (part-whole, improper fractions, or fractions

as measures) correlated with students’ procedural knowledge of fraction operations.

The results of the present research challenge the previous research on learning
progressions in fractions and in mathematics in general. As discussed in Chapters 2 and
3, previous learning progressions did not differentiate conceptual and procedural
competencies within the levels of the learning progressions (Arieli-Attali & Cayton-
Hodges, 2014; Confrey et al.,, 2011). For example, in the rational number learning

progression developed by Arieli - Attali and Cayton - Hodges (2014), conceptual
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knowledge of fractions as representations of part-whole emerged at Level 2, together
with the emergence of procedural knowledge of fraction addition being limited to
fractions with the same denominator. However, the findings from the present research
showed that students who had limited part-whole level understanding (Level 1) in the
conceptual knowledge dimension had large differences in their procedural knowledge.
The findings of the present research indicate that the learning progressions developed
from the previous studies, in which conceptual and procedural knowledge were placed
at the same level in the progression, did not accurately represent differences in
students’” mathematical knowledge. Therefore, the cognitive model of the two-
dimensional learning progression offers a better identification of the position of the
students along their learning journey, which is the main goal of educational assessment

(Masters, 2013).

The profiles of individual differences of conceptual and procedural levels can be
useful in order to diagnose students’ difficulties in their learning and provide
information to teachers that enables them to identify gaps in students’ conceptual and
procedural knowledge. This information can then be used to tailor teaching to better
meet students’ needs (Black & Wiliam, 1998; Huff & Goodman, 2007; Pellegrino et al.,
2001; Richard J Stiggins, 2002). Hence, the analysis of individual differences in the
relationship between conceptual and procedural knowledge is one of the significant

contributions of this research to the development of formative assessment.

The two-dimensional learning progression also can contribute to the development
of assessment in modern environments such as online learning. Timms (2017)
highlighted that the most important thing in developing assessment for online learning
is the clarity of the learning goals. The two-dimensional learning progression not only
provides clear learning goals in every level of students’ progression but also guides both
instruction and assessment to achieve the learning goals. Particularly, this learning
progression provides a guidance to achieve learning goals on the specific knowledge
dimensions of conceptual and procedural, which are the core knowledge of

mathematics learning (Hiebert & Wearne, 1996; Rittle-Johnson & Schneider, 2014).
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In summary, the development of a two-dimensional fraction learning progression
in the present research has produced important results for (1) assessment (2) instruction
and (3) curriculum development. In the area of assessment, the two-dimensional
learning progression developed in this research is innovative because for the first time
it differentiates students’ conceptual and procedural knowledge. The results showed
that separating these two-knowledge dimensions results in more accurate assessment
than those learning progressions that do not distinguish these two key types of
knowledge. Specifically, the results that showed the profiles of individual differences in
the conceptual and procedural knowledge dimensions are useful to produce diagnostic
information about students’ progression and their learning challenges. This is a
significant contribution to the development of formative assessments. Moreover, the
present research developed assessment instruments which assess important aspects of
conceptual knowledge (including the unbounded infinity and density and understanding
multiplicative fraction operations) and procedural knowledge (including complex
fraction operations) comprehensively. As a consequence, the emergence of essential
aspects of conceptual and procedural knowledge in learning fractions and their

relationships could be examined.

In the area of instruction, the two-dimensional learning progression provides a
road map. In the conceptual knowledge dimension, teachers are informed about how
students develop their conceptual understanding from no understanding of fractions
until they reach high level conceptual understanding, such as infinity and understanding
multiplicative fraction operations. Likewise, in the procedural knowledge dimension,
teachers are informed about how students develop their procedural knowledge from no
valid procedural knowledge until they can perform complex fraction operations.
Moreover, this learning progression provides information about students’ learning
challenges at different levels of students’ progression in learning, which can assist

teachers to develop more effective instruction.

In the area of curriculum development, the two-dimensional learning progression
covered many essential aspects of conceptual and procedural knowledge of learning
fractions. In the conceptual knowledge dimension, the learning progression includes
understanding the symbolic notation of fractions as a representation of part-whole,
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fractions as measures, the unbounded infinity of fractions and understanding
multiplicative fraction operations. In the procedural knowledge dimension, the
curriculum covered additive and multiplicative operations and complex fraction
operations. All these materials are structured in the progression levels and can be used
in the curriculum to organize these materials across grades in schools. This two-
dimensional learning progression is useful to balance the conceptual and procedural
aspects of fraction learning, given that many curricula favour the procedural aspect of

learning and teaching fractions.

8.2.2 The Development of Bayesian Networks Models

Current practice for measuring students’ learning progression typically uses
Bayesian Networks with a single parameter/Bayesian Latent Class Analysis (Model 1)
(Jeffrey T Steedle & Shavelson, 2009; West et al., 2012). Model 1 in the present research
followed this tradition. The levels of learning progression were assumed to be
independent of each other in Model 1. Consequently, the dependency between the
levels in the learning progression were not formulated in a formal statistical model. A
Bayesian Networks Model 2, with multiple latent variables, was developed in order to
address the limitations of Model 1. Model 2 was developed to reflect the hierarchical
dependency between the levels assumed in the learning progression model (Popham,

2007).

Model 2 combined a cognitive model of a learning progression with a Bayesian
statistical approach. This modelling approach is a significant contribution to the
development of measurement models in the context of cognitive assessments
(Pellegrino et al., 2001). The results of the present research showed that Model 2 had a
better fit than Model 1 and superior properties in terms of the diagnostic analytics of
students’ competencies, pseudo-guessing analysis and detecting extreme cases in

students’ responses.

With respect to the validation of the learning progression, the results showed that
both Bayesian Networks, Models 1 and 2, could be used effectively to validate both the
item level analysis and the students’ level analysis. These analyses are important in

order to support statistical inferences at the item level and at the student level. Item
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level inference supports the interpretation that items that were assigned to a certain
level would be answered correctly by the students at that level or the upper level(s).
Student level inference supports the interpretation that students who were assigned to
certain levels would have sufficient competencies at that level and below, but would not
have enough competencies at the upper level(s) respectively (adapted from West et al.,
2010). These types of inferences provide a clear explanation as to why certain items or
students were placed at certain levels. These inferences can only be performed if the
measurement model is developed based on a discrete latent scale, so that the item and
student analyses can be performed directly on the discrete levels of the learning
progression. Developing these two types of inferences to validate a learning progression
model is a significant contribution of this research. There are no previous studies that

used a similar approach to perform the validation of a learning progression.

Corcoran, Mosher, and Rogat (2009) considered learning progressions as “testable
hypotheses” (p.15) of students’ learning. In order to evaluate these hypotheses a
confirmatory approach is preferable to an exploratory approach because such an
approach makes it possible to examine whether the hypotheses are supported by the
data. The Bayesian Networks approach adopted in the present research can be
considered confirmatory because the analysis was performed based on the
predetermined levels developed from both theory and previous empirical research on
fraction learning. The two types of analyses that make Bayesian Networks confirmatory
in this research are the item level analysis and the student level analysis. The item
analysis was performed to examine whether the items that were hypothesized to be at
a certain level would be correctly answered by the students at that level and above, but
incorrectly answered by the students at the level(s) below; while the student level
analysis was used to estimate students’ location on the hypothesized levels of the

conceptual and procedural knowledge dimension.

This confirmatory analysis is different from the exploratory approach using
Bayesian Latent Class Analysis by West et al. (2010), which produced several Bayesian
Networks with different levels of learning progressions and then selected the model
with the best fit. Such an exploratory approach is also used in other methods, such as
the Rasch Model. For example, Wilmot et al. (2011) plotted item difficulty and students’
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abilities on the same latent continuum scale. They then developed cut-off points based
on the group items, which appeared on the scale to identify the levels of learning
progression. They did not perform item analyses directly based on the hypothesized
levels of the learning progression. In fact, the item analyses were performed on the
empirical levels generated from students’ responses. The advantage of performing
confirmatory analysis in the present research is the capacity to test the hypothesized
levels of the learning progression directly. The confirmatory approach developed in this
research is a significant contribution to the assessment literature on learning

progressions.

Another significant contribution of the present research is the development of
item analyses, such as item difficulty, item discrimination, and pseudo-guessing analysis
using Bayesian Network models. These item analyses have been well-established in CTT
and IRT models (Crocker & Algina, 2008; De Ayala, 2009; Nitko & Brookhart, 2007).
However, as discussed before in Chapter 6, the item analyses developed from CTT and
IRT were different from the Bayesian Networks Item analyses developed in this study.
The fundamental differences are on the assumptions of these models. The Item analyses
in IRT and CTT were developed based on the continuum scale of latent ability, while the
Item analyses in Bayesian Networks were developed from the assumption of a discrete
scale of the students’ latent progression in learning. In practice, Bayesian Network Item
analysis is preferable for validating a learning progression because the analysis can be
applied to the discrete levels of the learning progression directly. Developing Bayesian
Network Item analysis for validating the hierarchical levels of a learning progression is
the most important contribution of this study to the field of educational assessment and

measurement.

In summary, the Bayesian Networks models (Models 1 and 2) developed in this
research are a significant contribution to educational measurement in terms of
measuring and validating learning progressions. First, the Bayesian Networks models
have taken into account prior information about student knowledge into the models
and have measured the uncertainties of each of the parameters in the models. Second,
the Bayesian Networks Model 2, with multiple hierarchical latent variables, successfully
addressed the limitations of Bayesian Networks Model 1 in representing the hierarchical
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dependency between the levels by accommodating this dependency into a formal
statistical model. Next, both models support a confirmatory approach for evaluating the
hypothesized levels of a learning progression through two types of analyses: item level
and student level analyses. These analyses can test the hypothesized levels of the
learning progression directly. Finally, the present research, for the first time, has
developed Bayesian Networks item analyses such as item difficulty, item discrimination
and pseudo-guessing analysis, which were originally developed in CTT and IRT, in order

to validate the hierarchical, discrete levels of a learning progression.

8.3 Limitations and Recommendation for Further Studies

This study has several limitations. The sample in this study was taken from just
one of the junior public schools in Indonesia. The research findings may not represent
the whole population of students at grades 7-9 in Indonesia or in other countries. Hence,
a larger study sampling student from other junior public schools across the country is
required so that the findings can be generalized into the national context of Indonesia.
The Bayesian Networks models developed in this research are specific for a hierarchical
setting that fits into the current context of learning progressions. Further research is
needed to investigate different types of hierarchical settings, depending on other

contexts.

Moreover, the Bayesian Networks models developed here are based on specific,
informative, prior information. The prior could affect the posterior estimates when the
number of samples is small as found in the higher levels of the fraction learning
progression model. Furthermore, the research context needs informative prior, not
uninformative. It is therefore recommended to conduct a sensitivity analysis using

different informative prior information in future research.

Moreover, the Bayesian Networks models developed here are based on specific
and informative prior information, which were obtained from previous studies or expert
opinion. For complex models with many parameters such as the models developed in
this thesis, the choice of priors and conclusions of the subsequent Bayesian analysis are
usually validated through a prior sensitivity analysis. Given the context of this research

that prior information is usually informative, the prior sensitivity analysis can be
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conducted using different types of informative priors, weakly informative or strongly
informative. This thesis used moderate informative priors. As a future work in this
research, a prior sensitivity analysis can be performed using either weakly or strongly

informative prior distributions.

In Bayesian perspectives, large sample sizes become more important especially in
the context of strong prior being that applied in the analysis. The limitation of this
research has shown that at the higher levels, the posterior estimates are getting close
to the priors due to a small number of students at these levels. However, it is worth to
note that the small number of students in the high levels of fraction learning progression
is not surprising because it is consistent with the previous research that conceptual
understanding of fractions at high levels were difficult for students (Vamvakoussi &
Vosniadou, 2004, 2010). Therefore, by considering the context and the theory of
development of fraction learning, the results of Bayesian estimation are retained in this
study by acknowledging that in some cases the prior could affect the posterior estimates
as a limitation which is inherent in the Bayesian Network approach when dealing with
small number of samples. This issue can be addressed by simultaneously increasing the
sample sizes of the study and using weakly informative prior for the Bayesian Network

models proposed in this thesis.

The Bayesian Networks models were implemented for each dimension,
procedural and conceptual. Future research is required to develop a bivariate analysis
of Bayesian Networks for these two knowledge dimensions. Finally, the cut-off
probabilities for placing items and students along the progression levels were not well-
established in the literature. Future work is needed to set a threshold of probabilities to

be used for validating and measuring students’ learning progressions.
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Indonesia are submitted to the Committee on receipt. Please ensure that the SBREC project number is included in the subject line of any
permission emails forwarded to the Committee. Flease note that data collection should not commence unfil the researcher has received the
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Appendix B. Letter of Introduction for School Principals

§m [linders —

PO Baw 2140

Adelaids 34 3001

Tal. -+l B 8201 3637

Email: dmvid oortisi@flindsrs st oy
LETTER OF INTRODUCTION

{For School Principals)
To whom it may concem

This letter is to introduce Bakir Haryanto who is a Doctor of Philosophy (PhD) student in the
School of Education at Flinders University. He will produce his student card, which carries a
photograph, as proof of identity.

He is undertaking research |leading to the production of a thesis or other publications on the
subject of “Mathematics Learning” which investigates the progression of students' fraction
leaming in terms of concepiual and procedural knowledge.

He would like to invite yvou to assist with this project by agreeing to allow students in vour school
to be involved in an interview, and test. The interview should last about 45 minutes, and the test
should last 120 minutes. Be assured that any information provided will be treated in the sinictest
confidence and none of the paricipants will be individually identifiable in the resulting thesis,
repart or other publications.

Since he intends to make a digital recording of the interview, he will seek parents' consent, on the
attached form, fo record the interview, to use the recording or a transcription in preparnng the
thesis, report or other publications, on condition that children's names or identities are not
revealed, or that the recording will not be made available to any other person. You may be
assured that the confidentiality of the material will be respected and maintained at all time during
the research process.

Any enguiries you may have concerning this project should be directed to me at by e-mail to:
david.curtis@flinders edu.au

Thank you for your attention and assistance.

Yours sincerely

Associate Professaor Dr David Curtis

School of Education
Flinders University

This research project has been approved by the Flinders Uiniversity Social and
Behavioural Research Ethics Commiftes (Project number 2200 ] For more information
regarding ethical approval of the project the Executive Officer of the Commifiee can be

contacted by fefephone on 8201 3116, by fax on 6201 2033 or by email
human.researchethicsi@ilinders.edu.au
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Appendix C. Letter of Introduction for Parents

Doawic I Curtis
: f Associte Professor, Educational Research
Sl . 5chool of Edication
i - Flinders Tiversity
Flinders s Lo
UNIVERSITY Adelaids 54 5001
Tel. +61 8 8201 5637
Email: danid oontis@flinders st ms

LETTER OF INTRODUCTION
(For Parents)

To whom it may concem

This letter is to introduce Bakir Haryanto who is a Doctor of Philosophy (PhD) student in the
Schoal of Education at Flinders University. He will produce his student card, which carries a
photograph, as proof of identity.

He is underiaking research leading to the production of a thesis or other publications on the
subject of “Mathematics Learning” which investigates the progression of students' fraction|
leaming in terms of concepiual and procedural knowledge.

He would like fo invite you to assist with this project by agreeing to allow your child fo be involved
in an interview and test. The interview should last about 45 minutes and the test should last 120
minutes. Be assured that any information provided will be treated in the strictest confidence and
none of the paricipants will be individually identifiable in the resulting thesis, report or other
publications. Your child is, of course, entirely free to discontinue your participation at any time or
to decline to answer padjcular guestions.

Since he intends to make a digital recording of the think aloud protocol and interview, he will sesk
parents' consent, on the attached form, to record the interview, to use the recording or a
transcription in preparing the thesis, report or other publications, on condition that children’s
names or identities are not revealed, or that the recording will not be made available to any other
person. You may be assured that the confidentiality of the material will be respected and
maintained at all time during the research process.

Amy enguiries you may have concerning this project should be directed to me at by e-mail to:
david.curtisi@flinders edu.au

Thank you for your attention and assistance.

Yours sincerely

Associate Professor Dr David Curtis

School of Education
Flinders University

This research project has been approved by the Flinders University Social and
Behavioural Research Efhics Commiftes {Project number 2200  For more Information
regarding efhical aporoval of the project the Executive Officer of the Commiltee can be

contacted by telephone on 8201 3116, by fax on 6201 2033 or by emaif
human.researchethicsi@finders. edu.ay
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Appendix D. Information Sheet for School Principals

Bakir Haryanto

D Student
e . : SghoulofE:hJI_ju.n
m Flinders T

Adelaids 54 5001

Tal +61 8 5201 2502
Enzail: hemy000iE finders adu an
wwrw. finders sdn au

INFORMATION SHEET
School Principals

Title: Learning in Mathematics

Researcher:

Bakir Haryanto

Email : hary0006@flinders.edu.au

Phaone - +61 452 498 399 (Australia) +62 81321337550 (Indonesia)

Supervisors:

Associate Professor Dr David Curtis
School of Education, Flinders University
GPO Box 2100 Adelaide 54 5001
Email : david.curtis@flinders.edu.au
Phone : +61 8 82015637

Professor Dr Stella Vospiadoy

School of Education, Flinders University
GPO Box 2100 Adelaide SA 5001
Email : stella.vosniadou@flinders. edu.au

Description of the study:

This study is part of the project entitled ‘Learning in Mathematics’. This project will
investigate the development of students’ fraction learning and their difficulties.

This project is supported by the Faculty of Education, Humanities, and Law, Flinders
University, Australia.

Purpose of the study:
This project aims at

s To assess students’ learning progression in the domain of fractions
« Todiagnose students’ difficulties in fractions

What will | be asked to do?
You will be asked to approve grade 7, §, and 9 participations for the following activities:

» Interview
Children will be given several mathematics item tasks, and they will be asked to
speak loudly to describe their thinking process when they solve the tasks. It will take
no more than 45 minutes.
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+ Test
Children will be asked to complete the test of fractions. [t will take 120 minutes.

What benefit will children gain from being involved in this study?

The sharing of children’s experiences will improve the planning and delivery of fraction
teaching-learning and inform the curriculum designers about the progression of fraction
learning that can be used to refine mathematics curriculum in the future.

Will children be identifiable by being involved in this study?

We do not need children's’ name and they will be anonymous. Once the think aloud
protocol and interview has been typed-up and saved as a file, the voice file will then be
destroyed. Any identifying information will be removed and the typed-up file stored on a
password protected computer that only the coordinator (Mr Bakir Haryanto) will have
access to. Your children's comments will not be linked directly to your children.

Are there any risks or discomforts if children are involved?

There will be no risks or discomfort in children’s involvement. However, if you have any
concems regarding anticipated or actual risks or discomforts, please raise them with the
researcher.

How do children agree to participate?

Participation is veluntary. Children may answer ‘no comment or refuse to answer any
questions and you are free to withdraw from the focus group at any time without effect or
consequences. A parent consent form accompanies this information sheet. If children
agree to participate please read and sign the form with their parents and send it back to
the researcher prior to the start of the study.

How will | receive feedback?
Dutcomes from the project will be summarised and given to you by the investigator if you
would like to see them.

Thank you for taking the time to read this information sheet and we hope that you
will accept our invitation to be involved.

This research project has been approved by fhe Flinders University Social and Behavioural Research
Ethics Committes (Project number 72000, For more infarmation regarding ethical approval of the project
the Executive Officer of the Committee can be contacted by felephons on 8207 3716, by fax an 8207 2035
or by email humean.ressarchethics@inders. edu. au
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Appendix E. Information Sheet for Parents

School of Education
Flirdars Tnivarsity
GPO Bagx 2100

e Els P Adslaid SA 3001
) [linders .

www. finders edn au
CROCO0E Provider Mo. 001144

INFORMATION SHEET
Parents

Title: Learning in Mathematics

Researcher:

Bakir Haryanto

Email : hary0006@flinders.edu.au

Phone - +61 452 498 399 (Australia) +62 81321337550 (Indonesia)

Supervisors:

Associate Professor Dr. David Curtis
School of Education, Flinders University
GPO Box 2100 Adelaide SA 5001
Email : david.curtis@flinders_edu au
Phone - +61 8 82015637

|
Professor Dr Stella Yosniadou,

School of Education, Flinders University
GPO Box 2100 Adelaide 54 5001
Email : stella.vosniadou@flinders.edu.au

Description of the study:

This study is part of the project entitled ‘Learning in Mathematics’. This project will
investinate the development of students’ fraction leamning and their difficulties.

This project is supported by the Faculty of Education, Humanities, and Law, Flinders
University, Australia.

Purpose of the study:
This project aims at

« Toassess students’ learning progression in the domain of fractions
¢ Todiagnose students’ difficulties in fractions

What will your child be asked to do?
s Interview
Your child will be given several mathematics item tasks, and they will be asked to

speak loudly to describe their thinking process when helshe solves the tasks. It will
take no more than 45 minutes.
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+ Test
Your child will be asked to complete the test of fractions. It will take 120 minutes.

What benefit will your child gain from being involved in this study?

The sharing of your child experiences will improve the planning and delivery of fractions
teaching-learning and inform the curriculum designers about the progression of fractions
that can be used to refine mathematics curriculum in the future.

Will your child be identifiable by being involved in this study?

We do not need your child's name and your childe will be anonymous. Once the think
aloud protocol and interview has been typed-up and saved as a file, the voice file will then
be destroyed. Any identifying information will be removed and the typed-up file stored on
a password protected computer that only the coordinator (Mr Bakir Haryanto) will have
access to. Your child's comments will not be linked directly to your child.

Are there any risks or discomforts if | am involved?

There will be no risks or discomfort in your child involvement. However, if you have any
concemns regarding anticipated or actual risks or discomforts, please raise them with the
researcher.

How do | agree to participate?

Participation is voluntary. Your child may answer ‘no comment’ or refuse to answer any
questions and you are free to withdraw from the focus group at any time without effect or
consequences. A consent form accompanies this information sheet. If you agree to
participate please read and sign the form and send it back to the researcher prior to the
start of the study.

How will | receive feedback?
Outcomes from the project will be summarised and given to you by the investigator if you
would like to see them.

Thank you for taking the time to read this information sheet and we hope that you
will accept our invitation to be involved.

This research project has been approved by fhe Flinders University Social and Behavioural Research
Ethics Committes (Project number T200)). For more informafion regarding sthical approval of the project
the Executive Officer of the Committes can be contacted by fslephons on 8207 3716, by fax on 8207 2035
or by emal human.ressarchethics@inders. edu. ay
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Appendix F. The English Version of the Fraction Learning
Progression Assessment Instrument

Please answer correctly all the following questions

1. Write the fraction for the shaded part below

For example :

R =

iii). If the figure is the whole, write the fraction for the
shaded part below
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2. Write the numerator of the fraction for the shaded parts

For example :

AN

i) If the figure is the whole, write the numerator of the

fraction for the shaded parts below

3. Shade the shape to show the fractions below.

For example :

wN
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i)

B

4. Show the fraction on the number lines below.

For example:
1 T :n ]
2 0 \ 1
3
- 1
8 4]
5. Show the fraction 7, on the number line below
_ 7 1 1
6. Order the fractions Z , g and 1 > on the number line below

3 1
7. Which is larger g or E ? lllustrate how you got your answer by using a model

such as a picture or a diagram representation.
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2 3
8. Which is larger g or Z ? lllustrate how you got your answer by using a model

such as a picture or a diagram representation.

7 8
9. Which is Iargerz or g ? lllustrate how you got your answer by using a model

such as a picture or a diagram representation.

10. Write the biggest fraction that you know. Explain your answer

11. Write the smallest fraction that you know. Explain your answer
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2 4
12. How many numbers between — and — ? Explain your answer

4 5
13. How many numbers between ; and ; ? Explain your answer

14. Draw a pictorial representation for the addition and multiplication of fractions
below.

For example: Draw a pictorial representation for the addition of fractions
l%elow.1
5T s

BN [ [ |- B T T ]

[ ]

i) Draw a pictorial representation for the addition of fractions below. Explain
your answer

_I_

SR
INEEN
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i) Draw a pictorial representation for the addition of fractions below. Explain

your answer

_I_

SR
W N

iii) Draw a pictorial representation for the multiplication of fractions below.

Explain your answer

X

N =
Sl w

iii) Draw a pictorial representation for the division of fractions below. Explain

your answer

N |-
SR
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14. Find the sum, difference, product, or quotient of the fraction operations in the
table below. Show your work and write your answer in simplest form (The
questions in Level-1 to Level 3 are adapted and extended from Newton, 2008;
Newton et al., 2014)

. 3 14 2
i) 5 + i) e + 3
Answer: Answer:

3 ) 3 1
iii) 5 5 iv) 2 s
Answer: Answer:
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2 7 1
v)— X — vi)= X 24
)15 15 )8
Answer: Answer:
9 3 5 3
vi)— + — viii) 3= X 4-
10 10 7 7
Answer: Answer:
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. 1,
iX)25 +3 ) 1--
3
Answer: Answer:
, ..
122 Xii)
xi) —=2—
s 5
1+
6+ Ll
1-3
Answer:
Answer:

Good Luck !
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Appendix G. Fraction Learning in the Indonesian Curriculum

In the Indonesian New Curriculum which is called “The 2013 Curriculum”, (Balitbang,
2013a, 2013b) fractions are first introduced in the third grade and their instruction
continues throughout elementary school until grade seven. In the seventh grade,
fractions are not presented as an independent topic but are embedded in the topic of
“numbers” which include whole numbers. After this, fractions are taught as ratios until
grade nine. This section discusses the development of students’ learning of fractions
(exclude ratios which are beyond the present research), based on the Indonesian
curriculum. The discussion will be shaped in terms of the development of conceptual
and procedural knowledge in learning fractions. Two main resources are used in this
discussion which are the curriculum stating the basic competence and the books
(teacher and student’s books) which accompany the curriculum. The analysis was

presented in Table 1.
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Table 1. The analysis of conceptual and procedural fraction competencies outlined in the 2013 Indonesian Curriculum and the mathematics textbooks

published by the Ministry of Education and Culture, Indonesia.

fractions using concrete objects /

images, as well as determining the

as part-whole. They learn simple fractions such
as 1/2, 1/3 and 1/4). Moreover, students begin
to recognize which a fraction is bigger and

Grade Basic Competence Conceptual Procedural
(The 2013 Curriculum)
Grade-3 3.3 Understand the concept of simple Grade 3 students begin to understand fractions

smaller by comparing the sizes of the parts from

value of the smallest and largest | ;o

same whole. (Kurnianingsih, Assagaf,

fractions in these objects Muhibba, & Nurhasanah, 2015a)

Students are introduced to decimal notation.
They recognize that common fractions with the | Students can add and subtract fractions with the
same denominator for fractions less than 1 e.g. 1/3
+1/3=..,3/5+1/5=...,4/4 - 3/4=..., 5/6-1/6=..., etc
(Kurnianingsih et al., 2015b)

denominator 10 can be expressed in decimal
notation e.g. 4/10 = 0.4 (Kurnianingsih, Assagaf,
Muhibba, & Nurhasanah, 2015b). Moreover,
they are introduced to simple fraction addition
using representation as illustrated in Figure 1.

_1 _3
a=z b= z
/_AV—Aﬁ
[
\ y J
3.14 Recognize fractions and decimals, 1,.3_4
6 6 6

and perform the addition and

subtraction of fractions with the same
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Grade

Basic Competence
(The 2013 Curriculum)

Conceptual

Procedural

denominator

Figure 1. Fraction addition using diagram
representation (Kurnianingsih et al., 2015b, p.

121)

Grade-4

3.1 Recognize the concept of

equivalent fractions and perform
arithmetic operation of fractions using

concrete objects / images

At grade 4, students begin to learn equivalent
fractions using diagram representations, which
are developed from the part-whole concept
introduced in grade 3. Students use equivalent
fraction understanding to compare and order
fractions with different denominator, but this is
still limited to fractions less than 1 (Afriki, Farani,
Anggari, Wulan, Purnihastuti, Puspitawati,
Destianti, Miga, & Maryanto, 2014). Students
further
operations

learn how to perform fraction
using diagram representations
(which are introduced in Grade-3) including
fractions with unlike- denominators (Afriki,
Farani, Anggari, Wulan, Purnihastuti,
Puspitawati, Destianti, Miga, Susilowati, et al.,

2014).

Students are able to add and subtract fractions less
than 1 including with
denominators. They can simplify the results of

fractions unlike-
fraction addition and subtraction (Afriki, Farani,
Anggari, Wulan, Purnihastuti, Puspitawati,
Destianti, Miga, Susilowati, et al., 2014).

Students are introduced to converting fractions
into decimals in several ways: by changing the
denominator into 10 or by dividing the numerator
with the denominator. They also learn how to
convert a fraction into percentage by changing the
denominator into 100 (Afriki, Farani, Anggari,
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Grade

Basic Competence
(The 2013 Curriculum)

Conceptual

Procedural

4.3 Express fractions in decimal and

percentage form

Woulan, Purnihastuti, Puspitawati, Destianti, Miga,
Susilowati, et al., 2014)

Grade-5

3.2 Understand the different forms of
fractions (common fractions, mixed
numbers, decimals and percentage),
change fractions into decimals, and
perform fraction multiplication and

division

At grade-5, students are introduced to fractions
greater than 1 and mixed numbers using
diagram/pictorial representations. They are also
taught that fractions can be expressed in
different forms such as common fractions,
mixed numbers, decimals, and percentage
(Maryanto, Susilawati, Kusumawati, Subekti, &
Karitas, 2014).

Related to the conceptual knowledge underlying
fraction operations, students are introduced to
fraction multiplication and division using
diagram representations. For example, a

At this level, students expand the additive
operations of fractions that they learned in Grade 3
into multiplicative operations. They can multiply
and divide fractions including fractions greater than
1. Students also learn further how to convert
between fractions (a/b), decimals and percent
which involve improper fractions (Maryanto et al.,
2014).
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Grade Basic Competence Conceptual Procedural
(The 2013 Curriculum)
fraction multiplication (1/2 X 2/3) isillustrated in
figure 2.
Figure 2. A representation ot a traction | Students learn that a fraction can be expressed as
multiplication 1/2 X 1/3 using rectangle | the results of fraction operations as illustrated in
diagrams (adopted from Maryanto et al., 2014, | Figure 3.
p. 30)
82%

4.12 Express a decomposed fraction as [:}—, I——[:]

two fractions which are expressed as a Figure 3. Decomposing a fraction as an addition of

decimal and percent and which have a two fractions (adopted from Maryanto et al., 2014,

p. 125)

range of possible answers, using

addition, subtraction, multiplication

and division

Grade 6 31  Understand the arithmetic At grade 6, students learn more about different | Students learn fractions operations (that they

operation involving various forms of

representations of fractions including decimals
and percent (Afriki et al., 2015a, 2015b).

learned in previous grades) in greater depth, which
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Grade Basic Competence Conceptual Procedural
(The 2013 Curriculum)
fractions (fractions, mixed numbers, involve decimals and percentage (Afriki et al.,
. 2015a, 2015b).
decimals and percent) )
Grade 7 3.1 Compare and order different types Students learn more intensively the concepts of | Students learn in greater depth additive and

of numbers and apply arithmetic
operations of integers and fractions by

using a variety of operating properties

fractions including part-whole, equivalent
fractions, decimals and percent. They learn how
to compare and order fractions, decimals and
percent as illustrated below
3.,70%, 0,55, 500%o

5
They also further learn the concept of fraction
operations using fraction strips/diagrams (As’ari

et al., 2014).

multiplicative fractions that they have already
learned in primary school (grade 3 to 6) so that they
can solve more complex fraction operations (As’ari
et al,, 2014).
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The Indonesian 2013 curriculum covers many topics regarding the learning of
fractions. The topics concerning the conceptual knowledge of fractions are the
following: At grade 3, students are introduced to part whole as an entry point into
recognizing fractions. At this level, they are also taught how to add simple fractions using
diagram representations. After that, they are introduced to equivalent fractions at grade
4 so that they can order and compare fractions with unlike-denominators. At grade 5,
they are taught to recognize improper fractions, mixed numbers, decimals and
percentage. Next, in grade 6, they are introduced more deeply on how to represent
fractions in decimals and percentages. In grade 7, they review all the material taught on
fractions in grades 3 to 6, and are taught how to compare and order fractions including
decimals and percentages. They are also introduced to the concept of fraction

operations using fraction strips/diagrams.

Concerning the procedural knowledge of fractions, students are taught additive
operations from grade 3 to 4, and are introduced to multiplicative operations at grade
5. At grade, 6 they learn fraction operations which involve decimals and percentages.
Finally, at grade 7, they are introduced in greater depth to more complex additive and

multiplicative fraction operations.

However, there are several essential fraction concepts which are not covered in
the 2013 curriculum. First, the curriculum does not introduce fractions as measures. All
the fraction concepts introduced in the curriculum have an over-emphasis on part-
whole understanding. Introducing fractions as measures is important in order for
students to understand fractions as numbers (Arieli-Attali & Cayton-Hodges, 2014).
Next, the curriculum does not include instruction on the “unbounded infinity” of
fractions, meaning there is no smallest or biggest fraction (Stafylidou & Vosniadou,
2004). Finally, the curriculum does not cover the density concept of fractions, meaning
that there are infinite numbers between two fractions (Vamvakoussi & Vosniadou,
2004). The 2013 curriculum could be improved by incorporating materials to further

develop student learning in these areas.
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Appendix H. Geweke Test Estimation for Convergence Test and
gamma (y) and pi (m) parameters generated using CODA
Package in R

Geweke Test for Model 1 of the Conceptual Knowledge Dimension

gamma[l] gamma[2] gamma[3] gamma[4] gamma[5] gammal[6]
0.490712 -0.626240 0.470150 0.570294 0.005518 -1.662310

pil[l,1] pi[l,2] pi[1,3] pi[l,4] pill,5] pi[l,6]
0.617808 1.286797 -0.804341 1.694752 0.527221 1.648695

pill,7] pi[l1,8] pi[1,9] pil[1,10] pi[1,11] pi[1,12]
-0.004892 -0.860232 -0.060908 0.071053 0.625309 1.138121
pi[1,13] pi[1,14] pi[1,15] pi[l,16] pi[1,17] pi[1,18]
-0.700553 -0.005713 0.543834 -0.687961 1.172969 -0.812506
pi[1,19] pi[1,20] pi[1,21] pil2,1] pil2,2] pil2,3]
-0.551563 -0.041621 1.351098 0.240884 -0.637400 -0.325650

pil2,4] pi[2,5] pil2,6] pil2,7] pi[2,8] pi[2,9]
0.784541 0.818438 0.726941 -1.616439 0.913738 -0.521404
pil[2,10] pi[2,11] pi[2,12] pil2,13] pi[2,14] pi[2,15]
1.130307 0.733221 0.483723 -0.093295 -0.044078 -1.642028
pil[2,16] pi[2,17] pi[2,18] pi[2,19] pi[2,20] pi[2,21]
0.862408 -0.734300 0.145336 -0.427807 -1.337637 0.366285

pil3,1] pil[3,2] pil[3,3] pil3,4] pil3,5] pil3,6]
1.712758 0.431907 0.444354 1.233695 -1.422345 0.877708

pil3,7] pil3,8] pil[3,9] pil3,10] pil(3,11] pi[3,12]
-1.049826 -0.343016 -1.311626 -1.847013 -1.072481 -0.753578
pil3,13] pil3,14] pil3,15] pil3,16] pi[3,17] pil[3,18]
0.120117 0.499039 -0.406753 -0.705981 -0.253896 0.101185
pil[3,19] pil3,20] pil[3,21] pi[4,1] pi[4,2] pil[4,3]
0.952138 -0.362436 0.841088 -0.194156 -0.418119 -0.632626

pil[4,4] pi[4,5] pi[4,6] pil4,7] pi[4,8] pi[4,9]
0.491605 -0.619785 0.031210 -0.661878 -0.997749 -1.790882
pi[4,10] pi[4,11] pi(4,12] pil[4,13] pi[4,14] pi[4,15]
0.031437 -0.256421 -0.731369 0.718214 1.043495 0.110951
pi[4,16] pi[4,17] pi[4,18] pi[4,19] pi[4,20] pi[4,21]
-1.028516 0.759290 -0.295129 0.115957 0.140306 -1.236072

pil5,11 pi[5,2] pi[5,3] pil5,4] pi[5,5] pi[5,6]
-0.359621 -0.101860 0.188587 -1.631224 -0.147195 -1.442883

pil5,7] pil[5,8] pil[5,9] pil5,10] pi[5,11] pi[5,12]
0.043249 0.800412 0.586067 0.001195 0.791922 0.348552
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pi[5,13] pi[5,14] pi[5,15] pi[5,16] pi[5,17] pi[5,18]
0.091012 1.450053 -0.507667 0.045625 -0.428344 -1.090335
pi[5,19] pi[5,20] pi[5,21] pil[6,1] pi[6,2] pil6,3]
1.159484 1.641590 0.024415 -0.583123 0.147721 -0.315051

pil6,4] pil[6,5] pil[6,6] pil6,7] pil6,8] pil6,9]
-0.373097 1.770135 1.544629 -1.353087 1.994993 -0.217660
pil[6,10] pil6,11] pil6,12] pil6,13] pi[6,14] pi[6,15]
-1.099212 0.252504 -0.897223 -1.408613 -0.635260 -0.857159
pil[6,16] pil6,17] pi[6,18] pil6,19] pi[6,20] pil6,21]
-0.793391 -0.702598 1.022452 -0.213616 -0.645353 1.435137

Geweke Test for Model 1 of the Procedural Knowledge Dimension

gamma[1l] gamma[2] gamma[3] gamma[4] gamma[5] gamma[6]
-0.45834 0.05635 1.49298 -0.77578 0.27093 -0.94027
pil[l,1] pi[1,2] pil[1,3] pil1,4] pil[1,5] pill,6]
0.29045 0.83607 -0.83498 -1.17869 -0.73040 -0.50142
pill,7] pi[1,8] pil1,9] pi[1,10] pi[l,11] pi[1,12]
-0.04321 -0.24464 -0.28280 1.38373 0.12608 0.63585
pil2,1] pil2,2] pil2,3] pil2,4] pil2,5] pi[2,6]
0.24597 1.07106 -0.82652 -0.05438 0.51161 1.14149
pil2,7] pil2,8] pil2,9] pil2,10] pi[2,11] pi[2,12]
-0.70418 -1.28812 -1.60968 -0.79841 -1.57595 -1.10159
pil3,1] pil3,2] pil3,3] pil3,4] pil3,5] pi[3,6]
-0.11682 -0.45518 0.27498 0.01856 0.23486 -0.43008
pil3,7] pil3,8] pil3,9] pil3,10] pil3,11] pil[3,12]
-1.09016 1.07352 1.46621 1.46780 0.98966 -0.14422
pil4,1] pil[4,2] pil4,3] pil4,4] pil4,5] pil4,6]
-0.50054 0.87073 1.93257 -0.24542 -0.05377 0.90543
pil4,7] pil[4,8] pil4,9] pi[4,10] pi[4,11] pi[4,12]
1.01740 -0.07739 0.07472 1.13069 -1.82578 0.87120
pil5,1] pi[5,2] pil5,3] pil5,4] pil5,5] pil5,6]
0.49469 -0.29565 -0.17534 0.92988 0.12676 0.40917
pil5,7] pil[5,8] pil5,9] pil5,10] pil[5,11] pil[5,12]
0.24544 0.39709 0.22877 -1.64664 -0.37963 -1.43941
pil6,1] pil6,2] pil6,3] pil6,4] pi[6,5] pi[6,6]
-0.79094 -0.10340 0.22295 1.38070 1.11238 -1.44034
pil[6,7] pil6,8] pil6,9] pil6,10] pil[6,11] pi[6,12]
0.55105 1.84607 -0.77276 -1.65914 0.32504 1.02250
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Geweke Test for Model 2 of the Conceptual Knowledge Dimension

gamma_2[1]
0.1115
gamma_4[2]
1.7981
gamma_dummy
-0.4589
pil1,5]
-0.6912
pi[1,10]
-1.2346
pi[l,15]
-0.8837
pi[1,20]
-2.0952
pil2,4]
-0.9119
pil2,9]
-0.7593
pi[2,14]
0.7136
pi[2,19]
-1.2004

Geweke Test for Model 2 of the Procedural Knowledge Dimension

gamma_2[1]
-1.6572
gamma_4[2]
-1.1384
gamma_dummy
-0.2404
pil[l,5]
-1.5466
pi[l,10]
-1.1435
pil2,3]
-1.0843
pil2,8]
0.5008

gamma_2[2]

1.5192
gamma_5[1]
0.7566
pi[l,1]
0.9674
pil[1,6]
-1.5393
pi[1,11]
-0.3172
pi[1,16]
0.8121
pi[l,21]
-0.2844
pil2,5]
0.6819
pi[2,10]
0.3629
pi[2,15]
-0.1845
pi[2,20]
0.6283

gamma_2[2]
0.2922
gamma_5[1]
1.0672
pi[l,1]
-0.0167
pil[1,6]
1.8681
pi[l,11]
0.2722
pil2,4]
1.1791
pil2,9]
0.3837

gamma_3[1]
-0.9774
gamma_5[2]
-0.7984
pill,2]
0.7531
pil1,7]
-0.2141
pi[l,12]
-0.1220
pi[l,17]
1.2048
pil2,1]
-1.6287
pil2,6]
-1.0370
pil2,11]
-0.4688
pi[2,16]
1.1145
pil2,21]
0.1735

gamma_3[1]
1.2874
gamma_5[2]
1.6197
pill,2]
0.1739
pill,7]
-0.8296
pi[l,12]
0.7502
pil2,5]
0.3072
pi[2,10]
-0.4126

gamma_3[2]
0.5647
gamma_6[1]
0.1601
pi[1,3]
0.5015
pil1,8]
-0.6964
pi[l,13]
1.6227
pi[l,18]
-0.4253
pil2,2]
-1.7158
pil2,7]
0.9131
pil2,12]
-0.7845
pil2,17]
1.1720

gamma_3[2]
0.4322
gamma_6[1]
0.1683
pi[1,3]
0.4642
pil1,8]
-1.2827
pil2,1]
-1.4016
pil[2,6]
-1.1987
pil2,11]
0.5838
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gamma_4[1]
0.2747
gamma_6[2]
0.8932
pill,4]
-0.4957
pil1,9]
-1.6167
pi[l,14]
-1.8265
pi[1,19]
0.8857
pil2,3]
-0.4705
pil2,8]
-1.2923
pi[2,13]
-0.7119
pi[2,18]
-1.1514

gamma_4[1]
-0.4534
gamma_6[2]
-1.7054
pill,4]
-0.2596
pil1,9]
1.4654
pil2,2]
-0.9734
pil2,7]
0.3351
pi[2,12]
1.2276



Appendix I. The last 10000 iterations of MCMC for all parameters
(y,m) generated from Model 1 for the conceptual knowledge

dimension
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Appendix J. The autocorrelation plots of the last 10000 iterations
of MCMC for for all parameters (y,n) generated from Model 1 for
the conceptual knowledge dimension
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Appendix K. The last 10000 iterations of MCMC for all parameters
(y,m) generated from Model 1 for the procedural knowledge
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Appendix L. The autocorrelation plots of the last 10000 iterations
of MCMC for for all parameters (y,n) generated from Model 1 for
the procedural knowledge dimension
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Appendix M. The
parameters (y,m) generated from Model 2 for the conceptual
knowledge dimension
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Appendix N. The autocorrelation plots of the last 10000 iterations
of MCMC for for all parameters (y,n) generated from Model 2 for
the conceptual knowledge dimension
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Appendix O. The last 10000 iterations of MCMC for all parameters
(y,m) generated from Model 2 for the procedural knowledge

dimension
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Appendix P. The autocorrelation plots of the last 10000 iterations
of MCMC for for all parameters (y,n) generated from Model 2 for
the procedural knowledge dimension
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Appendix Q. Translation of Interview with One of Participants

INTRODUCTION

RESEARCHER: Thank you for your participation in this interview. Today | will give you
some cards of mathematics problems. | want you to solve those problems and explain
how you get the answers. If you find any words that you don’t understand, please let
me know. Please keep talking loudly while answering the questions and describing what

you think. You can make any notes and (draw) on the cards. | will give you an example.

(the researcher gave an example how to speak loudly and make any notes/drawings

when solving the problem
RESEARCHER: Read the question on the card.
(The researcher read loudly the question on the card)

RESEARCHER: If a pizza is divided for five people, what portion of pizza will each person

get?

RESEARCHER: | answer the question like this, for example, there is a pizza which is
usually in a circle shape (the researcher made a circle). Then, it is shared to 5 people. In
order to get a fair share, | divide the pizza into 5 equal sizes (the researcher drew lines

to make 5 partitions of the circle). It means that each person will get 1/5 of the pizza.

RESEARCHER: Let’s begin with the first question.

(The researcher gave the participant the first Card (Card ConT1Q1))
PARTICIPANT: Write the fraction for the shaded part below.

PARTICIPANT: The total of all parts is 8, and 3 parts are shaded, so this is 3/8.
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RESEARCHER: What do you think if the bottom number is getting bigger, is the fraction

getting smaller or bigger?
PARTICIPANT: Is the top number fixed?
RESEARCHER: Yes

PARTICIPANT: It’s getting smaller

RESEARCHER: If the bottom number getting smaller than what happened with the

fraction?
PARTICIPANT: It’s getting bigger

RESEARCHER: Can you tell me why if the bottom number is getting bigger than the

fraction is getting smaller?

PARTICIPANT: Look at this example, 3/8 and 3/7. Suppose that 3/8 consists of three of
1/8, and 3/7 consists of three of 1/7. If the denominators are equated to 56, so 1/8

becomes 7/56 and 1/7 becomes 8/56. So if the bottom number is getting smaller, than

the fraction will become greater than before.

RESEARCHER: Thanks for answering the question well.
(The researcher gave the participant ConT1Q3 card)
PARTICIPANT: Write the fraction for the shaded part below.

PARTICIPANT: If this is a half, so the number of these parts should be the same. It means
we can give 3 parts on the left and 3 on the right. Because 1 part is shaded, and the total

is 1,2,3,4,5,6, so thisis 1/6.
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RESEARCHER: Can you tell me why you drew additional lines?

PARTICIPANT: Just to make sure that the parts on the left are the same with those on

the right

RESEARCHER: How about the sizes of the parts, should they be the same or not?
PARTICIPANT: Should be the same

RESEARCHER: Okay, thanks for answering the question well.

ConPWL3Q1(a)

(the researcher gave the participant ConT1Q4 card)

PARTICIPANT: If the figure is the whole, write the fraction for the

shaded part below

PARTICIPANT: If this is a whole, and this is a whole (the participant pointed the two
circles below). It means there are two wholes, but one if fully shaded or 1, and the other

is only 1/4 shaded. Then 1 is added to 1/4, whichis 1 1/4
RESEARCHER: So, what do these two circles show?
PARTICIPANT: Two wholes.

RESEARCHER: Okay, thanks for answering the question well.
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(The researcher gave the participant ConT1Q2 card)
PARTICIPANT: Write the numerator of the fraction for the shaded parts below

PARTICIPANT: Oh, if the total of parts is 16 and what have been drawn here is half, so

this is 8 (The participant wrote down 8 as the answer).
RESEARCHER: Can you show me how you got the answer using a diagram?

PARTICIPANT: Because this is a half part, oh for example, there are 16 parts (the
participant drew lines to divide the circle into 16 parts), so there are 8 parts here (the
participant pointed the shaded area of the circle) and also there are 8 here the
participant pointed the unshaded area of the circle). So the numerator is 8, the number

of the shaded parts.

RESEARCHER: Okay, thanks for answering the question well.

(the researcher gave the participant ConT1Q5 card)

PARTICIPANT: If the figure is the whole

Werite the numerator of the fraction for the shaded parts below

PARTICIPANT: If this 1 circle representing 8, so 2 circles means 2 of 8 which is 16, but

this circle is not fully shaded, a half of 8, meaning that this is 12.

RESEARCHER: Can you tell me how you got 12?
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PARTICIPANT: These are two wholes which is 1 plus 1, but this one is not fully shaded,

1/2, which means there are 3/2 parts multiplied by 8, equals 12 which become the

numerator.

RESEARCHER: Can you simplify the result?

PARTICIPANT: 3/20r11/2

RESEARCHER: Okay, thanks for answering the question well.

(The researcher gave the participant ConT3Q3 card)

PARTICIPANT: Which is larger % or g ? lllustrate how you got your answer using a
picture.

PARTICIPANT: Suppose there is 7/4, 4 parts which is fully shaded, 4/4 and 3/4. Next,
8/6, 6/6 is one circle which is fully shaded and the remaining is 2/6 or 1/3.

RESEARCHER: So based on these diagrams, which one is greater?
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PARTICIPANT: This one (The participant pointed the diagrams representing 7/4)
RESEARCHER: Why?

PARTICIPANT: Because it has more shade parts.

RESEARCHER: Okay, thanks for your answer, we can discuss this task again later.

RESEARCHER: You know number lines, like this (the researcher demonstrated the

example of a number line as follows)

Bd |

} 4
0 o 1

(the researcher gave the participant ConT4Q1 card)
PARTICIPANT: Show the fractions on the number lines below

PARTICIPANT: 1,2,3,4,5,6,7,8 (The participant made 8 scales). From the left 1,2,3 (the

participant circled the location of 3/8)

RESEARCHER: Can you tell me how you got the answer?

PARTICIPANT: 3/8 is smaller than 1, so we should create 8 points. Then, the third dot

from null is the answer, 3/8

RESEARCHER: Oh okay, thank you, well done.
ConMSL3Q1

(the researcher gave the participant ConT4Q3 card)

PARTICIPANT: Order these fractions from the smallest to the largest on the number line

below.
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PARTICIPANT: Euh, first we should equate the denominators to 12. 7/4 equals 21/12,
1/3 equals 4/12, then 1 1/2 or 3/2 equals 18/12.

(After that the participant created 21 scales on the number line)

Then we put these fractions on the number line. First, the smallest fraction 1/3 or 4/12

is put here, then 18/12, finally 7/4 or 21/12
RESEARCHER: So which one is the greatest fraction?
PARTICIPANT: 7/4

RESEARCHER: Oh okay, thank you, well done.

(The researcher gave the participant ConT5Q1 card)
PARTICIPANT: Write the biggest fraction that you know.

PARTICIPANT: Hm... it could be 1/1, 1 1/2, 100/1, 1000000/1, an infinite number per 1

RESEARCHER: So, what is your conclusion?

PARTICIPANT: Infinite
RESEARCHER: Okay, thanks for answering the question well.
(The researcher gave the participant ConT5Q2 card)

PARTICIPANT: Write the smallest fraction that you know.
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PARTICIPANT: The smallest fraction that close to null. Maybe 1 per million, or 1 per

billion, 1 per an infinite number

RESEARCHER: So, what is your conclusion?

PARTICIPANT: The smallest fraction that close to null with the denominator is an infinite

number.
RESEARCHER: Thanks for answering the question well.

(The researcher gave the participant ConT6Q1 card)
PARTICIPANT: How many numbers are there between E and ;?

PARTICIPANT: This is for all numbers or only limited to the fraction with the

denominator 5?
RESEARCHER: All numbers

PARTICIPANT: Oh if how many numbers, they can be infinite until the unknown unit,
but if limited within the denominator 5, oh 2/5 and 4/7 so the denominators are equated
first to 35. So, between 14/35 and 20/35 there are 15/35, 16/35, 17/35, 18/35, and

19/35. So there are only 5 numbers.
RESEARCHER: You mentioned infinite, what do you mean infinite?

PARTICIPANT: If the denominators are made very big for example, 40,41,42,43, until oh
... (the participant crossed out 40,41,42,43), so the denominator is for example 70. It
means there are 28/70, 29/70, 30/70 until 39/70. If this denominator is increased, there

will be many numbers, cannot be counted.

RESEARCHER: Thanks for answering the question well.

365



(The researcher gave the participant ConT6Q2 card)
PARTICIPANT: How many numbers are there between % and ;?

PARTICIPANT: If the denominator is not changed, than it looks there is no number
between them, but if the denominator is made bigger than there are numbers between
them. For example, the denominator is 35, so there will be 21/35, 22/35, 23/35, and
24/35, or if this denominator is made bigger again than there many numbers between

them. So they also cannot be counted.

RESEARCHER: This is the example of fraction addition (the researcher demonstrated the
example of fraction addition using diagram representations. After that, the researcher

gave the participant ConFOL1Q1 card)
RESEARCHER: Thanks for answering the question well.

(The researcher gave the participant ConT7Q2card )

PARTICIPANT: Draw a pictorial representation for the fraction addition below
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PARTICIPANT: 1/4 plus 1/3. For example there is 1 black man of 4 people and there are
also.. Oh don’t use people, it’s not nice. This 1/4 is added to 2/3, so there are 12 parts
(The participant created rectangles for each 12 partitions). 1/4 equals 3/12, while 2/3
equals 8/12.1, 2, 3 (The participant shaded three parts of the first recatngle to represent
1/4 or 3/12). 1,2,3,4,5,6,7,8 (The participant shaded 8 parts of the second rectangle to
represent 2/3 or 8/12). So theresultis 1,2,3,4,5,6,7,8,9,10,11,12 (the participant created
another rectangle with 12 partitions). There are 3 parts here (the participant shaded
three parts of the rectangle), and there are 8 parts here (he continued shaded 8 parts of

the same rectangle so that there were 11 part which were shaded). So the resultis 11/12

RESEARCHER: What were you added in this diagram representation?

PARTICIPANT: The shaded parts or the numerator

RESEARCHER: Okay, thanks for your excellent answer.

(The researcher gave the participant ConT8Q1 card )

PARTICIPANT: Draw a pictorial representation for the fraction multiplication below

PARTICIPANT: So this is 1/2 of 3/4. For example there are 1,2,3,4,5,6,7,8 (the participant
drew a rectangle with 8 partitions). 3/4 is equal to 6/8, 6 parts are shaded. If this is
multiplied by 1/2, meaning that a half of these 6 parts. So, 1,2,3, there are parts are
shaded or this is the same with 3/8.
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RESEARCHER: Could you tell me how you got the answer in more detail?

PARTICIPANT: Firstly, there are 6 shaded parts of 8 parts. The number 8 is the result of
3/4 times 2/2

RESEARCHER: Why did you multiply this by 2/2?
PARTICIPANT: In order to get 8 so it become easy to be divided.
RESEARCHER: Please continue ...

PARTICIPANT: Then 1/2 of 6 parts are 3 parts which are 3 shaded parts of the total of 8

parts.

RESEARCHER: Thanks for answering the question well.

(The researcher gave the participant ConT8Q2 card )

PARTICIPANT: Draw a pictorial representation for the fraction division below

PARTICIPANT: 1/2 divided by 1/4. This is a half, firstly there are 4 parts and 1 part is
shaded which is 1/4, than a half of 1/4 is taken, because the number is not nice, so it is
multiplied by 2 which is 1,2,3,4,5,6,7,8 (The participant created a rectangle with 8
partitions). If divided by 1/2, how many, ah ...1,2,3,4. How many of this fraction to

become ... (the participant looked confused)
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RESEARCHER: Can you tell me what the meaning 1/2 divided by 1/4 is?

PARTICIPANT: How many 1/4 to become 1/2.

(The participant drew a rectangle with 4 partitions and two of them are shaded to
represent 1/2). It is the same with 2 (he pointed to the 2 shaded partitions). In order to
become 1/2, so this one (he pointed one shaded area of the rectangle which represent
1/4) needs 2 times of itself, so the answer is 2, which is 2 times of this part (he pointed
to the rectangle which represent 1/4). 1/4 plus 1/4 equals 2/4 or 1/2, meaning that it

needs 2 times of 1/4 so the result is 2.

RESEARCHER: Okay, thank you, well done

(The researcher gave the participant ProT2Q4 card)
PARTICIPANT: Find the result of the fraction multiplication below

PARTICIPANT: First, they should be converted into a common fraction form. 3 5/7 equals
26/7 and 4 3/7 equals 31/7, then 21 times 31 (The participant calculated 26 times 31)
which is 806, then 7 times 7, 49 so the result is 806/49.

RESEARCHER: How do you solve this task?

PARTICIPANT: It's transformed into common fractions, then denominator times the

denominator and the numerator times the numerator.
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RESEARCHER: Thanks for answering the question well.
L3PKQ3

(The researcher gave the participant ProT2Q3 card)
PARTICIPANT: Find the result of the fraction division below

PARTICIPANT: 9/10 divided by 3/10. To become easier, it changed to multiplication. 9/10
times ... because this is division so 3/10 is flipped to 10/3. Then, 9 divided by 3, 3 and 3
divided by 3, 1. 10 divided by 10, 1 so the result is 3.

RESEARCHER: Okay, thank you ...
(The researcher gave the participant ProT3Q3 card)
PARTICIPANT: Find the result of the fraction operation below

PARTICIPANT: Firstly, we do the operation in the bottom which is 1 or 3/3 minus 1/3,
which is 2/3. Then 1 divided by 2/3 or 1 times 3/2 which is 3/2. Next, 3/2 plus 6 equals
6 3/2, then 5 divided by 6 3/2 which is the same with 5 divided by 15/2. It is the same
with 5 times 2/15 which is 2/3. Finally, 1 plus 2/3 which is equal to 1 2/3

RESEARCHER: Okay, thank you, well done
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