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Executive Summary

High Dynamic Range (HDR) imaging helps to overcome the limited dynamic range of

traditional imaging system, i.e. Low Dynamic Range (LDR) imaging. LDR imaging

systems are capable of capturing less than three orders of dynamic information of a scene.

Because of this limited dynamic range, LDR imaging systems cannot capture details in

scenes with both dark and very bright regions in a single scene. This has been a limiting

factor for implementing the LDR imaging system in Machine Vision (MV) applications

such as agriculture, surveillance, autonomous driving.

The limitation of traditional imaging systems does not affect HDR imaging with its

extended dynamic range. However, HDR imaging for its increased information content

requires more storage, longer transfer time and computation power for its use of floating-

point data to represent the dynamic range compared to 8-bit LDR images. Tone Mapping

Operator (TMO) are used to dynamically compress the higher dynamic range of HDR

images to 8-bit LDR images while still preserving some details. While there are multiple

state-of-the-art TMOs available for such purpose, most of them have been designed with

subjective metrics used for human consumption. There is a novel TMO designed with

metrics to improve noise suppression, enhance image contrast and edge detection and re-

duce image flicker based on a biological inspiration from blowfly called bio-inspired TMO.

The metrics used for bio-inspired TMO are focused on information content rather than

artistic recreation for human consumption and hence more suited for MV applications.

This thesis is undertaken to evaluate the performance of bio-inspired TMO MV ap-

plication of Object classification and Localisation on dynamic images. For evaluation,

multiple datasets were captured in normal and low light condition on different camera

setup using three HDR cameras: Monochrome, Colour and Low-Resolution Colour cam-

era. The HDR images captured for each case were pre-processed using bio-inspired TMO

to create PRC datasets. For comparison, the captured HDR images were also used to

create LDR datasets by applying a gamma correction of 2.0 followed by histogram equal-

isation to create RAW datasets. Each of these datasets were annotated to create ground

truth data. Faster R-CNN was used as the object detector to generate predictions on the

datasets. These predictions were compared with the ground truth annotation data using

evaluation metrics of PASCAL VOC.
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Upon evaluating the results, it showed that on overall bio-inspired TMO helped to

increased object detector’s performance. However, this increment was enjoyed only by

datasets captured using Monochrome cameras. The gain for low resolution colour cam-

era was marginal while in case of colour cameras the performance of object detector

was found to decrease when using bio-inspired pre-processed datasets. Overall, applying

bio-inspired TMO on datasets captured by Monochrome cameras showed the maximum

improvement in low light conditions, however the improvements were minimal in normal

lighting conditions.
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Chapter 1

Introduction

1.1 Project Background

The application of Machine Vision (MV) extends to various fields such as factory automa-

tion, agriculture, autonomous driving, surveillance, object detection and vehicle tracking.

All these applications are subjected to a wide range of illumination conditions. The reli-

ability of MV technology depends on the ability of the imaging system to adapt against

such changing lighting condition.

The traditional imaging system, i.e. LDR can capture roughly three orders [8] of the

dynamic range of light from a scene. This limits the ability of LDR images to capture

details of a scene when exposed to a wide range of lighting conditions. The range of lighting

conditions refers to low light and extremely bright light conditions and a combination of

both resulting in bright and dark regions. Such limitations of LDR imaging significantly

impact its use in MV applications where the details are compromised due to change

in lighting conditions. HDR imaging partially overcomes these limitations by combining

multiple images taken with different exposure times into a single image, thereby preserving

details of a scene when exposed to a wide range of illumination conditions.

LDR imaging to represent the dynamic range of light in a scene uses fixed integers

of 8 bits per pixel (bpp). Comparatively, HDR images employ floating-point numbers to

represent the dynamic range of light in a scene [9]. HDR imaging can represent the entire

12 orders [8] of the dynamic range of light. The increased information in HDR images

requires more storage, memory per pixel, which increases the time for computation and

transmission [10; 11]. Furthermore, most display devices are built for 8-bit data and are

incompatible with floating data format of HDR [10]. These factors severely limit the use

of HDR imaging for MV applications. However, Tone Mapping Operator (TMO) [12],

which dynamically compresses the floating-point data format of HDR image to the fixed
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8-bit data format of LDR image while still preserving the details of original scene can be

utilised.

While most TMOs are designed with intent of artistic recreation of the original scene fit

for human consumption using subjective metrics such as Visual System Simulator (VSS),

Scene Reproduction (SRP), and Best Subjective Quality (BSQ) [13; 14]. A novel bio-

inspired TMO developed by Griffiths [15] was designed with non-subjective novel metrics

such as motion artefacts, noise suppression and flicker for MV applications. However, the

bio-inspired TMO [15] has only been implemented for static images and lacks comparisons

in its implementation in dynamic settings where either the scene or camera itself is in

motion.

Henceforth, this thesis evaluates the performance of bio-inspired TMO pre-processed

images in dynamic settings for the MV application of object classification and localisation.

The settings for evaluation include two dynamic settings: when the camera is static, and

the objects in the scene are in motion and when the camera and object both are in

motion. Furthermore, each scene has been captured by three cameras: Monochrome,

Colour and Low-Resolution Colour camera for comparison of the improvement in Normal

and Low light conditions. For the evaluation, multiple bio-inspired TMO pre-processed,

and non-processed LDR image datasets are compared for increased object detection using

a two-stage object detector Faster R-CNN [5].
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1.2 Goal and Objectives

This thesis aims to extend the evaluation of bio-inspired TMO on the dynamic sequence

of images by analysing the performance of an Object detector for object classification and

localisation on datasets pre-processed with bio-inspired TMO and exposed to Normal and

Low illumination conditions. Besides this, the thesis evaluates the performance of Object

detector on datasets captured using Monochrome, Colour and a row based multi-exposure

Colour (Low Resolution) cameras.
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Chapter 2

Background Theory

2.1 Low Dynamic Range (LDR) and High Dynamic

Range (HDR) Imaging

2.1.1 Introduction

Dynamic range is the ratio of the largest and smallest values of a quantity under mea-

surement. In terms of the imaging system or photography, the dynamic range of light

is the ratio of maximum (bright) and minimum (dark) measurable light intensities of a

scene. Photography is the process of recording a scene by capturing all of the various in-

tensities of light in the scene. The light-capturing process is done by using sensors such as

Charge-Coupled Device (CCD), Complementary Metal Oxide Semiconductor (CMOS) or

by exposing light onto photosensitive material. While the process of capturing an image

has become more accessible, the goal of photography has always been to capture the dy-

namic range of light and the features of the scene while minimising the difference between

the captured image and the actual scene [16]. However, traditional commercial cameras

are limited in their ability to capture the full dynamic range of light. It was realised early

on details of a scene with complicated lighting, i.e. increased dynamic range due to the

presence of a bright (light source) and a darker object, could not be captured by exposing

the scene only once because of the limited dynamic range of the photosensitive material.

Based on this realisation, to capture the full dynamic range of certain scene with com-

plicated lighting condition, HDR images have been developed as early as the 1850s by

French photographer Gustave Le Gray. He developed the HDR image by exposing the

sky and sea in two monochromatic negatives and combining them as seen in Figure 2.1.
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Image

Figure 2.1: ”The Brig” taken in 1856 by Gustave Le Gray is one of the first known HDR images [1]

In this thesis, LDR images are defined as images where the dynamic range of light

is represented in 256 levels using an 8-bit fixed-integer per pixel. And HDR images are

defined as images with a higher dynamic range of light represented as 12-bit floating data

per pixel.

2.1.2 HDR Image Creation

Using multiple LDR images, each with different exposure is one of the commonly used

ways to create an HDR image. Some of the other methods for creating HDR images are

discussed below:

Film Based HDR

The creation of HDR images started as early as 1856 when Gustave created an HDR

image titled ”The Brig” by combining two different negative films exposed to capture the

dynamic range of cloud and sea [1]. The process was manual and resulted in an image as

seen in Figure 2.1 where the dynamic range of sea and cloud has been captured in one

image.

Charles Wyckoff did the other significant development in film based HDR images for

the US Department of Air Force. His patent [17] revealed that by adding multiple emulsion
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layers over the silver-halide film where each layer of the emulsion was sensitive to a different

wavelength of light. Multiple scene exposures were then simultaneously captured using

different exposure rate, which was used to construct a high dynamic image. His method

did not require long exposure times and could capture dynamic scenes [17; 15]. This

technique was used to photograph nuclear explosions [18].

Single Exposure Based HDR

A departure from the use of multiple images exposed differently to obtain a HDR image

was the use of a single image with one exposure to construct a HDR image. Fernandez-

Berni et al. [19] developed such single-capture HDR technique that can capture a wide

range of illumination. This method used standard CMOS image sensor for image capture.

The local adaptation derived as suggested by [20], where the pixel value was derived

from its neighbouring pixel’s mean value, which enhanced image details. This value was

reduced based on the global average illumination value in natural vision system [21]. The

advantage of this method was that a single exposure was sufficient to generate an HDR

image and saw a reduction of motion blur compared to the multi-exposure technique.

Besides the above technique, certain high-end modern CMOS cameras can capture a

greater dynamic range using a singe-shot exposure method [22].

Single Exposure using Deep Learning-Based HDR

HDR images can be generated from a single low dynamic range LDR input by employing a

deep CNN to estimate information lost due to saturation of camera sensor such as bright,

dark parts of image [23]. This method of using a single exposed LDR for generating HDR

is referred to as inverse Tone Mapping Operator (iTMO). While most iTMO cannot

reproduce the saturated pixels to produce visually convincing HDR images, this approach

was able to do so. The base of this approach is a CNN, which has been trained on a

large dataset of HDR images that were augmented for simulation sensor saturation. The

approach was limited in its ability to reconstruct missing information in images with more

extensive dynamic ranges.

Row Based Multi-exposure

This method is a mixture of single and multiple exposure method for HDR creation.

Instead of using multiple images, this method captures a single image in which exposure

time is changed line by line or row by row. This results in alternating rows with short and

long exposure times. These alternating short and long exposure rows are then merged
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to generate an HDR image [24]. The image generated by such a method, however, has

reduced resolution because of the merger.

Multiple-Exposure Based HDR

Mann and Picard [9] attempted to construct HDR image by taking multiple images with

different exposures and combining them. The steps of this process are [9; 25]:

• Multiple images are taken from a camera at a fixed location with multiple exposures

• Camera response curve estimated from multiple exposed images using self-calibration

• Images are linearised by using inverse of response curve

• Linearised images are merged

These are the basic procedure for capturing HDR image using multiple-exposure and

used in many conventional algorithms. Over the years, Ward [26] presented a new method

to align images and Kang et al. [27] proposed gradient-based optical flow estimation.

These helped reduce the problem of the motion of object or camera shake and ghosting

artefacts [27] because of image combination [26].
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2.2 Tone Mapping

2.2.1 Introduction

Tone mapping is the process of rendering high contrast and wide colour gamut scenes to a

limited contrast and colour representation for a destination medium. Most display devices

only support 8 bpp images, i.e. LDR and are unable to display the HDR content. HDR

display technologies do exist, but these are expensive, and they have their limitations in

dynamic range. And even for displaying HDR content in HDR displays some form of

tone-mapping is required [13].

Most Computer Vision (CV) algorithms have been designed primarily of LDR content

in mind, and switching to floating-point HDR can reduce their performance or be incom-

patible [28]. Besides this, compared to LDR, using HDR content requires at least four

times more storage capacity, transmission bandwidth and computation-time. All these

factors significantly hamper implementing a HDR system on an embedded platform.

These situations could be mitigated by using tone-mapping techniques. The tone-

mapped content, although reduced in the dynamic range compared to the original HDR

content, still holds details that could not have been achieved had such content been

captured using standard LDR [29; 30].

2.2.2 Categories of TMO

TMOs based on how the image is processed can be classified into two types:

1. Global Operators (Spatially Uniform) — Global TMOs use a single, non-

linear and spatially uniform mapping function for all the pixels in a image [31].

Once an optimal function value is determined for an image, the same non-linear

transformation is applied to all the pixels in that image [31]. Because of this,

global TMOs are simple to implement and are faster [32] than local TMOs. The

downside of such an operation is the loss of details in an image, such as contrast

level. Typically, Global TMOs are used for performing operations such as contrast

reduction and colour inversion.

2. Local Operators (Spatially Varying) — In Local TMO the operator parameter

is non-linear, spatially varying for each pixel based on the pixel values of its local

neighbourhood [33]. Compared to global TMOs, local TMOs are complex and

slower. Since the pixel’s spatial position influences the mapping operation, much
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more details are preserved in the output image than a global operator. The local

TMOs if applied correctly, produces visually pleasing images.

The TMOs besides categorisation based on the type of mapping on pixels of an image,

can be classified based on the intent [14] of use into three types:

1. Visual System Simulator (VSS) — VSSs are designed to simulate biological

property and limitation of a Human Vision System (HVS). A VSS TMO can sim-

ulate colour saturation, contrast limitation, limited vision in night and add glare

[14]. VSS in-effect try to adjust a real-world scene of high dynamic range to suitable

viewing condition for HVS.

2. SRP Operators — SRP TMOs are designed to preserve the visual appearance of

the original scene as much as possible. Some of the factors that it tries to preserve

are contrast, colour gamut, luminance and sharpness [14].

3. BSQ Operators — BSQ TMOs are designed to focus on the visual aesthetics

rather than accurate scene reproduction [14]. The reproduced scene are made based

on subjective preference. This TMO is mostly used for artistic application since the

BSQ’s preference may change depending upon the project or situation it is used for.
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2.3 Bio-Inspired TMO

2.3.1 Introduction

A human eye can perceive about twelve orders of the dynamic range of light, allowing a

person to see both during the day with high light level and at night with moonlight at

starlight [8]. Similarly, the insect’s visual system can adapt up to eight orders of mag-

nitude [34] of the dynamic range of light while preventing saturation and simultaneously

enhancing local contrast [35; 36]. Because of their simple neurological system, such bio-

logical capability of vision-system can be modelled and implemented as analog systems

capable of real-time calculations [37]. The influence of such biological inspiration or bi-

mimicry can be seen field of soft-robotics [38], motion detectors [39], obstacle avoidance

[37] and many others [36].

Owing to such capability of biological systems, HVS has been used to develop biologi-

cally inspired TMO [40; 41]. However, such TMOs are geared towards VSS fit for human

eyes and do not take into account the features required for MV. Also, the simplicity of

the insect vision system compared to HVS makes them ideal for real-time applications.

The bio-inspired TMO [15] being evaluated in this paper is based on the photo-receptor

model of blow-fly [42]. The photo-receptors are the biological equivalent of image sensors,

converting the incoming photons into electricity. The mathematical model of the blowfly

was initially proposed by [34], further elaborated by [43; 42] upon which the bio-inspired

TMO was developed by [15]. The model [34; 43; 42] when used has shown benefits in MV

application such as motion detection [44; 45]. Besides this, the model has shown benefits

in compression [43] of incoming data.

2.3.2 Bio-inspired TMO algorithm

The bio-inspired TMO consists of four main stages, with an additional pre-processing

stage for normalising and post-processing for rescaling. The pipeline for creating a bio-

inspired tone-mapped LDR image is shown in Figure 2.2. The shown pipeline is for a

single channel image and has to be repeated for the remaining colour channels in a colour

image. For the colour images captured in this thesis, the HDR images in RGB colour

format was used. All the colour channels were individually tone-mapped, combined and

scaled to produce a tone-mapped LDR colour image.

Figure 2.2: Pipeline of bio-inspired TMO
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1. Pre-processing — In this stage, the pixels in the input image with an illumination

value of zero are re-initialised to the smallest non-zero value in the image, and the

luminance values are normalised to a range of 0 to 1.

2. Temporal LPF — This stage applies an adaptive LPF on the normalised image

to remove short-lived, high-frequency values. This stage ensures SNR on dark areas

of the image after tone-mapping is not amplified by reducing dark regions’ response

to high-frequency noises.

3. LPF Divisive Feedback — The square root of the input ”Temporally LPF’d Im-

age” is used to initialise the Adaptive LPF. This LPF is responsible for filtering

out the high frequency components in the image. The input to the LPF is either

”Supress Transients” function which implements square root or the output of pre-

vious frame as feedback. And finally the ”Temporally LPF’d Image” is divided by

the LPF’d image which compresses the dynamic range. The main intention of this

block is to incorporate short-term adaption so that the TMO can adapt to rapid

shifts in light intensity due to change in light source or motion.

4. LPF Exponential Feedback — This stage is similar in structure to the previous

stage, but it involves adapting the input image to slow change in lighting source. The

division of the input ”Divisively Filtered Image” with its own exponent causes non-

linear re-scaling of the image which further amplifies the high frequency components.

5. Non-linear Compression — In this stage, for suppressing pixels with high value

Naka-Rushton transform [46] is applied followed by a gamma function to produce

tone-mapped LDR image with floating-point representation. The Naka-Ruston

transform is applied to all the pixels dividing the input image by sum of itself

and a offset.

6. Rescaling — The floating-point data of the image are rescaled to a range for 0-255

for storing the image in 8-bit formats.

2.3.3 Evaluation Metrics

The bio-inspired TMO was compared with six other TMOs Reinhard02 [47], Reinhard05

[48], Drago03 [49], Ward94 [50], and Stockham72 [51] using proposed novel metrics such

as Flicker, Motion Artefacts and Noise Suppression. These metrics focused on the in-

formation content of the images which is essential for any MV application rather than

aesthetics of the image or suitability for consumption by human eyes.

The metric flicker accounts for short-lived high-frequency changes in pixel intensities

that can cause unbalanced images and inconsistent images. It is crucial to suppress and

11



not create additional flicker as removing flicker post-production is challenging and tedious

[52; 53].

Noise suppression metric gives the measure of image quality after it has been tone-

mapped. It is the measure of Signal to Noise Ratio (SNR) in the image. It is desirable

to have low noise and the TMO being able to suppress some amount of noise. Noise

suppression metric considers the SNR before and after an image is tone-mapped.

Furthermore the motion artefacts metric focuses on increased information in the image

for feature detection such as edges and contrast due to motion.

2.3.4 Bio-Inspired TMO’s Result and Research Gap

Griffiths [15] found that bio-inspired TMO outperformed other TMOs in noise suppression.

Bio-inspired TMO was able to improve signal quality for SNR ≤ 20dB and for SNR at

40dB maintain the image quality at 96.5%. In terms of motion artefacts, bio-inspired

TMO increased global contrast in an image by 30% and increased edge detection. Lastly,

in terms of metric flicker, Reinhard02 outperformed bio-inspired TMO. In short, Bio-

inspired TMO was able to enhance certain features such as edge detection, contrast,

reduce noise and flicker in images which are vital for the application of MV algorithms

such as object detectors.

However, all these evaluations were done for static images in a controlled environment.

To fully evaluate the benefits of bio-inspired TMO, it is vital to evaluate it for a sequence

of images in dynamic setting for verifying the temporal improvements in flicker, noise

suppression and motion artefacts as suggested by Griffiths [15]. Besides, this the bio-

inspired TMO has not been implemented for tasks related to MV. Hence, this thesis

evaluates the performance of bio-inspired TMO for MV application of object classification

on frames of images captured in various lighting condition in dynamic settings that is

similar to surveillance and autonomous vehicle.
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2.4 Annotation and Image processing techniques for

annotation transfer

Different image processing techniques were explored for identifying objects in two set

of images for transferring the annotated data. Image registration technique finds the

identitical features in two set of images and computes a transformation matrix to align

the images, which in turn can be used to transfer boudning box co-ordinate of annotated

data. While template matching searches for an input template over the target image

computing difference between template and a section of target image to find the least

difference for a match.

2.4.1 Annotation

Annotation in CV for images refers to adding metadata for certain parts of an image in a

dataset. The metadata in image annotation is primarily a label or class name associated

with the object or feature being marked in the image and its location in the image itself.

The label is often the name of the object being identified. The location of the object is

often marked using a tight-fit rectangular box. While polygon, Cuboids are also used to

mark the location of an object.

Annotation is used to make an organised dataset with metadata information that can

be used to train, evaluate and test computer vision algorithms. The annotated dataset

is also known as ground truth and is used to compare the results of a predicted output.

While a pre-trained object detector can be used to annotate a dataset, the result of

such a process is often incomplete and unreliable. Hence, annotation is done manually,

and since this is the ground truth data, the images have to be labelled correctly and

bounding boxes drawn accurately. While this data can be stored in a text file in any

format, certain standards have been introduced, such as PASCAL VOC [54], and COCO

[55] being the most popular. The ground truth data is stored in a JSON file in COCO

standard where the image name, id, tagged objects, and location are stored as arrays of

data. In comparison, PASCAL VOC creates individual XML files for each image in the

dataset with all associated metadata.

For increasing efficeicy of manually annotation certain tools such as Computer Vi-

sion Annotation Tool (CVAT) [56], MATLAB’s Ground Truth Labeler, LabelMe [57],

LabelImg [58] are available. Besides MATLAB all of the other tools are open-source.
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2.4.2 Image Registration

Image registration [59; 60] is the process of transforming multiple images from different

sources at a different angle of a common scene to align them for analysis. Image regis-

tration is typically used to combine information from multiple sources and compile them

into a single helpful image for analysis. Image registration for aligning images applies

geometric transformations such as translation, rotation, shearing, scaling. The applica-

tion of image registration ranges from changing perspective view of an image to Optical

Character Recognition (OCR) to medical imaging [59] to military uses [59].

Image registration techniques can be classified into two categories[59; 60] Intensity-

based, Feature-based Image Registration. The working process of both these techniques

is similar and can be summarised into three steps [61]:

1. Identify features or intensity pattern in source and target image

2. Apply similarity metrics to determine the quality of matching in the source image.

3. Compute transformation matrix to apply an appropriate transformation to achieve

alignment of the source image to the target image.

Intensity Based Image Registration

Intensity-based techniques compare the intensity pattern of pixels in the source and target

image to compute the required transformation. The identified intensity patterns are

compared using similarity metrics [62; 63; 64] such as Sum of Squared Differences, Cross-

Correlation, Mutual Information and absolute difference.

Feature Based Image Registration

Feature-based techniques identify distinct features or key-points such as points, corners,

lines in source and target image and maps the key-points. Feature detector and descriptor

algorithms are employed for identifying features in an image. Some feature detector

algorithms and feature matchers are:

1. Scale-invariant feature transform (SIFT) [65] — It is a feature detector used to

detect features and identify them in an image. SIFT is invarient to image size,

orientation, brightness changes.
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2. Speeded Up Robust Features (SURF) [66] — SURF is a feature detector and de-

scriptor inspired by SIFT. SURF has similar advtages offered by SIFT and is several

times faster than SIFT.

3. Oriented FAST and Rotated BRIEF (ORB) [67] — ORB is a open source feature

detector and descriptor developed by OpenCV by combining Features from Accel-

erated Segment Test (FAST) keypoint detector and Binary Robust Independent

Elementary Features (BRIEF) descriptor. It is found to be invariant to rotation

and robust to noise.

4. Brute Force (BF) Matcher [68] — BFMatcher is a simple feature matching technique

that takes the description of features generated by feature detectors for two images

and matches these features based on distance calculation. The technique has little

optimisation and involves comparing the features each feature in first image with

every mother feature in second image. The technique has been implemented in

OpenCV and as per the documentation for distance measurement when using SIFT,

SURF cv2.NORM L2 is used while for ORB cv2.NORM HAMMING is used.

Intensity-based techniques have the advantage of being able to achieve sub-pixel ac-

curacy compared to feature-based techniques as it considers all the pixels of an image.

However, the advantage of intensity-based methods is limited to cases when the source

and target image both have been recorded in similar lighting condition [60]. The feature-

based techniques are immune to this and perform better when registering images shot

under different lighting conditions [60].

2.4.3 Template Matching

Template matching [69] is the process of searching and finding the location of a template,

such as a face, cars, and other smaller objects in a larger image. The smaller object

referred to as template is moved across the larger image to calculate the similarity between

them comparison methods such as Squared Difference (TM SQDIFF), Cross-Correlation

(TM CCORR), Correlation Coefficient (TM CCOEFF) and their normalised versions for

template matching [69]. As the template is moved across the image, each patch of the

image is processed using the above methods. After the whole image has been searched,

the patch in the image that yields the least difference is identified as the patch area that

consists of the searched template.
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2.5 Object Detection

2.5.1 Introduction

An object detector is a CV algorithm that deals with locating and identifying certain

classes of objects in an image or video. In essence, an object detector combines two sub-

tasks of object classification and object localisation [70; 71]. The term object classification

is used interchangeably with image classification, and its aims to identify the contents or

objects of interest in an image and identify which class the objects belong to, such as

person, car, dog, cat. Furthermore, the task of object localisation identifies the location

of detected instances of classes of objects and marks them by drawing a tight bounding

box around each identified instance. Today most of the object detectors are implemented

using deep learning [71] but before this hand-crafted CV algorithms such as SIFT [65],

Histogram of oriented gradients (HOG) [72] were used.

Feature detector algorithm such as SIFT identifies distinct features, key-points, in

an image which are cross-checked with a database of images to identify the required

matches [73]. Likewise, HOG is a feature descriptor algorithm that divides an image into

smaller squared cells, compute histograms of oriented gradients in each, normalise the

image and return descriptors of each cell. The extracted features of each cell are passed

to a machine learning algorithm such as Support vector machine (SVM) [72] for object

detection. These algorithms have performed well in tasks such as pedestrian detection

[74; 72], face detection [73] but greatly suffers for detection of generic objects [75]. The

key-points and descriptor from SIFT and HOG are vector data. The number of vectors

increases as the number of features to be detected increases, and so does the memory and

processing time/power required to process it [72]. One more difficulty with this approach

is choosing which features are important for each given task [75]. The traditional hand-

craft methods for object detection have eventually been replaced with deep learning.

2.5.2 Deep Learning

Deep learning is a subset of machine learning technique made using artificial neural net-

works to mimic the structure and function of the human brain. Like the human brain, the

neural network of deep learning is composed of numerous neurons, each of these neurons

performs a simple task, and through interaction, they make a decision [76; 2; 77]. The

term ’deep’ refers to hidden layers in the neural network. It is referred as hidden, as it

lies between input and output layers of a neural network. Fully-connect layer is one of the

common type of hidden layers. In hidden layers, none of the neurons in the same hidden

layer are connected but each neuron is connected to neurons on adjacent layers. The
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number of hidden layers can range from 2-3 in a traditional neural network to more than

100 in deep networks [2; 77]. The hidden layers as in essence are layers of mathematical

functions designed to process input data to produce a output for a intended result.

The main advantage of Deep Learning algorithm is that they learn by example. Instead

of using a comprehensive mathematical model used in traditional programming paradigm

to perform a task, i.e. descriptive analysis [75], the machine learning algorithms use

predictive analysis [75] whereby the error between the actual and predicted outcome is

minimised, taking into consideration all possible factors [78]. Machine learning algorithms

learn by being fed a large number of training data from which it learns to identify new

data [79; 75].

Figure 2.3: A simple neural network with 2 hidden layers [2]

Machine Learning algorithms require a model’s input data to be organised or formatted

[77]. In terms of an image, relevant features must be selected manually for performing

object detection tasks. While on the other hand, the representational learning method

[80] is included in deep learning, allowing deep learning methods to automatically ingest

and process unstructured data like text and images [77]. It can automate the manual

feature extraction process in machine learning. With enough training and data, such deep

learning algorithms can automatically learn to detect and classify objects from given raw

data automatically [2; 80]. Figure 2.4 gives an overview of the difference in approach

between machine and deep learning for performing a task such as object classification.

Two important terminologies in a neural network are weight and bias. These param-

eters are associated with neurons, and these are learnable parameters. When the neural

network is trained to perform a task these parameters are set during the training phase

to produce a prediction that has minimum error. For a neuron A that receives input I

with weight w and bias b has an output Y as shown in Equation (2.1). The computed

value is then fed through an activation function which is a mathematical function that

compares the result to a threshold value which decide whether to pass the output value

to the next neuron i.e. activate neuron or not.
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Image

Figure 2.4: Comparative approach for vehicle classification in Machine Learning and Deep Learning [2]

Y =
∑

(w ∗ I) + b (2.1)

As shown in Figure 2.3, deep neural networks consist of two visible layers, input and

output. The input layer performs the task of loading data for processing, and the out-

put layer performs the final prediction. The hidden layers are responsible for performing

various functions as required to produce the desired result. The behaviour of the hidden

layers are set during the training phase of the neural network. As data is read in input and

passes through the layers towards the output, hidden layers perform some computation

based on weight and bias associated with neurons on each layer. This propagation of data

through the network is known as forward propagation [80]. While during the training

phase, the error of the network is minimised by adjusting weights and bias during which

prorogation is from output to input is known as back propagation [80]. With the imple-

mentation of forward and back propagation, a neural network can make predictions and

correct any errors over time. The accuracy hence increases over time gradually.
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2.5.3 Convolution Neural Network(CNN)

CNN is one of the most popular architecture for the implementation of deep learning.

The development of CNN in recent years has pushed the ability of object detectors to

new limits [81]. The visual cortex of animals [82; 83] inspired CNN. CNN automatically

and adaptively learns to identify features and patterns from data with grid patterns such

as images [3]. CNN is typically composed of three building blocks [3; 75; 84]:

Image

Figure 2.5: An overview of Convolution Neural Network (CNN) architecture[3] showing forward propagation for
prediction and back propagation for training

1. Convolution Layer

This layer extracts features from an input array of data, i.e. images using Convolu-

tion and Activation Function.

• Convolution— A small matrix, typically 3x3 called a kernel, is applied across

the input image called a tensor. Convolution is an element-wise product be-

tween overlapping kernel and input tensor elements as the kernel is moved

across the input tensor, is calculated and summed. The summed value is

stored in a corresponding position in the output tensor called feature map.

The values in the kernel matrix called weights are assigned during the training

phase.

• Activation Function — The feature map generated through convolution is

passed through a non-linear activation function such as sigmoid or Hyperbolic

tangent function (TanH) or Rectified linear unit (ReLU). Depending upon the

requirement or task at hand, one of these activation functions are selected [85].
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2. Pooling Layer/Region of Interest (RoI) pooling

The pooling layer down-samples the size of the feature map generated in the convo-

lutional layer while still preserving the extracted features. This helps to reduce the

memory consumed by feature-map, thereby decreasing the computational power and

time required for processing the data for both prediction and training. For pooling,

typically, a 2x2 kernel size is used.

There are type pooling methods available max pooling and global average pooling.

In max pooling, from a patch in feature map window of size 4x4 maximum value is

extracted. Similarly, average pooling instead of maximum value returns the average

of values.

3. Fully Connected Layer

A fully connected layer flattens the feature matrix into a 1-D vector. This feature

vector is passed through the fully connected layer to an output layer that computes

the probability of occurrence for a list of classes through a dense network. This

output is then passed through a function such as ReLU or softmax, which maps

them to a vector whose sum is equal to one.

2.5.4 CNN Based Object Detection Models

One of the first CNN based object detectors was Overfeat [86]. Using a multi-scale

sliding window approach Overfeat was able to perform image classification, localisation

and detection. This was quickly followed by Region Based Convolution Neural Network

(R-CNN) detectors [87], You Only Look Once (YOLO) [88] and others. All of these CNN

based Object detection models can be classified into two categories [89]:

1. Two-Stage Detectors A two-stage detector in the first stage identifies regions of

interest and generates region or object proposals using methods such as Region Pro-

posal Network (RPN), or selective search [90]. In the second stage, the proposals

are passed through to identify objects of interest, classification, and bounding box

drawn over them, regression. Two-stage detectors are highly accurate but slower.

Object detectors R-CNN [87], Fast R-CNN [91], Faster R-CNN [5], Mask R-CNN

[92], Feature Pyramid Network (FPN) [93], Region based Fully Convolutional Net-

work (R-FCN) [94] fall under this cateogry.
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Figure 2.6: Basic architecture of two-stage detectors

Fast R-CNN

Fast R-CNN [91] was released in 2015 a year later after the release of R-CNN [87].

R-CNN was slower because each region proposal made for an image was passed

through the CNN without any means for sharing the computation. This made

training and detection using R-CNN slower.

Image

Figure 2.7: Basic Architecture of R-CNN [4]

In Fast R-CNN, an image is passed through the CNN to generate Regions of Interest

or feature maps. Fast-RCNN uses selective search to generate the proposals. This

proposal is passed through an RoI Pooling layer to resize the proposed regions to be

of the same size. These regions are then passed through a Fully Connected Layer

which classifies these regions and draws bounding boxes on them.

The RoI pooling layer in Fast R-CNN was an improvement to extract a fixed-sized

feature map from a region proposal of different sizes as this no longer required
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wrapping regions. One of the significant improvement compared to R-CNN was

reduction in training time by 88.61%[89].

Image

Figure 2.8: Basic Architecture of Fast-RCNN [4]

Faster R-CNN

Faster R-CNN [5] released few moths after Fast R-CNN [91] introduced RPN to

replace selective search. Selective search in Fast R-CNN is used for generating

RoI proposal was slow and required run-time equal to the detection network [89].

The proposed RPN is a fully convolution network that is faster and increased the

efficiency of the proposal generation. The addition of RPN has introduced limited

downtime in the network is nearly cost-free [5]. In reference to the basic architecture

of faster R-CNN in Figure 2.9, the workings of Faster R-CNN can be summarised

in the following steps [4; 89; 5]:

(a) The input image is passed through the Convolution Network, which extracts

features from the image and generates a feature map or RoI.

(b) RPN is applied on the feature map to generate object proposals, each with an

objectness score and are sent to RoI pooling layer.

(c) RoI pooling layer applies max or average pooling to down-sample all the pro-

posals.

(d) The proposals are then passed down to a fully connected layer where objects

are classified, and a bounding box is drawn over them.

[5; 89] have shown that Faster R-CNN has increased speed and accuracy in object

detection compared to Fast R-CNN. Experiments [89] showed on PASCAL VOC

2007 dataset [54], Faster R-CNN scored Mean average precision (mAP) of 69.9%
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compared to 66.9% score of Fast R-CNN. Similarly, the run-time of Faster R-CNN

was 198ms, nearly ten times faster than Fast R-CNN, which was 1830ms.

Image

Figure 2.9: Architecture of Faster R-CNN [5]

2. One-Stage Detectors

One-stage detectors perform classification and regression in one step. These detec-

tors are faster than two-stage detectors but have lower accuracy rates. YOLO [88],

SSD [6], YOLOv2 [95] and YOLOv3 [96] are some one stage object detectors.

Figure 2.10: Basic architecture of one-stage detectors

SSD

Liu et al. [6] proposed SSD in 2016 as a one-stage detector. The single-shot means

the task of classification and localisation is done in a single step, Multibox [97] is a

bounding box regression technique, and Detector as the network performs classifi-

cation of the detected objects. SSD predicts multiple objects of different categories

using a collection of fixed-sized bounding boxes of different scales and confidence

score at each location in the generated feature map followed by a non-maximum

suppression.
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The network layer of SSD is based upon VGG-16 architecture with the fully con-

nected layers removed and is known as the base network. Multiple auxiliary layers

are added to the network to produce detections with the following features:

• Multi-Scale Detection — The convolutional layers after the base network are

progressively decreasing in size. This allows multiple predictions to be made

on a feature map at multiple scales.

• Convolutional predictions — SSD, instead of a dedicated region proposal net-

work, uses a small convolution filter to produce a set of predictions. These

predictions are made after the feature map is extracted using a 3 x 3 convolu-

tion filter.

• Default boxes and aspect ratios — Each feature map cell is associated with a

set of default fixed-sized bounding boxes. In each feature map cell, the offset

relative to the default box bounding box is predicted along with confidence

scores. These boxes are applied to several feature maps of different resolution

to efficiently decide the best possible bounding box size for a prediction.

[89] have shown SSD for an input image size of 512 x 512 achieved an mAP of 81.6%

on PASCAL VOC 2007 test dataset and 80.0% on PASCAL VOC 2012 test dataset

compared to Faster R-CNN’s 78.8% and 75.9%..

Image

Figure 2.11: Basic architecture of Singe Shot MultiBox Detector (SSD) [6]

2.5.5 Choosing Object Detector for Evaluation

While comparisons made by Jiao et al. [89] states SSD to be more precise and faster than

other detectors such as Fast R-CNN and Faster R-CNN when tested under PASCAL
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VOC dataset. COCO dataset consists of objects that are harder for detections Jiao

et al. [89]. When evaluated on COCO 2017 train dataset, Faster R-CNN with a ResNet

backbone outperformed both SSD detectors using ResNet and VGG-16 backboneJiao

et al. [89]. While single-stage detectors are faster than two-stage detector, the accuracy

of both the detector types are similar, and if speed were not a factor for discussion

Faster R-CNN would outperform the single-stage detector SSD by a small margin Huang

et al. [7]; Hui [98]. Huang et al. [7] analysed the effect of image size on detectors and

found higher resolution images lead to better mAP result for smaller objects and larger

objects for most detector models. However, SSD models were found to be doing well on

larger object not smaller. Furthermore, it was found that by decreasing the number of

proposals in Faster R-CNN from 300 to 50, the speed could be increased 3x while suffering

a decrease in accuracy by the only 4%. For this thesis determining the improvement in

the performance of object detector when using a dataset processed by bio-inspired TMO

is the main goal and real-time processing is not. While the benefit of faster processing

of dataset is available with SSD models, SSD was found to not take advantage of higher

resolution image for detection of smaller objects and hence Faster R-CNN was selected

as the object detector for the evaluation.
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2.6 Evaluation Metrics

2.6.1 Introduction

For an object detector, its performance is evaluated by comparing the predictions made

with the actual truth. While accuracy may come to mind for evaluation, it is not a

good metric for evaluation when working with datasets that have class-imbalanced data.

For such evaluation of class-imbalanced dataset, precision and recall are good evaluation

metrics. Precision gives a measure of all the positive predictions made how many are

correct, while recall tells of all the things that are true how many of them were correctly

predicted and identified. Based on these two, PASCAL VOC [54], Open Images [99],

COCO [55], Imagenet [100] are some of the metrics used for evaluation of object detectors.

Before introducing these metrics, it is essential to clarify basic concepts related to these

metrics.

2.6.2 Basic Concepts

• Intersection of Union (IoU)

Consider an image has a class of object over which bounding box is draw and

represented by G for Ground Truth, and an object detector predicts the presence of

an object with a bounding box represented by P for Prediction. Then, IoU is given

by the following Equation (2.2) and this is illustrated in Figure 2.12. IoU gives the

difference between ground truth and predictions in values that are less than 1.

IoU =
area (G ∩ P )

area (G ∪ P )
=

area of intersection

area of union
(2.2)

Figure 2.12: Illustration of IoU

• True positive (TP), True negative (TN), False positive (FP), False neg-

ative (FN)

When predictions are made besides the bounding box a score or confidence level is

assigned to every predictions, indicating the confidence score that detector thinks

it the said class of object.
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For a prediction to be considered True positive (TP) all of the following conditions

must be satisfied:

1. The predicted class must match the ground truth

2. The confidence score of the prediction must be above a threshold score

3. IoU must be greater than a threshold (0.5 in PASCAL VOC)

If the prediction violates the first or third condition, the prediction is False positive

(FP). This indicates that a false prediction has been made.

If the ground truth has not been detected, then such undetected items are counted

as False negative (FN). True negative (TN) is not considered during the evaluation.

• Precision (Pr)

Precision is the representation of accuracy of positive detentions.

Pr =

∑
TP∑

TP +
∑

FP
=

∑
TP

all detections
(2.3)

• Recall (Rc)

Recall is the ratio of positive detection that are correctly detected.

Rc =

∑
TP∑

TP +
∑

FN
=

∑
TP

all ground truths
(2.4)

• Precision x Recall

When the threshold of confidence level is increases, the number of FP will decrease

which increases the precision level but the recall decreases. To account for this

limitation where increasing precision decreases recall and vice-versa, a number of

values for precision and recall have to be taken with different thresholds.

27



Figure 2.13: Precision x Recall curve

• Average precision (AP)

AP [54] is calculated by summing up Area under curve (AUC) of the precision-recall

curve. AP in essence is the numerical averaged representation of precision x recall

curve for comparing performance of detectors.

AP is the area under the Pr x Rc curve using K recall values,

AP =
K∑
k=0

(Rr(k)−Rr(k + 1))Printerp(Rr(k)) (2.5)

Here, the value of Printerp(R) is the maximum precision value with recall Rc(k)

where Rc(k) ≥ R

Printerp(R) = max
Rc(k)≥R

Pr(k) (2.6)

• Mean average precision (mAP)

mAP [54] is the mean of all the APs of all the classes (C).

mAP =
1

C

C∑
i=1

APi (2.7)

• Average Recall (AR)

Similar to AP, AR [55] is a metric used to measure assertiveness of object detectors

for a given class. Unlike AP confidence score of estimated detections are not taken

in to account for calculating AR. This metric taken into account all recall values
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within IoU threshold limit of [0.5,1]. AR can be calculated by using the following

formula:

AR = 2 ∗

∫ 1

0.5

RcIoU(o)do (2.8)

Where o is IoU, RcIoU(o) is a function that retreives recall Rc value for given IoU o

from a recall-IoU curve.

• Mean Average Recall (mAR)

mAR [55] is defined as mean AR across all classes C.

mAR =
1

C

C∑
i=1

ARi (2.9)

2.6.3 PASCAL VOC Metrics

Pascal VOC metric [54] for benchmarking the performance of Object Detectors uses the

following metrics:

1. AP with IoU threshold of 0.5

AP under this metric is calculated for each class individually by using the Pr x Rc

curve to determine the AUC using Equation (2.5). The IoU threshold for this metric

is 0.5.

2. mAP with IoU threshold of 0.5

Using the AP calculated with IoU threshold of 0.5 for all individual classes, these val-

ues are summed and averaged using Equation (2.7). While AP is used to represent

precision score for individual classes, mAP is used for representing and compar-

ing the performances level of the object detectors and is the primary metric for

comparison in PASCAL VOC.

2.6.4 COCO Metrics

In the COCO metric [55], the mAP and mAR values are mentioned as AP and AR,

respectively. Unlike PASCAL VOC, the individual classes are not taken into account

1. AP@0.5 and AP@0.75

The metric AP@0.5 is similar to mAP from PASCAL VOC, which also has an IoU

threshold of 0.5. AP@0.75 is also similar and differs only in regards to the IoU

threshold of 0.75. AP@0.75 is a strict metric compared to AP@0.5.
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2. AP@[0.5:0.05:0.95]

This metric expands upon the previous AP@0.5 and AP@0.75 metric by computing

multiple AP from 0.5 to 0.95 at an incremental step of 0.05 and taking an average

of the computed APs. This is the primary metric used for comparison in the COCO

metric.

3. APs, APm, APl

These metrics also refereed as AP across scales produces AP for smaller, medium

and large sized objects based by applying AP@[0.5:0.05:0.95] and taking its average.

The area under consideration is the ground truth bounding box area.

(a) APs — This metric represents AP for smaller objects in ground truth whose

area < 322 pixels.

(b) APm — This metric evalulates medium sized objects whose 322 < area < 962

pixels.

(c) APl — This metric evalulates large sized objects whose area > 962 pixels.

4. AR1, AR10, AR100

These metrics are evaluated by limiting the number of detections per image. Here,

AR is calculated for a fixed number of detections per image and is averaged over all

classes and IoUs for thresholds [0.5:0.05:0.95].

(a) AR1 — This metric is calculated considering one detection per image.

(b) AR10 — It considers 10 detections per image.

(c) AR100 — It considers 100 detections per image

5. ARs, ARm, ARl

These metrics are a variant of APs, APm, APl but for recall values for different sized

objects in ground truth.

2.6.5 Choosing Evaluation Metric for Evaluation

For the evaluation for better results the larger dataset was used and to save some time,

annotations (ground truth) data had to been transferred from one dataset to the other

when possible. During the transfer because of varying distance of an object with respect

of each camera and difference in resolution between datasets, there will be some errors

resulting in bounding boxes being places at slightly shifted location than intended. The

process used for bounding box transfer have been explained in detail in Section 4.2.

The AP score given by COCO metric is based on varying the IoU threshold value

from 0.5 to 0.95. While the actual intention of COCO metric for varying the threshold
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was to account for bias in evaluation because of predictions with lower IoU and higher

IoU values. But in this case, this intention might lead to classifying most TP data as FP

because of imperfect bounding box transfer. Hence, COCO metric while used a fixed IoU

threshold of 0.5 was selected as the metric for evaluation of the results.
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Chapter 3

Literature Review

The inability of the traditional Low Dynamic Range (LDR) imaging system to capture

details of a scene exposed to a wide range of dynamic range of light has been identified as

the limiting factor hindering the implementation of Machine Vision (MV) [101] in fields

of surveillance [102; 103], autonomous navigation [104], agriculture [105] and automation

[101]. High Dynamic Range (HDR) imaging can account for the wide range of change in

illumination because of its use of floating-point to represent a dynamic range of light in-

stead of 8 bpp of LDR. Several studies and experiments have been carried out to prove the

benefit of HDR and LDR in changing illumination conditions. Some of these experiments

have been discussed below.

An experiment by Chermak and Aouf [104] had compared the performance of HDR

imaging sensor (Aptina MT9M024) with a HD digital camera on the basis number of

feature detection and matching under illumination condition that extends from indoor to

outdoor, with direct sun exposure, dark and low light conditions. For feature detection

Scale-invariant feature transform (SIFT) [65], Harris corners [106], Good Features To

Track (GFTT) [107], SURF [66] and FAST [108] were used and for feature matching

SIFT and SURF. Result of the experiment [104] showed HDR imaging sensor in extreme

lighting condition was able to produce 2.45 to 29.35 times more matches.

Chermak and Aouf [104] was more focused on using HDR image for comparison with

LDR image for improvement in feature detection but did not use any tone-mapped images.

In comparison, an experiment by Přibyl et al. [109] focused on improving feature detection

in HDR datasets made using Global TMO and Local TMO. For the LDR image dataset,

this experiment had a different dataset: a filtered data using Wallis filter [110]. Wallis

filter was used to pre-process the LDR images as it had shown improvement in feature

detection in some experiments [111; 40]. The dataset for [109] was captured in an indoor

setting on 2D images that were purpose-built consisting of dark, bright areas. Also, 3D

images were captured of multiple purpose-built scenes from various angles and distance.
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For the lighting condition, more variations were made to include extreme lighting changes

for the dataset. Compared to [104]’s dataset, the lighting condition is more complicated

to capture the most extreme lighting condition. The feature detector used were Harris

corner [106], Features from Accelerated Segment Test (FAST) [108], Shi-Tomasi or Good

Features To Track (GFTT) [107], Fast Hessian or Speeded Up Robust Features (SURF)

[66]. Compared to Chermak and Aouf [104] which used the ratio of feature matched as

the metric for comparison, Přibyl et al. [109] made comparison based on the repeatability

rate (RR) of FP detectors. RR is the standard metric for Feature point detectors and is

the ratio of the number of feature points detected in an image to the number of feature

points in the reference image. The results showed TMO using local operator improved

RR by 19% for 2D scenes while TMO using global operator improved RR by 15% for 3D

scene. The result of this experiment are highly dependent on the lighting gradient of the

scene to draw conclusion on which operator performed better. However, the results do

show use of HDR imaging has helped to increase the performance of FP detector.

The results from experiments by Chermak and Aouf [104] and Přibyl et al. [109] both

point to an improvement in feature detection and matching with the use of HDR imaging.

However, comparison by Chermak and Aouf [104] was on HDR images with LDR, and by

Přibyl et al. [109] were on local tone-mapper, global tone-mapper and LDR datasets. Still,

a single experiment comparing HDR, tone-mapped images, and LDR would shed more

light. Such experiment was done by Rana et al. [30]. The goal of the experiment was the

same as the two experiments. The dataset for [30] was captured indoors in two setups,

Project Room and Light Room. The lighting setup for the Project room was done using

indoor light at different intensity, while the lighting condition for Light Room dataset was

influenced by natural light. Both the dataset had frames exposed to a wide dynamic range

of light. While the experiment by Přibyl et al. [109] had only two tone-mapped datasets

(one local and one global), this experiment had a total of nine tone-mapped datasets

(two global and seven local). The TMO used were Drago [49], Ward [50], Ashikhmin

[112], Chui [113], Mantiuk [13], Fattal [114], Pattnaik [115], Reinhard [47], and Schlick

[116]. While three HDR datasets were made: HDR-lin using linear luminance values,

HDR-Log a log encoded HDR image, HDR-PU a perpetual uniform encoded HDR image.

Like, [109] repeatability rate (RR) was used as the evaluation metric. The result of the

evaluation was HDR, and Tone-mapped images performed significantly well compared to

LDR images. Among the HDR formats, HDR-PU encoded HDR performed better than

HDR-Lin and HDR-Log. The performance of tone-mapped images was, in most cases, on

par with HDR or lower. The reduced performance was partially because of loss udring

8-bit quantisation of HDR image to LDR.

While the methodology used was different, all of these experiments [104; 109; 30] show

that HDR imaging improves feature detections and tone-mapped LDR images were just

as functional as HDR images for feature detection and matching. Griffiths [15] proposed
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a novel bio-inspired TMO for HDR images to improve the immunity of images for MV

applications. In his thesis, evaluation was made using a different set of metrics such as

Noise Suppression, Motion Artefacts and Flicker reduction. For comparisons six other

TMOs Reinhard02 [47], Reinhard05 [48], Drago03 [49], Ward94 [50], and Stockham72

[51] were used. Evaluation results showed that Bio-inspired TMO was able to enhance

certain features such as edge detection, contrast, reduce noise and flicker in images which

are vital for the application of MV algorithms such as object detectors. This further adds

to the evidence that HDR images and even the tone-mapped LDR images can reduce the

negative effect of changing lighting condition while still preserving details that can be

used for improved feature/object detection for various applications.

While in terms of application of HDR imaging and TMOs for real-world scenarios

Pinho et al. [105] performed as an experiment on datasets produced using Reinhard [47],

Drago [49] and a camera’s (Canon EOS 5D Mark III) embedded tone mapper to analyse

improvement in agriculture particularly fruit identification and counting. Contrary to

previous experiments, the feature detected for this experiment was the colour detection to

identify fruits in an image covering the whole tree. The results for this was an improvement

by about 30% compared to LDR images for fruit detection. Moreover, contrary to previous

experiments, the results of the tone-mapped images from various TMOs were comparable

with no significant difference, but the author did mention a decrease in performance

because of ghosting. Likewise, further experiments were done by Wang et al. [117] for

real-time vehicle signal light recognition using an HDR camera using AlexNet, a deep

neural network. However, this setup was not solely relying on the camera but also on

data from a LIDAR sensor. This experiment saw an improvement in detection to be

97.5% when using an HDR camera compared to LDR.

Summarising the above discussed experiments and their findings, HDR imaging can

reduce the challenge faced by LDR images in extreme lighting condition. The use of HDR

imaging had shown improvement in feature detection, object detection and preservation

of details compared to LDR even when tone-mapped LDR images were used. While the

TMO’s used in the experiment discussed varied from experiment to experiment and their

performance, the bio-inspired TMO shows potential as the purpose was built for Machine

Vision applications.
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Chapter 4

Methodology

4.1 Dataset

For evaluating the performance of Bio-inspired TMO [15], multiple footages were recorded

in two different setups, Stationary and Moving, using three different cameras, MONO,

LRES and COL, on two different lighting conditions; Normal and Low Light. The camera

setup referred to as Stationary (STA) is when the camera is mounted on the side of a

building and remains stationary throughout the recording. While camera setup Moving

(MOV) refer to footage captured using cameras mounted on top of a car and moving

through the streets of Adelaide CBD.

The details of the HDR cameras used for capturing the dataset are on Table 4.1.

Datasets recorded using a monochrome camera are referred as MONO. LRES refers to

images recorded by colour camera using row-based multi-exposure, which yielded HDR

image of 12-bit depth but with a lower resolution of 960 x 538. Lastly, the datasets

recorded by the colour camera with an end resolution of 1920 x 1080 are refereed as COL.

The dataset was recorded at a frame rate of 50 frames per second (fps). In terms of HDR

capture method used, MONO and COL cameras used a single exposure method a 12-bit

CMOS image sensor.

The recorded footage from each of the cameras were used to construct two additional

sub-datasets named PRC and RAW. PRC refer to tone-mapped processed images using

bio-inspired TMO, and RAW refers to LDR images. The LDR images were created by

passing the 12-bit HDR images through a gamma correction process with a gamma value

of 2.0 followed by a histogram equalisation process. The details of cameras used for

capturing the footage are on Table 4.1.
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Table 4.1: Details of cameras used to capture the dataset

Camera ID Manufacturer Model Camera Resolution Depth bpp Image Resolution HDR Capture Method

MONO IDS UI-3060CP-M-GL R2 1936 x 1216 Monochrome 12 1920 x 1080 Single exposure

LRES IDS UI-3360P-C-HQ R2 2044 x 1088 Colour 12 960 x 538 Row based multi-exposure

COL IDS UI-3060CP-C-HQ R2 1936 x 1216 Colour 12 1920 x 1080 Singe exposure

4.1.1 Categorisation of dataset

The main categorisation of the datasets was done based on the camera setup: Moving

and Stationary. In each of these categories, the dataset was sub-categorised based on the

time of recording. The footage recorded before sunset was labelled as Normal Light (NL)

and after sunset as Low Light (LL). Furthermore, in each sub-category, the recordings

are grouped based on the type of camera (MONO, LRES, COL) used. Finally, each of

the grouped recordings consisted of a pair of image sets: PRC and RAW. The image set

that has been processed using bio-inspired TMO was referred to that PRC and the other

as RAW. Based on this hierarchy of grouping of the image sets, the datasets were named

accordingly to identify them. For example, a dataset named STA NL MONO RAW

refers to a stationary dataset recorded in normal lighting condition using a monochrome

camera (MONO), and the dataset has not been processed using bio-inspired TMO hence

RAW. The complete categorisation of datasets, the name of each dataset and the number

of frames in each of them can be seen in Table 4.2.

Stationary: Normal and Low Light

The datasets relating to the Stationary category was recorded on 2019/06/23 from the

second floor of University of South Australia (UniSA)’s Yungondi building in Adealide

CBD facing the North Terrace road. MONO, LRES and COL cameras were used to

record two footage before (NL) and after sunset (LL). The sunset time was at Australian

Central Standard Time (ACST) 17:52 on 2019/06/23. The footage captured on this

setup is similar to a Surveillance system where camera is static and the scene is dynamic

changing frame by frame
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Figure 4.1: Datasets belonging to camera position: Stationary were recorded from UniSA’s Yungondi building
facing the North Terrace road in Adelaide CBD
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(a) STA NL MONO RAW (b) STA NL MONO PRC

(c) STA NL LRES RAW (d) STA NL LRES PRC

(e) STA NL COL RAW (f) STA NL COL PRC

Figure 4.2: Frames (a-f) from stationary datasets under normal lighting condition, RAW on left and PRC on
right for MONO, LRES and COL cameras
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(a) STA LL MONO RAW (b) STA LL MONO PRC

(c) STA LL LRES RAW (d) STA LL LRES PRC

(e) STA LL COL RAW (f) STA LL COL PRC

Figure 4.3: Frames (a-f) from stationary datasets under low lighting condition, RAW on left and PRC on right
for MONO, LRES and COL cameras

Moving: Normal and Low Light

The datasets relating to the Moving category were recorded on 2019/06/26 with cameras

mounted on a rig mounted on top of a car’s roof. As shown in Figure 4.4, the route

followed by the car is a loop around the Adelaide CBD’s Hindley Street. All the footages

in this category are roughly 15 minutes which at a rate of 50 fps amounts to 45000 frames.

Because of limited time, only a subset of around 15000 frames was used in the thesis for

evaluation. Like the stationary category, the footages were recorded before and after

sunset. The time of sunset was ACST 17:53 on 2019/06/26. The footage captured on

this setup is similar to a autonomous self-driving car system where both camera and the

scene are in motion.

The transfer of annotations between datasets only worked for stationary datasets but
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failed for moving datasets. It would have been exhaustively time consuming to have to

re-annotate the datasets that were recorded at the same time from different cameras i.e.

MONO, COL and LRES seperately. So, to save time LRES dataset has been omitted for

Moving category. The details for annotation transfer are in Section 4.2.

Figure 4.4: Datasets belonging to camera position: Moving were recorded on the route starting from 189 Hindley
Street then through Hindley Street, King William Street, North Terrace, West Terrace and finishing back at the
starting location.
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(a) MOV NL MONO RAW (b) MOV NL MONO PRC

(c) MOV NL COL RAW (d) MOV NL COL PRC

(e) MOV LL MONO RAW (f) MOV LL MONO PRC

(g) MOV LL COL RAW (h) MOV LL COL PRC

Figure 4.5: Frames from moving datasets with normal light (a-d) and low light condition (e-h), RAW on left and
PRC on right for MONO and COL cameras
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Table 4.2: Details of categorisation of datasets, dataset naming with number of frames in each dataset

Camera Position Time of Day Camera PRC/RAW Dataset name Number of frames

Stationary 2019/06/23; 16:46:05 CAM1 RAW STA NL MONO RAW 15087

PRC STA NL MONO PRC 15087

CAM3 RAW STA NL LRES RAW 15087

PRC STA NL LRES PRC 15087

CAM6 RAW STA NL COL RAW 15087

PRC STA NL COL PRC 15087

2019/06/23; 17:59:39 CAM1 RAW STA LL MONO RAW 15996

PRC STA LL MONO PRC 15996

CAM3 RAW STA LL LRES RAW 15996

PRC STA LL LRES PRC 15996

CAM6 RAW STA LL COL RAW 15996

PRC STA LL COL PRC 15996

Moving 2019/06/26; 16:33:36 CAM1 RAW MOV NL MONO RAW 5000

PRC MOV NL MONO PRC 5000

CAM6 RAW MOV NL COL RAW #1 5000

PRC MOV NL COL PRC #1 5000

RAW MOV NL COL RAW #2 5000

PRC MOV NL COL PRC #2 5000

RAW MOV NL COL RAW #3 6000

PRC MOV NL COL PRC #3 6000

RAW MOV NL COL RAW 16000

PRC MOV NL COL PRC 16000

2019/06/26; 17:34:01 CAM1 RAW MOV LL MONO RAW 14215

PRC MOV LL MONO PRC 14215

CAM1 RAW MOV LL MONO RAW #1 5000

PRC MOV LL MONO PRC #1 5000

RAW MOV LL MONO RAW #2 5000

PRC MOV LL MONO PRC #2 5000

RAW MOV LL MONO RAW #3 4215

PRC MOV LL MONO PRC #3 4215

CAM6 RAW MOV LL COL RAW 5000

PRC MOV LL COL PRC 5000

4.1.2 Datasets Alignment

While recording the datasets, the three cameras were manually turned on, resulting in

different start times. This resulted in datasets with unaligned sequences of frames. Un-

aligned datasets would create problems later in the thesis. For aligning these datasets

from different cameras to have a common starting point, all the datasets were manu-

ally inspected to find a common starting frame. The process was subjective, and several

landmarks in the images were used to identify the offset.

The file names of image frames in datasets have been chronologically named in ascend-

ing order, and this was useful in sorting and aligning the images in sequential order. This

naming pattern was exploited for renaming the image frames for aligning the datasets.

The datasets recorded on 2019/06/23 at 16:46:05 from MONO and LRES were aligned,
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but these were ahead of COL by 16 frames. To correct this, the first frame of datasets

belonging to COL, i.e. the 0th frame, was renamed as the 16th, 1st as 17th and so on for

the rest of the frames in the datasets.

The datasets recorded on 2019/06/23 at 17:59:39 from MONO and LRES were aligned,

but COL was ahead by 18 frames. To fix this, similar to the previous step the 18th frame

was renamed at be the 0th frame, 19th as 1st and so on for the rest of the images in the

datasets.

In the dataset recorded on 2019/06/26, all the frames for MONO and LRES were

recorded simultaneously and required no further processing for alignment.

4.2 Annotation

For ground truth annotation an open-source tool, CVAT [56] was used. The datasets

were examined beforehand to identify the objects in them. The STA and MOV datasets

contain footage similar to setup of surveillance and autonomus self-driving applications.

So, the objects most relevant for these applications were identified and used as labels for

annotating the ground truth. The labels used in the ground truth annotation for the

thesis are car, bus, truck, van, bicycle, motorcycle, scooter, person, traffic light, and train

(tram). These labels were initialised in CVAT and used to create the datasets as seen in

table 4.2. The annotated labels on various datasets can be seen in Figures 5.2, 5.4, 5.6

and 5.8 as the blue bounding boxes.

Manually annotating all the datasets would be a rather time-consuming and slow

process. Datasets under STA NL, STA LL, MOV NL and MOV LL were recorded simul-

taneously, so it would be possible to transfer annotation from one of the dataset to the

others within that group.

Annotation Transfer

While the initial intention was to annotate all the dataset manually, this soon proved to

be a time-consuming process. Since a group of datasets were captured simultaneously

and since the cameras were mounted horizontally on a rig, it would be possible by adding

offsets to the coordinates of bounding boxes from a reference frame to transfer the ground

truth annotations to other datasets recorded at the same time. So, initially, only one of

the dataset among the group recorded at the same time was annotated with the intent of

transferring the ground truth annotation to the remaining datasets once the annotation

task was completed. The underlined datasets in Table 4.2 are the reference datasets
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from which the ground truth annotations were transferred to other datasets recorded

simultaneously.

For the pair of datasets captured using the same camera, i.e. for RAW and PRC the

annotation transfer was very straight forward. The process involved renaming the file

names in the ground truth annotation data to the target dataset. The COCO annotation

format [55] has all the ground truth annotations in a single JSON file is the annotation

format used for the thesis for transfer of ground truth annotations. Using this format for

transferring annotation between RAW and PRC involved changing part of the file name

for all the frames in annotation data from RAW to PRC or vice-versa.

Below are the process/techniques explored for transferring the ground truth annota-

tions between datasets from different cameras:

1. Measure disparity

This approach is simple and straight forward where the reference image was divided

into multiple quadrants. Then the difference in pixels for aligning the reference

and target frame on each of these quadrants was measured to calculate the offset

required to align the two images, and finally, the calculated offset value was used

to transfer the ground truth bounding-box from the reference frame to the target

frame.

The number of quadrants depended upon the requirement at hand. For transferring

annotations from reference dataset STA MONO NL PRC to STA COL NL PRC

and STA MONO LL PRC to STA COL LL PRC four quadrants were required.

The offset for alignment in the above datasets for the four quadrants was measured

as seen on Figure 4.6 along with the area of each quadrant.

Figure 4.6: Image divided into four quadrants with offset values to transfer bounding box co-ordinates from
STA MONO NL PRC, STA MONO LL PRC to STA COL NL PRC

, STA COL LL PRC respectively
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However, for transferring the annotations from STA MONO NL PRC to

STA LRES NL PRC and STA MONOL LL PRC to STA LRES LL PRC

thirty-nine quadrants were required and the offset used for each of thirty-nine quad-

rants are shown in Figure 4.7.

Figure 4.7: Image divided into 39 quadrants with offset values to transfer bounding box co-ordinates from
STA MONO NL PRC, STA MONO LL PRC to STA LRES NL PRC

, STA LRES LL PRC respectively

The offset values shown in Figures 4.6 and 4.7 corrects the positional disparity an

object has because of difference in the position or angle the scene was captured from

MONO, LRES and COL cameras. The correction in MONO to COL datasets was

relatively easier than MONO to LRES where the positional disparity is very high

and required more quadrants to account for proper transfer of annotation bounding

boxes.

This approach successfully transferred annotations within stationary datasets as all

the objects in the scenes captured by cameras were at a relatively fixed distance at

difference areas as the cameras were far away from the scene. Because of this, for

each quadrant a single offset value was sufficient as the distance of that quadrant or

section of image varies by only a small margin through out the whole dataset. How-

ever, in the case of MOV datasets where objects in the scene are at relatively closer

distance to the cameras, the disparity between objects in images between different

cameras was very high which could not be taken in account using this method and

other methods had to be explored.

2. Image Registration
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For the ground truth annotation transfer using Image registration, a feature detec-

tor method ORB [67] was used to identify key-points such as corners in the reference

frame and the target frame. The identified key-points were the reference, and tar-

get frames were matched using a Feature Descriptor Matcher ”BRUTEFORCE”

in OpenCV. The matches were sorted based on their score given by the Matcher,

and the ones with low scores were removed. The remaining matches were used to

compute for the homography matrix. This matrix was then used to transform the

reference frame to geometrically align with the target frame.

However, based on the previous attempt ”Measure disparity” and its findings in

Figures 4.6 and 4.7 the offset was mostly linear translation in x and y axes with

not rotation. Moreover, the linear translation varied based upon the distance of

the object from the camera. So, having a single matrix perform the transformation

would not always as there are multiple objects at varying distances in each frame.

With this realisation, this process was abandoned as the initial attempt to align a

frame from the MONO dataset to the LRES dataset failed.
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(a) Reference image from MONO dataset (b) Target image from LRES dataset

(c) Keypoints identified, highlighted and linked between (a) and (b)

(d) Reference image (a) being transformed to align to target image (b) based on key-
points few of them highlighted in (c)

Figure 4.8: Results of image registration method

3. Template Matching

Template matching was used to search for objects in the target frame using ground

truth data in the reference frame. The ground truth data contained the location

of each labelled object in the reference frames. Using the coordinate location of

objects from ground truth annotations, these were extracted as templates and was
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used to search and locate similar templates in the target frames. OpenCV [69] has

multiple methods for comparing the template in the target image and for this case

TM SQDIFF and TM SQDIFF NORMED offered the best results. The template

matching method was only partially able to correctly identify and locate objects

from the reference frame in target frames. The results can be seen in Figure 4.9

where the method could not correctly identify some of the frames. Manually moving

the incorrect placement of the bounding box in each frame would be more time-

consuming than manually re-annotating the dataset.

(a) (b)

(c) (d)

Figure 4.9: Result of template mathcing to transfer reference dataset’s annotation to target frames (a-d)

Since none of the methods explored was able to transfer the annotations from the

reference datasets of the MOV category fully, the datasets MOV NL MONO PRC,

MOV LL MONO RAW , MOV LL COL PRC and MOV NL COL RAW were la-

belled manually. 5000 frames were annotated in each dataset. However, since the datasets

MOV NL COL PRC, MOV NL COL PRC had 16000 and MOV LL MONO PRC,

MOV LL MONO PRC had 14215 labelled images, an unbiased comparison cannot be

made with a smaller dataset of 5000 frames.

So, to make the comparison, the larger datasets were divided into three sub-groups,

each with 5000 frames in the first two groups and the third group with remaining frames.

The new datasets were given the same name followed by a number for identification.
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4.3 Object Detection

For object detection Detectron2 [118] framework was used. To generalise the results of the

detections and save time for training and fine-tuning object detector, a pre-trained Faster

R-CNN model was used. The id model was downloaded from Model Zoo of detectron2

[119]. The model was trained and tested on COCO dataset. The object detector task

was run on an Intel i7-8500U CPU with 8GB RAM running Ubuntu 20.04.02, running

only on CPU. The average time required for running Faster R-CNN on each frame was

approximately 3 seconds.

The chosen model supported all the classes of objects in annotated datasets except

van, and scooter.

4.4 Evaluation: PASCAL VOC

After the predictions were made for all the datasets, the predictions and the respective

ground truth data were evaluated to determine whether the predicted results matched

the annotated ground truth data. For this, each annotated ground truth was compared

with its predicted result, the IoU of their bounding boxes and the labels compared to

determine if the results matched. Each positive match was marked as TP and negative

match marked as FP, and if no predictions were made for a given ground truth, they

were marked as FN. These data were compiled for the entire dataset and used to generate

Precision x Recall curve from which AP and mAP were calculated using an open-source

tool called ”Object-Detection-Metrics” [56]. The use of AP and mAP for comparing

object detectors performance is a PASCAL VOC metrics [54]. The AP and mAP data

was generated for all the classes of object in ground truth. The generated results are

presented in the Tables 5.1 and 5.2 in Chapter 5.
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Chapter 5

Results

The results in Tables 5.1 and 5.2 were computed for all the datasets in Table 4.2 using

PASCAL VOC metrics [54] to evaluating the performance of bio-inspired TMO [15] for

Machine vision application of Object Classification and Localisation. The comparison

between the unprocessed datasets (RAW) with bio-inspired TMO pre-processed dataset

(PRC) were made in Normal (NL) and Low Light (LL) conditions. The comparison

are made on datasets recorded using Monochrome (MONO), Colour (COL) and Low-

resolution Colour (LRES) cameras in camera setup in Stationary (STA) Section 5.1 and

Moving (MOV) Section 5.2. All the comparisons are made based on the mAP scores of

the respective dataset.
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Table 5.1: Results using PASCAL VOC metric for Stationary Datasets 1

Dataset Statistics 2 mAP car bus truck bicycle motorcycle person traffic light train

STA NL MONO RAW mAP / AP [%] 9.139 32.795 13.725 0 - 0 17.451 0 -

Detection Rate 34671 / 100686 172 / 1244 0 / 110 - 0 / 68 3596 / 18235 0 / 45264 -

STA NL MONO PRC mAP / AP [%] 15.094 51.718 10.41 0 - 13.64 29.887 0 -

Detection Rate 56479 / 100686 130 / 1244 0 / 110 - 17 / 68 6663 / 18235 2 / 45264 -

STA NL LRES RAW mAP / AP [%] 4.889 14.983 9.244 0 - 0 9.993 0.0002 -

Detection Rate 17689 / 100686 115 / 1244 0 / 110 - 0 / 68 2549 / 18235 0 / 45264 -

STA NL LRES PRC mAP / AP [%] 8.099 26.431 12.127 0 - 3.455 14.677 0.002 -

Detection Rate 35331 / 100686 151 / 1244 0 / 110 - 17 / 68 4279 / 18235 8 / 45264 -

STA NL COL RAW mAP / AP [%] 11.847 41.533 15.506 0.005 - 0.21 25.674 0 -

Detection Rate 47854 / 100686 193 / 1244 2 / 110 - 1 / 68 5642 / 18235 0 / 45264 -

STA NL COL PRC mAP / AP [%] 15.234 55.666 12.531 0.006 - 1.402 37.034 0.000005 -

Detection Rate 63674 / 100686 156 / 1244 3 / 110 - 12 / 68 8264 / 18235 1 / 45264 -

STA LL MONO RAW mAP / AP [%] 13.84 34.743 0.406 0.022 - - 36.041 - 11.825

Detection Rate 17126 / 46439 21 / 468 2 / 153 - - 2076 / 4856 - 409 / 3072

STA LL MONO PRC mAP / AP [%] 16.453 43.104 1.126 0.167 - - 38.014 - 16.308

Detection Rate 21546 / 46439 41 / 468 11 / 153 - - 2223 / 4856 - 562 / 3072

STA LL LRES RAW mAP / AP [%] 1.459 8.744 0 0 - - 0.008 - 0

Detection Rate 5332 / 46439 0 / 468 0 / 153 - - 2 / 4856 - 0 / 3072

STA LL LRES PRC mAP / AP [%] 1.93 9.876 0 0 - - 1.703 - 0

Detection Rate 6301 / 46439 0 / 468 0 / 153 - - 119 / 4856 - 0 / 3072

STA LL COL RAW mAP / AP [%] 10.888 35.301 0.063 0.005 - - 29.959 - 0

Detection Rate 18022 / 46439 10 / 468 1 / 153 - - 1790 / 4856 - 0 / 3072

STA LL COL PRC mAP / AP [%] 9.977 36.023 0.585 0.094 - - 23.157 - 0

Detection Rate 19963 / 46439 37 / 468 9 / 153 - - 1531 / 4856 - 0 / 3072

STA NL MONO RAW mAP / AP [%] 9.139 32.795 13.725 0 - 0 17.451 0 -

Detection Rate 34671 / 100686 172 / 1244 0 / 110 - 0 / 68 3596 / 18235 0 / 45264 -

STA NL MONO PRC mAP / AP [%] 15.094 51.718 10.41 0 - 13.64 29.887 0 -

Detection Rate 56479 / 100686 130 / 1244 0 / 110 - 17 / 68 6663 / 18235 2 / 45264 -

STA NL LRES RAW mAP / AP [%] 4.889 14.983 9.244 0 - 0 9.993 0.0002 -

Detection Rate 17689 / 100686 115 / 1244 0 / 110 - 0 / 68 2549 / 18235 0 / 45264 -

STA NL LRES PRC mAP / AP [%] 8.099 26.431 12.127 0 - 3.455 14.677 0.002 -

Detection Rate 35331 / 100686 151 / 1244 0 / 110 - 17 / 68 4279 / 18235 8 / 45264 -

STA NL COL RAW mAP / AP [%] 11.847 41.533 15.506 0.005 - 0.21 25.674 0 -

Detection Rate 47854 / 100686 193 / 1244 2 / 110 - 1 / 68 5642 / 18235 0 / 45264 -

STA NL COL PRC mAP / AP [%] 15.234 55.666 12.531 0.006 - 1.402 37.034 0.000005 -

Detection Rate 63674 / 100686 156 / 1244 3 / 110 - 12 / 68 8264 / 18235 1 / 45264 -

STA LL MONO RAW mAP / AP [%] 13.84 34.743 0.406 0.022 - - 36.041 - 11.825

Detection Rate 17126 / 46439 21 / 468 2 / 153 - - 2076 / 4856 - 409 / 3072

STA LL MONO PRC mAP / AP [%] 16.453 43.104 1.126 0.167 - - 38.014 - 16.308

Detection Rate 21546 / 46439 41 / 468 11 / 153 - - 2223 / 4856 - 562 / 3072

STA LL LRES RAW mAP / AP [%] 1.459 8.744 0 0 - - 0.008 - 0

Detection Rate 5332 / 46439 0 / 468 0 / 153 - - 2 / 4856 - 0 / 3072

STA LL LRES PRC mAP / AP [%] 1.93 9.876 0 0 - - 1.703 - 0

Detection Rate 6301 / 46439 0 / 468 0 / 153 - - 119 / 4856 - 0 / 3072

STA LL COL RAW mAP / AP [%] 10.888 35.301 0.063 0.005 - - 29.959 - 0

Detection Rate 18022 / 46439 10 / 468 1 / 153 - - 1790 / 4856 - 0 / 3072

STA LL COL PRC mAP / AP [%] 9.977 36.023 0.585 0.094 - - 23.157 - 0

Detection Rate 19963 / 46439 37 / 468 9 / 153 - - 1531 / 4856 - 0 / 3072

1Results of class van and scooter are omitted as the detector used does not support detection of these classes
2mAP / AP values are in percentage, Detection rate = True Positive / Ground Truth

’-’ values in mAP / AP and Detection Rate means the object was not annotated in ground truth data
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Table 5.2: Results using PASCAL VOC metric for Moving Datasets 2

Dataset Statistics 2 mAP car bus truck bicycle motorcycle person traffic light train

MOV NL MONO RAW mAP / AP 61.547 85.096 - 70.021 33.645 - 57.428 - -

Detection Rate 9765 / 11134 - 149 / 190 231 / 667 - 3005 / 4883 - -

MOV NL MONO PRC mAP / AP 60.461 79.683 - 65.716 37.491 - 58.956 - -

Detection Rate 9198 / 11134 - 160 / 190 270 / 667 - 3229 / 4883 - -

MOV NL COL RAW #1 mAP / AP 75.685 83.881 - 56.811 88.303 - 73.745 - -

Detection Rate 8448 / 9454 - 145 / 190 115 / 127 - 2786 / 3592 - -

MOV NL COL PRC #1 mAP / AP 74.365 80.593 - 67.248 77.819 - 71.801 - -

Detection Rate 8098 / 9454 - 177 / 190 103 / 127 - 2794 / 3592 - -

MOV NL COL RAW #2 mAP / AP 56.138 79.669 81.16 - 95.891 - 80.106 -

Detection Rate 19005 / 19512 904 / 1076 - 3223 / 3339 - 6063 / 7000 - -

MOV NL COL PRC #2 mAP / AP 50.743 79.575 51.289 - 95.169 - 78.422 - -

Detection Rate 18717 / 19512 607 / 1076 - 3204 / 3339 - 5951 / 7000 - -

MOV NL COL RAW #3 mAP / AP 40.144 66.159 78.973 56.05 63.48 41.825 57.587 69.222 -

Detection Rate 16369 / 19107 123 / 139 1208 / 1656 3378 / 4250 210 / 222 17112 / 19580 4603 / 5220 -

MOV NL COL PRC #3 mAP / AP 35.941 64.473 16.024 48.232 52.965 31.689 55.18 54.91 -

Detection Rate 16031 / 19107 63 / 139 1177 / 1656 2869 / 4250 209 / 222 16897 / 19580 4257 / 5220 -

MOV NL COL RAW mAP / AP 50.018 75.007 81.04 46.105 80.066 40.443 67.85 59.652 -

Detection Rate 44174 / 48620 1027 / 1215 1208 / 1656 6773 / 7773 210 / 222 26018 / 30229 4603 / 5220 -

MOV NL COL PRC mAP / AP 40.274 74.017 45.707 35.045 71.171 26.848 71.171 43.875 -

Detection Rate 43224 / 48620 670 / 1215 1177 / 1656 6233 / 7773 209 / 222 25699 / 30229 4257 / 5220 -

MOV LL MONO RAW mAP / AP 21.916 75.961 0.12 9.022 42.086 2.906 45.234 - -

Detection Rate 44886 / 55660 9 / 151 674 / 4544 571 / 1241 53 / 492 34562 / 71387 - -

MOV LL MONO PRC mAP / AP 28.056 73.83 6.893 9.626 57.816 18.023 58.258 - -

Detection Rate 44432 / 55660 84 / 151 634 / 4544 811 / 1241 236 / 492 47404 / 71387 - -

MOV LL MONO RAW #1 mAP / AP 56.169 74.689 - 50.191 60.985 - 38.812 - -

Detection Rate 9631 / 12142 - 122 / 238 28 / 44 - 2434 / 5751 - -

MOV LL MONO PRC #1 mAP / AP 51.017 69.104 - 59.167 29.146 - 46.653 - -

Detection Rate 9098 / 12142 - 147 / 238 28 / 44 - 3108 / 5751 - -

MOV LL MONO RAW #2 mAP / AP 21.481 76.59 - 2.488 23.046 0.392 45.389 - -

Detection Rate 21163 / 25829 9 / 151 29 / 140 61 / 201 2 / 68 7169 / 14309 - -

MOV LL MONO PRC #2 mAP / AP 39.528 74.197 39.694 1.221 54.843 56.27 50.468 - -

Detection Rate 20987 / 25829 84 / 151 21 / 140 136 / 201 59 / 68 8703 / 14309 - -

MOV LL MONO RAW #3 mAP / AP 24.05 68.376 - 6.571 43.555 3.528 46.318 - -

Detection Rate 12839 / 16192 - 523 / 4166 308 / 500 51 / 424 24450 / 49747 - -

MOV LL MONO PRC #3 mAP / AP 30.873 70.999 - 8.413 57.574 15.926 63.201 - -

Detection Rate 13058 / 16192 - 466 / 4166 385 / 500 177 / 424 34751 / 49747 - -

MOV LL COL RAW mAP / AP 37.934 80.596 - 22.83 10.929 - 37.381 - -

Detection Rate 10339 / 11895 - 120 / 498 15 / 116 - 1905 / 3677 - -

MOV LL COL PRC mAP / AP 37.196 67.619 - 29.93 12.919 - 38.316 - -

Detection Rate 8754 / 11895 - 157 / 498 29 / 116 - 1921 / 3677 - -

1Results of class van and scooter are omitted as the detector used does not support detection of these classes
2mAP / AP values are in percentage, Detection rate = True Positive / Ground Truth

’-’ values in mAP / AP and Detection Rate means the object was not annotated in ground truth data
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5.1 Analysis of results of Stationary Datasets

The following comparisons are made between datasets captured using MONO, LRES

and COL cameras with camera setup Stationary. For this, the mAP score of detection

by object detector, Faster R-CNN, is lower because of the relatively smaller size of the

objects [7]. The object detector, Faster-RCNN’s chosen model, is a general model and

has not be specially trained to detect smaller objects and hence its detection scores are

lower.

5.1.1 Stationary: Normal Lighting Condition

For normal lighting conditions, the pre-processed datsets i.e. PRC, helped increase the

mAP score of object detector by 65.66% for LRES, 65.16% for MONO and 28.6% for

COL camera datasets. Even though datasets using the LRES camera experienced the

most significant boost in performance, the increased performance score was nearly half

the score in MONO and LRES. COL camera datasets perform better than MONO by a

small margin of 0.14% for PRC dataset, which was originally 2.708%.

Figure 5.1: mAP of RAW and PRC in stationary normal light (STA NL) datasets. mAP of COL dataset is
higher followed by MONO and LRES.
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(a) STA NL MONO RAW (b) STA NL MONO PRC

(c) STA NL LRES RAW (d) STA NL LRES PRC

(e) STA NL COL RAW (f) STA NL COL PRC

Figure 5.2: (a-f) frames with bounding box for ground truth (blue) and object detector prediction (red) with
confidence score for Stationary normal light (STA NL) datasets.

5.1.2 Stationary: Low Lighting Condition

PRC dataset of COL camera, which had mAP boosted by 28.6% in normal lighting

condition, had its mAP score significantly decreased by 8.4%. Whereas, like before LRES

camera datasets had the most significant increment of 32.28% but same as before LRES

dataset had the least mAP score. Lastly, the confidence score of MONO was moderately

boosted by about 18% making it the most dataset in low light condition. The mAP score

of the PRC dataset of MONO was about 8.5x and 1.6x greater than LRES and COL,

respectively.
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Figure 5.3: mAP of RAW and PRC in stationary normal light (STA LL) dataset

55



(a) STA LL MONO RAW (b) STA LL MONO PRC

(c) dataset STA LL LRES RAW (d) STA LL LRES PRC

(e) STA LL COL RAW (f) STA LL COL PRC

Figure 5.4: (a-f) frames with bounding box for ground truth (blue) and object detector prediction (red) with
confidence score for Stationary low light (STA LL) datasets. The number of detections are lower because of
smaller object size. Object detectors have trouble detecting smaller objects [7].

5.2 Analysis of results of Moving Datasets

The following comparisons are made between datasets captured using MONO and COL

cameras with camera setup: Moving. In the datasets below, the larger dataset MOV NL COL,

and MOV LL MONO each consists of 16,000 and 14,215 frames, respectively divided into

three datasets with the same name followed by #1, #2, #3 to identify their sequence.

This was done to make an unbiased comparison with the other datasets MOV NL MONO

and MOV LL COL.

The datasets were captured on a moving car that started recording from a parking lot

with proper lighting condition. So the initial frames of around 1,600 for dataset MOV LL

56



were captured in an artificial lighting condition. While this does not impact the MOV NL

datasets, MOV LL datasets performance was negatively affected.

Compared to datasets in stationary, the mAP score or detection ratio is significantly

higher because of the larger object size as the distance between the camera and nearby

object is relatively minor compared to stationary.

5.2.1 Moving: Normal Lighting Condition

In normal lighting condition, contrary to previous results, the detections decreased. Dataset

MOV NL MONO and MOV NL COL #1, which refer to the same scenes captured us-

ing MONO and COL camera respectively, saw its performance decreased by 1.76% on

MONO and 1.67% on COL for the pre-processed datasets. Overall, the COL camera’s

RAW datasets offered better detection score in all the normal lighting datasets.

Figure 5.5: mAP of RAW and PRC in stationary normal light (MOV NL) dataset
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(a) MOV NL MONO RAW (b) MOV NL MONO PRC

(c) MOV NL COL RAW (d) MOV NL COL PRC

Figure 5.6: (a-d) frames with bounding box for ground truth (blue) and object detector prediction (red) with
confidence score for Moving normal light (MOV NL) datasets. Since, the objects are nearer to the camera, the
size of the objects are larger which leads to higher mAP scores compared to stationary dataset.

5.2.2 Moving: MOV LL

As mentioned earlier, about 1,600 frames in MOV NL MONO #1 dataset were captured

in a parking building with proper lighting condition. Because of this, the performance of

Faster R-CNN on PRC for dataset MOV NL MONO #1 decreased by about 9%. Simi-

larly, the performance on MOV LL COL dataset decreased by almost 2%.

In the latter frames of MOV MONO LL, the mAP increased by about 84.01% for

dataset #2, 28.37% for dataset #3 and 28.01% for the overall combined dataset.
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Figure 5.7: mAP of RAW and PRC in stationary normal light (MOV LL) dataset

(a) MOV LL MONO RAW (b) MOV LL MONO PRC

(c) MOV LL COL RAW (d) MOV LL COL PRC

Figure 5.8: (a-f) frames with bounding box for ground truth (blue) and object detector prediction (red) with
confidence score for Moving low light (MOV LL) datasets. Since, the objects are nearer to the camera, the size
of the objects are larger which leads to higher mAP scores compared to stationary dataset.
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5.3 Result Summary

Based on evaluation metrics of PASCAL VOC [54]: Mean average precision (mAP), all

the datasets on Table 4.2 were evaluated and compared to determine the improvement

of object detector of Machine Vision applications of Object Classification, Localisation.

These datasets were exposed to natural and artificial lighting condition before and af-

ter sunset using MONO, COL and LRES HDR cameras. Also, the camera setup for

the stationary position was analogous to the Surveillance system, and Moving was to

Autonomous Navigation.

Regarding Object detector’s performance on camera setup stationary, surveillance, for

normal lighting condition on the images pre-processed (PRC) by bio-inspired TMO, COL

camera produced a better result than MONO cameras with a marginal difference of 0.14%.

However, in the low light condition, the MONO camera performance was 1.6x the COL

camera. The LRES camera’s performance even though it experienced the highest gain

when using the PRC dataset, the overall prediction score was always significantly lower

compared to scores of MONO and LRES in both cases. For stationary setup, the pre-

processing with bio-inspired TMO increased performance for all MONO, COL and LRES

camera’s datasets in normal lighting condition. However, the COL camera’s performance

dropped by a margin of 0.911% when using the PRC dataset in low light condition.

For camera setup moving, i.e. autonomous navigation, the PRC datasets decreased

the overall performance of both MONO and COL. However, the RAW dataset of COL

still outperformed the PRC and RAW dataset of MONO. For low light datasets, artificial

lighting in a parking building at the starting 1600 frames negatively impacted a signif-

icant part of the initial dataset leading to decreased performance of MONO camera on

PRC dataset compared to the RAW dataset. However, as the building was exited, the

performance gap between pre-processed and unprocessed dataset changed in favour of

the PRC dataset. Overall, for moving, i.e. autonomous navigation setup, COL cameras

perform better in normal lighting conditions, but the performance was better for the low

light condition when MONO cameras were used.

The evaluation results of the bio-inspired TMO has increased the confidence score of

object detector for tasks of object classification and localisation. For surveillance and

autonomous navigation application, the MONO camera is the ideal choice in low light

condition when no significant artificial lighting was observed.

While in normal lighting conditions, the performance increased only in surveillance

setup where objects are far away from the camera. The enhancement done in pre-processed

datasets increased the contrast and features that helped the object detector to identify

more objects than it would have using unprocessed dataset. For autonomous navigation

60



setup, the relatively larger object size and the proper illumination condition increased

the performance level of the unprocessed dataset. The pre-processing for this scenario

yielded no significant benefit and visually seemed to have blurred the images, leading to

decreased performance of object detector.

Table 5.3: Overall summary of comparision results. Based on mAP score of PRC and RAW dataset for normal
lighting (NL) and low lighting (LL) condition, the one with the higher score is marked with a tickmark symbol

Camera Position Camera PRC/RAW NL LL

Stationary MONO RAW

PRC X X

LRES RAW

PRC X X

COL RAW X

PRC X

Moving MONO RAW X

PRC X

COL RAW X X

PRC
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Chapter 6

Discussion

The thesis evaluated the performance of Machine Vision application on HDR images that

have been tone-mapped using bio-inspired TMO [15] on dataset exposed to different light-

ing conditions and camera setup. The machine vision application on which the evaluation

was done was an Object Detector, Faster-RCNN [5] using PASCAL VOC metrics [54].

The comparison of results in Chapter 5 points to increased Object Detector performance

when using pre-processed images with bio-inspired TMO in all low-light conditions. These

benefits were observed for Monochrome cameras, and the benefit was not observed for

Colour camera. The results of this evaluation are in line with results from evaluations

performed by Rana et al. [30], Přibyl et al. [109] and Chermak and Aouf [104] where

HDR images, even the tone-mapped LDR images, were found to have more features for

detection and matching than normal LDR images. While this thesis’s evaluation is not

on feature detection and matching, the bio-inspired TMO was designed to increase the

detection of edges and enhance contrast under its evaluation metric of Motion Artefacts.

The feature detectors used in [30], [109] and [104] detected and matched most distinct

features such as corners, points and others which primarily lie on the edge of an object.

By enhancing these edges of objects, feature detection can be increased.

In an experiment by Pinho et al. [105], the use of tone-mapped HDR images did

improve detection of fruits, but the experiment found no difference between the various

TMOs used, which where Reinhard [47], Drago [49] and the camera’s inbuilt TMO itself.

However, Rana et al. [30] pointed Drago [49] as the best TMO for improving feature

detection. Moreover, Griffiths [15] when comparing his novel bio-inspired TMO using

proposed metric of Noise Suppression, Flicker and Motion artefacts which focused on

information content and objective use for Machine Vision applications, found bio-inspired

TMO performing better than Reinhard [47] in Noise Suppression and Motion Artefact but

not reduction of image flicker. However, for Drago [49] bio-inspired TMO outperformed

on all three metrics. While the datasets used, methodology and evaluation metrics differ

in each of these experiments to make a direct comparison difficult, evidence from this

62



thesis and Griffiths [15] show bio-inspired TMO compared to its LDR images (RAW)

show improved detection of features such as edges and increased image contrast which led

to increased performance of Object Detectors.

Furthermore, the novel bio-inspired TMO is meant as a general-purpose TMO for

Machine Vision application. The datasets captured in the Stationary setup (STA) is

analogous to a surveillance system where the main tasks are object classification, locali-

sation, and tracking. For optimal performance, it is expected for such surveillance system

to be immune to changing lighting condition. A paper by [120] proposed a hybrid TMO

with properties of local and global TMO for object detection and tracking, but it lacks

implementation to make any comparison. The bio-inspired TMO, which is also a hybrid

TMO used in this thesis, has improved object detection for surveillance application.

Moreover, the dataset with camera setup Moving is analogous with the setup of cam-

eras for autonomous driving using HDR cameras. In this regard, a similar experiment by

[117] for vehicle and tracking had used deep learning model of AlexNet fused with LIDAR

data. The common thing between [117] is the use of deep learning models for object

detection on dataset exposed to extreme lighting conditions. Furthermore, the results

further add to the evidence of improved performance because of the use of HDR imaging.

Lastly, a direct comparison of bio-inspired TMO on other application is still lacking.

However, this thesis and other papers discussed here point to HDR imaging, even when

tone-mapped, has shown to improve feature detection and matching, contributing to

increased detection rate for Machine Vision applications such as Object classification,

localisation in surveillance and autonomous driving applications.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The Bio-inspired TMO was implemented on dynamic sequence of images with camera

setups similar to surveillance (stationary) and autonomous navigation (moving). For

higher-order MV task of object detection, i.e., object classification and localisation to

validate improvements in object detector performance when using bio-inspired TMO as

the pre-processing algorithm for converting HDR images to the 8-bit standard format.

The evaluation for each camera setup consisted of datasets captured using MONO, COL

and LRES HDR cameras for normal and low illumination conditions. The MONO and

COL cameras captured HDR images using a single exposure method, while LRES used

a row-based multi-exposure method to capture HDR images of equal depth and reduced

resolution.

The datasets were annotated and ran through a Faster-RCNN object detector model

to generate predictions that was evaluated and compared using the PASCAL VOC metric

of mAP in %. COL cameras are known to perform better in normal illumination, whereas

MONO in low illumination. The thesis results are in line with this fact, where datasets

captured using MONO were found to perform better in low light condition compared to

COL and LRES. The pre-processed datasets further increased the performance of the

object detector in low light condition, but in normal lighting conditions, the performance

of the object detector decreased. Besides this, artificial lighting in a parking building also

decreased performance on the pre-processed dataset captured using MONO. Likewise, for

datasets captured using COL camera, the object detector performed exceptionally well in

un-processed datasets, which was further enhanced when using pre-processed datasets for

normal illumination condition. However, in low light conditions where the un-processed

dataset performed better than pre-processed datasets. Lastly, LRES datasets, when pre-

processed, had its prediction score increased the most for surveillance datasets under
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normal and low light. However, its performance compared to MONO and COL was

sub-par, almost a half in normal and a fifth in low light condition.

During the evaluation, annotated classes of objects van and scooter were not supported

for detection, and these were detected as car and motorcycle in the pre-trained model,

which led to false detections. Besides this, the object detector had problems detecting

objects of smaller size in surveillance-related datasets. These problems led to a decrease

in mAP, but it was consistent over the compared datasets used for evaluation and avoided

any bias in the final results of the thesis.

The evaluation study has extended and verified the implementation of bio-inspired

TMO on dynamic settings such as surveillance and autonomous navigation. For low light

conditions, the increased performance of the object detector can be attributed to enhanced

noise suppression, contrast, and edge detection, but these benefits were not observed in

images under normal lighting conditions. Additionally, the results obtained by MONO

camera were more consistent compared to COL and LRES cameras.

7.2 Future Work

7.2.1 Compare Performance on One-stage Detectors and real-

time implementation

While in terms of accuracy two-stage detectors are better, in terms of speed one-stage

detectors are faster. The accuracy of one-stage detectors like SSD, YOLO are getting

faster with new developments. In future a comparative analysis between performance

improvement for two-stage and one-stage detectors should be performed. Besides this, for

implementation of bio-inspired TMO it is essential for testing it in real-time applications

on which one-stage detectors are better than two-stage detector.

7.2.2 Custom-trained detector

The Faster-RCNN model used was a pre-trained model to detect general objects from

people, cars to boats, handbags, clock which are not essential depending upon the task

at hand. Having a custom-trained detector may increase the performance level of object

detector on bio-inspired pre-processed images.
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