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Summary

This thesis contains a discussion of logistic equations with diffusion, im-

pulses and time delays both discrete and continuous type. The boundary con-

ditions used in these problems are Dirichlet, Neumann and Robin boundary

conditions. Both single and multi species logistic equations are investigated.

The impulse times employed here are the fixed ones. Some results on the

problems are:

(1) Single species logistic equation with diffusion, impulses, discrete delay,

Dirichlet and Robin boundary conditions.

• Existence and uniqueness of solution:

– Dirichlet boundary case(Corollary 3.1).

– Robin boundary case(Corollary 3.2).

• Conditions for the existence of zero attractor (Theorem 3.9).

• Conditions for the existence of positive attractor (Theorem 3.11).

(2) Logistic equation with diffusion, impulses, continuous delay and Neu-

mann boundary condition.

• Single species: existence and uniqueness of solution (Theorem

4.1).

• Single species: conditions for the existence of zero attractors

(Theorem 4.2).

• Single species: conditions for the existence of positive attractor

(Theorem 4.3).

• Multi species: conditions for the existence of positive attractor

(Theorem 4.4).

This thesis is organised as follows: in Chapter 2, the background of these

problems is presented. Chapter 3 is concerned with the existence and unique-

ness of solution, zero and positive attractor of logistic equations with diffusion,
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vi SUMMARY

impulses, discrete time delay, and Dirichlet and Robin boundary conditions.

We discuss the existence and uniqueness of solution of diffusive logistic equa-

tions with distributed delay, impulses and Neumann boundary condition, zero

and positive attractors in Chapter 4. Some conditions to obtain a positive

attractor for multi species logistic equation with diffusion, distributed delay,

impulses and Neumann boundary condition are presented in the last section

of Chapter 4.
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CHAPTER 1

Introduction

Logistic equations are commonly used to model population dynamics. For

example, a fish population in a lake has dynamics that can be expressed as a

system of ordinary differential equations as follows:

du

dt
(t) = u(t)(a− bu(t)) (1.1)

u(0) = uo (1.2)

where u(t) is the number of fish at time t, uo is positive, and a and b are

positive constants which represent the growth rate of population and carrying

capacity of the environment. The solution of this system is

u(t) =
auo

buo(1− exp(−at)) + a exp(−at)
.

The solutions of this system will converge over time to a
b
. If a number of fish are

harvested at certain times then the population, in general, will not converge

to a
b

anymore. This phenomenon is described in the following example.

Example 1:

Assume a
b
> 1000 and uo = 1000, at time tk = k ∈ Z+, the number of fish

taken at tk is
(

1− a−1000b
a exp(a)

)
u(k−). The proof that the population does not

converge to a
b

is as follows:

The solution of the system is

u(t) =
au(k − 1)

bu(k − 1)(1− exp(−a(t− k + 1)) + a exp(−a(t− k + 1))

≤ au(k − 1)

−bu(k − 1) exp(−a(t− k + 1)) + a exp(−a(t− k + 1))

≤ au(k − 1)

(a− bu(k − 1)) exp(−a(t− k + 1))
for t ∈ (k − 1, k).

The solution, u, is an increasing function with respect to time t as long as

the initial condition is less than a
b
. From the condition on the harvest sizes,
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2 1. INTRODUCTION

we have u(k) < u(k−). Let w(t) = aw(k−1)
(a−bw(k−1)) exp(−a(t−k+1))

for t ∈ (k − 1, k) ,

w(0) = uo, and w(k) = a−1000b
a exp(a)

w(k−). So u(t) ≤ w(t) for t ∈ [0,∞).

w(1−) =
1000a

(a− 1000b) exp(−a)
(1.3)

w(1) =
a− 1000b

a exp(a)

1000a

(a− 1000b) exp(−a)
(1.4)

w(1) = 1000 (1.5)

Because the harvests occur at times tk = k, the distance between every two

consecutive harvest times is 1. From Equation (1.5), w on time interval [k −

1, k) for k = 2, 3, 4, ... is the same as w on time interval [0, 1). There exists

εo =
a
b
−1000

2
> 0 such that for every positive constantM , we can find t = k > M

that satisfies a
b
−w(t) > εo. Because u(t) ≤ w(t) then this holds for u as well.

Hence u does not converge to a
b
.

Even if the size of the harvest decreases over time or the time interval goes

to infinity, the population does not necessarily converge to a
b
. For instance, if

in Example 1, the number of fish taken at time tk = k is
(

1− a−1000b
ak exp(a)

)
u(k−),

then the initial condition on every time interval is smaller than 1000. Thus u

does not converge to a
b
.

As another example, if the number of fish taken in Example 1 is u(t−k ) −
a−1000b
a exp(ak)

u(k−) and the harvests occur at time tk =
∑k

i=1 i for k = 1, 2, 3, ... ,

then initial condition on every time interval between two harvest times is 1000.

Hence the population does not converge to a
b
.

However, combinations of harvest sizes and time intervals between two

harvest times do exist such that the population converges to a
b
. One of the

combinations is as follows:

• uo < a
b
, a > 1;

• the harvest times are tk =
∑k

i=1 i = k2+k
2

, so that tk − tk−1 = k;

• the number of fish taken at time tk is less than or equal to

auo
buo(1− exp(−a)) + a exp(−a)

− auo
buo + 0.5a

for k = 1

auo

buo + a exp(−ak)
1+tk−1

− auo
buo + a

1+tk

for k = 2, 3, 4, ... .
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By this combination, u, the solution of this system, satisfies the following

relation:

u(t) ≥ auo
buo + a

1+t

and

u(t) ≤ auo
buo(1− exp(−at)) + a exp(−at)

.

Hence u converges to a
b
.

If some of the fish do not remain in the region where the harvest takes

place, then the logistic equation must include a diffusion term. For this case,

finding the steady-state and the conditions on harvest sizes and harvest times

for which the solution converges to the steady-state is much more difficult

because closed form descriptions of the solution are not available.

More realistic descriptions of fish population include time delay in order to

model gestation period, for example, as well as diffusion and impulses. This

model can be presented as follows:

∂u

∂t
(t, x)−∆u(t, x) = u(t, x)(a− bu(t− τ, x)) for t 6= tk (1.6)

u(t, x) = 0 on ∂Ω (1.7)

u(t, x) = η(t, x) for t ∈ [τ, 0] (1.8)

u(tk, x) = Ik(u(tk
−, x)) (1.9)

or

∂u

∂t
(t, x)−∆u(t, x)

= u(t, x)(a− bu(t, x)−
∫ t

−∞
f(t− s)u(s, x)ds) for t 6= tk (1.10)

∂u

∂ν
(t, x) = 0 on ∂Ω (1.11)

u(t, x) = uo(t, x) for t ∈ (−∞, 0] (1.12)

u(tk, x) = Ik(u(tk
−, x)). (1.13)

The objective of this thesis is to find conditions on the size and the timing

of the impulses so that the solution of problem (1.6)–(1.9) and the solution
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of problem (1.10)–(1.13) converge to the steady-state of the corresponding

problem without impulses.



CHAPTER 2

Background

Many processes both natural and man-made in various areas such as bi-

ology, medicine, chemistry, physics, engineering, and economics, involve time

delays. One of these processes, for example, is reforestation. A cut forest,

after re-planting, will take at least 20 years before reaching maturity. For

certain species of trees (e.g. redwood), it would be much longer. Hence, any

mathematical model for forest harvesting and regeneration clearly must have

time delays built into it. Another example is animal activities and responses

mechanism. Animals must take time to digest their food before reaping the

benefit of the energy and nutrition to do their activities [23].

Researchers have investigated these phenomena and modelled them using

delay differential equations. Ordinary delay differential equations have been

studied in detail ([18],[3], [10]) and are not considered further in this thesis.

Parabolic partial differential equations with time delays have been given con-

siderable attention and various methods have been constructed to study the

existence and stability. Results in this area will be discussed more detail in

Section 3.

Many of the processes mentioned above are characterized by the fact that

the system parameters are subject to short-term perturbations in time. Con-

sider, for example, the problem of modelling a fish population in a hatchery.

Here the natural growth of the fish population is disturbed by harvesting at

certain time intervals and by adding fresh breed. This problem therefore in-

volves impulses [34].

An adequate apparatus for mathematical simulation of such processes and

phenomena is impulsive differential equations. Impulsive differential equations

have been studied mostly in the ordinary case [25]. In the last ten years, the

5



6 2. BACKGROUND

theory of impulsive partial differential equations has undergone rapid devel-

opment. Further discussions of some results in impulsive partial differential

system are presented in Section 2.

If the process involves both time delays and impulses, it is modelled by im-

pulsive differential equations with time delays. Impulsive ordinary differential

equations with time delays have been investigated by many researchers. Some

results of these problems are discussed in Section 1.

Diffusion also has important and interesting effects. For example, in reac-

tion diffusion models, patterns of finite wavelength were only obtained in the

situations where chemical equilibrium was stable in the absence of diffusion.

Thus, diffusion, normally regarded as an influence that tends to erase zones

of relativity high chemical concentration, can act to promote instability and

inhomogeneity [54].

Segel and Jackson [48] showed how diffusion can cause too rapid decay of

the chemical that stabilizes an interaction, thereby permitting a continual in-

crease of the destabilizer and a consequent instability. In the same paper, they

also showed how such diffusive instabilities can arise from the effects of random

dispersal on models of predator-prey interactions. Levin [29] independently

treated the same problem for discrete intercommunicating ’patches’ of species.

In [49], the ecological results in [48] and the work in [29] were extended by

taking nonlinear effects into account.

In this chapter, we present some results on differential equations with diffu-

sion and or impulse and or time delay that have been reported in the literature.

A discussion of these results is presented in three sections as follows:

(1) Impulsive ordinary differential equations with time delays.

(2) Impulsive nonlinear parabolic systems.

(3) Nonlinear parabolic systems with time delays.

Most of the following results can be applied to logistic equations.
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1. Impulsive Ordinary Differential Equations with Time Delays

The original motivation for studying delay differential equations (DDEs)

came mainly from their applications in feedback control theory (Minorsky

[32]). The great interest in such kinds of problems has certainly contributed

significantly to the rapid development of the theory of differential equations

with dependence on the past state. Some applications were mentioned at the

beginning of this chapter. Examples of references that contain these applica-

tions are books by Kolmanovskii and Nosov [22] for various topics in engineer-

ing, physics, biology and economics, Pielou [39] for ecological system, Cushing

[6] and Gopalsamy [18] for population dynamics. The results of DDEs in or-

dinary case are mostly in the existence, uniqueness, and stability of solutions.

Recently, the oscillations of nonlinear DDEs have become of interest ([18],

[58]).

There are two types of time delay : discrete and continuous. Both delays

can be finite or infinite. Some results for problems with discreet delay can be

found in [35], [18], [23]. Discussions in problems with continuous delay are in

[55], [46], [17].

Meanwhile impulsive differential equations are used as natural descriptions

of observed evolution phenomena of several real world problems. The theory of

impulsive differential equations is much richer than the corresponding theory of

differential equations without impulse effect. For example, initial value prob-

lems of such equations do not necessarily, in general, possess any solutions even

when the corresponding differential equation is smooth. Fundamental proper-

ties such as continuous dependence relative to initial data may be violated, and

qualitative properties such as stability need new interpretations. Moreover, a

simple impulsive differential equation may exhibit several new phenomena such

as rhythmical beating, merging of solution, and non-continuability of solutions

[25].

There are two kinds of impulse times: fixed ones and variable ones. Here

variable impulse time means that the impulse time is not known initially but

it is given, for example, in the form of a function of the solution. These kinds
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of impulses are motivated, for instance, in the case where harvest times are

determined by a population reaching a specific threshold.

A comprehensive reference for ordinary impulsive differential equations can

be found in [25]. In this book, the method of upper and lower solution is em-

ployed to find the solution of impulsive differential equations. Stability of

impulsive differential systems is investigated by means of discontinuous Lia-

punov functional. The theory of stability in terms of two measures is used

to unify several known stability concepts in impulsive differential equations.

Further discussion on the method of upper and lower solution will be presented

in Chapter 3. A discontinuous Liapunov functional will be studied in Chapter

4.

The general form of impulsive ordinary differential equations with discrete

time delay is:

ẋ(t) = f(t, x(t− τ)), t 6= tk, t > to (2.1)

∆x(tk) = x(tk + 0)− x(tk) = Ik(x(tk)), tk > to, k = 1, 2, ..., (2.2)

x(t) = φo(t), t ∈ [to − τ, to] (2.3)

where τ > 0, to < t1 < t2 < ... < tk < ..., limk→∞tk =∞.

When the right hand side function of (2.1) was bounded by a linear function

of x, multiplied by a continuous function of t, Yu and Zhang [60] chose the

impulse function to be positive if the value of x is negative and vice versa.

Hence, they proved the stability of zero solution using a result in [59] on the

well-known 3
2

stability of one dimension delay differential equations.

The stability of the zero solution of system (2.1)-(2.3) had been investigated

by Bainov and Stamova [8] by virtue of piecewise continuous functions which

are analogues of classical Liapunov function in conjunction with Razumikhin’s

technique. They set f to be a continuous function and to satisfy the Lipschitz

condition with respect to the second variable. The impulse function Ik is also

continuous and implicitly non-increasing. The Liapunov-like function must be

positive definite and its derivative is non-positive to make the zero solution
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stable. To achieve the uniform stability of the zero solution, the Liapunov-like

function is required to be positive definite, decrescent and its derivative is non-

positive. Moreover, if the derivative is negative definite then the zero solution

is uniformly asymptotically stable. Applications of these results to population

dynamics are presented at the last section of the paper.

In [50], Shen et al. used Liapunov’s direct method for finding sufficient

conditions for the zero solution to be uniformly and asymptotically stable.

They used Liapunov like functionals which are continuous on every time inter-

val formed by two consecutive impulse times. These functionals satisfy local

Lipschitz conditions, are positive definite and decrescent. The impulse func-

tions were chosen such that the Liapunov functionals values after the jump

would be less than the values before the jump.

The impulsive differential equations with continuous delay usually are in

the following format:

ẋ = f(t, x, Tx, Sx) , t 6= tk (2.4)

x(t+k )− x(t−k ) = Ik(x) , k = 1, 2, 3, ... (2.5)

x(to) = xo (2.6)

where Tx(t) =
∫ t
to
k(t, s)x(s)ds, Sx(t) =

∫ a
to
h(t, s)x(s)ds, k and h are contin-

uous functions, and a is a positive constant.

Guo and Liu [19] proved the existence of solution of system (2.4)–(2.6)

using the method of upper and lower solution. They required the impulse

function Ik to be nondecreasing for every k and f satisfies a kind of Lipschitz

condition.

In [40], system (2.4)–(2.6) with f a function of t, x and Tx only, is dis-

cussed. If k is bounded and the norm of x after a jump is less than the norm

before the jump, then the zero solution is uniformly stable. This is proved

by using a Liapunov functional which is formed by the fundamental matrix

solution of the corresponding linear system.

Bainov and Kulev [24] employed the theory of stability in terms of two

measures to find the stability of the zero solution of system (2.4)–(2.6) with
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f as a function of x, t and Tx only. They used a system without continuous

delay for a comparison, so that the stability of this system corresponds with

the stability of system (2.4)–(2.6). A Liapunov-like functional was used to

prove the result.

2. Impulsive Nonlinear Parabolic Systems

There are two main approaches to the study of impulsive parabolic equa-

tions. The first is based on the concept of impulsive evolution systems in

Banach space, and was introduced by Rogovchenko and Trofimchuk [42],[43].

The second approach is based on the concept of upper and lower solutions,

and was exploited for the first time by Erbe et al. [11] and developed further

in [21] and [5].

The general form of the impulsive nonlinear parabolic system is:

ut = f(t, x, u, ux, uxx) , (t, x) ∈ ((0, T ] \ {tk}pk=1 × Ω ∈ Rn) (2.7)

u(0, x) = uo(x) on Ω̄ (2.8)

Bu(t, x) = p(t, x)u(t, x) + q(t, x)
∂u(t, x)

∂ν
= h(t, x)

, (t, x) ∈ ((0, T ] \ {tk}pk=1 × ∂Ω) (2.9)

u(t+k, x)− u(tk, x) = gk(tk, x) , 1 ≤ k ≤ p, x ∈ Ω̄ (2.10)

Erbe et al. [11] established some maximum and comparison principles

relative to upper and lower solutions of nonlinear scalar parabolic partial dif-

ferential equations in (2.7)-(2.10). For this, they assigned Ω to be a smooth

bounded domain, gk : R → R to be continuous and the mapping z + gk(z) to

be increasing for z ∈ R. By considering the problem in several cases and using

the maximum principle for parabolic differential equations without impulses,

they showed that if the impulse is not too drastic or if both reaction rate and

impulse satisfy the global Lipschitz condition, then the classical maximum and

comparison principles for parabolic equations without impulses still hold for
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the above system. They also presented sufficient conditions for the asymp-

totic stability of the steady-state solution of reaction-diffusion equations with

homogeneous Neumann boundary conditions.

Using a similar method, Kirane and Rogovchenko [21] obtained the same

results for nonlinear vector impulsive parabolic partial differential equations.

Rogovchenko in [44] and [45] presented sufficient conditions for the ex-

istence and uniqueness of mild and classical solutions of linear and nonlinear

(periodic) impulsive evolution systems. He also gave an estimate of the solution

with dependence on initial data, and the stability of the stationary solution.

The proofs of the theorems used the concept of impulsive evolution systems in

Banach space. Some of these results were applied to population models.

In [9], Drici et al. extended the generalized method of quasilinearization to

impulsive parabolic equations with impulses at fixed moments. They obtained

sufficient conditions for the existence of monotone sequences which converge

uniformly to a unique solution of initial boundary value problem (2.7)–(2.9)

with u(t+k, x) = I(u(tk, x)) where I is nondecreasing in u for fixed x, and

showed that the convergence is quadratic. This result was extended in [26] to

the discussion of other qualitative properties of the solution such as positivity

and boundedness.

Bainov et al. [1] presented sufficient conditions for the stability of the

trivial solution of a more general class of initial boundary value problems

than problem (2.7)–(2.10) with delay by comparing them to suitable ordinary

impulsive differential systems.

Estimates of solutions of impulsive parabolic equations with Dirichlet bound-

ary conditions are discussed in [2]. The estimates are the minimal and maximal

solutions of the corresponding impulsive ordinary differential equations. An

application to population dynamic is presented. The estimates of population

density for a certain impulsive single species model are found.

Struk and Tlachenko [52] investigated a two-dimensional Lotka-Volterra

system with diffusion and impulses. Using the comparison theorems, they

found conditions for the permanence of the system. One of these conditions is
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that the impulse functions are bounded by some exponential functions. They

also proved the existence of a unique periodic solution that is globally asymp-

totically stable, strictly positive and piecewise continuous via a Liapunov func-

tional if the system is permanent and the impulse functions and their deriva-

tives are bounded.

3. Nonlinear Parabolic Systems with Time Delays

Nonlinear parabolic systems with time delays are generally in the following

form:

∂ui
∂t

(t, x)− Lui(t, x) = fi(t, x, u1(t, x), ..., un(t, x), u1(t− τ1, x), ..., un(t− τn),

k(t, u1(t− s, x)), ..., un(t− s, x))

, (t, x) ∈ (0,∞) \ tk∞k=1 × Ω ∈ Rn, i = 1, 2, ..., n. (2.11)

Biui(t, x) =

(
αi

∂

∂ν
+ βi

)
ui(t, x) = hi(t, x)

, (t, x) ∈ (0,∞) \ tk∞k=1 × ∂Ω, i = 1, 2, ..., n. (2.12)

ui(t, x) = ηi(t, x) in [max{τi : i = 1, .., n}, 0]× Ω̄, i = 1, 2, ..., n. (2.13)

where L is an elliptic operator.

Parabolic systems in (2.11)-(2.13) have been investigated by many re-

searchers. Most of the discussions are devoted to the existence and asymptotic

behaviour of the solution. In earlier works [30], [53] the system was formulated

as an evolution equation of functional type, and the the existence and dynamic

of solution was investigated by the semigroup approach. Recently, the method

of upper and lower solution and its associated monotone iteration have been

used to study the existence and dynamics of (2.11)-(2.13). An advantage of

the monotone method is that it leads to a method for computing numerical

solutions.

From the semigroup approach, the existence and uniqueness of a non-

continuable mild solution of system (2.11)-(2.13) were proved in case fi =
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gi(t, x,u(t− τi, x)) and L = di∆. The techniques used to obtain these results

were differential inequalities, invariant sets, and Liapunov functions [30].

The existence of upper and lower sequence which converge monotonically

to a unique solution of system (2.11)-(2.13) if there is a pair of upper and lower

solution, was presented in [35], in case i = 1, f = p(t, x, u) + q(t, x, ut) where

q is decreasing or increasing and p, q are Holder continuous.

The same result was proved in [36], with more general conditions on each

fi. It was shown that each fi is Holder continuous in (t, x), locally Lipschitz

continuous in u(t, x) and u(t− τ, x), and has the mixed quasimonotone prop-

erty in a sector between upper and lower solutions. Also f may depend on

functional values of u(t − τ, x) such as
∫ τi

0
ui(t − s, x)ds and

∫ t
τi
u(t − s, x)ds.

The existence and uniqueness of the solution of system (2.11)-(2.13) with

fi = pi(t, x,u(t, x),u(t − τ, x)) +
∫

Ω
qi(t, x,u(t, x),u(t − τ, x)) was also ob-

tained.

In another paper [37], the dynamics of system (2.11)–(2.13) was inves-

tigated using the results in [36]. It was shown that if the elliptic system

corresponding to (2.11)–(2.13) has a pair of coupled lower and upper solutions

then there is a pair of quasisolutions of the elliptic system. Also the sector

formed by the quasisolutions is an attractor of the delayed parabolic system

(2.11)–(2.13).

The global existence and the dynamics of system (2.11)–(2.13) where the

nonlinear ’reaction function’, f , may depend on both continuous delay (finite

or infinite), and/or discrete delays are presented in [38].

Using the method of upper and lower solution, Feng and Lu in [12] proposed

the existence-uniqueness theorem of the positive steady-state of system (2.11)–

(2.13) with i = 1, h(t, x) = 0, and

f(t, x) = r(x)u(t, x)
K(x)− au(t, x)− bu(t− τ, x)

K(x)− ac(x)u(t, x)− bc(x)u(t− τ, x)
.

They also showed that this unique steady-state solution is asymptotically sta-

ble via monotone convergence results in [35] and the comparison argument for

parabolic systems.
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Davidson and Gourley [7] investigated the existence and uniqueness of the

non-negative solution of system (2.11)–(2.13) with L = ∆, i = 1, h(t, x) =

0, α = 0, β = 1, f = λu(t, x) 1−u(t−τ,x)
1+cu(t−τ,x)

by applying the method of up-

per and lower solution. The local and global stability of the trivial solution

were discussed in the case of homogeneous Dirichlet boundary condition and

λ < λ1, where λ1 is the principal eigenvalue of the −∆. The conditions for

achieving global stability of the trivial solution were found by taking L2 inner

product of the differential equation with the solution to obtain an ordinary

differential inequality in the term of L2 norm of the solution. They also pre-

sented theorems on existence and uniqueness of solution and on stability of the

non-negative steady-state of this system. By investigating the corresponding

linearised eigenvalue problem, the unique positive steady-state was proved to

be locally stable under a condition on the time delay.

The system (2.11)–(2.13) with L = ∆, i = 1 and homogeneous Neumann

or Dirichlet boundary condition was investigated in [16]. The function on

the right hand side of equation (2.11), f(u(t), u(t − τ)), was assumed to be

locally Lipschitz and to satisfy one sided growth estimates. It was proved that

bounded solutions will be attracted to an equilibrium set if the time delay

satisfies a certain condition. Obtaining the decay estimates on u by using

Liapunov function for the undelayed counterpart of (2.11) is the main part of

the proof.

Freitas [14] discussed the stability and bifurcation of stationary solutions

of problems (2.11)-(2.13) with homogeneous Dirichlet or Neumann boundary

condition and L = ∆, i = 1, f = f(x, u(t, x), u(t − τ, x)). The main tool

used here is the linearization around stationary solutions and the comparison

of these linear equations with those obtained from the problem without time

delay. Further discussion of this method will be presented in Chapter 3.

An investigation on single species semilinear Volterra diffusion equations

with homogeneous Neumann boundary condition was presented in [57]. In

terms of system (2.11)–(2.13), this problem had L = ∆, i = 1, f = u(t)(a −

bu(t)−
∫ t

0
k(t− s)u(s)ds where a and b are non-negative constants. Through
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the semigroup approach, the existence and uniqueness of solution were proved

using a contraction mapping and a standard method based on Banach’s fixed

point theorem. The behaviour of solutions of the problem with and without

non-delay logistic terms were obtained under smoothness and positivity condi-

tions on the initial function, the coefficients and the kernel in equation (2.11).

The proof was based on the energy method with the use of an appropriate

Liapunov functional.

Redlinger [41] extended the results in [31] on the asymptotic behaviour of

solutions of Volterra’s population equations to the case with diffusion and ho-

mogeneous Neumann boundary condition. This is the case of equation (2.11)–

(2.13) with L = ∆, i = 1, f = u(t)
(
a− bu(t)−

∫ t
r
k(t− s)u(s)ds

)
, r = 0

or r = −∞. The conditions assumed for k are continuity and integrability

on (0,∞). These conditions are weaker than the ones in [46] (k is non-

negative and decreasing) and in [57](k is non-negative, k ∈ C1(0,∞) and

tk ∈ L1(0,∞)). The proof used recursively defined sequences of pairs of upper

and lower solution. The existence and uniqueness of the solution were also

presented.

A similar problem with homogeneous Dirichlet boundary condition was dis-

cussed by Schiaffino and Tesei in [47]. They showed the existence, uniqueness

and non-negativity of solutions using the semigroup approach under Holder

continuity and measurability conditions on the coefficients. The existence and

uniqueness of the equilibrium solution of the problem which is globally attrac-

tive in a Banach space of continuous real functions on the domain with respect

to non-negative solutions were proved using convergent upper and lower se-

quences.

Shi and Chen [51] investigated Volterra’s population equations with dif-

fusion and homogeneous Neumann boundary condition. Here the coefficients

in the equations were bounded functions. A priori bounds were obtained by

making the use of the method of upper and lower solutions and the technique

of monotone iteration. By using the Liapunov method, the stability charac-

teristics of solutions of the problem were discussed.
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Izsac [20] discussed a partial integrodifferential equation in the following

form:

u̇ = −Au(t) +

∫ t

−∞
k(t− s)g(s, u(s))ds

u = uo(t) in(−∞, 0]

where A is an M-accretive operator. The existence of solutions of this problem

was proved using the Schauder’s fixed point theorem. An application to an

n-species Lotka-Volterra competitive system was presented.

The global existence of solutions for semilinear Volterra functional inte-

grodifferential equations in a Banach space described by

u̇ = A(t)u(t) + f(t, ut,

∫ t

0

k(t, s)g(s, us)ds

uo = φ

where A is a linear closed densely defined operator, was studied in [33] by

using the Leray-Schauder Alternative.

The results mentioned in these three sections induced the investigation of

logistic equations with diffusion, delay and impulses that are presented in this

thesis. Diffusive logistic equations with discreet time delay and fixed time

impulses under Robin boundary conditions are studied. The existence and

uniqueness of solution and conditions for the existence of zero and positive

attractors for this problem are obtained. Similar results are also gained for

diffusive logistic equations with continuous time delay and fixed time impulses

under Neumann boundary conditions.



CHAPTER 3

Diffusive Logistic Equations with Discrete Time Delay

and Impulses

1. Introduction

In this chapter, the existence and uniqueness of the solution of diffusive

logistic equations with impulses and time delay are presented by using the

method of upper and lower solutions and its associated monotone iteration as

in [7], [35], and [36]. The boundary conditions in this problem are Dirichlet

and Robin (including Neumann) boundary conditions. The zero attractor and

the positive attractor are also discussed. The techniques in [7], [12], and [37]

are used to derive some conditions for the zero and positive steady-states of

the problem without impulses to be attractors of the problem with impulses.

This chapter is organised as follows: in Section 2, the existence of solution

of this system and its uniqueness in a sector under two different boundary con-

ditions are presented. In Section 3 attractors of this system will be discussed.

Some conditions under which the zero function is an attractor, are presented in

Subsection 3.1. We investigate conditions on the impulses to obtain a positive

attractor, in Subsection 3.2.

2. The Existence of Solution and Its Uniqueness in a Sector

2.1. Dirichlet Boundary Condition. We start by proving a existence

and uniqueness theorem for the logistic equation with diffusion, delay, and

jumps.

Let Ω be a bounded open domain in Rn, let ∂Ω be the boundary of Ω,

and let D = (0,∞) × Ω, S = (0,∞) × ∂Ω. To accommodate delays, initial

conditions are specified on an interval of length τ . Thus we introduce D−τ =

[−τ, 0]×Ω and E = [−τ,∞)×Ω. The times at which jumps appear are denoted

17
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by 0 < t1 < t2 < t3 < ..., where lim
k→∞

tk =∞. Because of the delay, impulses at

times tk influence the behaviour of the solution at times tk + rτ for k, r ∈ Z+.

Hence it will be necessary to consider the partition t0 = 0 < t1 < t2 < ... where

ti = rτ or ti = tk + rτ for some positive integer k and r, i = 1, 2, 3, ....

To specify the initial boundary value problem (IBVP), we introduce Mi =

{(ti, x)| ti ∈ (0,∞), x ∈ Ω}, M = ∪∞i=1Mi, Ni = {(ti, x)|ti ∈ (0,∞), x ∈

∂Ω}, N = ∪∞i=1Ni, non-negative constant a, and positive constant b.

The IBVP may now be stated as follows.

∂u

∂t
(t, x)−∆u(t, x) = u(t, x)(a− bu(t− τ, x)) in D \M (3.1)

u(t, x) = 0 on S \N (3.2)

u(t, x) = η(t, x) in D−τ (3.3)

u(tk, x) = Ik(u(tk
−, x)) in Ω, k = 1, 2, ... (3.4)

where η : D−τ → Rn is uniformly Holder continuous with exponent α, η(t, x) ≥

0 in D−τ , and η(0, x) 6≡ 0.

Let L = ∂
∂t
−∆, u = u(t, x) and u−τ = u(t− τ, x).

This system describes the dynamics of a population which has natural

growth rate a and depends on the state in the past. The carrying capacity of

the environment is a
b
. At fixed times, tk, the population undergoes instanta-

neous change (e.g. harvesting).

To solve this problem, two assumptions are made. The following definition

is used in the assumptions.

Definition 3.1. Let Ω be a bounded domain in Rn with boundary ∂Ω.

Then ∂Ω belongs to class Cm+αfor some non-negative integer m and some

positive number α ∈ (0, 1) if in neighbourhoods of each point of ∂Ω, there

exists a local representation of ∂Ω having the form

xi = hi (x1, ..., xi−1, xi+1, ..., xn)

where the function hi belongs to class Cm+α.

Assumptions

A1 ∂Ω ∈ C2+α.
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A2 For each k, Ik ∈ C(R,R) is a non-decreasing function and Ik(0) = 0.

We will prove the existence and uniqueness of the solution of IBVP (3.1)–

(3.4) by applying a similar method used in [35] and [36].

First, we consider the problem in a finite time interval [0, T ] for some

positive real number T . In other words, we solve the following problem:

ut(t, x)−∆u(t, x) = u(t, x)(a− bu(t− τ, x)) in DT \MT (3.5)

u(t, x) = 0 on ST \NT (3.6)

u(t, x) = η(t, x) in D−τ (3.7)

u(tk, x) = Ik(u(tk
−, x)) in Ω, k = 1, 2, ..., pT (3.8)

where DT = (0, T ] × Ω, ST = (0, T ] × ∂Ω, ET = [−τ, T ] × Ω,MT = ∪p
′
T

i=1Mi

and NT = ∪p
′
T

i=1Ni with pT = min{k|tk ≥ T} and p′T = min{j|tj ≥ T}.

We seek a solution of IBVP (3.5)–(3.8) in BT , that is, the set of functions

u(t, x), u : ET → Rn that satisfy

(1) u(t, x) ∈ Cα(ET \ (MT ∪NT ) ∩ C1,1(DT \ (MT ∪NT )).

(2) ∂2u
∂xi∂xj

exists ∀i, j = 1, 2, ...., n, and is uniformly Holder continuous

with exponent α, 0 < α < 1 in DT \MT .

(3) limt→ti
+ v(t, x) = v(ti, x) and limt→ti

− v(t, x) = v(ti
−
, x) exist for x ∈

Ω where v(t, x) =
(
u(t, x), ∂u

∂t
(t, x), ∂u

∂xi
(t, x), ∂2u

∂xi∂xj

)
, i, j = 1, 2, ..., n.

We use the method of upper and lower solutions as in [35] for solving the

IBVP (3.1)–(3.4).

Definition 3.2. A pair of functions ũ, û ∈ BT with ũ(t, x) ≥ û(t, x) is

called an ordered upper and lower solution of IBVP (3.1)–(3.4) if it satisfies

û ≤ η(t, x) ≤ ũ in D−τ (3.9)

Lũ ≥ ũ(a− bû−τ ) in DT \MT (3.10)

Lû ≤ û(a− bũ−τ ) in DT \MT (3.11)

û ≤ 0 ≤ ũ on ST \NT (3.12)

ũ(tk, x) ≥ Ik(ũ(tk
−, x)) in Ω (3.13)



20 3. DISCRETE DELAY

û(tk, x) ≤ Ik(û(tk
−, x)) in Ω. (3.14)

For any ordered upper and lower solution, ũ, û, the sector 〈û, ũ〉 is defined

as the functional interval 〈û, ũ〉 = {v ∈ BT |û ≤ v ≤ ũ}. We seek a solution

of IBVP (3.1)–(3.4) in this sector by constructing upper and lower sequences

then showing that these sequences converge to a unique function, which is the

solution.

By the local Lipschitz property of the function on the right hand side of

equation (3.1), there exists a positive constant K such that

|u(a− bw)− v(a− bz)| ≤ K(|u− v|+ |w − z|) for u, v, w, z ∈ 〈û, ũ〉. (3.15)

Let L = ∂
∂t

+ ∆ + K. The upper sequence {u(m)} and lower sequence {u(m)}

are constructed as follows

u(0) = ũ in DT (3.16)

u(0) = û in DT (3.17)

u(m) = η = u(m) in D−τ (3.18)

Lu(m) = u(m−1)(K + a− bu(m−1)
−τ ) in DT \MT (3.19)

Lu(m) = u(m−1)(K + a− bu(m−1)
−τ ) in DT \MT (3.20)

u(m) = 0 = u(m) on ST \NT (3.21)

u(m)(tk, x) = Ik(u
(m)(tk

−, x)) in Ω (3.22)

u(m)(tk, x) = Ik(u
(m)(tk

−, x)) in Ω. (3.23)

We will use the following theorem on the existence of solution of the initial

boundary value problem given by

L̃u =
∂u

∂t
−

n∑
i,j=1

aij(t, x)
∂2u

∂xi ∂xj
−

n∑
i=1

bi(t, x)
∂u

∂xi

= f(t, x, u) in (0, T ]× Ω (3.24)
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Bu = α1(t, x)
∂u

∂ν
(t, x) + β0(t, x)u = h(t, x) on (0, T ]× ∂Ω (3.25)

u(0, x) = u0(x) in Ω (3.26)

where L̃ is a uniformly parabolic operator to prove the well-definedness of

upper and lower sequences.

Theorem 3.1 (Theorem 2.1.1 in [37]). Let α0 = 0, f(t, x, u) = q(t, x) −

c(t, x)u with q locally Holder continuous in x ∈ Ω, uniformly in t. Then

for any continuous function h and u0 which satisfy compatibility condition

β0(0, x)u0(x) = h(0, x) on ∂Ω, problem (3.24)–(3.26) has a unique solution u.

Moreover u can be represented by the formula

u(t, x) =J (1)(t, x) +

∫ t

0

dτ

∫
Ω

G(t, x; τ, ξ)q(τ, ξ)dξ

+

∫ t

0

dτ

∫
∂Ω

∂Γ

∂νξ
(t, x; τ, ξ)ψ(τ, ξ)dξ (3.27)

where

• Γ is the fundamental solution of parabolic operator

(
∂

∂t
−

n∑
i,j=1

aij(t, x)
∂2

∂xi ∂xj
+

n∑
i=1

bi(t, x)
∂

∂xi
+ c(t, x)

)
;

• G is the Green’s function of
(
∂
∂t
−
∑n

i,j=1 aij(t, x) ∂2

∂xi ∂xj
+
∑n

i=1 bi(t, x) ∂
∂xi

)
+c(t, x) with boundary operator B;

• ψ(t, x) = 2
∫ t

0
dτ
∫
∂Ω

∂Γ
∂νξ

(t, x; τ, ξ)ψ(τ, ξ)dξ − 2h(t,x)
β(t,x)

• J (1)(t, x) =
∫

Ω
G(t, x; 0, ξ)u0(ξ)dξ.

This theorem can be applied to problem (3.16)–(3.23) and gives that the

upper and lower sequences are well-defined and form a subset of BT .

Before we proceed to prove the monotone property of upper and lower

sequence, let us consider a lemma that has an important role in the proof.
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Lemma 3.1 (Positivity Lemma in [37]). If w ∈ C((0, T ]× Ω)∩C1,2((0, T ]×

Ω) and satisfies the relation

wt − d∇2w + cw ≥ 0 in (0, T ]× Ω

α1
∂w

∂ν
(t, x) + β1w ≥ 0 on (0, T ]× ∂Ω

w(0, x) ≥ 0 in Ω

where α1, β1 are non-negative constants, d is positive constant, and c ≡ c(t, x)

is any bounded function in (0, T ]× Ω, then w ≥ 0 in (0, T ]× Ω.

Using this lemma, we prove the following theorem.

Theorem 3.2. {u(m)} and {u(m)} possess the monotone property û ≤

u(m) ≤ u(m+1) ≤ u(m+1) ≤ u(m) ≤ ũ in [−τ, T ]× Ω.

Proof. From the definition of ordered upper and lower solution, it follows

that û ≤ u(m) ≤ u(m+1) ≤ u(m+1) ≤ u(m) ≤ ũ in D−τ . Consider the problem in

[0, t1)× Ω. Let w(1) = u(0) − u(1) = ũ− u(1).

Lw(1) = Lũ− Lu(1) = Lũ− ũ(a− bη) ≥ 0 in (0, t1)× Ω.

From the boundary condition and initial function we have

w(1) ≥ 0 on (0, t1)× ∂Ω

w(1) ≥ 0 in (−τ, 0]× Ω.

It follows from Lemma 3.1 that ũ ≥ u(1) in (t, x) ∈ [0, t1) × Ω. Similarly, it

can be shown that û ≤ u(1) in [0, t1) × Ω. If t1 = t1, then by the assumption

on Ik, ũ(t1, x) ≥ u(1)(t1, x) and û(t1, x) ≤ u(1)(t1, x). If t1 = τ < t1, then

u(t1, x) = u(t
−
1 , x) and u(t1, x) = u(t

−
1 , x).

Let w(1) = u(1) − u(1). Then

Lw(1) = Lu(1) − Lu(1) = (K + a− bη)(ũ− û) ≥ 0 in (0, t1)× Ω

w(1) ≥ 0 on (0, t1)× ∂Ω

w(1) ≥ 0 in (−τ, 0]× Ω.
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It follows from Lemma 3.1 that u(1) ≥ u(1) in (0, t1). If t1 = t1, then by the

assumption A2, u(1)(t1, x) ≥ u(1)(t1, x). If t1 = τ < t1, then from the continuity

of u, we have u(1)(t1, x) ≥ u(1)(t1, x).

Suppose u(m) ≤ u(m−1) and u(m) ≥ u(m) for some m ∈ {2, 3, ...}.

Lw(m) = Lu(m) − Lu(m+1)

= K(u(m−1) − u(m)) + u(m−1)(a− bη)− u(m)(a− bη)

= (K + a− bη)(u(m−1) − u(m))

≥ 0 in (0, t1)× Ω

w(m) ≥ 0 on (0, t1)× ∂Ω

w(m) ≥ 0 in (−τ, 0]× Ω.

By application of Lemma 3.1, we have u(m) ≥ u(m+1) in [0, t1) × Ω and if

t1 = t1, then by the monotone non-decreasing property of Ik, u
(m)(t1, x) ≥

u(m+1)(t1, x). The same result is obtained if t1 = τ < t1 by the continuity of

u. Similarly, u(m) ≤ u(m+1) in [0, t1)× Ω and u(m)(t1, x) ≥ u(m+1)(t1, x).

Now assume u(m) ≥ u(m) for some m ∈ {2, 3, ...}.

Lw(m+1) = Lu(m+1) − Lu(m+1)

= K(u(m) − u(m)) + u(m)(a− bη)− u(m)(a− bη)

≥ K(u(m) − u(m)) + u(m)(a− bu(m)
−τ )− u(m)(a− bu(m)

−τ )

= (K + a− bu(m)
−τ )(u(m) − u(m))

≥ 0 in (0, t1)× Ω

w(m) ≥ 0 on (0, t1)× ∂Ω

w(m) ≥ 0 in (−τ, 0]× Ω.

By the same steps as before, we obtain u(m+1) ≥ u(m+1) in [0, t1) × Ω and

u(m+1)(t1, x) ≥ u(m+1)(t1, x). These results show that the monotone property

û ≤ u(m) ≤ u(m+1) ≤ u(m+1) ≤ u(m) ≤ ũ for t ∈ [−τ, t1] and m = 1, 2, ... holds.

Suppose the monotone property holds in the time interval [−τ, tj] for some

j ∈ {2, 3, ....p′T} and consider upper and lower sequences in the time interval
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[tj, tj+1).

Lw(1) = Lũ− Lu(1)

= Lũ− ũ(a− bû−τ )

≥ 0 in (tj, tj+1)× Ω

w(1) ≥ 0 on (tj, tj+1)× ∂Ω

w(1) ≥ 0 in (−τ, tj]× Ω.

Hence ũ ≥ u(1) in [0, tj+1) × Ω. From the continuity of the solution and the

monotone non-decreasing property of Ik, it follows that ũ(tj+1, x) ≥ u(1)(tj+1, x).

Similarly we can prove û ≤ u in [0, tj+1]× Ω.

Lw(1) = Lu(1) − Lu(1)

= K(ũ− û) + ũ(a− bû−τ )− û(a− bũ−τ )

≥ K(ũ− û) + ũ(a− bũ−τ )− û(a− bũ−τ )

= (K + a− bũ−τ )(ũ− û)

≥ 0 in (tj, tj+1)× Ω

w(1) ≥ 0 on (tj, tj+1)× ∂Ω

w(1) ≥ 0 in (−τ, tj]× Ω.

These imply u(1) ≥ u(1) in (t, x) ∈ [tj, tj+1]× Ω.

Suppose u(m) ≤ u(m−1), u(m) ≥ u(m−1) and u(m) ≥ u(m) for some m ∈

{2, 3, ...}.

Lw(m+1) = Lu(m) − Lu(m+1)

= K(u(m−1) − u(m)) + u(m−1)(a− bu(m−1)
−τ )− u(m)(a− bu(m)

−τ )

≥ K(u(m−1) − u(m)) + u(m−1)(a− bu(m)
−τ )− u(m)(a− bu(m)

−τ )

= (K + a− bu(m)
−τ )(u(m−1) − u(m))

≥ 0 in (tj, tj+1)× Ω
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w(m) ≥ 0 on (tj, tj+1)× ∂Ω

w(m) ≥ 0 in (−τ, tk]× Ω.

By application of Lemma 3.1, the continuity of the solution, and the monotone

decreasing property of Ik, we have u(m) ≥ u(m+1) in [0, tj+1]× Ω. Also u(m) ≤

u(m+1).

Lw(m) = Lu(m+1) − Lu(m+1)

= K(u(m) − u(m)) + u(m)(a− bu(m)
−τ )− u(m)(a− bu(m)

−τ )

≥ K(u(m) − u(m)) + u(m)(a− bu(m)
−τ )− u(m)(a− bu(m)

−τ )

Lw(m) ≥ (K + a− bu(m)
−τ )(u(m) − u(m))

≥ 0 in (tj, tj+1)× Ω

w(m) ≥ 0 on (tj, tj+1)× ∂Ω

w(m) ≥ 0 in (−τ, tj]× Ω.

It follows from the same argument as before that u(m+1) ≥ u(m+1) in [0, tj +

1] × Ω. By these results, it is concluded that û ≤ u(m) ≤ u(m+1) ≤ u(m+1) ≤

u(m) ≤ ũ in ET for all positive integer m. �

From this result, we conclude that the limits, u = lim
m→∞

u(m) exist and

u = lim
m→∞

u(m), and these limits satisfy

u ≤ u.

We will use the integral representation of solution in Theorem 3.1 to prove

that the limit of the upper and lower sequence, u and u, satisfy the following

equations:

u = η = u in D−τ (3.28)

Lu = u(K + a− bu−τ ) in DT \MT (3.29)

Lu = u(K + a− bu−τ ) in DT \MT (3.30)
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u = 0 = u on ST \NT (3.31)

u(tk, x) = Ik(u(tk
−, x)) in Ω (3.32)

u(tk, x) = Ik(u(tk
−, x)) in Ω. (3.33)

Lemma 3.2. The limit of upper and lower sequence, u and u, satisfy equa-

tions (3.28)–(3.33).

Proof. From the construction of upper and lower sequences, u and u

satisfy equations (3.28) and (3.31)–(3.33).

Consider the initial boundary value problem formed by equation (3.18),(3.19)

and (3.21) on interval (0, t1). By Theorem 3.1 the integral representation of

solution of this problem is

u(m)(t, x) = J (1)(t, x)+

∫ t

0

dκ

∫
Ω

G(t, x;κ, ξ)u(m−1)(κ, ξ)

× (K + a− bu(m−1)(κ− τ, ξ))dξ (3.34)

with u0(ξ) in J (1) replaced by η(0, ξ). By taking the limit of this equation as

m→∞ and applying dominated convergence theorem, we obtain the following

equation

u(t, x) = J (1)(t, x) +

∫ t

0

dκ

∫
Ω

G(t, x;κ, ξ)u(κ, ξ)(K + a− bu(κ− τ, ξ))dξ.

(3.35)

This equation is the integral representation of the solution of the initial bound-

ary value problem formed by equations (3.28), (3.29) and (3.31).

The integral representation of the solution of the problem formed by equa-

tions (3.18),(3.20) and (3.21) on the interval time (0, t1) is as follows

u(m)(t, x) = J (1)(t, x)+

∫ t

0

dκ

∫
Ω

G(t, x;κ, ξ)u(m−1)(κ, ξ)

× (K + a− bu(m−1)(κ− τ, ξ))dξ (3.36)

with u0(ξ) in J (1) replaced by η(0, ξ). By applying steps analogous to those

above, we obtain the integral representation of the solution of the initial bound-

ary value problem formed by equations (3.28), (3.30) and (3.31) which is given
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by

u(t, x) =J (1)(t, x) +

∫ t

0

dκ

∫
Ω

G(t, x;κ, ξ)u(κ, ξ)(K + a− bu(κ− τ, ξ))dξ.

(3.37)

By these results, we conclude that u and u satisfy equations (3.28)–(3.33)

on interval time [−τ, t1).

For the other time intervals, (tj, tj+1) for j = 1, 2, 3, ..., p′T − 1, the inte-

gral representation of the solution of the problem formed by equation (3.19),

(3.21) and initial condition u(m)(tj, x) = u(m)(t
−
j , x) if tj 6= tk or u(m)(tj, x) =

Ik(u
(m)(t

−
j , x)) if tj = tk, is

u(m)(t+ tj, x) = J (1)(t, x)+

∫ t

0

dκ

∫
Ω

G(t, x;κ, ξ)u(m−1)(κ+ tj, ξ)

× (K + a− bu(m−1)(κ− τ + tj, ξ))dξ, (3.38)

with u0(ξ) in J (1) replaced by the suitable initial condition in this interval. If we

take the limit of equation (3.38) as m→∞ and apply dominated convergence

theorem, we will obtain the following equation

u(t+ tj, x) = J (1)(t, x)+

∫ t

0

dκ

∫
Ω

G(t, x;κ, ξ)u(κ+ tj, ξ)

× (K + a− bu(κ− τ + tj, ξ))dξ, (3.39)

which is the integral presentation of the solution of the problem formed by

equations (3.29), (3.31) and initial condition u(tj, x) = u(t
−
j , x) if tj 6= tk or

u(tj, x) = Ik(u(t
−
j , x)) if tj = tk.

The integral representation of the solution of the problem formed by equa-

tions (3.20), (3.21) with initial condition u(m)(tj, x) = u(m)(t
−
j , x) if tj 6= tk or

u(m)(tj, x) = Ik(u
(m)(t

−
j , x)) if tj = tk, is given by the following equation.

u(m)(t+ tj, x) = J (1)(t, x)+

∫ t

0

dκ

∫
Ω

G(t, x;κ, ξ)u(m−1)(κ+ tj, ξ)

× (K + a− bu(m−1)(κ− τ + tj, ξ))dξ (3.40)

with u0(ξ) in J (1) replaced by the suitable initial condition. By applying the

previous steps we have the integral representation of the initial boundary value
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problem formed by equations (3.30), (3.31) and initial condition u(tj, x) =

u(t
−
j , x) if tj 6= tk or u(tj, x) = Ik(u(t

−
j , x)) if tj = tk as follows

u(t+ tj, x) = J (1)(t, x) +

∫ t

0

dκ

∫
Ω

G(t, x;κ, ξ)u(κ+ tj, ξ)

× (K + a− bu(κ− τ + tj, ξ))dξ. (3.41)

Thus u and u satisfy equations (3.28)–(3.33) on interval time [−τ, tj+1) for

j = 1, 2, 3, ..., p′T − 1. �

Next we will prove that the limit of the upper and lower sequence is the

unique solution of problem (3.5)–(3.8). For this purpose we use estimates of the

fundamental function and its outward normal derivative and Green’s function

in [35] as follows.

|Γ(t, x;κ, ξ)| ≤ K0

(t− κ)µ
1

|x− ξ|n−2+µ
, 0 < µ < 1 (3.42)∣∣∣∣ ∂Γ

∂νx

∣∣∣∣ ≤ K0

(t− κ)µ
1

|x− ξ|n+1−2µ−γ , 1− γ

2
< µ < 1. (3.43)

|G(t, x;κ, ξ)| ≤ K1

(t− κ)µ
1

|x− ξ|n−2+µ
, 0 < µ < 1. (3.44)

Let ‖v‖t = max{v(s, x) : s ∈ [0, t], x ∈ Ω}.

Theorem 3.3. The upper and lower sequence, {u(m)} and {u(m)}, converge

monotonically to a unique solution u of IBVP (3.5)–(3.8).

Proof. First we will show that u = u in [−τ, t1]×Ω. From (3.35), (3.37),

(3.15), (3.42) and (3.43) we have the following relation:

(u(t, x)− u(t, x)) ≤
∫ t

0

dκ

∫
Ω

G(t, x;κ, ξ)((K + a)(u(κ, ξ)− u(κ, ξ))

− b(u(κ, ξ)u(κ− τ, ξ)− u(κ, ξ)u(κ− τ, ξ))) , t ∈ (0, t1)dξ

|u(t, x)− u(t, x)| ≤ 4KK1

∫ t

0

(t− κ)−µdκ

∫
Ω

|x− ξ|−n+2−µdξ‖u− u‖t , t ∈ (0, t1)

‖u− u‖t ≤Mt1−µ‖u− u‖t , t ∈ (0, t1) (3.45)

for some positive constant M . If t < M
−1

1−µ then inequality (3.45) implies

‖u− u‖t = 0. This means that u(t, x) = u(t, x) for t ∈ [0,min{t1,M
−1

1−µ}).
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Let {0 = t
j1
1 , t

j2
1 , ..., t

jn1

1 = t1} be a partition on [0, t1] with t
jk
1 − t

jl
1 <

M
−1

1−µ , k, l ∈ {1, 2, ..., n1}. With suitable initial conditions (note that the

initial conditions for u and u in an interval are the same), we obtain the same

result on time interval [t
ji
1 , t

ji+1

1 ), i = 1, ..., n1−1 by repeating the steps above.

Thus u(t, x) = u(t, x) in [−τ, t1)× Ω.

By continuing this process on time interval [ti, ti+1) for i = 1, ..., p′T − 1,

we obtain that u(t, x) = u(t, x) in [−τ, T ] × Ω and it is the solution of IBVP

(3.5)–(3.8).

The uniqueness of the solution can be proved by using the same method.

�

Lemma 3.3. There exists a pair of ordered, lower and upper solutions of

IBVP (3.5)–(3.8).

Proof. The lower solution is the zero function and the upper solution be

given by v with

v(t, x) = 0 on ST \NT

v(t, x) = vj(t, x) in [tj, tj+1)× Ω

v(tj, x) = Ik(vj−1(t
−
j , x)), if tj = tk for some k ∈ {1, 2, ..., pT}, x ∈ Ω or

v(tj, x) = vj−1(t
−
j , x), if tj 6= tk for every k ∈ {1, 2, ..., pT}, x ∈ Ω

where

v−1(t, x) = η(t, x) in D−τ

v0(t, x) = h0(t, x) exp (a+ 1)t t ∈ [0, t1), x ∈ Ω,

h0(t, x) is the solution of heat equation

Lh0 = 0, t ∈ [0, t1), x ∈ Ω

with boundary condition h0 = 0, x ∈ Ω and initial condition h0(0, x) =

η(0, x), x ∈ Ω

vj(t, x) = hj(t, x) exp
[
(a+ 1)(t− tj)

]
, j = 1, 2, 3, ..., p′T ,
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hj(t, x) is the solution of heat equation

Lhj = 0, t ∈ [tj, tj+1), x ∈ Ω

with boundary condition hj = 0, x ∈ Ω and initial condition hj(tj, x) =

Ik(vj−1(tj
−
, x)) for every x ∈ Ω if tj = tk for some k ∈ {1, 2, ..., pT}, or

hj(tj, x) = vj−1(tj
−
, x), x ∈ Ω if tj 6= tk for every k ∈ {1, 2, ..., pT}.

As η(0, x) ≥ 0 and η(0, x) 6≡ 0 in Ω, it follows from Lemma 3.1 that

h0 > 0, x ∈ Ω, and by the monotone non-decreasing property of Ik and the

continuity of the solution, we also have hj > 0, x ∈ Ω, j = 1, 2, ..., pT . Hence

v > 0 in DT .

By definition, the function v satisfies the following IBVP

Lv = (a+ 1)v ≥ av in DT \ (MT ∪NT )

v = η in D−τ

v = 0 on ST \NT

v(tk, x) = Ik(v(tk
−, x)) in Ω.

�

Corollary 3.1. There exists a unique solution of IBVP (3.5)–(3.8) in

〈0, v〉.

Remark 3.1. The existence and uniqueness of a global solution of IBVP

(3.1)–(3.4) follows from the arbitrariness of T .

2.2. Neumann and Robin Boundary Condition. In this subsection

we discuss the existence and uniqueness of solution of problem (3.1)–(3.4) with

the boundary condition (3.2) is replaced by

∂u

∂ν
(t, x) + βu(t, x) = 0 on S \N (3.46)

where β is a non-negative constant.

Three assumptions are used to solve the problem: A1, A2, and

A3 The initial function, η, is continuously differentiable in Ω.
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We use the same method to solve the problem as was used for Dirichlet

boundary condition case. The theorems and their proofs for this initial bound-

ary value problem are similar to the ones for the previous case. Here we just

write the differences that have a significant role in these theorems and proofs.

First we construct upper and lower sequence whose terms are defined by

inequalities (3.16)–(3.23), with (3.21) replaced by

∂u(m)

∂ν
(t, x) + βu(m)(t, x) ≤ 0 ≤ ∂u(m)

∂ν
(t, x) + βu(m)(t, x) on ST \NT

To prove the well-definedness of the upper and lower sequences, we need the

following theorem.

Theorem 3.4 (Theorem 2.1.1 in [37]). Let aij(0, x) and u0(x) be contin-

uously differentiable in a neighbourhood of ∂Ω and let α0 = 1, f(t, x, u) =

q(t, x)− c(t, x)u with q locally Holder continuous in x, uniformly in [0, T ]×Ω.

Then for any continuous function h on [0, T ]×∂Ω and u0 in Ω, problem (3.24)–

(3.26) has a unique solution u which is Holder continuous. Moreover u can be

represented by the formula

u(t, x) =J (0)(t, x) +

∫ t

0

dτ

∫
Ω

Γ(t, x; τ, ξ)q(τ, ξ)dξ

+

∫ t

0

dτ

∫
∂Ω

∂Γ

∂νξ
(t, x; τ, ξ)ψ(τ, ξ)dξ (3.47)

where Γ are as in Theorem 3.1 and

• ψ(t, x) = 2
∫ t

0
dτ
∫
∂Ω

[
∂Γ
∂νξ

(t, x; τ, ξ) + β(t, x)Γ(t, x; τ, ξ)
]
ψ(τ, ξ)dξ+2H(t, x)

or

ψ(t, x) = 2H(t, x) + 2
∞∑
j=1

∫ t

0

dτ

∫
∂Ω

Qj(t, x; τ, ξ)H(τ, ξ)dξ, (3.48)

• J (0)(t, x) =
∫

Ω
Γ(t, x; 0, ξ)u0(ξ)dξ,

• H(t, x) = J (2)(t, x) + h(t, x)−
∫ t

0
dτ
∫

Ω
Q(t, x; τ, ξ)q(τ, ξ)dξ,

• Q(t, x; τ, ξ) = ∂Γ
∂ν

(t, x; τ, ξ) + β(t, x)Γ(t, x; τ, ξ).

• Qj+1(t, x; τ, ξ) =
∫ t

0
ds
∫

Ω
Q(t, x; s, y)Qj(s, y; τ, ξ)dy.

• J (2)(t, x) =
∫

Ω
Q(t, x; 0, ξ)u0(ξ)dξ.
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The infinite series
∑∞

j=1 Qj(t, x; τ, ξ) converges uniformly and absolutely

on ST . From [15] Q,H, and ψ have the following estimates.

|Q(t, x;κ, ξ)| ≤ K2

(t− κ)µ
1

|x− ξ|n+1−2µ−γ , 1− γ

2
< µ < 1 (3.49)

|H(t, x)| ≤ K3

tµ
,
1

2
< µ < 1 (3.50)

|ψ(t, x)| ≤ K4

tµ
,
1

2
< µ < 1. (3.51)

Using Lemma 3.1 and the same technique as in Dirichlet boundary condi-

tion case, the monotone property of the upper and lower sequence is obtained.

û ≤ u(m) ≤ u(m+1) ≤ u(m+1) ≤ u(m) ≤ ũ (3.52)

in [−τ, T ]× Ω.

By this property we conclude that the upper and lower sequence are con-

vergent and the limits satisfy the following relation.

lim
m→∞

u(m)(t, x) = u(t, x) ≤ u(t, x) = lim
m→∞

u(m)(t, x)

for (t, x) ∈ [−τ, T ]× Ω.

Before we prove that u = u and that is a solution of the problem, we need

this lemma.

Lemma 3.4. The limit of upper and lower sequence, u and u, satisfy the

following equations.

u = η = u in D−τ (3.53)

Lu = u(K + a− bu−τ ) in DT \MT (3.54)

Lu = u(K + a− bu−τ ) in DT \MT (3.55)

∂u

∂ν
(t, x) + βu(t, x) = 0 =

∂u

∂ν
(t, x) + βu(t, x) on ST \NT (3.56)

u(tk, x) = Ik(u(tk
−, x)) in Ω (3.57)

u(tk, x) = Ik(u(tk
−, x)) in Ω. (3.58)
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Proof. The proof is similar to the proof of Lemma 3.2. From Theorem

3.4 we can express u(m) and u(m) as follows.

u(m)(t, x) =

∫ t

0

dκ

∫
Ω

Γ(t, x;κ, ξ)u(m−1)(κ, ξ)(K + a− bu(m−1)(κ− τ, ξ))dξ

+ J (0)(t, x) +

∫ t

0

dκ

∫
∂Ω

∂Γ

∂νξ
(t, x;κ, ξ)ψ

(m−1)
1 (κ, ξ)dξ

, (t, x) ∈ (0, t1) (3.59)

u(m)(t, x) =

∫ t

0

dτ

∫
Ω

Γ(t, x;κ, ξ)u(m−1)(κ, ξ)(K + a− bu(m−1)(κ− τ, ξ))dξ

+ J (0)(t, x) +

∫ t

0

dτ

∫
∂Ω

∂Γ

∂νξ
(t, x;κ, ξ)ψ

(m−1)
2 (κ, ξ)dξ

, (t, x) ∈ (0, t1) (3.60)

where

ψ
(m)
i (t, x) = 2

∫ t

0

dκ

∫
∂Ω

[
∂Γ

∂νξ
(t, x;κ, ξ) + β(t, x)Γ(t, x;κ, ξ)

]
ψ

(m)
i (κ, ξ)dξ

+ 2H
(m)
i (t, x) , (t, x) ∈ (0, t1), i = 1, 2

and

H
(m)
1 (t, x) = −

∫ t

0

dκ

∫
Ω

Q(t, x;κ, ξ)u(m)(κ, ξ)(K + a− bu(m)(κ− τ, ξ))dξ

+ J (2)(t, x) , (t, x) ∈ (0, t1), (3.61)

H
(m)
2 (t, x) = −

∫ t

0

dκ

∫
Ω

Q(t, x;κ, ξ)u(m)(κ, ξ)(K + a− bu(m)(κ− τ, ξ))dξ

+ J (2)(t, x) , (t, x) ∈ (0, t1). (3.62)

Here u0(x) in J (0) and J (2) is replaced by η(0, x).

Taking limits of H
(m)
1 and H

(m)
2 with respect to m and applying dominated

convergence theorem we have

H1(t, x) = lim
m→∞

H
(m)
1 (t, x)
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H1(t, x) = − lim
m→∞

∫ t

0

dκ

∫
Ω

Q(t, x;κ, ξ)u(m)(κ, ξ)(K + a− bu(m)(κ− τ, ξ))

+ lim
m→∞

J (2)(t, x)

= J (2)(t, x)−
∫ t

0

dκ

∫
Ω

Q(t, x;κ, ξ)u(κ, ξ)(K + a− bu(κ− τ, ξ))dξ,

, (t, x) ∈ (0, t1), (3.63)

H2(t, x) = lim
m→∞

H
(m)
2 (t, x)

= − lim
m→∞

∫ t

0

dκ

∫
Ω

Q(t, x;κ, ξ)u(m)(κ, ξ)(K + a− bu(m)(κ− τ, ξ))dξ

+ lim
m→∞

J (2)(t, x)

= J (2)(t, x)−
∫ t

0

dκ

∫
Ω

Q(t, x;κ, ξ)u(κ, ξ)(K + a− bu(κ− τ, ξ))dξ

, (t, x) ∈ (0, t1). (3.64)

The boundedness of u(K+a−bu−τ ) and u(K+a−buτ ) and the continuity

of η(0, x) ensure that H1 and H2 are continuous on [0, t1) × ∂Ω. So we can

obtain the limits of ψ
(m)
1 and ψ

(m)
2 as follows.

ψi(t, x) = lim
m→∞

ψ
(m)
i (t, x)

= 2

∫ t

0

dκ

∫
∂Ω

[
∂Γ

∂νξ
(t, x;κ, ξ) + β(t, x)Γ(t, x;κ, ξ)

]
ψi(κ, ξ)dξ

+ 2Hi(t, x) , (t, x) ∈ (0, t1), i = 1, 2.

From these results and by applying the dominated convergence theorem, we

get the following equations.

u(t, x) = lim
m→∞

u(m)(t, x)

= lim
m→∞

∫ t

0

dκ

∫
Ω

Γ(t, x;κ, ξ)u(m−1)(κ, ξ)(K + a− bu(m−1)(κ− τ, ξ))dξ

+ lim
m→∞

(
J (0)(t, x) +

∫ t

0

dκ

∫
∂Ω

∂Γ

∂νξ
(t, x;κ, ξ)ψ

(m−1)
1 (κ, ξ)dξ

)
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u(t, x) = J (0)(t, x) +

∫ t

0

dκ

∫
Ω

Γ(t, x;κ, ξ)u(κ, ξ)(K + a− bu(κ− τ, ξ))dξ

+

∫ t

0

dκ

∫
∂Ω

∂Γ

∂νξ
(t, x;κ, ξ)ψ1(κ, ξ)dξ , (t, x) ∈ (0, t1) (3.65)

u(t, x) = lim
m→∞

u(m)(t, x)

= lim
m→∞

∫ t

0

dτ

∫
Ω

Γ(t, x;κ, ξ)u(m−1)(κ, ξ)(K + a− bu(m−1)(κ− τ, ξ))dξ

+ lim
m→∞

(
J (0)(t, x) +

∫ t

0

dκ

∫
∂Ω

∂Γ

∂νξ
(t, x;κ, ξ)ψ

(m)
2 (κ, ξ)dξ

)
= J (0)(t, x) +

∫ t

0

dτ

∫
Ω

Γ(t, x;κ, ξ)u(κ, ξ)(K + a− bu(κ− τ, ξ))dξ

+

∫ t

0

dκ

∫
∂Ω

∂Γ

∂νξ
(t, x;κ, ξ)ψ2(κ, ξ)dξ , (t, x) ∈ (0, t1). (3.66)

By applying these integral representations to the solution on every time interval

with some adjustments on initial conditions, the proof follows in the same

pattern as in the proof of Lemma 3.1. �

Theorem 3.5. The upper and lower sequence, {u(m)} and {u(m)}, converge

monotonically to a unique solution u of IBVP (3.5)–(3.8), with equation (3.6)

replaced by

∂u

∂ν
(t, x) + βu(t, x) = 0 on ST \NT . (3.67)

Proof. Sequentially, we will show that u = u in [−τ, t1) × Ω, [t1, t2) ×

Ω,...,[tp′T−1, T ]× Ω. From (3.65) and (3.66) we have the following relation.

(u(t, x)− u(t, x)) ≤
∫ t

0

dκ

∫
Ω

Γ(t, x;κ, ξ)((K + a)(u(κ, ξ)− u(κ, ξ))

− b(u(κ, ξ)u(κ− τ, ξ)− u(κ, ξ)u(κ− τ, ξ))) , t ∈ (0, t1)dξ

+

∫ t

0

dκ

∫
∂Ω

∂Γ

∂νξ
(t, x, κ, ξ)(ψ1(κ, ξ)− ψ2(κ, ξ))dξ.
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From equations (3.63), (3.64), (3.48), (3.50) and (3.51) we obtain

|ψ1(t, x)− ψ2(t, x)| ≤ 2|H1(t, x)−H2(t, x)|

+ 2

∣∣∣∣∣
∫ t

0

dκ

∫
Ω

∞∑
j=1

Qj(t, x;κ, ξ)(H1(κ, ξ)−H2(κ, ξ))dξ

∣∣∣∣∣
≤ M1

tµ
‖u− u‖t,

1

2
< µ < 1 (3.68)

for some positive constant M1.

It follows from estimates (3.42), (3.43), and (3.68) that

|u(t, x)− u(t, x)| ≤M2t
1−µ‖u− u‖t,

1

2
< µ < 1 (3.69)

for some positive constant M2.

If t < M
−1

1−µ
2 then inequality (3.69) implies ‖u− u‖t = 0. This means that

u(t, x) = u(t, x) for t ∈ [0,min{t1,M
−1

1−µ}).

Let {0 = t
j1
1 , t

j2
1 , ..., t

jn1

1 = t1} be a partition on [0, t1] with t
jk
1 − t

jl
1 <

M
−1

1−µ , k, l ∈ {1, 2, ..., n1}. With suitable initial conditions (note that the

initial conditions for u and u in an interval are the same), we obtain the same

result on time interval [t
ji
1 , t

ji+1

1 ), i = 1, ..., n1−1 by repeating the steps above.

Thus u(t, x) = u(t, x) in [−τ, t1)× Ω.

By continuing this process on time interval [ti, ti+1) for i = 1, ..., p′T − 1, we

obtain that u(t, x) = u(t, x) in [−τ, T ]× Ω and it is the solution of the Robin

boundary problem.

The uniqueness of the solution can be proved using the same method. �

Lemma 3.5. There exists a pair of ordered, lower and upper solutions of

IBVP (3.5), (3.67), (3.7), and (3.8).
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The proof is similar to the proof of Lemma 3.3. In this case the lower

solution is the zero function and the upper solution be given by v with

v(t, x) = 0 on ST \NT

v(t, x) = vj(t, x) in [tj, tj+1)× Ω

v(tj, x) = Ik(vj−1(t
−
j , x)), if tj = tk for some k ∈ {1, 2, ..., pT}, x ∈ Ω or

v(tj, x) = vj−1(t
−
j , x), if tj 6= tk for every k ∈ {1, 2, ..., pT}, x ∈ Ω

where

v−1(t, x) = η(t, x) in D−τ

v0(t, x) = h0(t, x) exp (a+ 1)t t ∈ [0, t1), x ∈ Ω,

h0(t, x) is the solution of heat equation

Lh0 = 0, t ∈ [0, t1), x ∈ Ω

with boundary condition ∂h0

∂ν
+βh0 = 0, x ∈ Ω and initial condition h0(0, x) =

η(0, x), x ∈ Ω

vj(t, x) = hj(t, x) exp
[
(a+ 1)(t− tj)

]
, j = 1, 2, 3, ..., p′T ,

hj(t, x) is the solution of heat equation

Lhj = 0, t ∈ [tj, tj+1), x ∈ Ω

with boundary condition
∂hj
∂ν

+βhj = 0, x ∈ Ω and initial condition hj(tj, x) =

Ik(vj−1(tj
−
, x)) for every x ∈ Ω if tj = tk for some k ∈ {1, 2, ..., pT}, or

hj(tj, x) = vj−1(tj
−
, x), x ∈ Ω if tj 6= tk for every k ∈ {1, 2, ..., pT}.

Corollary 3.2. There exists a unique solution of IBVP (3.5), (3.67),

(3.7), and (3.8) in 〈0, v〉.

Remark 3.2. The existence and uniqueness of a global solution of IBVP

(3.1), (3.46), (3.3), and(3.4) follows from the arbitrariness of T .
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3. Attractors

In this section we will discuss two attractors of the following IBVP

ut(t, x)−∆u(t, x) = u(t, x)(a− bu(t− τ, x)) in D \M (3.70)

α2
∂u

∂ν
(t, x) + β2u(t, x) = 0 on S \N (3.71)

u(t, x) = η(t, x) in D−τ (3.72)

u(tk, x) = Ik(u(tk
−, x)) in Ω, k = 1, 2, ... (3.73)

where α2 = 0 or 1 and β2 is a non-negative constant. The assumptions of

the coefficients and functions in (3.70)–(3.73) are the same as the ones in the

previous section. The attractors considered here are the zero attractor and the

positive attractor which are the steady-states of IBVP (3.70)–(3.72) without

impulses. Some conditions are required to ensure that these steady-states are

attractors for the problem with impulses.

The steady-states of IBVP (3.70)–(3.72) without impulses satisfy the bound-

ary value problem :

−∆u(x) = u(x)(a− bu(x)) in Ω (3.74)

α2
∂u

∂ν
(x) + β2u(x) = 0 on ∂Ω (3.75)

The existence and stability of the steady-states of problem (3.70)–(3.73) can

be obtained by applying the following theorems and lemma.

Let D(x,D) =
∑n

i,j=1 aij(x)DiDj +
∑n

i=1 ai(x)Di + a0(x) and B̃(x,D) =

α0
∂w
∂ν

+ β0(x)w where aij, ai, a0 ∈ Cµ(Ω), i = 1, 2, ..., n, α0 = 0 or 1, β0 ∈

C1+µ(∂Ω) for some µ ∈ (0, 1). Let X = {w ∈ C2+µ(Ω)|B̃(x,D)w = 0}.

Consider the parabolic problem given by

∂w

∂t
−D(x,D)w = m(x)w − c(x)wh(x,w) in Ω (3.76)

B̃(x,D)w = 0 on ∂Ω. (3.77)

w(x, 0) = ψ0 on Ω (3.78)

where ψ0 is a non-negative function in X+ and

(B1) c,m ∈ Cµ(Ω), c ≥ 0(6= 0),
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(B2) h ∈ Cµ,1+µ(Ω × [0,∞),R), h(x, 0) = 0, h(x,w) and ∂h
∂w

(x,w) is posi-

tive for all positive w, limξ→∞ h(x, ξ) =∞ for each x ∈ Ω.

Lemma 3.6 (Lemma 2.2 in [13]). The following statements are equivalent.

(a) The principal eigenvalue of D −m with boundary condition (3.77) is

positive.

(b) There exists a function w ∈ C2+µ(Ω) such that

D(x,D)w +m(x)w ≥ 0 in Ω

B̃(x,D)w ≥ 0 on ∂Ω.

with at least one of these inequalities strict. In other words, w is a

positive strict super solution of

D(x,D)w +m(x)w = 0 in Ω (3.79)

B̃(x,D)w = 0 on ∂Ω. (3.80)

Lemma 3.7 (Remark 2.1 in [13]). Let σΩ(D+m, B̃) be the principal eigen-

value of eigenvalue problem (3.79)–(3.80).

(a) σΩ(D +m1, B̃) < σΩ(D +m2, B̃) whenever m1 < m2.

(b) The mapping λ→ σΩ(D + λm, B̃) : R→ R is concave and analytic.

(c) σΩ(D + m, B̃) < σΩ(D + m2, D̃) where D̃ is homogeneous Dirichlet

boundary operator.

Lemma 3.8 (Lemma 3.2 in [13]). If the principal eigenvalue of D−m with

boundary condition (3.77) is non-negative then problem (3.76)–(3.77) does not

admit a positive steady-state.

Theorem 3.6 (Theorem 3.7 in [13]). Suppose (B1) and (B2) hold. Then

the following assertions are true.

(a) If the principal eigenvalue of D−m with boundary condition (3.77) is

non-negative then the zero solution of problem (3.76)–(3.78) is globally

asymptotically stable.

(b) If the principal eigenvalue of D − m with boundary condition (3.77)

is negative and there exists a positive steady-state, w0, of problem

(3.76)–(3.78), then w0 is globally asymptotically stable.
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(c) If the principal eigenvalue of D−m with boundary condition (3.77) is

negative and problem (3.76)–(3.78) does not admit a positive steady-

state then limt→∞ ‖w(·, t, w0‖C(Ω) =∞ for each ψ0 ∈ X+.

The existence and uniqueness of the solution of problem (3.76)–(3.78) is

given by the following theorem.

Theorem 3.7 (Theorem 3.5 and Lemma 3.1 in [13]). Problem (3.76)–

(3.78) admits at most one positive solution. Moreover, suppose conditions

(B1), (B2) and

(B3) Let Ω0 be a possibly void C2+µ-sub domain of Ω such that Ω0 = {x ∈

Ω|c(x) = 0}. For Robin boundary case, Ω0 ⊂ Ω. In case of Dirichlet

boundary conditions, it is only required that Ω0 ⊂ Ω. Hence c is

allowed to vanish on ∂Ω,

hold. Then problem (3.76)–(3.78) admits a positive solution if and only if

σ1 < 0 < ζ1

where σ1 is the principal eigenvalue of D−m with homogeneous Robin boundary

condition, ζ1 is the principal eigenvalue of D−m with homogeneous Dirichlet

boundary condition, and ζ1 =∞ if Ω0 = ∅.

Let λ1 be the principal eigenvalue of −∆ with homogeneous Dirichlet or

Robin boundary condition. If a ≤ λ1, then the zero function is the only

non-negative steady-state of IBVP (3.70)–(3.72) without impulses according

to Lemma 3.8. This steady-state is stable at any time delay. It follows from

Theorem 3.7 that if a > λ1, then there exists a unique positive steady-state.

By applying Theorem 3.6 we obtain that the positive steady-state of problem

(3.70)–(3.72) without impulses and delay is stable while the zero steady-state

is unstable.

3.1. The Zero Attractor. We will present some conditions under which

the zero function becomes an attractor in the cases a = λ1, a < λ1 and a > λ1.

For proving these results, the technique in [7] will be used.
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If a = λ1 and Ik is a contraction mapping, then the zero function is an

attractor for IBVP (3.70)–(3.73). In fact these conditions will make the con-

vergence of the solution faster than in the case without impulses.

In the following theorem, we present some sufficient conditions so that the

zero function is an attractor in case a < λ1.

Theorem 3.8. Suppose a < λ1 where λ1 is the principal eigenvalue of

−∆ with homogeneous Dirichlet or Robin boundary conditions. If there exists

positive numbers ϑk which satisfy :

0 ≤ Ik(u) ≤ ϑku for every positive integer k

and either ϑ < 1 or

ϑk ≤ exp(−2(a− λ1)(tk − tk−1))

for every k greater than some non-negative integer N1, then any non-negative

solution, u1(t, x), of IBVP (3.70)-(3.73) satisfies ‖u1(t, ·)‖L2(Ω) → 0 as t→∞

for any value of τ ≥ 0.

Proof. If we add impulses to the system, then the behaviour of the solu-

tion of IBVP (3.70)–(3.73) depends on the size of jumps and the frequency of

the impulses.

Let u1(t, x) denote the solution of IBVP (3.70)–(3.73), and u(t, x) denote

the solution of IBVP (3.70)–(3.72) without impulses.

If ϑk ≤ 1 then it follows from Lemma 3.1 that u1(t, x) ≤ u(t, x), t ∈

(tk, tk+1), k ≥ N1. From the convergence of u(t, x), we obtain

lim
t→∞
‖u1(t, ·)‖L2(Ω) = 0.

Consider IBVP (3.70)-(3.72) without impulses. Taking the standard (L2)

inner product of equation (3.1) with u(t, x), using integration by parts, and
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recalling the boundary condition, we obtain the following results.

∫
Ω

∂u

∂t
(t, x)u(t, x)dx−

∫
Ω

u(t, x)∆u(t, x)dx =

∫
Ω

u2(t, x)(a− bu(t− τ, x))dx

1

2

∂

∂t

∫
Ω

u2(t, x)dx− u(t, x)∇u(t, x)|∂Ω+

∫
Ω

|∇u(t, x)|2dx

=

∫
Ω

u2(t, x)(a− bu(t− τ, x))dx.

Since u(t, x)∇u(t, x)|∂Ω = 0 for Dirichlet and Neumann boundary conditions,

and −u(t, x)∇u(t, x)|∂Ω = βu2(t, x) ≥ 0 for Robin boundary condition,

1

2

∂

∂t

∫
Ω

u2(t, x)dx+

∫
Ω

|∇u(t, x)|2dx ≤
∫

Ω

au2(t, x)dx.

By Poincare’s inequality and eigenvalue property (c) in Lemma 3.7, for any

sufficiently smooth function u,

λ1

∫
Ω

u2dx ≤
∫

Ω

|∇u|2dx.

Using this inequality

1

2

∂

∂t

∫
Ω

u2(t, x)dx ≤
∫

Ω

au2(t, x)dx− λ1

∫
Ω

u2(t, x)dx

1

2

∂

∂t

∫
Ω

u2(t, x)dx ≤ (a− λ1)

∫
Ω

u2(t, x)dx

1

2

∂

∂t
‖u(t, ·)‖L2(Ω) ≤ (a− λ1)‖u(t, ·)‖L2(Ω)

‖u(t, ·)‖L2(Ω) ≤ ‖u(0, ·)‖L2(Ω) exp{2(a− λ1)t}. (3.81)

Consider IBVP (3.70)–(3.73) in the time interval [tk−1, tk). There is no impulse

in this interval. Hence

‖u1(t−k , ·)‖L2(Ω) ≤ ‖u1(tk−1, ·)‖L2(Ω) exp{2(a− λ1)(tk − tk−1)}

‖u1(tk, x)‖L2(Ω) = ‖Ik(u1(t−k , x))‖L2(Ω) ≤ ϑk‖u(t−k , x)‖L2(Ω).
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Let γk = ϑk exp{2(a − λ1)(tk − tk−1}. By combining this result with the

monotone non-decreasing (with respect to u) property of Ik we have

‖u1(tk, x)‖L2(Ω) < ϑk‖u1(tk−1, x)‖L2(Ω) exp {2(a− λ1)(tk − tk−1)}

= γk‖u1(tk−1, x)‖L2(Ω)

< γkγk−1‖u1(tk−2, x)‖L2(Ω)

...

<

(
k∏
j=1

γj

)
‖u1(0, x)‖L2(Ω) for every k.

It follows from

lim
k→∞

k∏
j=1

γj = 0 (3.82)

that lim
k→∞
‖u1(tk, x)‖ = 0. Hence lim

t→∞
‖u1(t, x)‖ = 0.

�

When a > λ1, the zero solution of the logistic equation ut = u(a − bu)

is not stable and remains unstable if diffusion and/or delay are introduced.

Clearly the zero solution is an attractor if, at any time tk , there is an impulse

with Ik(u) = 0. The question then remains if the zero function can be an

attractor when none of the impulses are identically zero. The following theorem

demonstrates that the answer is affirmative and that, for a particular form of

impulses, both the timing and the size of the impulses determine whether the

zero function is an attractor.

Theorem 3.9. Suppose Ik(u) ≤ ϑku for some constant ϑk > 0 and a > λ1

where λ1 is the principal eigenvalue of −∆ with homogeneous Dirichlet or

Robin boundary conditions. Let γk be as defined below

γk = ϑk exp{2(a− λ1)(tk − tk−1)}.

If there exists a non-negative integer N1 such that

γk < 1 for all k > N1 (3.83)
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then any non-negative solution u1(t, x) of IBVP (3.1)–(3.4) satisfies

lim
t→∞
‖u1(t, ·)‖L2(Ω) = 0

for any delay τ .

The proof is the same as the one for Theorem 3.8.

Remark 3.3. According to the condition on Ik in (3.83) and its implication

(3.82), the zero function is an attractor even if the spacing between impulses

grows without bound, as long as the impulses bring the solution back down

close enough to zero. On the other hand, as long as wk < 1 (except for a finite

number of k) the zero function is an attractor if the impulses are sufficiently

frequent.

3.2. The Positive Attractor. For this section we assume a > λ1 where

λ1 is principal eigenvalue of −∆ with homogeneous Robin boundary condition.

This assumption implies the existence and uniqueness of positive steady of

IBVP (3.70)–(3.72) without impulses.

For the logistic equation ut = u(a − bu) both with and without diffusion,

the positive steady-state is stable [13]. If delay is introduced, the stability can

change (Wright’s conjecture in [56]). The following lemma gives conditions on

delay such that the stability of steady-state preserved.

Lemma 3.9 (Corollary 2.7 in [14]). Let w0 be a stable hyperbolic stationary

solution of IBVP given by

∂w

∂t
(t, x) = ∆w(t, x) + f(x,w(t, x), w(t, x)) , x ∈ Ω

w(t, x) = 0 , x ∈ ∂Ω

w(t, x) = ψ(0, x) , x ∈ Ω,

where f is a function that is at least continuous respect to the first variable,

continuously differentiable respect to the second and third variable. Let d(x) =
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D3f(x,w,w). Then w0 is also a stable hyperbolic stationary solution of IBVP

∂w

∂t
(t, x) = ∆w(t, x) + f(x,w(t, x), w(t− τ, x)) , x ∈ Ω

w(t, x) = 0 , x ∈ ∂Ω

w(t, x) = ψ(t, x) , (t, x) ∈ [−τ, 0]× Ω

if τ ∈ [0, τ ∗) where τ ∗ = (maxx∈Ω |d(x)|)−1.

The proof of this lemma is based on the fact that zero is an eigenvalue

of the linearized problem with delay if and and only if it is an eigenvalue of

the linearized problem without delay around a stationary solution. To make

the stability unchanged, all non-real eigenvalues of the linearized problem with

delay must have negative real parts. The condition on time delay is obtained

by simplifying the following equation∫
Ω

(u∆u− u∆u)dx+
(
e−λτ − e−λτ

)∫
Ω

d(x)|u|2dx = (λ− λ)

∫
Ω

|u|2dx (3.84)

to get

eατ = τ |sinc(βτ)|
∣∣∣∣∫

Ω

d(x)|u|2dx
∣∣∣∣

where λ = α+ iβ is a non-real eigenvalue of the linearized problem with delay,

λ is the conjugate of λ, u is the corresponding eigenfunction, u is the conjugate

of u, and

sinc(x) =


sin(x)
x

, x 6= 0

1 , x = 0.

Since α has to be negative and |sinc(x)| ≤ 1, τ
∣∣∫

Ω
d(x)|u|2dx

∣∣ < 1.

The proof of Lemma 3.9 requires that∫
Ω

(u∆u− u∆u)dx =

(
u
∂u

∂ν
− u∂u

∂ν

)
∂Ω −

∫
Ω

(∇u · ∇u−∇u · ∇u) dx = 0.

This holds for the problem with homogeneous Dirichlet boundary condition

but also for the one with homogeneous Robin boundary condition because(
u
∂u

∂ν
− u∂u

∂ν

)
∂Ω = (u(−βu)− u(−βu)) ∂Ω = 0.
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Since the argument regarding the eigenvalues for Dirichlet case also holds

for Robin case, Lemma 3.9 is true for the problem with homogeneous Robin

boundary conditions.

From this lemma we can obtain a result on IBVP (3.70)–(3.72) without

impulses as follows.

Lemma 3.10. Suppose a > λ1 where λ1 is the principal eigenvalue of −∆

with homogeneous Robin boundary condition. Let φ denote the positive steady-

state of IBVP (3.70)–(3.72) without impulses and let BM = max
x∈Ω

bφ(x). If

τBM < 1, then φ is globally asymptotically stable.

Proof. It follows from Theorem 3.6 that φ is globally asymptotically sta-

ble for IBVP (3.70)–(3.72) without delays and impulses. By applying Lemma

3.9, we conclude that the stability of φ does not change for IBVP (3.70)–

(3.73). �

In most cases, when impulses are introduced to the diffusive delay logistic

problem, the steady-state of the problem without impulses is no longer an

attractor to the problem with impulses. Even if the size of jumps tends to

zero or the distance between impulse times is large, the steady-state of IBVP

(3.70)–(3.72) without impulses may not be an attractor. The following problem

is an example of this case.

ut(t, x)−∆u(t, x) = u(t, x) (1− u(t− τ, x)) in D \M (3.85)

∂u

∂ν
(t, x) = 0 on S \N (3.86)

u(t, x) = η(t, x) in D− 1
2

(3.87)

u(tk, x) = βku(t−k , x) k = 1, 2, ... (3.88)

where the impulse times are tk =
k∑
i=1

1
i
, 0 ≤ τ < 1, Ω, D, S,M,N and η are as

IBVP (3.1)–(3.4), and β1 = 1
e
, βk = exp

(
− 1
k−1

)
, k = 2, 3.... The constant

function φ(x) = 1 is a stable steady-state for IBVP (3.85)–(3.87) without

impulses, but it is not an attractor for IBVP (3.85)–(3.88). We show this
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result by applying the comparison theorem in [2] to obtain this relation

u(t, x) ≤ w(t) (t, x) ∈ [0,∞)× Ω

where u is any solution of problem (3.85)–(3.88) and w is a solution of impulsive

differential equation

ẇ(t) = w(t), t ∈ (0,∞) \ {tk}nk=1 (3.89)

w(0) = w0 = max
x∈Ω

u(0, x) (3.90)

w(tk) = βkw(t−k ). (3.91)

Let w0 < 1. The solution of problem (3.89)–(3.91) is given by

w(t) =

w0e
t , t ∈ [0, t1)

w0 exp
(−k+1

k

)
exp (t− tk) , t ∈ [tk, tk+1), k = 1, 2, 3, ...

lim
t→∞

w(t) = lim
t→∞

w0 exp

(
−k + 1

k

)
exp (t− tk)

≤ lim
k→∞

w0 exp

(
−k + 1

k

)
exp

(
1

k + 1

)
=
w0

e
.

Thus limt→∞ u(t, x) ≤ w0

e
< 1.

To find conditions on the impulses so that the positive steady-state of IBVP

(3.70)–(3.72) without impulses is also an attractor for IBVP (3.70)–(3.73), we

need the following theorem.

Theorem 3.10 (Theorem 5.3.3 in [37]). Let us be a steady-state solution

of problem (3.24)–(3.26) where f and h are independence from t, and let f

be a C1-function on a neighbourhood of us. Let real number µ0 and positive

function ψ(x) be the principal eigenvalue and eigenfunction of the eigenvalue

problem

n∑
i,j=1

aij(t, x)
∂2ψ

∂xi ∂xj
+

n∑
i=1

bi(t, x)
∂ψ

∂xi
+ (µ+ fu(x, us(x)))ψ = 0 in Ω

α(t, x)
∂u

∂ν
+ β(t, x)u = h(x) on ∂Ω
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with max{ψ(x) : x ∈ Ω} = 1. If µ0 is positive then there exists positive

constants ρ, ζ such that

|u(t, x)− us(x)| ≤ ρe−ζtψ(x) t > 0, x ∈ Ω

whenever it holds at t = 0.

Lemma 3.11. Let a and λ1 be as in Lemma (3.10) and w(t, x) be the so-

lution of IBVP (3.1)–(3.3) without impulses and delay, and let φ(x) be the

steady-state of the same problem. If |w(0, x) − φ(x)| < µ0

2b
ψ(x) there exists

positive numbers ρ and ζ such that

|w(t, x)− φ(x)| ≤ ρe−ζtψ(x) t > 0, x ∈ Ω (3.92)

where µ0 and ψ(x) are the principal eigenvalue and eigenfunction of

−∆v + (2bφ− a)v = µv in Ω (3.93)

α(t, x)
∂v

∂ν
+ β(t, x)v = 0 on ∂Ω. (3.94)

Proof. Because φ(x) is a solution of BVP (3.74)–(3.75), it is also a strict

positive upper solution of the following problem

−∆v + (2bφ− a)v = 0 in Ω

α(t, x)
∂v

∂ν
+ β(t, x)v = 0 on ∂Ω.

By applying Lemma 3.6, we know that µ0, the principal eigenvalue of (3.93)–

(3.94) is positive. Hence we can use Theorem 3.10 to guarantee the existence

of positive numbers ρ and ζ such that

ρ ≤ µ0 − ζ
2b

(3.95)

and the inequality in (3.92) holds. �

The following theorem provides conditions on impulses for which φ is an

attractor for IBVP (3.70)–(3.73).

Theorem 3.11. Let λ1, φ and BM be as in Lemma 3.10. Assume τBM < 1

and a > λ1. If the spacing between impulses, tk−tk−1, and the impulse function

Ik satisfy
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S0: Ik : Ω × R → R is a non-decreasing function with respect to the

second variable, and Ik(0) = 0 for every positive integer k.

S1: |Ik(x, z) − z| ≤ ρk−1e
−ζtk−1δk

(
1− e−ζ(tk−tk−1)

)
ψ(x) for every k,

where

ρk = ρ

k∏
i=1

[
1 + δi

(
eζ(ti−ti−1) − 1

)]
.

S2: 0 ≤ δk < 1 for every k.

S3:
∞∏
k=1

[
1 + δk(e

ζ(tk−tk−1) − 1)
]
<∞.

where ρ, ζ and ψ(x) as in Lemma 3.11, then φ is an attractor of IBVP (3.70)–

(3.73).

Proof. From S0, the existence of solution of IBVP (3.70)–(3.73) is guar-

anteed by Corollary 3.2. By applying Lemma 3.10 we know that the delay

does not effect the stability of φ.

Consider the problem in time interval (0, t1). For any solution of IBVP

(3.70)–(3.73), u(t, x), whose value at initial point |u(0, x) − φ(x)| < µ0

2b
ψ(x),

Lemma 3.11 implies the existence of positive numbers ρ and ζ such that

|u(t, x)− φ(x)| ≤ ρe−ζtψ(x).

It follows from S1 that

|u(t1, x)− φ(x)| ≤ |u(t1, x)− u(t−1 , x)|+ |u(t−1 , x)− φ(x)|

≤ ρe−ζt1ψ(x) + ρδ1

(
1− e−ζt1

)
ψ(x)

= ρe−ζt1ψ(x)
[
1 + δ1

(
eζt1 − 1

)]
= ρ1e

−ζt1ψ(x)

with ρ1 = ρ
[
1 + δ1

(
eζt1 − 1

)]
. From (S2) we know that ρ1e

−ζt1 ≤ ρ. This

number can be used as a new bound in time interval (t1, t2).

|u(t, x)− φ(x)| ≤ ρ1e
−ζtψ(x), t ∈ (t1, t2).
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|u(t2, x)− φ(x)| ≤ ρ1e
−ζt2ψ(x) + ρ1δ2e

−ζt1
(
1− e−ζ(t2−t1)

)
ψ(x)

= ρe−ζt2ψ(x)
[
1 + δ1

(
eζ(t2−t1) − 1

)]
= ρ2e

−ζt2ψ(x)

with ρ2 = ρ1

[
1 + δ1

(
eζ(t2−t1) − 1

)]
. It follows from S2 that ρ2e

−ζt2 ≤ ρ1. By

continuing this process we have

|u(t, x)− φ(x)| ≤ ρke
−ζtψ(x), for t ∈ [tk, tk+1)

with ρk = ρ
k∏
i=1

[
1 + δi

(
eζ(ti−ti−1) − 1

)]
. Using condition S3, we obtain

|u(t, x)− φ(x)| ≤ ρ
∞∏
k=1

[
1 + δk(e

ζ(tk−tk−1) − 1)
]
e−ζtψ(x)

lim
t→∞
|u(t, x)− φ(x)| = 0.

�

Remark 3.4. The linearised problem of IBVP (3.70)–(3.71) around zero,

given by

∂u

∂t
(t, x)−∆u(t, x) = au(t, x) in Ω, t 6= tk

α2
∂u

∂ν
(t, x) + β2u(t, x) = 0 on ∂Ω

u(0, x) = η(0, x) in Ω

u(tk, x) = Ik(u(tk
−, x)) in Ω, k = 1, 2, ...,

requires similar conditions on impulse functions to the conditions in Theorem

3.8 and in Theorem 3.9 in order to have zero function as an attractor.

By applying similar techniques to those used in Theorem 3.8, we obtain

that the solution of the linearized problem of IBVP (3.70)–(3.73) around ’equi-

librium’ φ,

∂

∂t
(u− φ)(t, x)−∆w(t, x) =(a− bφ(x))(u(t, x)− φ(x))

− bφ(x)(u(t− τ, x)− φ(x)) in Ω, t 6= tk
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α2
∂

∂ν
(u(t, x)− φ(x)) + β2(u(t, x)− φ(x)) = 0 on ∂Ω

u(t, x) = η(t, x) in [−τ, 0]× Ω

u(tk, x) = Ik(u(tk
−, x)) in Ω, k = 1, 2, ...,

converges to φ if the impulse functions and time delay satisfy the following

conditions:

(a) Ik(x, z) = φ(x) + γo(z − φ(x)) exp(−2(a − λ1)(tk − tk−1)) with 0 ≤

γo < 1,

(b) τ < (max{bu∗(x) : x ∈ Ω})−1.





CHAPTER 4

Diffusive Logistic Equations with Continuous Time

Delay and Impulses

In this chapter, a system of logistic equations with three phenomena, diffu-

sion, continuous infinite time delay, and impulses which occur at fixed times is

discussed. This system is considered in a bounded domain and infinite interval

of time. This work is motivated by some results found in [46], [57], [55], [17].

Schiaffino [46] investigated the system of a single species with diffusion

and continuous delay. The asymptotic behaviour of the solution was shown

by using a prior estimate. It was assumed that the initial conditions are non-

negative, the delay kernel is a decreasing function and the hereditary term

is dominated by non-delay logistic term. Yamada [57] found some sufficient

conditions for the global asymptotic stability of positive equilibrium in terms

of the Laplace transformation of the delay kernel. The proof was based on the

energy method with use of a certain Liapunov functional.

Worz-Busekros [55] obtained sufficient conditions for the global asymptotic

behaviour of the solution of a multi species logistic system with infinite delay

by assuming the delay kernels are a convex combination of exponential func-

tions. Gopalsamy [17] discussed a similar problem and showed the asymptotic

behaviour of the solution using a continuous Liapunov-like (non-negative and

non-differentiable) function. In [4] Bereketoglu and Gyori used the method

based on finding a positive bounded function that satisfied the system with a

certain perturbation.

The stability of logistic equations with impulses can be found e.g. in [27],

[25], [28]. The stability of steady-states are usually obtained using the Li-

apunov functional. Some papers use the notion of stability in terms of two

measures [25],[24].

53
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The existence of solution of diffusive logistic equation with continuous de-

lay and impulses is investigated in Section 1. Some conditions are discussed

in Section 2 under which the zero function become an attractor for this sys-

tem. In Section 3, the positive steady-state of the system without impulses

is considered. An extension to multi species system is obtained in the last

section.

1. Existence of Solution

Let Ω, ∂Ω, T, E, S, tk, Mi, M Ni, N, a, b be as in Chapter 3. The problem

which will be investigated is the following initial boundary value problem

∂u

∂t
(t, x)−∆u(t, x) = u(t, x)(a−bu(t, x)−

∫ t

−∞
f(t−s)u(s, x)ds) in E\M (4.1)

∂u

∂ν
(t, x) = 0 on S \N (4.2)

u(t, x) = uo(t, x) in (−∞, 0]× Ω̄ (4.3)

u(tk, x) = Ik(u(tk
−, x)) in Ω̄, k = 1, 2, ... . (4.4)

To solve this problem, several assumptions are made:

C1 uo ≥ 0(6≡ 0), uo ∈ C1((−∞, 0];D(−∆)) ∩ L1((−∞, 0];Lp(Ω)), p ≥ n.

C2 f(t) ≥ 0(6≡ 0), f ∈ C1([0,∞)) ∩ L1([0,∞)), tf ∈ L1([0,∞)).

C3 Ik ∈ C2(R) and Ik ≥ 0.

To find the solution, we consider the problem in every time interval formed

by two consecutive impulse times, as follows:

(uk)t(t, x)−∆uk(t, x) = uk(t, x)

(
ak(t, x)− buk(t, x)−

∫ t

0

f(t− s)u(s, x)ds

)
in t ∈ (0, tk − tk−1)× Ω (4.5)

∂uk
∂ν

(t, x) = 0 on (0, tk − tk−1)× ∂Ω (4.6)

uk(0, x) =

uo(x) for k = 1

Ik−1(uk−1((tk−1 − tk−2)−, x)) for k = 2, 3, ...
in Ω̄ (4.7)



1. EXISTENCE OF SOLUTION 55

with a1 = a,

ak(t, x) = a−
∫ 0

−∞
f(t− s)uo(s, x)ds−

k−1∑
i=1

∫ ti−ti−1

0

fi(t− s)ui(s, x)ds

for k = 2, 3, ..., to = 0 and fk(t) = f(t+ tk−1) for k = 1, 2, ....

The existence and uniqueness of the solution of problem (4.5)–(4.7) follow

from Yamada’s results in [57].

Lemma 4.1 (Proposition 3.2 and Remark 2.2 in [57]). If uo ∈ D(A) = {u ∈

W 2,p; ∂u
∂ν

= 0 on ∂Ω}, g ∈ C1[0, T ], and a1 ∈ Cα([0, T ];C(Ω)) with α ∈ (0, 1),

then there exists a positive constant To ≤ T such that the initial boundary value

problem given by

∂u

∂t
(t, x) = ∆u(t, x)+u(t, x)

(
a1(t, x)− b1u(t, x)−

∫ t

0

g(t− s)u(s)ds

)
, x ∈ Ω, t ≥ 0 (4.8)

∂u

∂ν
= 0 , x ∈ ∂Ω, t ≥ 0 (4.9)

u(0, x) = uo(x) ≥ 0 , x ∈ Ω (4.10)

has a unique solution u ∈ C([0, To];L
p(Ω))∩C([0, To];D(A)). Moreover u has

the following properties:

(i) u(t, x) ≥ 0 for x ∈ Ω and t ∈ [0, To] if uo ≥ 0 for x ∈ Ω.

(ii) If uo(≥ 0) is not identically zero then u(t, x) is positive for x ∈ Ω and

t ∈ (0, To].

Let v be a maximal solution of equations (4.9), (4.10), and

∂u

∂t
(t, x) = ∆u(t, x) + u(t, x)

(
a2 − b1u(t, x)−

∫ t

0

g(t− s)u(s)ds

)
x ∈ Ω, t ≥ 0 (4.11)

where a2 = a1(0, x)). In other words there is no solution of problem (4.11),(4.9),

and(4.10) on [0, T ′] if T ′ > T . If ‖v(t)‖∞ is bounded on [0, T ) ∩ [0, θ] for any

θ > 0, then it can be shown that T =∞ by using a translation argument.

Hence by solving problem (4.5)–(4.7) for k = 1, 2, ... sequentially, the exis-

tence and uniqueness of the solution of problem (4.1)–(4.4) are obtained.
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Theorem 4.1. There exists a unique solution of problem (4.1)–(4.4), this

solution is given by

u(t, x) = uk(t− tk−1, x), in [tk−1, tk), k = 1, 2, ..

where uk is solution of problem (4.5)–(4.7).

2. Zero Attractor

To specify the conditions under which zero function will become an attrac-

tor, we use similar techniques to those in Subsection 3.1. First we find a bound

of the solution of the problem without impulses.∫
Ω

∂u

∂t
(t, x)u(t, x)dx−

∫
Ω

u(t, x)∆u(t, x)dx

=

∫
Ω

u2(t, x)

(
a− bu(t, x)−

∫ ∞
0

f(s)u(t− s, x)ds

)
dx.

1

2

∂

∂t

∫
Ω

u2(t, x)dx+

∫
Ω

|∇u(t, x)|2dx

=

∫
Ω

u2(t, x)

(
a− bu(t, x)−

∫ ∞
0

f(s)u(t− s, x)ds

)
dx.

1

2

∂

∂t

∫
Ω

u2(t, x)dx+

∫
Ω

|∇u(t, x)|2dx ≤
∫

Ω

au2(t, x)dx.

1

2

∂

∂t

∫
Ω

u2(t, x)dx ≤
∫

Ω

au2(t, x)dx.

1

2

∂

∂t

∫
Ω

u2(t, x)dx ≤ a

∫
Ω

u2(t, x)dx.

1

2

∂

∂t
‖u(t, ·)‖L2(Ω) ≤ a‖u(t, ·)‖L2(Ω).

‖u(t, ·)‖L2(Ω) ≤ ‖u(0, ·)‖L2(Ω) exp{2at}.

Since ak(t, x) ≤ a, we can use this estimate on every time interval

‖u(t−k , ·)‖L2(Ω) ≤ ‖u(tk−1, ·)‖L2(Ω) exp{2a(tk − tk−1)}.

‖u(tk, x)‖L2(Ω) = ‖Ik(u(t−k , x))‖L2(Ω).
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Let Ik(z) = wkz where 0 < wk < exp (−2a(tk − tk−1)) for every k =

1, 2, 3.... Then we have

‖u(tk, x)‖L2(Ω) < wk‖u(tk−1, x)‖L2(Ω) exp {2a(tk − tk−1)}

= γk‖u(tk−1, x)‖L2(Ω)

< γkγk−1‖u(tk−2, x)‖L2(Ω) (4.12)

...

‖u(tk, x)‖L2(Ω) <

(
k∏
j=1

γj

)
‖u(0, x)‖L2(Ω) for every k

where γk = wk exp (2a(tk − tk−1)) < 1. It follows from

lim
k→∞

k∏
j=1

γj = 0 (4.13)

that lim
k→∞
‖u(tk, x)‖ = 0. Hence lim

t→∞
‖u(t, x)‖ = 0.

Now we can state this result as follows

Theorem 4.2. Let Ik(z) = wkz where 0 < wk < exp (−2a(tk − tk−1)) for

every k = 1, 2, 3.... Then 0 is an attractor of system (4.1)–(4.4).

3. Positive Attractor

In this section, conditions will be found under which u∗ = a

b+
∫ t
−∞ f(s)ds

is a

positive attractor of problem (4.1)–(4.4). The motivation of choosing u∗ as a

positive attractor and the technique used for proving this, come from Theorem

3.2 in [57] and Theorem 2.1 in [17]. Yamada [57] investigated the stability of

positive ’equilibrium’ of logistic equation with diffusion and continuous time

delay. The time delay in this system represents an effect from the past state

started at 0. Gopalsamy [17] discussed the asymptotic behaviour of n-species

Volterra system with the interval of integration (−∞, t).

Yamada [57] show the stability of system (4.8)–(4.10) in the following

lemma.
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Lemma 4.2 (Theorem 3.2 in [57]). Let b1+inf{Re
(∫∞

0
e−iςtg(t)dt; ς ∈ R

)
>

0}. Then the solution u of problem (4.8)–(4.10) satisfies

lim
t→∞

u(t, x) =
a1

b1 +
∫∞

0
g(s)ds

on Ω.

In [17], Gopalsamy investigated the asymptotic behaviour of n-species

Volterra system given by

dxi
dt

= xi(t)

(
ri +

n∑
j=1

aijxj(t) +
n∑
j=1

bij

∫ t

−∞
kij(t− s)xj(s)ds

)

, t > 0, i = 1, 2, ..., n (4.14)

xi(s) = φi(s) ≥ 0, s ∈ (−∞, 0] (4.15)

where sup
s≤0

φi(s) < ∞, i = 1, 2, ..., n, φi is a bounded nonnegative integrable

function on (−∞, 0] with a possible jump discontinuity at s = 0 so that φi(0) >

0, i = 1, 2, ..., n, and

(G1) the delay kernels kij, i, j = 1, 2, .., n are defined on [0,∞), bounded,

integrable and normalised∫ ∞
0

kij(s)ds = 1;

∫ ∞
0

|kij(s)|ds <∞,
∫ ∞

0

s|kij(s)|ds <∞,

(G2) ri, aij, bij are real constants satisfying

aii < 0, |aii| >
n∑
j=1

|bij||
∫ ∞

0

|kij(s)|ds+
n∑
j=1
j 6=i

aij, i = 1, 2, ..., n

such that there exists a solution x∗ = (x∗1, x
∗
2, ..., x

∗
n) with x∗i > 0 of

the linear system

n∑
j=1

(aij + bij)x
∗
j = ri, i = 1, 2, ..., n.

Lemma 4.3 (Theorem 2.1 in [17]). Assume that hypotheses (G1)-(G2) hold

for system (4.14)–(4.15). Then all the solutions of (4.14)–(4.15) satisfy

lim
t→∞

xi(t) = x∗i , i = 1, 2, ..., n.
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Theorem 4.3. Let b ≥ 2
∫∞

0
f(s)ds and the impulse function Ik(z) =

(1 + βk(z))z with βk satisfy the following relation

|βk(z)| ≤ 1− exp

(
1− exp

(
1
k2

)
z + u∗

[
z − u∗ − u∗ ln

( z
u∗

)])

where u∗ = a
b+
∫∞
0 f(s)ds

. Then limt→∞(u(t, x)− u∗) = 0.

Proof. Let V (t, u) be the Liapunov functional for system (4.1)–(4.4).

V (t, u) =

∫
Ω

[
u(t, x)− u∗ − u∗ ln

(
u(t, x)

u∗

)]
+

∫
Ω

∫ ∞
0

f(s)

∫ t

t−s
(u(z, x)− u∗)2dzdsdx.

Let ϑ(t, x) = u(t, x)− u∗.

By applying the equation and inequality given by

u(t, x)

(
a− bu(t, x)−

∫ t

−∞
f(t− s)u(s, x)ds

)
= −u(t, x)

(
bϑ(t, x) +

∫ ∞
0

f(s)ϑ(t− s, x)ds

)
(4.16)

−ϑ(t, x)ϑ(t− s, x) ≤ ϑ2(t, x) + ϑ2(t− s, x), (4.17)

we obtain a bound for the derivative of V with respect to t along the solution

of IBVP (4.1)–(4.4) as follows

dV

dt
=

∫
Ω

∂u

∂t
(t, x)

(
1− u∗

u(t, x)

)
+

∫
Ω

∫ ∞
0

f(s)(ϑ2(t, x)− ϑ2(t− s, x))dsdx

=

∫
Ω

(
∆u− u(t, x)

(
bϑ(t, x) +

∫ ∞
0

f(s)ϑ(t− s, x)ds

))(
1− u∗

u(t, x)

)
dx

+

∫
Ω

∫ ∞
0

f(s)(ϑ2(t, x)− ϑ2(t− s, x)dsdx

=

∫
Ω

(
−u∗ (∇u(t, x))2

u2(t, x)
− bu(t, x)ϑ(t, x)

(
1− u∗

u(t, x)

))
dx

−
∫

Ω

u(t, x)

(
1− u∗

u(t, x)

)∫ ∞
0

f(s)ϑ(t− s, x)dsdx

+

∫
Ω

∫ ∞
0

f(s)(ϑ2(t, x)− ϑ2(t− s, x))dsdx
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dV

dt
≤− b

∫
Ω

ϑ2(t, x)dx+

∫
Ω

∫ ∞
0

f(s)(ϑ2(t, x)− ϑ2(t− s, x))dsdx

−
∫

Ω

∫ ∞
0

f(s)ϑ(t, x)ϑ(t− s, x)dsdx

≤− b
∫

Ω

ϑ2(t, x)dx+

∫
Ω

(
2

∫ ∞
0

f(s)ϑ2(t, x)ds

)
dx

dV

dt
≤
∫

Ω

(
(−b+ 2$)ϑ2(t, x)

)
dx (4.18)

≤0

where $ =
∫∞

0
f(s)ds. Thus V is non-increasing on every time interval

[tk, tk+1).

Let ψk(z) =
exp( 1

k2 )−1

z+u∗

[
z − u∗ − u∗ ln

(
z
u∗

)]
≥ 0.

From the condition on βk we have

|βk(z)| ≤ 1− exp(−ψk(z)) ≤ ψk(z).

|βk(u(t−k , x))|(u(t−k , x) + u∗)

≤
(

exp

(
1

k2

)
− 1

)[
u(t−k , x)− u∗ − u∗ ln

(
u(t−k , x)

u∗

)]
.

(4.19)

For βk(z) < 0 we have βk(z) ≥ exp(−ψk(z)) − 1. Thus ln(1 + βk(z)) ≥

−ψk(z). And for βk(z) ≥ 0, ln(1 + βk(z)) ≤ βk(z) ≤ ψk(z). Hence | ln(1 +

βk(z))| ≤ ψk(z).

| ln(1 + βk(u(t−k , x)))|(u(t−k , x) + u∗)

≤
(

exp

(
1

k2

)
− 1

)[
ϑ(t−k , x)− u∗ ln

(
u(t−k , x)

u∗

)]
. (4.20)

V (tk, u(tk, x)) =

∫
Ω

(
u(t−k , x)(1 + βk(ϑ(t−k , x)))

)
dx

−
∫

Ω

u∗ ln

(
u(t−k , x)(1 + βk(u(t−k , x)))

u∗

)
dx

+

∫
Ω

∫ ∞
0

f(s)

∫ tk

tk−s
ϑ2(z, x)dzdsdx.
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V (tk, u(tk, x)) =

∫
Ω

(
ϑ(t−k , x)− u∗ ln

(
u(t−k , x)

u∗

))
dx

+

∫
Ω

(
βk(u(t−k , x))u(t−k , x)− u∗ ln(1 + βk(u(t−k , x)))

)
dx

+

∫
Ω

∫ ∞
0

f(s)

∫ tk

tk−s
ϑ2(z, x)dzdsdx

≤
∫

Ω

(
ϑ(t−k , x)− u∗ ln

(
u(t−k , x)

u∗

))
dx

+

∫
Ω

|βk(u(t−k , x))u(t−k , x)− u∗ ln(1 + βk(u(t−k , x)))|dx

+

∫
Ω

∫ ∞
0

f(s)

∫ tk

tk−s
ϑ2(z, x)dzdsdx

≤
∫

Ω

(
ϑ(t−k , x)− u∗ ln

(
u(t−k , x)

u∗

))
dx

+

∫
Ω

≤
(
|βk(u(t−k , x))u(t−k , x)|+ |u∗ ln(1 + βk(u(t−k , x)))|

)
dx

+

∫
Ω

∫ ∞
0

f(s)

∫ tk

tk−s
ϑ2(z, x)dzdsdx

≤
∫

Ω

(
ϑ(t−k , x)− u∗ ln

(
u(t−k , x)

u∗

))
dx

+

∫
Ω

max{|βk(u(t−k , x))|, | ln(1 + βk(u(t−k , x)))|}(u(t−k , x) + u∗)dx

+

∫
Ω

∫ ∞
0

f(s)

∫ tk

tk−s
ϑ2(z, x)dzdsdx.

V (tk, u(tk, x)) ≤ V (t−k , u(t−k , x)) exp

(
1

k2

)
.

V (t, u(t, x))) ≤ V (0, u(0, x))

p∏
k=1

exp

(
1

k2

)
for t ∈ (tp, tp+1), p ≥ 1. (4.21)

By integrating the inequality in 4.18 we obtain∫ t

0

dV

ds
(s, u(s, x))ds ≤

∫
Ω

∫ t

0

(
(−b+ 2α)(u(s, x)− u∗)2

)
dtdx. (4.22)

Expanding the hand side of inequality 4.22 we have∫ t

0

dV

ds
(s, u(s, x))ds =

∫ t

tp

dV

ds
(s, u(s, x))ds+

p∑
k=1

∫ tk

tk−1

dV

ds
(s, u(s, x))ds
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for t ∈ (tp, tp+1].∫ t

0

dV

ds
(s, u(s, x))ds =V (t, u(t, x))− V (tp, u(tp, x))

+

p∑
k=1

(
V (t−k , u(t−k , x))− V (tk−1, u(tk−1, x)))

)
=V (t, u(t, x))− V (0, u(0, x))

+

p∑
k=1

(
V (t−k , u(t−k , x))− V (tk, u(tk, x)))

)
. (4.23)

Since V is non-increasing,

V (0, u(0, x)) +

p∑
k=1

(
V (tk, u(tk, x))− V (t−k , u(t−k , x))

)
≥ 0.

From (4.19), (4.20), (4.21) we have

V (tk, u(tk, x))−V (t−k , u(t−k , x)))

= (βk(u(t−k , x))u(t−k , x)− u∗ ln(1 + βk(u(t−k , x)))).

|V (tk, u(tk, x))−V (t−k , u(t−k , x)))|

= |βk(u(t−k , x))u(t−k , x)− u∗ ln(1 + βk(u(t−k , x)))|.

|V (tk, u(tk, x))−V (t−k , u(t−k , x)))|

≤ |βk(u(t−k , x))|u(t−k , x) + u∗| ln(1 + βk(u(t−k , x)))|

≤
(

exp

(
1

k2

)
− 1

)
V (t−k , u(t−k , x)))

≤
(

exp

(
1

k2

)
− 1

)
V (0, u(0, x))

k−1∏
j=1

exp

(
1

j2

)
.

Using the comparison test of infinite series(to series
∑∞

k=1
1
k1.5 ), we find that

∞∑
k=1

(
V (tk, u(tk, x))− V (t−k , u(t−k , x))

)
is convergent. Thus V (0, u(0, x)) +

∑∞
k=1

(
V (tk, u(tk, x))− V (t−k , u(t−k , x))

)
is

finite and non-negative. Then we do the same action to the right hand side of
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equation (4.18).∫
Ω

∫ t

0

(−b+ 2$)ϑ2(s, x)dsdx

=

∫
Ω

∫ t

tp

(
(−b+ 2$)ϑ2(s, x)

)
dsdx

+

p∑
k=1

∫
Ω

∫ tk

tk−1

(
(−b+ 2$)ϑ2(s, x)

)
dsdx (4.24)

for t ∈ (tp, tp+1].

From equation (4.18) and (4.23), we obtain the following inequality.

V (t, u(t, x))+

∫
Ω

∫ t

0

(
(b− 2$)(ϑ2(s, x)

)
dsdx

≤ V (0, u(0, x)) +

p∑
k=1

(
V (tk, u(tk, x))− V (t−k , u(t−k , x))

)
.

(4.25)

Since V is positive and the right hand side (4.25) is finite and positive,∫
Ω

∫ t

0

(
(−b+ 2$)ϑ2(s, x)

)
dsdx

is finite for all t. From the assumption of impulse time, tk → ∞ as k → ∞,

and the solution u is bounded, differentiable and uniformly continuous in every

time interval (tk, tk+1), we have

lim
t→∞

ϑ(t, x) = lim
t→∞

(u(t, x)− u∗) = 0.

�

4. Multi Species System

An extension to multi species system is discussed in this section. We make

some assumptions to obtain a positive attractor for this system. Some of these

assumptions are similar to C1-C3. The proof uses a similar method to the one

for the single species system.
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The multi species system is given by

ui
dt

(t, x)−∆ui(t, x) = ui(t, x)

(
ai +

m∑
j=1

bijuj(t, x)

)

+ ui(t, x)
m∑
j=1

cij

∫ t

−∞
fj(t− s)uj(s, x)ds in E \M (4.26)

∂ui
∂ν

(t, x) = 0 on S \N (4.27)

ui(t, x) = ηi(t, x) in (−∞, 0]× Ω̄ (4.28)

ui(tk, x) = (1 + βik(ui(t
−
k , x)))(ui(tk

−, x)) in Ω̄, k = 1, 2, ... (4.29)

for i = 1, 2, ...m where ai, bij, cij are constants.

Some assumptions are made as follows:

P1. ηi ≥ 0(6≡ 0), ηi ∈ C1((−∞, 0];D(−∆)) ∩ L1((−∞, 0];Lp(Ω)), p ≥ n.

P2. fi(t) ≥ 0(6≡ 0), fi ∈ C1([0,∞)) ∩ L1([0,∞)), tfi ∈ L1([0,∞)).

P3. ai > 0, bii < 0.

P4. There exists u∗i > 0, i = 1, ...,m such that ai+
∑m

j=1 (bij + cij$j)u
∗
j =

0 , $j =
∫∞

0
fj(s)ds.

P5. bii + αi|cii|+ 1
2

∑m
j=1
j 6=i

(|bij|+ |bji|+ αi|cji|+ αj|cij|) < 0.

P6. βik is a function on R+ and satisfies this relation:

|βik(z)| ≤ 1− exp

(
1− exp

(
1
k2

)
z + u∗i

[
z − u∗i − u∗i ln

(
z

u∗i

)])
for every i = 1, ..m, k = 1, 2, 3, ....

By substituting u∗1, u
∗
2, ..., u

∗
m in condition P4 to equation (4.26), this equa-

tion now can be written as:

dui
dt

(t, x) = ∆ui(t, x) + ui(t, x)

(
m∑
j=1

bij(uj(t, x)− u∗j)

)

+ ui(t, x)
m∑
j=1

cij

∫ ∞
0

fj(s))(uj(t− s, x)− u∗j)ds.

Theorem 4.4. Assume that P1–P6 hold. The function u∗ = (u∗1, ..., u
∗
m)

is a positive attractor for the system (4.26)–(4.29).
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Proof. To show that u∗ is an attractor for system (4.26)–(4.29), we choose

the Liapunov functional as follows

V (t, u1, .., um) =
m∑
i=1

∫
Ω

(
ui(t, x)− u∗i − u∗i ln

(
ui(t, x)

u∗i

))
dx

+
m∑
i=1

m∑
j=1

|cij|
2

∫
Ω

∫ ∞
0

fj(s)

∫ t

t−s
(uj(z, x)− u∗j)2dzdsdx.

The derivative of V along the solution of system (4.26)–(4.29) is given by

dV

dt
=

m∑
i=1

∫
Ω

ui(t, x)− u∗i
ui(t, x)

∆ui(t, x)dx

+
m∑
i=1

∫
Ω

(ui(t, x)− u∗i )

(
m∑
j=1

bij(uj(t, x)− u∗j)

)
dx

+
m∑
i=1

∫
Ω

(ui(t, x)− u∗i )
m∑
j=1

cij

∫ ∞
0

fj(s)(uj(t− s, x)− u∗j)dsdx

+
m∑
i=1

m∑
j=1

|cij|
2

∫
Ω

∫ ∞
0

fj(s)((uj(t, x)− u∗j)2 − (uj(t− s, x)− u∗j)2)dsdx.

We apply Green’s theorem to the first term of the right hand side and use

the condition on the boundary in equation (4.27) to obtain

dV

dt
=

m∑
i=1

−u∗i
∫

Ω

(∇ui(t, x))2

u2
i (t, x)

dx+
m∑
i=1

m∑
j=1

∫
Ω

bij(ui(t, x)− u∗i )(uj(t, x)− u∗j)dx

+
m∑
i=1

m∑
j=1

cij

∫
Ω

∫ ∞
0

fj(s)(ui(t, x)− u∗i )(uj(t− s, x)− u∗j)dsdx

+
m∑
i=1

m∑
j=1

|cij|
2

∫
Ω

∫ ∞
0

fj(s)((uj(t, x)− u∗j)2 − (uj(t− s, x)− u∗j)2)dsdx.
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Since the first term in the right hand side is negative and from the fact that

2rs ≤ r2+s2 for every real number r and s, we obtain the following inequalities:

dV

dt
≤

m∑
i=1

∫
Ω

bii(ui(t, x)− u∗i )2 +
m∑
j=1
j 6=i

bij(ui(t, x)− u∗i )(uj(t, x)− u∗j)

 dx

+
m∑
i=1

m∑
j=1

|cij|
2

∫
Ω

∫ ∞
0

fj(s)((ui(t, x)− u∗i )2 + (uj(t− s, x)− u∗j)2)dsdx

+
m∑
i=1

∫
Ω

$i
|cii|
2

(ui(t, x)− u∗i )2 +
m∑
j=1
j 6=i

$j
|cij|

2
(uj(t, x)− u∗j)2

 dx

−
m∑
i=1

m∑
j=1

|cij|
2

∫
Ω

∫ ∞
0

fj(s)(uj(t− s, x)− u∗j)2dsdx.

dV

dt
≤
∫

Ω

bii(ui(t, x)− u∗i )2 +
m∑
j=1
j 6=i

|bij|
2

((ui(t, x)− u∗i )2 + (uj(t, x)− u∗j)2)

 dx

+
m∑
i=1

∫
Ω

$i
|cii|
2

+
m∑
j=1
j 6=i

$j
|cij|

2

 (ui(t, x)− u∗i )2dx

+
m∑
i=1

m∑
j=1

∫
Ω

∫ ∞
0

fj(s)(uj(t− s, x)− u∗j)2dsdx

+
m∑
i=1

∫
Ω

$i
|cii|
2

(ui(t, x)− u∗i )2 +
m∑
j=1
j 6=i

$j
|cij|

2
(uj(t, x)− u∗j)2

 dx

−
m∑
i=1

m∑
j=1

|cij|
2

∫
Ω

∫ ∞
0

fj(s)(uj(t− s, x)− u∗j)2dsdx.

dV

dt
≤

m∑
i=1

∫
Ω

bii +$i|cii|+
m∑
j=1
j 6=i

(
|bij|

2
+$j

|cij|
2

) (ui(t, x)− u∗i )2dx

+
m∑
i=1

m∑
j=1
j 6=i

∫
Ω

(
|bij|

2
+$j

|cij|
2

)
(uj(t, x)− u∗j)2dx.

(4.30)
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By exchanging the indices i and j, inequality (4.30) becomes

dV

dt
≤

m∑
i=1

∫
Ω

[bii +$i|cii|+ ] (ui(t, x)− u∗i )2dx

m∑
i=1

∫
Ω

m∑
j=1
j 6=i

(
|bij|

2
+
|bji|

2
+$j

|cij|
2

+$i
|cji|

2

)
(ui(t, x)− u∗i )2dx

≤ 0.

(4.31)

Thus V is non-increasing on [0, t1) and [tk, tk+1) for k = 1, 2, 3, ....

Let ψik(z) =
exp( 1

k2 )−1

z+u∗i

[
z − u∗i − u∗i ln

(
z
u∗i

)]
≥ 0.

From the condition on βik in C6 we have

|βik(z)| ≤ 1− exp(−ψik(z)) ≤ ψik(z)

|βik(ui(t−k , x))|(ui(t−k , x) + u∗i ) ≤
(

exp

(
1

k2

)
− 1

)
×
[
ui(t

−
k , x)− u∗i − u∗i ln

(
ui(t

−
k , x)

u∗i

)]
.

(4.32)

For βik(z) < 0 we have βik(z) ≥ exp(−ψik(z)) − 1 so that − ln(1 + βik(z)) ≤

ψik(z), and for βik(z) ≥ 0, ln(1 + βik(z)) ≤ βik(z) ≤ ψik(z). Thus

| ln(1 + βik(ui(t
−
k , x)))|(ui(t−k , x) + u∗i )

≤
(

exp

(
1

k2

)
− 1

)[
ui(t

−
k , x)− u∗i − u∗i ln

(
ui(t

−
k , x)

u∗i

)]
.

(4.33)

Using these properties, we obtain the following results.

V (tk, u1(tk, x),..., um(tk, x))

=
m∑
i=1

∫
Ω

ui(t
−
k , x)

(
1 + βik(ui(t

−
k , x)))− u∗i

)
dx

−
m∑
i=1

∫
Ω

ui(t
−
k , x)u∗i ln

(
ui(t

−
k , x)(1 + βik(ui(t

−
k , x)))

u∗i

)
dx

+
m∑
i=1

∫
Ω

∫ ∞
0

f(s)

∫ tk

tk−s
(ui(z, x)− u∗i )2dzdsdx.
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V (tk, u1(tk, x),..., um(tk, x))

≤
m∑
i=1

∫
Ω

(
ui(t

−
k , x)− u∗i − u∗i ln

(
ui(t

−
k , x)

u∗i

))
dx

+
m∑
i=1

∫
Ω

|βik(ui(t−k , x))ui(t
−
k , x)− u∗i ln(1 + βik(ui(t

−
k , x)))|dx

+
m∑
i=1

∫
Ω

∫ ∞
0

f(s)

∫ tk

tk−s
(ui(z, x)− u∗i )2dzdsdx.

Using the triangle inequality, (4.32) and (4.33) we have

V (tk,u1(tk, x), ..., um(tk, x))

≤
m∑
i=1

∫
Ω

(
ui(t

−
k , x)− u∗i − u∗i ln

(
ui(t

−
k , x)

u∗i

))
dx

+
m∑
i=1

∫
Ω

|βik(ui(t−k , x))ui(t
−
k , x)|+ |u∗i ln(1 + βik(ui(t

−
k , x)))|dx

+
m∑
i=1

∫
Ω

∫ ∞
0

f(s)

∫ tk

tk−s
(ui(z, x)− u∗i )2dzdsdx

≤
∫

Ω

m∑
i=1

(
ui(t

−
k , x)− u∗i − u∗i ln

(
ui(t

−
k , x)

u∗i

))
dx

+

∫
Ω

m∑
i=1

(
max{|βik(ui(t−k , x))|, | ln(1 + βik(ui(t

−
k , x)))|}(ui(t−k , x) + u∗i )

)
dx

+

∫
Ω

m∑
i=1

∫ ∞
0

f(s)

∫ tk

tk−s
(ui(z, x)− u∗i )2dzdsdx.

V (tk, u1(tk, x), ..., um(tk, x)) ≤ V (t−k , u1(t−k , x), ..., um(t−k , x)) exp

(
1

k2

)
.

(4.34)

By applying the relation in (4.34) sequentially we have a bound for V as

follows:

V (t, u1(t, x), ..., um(t, x)) ≤ V (0, u1(0, x), ..., um(0, x))

p∏
k=1

exp

(
1

k2

)
(4.35)

for t ∈ (tp, tp+1), p ≥ 1.
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Let Ki = bii+$i|cii|+
∑m

j=1
j 6=i

(
|bij |

2
+
|bji|

2
+$j

|cij |
2

+$i
|cji|

2

)
. By integrating

both sides of (4.31) we obtain∫ t

0

dV

ds
(s, u1(s, x), ..., um(s, x))ds ≤

∫
Ω

∫ t

0

m∑
i=1

(
Ki(ui(s, x)− u∗i )2

)
dtdx.

(4.36)

By expanding the left hand side term of (4.36) we have∫ t

0

dV

ds
(s, u1(s, x), ..., um(s, x))ds

=

∫ t

tp

dV

ds
(s, u1(s, x), ..., um(s, x))ds

+

p∑
k=1

∫ tk

tk−1

dV

ds
(s, u1(s, x), ..., um(s, x))ds, t ∈ (tp, tp+1]

= V (t, u1(t, x), ..., um(s, x))− V (tp, u1(tp, x), ..., um(tp, x))

+

p∑
k=1

V (t−k , u1(t−k , x), ..., um(t−k , x))

−
p∑

k=1

V (tk−1, u1(tk−1, x), ..., um(tk−1, x)).

By rearranging the sums we obtain∫ t

0

dV

ds
(s, u1(s, x), ..., um(s, x))ds

= V (t, u1(t, x), ..., um(t, x))− V (0, u1(0, x), ..., um(0, x))

+

p∑
k=1

V (t−k , u1(t−k , x), ..., um(t−k , x))

−
p∑

k=1

V (tk, u1(tk, x), ..., um(tk, x)).

(4.37)

Since V is non-increasing on every interval [tk, tk+1), k = 1, 2, ... and [0, t1),

V (0, u1(0, x), ..., um(0, x)) +

p∑
k=1

V (tk, u1(tk, x), ..., um(tk, x))

−
p∑

k=1

V (t−k , u1(t−k , x), ..., um(t−k , x))

is non-negative.



70 4. CONTINUOUS DELAY

From (4.32), (4.33), and (4.35) we have

V (tk, u1(tk, x), ..., um(tk, x))− V (t−k , u1(t−k , x), ..., um(t−k , x))

=
m∑
i=1

(βik(ui(t
−
k , x))ui(t

−
k , x)− u∗i ln(1 + βik(ui(t

−
k , x)))).

|V (tk, u1(tk, x), ..., um(tk, x))− V (t−k , u1(t−k , x), ..., um(t−k , x))|

=
m∑
i=1

|βik(ui(t−k , x))ui(t
−
k , x)− u∗i ln(1 + βik(ui(t

−
k , x)))|

≤
m∑
i=1

|βik(ui(t−k , x))|ui(t−k , x) + u∗i | ln(1 + βik(ui(t
−
k , x)))|

≤
(

exp

(
1

k2

)
− 1

)
V (t−k , u1(t−k , x), ...um(t−k , x))

≤
(

exp

(
1

k2

)
− 1

)
V (0, u1(0, x), ..., um(0, x))

k−1∏
j=1

exp

(
1

j2

)
.

From the fact that

∞∑
k=1

(
V (tk, u1(tk, x), ..., um(tk, x))− V (t−k , u1(t−k , x), ..., um(t−k , x))

)
is convergent, we have

0 ≤ V (0, u1(0, x), ..., um(0, x)) +
∞∑
k=1

V (tk, u1(tk, x), ..., um(tk, x))

− V (t−k , u1(t−k , x), ..., um(t−k , x)) <∞.

(4.38)

By using (4.36) and (4.37) we obtain the following relation:

V (t, u1(t, x), ..., um(t, x))−
∫

Ω

∫ t

0

m∑
i=1

(
Ki(ui(s, x)− u∗i )2

)
dsdx

≤ V (0, u1(0, x), ..., um(0, x))

+

p∑
k=1

V (tk, u1(tk, x), ..., um(tk, x))

−
p∑

k=1

V (t−k , u(t−k , x), ..., u(t
−
k , x)).

(4.39)
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From (4.38) the limit of the right hand side of (4.39) is finite and positive as

p→∞. Since V is positive,∫
Ω

m∑
i=1

∫ t

0

(
−Ki(ui(s, x)− u∗i )2

)
dsdx

is bounded independently from t. From the assumption tk →∞ as k →∞ and

the fact that the solution u is bounded, differentiable and uniformly continuous

in every time interval (tk, tk+1), we have

lim
t→∞

(ui(t, x)− u∗i ) = 0.

�

Remark 4.1. Conditions on the impulse function in Theorem 4.3 and The-

orem 4.4 do not depend explicitly on the distance between two consecutive im-

pulse times. The effect of the choice of impulse times is included in the size of

jumps which depend on the difference between the value of the solution and u∗.

Hence, if the distance between two consecutive impulse times is larger, then

the solution will be closer to the equilibrium and larger jump can be tolerated.

Remark 4.2. The linearized problem of IBVP (4.1)–(4.4) around 0 is given

by

∂u

∂t
(t, x)−∆u(t, x) = au(t, x) in Ω , t 6= tk

∂u

∂ν
(t, x) = 0 on ∂Ω

u(0, x) = uo(0, x) in Ω̄

u(tk, x) = Ik(u(tk
−, x)) in Ω̄, k = 1, 2, ... .

Conditions for the existence of zero attractor for this problem are the same as

the conditions in Theorem 4.2.

The solution of the linearized problem of IBVP (4.1)–(4.4) around u∗

∂

∂t
(u− u∗)(t, x)−∆(u− u∗)(t, x)

= −bu∗(u(t, x)− u∗) + u∗
∫ ∞

0

f(s)(u(t− s, x)− u∗)ds

in Ω, t 6= tk
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∂

∂ν
(u− u∗)(t, x) = 0 on ∂Ω

u(t, x) = uo(t, x) in (−∞, 0]× Ω̄

u(tk, x) = Ik(u(tk
−, x)) in Ω̄, k = 1, 2, ...,

is attracted to u∗ if
∫∞

0
f(s)ds < b and the impulse functions are in the follow-

ing form

Ik(z) = (1− σo)z + σou
∗

with 0 < σo < 1. This can be proved using Liapunov functional as follows

V (t, u) =

∫
Ω

(u(t, x)− u∗)2dx+ u∗
∫

Ω

∫ ∞
0

f(s)

∫ t

t−s
(u(w, x)− u∗)2dzdsdx.

Let ϑ(t, x) = u(t, x)− u∗ and $ =
∫∞

0
f(s)ds.

The derivative of the Liapunov functional is given by

dV

dt
=

∫
Ω

2ϑ(t, x)
∂ϑ

∂t
dx+ u∗

∫
Ω

∫ ∞
0

f(s)
(
ϑ2(t, x)− ϑ2(t− s, x)

)
dsdx

=

∫
Ω

2ϑ(t, x)

(
∆ϑ(t, x)− bu∗ϑ(t, x) + u∗

∫ ∞
0

f(s)ϑ(t− s, x)ds

)
dx

+ u∗
∫

Ω

∫ ∞
0

f(s)
(
ϑ2(t, x)− ϑ2(t− s, x)

)
dsdx

=− 2

∫
Ω

|∇ϑ(t, x)|2dx− 2bu∗
∫

Ω

ϑ2(t, x)dx

+ 2u∗
∫

Ω

∫ ∞
0

f(s)ϑ(t, x)ϑ(t− s, x)dsdx

+$u∗
∫

Ω

ϑ2(t, x)dx− u∗
∫

Ω

∫ ∞
0

f(s)ϑ2(t− s, x)dsdx

≤− 2

∫
Ω

|∇ϑ(t, x)|2dx+ ($ − 2b)u∗
∫

Ω

ϑ2(t, x)dx

+ u∗
∫

Ω

∫ ∞
0

f(s)
(
ϑ2(t, x) + ϑ2(t− s, x)

)
dsdx

− u∗
∫

Ω

∫ ∞
0

f(s)ϑ2(t− s, x)dsdx

≤2($ − b)u∗
∫

Ω

ϑ2(t, x)dx

≤0.

Hence V is decreasing on every interval [tk, tk+1), k = 1, 2, ....
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When impulses occur at times tk for k = 1, 2, 3, ..., the Liapunov function

will be in the following form:

V (tk, u) =

∫
Ω

(u(tk, x)− u∗)2dx+ u∗
∫

Ω

∫ ∞
0

f(s)

∫ tk

tk−s
(u(w, x)− u∗)2dwdsdx

=

∫
Ω

((1− σo)u(t−k , x) + σou
∗ − u∗)2dx

+ u∗
∫

Ω

∫ ∞
0

f(s)

∫ tk

tk−s
(u(w, x)− u∗)2dwdsdx

=

∫
Ω

(1− σo)2(u(t−k , x)− u∗)2dx

+ u∗
∫

Ω

∫ ∞
0

f(s)

∫ tk

tk−s
(u(w, x)− u∗)2dwdsdx.

Because 1− σo < 1, we have

V (tk, u) <

∫
Ω

(u(t−k , x)− u∗)2dx+ u∗
∫

Ω

∫ ∞
0

f(s)

∫ tk

tk−s
(u(w, x)− u∗)2dwdsdx

V (tk, u) < V (t−k , u).

Thus V is decreasing on interval [0,∞) and the solution of the linearized prob-

lem, u(t, x), converges to the positive attractor, u∗.
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