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Abstract 
 
The work in this thesis presents and evaluates a number of strategies by which English-
learning children might discover the major open-class parts-of-speech in English (nouns, 
verbs and adjectives) on the basis of purely distributional information. Previous work has 
shown that parts-of-speech can be readily induced from the distributional patterns in 
which words occur. The research reported in this thesis extends and improves on this 
previous work in two major ways, related to the constructional status of the utterance 
contexts used for distributional analysis, and to the way in which previous studies have 
dealt with categorial ambiguity.  
 
Previous studies that have induced parts-of-speech from word distributions have done so 
on the basis of fixed “windows” of words that occur before and after the word in focus. 
These contexts are often not constructions of the language in question, and hence have 
dubious status as elements of linguistic knowledge. A great deal of recent evidence (e.g. 
Lieven, Pine & Baldwin, 1997; Tomasello, 1992) has suggested that children’s early 
language may be organized around a number of lexically-specific constructional frames 
with slots, such as “a X”, “you X it”, “draw X on X”. The work presented here 
investigates the possibility that constructions such as these may be a more appropriate 
domain for the distributional induction of parts-of-speech. This would open up the 
possibility of a treatment of part-of-speech induction that is more closely integrated with 
the acquisition of syntax. 
 
Three strategies to discover lexically-specific frames in the speech input to children are 
presented. Two of these strategies are based on the interplay between more and less 
frequent words in English utterances: the more frequent words, which are typically 
function words or light verbs, are taken to provide the schematic “backbone” of an 
utterance. In the first strategy, all frames are schematic structures for full utterances. The 
second strategy extends this approach to include multi-word sequences that frequently 
occur embedded inside other frequent multi-word sequences.  The third strategy is based 
around pairs of words in which the occurrence of one word is highly predictable from 
that of the other, but not vice versa; from these basic slot-filler relationships, larger 
frames are assembled. 
 
These techniques were implemented computationally and applied to a corpus of child-
directed speech. Each technique yielded a large set of lexically-specific frames, many of 
which could plausibly be regarded as constructions. In a comparison with a manual 
analysis of the same corpus by Cameron-Faulkner, Lieven and Tomasello (2003), it is 
shown that most of the constructional frames identified in the manual analysis were also 
produced by the automatic techniques. 
 
After the identification of potential constructional frames, parts-of-speech were formed 
from the patterns of co-occurrence of words in particular constructions, by means of 
hierarchical clustering. The resulting clusters produced are shown to be quite similar to 
the major English parts-of-speech of nouns, verbs and adjectives. Each individual word 
token was assigned a part-of-speech on the basis of its constructional context. This 
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categorization was evaluated empirically against the part-of-speech assigned to the word 
in question in the original corpus. The resulting categorization is shown to be, to a great 
extent, in agreement with the manual categorization. 
 
These strategies deal with the categorial ambiguity of words, by allowing the frame 
context to determine part-of-speech. However, many of the frames produced were 
themselves ambiguous cues to part-of-speech. For this reason, strategies are presented to 
deal with both word and context ambiguity. Three such strategies are proposed. One 
considers membership of a part-of-speech to be a matter of degree for both word and 
contextual frame. A second strategy attempts to discretely assign multiple parts-of-speech 
to words and constructions in a way that imposes internal consistency in the corpus. The 
third strategy attempts to assign only the minimally-required multiple categories to words 
and constructions so as to provide a parsimonious description of the data. 
 
Each of these techniques was implemented and applied to each of the three frame  
discovery techniques, thereby providing category information about both the frame and 
the word. The subsequent assignment of parts-of-speech was done by combining word 
and frame information, and is shown to be far more accurate than the categorization 
based on frames alone. This approach can be regarded as addressing certain objections 
against distributional part-of-speech bootstrapping that have been raised by Pinker (1979, 
1984, 1987). 
 
Lastly, a framework for extending this research is outlined that allows semantic 
information to be incorporated into the process of category induction. 
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1 Introduction 

The problem of part-of-speech induction 
The parts-of-speech of a language (word classes such as nouns, verbs and adjectives) are 

of crucial importance in describing its grammar. A vast amount of research has aimed to 

delineate the processes by which language-learning children acquire the parts-of-speech 

of their native language. The work reported in this thesis will attempt to investigate 

aspects of this question by means of a computational approach.  

 

While most theories of linguistics assign a pivotal role to parts-of-speech, some 

controversy exists about how these classes should be defined. In particular, there is a 

tension between a definition based on the meanings of words, and one based on the 

patterns of usage of words in various linguistic contexts. This theoretical dichotomy is 

mirrored in the language acquisition literature, with some researchers holding that parts-

of-speech are learned on the basis of semantic similarities between words, while others 

maintain that these classes are formed from words that are used in similar context 

distributions.  

 

The work presented in this thesis follows in the distributional tradition, and aims to show 

the feasibility of making use of particular distributional sources of information in order to 

determine the part-of-speech of a word in context. The main contributions of this thesis 

fall into two categories.  

(i) A number of explicit, psychologically feasible techniques will be presented to 

automatically discover pertinent linguistic contexts in which words occur in 

child-directed speech. In contrast to much previous research, these contexts 

are also arguably legitimate objects of linguistic knowledge in their own right. 

The approach I will take here is to focus on lexically-specific frames, 

combinations of specific words with variable slots; such frames are believed 

to play a crucial role in children’s early language development. 

(ii) In addition, these contexts are utilized in order to form categories that 

correspond to parts-of-speech; several techniques for doing so are presented 
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and evaluated. It will be necessary to deal adequately with the pervasive part-

of-speech ambiguity of both words and the contexts in which they occur. A 

useful strategy is to combine categorial information from both the context and 

the word in focus. 

1.1 Outline of this thesis 
In the next three chapters I will review experimental and theoretical work from linguistics, 

developmental psychology and cognitive science that are relevant to the concerns of the 

current work. These reviews will necessarily be highly selective, and my focus will be on 

the sources of information (especially distributional information) that children might use 

to discover the parts-of-speech of their native language. Chapter 2 is concerned with the 

role of parts-of-speech in linguistic theory, Chapter 3 with language development 

research into the acquisition of parts-of-speech, and Chapter 4 with previous 

computational work that has attempted to account for the learning of these categories. 

 

Subsequent chapters present the empirical contribution of the thesis. Chapter 5 outlines 

the frame-based approach taken here, and Chapter 6 presents the first technique by which 

lexically-specific frames corresponding to schematic structures for full utterances 

(referred to as full-utterance frames) may be identified in the language input. The frames 

produced by this process are then subjected to a clustering analysis in order to induce the 

parts-of-speech, and these categories are evaluated. 

 

In Chapter 7, the technique for inducing parts-of-speech from frames is modified so as to 

account for the fact that some contexts are ambiguous, in accommodating words from 

more than one part-of-speech. Three co-clustering techniques to deal with ambiguity are 

explored and evaluated. 

 

Chapter 8 expands on the full-utterance frame structures of Chapter 6 by also identifying 

nested frames, which are smaller structures embedded in full utterances. Chapter 9 takes 

a different frame discovery approach, in which a prediction-based frame is composed of 

a set of elements that mutually predict each other. The frames produced by these two 
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processes are also subjected to the standard clustering analysis and the co-clustering 

techniques, and the resulting categorizations are evaluated. 

 

In Chapter 10, I attempt to position the current work in terms of previous computational 

and language developmental work. Lastly, in Chapter 11 I describe a number of ways in 

which the current framework may be extended; of particular importance is allowing the 

framework to take semantic information into account. 
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2 Parts-of-speech and their role in grammar 

2.1 Introduction 
In this chapter I will review work in the field of linguistics in order to describe what 

parts-of-speech are, which parts-of-speech exist in the world’s languages and in English 

in particular, and to consider whether there are parts-of-speech that are universal, i.e. 

common to all languages. The focus of this chapter will be on considering the sources of 

information from which parts-of-speech can be identified. 

 

I will start off by drawing on research in linguistics to describe how parts-of-speech are 

conventionally viewed in the field, and to attempt to enumerate a number of the main 

categories exhibited in the languages of the world. In doing this, I will draw in particular 

on a relatively theory-neutral typological survey by Schachter & Shopen (2007). 

 

Parts-of-speech are typically defined partly according to the contexts in which particular 

words occur. This opens the possibility that lexical categorization may be related to the 

notion of the linguistic construction, an abstract characterization of the various multi-

morpheme structures found in any language. A relatively recent approach in linguistics, 

known as Cognitive Grammar or Construction Grammar (Bybee, 1985; Croft, 2001; 

Goldberg, 1995; Kay & Fillmore, 1999; Langacker, 1987; referred to hereafter as 

Construction Grammar), places the construction at the centre of linguistic theory. I will 

briefly sketch the main tenets of Construction Grammar, by way of contrast with the 

principles of the dominant linguistic approach of the last 50 years, transformational 

generative grammar (TGG; Chomsky, 1957, 1965, 1981; Ouhalla, 1999), and describe 

how parts-of-speech may be viewed in Construction Grammar. 

 

Lastly, a great amount of controversy exists around the question of whether particular 

parts-of-speech are universal across languages. I will review work by two Construction 

Grammar theorists, Langacker (1987) and Croft (2001), that will be particularly useful in 

shining light on this issue. 
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2.2 Parts-of-speech in traditional linguistic theory 
Most modern theories of linguistics agree that there are basic free-standing elements in 

every language that can be combined in various ways so as to produce acceptable and 

meaningful utterances; these basic elements are the words of a language. Furthermore, 

different words exhibit underlying similarities that allow them to be grouped together into 

categories, traditionally referred to as word classes or parts-of-speech.  

 

The parts-of-speech of a language are made up of words that share certain grammatical 

properties. Schachter and Shopen (2007) characterize words from the same part-of-

speech as being similar (i) in their distribution (mostly defined in terms of other words or 

parts-of-speech that may grammatically occur in certain positions relative to the words in 

question), (ii) in their functional roles (e.g. English nouns can function as subjects while 

verbs cannot) and (iii) in their “categorizations”, or morphological markings (e.g. English 

nouns are categorized/marked for number but not tense, while verbs are marked for both 

number and tense). 

 

Although these criteria for defining parts-of-speech are language-internal, Schachter and 

Shopen (2007) acknowledge that the name given to a particular category is often 

determined by universal semantic criteria, so that, for example, if a category contains a 

majority of words for persons, places or things, then that category is likely to be named 

the noun category of that language, while if it contains mostly words for actions and 

events, the category is named the category of verbs. 

 

A distinction should be made between word types and word tokens. A word type 

corresponds to a word (or a distinct word sense) in a dictionary, such as “drink”, “blue”, 

“mean”, etc. A word token corresponds to an individual act of using a particular word 

type in an utterance. If parts-of-speech were defined according to word types, all tokens 

of a word type such as “drink” would implicitly be assigned to the same category. Most 

linguistic approaches, however, recognize that there is a great amount of categorial 

ambiguity attached to many word types, so that “drink” in “What would you like to 

drink?” can be regarded as a verb, whereas “drink” in “Here’s your drink” is a noun. 
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Hence, part-of-speech categorization operates on particular word tokens as they are used 

in context. 

 

A major high-level distinction can be made between the open and closed word classes of 

a language. The closed-class categories are so named because they do not normally 

accept, or only occasionally accept, new members. These classes are typically used 

mainly to serve grammatical functions in a language (and hence are also termed function 

word classes), rather than to carry specific semantic content. The open classes, on the 

other hand, are usually semantically contentful (and are hence also known as content 

word classes), and can accept new members fairly easily.  

2.2.1 Open word classes 
Schachter and Shopen (2007) state that there are only four open classes in the languages 

of the world: nouns, verbs, adjectives and adverbs. These classes can be characterized in 

terms of their prototypical meanings. Nouns typically designate the names for people, 

places and things; verbs designate actions and processes; adjectives describe properties of 

noun referents, and adverbs typically modify verbs, but can also be used to modify 

adjectives, other adverbs and some other linguistic constituents. 

 

Whereas it has previously been claimed that some languages, notably Nootka and 

Tagalog, do not distinguish between a noun and a verb class, Schachter and Shopen 

(2007) review evidence that this is probably incorrect, and that nouns and verbs do not 

have an identical profile of allowable marking in either of these languages. The authors 

conclude that the noun-verb distinction is one of the few universal properties of 

languages.  

 

When a language possesses a class of adjectives, the key concept identifying a word as an 

adjective seems to be modification of a noun. However, Schachter & Shopen claim that 

there are many languages that either have no class of adjectives, or else have a closed 

class of only a few adjectives with no possibility of adding items to the class. Among 

languages with no adjectives, the semantic concepts expressed in English via adjectives 

are instead expressed either by means of nouns or verbs.  
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As one example, many languages use a single set of grammatical devices to express 

concepts that are expressed in English by means of either stative verbs or adjectives. For 

instance, in Mandarin we have (this example from Schachter and Shopen, 2007):  

 
piaoliang   de       nüaizi  
beautiful   REL   girl      (“a beautiful girl”) 
 
liaojie            de       nüaizi  
understand    REL   girl     (“a girl who understands, an understanding girl”) 
 
The example also shows that stative verbs may have something of the character of 

atemporality, so that they may be similar in meaning to adjectives and adverbs. Note that, 

in these two cases, the construction seems to call for words that perform the function of 

modifying a noun; in this sense, the words piaoliang and liaojie could be seen as 

belonging to a single class of modifiers. 

 

In similar fashion, the function of modification is something that potentially links nouns 

and adjectives together. Again, this is reflected in some languages; as demonstrated in the 

following examples from Quechua (Schachter & Shopen, 2007): 

 
chay  hatun  runa 
that   big      man 
 
chay  alkalda  runa 
that   mayor    man (“that man who is mayor”) 
 
And in fact a similar phenomenon occurs in English, in the “compound noun” 

construction (“diesel truck”, “wind turbine”); the second noun represents the semantic 

essence of the compound, and the first noun modifies the second.  

 

Schachter and Shopen (2007) tentatively characterize the class of adverbs as consisting of 

all words that modify linguistic elements other than nouns; however, this typological 

classification seems to run into difficulty given evidence that in some languages, 
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adjectives are used to modify both nouns and verbs (cited in Schachter & Shopen, 2007, 

p. 22).  

 

In languages lacking a distinct adverb class, modification of non-noun elements can be 

performed by nouns, adjectives or verbs. Adverbs in English seem to form a rather 

incoherent category (Van der Auwera, 1994). Many subtypes of English adverbs might 

more accurately be termed closed classes, e.g. time adverbs (e.g. “yesterday”, “today”, 

“tonight”, “tomorrow”) or directional adverbs (e.g. “home”, “away”). Of the remaining 

truly open adverbs, many are derived from adjectives or present participial forms of verbs 

in combination with the suffix “-ly”. In addition to the traditional view that adverbs 

modify verbs and adjectives, Van der Auwera (1994) points out that it could well be 

argued in many cases that modification of a verb phrase or an entire clause takes place. 

 

It might perhaps be cogent to propose a part-of-speech corresponding to modifiers, a class 

that would cover words that modify any linguistic element, and that would hence include 

both adverbs and adjectives. It might, for a particular language, be possible to subdivide 

the modifier class in terms of the kinds of elements which are modified (if we presume 

the existence of nouns and verbs, there are three logical possibilities: a modifier can 

modify a noun, a verb or another modifier). 

 

The main open word classes (nouns, verbs, adjectives, adverbs) of a particular language 

are sometimes further subdivided on the basis of the criteria distribution, function and 

morphological marking as before; however, these subclasses are not generally termed 

parts-of-speech. Some of these subdivisions can be substantiated on semantic grounds, 

e.g. the distinction between count nouns (for differentiable objects) and mass nouns (for 

undifferentiated substances).  

 

Other open subclasses are only partly semantically based and are otherwise purely 

linguistic, e.g. the distinction between nouns of the masculine, feminine and neutral 

genders in German, a distinction which is only partly based on the sex of humans and 

animals.  
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It is worth mentioning that several theorists (especially in the tradition of Categorial 

Grammar, e.g. Pullum, 1994) have taken the opposite view from the one espoused here, 

that there are only a few parts-of-speech in a particular language. In the view of these 

researchers, basic categories can be composed out of the combinatorial possibilities 

produced by certain feature values that a word or phrase may exhibit (e.g. third person 

plural feminine noun), and these categories can be described in terms of their relations to 

others (e.g. present tense verb phrase agreeing with third person plural feminine noun), so 

that the number of categories in a language may be arbitrarily large (Pullum, 1994). 

2.2.2 Closed word classes 
Surveying the cross-linguistic data in order to provide a comprehensive description of 

language typology, Schachter and Shopen (2007) conclude that the closed word classes 

are far more varied and disparate across languages, and that there may be no closed 

classes that are present in every language (with the possible exception of the class of 

interjections). On the other hand, Schachter and Shopen (2007) do not find evidence that 

there are languages with no closed classes. Some prominent closed classes identified 

across languages are the following: 

 

Pro-forms (including pronouns, pro-verbs, pro-adjectives, pro-adverbs and pro-sentences): 

These are words that stand in the place of more elaborated open-class items which are 

understood in the utterance context. Pronouns are the most commonly-found forms across 

languages, and include the subtypes personal, reflexive, reciprocal, demonstrative and 

relative pronouns. The function of pro-forms may be to promote understandability by 

reducing the amount of information in an utterance, especially when some of that 

information is redundant and can therefore be replaced with an empty “placeholder” pro-

form. In the so-called pro-drop languages, it is possible simply to omit these redundant 

elements altogether.  

 

Noun adjuncts: This broad class consists of closed-class words that are associated with 

nouns, and is further broken down by Schachter & Shopen (2007) into: 
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Role markers: These are markers for case (indicating syntactic/semantic roles, e.g. 

agent, subject) markers for discourse function (e.g. topicality) and other 

adpositions (prepositions and postpositions). The only role markers in English are 

the prepositions (case is marked on the pronouns, rather than by means of separate 

words). These markers denote the roles of different elements in the utterance as a 

whole, so that it may not be strictly accurate to describe them as noun adjuncts 

only, and indeed Schachter & Shopen (2007) note that role markers may be 

associated with verbs in some languages. 

Quantifiers: These include numerals as well as words meaning “some” “few”, 

“much”, “all”, “each”, etc. Some of these quantifiers take different forms when 

modifying nouns with different semantics (e.g. one quantifier for human and 

another for nonhuman nouns). 

Classifiers: In some languages, when a noun is modified by a numeral, quantifier 

or demonstrative, it is obligatory to add a closed-class word indicating class 

membership of the noun. These classes are clearly of interest for lexical 

categorization, as they seem to provide clear distributional information according 

to which nouns can be subdivided into classes. As is also the case with gender 

systems, the classification is often arbitrary and only to a limited extent 

semantically based.  

Articles: Schachter & Shopen (2007) include in this category not only the definite 

and indefinite articles “the” and “a”, but also the demonstratives “this” and “that”. 

 

Verb adjuncts: These are closed-class words associated with verbs, and can be 

categorized in turn as: 

Auxiliaries: These words express the tense, aspect, mood, voice or polarity of a 

verb, and English examples include “will”, “should”, “might”, “could”, etc. 

Particles: These are words that co-occur with certain verbs and essentially have 

the effect of turning them into new verbs with different meanings. Examples 

include “wake up”, “calm down”, “take off”. These words can sometimes be 

separated from their verbs (e.g. “wake me up at five”).  
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Conjunctions: These are words that connect words, phrases or clauses, and can be used to 

connect elements of equal status (coordinating conjunctions such as “and” and “or”), or 

to connect a pair of elements where one is clearly subordinate to the other (subordinating 

conjunctions such as “that”, “who”, “before”, etc). 

 

Other classes: Additional closed classes include clitics, copulas, predicators, emphasis 

markers, existential markers, interjections, mood markers, negators and politeness 

markers. 

2.3 The role of constructions in assigning parts-of-speech 
Given the important role of distribution and function in delineating the parts-of-speech, it 

is worthwhile to look at a linguistic approach that places these two aspects in centre stage, 

namely the various theories that can be described under the label of Cognitive Grammar 

or Construction Grammar. The main tenets of these theories can best be illustrated by 

contrast with those of Transformational Generative Grammar. 

2.3.1 Transformational Generative Grammar 
The field of Transformational Generative Grammar (TGG; Chomsky, 1957, 1965, 1981) 

has been the dominant paradigm in Western linguistics for the last approximately 50 

years. TGG aims to describe the grammatical knowledge by means of which a person can 

determine whether a particular sentence is grammatical or not. Because of the presumed 

complexity of language, combined with the speed and accuracy with which children 

acquire it, it is assumed that much knowledge of language is governed by universal 

principles which are innately present in the human mind (the argument from the “poverty 

of the stimulus”).  

 

TGG concerns itself with accounting for what it regards as the core of a language – the 

relatively systematic and abstract set of rules governing certain kinds of sentences which 

are regarded as lying at the heart of language. Accounting for non-core parts of a 

language, such as words, idioms and semi-fixed idiosyncratic expressions, is regarded as 

falling outside the purview of a grammatical theory. Typically, the emphasis is on 
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describing the constituents of a sentence in the most abstract possible way, so as to 

provide the simplest and most elegant explanation for the largest amount of phenomena. 

 

In most formulations of TGG (e.g. Chomsky, 1957, 1965, 1981), a distinction is made 

between so-called deep structure, said to encapsulate the basic semantic relations in the 

sentence, and the surface structure, which is essentially the produced phonological forms 

of the sentence. TGG proposes that a set of transformational rules transform deep 

structure into surface structure, although no claim is made that this process actually takes 

place during human language processing. 

 

With regard to parts-of-speech, Chomsky (1970) introduced the features +/-N and +/-V to 

mark words as possessing the “noun” and “verb” features (adjectives are said to be +N 

and +V). Baker (2003) attempts to flesh out these features, and describes a noun as an 

item that bears a referential index, and a verb as an element that takes a specifier (a kind 

of subject).  

 

Within the generative approach to language acquisition, the problem of mapping words to 

their parts-of-speech needs to be solved before innate grammatical knowledge can be 

exploited, as the rules of syntax are thought to take the parts-of-speech as their domain, 

rather than individual words. Under a TGG view, parts-of-speech are therefore regarded 

as innate (see also Pinker, 1984). 

2.3.2 Cognitive Grammar and Construction Grammar 
In the linguistic approaches that are known under the rubric of “Usage-based linguistics”, 

“Cognitive Grammar” or “Construction Grammar”, the essence of language is its 

symbolic nature, i.e. the way that forms correspond to meanings (e.g. Bybee, 1985, 1995; 

Croft, 2001, 2005; Goldberg, 1995, 2003; Kay & Fillmore, 1999; Lakoff, 1987; 

Langacker, 1987, Tomasello, 2003, 2006). This applies not only to words, but also to 

grammatical constructions. A construction, according to Croft (2005, p.1), is “an 

entrenched routine that is generally used in the speech community, and involves a pairing 

of form and meaning”. Goldberg & Casenhiser (2006) define constructions as “patterns 

that systematically combine any morphological or phrasal elements”. Tomasello (2006) 



 22

defines a construction as “prototypically a unit of language that comprises multiple 

linguistic elements used together for a relatively coherent communicative function, with 

sub-functions being performed by the elements as well”.  

 

Not only full-utterance structures, but also phrases and even words and morphemes are 

regarded as constructions. Examples in English include the passive construction, the noun 

phrase and verb phrase, and the “way” construction (as in “He fought his way through the 

angry crowd”). Constructions are also thought to exist at varying levels of schematicity, 

where the description of a construction becomes less schematic as more and more 

elements are specified as individual morphemes. So, for example, the “way” construction 

is also an instance of the maximally abstract transitive construction [Subject Verb Object 

Location]. Likewise, the declarative passive construction could be described as the 

partially schematic [Subject BE Verb-en by Obl.], where the elements in italics (BE, -en, 

by) are specific, and the other elements are abstract.  

 

In Construction Grammar, the goal of language learning is to acquire the constructions of 

a language. An inventory of these items is often termed a constructicon, an allusion to the 

more common term lexicon used to describe the list of words in a language. This 

inventory is usually taken to be a structured network, with inheritance links between 

constructions in the network that indicate greater or lesser schematicity. 

 

Under a generative approach, constructions are not taken to be central, and indeed are not 

even elements of the theory, as they are considered to be epiphenomena that result from 

the interaction of universal rules which are disconnected from the meanings of the 

individual elements (Chomsky, 1981). In Construction Grammar, however, constructions 

are the primary elements of linguistic knowledge. 

 

The Construction Grammar approach treats all elements of grammatical knowledge in a 

uniform manner, in contrast to TGG which has separate theoretical components for 

syntactic rules, morphology, syntactic categories, idioms and the lexicon (Croft, 2005). In 
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addition, Construction Grammar is a monostratal theory and does not postulate any 

distinction between deep and surface structures. 

 

According to Construction Grammarians, linguistic knowledge is first and foremost 

knowledge (Goldberg, 1995, p. 5), and so exhibits properties found in other kinds of 

knowledge, e.g. prototype effects and organization in associative networks. This 

viewpoint also strongly implies that linguistic knowledge is acquired rather than innate. 

 

A crucial idea in Construction Grammar is that the use of an element embedded in a 

construction has the ability to direct the interpretation, or construal, of that element; in 

other words, meaning is defined by context. For example, the word “mean” is a verb in 

the sentence “What do you mean?”, but an adjective in “That’s pretty mean”, and a noun 

in “calculating the mean of the values”. This effect is typically more obviously 

demonstrable with open-class words than with closed-class words: the latter are less 

susceptible to categorial ambiguity, perhaps because their associated meaning is more 

“syntactic” rather than “substantial” in nature. One might expect, therefore, that 

constructions would play the dominant role in determining the part-of-speech of a word 

in Construction Grammar.  

2.4 A closer look at open word classes 
In the case of closed word classes, there are several divergent classes which perform 

various grammatical functions, but no classes that are common across all languages. 

However, we have seen that the classes of nouns and verbs appear to be present 

universally. The claim that some languages do not have a class of adjectives is perhaps 

surprising to native speakers of languages that do have such a class. One reason why this 

claim seems so strange is that the function of ascribing properties to nouns seems to be a 

fundamental one in language. This touches on a deeper issue in the definition of parts-of-

speech: intuitively, the semantic function performed by members of some classes such as 

adjectives seems to go to the essence of that class (whereas other classes, such as the 

different gender classes of nouns, are semantically more arbitrary, but see Lakoff, 1987). 

It is instructive to consider the way in which two different CG approaches, namely that of 
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Langacker (1987) and Croft (2001, 2005), have attempted to accommodate meaning and 

function in their treatment of parts-of-speech. 

2.4.1 Langacker’s Cognitive Grammar 
Langacker explicitly argues (1987; pp. 183-274; p.420) that the main parts-of-speech in 

English, such as nouns, verbs and adjectives, can be defined entirely in semantic terms. 

The definitions of these categories are made not in terms of what they “objectively” are, 

but in terms of the cognitive events that constitute their conceptualization. In other words, 

Langacker does not regard the distribution profiles of the main parts-of-speech as 

germane to defining the parts-of-speech. Note that Langacker does not claim here that 

distribution is necessarily irrelevant in acquiring parts-of-speech; only that, when we 

have complete knowledge about a word in usage context, including its intended meaning, 

then it is the meaning of the word that determines the correct categorization. In 

Langacker’s view, the grammatical properties of linguistic elements are symptomatic of 

the categories to which they belong (ibid., p. 255), rather than definitional of those 

categories. 

 

Langacker (1987) distinguishes between nominal and relational predications1. A nominal 

predication designates a region in some conceptual domain, which in turn is defined as a 

set of interconnected entities: these entities become interconnected “when the cognitive 

events constituting their conception are coordinated as components of a higher-level 

event” (p.198). Langacker also describes nominal predications as “things”, and nominal 

predications are represented in English by nouns. 

 

Relational predications, on the other hand, “profile [i.e. make conceptually prominent] 

the interconnections among conceived entities” (p. 219); these entities can be things, but 

can also be composed of relations themselves.  

 

                                                 
1 Note that Langacker uses the term “predication” to mean “the semantic pole of an linguistic expression” 
(1987, p. 97); this is a completely different sense from the more traditional one of referring to an event or 
process, as it is used by e.g. Croft (2001) (see below). 
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Langacker distinguishes between two kinds of relational predications, on the basis of how 

they are mentally conceived. Temporal relations, or processes, are designated in English 

by verbs. The evolution of a process through conceived time is sequentially scanned, i.e. 

there is a series of relations between a trajector and a landmark at various sequential 

points in time, each of these relations being scanned in sequence in order to constitute the 

conceptualization of a verb. In the case of atemporal relations, the series of relations is 

not serially scanned, but represented mentally at once as a Gestalt. These concepts are 

conveyed by adjectives, adverbs and prepositions. 

 

Langacker (1987) also discusses a possible semantic foundation for finer subclass 

divisions in English, such as the distinction between count and mass nouns. Count nouns 

are construed as referring to a bounded area in a domain, whereas the referents of mass 

nouns are unbounded. Langacker suggests that a similar distinction holds between active 

and stative verbs, i.e. verbs that respectively denote actions that indicate change over time 

and verbs that do not; in Langacker’s view, active verbs are temporally bounded, while 

stative verbs are unbounded. 

 

Some support for a semantically-based view of parts-of-speech comes from work in 

neurophysiology. Pulvermüller (1996, 1999) summarizes a large body of research to 

suggest that the major word classes may be distinguished on neurophysiological grounds 

that correlate with the meanings of the words. The phonological forms of all words can 

be shown to activate a number of cell assemblies located in the perisylvian cortices (and 

strongly lateralized to the left hemisphere). In the case of function words, these are the 

only brain areas in which assemblies are activated. Highly concrete, imageable content 

words, on the other hand, activated additional neurons in both hemispheres, with words 

referring to visual stimuli activating assemblies in the visual areas of the brain, and words 

referring to actions activating areas of motor cortex. 

2.4.2 Croft’s Radical Construction Grammar 
In Croft’s Radical Construction Grammar theory (2001, 2005), only the constructions of 

a language are primitives – there are no presupposed syntactic/parts-of-speech, but 

instead categories are derived from the constructions whose slots they fill, so that the 
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constructions are taken to be definitional for the parts-of-speech. Nevertheless, Croft does 

offer a definition of a language-universal set of parts-of-speech, namely nouns, verbs and 

adjectives. These are not taken to be the categories of any particular language; instead 

they are functional prototypes which are typologically defined. 

 

A central dimension of Croft’s theory of parts-of-speech is the notion of the pragmatic 

functions that utterances serve, labeled by Croft as “propositional act functions”. He 

makes particular reference to three such functions: reference, predication and 

modification. The psychological reality of the pragmatic functions is justified by Croft in 

terms of the distinct cognitive operations that are carried out during the processing of 

each particular function. Reference establishes a cognitive file for the referent, while 

predication does not, but instead “ascribes something to the referent” (p.66) – typically 

“transitory states of affairs, often in a narrative sequence”. Modification adds additional 

features to the referent’s cognitive file. 

 

The other central dimension in Croft’s theory is the semantic distinction between words 

for objects, properties and actions. These three classes are defined in terms of four 

underlying semantic properties: relationality, stativity, transitoriness and gradability. 

 

Croft defines a two-dimensional conceptual space from these two dimensions 

(propositional act function vs. semantic class), and uses this space as the basis for his 

definition of the parts-of-speech. Each of the three semantic classes is taken to be the 

prototypical filler of the role in each of the three kinds of propositional act constructions: 

objects are the prototypes of referring, properties are the prototypes of modifying, and 

actions are the prototypes of predicating. To the occurrence of each of these semantic 

classes in their corresponding functions, Croft assigns the terms noun, adjective and verb 

respectively. 

 

The justification for this purported prototypicality is that these semantic classes are 

structurally unmarked when fulfilling these roles, whereas the coercion of any of the 
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other classes into a “less-comfortable” function is often structurally coded, particularly by 

the use of grammatical morphemes, whether affixes, particles, or other function words. 

 

Croft stresses that the categories of any particular language will not be the parts of speech 

thus defined, but will instead be language-specific. Croft’s prototypical parts-of-speech 

provide the core of a category, but the boundaries of the category are determined by the 

distributional facts of the individual language. 

2.4.3 The universal status of the main open classes 
Both Croft and Langacker seem to provide theoretical support for a threefold view of the 

open-class parts-of-speech, with Croft emphasizing three prototypical conjunctions of 

function with meaning, and Langacker pointing to three kinds of mental 

conceptualization. These two theories are reconcilable: reference can be made only to a 

concept that can be “pointed” to and hence is reified, or thought of as a “thing”; 

predication may well require conceptual operations that sequentially scan a series of 

discrepant situations; modifying an entity is very similar to ascribing a property to it, 

which is likely to be best represented as an atemporal relationship.  

 

Furthermore, the prototypical meanings identified by Croft (objects, actions and 

properties) may be the concrete examples in which the three kinds of construals proposed 

by Langacker are grounded. For instance, when we think of an “idea” as something thing-

like (I can get an idea, I can share it with you, you can steal one of mine, my head can 

become crowded with ideas), the sequence of conceptual operations required to represent 

“idea” mentally as a delimited region in some domain are, for Langacker, the same as 

those used to represent cookies and elephants. It may be that these more concrete 

representations are acquired first. More abstract nouns could then make use of these 

preestablished cognitive routines; the cue to indicate that they should be conceived of as 

nominal predications comes from their use in a nominal construction. 

 

The three functions proposed by Croft and the three basic forms of predication proposed 

by Langacker therefore roughly map onto each other, but are somewhat at odds with 

suggestions that, while all languages distinguish between nouns and verbs, some 
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languages lack a class of adjective. As suggested earlier, it may be possible to consider an 

alternative view, in which there are three classes: nouns, verbs and modifiers. The latter 

class consists of words that modify nouns, words that modify verbs and words that 

modify other modifiers, and so subsumes not only adjectives and adverbs, but also the 

“subordinate” noun in noun compounds such as English “diesel truck”, and also some 

usages of verbs as modifiers, e.g. “It’s a pretend aeroplane”. Recall that the relevant 

function as proposed by Croft is that of modification. This viewpoint would also be 

consistent with Langacker’s (1987) view of these modifiers as words that foreground 

atemporal relations. And in fact, much of the linguistic data used by Schachter & Shopen 

(2007) to argue against the existence of adjectives in some languages revolves around the 

use of supposed non-adjectives in a modifier role. 

2.4.4 Constructions as clues to word meaning  
In order for a hearer to establish a veridical mental representation of what a speaker 

intends to convey, he or she needs to extract certain information from the utterance which 

may be assumed to be expressible in all languages.  

• The hearer needs to know which elements denote the entities that are implicated 

in the current utterance (nouns). 

• The hearer also needs to know which elements indicate the actions/processes in 

which these entities are involved, whether really or hypothetically (verbs). 

• If there is any additional information supplied in the utterance which will modify 

the entities or processes or any other elements which themselves modify entities 

or processes, then the elements indicating this information need to be identified as 

well (modifiers, verb adjuncts, noun adjuncts). 

In addition, there are a number of other kinds of semantic information which may be 

optionally distinguished in a particular language, including: 

• whether entities are to be conceived of as spatially bounded, or processes as 

temporally bounded. (mass vs. count nouns, active vs. stative verbs) 

• relationships between entities which are prototypically spatial, but may be 

metaphorically extended to non-spatial domains. (prepositions) 
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• other items of information that may be relevant to communication in specific 

language communities. (other closed-class words) 

 

The information above is conveyed by indicating that particular elements in an utterance 

belong to particular categories. There are two possible strategies for conveying this 

information. The one way is to use words which belong unambiguously to only one part-

of-speech. The other way is to carry this information in the constructions of the language, 

so that a particular usage of a word is a noun usage whenever it is used in some 

construction in a position reserved for words belonging to the noun category.  

 

On this view, then, constructions define parts-of-speech; however, their purpose is not 

merely to allow a hearer to allocate a word to some abstract, linguistically-defined 

category that plays a role in some linguistic theory. Instead, the purpose is that the hearer 

may know what construal to place on the particular word. The semantic function of the 

parts-of-speech is therefore crucial to their definition.  

 

When a construction is viewed as essentially an acceptable sequence of parts-of-speech, 

then identifying the part-of-speech of a particular word from the construction in which it 

occurs is a difficult task. Given the categorial ambiguity of many words, a language 

learner would need to entertain all possible sequences of all of the categories to which 

each word could belong, which would threaten to produce a combinatorial explosion of 

possibilities. It would seem difficult for the learning of constructions and parts-of-speech 

to get started under such circumstances. 

 

Importantly for the work in this thesis, though, the two strategies for conveying category 

membership are not mutually exclusive. The identification of a particular construction, 

and hence the assignment of categories to other words, would be greatly facilitated by the 

presence of a number of words which do not need to be classified on the basis of their 

constructional context, because they only belong to one category anyway. In English, the 

words that best fit this description are the function words. Words like “the”, “from”, 

“but”, “you” and “if” do not easily change their class membership depending on the 
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construction in which they occur. Instead, these words tend to impose category 

interpretations on other (mostly open-class) words; note how the surrounding function 

words change the part-of-speech of “water” in, e.g. “the water” vs. “to water it” 

 

The learner’s task would also be greatly simplified if certain positions in a number of 

constructions were reserved for specific words, rather than for all words from a particular 

category. Hence, during identification of a construction, the learner would only need to 

recognize the specific word, rather than listing the categories to which the word could 

belong, thereby reducing the size of the combinatorial problem. 

  

A major working assumption in this thesis is that English has a great number of these 

lexically-specific frames and constructions, in which the fixed elements are mostly 

function words which are unambiguous as to their part-of-speech.  
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3 Children’s knowledge and discovery of parts-of-
speech 

3.1 Introduction 
This Chapter presents a selective review of the psycholinguistic evidence regarding 

children’s discovery of the parts-of-speech of their native language. I will briefly 

consider the dichotomy between theories that postulate that parts-of-speech are acquired 

on the basis of their meaning, on the one hand, and on the basis of their use in context, on 

the other hand.  

 

Subsequently, I will focus on evidence that a great deal of children’s early linguistic 

knowledge is based around very specific constructional frames. Many of the first 

utterances children are able to produce follow a small number of patterns with specific 

words combined with variable slots. Many of these specific frames are quite useful as 

cues to the part-of-speech of the words that occur in their slots. During the first three 

years of life, children become increasingly able to make use of these frames to guess the 

part-of-speech and hence the meaning of novel words. 

 

These patterns are often constructed around function words, and evidence is reviewed to 

show that, despite often omitting function words from their first sentences, children have 

early knowledge of the phonological forms of function words, and of the positions in 

which they occur in utterances.  

 

The mechanisms by which these frames are learned are still unknown, and I will review a 

number of proposals in the literature, as well as empirical evidence that casts light on this 

issue. 

3.2 Bootstrapping theories 
There are two main schools of thought about how children get started in discovering the 

parts-of-speech of their first language, depending on whether the initial source of 

information about word classes is taken to be the meaning of words (their semantics), or 

their pattern of usage in relation to other words that occur with them in utterances (their 
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distribution). As reviewed in Chapter 2, these two potential sources of part-of-speech 

information for the child mirror the two kinds of information used by linguists to make 

the same distinction. 

3.2.1 Semantic bootstrapping 
Theories of semantic bootstrapping appeal to the prototypicality of concrete objects, 

properties and events as representatives of the main content word classes. The suggestion 

is that children form their first word categories by grouping together words that refer to 

the same dimensions of concrete meaning, as embodied in everyday percepts with which 

they are familiar, such as objects and actions. So for instance, the child might form 

separate categories of words referring to physical objects, words referring to concrete 

actions, words referring to properties of entities and words referring to spatial relations 

(Pinker, 1984); these become the proto-categories out of which the adult categories of 

nouns, verbs, adjectives and prepositions, respectively, will form.  

 

In a nativist view of semantic bootstrapping such as that of Grimshaw (1981) or Pinker 

(1984), these semantic categories are innately given, as are the linguistic part-of-speech 

categories themselves and the mapping between the semantic and linguistic categories. 

The task for the language learner is then that of linking the specific words of his/her 

language with the innately-given syntactic categories.  

 

In an empiricist version of semantic bootstrapping (e.g. Macnamara, 1982), no innate 

knowledge is postulated. Rather, the child is presumed to divide the world into 

conceptual categories such as actions, objects and properties, possibly on the basis of 

their experience with the world, and then to attempt to map words onto these categories.  

 

The semantic bootstrapping approach is often criticized on the grounds that many of the 

first words produced or understood by children are not the concrete examples that would 

be regarded as prototypical of a particular category: for instance, some early nouns are 

not the words for physical objects, and some verbs are not words for concrete causal 

actions. But this argument is logically flawed: we should take our evidence not from the 

early words that are nouns, verbs, etc. for linguists, but from the words that are nouns, 
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verbs, etc., for the children themselves. If a child is able to produce utterances with the 

non-concrete verb “think”, this does not mean that she automatically treats the word 

“think” as a verb; it would be quite possible for her to be developing a category of verbs, 

based on concrete actions that she encounters in everyday experience, while at the same 

time using “think” in a number of utterances without connecting it to her developing part-

of-speech. A bootstrapping theory is only intended to show how categories might get 

started for a child who has no categories yet; it is not required that all eligible words be 

assimilated into the category. 

3.2.2 Distributional bootstrapping 
In an alternative view of the origin of the parts-of-speech, a part-of-speech is defined by 

the various contexts in which its member words appear. Typically, not only one but a 

pattern of several contexts is considered, so that we can speak of the contextual 

distribution of the words. On this view, what makes a noun into a noun is not its function 

of reference, but the fact that it is used in the same contexts in which nouns occur; as we 

have seen, this is a standard way of defining parts-of-speech. The hypothesis of 

distributional bootstrapping posits that even young language-learning children are able to 

keep track of the distributions of words, and to merge words into categories if they tend 

to occur in the same contexts. As Maratsos & Chalkley (1980) put it: “… [I]t is not that 

children learn how verbs act, as though they begin with the notion of verbs. Rather, they 

come to learn that a certain set of terms may appear in correlated uses.” (p. 133). 

  

In a purely distributional approach, the only information tracked is the various contexts in 

which a word appears. For this reason, it becomes important in such a theory to specify 

exactly how a “context” is to be defined, i.e. in terms of immediately adjacent words, 

immediately adjacent phrasal constituents, co-occurrence with other words in any 

position in the same utterance, etc. One possibility that is in keeping with a Construction 

Grammar approach as considered in the previous chapter, is that the relevant contexts for 

words are the abstract or semi-abstract constructions in which a word is used; this 

proposal is the basic premise of the work in this thesis. 
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While Maratsos & Chalkley (1980) are often cited as proponents of distributional 

bootstrapping, their position is not that word classes are learned merely by grouping 

together words that share common formal distributional patterns; instead, the meanings of 

words are regarded as of equal importance. So, for instance, verbs are words that occur in 

combination with the suffix –ed in certain environments, but in addition, when they occur 

in these environments, they are words that denote relations which have occurred in the 

past. On this view, a word class such as verb is defined as a set of terms which can appear 

in a certain set of correlated semantic-distributional patterns.  

 

Similarly, Tomasello (2006) argues that it is the communicative functions (e.g. reference, 

predication) performed by the different parts-of-speech, as well as the distributional 

characteristics of words in these categories, that are crucial to the discovery of the 

categories, rather than the meanings that words of a category have in common. 

 

Few psycholinguists would endorse a purely distributional view of part-of-speech 

bootstrapping that does not take word meaning into account (although some linguists 

have done so, e.g. Fries, 1952). However, in concrete implementations of the 

distributional idea, (a number of these studies will be reviewed in Chapter 4), it has been 

customary to ignore the semantic characteristics of these categories and to make use only 

of word co-occurrence patterns in textual data. The reason for this is likely to be purely 

pragmatic: we have huge amounts of textual data available detailing the words that were 

spoken in the presence of children (e.g. the corpora that comprise the CHILDES database; 

MacWhinney, 2000); by contrast, there are no equally large databases detailing the 

meaning of what was being said (and no prospect even of a notation to represent 

semantics that would be acceptable to most researchers). 

 

One way in which a process of semantic-distributional bootstrapping might work is a 

word-centric one: as words are used in speech around the language-learning infant, a 

great variety of aspects of the speech signal and of the real-world concomitants of certain 

words become available to be connected with the word via associative learning. In this 

way, a word might become associated with aspects of reality that co-occur with its use, as 
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well as with the profile of contexts in which the word occurs. Over time, words may 

become grouped together to the extent that they share features in both their semantic and 

contextual distribution. 

 

In the converse, context-centric process, the context itself becomes an object of linguistic 

knowledge, and the words that are used in its slots are stored in memory, along with their 

semantics. Then when the context is next encountered, these features are accessible, so 

that eventually contexts can be clustered on the basis of the similarity in their word 

profiles, and also on the basis of highlighting the same semantic dimensions. And in fact, 

both of these processes may well operate simultaneously. 

 

The distributional proposal has been heavily criticized by Pinker (1979, 1984, 1987) 

among others. Pinker asserts that the task of part-of-speech induction from distributional 

evidence is intractable, inter alia because of the large amount of ambiguity prevalent in 

everyday language. Given the sentences ‘John eats rabbits, ‘John eats fish’ and ‘John can 

fish’, Pinker suggests that a child following a distributional strategy might erroneously 

accept ‘John can rabbits’ as a valid sentence, due to the ambiguity of the word ‘fish’ 

which acts as a noun in one sentence and a verb in another. By the same token, contexts 

can also be ambiguous; a distributional analysis that starts from ‘John eats meat’, ‘the 

meat is good’ and ‘Jane eats slowly’ would supposedly accept ‘the slowly is good’ as a 

valid sentence, because the frame ‘Jane eats X’ does not uniquely pinpoint the category 

of the word occupying the X slot.  

 

Ambiguity is indeed pervasive in language, even in the speech that children are likely to 

hear. Nelson (1995) shows that many words that occur regularly in the input to children 

are ambiguous with regards to the part-of-speech to which they belong. For instance, 

Nelson analyses the usages of “call”, “drink”, “help”, “hug”, “kiss” and “walk” in a 

corpus of child-directed speech, and finds that each of these words is used as a verb on 

some occasions and a noun on others. Conwell & Morgan (2008, submitted) confirm this 

with an extensive analysis of six corpora of child-directed speech. In addition, Conwell & 
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Morgan found that children themselves frequently use certain ambiguous words as both 

nouns and verbs, and that their pattern of use correlates with that of their caregivers. 

 

Pinker’s (1979, 1987) critique, however, is based on a “straw man” version of 

distributional bootstrapping; few serious distributional proposals are as brittle as Pinker 

suggests. It is entirely possible that children are able to make use of evidence across the 

range of contexts in which a word is used in order to determine its category membership, 

rather than drawing conclusions from single utterances. The point Pinker makes is that 

words and their contexts can both be ambiguous. But a learning process which explicitly 

considers words and contexts to be potentially ambiguous, and attempts to determine a 

word’s part-of-speech on the basis of a wider range of information than just the identity 

of the word, may be able to overcome the objections that Pinker raises. 

 

Note, for instance, that in the ‘John can rabbits’ example, there is likely to be a great deal 

of distributional information from other utterances to suggest that ‘John can X’ is a frame 

that favours verbs only, whereas ‘rabbits’ is nearly always used as a noun. Combining 

these two sources of information might be enough in itself to resist the generalization to 

‘John can rabbits’, as the context and word together would be in conflict. Furthermore, 

hearing ‘fish’ appear in the same context (‘John eats X’) as the reliable noun ‘rabbits’, 

and subsequently in the reliable verb context ‘John can X’, could prompt the child to 

explicitly flag the word ‘fish’ as ambiguous, and therefore an unreliable basis for 

categorial generalization. Hence, the child could avoid extrapolating from ‘John can fish’ 

to ‘John can rabbits’. These considerations suggest that combining category information 

from both the word and the context in which it occurs may provide for a more accurate 

categorization strategy than taking only one of these two sources of information into 

account. 

3.2.3 Other bootstrapping theories 
It should be noted that other bootstrapping proposals exist in the literature. Kelly (1992) 

reviews evidence of several correspondences between the phonological properties of 

some words and the word categories to which they belong, and proposes that these 

properties may play a role in the acquisition of parts-of-speech. For instance, in disyllabic 
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English words, stress tends to fall on the first syllable for nouns and on the second 

syllable for verbs; also, the stressed syllables of nouns contain more back vowels and 

those of verbs more front vowels.  

 

Morgan & Newport (1981) have proposed that the prosodic structure of an utterance 

provides valuable evidence about the syntactic constituents it contains, which could 

provide indirect evidence about the category to which words in the utterance belong. 

3.3 Children’s early use of lexically-specific frames  
A very significant discovery in the literature on language development, and one which 

has gained even more currency with the rise of “usage-based approaches” to language 

acquisition (e.g. Tomasello, 2000; 2003), is that much of children’s early linguistic 

knowledge is organized around very specific words, and is therefore highly lexically-

specific in nature. This contrasts with a nativist view in which grammatical categories are 

usually supposed to exist as part of the child’s biological endowment of linguistic 

knowledge. 

 

These approaches are of course also highly compatible with the Cognitive 

Grammar/Construction Grammar approaches discussed in the previous chapter (e.g. 

Bybee, 1985; Croft, 2001; Goldberg, 1995; Langacker, 1987). In these linguistic theories, 

lexically-specific frames may be seen as special cases of the general set of constructions 

in a language.  

 

While usage-based theorists tend to agree on the highly lexically-specific nature of early 

language learning, there seem to be two distinct interpretations of the concept of lexical 

specificity. One interpretation, extensively articulated in the work of Tomasello (e.g. 

Akhtar & Tomasello, 1997; Olguin & Tomasello, 1993; Tomasello, 1992, 2003), places 

individual words, and in particular verbs, at the centre of language development, and 

views the constructions in which particular verbs occur merely as knowledge about how 

particular words should be used. The other interpretation is represented in the work of 

Lieven, Pine and colleagues (e.g. Lieven, Pine & Dresner-Barnes, 1992; Pine & Lieven, 

1993; Lieven, Pine & Baldwin, 1997), and characterizes children’s early language as 
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being organized around certain frequently-occurring, lexically-specific frames or 

constructions, in which a variety of words can be embedded. 

3.3.1 Braine’s pivot grammars 
One of the most influential studies on early child grammars and parts-of-speech was that 

of Braine (1976), who showed that a lot of early systematicity in child productions could 

be expressed in terms of semi-abstract constructions (limited-scope formulae) consisting 

of one fixed element (the pivot) and another element which could vary. The descriptions 

of these child grammars were termed pivot grammars. Examples include the celebrated 

“more X” frame, e.g. “more juice”, “more read”, “more hot”, and the “X off” frame: 

“shoe off”, “hat off”, etc. These constructions were said to be restricted to accepting only 

a limited number of words into the variable slot on the basis of their semantic properties 

(hence “limited-scope”).  

 

Braine (1976) suggested that children who have acquired a set of fixed word patterns that 

are similar in form might, from these fixed patterns, abstract a productive word pattern 

with slots, by noticing the similarities between the patterns. The work on pivot grammars 

constitutes some of the earliest evidence that children could abstract recurring, 

positionally-defined frames from the input, could deduce what the semantic implications 

of a frame were, and use the frames productively. 

3.3.2 Tomasello’s Verb Island hypothesis 
Tomasello (1992) has proposed the Verb Island Hypothesis, according to which verbs are 

the main organizing principle for children’s early productions of constructions. 

Tomasello showed that the earliest uses of each individual verb in the productions of his 

own two-year-old daughter were restricted to a small number of constructions particular 

to that verb, with little generalization or systematicity of usage across verbs. So for 

instance, his daughter would use “cut” only in the construction “cut _”, while the word 

“draw” was used in a variety of constructions (for example, “draw _”, “draw _ on _” , 

“draw _ for _”, “_ draw on _”). Furthermore, the range of constructions in which a 

particular verb was used was extended in an incremental, piecemeal fashion, e.g. by 

adding a single argument or a tense marking; this again suggests that each verb developed 



 39

on its own timescale, independently of other verbs. This is the essence of lexical 

specificity in Tomasello’s work: the ways in which a verb can be used depend on which 

particular verb it is. 

3.3.3 Lieven, Pine and colleagues: lexically-specific frames  
A large body of research has documented that the first constructions used by children are 

typically very concrete in nature, rather than reflecting any grammatical knowledge of 

abstract rules. This idea has been promoted especially strongly in the work of Lieven and 

colleagues, who have argued that much of the structure of children’s early multi-word 

combinations can be explained in terms of frames composed of specific words in 

combination with open slots that may be filled by variable material.  

 

Lieven et al. (1997) show that between 50% and 70% of the utterances produced by a 

group of eleven English-learning children could be accounted for by their first 25 

constructed productive patterns. (To be regarded as constructed in this scheme, a pattern 

needs to be attested three times with independently occurring filler elements, after which 

it is always treated as a constructed pattern.) Lieven et al. (1997) describe grammatical 

phenomena, and parts-of-speech in particular, as phenomena that emerge from the co-

occurrence of these frames with particular semantic or pragmatic contexts. 

 

Lieven, Pine & Rowland (1998) have suggested that, in the case of verb learning, verbs 

need not be the only elements around which constructions are formed (as proposed by 

Tomasello, 1992); instead, some constructions may be based on other lexical material 

such as pronouns and morphological affixes. Lieven et al. (1997) note that many of the 

patterns exhibited by the children in their study contained verbs followed by the pronoun 

“it” (e.g. “I carry it”, “my mend it”), and suggest that this may show evidence for the 

emergence of a class of verbs. 

 

Pine & Lieven (1993; see also Lieven, Pine & Dresner Barnes, 1992) provide evidence 

that there are individual differences between children in the way that they develop their 

early constructions: some children assemble multi-word utterances by combining two or 

more familiar single words together, while others start with longer, “frozen”, unanalysed 



 40

phrases and proceed to analyse these into fixed parts with variable slots, with these last 

becoming productive positional patterns in which various elements can be used to fill the 

slot. These patterns form fairly disparate sets across different children. Some of the 

patterns discovered in Pine & Lieven (1993)’s longitudinal study of five children from 

0;11 to 1;8 were “X on”, “Mummy X”, “Oh X “, “X cat”, “No X”, “It’s a X”, “Oh don’t 

X”, “Wanna X”, “The X”, “X shoe”, “More X”, “X gone”, “I X”, “X bird”, “That X”, 

“There’s the X” and “X car”. 

 

As corroborating evidence for the “frozen phrase” route into productive pattern 

acquisition, Pine & Lieven (1993) show that the number of productive patterns is highly 

correlated with the number of frozen phrases which a child knows. Pine & Lieven 

suggest that the acquisition of these frozen phrases may therefore play a crucial role in 

children’s language development, and suggest a mechanism by which this might happen: 

“Such examples presumably reflect a process whereby a phrase is initially segmented as a 

unit, but is subsequently reanalysed as a result of regularities perceived by the child in 

other similar words or phrases, resulting in a flexible lexically defined formula…” (p. 

567).  

 

In the work of this group of researchers, the frames are described as lexically-specific 

because there is no assumption that two apparently similar constructions such as “Can 

you X it?” and “Will you X it?” are linked in terms of the words that can appear in their 

X slots, just because “can” and “will” are both auxiliary verbs. Two similar frames can, 

in principle, follow very different developmental pathways. 

 

As Cameron-Faulkner et al. (2003) cogently argue, if a mother used a great number of 

questions of the structure “Are you …”, but used no other auxiliary verbs, it would be 

unlikely that her child would use a great number of other auxiliary verbs; instead the 

child’s productions are likely to reflect the constructions and words that she has heard 

used. This argument suggests that children’s early language may be structured around 

highly word-specific constructions. Even if adults can see the correspondence between 

the frames “Are you ..”, “Were you …”, “Was he …”, not to mention “Have you …”, 
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“Can you …”, etc., the child may not make an association between these frames, or 

generalize readily from one of these frames to another. 

 

Usage-based approaches therefore reject the traditional assumption of generative 

grammar that early knowledge of language is abstract from the onset. This assumption 

has been used to support the belief that “you can’t get there from here” (from the state of 

linguistic knowledgelessness that usage-based theorists presume to exist in young 

children, to adult linguistic competence, via processes of learning), and underlies the 

generativist conclusion that most linguistic knowledge must be innate. Generative 

grammar assumes, for instance, that once children have determined that theirs is an SVO 

language, they should be able to use any verb in an SVO construction. However, a 

number of studies by Tomasello and colleagues have attempted to show that on the 

contrary, children are quite conservative in their usage of verbs, and will not use them in 

an SVO construction if they have not heard them so used (e.g. Akhtar & Tomasello, 1997; 

Olguin & Tomasello, 1993).  

 

While some generativists acknowledge the prevalence of lexically-specific frames in 

children’s speech, they are generally regarded as a “dead-end” in language development, 

providing a way for the child to communicate before learning “proper” adult syntax (e.g. 

Radford, 1990). Generative grammar would regard the constructions “A _” and “The _” 

as essentially the same pattern (Determiner Noun), and one which arises out of the 

interplay between abstract innate linguistic rules, rather than from merely memorizing the 

two patterns as coherent units. However, it has been shown that the two sets of nouns that 

occur embedded in children’s uses of these two constructions are quite distinct, and also 

that children’s early productions have a more positionally-fixed word order than would 

be predicted if productions were generated by abstract syntactic rules (Lieven, Pine & 

Baldwin, 1997). 

3.4 Children’s understanding of constructions and frames as 
cues to word classes 

As Braine (1976) and several others (including Lieven et al., 1997) have noted, merely 

observing that the words that children use in particular pivot constructions belong to the 
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same underlying part-of-speech does not show that these categories exist as organizing 

principles in the child’s linguistic knowledge; they may merely reflect similarities in the 

things that the child wishes to talk about.  

 

What is important is not so much the utterances that children produce as the utterances 

that they are able to comprehend. This is because production may be a much harder task 

for the child: in order to use a particular construction correctly, the child needs to know 

what it means, in the sense that she has to check that all the semantic facts are true that 

would license the use of that construction. For instance, the use of the word “the” in the 

noun phrase “the <Noun>” requires that the referent of the noun phrase is already known 

to the speaker and hearer, possibly because it has been semantically implied to exist in 

the context of the things that have already been discussed, or because it has been 

explicitly introduced earlier in the conversation. The use of “a <Noun>”, on the other 

hand, implies that the referent has not yet been introduced in this way. Use of the 

appropriate article in one of these two noun phrase forms requires the speaker to consider 

which of the two situations holds. 

  

By contrast, if we are interested in the child’s ability to make use of a particular 

construction used by someone else, as a guide to interpreting the meaning of certain 

words that occur in it, then it is necessary merely that the child should be able to 

recognize the construction and to be aware of the semantic implications for a word which 

occurs in one of its slots (in the case of both “the X”, and “a X”, the implication is that 

the “X” word is the label for something which may be an object or person, but is more 

generally just some entity which is conceived of as a thing). 

 

Strong evidence of the role played by constructions in defining categories therefore 

comes from experimental studies investigating whether children are able to correctly 

understand certain utterances that other people produce. In order to gauge whether 

children’s understanding derives from the constructions themselves, rather than the words 

that occur in the slots of the constructions, these experiments fill the slots with novel 

words, and attempt to discover how children interpret these words.  
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An experiment by Brown (1957) was one of the first studies to demonstrate that 

language-learning children are able to make use of nothing more than the linguistic 

context in which a novel word occurs in order to guess at its meaning. Three-year-olds 

and 4-year-olds were exposed to a target picture of, for example, a pair of hands 

performing an unusual kneading motion on an unfamiliar substance in an oddly-shaped 

container. Three additional test pictures each contained only one of the components of the 

original picture (the motion, the substance or the container). Children were introduced to 

a novel word (say, “sib”) in one of three linguistic frames: mass noun (“here you can see 

some sib”), common noun (“here you can see a sib”), or verb (“here you can see 

sibbing”), and when asked to pick out another instance of “some sib”, “a sib” or 

“sibbing” from the test picture set, reliably chose the unusual substance, the container, or 

the kneading motion respectively. 

 

Ever since Brown (1957), it has been taken for granted that children are able to guess the 

meaning of a novel word from context, and attention has come to focus instead on the 

course of development of these abilities for each of the main (content) parts-of-speech, 

and on subtle features of the semantic interpretation of these words (see e.g. Bloom & 

Markson, 1998, for a broad review). This experimental paradigm therefore implicitly 

accepts one of the tenets of Construction Grammar, that syntactic structures have a 

meaning of their own, independent of the words that occur in them (Goldberg, 1995; 

Kako & Wagner, 2001, Langacker, 1987). 

 

A number of key publications in this paradigm are reviewed in the remainder of this 

section. Of particular interest are children’s abilities to infer that frame slots that accept 

nouns as their fillers are clues to nominal, “thing-like” meanings, that verb frame slots 

single out processes, and that adjective frame slots point to properties of objects. 

3.4.1 Nouns  
Smith and colleagues (e.g. Jones & Smith, 1998; Jones, Smith & Landau, 1991; Landau, 

Jones & Smith, 1992;  Landau, Smith & Jones, 1988; Samuelson & Smith, 1999; Smith, 
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2001; Yoshida & Smith, 2005) have accumulated a great deal of evidence on the role of 

linguistic context (and other situational factors) in acquiring nouns. 

 

Smith (2001) argues that, if a cue in stimulus material is reliably associated with paying 

attention to a particular property, then that cue will eventually become associated with the 

property and selective attention will obligatorily be directed to that property when the cue 

is present. Smith suggests that language-learning children are repeatedly exposed to 

specific linguistic contexts while paying attention to specific properties in the world, and 

hypothesizes that these linguistic contexts may come to be associated with those 

properties and eventually come to serve as cues that direct selective attention. In other 

words, the attentional highlighting of certain aspects of the world contingent on linguistic 

cues is learned in a non-explicit, automatic manner, as a result of basic domain-general 

associative learning processes. 

 

In the case of common noun names for objects, Smith and colleagues have argued that 

the shape of a referent object is particularly germane to the meaning of the name, and that 

the linguistic context may progressively come to draw selective attention to object shape. 

 

Landau, Smith and Jones (1988) introduced children of 2 and 3 years of age to a novel 

object and named it with a novel word, in the frame “This is a dax”, and then asked, for 

each of a number of test objects, the question, “Is this a dax?” Children were willing to 

extend the novel word to objects of the same shape as the original object, rather than 

differently-shaped ones of the same substance and size. This shape bias extended even to 

objects that were made of other substances than the familiarization object, or that were 

many times larger. When asked in the same experiment to pick out items that were “like” 

the familiarization object, children immediately “reverted” to using overall similarity, 

picking items made of the same material and of the same size, often ignoring shape. This 

indicates that it was the act of naming (inter alia by the use of a specific linguistic frame) 

that led to the shape bias, rather than any intrinsic characteristic of the experimental 

object itself. 
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That this bias to shape develops has been demonstrated using both cross-sectional and 

longitudinal methods (Jones, Landau and Smith; reported in Smith, 2001). Young 

children are initially insensitive to the implications of the “This is a _” frame, but come to 

make use of these implications over time. Children between the ages of 18 and 24 months 

with small noun vocabularies are less likely to make a shape interpretation of a novel 

word when hearing, “Look, this is a dax. Give me another dax,” during exposure to the 

exemplar than children with large noun vocabularies. Furthermore, as individual 

children’s vocabularies develop, they become more likely over time to make a shape 

interpretation (Smith, 2001). 

 

English syntactically marks subclasses of nouns, distinguishing between common nouns, 

proper nouns and mass nouns. Investigating the proper noun-count noun distinction, 

Gelman and Taylor (1988) presented 2-year-olds with a set of four toys (two stuffed 

animals and two block-like, clearly non-animal toys), and provided the children with a 

name for one of the toys, in either a common noun frame (“This is a zav”) or a proper 

noun frame (“This is Zav”). Children were prepared to extend a new common noun name 

to the other object from the same category as the originally-named toy. However, when 

the new name was introduced in a proper noun frame, and was originally used to label an 

animal, it was less readily extended to the other animal, and when it was used to label a 

block-like toy, it was not applied to the other block toy, but was applied to one or other of 

the animal toys almost as often as to the originally-named block toy. 

 

The mass noun - count noun distinction in English is marked syntactically by e.g. the use 

of frames such as “This is a mell” versus “This is some mell”. This distinction correlates 

quite well in English with a corresponding semantic distinction, namely between shape-

based categories for count syntax and material-based categories for mass syntax; in 

addition, most count nouns are names for solid things while most mass nouns are names 

for non-solid things (Samuelson & Smith, 1999). However, while young children reliably 

associate novel count noun names for solid objects with shape-based object categories, 

they are initially less likely to associate novel mass noun names for non-solid objects 

with material categories. Samuelson & Smith (1999) suggest that knowledge about the 



 46

names for non-solids emerges only by about the age of three (see also Yoshida & Smith, 

2005). 

 

The linguistic frame is not the only relevant factor that children use in interpreting a 

novel noun. Sometimes when a linguistic context is ambiguous, the child is able to make 

use of properties of the exemplar object in order to determine which meaning is 

appropriate (Soja, Carey and Spelke, 1991). For instance, a novel word in the frame “This 

is my mell” is interpreted differently depending on the degree of rigidity of the exemplar 

object. If the object is made of a non-rigid substance (e.g. foam), then 2- to 2 and a half-

year-old children are more likely to extend the word mell to other objects made from the 

same substance (suggesting a mass noun interpretation) than to rigid objects of a different 

substance with the same shape; the opposite tendency was exhibited when the exemplar 

object was itself rigid (suggesting a count noun interpretation). 

  

Even for unambiguous count noun frames such as “This is a dax”, children’s readiness to 

extend novel words to test objects depends in quite subtle ways on the characteristics of 

the exemplar object. For instance, when the exemplars were equipped with eyes, the 

texture of the objects was no longer treated as an irrelevant feature, but was taken to be a 

necessary condition for belonging to the category identified by the novel word (Jones, 

Smith and Landau, 1991). One way in which this can be made understandable is to think 

of the eyes as cues to animacy; in this case, the texture of an animal’s external body is 

taxonomically important, i.e. some animals are furry, scaly, etc. 

 

Smith (2001) proposes that a shape bias in the presence of a context such as “That’s a _” 

is developed first, and that other more contextual refinements are developed later, such as 

attending also to shape and texture in the presence of cues such as having eyes (or 

wearing shoes: Jones & Smith, 1998). On the other hand, perhaps a more general 

explanation that accounts for the results of both Landau et al. (1988) and Jones et al. 

(1991) could be that children understand that the use of a common noun highlights 

considerations around the essence of an object category; i.e. those facts about an 
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exemplar that are relevant to defining the type of object that it is are brought under the 

spotlight.  

 

In the case of inanimate objects, plausibly shape is the most important dimension to 

attend to, relating as it does to function. In the case of animate objects, i.e. living 

creatures, however, one might need to delve more deeply and consider other factors 

related to the creature’s bodily appearance, including colour or textured patterns on the 

body surface. It is plausible that the presence of eyes or shoes in the exemplar objects 

used by Jones et al. (1991) and Jones & Smith (1998) served as a cue to animacy, thereby 

prompting a more detailed search for characteristic properties. This world knowledge 

may well have been developed in the context of the particular linguistic frames that Smith 

(2001) refers to, however. For instance, one might imagine that learning the difference 

between, say, tigers and lions could be mediated by utterances such as “This is a tiger” 

and “This is a lion”, combined with attention on the part of the child to the striped 

markings on the body of the tiger or the mane of the lion. Children would then be 

triggered by the “This is a X” frame to search for characteristics that define the essence of 

the referent, but would need to learn which particular features are relevant for different 

kinds of referents. 

 

Waxman and colleagues (reported in Waxman, 2002) exposed 14 month-olds to a set of 

similarly-coloured exemplar toy animals named by a novel word in a noun frame (“These 

are blickets”). At test, children were allocated to one of two conditions in which they had 

to choose between a target exemplar from the category and a distractor which was not in 

the category, when asked, “Can you give me the blicket?” Children were more likely to 

select the correct target exemplar (e.g. a purple horse) when the distractor differed in 

object category (a purple chair) than when it differed only in colour (a blue horse), 

suggesting that 14-month-old children have some knowledge of the conceptual 

dimensions that are not relevant for the common noun frame2.  

                                                 
2 This experiment also featured an analogous test with what Waxman et al.  regard as an adjective frame 
(“These are blickish. This one is blickish and this one is blickish”). However, the  suffix “-ish” is not 
entirely reliable as a cue that a word is an adjective, nor do a large proportion of adjectives end with”-ish”;  
in this case, as Labelle (2005) points out, the frame could just as well be regarded as “This one is _”, and 
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3.4.2 Verbs 
As Gleitman (1990) points out, it is far more difficult for the child to guess what a novel 

verb means from its ostensive context alone, than to do the same for a novel noun. This is 

because a given scene can be interpreted in multiple ways, so that the meaning of a verb 

requires that a certain perspective be taken on the events, essentially in terms of the 

entities involved, and “who-does-what-to-whom”. Even more problematic are verbs for 

which there is no ostensive referent. 

 

Gleitman proposes that the meaning of a verb must instead be inferred on the basis of its 

syntactic arguments (typically noun phrases). So for instance, since the verb “put” is 

typically used with three arguments (the putter, the thing that is put somewhere, and the 

place to where the putting is done), using “put” with three arguments could help to 

indicate to a language-learning child that “put” refers to an act of putting rather than 

looking (which typically requires at most two arguments). 

 

Lederer, Gleitman & Gleitman (1995) showed that information about the syntactic 

structures in which verbs occurred in child-directed speech (the set of syntactic 

arguments, plus some information about morphological inflection) were sufficient to 

allow a clustering analysis to form overlapping clusters that corresponded closely to a set 

of clusters formed from adult native speakers’ intuitions of verb semantic similarity. 

 

Often, English subjects and objects are taken from a very small set of words, which might 

facilitate the process of determining the meaning of the verb. Laakso & Smith (2004) 

investigated the range of subjects and objects of different verbs in child-directed speech 

taken from several CHILDES corpora, and showed that a large proportion of these 

subjects and objects are taken from the small set of English pronouns. Most verbs were 

found to take either a complement clause (in which case they were usually psychological 

verbs such as “think”, “know”, etc.) or else took the pronoun “it” (these included verbs of 

motion or transfer). Verbs taking “I” as a subject tended to form fixed-phrase-like 

                                                                                                                                                 
the slot may just as easily be filled by a proper noun. Hence, no conclusion can be drawn from the 
“adjective” condition. 
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utterance preambles that indicated the epistemic status of the utterance as a whole (“I 

guess”, “I bet”, “I think”). Verbs taking “you” as subject indicated the deontic status of 

the subsequent clause, and included “like”, “want” and “need”. Laakso & Smith (2004) 

suggest that the co-occurrences of particular verbs with pronoun objects and subjects 

could help children to identify subclasses of verbs. 

 

Sethuraman and Goodman (2004) examined a corpus of child-directed speech for the 

most frequently-used subjects and objects in the transitive construction in English, and 

found that about 90% of all subjects and over 40% of all objects were pronouns. In 

addition, 39% of all SVO utterances were Pronoun Verb Pronoun frames, and 50% were 

Pronoun Verb Noun or Noun Verb Pronoun frames, with the 3 most frequently-occurring 

frames being “you _ it”, “I _ it” and “we _ it”. Childers & Tomasello (2001) have shown 

that 2-and-a-half-year-olds are able to use a nonsense verb productively in a transitive 

sentence when they have been trained on sentences of the form “He’s [verb]-ing it”, but 

not when they have heard only example sentences where both agent and patient are nouns. 

Childers & Tomasello suggest that English-learning children may build their early 

constructions around specific configurations of pronouns.  

 

Naigles & Kako (1993) showed that 2-year-old children’s interpretations of novel verbs 

in “neutral” syntactic frames may be shifted by introducing the verbs in transitive or 

intransitive frames instead. Comparing nonsense verb interpretations in an ambiguous 

scene (e.g. a rabbit pushes a duck’s head forward while both are making the same circular 

waving motion with their arms) when coupled with neutral syntax (“Look! Gorping!”), 

transitive syntax (“The rabbit is gorping the duck”) or intransitive syntax (“The rabbit 

and the duck are gorping”), Naigles & Kako (1993) found evidence that the use of the 

transitive frame inclined children towards an interpretation where one character was 

affecting the other. 

 

As mentioned in Section 3.3.3, a number of experiments by Tomasello and colleagues 

(e.g. Akhtar & Tomasello, 1997; Olguin & Tomasello, 1993) have shown that children 

are disinclined to use verbs in a transitive frame when they have only heard them used in 
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intransitive frames. Furthermore, when exposed to a novel verb in a transitive frame, 2-

year-olds appear not to be able to make use of the information in the utterance in order to 

determine who did what to whom (Olguin & Tomasello, 1993). The experiments by 

Tomasello and colleagues on children’s early understanding of verbs have been widely 

taken to show that 2-year-old children do not have a linguistic category of verbs. 

However, I believe this result downplays the amount of knowledge that children do have 

about verb frames.  

 

What is required, in order to demonstrate basic knowledge of the semantic implications 

of a verb frame is not that the child should be able to use every novel word in the full 

range of possible contexts in which any English verb can occur, but merely that the child 

should be able to infer that the word embedded in the construction refers to an action or 

process, rather than to a physical object or a property. To the extent that children do 

understand this, they can be said to have minimal knowledge of the verb frame.  

 

A study by Mintz (reported in Mintz 2006a) suggests that children as young as 12 months 

may have some knowledge of the different frames in which English nouns and verbs 

occur. Each child was familiarized with four nonsense words, two occurring in plausibly 

familiar English verb frames (e.g. “You can _”, “She wants to _ it”) and two in familiar 

noun frames (e.g. “That’s your _”, “I see the _ in the room”). At test, children were 

exposed to grammatical and ungrammatical sentences, i.e. sentences in which words kept 

their original category, and sentences in which the words switched category. The children 

listened longer to ungrammatical sentences than grammatical sentences. This effect was 

due to the verb-frames only; in other words, if children had heard a word in a noun frame 

during familiarization, they listened longer when the word occurred at test in a verb 

frame than when it occurred in a noun frame (but there was no analogous effect for words 

initially introduced in verb frames). This result is remarkable, as it suggests that children 

may have the ability to make some kind of categorial distinction between English words 

based solely on their context of usage, at a far earlier age than has previously been 

believed. 
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Höhle, Weissenborn, Kiefer, Schulz and Schmitz (2002, 2004) have replicated these 

results with 15-month-old German-learning infants. If these infants had heard a novel 

word introduced in a noun frame and then heard it used in several verb frames in a test 

passage, they listened longer to this passage than to one in which the word continued to 

be used in noun frames. As in the experiment by Mintz (2006a), no analogous result was 

found when nonsense words introduced in verb frames were subsequently used in noun 

frames. Nouns were modeled as following a determiner, whereas verbs were modeled in 

utterances following a personal pronoun. Höhle et al. suggest that the reason for the 

difference in results between nouns and verbs may be due to the fact that the determiner 

is a better predictor of a following noun in German than the personal pronoun is a 

predictor that the following word is a verb. 

3.4.3 Adjectives   
To investigate children’s knowledge about the linkage between adjectives and object 

properties, Taylor & Gelman (1988) introduced their 2-year-old subjects to a novel word 

describing a stuffed toy in either a noun-syntax frame (“This is a mef”) or an adjective-

syntax frame (“This is a mef one”). Taylor & Gelman found that, if the toy was, for 

instance, a green dog, and children were allowed to play with a green bird and a yellow 

dog, they tended to extend the novel word to the other dog when a noun frame had been 

used and to the other green object when an adjective frame had been used. This result 

indicates an awareness of adjective frames. 

 

Taylor & Gelman (1988) also found a familiarity effect for noun frames, in that children 

were less likely to extend the new noun to objects other than the originally labeled object 

when they already knew a label for the object kind (possibly indicating that they 

interpreted the word as a proper name, or as referring to a subordinate object kind). 

Taylor & Gelman (1988) failed to find an analogous familiarity effect for adjective 

frames with their 2-year-olds; that is, interpreting a new adjective as referring to a 

property was not facilitated by using an object with a known label.  

 

Hall, Waxman & Hurwitz (1993) replicated the study of Taylor & Gelman (1988), and 

also found no familiarity effect for 2-year-olds. However, 4-year-olds did exhibit a clear 
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familiarity effect: using a familiar object as the focus of a new adjective increased the 

number of object property interpretations.  

 

Hall et al. (1993) review evidence that, in general, children will make an object kind 

interpretation when confronted with a new word labeling an object for which the object 

kind name is unknown, but will tend to make an attribution other than object kind when 

the object kind name is known. This tendency occurs, to some extent, regardless of the 

frame in which the word is used. Hall et al. propose that children learn words for 

concepts such as object parts, properties, etc. in the context of hearing the words used for 

objects for which they already have a name. 

 

Hall et al. (1993) interpret their results as showing that children have a default 

assumption that words will refer to object kinds; simultaneously counteracting the effects 

of this assumption are the lexical contrast principle, which makes an object-kind 

interpretation less likely with familiar objects, and a growing sensitivity to syntax, which 

makes a property interpretation more likely with an adjectival frame. These last two 

factors seem to emerge between the ages of 2 and 4, and had an effect in Hall et al.’s 

(1993) study only when both were present at the same time (a familiar object described 

by an adjective). Still, as Taylor & Gelman (1988) did find a preference for property 

interpretations for adjectives with 2-year-olds, it may be that results depend crucially on 

the properties of the specific materials used. 

 

For the attributive form of an adjective (e.g. “That’s a feppy one”), the nature of the noun 

or pronominal form being modified has an influence on the interpretation of the adjective. 

Mintz (2005) investigated the circumstances under which children would interpret an 

attributive adjective as referring to a property of the object referred to by a (pro)nominal 

form, as opposed to referring to the kind of the object. There was an interesting 

interaction between the frame used in the test question related to the novel adjective 

(“which is the stoof one?” vs. “which is the stoof thing?”) and the familiarity or 

unfamiliarity of the target object for the child. Thirty-six-month-old infants were able to 

make an object-property interpretation of a novel adjective in the test question “which is 
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the stoof one?” when the object kind was familiar to them, but showed no  preference for 

either an object-property or object-kind interpretation when the object category was 

unfamiliar. For the test question “which is the stoof thing?”, this pattern was reversed: 

children made an object-property interpretation when the object kind was unfamiliar, but 

showed no preference for object-property over object-kind when the object category was 

familiar. Mintz interprets these results as suggesting that these 36-month-old children 

might be exhibiting a sensitivity to the pragmatic constraints peculiar to the two 

constructions: “one” implies that the speaker has a certain category in mind, and that the 

hearer has access to this category, so that interlocutor and child share a common frame of 

knowledge about the intended category; by contrast, “thing” implies that the speaker has 

no particular object category in mind. It is therefore to be expected that an object-

property interpretation could be facilitated when the object category was known to the 

child, and the word “one” was used. Similarly, the use of “thing” would be natural in the 

case of an unknown object category. Mintz argues that children may simply have been 

uncertain about the category intended by the speaker when using “one” with an 

unfamiliar category, or confused by the pragmatic oddness of using “thing” with a 

familiar category. 

 

Using the “canonical” adjective frame “This is a dax one”, Smith, Jones and Landau 

(1992) were able to draw 36-month-old children’s attention away from the shape of an 

exemplar object and focus it on its glittering colour, only when the exemplar and test 

objects were displayed under special lighting which emphasized the glittering nature of 

the exemplar and one of the test objects. This suggests that adjectival interpretations are 

more difficult for the child than nominal interpretations if the relevant semantic 

dimension is not explicitly highlighted. 

 

Waxman & Markow (1998) were able to coax property interpretations from a group of 

21-month-old infants, but only when the test objects were of the same kind as the original 

object to which the novel adjective referred. If children heard the word being modeled 

while seeing a yellow spoon, for example, and were tested with a green key and a yellow 

key, children responded at chance level, i.e. showing no preference for one object over 
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the other. Possibly, using a single object kind throughout helps to focus children’s 

attention on the perceptual similarities and differences between objects. 

 

It seems that English-learning children do understand that adjectives and nouns in these 

experiments both single out physical attributes of the target objects; however, it may be 

that it takes a number of years to learn which particular attributes are relevant to a noun 

interpretation and which to an adjectival interpretation. When familiar objects with 

known names are used, the space of possible meanings for a novel word is reduced; and 

when the same objects are used at test as during familiarization, the similarities in the 

referent objects facilitate a comparison between the two objects and hence the 

determination of the meaning if the novel adjective. 

3.5 The interaction between constructions and embedded 
words 

A number of studies have shown that, when a word occurs embedded in a constructional 

frame, both the word and the frame may influence the interpretation of the embedded 

word, and that children also have some knowledge of which words “go with” which 

frames. 

 

An experiment by Goldberg & Casenhiser (2006; see also Casenhiser & Goldberg, 2005) 

provides evidence that in some case, specific words used in a construction may “lend 

their meaning” to the construction as a whole. Adult native English speakers were 

exposed to a set of exemplars of a novel English construction (Subject Object Verb-ed, 

with all novel verbs in this construction ending with the “morphological affix” –o), which 

was paired in each case with a video depicting the meaning of the utterance. All scenes 

depicted an entity coming into view suddenly, so that the abstract meaning of the 

construction was (apparently) something like “Subject causes Object to appear”. Subjects 

were assigned to one of two conditions. In the Balanced condition, a variety of novel 

verbs were used in the exemplar sentences, with each verb occurring approximately 

equally frequently. In the High Token Frequency condition, one particular verb occurred 

far more frequently than the others. At test, subjects were more likely to have 

“understood” the abstract constructional meaning and to extend it to new exemplars in 
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the High Token Frequency condition than in the Balanced condition. Crucially, the novel 

words used at test had not been used during familiarization. This suggests that subjects 

were better able to attach the “appearance” meaning to the one frequently-used verb than 

to the construction itself; however, once this association had taken place, the construction 

seemed to take on some of the “appearance” meaning from the word that most frequently 

occurred in it. 

 

It needs to be taken into account, however, that these results pertain to adults who already 

have an essentially complete knowledge of English. Amongst other things, these adults 

may have had access to meta-knowledge to the effect that the set of constructions is a 

closed class, while the set of verbs is open, and hence may have attended to only the verb 

as a possible focus for the novel meaning. To my knowledge, this experiment has not yet 

been replicated with language-learning children. 

 

The findings by Goldberg & Casenhiser (2006) relate to semantic generalization. In a 

similar fashion, Ninio (1999) has suggested, based on observational data of children’s 

productions in both English and Hebrew, that a number of “path-breaking verbs” 

facilitate the learning of syntactic generalizations. 

 

Goldberg, Casenhiser & Sethuraman (2005) provide evidence that the construction is 

sometimes a better prediction of utterance meaning than the verb. Based on examination 

of a corpus of child-directed speech, Goldberg et al. examined the link between the 

“dative” Verb Object Object construction and the semantic meaning of transfer, and 

between the “locative” Verb Object Objectlocation construction and the meaning of 

movement from one place to another. The conditional probability of the specific meaning 

given the verb, and of the meaning given the construction, were both high, but the 

conditional probability of using the “locative” construction given that the utterance 

meaning involved movement, and of using the dative construction given a meaning of 

transfer, were higher than the maximum conditional probability of any particular verb 

given either of these meanings. This is obviously to be expected given that there are 

many verbs, and only a handful of constructions to be considered. But this result does 
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show the higher predictive value of an element taken from a closed class (the set of 

English constructions) rather than an open one (the set of English verbs). 

 

Matthews, Lieven, Theakston & Tomasello (2004) have shown that three-year-old 

children who are asked to repeat a novel construction which appears to have the same 

meaning as a construction with which they are already familiar, are able to automatically 

correct the construction to its conventional form. For example, when shown a video of 

“Bear” bumping into “Elephant” while being told “Bear Elephant ramming! Did you see 

what happened? Bear Elephant rammed!”, three-year-old children who were asked what 

happened, corrected the word order to the conventional SVO form by saying “Bear 

rammed Elephant”. An interesting entrenchment effect was shown with two-year-olds, 

however; these children corrected word order to the conventional SVO order for high-

frequency verbs such as “push”, but repeated the novel word order that the experimenter 

had modeled in the case of rare verbs like “ram”. This would suggest that the SVO 

construction is associated with the more common verbs like “push”, presumably because 

these verbs have occurred very often together with SVO utterances in the child’s 

experience. On the other hand, a word such as “ram” has had few opportunities to be used 

in the SVO or any other construction, and so the link between “ram” and the SVO order 

is not as well-established. A slightly different possibility is that children may already 

have formed early categories, corresponding to parts-of-speech, at this stage, and both 

frequent verbs and the SVO construction may have been associated, not with each other, 

but each with the underlying category.  

 

Rarer words such as “ram” may not yet have been associated with any word category, 

and hence there would have been few guidelines on how these words should be used in 

context. Similar results were obtained by Theakston (2004); when children and adults 

were asked to rate the grammaticality of a set of sentences (which were all 

ungrammatical), low-frequency verbs were found more acceptable than high-frequency 

words when occurring in the same contexts. 
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The fact that the three-year-olds managed to use the correct SVO construction with the 

infrequent words suggests that the construction has some psychological reality for 

children of this age that is independent of particular (in this case unfamiliar) verbs. This 

is in line with Goldberg’s (1995) proposal that constructions exist as psychological units 

in their own right for adult native speakers, and with the work reviewed in earlier sections 

in which even novel words are interpreted correctly according to their context. 

3.6 The role of function words in lexically-specific frames 

3.6.1 Early knowledge of function words 
On the face of it, the functors of English (closed-class words, clitics and morphological 

affixes) should provide an extremely useful source of distributional information for the 

purpose of part-of-speech bootstrapping. Gerken, Landau & Remez (1990) point out that 

function words could be crucial in the two tasks of word segmentation and word labeling 

(category assignment). Function words are potentially useful in segmentation because 

recognizing the relatively small number of function words makes it easier to separate out 

the far more heterogeneous open-class words that are interspersed between them. 

Function words could also aid labeling, because they occur in very stereotypical 

positional relations to open-class words, for instance, “the” is often followed by a noun 

(or sometimes by an adjective which is followed by a noun), and “-ing” is usually 

preceded by a verb root. 

 

 However, it is a very robust finding that English-learning children tend to omit function 

words from their early utterances (e.g. Bloom, 1970; Bowerman, 1973), resulting in a 

distinctive “telegrammatic” style of speech. Even when children are asked merely to 

repeat the words of a speaker, they still omit the functors (e.g. Eilers, 1975).  

 

This phenomenon is often taken as evidence that children simply do not process function 

words. It has been proposed that this is due to the reduced salience of function words, 

either semantically or phonologically. Function words are less “contentful” than content 

words, and so it may be the case that children initially attend selectively only to open-

class words with concrete real-world referents (e.g. Brown, 1973). Function words are 
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also phonologically less salient, being typically unstressed, shorter in length and with 

reduced vowels (usually schwa), and so may be less likely to be detected and processed 

(e.g. Gleitman & Wanner, 1982). 

 

Of course, this logic is flawed: the evidence that children do not produce function words 

is no more than that; we cannot conclude without further experimentation that they also 

do not process these elements when they hear them, and in fact there is an overwhelming 

body of evidence to demonstrate that they do process them. 

 

It may still be the case that the phonologically and semantically diminished substance of 

function words is indeed the explanation for why these elements are initially not 

produced in speaking, even though they are processed during hearing.  

 

For instance, Gerken (e.g. 1991, 1994) has put forward a metrical explanation for 

children’s omissions of function words, pronominal sentential subjects, and unstressed 

syllables at the beginnings of multisyllabic words, according to which English-speaking 

children make use of a strong stress – weak stress frame for speech production, and 

attempt to make their productions fit against this frame. Gerken (1987, reported in 

Gerken, 1991) has shown that children who are asked to repeat the sentence “Pete pushes 

the dog” will be more likely to omit the article “the” than the inflectional morpheme “-

es”, and argues that this is because the stress pattern of the sentence yields a strong-weak 

foot followed by a weak-strong foot; this latter foot does not fit the frame and so the 

initial weak syllable is omitted. Gerken (1991) suggests that the strong-weak preference 

may be due entirely to motor constraints on the alternation between strong and weak 

syllables. 

 

Of course, function words are also semantically less contentful than open-class words. As 

Labelle (2005) points out, children’s omission of function words in their productions may 

be due to the fact that they haven’t worked out what the meanings or functions of these 

words are yet. In adult English, “the” contrasts with “a” in indicating that the referent of 

the subsequent noun is known to the speaker and the hearer, either because it has 
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previously been referred to, or because it is understood from the pragmatic situation. An 

English-learning child may be able to make use of distributional facts, e.g. that “the” is 

often followed by a noun, without yet knowing the semantic distinctions that should be 

considered before deciding to use “the”. 

 

Morgan, Shi & Allopenna (1996) have shown that content and function words in child-

directed speech can be distinguished from each other based on significant differences on 

a number of phonological and acoustic properties, including syllable complexity, vowel 

diphthongization, vowel duration, syllable amplitude and vowel quality. Shi, Werker & 

Morgan (1999) have shown that newborn infants have some sensitivity to the differences 

between English function and content words (which is presumably based on the afore-

mentioned phonological and acoustic properties); neonates habituated to hearing a list of 

function words dishabituated more strongly to a list of content words than to a new list of 

function words. 

 

A number of studies by Shi and colleagues have also attempted to track the trajectory of 

function word recognition in continuous speech in various languages. So for instance, 8-

month-old French-learning infants exhibited different listening times to passages 

containing an embedded function word to which they had been familiarized previously 

compared to passages not containing the function word. Six-month-olds were able to do 

this only for function words that were very dissimilar phonologically (Shi, Marquis & 

Gauthier, 2006; Shi, 2007). Similar results have been found for 7- to 9-month-old (but 

not 6-month-old) German-learning infants (Höhle & Weissenborn, 2003). Shi, Cutler, 

Werker & Cruickshank (2006) showed that 11-month-old English-learning infants could 

use familiar function words (such as “the”) to segment out a nonsense noun in continuous 

speech. Eight-month-olds were also able to make use of “the” to identify and segment out 

the noun, but responded similarly when the functor was the nonsense functor “kuh”, 

suggesting that these infants’ phonological representation of function words was still 

underspecified. 
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Shi, Werker and Cutler (2006) showed that when 8-, 11- and 13-month-olds were 

exposed to English “functor + content word” sequences and “nonsense functor + content 

word” sequences, the 13-month-olds showed an ability to distinguish between the two 

kinds of sequences, while 8-month-olds could not, and 11-month-olds were intermediate 

in their abilities, as would be expected if the recognition of functors developed over this 

period. 

 

Gerken, Landau & Remez (1990) found that 2-year-old children were better able to 

imitate content words if they occurred adjacent to English functors rather than to 

nonsense functors (e.g. “push” in “Pete pushes the dog” is more accurately repeated than 

“push” in “Pete pusho na dog”), supporting the idea that functors may aid in word 

segmentation and therefore in recognition of content words. Furthermore, children were 

more likely to omit English functors than nonsense syllable “functors” occurring in the 

same position in the sentence, even when these were superficially phonologically similar 

to English functors. This suggests that children have a fairly detailed segmental 

representation of these elements, contrary to what one might expect from their frequent 

use of filler syllables in the place of function words (e.g. Gleitman & Wanner, 1982). 

3.6.2 Early knowledge of the relationship between function words 
and other words  

Although children’s speech may sound telegrammatic, it has long been established that 

speaking back to children in a telegrammatic manner impairs their comprehension of 

what is being said. Children respond correctly more often to utterances that contain 

function words (“give me the ball”) than to utterances that omitted them (“give ball”; 

Petretic & Tweney, 1977; Shipley, Smith & Gleitman, 1969).  

 

Gerken & McIntosh (1993) took this result further, to attempt to show that children might 

be able to use their knowledge of English functors to label constituents in a sentence. 

This could happen only if children are aware not only of the function words themselves, 

but also of the contexts in which they are licensed to occur. So, for instance, if children 

were familiar with the function words “the” and “was”, but not with the patterns in which 

they are allowed to occur in sentences, then they might find the sentence “find was bird 
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for me” just as acceptable (and comprehensible) as “find the bird for me”. Gerken & 

McIntosh (1993) exposed 2-year-olds to one of four variants of a grammatical English 

sentence. Each sentence requested the children to identify an item in a picture book that 

the experimenter and child were reading together. The four variants differed in the 

element which appeared in the position occupied by “the”. One variant contained a 

nonsense syllable (“Find gub bird for me”), another contained a legitimate function word 

which was not acceptable in the particular context (“Find was bird for me”), another 

contained no word at all (“Find bird for me”), and the fourth control variant was the 

original utterance. Children more readily responded by pointing to the requested object in 

the grammatical control utterance than to both the utterance with the nonsense function 

word and the utterance with the misplaced function word. However, this study failed to 

replicate the advantage shown in the earlier studies for the grammatical condition over 

the omitted function word condition.  

 

Kedar, Casasola and Lust (2004), replicating the work of Gerken & McIntosh (1993) 

with the more sensitive experimental paradigm of preferential looking, were also able to 

show an advantage for grammatical utterances over utterances with omitted function 

words. In terms of the latency of responses (the time taken to look toward the target), 

children looked significantly more quickly to the target in the grammatical than in the 

omitted-word condition. 

 

An experiment by Santelmann & Jusczyk (1998) examined children’s knowledge of non-

adjacent dependencies in English. Fifteen- and 18-month-old children heard passages 

containing several instances of either a grammatical discontinuous dependency, made up 

of the word “is”, followed by an optional adverb, a main verb and the inflectional 

morpheme “-ing” (e.g. “everybody is cheerfully baking bread”), or an non-dependency 

with “can” instead of “is” (“everybody can cheerfully baking bread”). The 18-month-olds 

could distinguish between grammatical and ungrammatical sentences, whereas the 15-

month-olds could not. However, this ability was also conditional on the length of the 

material intervening between the two dependent elements: when the intervening material 

exceeded three syllables in length, the 18-month-olds no longer distinguished between 
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grammatical and ungrammatical sentences. Santelmann & Jusczyk interpret the result as 

showing that 18-month-olds can track discontinuous dependencies between function 

morphemes, but that they can do so only over a window with a limited size. 

 

German offers a far larger number of possible structures that may legally appear between 

an auxiliary and a verb inflection than English does. Höhle, Schmitz, Santelmann & 

Weissenborn (2006) attempted to replicate the results of Santelmann & Jusczyk (1998) 

with German materials containing various forms of the German present perfect with 

intervening adverbs (e.g. “Der Hamster hat leise gequiekt”, “the hamster squeaked softly”, 

vs. “*Der Hamster kann leise gequiekt”, “the hamster can squeaked softly”). However, 

unlike the English-speaking children studied by Santelmann & Jusczyk (1998), their 18-

month-old subjects did not show a differential listening preference between grammatical 

and ungrammatical sentences. However, when the intervening adverb was replaced by a 

noun phrase consisting of an article followed by a noun (e.g. “Der Hamster hat/kann das 

Korn genascht”, “the hamster nibbled/can nibbled the grain”), 18-month-olds were able 

to distinguish between the grammatical and ungrammatical sentences. Höhle et al. (2006) 

interpret this result as indicating that the presence of the very familiar article indicated to 

the child that the intervening material (the noun phrase) was a unit of German, thereby 

allowing the material to be classified, and so facilitating the recognition of the 

surrounding dependency between “hat” and the “ge-X-t” verb structure. Arguably, this 

was not possible with the adverb, as German adverbs are not marked with obvious cues to 

their category membership. Höhle et al. (2006) suggest that because English adverbs 

often end with the common morpheme “-ly”, this may facilitate the induction of the 

adverb category in English, which is later extended to adverbs with similar distributional 

properties, regardless of whether they have the “-ly” ending, and that this may have 

brought about the difference in results between German- and English-learning children 

when adverbs were used. An alternative explanation not considered by Höhle et al. (2006) 

is that the German-learning children may have acquired an explicit schematic frame for 

the entire utterance, of the shape “Der X hat der Y ge-Z-t “, and recognized this frame in 

the stimulus materials. The additional function word material may have made this frame 

more readily recognizable than the “adverb” utterance frame “Der X hat Y ge-Z-t”; this is 
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in line with evidence (discussed in Section 3.6.4) that having a larger number of 

convergent cues to category membership facilitates categorization. 

 

An important set of studies by Shady (1996) delineates the extent to which very young 

children are aware of the difference between function words and content words in 

English, and of the allowable patterns in which function words occur in utterances. 

Infants of the age of ten and a half months were offered a choice of listening to a 

grammatical English passage, or to the same passage with the function words replaced 

with nonsense syllables. An example pair of sentences from the unmodified and modified 

passages would be (p. 27): 

 

There was once a little kitten who was born in a dark cozy closet. 

There [haI] once [I] little kitten who [haI] born in [I] dark cozy closet. 

 

Infants showed a significant preference to listen to the grammatical material, even though 

the nonsense syllables were designed to be phonologically similar to natural English 

morphemes. This suggests that even infants of this very young age had fairly detailed 

segmental knowledge of the function words of English, and could notice the difference 

between a passage that contained these familiar words, and one which did not. This 

suggests that children of this age may be sensitive to the “texture” of English sentences, 

as constituted out of the function words in utterances, and may be able to notice when 

this texture is violated. 

 

In another experiment, the passage was modified so as to retain the original function 

words, while changing several of the content words to nonsense words. For example: 

 

There was once a little kitten who was born in a dark cozy closet. 

There was once a little [mafIt] [gə] was [tεk] in a dark cozy closet. 

 

By contrast to the nonsense function-word condition, infants showed no preference for 

either the unmodified or modified passage in this condition. This may be viewed in the 
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light of the “texture” interpretation that I offered above: the modified utterances in this 

case preserved the basic, “background” structure of English utterances. Even though the 

substituted words were unfamiliar nonsense words, they occupied acceptable 

“grammatical” positions where real content words might have occurred, and so this 

material was not unusual for young children in the way that the nonsense function-word 

material was. 

 

In further experiments, Shady attempted to delve deeper into the specificity of children’s 

knowledge about function words in English. These experiments were designed to gauge 

whether children were aware that specific function words could only appear in specific 

positions in an utterance. It would, in theory, have been possible for children to be finely 

aware of the segmental structure of English function words, but nevertheless to treat all 

valid function words as essentially substitutable for each other in their different positions 

in an utterance. Examples of modified and unmodified sentences in this experiment were 

 

This man has bought two cakes. 

Has man this bought two cakes. 

 

Ten and a half and 12 and a half month-olds showed no preference for either passage; 

however, 16-month-olds preferred the grammatical passage. These results taken together 

suggest that while children may at 10 and a half months be able to recognize function 

words in continuous English, and be aware of where function words should occur in 

relation to the other words in utterances, they may still have underspecified knowledge of 

exactly where particular function words are allowed to appear, and that this knowledge 

develops somewhere between the ages of 12 and a half to 16 months. 

3.6.3 How do lexically-specific frames develop? 
The question of how children come to learn the lexically-specific frames of their 

language is currently under-researched. However, a small number of researchers have 

carried out theoretical and empirical research in this area; this work is reviewed here. 
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In contrast to the widely-held view that children initially learn individual words and then 

attempt to combine them into utterances, Tomasello (2006) argues that on the contrary, 

children attempt from the beginning to emulate complete adult communicative utterances, 

as evidence for instance in the use of conventional intonational patterns associated with 

requests, questions and commands. Tomasello (2003, 2006) suggests that utterance-level 

constructions play a prominent role in language development: these are verbal 

expressions that can be used as complete utterances, and that are associated in a 

routinized way with certain communicative functions. Peters (1977) proposes that 

children may follow one of two quite different strategies in language learning. In the so-

called analytic strategy, the child starts with basic elements such as single words, and 

combines these so as to form increasingly larger units. By contrast, the Gestalt strategy 

starts from a full utterance and proceeds to discover its parts. 

 

There are a number of factors that are believed to influence the degree to which a 

particular construction is productive in accepting particular elements as slot fillers. 

Unsurprisingly, two of these factors relate directly to how productively the construction 

is actually used in the input to the child. A construction’s type frequency (e.g. Bybee, 

1985) refers to the sheer number of different element types that have been attested to 

occur as slot fillers in that construction. A related concept is that of the openness of the 

construction, i.e. the degree of variability between elements that occur in the construction 

(Bybee, 1995). Intuitively, exposure to a large number of filler elements may help the 

child not only to focus on the abstract properties that these elements have in common and 

that possibly license their use in the construction, but also to ignore properties of 

individual slot fillers which are not common to all slot fillers and hence irrelevant to 

occurring in the particular construction. Lastly, the process of preemption or blocking 

also plays a role: if a child already has mental access to a construction-filler pair that 

express a particular meaning, she will be disinclined to use the filler in a different 

construction with apparently the same meaning (Goldberg, 1995). 

 

One of the few proposals in the literature attempting to spell out the explicit strategy by 

which children might learn the constructional frames of their language is that by Peters 
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(1983). It is worth considering her suggestions in some detail, as they are similar in 

several ways to a number of computational approaches to be reviewed in the next chapter 

(e.g. Adriaans, 1992; Van Zaanen, 2001), and also to the work that will be presented in 

later chapters of the current work. 

 

Peters is concerned with determining what the natural units of language are for language-

learning children. In line with her earlier (1977) proposal regarding analytic and Gestalt 

language learning strategies, she emphasizes that some children may extract single words 

form connected speech while others extract phrases.  

 

Peters suggests that the basic starting point for children will be to start with entire 

utterances, and to hypothesize that they are linguistic units. Utterances are then stored in 

memory, together with the salient features of their situational context. Note that this does 

not commit children to an early Gestalt strategy; on the contrary, many utterances spoken 

to children are composed of single words, and words spoken in isolation may be more 

likely to be learned than others (Brent & Siskind, 2001). Hence, extracting utterances 

from the speech stream may be a way to learn both full-utterance structures and single 

words, as well as intermediate units such as clauses and phrases: essentially any elements 

that are sufficiently coherent and autonomous for adults that they should utter them 

independently may in this way become putative units for the child. 

 

Peters proposes a number of phonologically-based heuristics for identifying utterances: 

an utterance is bounded by silence, utterances are stretches of speech that are 

suprasegmentally delimited (e.g. by word-initial stress, utterance-final pitch, etc.), an 

utterance is a speech tune or melody, and an utterance is a rhythmic pattern of speech. 

 

Next, these early units may be segmented into smaller ones by employing a number of 

heuristic strategies aimed at producing putative subunits. These are: segment off the 

beginnings and ends of utterances, segment off stressed syllables, segment the utterance 

at rhythmically or intonationally salient places and segment out subunits that are repeated 

within a unit. 
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In addition, Peters offers two segmentation strategies that begin to bring what the child 

currently hears into a relationship with her previously extracted units. Using the 

SG:MATCH1 heuristic, the child will postulate that if the beginning or end of a unit is 

another unit, the remainder of the larger unit is also a candidate for being a unit. More 

generally, the SG:MATCH2 heuristic states that if two units overlap in having shared 

phonological material, the material that they have in common may be a unit, as well as 

any residues that the two units do not have in common. This strategy is also the essence 

of Van Zaanen’s (2001) Alignment-Based Learning system, to be discussed in detail in 

Chapter 4. 

 

Putative units are evaluated by the child in terms of their utility, according to yet another 

set of heuristics, namely: prefer units that have been produced by more than one 

segmentation heuristic; prefer frequently-proposed units; prefer units with clear 

associated meanings. A particularly important heuristic states that, if a child produces a 

putative unit and is not understood (including the case of “sounding funny” to the child 

herself), then this may prompt a reanalysis of the compositional structure of the unit. 

 

Peters provides an account of how children might discover the morphosyntactic frames of 

a language. This is said to happen when children have identified a set of units that can be 

subdivided (by any of the segmentation heuristics), such that one subunit occurs in all the 

units in the set, while the other units may vary. This leads to the postulation of a frame 

with a fixed element, combined with a slot that may be filled with variable material. 

Crucially, in Peters’ theory a frame can only be discovered in this way once the child has 

also determined which semantic features are common to all of the instances of the frame. 

Hence, Peters’ theory insists that frame formation must always be mediated by semantics, 

and will consequently make quite different predictions about the trajectory of frame 

discovery than “purely distributional” theories. 

 

The more often the segmentation heuristics give rise to a particular frame, the stronger 

will be the evidence that the frame is a valid unit in the language. Here too, the frame 
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may be evaluated by being produced, as was the case for smaller non-abstract units. 

Lastly, Peters proposes that the child will also look for frames that generalize the ones 

she already has, whether by moving from a frame with one slot to one with multiple slots, 

turning slot fillers themselves into frames that are hierarchically embedded within the 

larger frame, and moving towards wholly abstract frames. 

 

Lieven, Behrens, Speares and Tomasello (2003) attempted to trace the developmental 

trajectory of one two-year-old child’s lexically-specific frames by showing how her later 

productions could be derived from earlier ones by one of five simple change operations: 

substituting one element for another, adding on an element, dropping an element, 

inserting an element in a non-final position, and swapping the positions of two elements. 

The authors found that 74% of the child’s utterances in the final session recorded could 

be formed from earlier utterances by a single “editing” operation. The results suggest that 

children might be able to extend the range of their productions by a number of simple 

operations on elements which are already part of their linguistic repertoire. The idea of 

linking an utterance to a precursor utterance that is a minimal number of editing 

operations away is highly reminiscent of one version of Van Zaanen’s (2001) ABL 

system (reviewed in Chapter 4), in which utterances are “aligned” (matched as in Peters’ 

(1983) SG-MATCH2 heuristic) in such a way as to minimize the edit distance between 

the two utterances (the number of insertions, deletions and substitutions required to turn 

one utterance into the other).  

3.6.4 Artificial and other language learning experiments 
Methodologically, it would be useful to be able to know exactly which language input a 

child has been exposed to when he or she demonstrates a particular linguistic behaviour. 

Given the difficulty of achieving this level of knowledge in the case of a child’s first 

language, researchers have instead conducted experiments using artificial languages, in 

which adults and children are exposed to strings from an artificially-created language, 

typically generated by a grammar for that language. Occasionally, real, unfamiliar foreign 

languages take the place of the artificial languages. In this paradigm, a child’s exposure 

to the language can be controlled precisely.  
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A well-established result in the artificial language literature is that language learners are 

unable to induce parts-of-speech which are distinguishable from one another on only one 

cue per training item; at least some of the training items need to have convergent (at least 

two) cues to category membership. In an early experiment by Smith (1966), subjects 

were exposed to sentences following either a MN or a PQ pattern, where M, N, P and Q 

represent categories of words, and at test were required to identify strings that they had 

heard during familiarization. Subjects as readily accepted test strings of the form MQ and 

PN as they did MN and PQ sentences, suggesting that they had formed categories 

corresponding to words that occurred in first and in last positions, but had not tracked 

word co-occurrences. 

 

Braine (1987) found that subjects could distinguish between provided real-world 

referents for his artificial words, with half of the words in one category having male 

referents, while half of the words in the other category had female referents. Other studies 

have shown successful categorization in adults when marking words in the N and Q 

categories with affixes as well as final positional order (Frigo & McDonald, 1998). 

 

In a similar vein, Gerken, Wilson & Lewis (2005) familiarized English-speaking children 

aged 1;5 with examples of the Russian noun paradigm of masculine vs. feminine nouns. 

Subsequently, infants looked longer in the direction of a sound speaker producing 

sequences of ungrammatical items than one producing grammatical ones, but only when 

some of the words presented during familiarization provided two cues to either masculine 

or feminine gender, rather than one. 

 

Braine (1987) distinguishes between two phases of category learning. In the first phase, 

learners associate individual elements from the M and P categories with cues that 

distinguish between the N and Q category. At this stage, there is not yet the ability to 

treat the M or P categories as categories, i.e. by generalizing from, say, an N element’s 

occurrence with one M element to expect that the N element may co-occur with any M 

element. This knowledge is said by Braine (1987) to develop during the second phase, 

when several M- and P-elements are categorized based on their co-occurrence with the N 
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or Q cues. This step can be seen as the formation of clusters of contexts, one in which N 

elements could occur and another in which Q elements could occur. 

 

Gómez & Lakusta (2004) successfully showed that 12-month-olds are able to exhibit the 

first of these two forms of learning. The infants in their study heard sentences of either “a 

X” or “b Y” structure, in which the “a” and “b” are presumably intended to convey that 

these elements play a similar role in the artificial language to function words (being few 

in number, and being the elements that serve as cues to the category), while the “X” and 

“Y” elements are like open-class words. There were two “a’ and two “b” elements, and 

whether a word belonged to category “a” or “b” predicted whether the following word 

was monosyllabic or disyllabic. Infants were able to distinguish between valid from 

invalid utterances after training. This ability was statistical rather than absolute in nature, 

as it persisted even when a sixth of the training sentences were ungrammatical, but not 

when the proportion of invalid sentences was increased to a third. 

 

In work by Mintz (2002), adults were exposed to sentences from an artificial language 

which for the most part exhibited an “x Y z” pattern, where the “x” and “z” elements 

served as framing elements for the more variable Y elements. The artificial language 

contained two classes of words that could be distinguished on the basis of the different 

sets of frames in which they occurred. During test, subjects were required to choose 

between sentences that matched a medial (Y) word from one word class with one of the 

sentence frames of its “own” family of frames, and sentences featuring these same frames 

with words from the other category. Subjects had heard neither of the two sentences, but 

significantly often preferred the frame/medial word match to the mismatch. (Interestingly, 

they also showed a significant preference for the mismatch sentences over random 

sentences.) Mintz (2002) suggests that the frame/medial word combination provides a 

figure/ground distinction which makes it clear which are the words over which a category 

is to be induced. According to Mintz, this may have been crucial in allowing the 

distributional analysis to succeed in this case, where it has failed in many others. Note 

also that in this experiment, the induction of categories was done not only with classes of 

words but also classes of frames that were reliable cues to the category. 
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Gómez (2002) explored this idea further. Her artificial language consisted of strings of 

the “a X b” variety, but with the set size of the X category varied to contain 2, 6, 12 or 24 

elements. It was hypothesized that it would be easier for learners to notice the non-

adjacent dependency between “a” and “b” as set size increased, because these elements 

would become salient as more or less table anchoring points against the variability of the 

X category. In fact, Gómez suggests that the decrease in predictability of the X element 

given “a” might trigger a search for a non-adjacent dependency with higher reliability. By 

contrast, a more orthodox view of learning would predict that high-order elements are 

built by chunking together adjacent elements to form a lower-order chunk, which is itself 

based on a similar adjacent dependency between chunks, all the way down to atomic 

elements. On such a view, non-adjacent dependencies cannot be learned, and the best 

learning outcome in this experiment would occur with a set size of 2, where some strong 

adjacent dependencies between “a” and the X element still exist. In fact, the results 

supported Gómez’s hypothesis that longer-range dependencies can be learned when 

adjacent dependencies are absent. Learners were much better able to judge as “correct” 

strings from the artificial language as the X category size increased, with a sharp 

discontinuous jump in accuracy between set sizes 12 and 24.  

 

It should be noted, however, that it may be more accurate to say that this study 

demonstrated the learning of a number of frame-style constructions, rather than the 

induction of a word class to fill the X slot. To show this, it would have been necessary to 

have two X classes, with different sets of frames for each class, as was done in Mintz’s 

(2002) study. Another point to note is that there were convergent cues in this experiment 

to indicate which elements constituted the frame and which the “focal”, “content-like” 

word: the “a” and “b” elements were monosyllabic, while the “X” word was disyllabic, 

something which would have been a reliable cue to closed-class vs. open-class 

membership in English. 
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Gómez & Maye (2005) investigated the developmental trajectory of the ability to learn 

non-adjacent dependencies using the same paradigm as in Gómez (2002), and found that 

infants are able to track these dependencies at 15 months, but not yet at 12 months.  

3.7 Synthesis: a possible role for lexically-specific frames in 
part-of-speech bootstrapping 

In this chapter, I have reviewed evidence from studies on children’s language 

development that suggest that familiar lexically-specific frames are items of linguistic 

knowledge for the child, not only appearing in their productions (Lieven et al., 1993, 

1997; Tomasello, 1992) but also shaping their comprehension of utterances. Evidence 

from a variety of sources has converged to suggest that children become able, during the 

course of development, to make use of lexically-specific frames, made up of specific 

words plus slots, to determine the meaning of the words that occur in the slots (Brown, 

1957; Naigles & Kako, 1993; Smith, 2001, Taylor & Gelman, 1988). This is in line with 

the notion in Construction Grammar that constructions serve to place specific construals 

on embedded elements (Bybee, 1985, 1995; Goldberg, 1995; Langacker, 1987). 

 

From the literature, there are guidelines to indicate some of the properties that frames 

should have in order to facilitate the learning of categories: 

• The frames should occur frequently (Bybee, 1985) 

• There should be considerable variation in the fillers that can appear in the slots 

(Bybee, 1995) 

• There should be multiple converging cues to indicate category membership for 

slot fillers; these plausibly serve to distinguish the frame from the filler (Braine, 

1987; Smith, 1969) 

 

In addition, the specific words in these lexically-specific frames are very often function 

words (Laakso & Smith, 2004; Lieven et al., 1997), and children are able to recognize 

these elements from an early age (Gerken, 1987; Gerken et al., 1990; Shi et al., 2006; Shi, 

2007), are sensitive to the patterns in which function words co-occur in utterances 

(Gerken & McIntosh, 1993; Shady, 1996), and can use function words as cues to the 

parts-of-speech of proximate words (Höhle et al, 2002, 2004; Mintz, 2006a). 
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This idea has implications for distributional approaches to part-of-speech bootstrapping. 

Such approaches hold that parts-of-speech are induced from the contexts in which words 

occur, but it is an open question which particular contexts are to be used. It would be 

useful to propose explicit mechanisms by means of which children may discover the 

lexically-specific frames that occur in their native language, and to show that these 

frames are efficacious in allowing the parts-of-speech to be bootstrapped. 

 

In the next chapter I will review several explicit, computational approaches that have 

attempted to discover the parts-of-speech and identify common structures in English from 

large corpora of natural English text. 
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4 Computational models of automatic part-of-speech 
induction 

Several researchers have proposed computational models for the automatic discovery of 

both parts-of-speech and syntactic structures of a natural language, using a sample of 

spoken or written text from that language. This section provides a selective review of 

some of the most influential approaches and models. 

4.1 Lexical categorization from contextual distribution 

A very important set of studies in the 1990s managed to demonstrate that it was possible 

to group words together into categories that are very similar to traditional linguistic 

categories, purely on the basis of the distributional contexts in which those words occur 

in a sample of the target language. 

4.1.1 Finch 

Finch (1993; Finch, Chater & Redington, 1995) investigated whether parts-of-speech 

could be induced merely by grouping together words that appeared in similar contexts in 

a corpus. In Finch’s work, the context of a target or focal word (this term will also be 

used in this thesis) was based on four “streams” of information, obtained from the words 

before and after a focal word, and the words two before and two after a focal word.  

 

Finch’s algorithm collected co-occurrence statistics from a corpus of natural language 

(logs of computer newsgroups). For each of 2000 focal words, it determined the 

frequency with which each of the 147 most common words in the corpus occurred in 

each of the positions 2 words before, 1 word before, 1 word after and 2 words after the 

focal word. This produced a set of 4 usage vectors for each word, corresponding to each 

of the 4 contexts. These vectors were concatenated to produce a single vector of 

distributional statistics.  

 

Next, words were subjected to a hierarchical clustering analysis. Hierarchical clustering 

(described in more detail in Chapter 5) produces groups of items by grouping together 

items that are similar, in that they possess certain shared characteristics. In this case, 
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words were grouped/clustered together if they were used in similar contexts, i.e. had 

similar usage vectors. 

 

Finch (1993) presents the hierarchical trees produced by this clustering process. The 

groupings found by this purely unsupervised process were highly intuitive, grouping 

together, for instance, modal verbs (“would”, “should”, “can”, “won’t”, “doesn’t”, 

“hadn’t”), prepositions (“on”, “at”, “in”, “among”, “beyond”, “above”), both accusative 

(“it”, “me”, “them”, “her”, “us”) and nominative (“I”, “they”, “we”, “he”, “she”) forms 

of pronouns, as well as categories corresponding closely to determiners, nouns and 

adjectives, and many others. 

 

It is remarkable that such a detailed and successful categorization of words can be 

obtained from such very local and limited contextual information. It is important to note, 

however, that Finch’s model allocates each word type to one and only one cluster. This 

means that every token of a particular word type is categorized into the same category, 

(even though many word types are ambiguous), so that word tokens from the same type 

belong to different categories depending on their context. Finch considers this issue of 

ambiguity, but concludes that it is negligible, citing a finding by Church (1992) that 90% 

of word tokens belong to the majority category associated with their word type. 

 

Having allocated words to categories, Finch next considered longer linguistic constituents 

made up of several words. Rather than collecting distributional information for a huge 

number of individual word sequences, Finch replaced all words in the corpus with labels 

corresponding to the categories of the words as determined by the lexical clustering, and 

collected all category label sequences of length 1, 2 and 3 in the corpus. For the 3000 

most common such sequences (likely to correspond to linguistic units such as phrases), 

Finch again collected contextual information, this time based on the category labels of the 

2 words before and the 2 words after the focal item, and again a clustering analysis was 

performed. This produced a categorization of what Finch terms X-level short sequences. 

These sequences could very often be interpreted linguistically. One class appeared to 

correspond to noun phrases (“her status”, “the following section”, “her favourite colour”), 
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and another to word sequences elaborating on and modifying the copula BE (“was 

simply”, “just shouldn’t be”, “am probably not”). A very interesting finding was that 

some of the sequences were not directly mappable to traditional linguistic categories such 

as one of the phrasal constituents of English, but could perhaps be more compatible with 

approaches such as Categorial Grammar. For instance, one class contained the sequences 

“use the”, “break into these”, “add an”. When a noun phrase is appended to each of these, 

a verb phrase is formed, so that one could perhaps describe this category in a Categorial 

Grammar framework as something like a “VP \ NP” category. 

 

Next, the most common sequences of X-level sequences were discovered, by considering 

the 3000 most common X-level sequence sequences of length up to 3, and again taking as 

context the 2 adjacent X-level sequences on either side. This time, clustering managed to 

move up to the level of simple sentences, as well as noun phrase, verb phrases and 

infinitival complements (“to accept this attitude”, “to be at an end”, etc.). 

 

Redington, Chater, Huang, Chang, Finch and Chen (1995) replicated the results of Finch 

(1993) with word categorization for Mandarin, and again found that the main linguistic 

categories were automatically discovered by this method.  

4.1.2 Redington, Chater and Finch  
The work by Finch (1993) was later replicated and extended by Redington, Chater and 

Finch (1998), who made use of child-directed speech taken from the CHILDES database, 

and varied aspects of the algorithm including the kinds of input used, and the definition 

of context. Among their results were the findings that:  

• near contexts (immediately adjacent words) are more informative than distant 

ones (second-next/previous words and further); 

• combining preceding and following contexts is better than using just one or the 

other; 

• it is beneficial to use only the most frequent words as context words (the 150 most 

frequent were found to be optimal) - this is likely due to their being function 

words rather than content words; 

• removing function words from the corpus adversely affected performance;  
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• nouns are the easiest class to identify using this method, followed by verbs, while  

function word classes tended to be poorly identified;  

• performance is improved by taking utterance boundaries into account and not 

collecting contextual information that straddles such boundaries;  

• the technique worked equally well with adult-directed natural speech. 

 

It is important to note that the quantitative evaluation performed by Redington, Chater 

and Finch did not penalize their model for its disregard for word type ambiguity, as in 

each case they evaluated their empirical classification against a gold standard which 

specifically also ignored ambiguity: a word type was assigned to its major category 

according to the Collins Cobuild lexical database. Hence, an ambiguous word such as 

“empty”, for example, is assigned exclusively to the category of verb, because that is its 

main category in the opinions of the linguists who compiled the Cobuild database. 

4.1.3 Mintz, Newport and Bever 

Mintz, Newport and Bever (2002) replicated the basic approach of Finch and colleagues 

with a number of child-directed corpora from CHILDES. Mintz et al. made use of the 

200 most common words as both focal words and context words, using the cosine 

distance as a distance measure, and using their own purity measure to evaluate success. 

In one experiment, Mintz et al. varied the size of the context window on either side of the 

word, between 1, 2 and 8, and found that a size-8 window improved the algorithm’s 

ability to identify the cluster of verbs (although nouns were identified readily at any 

window size). A further manipulation made use of the positions of function words in the 

input: instead of using a fixed-size window, a context was used which stretched from the 

last function word before the focal word (inclusive) to the first function word after the 

focal word (exclusive). This had the effect that function words were used as phrasal 

delimiters. These contexts proved to be at least as good as and sometimes better than 

using all words, for identifying both nouns and verbs. Lastly, the authors found that verb 

categorization was improved by collapsing all function words into a single token, i.e. by 

not distinguishing between different function word types (at least for a 1-word context). 

This result is somewhat at odds with the work of Redington, Chater and Finch (1998) 



 78

who found the opposite result: when they replaced all function words with a single token, 

categorization accuracy declined in their experiment. It is unclear what the reason for this 

discrepancy might be.  

 

A major problem with all of the experimental studies reported above is that they make the 

simplifying assumption that all tokens of a particular word type belong to the same 

category. But in fact, word types are ambiguous, and tokens may belong to one category 

or another depending on the context in which they are used. The distributional clustering 

approaches reviewed in the following three sections attempt to rectify this shortcoming. 

4.1.4 Clark 

Clark (2000, 2001) takes a similar approach to that of Finch (1993). However, in Clark’s 

model, the context of a focal word is defined as the conjunction of the two words on 

either side of a focal word (e.g. in “the mouse ran up the clock”, the context of “mouse” 

is “the … ran”), and the context vector used for clustering expresses the distribution of a 

focal word into all flanking word pair contexts in which it occurs. This is in contrast to 

the work of Finch and colleagues (Finch, 1993; Redington, Chater and Finch, 1998) and 

Mintz et al. (2002), who used context vectors where left and right context words were 

treated as independent contexts of a word, so that a word which occurred 100 times with 

word a on its left, and 100 different times with word b on its right, would be 

indistinguishable from a word which occurred 100 times with the word pair a … b 

flanking it. A word is taken to define a probability distribution over all contexts, which is 

estimated from a corpus; words with similar distributions are clustered together. 

 

Clark’s method can account to some extent for word type ambiguity: once prototypical 

context distributions have been obtained for each of the clusters, the context distribution 

for a particular word is modelled as a linear combination of these prototypes. Note, 

however, that Clark’s method will give an abstract breakdown into the various categories 

for a particular word type, but cannot be used directly to categorize any particular 

instance (token) of a word based on its context, as humans can do. This is because 

contexts are not treated as linguistic objects that can themselves be subject to 
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categorization. As a result, Clark’s approach is also not able to categorize a novel or rare 

word based on its context: instead, Clark gives each rare word a default category profile 

based on the overall frequency of occurrence of the various categories in the corpus. 

 

Clark reports good results for his algorithm, although his quantitative evaluation is rather 

different from that of the other researchers mentioned in this section, so that a direct 

comparison is difficult. 

4.1.5 Frequent Frames 
In Mintz’s (2003, 2006a, 2006b) Frequent Frames model, as in all of the other studies 

reviewed so far, the local context surrounding a word is taken to be significant for lexical 

categorization. Frequent frames are defined as a disjunct frame made up of the word 

immediately preceding the focal word, a slot for the focal word, and then the word 

immediately following the focal word, so that all frequent frames have the form a _ b, 

with a and b standing for fixed words, and the underscore being a slot that can accept 

variable material. Hence, Frequent Frames are the same contexts that were used by Clark 

(2001) in the work reviewed in the previous section (but are put to different use, as 

discussed below). 

 

Once all frames of this form have been collected from a corpus, only the most frequent 

ones are retained for the purpose of categorization. This reflects the intuition that, if a 

pair of words co-occur frequently on either side of another word in utterances, this is 

likely to be due to some meaningful linguistic relationship between them. 

 

Mintz aims to improve on these models of Finch (1993), Redington et al (1998) and 

others by making use only of contexts that (i) have been shown to be attended to by 

children and (ii) are reliable indicators of part-of-speech. 

 

Firstly, Mintz (2003) defends the psychological plausibility of these structures in part on 

the basis of the results of Gómez and Maye (2005), where children were able to learn 

about disjunctive word co-occurrences in an artificial language where all sentences had  

a _ b structures; hence it is known that children are able to attend to these structures. 
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Secondly, Mintz (2003) argues that making use of the non-adjunct pair of words flanking 

a focal word provides a far more reliable indicator of the part-of-speech of the focal word 

than considering only the context on the left or on the right of the word in isolation from 

each other, as was done in Finch (1993), Redington et al. (1998), Mintz et al (2002) and 

Clark (2001).  

 

The most significant aspect of Mintz’s work is that it seems to be one of the few 

implemented distributional clustering models to acknowledge that word types are 

ambiguous, and that the part-of-speech of two tokens of the same word type might differ 

according to context. Instead of assigning all instances of a word type to the same 

category, as done in all the other studies reviewed so far, Mintz leaves it to the specific 

contextual frame to determine the part-of-speech of a word token. The Frequent Frames 

approach therefore replaces clusters of word types with clusters of frame types. 

 

Another important aspect is that the frames are frequent; Mintz does not make use of all 

frames of the form a _ b, but only of the ones that recur regularly, and hence are arguably 

of linguistic significance; it is the input that guides the selection of frames. 

During categorization, all words that occur in the same frequent frame are treated as 

belonging to the same category. In all of Mintz’s reported simulations, the number of 

frames actually used for categorization is low: for example, only the 45 most frequent 

frames are used in Mintz (2003). These frames provide a very accurate categorization of 

the words that occur in them, and Mintz (2003) reports accuracy scores in excess of 0.97. 

Nevertheless, completeness scores are low, as a result of the large number of frames. The 

process is therefore extended by amalgamating two frames into a larger group whenever 

they share more than 20% of their filler words in common. This process is carried out 

transitively, so that if A and B satisfy the criterion, and B and C satisfy the criterion, then 

A, B and C are merged. After this process, all focal words occurring in the same group of 

frames are allocated to the same category. Evaluation of this categorization still yields 

high accuracy, and completeness is greatly increased (both in excess of 0.9 in Mintz 

(2003)).  
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4.1.6 Schütze 

Schütze (1993) attempted to extend the earlier work of Finch (1993) by considering the 

categorization of word tokens in context, rather than word types. Instead of forming 

clusters based on distribution vectors that represent the words occurring on either side of 

a focal word, Schütze made use of a concatenated vector made up of four different 

context vectors that represented the left context vector of the focal word, the right context 

vector of the focal word, and also the right context vector of the word to the left of the 

focal word, and the left context vector of the word to the right of the focal word. Clusters 

were then formed based on similarity between these concatenated vectors for each focal 

word. In this way, two focal words in context are considered to be similar not only if they 

tend to occur in the same contexts, but also if the context of one word occurs with the 

same kinds of words as the context of the other.  

 

When applied to the Brown corpus (Kucera & Francis, 1967), this technique was 

extremely successful in finding clusters corresponding to the traditional parts-of-speech 

in English. This high degree of success would seem to be due to the fact that, instead of 

clustering only word types together, Schütze clustered word tokens in context, combining 

information about both the distribution of the word and the distribution of its context 

simultaneously. 

4.1.7 Cartwright & Brent 
Cartwright and Brent (1997) propose an incremental strategy, implemented in a computer 

simulation, by which children could group words into categories. This strategy is based 

on the principle of finding an optimal model of a language, and involves the child coming 

up with an explicit mapping from each of the words in an utterance to their respective 

categories (i.e. the sentence “the cat slept” might be mapped to “Determiner Noun Verb”). 

This mapping is effected on the basis of an underlying model of the language, which lists 

the words and categories of the language, the possible categories to which words may 

belong, and the possible full-utterance frames that are permissible in the language (these 

frames are described in terms of a sequence of parts-of-speech only, rather than making 

reference to any specific words). 
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The model is updated after every new utterance that the child hears, and the learning 

process aims to minimize the amount of entropy (i.e. complexity) in the model. While 

Cartwright and Brent’s category learning strategy is solidly founded on the goal of 

entropy minimization, they also show how pursuing this goal can have the effect that the 

learning system adheres to a number of psychologically intuitive heuristics, including: 

minimizing the number of frames, minimizing the number of categories, creating frames 

with the highest possible frequency, minimizing the number of words that can belong to 

more than one category, minimizing the number of words in a category, and favouring 

the use of large categories in the frames. Clearly, all of these heuristics contribute to 

producing a parsimonious language model. Cartwright and Brent’s model was tested on 

real child-directed speech from the CHILDES database, and was shown to produce 

highly accurate categories of words (although completeness was low due to the large 

number of categories produced). 

4.2 Syntax learning 
In this section I review a number of computational models aimed at discovering the 

syntax of a language rather than its parts-of-speech per se, but which nevertheless have 

some relevance for the current experiments with lexically-specific frames, because they 

need to tackle the problem of part-of-speech induction along the way. 

 

Most of these approaches are concerned with the discovery of paradigmatic and 

syntagmatic patterns. Syntagmatic patterns are “horizontal” and involve sequences of 

linguistic symbols (e.g. phonemes or words) that occur frequently enough in sequence in 

single sentences to warrant postulating that they form a larger unit. Paradigmatic patterns 

are “vertical” and correspond to sets of elements that occur frequently enough in the same 

context across different sentences to warrant postulating that they belong to the same 

category.  

4.2.1 EMILE 
EMILE is an algorithm developed by Adriaans (1992, 1999; Vervoort, 2000) for the 

purpose of discovering the grammatical structure of a natural language from a corpus, 
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and expressing that structure in terms of a categorial grammar. A categorial grammar 

describes the various grammatical constituents and words of a language as belonging to 

certain categories; these categories are defined in terms of the potential of constituents to 

combine with constituents from other categories to form compound constituents. 

Expressions that belong to the same category can be substituted for each other in any 

context. EMILE has been extended since its initial formulation, and the current version is 

4.1 .  

 

In EMILE, an equal role is played by a word and the context in which it occurs, in line 

with the categorial grammar approach. For a specific word in context to be assigned to a 

specific category, both the word (“expression” in the EMILE terminology) and its context 

would need to be associated to that category. Category assignment is therefore highly 

context-sensitive: another expression occurring in that same context, or that same 

expression occurring in another context, might be assigned to an entirely different 

category. 

 

Categories are therefore defined in terms of both a set of expressions, and a set of 

contexts. The cross-product of these two sets defines a set of context-expression pairs that 

each belong to the category. 

 

The algorithm attempts to discover the structure in a language from a corpus sample of 

sentences from that language. For every sentence, the algorithm generates every possible 

division of the sentence into three parts a b c, where b is non-empty and one of either a or 

c is allowed (but not required) to be empty. The string b is the expression which enjoys 

the current focus, and the context of b is created from the concatenation of a, a 

placeholder slot (.), and c. So for example, from the sentence “John loves Mary”, the 

following context-expression pairs are formed: 

[“(.) loves Mary”, “John”], [“John (.) Mary”, “loves”], [“John loves (.)”, “Mary”], [“(.) 

Mary”, “John loves”], [“John (.)”, “loves Mary”], [“(.)”, “John loves Mary”]. 

 



 84

Next, a co-occurrence matrix is formed, listing all the combinations of contexts and 

expressions that have occurred together in the corpus. An example is shown in Table 1. 

 

 play cry school 

Do you want to (.) ? × ×  

Are you going to (.) ? × × × 

He’s in (.)   × 

Table 1. An example of the working of the EMILE clustering algorithm. The shaded areas are 
clusters created from the example sentences. The potential cluster outlined with a dashed box is 
discarded, as all its examples are covered by the other two clusters. 
 

From the matrix, the algorithm attempts to find larger groups of expressions that occur in 

the same contexts, and large sets of contexts that accept the same expressions in their 

placeholder slots. These groups are clusters of expressions and contexts. By adding a new 

expression (respectively context) to the cluster, it is implied that that expression (context) 

can appear in all of the contexts already added to the cluster (can accept all the 

expressions already added to the cluster as slot-fillers). The algorithm attempts to 

increase the size of the cluster as much as it can. 

 

The algorithm creates clusters by starting from a single context-expression pair that is not 

covered by the current set of clusters, and randomly adds either contexts or expressions to 

the cluster. The rectangle delimited by the set of contexts and expressions implicitly 

defines context-expression pairs that are presumed to be valid, and belong to the category 

corresponding to the current cluster. The process of expanding the cluster by adding 

expressions or contexts is bound by the constraint that a certain proportion of the context-

expression pairs defined by the cluster should actually have been attested in the corpus. 

This proportion can be specified by the researcher using a system parameter. 

 

All clusters that are completely covered by one or more other clusters are discarded at the 

end of the cluster discovery phase. In practice, even if there are a small number of cells in 

a cluster that are not covered by other clusters, the cluster will still be discarded. A 
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parameter of the EMILE system, type_usefulness_required, states how many cells a 

cluster needs to cover on its own in order to avoid being discarded. 

 

In Table 1, the context “Are you going to (.) ?” has appeared in the corpus with the 

expressions “play”, “cry” and “school”. It is an ambiguous context that can take both 

verbs and nouns. At the same time, the unambiguous context “Do you want to (.) ?” 

appears with “play” and “cry” only, and likewise the unambiguous context “He’s in (.)” 

appears with “school” only. The algorithm would produce the clusters 

[(“Do you want to (.) ?”, “Are you going to (.) ?”), (“play”, “cry”)] 

[(“Are you going to (.) ?”, “He’s in (.)”), (“school”)] 

[(“Are you going to (.) ?”), (“play”, “cry”, “school”)]. 

However, the last cluster (demarcated by a dashed line in Table 1) is completely covered 

by the other two, and so the only two clusters produced would be composed out of the 

cells in the shaded areas in Table 1, covering 

[(“Do you want to (.)?”, “Are you going to (.) ?”), (“play”, “cry”)] and  

[(“Are you going to (.)?”, “He’s in (.)”), (“school”)], 

corresponding nicely to the categories of nouns and verbs. 

 

After forming clusters, the algorithm attempts to make use of these clusters to induce the 

rules of a context-free grammar. EMILE performs quite well (Van Zaanen and Adriaans, 

2001) in discovering syntactic constituents in two small structured corpora (the ATIS 

(Marcus, Santorini and Marcinkiewicz, 1993) and OVIS (Bonnema, Bod and Scha, 1997) 

corpora), but is less successful in finding structure in larger corpora. 

4.2.2 ABL 
The Alignment-Based Learning (ABL) system by Van Zaanen (2001; see also Geertzen 

& Van Zaanen, 2004) was developed for the purpose of discovering the syntactic 

structure of a language purely from an unannotated corpus of sentences from that 

language. The basic idea of ABL, dating back at least to the work of the American 

Structural Linguists (e.g. Harris, 1954), is that, if two sentences have some amount of 

phonological material in common, and some material that differs, then the differing 
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material is likely to be a linguistic constituent of the language in question. For example, 

in the pair of sentences  

 

Cookie Monster sees the red apple 

Big Bird sees a pear  

 

the word “sees” is common to both sentences, and so it is possible to hypothesize that 

“Cookie Monster”, “Big Bird”, “the red apple” and “a pear” are all constituents of 

English. Furthermore, it can be postulated that “Cookie Monster” and “Big Bird” belong 

to the same grammatical category, since they are substitutable for each other. The same 

can be said for “the red apple” and “a pear”. The two sentences can be said to be aligned 

with each other on the shared word “sees”. 

 

ABL works by firstly (in the so-called alignment learning phase) considering every pair 

of sentences in the corpus, and attempting to align them on their shared structure. The 

unequal parts that differ between the two sentences are then taken to be hypothesized 

constituents. The constituents are annotated in place with a symbol, corresponding to a 

non-terminal symbol in a phrase-structure grammar. So for instance the sentences  

 

Oscar sees Bert  and 

Oscar sees Big Bird 

 

would yield the annotated sentences 

 

[Oscar sees [Bert]1]0  and 

[Oscar sees [Big Bird]1]0 

 

with the 1 serving as the non-terminal symbol which represents the context “Oscar sees” 

in which the constituents were encountered, and the 0 indicating the full-sentence context. 

Each hypothesis in ABL therefore entails postulating that a putative constituent (inside 

the brackets) occurred in a particular context (surrounding the brackets). 
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In the particular algorithm followed in Van Zaanen (2001), the annotation symbol 

represents the nonterminal in the grammar to which the two constituents are hypothesized 

to belong. In other words, any two constituents that occur in the same context are 

regarded as being substitutable for each other in the grammar. Van Zaanen points out 

(2001, p.31) that this is not an intrinsic feature of the ABL framework, and that other 

ways of clustering constituents together could be considered. 

 

In practice, there are often a number of different possible alignments for a pair of 

sentences. One variant of ABL accepts all possible alignments between sentences as valid 

hypotheses, under the assumption that more evidence for the hypothesis will accrue later 

if it is a valid one, whereas an invalid hypothesis will be swamped by other, better 

hypotheses (this competition between hypotheses takes place during the subsequent 

selection learning phase of ABL). Another variant uses only the alignment that requires 

the fewest number of transformations to change one sentence into the other (as measured 

by an edit distance metric). 

 

The algorithm proceeds to discover more and more structure between alignments and to 

annotate the corpus in this way. It is also possible to discover structures nested to several 

hierarchical levels within each other. 

 

During the alignment learning phase, it is possible for the system to postulate partially 

overlapping hypotheses on the same sentence. In a phrase-structure grammar description, 

these hypotheses would be contradictory, because there would be no way to construct a 

tree diagram for the sentence that accommodates all the hypotheses at once. Therefore, a 

subsequent selection learning phase filters through the sets of hypotheses for each 

sentence and tries to remove overlapping hypotheses. Three methods to do this are 

explored in Van Zaanen (2001). The least empirically successful method favours an 

hypothesis that was derived early on in the execution of the algorithm over any newer 

conflicting hypothesis. The two other methods prefer those hypotheses that are the most 

probable, in terms of their support in the analysed corpus. Recall that an hypothesis has 
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two components: a constituent and a context. One method favours the hypothesis that 

proposes the constituent candidate that occurs the more frequently in the corpus; the other 

favours the constituent candidate that occurs the more frequently in that particular 

context in the corpus. 

 

Finally, ABL derives a grammar for the language, which can take the form of either a 

stochastic context-free grammar or a stochastic tree-substitution grammar. ABL also 

gives good results in deriving bracketed structures when tested on the ATIS and OVIS 

treebanks (Van Zaanen and Adriaans, 2001). 

4.2.3 SNPR/ICMAUS 
There have been many computer models which approach the problem of syntactic 

structure discovery in language as one of information compression. In these models, 

utterances of a language are viewed as exhibiting a mixture of highly repetitive structure 

with occasional idiosyncratic elements. The purpose of data compression is to produce 

the most parsimonious redescription of the data (typically an unstructured corpus in the 

case of language structure discovery). The corpus is rewritten according to a set of 

rewrite rules (rules to replace a longer pattern in the data with a shorter one). A 

parsimonious model is one which is minimally complex; this notion is generally 

expressed in terms of Minimum Description Length (MDL). Under MDL, complexity is 

measured in terms of both the length (size) of the data after applying the rewrite rules, 

and the length of the rules themselves (written in some appropriate description language). 

Li and Vitányi (1997) provide a thorough discussion of MDL and the related concept 

Minimum Message Length, under the general banner of Kolmogorov complexity. MDL 

principles are believed to be in operation in a variety of aspects of human cognition and 

learning (see Chater & Vitányi, 2003, for a review).  

 

One of the most influential syntax learning models has been the SNPR model of Wolff 

(1982). The model successively reads in samples of a corpus of a natural language, 

employing a number of heuristics to iteratively compress a grammar for the language.  
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During parsing of the corpus, the system attempts to redescribe each sentence in terms of 

the grammatical constructs that it currently possesses. The set of rewrites that comes 

closest to successfully accounting for the sentence (analogous to deriving the sentence 

from an initial sentence nonterminal S in a context-sensitive grammar) is further 

exploited in order to add new rules to the grammar. New rules entail postulating either 

syntagmatic relationships (i.e. concatenating two or more terminals or nonterminals) or 

paradigmatic relationships (postulating that an element belongs to a certain class if it 

occurs in a context in which another item from that class has previously occurred). The 

system attempts to parse the sentence in a top-down fashion, starting from rules that have 

the full-sentence symbol on their left-hand side, and favouring rules that have been 

applied recently.  

 

Grammars are made more compact by replacing recurrent syntagmatic patterns with a 

single symbol (thereby shortening rewrite rules), or by replacing several different 

elements that occur in the same context with the same symbol (thereby dispensing with a 

number of rewrite rules). The heuristics used in this pattern extraction phase entail, on 

each iteration, selecting the most frequent syntagmatic sequence of elements (conditional 

to a particular context) for rewriting as a syntagmatic element, and selecting the most 

frequent pair of elements appearing in the same context for rewriting as a paradigmatic 

element. This bias to frequency is intended to balance the bias towards recency 

encapsulated in the parsing phase.  

 

Rewrite rules may be rebuilt, if they postulate the occurrence in a particular context of an 

element or syntagmatic pattern which is never attested in that context. In this case, a new 

paradigmatic class is created which does not contain the absent element, and all 

syntagmatic patterns involving the old class are rewritten to refer to the new class. 

 

The most recent incarnation of this system is the Information Compression by Multiple 

Alignment, Unification and Search (ICMAUS) model (Wolff, 2001, 2002a, 2002b, 

2002c). Wolff views the ICMAUS framework as potentially providing a way to unify all 

disciplines concerned with data representation, including psychology, computer science 
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(e.g. fuzzy pattern recognition, information retrieval and probabilistic reasoning), and 

also mathematics and logic. Whereas the heuristics used in SNPR were designed to have 

the expected effect of compressing the grammar in the long run, ICMAUS calculates the 

amount of compression provided by a particular rewrite rule directly in order to select the 

most powerfully compressing rules. 

4.2.4 GRIDS 
Langley and Stromsten (2000) present their GRIDS model as “a rational reconstruction of 

Wolff’s SNPR”. GRIDS starts with a set of rewrite rules for a particular corpus, 

consisting of rules of the form S → X … Y for every sentence, and rules of the form X 

→ w for every word type (terminal) w. The algorithm makes use of a metric for 

grammatical simplicity based on both the size of the model (i.e. the lengths of all rules) 

and the length of the data in the corpus, expressed as the summed length of derivations 

for each corpus sentence using the rules of the grammar. GRIDS then attempts to 

incrementally modify its grammar so as to maximize the simplicity of the grammar. The 

constraint of taking into account the size of the model prevents over-specific, under-

generalizing grammars that merely generate every sentence from its own nonterminal, as 

such a model would not make use of any redundancy in the data. The constraint of taking 

into account the length of the derivations guards against over-generalizing grammars, as 

such a model would require many long, detailed rules in order to distinguish valid from 

potential invalid sentences. 

 

GRIDS repeatedly performs a series of paradigmatic merges (adding a rule that merges 

two right-hand sides together into a new nonterminal), choosing all merges that increase 

simplicity, until no such merges are available. At this point, the algorithm switches to 

syntagmatic merges, adding rewrite rules with length-2 strings of symbols on their right-

hand-side and new nonterminals on their left. Again, only merges that increase simplicity 

are chosen, and this process repeats until no more such merges exist. The algorithm 

switches back and forth between paradigmatic and syntagmatic merging until no further 

merge of either kind is possible. This algorithm is able to discover the underlying 

grammars for artificially created test data sets, but has not been evaluated on real data. 

Similar approaches have been taken by Grünwald (1996), and by Stolcke (1994) who 
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attempted to select a probabilistic context-free grammar that maximizes posterior 

Bayesian probability. 

4.2.5 ADIOS 
The ADIOS system by Solan (2006) has a great number of similarities to the work of 

Wolff (1982, 2001). It also attempts to redescribe sentences from a corpus by substituting 

consecutive elements with syntagmatic symbols, and to merge paradigmatically 

substitutable elements into equivalence classes. In ADIOS, the criterion for merging 

items into a syntagmatic pattern is somewhat more complicated than in SNPR. Starting 

from any element, the system calculates the leftward conditional probability, i.e. the 

conditional probability of the item on the left of the central element. Concatenating these 

two elements, the system next calculates the conditional probability of the item directly to 

the left of the concatenated string formed from the two elements, given that the 

concatenated string has occurred. This step is iterated to produce a sequence of leftward-

facing probabilities that are each conditional on the growing concatenated sequence to 

their right. This sequence is “pushed out” from the original element in this way, until the 

difference between two successive conditional probabilities in the probability sequence 

drops below a pre-specified constant threshold. The same process is then performed in a 

rightward direction. The sequence of elements between the two boundaries where the 

conditional probability drops below the threshold on either side is now taken to be a 

potential syntagmatic pattern. Next, the binomial probability of this sequence is 

calculated in a leftward and rightward direction, and the sequence with the highest 

significance on these binomial tests is selected as the “leading pattern” for that sentence, 

and is rewritten using a new symbol. The algorithm therefore searches for units that are 

disjunct from their context, and only treats them as patterns when they occur in that 

context. 

 

At the same time, ADIOS takes a broad view of what constitutes a syntagmatic pattern: at 

each slot in the developing pattern, the system considers not just the element which 

occurs there in the sentence, but also all other elements which can be substituted in that 

same context to produce other sentences in the corpus. A geometric mean of the 

probability of occurrence for all of these elements given their context is calculated 
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instead of the simple conditional probability. If the pattern involving this set of 

substitutable elements is chosen to be the leading pattern, then these elements are merged 

into a paradigmatic class, and the pattern is rewritten so as to make reference to the 

symbol for that class. The system will reuse a previous paradigmatic class if it has more 

than 65% overlap with the new class; otherwise, a new class is created. 

 

SNPR and ADIOS clearly take a broadly similar approach to syntactic structure 

discovery, with their main points of difference being the probability-based criterion for 

pattern extraction in ADIOS, and the rule-rebuilding step in SNPR. While the individual 

principles of these two algorithms are relatively simple, the way that these principles 

interact when operating on an actual corpus of natural language may well lead to highly 

complex and emergent differences between them. Therefore it is somewhat difficult to 

compare the two models analytically. In addition, neither model has been tested on a 

large child-directed corpus such as those in the CHILDES repository, specifically for the 

purpose of determining whether their paradigmatic classes correspond to the parts-of-

speech one would expect in English, or whether their syntagmatic structures correspond 

to constructions (although Solan (2006) has applied ADIOS to corpora from CHILDES 

(MacWhinney, 2000), and has evaluated its ability to complete sentences in a 

standardized test of second-language English competence). 

4.2.6 MOSAIC 
The MOSAIC model of Freudenthal, Pine and Gobet (2002, 2005; Gobet, Freudenthal & 

Pine, 2004; Gobet & Pine, 1997) is an extension of the well-known EPAM model of 

perception and learning (Feigenbaum & Simon, 1984), designed to account specifically 

for phenomena of language learning. MOSAIC once again encapsulates the ideas of 

syntagmatic and paradigmatic patterns. Items (initially words, but later also syntagmatic 

chunks of words and other chunks) are entered as nodes in a discrimination network 

(similar to a decision tree in machine learning). Nodes which occur together with a 

frequency greater than a threshold value are chunked together syntagmatically. Nodes 

with more than 20% overlap in both their immediately preceding and immediately 

following context are linked in the model (equivalent to joining them paradigmatically). 
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A unique feature of MOSAIC is that utterances from a corpus are entered into the 

network from their back to their front, i.e. the final words of an utterance are added to the 

network before the first words are added. This reflects empirical evidence to suggest that 

children are also better able to learn material that occurs at the end of an utterance. Hence, 

a node can be created for a word in an utterance only when all material following it has 

already been added to the network. Even when this has occurred, a node will only be 

added with a certain probability, dependent on the distance from the word to the end of 

the sentence, and on the amount of the corpus that has been processed already (this 

probability increases as more and more nodes are added). 

 

The MOSAIC research group have shown that the model is able to produce results that 

are compatible with developmental data on language acquisition regarding phenomena 

such as the production of optional infinitives and the omission of sentential subjects. 

 

The bias to utterance-final material in MOSAIC and the bias to recency in SNPR are the 

most important substantial differences between these two models. (MOSAIC operates in 

strict iterative fashion, while the working of SNPR may be batch-like, but not much is 

likely to hinge on this distinction.) Again, it is difficult to assess how the two models 

would fare when compared directly on the same corpus. 

4.2.7 Powers 
Some of the earliest studies in unsupervised language learning were undertaken by 

Powers (1983, 1989, 1991, 1997a). Powers’s work revolves around the central notion of 

agglomerating smaller units occurring in sequence into larger units, based on the contexts 

in which they occur. 

 

In the system of Powers (1983), each token (initially a word) is considered to form a 

putative phrase with the tokens before and after it, as well as to the classes of these tokens. 

The result of running this algorithm on a small artificial corpus was that punctuation 

symbols emerged first as a class, then articles, then punctuation-article sequences, and 

finally a class consisting of the open-class words. The algorithm determined on-the-fly 
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whether classes should be merged into a new class or an existing one (similar to the 

merge phase in GRIDS). 

 

The Morpholearn system of Powers (1991) attempts to induce grammatical categories 

from a raw corpus of natural language. A core idea in Morpholearn is the notion that 

when two elements appear contiguously in a sentence, it is often the case that there is a 

relationship between them, and furthermore that one of them is typically substitutable by 

a relatively larger class of elements than the other one. Often, the element with relatively 

lower opportunities for substitution is a closed-class element, and the other an open-class 

element. The paradigmatic example of this phenomenon is the noun phrase structure 

Determiner Noun, where there are relatively many nouns which can be substituted for, 

say, “cat” in “the cat” (“dog”, “idea”, “misanthropy”, and many millions of other words), 

but relatively few words that can substitute for “the” in the determiner slot (“that”, “this”, 

“a”, and a handful of other words). 

 

Morpholearn passes through the corpus, collecting frequency counts for all sequences of 

consecutive words up to a certain length, i.e. the n-grams of the corpus. Next, it attempts 

to amalgamate the left-hand-sides of these n-grams into a set and the right-hand-side into 

a coset. This is done by combining left-hand sides that occur with the same right-hand 

sides. It is not required that every element in the left-hand set should co-occur with every 

item in the right-hand set. Instead, it is required that every element in one set should co-

occur with SEVEN ± TWO elements from the other set, where SEVEN and TWO are 

parameters of the system, inspired by the famed “7±2” limit on cognitive capacity first 

identified by Miller (1956), and which do in fact by default take on their eponymous 

values, but can be manipulated by the experimenter. SEVEN typically takes on a low 

value, so as to enforce the constraint that one coset should be relatively smaller than the 

other. The use of TWO acknowledges that it is unlikely that all valid sentences should be 

present in any particular sample of a language, and hence some degree of variability is 

tolerated. 
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When applied to the text of an English-language novel, Morpholearn is able, amongst 

other things, to discover the distinction between the relatively closed class of vowels and 

the relatively open class of consonants, and to derive frequently occurring patterns of 

English syllabic structure by rewriting members of the co-occurring vowel and consonant 

classes with nonterminal symbols, then repeating the process of class extraction. In this 

way, Morpholearn is eventually able to parse the corpus to up to 8 levels of structure. 

Among the structural units discovered by Morpholearn are units corresponding to 

function words and functional prefixes emerge as classes that become attached at a higher 

level to adjacent open-class words. 

 

The Differential Grammar approach of Powers (1997a) attempts to describe all the 

statistically significant contexts in which a particular word can occur in a corpus. The 

algorithm does this by considering the immediate context surrounding a word, and 

expanding it in either direction for as long as the statistical significance of the co-

occurrence between focal unit and its context is above a certain value, and each 

environment is significantly different from the next smallest environment. This process is 

reminiscent of the way in which ADIOS forms patterns that are units of the language 

description. 

4.3 Other models 

4.3.1 Yuret 
Yuret (1998) puts forward the notion of lexical attraction as a basis for postulating that 

two words have a specific linguistic relation to one another. In Yuret’s model, syntactic 

relations between words (e.g., subject-verb relations) are taken to be the primitives of 

linguistic description; hence his model is based on dependency. Two words are said to 

attract each other in Yuret’s terms if they tend to co-occur, and this co-occurrence is 

likely to be due to the existence of an underlying syntactic relation between them. The set 

of syntactic relations in which a word is embedded in a particular instance becomes the 

basis for defining its usage context. 
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Yuret makes use of mutual information to define the strength of attraction between two 

words. His algorithm processes a corpus iteratively, gathering more and more 

information regarding co-occurrence probabilities, and hence refining its estimate of the 

mutual information between words. Yuret’s model is therefore a fully lexical one; only 

relationships between specific words are considered, and words are never replaced with 

tags representing their parts-of-speech. 

 

For each sentence in the corpus, the algorithm attempts to describe the structure of the 

sentences in terms of the knowledge it already has. If two words have a certain amount of 

mutual information, a link between them is postulated. The algorithm makes use of two 

heuristics: cycles of links are not allowed in a sentence (e.g. from A to B, from B to C, 

and then from C to A); and links are not allowed to cross. In cases where these conflicts 

arise, the weakest links are discarded until the problem is resolved. 

 

Initially, only links between adjacent words are considered; however, once such a link is 

established, the two words in question are treated as if they had collapsed into one, and 

links from the word before and the word after the pair are considered, to either of the 

words in the pair (hence potentially allowing links between non-adjacent words). 

 
In this way, Yuret’s algorithm postulates a set of dependency relations that might exist in 

a sentence. The algorithm performs fairly well in finding these relations, when tested on a 

corpus with explicitly coded dependency relations (using only relations between content 

words). 

 

An important point to note about Yuret’s model is that all dependency links are 

undirected: when thought of as a link from a head to a dependent element, then it is not 

specified in this model which element is the head and which the dependent element. This 

results mainly from Yuret’s theoretical approach, under which a dependency structure is 

treated as a Markov network that expresses the joint probability of a sentence; joint 

probability is independent of the direction of any links.  
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4.3.2 PARSER 
The PARSER model by Perruchet and Vinter (1998) attempts to describe how a speech 

stream may be segmented into individual words, making reference only to processes 

which are known to operate in human memory, such as associative learning, interference 

and forgetting. Starting from a set of primitive linguistic elements, the algorithm 

combines frequently-recurring sequences of these primitives by a process of chunking. 

This requires that two or more elements simultaneously receive the focus of attention, 

which leads to the putative unit (the chunk) being stored in memory. 

 

Each unit has a certain activation strength, which is increased every time the unit recurs 

in the input. Units are subject to memory interference, in that a currently perceived unit 

causes the activation strength of its potential competitors to decline, where competitors 

are defined as any units that have any phonological material in common with the unit in 

focus. Only units that have attained a certain level of activation strength are able to cause 

memory interference. In addition, forgetting is modeled by subjecting all units to a 

constant rate of decay in their activation strength, at the end of every iteration of the 

model. Units with activation strengths above the interference threshold are said to belong 

to the lexicon of the model – they are the items that form the model’s current knowledge 

of the language. 

 

PARSER is able to account, among other things, for the experimental data from the 

experiment by Saffran et al. (1996) on the segmentation of a speech stream into 

(nonsense) words. 

4.4 Comparison of computational models 
The models of automatic language learning reviewed in the previous sections differ along 

various dimensions. In particular, the following questions are helpful in distinguishing 

between models: 

1. Does a model identify syntagmatic patterns, i.e. commonly occurring sequences of 

more primitive elements that may be regarded as linguistic units? 

2a. Does a model identify paradigmatic classes, i.e. classes of elements that are treated as 

similar due to certain similarities (notably, occurring in similar contexts in utterances )? 
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For models that do identify paradigmatic classes, there are a number of subsequent 

questions.  

2b. Are these classes compatible with traditional categories in linguistic theory? To be 

more precise, we are particularly interested for the current purpose in whether the model 

is able to account for the “main” parts-of-speech of Noun, Verb and Adjective (NVA). 

2c. Does the model acknowledge that a word type may be ambiguous, in that individual 

tokens of that word type may belong to different classes depending on the context in 

which they are used? 

2d. Does the model acknowledge that the same may be true for the context itself, i.e. that 

not all elements (words) used in the same context are necessarily of the same class? 

2e. Does the model explicitly treat the contexts in which paradigmatic classes occur as 

linguistic units in their own right? This is particularly important if we are interested in 

providing an account of the constructions of a language. 

2f. Are these contexts lexically-specific, i.e. do they make use of specific individual 

words, or are they defined in terms of allowable sequences of paradigmatic categories 

only? This consideration may be important in providing a way for the child to bootstrap 

into parts-of-speech without treating all words as potential representatives of certain 

categories, leading to a combinatorial explosion of possibilities to consider. 

 

Table 2 lists the models considered in this chapter in grid form, showing the answers to 

these questions for each model. 

4.4.1 Syntagmatic patterns 
Out of the models aimed purely at lexical categorization, reviewed in Section 4.1, only 

three models identified syntagmatic patterns explicitly. The work by Finch (1993) forms 

lower-level categories (starting with word classes), then successively considers 

syntagmatic sequences of these lower-level categories and merges these sequences into 

higher-level paradigmatic categories. In the Frequent Frames model of Mintz (2003, 

2006a, 2006b), a frequent frame may arguably be considered a syntagmatic pattern. And 

in the model by Cartwright and Brent (1997), all utterances are described in terms of 

frames for full-utterance structures, defined as valid sequences of word categories. 
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All the syntax learning models reviewed in Section 4.2, as well as the model of Yuret 

(1998) and the PARSER model of Perruchet & Vinter (1998), aim to discover 

syntagmatic patterns in a language. In the case of the syntax models, syntagmatic patterns 

exist both at the level of specific word sequences that together form units (such as, for 

instance, some of the most common collocations), and at the level of sequences of 

paradigmatic categories, or mixtures of paradigmatic categories and words. Being able to 

identify regular patterns is an important property for a computational model to exhibit, 

because one of the goals of language learning is to become familiar with the 

constructions of that language. 

4.4.2 Paradigmatic categories  
At the same time, the ability to group elements into paradigmatic categories is what 

allows a language-learning child to generalize from utterances in her experience to 

utterances that she has not encountered before. In the models reviewed here, these 

categories are invariably formed by combining elements which occur in the same 

surrounding context, or similar sets of contexts, across different utterances.  

 

A distinction can be made between paradigmatic categories that operate at various levels 

of detail in a language system. Parts-of-speech are categories of individual words, i.e. 

they are the traditional parts-of-speech such as nouns, verbs and adjectives. Syntactic 

categories consist of units that play a specific role in syntactic structures, for example 

noun phrases, verb phrases or prepositional phrases. At the most general level, the term 

grammatical category is used to describe any category of items that perform the same 

role in a language, and can include lexical and syntactic categories as special cases. All 

the models reviewed in Section 4.1 are aimed at forming strictly parts-of-speech, while 

the syntax models of Section 4.2 are potentially able to account for grammatical 

categories in general, although in practice they have been applied only to finding lexical 

and syntactic categories. 

4.4.3 The three main parts-of-speech 
A “correct” division of the words of a language into their individual parts-of-speech is a 

matter of great controversy, and will perhaps never be resolved. Nevertheless, there does 
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seem to be some consensus that English at least makes a distinction between the three 

“major” classes of nouns, verbs and adjectives. These categories may have their root in 

the way in which they are mentally construed, as in Langacker’s (1987) analysis, or as 

the prototypical intersection between linguistic function and meaning, as in Croft’s (2005) 

Radical Construction Grammar. It would be desirable for these three categories to be 

accounted for by a theory of lexical categorization.  

 

Nearly all of the models specifically aimed at lexical categorization are able to account 

for these three classes (with the possible exception of Cartwright and Brent). The 

syntactic models, on the other hand, are typically concerned with postulating any 

categories that will allow them to describe the syntactic structure of a language 

successfully, and so usually do not have any mechanisms for reducing the number of 

categories produced. None of the syntactic models discussed here have to my knowledge 

been directly evaluated purely on their ability to discover the traditional parts-of-speech 

from a large natural corpus, so that it is difficult to determine how many categories would 

actually be produced. Nevertheless, it seems likely that they would typically produce a 

proliferation of categories, each contingent on a particular context or small set of contexts, 

rather than a robust division of content words into the three main categories.  

 

Certainly, the main categories can be subdivided into very fine subclasses (past, present 

and past participial, root and continuous forms of verbs; mass, common or proper nouns; 

predicative or attributive adjectival forms, etc.). However, the level of distinction 

between words referring to entities, processes or attributes seems to be a very basic and 

important one to make, in addition to all the finer distinctions that can be made 

simultaneously. I would argue that a model of language learning which does not account 

for these basic, high-level word categories is not a complete one. 

4.4.4 Word type ambiguity 
Not all tokens of a particular word type belong to the same part-of-speech, as shown by 

Pinker’s (1979, 1987) example of “John can fish” versus “John eats fish”. Successful 

language models need to take this into account. Certainly, all the syntactic models 

reviewed here are capable of treating word tokens flexibly depending on context. 
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However, this is often an area of difficulty for pure lexical categorization models, and 

many of the reviewed models treat all instances of a word type as belonging to the same 

category (Finch, 1993; Redington et al., 1998; Mintz et al., 2002; Clark, 2001). Other, 

more sophisticated models do allow tokens of the same word type to belong to different 

categories depending on the context in which they are used (Mintz, 2003, 2006a, 2006b; 

Schütze, 1993; Cartwright and Brent, 1997).  

4.4.5 Contextual ambiguity  
Conversely, the idea that the context in which a word is used determines its part-of-

speech can also be taken too far, as shown in the example by Pinker (1984) of “John eats 

fish” versus “John eats slowly”. Occasionally, the context in which a word is used is 

ambiguous or uninformative, and a model should rely on other information (including the 

identity of the word itself) before categorizing the word.  

 

The lexical categorization models that lumped all tokens of a word type into the same 

category manage to avoid this pitfall, precisely because they do not make use of the 

particular context of a word token in order to guess at its category. On the other hand, the 

Frequent Frames model of Mintz (2003, 2006a, 2006b), in aiming to address the 

ambiguity of words by categorizing on the basis of context, is paradoxically prone to the 

criticism that it does not consider the ambiguity of contexts (while the reported accuracy 

figures in Mintz’s work are high, they are not 100%). Only the models of Schütze (1993) 

and of Cartwright and Brent (1997) flexibly combine both context and word in order to 

arrive at a categorization.  

 

Most of the syntactic models also treat context as potentially ambiguous. In ABL, 

however, all words and word sequences that occur in the same context are placed in the 

same category; the same happens in ADIOS for all elements which are “disjunct” from 

their context according to the pattern distillation metric used. In these two models, 

context is taken to be definitional for a particular category, and hence not ambiguous. 
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4.4.6 Contexts as explicit linguistic units 
Related to the question of syntagmatic pattern extraction is the question of whether the 

contexts used to allocate words to particular paradigmatic categories are themselves 

explicitly identified in the model as linguistic units. The aim here is more specific than 

merely identifying constructions (which could simply be collocations and specific fixed 

phrases, without any possibility of generalization); we can now go further and use the 

occurrence of a word inside a construction to guess at its part-of-speech.  

 

All syntactic models potentially allow contexts of paradigmatic categories to be listed 

explicitly, whether through an analysis of rewrite rules, trees in a tree grammar, or other 

means. EMILE in particular creates categories out of both words and their explicit 

contexts. Most of the lexical categorization models, however, create categories of word 

types based on similarities in their profiles of contextual usage, rather than attempting to 

categorize individual instances of words in context. Only the Frequent Frames model of 

Mintz (2003, 2006a, 2006b) and the model by Cartwright and Brent (1997) treat the 

context of a word as an explicit unit which is stored in linguistic memory and has some 

degree of autonomous existence.  

4.4.7 Lexically-specific contexts 
Even more specific than the question of whether contexts are listed explicitly is the 

question of whether some contexts can be defined in a lexically-specific way. Lexically-

specific frames potentially provide a way to “get there from here”, as Tomasello (2003) 

puts it, because they avoid the combinatorial complexity of considering every word in an 

utterance as belonging to some part-of-speech.  

 

Again, all of the syntactic models are potentially able to yield lexically-specific frames 

for a paradigmatic category, although none are constrained to produce only lexically-

specific frames. Cartwright and Brent’s contexts are based purely on sequences of 

categories, rather than specific words. Only in the Frequent Frames model are all contexts 

explicitly stored in memory as items of linguistic knowledge and constrained to be 

entirely lexically-specific. However, as Mintz (2006b) notes, many Frequent Frames are 

not constructions as such (although they might be used to discover constructions). 
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4.4.8 The current work 
The three models that will be described in this thesis attempt to improve on the work 

reviewed in this section by providing an affirmative answer to each of the seven 

questions above. My aim is to show how a language-learning child may discover 

lexically-specific contextual frames in the speech input that may themselves be 

constructions of the language, and which may be used for the purpose of assigning words 

to parts-of-speech. Both word and contexts will be treated as potentially ambiguous. The 

resulting lexical categorization will be evaluated in terms of its ability to account for the 

main three categories of nouns, verbs and adjectives. 

 

One broad observation that can be made about the models reviewed here is that there is a 

large incongruity between the models aimed at discovering parts-of-speech and the 

models that have syntax as their goal. Out of the lexical categorization approaches, none 

are particularly concerned with categorizing words on the basis of occurrence in some of 

the main constructions of English. Mintz’s Frequent Frames comes closest to this goal 

and identifies some English constructions, but many other frames in that model are not 

constructions.  

 

Importantly, except for Frequent Frames and the work by Schütze (1993), none of the 

models is able to account for the ability of children to correctly interpret a novel word in 

a familiar frame, as exhibited in e.g. Brown (1957), because they are all “word-centric” 

models that describe the typical context in which a particular word can occur, as 

determined by averaging over many exposures to that word; with novel words, there is 

nothing to average over. 

 

On the other hand, the syntactic models can all be regarded as providing a very detailed 

description of the patterns present in English, and so arguably one could treat their output 

as containing information about the constructions in English. However, because these 

models are not specifically constrained to account for parts-of-speech, they typically 

postulate a very large number of equivalence classes. The linguistic considerations of 

Chapter 2 suggest that there is some reason to expect there to be three or four major open 
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classes in most languages, and in any case there is ample linguistic evidence for the 

existence of nouns, verbs, adjectives and adverbs in English. But the syntactic models 

examined here typically lack a mechanism to constrain them to produce such a small 

number of word classes. 

 

It will also be an aim of this work to attempt to bridge the gap between these two 

subfields by proposing a model which can arguably identify some of the main 

constructions of English, and use these to discover a small number of parts-of-speech that 

correspond well to the main classes that we would expect on linguistic grounds. 
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 Syntagmatic 

patterns 
Paradigmatic 

classes 
NVA Word type 

ambiguity 
Context 

ambiguity 
Explicit 
contexts 

Lexically-
specific 
contexts 

Finch  Y Y Y N Y N - 
Redington, Chater & Finch  N Y Y N Y N - 
Mintz, Newport & Bever N Y Y N Y N - 
Clark  Y Y Y Y Y N - 
Frequent Frames Y Y Y Y N Y Y 
Schütze N Y Y Y Y N - 
Cartwright & Brent Y Y N Y Y Y N 
EMILE Y Y N Y Y Y Y 
ABL Y Y N Y N Y Y 
SNPR/ICMAUS Y Y N Y Y Y Y 
GRIDS Y Y N Y Y Y Y 
ADIOS Y Y N Y N Y Y 
MOSAIC Y Y N Y Y Y Y 
Powers (Morpholearn) Y Y N Y Y Y Y 
Yuret Y N - - - - - 
PARSER Y N - - - - - 
Full-utterance frames  Y Y Y Y Y Y Y 
Nested and full-utterance frames  Y Y Y Y Y Y Y 
Prediction-based frames  Y Y Y Y Y Y Y 
Table 2. A tabular comparison of some characteristics of (unsupervised) computational models of language learning. The last three rows refer to models 
in the current work. 
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5 The approach based on lexically-specific frames  

5.1 Introduction 
The next couple of chapters present the empirical research carried out for this thesis. 

Central to this empirical work is the question of how a language-learning child might 

discover a number of linguistic contexts, preferably linguistic constructions in their own 

right, that provide clues to the part-of-speech of a word that appears in that context (using 

the terminology introduced in Chapter 4, words in context will be called focal words). 

 

In particular, the approach taken here is to find ways of identifying lexically-specific 

frames, i.e. schematic construction structures that occur reliably in the language, and that 

consist of a number of specific words combined with one or more slots in which variable 

material may be inserted. 

 

In this work, therefore, I am considering the induction of parts-of-speech based on only 

the formal linguistic contexts (semi-abstract constructions) in which words occur, while 

completely neglecting the role played by semantics. This is not due to any conviction that 

semantics is irrelevant to part-of-speech induction, and that the task can be performed 

without recourse to semantic information. Rather, the main aims of this thesis are: 

(i) to explore procedures by which lexically-specific frames may automatically 

be discovered 

(ii) to show that parts-of-speech may be induced purely on the basis of the co-

occurrence of words with these frames, and  

(iii) to address the question of the ambiguity of both single words and their 

linguistic contexts. 

 

A key notion in this thesis is that it is the context in which a word is used that largely 

determines its part-of-speech; these contexts are explicitly identified as frames. A major 

preoccupation of this work will therefore be to answer the question of how the context of 

a word should be defined for the purpose of lexical categorization. In Section 5.2, I 

provide the rationale for the frame approach taken in this thesis, while Section 5.3 
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describes the approach in outline, and Section 5.4 is concerned with some aspects of the 

methodology that will be followed. 

5.2 Rationale for the frame approach  

5.2.1 The formation of construction frames 
The basic intuition about language in general, and English in particular, that is adhered to 

in this work is that many utterances in natural spoken language are instances of 

constructions that are not completely abstract, but instead consist of a number of specific 

words, in combination with a number of other elements (slot fillers) that are characterized 

abstractly in terms of the grammatical category to which they belong. So for example, 

there are constructions covering a number of common questions, requests or assertions: 

“What X did you use?”, “Don’t X it”, “Here’s the X”, where X indicates a position in the 

phrase where variable material can be inserted. Other constructions represent phrases or 

other linguistic constituents: “the X”, “under a X”, “to X it up”, “not very X”. 

 

The specific words in the constructions constitute the more reliable and predictable 

portion of the construction. Of course, these words may, at a higher level of abstraction, 

be members of parts-of-speech, potentially allowing several constructions to be 

subsumed into a single wholly abstract construction. For instance, the very common 

phrase structure “the X” has a slot that is typically filled by a single noun. Other phrases 

that accept single nouns include “a X”, “another X”, “this X”, “that X”, etc. Many 

linguists would have described these phrase structures more abstractly as the generic 

phrase structure [Determiner][Noun]; indeed it is presumed in strict formulations of 

Generative Grammar that this is the only valid way to represent these phrases, connecting 

as it does with a set of innately-given parts-of-speech that includes the categories 

Determiner and Noun. 

 

By contrast, in usage-based approaches, it is not inconsistent for these phrases to exist at 

several levels of abstractness, e.g. both as semi-abstract constructions such as “the X” and 

as instances of the abstract construction [Determiner][Noun].  
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The guiding assumption I will make is that instances of some particular semi-abstract 

constructions such as “the X” occur so frequently in the input to the child that the 

constructions are salient and noticeable in their own right, precisely because of the fact 

that part of the construction is a highly specific word (e.g. “the”) which can be 

recognized directly, and does not first need to be “translated” into the overarching 

abstract category Determiner. Having recognized “the”, the child may then also discover, 

after being exposed to several instances of the construction, that “the” does not appear 

alone, but is invariably followed by additional material, allowing the semi-abstract 

pattern “the X” to be discovered (and likewise for “a X”, “that X”, etc.). The specific 

words therefore serve as “hooks” by means of which the constructions can be discovered. 

 

I also assume that a semi-specific construction discovered in this way is explicitly stored 

in the child’s memory in such a way that the memory trace can become reactivated 

whenever an instance of that construction is encountered. It is not suggested that the child 

necessarily knows what the construction means, only that the construction is recognized 

when it reoccurs. 

5.2.2 Amalgamation of frames into categories 
Recognition of these semi-abstract constructions from their specific words is what allows 

grammatical (and particularly lexical) categories to be discovered. Whenever the 

construction reoccurs in the input, it is plausible that a memory trace of the particular 

word or words used to fill the X slot is also stored (these slot-filler words may already be 

stored as memory items in their own right, or they may become familiar as a result of 

their repeated occurrence as slot fillers in semi-abstract constructions.). In this sense, the 

words that occur in the slot of a construction can be regarded as co-occurrence features 

of that construction. At this point, general memory processes related to category and 

prototype formation come into play (Kruschke, 1992; Rosch, 1983). Categories are 

formed from items that are similar in some way, e.g. by having certain characteristics in 

common. If two constructions take many of the same words into their respective slots (i.e. 

they have co-occurrence features in common), then they can be regarded as being 

relatively similar to each other, compared to two constructions that have no filler words 

in common. In this way, it is possible that categories of constructions may be formed, on 
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the basis that members of the category tend to accept roughly the same words as fillers in 

their variable slots. (Likewise, one would also predict that corresponding categories of 

words might be formed, according to the sets of constructions in which they serve as slot 

fillers.) 

 

An alternative model of this process would hold that all words should be regarded as 

potential representatives of parts-of-speech, so that all words are treated abstractly from 

the outset. Under this view, for example, the determiners “the”, “a”, “this” and “that” 

could be grouped into one category, and the nouns “doggie”, “fish”, “bridge”, “tower”, 

etc. into another category simultaneously, on the basis of the occurrence of each (or most) 

of the 16 possible determiner-noun combinations in input utterances. This is the approach 

taken by Powers (1991) in his Morpholearn model. Cartwright & Brent (1997) follow a 

similar approach that considers only utterance structures made up of allowable sequences 

of parts-of-speech. 

 

In the current work, by contrast, we “break into” lexical categorization not by considering 

all words to be potential members of abstract categories, but instead by being given a 

schematic frame description of an utterance (or partial utterance) in which some of the 

words are fixed and other words (the slot-fillers) are allowed to vary. The fixed words do 

not get assigned to any part-of-speech; only the slot-filler words are categorized. The 

fixed words can be regarded as the “background” to the “figure” represented by the 

variable words, reinforced by the fact that the background words are likely to be the 

semantically diminished function words of English, while the variable words are likely to 

be the semantically rich, informative, content words. The frame can be viewed as a kind 

of substrate in which the more informative, less predictable filler words are embedded. 

 

The model of language processing that underlies this approach is therefore not one in 

which the task is to learn which combinations of parts-of-speech are legitimate (as in e.g. 

Cartwright & Brent, 1997). Instead, it is more compatible with usage-based theories, with 

the frames being regarded as basic constructions (or proto-forms of constructions). As in 

all other areas of human cognition, anything that is processed frequently becomes 
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automatized (see e.g. Logan, 1988), and hence may be stored as a unit in memory in its 

own right. Very frequently occurring utterance frames become entrenched as memory 

units (elements in the “constructicon”), regardless of whether they could also have been 

described (by linguists) as instances of some more abstract construction. 

 

In this way, processing of an utterance that has been described by means of a frame 

entails first of all perceiving the specific words of a unit that is likely to be a linguistic 

construction, whether it is the schematic description of a full utterance, or of a smaller 

linguistic constituent (e.g. a phrase) that has been embedded in a longer utterance. In 

terms of the discussion in Section 4.4.6, contexts in the current work are therefore 

explicitly represented in the child’s linguistic knowledge. 

 

An important objection to the entirely abstract approach of e.g. Cartwright & Brent (1997) 

is that there is evidence (reviewed in Chapter 3) that children do not treat all words 

similarly, but instead seem to be sensitive to the figure-ground separation between 

function and content words in English utterances. Some of the most telling evidence 

comes from the work by Shady (1996), who found that 10.5-month-old infants noticed 

when all the function words in English utterances that they heard were replaced with 

nonsense words, but were unperturbed when the function words were left intact and all 

the content words were replaced with nonsense instead. This seems to suggest that the 

infants were already able to recognize utterances conforming to the “background texture” 

of English, as subtended by function words; hence utterances that preserved this texture 

were acceptable to the infants and were preferred during listening, while utterances that 

violated it rather grossly by containing no familiar English function words were not 

preferred, presumably due to their unfamiliarity. 

 

Additional evidence comes from the work by Gerken & McIntosh (1993), who 

demonstrated that language-learning children’s understanding of English sentences was 

impaired when function words were omitted, or replaced with other material, and by 

Gerken, Landau & Remez (1990), who showed that English-learning children’s tendency 

to omit function words is not due to a lack of processing of these elements, but that 
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function words are more likely to be omitted than other phonologically-similar nonsense 

words, indicating that they are recognized by the child and then selectively omitted. 

 

The computational models that will be described in this thesis do not start from an 

externally-provided list of the function words of English, but rather identify the structure-

building, specific words of constructional frames by other means. Nevertheless, it will be 

shown that the specific words of the frames that are identified in these models are, for the 

most part, function words. 

 

Additional points should be made about the possible process of formation of these frames. 

While the focus of the current work is on presenting and evaluating computational 

techniques which will be shown to produce a large number of frames which are useful for 

part-of-speech induction, it is of course necessary for these techniques to connect with the 

abilities of a language-learning child. Whether these techniques are actually an accurate 

description of the processes that occur in learning a language is something that remains to 

be determined through empirical experimentation. Nevertheless, the emphasis throughout 

the current work is on psychological plausibility, and on the use of techniques that are 

compatible with what is known about language learning (e.g. the studies reviewed in 

Chapter 3). As each technique is presented and described in each of the following 

chapters, remarks will be made to attempt to situate the particular computational 

technique in a psychological context, appealing to certain basic processes such as 

chunking and associative learning. 

 

Essentially, the frame-based approach advocated here is congruent with proposals in the 

learning literature that elements that are the focus of simultaneous attention become 

associated with each other in memory (see e.g. Logan, 1988; Logan & Etherton, 1994; 

Pacton & Perruchet, 2008; Treisman & Gelade, 1980). So, for instance, Perruchet & 

Vinter (1998) have suggested that some units in language, such as words, are formed by 

chunking smaller elements together to form larger units. In the case of frames, the 

lexically-specific items (fixed words) of a frame may become associated with each other 
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by simultaneously receiving selective attention. This configuration of elements then 

becomes an element in its own right. 

 

Many of the frames identified in child speech by researchers such as Lieven et al. (1997) 

and used experimentally by Santelmann & Jusczyk (1998) contain sequences of non-

adjacent elements, with slots between them (e.g. “you _ it”). Chunking models 

traditionally operate only on adjacent elements, so that discontinuous dependencies may 

be thought to be problematic (see e.g. Perruchet & Pacton, 2006). Recently, however, 

Pacton & Perruchet (2008) have shown that adults exposed to material containing both 

adjacent and non-adjacent dependencies can learn the specific relations that they have 

been required to attend to in the course of performing an experimental task. The authors 

suggest that the privileged status given to the learning of relationships between 

contiguous elements may merely stem from the fact that contiguous elements are often 

the simultaneous targets of attention. 

 

One way to reconcile the frames that are of interest here with an associative approach is 

to consider that even a “discontinuous” frame such as “you _ it” is made up of three 

adjacent elements: the first and third elements are “you” and “it”, and the second element 

is phonologically entirely unspecified (or partially unspecified, if we incorporate possible 

morphological behaviour). Therefore, the “place” represented by the slot is an integral 

part of the frame: “you it” is not an instance of “you _ it”. Even if we cannot specify the 

middle element explicitly, it still has phonological substance, and in the case of a variable 

frame slot, this should be specified. 

5.3 Basic approach 
The experiments reported in Chapters 6 to 9 follow a similar basic plan, outlined in this 

section. The focus is on automatic methods of finding lexically-specific frames, i.e. 

commonly-occurring contexts in which focal words may be embedded. Three distinct 

such methods will be presented.  

 

Chapter 6 presents a method for finding full-utterance frames. In Chapter 8, this 

technique is extended to include hierarchically nested part-utterance frames. Both of 
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these methods rely heavily on the establishment of a basic dichotomy between frequent 

and infrequent words, the former (in English) tending to be function words and the latter 

content words. Chapter 9 is concerned with an attempt to discover frames without making 

use of this dichotomy, focusing instead on the strength and direction of association 

between pairs of words; the resulting frames are termed prediction-based frames.  

 

All three of these chapters provide psychologically plausible methods that an English-

learning child might use to discover frame structures present in the language she hears 

around her. Many of these frames are reliable cues to the part-of-speech of the focal word. 

Given that there are only a few parts-of-speech, many frames are associated with the 

same part-of-speech, and so it would be useful to amalgamate these frames together, as 

discussed in Section 5.2.2. An obvious way to do this is to form clusters of frames by 

grouping together these frames that accept broadly the same words into their frame slots. 

The computational methods of cluster analysis therefore play a prominent role in this 

research. For each of the three different frame discovery methods, the frames that are 

found are subjected to clustering. The clusters that form in this way can be seen as large 

lexical “paradigms” corresponding closely to the traditional parts-of-speech such as 

nouns, verbs and adjectives. Words which can be found in the context of several frames 

in a cluster may plausibly occur in all other frames in that cluster. 

 

Assigning a category to a focal word on the basis of the context that it appears in is an 

appropriate way to overcome the problems with some of the earliest word clustering 

research (e.g. Finch, 1993), where a word was assigned to one and only one category, 

even though many words can actually function as members of more than one category. 

However, when examining some of the frames produced by the computational procedures 

outlined here, it will become apparent that several of these frames are not good indicators 

of part-of-speech at all. Effectively, not only the focal word, but also the context itself 

may be uninformative with regards to part-of-speech, which is the point made by Pinker 

(1984) in his “John eats X” example. (That construction is effectively two constructions: 

“John eats [Noun]” and “John eats [Adverb]”.)  
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There are two important points to consider in dealing with frame ambiguity. Firstly, it 

would be useful to be able to distinguish between frames that are and are not informative 

of part-of-speech, or at least to enumerate the parts-of-speech that can occur in each 

category. Secondly, by focusing only on the context a word occurs in, we are ignoring a 

key insight from earlier clustering studies such as those of Finch (1993), that many words 

are not ambiguous in their common usage. Hence, we are sacrificing a large amount of 

valuable information about part-of-speech by not taking note of which word is actually in 

focus. It would seem to be useful to try to combine information from both the frame and 

the word in order to arrive at a more reliable guess about the part-of-speech. This is part 

of a broader conceptualization of language learning, in which the child makes use of any 

and all sources of regular information available to her in order to learn language (and 

indeed, any other cognitive skills). These ambiguity-related issues are explored in 

Chapter 7. I present three ways in which frame and word information may be combined 

in order to achieve lexical categorization, in the context of the full-utterance frames 

introduced in Chapter 6, and evaluate the results of implementing these three methods. 

These methods are then used in Chapters 8 and 9 to improve on the categorization results 

obtained with the nested and prediction-based frames. 

 

The entire treatment of the frames produced by a particular method (discovering the 

frames, collecting word-frame co-occurrence data, frame clustering, and then also word 

and frame co-clustering to accommodate ambiguity) is therefore demonstrated first for 

full-utterance frames, in Chapter 6 and Chapter 7. Once this machinery has been 

developed and presented, it is applied again in turn for the nested frames (Chapter 8) and 

the prediction-based frames (Chapter 9). 

 

The aim is emphatically not to look for simple local contexts that serve as cues to part-of-

speech, as was done in e.g. Redington et al. (1998), or Mintz’s Frequent Frames approach 

(Mintz, 2003, 2006a, 2006b). In that work, it seems that the child is overtly engaged in 

the task of assigning a tag to a word, and exploits any available local contextual cues in 

order to perform this assignment. By contrast, in the current work the overt task is to 

identify autonomous units in a language, and the child will be mainly occupied in 
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learning to perceive these units directly. Somewhat incidentally, then, some of these units 

will have the compositional structure of a lexically-specific frame, i.e. with some words 

specified exactly and others left as abstract slots. And by an additional process of 

category formation, slots which are similar will become grouped together in the child’s 

mind, whether that similarity is distributional, i.e. based on the same groups of words 

occupying the slots, or semantic, i.e. based on similarities in the meanings of those slot-

filling words. On this view, parts-of-speech are discovered naturally during the course of 

learning about syntactic constructions. The alternative view would be that parts-of-speech 

are primary, and constructions are discovered by concatenating parts-of-speech into 

larger sequences. This begs the question of how to deal with words which are ambiguous, 

such that the ambiguity can only be resolved by considering the larger context (i.e. the 

construction) in which the word occurs. 

5.3.1 Syntagmatic contextual patterns 
When describing the process of discovery of lexically-specific frames, it seems that one 

of the most important questions to be addressed is how these frames are separated out 

from the speech stream, i.e. what the cues to their boundaries are. One way in which this 

could be achieved is to make use of the most salient unit boundaries in connected speech: 

in most cases in natural speech, there are pauses between utterances in a conversational 

turn by one partner. Hence utterance boundaries are perceivable by a child, and so one 

way to delimit potential units of a language is to consider each single utterance at a time 

as a unit. 

 

Another possibility occurs when some lexically-specific frames already exist: the slot-

fillers that go into those slots can be regarded as units in their own right, and in cases 

where these slot-fillers can themselves be given a partially lexically-specific structure, 

this would justify the slot-fillers also being treated as lexically-specific frames. So for 

both of these possibilities, units are recognized against a surrounding context: in the 

former case it is the context of occurring inside utterance boundaries as indicated by 

silence, and in the latter case it is the context of occurring embedded inside a previously-

learned lexically-specific frame. 
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A third, different possibility is not to assume that there are any predefined boundaries 

such as those between utterances. Instead, words merely become associated with each 

other if they co-occur often, giving rise to learned configurations of words; the positions 

in an utterance where a particular learned configuration starts and ends are then quite 

simply the segment boundaries. This proposal therefore hinges on how associative links 

are formed.  

 

Each of these three segmentation strategies is explored in depth in its own chapter in this 

thesis, respectively in Chapters 6, 8 and 9. 

5.3.2 Paradigmatic parts-of-speech  
The second main theoretical issue has to do with how parts-of-speech are induced from 

knowledge of lexically-specific frames. One way (investigated by researchers such as 

Finch, 1993; Mintz, 2003, 2006a, 2006b) is to group words together into a category if 

they tend to occur in the same sets of frames. However, this approach presumes that 

words are unicategorical; in fact, as we have seen (e.g. Nelson, 1995), it is common even 

in the input to children for the same word type to belong to different parts-of-speech 

according to context. A better approach (taken by e.g. Mintz, 2003), is to group the 

frames themselves into categories, which are interpreted as frame categories for the 

particular parts-of-speech: any word that occurs inside, say, the “noun frame” category is 

presumed to be a noun. In other words, the context imposes an interpretation on the word. 

This approach is taken in Chapter 6. 

 

However, even under this approach, it will become apparent that some frames are simply 

not informative about the part-of-speech of the words that occur inside their slots. More 

generally, it seems that combining information about both the frame and the word which 

occurs in it would provide the most complete and therefore the most accurate information 

for lexical categorization. Three techniques to explore this possibility are presented in 

Chapter 7, and are applied to each of the three frame discovery procedures. 
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5.4 Methodological issues and assumptions 

5.4.1 Corpus and preprocessing 
All experiments reported here were carried out on the Manchester corpus (Theakston, 

Lieven, Pine & Rowland, 2001) of child and child-directed speech, taken from the 

database of the CHILDES project (MacWhinney, 2000). The Manchester corpus was 

collected in the course of a longitudinal study of 12 children aged between 2 and 3 years, 

all first-borns from predominantly middle-class families in the Manchester and 

Nottingham areas. Children were recorded in 34 pairs of half-hour sessions (i.e. 34 hours 

in total for each child, although some sessions are missing). During the first half-hour 

children played with their own toys, and during the second half-hour they played with 

toys provided by the experimenters.  

 

There is a wealth of information to be found in CHILDES corpora, in the form of 

annotation in various “tiers”, added according to the CHAT markup specification 

(MacWhinney, 2000), potentially including speaker identity, phonetic information, and 

part-of-speech information. For the current purpose, only the orthographic words used are 

required, and only child-directed speech is required. In fact, for simplicity, these 

experiments made use of only the mother’s speech, which made up the vast majority of 

child-directed speech. 

 

In order to turn the sentences spoken by mothers into simple, uniformly-formatted 

sentences that could be batch-processed by a computer program (referred to hereafter as 

the “cleaned-up corpus”), it is necessary to perform a certain amount of preprocessing. 

CHAT makes use of a variety of non-alphabetic characters for corpus annotation. In 

addition, some sentences are not necessarily complete, and it needs to be decided which 

ones represent usable data. Non-alphabetic characters need to be removed, and unsuitable 

utterances discarded, in order to produce a “clean” corpus on which experiments can be 

carried out.  

 

Specific details of how the corpus was preprocessed can be found in Appendix 1. Two 

points bear repeating here. Firstly, all punctuation is removed, except for commas and 
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question marks (utterances are presumed to end with a full stop by default, and hence this 

is omitted). Secondly, the name of each child is replaced with the token childname. This 

is done because a child’s own name may well have a significant role in the spoken 

utterances that the child hears. It is likely to occur very frequently, and to occupy a 

significant position in sentence structures (in many cases, the child’s name is used almost 

as a synonym for the second-person pronoun you). In order to allow the computational 

procedures to pick up this regularity when the data from all twelve mothers is pooled, it is 

necessary to use a standard token for the child’s name. Summary counts displayed in 

Table 3 give an indication of the size of the corpus after preprocessing.  

 

Number of files 800 

Number of lines (utterances) 334806 

Number of words 1321591 
Table 3. Summary counts of the cleaned-up version of the Manchester corpus as used in this thesis. 

5.4.2 Segmentation into orthographic words 
As can be inferred from the previous section, the data on which all the algorithms in this 

thesis work is assumed to be already segmented into orthographic (i.e. dictionary) words. 

It is a debatable point whether this is psychologically plausible; nevertheless, the models 

outlined here assume that the child is in some way able to segment the speech signal into 

discrete units, and that these units are likely to correspond to orthographic words. The 

task of a frame-finding algorithm is then purely to discover common patterns subtended 

by these elements. 

 

There is some evidence of recognition of some common nouns as early as 6 months of 

age (Tincoff & Jusczyk, 1999; see also Jusczyk & Aslin, 1995), while infants can 

recognize their own name at as early as 4 and a half months of age (Mandel, Jusczyk & 

Pisoni, 1995). The work on function words cited in Section 3.6.1 shows that these 

elements are also familiar to the child from an early age and can be segmented out of the 

speech stream (Höhle & Weissenborn, 2003; Shi, 2007; Shi, Cutler, Werker & 

Cruickshank, 2006; Shi, Marquis & Gauthier, 2006; Shi, Werker and Cutler, 2006). 

Certainly, by the age of the children involved in the Manchester corpus, children are able 
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to identify and understand several words. It is not completely necessary for the success of 

the computational models described in this thesis that the segmentation should be 

complete; however, the models do rely heavily on the assumption that at least the most 

frequent words should be familiar (i.e. available in recognition memory). This is certainly 

plausible; frequency in the input is strongly related to familiarity for the child, as shown 

in the references cited above. And to the extent that some words used by the algorithms 

that are discussed in this work are not familiar to the child, the performance of the 

algorithms may be expected to degrade gracefully rather than catastrophically. 

 

A more pertinent concern is whether dictionary words comprise the correct level of 

granularity for the discovery of frames. Certainly, much of English orthography is 

arbitrary and conventional; there is no obvious reason why, for instance, into should be 

spelt as one word and out of as two, and many English word sequences are translatable 

into single words in other languages and vice versa. Furthermore, morphological 

inflection is a very valuable clue to part-of-speech, so that one might imagine that a 

segmentation into morphemes rather than words might be more informative for part-of-

speech induction. 

 

The position I take here is that it is highly likely that children at the age of about 18 

months are able to segment continuous speech into at least some constituent elements, 

and that these are likely to correspond reasonably closely to words. Hence, starting from 

a corpus of segmented words is a reasonable approximation to the early input provided to 

children. 

5.5 Evaluation of clustering results 

5.5.1 Quantitative evaluation against a gold standard 
In order to evaluate the outcome of the categorizations provided by the experiments in 

this thesis, it is necessary to compare them against a “gold standard” describing the 

“correct” categorization of each focal word. The Manchester corpus comes provided with 

part-of-speech markup information, so that this categorization can be used as the gold 

standard categorization. 
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In order to make this task somewhat simpler, it was decided to restrict the analysis and 

tagging to focal words that belong to the categories Noun, Verb and Adjective (NVA) 

only. Decisions about other word classes (in particular function word classes) are likely 

to be distinctly more problematic and less clear-cut than for these three classes. Words 

deemed to belong to other categories were, of course, included in the data during 

clustering (the child cannot be presumed to discard them when they occur in the input), 

but they are simply ignored for the purpose of evaluation. 

 

Nouns are tagged in the Manchester with “n”, adjectives with “adj”, and verbs with “v”. 

The following additional categories were also mapped to one of “n”, “adj” or “v”: 

• “n-prop”: proper nouns were mapped to “n” 

• “n-pt”: “plural-seeming” nouns such as “pants” were mapped to “n” 

• “n-let”: letters of the alphabet were also mapped onto “n” 

• “n-v”: nouns apparently derived from verbs were mapped to “n” 

• “n-gerund”: gerunds were mapped to “n” 

• “adj-v”: adjectives apparently derived from verbs became “adj” 

• “adj-n”: adjectives apparently derived from nouns became “adj”. 

• “aux”: auxiliaries were treated as verbs 

• “part”: participial forms of verbs (past and present) were treated as verbs 

• “v~neg” and “aux~neg”: compounds of verbs plus negation (“couldn’t”) were 

treated as verbs 

All other combination words, indicated by several categories concatenated with tildes 

(e.g. “Mommy’s” in “Mommy’s had enough” would be “n~v”), were not interpretable as 

belonging to just one part-of-speech, and were left out of the analysis. 

5.5.2 Quantitative evaluation measures 
Evaluating the results from an experiment in unsupervised clustering against a “gold 

standard” categorization requires some care.  
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One issue to be addressed is the question of which particular measure to use to express 

the degree of fit between a gold standard and the empirically derived clustering result. 

Traditionally, researchers wishing to give quantitative expression to the match between 

reality and the predictions from a model have made use of one of a variety of association 

measures, calculated on a two-by-two correspondence table, as represented in Table 4, 

which is normally derived for one gold-standard category at a time. The columns 

represent the number of items that were (left column) or were not (right column) in the 

particular gold-standard category of interest, while the rows represent the number of 

items that a model did (top row) or did not (bottom row) assign to the category. When we 

label the cells a, b, c and d as in the table, we can see that a and d represent correct 

categorization on the part of the model, and b and c represent errors. 

 

 Belonging to 

category (Gold 

Standard) 

Not belonging 

to category 

(Gold Standard) 

Total 

Belonging to 

category (Model) 
a b a + b 

Not belonging to 

category (Model) 
c d c + d 

Total a + c b + d a + b + c + d 

Table 4. A correspondence table, showing allocation of items to a particular category according to a 

gold-standard (columns) against allocation of items to that category by a model (rows). 

 

5.5.2.1 Accuracy, Completeness and F 
There are a great number of different measures that can be calculated from a 

correspondence table (for reviews, see Hayek, 1994; Pfitzner, Leibbrandt & Powers, 

2009). A popular choice is to report the measures known in psychology as accuracy and 

completeness (respectively named precision and recall in computer-science-oriented 

fields such as data mining, information retrieval and computational linguistics). Accuracy 

is defined as  
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ba
aaccuracy
+

=                                                                                                               (1) 

and expresses the proportion of items that were assigned to the category in question by 

the model (a + b) and that were in fact in that category according to the gold standard (a). 

Completeness is defined as  

ca
asscompletene
+

=                                                                                                         (2) 

  

and expresses the proportion of items that belonged to the category in question according 

to the gold standard (a + c) and that were in fact assigned to that category by the model 

(a). Intuitively, then, accuracy is the proportion of our shots at target that were on target, 

and completeness is the proportion of targets that we managed to hit. 

 

There is typically a trade-off between accuracy and completeness; either measure can be 

artificially inflated at the expense of the other. For this reason, it is customary in the 

computational linguistics literature to attempt to merge accuracy and completeness into a 

single measure, the most widely-used being F, the harmonic mean of accuracy and 

completeness. F is given by  

cba
aF
++

=
2

2 . 

 

A second issue relates to the difficulty in establishing a correspondence between accepted 

linguistic categories and the clusters produced by unsupervised clustering. Say that we 

have a gold standard categorization of a set of focal words in context, which assigns each 

of the words to a particular part-of-speech (however this gold standard may have been 

arrived at). The clustering algorithms used in the experiments that are reported here 

assign instances of focal words in context to one of a fixed number of clusters. However, 

when we try to determine whether the clustering algorithm “got it right”, we have no way 

of knowing which cluster is “meant to” correspond to verbs, which one to adjectives, etc., 

because an unsupervised algorithm such as clustering has no access to these labels. All 

we have is a partition of the set of words into cluster 1, cluster 2, etc. 
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As a way of addressing this problem, it is fast becoming standard practice, in the case of 

categorization experiments in psycholinguistics (e.g. Cartwright & Brent, 1997; Mintz, 

Newport & Bever, 2002), to derive accuracy and completeness scores from a 2-by-2 table 

obtained by pair counting. Pair counting evaluates the implicit correctness of a clustering 

by considering pairs of focal words that are assigned to the same cluster/category, and 

pairs of focal words assigned to different categories. These pairs are identified in both the 

gold standard model and the clustering model.  

 

The number of pairs of words that are assigned to the same category in the gold-standard, 

and also in the clustering model, is entered into a in the table. The number of pairs of 

words that are assigned to the same cluster in the model, but to different categories in the 

gold-standard goes into cell b, and the number of pairs of words that belong to the same 

category according to the gold-standard but are allocated to different clusters in the 

model, goes into cell c. Lastly, d contains the number of potential word-pairs that do not 

belong to the same category in the gold standard, and are also not allocated to the same 

cluster by the model. 

 

To the extent that a cluster corresponds to, say, the category of nouns, it should contain (i) 

the nouns, (ii) all the nouns, and (iii) nothing but the nouns. The model will therefore (i) 

receive “plus points” in cell a for all the pairs made up of the nouns that the cluster does 

contain. To the extent that some nouns are not in the cluster, the model will (ii) “miss 

out” on obtaining credit it would have received had it paired up the missing nouns with 

the nouns that are present, and will score “minus points” in c (causing completeness to 

decrease). To the extent that the cluster contains words from another category, say verbs, 

the model will also (iii) score “minus points” in b for every word pair made up from a 

noun paired with a verb (thereby causing accuracy to decline).  

 

It is not necessary to report these numbers per category or per cluster; we can add the 

numbers of pairs in each cell together for the entire set of focal words to obtain one 

accuracy and one completeness score. 
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There are a number of problems with the accuracy and completeness measures; notably, 

they can only be used on 2×2 contingency tables, rather than tables of higher 

dimensionality; both measures can be artificially inflated (completeness by putting too 

many word pairs together and therefore producing very few clusters, and accuracy by 

proliferating the number of clusters so as to avoid the penalty of incorrectly putting items 

together); also, there is a tradeoff between the two measures, and they should always be 

interpreted together. An additional shortcoming of these two measures, as well as F, is 

that values obtained on different experiments and by different researchers cannot be 

directly compared against each other, but should first be interpreted against a random 

baseline which differs for every experiment. Partially in order to compensate for the 

shortcomings of these very popular measures, Powers (2003) developed the Bookmaker 

measure, described in the following section. 

5.5.2.2 Bookmaker 
Powers describes the Bookmaker measure as quantifying the extent to which a prediction 

is an informed one, such that a person placing a bet on the predicted outcome against fair 

odds would make a profit.  

 

When considering predictions of outcomes, a central concept is that of the conditional 

probability of event B given event A, namely the probability, if A has already occurred, 

that B will follow. The conditional probability therefore expresses to what extent an 

organism can predict that an event will occur, given information about what has occurred 

before. 

 

These notions can be explained in terms of the contingency table displayed in Table 4. If 

the rows of Table 4 are taken to be the occurrence or non-occurrence of the earlier event 

A, and the columns to be the occurrence or non-occurrence of the later event B, then the 

formula for conditional probability is  

ba
aABP
+

=)|( . 

 

Likewise, the conditional probability of outcome A given outcome B is expressed as  
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ca
aBAP
+

=)|( . 

 

Conditional probability is a very commonly used measure in evaluation; note that P(B|A) 

is identical to accuracy as defined earlier, and P(A|B) is equal to completeness. However, 

a more reliable indicator of the extent to which A predicts B is given by the function 

delta-P (ΔP), which discounts the probability that B will follow A by the probability that 

B will occur even when A does not occur. This measure gives the true value of A as a 

predictor of B; if B is more likely to occur after A than after the absence of A, then A is a 

good predictor of B. In terms of the cells of Table 4, ΔP is given by 

dc
c

ba
aP

+
−

+
=Δ . 

 

Many learning theorists (e.g. Shanks, 1995) have accorded centre stage in learning theory 

to ΔP, regarding it as the normative measure of contingency in learning. Powers (2008) 

refers to ΔP as markedness. He also defines an analogous function of informedness, given 

by  

db
b

ca
aI

+
−

+
= . 

 

In a betting context, Informedness expresses the proportion of time that an outcome has 

occurred, and we have placed a bet on its occurring, discounted by the proportion of time 

that the outcome has not occurred, but we still had a bet riding on its occurrence. If we 

are perfectly “informed” about which details are relevant to the outcome, we would be 

able to place a bet only in cases where the outcome does end up occurring, in which case 

we would never lose money, and Informedness would take on a value of 1. On the other 

hand, if we had no relevant information about the contingencies of the situation, we 

would bet incorrectly as often as correctly, and end up losing as much money as we won 

(the two terms in the function would cancel out), yielding an Informedness value of zero. 

In other words, unlike accuracy, completeness and F which have a varying random 

baseline, Bookmaker always has a random baseline of zero, and so results from different 
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experiments, including experiments carried out by different experimenters using different 

approaches, can be compared against each other directly. 

 

Informedness is the foundation of the Bookmaker measure. When we have a 2-by-2 

contingency table, Bookmaker is exactly informedness as defined. However, Bookmaker 

is also defined for square contingency tables of arbitrary dimensions (another advantage 

over completeness and accuracy). A table of dimensions M×M, with the rows and 

columns in correspondence, can be turned into a 2×2 table for each row R by collapsing 

together all columns except R and all rows except R. Informedness can then be calculated 

on each of these tables. Bookmaker is then calculated as a weighted sum of each of these 

informedness values for each 2×2 table, where the weight is the ratio of the number of 

cases in which the predictor R occurs over the number of all cases. 

 

Finally, in the current work I generalize Bookmaker to work with unsupervised clustering 

results and an arbitrary M×N table of empirical categories on the rows and gold standard 

categories on the columns, as follows. Let d be the contingency table describing the co-

occurrence of empirical and gold standard categories, such that dij = k means that k 

elements from gold standard category j were allocated to empirical category i. Let the 

marginal totals of each column in d, i.e. the numbers of elements allocated to each of the 

gold standard categories, be denoted by g1, …, gM, and let the marginal totals of each row, 

i.e. the numbers allocated to each empirical category, be denoted by e1, …, eN.  

 

Furthermore, let z: {1, 2, …, M} → {1, 2, …, N} be the mapping from gold standard 

categories to empirical categories that maps each gold standard category onto the 

empirical category which contains more elements from that gold standard category than 

any other empirical category, i.e. z(a) = a′ ↔ there does not exist any b in {1, 2, …, N} 

such that dba > da′a
3. Then we can construct, for each gold standard category a, a 2×2 

contingency table that distinguishes between elements belonging or not belonging to gold 

standard category a on the columns, and belonging or not belonging to empirical category 

a′ on the rows (see Table 5, where T = the total sum of all cells in d). 

                                                 
3 If there is more than one such a category, an average may be taken over all of these categories. 
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 a ~a sum 

a′ da′a e a′ - da′a e a′ 

~ a′ ga - da′a t - ga - e a′ + da′a t - e a′ 

sum ga t - ga t 
Table 5. A two-by-two contingency table for an arbitrary gold standard category a. 

 

Now, Bookmaker can be calculated by obtaining an Informedness value for each 2×2 

table for each gold standard category (from the cells in bold in Table 5), then weighting 

each of these Informedness scores by the weight of that particular empirical category. In 

other words, Bookmaker is given by 
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a
, where a′ = z(a). 

 

When applied to a table of empirical versus gold standard categories, Bookmaker 

expresses the degree to which membership of a word-frame instance in each individual 

empirical category predicts membership of the corresponding gold standard category. If a 

child conceives of a word in context as belonging to one of the empirical categories that 

she has developed, to what extent will her treating the word in this way receive a 

“payoff” as a result of being congruent with the true category of the word? 

 

As discussed above, Bookmaker requires a mapping between empirical and gold standard 

categories. In the experiments presented in this thesis, the empirical categories are so 

similar to the gold standard categories that this mapping can in fact be effected. In these 

cases, it would be possible to express the correctness of categorization using the 

Bookmaker measure directly on the contingency table, in addition to accuracy, 

completeness and F using a pair counting approach as suggested previously (note that 

accuracy and completeness cannot be directly applied to the contingency table, as these 

measures are defined for 2×2 tables only). 
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The approach that I will take in all experiments is to report accuracy, completeness and F 

using a pair counting approach, and Bookmaker on the contingency table directly. The 

use of accuracy, completeness and F is mainly for continuity with the existing literature. 

Bookmaker as discussed above provides a more statistically sound way to measure the 

correctness of a categorization. 

 

An additional note should be made about the calculation of the baseline values for 

completeness, accuracy and F. Many researchers (e.g. Redington et al., 1998) calculate 

these by randomly allocating individual words to one of the available categories, then 

calculating accuracy and completeness on these random allocations. However, this is 

unnecessary, as the baseline values of accuracy and completeness (and hence of F) can be 

determined analytically from the marginal totals in the contingency table. If, say, 30% of 

all possible word pairs in the data set are pairs that are placed into the same category by 

the gold standard, then, if there is no meaningful pattern behind the way that the 

empirical categorization works, so that it merely allocates words randomly, it can be 

expected that 30% of the pairs it puts together will be correct ones, so that the baseline 

accuracy is 30%. (Of course, 30% of the pairs it does not put together will also be correct.) 

In other words, the baseline for accuracy is given by (a+c) / (a + b + c + d). Likewise, if 

the empirical categorization is such that 60% of all possible word pairs that can be put 

together in a cluster are in fact put together, then 60% of all the correct pairs according to 

the gold standard will be covered by the empirical categorization (as will 60% of all the 

incorrect pairs). Hence, the baseline for completeness is given by (a+b) / (a + b + c + d). 

5.5.2.3 Statistical significance of quantitative results 
In addition to reporting the obtained values for the measures accuracy, completeness, F 

and Bookmaker, it will also be useful to state the level of significance of these values 

against a null hypothesis that the categories assigned to focal words by the techniques 

presented in this thesis have no relationship to the actual categories that these words 

belong to (as given by the gold standard). In addition, as a number of different clustering 

algorithms will be examined, it will also be useful to be able to compare the obtained 

measure values for different algorithms and express the significance of the difference 

between them. 
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While accuracy, completeness and F are standard measures of correctness in many fields 

in computational linguistics and psycholinguistics, very few studies ever report 

significance on these measures. For instance, many studies in computational linguistics 

present the performance of a new algorithm on a standard problem set, and in such cases 

it is considered sufficient merely to show that the new algorithm produces higher 

measure values than the previously best-performing algorithm on that problem set. Of 

course, such an improvement in measure values does not show that the improvement is 

statistically significant. 

 

In general, gauging significance for a measure such as F is difficult, as no specific 

parametric assumptions can be made about the distribution of these values; in particular, 

normality may not hold, so that a standard t test of significance making use of the 

standard deviation of the sample may not be appropriate.  

 

The approach that will be taken in this thesis is to make use of randomization methods 

(Edgington, 1995; Manly, 1997) to assess significance. In essence, these methods assess 

the significance of some statistic obtained from a data set by producing a distribution of 

that statistic, generated by randomly reordering the items in the data set. The original 

value obtained for the statistic is compared against the distribution in order to determine 

whether it is a typical value under that distribution, in accordance with the null 

hypothesis, or an atypical and significant value. Significance is indicated by the 

proportion of values in the distribution that are at least as extreme as the obtained statistic. 

 

Two randomization methods will be used in the empirical chapters of this thesis, one to 

report significance of the deviation of an obtained value from a random sample generated 

according to the null hypothesis, and one to compare the significance of a difference 

between measure values for two different algorithms. As F can be regarded as a measure 

that summarizes accuracy and completeness, only F and Bookmaker values will be 

subjected to the significance tests. 
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The main step in the randomization test is to generate a value for F (alternatively, 

Bookmaker) that is selected randomly from an appropriate population of F values. This 

population does not consist of all possible F values; instead, it is appropriate to consider 

only F values that would be obtained for a random categorization of the focal words that 

maintains the same marginal total values as the categorization that produced the F value 

that is to be tested, i.e. the new categorization respects the inherent bias of the algorithm 

to favour some categories over others.  

 

In other words, if a particular algorithm allocates focal words to three categories in the 

proportions 1: 2: 3, then for the randomization test we generate a random categorization 

(a reordering) of the focal words that also allocates words to these categories in the 

proportions 1: 2: 3 (individual words will of course be allocated to different categories 

than the ones they received under the test categorization). This can be regarded as a 

randomly drawn categorization from the distribution of categorizations that display the 

same 1: 2: 3 bias as the original categorization. The value of F is then calculated on this 

categorization, and added to a set of such randomly-generated F values. As this set 

becomes sufficiently large, it begins to approximate the complete distribution (in the limit, 

when all possible categorizations have been generated, it is of course identical with the 

complete distribution). 

 

Significance can then be calculated directly from this sample, by simply determining the 

proportion of F values in the sample that are greater than or equal to the empirically-

obtained F value for the algorithm in question; i.e. if 15 values in a randomly-generated 

sample of 1000 F values are as extreme as the empirical F value, yielding a percentage of 

15/1000 = 0.015, then the obtained F value is significantly different from the randomly 

generated sample at an estimated significance level of p = 0.015. 

 

Determining the significance of a difference in F values for two algorithms can be 

accomplished with a straightforward extension of this  method. Two sample distributions 

are created for each of the algorithms as before. One element is then drawn at random 

from the sample for one algorithm, and one element from the sample for the other 
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algorithm, and their difference is calculated. This process is repeated in order to produce 

a sample of difference values, and the significance of the original observed difference in 

values can be determined as before, as the proportion of difference values in the sample 

that are at least as extreme as the observed difference. 

 

When reporting the results of all empirical experiments in this thesis, I will provide 

significance levels for deviations from random baselines and for differences between 

algorithms for F and Bookmaker, according to the methods just described. In all cases, 

the generated samples of F and Bookmaker values contain 1000 items each. 

 

In all cases, the proportion of values as extreme as the obtained value is reported. 

However, because we are dealing with samples rather than the complete distribution, it is 

appropriate to be more conservative in drawing a conclusion about the actual level of 

significance demonstrated. I will report the conventional significance levels p = 0.05 and 

p = 0.01. Manly (1997, pp. 82-83) tabulates several 99% confidence limits for 

significance levels estimated with randomization tests. For a sample of 1000 items, if the 

“real” significance of the obtained data against the full distribution is 0.05, then the 

estimated significance level from the sample will fall between 0.032 and 0.068, 99% of 

the time. For a “real” significance level of 0.01, the estimated significance will fall 

between 0.002 and 0.018.  

 

In order to be conservative, I will make use of these lower limits and treat an estimated 

significance level equal to or less than 0.032 (32 or fewer items out of 1000) as 

significant at the 0.05 level, and  a significance level equal to or less than 0.002 (2 or 

fewer items out of 1000) as significant at the 0.01 level. 
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6 Full-utterance frames 

6.1 Introduction 
In this section, I present a technique to automatically identify lexically-specific frames 

that can stand on their own as full utterances. While this technique is an extremely simple 

procedure to discover frames, it will turn out to be remarkably successful in categorizing 

focal words. A crucial element in this procedure is the establishment of a fundamental 

dichotomy between the most frequently-occurring words and all other, less-frequent 

words.  

 

The structure of this chapter is as follows: first, the procedure is described, and a possible 

interpretation in psychological terms is discussed. Subsequently, I present results from an 

implemented simulation on the Manchester corpus, and evaluate these results against the 

“gold standard” reference part-of-speech assignment provided with the corpus. 

6.2 Automatic discovery procedure 

6.2.1 Outline 
The essential notion guiding the computational procedure presented in this chapter is that 

the words that are specific in a lexically-specific construction, and that provide the 

structure to the construction, are typically taken from a very small set of word types. 

These words are very often function words, such as “the”, “of”, “it”, etc. Conversely, the 

content words of English are relatively less frequent. It is these words that we would like 

to allocate to familiar parts-of-speech such as noun, verb, adverb, adjective, etc. 

 

One characteristic that these words have is that they are very frequently-occurring words. 

The frame-discovery procedure presented in this chapter makes use of a very simple 

heuristic in order to exploit these frequent words and discover lexically-specific frames. 

It compiles a list of the most frequently-occurring words in the corpus, and then rewrites 

every utterance in such a way that words on the list of frequent words are retained as they 

are, while all other, less-frequent words are replaced with the symbol X, standing for a 
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slot placeholder. The remaining rewritten utterance is then taken to be the frame structure 

for that utterance. Take for instance the question 

 

Can you hold it? 

 

Some of the most common words in English (and, as will be shown, in the Manchester 

corpus) are “can”, “you” and “it”, while “hold” is relatively rare. As a result, this 

question would be rewritten in frame form as  

 

Can you X it? 

 

Likewise, the utterance 

 

That’s not a yellow one. 

 

contains the common words “that’s”, “not”, “a” and “one”, while “yellow” is relatively 

rare, so that the procedure presented here yields the frame  

 

That’s not a X one. 

 

Looking at the schematic frames for these two utterances, it seems intuitive that the X 

slot in “Can you X it?” is likely to be occupied by a verb, and the slot in “That’s not a X 

one” by an adjective. For these two frames at least, the notion that a frame might provide 

sufficient information to categorize the word occupying its slot seems quite promising.  

 

Next, the algorithm selects the most frequently-occurring frames that accommodate the 

widest range of different words, and attempts to form groups of these frames, by 

grouping together frames that accept roughly the same sets of words into their slots. In 

this way, it might be possible to identify a whole set of frames that accommodate, say, 

nouns into their slots, and to group them together into a noun frame cluster (and to do the 

same for verbs and adjectives). 
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Some details about the internal structure of the frames should be considered. Given that 

we are interested in finding lexically-specific frames, the frame would need to contain a 

fair amount of lexically-specific material. For this reason, frames consisting of only X’s 

and punctuation, e.g. X, X X ? or X X X X X are not allowed. In practice, all frames used 

in this procedure are required to contain at least one lexically-specific word. 

 

Furthermore, another constraint imposed on frames is that sequences of slots are not 

allowed. Hence, an utterance such as “the glass broke”, which would be represented as 

“the X X”, would not be considered in these experiments, because of the sequence of two 

X slots. All X filler words should therefore be “isolated”, in the sense that they are 

flanked on either side by either a frequent word or an utterance boundary. 

6.2.2 Details 
The procedure followed in the experiments of this chapter is as follows: 

• Identify the N most frequently-occurring words in the child-directed portion of the 

corpus, where N is a parameter of this model. 

• Rewrite all utterances in the corpus, retaining only the words on the list of most 

frequent words, and replacing all other words with an X. Each utterance is 

therefore expressed in its skeletal form, as determined by the sequential order of 

frequent words plus placeholders for other words. These structures are now 

treated as potential lexically-specific frames, with the most frequent words 

making up the lexically-specific portion of the frame, and the X’s indicating the 

positions of the variable frame slots.  

Some frames are likely to recur in the input, and it is possible (in fact, highly 

likely) that they will recur with different words filling the X slots. To the extent 

that this is true, these lexically-specific frames provide an opportunity for the 

child to discover that there might be a class of words that are licensed to occur in 

the particular slot, and to try and find out what the commonalities between these 

words are. 

The most obvious area of shared similarity between words would be their 

meaning: the words that fill the X slot in, e.g., “don’t X it” are likely to be words 
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for actions, these actions may be ones that the child is able to perform herself, and, 

they may be actions that are often met with disapprobation by the mother. 

However, meaning is completely ignored in the work presented in this thesis; as 

noted previously, this is probably a serious shortcoming. Chapter 11 outlines 

ways in which this issue may be tackled in future work. 

• Collect frequency counts of all co-occurrences of particular frames with particular 

focal words. This provides us with a co-occurrence data matrix, which will be the 

data representation on which the clustering process of this chapter and the 

ambiguity resolution processes of the next chapter will work. The data rows in the 

data matrix correspond to frames and the columns to focal words. Each cell at the 

intersection of a row and a column contains the frequency with which the 

particular corresponding focal word occurred in the particular corresponding 

frame slot in the Manchester corpus.  

• At this point, it is necessary to filter the data matrix in order to make use of only 

the most reliable frames and focal words. There are two main ways to determine 

reliability:  

(i) Reliable frames and words occur reasonably often, because rare words 

and especially rare frames provide unreliable evidence (e.g. the frames 

may have been misanalysed, words may have been miscoded during 

corpus transcription, words that occur only once in a corpus may be 

misleading if that one occurrence entails an anomalous sense, etc.) 

(ii) Reliable frames and words are productive units of the language and so 

combine with a wide variety of words and frames respectively. Words 

and frames that are not flexible in this way are more usefully thought 

of as subcomponents of fixed phrases, and may not really be 

productive units in their own right (Bybee, 1985; Goldberg, 1995). 

These goals can be achieved by restricting the data matrix so that it includes only: 

- frames that occur at least FT times in the data matrix 

- words that occur at least FW times in the data matrix 

- frames that accept at least VT different focal words in their slots 

- words that occur as the focal words in the slots of at least VW different frames 
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(where F stands for “frequency” and V for “variety”; these notions are also 

commonly described by the terms token frequency and type frequency 

respectively). 

For simplicity, one could make use of only the two V parameters, which is 

effectively the same as taking FT ≤  VT and FW ≤  VW. To simplify the model even 

further, one could consider only VT = VW, so that effectively only one parameter V 

would be required in the model. In fact, V is not manipulated in any of the 

experiments reported here, and its value is fixed at an arbitrary value of 5, i.e. the 

data set is restricted to all frames that occur with at least 5 different word types in 

their slots and all words that occur in at least 5 different frames (this will be called 

the ‘5-5 criterion’). 

• Lastly, data clustering analysis methods are used to form clusters of frames, 

clustering together frames that take roughly the same kinds of words into their 

slots. In this way, sets of contexts are created that are similar to each other in the 

words that they accept, so that one might expect that a word which occurs in one 

context of the set may easily be acceptable in any other context in the set. As 

previously stated, it is one of the main hypotheses of this work that these large 

frame clusters will correspond to traditional parts-of-speech such as noun, verb 

and adjective. 

6.3 Psychological considerations 
The set of complete utterances is an appropriate domain for the discovery of frequently-

used constructional frames. Firstly, full utterances are usually delimited on either side by 

silence on the part of the speaker, a clear indicator of their status as complete, 

autonomous units (i.e. constructions) in the language. Secondly, utterances (at least, 

simple and short ones) often tend to cohere suprasegmentally in having a single 

intonation contour. Thirdly, an utterance often serves as the vehicle for a single pragmatic 

intent on the part of the speaker, e.g. conveying a single message, question or request, 

which would reinforce treating an utterance as a single coherent unit. As mentioned 

earlier, Tomasello (2006) has argued that utterance-level constructions play a prominent 

role in language development: these are verbal expressions that can be used as complete 

utterances, and that are associated in a routinized way with certain communicative 
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functions. (While the current work does not make use of information about meaning or 

communicative intent, and so cannot be said to be identifying utterance-level 

constructions directly, it does aim to discover some of the most prominent full-utterance 

structures in the corpus by taking isolated utterances as its starting point.) 

 

Starting from the full utterance means that this approach is compatible with the Gestalt 

language learning strategy of Peters (1977). However, any particular utterance is of 

course made up of entirely concrete material; in order to account for semi-abstract, 

lexically-specific frames that contain some fixed words and some variability in slots, it is 

necessary to describe how such structures may be abstracted out from the set of 

utterances.  

 

One technique by which this could happen is for the child to store in memory essentially 

all specific utterances that she hears (or at least those that occur frequently), and then, 

when encountering an utterance that has some material in common with another utterance 

in memory, to recall the previously stored frame, align it against the current frame and 

postulate a shared frame consisting of the shared material plus a slot for the non-shared 

material. As more evidence accrues that this analysis is correct, the frame structure will 

be reinforced, and gain in psychological status. 

 

This strategy is not new; it has been proposed and implemented experimentally by Van 

Zaanen in his ABL system (Van Zaanen, 2001), and will not be considered in this chapter. 

The strategy is compatible with exemplar theories of categorization (Goldinger, 1996, 

1998; Hintzman, 1996; Kruschke, 1992); however, it does require that all or most 

utterances should be able to be retrieved verbatim from memory, which may make a large 

demand on the language-learner’s memory retrieval abilities.  

 

The technique proposed in the previous section suggests a different way of developing 

full-utterance frames, one which builds these structures from individual, highly familiar 

words. In the course of being exposed to language input, it can be expected that the child 

will initially recognize no words, and at later stages will be able to recognize an 
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increasing number of words. This would happen as the child becomes aware of certain 

phoneme sequences that occur fairly regularly in the input. These would be common 

words and word collocations (recall that in the current work it is assumed that the speech 

signal has already been successfully segmented into words). It seems likely that the first 

words she will be able to recognize from their phonological strings alone will be the most 

frequent words.  

 

If the child is also able to notice co-occurrence patterns between words in an utterance, 

she will, once again, most likely start with the co-occurrence patterns between the most 

frequent words. Suppose that at some stage the child can recognize the very familiar 

words “you”, “can’t” and “that”, but not yet the less frequent word “chew”. When faced 

with the utterance “you can’t chew that”, what the child can recognize out of the 

utterance could be represented as “[you] [can’t] […] [that]”. Given more extensive 

experience of this pattern, possibly with different slot fillers (“eat”, “drink”, “have”, etc.), 

the child may eventually discover the co-occurrence pattern between the frequent words, 

so that the larger pattern “you can’t … that” may become a familiar one. As these words 

and collocations frequently recur in several utterances, therefore, they may become 

associated with each other into a larger configuration of words, with the positions of the 

variable slots between them being part of the mental representation. Here, the actual 

identity of the intervening material plays no role in the abstraction of the frame (but the 

work described in Chapter 9 will take a different approach). 

 

Such a process may account for the results obtained by Gómez and Maye (2005) in an 

artificial language learning paradigm: it could be argued that children had abstracted out 

a kind of frame for the stimulus sentences, consisting of two words linked by a disjunct 

dependency, by attending to co-occurrences between the most commonly-occurring 

elements. 

 

At the same time, the continuous phonological contour typical of many utterances, as 

well as the demarcation of the utterance by silence on either side, may serve to tie the 

elements of the utterance together into a coherent whole.  
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Note that I refer here to mere recognition only, and to a process by which the “texture” of 

English utterances becomes familiar to the language-learning child; it is not required that 

the child should know what any of these structure-building words mean. However, the 

linguistic validity of the full-utterance frame would become even stronger if it was 

accompanied by predictable semantic concomitants, as in the work by Smith and 

colleagues (Jones & Smith, 1998; Jones et al., 1991; Landau et al., 1988; Samuelson & 

Smith, 1999; Smith, 2001; Yoshida & Smith, 2005; reviewed in Section 3.4.1) suggesting 

that certain linguistic frames serve to draw attention to object shape. 

6.4 Preliminary considerations 

6.4.1 Variant treatments of the frequent/infrequent word dichotomy 
With regards to the role of the most common words, there are at least three variant ways 

of handling the frequent/infrequent word dichotomy, with slightly different psychological 

interpretations. 

 

(1). Strict, with no replacement: Frequent words form a strict dichotomy with non-

frequent words, in that all tokens of frequent words are used only as potential frame-

building words, and are never considered as potential slot-fillers. If frequent words are 

not taken up into frames, they are not returned to the pool and can serve neither as frame-

building elements nor as fillers. 

 

(2) Strict, with replacement: Frequent words form a strict dichotomy with non-frequent 

words, but if a particular frequent word type is not used to form part of any frame, it is 

returned to the pool of words which can function as fillers, and so is no longer part of the 

frame-building element set. Under a psychological interpretation, this means that the 

child is able to keep track of which words are likely to form part of a frame, and hence 

are involved in establishing the “texture” of English, and which words are not, despite 

their high frequency of occurrence. This requires some initial exposure to English for the 

sake of becoming familiar with a number of different words, followed by a phase of 

becoming familiar with frames, and an explicit or implicit marking of the constituents of 
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these frames as frame-building words. Words that are marked as frame-building words 

cannot also serve as fillers of frames; hence the dichotomy is described as strict. 

 

(3) Broad: The same two processes that were assumed under “strict with replacement” 

are at work; however, once frames have been formed, any word (including any frame-

building word) can play the role of a filler. Such an approach would investigate the extent 

to which some frame-building words may play dual roles or have two different semantic 

functions, one “contentful” function where the word functions as a typical content word 

and the other more grammatical, with the word playing the role of a typical function word. 

 

In the current work, I will investigate only the option “strict with replacement”. This 

means that words in the list of the top N most frequent words are “returned to the pool” if 

they do not form part of any frames after filtering out frames and words (by setting the 

parameter V equal to 5 as discussed above). This means that the returned words are 

treated as “content words”, i.e. they can function as focal words whose part-of-speech is 

to be determined.  

6.4.2 Clustering analysis 
After the data matrix is compiled, it is subjected to a clustering analysis. The purpose of 

the clustering step is to attempt to create clusters of frames that together comprise a 

contextual paradigm from which the classes of say, verbs, nouns, or adjectives may be 

induced. All focal words that occur in a frame that has been allocated to a particular 

cluster are said to belong to the same part-of-speech.  

 

In this experiment, therefore, I am investigating the possibility that the part-of-speech of 

a word may be determined entirely from its appearance in one of a number of highly 

familiar contexts that have the status of linguistic units (plausibly constructions) for the 

child. I am hypothesizing that the main categories (noun, verb and adjective) of English 

may be bootstrapped out of only a small set of these lexically-specific contexts. This 

experiment is therefore the direct converse of the early experiments by Finch (1993) and 

others (e.g. Mintz et al, 2002; Redington et al., 1998), in which words were clustered 

together if they appeared in similar contexts, although the contexts themselves were 
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never the target of conscious focus. In this instance, it is the contexts that are clustered 

together, rather than the words. Subsequent chapters will take a more sophisticated 

approach. 

 

Many different clustering algorithms have been proposed in the data analysis literature. 

Some of the most popular approaches include hierarchical clustering, prototype-based 

methods such as K-means clustering, and density-based algorithms (see e.g. Tan, 

Steinbach & Kumar, 2006, for an overview). The essence of clustering is that members of 

a set of items are placed together into groups or clusters on the basis of shared 

characteristics. Items with similar characteristics, typically represented as numerical 

values in a data vector, are placed into the same cluster, while items with dissimilar 

characteristics end up in different clusters. The clusters are often, but not always, 

mutually exclusive, and membership of a cluster can be all-or-nothing, or a matter of 

degree. 

 

Insofar as clustering can be regarded as the formation of an abstract category of items 

based on shared characteristics of the items that go into the category, clustering is entirely 

compatible with standard psychological models of category formation (Goldinger, 1996, 

1998; Hintzman, 1986; Kruschke, 1992; Rosch, 1983). All experiments in this work will 

start from a basic set of categories produced by hierarchical clustering. In the current 

chapter, this categorization will be used “as is”; later chapters will present more 

sophisticated elaborations to hierarchical clustering. 

 

Hierarchical clustering operates on a data matrix where the rows of the matrix are the 

data vectors that represent the characteristics of the items that are about to be clustered 

(one row per item). All items are initially allocated to “singleton” clusters of their own. 

Clusters are subsequently merged into larger clusters by combining the two clusters with 

the most similar characteristics, according to a predefined distance function (the two 

clusters with the smallest distance between them are combined). The distance function is 

defined over two data vectors representing individual elements.  
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Another significant parameter in hierarchical clustering is the linkage function, which 

specifies how to apply the distance function in order to calculate the distance between 

two clusters with more than one element. Hierarchical clustering proceeds by repeatedly 

merging together the pair of clusters with the smallest linkage function value. 

 

Powers (1997b) provides a very thorough and systematic evaluation of the effects of 

combining different clustering distance functions and linkage functions, in the context of 

producing a hierarchical clustering on the alphabetic letters of English text. In the current 

context of part-of-speech induction, Finch (1993) obtained the most satisfying results by 

using Spearman’s rank correlation as the distance function, and average linkage as the 

linkage function. Preliminary testing showed this combination of functions to produce the 

best results in the current work as well, so that they are the two functions used in all work 

reported here. 

 

Prior to clustering, the data rows are preprocessed in order to offset the effects of frame 

frequency. Recall that each row corresponds to a frame slot, and each cell of the row 

contains the number of times that each particular focal word was encountered in that slot 

in the Manchester corpus. A row can therefore be regarded as the “word profile” vector 

for that particular frame. The distance function discussed above is applied to word profile 

vectors of different frames. When two frames have similar profiles, their distance value 

will be low, and they are more likely to be clustered together than two frames with 

disparate word profiles.  

 

If the data matrix is provided to hierarchical clustering in its raw frequency form, then the 

absolute token frequency of a frame will have a large influence on the magnitude of the 

distance of its word profile vector to that of another frame, artificially increasing the 

distance for some distance functions, and decreasing it for others. Given that we regard 

these frames as linguistic units with psychological reality for the child, it would be 

preferable to treat all frames equally, regardless of their particular token frequency in the 

corpus. Hence, the data matrix is L1-normalized to correct for frame frequency: the value 

of each cell in the data vector for a particular frame is divided by the sum of the values of 
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all cells in that row (i.e. by the overall token frequency of the frame itself). The result is 

that each cell in a particular row contains the conditional probability that each particular 

focal word will occur in the given frame slot corresponding to the row. The hierarchical 

clustering process will now cluster frames together based on their profiles alone, with no 

effect from the token frequencies of the frames. 

 

A further parameter in this model is the number of clusters K that are produced by the 

clustering algorithm. Hierarchical clustering produces a tree of relationships between the 

subclusters that it forms, and two clusters that are merged into a larger cluster are 

represented as two sibling nodes in the tree, with the merged cluster as their parent. In 

order to produce K clusters, the tree is “cut” at a certain level, so that a number of 

unconnected top-level nodes are produced; these correspond to the individual clusters. 

When using hierarchical clustering software, one supplies the program with the required 

number of clusters, and the tree is automatically cut at the desired level. 

 

Specifying the value of K is somewhat undesirable from a modeling point of view, 

because one would prefer the number of clusters to emerge automatically from the model, 

rather than being artificially imposed from outside by the researcher. A number of 

techniques have been proposed for determining the optimal cutoff level in a hierarchical 

cluster tree. However, in the current situation we have a rough idea on theoretical 

grounds about the number of clusters we would like to produce. The three most 

prominent categories of content words in English are nouns, verbs and adjectives, and a 

preliminary inspection of the words that appear in slot positions in the current experiment 

shows that these categories make up the vast majority of all focal words. This suggests 

that the number of clusters should be low, and roughly of the order of 3 to 7. Ideally, the 

clustering process should produce one cluster each corresponding to the nouns, adjectives 

and verbs, but this will not necessarily happen in each instance. Often, hierarchical 

clustering produces small and “idiosyncratic” clusters consisting of a few items that 

happen to be closely related (in this case, they would be a set of frames that happen to 

take the same words into their slots, while not having a large amount of similarity to 

many members of the larger clusters). In these cases, one might expect some of the major 
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classes to be merged together for low values of K, because the idiosyncratic classes are 

regarded as more dissimilar to the other classes than the two merged major classes are to 

each other. The major classes would then “separate out” only for larger values of K. In 

the current work, I will in each case choose the lowest value of K that produces 3 clusters 

corresponding to nouns, verbs and adjectives. In nearly all cases reported in this chapter, 

the value of K is in fact equal to 3. In all other cases, the point where the three main 

categories emerge is also the first point at which three sizeable clusters have formed (i.e. 

clusters that cover more than 1% of the instance tokens in the data set). This seems to 

indicate quite strongly that the three main categories are an intrinsic feature of the 

English language, at least in the input to language-learning children.  

6.4.3 The number of candidate frame-building words 
The process of frame formation is based on finding skeletal structure made up of the N 

most commonly-occurring words. It therefore becomes important to ask what value N 

should take on. If the success of this process was to depend heavily on the specific value 

of N, then the process could hardly be said to be a robust one, and this would make it 

doubtful that children learning a language could follow a similar strategy. It is desirable 

that the process should produce good and roughly comparable results for any reasonably 

large value of N. 

 

The choice of N does not, perhaps, directly influence the quality of the results obtained in 

these experiments, but it does influence a number of other variables that can arguably 

have an effect on the quality of the results. For instance, N determines: 

• the number N′ of words that are actually used to form frames (after filtering) 

• the number of different frames in the data set (after filtering) 

• the number of different focal words in the data set (after filtering) 

• the proportion of all utterances in the corpus that are accounted for by combining 

a frame and a focal word from the data set (i.e. word-frame instance tokens) 

• the number of different frame-focal word combinations in the data set (i.e. word-

frame instance types) 
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Because of the potentially important role played by N, the experiments in this chapter 

will be repeated over a range of specific values of N. The values that will be used are N = 

80, 150, 180, 240, 290, 410, 450, 520, 610, 690. A detailed examination of the effect of N 

on various parameters, and a justification for the use of these specific values, will be 

deferred until Section 6.5.3.  

6.5 Implementation 

6.5.1 Qualitative results 

6.5.1.1 Most frequent words in the Manchester corpus 
Table 6 shows the top 290 most common words in the Manchester corpus, arranged from 

most to least frequent. The value of N = 290 was chosen as a reasonably “average” and 

representative value in the range to be considered. This will also be the fixed setting of N 

chosen for experiments in later chapters. Words in bold take part in lexically-specific 

frames as the specific, structure-building elements. Most of the structure-building words 

were closed-class/function words, although a number of words towards the less-frequent 

part of the range were open-class/content words. Out of these contentive structure-

building words, some were light verbs such as “make”, “give” and “take”, or verbs that 

typically appear in fixed expressions which formed part of a larger utterance, such as 

“matter”, “happened”. Surprisingly, a large number of adjectives (including the five most 

prominent colour words) were on the list of frame-building elements, as were a number 

of very concrete object names such as “dog”, “car” and “train”. These words may well 

provide a way to bootstrap into discovering the rather common [Adjective Noun] 

structure in English, by means of the frames that these words support, such as “X car” 

(taking adjectives) and “blue X” (taking nouns). In this way, even highly contentive 

words can serve as a focus around which productive frames can form. 
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you, the, it, a, to, oh, that, what, is, I, on, and, do, there, are, in, we, that's, 
no, one, your, it's, have, don't, childname, can, right, he, going, not, this, 
go, got, put, well, then, look, yeah, want, now, think, what's, of, with, like, 
for, they, all, did, you're, yes, here, get, isn't, me, see, come, some, them, 
she, shall, up, out, okay, be, just, mmhm, know, was, at, there's, her, 
mummy, he's, very, good, you've, where, bit, little, if, because, didn't, 
down, gonna, off, does, doing, big, so, back, him, I'm, can't, his, hmm, 

make, about, where's, they're, why, doesn't, more, say, my, nice, play, 

again, these, dear, but, over, car, thankyou, who's, aren't, else, two, 

what're, has, let's, or, baby, another, who, other, those, haven't, when, 

daddy, how, take, I’ll, gone, she's, need, will, please, were, find, train, 

better, any, way, pardon, away, had, too, sit, an, we'll, round, eat, whoops, 

something, which, tell, aswell, mummy's, done, would, box, give, goes, red, 

alright, really, might, I've, remember, house, from, girl, willn't, boy, could, 

color, we've, let, wasn't, fit, you'll, time, won't, darling, blue, green, man, 

things, having, book, hasn't, we're, went, sleep, aah, been, hair, getting, 

coming, dolly, top, as, three, horse, one's, animals, yellow, only, many, head, 

um, first, looking, today, said, tea, careful, help, bridge, called, sure, draw, 

thought, turn, playing, through, ones, happened, though, orange, looks, 

hello, much, toys, here's, pull, next, bricks, silly, stuck, fall, try, lots, hey, 

anything, enough, minute, sorry, naughty, being, drink, bed, Caroline, cake, 

water, keep, build, putting, door, matter, under, Anna, should, nose, still, 
poor, stop, cow, wants, tiger, making, hurt, stand, funny, yet, dog, work, 

read, move, show, eggs, into, broken, elephant, leave, says, shopping. 

Table 6. The 290 most common words in the Manchester corpus, with frame-building words 

indicated in bold. 

6.5.1.2 Example frames 
Having selected the top N words for some value of N, the next steps in the algorithm are:  

• to find all full-utterance frames made up of these words,  
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• to collect co-occurrence data describing which full-utterance frames occur 

together with which focal words, and  

• to filter the resulting data matrix to contain only frames with at least 5 different 

words occurring in their slots, and words that occur in the slots of at least 5 

frames (the 5-5 requirement) 

 

There are two reasons for the 5-5 requirement, related to the token frequency and type 

frequency respectively of the frames. Firstly, only presumed frames that occur fairly 

often (high token frequency) are likely to be reliable features of the input and hence 

likely to be “real” elements of the language. The same remark can also be made from a 

pragmatic point of view: larger frequencies in the cells of the data matrix are more likely 

to provide a reliable expression of the distance between two frames, and hence a better 

clustering of frames. Consequently it is useful to require there to be at least 5 non-zero 

entries in each row and column.  

 

Secondly, if frames take only a limited set of focal words into their slots, then it may be 

more appropriate to describe them as fixed expressions rather than flexible and 

productive frames. The same holds in cases where certain words only occur in one or two 

frame contexts. The 5-5 requirement ensures that only frames and words which combine 

productively with each other (high type frequency) will be included in the final data set.  

 

The details of the algorithm are as follows: We start with a set of candidate frames and a 

set of candidate words that have occurred, in the corpus, in the slots of these frames. First, 

all frames with fewer than 5 different words occurring in their slots are discarded from 

the frame set; next, all words that, as a result of the previous step, occur in fewer than 5 

different frames are discarded from the word set. These two steps are repeated until 

convergence of both the frame and word sets, i.e. until no additional frames and no 

additional words are discarded.  

 

The resulting set of frames appears to contain a number of intuitively comprehensible and 

familiar sentence frames, which could quite plausibly be used for part-of-speech 
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induction. Table 7 shows the 100 most frequently-occurring frames produced by this 

process for N = 290, and Table 8 shows a selection of frames together with the words that 

occur in the slots of each one. 

 

oh X;  that's X;  are you X ?;  a X;  it's X;  it's a X;  X then;  that's a X;  well X;   

can you X ?;  is it X ?;  is that X ?;  a X ?;  X it;  the X;  where's the X ?;  X me;   

Z the X;  not X;  poor X;  that's the X;  X the Z;  Z your X;  X your Z;  there's the X; 

what X ?;  it's not X;  X a Z;  do you X ?;  do you like X ?;  can you say X ?;   

i'm X;  they're X;  be X;  the X ?;  what're you X for ?;  and X;  he's X;  is he X ?; 

Z a X;  in the X;  you X;  X down;  two X;  X up;  there's a X;  it's not a X;   

on the X;  some X;  where's your X ?;  X it ?;  just X;  X and Z;  no X;  and the X; 

it X;  that's X, isn't it ?;  is she X ?;  very X;  that's a good X;  Z and X;  is it a X ?; 

and a X;  what's X ?;  there's X;  don't X;  your X;  another X;  that X;  which X ?; 

you're X;  X you;  are they X ?;  don't X it;  what about X ?;  X what ?;  Z you X ?; 

what're you X ?;  big X;  say X;  that's a X , isn't it ?;  X again;  what a X;   

where's X ?;  that's not a X;  what do you X ?;  X , childname;  more X;  she's X; 

it's X , isn't it ?;  it's a X , isn't it ?;  that's not X;  X that ?;  your X ?;   

there's your X;  you like X , don't you ?;  is that a X ?;  it's X , is it ?;  X you ?;  

it is X 
Table 7. The 100 most frequently-occurring full-utterance frame slots in the Manchester corpus, for 
N = 290. 
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X it off : [ finish, knock, pull, shake, slide, wipe ] 
 
X , was it ? : [ Alice, horrible, juice, motorbike, yesterday ] 
 
a X , isn't it ? : [ cat, cup, dinosaur, doggy, frog, hotdog, lemon, lid, lift, mouse, 
panda, piano, radiator, shirt, top, tractor ] 
 
a X cake : [ birthday, chocolate, jam, pretend, yummy ] 
 
a bit X , isn't it ? : [ different, difficult, easier, fiddly, stiff ] 
 
a blue X : [ ball, balloon, brick, knife, monster, slide, square ] 
 
a very X one : [ fast, huge, old, small, tiny ] 
 
and her X : [ arms, cheek, clothes, hand, hat, head, toys, trousers ] 
 
are we X ? : [ comfortable, done, ready, sorted, stuck, tired ] 
 
are you X your Z ? : [ counting, eating, getting, stamping, washing, writing ] 
 
are you going to X ? : [ bed, blow, count, dance, drive, hammer, help, hide, jump, 
listen, nursery, paint, pull, sing, sleep, start, swim, talk, tip, town, watch, work, write ] 
 
are you making a X ? : [ farm, fence, house, mess, sandwich, tower, wall, windmill, 
zoo ] 
 
be X : [ careful, gentle, quick, quiet, sick ] 
 
because he's X : [ broken, hard, poorly, sad, Thomas, waving, working ] 
 
can I have a X ? : [ bite, cuddle, digger, kiss, lick, piece, pig, play, spoon, strawberry, 
truck ] 
 
can you X that ? : [ catch, feel, hear, hold, manage, pull, read, remember, sing, 
squash ] 
 
do you want to do some X ? : [ coloring, cooking, drawing, rolling, writing ] 
 
don't X me : [ ask, bang, bite, forget, help, hit, kick, Mummie, push, tell, tickle ] 
 
from X : [ Duplo, FatherChristmas, Grandma, MacDonalds, Mark, OldBear ] 
 
has it X ? : [ broke, broken, crashed, popped, stuck ] 
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he is X : [ clumsy, coming, cross, crying, grey, happy, lovely, odd, outside, pink, 
stuck, upset ] 
 
how many X have we got ? : [ animals, books, candles, penguins, tins] 
 
I X it : [ brought, caught, done, drop, dropped, had, love, made, mean, missed ] 
 
I don't know where X is : [ Caitlin, duck, Heidi, Henry, horsie, Tigger ] 
 
let's have a look at your X : [ feet, finger, nose, teeth, toes ] 
 
Mummy X it : [ ate, broke, catch, drive, dropped, fit, fix, fixed, had, hide, hold, keep, 
mend, open, pull, push, roll, sort, stop, wipe ] 
 
nice and X : [ clean, cold, comfortable, dry, flat, gently, hard, hot, quiet, straight, 
sweet, tidy, warm ] 
 
some more X ? : [ beans, bricks, chips, dogs, fence, fun, gates, peas, spaghetti, 
tomato, toys, water ] 
 
that X be Z : [ might, must, should, will, willn't ] 
 
that Z be X : [ better, easier, fine, interesting, new, sticky ] 
 
that's a baby X : [ calf, chicken, cow, duck, goat, horse, lion, pig, sheep, tiger ] 
 
train X : [ coming, goes, horse, thing, track ] 
 
turn the X over : [ basket, cakes, lid, numbers, tape, top ] 
 
we X : [ could, had, might, saw, went, will, willn't, won't ] 
 
what X is that ? : [ animal, letter, noise, piece, shape, song ] 
 
what have you X ? : [ bought, done, dropped, forgotten, found, lost ] 
 
what're we going to X ? : [ buy, cook, drink, fix, play ] 
 
why are you X ? : [ busy, crying, hiding, laughing, sad, shouting, stamping, tired, 
whispering ] 
 
you X a Z : [ bang, choose, had, made, play, read, sing ] 
 
you Z a X : [ book, drink, drum, goal, lorry, rainbow, tower ] 
Table 8. A selection of frames from the Manchester corpus, produced from the top 290 most frequent 

words. 
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Note that, because of the way that the frames are constructed, it is perfectly possible that 

one particular frame contains more than one slot (e.g. “Did you X a X ?”). In collecting 

data for the data matrix, each of these slots is tracked independently, so that there are two 

different and independent frames: “Did you X a Z ?” and “Did you Z a X ?”, where the X 

in each case represents the active slot for which we are collecting filler data, and the Z 

represents the inactive slot. The reader should remain aware that the term “frame” refers 

to a particular configuration of words with one active slot, not to the underlying 

schematic utterance structure (e.g. “Did you X a X?”) from which these configurations 

arose. 

 

The assumption of independence, however, is potentially unrealistic. If a frame has, say, 

two slots, each of which could be occupied by members of two different parts-of-speech, 

then it is likely that the two slots are not independent, but that a choice between the two 

alternatives in the first slot would determine the choice in the second slot. Nevertheless, 

these potential interactions are ignored in this simple model, in accordance with the idea 

that “you can’t abstract two things at the same time”. 

6.5.2 Clustering results 
Hierarchical clustering was carried out on the data matrix obtained as described above, 

using Spearman’s rank correlation as a distance measure between rows (frames), and 

using the average linkage algorithm of Sokal and Sneath (1963) in order to form clusters. 

 

The clusters obtained when the algorithm is asked to produce 3 clusters are shown in 

Table 9. Intuitively, it seems as if the clustering process has produced 3 very convincing 

sets of contexts for, respectively, verbs, adjectives and nouns. The frames in cluster 1 

seem to be for the most part contexts in which one would expect to see verbs, and exhibit 

a range of argument structures (e.g. “X it”, “X it off”, “X it to me”, “X on my Z”, “X the 

Z down”), in a variety of questions, imperative utterances and declarative utterances. The 

frames in Cluster 2 seem to be likely contexts for adjective fillers, especially in 

conjunction with frequently-used nouns (“X baby”, X box”, “X car”), the copula (“are 

you X again?”, “I’m X”), and modifiers (“a bit X, isn’t it?”, “it’s very X”, “not too X”, 

“still X”). By far the largest of the three clusters is Cluster 3, which appears to be a 
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Cluster 1 (233 frames) Cluster 2 (324 frames) Cluster 3 (908 frames) 
X again 
X down 
X her up 
X him 
X it 
X it off 
X it to me 
X me 
X on my Z 
X over 
X that one 
X the Z down 
X the car 
X with your Z 
X your Z 
are you going to X ? 
can you X a Z ? 
can you X it ? 
did she X ? 
do you want me to X it ? 
don't X 
give it a good X 
I’ll X that 
let's X it 
mummy X it ? 
shall we X again ? 
she X 
to X 
what did you X ? 
why don't you X ? 
you X it then 
you can X it 
you're going to X 

X , is it ? 
X baby 
X box 
X car 
X girl 
Z it X 
X some Z 
a X one 
a bit X , isn't it ? 
all X 
and they're X 
are you X again ? 
be X 
because he's X 
going X ? 
has it X ? 
he's X , is he ? 
i know it's X 
I’m X 
is it a X one ? 
is it too X ? 
it's X , isn't it ? 
it's very X 
make it X 
not too X 
still X 
that's a X one 
this one's X 
what have you X ? 
what're you X for ? 
who's X ? 
you are X , aren't you ? 
you're very X 

X at the Z 
Z at the X 
Z in your X 
Z with a X 
a X 
a baby X 
a green X 
all these X 
and another X 
are you having a X ? 
back to the X 
called a X 
can i have a X ? 
can you find me the X ? 
did you Z your X ? 
do you want a X ?  
don't put your X in there 
get the X out 
give him a X 
it's for X 
it's not very X , is it ? 
more X 
on his X 
put her X on 
shall we draw a X ? 
some X 
that was my X 
that's a X 
the X 
there's lots of X 
what X do you want ? 
what's happened to X ?  
your X 

Table 9. Representative frames from each cluster for full-utterance frame clusters, N = 290, with 3 

clusters, together with their associated slot-fillers. 
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cluster of frames that accept nouns into their slots. Apart from the “archetypal” noun 

contexts “a X” and “the X”, there are a great number of basic utterance structures 

illustrating the ways in which nouns and noun phrases can be used in various argument 

structures, e.g. “that’s a X”, “do you want a X?”, “on his X”, “give him a X”, etc. 

 

Not all frames assigned to the clusters fit with the general trend of the cluster. For 

instance, the “verb” Cluster 1 contains “give it a good X”, which accepts as slot fillers the 

nominalized verb forms “pull”, “rub”, “squeeze”, “wash” and “wipe” which should have 

been classified as nouns in this context. In Cluster 2, in particular, there are many non-

adjectival frames, especially as a result of the prevalence of many past and present 

participial verb forms such as “stuck”, “broken”, “exciting”, etc., which are arguably 

adjectival in contexts such as “is that X?”, “a X one”, but which are also used in verbal 

form in frames such as “has it X?” and “what have you X?”; these frames end up being 

grouped with the other adjectival frames in Cluster 2 because of the large overlap in their 

filler sets. There are also many ambiguous frames in Cluster 2, mainly due to the 

presence of the copula, which can be used in conjunction with not only adjectives, but 

also proper names, mass nouns and pluralized common nouns. Lastly, some assignments 

of frames to clusters are simply anomalous: there is no clear reason why, for instance, 

“It’s not very X, is it ?” is grouped with the “noun” frames in Cluster 3.  

  

It is perhaps difficult to gain a clear impression of the nature of these clusters, and their 

putative relationship to traditional parts-of-speech, by inspecting a list of frames that 

form the clusters. It may be more helpful also to display these qualitative results in a 

format derived from the words that go into the slots of the frames that make up these 

clusters. This is done in Table 10. The word lists were obtained for each frame cluster by, 

for each word in the data set, counting the number of frames from that cluster in which 

the word occurred as a filler. The list was then sorted from highest frequency to lowest, 

so that, for instance, the word which occurred as a filler for the highest number of 

different Cluster 1 frames (“open”) appeared at the top of the Cluster 1 list, and so too for 

the other two clusters (see Box 1 for a description of the algorithm). Table 10 shows the 

top fifty words that occur in the greatest number of frames from each cluster. As expected, 



 154

the words most closely affiliated with a wide range of Cluster 1 frames are (mostly 

morphologically unmarked forms of) verbs, and the word list for Cluster 3 contains nouns 

exclusively. In the case of Cluster 2, some of the problems identified earlier with frames 

are confirmed in the word list. The list contains a great number of verbal present and past 

participial forms, some of which are arguably adjectival (“stuck”, “broken”, “tired”), but 

also some which are probably not (“playing”, “swimming”, “hiding”) and this is 

presumably due to the inclusion of a great number of frames in which the X slot is 

associated with the copula, as discussed above. There is also one outright proper name 

(“Thomas”) on the list. Nevertheless, it can clearly be seen from the majority of the 

words in Cluster 2 that it is a cluster that favours adjectives.  

  

Cluster 1 Cluster 2 Cluster 3 
open, pull, sing, hold, try, 
leave, watch, fix, push, 
read, catch, count, keep, 
remember, will, play, 
press, sit, use, drive, 
help, jump, blow, stop, 
tell, wash, willn't, hear, 
hide, roll, throw, pick, 
bite, close, drink, stand, 
break, might, wipe, bring, 
cut, fall, fit, write, doesn't, 
dropped, finish, kick, kiss, 
show, shut, tickle, tip, 
undo 

stuck, broken, alright, 
done, tired, better, hot, 
cold, eating, dirty, crying, 
hiding, lost, lovely, clever, 
coming, hungry, hard, 
poorly, wet, finished, 
sleeping, pink, asleep, 
happy, yours, sad, ready, 
heavy, outside, purple, 
Thomas, clean, playing, 
pretty, small, white, 
upstairs, cross, difficult, 
drawing, empty, fine, 
found, horrible, 
swimming, wrong, dry, 
love, lucky, mine, noisy, 
running, sorry, through 

horse, cow, fish, house, 
tiger, monkey, pig, book, 
dolly, hat, cat, chicken, 
elephant, boat, sheep, 
panda, penguin, bricks, 
head, drink, foot, ball, 
bag, nose, teddy, tower, 
water, animals, duck, 
hair, tea, egg, giraffe, 
juice, cheese, chips, 
hand, rabbit, trousers, 
milk, table, top, tractor, 
dress, eyes, lady, lion, 
feet, hippo, bus, chair, 
Thomas 

Table 10. The words that occur in the largest set of frames from each full-utterance frame cluster, 

N=290, with 3 clusters. 
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Data structures: 
- data: the original IxJ data matrix, where I is the number of frames and J is the number of 

words in the data set. The cell data[ i ][ j ] contains the number of times that frame i and 
word j have occurred together in the corpus. 

- totals: a two-dimensional KxJ matrix, where K is the number of clusters. Each cell 
totals[ k ][ j ] will contain a pair <x, f> where x is the index of the word in data, and f is the 
frequency value, giving the total number of frames from cluster k that have occurred with 
word x in the corpus. 

- clustering: the original 1xI hard clustering vector; clustering[ i ] contains the index of the 
cluster to which frame i has been assigned by the hard clustering algorithm. 

 
Algorithm: 
1. Let k be the index of each frame cluster. Then, for each frame cluster, do the following: 

a. Let j be the index of each word. Then, for each word, do the following: 
1. Set the value of the index-frequency pair in totals[ k ][ j ] to <j, 0>. 
2. Let i be the index of each frame. Then for each frame, do the 

following: 
If clustering [ i ] = k (i.e. frame i belongs to cluster k), AND if 
data[ i ][ j ] > 0 (i.e. frame i and word j have occurred together 
in the data set), then increase the frequency value of 
totals[ k ][ j ] by 1. 

 
 

b. Sort the row totals[ k ] from highest frequency value to lowest. This sorts 
the words of the data set from most to least strongly associated with the 
cluster k. 

 
 

Box 1. Algorithm to determine how strongly a word is associated with a frame cluster (as based on 
frame type frequency). 
 

Note also that, because of the way that the lists were constructed, it is perfectly possible 

for some (ambiguous) words to appear on more than one list; for instance, “Thomas” 

appears on the lists for Clusters 2 and 3, and “drink” appears (correctly) on the lists of 

Clusters 1 and 3. 

 

Taking the clustering analysis further reveals even finer categorial distinctions. Table 11 

shows the most closely-associated words when 20 clusters are created. (Only the eleven 

clusters composed of more than 15 frames are shown).  

 

This table shows that the adjective/proper noun cluster has successfully split into separate 

clusters for proper noun, participial verb, and all other adjective frames (Clusters 3, 2 and 
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1 respectively). The participial-seeming forms such as “broken” and “stuck” in Cluster 1 

are actually present in the list due to their adjectival usages, and in fact the truly verbal 

usages of “broken” lead to its also appearing in Cluster 2.  

 

Cluster 1 stuck, alright, broken, cold, tired, hot, 
dirty, better, crying, lovely, coming, 
hungry, clever, hard, hiding, wet, 
poorly, sleeping, pink, yours, asleep, 
happy, sad, ready, purple, finished, 
heavy, Thomas, white, clean, done, 
outside, small, difficult, pretty, upstairs 

Cluster 2 done, eating, lost, found, broken, 
building, had, holding, dropped, 
drawing, driving, getting, made, riding, 
wearing, been, bought, missed, being, 
caught, drinking, forgotten, spilt, 
washing, writing 

Cluster 3 dolly, Thomas, panda, Gordon, yours, 
Caroline, Henry, James, Andy, hippo, 
Anna, driver, monkey, grandpa, 
granny, penguin, Percy, Pingu, baba, 
Edward, rabbit, teddy, Toby, black, 
mummie, pink 

Cluster 5 animals, bricks, cars, babys, horses, 
things, pigs, trains, wheels, bits, duplo, 
tins, cows, doll, monkeys, penguins, 
pieces, puzzles, toys, vehicles, bees, 
biscuits, candles, dolly, elephants, 
gates, letters, men, mine, money, ones, 
pennys, people, rings, sheep, starfish, 
teddys 

Cluster 6 fish, chips, juice, cheese, chicken, 
water, grapes, beans, milk, bananas, 
bricks, strawberrys, tea, chocolate, 
peas, sweetcorn, bread, meat, pears, 
soup, tomato, apples, biscuits, carrots, 
fruit, icecream, lettuce, money, 
penguins, sheep, toast, food, oranges, 
sausages, cabbage, cows, paper, 
shoes 

Cluster 8 open, pull, sing, hold, try, leave, watch, 
fix, read, count, push, catch, keep, 
play, press, remember, sit, use, help, 
blow, drive, stop, jump, tell, wash, hear, 
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hide, roll, throw, pick, bite, close, drink, 
stand, break, wipe, bring, cut, fall, fit, 
write, dropped, finish, kick, show, shut, 
tickle, tip, undo, fetch, kiss, lift, mend, 
missed, reach 

Cluster 11 horse, cow, book, tiger, pig, house, cat, 
monkey, boat, hat, drink, ball, penguin, 
bag, giraffe, sheep, fish, table, tower, 
duck, lion, elephant, lady, picture, 
tractor, chicken, tunnel, basket, bus, 
rabbit, top, whale, truck, banana, bull, 
dolly, goat, hole, panda, snake, biscuit, 
dress, bird, chair, gate, tree, way, 
window, digger, lemon, circle, hippo, 
lid, spoon, teddy, wheel, brick, farm, 
fence, story, balloon, doll, piece, 
sausage, thing, foot, lorry, pottie, 
tomato 

Cluster 12 elephant, egg, apple, icecream, onion, 
teddy, aubergine, aeroplane, b, c, 
chicken, d, f, h, igloo, j, m, monkey, n, 
umbrella, w 

Cluster 14 head, nose, hair, feet, eyes, foot, hand, 
trousers, tummy, tea, mouth, face, 
finger, legs, knee, shoes, ears, hat, 
name, toes, fingers, leg, arm, arms, 
dinner, dress, toe, clothes, tail, thumb, 
bottom, knees, house, juice, money, 
toys, bed, favorite, neck, teddy, teeth, 
top, bib, chair, ear, hands, pants 

Cluster 16 will, willn't, might, won't, could, must, 
doesn't, hasn't, couldn't, shouldn't, 
weren't, says, wouldn't, crashed, had, 
should, fits, goes, leave, saw, went 

Cluster 18 through, love, so, gently, nightnight, 
pet, sorry, aah, later, listen, sweetheart, 
carefully, hey, watch, better, byebye, 
careful, dear, nicely, phone, properly, 
steady, wrong, actually, ah, alright, 
bye, er, fine, inside, nearly, open, 
quick, thanks 

Table 11. The words that occur in the largest set of frames from each full-utterance frame cluster, N 
= 290, with 20 clusters. 
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Other small clusters are associated with plural count nouns (Cluster 5), mass nouns 

(Cluster 6), body parts and clothing (Cluster 14), and modal verbs (Cluster 16). Two 

slightly anomalous clusters seem to be based on frames where the slot mostly follows the 

word “an” (Cluster 12) or precedes “for”, and one where the filler is to some degree 

detached from or “tacked onto the end of” the frame (Cluster 18), and so may be an 

interjection such as “thanks” or “alright”, a vocative such as “sweetheart” or “pet”, or an 

adverb such as “gently”.  

 

Most of the 9 smaller omitted clusters are not obviously coherent, although one seems to 

favour numerals such as “five” and “six”, and two others are associated with the names of 

places, such as “shops”, “school” and “playgroup”. 

6.5.3 Effect of number of frequent words used 
This section examines the effects of manipulating N, the number of most frequent words 

that are considered as potential frame-building elements, on various properties of the 

resulting data set.  

 

Recall that frequent words that are candidates for forming frames but that do not end up 

forming part of any frames are treated as potential slot-fillers instead. It might therefore 

be possible that, as we increase the value of N, there might be a point at which the 

number of words N’ actually used in frames levels off so that further increases in N do 

not increase N’, and hence contribute no further additions to the set of frames that are 

discovered. This is to some extent the case: Figure 1 illustrates the effect on N’ of 

increasing N. For low values of N, every new word added to the list is taken up into a 

frame structure. At about N = 90, the first words appear in the list that do not participate 

in any frames.  

 

At N = 390, N’ reaches its maximum value of 195. From this point on, N’ actually 

declines in value. This is because, during the discovery process, if too many lower-

frequency words are treated as potential structure-building elements, and hence are not 

considered as X filler elements as they should be, then many useful frames are “blocked” 

from being recognized in cases where their slots are filled by these lower-frequency  
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Figure 1. The effect of the number of candidate words 

on the number of words used to form frames. 

Figure 2. The effect of the number of candidate words on the 

number of frame types and focal word types in the final data 

set. 

 
Figure 3. The effect of the number of candidate words 

on the number of frame+word instance types in the final 

data set. 

 

Figure 4. The effect of the number of candidate 

words on the proportion of all utterances covered by 

the data set. 
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Figure 5. The effect of the number of candidate words 

on the proportion of all word tokens in the corpus 

covered by the data set (as focal words). 

 

Figure 6. The effect of the number of candidate 

words on the proportion of all X words in the 

corpus covered by the data set (as focal words). 

 

Figure 7. The effect of the number of candidate words 

on the proportion of all word tokens in the corpus 

categorized by the complete model (as either focal words 

or frame-building words). 
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words. Hence, the only frames that “survive” are the ones that occur so frequently that 

they still manage to be filled by a sufficient number of even-lower-frequency words. 

Figure 2 shows the effect of N on the number of frame types and focal word types that are 

used in the experiment after filtering the dataset. Both the number of words and the 

number of frames attain two distinct peaks, at N = 80 and at N = 690 for both words and 

frames, and a single trough between the peaks at N = 280 for words and N = 290 for 

frames. Figure 3 shows the effect on the number of distinct frame-word combinations 

covered by the dataset; this value also peaks at N = 80 and troughs at N = 290.  

 

In Figure 4, we see how N influences the proportion of all utterances that are covered by 

a frame-word combination in the data set, and Figure 5 shows the proportion of all word 

tokens that are treated as focal words in the data set. These two graphs therefore show, 

respectively, the proportion of utterances and of word tokens in the corpus that are 

actively categorized by the model. 

 

A different way to gauge coverage is to take into account that the data set can only 

account for word tokens that have been rewritten as X’s. Hence, a reasonable measure of 

coverage might be the proportion of all X’s that are covered by the data set. This graph is 

shown in Figure 6, with values ranging between 8-12%, peaking at N=170. 

 

The proportions shown in Figures 4 to 6 are rather low (mostly ranging between 12-18% 

and 2.5%-5%, respectively). However, they may under-represent the extent to which the 

model covers the corpus. The most frequent, structure-building words are not subjected to 

tagging, but are treated as themselves in the frames. Hence, they are arguably tagged as 

belonging to a category with one element, namely themselves. A fairer description of the 

number of words that are tagged by the model might be obtained by adding the number of 

word tokens appearing as focal words (as shown in Figure 5) to the number of word 

tokens belonging to the set of frame-building word types. This graph is depicted in Figure 

7, and provides a much higher estimate of the proportion of the corpus accounted for by 

the model, peaking at 77% when N = 290. 

 



 162

In the experiments reported in this chapter, the value of N is set to one of a number of 

“key” values, in order to gauge the effect of manipulating N on the final outcome. From 

the graphs, it is clear that 290 is a key value, with the number of frames, words and 

frame-word instances being at a low point, while the number of frame-building words 

reaches its peak. Paradoxically, the value N = 290 represents the point with the largest 

number of frame-building word types, but where the smallest number of frames have 

actually been built. The converse situation holds at the two values of N = 80 and N = 690, 

where the numbers of frames, focal word types and frame-word instances reach their 

local peaks, and so these two values are used to delimit the range of considered values of 

N. Attaining the maximum amount of coverage (at N = 80 and N = 690) is not necessarily 

desirable in and of itself: the additional frames and words made available at these two 

points may be of lower quality compared to those in the smaller sets used for N = 290. 

Only a quantitative evaluation of the resulting categorization will determine whether any 

values of N produce markedly better results than others .  

 

Intermediate values of N will also be considered, and are chosen on the basis of the 

number of frame-word instances they yield; with N = 80, 290 and 690 producing 

approximately 23, 19 and 24 thousand instances, respectively, intermediate values of N 

are chosen that interpolate between these values in increments of a thousand instance 

tokens at a time. The additional values of N are 150 (22K instances), 180 (21K), 240 

(20K), 410 (20K), 450 (21K), 520 (22K) and 610 (23K). 

6.5.4 Quantitative evaluation 
The 3-cluster clustering obtained in Section 6.5.2 can also be evaluated quantitatively, by 

assigning a category to each of the focal words occurring in the utterances that were used 

in the data matrix. In the current experiment, the categorization process is very simple: 

there is one category for every cluster, and if a full-utterance frame is allocated to a 

particular cluster, every instance of a focal word that occurs in that frame in the corpus is 

assigned to the category corresponding to that cluster. Taking examples from Table 8, if 

the frame “what X is that?” is allocated to, say, cluster 1, then all the focal words that 

occur in that frame are allocated to category 1; that is to say, “animal” in the utterance 
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“what animal is that?”, “letter” in “what letter is that?”, etc., will all be allocated to the 

same category. 

 

Once a category has been assigned to each focal word instance, this experimental 

categorization can be compared to a gold standard categorization. As mentioned, for the 

purpose of evaluation we make use of only the three main categories in the gold standard: 

nouns, verbs and adjectives. This decision is justified by the fact that other categories 

represent only a small portion of the categorized words. Table 12 shows how the word 

tokens in the portion of the corpus considered for N = 290 are distributed into categories. 

The main three categories make up 86.4% of word tokens between them. The only other 

categories with a sizeable number of tokens are adverbs (3.2%) and communication 

words such as “oh” and “yeah” (2.5% for “co” and 5.3% for “co-voc”), with all other 

categories together making up around 3% of the total. The three main categories therefore 

make up the lion’s share of all tokens. 

 

Category # tokens % of total 
adjective 3608 9.9 
adv 1162 3.2 
chi 16 0.0 
co 904 2.5 
conj-subor 23 0.1 
co-voc 1928 5.3 
det-num 161 0.4 
fil 76 0.2 
int 39 0.1 
n 19026 52.0 
n~v 62 0.2 
on 22 0.1 
post 101 0.3 
prep 124 0.3 
pro 7 0.0 
pro-indef 135 0.4 
pro-poss 192 0.5 
qn 31 0.1 
v 8984 24.5 

Table 12. The gold standard category distribution of the words in the full-utterance frame data set, 
for N = 290. Category labels are from CHILDES. Bold text indicates the three main categories 
considered for analysis. 
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We make use of the pair counting method, as discussed in Section 5.5.1, in order to 

evaluate the performance of the hierarchical clustering process in categorizing focal word 

instances. Recall that the pair-counting method is based on comparing the pairs of word-

frame instances that are assigned to the same category by the clustering process, against 

the instance pairs assigned to the same category by the gold standard.  

 

The pair counting approach is appropriate for a method such as clustering, where we do 

not strictly know which clusters correspond to which actual categories in the gold 

standard. However, it is possible in the current case to effect such a mapping between 

categories, allowing the Bookmaker measure (Powers, 2003) to be used. Recall that 

Bookmaker requires a contingency matrix in which the columns represent the gold 

standard categories, and the rows represent the empirically-derived categories, with cells 

of the matrix representing the number of word-frame instances belonging to one 

particular gold standard category that have also been allocated to one particular empirical 

category. In the case of clustering, we therefore need to map gold standard categories to 

empirical ones. 

 

As discussed in Section 5.5.2.2, this mapping can be achieved by taking each of the gold 

standard categories in turn, and identifying the empirical category which contains the 

largest number of instances from that gold standard category. The gold standard category 

is then mapped onto that empirical category. (Under this scheme, it would be possible for 

more than one gold standard category to map onto the same empirical category.) This 

mapping process allows us to identify the empirical category into which instances from 

each gold standard category “should go”, allowing the use of a measure such as 

Bookmaker. 

 

This mapping was carried out for each of the key values of N, and the mapping was used 

in conjunction with the categorization contingency table to calculate Bookmaker values 

for each of the final categorizations.  
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The results for accuracy, completeness F and Bookmaker are shown in Table 13, for each 

of the values of N, with random baseline scores for the first three measures in italics (the 

random baseline for Bookmaker is always zero). 

 

 Accuracy Completeness F score Bookmaker  

N = 80 
0.797 
(0.480) 

0.647 
(0.389) 

0.714 
(0.430) 

0.694 

N = 150 
0.818 
(0.528) 

0.639 
(0.412) 

0.718 
(0.463) 

0.695 

N = 180 
0.837 
(0.535) 

0.690 
(0.440) 

0.756 
(0.483) 

0.709 

N = 240 
0.827 
(0.555) 

0.713 
(0.478) 

0.766 
(0.514) 

0.693 

N = 290 
0.844 
(0.559) 

0.774 
(0.513) 

0.808 
(0.535) 

0.708 

N = 410 
0.863 
(0.571) 

0.764 
(0.506) 

0.810 
(0.536) 

0.716 

N = 450 
0.871 
(0.576) 

0.771 
(0.510) 

0.818 
(0.541) 

0.734 

N = 520 
0.870 
(0.575) 

0.762 
(0.503) 

0.812 
(0.536) 

0.727 

N = 610 
0.850 
(0.564) 

0.782 
(0.519) 

0.814 
(0.540) 

0.703 

N = 690 
0.840 
(0.548) 

0.746 
(0.487) 

0.791 
(0.516) 

0.708 

Table 13. Quantitative evaluation scores obtained from “hard” frame clustering of full-utterance 

frames, for various values of N. Number of clusters produced is 5 for N=450, 4 for N=690, and 3 for 

all other values of N. Random baseline values are shown in italics. 

 

Clearly, categorization was highly successful, and robust across all values of N, as 

indicated by the high values obtained. Accuracy, completeness and F were well above 

their random baselines, with F reaching a maximum of 0.818 at N = 450 against a 

baseline of 0.541. Bookmaker was also well above its random baseline of zero, and 
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reached its highest value of 0.734 at N = 450 (although the confidence interval for 

Bookmaker at N = 450 overlapped with that at N = 520). Given that the clustering process 

was halted at three clusters in most cases, these results confirm the impression from the 

qualitative results that this entirely automatic process was indeed successful in separating 

the intuitive “big three” content categories of nouns, verbs and adjectives. 

 

It is also possible to report significance, using randomization tests as described in Section 

5.5.2.3. The procedure described in that section was applied to the outcomes of each 

clustering for each of the target values of N, to produce samples of 1000 F and 1000 

Bookmaker scores. For all values of N, the actual F and Bookmaker scores obtained 

exceeded all randomly-generated values in the sample set, indicating that the empirically-

obtained values were greater than would be expected if focal words had been randomly 

assigned to categories, at a significance level of p = 0.01 (using the lower 99% 

confidence limit of 0.002 for the estimated significance, as discussed in Section 5.5.2.3). 

 

It has therefore been shown that the very simple algorithm for distributional 

bootstrapping of parts-of-speech that was considered in this chapter was able to discover 

the three main categories of noun, verb and adjective, without the use of any semantic 

information, or any external guidance (other than the specification of the number of large 

clusters to be formed), and was able to provide a highly accurate categorization of words 

in context based solely on the full-utterance frames in which they occurred. 

6.6 Discussion 
The results obtained in this chapter clearly show that it is feasible for a child to induce the 

parts-of-speech of English purely on the basis of the distributional co-occurrence of 

words and a set of the most basic utterance frames in natural child-directed speech. These 

frames have been discovered in a fairly straightforward way, by postulating a basic 

dichotomy between frequent and less-frequent words, and collecting the most prevalent 

and flexible full-utterance frames that can be built up out of the frequent words. It is 

remarkable that a simple clustering process on these frames can produce clusters of 

frames that correspond very closely to nouns, verbs and adjectives. As shown in Table 13, 

allowing these frame clusters to dictate the category to which their filler words are 
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assigned produces a highly successful categorization of these words as measured against 

the reference lexical categorization of the Manchester corpus. 

 

Nevertheless, it may be that in considering only the information from the frame context 

in which a focal word occurs, we are needlessly neglecting useful information from the 

word itself. The point of the work of Finch (1993) and others (e.g. Redington et al., 1998; 

Mintz et al., 2002) is that we can obtain rough parts-of-speech also by clustering together 

words according to the contexts in which they appear. While it is true that that work 

neglected the ambiguity of words by assigning a word to only one category, the current 

model does exactly the same for frames. 

 

Greater correctness might be achieved by using a different solution, one which combines 

information from both the frame and the word in order to arrive at a more reliable 

categorization. This requires something more than merely clustering frames 

independently, and then words independently, because we would then have the problem 

of determining which word cluster (if any) corresponds to which frame cluster - in the 

general case, there need not be any relationship between the two sets of clusters. 

Attempting to combine information about both the frame and the word in an adequate 

way will be the focus of Chapter 7. 
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7 Resolving ambiguity with co-clustering 

7.1 Introduction 
The experiments reported in Chapter 6 achieved some success in assigning focal words to 

the categories of noun, verb and adjective. Nevertheless, some errors of categorization 

were made. The main reason for this may well have been that many of the full-utterance 

frames found are ambiguous, just as many words are. The focus of this chapter is on 

finding procedures for combining information from frames and words in order to arrive at 

an improved categorization of focal words in frame contexts. 

7.1.1 Constraints on the representation of frame and word ambiguity 
Prior to devising these methods, however, there are questions to be answered about the 

basic structure of an appropriate categorization model that can deal with linguistic 

ambiguity: 

1. In what form should information about the categorical ambiguity of words and 

frames be expressed? 

2. What implications does the categorical ambiguity of words and frames have for 

the categorization of individual instances of words in frame context? 

 

Consideration of these questions provides us with two constraints that can be applied to 

all models of lexical categorization presented in this thesis.  

1. The ambiguity information is expressed independently for words and frames. 

Both individual frames and individual words are regarded as potentially 

ambiguous with regards to their part-of-speech, and any one frame or any one 

word can be associated with or belong to multiple categories. This still leaves 

open the question of whether membership in a category is all-or-nothing, or a 

matter of degree, and the models considered in this chapter will explore this issue. 

2. However, it is assumed that the potential ambiguity of a frame and a word (when 

considered in isolation) “collapses” when the two are actually used in 

combination in an utterance instance. Consequently, every instance of a focal 

word used in frame context (every cell in the co-occurrence matrix) will have 

only one part-of-speech assigned to the focal word. Consider the example in 

Table 14. The frame “That’s X, isn’t it?” can accept both adjectives and nouns 
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into its slot, and the word “mean” may function as either a verb or an adjective. 

However, the result of combining these two constraints is that when the frame and 

word come together in the utterance “That’s mean, isn’t it?”, the only possible 

categorization for “mean” is that it is an adjective. (Not all cases will be as clear-

cut as this; for such cases, additional mechanisms will need to be employed.) 

 

 1 Noun 0  

that’s X, isn’t it? 0 Verb 1 mean 

 1 Adjective 1  
     

Table 14. How ambiguity may be resolved when an ambiguous frame and an ambiguous word come 
together in an utterance. 
 
In other words, in the models discussed in the current work, all ambiguity will be 

relegated to the level of the frames separately, and the words separately, and the nature 

and extent of ambiguity will be explicitly characterized for each of these elements. But at 

the level of the co-occurrence matrix, there will be no ambiguity in a particular cell that 

represents the occurrence of a focal word in a frame slot. Whenever a particular frame 

and a particular word that occur together in a corpus utterance exhibit some degree of 

potential ambiguity individually, therefore, it will be necessary to resolve that ambiguity.  

 

From a psychological point of view, the full-utterance frame model of Chapter 6 is now 

being extended to include both frame and word information. In that chapter, a part-of-

speech was said to form out of a set of constructions (frames) which were able to 

accommodate very similar fillers into their variable slots. The words were regarded as 

features of the particular frames.  

 

In the current extension to the full-utterance frame model, not only the frames but also 

the words that are used in the frames become associated with the part-of-speech. Words 

are presumed to be linguistic units or constructions on their own, and so are the frames. 

Each of these constructions may have very specific linguistic information associated with 

it; in addition, each node or entry in the “constructicon” may be presumed to contain 

information about associations with more abstract constructions, in this case each of the 
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parts-of-speech. Membership of or association with a category would not be an exclusive 

relationship; because of the phenomenon of ambiguity that is the focus of this chapter, 

words and frames are likely to be associated with various categories at once, with varying 

degrees of association strength. 

 

The current view of parts-of-speech is rather “bloodless” and formal, in that categories 

are assumed to be based purely on distributional information about the constructional 

forms that are associated with them. In order to make this model compatible with 

Construction Grammar approaches, it will eventually be necessary also to consider 

meaning. It is very likely that a large component of the substance of a part-of-speech is 

also tied up in the semantic implications of a category, i.e. in the “notional” criteria for 

category membership. In Langacker’s (1987) theory, it is the cognitive attitude taken by a 

speaker towards a linguistic unit (a word) that determines its category; so for instance 

what makes a particular word a verb is the speaker’s construal of it as a process, rather 

than an entity or atemporal relationship. It seems very likely that these semantic notions 

also become associated with the part-of-speech as it develops. Under this view, a part-of-

speech is the nexus of a large amount of both distributional and semantic information that 

defines the category. 

 

A very important issue to be addressed is how a simultaneous clustering of words and 

frames should be effected. It would be possible to cluster words on the basis of the 

frames in which they occur, and then to cluster frames according to their filler words, but 

we would then have difficulty in matching up a word cluster with its corresponding frame 

cluster. What is required is a co-clustering technique that clusters words and frames to 

the same categories. 

7.1.2 Co-clustering and biclustering 
The terms co-clustering and biclustering are often used in the field of genetics, where 

they refer to a group of data mining techniques for finding patterns in genomic data (see 

Madeira & Oliveira, 2004, for a review). Often, genes are expressed only under certain 

circumstances, captured in experimental conditions. The purpose of biclustering in this 

context is to find the combinations of genes and experimental conditions that together 
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lead to a high level of activation of the gene. For this purpose, the typical data 

representation is a co-occurrence data matrix of genes against experimental conditions. 

Biclustering techniques are then applied in order to find large biclusters of matrix cells 

where certain genes intersect with certain experimental conditions so as to produce high 

activation values in the data matrix cells. The term biclustering refers to the fact that the 

purpose is to find clusters that are defined simultaneously in terms of genes and 

experimental conditions. 

 

On the face of it, then, biclustering techniques would appear to be useful for the current 

problem, words and frames being clearly analogous to the genes and conditions of 

genetic data biclustering. However, few established biclustering methods adhere to the 

two constraints identified in the previous section. In some methods, either all genes or all 

conditions or both are assumed to be unambiguously associated with their clusters. In 

others, both genes and conditions may belong to more than one cluster, but they are 

allowed to form overlapping biclusters, such that individual cells in the matrix are 

assigned to multiple categories.  

 

The work in this chapter investigates ways of obtaining co-clusters of frames and words 

together. The established methods of bi-/co-clustering are not suitable, and so other 

methods were devised. I present three solutions to the problem of combining frame and 

word information.  

 

The first solution is concerned with turning a hard/all-or-nothing one-dimensional 

clustering of frames into a fuzzy/graded two-dimensional co-clustering of frames and 

words together. It may be possible to regard every word and frame as a potential member 

of every category, and to express the degree of membership numerically. The category 

membership of individual word-frame instances is then determined by combining these 

numbers for both the word and the frame. This is the approach taken in the “fuzzy” co-

clustering algorithm of Section 7.2. 

The other two solutions presented in this chapter attempt to deal with ambiguity in a 

discrete rather than a continuous way, by explicitly enumerating all the parts-of-speech in 
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which each frame and each word may take part, and then combining these two separate 

sources of information during categorization. 

 

If a particular frame or word is believed to potentially belong to more than one category, 

and it happens to be the case that one of the categories is redundant, in the sense that all 

of the word-frame instances that it covers can also be covered by a different category, 

then the redundant category can safely be discarded from the set of categories to which 

the frame or word belongs. This idea forms the basis of the “parsimony-based” co-

clustering algorithm, presented in Section 7.3.3. 

 

The co-occurrence of a word and a frame is a valuable piece of information, because it 

indicates that the word and the frame should have at least one category in common. If this 

is not yet the case, it indicates that there is a conflict between the ways that the 

categorical possibilities of the frame and of the word have been described. This conflict 

needs to be resolved, by allowing either the word or the frame to partake in one of the 

categories of the other item. This is the essence of the so-called “conflict-based” co-

clustering algorithm, presented in Section 7.3.4. 

7.2 Fuzzy co-clustering 
In this section, I present the first of the three co-clustering algorithms, which assigns to 

each word and frame a graded degree of membership of each of the parts-of-speech. The 

degree of membership is interpreted as the probability that a particular item is associated 

with a particular part-of-speech. 

7.2.1 Procedure 
We attempt, for each word and for each frame, to determine a probability distribution 

vector for that item over each of the part-of-speech categories. Each cell in the vector 

expresses the probability that the item belongs to category 1, category 2, etc. During 

categorization we determine the joint probability of the word co-occurring with the frame. 

Because of the assumption of independence between words and frames, this can be done 

by simply multiplying together, for each category ck, the probability that the word 

belongs to ck and the probability that the frame belongs to ck. The focal word is then 

assigned the category with the highest product probability. 
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7.2.1.1 Probability distribution vectors 
The process for calculating the probability that a word or frame is associated with a 

particular cluster starts with the hard clustering obtained as in the previous chapter, where 

only frames were clustered together. Let the resulting frame clusters be referred to as cx, 

where x ranges over [1, 2, …, K], and K is the number of clusters. From this hard 

clustering, we obtain the conditional probability P(ck | wj) that word wj is associated with 

cluster ck (rather than any other cluster) by considering only frames that have been 

allocated to ck, adding together the frequencies with which the word in question occurred 

in each of those frames, and dividing by the frequency with which the word occurred 

overall. This conditional probability expresses the probability, for a given word wj, that 

the word occurred in a frame from cluster ck rather than any other cluster. More formally, 

according to Bayes’ rule we have 
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P(ck | wj) can now be interpreted as a probability vector describing the probability that wj 

is associated with each of the K clusters. Subsequently, we can attempt to express the 

probability of an association between each frame and each cluster, induced from  

P(ck | wj). As before, Bayes’ rule gives 
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Now, in order to expand this equation, we wish to determine how frequently a particular 

frame fi has been used in the data matrix in combination with a focal word belonging to 

category ck. If we divide that frequency by the frequency with which fi occurs in the data 

matrix overall, that will give us an expression for P(ck | fi).  

 

Say that a particular word wj occurs x times in the context of frame fi (in other words, Dij 

= x). If wj was associated unequivocally with only ck, then it would contribute an amount 

of x to the total frequency of occurrence of ck in the context of fi. However, because wj is 

split between the various clusters according to P(ck | wj), it follows that we also have to 
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split the frequency x among the clusters in the proportions given by P(ck | wj). Doing this 

gives  
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Note that dividing the frequency in this way is not the same as actually allocating some 

of the x cases to category 1, some to category 2, etc., in contravention of our earlier stated 

constraint 2. We are instead dividing our amount of certainty between the categories. The 

categorization of wj in the context of fi will be entirely unequivocal, as will be shown later. 

 

These equations took the initial hard frame clustering as their starting point. This starting 

point is clearly an asymmetric one, in that word clusters were not involved at all, and 

reflects the intuition that to some extent, it is the frames that are really responsible for 

placing a particular part-of-speech construal on a word. When distributional information 

is used to bootstrap parts-of-speech, as was done in the previous chapter, it should be the 

contexts of the words that should be amalgamated into groups or clusters that define the 

category, rather than the words themselves. This is because context is a far less 

ambiguous cue to part-of-speech than a typical English content word, which can be 

molded quite readily into whatever “shape” the speaker wishes: a noun in one context, 

and adjective in another. For this reason, the work in Chapters 6 to 8 is distinctly 

asymmetrical in its approach, and always starts with a hard clustering of frames. 

 

The procedure described above can be viewed as a kind of softening of the initial hard 

clustering to produce a fuzzy co-clustering of words and frames - actually two separate 

fuzzy clusterings of words and of frames, which, crucially, make reference to the same 

categories. 

7.2.1.2 Categorization 
The above procedure yields two allocation matrices, which can be labeled AW and AF, 

such that AW
kj gives the probability of a given word wj belonging to category ck, and AF

ki 

gives the probability of a given frame fi belonging to category ck (i.e. AW
kj = P(ck | wj) and 

AF
ki = P(ck | fi)). 
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This section describes how the process of categorization is carried out using AW and AF in 

combination. According to the constraints stated earlier, this categorization should assign 

a single category to every word in frame context. 

  

The combination process is very simple: for frame fi there is a corresponding column i in 

the AF probability matrix, and for word wj, there is a corresponding column j in AW. These 

columns are simply multiplied together. This entails, for each category ck, multiplying 

together the probability that the frame belongs to ck and the probability that the word 

belongs to ck. The category with the highest product of probabilities is the “winner”, and 

the word-frame instance is assigned to that category4. 

 

Table 15 shows an example taken from the execution of this algorithm. The word “mean” 

is ambiguous, as it can be used as either a verb or an adjective, depending on context. The 

fuzzy co-clustering algorithm assigns it an approximately equal probability of being 

either. Hence, the frame context has to cast the deciding vote. When “mean” occurs in 

“What do you mean?”, the frame “What do you X?” is heavily biased towards accepting 

verbs, and so the product of the frame and word probabilities is the highest for the verb 

category. In the utterance “That’s mean”, however, the frame heavily favours adjectives, 

and so the product of probabilities ends up in favour of an adjective categorization. In this 

way, the algorithm is able to categorize “mean” appropriately depending on its frame 

context. 

 

 

                                                 
4 Note that previous presentations of results from this work (Leibbrandt & Powers, 2007, 2008) made use 
of the sum of word and frame probability, rather than their product. During the evaluation of the work in 
this chapter, reported in Section 7.4, it was found that there was no significant difference between using the 
sum and using the product, in terms of the resulting categorization. As the probability product is 
interpretable in a sensible way as a joint probability, it is the only one of the two functions that will be 
reported here. 
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N 0.03  0.04  1.2e-3  N 0.26  0.04  1.04e-2 

V 0.70 × 0.51 = 3.57e-1  V 0.01 × 0.51 = 5.1e-3 

A 0.27  0.45  1.22e-1  A 0.73  0.45  3.29e-1 

Table 15. An example of the resolution of part-of-speech for the ambiguous word “mean”, using the 

fuzzy co-clustering approach. 

7.2.2 Psychological considerations 
Fuzzy co-clustering is broadly compatible with a psychological outlook that regards the 

membership of a particular category by a particular item to be a matter of degree rather 

than an all-or-nothing, yes/no affair, and this outlook is indeed compatible with standard 

theories of categorization (Kruschke, 1992; Rosch, 1983). Under fuzzy co-clustering, a 

particular word or frame is associated with a particular cluster to a certain degree. The 

strength with which each word is associated with a cluster exerts an influence on the 

strength of association of each frame with that same cluster, and vice versa. 

 

The association strength may also quite naturally be related to activation strength. It 

could be postulated that the process of combining word and frame information for the 

purpose of categorization relies on the differing degrees to which each of the clusters is 

activated by the frame and the word, as follows: When a word and a frame are combined 

into an utterance, the hearer needs to allocate a part-of-speech to the word using both the 

identity of the word and of its frame context. The word activates (makes more readily 

available for further cognitive processing) each of the available parts-of-speech in 
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accordance with the association strength from the word to the category, so that the most 

strongly associated category is activated the most strongly. The frame does the same. 

Hence, the category that is most strongly activated (by the joint activation from word and 

frame) is regarded as the “correct” category for the word in frame context. 

 

The actual steps taken in this algorithm to arrive at the fuzzy word and frame 

memberships may, however, not necessarily be psychologically veridical. There is an 

initial hard clustering of all frames, followed by a “softening” of the clustering for all 

words, followed by another “softening” for frames, and these three steps are carried out 

in “batch mode” fashion, with any entire phase having to complete before the next one 

can commence. It seems unlikely that this is literally the process by which a child arrives 

at fuzzy memberships of parts-of-speech for words and frames. However, this does not 

preclude the existence of some psychological process which is functionally equivalent to 

the fuzzy co-clustering process described here.  

 

Although this algorithm is simulated in batch mode and therefore does not represent an 

iterative model, it is nevertheless quite possible that this kind of co-clustering could be 

established on the basis of distributional information alone, under a description that 

appeals only to processes of associative learning. One possible way in which this could 

happen is as follows. When the child already has some knowledge of a few (content) 

words of her language, as well as of some of its constructions, she can begin to associate 

words with constructions when they co-occur. In this way, each construction will develop 

associative links to its slot-filling words, and each word to its co-occurring constructions. 

This is compatible with the first phase of category learning as outlined by Braine (1987). 

Once a number of words and constructions have been associated in this way, we might 

expect that mental activation of a word also weakly activates its associated constructions, 

and vice versa. 

 

Subsequently, we need to account for the development of the ability to generalize across 

constructions, so that words that have not been encountered in a construction before can 

be regarded as acceptable by the child, in accordance with Braine’s (1987) second phase 

of category learning. This can be done by forming clusters of constructions, clusters of 
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words, or ideally co-clusters of words and constructions together. In order to deal with 

ambiguity, it is required that any word and any construction can potentially be associated 

with more than one cluster.  

 

Accounting for this phase of the developmental process is slightly tricky. Possibly, when 

a word and construction co-occur, the word also weakly activates all the other 

constructions in which it has occurred, and the construction likewise activates all its other 

slot-filling words. All of these elements are now available to be associated with each 

other, allowing second-order associations to form between constructions that accept the 

same word and words that occur in the same construction. Over time, the eventual effect 

of these second-order associations will be that when a construction-word pair is 

encountered, all similar constructions and words are simultaneously weakly activated. 

This then allows for third-order associations to be formed between each of the 

construction-word pairs. It is these third-order associations that constitute a co-cluster. 

 

The existence of ambiguous words and constructions poses a threat to the model sketched 

above, as they would seem to create the danger that eventually, all words and 

constructions will end up being associated with each other. However, one might argue 

that in practice, if an ambiguous word in a verb context activates its associated verb and 

noun contexts, the increase in association between the noun contexts and the current verb 

construction will be relatively far smaller than the total increase in association that will 

occur between the construction and other verb constructions over the course of 

development, so that these latter associations will predominate. Of course, it should be 

stressed that these remarks are merely speculative; implementing such an iterative model 

fell outside the scope of this thesis, but this would be the only way to evaluate whether 

the ideas outlined in the last few paragraphs are feasible. 

 

Since we are essentially considering associative links between nodes in some 

representational framework, where this framework could take on any form from a 

subsymbolic connectionist model to a high-level network of linked mental constructs, it 

is possible that the category itself may constitute a node in this framework, and hence be 

available for association with words and constructions. A more satisfying account of co-
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clustering may then be obtained by positing that words and constructions are not 

associated directly with each other, but rather indirectly by way of their mutual direct 

associations with the category. If these associations are allowed to be bidirectional, so 

that a category can activate constructions and words, and vice versa, then there is no need 

for second- or third-order associations: words and constructions are simply associated 

with a category when both they and the category are simultaneously activated. When a 

word and construction co-occur, they each activate the various categories according to 

their associative strengths, and the most strongly activated category is the “winner” to 

which the focal word is allocated. This proposal is closer to the fuzzy co-clustering 

algorithm I have outlined above. 

 

It still remains to be explained how a node corresponding to the abstract category is 

formed. In a neural network model, and in fact in the “real” neural networks of human 

associative cortex, this may well happen by accident. It is possible that, at least in the 

early years, specific neuronal assemblies may have haphazard synaptic connections to 

many other neurons and assemblies, which will be pruned during the course of 

development and learning. Then, if a word and construction co-occur, the sets of neurons 

that they activate may, purely by chance, have some overlap (cf. the case of 

“Wickelfeatures”; Wickelgren, 1979).  

 

Another possibility, considered again in Section 11.2, is that the substance of a category 

may consist of the mental operations involved in representing the semantic aspects of the 

category. 

7.3 Discrete co-clustering algorithms 
In this section, I present two solutions to the problem of combining word and frame 

information that make use of discrete rather than graded category membership: for each 

category, whether a word or a frame belongs to the category is an all-or-nothing affair, 

and for each item, the categories to which it can belong are listed exhaustively in a binary 

allocation vector for that item. The allocation vector of an item is a 1-dimensional vector, 

each cell of which corresponds to a category. The cell contains a 1 if the item in question 

can potentially belong to that category, and a 0 otherwise. For ease of exposition in what 



 180

follows, I use the term item to refer to either a word or a frame, and introduce the concept 

of co-items of an item, which is, for a word, the set of frames in which it has occurred as 

a filler, and, for a frame, the set of words that have occurred as fillers in its slot. 

 

Both algorithms proceed in a similar fashion. In each step, one item (either a frame or a 

word) is selected, at random in the case of the parsimony-based algorithm (Section 7.3.3), 

or, in the case of the conflict-driven algorithm (Section 7.3.4), according to a heuristic 

which will be described later. The allocation vector for that item is updated to reflect the 

categories to which the item can belong, using information from the allocation vectors of 

its co-items in the corpus (i.e. the words that have filled the frame, if the target item is a 

frame, or the frames in which the word has occurred if the target item is a word). In 

subsequent steps, the updated allocation vector for the target item can now be used as 

information to update the allocation vectors of its co-items, when those co-items become 

the target items in turn. In this way, the allocation vectors for each of the words and 

frames are adjusted so as to converge onto the “correct” allocation. When no more 

changes can be made to the allocation vectors, the algorithm halts. 

 

Both these algorithms start with an initial set of allocation vectors for the words and 

frames. This initial set consists of a number of reliable allocations, based on words and 

frames that unambiguously belong to only one category with high probability. These are 

the so-called “seed” frames and words. From these seeds, the correct categorical 

allocation “crystallizes out” as the algorithm proceeds. Sections 7.3.1 and 7.3.2 describe 

the derivation of the seed words and frames, and the data structures used in this 

experiment. Sections 7.3.3 and 7.3.4 provide details of, respectively, the parsimony-based 

and conflict-driven algorithms. 

7.3.1 Seed words and frames  
The first step in both discrete co-clustering processes is to derive a set of seed words and 

seed frames. These are words and frames that are highly prototypical of a particular 

category, and have a high probability of belonging to that one category only. The process 

for doing this is outlined below, and summarized in Box 2. 
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The process starts off similarly to the fuzzy co-clustering algorithm, in this case taking a 

purely “type-frequency-centric” approach. Starting with a hard clustering of frames, all 

words that occur in any of the frames belonging to a particular category ck are sorted in 

descending order of the number of different frames in which they occur. This means that 

we are interested in finding the words with the highest frame diversity, on the assumption 

that they are the most prototypical words associated with that category (they most 

comprehensively capture what the category is “about”). Recall that this was the process 

by which the word lists in Table 10 were generated. 

 

The resulting sorted histogram of distinct frame counts forms a roughly Zipfian 

distribution (Zipf, 1949) for most categories. We would like to take as seed words the top 

few words with the highest distinct frame counts; however, we need to bear in mind that 

the clusters are potentially highly disparate in size, so that it would not be appropriate 

merely to select an absolute number of words from each category.  

 

The solution followed is therefore to obtain the sorted histogram of distinct frame counts, 

and to add words from left to right until the cumulative proportion of distinct frame 

counts (the proportion of the entire graph accounted for so far) is greater than or equal to 

a fixed proportion η (η is a parameter of this model, although I do not manipulate it in 

these experiments, and keep its value fixed at 0.25).  

 

The process described above can be considered to produce similar results to a 

psychological process of association between clusters and words, where the strength of 

association between the cluster and the word is strengthened each time the word is used 

in a frame that is strongly associated with that cluster already. Each distinct frame is 

considered to contribute an equal amount of activation strength to the word, regardless of 

its own frequency of occurrence in the input, so that this association process is sensitive 

to the type frequency of frames co-occurring with the word in question, rather than to the 

token frequency. A wider range of co-occurring frames counts as more robust evidence 

that the word does indeed belong with the cluster (and most likely possesses many of the 

semantic attributes that are associated with the cluster).  
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Data structures: 

- data: the original IxJ data matrix, where I is the number of frames and J is the number of 
words in the data set. The cell data[ i ][ j ] contains the number of times that frame i and 
word j have occurred together in the corpus. 

- totals: a two-dimensional KxJ matrix, where K is the number of clusters. Each cell 
totals[ k ][ j ] will contain a pair <x, f> where x is the index of the word in data, and f is the 
frequency value, giving the total number of frames from cluster k that have occurred with 
word x in the corpus. 

- seedWords: a 1xK vector of sets of the most reliable seed words for each of the clusters. 
- seedFrames: a 1xK vector of sets of the most reliable seed frames for each of the 

clusters. 
- sum: a whole-number value used to count the total number of word-frame instances 

associated with a particular frame cluster. 
- cumulativeProportion: a floating-point value indicating the proportion of the total set of 

instances associated with a cluster that have been accounted for by adding instances 
involving the most strongly associated word each time. 

- wordIndex: an index that keeps track of the number of words that have been added. 
- useOwn and useOther, two boolean (true or false) values.  
- η, a floating-point parameter (set to 0.25 in this simulation) 

 
Algorithm: 
1. First execute the algorithm of Box 1 to obtain ordered lists of word index- word frequency 

pairs for each cluster, and place the result in totals. (Recall that these lists are sorted 
from highest frequency value to lowest). 

2. Let k be the index for each of the clusters. Then for each cluster do the following: 
a. Set sum equal to the sum of all the frequency values of all the cells in row 

totals[ k ]. 
b. Divide the frequency value of every cell in totals[ k ] by sum. The 

frequency value of each cell totals[ k ][ j ] now contains the proportion of all 
word-frame instances associated with cluster k that involve word j. 

c. Set cumulativeProportion to 0. 
d. Set wordindex to 0. 
e. Do the following until cumulativeProportion ≥ η: 

1. Increase wordIndex by 1. 
2. Obtain the index-frequency pair <x, f> = totals[ k ][ wordIndex ]. 
3. Increase cumulativeProportion by f.  
4. Add word x to the set seedWords[ k ]. 

 
 

3. From each of the sets in seedWords, remove all words that occur in both seedWords[ a ] 
and seedWords[ b ] for some a ≠ b. 

4. Let k be the index for each of the clusters. Then for each cluster do the following: 
a. Let i be the index for each of the frames. Then, for each frame, do the following: 

1. Let j be the index of each word. Then, for each word, do the following: 
a. If data[ i ] [ j ] > 0, do the following: 

1. If seedWords[ k ] contains word j, set useOwn to true. 
2. If seedWords[ m ] contains word j, where m ≠ k, set useOther to 

true. 
 
 

 
 

b. If useOwn is true and useOther is false, add frame i to seedFrames[ k ]. 
  

Box 2. The algorithm for identifying the seed words and frames of each of the clusters. 
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The foregoing process produces a list of strongly associated words for every cluster. In 

order to find words that are also distinctive for that cluster, all words are discarded that 

occur in the strongly-associated-word list of more than one cluster.  

 

This can be interpreted psychologically as a competition process between clusters for a 

particular word. Possibly, attending to a word automatically activates all categories with 

which it is associated, so that words that evoke several categories are not regarded as 

“pure” examples of a category (or of a certain set of semantic attributes that are closely 

associated with that category). Such a process might be simulated in a connectionist 

model by means of lateral inhibition. 

 

At this point, a list of unambiguous and prototypical words has been produced for each of 

the initial parts-of-speech. From the sets of seed words, sets of seed frames can be 

induced: the seed frames for a particular category are those frames that accept seed words 

from the category in question and do not accept seed words from any other category. 

7.3.2 Allocation matrices 
As mentioned above, the crucial data structures for the discrete co-clustering algorithms 

are the allocation vectors for each of the words and frames, concatenated to form an 

allocation matrix AF for frames and an allocation matrix AW for words. These are binary-

valued versions of the continuous-valued allocation matrices used in the fuzzy co-

clustering algorithm. A cell AF
ki in the frame allocation matrix has the value 1 if frame fi 

can potentially belong to category k, and is 0 otherwise (and the analogous situation holds 

for AW). Each column in an allocation matrix represents the allocation vector for a 

particular frame or word, listing the categories to which the frame or word belongs. 

 

AF and AW are initialized to contain only the seed frame and seed word information, i.e. 

for every seed word wj that belongs to category ck, AW
kj is set to 1, and all other cells 

contain 0 (and the analogous initialization is performed for frames).  

7.3.3 Parsimony-driven co-clustering 
The first discrete co-clustering algorithm examines, for each item, the possible category 

memberships of all of the item’s co-items, and attempts to find the most parsimonious  
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1 1 1 1 1 1 1 V 1 

0 0 0 1 0 0 0 A 0 

Table 16. An example taken from the execution of the parsimony-based co-clustering algorithm. The 

frame What do you X? occurs with several ambiguous words; nevertheless, the Verb category covers 

all of these, and hence the algorithm treats the frame as unambiguous. 
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1 1 1 1 0 0 0 N 1 

1 0 0 0 1 1 1 V 1 

0 0 0 0 0 0 0 A 0 

Table 17. An example taken from the execution of the parsimony-based co-clustering algorithm. The 

word kiss occurs in a set of frames that can only be described as Noun frames, and a different set of 

frames that can only be described as Verb frames, and hence the algorithm concludes that kiss is 

ambiguous, and can function as either a noun or a verb. 
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explanation for the pattern of data in order to decide to which category/ies the item 

belongs.  

7.3.3.1 Procedure 
The parsimony-driven process is a stochastic algorithm. An item is selected at random, 

and an attempt is made to update the allocation matrix for that element. The algorithm 

inspects the allocation vectors for all co-items of the item, in order to find the most 

parsimonious or economic explanation for their occurrence with the target item. 

 

Consider the example in Table 16, taken from the actual execution of this algorithm. The 

table shows the allocation vectors for all words that occur as fillers in the frame “What do  

you X?”, as they are at this particular point in the execution of the algorithm. Some of 

these words (“say”, “sing”, “wear”) are always used as verbs only and so have received 

allocations for only that category in the allocation matrix, whereas others such as “brush” 

and “drink” are described as ambiguous, i.e. they can function as either a noun or a verb. 

Likewise, “mean” can function as a verb or an adjective. On the basis of this evidence, 

however, it can be seen that the category Verb covers all of the instances of the frame 

“What do you X?”, as every word that occurs in “What do you X?” has received the 

potential allocation Verb. Hence, the most parsimonious explanation for the data in Table 

16 is that “What do you X?” is an unambiguous frame context for verbs, and so the frame 

receives the allocation 1 for the category Verb, and 0 for the categories Noun and 

Adjective. This updated allocation vector for “What do you X?” can now be used as a 

piece of evidence for determining the category allocations of each of its filler words, the 

next time they are randomly selected to be the targets for updating. 

 

By contrast, Table 17 shows an example where the algorithm determines that a word is 

ambiguous. The word “kiss” occurs in a number of different contexts, some of which are 

clearly noun contexts (according to the evidence available to the algorithm at that time), 

while others are unambiguous Verb contexts. However, there is no one category that 

covers all of the frames in which “kiss” occurs; hence the only explanation for the data in 

the table is that “kiss” is ambiguous and can be either a verb or a noun, and so the 

allocation vector for “kiss” is updated to reflect this. (Note that the ambiguous frame  
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“Are you going to X?” provides no information to decide between Nouns and Verbs, and 

hence plays no role in the allocation of categories to “kiss”). 

 

In more detail: once an item has been selected, we collect the allocation vectors for all of 

its co-items, and then, for each category ck, count the number of co-items that have a 1 in 

their allocation vector for category ck. The category that has the highest count is the 

winning category from that round, and the target item receives an allocation to that 

category. The co-items that were covered by that category (i.e. that had a 1 in their 

allocation vectors for that category) are removed from the pool, and the process is 

repeated on the remaining co-items, until none remain. At this point, all co-items have 

been covered by a category in the target item’s new allocation vector. 

 

 CoItem1 CoItem2 CoItem3 CoItem4 CoItem5 CoItem6  Item 

C1 1 0 0 1 0 0  1 

C2 0 0 0 0 0 0  0 

C3 1 1 1 0 0 0  1 

Table 18. Example to illustrate parsimony-based allocation updating, part 1. 
 

 CoItem1 CoItem2 CoItem3 CoItem4 CoItem5 CoItem6  Item 

C1 1 0 0 1 0 0  0 

C2 0 0 0 0 0 0  0 

C3 1 1 1 1 0 0  1 

Table 19. Example to illustrate parsimony-based allocation updating, part 2. 
 

 CoItem1 CoItem2 CoItem3 CoItem4 CoItem5 CoItem6  Item 

C1 1 0 0 1 0 0  0 

C2 0 0 0 0 0 1  1 

C3 1 1 1 1 0 0  1 

Table 20. Example to illustrate parsimony-based allocation updating, part 3. 
 

It may happen that more than one category accounts for the maximum number of 

category assignments. In this case, we simply allocate all of these categories to the item, 
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and remove all co-items that have any of these categories allocated in their allocation 

vectors. 

 

This process can delete previous allocations to a particular category, as well as adding 

new ones. Suppose that the situation for Item is as depicted in Table 18. Category C1 

obtains a count of 2, and C3 a count of 3, so that C3 is the winner. When the 3 cases 

covered by C3 are removed, there is still one case (CoItem4) that is not covered by 

category C3, and so C3 cannot be the only category allocated to Item. The counting 

process is repeated with the remaining co-items; only CoItem4 remains, and it can only 

belong to C1. Hence, C1 is added to the allocation vector of the item. No items remain, 

and the algorithm step is complete. Now suppose that at some later stage CoItem4 became 

the target item, and its allocation vector was updated to include an allocation to the C3 

category. Now, when Item again becomes the target item (Table 19), the category C3 

covers all of its co-items including CoItem4, and so Item’s C1 allocation is deleted. If, 

later still, CoItem6 has been allocated to the category C2, then when Item once again 

becomes the target item (Table 20), the category C2 will need to be added to Item’s 

allocation vector in order to cover CoItem6. 

 

In this way, the category profile of an item is progressively elaborated, based on all the 

possible categories that its co-items may take on. As the algorithm progresses, more and 

more evidence is accumulated, so that category allocations can “wink in and out of 

existence” based on the state of information at each time. In each case, the algorithm 

looks for the simplest explanation for an item’s category profile that will cover all co-

items that have occurred with it. An item may be selected as the target more than once 

during the execution of the algorithm, and its allocations may change if the information 

from its co-items has changed. 

 
In fact, the actual allocation value is not a binary value of 0 or 1, but a floating-point 

value between 0 and 1. The size of the number is equal to the proportion of allocated co-

items that are covered by a particular category. The algorithm makes use of a threshold θ. 

If an item’s allocation with a particular category has a value below θ, the allocation will 

be 
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Data structures: 
- D : the frame-word co-occurrence data matrix, with dimensions M×N 
- Ftarget : the target frame, with dimensions 1×K, where K is the number of categories   
- W : the set of words that have occurred in Ftarget according to D 
- allocationSum : a 1×K integer vector 
- max : an integer 
- winners : a set of categories  
- explained : the set of words that are covered (explained) as belonging to the categories in 

winners 
- frameAllocation : an M×K floating-point matrix  
- wordAllocation : an N×K floating-point matrix 
- θ : a floating-point threshold value 
- η : a floating-point value used to test for convergence 
 
Algorithm: 
1. Initialize frameAllocation and wordAllocation so that wordAllocation[ k ][ j ] = 1 if word wj 

is a seed word, 0 otherwise, and frameAllocation[ k ][ i ] = 1 if frame fi is a seed frame, 0 
otherwise. 

2. Repeat the following until convergence (i.e. until the proportion of cells changed in both 
frameAllocation or wordAllocation in the last 100 iterations falls below η): 

a. Select a frame or word at random as the target item. (The rest of the 
description assumes that the target item is a frame. If it is a word, replace 
“frames” with “words” and vice versa in what follows.) Set Ftarget = the 
target frame. 

b. Set W = the set of words wj that have occurred with the target frame Ftarget 
in the input (so that D[ target ][ j ] > 0), and that have wordAllocation[ k ][ j ] 
> θ for at least one category ck. (i.e. ignore words that have not been 
allocated to any categories yet). 

c. Repeat the following until there are no words left in W: 
1. For each category k, count the total number of words in W that 

could potentially belong to that category, i.e. the number of words 
wj in W such that wordAllocation[ k ][ j ] > θ. Set allocationSum[k] to 
this total. Set max = the maximum value in allocationSum after all 
categories have been counted. 

2. Set winners = the set of all category/ies that have attained the 
maximum score max in allocationSum. 

3. For each category k in winners: 
a. Remove from W all words wj such that wordAllocation[ k ][ j ] 

> θ, and add these words to explained. (These words have 
now been covered by at least one category in winners). 

b. Set frameAllocation[ k ][target] = (size of explained) / K. 
 
 

d. Normalize the column frameAllocation[target], by dividing each cell in 
frameAllocation[target] by the sum of all cells in that column. 

 
 

Box 3. Parsimony-driven discrete co-clustering algorithm (update phase). 
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 treated as zero. Say for instance that the word mean is allocated to Verbs with a strength 

of 0.75, to Adjectives with a strength of 0.22, and to Nouns with 0.03. For θ = 0.05, mean 

does not contribute its supposed Noun character to any frame chosen as a target. Only if 

the value of the Noun allocation were to rise over 0.05 would there have been enough 

evidence accumulated to accept that mean might be a noun. Full details of the parsimony-

based algorithm are shown in Box 3. 

7.3.3.2 Categorization 
During the update phase, allocations take on graded values, as described above, and 

represent something like the degree of evidence that a word or frame belongs to a 

category. During categorization, however, the allocation vector for a word or frame is 

effectively binarized, with any value over θ being treated as adequate evidence that the 

item belongs to the category in question. Categorization of an instance of a frame-focal 

word pair is done by intersecting the allocation vectors of the frame and word (after 

setting all values below θ to zero), and choosing the remaining category. For instance, in 

Table 21, the utterance “not happy” is broken up into its frame “not X” and filler “happy”, 

and the two allocation vectors are combined (after thresholding against θ). Although “not 

X” is an ambiguous frame, the only category that the word and frame have in common is 

Adjective, and so that is the category to which the focal word “happy” in “not happy” is 

finally assigned. 

 

 1 N 0  

not X 0 V 0 happy 

 1 A 1  

     

Table 21. The categorization of the utterance “not happy” in the parsimony-based co-clustering 
approach. 
 

In the event of a tie, we fall back on the categorization method of fuzzy co-clustering, and 

multiply the allocation values for each category, then choose the category with the 

highest product. In the current case there would be less justification for treating the 

allocation values as probabilities, as was the case with fuzzy co-clustering; they are more 
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validly interpreted as merely an expression of the strength of association between a frame 

or word and a category. 

7.3.3.3 Psychological considerations 
The parsimony-based algorithm instantiates a human tendency towards conservatism in 

the assumptions that are made: allocations are not made to a particular item, unless it is 

absolutely necessary to do so. The approach can thus also be seen as an evidence-based 

form of reasoning. A particular frame, say, which has accepted a number of filler words 

that are unambiguously nouns, will be taken to be a noun frame. It will not also be 

regarded as a verb frame unless there is insurmountable evidence that this is the case; this 

evidence would come from instances of the frame occurring with fillers that are 

unambiguously verbs. 

 

The algorithm also has the power to reverse earlier decisions: if, in retrospect, a frame 

which had been thought to be ambiguous can now be seen to account for all of its co-

occurring words with only one category allocation, it will receive only that allocation. 

 

It is also possible, if an ambiguous word occurs in the frame and the frame has no 

allocations in common with the word, for the word to lend all of its allocations to the 

frame. These cases may be expected to be relatively rare.  

7.3.4 Conflict-driven co-clustering 
This section presents the third of the co-clustering algorithms investigated in this chapter. 

This conflict-driven co-clustering algorithm attempts to “resolve conflicts” between 

incompatible words and frames, in order to account for the word-frame data from the 

corpus.  

7.3.4.1 Procedure 
In conflict-driven co-clustering, we deal with allocation vectors of the same format as in 

the parsimony-driven process: an allocation vector is a 1-dimensional vector with K cells, 

one for each category that a word or a frame may belong to. In the update phase, these 

vectors are treated as if their values were discrete binary variables that can be on or off 

only, rather than the floating-point numeric values that they were in the parsimony-driven 
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algorithm. During categorization, however, they are again converted into floating-point 

vectors; this is done purely to allow resolution of ties, in the same way as during 

categorization for the parsimony-driven process. 

 

If we are given a certain discrete allocation of frames to categories, and a similar 

allocation for words, then it may happen that there are word-frame instances in the corpus 

such that the word and the frame allocations are inconsistent, i.e. that there is a conflict in 

their allocation vectors. We can define a conflict to exist for a word-frame pair when 

there is no single category such that both the word and the frame can be assigned to it. In 

other words, we cannot say to which category the word in context belongs, because there 

are no candidates that are acceptable to both the word and the frame. 
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Table 22. Examples of potential conflicts in category assignment between words and their frames. 

Conflicts are in bold. 

 
Conflicts therefore arise when the binary intersection (the AND) between the frame 

allocation vector and the word allocation vector is zero. This includes the case where 

either the word or the frame has no categories assigned to it yet (but not when both are as 

yet unassigned).  

 

The conflict-driven co-clustering algorithm attempts to find a conflict-free allocation of 

categories to words and frames. It does so by repeatedly removing the largest existing 
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conflict until no conflicts remain. Conflicts between items and their co-items are removed 

by simply allocating those additional categories to items that they would need in order to 

no longer be in conflict with the co-items. Conflicts are not resolved in random order; 

instead, the conflict resolution option that has the most evidence in its favour is chosen at 

every step.  

 

Examples of conflicts are shown in Table 22. In the left-hand figure, “brush” has not yet 

been allocated to any category, and so when it is encountered in the context of the frame 

“Shall I X it?”, which has been allocated to the category Verb, a conflict arises. The 

conflict can be resolved by allocating the category Verb to “brush”. Suppose that this has 

in fact been done. Then, when the child later encounters the utterance “There’s your 

brush”, another conflict occurs, this time because “There’s your X” has so far been 

allocated to Noun only, while “brush” has been allocated to Verb only, a situation 

depicted in the middle figure of Table 22. The two ways to resolve this conflict are to 

assign an additional allocation of Noun to “brush”, or an additional allocation of Verb to 

“There’s your X”. The way in which the conflict will be resolved will be determined by 

the number of other words and frames placing pressure on “brush” and “There’s your X” 

to receive allocations as a result of other conflicts. Suppose that in this case, the 

resolution chosen is to allocate Noun to “brush”, so that it is now represented as a 

potentially ambiguous word (having both Noun and Verb as potential categories). Now, 

when the utterance “Don’t brush it” is encountered (as depicted in the right-hand figure), 

no conflict is experienced, because “Don’t X it” has the potential allocation of Verb, 

which is compatible with the potential Verb allocation of “brush”. 

 

The algorithm works in batch mode, considering the entire set of relevant data at once. 

For every item (whether word or frame), the set of co-items that are currently in conflict 

with the item is collected. Using the current allocation vectors for each of the conflicting 

co-items, the algorithm allows each co-item to cast a vote for every category to which it 

is currently allocated (i.e. co-items cast votes to have particular categories added to the 

item’s allocations). Per definition, these are categories that the target item does not have 

in its allocation vector, so that adding that allocation to the item’s allocation vector would 

resolve the conflict between the item and that particular co-item; however, the point of 
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voting is to find the single change that would result in the largest number of conflict 

resolutions at once. The number of votes for each category is determined in this way for 

every target item (every word and every frame). The category allocation that has received 

the largest number of votes is designated the “winner”, and the category in 

 
Data structures: 
- D : the frame-word co-occurrence data matrix, with dimensions M×N 
- frameAllocation : an M×K binary matrix  
- wordAllocation : an N×K binary matrix 
- conflict: an M×N binary matrix, whose cells will be set to 1 when the frame corresponding 

to the row and the word corresponding to the column are in conflict 
- frameVotes: an M×K integer matrix used to tally the votes that each frame receives to 

add a category to its entry in frameAllocation (votes are cast by words that are in conflict 
with the frame) 

- wordVotes: an N×K integer matrix used to tally the votes that each word receives to add 
a category to its entry in wordAllocation (votes are cast by frames that are in conflict with 
the word) 

- η : a floating-point value used to test for convergence 
 
Algorithm: 
1. Initialize frameAllocation and wordAllocation so that wordAllocation [ k ] [ j ] = 1 if 

word wj is a seed word, 0 otherwise, and frameAllocation[ k ] [ i ] = 1 if frame fi is a  
seed frame, 0 otherwise. 

2. Repeat the following until convergence (i.e. until the proportion of cells changed in both  
frameAllocation or wordAllocation in the last 100 iterations falls below η): 

a. For each word wj and frame fi which occurred together as an instance in 
the data matrix D, set conflict[ i ][ j ] to 1 if and only if wj and fi are in 
conflict. Conflict is detected as: 
Step through all the categories; 
If there is any category ck such that frameAllocation[ k ][i ] = 1 
     and wordAllocation[ k ][ j ] = 1, then conflict[ i ][ j ] is 0. 
If no such category has been found, then conflict[ i ][ j ]is 1. 

 
b. Now tally the votes for category additions in frameVotes: 

For each frame fi: 
For each category ck that fi has not been allocated to (i.e. 
      frameAllocation[ k ][ i ] = 0): 

Move through all the words wj such that conflict[ i ][ j ] = 1. 
Add up the number of words that vote for category k to be 

added to frameAllocation (by having    
wordAllocation[ k ][ j ] = 1). 

Set frameVotes[ k ][ i ] equal to this sum. 
   

  
 

c. For each word wj, do the same to fill up the wordVotes matrix. 
d. Now find the largest sum in either frameVotes or wordVotes. This is the 

largest current conflict. 
e. Resolve the largest current conflict, by assigning the allocation in question 

(i.e. adding the category in question to the allocation matrix for either the 
frame or the word). 

    
Box 4. The conflict-resolution discrete co-clustering algorithm. 
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 question is added to the allocation vector of the item in question. The co-clustering 

algorithm is detailed in Box 4. 

 

The algorithm always chooses as its next step the option that offers the highest immediate 

gain. It can therefore be regarded as a hill-climbing algorithm, and may be prone to a 

well-known vulnerability of such algorithms, namely converging on a locally optimal 

solution rather than the globally optimal solution. One solution to this problem is to start 

the solution search from a variety of different starting positions. Note that in the current 

experiment, this is not done; the algorithm starts with the same seed frames and words as 

used for the parsimony-driven process. Informal prior experimentation showed that the 

quality of the seed allocation is vital to the success of the algorithm. Unlike many other 

algorithms such as gradient descent learning, which can usually start from almost any 

position in solution space and converge onto a reasonably satisfactory solution, the 

current algorithm adheres to the computer science maxim of “garbage in, garbage out”, 

and delivers poor categorization results from poor starting positions. Also note that, given 

a particular set of seed words and frames, this algorithm is entirely deterministic, unlike 

the parsimony-driven process. 

 

One of the benefits of the voting system is that it is self-correcting. Suppose that at some 

stage during the execution of the algorithm, for whatever reason, the allocation vector for 

the frame “the X” incorrectly states that the frame cannot be a noun frame, but can 

potentially take verbs as fillers. There are a great many words that can go into “the X”, 

and each of them receives an incorrect vote from “the X” to add the verb category 

allocation to them. However, most specific instances of words occurring in “the X” are 

nouns, and so we can be reasonably confident in expecting that most of these words will 

also occur in other noun frames. As a result of having occurred in these frames, the words 

may be expected to have received the noun allocation at some time (also recall that the 

process of discovering seed words identifies a number of words that are nearly always 

nouns, and assigns them this allocation, and no other, during initialization). Therefore, 

most of these words may be expected in their turn to cast votes to assign the noun 

category to “the X”. Because there are many of these words, and only one “rogue” frame 

“the X” that has been misallocated, the incorrect verb votes from “the X” are dispersed 
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over all the words, but the correct noun votes from the words are concentrated on “the X”. 

Hence, adding the noun category to “the X” will receive many more votes than adding 

the verb category to any of the words, and so is more likely to be the step eventually 

taken. 

  

Like the parsimony-based algorithm in Section 7.3.3, the conflict-driven algorithm could 

be said to search for a parsimonious explanation for the observed data, by adding only the 

minimum number of allocations required to attain “harmony”. It allocates the categories 

that provide the greatest pressure for allocation first, thereby avoiding making any 

allocations lower in the order that may turn out to be unnecessary in the long run; 

consequently, it does not “proliferate hypotheses unnecessarily”. Another way of putting 

this is to observe that the algorithm strictly respects the quantity of evidence in shaping 

its “beliefs” about the categorial possibilities of the frames and words. 

7.3.4.2 Categorization 
The categorization of individual word-frame instances is mostly carried out in the same 

way as for the parsimony-based algorithm (see Section 7.3.3.2): if there is only one 

unique category that is “acceptable” to both word and frame, then the word-frame 

instance is allocated to that category.  

 

In the case when there is more than one acceptable category, however, the algorithm falls 

back on information about the amount of support for each category. This is calculated 

from the co-items of an item. The algorithm examines the (discrete) allocation vectors of 

each of the co-items, and determines what proportion of all the “on” cells (allocated 

categories) for all co-items combined belongs to category 1, 2, 3, etc. This co-item profile 

vector is then used as a (continuous-valued) allocation vector for the item itself. This is 

done for both the word and the frame. The two allocation vectors are then combined as in 

the fuzzy co-clustering approach, by multiplying together the word and frame allocation 

values for each individual category, then picking the category that yields the largest 

product.  
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7.3.4.3 Psychological considerations 
The conflict-based algorithm captures the idea that encountering a frame and a filler word 

together, where the two items are not though to have any categories in common, gives 

rise to a kind of “conceptual unease” or perhaps “curiosity”, which needs to be resolved 

by making the two sets of allocations compatible with each other (i.e. by allocating a 

category from either the frame or the word to the other item). 

 

The order in which conflicts are tackled is crucial in this algorithm. The allocation that 

would solve the largest number of conflicts at once is tackled first. This reflects the idea 

that inconsistencies are not reacted to as they occur; instead, evidence for a conflict 

resolution accumulates, and when enough evidence has been gathered, the resolution is 

taken. This kind of process could be readily simulated in an iterative version of this 

algorithm: instead of choosing the conflict with the largest number of votes first, we 

would resolve any conflict with more than a certain threshold number of votes. 

 

As was the case with the parsimony-based algorithm, the conflict-based algorithm 

instantiates the idea that human cognition is conservative, and will only add category 

assignments to items if there is sufficient evidence for doing so. 

7.4 Evaluation 
Each of the three co-clustering algorithms outlined in the previous sections was 

implemented and applied to each of the data sets used in the hard frame clustering 

experiments of Chapter 6, and the resulting categorizations of word-frame instances were 

evaluated against the gold standard categorization, using the same evaluation measures as 

in that chapter. This section presents the results of this evaluation process. Results are 

presented in a compact tabular form from Table 23 to Table 32, allowing different 

algorithms to be compared side-by-side. The following paragraphs describe the column 

headers for each algorithm that was evaluated. 

 

All the algorithms started from the hard clustering of frames into all-or-nothing 

categories. The same range of key values of the parameter N used in Chapter 6 was also 
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explored here. The results from Chapter 6 for categorization using the hard clustering are 

repeated for comparison, under the column heading Hard F. 

 

Starting from the hard clustering, the probability matrices P(W|C) and P(F|C) were 

obtained, as described in Section 7.2.1.1, for the purpose of performing fuzzy co-

clustering. These matrices described the probability that each word and each frame 

belonged to each category. The fuzzy co-clustering process was then carried out using 

these two matrices, by allocating to each word-frame instance the category that attained 

the highest product of word and frame probability. This algorithm is represented in the 

results tables by the heading Fuzzy F×W. 

 

In addition, it may be of interest to consider using only the fuzzy word probability matrix 

P(W|C), or only the fuzzy frame matrix P(F|C) to categorize with. This is because, if the 

fuzzy co-clustering performs better in the evaluation than the hard clustering, it will still 

be an open question whether this is due to the “fuzziness” of the category allocations 

(acknowledging word and frame ambiguity), or due to the use of co-clustering 

(combining word and frame information). For this reason, two additional categorization 

algorithms were used: one that categorized a word-frame instance as belonging to the 

most probable category for the frame in question, according to the fuzzy probability 

matrix P(F|C), and another which categorized the instance in an analogous way according 

to the most probable category for the word, using P(W|C). These two algorithms are 

represented in the results tables under the column headings Fuzzy F and Fuzzy W, 

respectively.  

 

The hard frame clustering was also used to obtain a set of seed frames and a set of seed 

words, as described in Section 7.3.1. Starting from these seed sets, the two discrete co-

clustering algorithms were executed. The conflict-resolution algorithm was executed until 

convergence for each data set, and the results appear under the heading Confl. The 

parsimony-driven algorithm, being nondeterministic, was executed in a series of 50 

simulations for each data set, and the average evaluation measures from each set of 50 is 

displayed in the column Pars. 
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Table 23 to Table 32 display the results for each algorithm under the various starting 

values for N. Bolded entries indicate the best performing F and Bookmaker scores (the 

scores that exceed their random baseline values by the greatest margin).  

 

The obtained F and Bookmaker scores were compared against their baseline values using 

the randomization method described in Section 5.5.2.3, for N = 290 only. All F and 

Bookmaker scores were higher than any scores that were produced in the 1000-item 

sample sets, so that all scores for all algorithms attained estimated significance at a level 

p < 0.001. In order to be conservative, we take these results to indicate actual significance 

only at p = 0.01, as before.  

 

A number of broad trends can be described. First and foremost is the observation that all 

the co-clustering techniques improved categorization over the hard frame clustering, for 

all values of N. This shows that these more sophisticated clustering techniques are 

efficacious in providing a more accurate categorization. 

 

Roughly speaking, the extreme ends of the range of N values produced the poorest results, 

and the middle values the best, with measures peaking at N = 450. However, the range of 

variation is not extreme, and the algorithms are robustly successful at all values of N 

considered in this experiment. 

 

The conflict-driven algorithm Confl performs better than the fuzzy algorithms and the 

parsimony-based algorithm for values of N between 150 and 240, but Fuzzy F × W 

outstrips Confl and Pars for values of N from 290 up.  

 

In all cases, the fuzzy combination of frame and word information Fuzzy F × W 

performed better than fuzzy clustering using only word or frame information (Fuzzy W 

and Fuzzy F respectively).  
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 Hard F Fuzzy F Fuzzy W Fuzzy 

FxW 
Confl. Pars. 

Accuracy 0.797 
(0.480) 

0.811 
(0.480) 

0.848 
(0.480) 

0.863 
(0.480) 

0.864 
(0.480) 

0.856 
(0.480) 

Completeness 0.647 
(0.389) 

0.664 
(0.392) 

0.743 
(0.420) 

0.749 
(0.416) 

0.758 
(0.421) 

0.740 
(0.415) 

F score 0.714 
(0.430) 

0.730 
(0.432) 

0.792 
(0.448) 

0.802 
(0.446) 

0.808 
(0.448) 

0.794 
(0.445) 

Bookmaker 0.694 0.714 0.778 0.791 0.792 0.785 

Table 23. Unsupervised evaluation scores for full-utterance frames, N=80, Full-utterance Frames, 3 
clusters. 
 

 Hard F Fuzzy F Fuzzy W Fuzzy 
FxW 

Confl. Pars. 

Accuracy 0.818 
(0.528) 

0.839 
(0.528) 

0.870 
(0.528) 

0.881 
(0.528) 

0.885 
(0.528) 

0.875 
(0.528) 

Completeness 0.639 
(0.412) 

0.695 
(0.437) 

0.748 
(0.454) 

0.758 
(0.454) 

0.889 
(0.530) 

0.785 
(0.474) 

F score 0.718 
(0.463) 

0.760 
(0.478) 

0.804 
(0.488) 

0.815 
(0.488) 

0.887 
(0.529) 

0.828 
(0.499) 

Bookmaker  0.695 0.724 0.776 0.792 0.808 0.788 

Table 24. Unsupervised evaluation scores for full-utterance frames, N=150, Full-utterance Frames, 3 
clusters. 
 
 Hard F Fuzzy F Fuzzy W Fuzzy 

FxW 
Confl. Pars. 

Accuracy 0.837 
(0.535) 

0.841 
(0. 535) 

0.873 
(0. 535) 

0.885 
(0. 535) 

0.893 
(0. 535) 

0.882 
(0. 535) 

Completeness 0.690 
(0.440) 

0.720 
(0.457) 

0.763 
(0.467) 

0.784 
(0.473) 

0.888 
(0.532) 

0.818 
(0.496) 

F score 0.756 
(0.483) 

0.775 
(0.493) 

0.815 
(0.499) 

0.831 
(0.502) 

0.891 
(0.533) 

0.849 
(0.514) 

Bookmaker 0.709 0.715 0.774 0.792 0.816 0.793 

Table 25. Unsupervised evaluation scores for full-utterance frames, N=180, Full-utterance Frames, 3 
clusters. 
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 Hard F Fuzzy F Fuzzy W Fuzzy 
FxW 

Confl. Pars. 

Accuracy 0.827 
(0.555) 

0.835 
(0. 555) 

0.871 
(0. 555) 

0.878 
(0. 555) 

0.896 
(0. 555) 

0.880 
(0.555) 

Completeness 0.713 
(0.478) 

0.731 
(0.485) 

0.790 
(0.503) 

0.802 
(0.507) 

0.893 
(0.553) 

0.833 
(0.525) 

F score 0.766 
(0.514) 

0.780 
(0.518) 

0.829 
(0.528) 

0.838 
(0.530) 

0.895 
(0.554) 

0.856 
(0.540) 

Bookmaker 0.693 0.709 0.775 0.786 0.817 0.788 

Table 26. Unsupervised evaluation scores for full-utterance frames, N=240, Full-utterance Frames, 3 
clusters. 
 
 
 Hard F Fuzzy F Fuzzy W Fuzzy 

FxW 
Confl. Pars. 

Accuracy 0.844 
(0.559) 

0.846 
(0.559) 

0.894 
(0.559) 

0.900 
(0.559) 

0.888 
(0.559) 

0.895 
(0.559) 

Completeness 0.774 
(0.513) 

0.799 
(0.528) 

0.865 
(0.541) 

0.886 
(0.551) 

0.911 
(0.574) 

0.876 
(0.548) 

F score 0.808 
(0.535) 

0.822 
(0.543) 

0.879 
(0.550) 

0.893 
(0.555) 

0.899 
(0.566) 

0.885 
(0.553) 

Bookmaker 0.708 0.715 0.803 0.814 0.800 0.804 

Table 27. Unsupervised evaluation scores for full-utterance frames, N=290, Full-utterance Frames, 3 
clusters. 
 
 Hard F Fuzzy F Fuzzy W Fuzzy 

FxW 
Confl. Pars. 

Accuracy 0.863 
(0.571) 

0.862 
(0.571) 

0.900 
(0.571) 

0.910 
(0.571) 

0.896 
(0.571) 

0.896 
(0.571) 

Completeness 0.764 
(0.506) 

0.808 
(0.535) 

0.871 
(0.553) 

0.894 
(0.561) 

0.912 
(0.582) 

0.875 
(0.558) 

F score 0.810 
(0.536) 

0.834 
(0.552) 

0.885 
(0.562) 

0.902 
(0.566) 

0.904 
(0.576) 

0.886 
(0.564) 

Bookmaker 0.716 0.725 0.803 0.822 0.801 0.797 

Table 28. Unsupervised evaluation scores for full-utterance frames, N=410, Full-utterance Frames, 3 
clusters. 
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 Hard F Fuzzy F Fuzzy W Fuzzy 

FxW 
Confl. Pars. 

Accuracy 0.871 
(0.576) 

0.873 
(0.576) 

0.904 
(0.576) 

0.917 
(0.576) 

0. 900 
(0.576) 

0. 902 
(0.576) 

Completeness 0.771 
(0.510) 

0.798 
(0.526) 

0.865 
(0.551) 

0.893 
(0.561) 

0. 915 
(0. 586) 

0. 878 
(0. 561) 

F score 0.818 
(0.541) 

0.834 
(0.550) 

0.884 
(0.563) 

0.905 
(0.568) 

0. 908 
(0. 581) 

0. 890 
(0. 568) 

Bookmaker  0.734 0.743 0.805 0.833 0.809 0.807 

Table 29. Unsupervised evaluation scores for full-utterance frames, N=450, Full-utterance Frames, 5 
clusters. 
 
 Hard F Fuzzy F Fuzzy W Fuzzy 

FxW 
Confl. Pars. 

Accuracy 0.870 
(0.575) 

0.871 
(0. 575) 

0.906 
(0. 575) 

0.916 
(0. 575) 

0.902 
(0. 575) 

0.905 
(0. 575) 

Completeness 0.762 
(0.503) 

0.802 
(0.529) 

0.866 
(0.549) 

0.882 
(0.553) 

0.914 
(0.582) 

0.872 
(0.554) 

F score 0.812 
(0.536) 

0.835 
(0.551) 

0.885 
(0.562) 

0.899 
(0.564) 

0.908 
(0.578) 

0.888 
(0.564) 

Bookmaker 0.727 0.738 0.810 0.826 0.811 0.809 

Table 30. Unsupervised evaluation scores for full-utterance frames, N=520, Full-utterance Frames, 3 
clusters. 
 
 Hard F Fuzzy F Fuzzy W Fuzzy 

FxW 
Confl. Pars. 

Accuracy 0.850 
(0.564) 

0.853 
(0. 564) 

0.896 
(0. 564) 

0.900 
(0. 564) 

0.895 
(0. 564) 

0.896 
(0. 564) 

Completeness 0.782 
(0.519) 

0.800 
(0.528) 

0.880 
(0.554) 

0.893 
(0.560) 

0.907 
(0.571) 

0.876 
(0.552) 

F score 0.814 
(0.540) 

0.826 
(0.546) 

0.888 
(0.559) 

0.896 
(0.562) 

0.901 
(0.568) 

0.886 
(0.558) 

Bookmaker 0.703 0.714 0.797 0.807 0.804 0.798 

Table 31. Unsupervised evaluation scores for full-utterance frames, N=610, Full-utterance Frames, 3 
clusters. 
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 Hard F Fuzzy F Fuzzy W Fuzzy 
FxW 

Confl. Pars. 

Accuracy 0.840 
(0.548) 

0.841 
(0. 548) 

0.893 
(0. 548) 

0.896 
(0. 548) 

0.889 
(0. 548) 

0.893 
(0. 548) 

Completeness 0.746 
(0.487) 

0.773 
(0.504) 

0.855 
(0.525) 

0.867 
(0.530) 

0.890 
(0.549) 

0.870 
(0.534) 

F score 0.791 
(0.516) 

0.806 
(0.525) 

0.874 
(0.536) 

0.881 
(0.539) 

0.889 
(0.549) 

0.881 
(0.541) 

Bookmaker 0.708 0.719 0.801 0.811 0.799 0.804 

Table 32. Unsupervised evaluation scores for full-utterance frames, N=670, Full-utterance Frames, 4 
clusters. 
 

Table 33 and Table 34 show the significance of the differences in F and Bookmaker 

scores (respectively) between different pairs of algorithms, for N = 290 only. The tables 

do not show all possible comparisons, but only a few that are of interest. The three main 

co-clustering algorithms (Fuzzy F × W, Pars. and Confl) are compared against each other, 

and against the simple hard clustering algorithm of Chapter 6. Fuzzy W and Fuzzy F are 

compared against Fuzzy F × W only. The arrows displayed in the significant cells point 

in the direction of the better-performing algorithm (an up arrow indicates the algorithm 

represented by the column, and a left arrow the algorithm represented by the row). For 

instance, the top lefthand cell in Table 33 indicates that Fuzzy F × W had a significantly 

higher F score than Hard F, with significance at < 0.001, or fewer than 1 score in 1000 

(taken conservatively as indicating significance of p = 0.01 only).  

 Fuzzy FxW Confl. Pars. 

Hard F ↑ 
< 0.001** 

↑ 
< 0.001** 

↑ 
< 0.001** 

Fuzzy FxW  ← 
0.001** 

0.042 

Confl.   0.063 

Fuzzy F ↑ 
< 0.001** 

  

Fuzzy W ↑ 
< 0.001** 

  

Table 33. Significance levels of differences in F scores for various 
clustering algorithms, for full-utterance frames, N=290.  

* significant at p=0.05, ** significant at p = 0.01. 
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 Fuzzy FxW Confl. Pars. 

Hard F ↑ 
< 0.001** 

↑ 
< 0.001** 

↑ 
< 0.001** 

Fuzzy FxW  ← 
0.025* 

0.098 

Confl.   0.205 

Fuzzy F ↑ 
< 0.001** 

  

Fuzzy W 0.064   
Table 34. Significance levels of differences in Bookmaker scores for 

various clustering algorithms, for full-utterance frames, N=290.  
* significant at p=0.05, ** significant at p = 0.01. 

 
The results confirm that all algorithms perform better than Hard F, and that Fuzzy F × W 

performs better than Confl. There is no significant difference between Pars and Fuzzy F × 

W, or between Pars and Confl. Fuzzy F × W outperforms Fuzzy F, but is only superior to 

Fuzzy W in terms of its F score, not its Bookmaker score. 

 

The small magnitude of the performance advantage of Fuzzy F × W over Fuzzy W was 

surprising. It is possible that the higher rate of success for Fuzzy F × W over the other 

algorithms might mainly be due to the “fuzzification” of the hard clustering, rather than 

to the fact that two sources of information are used for the purposes of categorizing 

instances. Nevertheless, combining word and frame information is an inextricable part of 

the conflict-resolution algorithm Confl, which performed better than any of the fuzzy 

algorithms for lower values of N. 

7.5 Other issues 

7.5.1 The robustness of the three main categories in the co-
clustering approaches 

One of the most important issues in the clustering approach taken throughout this thesis is 

determining the number of clusters that should be formed. I have simply evaluated each 

of the approaches on the lowest cluster total that produces three sizeable clusters. 

However, this is obviously a constraint that is imposed from the outside. One possibility 

is that this is indeed what happens, and that the constraint comes from semantics; the 
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semantic categories corresponding to things, actions and properties of things may be so 

salient that they provide an anchor for the distributional category induction process.  

 

Another possibility is that the categories can in fact self-organize in the clustering process 

on the basis of purely distributional information. The co-clustering algorithms may be 

taken to be essentially conservative in nature, as they require that both the word and 

frame information should point to the same category before they assign a word-frame 

instance to that category. It may be possible, therefore, that the co-clustering algorithms 

automatically identify only the most important categories and ignore the minor categories. 

In this case, any of the algorithms might start with the clustering results for, say, 20 

cluster categories, but allocate words and frames to only a small number (ideally 3) of 

these categories. 

 

In order to examine this question, the three co-clustering algorithms were run on the 

results from the hard clustering, as before, while the number of clusters K produced by 

the initial hard clustering was systematically varied from 3 to 20. The algorithms were 

then evaluated according to the number of distinct categories to which word-frame 

instances were assigned during categorization. The results are displayed in Table 35. 

 

There are three values reported for each value of K (each row). These are (i) the number 

of categories that have any frame-word instances allocated to them (“Any”); (ii) the 

number of categories receiving more than 1% of all instance allocations (“1%”); and (iii) 

the number of categories receiving more than 5% of all instance allocations (“5%”). In 

the case of the parsimony-based algorithm, the numbers shown are means over 50 

iterations. 

 

A very striking result is that, even from a starting position that theoretically allows frame-

word instances to be allocated to any of K = 20 clusters, in practice only a small number 

of clusters out of the full range are used. In particular, with the conflict-based algorithm, 

for all values of K, only 3 categories are extensively used (greater than 1% of instances) 

during categorization, and they correspond to the familiar categories noun, verb and 

adjective. Even though we may start from a high number of clusters, therefore, the 
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conflict-based algorithm “self-organizes” so as to reduce the number of clusters used to 

three (and note that it stops there, and does not proceed to merge these into two 

categories, or one). This behaviour may be understood in terms of the voting mechanism: 

because the main categories have a numerical advantage from the start, they are able to 

cast a larger number of votes, so that the conflict-based algorithm is biased to allocate 

most instances to the majority categories; the initial bias to the main categories is 

therefore amplified so that only those categories are used to a significant extent. 

 

This result strongly suggests that the three main categories in English are robustly present 

in the data and can be uncovered by a conservative co-clustering algorithm such as the 

conflict-based algorithm, and that it may not be necessary to make use of other 

mathematical techniques to determine the optimal “cut-off level” of the hierarchical 

clustering tree (but see Mintz, 2000, for one possible approach to doing so). 

 

However, it should be noted that the parsimony-based and fuzzy product algorithms did 

not exhibit this behaviour as clearly as the conflict-based approach. While these 

algorithms greatly reduced the number of categories used compared to the original K 

value, the number of categories used increases with higher values of K. 

 

It is also possible, for the discrete algorithms, to ask the same question for the frames and 

words separately, as these algorithms produce separate allocation matrices for words and 

frames. We can examine the allocation matrix for, say, words, and count the number of 

categories such that at least one word received a 1 in its allocation vector for the category 

in question, and likewise determine which categories received 1% or 5% of the 

allocations. The results for the parsimony-based algorithm are displayed in Table 36, and 

the results for the conflict-based algorithm are displayed in Table 37. In addition to the 

questions asked about the instance categorization, the tables also show the number of 

categories such that there exists at least one word (or frame) for which that category is the 

only allocated category (“Unq”). 

 

As was the case with the categorization of instances, the conflict-based algorithm was far 

more conservative than the parsimony-based algorithm in constraining the number of 
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categories used for both frames and words. The number of categories to which more than 

5% of words and frames were assigned was nearly always 3 (except for a short range of 

K values in the case of frames). The number of unique categories increased slowly with K. 

Rather surprisingly, the number of unique categories for the parsimony-based algorithm, 

for both frames and words, was very high: the algorithm was not able to allocate all items 

to the main categories. 

 

These results therefore suggest that there may be independent support for the reality of 

the main categories noun, verb and adjective in the input to the child, confirming 

linguistic intuitions as reviewed in Chapter 2. Out of the three co-clustering algorithms, 

the conflict-based approach is best able to reduce the set of categories to these three 

categories. 
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 Fuzzy FW Product Parsimony-based co-clustering Conflict-based co-clustering 

K Any 1% 5% Any 1% 5% Any 1% 5% 

3 3 3 3 3 3 3 3 3 3 

4 4 3 3 3.92 3 3 4 3 3 

5 4 3 3 4.98 3 3 5 3 3 
6 5 3 3 5.98 3 3 4 3 3 

7 7 4 4 7 4 4 5 3 3 

8 8 4 4 7.14 4 4 5 3 3 
9 9 4 4 8.12 4 4 5 3 3 

10 10 5 4 9.04 5 4.84 6 3 3 

11 11 6 5 10.02 6 5.32 8 3 3 
12 12 6 5 11 6 5.28 9 3 3 

13 13 6 5 11.86 6 5.22 9 3 3 

14 14 6 5 12.86 6 5.54 10 3 3 

15 15 6 5 13.8 6 5.36 10 3 3 

16 16 6 5 14.82 6 5.16 9 3 3 

17 17 6 5 15.74 6 5.34 9 3 3 

18 18 7 5 16.4 7 5.04 9 3 3 

19 19 7 5 16.18 6.98 4.22 9 3 3 

20 20 8 5 18.38 7.98 4.28 8 3 3 
Table 35. The number of categories used during categorization following each of the three co-clustering algorithms, for full-utterance frames, N = 290. 
“Any” = number of categories that account for at least 1 allocated frame-word instance; “1%” = number of categories accounting for at least 1% of 
instances; “5%” = number of categories accounting for at least 5% of instances. Values for parsimony-based co-clustering are means over 50 iterations. 
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 WORDS FRAMES 

 SEEDS FINAL SEEDS FINAL 

K Any 1% 5% Unq Any 1% 5% Unq Any 1% 5% Unq Any 1% 5% Unq 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

4 4 4 3 4 3.94 3.04 3 3.04 4 3 3 4 3.92 3 3 3.92 

5 5 5 4 5 4.98 4 3 4 5 4 3 5 4.98 3.44 3 4.98 

6 6 6 5 6 6 5 3.56 5.02 6 4 3 6 6 4.34 3.74 5.98 

7 7 7 5 7 7 6 4.04 6.04 7 6 4 7 7 5.66 4.02 7 

8 8 7 5 8 7.3 6 4.04 6.02 8 6 4 8 7.28 5.78 4.02 7.12 

9 9 8 5 9 8.24 7 4.04 7.04 9 7 4 9 8.16 6.58 4.02 8.1 

10 10 9 6 10 9.22 7.86 5 8 10 8 5 10 9.14 7.3 5 9 

11 11 10 7 11 10.16 9.04 6 9.04 11 9 6 11 10.2 8.26 6 9.98 

12 12 11 7 12 11.2 9.48 6 9.04 12 9 6 12 11.16 8.52 6 11 

13 13 12 7 13 12.06 9.18 5.94 9.04 13 9 6 13 12.02 8.38 6 11.84

14 14 13 7 14 13.08 10.22 6 9.18 14 10 6 14 13.12 8.6 6 12.82

15 15 14 7 15 13.88 10.24 6 10.26 15 10 6 15 13.94 8.54 6 13.8 

16 16 15 7 16 15.02 10.14 5.98 10.18 16 10 5 16 15.08 8.38 6 14.82

17 17 16 7 17 16.04 10.12 6 10.7 17 10 5 17 16.06 8.6 6 15.74

18 18 17 8 18 16.78 11 6.54 11.66 18 12 5 18 16.76 9.6 6.82 16.32

19 19 18 8 19 17.08 10.78 6.64 11.74 19 12 5 19 17 9.4 6.72 16.06

20 20 19 8 20 18.96 11.66 6.5 13.7 20 13 6 20 18.94 10.34 7.5 18.22

Table 36. Effect of the initial number of clusters on mean number of large categories produced in the parsimony-based co-clustering algorithm, full-
utterance frames, N=290. Key as for Table 35, plus “Unq” = number of categories that are the only category allocated to at least one item. 
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 WORDS FRAMES 

 SEEDS FINAL SEEDS FINAL 

K Any 1% 5% Unq Any 1% 5% Unq Any 1% 5% Unq Any 1% 5% Unq 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

4 4 3 3 4 4 3 3 3 4 3 3 4 4 3 3 3 

5 5 5 4 5 5 3 3 3 5 4 3 5 5 3 3 3 

6 6 6 5 6 6 4 3 3 6 4 3 6 6 4 3 3 

7 7 7 5 7 7 4 3 4 7 6 4 7 7 5 4 3 

8 8 7 5 8 8 4 3 4 8 6 4 8 8 5 4 3 

9 9 8 5 9 9 4 3 5 9 7 4 9 9 6 4 4 

10 10 9 6 10 10 5 3 5 10 8 5 10 10 6 4 4 

11 11 10 7 11 11 6 3 4 11 9 6 11 11 7 3 5 

12 12 11 7 12 12 6 3 4 12 9 6 12 12 7 3 5 

13 13 12 7 13 13 6 3 4 13 9 6 13 13 7 3 5 

14 14 13 7 14 14 6 3 4 14 10 6 14 14 7 3 5 

15 15 14 7 15 15 6 3 4 15 10 6 15 15 7 3 5 

16 16 15 7 16 16 6 3 4 16 10 5 16 16 7 3 5 

17 17 16 7 17 17 6 3 4 17 10 5 17 17 7 3 5 

18 18 17 8 18 18 6 3 4 18 12 5 18 18 8 3 5 

19 19 18 8 19 19 5 3 4 19 12 5 19 19 8 3 5 

20 20 19 8 20 20 6 3 5 20 13 6 20 20 9 3 6 

Table 37. Effect of the initial number of clusters on mean number of large categories produced in the conflict-driven co-clustering algorithm, full-
utterance frames, N=290. Key as for Table 36.
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7.5.2 Evaluation of independent frame and word ambiguity 
The parsimony-based and conflict-driven co-clustering algorithms produce models of the 

ambiguity inherent in the frames and the words independently, by means of the separate 

allocation matrices for frames and for words. Because these matrices list the possible 

categories that can be assigned to each frame and each word, they express the degree and 

kind of ambiguity inherent in each item. It is therefore possible to ask which individual 

items were identified as ambiguous. In order to look more closely at this issue, we can 

focus on the words that have been explicitly identified as ambiguous by the discrete co-

clustering algorithms. Because of the practical difficulty in this case of describing the 

average behaviour of the parsimony-based algorithm, I focus only on the conflict-based 

algorithm.  

 

For comparison, we can list the words that have been allocated to more than one category 

in different usage contexts, according to the gold standard. This listing is shown in Table 

38, and contains word lists for each of the four combinations of the main three categories. 

These should, in theory, be the ambiguous words in the dataset according to the gold 

standard. Unfortunately, deliberately focusing on the most ambiguous words brings us up  

against the limitations of the gold standard part-of-speech tagging. Not all words 

described as ambiguous in the table are actually used in more than one category in the 

dataset, and the gold standard contains several tagging mistakes, in my opinion.  

 

For instance, in the following dialogue (Manchester corpus, file john18a.cha, lines 178-

189), “parrot” is misclassified as a verb, although it is clearly a noun given the context: 

 

*MOT: right. (adverb) 

*CHI: right. (adverb) 

*CHI: right. (adverb) 

*MOT: you parrot. (pronoun verb) 

 

And in fact, about half of the words on the lists in Table 38 are used in only one category 

in the portion of the corpus under consideration, but have been tagged incorrectly by the 
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gold standard in some contexts. Words that were, in my opinion, incorrectly tagged as 

ambiguous are shown in italics.  

 

NOUN/VERB/ 

ADJECTIVE 

black, crash, cross, fit, side, upset 

NOUN/VERB answer, arm, arms, bag, balance, ball, bang, bear, being, 
bend, bite, blow, bottle, brush, building, bump, buy, call, 
chalk, change, chicken, chin, clap, clock, colors, cook, 
corner, count, cover, crawl, cut, dance, dress, drink, drive, 
duck, excuse, fall, farm, field, fingers, fire, fish, fishes, fits, 
fly, foot, game, ham, hand, hands, help, hide, hit, hold, 
hole, home, house, juice, jump, kick, kiss, knock, leave, lift, 
lock, love, mat, measure, mess, milk, mind, miss, number, 
numbers, nurse, page, paint, pants, parcel, pardon, park, 
parrot, pass, pat, pay, peel, phone, picnic, picture, piece, 
pig, pile, play, pocket, point, pop, post, press, prod, pull, 
push, puzzle, race, rest, ride, ring, rock, roll, rub, run, 
sauce, shake, shampoo, shop, shopping, show, sign, sink, 
sleep, slide, smell, smile, snap, sneeze, sort, spot, squash, 
squeeze, stand, start, stay, steps, stick, stocking, stop, 
stroke, swim, talk, tape, telephone, thumb, tin, toast, toys, 
track, try, video, wake, walk, wash, washing, watch, water, 
weewee, wind, wipe, work, works, writing 

ADJECTIVE/VERB awake, broke, brown, clean, clear, close, dry, empty, 
gentle, left, long, lost, mean, open, pretend, rough, shy, 
slow, warm, wee, wet 

ADJECTIVE/NOUN beautiful, billy, bottom, cold, cream, dark, dead, drunk, fast, 
fat, flat, full, fun, grey, head, high, key, kind, last, light, 
lucky, magic, minute, present, purple, quiet, safe, sick, 
square, stable, sticky, stiff, stripy, super, sweet, tiny, top, 
white 

Table 38. Words in the currently-used data matrix that are ambiguous according to the gold 
standard part-of-speech tagging of the Manchester corpus. Words incorrectly tagged in the gold 
standard as ambiguous are in italics. 
 

The words identified as ambiguous by the conflict-based algorithm are shown in Table 39, 

for each combination of the main categories. Words that appear in both this list and the 

gold standard ambiguous list for the same category combination are highlighted in bold. 

Here, too, there are several instances where words have in my opinion been used as 

members of more than one category, but this is not reflected in the gold standard tagging. 

These words are marked in italics. Some of these may be debatable, but there seems to be 
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little justification for accepting some uses of “bang” as nouns, but not “crash”, or 

accepting “kiss” as a noun but not “cuddle”. 

 

NOUN/VERB/ 

ADJECTIVE  

fit, pretend, through, washing 

NOUN/VERB bang, bite, blow, brush, by, change, cover, crash, 
cuddle, dress, drink, goes, help, hold, kiss, lift, lock, 
love, mean, mind, nurse, open, paint, park, pass, pat, 
play, point, pop, post, pull, remember, ride, rock, roll, 
saw, sit, sleep, slide, smack, so, sort, spot, squeeze, 
stand, start, stay, stick, tickle, try, walk, wash, watch, 
wind, wipe, work 

ADJECTIVE/VERB behind, biting, broke, bumped, clean, close, crashed, 
done, driving, dropped, dry, eating, fallen, finished, fixed, 
found, had, lost, made, maybe, missed, moved, near, 
popped, read, really, shut, spilt, squashed, standing, stop, 
tidy, warm, won, works 

ADJECTIVE/NOUN actually, Anna’s, bedtime, better, biggest, black, both, 
bright, broken, brown, building, carefully, cold, coloring, 
crying, daddy's, dalmatians, dark, drawing, enough, fun, 
gently, grandma, gumdrop, home, inside, kind, left, long, 
lovely, lucky, mine, morning, much; orangejuice, painting, 
pink, playing, purple, pushing, quick, sitting, sleeping, 
steady, sticky, straight, stripy, stuck, sweetcorn, Thomas, 
tiny, walking, white, writing, wrong, yours, yummy 

Table 39. All words deemed as ambiguous by the conflict-based co-clustering algorithm for N=290. 
Correctly identified ambiguous words (i.e. that are also ambiguous according to the gold standard) 
are in bold. Ambiguous words that were not marked as ambiguous in the gold standard are in italics. 
 

Having stated these reservations, it nevertheless seems that the conflict-based algorithm 

performed quite well in identifying ambiguous verb/nouns; only a few of the words 

identified as being both verbs and nouns were not so used in the corpus. Note that in the 

case of “wind”, there are actually two different pronunciations for the verb and noun 

forms, so that these would not have been confused with each other by a child. In the case 

of adjective/verb pairs, the algorithm was much less successful; it identified many verb 

participial forms which are arguably adjective-like, in that they often occur in 

constructions with the copula (“are you standing?”). Among the successful cases, note 

again the presence of the phonologically disambiguable word “close”. The adjective/noun 

group was also less successful than the noun/verb group. Some words on the list may be 
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surprising, but they are indeed used in the corpus in unusual ways, e.g. “is it a sticky?”, 

“what does Stripy say?”, “in the bright”. Note in this group also five present participles 

which are clearly nouns (most of them names for objects) in certain contexts: “building”, 

“coloring”, “drawing”, “painting” and “writing”. These should perhaps have been 

classified as verb/noun ambiguous words, but because of the affinity of participial forms 

for the class of adjective, they have been termed ambiguous noun/adjective words instead. 

 

While the gold standard tagging is likely to be useful for the purpose of roughly gauging 

the classification success of the algorithms discussed in this thesis, it runs into clear 

problems when dealing with the fine-grained detail of ambiguous words. Given these 

categorization problems, the analysis above is not repeated for frames. 

7.5.3 Frames with multiple-X sequences 
The frames considered so far have the characteristic that all X slots are isolated from each 

other: an X is always preceded and followed by either a frequent word or an utterance 

boundary. Cases where we have two or more X’s in succession, e.g. the X X, are not 

considered. 

 

These cases are in fact somewhat problematic for part-of-speech induction. To take the 

example of “the X X”, the fillers for the slots could be an adjective followed by a noun: 

“the dirty glass”, “the ugly duckling”, “the hungry lion”. However, the slots could also be 

filled by a noun followed by a verb, as in “the glass broke”, “the duckling cried”, “the 

lion sleeps tonight”. Deciding between the two cases can be done if the part-of-speech of 

at least one word is known. It is really the presence of both “the” and “Noun” in the 

structure “the Adjective Noun” that licenses the presence of “Adjective”. Likewise, “the” 

and “Adjective” license “Noun”.  

Categorizing the adjective in this structure would have been possible under a lexically-

specific approach, if, say, “the X glass” was a prominent frame; however, it is not, 

because of the relative rarity of the word “glass”, and this is in fact true for most specific 

nouns. The child would need to know that “glass” is a noun first before being able to 

learn the “the Adjective Noun” pattern. But when the child is still learning the conditions 
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for recognizing the various parts-of-speech, she will not yet have the required knowledge 

on which to base the decision. 

 

One way of looking at lexically-specific frames is that the specific material licenses the 

use of the category associated with the variable slot, e.g. the in the X licenses the 

presence of a noun in the X slot. Note that this relationship is between a specific word 

(the) and the category of nouns, not any specific noun. In other words, only when the 

category has been identified can we describe the relationship in the utterance correctly. 

(This relationship between elements is known in linguistics as dependency.) The “no-

multiple-slots” constraint may be seen as a way to take dependency into account. 

 

However, it is worth examining how crucial the constraint of isolated X slots is for a 

successful categorization outcome. If dropping this constraint results in much poorer 

performance on the evaluation measures, then the constraint is a vital one. On the other 

hand, if the evaluation still yields fairly high scores on the measures, then that allows for 

the possibility that children are able to make use of frames with arbitrary lengths of X 

sequences, and hence that the isolated-X situation is contiguous with the multiple-X 

sequence situation rather than being qualitatively different. 

 

For this experiment, I consider only N=290, as a reasonable representative of the full 

range of N. Words were divided into frequent and less-frequent words, and all utterances 

in the corpus rewritten as before. This time, however, word-frame co-occurrence data 

was collected for words occurring in any frame, not just ones with X’s in isolation, with 

the proviso that the frame had to contain at least one non-X word.  

 

For example, the new set contained the frames “Do you like X Z?” and “Do you like Z 

X?”, where the X indicates the active slot, and the Z the inactive one. These frames 

matched against utterances such as “Do you like baked beans?”, “Do you like Grandma’s 

cakes?” and “Do you like eating spaghetti?”. Note that these two frames are taken to be 

independent from each other, so that “eating” is taken to be a filler of “Do you want X 
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Z?” and “spaghetti” is a filler of” Do you want Z X?”, and there is nothing in the data set 

to indicate that “eating” and “spaghetti” occurred together.  

 

The rest of the experiment was conducted as before, with a hard clustering of the frames, 

followed by execution of the set of co-clustering algorithms. The results are shown in 

Table 40. 

 Hard F Fuzzy F Fuzzy W Fuzzy FxW Confl. Pars. 

Accuracy 0.787 
(0.526) 

0.803 
(0.526) 

0.866 
(0.526) 

0.872 
(0.526) 

0.852 
(0.526) 

0.858 
(0.526) 

Completeness 0.655 
(0.438) 

0.719 
(0.471) 

0.780 
(0.474) 

0.811 
(0.489) 

0.818 
(0.577) 

0.804 
(0.493) 

F 0.715 
(0.478) 

0.759 
(0.497) 

0.821 
(0.499) 

0.841 
(0.507) 

0.835 
(0.516) 

0.830 
(0.509) 

Bookmaker 0.623 0.657 0.760 0.775 0.690 0.752 

Table 40. Evaluation of frames with multiple-X sequences, N=290, 4 clusters.  
 

Randomization tests of significance showed that all differences of interest are significant, 

with Fuzzy F × W performing the best on both F (Table 41) and Bookmaker (Table 42) 

scores, followed by Pars, then Confl and then Hard F. 

 

 Fuzzy FxW Confl. Pars. 

Hard F ↑ 
< 0.001** 

↑ 
< 0.001** 

↑ 
< 0.001** 

Fuzzy FxW  ← 
< 0.001** 

← 
< 0.001** 

Confl.   ↑ 
< 0.001** 

Fuzzy F ↑ 
< 0.001** 

  

Fuzzy W ↑ 
< 0.001** 

  

Table 41. Significance levels of differences in F scores for full-
utterance frames with multiple-X sequences, N=290. 
* significant at p=0.05, ** significant at p = 0.01. 
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 Fuzzy FxW Confl. Pars. 

Hard F ↑ 
< 0.001** 

↑ 
< 0.001** 

↑ 
< 0.001** 

Fuzzy FxW  ← 
< 0.001** 

← 
0.001** 

Confl.   ↑ 
< 0.001** 

Fuzzy F ↑ 
< 0.001** 

  

Fuzzy W ↑ 
0.001** 

  

Table 42. Significance levels of differences in Bookmaker 
scores for full-utterance frames with multiple-X sequences, 
N=290. 
* significant at p=0.05, ** significant at p = 0.01. 

 
 

As is apparent from comparison with Table 27, relaxing the constraint that all X’s should 

be isolated adversely affected the correctness of the resulting categorization to some 

degree. All evaluation scores are lower than they were with “isolated-X” frames. 

Nevertheless, these scores are still high in absolute terms, so that it would be fair to say 

that even multiple-X sequence frames are an adequate basis for discovering the parts-of-

speech of English. The constraint of isolated X’s will be maintained, however, on the 

grounds that these frames may be based on dependency relationships which obtain 

between specific word categories and dependent frequent words; these relationships 

cannot be calculated between members of parts-of-speech before the categories have 

been discovered.  

 

For multiple-X frames, the most successful clustering algorithm was Fuzzy F × W, 

followed by Pars. (and Fuzzy W), and then Confl. 

7.5.3.1 An alternative treatment of material in successive X slots 
The no-multiple-slots constraint was justified above because it takes into account that 

sometimes only the category, rather than the identity, of a contextual word is informative 

of the category of a word adjacent to it. Apart from this, there is also a problem of 
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segmentation. With the most common words, we can assume that the words can be 

segmented out from the speech signal fairly easily due to their familiarity. This facilitates 

segmentation of the rarer words if we apply the no-multiple-slots constraint; they are 

simply the sections in between the frequent words. In the case of a sequence of rarer 

words, however, we cannot assume that the child already knows how to split the 

sequence into its individual words. 

 

An alternative solution to the problem of frame slots in succession is to investigate the 

constituency of the utterances that the child hears. Arguably, the sequence Adjective 

Noun in utterances such as “the dirty glass”, “the ugly duckling”, “the hungry lion”, can 

be regarded as a coherent unit, something that is more difficult to claim for Noun Verb 

sequences, e.g. “lion sleeps” in “the lion sleeps”. Suppose now that we alter the definition 

of the X slots, so that any sequence of non-frequent words is rewritten as a single X. In 

other words, X means “slot filler” rather than “single-word slot filler”. This would mean 

that all the sentences discussed above would be described as “the X”, with fillers “dirty 

glass”, “glass broke”, “ugly duckling”, “duckling cried”, etc. Now bear in mind that 

frequency of occurrence plays a major role in entrenching units, including the putative 

constituents “hungry lion” and “lion sleeps”. To the extent that “hungry lion” is more of a 

constituent than “lion sleeps”, we can expect it to occur more frequently and hence 

become more entrenched as a unit in the child’s lexicon. In this way, “hungry lion” will 

survive as a unit, while “lion sleeps” will be discarded, and hence not be considered as a 

filler for the frame “the X”. Furthermore, “hungry lion” is treated as a filler on a par with 

just the word “lion”, obtained from “the lion”. 

 

Now, at a later stage, the child can use this knowledge to redescribe utterances such as 

“the hungry lion sleeps” as, say, “the W X”, where W represents the previously learned 

category consisting of nouns and adjective-noun sequences. This then facilitates learning 

what kinds of words can occupy the new X slot (e.g. “sleeps”). Thus the problem is dealt 

with in two stages.  
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Of course, it is an empirical question whether children do follow such a developmental 

path during language learning, and one which has to my knowledge not been investigated 

yet. From a purely practical standpoint, it is desirable in the current work to evaluate the 

outcome of categorization using the part-of-speech tagging provided with the Manchester 

corpus, which assigns a tag to each individual word and would not assign a single 

category to the unit “hungry lion”, hence evaluating the results of such an experiment 

would be difficult on pragmatic grounds. The approach just discussed is not examined in 

this thesis, but may well become the focus of future explorations. 

7.6 Discussion 
In this chapter, I presented a number of techniques to obtain a categorization of word-

frame instances that were more sophisticated than the strategy followed in Chapter 6 of 

merely imposing the category of the frame on the instance, with frames presumed to be 

associated with one and only one category. These techniques (i) made use of information 

about the identity of the word as well as the frame, combining these two sources of 

information in order to arrive at a better categorization, and (ii) moved away from an all-

or-nothing allocation, where words and frames are assigned to only one category, to an 

allocation that directly addresses the inherent ambiguity of linguistic elements. This was 

done by either expressing category membership in probabilistic terms, as in fuzzy co-

clustering, or by enumerating all categorical possibilities explicitly, as was done in the 

parsimony-driven and conflict-resolution co-clustering algorithms. These techniques 

proved to be highly successful in categorizing word-frame instances, attaining the 

exceptionally high evaluation scores of an F value of 0.905 (over baseline of 0.568) and a 

Bookmaker value of 0.833 in the best case. 

 

However, it may be necessary, in accurately describing the set of frames to which the 

child is exposed during language learning, to move beyond using only frames that capture 

the structure of a full utterance. Many of the full-utterance frames identified in Chapter 6 

are highly redundant with each other: Frames such as “Find the X”, “Are you Z the X ?”, 

“Are you going to Z the X ?”, “Can I have the X ?”, etc., are all assigned to the “noun” 

cluster; yet we might suspect that it is just the local noun phrase structure “the X” that is 

doing the work in these cases of identifying the word in the X slot as a noun.  



 219

 

One could surmise that the prevalence of “the X” in the above contexts and many others 

is due to the fact that it is a linguistic constituent, i.e. it is a coherent unit which can be 

embedded in a variety of contexts. It would be of great use, in learning about parts-of-

speech, to be able to identify these nested constituents. If the phrase “the X” was 

identified as a nested constituent in all of the above larger frames, then the frames 

themselves could be discarded in favour of “the X” only, and their word occurrence data, 

which had been divided among a set of independent frames, could now be credited to the 

single “the X” frame. Taking this approach would make the description of utterances 

more compact and more rational, and could provide the clustering process with more 

accurate information. In addition, a larger part of the corpus might be covered by the 

frame model if frames were able to cover partial utterances as well as full utterances. This 

approach will be the focus of Chapter 8. 
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8 Hierarchically nested frames 

8.1 Introduction 
In this chapter, I will extend the full-utterance frame approach of the previous chapters, 

by presenting an algorithm that discovers smaller frame-like structures nested inside 

larger utterances. The algorithm is based on the notion of discovering linguistic 

constituents. Constituents are elements that are able to appear as whole units in utterances, 

in positions where they can often be interchanged with other constituents. This criterion 

is enshrined in the substitution test of structural linguistics (e.g. Harris, 1954).  

 

I will set out a procedure for automatically discovering such embedded frames, making 

use of a modified substitution criterion which notes that constituents can often be 

replaced by single words without doing violence to the syntactic structure of an utterance 

(see e.g. Clark & Clark, 1977). So, for instance, the noun phrases in brackets in the first 

two sentences below can be replaced by a single word, e.g. “Maurice”: 

 

It’s [her voice] I can’t stand. 

It’s [the standing in line waiting] I can’t stand. 

It’s [Maurice] I can’t stand. 

 

And so one might imagine that one could line up sentences with the same basic sentence 

structure, but which differ in having variable material occurring in the same position in 

the structure across sentences. The varying material, if repeated often enough in several 

different contexts, is likely to represent the structure of a linguistic constituent, and it is 

these nested structures that will be treated as so-called nested frames. This chapter details 

a computational implementation of this idea.  

 

The idea of lining up sentences against each other in order to discover shared versus 

different structure is not new; in fact, it has been explored in depth by van Zaanen (2001) 

in his work on Alignment-Based Learning (ABL). The work in the current chapter 

follows a general approach similar to that of ABL. Doing so is of interest in that it 
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complements and extends the full-utterance frame approach of Chapter 6 to finding 

lexically-specific frames. However, there are also a number of significant differences 

between the current approach and ABL, which will be highlighted in Chapter 10. 

 

There is at least a reasonable justification for the fairly conservative approach of the 

previous chapters, namely searching for linguistic constituents by considering only full-

utterance frames: we are interested in discovering items that can be clearly segmented out 

from their surrounding context, and full-utterance frames, arguably either having no 

surrounding context, or otherwise being separated from the surrounding discourse context 

by silence, are clearly segmented-out units in this sense.  

 

Furthermore, the full-utterance frame approach also gives us access to structures that 

would possibly not have been apparent in a pure embedded-fragment approach. Notably, 

some question frames (what do you X ?, why have you X it ?) have a structure which 

shapes the utterance as a whole, and these frames are unlikely to be embedded in larger 

structures. 

 

Nevertheless, finding nested frames allows us to describe the regularities in child-directed 

language more accurately: instead of making use of several full-utterance frames that 

each contain the substring “the X” around the focal word, we can make use of the single 

frame “the X” and merge the co-occurrence data from all of these frames together to 

obtain a richer set of information about word-frame co-occurrence. The nested-frames 

approach also increases coverage, allowing us to categorize words that would not have 

been within reach of the full-utterance frame approach, merely because the entire 

utterance structure would not have matched a frame on its own. 

8.2 Frame discovery procedure 
The procedure for finding nested frames starts with the Manchester corpus rewritten in 

the same way as for full-utterance frames, with the most frequent 150 words retained as 

they are and all other words replaced with X. Next, the set of all full-utterance frames is 

collected as a substrate on which the substitution process will operate. No filtering step is 

applied to remove frames that do not co-occur with a minimum number of different word 
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types, as was the case in the previous chapters. All frames that occur more than a fixed 

number of times overall in the corpus are included for consideration; in the current 

simulation, a frame needed to occur only twice in the corpus. This relatively lenient 

parameter setting reflects the intuition that utterances that occur only once may be 

spurious, or may have been incorrectly coded. Frames that occur at least twice are 

probably reliable features of the input. 

 

Next, all pairs of utterance frames are examined, in order to determine whether the two 

utterances align in such a way that an X slot in one member M1 of the pair can be 

expanded/elaborated in order to produce the other member M2 of the pair. If so, then the 

X slot in M1 is treated as a slot that can potentially accept material of more than one word, 

and we can say that M1 is schematic for M2. So for instance, the X slot in “do you want 

X?” can be expanded into “another X”; hence, “do you want X?” is schematic for “do 

you want another X?”. If these two utterances were encountered in the corpus, their 

alignment would suggest that the phrase “another X” is a potential linguistic constituent, 

and hence a candidate to be considered as a nested frame. The frame “do you want X?” is 

called the nesting frame of the nested frame, and is written as “do you want Y?”, where 

the Y indicates a slot that can accept material of more than one word. 

 

We can write the above alignment using a bracketing, where a pair of brackets delimits a 

putative syntactic constituent:  

 

do you want [another X]? 

 

As the algorithm progresses through the corpus, aligning all pairs of sentences, it collects 

data about all pairs of nested and nesting frames, storing the data in a frame-frame co-

occurrence matrix, analogous to the frame-word matrix of the previous chapters.  

 

If schematicity is represented as an ancestor-descendant relationship in a graph, then it is 

possible to build up an acyclic schematicity graph, detailing the ancestor-descendant 

links between nodes that represent frames. The computational procedure builds such a 
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network as it progresses through the set of full-utterance frames. The relationship of 

schematicity is transitive: if T1 is schematic for T2, and T2 is schematic for T3, then it 

necessarily follows that T1 is schematic for T3. For this reason, nodes are only linked to 

their most immediate ancestors, as representing explicit links to non-immediate ancestors 

would be redundant. (The algorithm works by adding a schematicity link whenever 

schematicity is discovered, then removing redundant links in a subsequent cleanup phase.) 

 

Enforcing transitivity has the benefit that we can actually analyse an utterance in finer 

detail than would have been the case had we represented only individual schematicity 

relationships. A schematicity chain provides a kind of structural bracketing for the last 

utterance in the chain; the bracketing can be constructed by placing each putative 

constituent in a pair of brackets, potentially producing several levels of nested structure in 

an utterance. Consider the bracketing 

 

do you [ want [ me to [ get your X ] ] ] ? 

 

This bracketing was produced in the actual simulation of the nested frame discovery 

algorithm, because the corpus contained the utterance structures “do you X?”, “do you 

want X?”, “do you want me to X?”, and “do you want me to get your X?”. 

 

From a bracketed structure, we can collect frame-frame co-occurrence data at all levels. 

In this example, “do you Y ?” can be filled by “want Y”, “want Y” can be filled by “me 

to Y”, and “me to Y” can be filled by “get your X”. 

 

It is quite common for an utterance to produce more than one bracketing (i.e. there is 

more than one path upwards in the graph from a particular node). In this case, we simply 

collect co-occurrence data from all possible paths. It is assumed that reliable information 

will be more prevalent than spurious information when data from the entire corpus has 

been collected. 
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The alignment process does in fact produce a large number of incorrect or spurious 

bracketings, with many nested frame candidates that are not constituents at all. Once a 

data matrix of nesting frames and nested frames has been collected, it is therefore 

necessary to discard these misanalyses. This is done by enforcing the “5-5 constraint” 

from the full-utterance frame approach. Only nested frames that have been nested inside 

at least 5 different nesting frames are considered, and only nesting frames that have 

contained 5 or more nested frames are considered legitimate contexts. All other nested 

and nesting frames are filtered out. 

 

At this point, we have a data matrix that indicates which local frames reliably appear 

nested inside which surrounding contextual frames. These nested frames are the ones that 

are likely to be relevant to lexical categorization of the words that, in turn, occur inside 

them. The next step is to examine the co-occurrence of words and these local nested 

frames. 

 

There are at least three ways in which utterances can be parsed using the found local 

frame  contexts: 

Context-free: if a local frame occurs anywhere in the utterance, count the co-occurrence 

of that frame and the word that occurs in it. Such an approach is inherently able to 

generalize beyond the particular instances in which the frame was initially discovered. 

Immediately context-sensitive: In a stricter approach, we only recognize nested frames 

when they actually occur in one of the nesting frames where they were discovered, i.e. in 

a nesting frame from the frame-frame co-occurrence matrix. So the recognition of the 

frame is only legitimate if there is an appropriate context surrounding it to indicate that it 

is in fact the frame that we think it is. 

Fully context-sensitive: In the strictest version of this parsing regime, the constraint of 

context-sensitivity is not just that a frame should appear inside another nesting frame, but 

also that the nesting frame should in turn be nested inside another frame, and so on 

recursively until the full-utterance level is reached. The entire utterance must therefore be 

analysable into a set of frames nested inside other frames (with allowable combinations 

as sanctioned by the frame-frame matrix). This option is not explored here. 
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The corpus is parsed once again using one of these three methods, this time for the 

purpose of creating a frame-word matrix, where the frames are the set of accepted nested 

frames. This time round, if “get your X” is one of the nested frames, then when the 

utterance “do you want to get your rolling-pin?” is encountered, the frame context of 

“rolling-pin” is “get your X”, not “do you want to get your X?” as it was under the full-

utterance frame approach. 

 

Once the corpus has been parsed and the frame-word co-occurrence matrix has been 

derived, it is again filtered as was the case with the frame-word co-occurrence matrix in 

Chapter 6, so that only slots and fillers that occur more frequently than a fixed threshold 

are used. The clustering process proceeds as before.  

8.3 Psychological considerations 
Essentially, this process is intended to be one in which frames that have already become 

familiar through the full-utterance frame process now serve as “pathbreaking” frames for 

discovering more complex utterance frames that have the same lexically-specific 

structure, but contain multi-word expressions in their slots instead of single words. These 

multi-word expressions can themselves be regarded as nested frames in many cases. 

 

Under the full-utterance frame approach, if a child has encountered a sentence such as is 

that Thomas?, then it is presumed that the frame of the utterance is schematically 

represented as is that X?. If the child encounters other utterances such as is that Pingu?, 

is that Percy?, etc., then those utterances will be similarly schematically represented, and 

the schematic representation will become reinforced in memory with each repetition 

(token frequency) and also with each different word filler (type frequency). When the 

schematic structure has been successfully entrenched in this way, it is reasonable to 

assume that it will be activated whenever it is encountered in the input, with a one-word 

filler.  

 

From here, it does not take a large leap of generalization to consider the possibility that 

the frame may be applied even when the filler material is longer than one (infrequent) 
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word. In this way, an utterance such as is that your teddy?, schematically represented as 

is that your X?, could be analysed as is that X? with the multi-word schematic filler your 

X. Note that the original is that X? frame, by being imposed onto a different utterance 

structure from the one in which it was discovered, allows for a segmentation (or a 

bracketing) of the utterance into hierarchically nested constituents. The new fragment 

your X is now potentially available to be entrenched in memory as a unit in its own right, 

provided once again that it exhibits high token frequency and type frequency, where the 

latter in this case entails not only that many different word types should occur in the X 

slot of your X, but also that your X itself should occur nested inside several different 

larger contexts other than is that X?. If the only context in which your X ever regularly 

occurred was the utterance is that your X?, then it would have been more accurate to 

regard the larger utterance as the “true” linguistic unit, and to describe the context frame 

of is that your teddy? as is that your X?. However, your X occurs embedded inside a great 

many larger structures, e.g. with [your X], that’s [your X], want [your X]?, with each of 

these larger nesting frames already known to accept single-word fillers, and so there is a 

great deal of evidence for its status as an independent unit.  

 

The purpose of carrying out this process, in the context of part-of-speech induction, is 

that it is the local context in which a focal word occurs that constrains the word’s part-of-

speech. In is that [your X]?, it is the immediate surrounding frame “your X” which 

constrains, say, teddy, to be a noun, not the larger frame is that your X?, and so this 

approach leads to a more parsimonious way of describing the constructions in English, 

and hence potentially a more accurate source of information about parts-of-speech. It 

would have been possible for the different full-utterance frames is that your X?, with your 

X, that’s your X and want your X? to be allocated to different clusters under the approach 

of Chapter 6. However, when all of these utterances are redescribed as essentially 

“being” the smaller frame your X, then no such confusion can occur. Even though the sets 

of words that occurred in the various larger frames may not have overlapped perfectly, 

the words are now “drawn closer together” because they all occur in your X, and hence 

are more likely to be treated as belonging to the same category (at least when they occur 

in the context your X). The same holds to a lesser extent at the next degree of separation; 
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words which would have clustered together with each of the focal words of is that your 

X?, with your X, etc., are now also “drawn closer” to each other. Therefore, 

acknowledging nested frames provides a more compact and perspicuous representation 

and potentially a better source of information for part-of-speech induction. 

 

An important difference between the current algorithm and Van Zaanen’s (2001) ABL is 

that, in ABL, all possible alignments between two utterances are treated as potential 

information about linguistic constituency, so that for instance the two utterances you want 

a cookie? and you want another cookie? could potentially align because of the shared you 

want Y context. In the nested frames approach, this can happen only if the frame you want 

X (i.e. with a single-word filler) has also been attested in the corpus, and so the current 

approach does not allow general alignments as ABL does. 

 

The reason for this is that in you want X, the filler slot (the X) is implicitly segmented 

away from the rest of the frame, by reason of being occupied by an infrequent word. 

Therefore the presence of the slot is regarded as a surface clue that variable material can 

be entered into the slot (the slot has implicitly been identified as a “growth point”). By 

contrast, in you want a X? there is no surface clue to indicate that the word string at the 

beginning of the frame should be segmented after want.  

 

From an ABL point of view, it could be argued that this segmentation knowledge arises 

as soon as the child hears the structure you want another X?, because the simultaneous 

activation of both utterances in memory will indicate the appropriate point of 

segmentation, by a process of alignment and contrast. This is possible; but note that this 

requires not only the simultaneous activation in memory of the two utterances (the 

current utterance as well as the past one), but also the postulation of a new frame context 

you want Y? and two filler frames a X and another X. Such a process may well take place 

for pairs of utterances spoken with only a short time interval between them, as the 

utterances may then both be easily accessible in memory. In the general case, though, this 

process would require perfect recall of potentially any utterance previously encountered 

(and indeed several different utterances may align simultaneously), as well as the 
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postulation of alignment structures for every pair of matches, which may place an undue 

burden on the child’s memory retrieval and processing abilities. 

 

In the current approach, the child is presumed to already possess the you want X? frame, 

and is merely applying or recognizing it during processing of you want a X?, in order to 

discover the filler constituent a X (and will apply it again when she encounters you want 

another X?). The nested frames approach requires less “going-out-on-a-limb” on the part 

of the language learner than ABL does (ABL can however discover a potentially larger 

amount of structure by having a wider range of alignments to draw on). Letting single-

word slots guide the alignment process allows for a more conservative but more 

controlled approach. 

 

Although this process has been outlined as an incremental one, with knowledge 

developing as more and more of the corpus has been processed, the actual 

implementation is a “batch-mode” algorithm, that finds these “substitution alignments” 

between the full set of full-utterance structures. An incremental version would be more 

psychologically accurate, but is left as a possibility for exploration in future work. 

8.4 Implementation 
The procedure described in the previous sections was implemented on the Manchester 

corpus. Table 44 and Table 45 show some summary statistics for locally context-sensitive 

and context-free parsing, respectively. (The corresponding numbers for full-utterance 

frames are shown in Table 43, for comparison.) It is apparent that there are more frames 

and filler words in the final data set in the case of context-free parsing than in the case of 

locally context-sensitive parsing. With the less stringent context-free parsing method, 

which recognizes frames wherever they occur, there are many more opportunities to 

recognize both frames and filler words, and hence it is easier for items to meet the 5-5 

criterion for inclusion into the data set. The effect of this, also shown in the tables, is that 

there are many more word tokens that are covered as focal words by the final data set 

under context-free parsing, and that there are many more utterances that contain at least 

one instance of a nested or full-utterance frame. 
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Number of frame types 1465 

Number of slot-filler types 1284 

Number of focal words covered 
36601 
(2.8%) 

Number of utterances covered  
40885 

(12.2%) 

Table 43. Summary numbers regarding coverage of the Manchester 
corpus by the full-utterance frame approach, for N=290. 

 

Number of frame types 643 

Number of slot-filler types 2454 

Number of focal words covered 
98321 
(7.4%) 

Number of utterances containing at least one 
nested or full-utterance frame 

86677 
(25.9%) 

Table 44. Summary numbers regarding coverage of the Manchester 
corpus by the nested-frame approach, with locally context-sensitive 
parsing, for N=290. 

 

Number of frame types 923 

Number of slot-filler types 3356 

Number of focal words covered 
131426 
(9.9%) 

Number of utterances containing at least one  
nested or full-utterance frame 

108422 
(32.4%) 

Table 45. Summary numbers regarding coverage of the Manchester 
corpus by the nested-frame approach, with context-free parsing, for 
N=290. 
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Comparing the full-utterance frame values in Table 43 with the results from the nested 

frame approach in Table 44 and Table 45, it is clear that the nested-frame approach 

greatly reduced the number of frames used in the model. Several full-utterance frames 

were replaced by a far smaller number of nested frames. At the same time, the number of 

focal word types increased; this change can be attributed to the fact that the criterion for 

recognizing a nested frame is less stringent than that for a full-utterance frame, so that 

frames can be recognized in a variety of contexts, without needing to be the frame 

structure for a full utterance. Hence, there are more opportunities to recognize nested 

frames than full-utterance frames; this is confirmed by the far greater numbers of word 

tokens and utterances covered by the nested frame model. The new nested model is more 

compact (in terms of number of frames) and simultaneously covers a larger portion of the 

corpus. Whether the categorization produced by the nested model is better than that of the 

full-utterance frame model still remains to be determined, and will be examined in the 

rest of this chapter.  

 

It should be pointed out that coverage is not as important as correctness of categorization. 

This is because the current work is not aimed at categorizing every word in the corpus, 

but at bootstrapping a set of parts-of-speech from frame information alone. These initial 

categories can then be developed further, for instance by incorporating semantic 

information. 

 

Table 46 shows a selection of the bracketed structures extracted from the starting set of 

utterances. Where multiple possible bracketings were found for one utterance, every 

option is shown on a new line. Many of these bracketings are apparently intuitively 

correct, for instance “give it to [your X]”, “let’s [find X]”, “I’m [not [a X]]”. In other 

cases, though, a number of spurious alignments occur, that in turn may lead to the 

postulation of equally spurious nesting and nested frames. For instance, “I’ve X that one” 

aligns correctly with “I’ve X” to produce “I’ve [X that one]”, but also aligns incorrectly 

with “X one” to produce “[I’ve X that] one”. And it seems that only one of the three 

bracketings for “shall we do X again?” (i.e. “shall we [ [do X] again]?”) is correct. 
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However, the algorithm is intended to be self-correcting to some extent. As long as these 

incorrect nesting or nested frames do not occur in a systematic way, i.e. with the same 

frames occurring in several utterances, they will not be added to the final data set. And 

even if some of them do get added, the correct data should outnumber the incorrect data 

sufficiently for the clustering algorithm to produce valid clusters. Section 8.6 will aim to 

examine whether this has in fact happened, by looking at the quantitative results of using 

nested frames. 

Original utterance Bracketed utterance 

lots of X  

give it to your X  

can you see a X ? 

 I've X that one  

 

you're X it  

 

you're very X , aren't you ?  

let's find X  

you like X ?  

I'm not a X 

that X a good X , X it ? 

I don't want that in my X 

oh he's a bit X , isn't he ? 

you've X the X , have you ? 

don't X them on X 

 

shall we do X again ?  

 

lots of X     (remains the same) 

give it to [ your X ] 

can you [ see [ a X ] ] ? 

I've [ X that one ]  

[ [ I've X ] that ] one 

[ you're X ] it  

you're [ X it ] 

[ you're [ very X ] ] , aren't you ? 

let's [ find X ] 

you [ like X ] ? 

I'm [ not [ a X ] ] 

[ that X a good X ] , X it ? 

I [ don't [ want [ that in my X ] ] ] 

[ oh he's [ a bit X ] ] , isn't he ? 

you've [ X the X ] , have you ? 

don't [ [ X them ] on X ]  

[ don't [ X them ] ] on X 

[ shall we [ do X ] ] again ? 

shall we [ [ do X ] again ] ? 

shall we [ do [ X again ] ] ? 

Table 46. Some examples of bracketings found using the nested-frame algorithm. 
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that's a X; it's a X; going to X; do you want X ?; are you going X ?; it's not X; 

that's the X; that's X , isn't it ?; where's the X ?; want to X; i don't X; not a X; 

there's the X; it's X , isn't it ?; X in the X; there's a X; that's not X; X in there;  

X on the X; are you going to X; X in the X; you want X ?; a bit X; X on the X;  

do you like X ?; you've got X; in the X; what do you X ?; got a X; what a X;  

you X it; what X that ?; what X that ?; it's X , is it ?; a good X; i'm not X;  

on the X; you X it; don't X it; a big X; can you say X ?; i think X; X that one; 

don't think X; you're not X; it is X; and the X; is it a X ?; don't X it; and what X ?; 

this is X; a little X; can you see X ?; look at X; where's your X ?; want a X;  

what are you X ?; what're you X for ?; have you got X ?; a Z of X; that was X; 

that's X , is it ?; the other X; and a X; a X one; like a X; you can X; you don't X; 

is a X; i X you; what did you X ?; can i have X ?; X it up; X in the X ?;  

is that a X ?; what X one ?; what X one ?; i can't X; X that one ?; what's the X ?; 

and there's X; it's the X; that X there; that X there; is the X; what color X ?;  

are you X the X ?; are you X the X ?; want some X; what Z of X ?; a nice X; 

that's your X; there's your X; do you think X ?; there's some X;  

what's X doing ?; that one X; what's that X ?; are you X a X ?; about the X; 
Table 47. The top 100 most frequent combinations of nested frames inside nesting frames occurring 
in the Manchester corpus. 
 

Next, a nesting frame- nested frame co-occurrence matrix was obtained from the 

bracketing data. The most commonly-occurring combinations of nested and nesting 

frames are shown in Table 47. In addition, some selected examples of nesting and nested 

frames are shown in Table 48 and Table 49, organized around the nesting and the nested 

frame respectively. In each case, the nested frames are intended to appear in the Y slots 

of the nesting frames. Although some nesting frames favour nested frames from one 

particular phrasal type, e.g. “Can I Y?” which is the nesting context for a variety of 

frames which seem to be verb phrases (“X a X”, “X it”, “X up”), this is clearly not true 

for all nesting frames: for instance, just as the full-utterance frame “is it X?” contained 

verbs, adjectives and nouns, the nesting frame “is it Y?” accommodates noun phrases (“a 

X”, “the X”, “your X”), adjectival phrases (“too X”, “very X”) and items which could be 

either verb phrases or prepositional phrases (“X the X”, “X your X”). A number of  
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Nesting frame Nested frames 

all Y 
 

X and X;  X down;  X now;  X out; 
X up;  a bit X;  in X;  nice and X; 
on the X;  right X;  that X;  the X; 
these X;  this X;  those X;  your X 

can I Y ? 
 

X a X;  X her;  X here;  X in there;  
X it;  X that one;  X the X;  X this X; 
X up;  X you;  X your X;  have X 

make Y a X;  another X;  it X;  some X; the X 
why Y ? X I;  are they X;  are you X;  is he X;  

is it X;  is she X 
is it Y ? 
 

X again;  X now;  X on;  X on X;  
X or X;  X the X;  X there;  X to X;  
X yet;  X your X;  a X;  all X;  an X;  
big X;  called X;  for X;  going X;  her X; 
his X;  in a X;  in the X;  in your X;   
like X;  my X;  nice X;  not X;  on the X; 
still X;  that X;  the X;  too X;  very X; 
your X 

Table 48. Some nesting frames and the nested frames that occur in them. 
 

Nested frame Nesting frames 

too X Y, is it?;  Y now;  are Y; are you Y?;   
bit Y;  get Y;  he’s Y;  I’m Y;  is he Y?; 
is it Y?; isn’t Y;  it’s Y;  not Y;  one’s Y;  
that’s Y; they’re Y;  what’s Y;  you’re Y 

your X Y are Z;  Y car;  Y doing;  Z in Y;   
about Y;  all Y;  do Y;  find Y;  have Y; 
I’m Y;  in Y?;  is she Y?;  not Y; 
that’s Y;  there’s Y;  who’s Y? 

X it Y a bit;  Y again;  Y for Z;  Y in;  Y over;
Y to Z;  are you Y;  can Y;  did you Y?; 
going to Y;  haven’t Y;  I’m Y;   
is she Y?;  let’s Y;  shall we Y?; 
she Y;  to Y; who Y? 

Table 49. Some nested frames and the nesting frames in which they occur. 
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missegmentations persist: for instance, “all right X” was missegmented as “all [right X]”, 

and “make it X” as “make [it X]”. Likewise, the context “your X”, a prototypical noun 

phase that can be expected to take nouns in its slot, was correctly segmented out from 

surrounding contexts such as “[your X] are Z”, “Z in [your X]” and “all [your X]”, but 

was also identified in the context “[your X] car”, where it is not a constituent and the 

single-word fillers may be expected to be adjectives. Nevertheless, most nested frames 

seem to correspond to plausible constituents. 

 

As described above, the corpus was parsed again, and a word-frame co-occurrence matrix 

was obtained under the two parsing regimes. The context-free parsing routine used the 

nested frames as contexts for the words wherever they appeared. The context-sensitive 

parsing routine took nested frames to be the contexts of words only when those nested 

frames appeared inside the context of one of their “own” nesting frames, i.e. a nested 

frame was recognized only when it appeared in the context of one of the nesting frames 

with which it co-occurred when the nesting frame-nested frame matrix was created. 

 

The full-utterance frames obtained in the previous chapter were retained in this 

experiment as a “fallback option”: if no nested frame matched any particular part of an 

utterance, a match was sought against the full-utterance frames. This reflects the view 

that both full-utterance frames and nested frames may be two different kinds of frames 

that form part of the child’s knowledge of English, and so the full-utterance frames are 

also included in the final data set, provided that they are used frequently enough to meet 

the 5-5 criterion. The word-frame matrices were then subjected to the various co-

clustering algorithms introduced in Chapter 7.  

8.5 Qualitative results 
For locally context-sensitive parsing, application of the “3-sizeable-clusters” rule from 

the previous experiment on full-utterance frames did not produce a set of clusters 

corresponding to nouns, verbs and adjectives. Instead, the first three large clusters 

corresponded to a cluster of nouns, a cluster of modal verbs, and a merged cluster of 

verbs and adjectives. It was only at 8 clusters that adjectives differentiated out from verbs, 
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and these are the results reported here. Selected frames and most-closely-associated 

words for the 4 sizeable clusters out of the 8 are shown in Table 50. 

 

For context-free parsing, the clustering for 8 clusters was the first point at which 3 

sizeable clusters were formed. Again, one cluster was a mix of verbs and adjectives, 

while another was a cluster of (singular count) nouns. The third cluster in this case was 

one of plural nouns and mass nouns. The examples shown in Table 51 are from 9 clusters, 

where verbs differentiated out from adjectives. 

 

Cluster Frames Words 
Cluster 1 X , is it ?;  X baby;  X girl;  Z it's X;  a bit X;  

all X;  are they X;  be X;  has it X ?;  I’m X;  
is X;  it isn't X;  nice and X;  not X;   
one's X;  still X;  that Z be X;  that's X;   
they're X , aren't they ?;  too X;  very X;  
you're X 

stuck, broken, hot, tired, 
cold, dirty, asleep, better, 
coming, hiding, poorly, 
alright, sleeping, sad, 
hungry, wet, happy, 
crying, outside, ready, 
done, eating, looking, 
upstairs, behind, driving, 
getting, lovely, sitting, 
clever, cross, hard, pink, 
wrong, gonna, horrible, 
inside, running, yours, 
clean, dark, home 

Cluster 2 X another Z;  X away;  X back;  X her Z;   
X him;  X it all;  X it;  X me;  X out;  X 
round;  X some Z;  X that;  X the Z;   
X with Z;  can X;  come and X;  did X;  
didn't X;  don't want to X;  going to X;   
got to X;  have you X;  having a X;  i X;   
I’ll X;  I’m not X;  I’ve X;  in X;  let's X;  
mummy X;  shall i X;  shall we X;  to X;  
want to X;  we've X;  what're you X 

sit, play, pull, read, hold, 
keep, bring, getting, 
push, stand, cut, leave, 
watch, buy, had, pick, 
stop, fit, open, tell, try, 
done, use, sing, blow, 
made, eating, let, press, 
throw, drive, help, lost, 
roll, bite, found, stay, fix, 
jump, stick, drink, fall, 
knock, run, tip, wear, 
show, wipe, break, 
brought, shut, talk, wash, 
write, clean, lift, putting, 
sleep, taking, walk, work 
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Cluster 3 Z , X it ?;   X , look;  X be;  X come;   
X darling;  X go;  X gone;  X have X;   
X just;  X man;  X put;  X they ?;  X we ?;  
X what;  Z with the X;   X you ?;   
X you Z ?;  are you Z to X ?;    
is it Z the X ?;  mummy X ?;  or X;   
think X;  what does a X do ?;  you Z the X 

will, might, willn't, won't, 
could, so, doesn't, 
wouldn't, you'll, couldn't, 
gonna, he'll, should, we'll, 
must, probably, you'd, 
Anna, better, that'll, aah, 
childname's, daddy's, er, 
mummy'll, sheep, always, 
I’d, it'll, shouldn't, teddy, 
they'll, never, really, 
she'll, this'll, actually, ah, 
car's, Caroline’s, daddy'll, 
gotta, hasn't, he'd, horse, 
panda's, pig, they've, 
Thomas, wanna 

Cluster 4 X , aren't they ?;  Z a X;   Z another X;    
Z at the X;   Z be in the X;    
X do you want;  X doing;  X for X;  Z for X;   
X in it;  Z it on the X;   Z it up X;    
Z some X;  a Z of X;   a X;  all the X;   
an X;  and what about X ?;   
are you going to Z the X ?;    
are you making a X ?;  big X;  build a X;   
can you find me the X ?;  come on then , 
X;  do you think Z like X ?;   doing X;  
draw X;  for X;  funny X;  get your X;   
give me the X;  good X;  her X;   
how many X ?;  in a X;  is that X;  little X;  
make X;  more X;  mummy's X;  need X;  
nice X;  one X;  other X;  put the X on;  
red X;  some X;  that X;  the X;  this X;  
those X;  what X;  what do X eat ?;   
with X;  your X; 

dolly, fish, animals, 
horse, house, book, milk, 
hat, tea, teddy, water, 
bricks, cat, things, cars, 
eyes, egg, hair, Thomas, 
panda, shoes, trousers, 
bag, duck, sheep, toys, 
tractor, way, tower, cow, 
dress, drink, money, 
monkey, elephant, feet, 
picture, head, ball, bed, 
face, hand, nose, tiger, 
babys, bits, boat, chair, 
chicken, chips, lady, legs, 
something, table, cheese, 
dinner, ears, food, juice, 
pig, bottom, piece, 
clothes, cows, icecream, 
thing, top, tree, window, 
letters, paper, rabbit, 
socks, truck, banana, 
people, story, foot, 
mouth, name 

Table 50. Some representative frames and words from the hierarchical clustering of the combined 
nested and full-utterance frames, N=290, locally context-sensitive parsing, 8 clusters. 
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Cluster Frames Words 
Cluster 1 X a Z;  X another Z;  X her;  X him;  X it; 

X me;  X one;  X some Z;  X the;   X this;  
X what;  are you going to X;  can X;   
can i X;  come and X;  did X;  did it X;   
did you X; do you want me to X it ?;   
don't X;  from X;  give it a good X;   
go and X;  going to X;  have to X;   
he can't X;  i can't X;  I’ll X;  let's X;  
mummy X;  she X;  they don't X; 
to X;  want to X;  we X;  what can you 
X ?;  what did you X ?;  what do you X ?;  
what do you want to X ?;   
what shall we X ?; 
what're we going to X ?;   
why don't you X ?; 
you have to X;  you're going to X 

play, buy, bring, pull, 
read, sing, cut, keep, tell, 
open, sit, use, watch, 
pick, stand, throw, fit, 
hold, leave, push, wear, 
break, stick, try, fix, help, 
drive, blow, stop, drink, 
show, wipe, hear, knock, 
let, ask, catch, jump, talk, 
wash, write, bite, count, 
fall, paint, remember, 
hide, lift, stay, tip, carry, 
finish, work, had, hit, 
sleep, cook, really, roll, 
start, call 

Cluster 2 X , was it ?;  X again;    X baby;    X boy;   
X can you see;  X going;  X like;   
X naughty;  X right;  X we ?;   
a very X one;  and it's X;   
and what's X ?;  are you a bit X ?;   
because he's X;  can you see X ?;   
doing X;  find X;  have you X;  he was X;  
he's very X;  i can see X;  i think X;   
i thought it was X;  is it X;  is this X ?;   
it's a bit X;  like X;  not that X;   
oh is she X ?;  on X;  she's not X;   
that one's X;  that was X;   
there you go , X;  they're all X;  very X;  
what X;  what does X say ?;   
what's he X ?;  where's he X ?;  yeah X;  
you were X 

so, really, better, 
something, Thomas, 
coming, dolly, yours, 
broken, childname's, 
stuck, gonna, daddy's, 
cold, getting, Anna’s, 
when, quite, done, teddy, 
anything, actually, hot, as, 
dirty, Gordon, much, 
probably, Caroline, if, 
dolly's, everything, 
looking, outside, playing, 
things, wet, Anna, pink, 
mine, panda, crying 

Cluster 3 X , aren't they ?;  Z big X;  X eat Z;   
Z some X;  all the X;  all those X;   
any more X ?;  can i have some X please;  
do you like X ?;  does Z like X ?;  eat X;   
have you got some X ?;  how many X ?;   
i haven't got any X;  look at all those X;   
lots and lots of X;  more X;  no X;   
some X;  these X;  three X;   
what about these X ?;  what do X say ?;  
you say X 

animals, bricks, grapes, 
babys, cows, fish, things, 
cars, chicken, horses, 
bananas, people, wheels, 
chips, money, shoes, 
water,biscuits,letters,men, 
peas, sheep, trains, bits, 
bread, cheese, eyes,food, 
milk, monkeys, pennys, 
books, colors, pieces, 
toast, toys, birds, flowers 
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Cluster 4 Z a X;  a X;  a big X;  a green X;   
another X;  are they going to the X ?;  
are they having a X ?;  are you a X ?;  
baby X;  blue X;  called a X;   
can i have the X please ?;   
can you see a X ?;  did you like the X ?;   
do you need a X ?;  does your X hurt ?;   
don't put your X in there;  for your X;   
give me the X;  have a X;  i can see the 
X;  I’ve got a X is he in the X ?;   
is there another X ?;  it was a X;   
it's got a X;  let's have a look at your X;  
move the X;  not in the X;  on my X;   
out of the X;  poor little X;   
put them in the X;   
shall we get the X out ?;  that one's a X;   
that's a good X;  the other X;   
there's one X;  there's only one X;   
this is a X;  turn the X;  we've got the X;  
what a X;  what did the X do ?;   
what're you doing with your X ?;   
what's a X ?;  what's happened to his X ?;  
where shall we put the X ?;   
who's on the X ?;  with a X;  you have a X  

horse, house, hat, cow, 
tractor, book, cat, tiger, 
pig, bag, monkey, ball, 
chair, picture, truck, 
dress, fish, drink, boat, 
piece, lion, tower, cup, 
hand, nose, bus, duck, 
egg, garage, digger, foot, 
penguin, top, dolly, 
sheep, table, way, 
elephant, spoon, head, 
tree, face, fireengine, 
hair, rabbit, bath, teddy, 
leg, bottle, lorry, thing, 
bottom, giraffe, lady, 
basket, new, panda, 
tunnel, brick, chicken, 
trousers, lid, banana, 
bed, bird, doll, driver, 
farm, hippo, hole, mouth, 
shopping, white, baba 

Table 51. Some representative frames and words from the hierarchical clustering of the combined 
nested and full-utterance frames, N=290, context-free parsing, 9 clusters 
 

8.6 Quantitative results 
Table 52 shows the results of categorization of nested frames under locally context-

sensitive parsing. As was the case with full-utterance frames, all F scores and 

categorization Bookmaker scores are high, indicating that the algorithms were successful 

in categorizing word-frame instances from full-utterance plus nested frames. However, 

all scores were clearly lower than the full-utterance frame scores. The “trade-off” is that 

the coverage of the nested frames approach is higher, i.e. that more focal words were 

categorized this way.  
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 Hard Fuzzy F Fuzzy W Fuzzy 
FxW 

Confl Pars 

Accuracy 0.705 
(0.468) 

0.712 
(0.468) 

0.797 
(0.468) 

0.818 
(0.468) 

0.744 
(0.468) 

0.830 
(0.468) 

Completeness 0.563 
(0.374) 

0.606 
(0.399) 

0.654 
(0.385) 

0.743 
(0.426) 

0.825 
(0.519) 

0.744 
(0.420) 

F score 0.626 
(0.416) 

0.655 
(0.431) 

0.719 
(0.422) 

0.779 
(0.446) 

0.782 
(0.492) 

0.785 
(0.442) 

Bookmaker 0.542 0.564 0.652 0.719 0.709 0.717 

Table 52. Evaluation scores for nested and full-utterance frames, N=290, Locally context-sensitive 
parsing, 8 clusters. 
 
By contrast, the results for full-utterance and nested frames under context-free parsing, 

shown in Table 53, are much lower than those for locally context-sensitive parsing, with 

F scores seldom exceeding their baselines by more than 0.15. Worst of all, the Confl 

algorithm failed catastrophically, its poor performance being due to its allocating all 

items to a single cluster (the tell-tale sign of this being the very high baseline score for  

 

 Hard Fuzzy F Fuzzy W Fuzzy 
FxW 

Confl Pars 

Accuracy 0.696 
(0.527) 

0.667 
(0. 527) 

0.708 
(0. 527) 

0.716 
(0. 527) 

0.530 
(0. 527) 

0.605 
(0. 527) 

Completeness 0.442 
(0.334) 

0.479 
(0.378) 

0.440 
(0.327) 

0.514 
(0.379) 

0.992 
(0.985) 

0.571 
(0.499) 

F score 0.541 
(0.409) 

0.557 
(0.440) 

0.542 
(0.404) 

0.599 
(0.441) 

0.691 
(0.687) 

0.587 
(0.512) 

Bookmaker  0.400 0.393 0.452 0.492 0.018 0.525 

Table 53. Evaluation scores for nested and full-utterance frames, N=290, Context-free parsing, 9 

clusters. 
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Completeness). The Bookmaker score is quite near zero, indicating that this algorithm 

performed at the same level as would be achieved by random guessing. The reason for 

this behaviour is probably that the context-free information was so “muddy” (i.e. 

contained so many uninformative words and especially frames) that there seemed to be 

reasonable evidence during conflict resolution to link essentially every item with every 

other item.  

 

Because of the large data sets involved, all F and Bookmaker scores in Table 52 and 

Table 53 were significantly higher (as determined by randomization tests) than their 

random baselines. Even the disappointingly weak results for Confl were nevertheless 

shown to be much better than would have been achieved by chance, at p = 0.01. 

 

The results of the comparisons between F scores and Bookmaker scores for the various 

algorithms are shown below. Table 54 shows the significance of differences in F scores, 

and Table 55 the significance of differences in Bookmaker scores, for locally context-

sensitive parsing. Table 56 and Table 57 show the results for F and Bookmaker 

respectively, for context-free parsing. 
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For locally context-sensitive parsing, the three co-clustering algorithms performed 

significantly better than hard clustering, and Fuzzy F × W performed better than Fuzzy F 

or Fuzzy W. Fuzzy F × W also performed better than Confl at the 0.01 significance level 

for F, but only at the 0.05 level for Bookmaker. Pars performed significantly better than 

Confl in terms of F scores (but not Bookmaker scores), and the difference between Fuzzy 

F × W and Pars was not found to be significant. 

 

 Fuzzy FxW Confl. Pars. 

Hard F ↑ 
< 0.001** 

↑ 
< 0.001** 

↑ 
< 0.001** 

Fuzzy FxW  ← 
< 0.001** 

0.088 

Confl.   ↑ 
< 0.001** 

Fuzzy F ↑ 
< 0.001** 

  

Fuzzy W ↑ 
< 0.001** 

  

Table 54. Significance levels of differences in F scores for 
various clustering algorithms, for nested frames, N=290. 
locally context-sensitive parsing.  
* significant at p=0.05,  ** significant at p = 0.01. 

 

 Fuzzy FxW Confl. Pars. 

Hard F ↑ 
< 0.001** 

↑ 
< 0.001** 

↑ 
< 0.001** 

Fuzzy FxW  ← 
0.029* 

0.173 

Confl.   0.106 

Fuzzy F ↑ 
< 0.001** 

  

Fuzzy W ↑ 
< 0.001** 

  

Table 55. Significance levels of differences in Bookmaker 
scores for various clustering algorithms, for nested frames, 
N=290. locally context-sensitive parsing. 
* significant at p=0.05, ** significant at p = 0.01. 
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For context-free parsing, the results were more clear-cut. The ordering suggested by the 

absolute F and Bookmaker scores was confirmed by the randomization tests of 

significance, with Fuzzy F × W performing best, followed by Pars, then Hard F and lastly 

Confl. Fuzzy F × W performed significantly better than both Fuzzy F and Fuzzy W. 

 

 Fuzzy FxW Confl. Pars. 

Hard F ↑ 
< 0.001** 

← 
< 0.001** 

↑ 
< 0.001** 

Fuzzy FxW  ← 
< 0.001** 

← 
< 0.001** 

Confl.   ↑ 
< 0.001** 

Fuzzy F ↑ 
< 0.001** 

  

Fuzzy W ↑ 
< 0.001** 

  

Table 56. Significance levels of differences in F scores for 
various clustering algorithms, for nested frames, N=290, 
context-free parsing. 
* significant at p=0.05, ** significant at p = 0.01. 

 

 Fuzzy FxW Confl. Pars. 

Hard F ↑ 
< 0.001** 

← 
< 0.001** 

↑ 
< 0.001** 

Fuzzy FxW  ← 
< 0.001** 

↑ 
< 0.001** 

Confl.   ↑ 
< 0.001** 

Fuzzy F ↑ 
< 0.001** 

  

Fuzzy W ↑ 
< 0.001** 

  

Table 57. Significance levels of differences in Bookmaker 
scores for various clustering algorithms, for nested frames, 
N=290, context-free parsing. 
* significant at p=0.05, ** significant at p = 0.01. 

 

These results seem to show the value of context-sensitive interpretation of the nested 

frames. It is better to take into account the greater context in which a word is being used, 
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and even to avoid making a categorization decision when no additional knowledge is 

available from the surrounding context (i.e. preferring to make no decision rather than 

making an incorrect context-free decision). 

 

As is apparent, the results for the combined set of nested and full-utterance frames are not 

as good as those obtained for full-utterance frames alone. This is surprising, given that 

many full-utterance frames point to the same “active ingredient”, e.g. the noun phrase 

“the X” in “can you see the X”, “that’s the X”, etc., so that pooling the information about 

which words go into these disparate frames should have strengthened clustering and 

categorization.  

 

Part of the problem lies in the fact that some units discovered by the substitution test are 

not in fact viable constituents, and others are constituents only when they occur in 

specific contexts. For instance, one of the nested frames discovered was “X out”, which 

is a valid constituent when it takes the form of a separable verb (“take out”, “pull out”, 

“hold out”, etc.), but not when it occurs as part of a larger structure in which a noun 

argument precedes the particle of such a separable verb, e.g. “animals out” in “take the 

animals out”, “hand out” in “pull your hand out”, etc. These structures pass the 

substitution test, because “take the X” and “pull your X” are acceptable structures in their 

own right that can take single-word nouns as objects for the verbs in question; hence “X 

out” can be substituted for X in these cases, so that “take the X” and “pull your X” are 

treated as nesting frames for “X out”. In fact, though, we are really dealing with a 

different (separable) verb. 

 

In several cases, the nested frames are valid constituents, but are ambiguous as to the 

category of the words that occupy their slots. For instance, one of the discovered nested 

frames “X the door” is a prepositional phrase when it takes slot fillers such as “behind”, 

“outside” and “towards”, but a verb phrase (occasionally in the imperative form) when it 

contains the fillers “close”, “lock”, “mind” and “shut”. This issue of frame ambiguity is 

of course already familiar from the previous discussion on full-utterance frames. 
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Nevertheless, the correctness of the categorization using nested frames (especially in 

locally context-sensitive mode) is still high, and a fair proportion of the corpus was 

covered. The frames considered here were a sufficient basis for bootstrapping the three 

main parts-of-speech of English. 

 

The combined set of discovered nested and full-utterance frames includes such 

“prototypical” phrase structures as “don’t X it”, “too X”, “very X”, “the X”, “your X”, 

“this X”, “another X”, etc. It should be emphasized, however, that the identification of 

these structures was entirely due to the heuristic that phrases are often substitutable by 

single words, which is true for English but may not necessarily hold for other languages. 

One might want to postulate that all languages have this property; it would seem to 

facilitate learnability by making the “joints” in an utterance easily discernible.  

 

The way in which this heuristic operates in practice is not always straightforward. 

Phrases can occasionally be substituted by single-word items from a different phrasal 

category: for instance, a noun phrase can be replaced by an adjective in sentence pairs 

such as “Are you [ a little choo-choo train ] ?” and “Are you [ hungry ] ?”. In such a case, 

it might be argued that the algorithm was “right for the wrong reason”. I would offer the 

counter-argument that, in fact, the shared use of the copula BE in these constructions 

indicates a deeper underlying semantic similarity between adjectival phrases and noun 

phrases. In Langacker’s (1987) terms, for instance, adjectives (and by extension 

presumably adjectival phrases) signify atemporal relationships, while nouns (noun 

phrases) are represented as entities. What these two kinds of representations have in 

common, though, is their static nature; they are not conceived of as changing over time, 

and this seems to be the semantic characteristic that licenses the use of the copula BE.  

 

This argument could also make more palatable the frequent conflation of adjectives and 

proper nouns that the algorithms in this thesis exhibit; recall that the presence of a large 

number of frames containing the copula often forces these two categories of words 

together into a cluster. On this view, a shared frame indicates similarity at some level, 

even if that level is an overarching one that recognizes stativity versus dynamicity, rather 
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than the currently preferred level of nouns, verbs and adjectives. At the same time, the 

hypothesis that the appearance of two items embedded in the same construction always 

indicates some level of semantic similarity seems to be compatible with Croft’s (2001) 

Radical Construction Grammar proposal (reviewed in Section 2.4.2), that the 

constructions are primary in determining grammatical category, and with Langacker’s 

view (1987; reviewed in Section 2.4.1) that categories are grounded in the different 

mental operations involved in representing category members. On this view, the 

distinction between categories is ultimately underwritten by notional (semantic) criteria, 

but these criteria might be to a great extent reflected in the distributional data. The 

corollary is that finer distributional distinctions allow for finer semantic distinctions, and 

this is to some extent reflected in the current set of experiments, with full-utterance 

frames at 20 clusters producing groupings corresponding to mass nouns, plural count 

nouns, body parts and clothing, places and modal verbs, and with the adjective/proper 

noun cluster splitting into respective clusters for proper nouns, possessive forms of 

proper nouns, past and present verb participles, and other adjectives.  

 

It would be a satisfying conclusion to this argument to be able to state that dividing the 

frames into two clusters lumps the nouns and adjectives together. Unfortunately, when 

two clusters are produced for full-utterance frames, for instance, the outcome is in fact 

that nouns stay separate, while verbs and adjectives are lumped together. This is almost 

certainly due to the “bridge” between these two categories provided by the large number 

of participial verbs that are commonly used in adjectival constructions with the copula, 

e.g. “Is it broken?”, as well as verbal constructions such as the perfective “You’ve broken 

it”. 

 

The nested and full-utterance frame approach can be seen as an attempt to explicitly 

catalogue some of the most basic linguistic constructions in the input to the English-

learning child. The notion of nesting structures inside others also allows the nesting 

structures, not used directly in the categorization experiments, to come to the fore as 

potential constructions that can accept material of arbitrary complexity into their Y slots. 

It is an interesting question whether this catalogue of constructions corresponds to the 
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constructions that children may plausibly be familiar with at a comparable age. In fact, a 

manual listing of such common constructions was compiled by Cameron-Faulkner, 

Lieven and Tomasello (2003), based on the constructions attested in the Manchester 

corpus. Hence, it is possible to directly compare the frames produced by the current 

approach against the constructions identified by Cameron-Faulkner, Lieven and 

Tomasello (2003). The results of this comparison are presented in the next section.  

8.7 A comparison with Cameron-Faulkner et al. (2003) 
Cameron-Faulkner, Lieven and Tomasello (2003; for the remainder of this section, CFLT) 

manually analyzed a section of the Manchester corpus, in order to identify some of the 

most frequently-occurring frames in the input to children. In doing so, they showed that 

51% of all utterances to children began with one of 52 specific sequences of 1, 2 or 3 

words, and that 45% of all utterances began with one of 17 specific words.  

 

CFLT give a very detailed listing of some of the most common item-based frames in the 

child-directed portion of the Manchester corpus. Because I have argued that the frames 

identified by automatic techniques in this thesis are often likely to be constructions of 

English, it will be instructive to investigate whether these frames produce an analysis of 

the corpus that is roughly similar to one derived manually by human experts. The work 

by CFLT is ideal for such an investigation, as it is also based on lexically-specific frames, 

and is derived from the same corpus. In this section I outline some differences between 

the CFLT approach and the current frame model, and then compare the structures 

discovered by the frame model against those manually identified by CFLT. 

8.7.1 Differences from the current work 
How frames are constructed: The work by CFLT takes a view that is quite different from 

that of the current nested-frame model regarding the criteria according to which a 

particular frame should be treated as a frequent item-based frame. Frames derive their 

identity from their initial 1, 2 or 3 specific words, and the remainder of the utterance is 

taken to be a slot that can be filled by any material. There are no restrictions on the set of 

words that may initiate a frame. Examples include “How many _?”, “There’s _”, “What 

shall _?”, with the underscore indicating a slot for filler material of arbitrary length. It 
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does not seem to be critical for the authors that frames should be identified by their 

starting words only, and indeed they note that their approach misses frames that have 

item-specific material only at a later point in the utterance; the use of only the first three 

words may have been intended purely to simplify the analysis. 

 

The lexically-specific frame model, on the other hand, builds its structures out of a 

specific and limited set of frame-building words, and these words can occur at any 

position in the utterance structure. One consequence of these two differences is that the 

frame model is likely to produce a great number of structures not considered by CFLT 

(notably, any frame that starts with a variable slot). Furthermore, many relatively general 

CFLT frames may be present in the frame model only in more lexically-specific forms 

that can be seen as special cases of the CFLT frames. 

 

Semantics: CFLT characterize the speech of mothers to their children in terms of 

constructions. These constructions are often defined using categories for the fillers, e.g. 

“It’s [NP/Adj]” is assumed to be one construction, and “It’s [VP]” another. Presumably, 

the authors intend these to be constructions that would be available to an adult speaker of 

English.  

 

In order to learn constructions as CFLT have defined them, it seems that the child needs 

to be sensitive to two kinds of information. Firstly, they need to keep track of word 

sequences which occur very frequently in the input, and will form the fixed part of the 

frame; as noted, these lexically-specific sequences always occur at the beginning of an 

utterance in the current formulation; however, a more general approach might be to take 

note of recurrent sequences that appear at any position in an utterance, and to construct a 

frame around these. The second source of information to which children should be alert is 

semantic information about the meanings of the fillers, so that they can distinguish 

between constructions that have exactly the same specific words, but which differ in the 

category of the filler (as in the “It’s _” example above, where children would need to be 

able to identify a filler word or phrase as either a VP or an NP/Adj in order to distinguish 

between the two constructions). 
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It is not clear whether CFLT intended their set of frames to be viewed as an implicit 

model of the kinds of constructions that children should be learning. However, since a 

key aspect of CFLT’s work is the correlation between adult and child productions, this 

assumption seems reasonable. In that case, both formal and semantic aspects would be 

germane to language learning in their model (although the analysis seems to emphasize 

the formal aspects). 

 

By contrast, the lexically-specific frame model ignores semantics in its current 

formulation, attempting to discover the categories such as Noun, Verb and Adjective 

from their distributional usage across frames only after these frames have been identified, 

rather than by presupposing that these categories have already been sorted out on 

semantic grounds and can be used to distinguish between two otherwise identical frames. 

In practice, this means that the set of frames of the current work will include items such 

as “It’s Y”, collapsing across the CFLT distinction between “It’s [N/Adj]” and “It’s 

[VP]”. 

 

Occurrence frequency: The two models also differ in their requirements regarding the 

frequency of a frame and/or its fillers. CFLT made use of all frames such that at least one 

mother used a particular frame at least four times in a two-hour sample taken from each 

child; this was termed their “4+ criterion”. The authors do not require that the set of filler 

material needs to exhibit any particular level of variability. In the current work the entire 

Manchester corpus was used (containing up to 34 hours of data for each child). The 

criterion for a nesting (resp. nested) structure to be included in the data set is merely that 

it should have occurred as a nesting (resp. nested) frame for at least V nested (resp. 

nesting) frames. In the experiments reported in this thesis up to now, V was set to a value 

of 5; for the current comparison to CFLT, V is set to 2. It may be argued that the CFLT 

criterion is somewhat stricter for frames (though less strict for fillers), and so one might 

expect that the set of frames in the current approach would be a superset of the CFLT set. 
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8.7.2 Comparison of frames 
The frames listed by CFLT are all full-utterance frames. When comparing these frames 

against the current frame approach, there are three kinds of frames that can be considered 

to represent the structure of full utterances: 

• A frame which has been identified as the nesting frame for several other nested 

frames  

• Any (potentially recursive) embedding of nested frames inside their 

corresponding nesting frames; for the current analysis I will not consider 

recursive embedding, only single-level embedding, in line with the locally 

context-sensitive parsing approach used above 

• A full-utterance frame (i.e. single-word fillers only), as obtained via the methods 

of Chapter 6. 

The following examples illustrate some of the issues involved in mapping between CFLT 

and the current full-utterance and nesting/multiply-nested frames: 

 

(1) The “best match” possible for a frame against a CFLT frame would be a nesting 

frame, as nesting frames are (theoretically) able to accept arbitrary material. As an 

example, one of CFLT’s frames is “draw [NP]”, and one of the nesting frames produced 

by the current model is “draw Y”, which has been attested to take as its filler a variety of 

nested frames. Note firstly that in the current model, not all instances of CFLT’s “draw 

_” would be regarded as instances of the current “draw Y”, because recognition of the 

nesting frame is conditional on recognition of these specific nested frame fillers. 

Secondly, as noted above, not all fillers can be expected to be noun phrases, because 

semantic information is not being used. Thirdly, it should also be borne in mind that 

nesting frames can themselves occur nested inside large contexts, so that they are not 

necessarily descriptions of full-utterance structure, while the CFLT frames are. 

 

(2) Another CFLT frame is “that one’s _”. The corresponding nesting frame in the 

current approach would have been “that one’s Y”; however, this frame does not occur as 

a nesting frame. Instead the nesting frame “that Y” contains in its filler set the nested 

frame “one’s Y”, so that the recursive combination “that [one’s Y]” covers the CFLT 
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frame (even though a syntactic segmentation at the juncture suggested by this frame 

would seem to be incorrect). 

 

 (3) A different example is “how did _”. The corresponding nesting frame in the current 

approach would have been “how did Y?”, which, once again, does not occur as a nesting 

frame. The nesting frame “how Y” does not take the nested frame filler “did Y” either; 

however, it does take the frame “did you Y”, producing the recursive combination “how 

[did you Y]”. While this is a more specific frame than the CFLT frame, it is “as close as 

we’ll get”. The fact that the frame structures may be more specific than that identified by 

CFLT does not necessarily indicate a difference in the actual utterances covered; for 

instance, it may be that a majority of the utterances covered by their “How did _ ?” are 

actually cases of “How did you _?”. (Nevertheless, note that this would necessarily be at 

best a majority of cases, as CFLT would otherwise have chosen the frame “How did you 

_” instead). 

 

(4) The CFLT frame “What does _” is not covered by the nested frame-approach at all; 

however, there are several full-utterance frames that are more specific than that frame and 

are therefore specializations of the frame (with single-word fillers). These include “what 

does X say?” and “what does a X do?”.  

 

Cutting across the division into four kinds of frame matches, therefore, we have the 

distinction that some frames will cover a CFLT frame exactly (as in examples 1 and 2), 

while for other frames, only specializations of those frames are produced by the lexically-

specific frame approach (examples 3 and 4). In the following comparison, I will describe 

each CFLT frame according to whether it is covered exactly by the frame approach, 

covered only by specification, or not covered at all.  

 

CFLT divide their frames into the following categories: fragments, Wh-questions, yes/no 

questions, imperative constructions, copula constructions, transitive constructions, 

intransitive constructions and complex constructions. In this section, I will show the 

detailed comparison for Wh-questions only, followed by a summary comparison for all 
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categories of CFLT frames. Tables showing the detailed comparison for all categories 

can be found in Appendix 2. 

8.7.2.1 Detailed comparison of Wh-questions 
There are 31 Wh-question frames in CFLT, of which 11 were identified by the 

researchers as “core” frames (occurring 4 or more times in the speech of 6 or more of the 

12 mothers). The leftmost column in Table 58 displays the CFLT frame. The second 

column contains the nesting frame(s) that match the CFLT frame, if any. The third 

column contains multiply-nested frames that cover the CFLT frame, if any, and the fourth 

column contains full-utterance frames that cover the CFLT frame. Frames that match the 

CFLT frame exactly are displayed in bold. In total, only 7 of the Wh-question frames are 

covered exactly, 19 are covered indirectly and 5 (“what were _”, “whose [N]”, “why not 

_”, “what kind of _” and “what number _”) are not covered at all. 
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Wh-questions 

Cameron-Faulkner 

et al. (2003) frame 
Nested frame 

Multiply-nested 

frame 
Full-utterance frame 

what’s _ what’s Y?  what's X ? 

what's X doing ? 

what's X now ? 

what's X there ? 

what's a X ? 

what's <child’s name> X ? 

what's happened to X ? 

what's happened to his X ? 

what's happened to your X ? 

what's he X ? 

what's in that X ? 

what's in the X ? 

what's in this X ? 

what's in your X ? 

what's it X ? 

what's on the X ? 

what's on your X ? 

what's she X ? 

what's that X ? 

what's that X called ? 

what's that X doing ? 

what's the X ? 

what's the X called ? 

what's the X doing ? 

what's the matter with your X ? 

what's this X ? 

what's this X doing ? 
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what’re _ what’re we Y? 

what’re you Y? 

 what’re we going to X? 

what’re you X? 

what’re you X about? 

what’re you X for? 

what’re you X now? 

what’re you doing with your X? 

what’re you going to X? 

what do _  what [do you Y]? what do X do? 

what do X eat? 

what do X say? 

what do you X? 

what do you want for your X? 

what do you want to X? 

what did _ what did you Y? what [did you Y]? 

what [did we Y]? 

what did X do? 

what did the X do? 

what did you X? 

what colour _   what colour are the X? 

what colour is X? 

what colour is the X? 

what (ha)s _ same as for “what’s _” above 

what about _  what [about Y]? what about X ? 

what about a X ? 

what about her X ? 

what about his X ? 

what about some X ? 

what about that X ? 

what about the X ? 

what about the other X ? 

what about these X ? 

what about this X ? 

what about your X ? 
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what shall _   what shall we X? 

what can _   what can you X? 

what can you see on the X? 

what does _   what does X say? 

what does a X do? 

what does a X say? 

what does the X say? 

what happened _  what [happened 

to Y]? 

what happened to the X? 

what happened to your X? 

what were _ Not covered 

what’ve _  what [have you 

Y]? 

what have you X? 

what kind of _ Not covered (see text) 

what number _ Not covered (see text) 

where’s _ where’s Y? 

where’s the Y? 

 where is X ? 

where is the X ? 

where is your X ? 

where's X ? 

where's X going ? 

where's X gone ? 

where's a X ? 

where's he X ? 

where's her X ? 

where's his X ? 

where's my X ? 

where's that X ? 

where's that X gone ? 

where's the X , <child’s name> ? 

where's the X ? 

where's the X going ? 

where's the X going to go ? 
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where's the X gone ? 

where's the X then ? 

where's the little X ? 

where's the other X ? 

where's your X ? 

where's your X gone ? 

where’d _  where [did we 

Y]? 

where did the X go? 

where’re _  where [are you 

Y]? 

where are you X? 

where are the X? 

where are your X? 

where shall _   where shall we put the X? 

who’s _ who’s Y?   

whose [N] Not covered 

who’re _  who [are you Y]?  

who did _  who [did you Y]?  

why don’t _   why don’t you X? 

why do _  why [do you want 

your X]? 

 

why’s _  why [is he Y]? 

why [is it Y]? 

why is he X? 

why not _ Not covered 

how many _   how many X? 

how many X are there? 

how many X have we got? 

how many X have you got? 

how did _  how [did you Y]?  

which one _  which [one Y]? which one’s X? 
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Not covered which Y? 

who Y? 

why Y? 

how Y? 

 where was the X? 

which X? 

which X is it? 

who X a X? 

who X it? 

who X the X? 

why are you X? 

Table 58. A comparison of the Wh-question frames identified by Cameron-Faulkner et al. (2003) 
against the frames produced by the current approach. 
 
The exercise of comparing the current frame approach against that of CFLT uncovered a 

slight shortcoming in the algorithm used for full-utterance and nested frames, which 

could be rectified in future extensions to this algorithm. This was highlighted by the 

inability of these algorithms to discover the (intuitively important) frames “What kind of 

_” and “What number _”. The data set for full-utterance frames contains a large number 

of two-slot frames such as “what X of X is it?”, “what X did you X?”, where the first 

slots are typically filled by words such as “kind”, “sort”, “type”, etc, and so one would 

expect, say, “What kind of X is it?” to have been a frame. There were two factors 

working against this outcome, however. First and foremost, “kind” is not a frame-

building word, and so the frame could not have been formed for consideration. However, 

one might still have expected “what X of X is it?” to have been produced as a frame, with 

words such as “kind”, “sort” etc. as fillers for the first slot. In fact, there was a frame 

based on these utterances which ended up in the final data set; however, this frame was 

based on the second, not the first slot (“what Z of X is it?”). The frame based on the first 

slot was dropped from the data set because it could accept only a narrowly restricted set 

of fillers (specifically, “kind” and “sort”) in that slot. 

 

This case shows that the algorithm should be modified in the case of frames with multiple 

slots. A frame with multiple slots can still be “saved” as a useful frame if one of its slots 

does not accept a variety of fillers; the variability would have to be located in its other 

slots instead. The solution in the case of “what X of X is it” would be, whenever a frame 

fails the 5-5 criterion, to generate new frames for each of the particular words that go into 
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the first slot, i.e. generate the two new frames “what kind of X is it” and “what sort of X 

is it”, and then proceed as before: if these frames now take the required number of 

different fillers into their (only) slot, then they are viable as frames for the final data set; 

if not, they are dropped from consideration. This approach would probably have allowed 

“what kind of X is it” to have entered the final data set, and hence the CFLT frame “What 

kind of _” would have been covered by the frame approach. 

 

At the end of Table 58, there is a row of frames covered by the current approach but not 

by the CFLT approach. In most cases, CFLT identified other frames that started with the 

first words of these frames, but these particular frames simply did not reach the 4+ 

criterion for inclusion. 

8.7.2.2 Summary comparison of all frames  
Table 59 indicates the breakdown of all CFLT frames into the different frame types of the 

last few chapters. A majority (102 out of 152) of the CFLT frames were found directly in 

the set of frames produced under the full-utterance-plus-nested-frame approach. Only 23 

of the 152 frames used by CFLT were not covered by any frame in the current approach. 

 

Frames covered directly Frames covered indirectly Frames not covered 

102 27 23 

Table 59. Summary of coverage of Cameron-Faulkner et al. (2003)’s frames. 

 

For the most part, the non-covered frames were ones where one or more of the lexically-

specific words were not in the list of the most frequent, frame-building words used by the 

frame approach, and so could not have been formed (e.g. “whose _”) In a few other cases, 

the frame could not have been recognized as a frame, because it consisted entirely of 

frequent words, and so would have been treated as a fixed expression. Table 60 breaks 

down the reasons for failure in the 23 cases not covered by the frame approach. Two 

frames (“[Pron] isn’t” and “there [Pron] go”) were not found because they consisted 

entirely of frame-building words in the current context (all the nominative and possessive 

pronouns were members of the set of frequent words), and were therefore regarded as 

fixed expressions. Twelve others were not identified because their lexically-specific 
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components contained words that were not on the list of frame-building words. The 

reasons why the remaining 9 cases were not identified are mostly unknown.  

 

Fixed expressions Non-frame-building words Other 

2 12 9 

Table 60. Reasons why some frames identified by Cameron-Faulkner et al. (2003) were not generated 

by the frame approach. 

 

When considering only the core frames (Table 61), all but 2 of the 52 core frames are 

covered by the frame approach. These two were the already-mentioned “there [Pron] go”, 

which was treated as a set of fixed expressions, and the complex frame “if _”, which was 

not covered because “if” is not a frame-building word. This may in turn have been due to 

the fact that utterances starting with “if” tend to be rather heterogeneous and complex in 

structure, while the current approach requires a reasonably-sized set of single-word fillers 

for “if X”, something which was clearly not present in the corpus. In addition, 7 core 

frames (all Wh-questions) were represented indirectly rather than directly by the frame 

approach. All other core frames were represented directly. 

 

Core frames covered directly Core frames covered indirectly Core frames not covered 

43 7 2 

Table 61. Summary of coverage of Cameron-Faulkner et al. (2003)’s core frames. 

 

An important point should be made about the implicit use of the nested frame approach 

as a generative model. In the above example, “have you Y” takes a number of nested 

frames as potential Y slot fillers, including some fillers which are appropriate for “have 

you Y?” as a full utterance, but not for “have you Y” in a nested context such as “What 

[have you Y]?”. Examples include “X it”, “got X” (which are more likely to take direct 

objects when they are embedded in the full utterance “Have you Y?” than indirect objects 

as in “What have you Y?”), and “any X”. Therefore the model over-generates, producing 

sentences that are not English, such as “What have you any X?”. This is not a fault of the 

model, but of the common assumption in linguistics that generative models are the sine 
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qua non that any researcher should aim for. On this view, the language-learning child is 

apparently engaged in randomly generating “well-formed sentences” that are 

disconnected from their meaning. But in fact, the child is likely to produce only 

utterances by which she means to achieve a communicative purpose, and usually this 

means assigning meaning to the components of the utterance as well as the structure of 

the utterance as a whole. If the child can assign no coherent meaning to, say, “What have 

you any wool?” that she could not assign to some other simpler utterance that she has 

actually encountered before (such as “Have you any wool?”), then the incorrect structure 

is likely to be “blocked” by the previously-heard correct structure. This kind of blocking 

mechanism is of course not part of the current model, nor is semantics of any kind. 

 

Instead, I would suspect that children will produce errors that occur as a result of nesting 

frames inside others, but that these errors will only occur when there is a coherent 

meaning that could plausibly be ascribed to the new production, and the child has not yet 

associated that meaning with a different (correct) form which would block the new 

production. 

 

As for comprehension, obviously children will interpret only utterances that they hear, 

and the malformed utterances generated by unconstrainedly combining frames are not 

likely ever to be uttered; hence there is no problem with a model that could potentially 

find these non-utterances acceptable if they should occur. 

8.8 Discussion 
This chapter has presented the results of a technique to extend the set of full-utterance 

frames from Chapter 6. The technique generalizes the single-word slots of pre-existing 

full-utterance frames so as to allow multi-word fillers. Setting up a hierarchy of frames 

that are schematic for each other in this way allows the identification of nested and 

nesting frames; the most flexibly-used nested frames that occur in the most flexibly-used 

nesting frames are taken to be reliable frames for the purpose of lexical categorization. 

When used in a locally context-sensitive manner, these frames are successful in 

categorizing focal-word instances into each of the three main parts-of-speech. 
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Quantitative evaluation measures are not as high as for the full-utterance frame approach; 

on the other hand, a larger proportion of the corpus is covered. 

 

The last three chapters have explored the use of a heuristic that dichotomizes words into a 

frequent and a less-frequent word group. It may also be fruitful to consider other ways in 

which frames may arise. The next chapter considers an approach in which frames are 

based on predictable relationships of co-occurrence between pairs of words. 
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9 Prediction-based frames 

9.1 Introduction 
In the previous chapters, a number of algorithms were presented that took as their starting 

point a basic dichotomy between frequent and infrequent words (loosely corresponding in 

practice to function and content words respectively). Frames are presumed to form as 

utterance skeletons constructed out of frequent words alone. On the other hand, the words 

occurring in the X slots of frames play no role in the creation of these frames, other than 

serving in the role of slot-fillers. 

 

Under this view of frame formation, a noun phrase structure such as “the X” is 

discovered by postulating that “the” is a special, structural word in English, and then 

noticing that “the X” is used as the structure of several full utterances and nested 

linguistic constituents. It is presumed that the child is able to identify the frame-building 

words, based largely on the basis of their very frequent occurrence in the corpus. 

 

An entirely different model of frame formation would be one where the child does not 

divide words into two groups and treat them qualitatively differently, but where frames 

form as a result of the child noticing regular co-occurrences between pairs of words, 

regardless of which particular words they are. With repeated exposure to these word pairs, 

these word configurations become elements of memory in their own right.  

 

Whereas in the previous frame discovery procedures, all frames (made up out of frequent 

words) that occurred frequently enough, and with a wide enough range of fillers, were 

considered as viable frame candidates, the procedure outlined in this chapter will be 

based on the statistical predictability of one word from another. If word x can be 

statistically predicted to occur if word y has occurred, based on the frequency with which 

x and y occur together in utterances, then it is likely that this co-occurrence of the two 

words is not due to chance, but reflects underlying linguistic structure in the utterances in 

question; the two words are likely to be part of a larger unit. 
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These larger units may either make up part of a frame, or part of an extended filler. So for 

instance, the words “television set” often occur together (expressions such as these are 

also termed collocations), and may constitute a phrase than can be the filler of the frame 

“the X”. On the other hand, the sequence “that’s a lot of” is also a collocation, but one 

that one could imagine to provide the structure for the phrase “that’s a lot of X”. 

 

The other aspect in which the current frame discovery procedure differs from the full-

utterance frame and nested frame procedures is that those techniques started with full 

utterances, discovered a number of frames for these and then divided them into smaller 

nested constituents, in line with Peters’s (1979) “Gestalt” approach to language learning. 

The current, prediction-based frame discovery technique will take a more “analytic” 

approach: units will be built up from smaller to larger units. Hence, the technique will not 

make use of the segmentation boundaries provided by the edges of the utterances, but 

will have to determine its own frame boundaries; these will be determined from the 

statistical predictability of elements for each other, as will be discussed below. 

9.2 Misconceptions about predictability 
There are a number of unwarranted assumptions associated with the term “predictability” 

which need to be avoided. The first issue relates to the role of statistical predictability in 

human cognition. Perruchet and colleagues (e.g. Perruchet & Vinter, 1998; Perruchet, 

2008) have pointed out that behavioral sensitivity to statistical properties of the input 

does not necessarily mean that humans overtly calculate statistical properties during 

processing. Instead, the behavioral sensitivity may be an emergent effect of underlying 

processing. For instance, Perruchet and Vinter (1998) have shown in their PARSER 

model how the abilities of infants to segment statistical words from an extended speech 

stream (Saffran et al., 1996) may be simulated by a process that chunks together units 

(initially syllables) if they co-occur (producing putative words), and exhibits interference 

between chunks that have material in common (so that these chunks are effectively 

different candidate words that compete for the same phonological material). 

 

In the current work, I am using the statistical predictability of one item from another as a 

heuristic guide to the strength of association between the items, regardless of whether this 
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association is grounded in underlying calculation of statistics, or in the chunking together 

of these items. 

 

The second unjustified assumption is that the only valid numerical formulation for the 

predictability of one event from another is conditional probability. In fact, Shanks (1995) 

has argued and provided a great amount of empirical evidence to show that a more valid 

expression of predictability can be obtained by using ΔP, a measure which discounts the 

probability that B will follow A, by the probability that B will occur even when A does 

not occur. In terms of the cells of Table 4 in Section 5.5.2, ΔP is given by 

dc
c

ba
aBAP

+
−

+
=Δ ),( . 

This measure gives a truer value of A as a predictor of B than conditional probability 

does; if B is more likely to occur after A than when A is absent, then A is a good 

predictor of B. ΔP will decrease if there are several other predictors of B than just A 

alone. If, say, 30% of all occurrences of A are followed by B, and 30% of all non-

occurrences of A are also followed by B, then it is clear that there is no real relationship 

between the events A and B – B just occurs 30% of the time anyway, regardless of 

whether A occurred, and ΔP will be zero. 

 

In a discussion of ΔP and related statistics, Perruchet and Peereman (2004) point out that 

an analogous measure may be postulated to describe a kind of backward ΔP, where the 

roles of events A and B are reversed (so that we “back-predict” A on the basis of B). 

They name this measure ΔP′, defined as 

db
b

ca
aBAP

+
−

+
=′Δ ),( .  

 

This measure expresses the probability that B is preceded by A, discounted by the 

probability that the non-occurrence of B is also preceded by A. If A is more likely to 

occur before B than before the absence of B, then B is a good predictor of A. If, say, 30% 

of all occurrences of B are preceded by A, and 30% of all non-occurrences of B are also 

preceded by A, then there is no real relationship between the events A and B – A just 



 264

occurs 30% of the time anyway, and the occurrence of B does not predict A, so that ΔP 

will be zero.  

 

Note that ΔP and ΔP’ correspond respectively to Powers’s (2008) Markedness and 

Informedness, discussed in Section 5.5.2.2. Mathematically, it should be clear that ΔP’ 

(A, B) is just equal to ΔP(B, A) when the rows and columns are interchanged, i.e. ΔP’ is 

just the “right-to-left” counterpart of the “left-to-right” ΔP. Perruchet and Peereman 

(2004) have shown that both ΔP and ΔP’ (equivalently, both “left-to-right” and “right-to-

left” ΔP) are implicated in human language processing. 

 

It is possible to calculate ΔP in an explicit iterative simulation, by updating the strength 

of an associative link between two words in accordance with a delta learning rule similar 

to that formulated by Widrow and Hoff (1960). For instance, Shanks (1995) formulates 

the delta rule as stating that the change in association ΔV from element A to element B is 

given by  

 

)( VV Σ−=Δ λαβ , 

 

where α and β are learning rate parameters that increase with the salience of A and B 

respectively, λ is 1.0 when B is present and 0.0 if it is absent, and ΣV is the association 

strength of all cues present on the trial (i.e. in the current simple case, neglecting 

background cues other than A, it is equal to the association strength V from A to B). The 

value of V is updated only on trials where A is present (i.e. when α is non-zero), so that 

only cases allocated to cells a and b in the contingency table alter the value of V. It can 

be shown that the asymptotic value of V under the delta learning rule is equivalent to ΔP 

(Chapman & Robbins, 1990).  

 

The process of strengthening an associative link when it is confirmed and weakening it 

when it is disconfirmed is also the essence of the PARSER model (Perruchet & Vinter, 

1998), so that the expected values of associative links in PARSER might arguably be 

expected to be proportional to ΔP (or perhaps to correlation, which is the geometric mean 
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of ΔP and ΔP’), and evidence from Perruchet & Peereman (2004) suggests that this may 

be the case. As will be discussed later, an important difference between PARSER and the 

current work is that it will be suggested here that associative links can be asymmetric, 

whereas links are implicitly symmetric in PARSER. 

 

By updating the associative strength from A to B in this way, it might be possible to 

devise an iterative computer simulation of the formation of frames from associative links. 

Note that it is controversial whether chunking can in fact be reduced to associative 

mechanisms (Shanks, 1995; see also Perruchet & Pacton, 2006). 

 

The third unjustified assumption is that prediction necessarily entails making a prediction 

about “what will happen next”, i.e. that we are using the past in order to 

anticipate/prepare for an event in the future. In fact, a more encompassing meaning of 

prediction entails simply using some available information as a premise from which to 

draw the conclusion that some other statement about the world is also true, regardless of 

which of the two events is taken to occur first. This is in line with the idea that when 

items are associated with each other, the statistical predictability expresses the degree or 

strength of association.  

 

Association can, of course, be used for prediction in certain circumstances. So for 

instance, during speech processing, even while words are being processed, some 

information about the phonological details of previous words is still available for a 

limited time. If a listener finds part of an utterance unclear, he or she can use contextual 

information about the rest of the utterance in order to infer what was said during the 

unclear section, even using material which was spoken after the unclear section. Given 

most of the remainder of the utterance, hearers can use that context to predict what the 

unclear material would have been. This happens under normal hearing conditions too; for 

instance, Bard, Shillcock & Altmann (1988) let subjects hear samples of spontaneous 

conversation, in stretches which were incremented by a word at a time. Twenty percent of 

all words could only be recognized when further context (i.e. subsequent words) was 
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provided. In this chapter, the concept of prediction has this more general, atemporal 

meaning. 

9.3 Predictive relations as indicators of frame-filler relations 
The intuition captured by the frame discovery algorithms presented in the previous 

chapters is that, to a large extent, the function words of English form the backbone of the 

language. In everyday phrases such as is sleeping, the bell, very wrong, it seems that the 

structures of these phrases can be captured by the abstractions is X –ing, the X, very X. 

These function words and morphemes are clear indicators of the part-of-speech of the 

word that they abut. In a sense, these functors owe their presence to the part-of-speech of 

the adjacent word: in linguistics, the relationship between the so-called head of a phrase 

and associated functors is described as one of dependency, in that, for instance, the in the 

bell seems to be licensed to occur only because of the occurrence of a noun soon after it 

in the phrase, so that the is dependent on the noun bell.  

 

The concept of linguistic dependency is closely related to that of predictability. If we 

know that we are dealing with a word used as a noun, there are a number of dependent 

elements that we might expect with fairly high probability to see occurring close to it, 

such as the, your, another, etc. before the noun, or the plural or possessive markers –s 

and ’s after it. In other words, there is a certain amount of predictability about the 

dependent elements given the non-dependent element (or at least, its part-of-speech). 

 

However, as will be shown later, the concept of predictability considered here is not 

exactly the same as dependency in linguistics. Part of the focus in this chapter will be to 

combine basic predictability relationships into a sequential pattern that constitutes a 

frame. One step in  that process will be to attend to words that predict the same other 

word, and linking them into a larger frame. In linguistics, this would be tantamount to 

suggesting that the mutually-predicted word is dependent on two other words 

simultaneously, which would not be regarded as coherent (for instance, this would make 

it impossible to depict the situation by means of a syntactic tree). 
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The extent to which one word predicts another can easily be determined by applying the 

ΔP and ΔP’ functions discussed in the previous section to contingency tables derived 

from the frequency of co-occurrence of the two words.  

 

Take as an example the archetypal construction “the X”, where X stands for a noun; and 

to take a concrete example of “the X”, consider the phrase “the dog”. We might expect 

that if the word “dog” occurs, there is a reasonably high probability that the word 

preceding it is “the”. This is because there are only a handful of determiners and 

quantifiers (such as “the”, “a”, “another”, “your”, some”, any”, etc.) that are highly likely 

to precede “dog”. Hence, if “dog” occurs, it is a reasonably successful predictor for the 

(prior) occurrence of “the”. (Of course, the prediction is far from certain; however, it is a 

great deal stronger than most predictive relationships between words.) By contrast, when 

given that the word “the” has occurred, there are a great many words (nouns as well as 

adjectives) that could follow “the”, and so it is not easy to predict from the occurrence of 

“the” that “dog” will follow.  

 

This asymmetry in predictability seems to capture the essence of a lexically-specific 

frame: the lexically-specific element is predicted by the slot-filler element, but starting 

from the lexically-specific element it is not possible to predict the slot-filler with any 

degree of reliability. 

 

Following the convention that the predictor appears on the rows of the contingency table 

and the predicted item on the columns, we can use the contingency table depicted in 

Table 62 to determine whether, in a two-word sequence with the word “the” in the left-

hand position and “dog” in the right-hand position, we can reliably predict the occurrence 

of “the” from the occurrence of “dog”. 

 

 the ~ the 

dog a b 

~ dog c d 

Table 62. The contingency table to determine whether “dog” predicts “the”. The tilde indicates 
logical negation, i.e. “~ dog” indicates any word in second position other than “dog”. 
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In line with the above discussion, the conditional probability 
ba

a
+

 of the occurrence of 

“the” given the occurrence of “dog” is likely to be high, while the conditional probability 

ca
a
+

 of the occurrence of “dog” given the occurrence of “the” is likely to be low. At the 

same time, the term
dc

c
+

, representing roughly the probability that words in general (i.e. 

other than “dog”) are preceded by “the”, is not likely to take on as high a value as 
ba

a
+

, 

because there are many words (notably verbs) that are never preceded by “the”. Hence, 

the value of ΔP from “dog” to “the”, given by 
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c
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, will be relatively high, 

while the value of ΔP from “the” to “dog”, given by 
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 (which is the same as 

ΔP’ from “dog” to “the”), is relatively low (the remaining term 
db

b
+

, roughly giving the 

probability for words in general to precede “dog”, is likely to be negligible).  

 

Hence, we can hypothesize that an operational technique for identifying frame-filler 

relationships is to look for asymmetries in the ΔP value, i.e. for two elements A and B 

such that there is a high ΔP value from A to B and a low ΔP value from B to A. In this 

case, B is the filler item for the partial frame constituted by A. The two items can then be 

written in frame fashion, where B is the lexically-specific word and A is the slot-filler. So 

the current example would yield the frame “the X”. Because several of these asymmetric 

word pairs will eventually be combined into a single frame, a single pair of words 

exhibiting asymmetry in their ΔP value will be called a frame primitive. 

 

It is worth noting that the ΔP relationships that will be calculated here can hold for 

elements that are not adjacent to each other. This is in line with Gómez’s (2002; Gómez 

& Maye, 2005) work on non-adjacent dependencies, and on work by Pacton & Perruchet 

(2008) that shows that adults are aware of the relationships between elements of a 
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sequence if they have attended to the elements, regardless of whether the elements occur 

adjacently or not.  

 

In this chapter, when it is stated that an associative link exists from one word to another, 

what is meant is that the strength of the association, as calculated using the formula for 

ΔP, is relatively high. In practice, an arbitrary threshold value is applied, and only 

associations stronger than the threshold value are recognized. 

9.4 Assembling complex frames from individual associative 
links 

The discussion above considered the case of a single associative link from one word to 

another word. In this simple case, where only the two words in question are presumed to 

make up the entire utterance, the frame is a frame primitive, made up of those two 

elements only (with one serving as a slot). In this section, we consider how more than one 

frame primitive in a particular utterance may be combined in order to form a larger frame. 

 

In these complex cases, there might be several associative links originating from an 

element, or terminating at a certain element, and some pairs of elements might have 

strong mutual associations between each other.  

 

There are a number of issues to consider: 

1. Equivalence relationships: In some cases, two elements each have strong 

associative links to each other. For instance, in the frame “out of X”, the words 

“out” and “of” might have high ΔP values for each other. Intuitively, the two 

words seem to form a kind of collocational unit when they occur together, with 

“out of” having more the character of a “long word” than of a combination of two 

independent words (compare “into”). In such cases, “out” and “of” can be said to 

exhibit an equivalence relationship, rather than one of prediction.  

Equivalence-linked words may be disjunct; for instance in phrases such as “a kind 

of fruit”, “a lot of cereal”, “a sort of aeroplane”, there is likely to be an 

equivalence relation between “a” and “of”, and the frame in this case would be “ a 

X of X”.  
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Not only pairs of frame-building words, but also pairs of slot-fillers may be linked 

by an equivalence relation; in phrases such as “take it out”, “hand it over”, “kiss it 

better”, there is likely to be a mutual association between “take” and “out”, 

between “hand” and “over”, etc., and the frame would be “X it X”.  

In all of these cases, the words that enjoy equivalence relations to each other 

should be treated as units, so that if one word is included in a frame, the other 

should be too. 

2. Transitivity: Complicated situations may arise with extended chains of words that 

exhibit predictive or equivalence relations to each other. For instance, it may 

happen that word A is equivalent to word B, and word B is equivalent to word C, 

without there being an equivalence relationship from A to C. The question is 

whether we treat equivalence as a transitive relation (in which case we would 

accept that A is equivalent to C even if this is not borne out by the ΔP values 

between them). Other situations which need to be considered include ones where 

A predicts B and B predicts C but A does not predict C, or where A and B are 

equivalent and A predicts C, but B does not predict C. Particularly problematic 

are cycles: for instance, A predicts B, B predicts C, and C predicts A. 

3. Implicit links: In some cases, two words which are not directly linked via 

equivalence or predictive relations can nevertheless be implicitly linked via a 

third word to which they both are linked. One example would be a situation where 

A and B are not linked, but both A and B predict a third word C, which serves as 

the implicit link between them. Another situation is where word A predicts both 

words B and C, which are not linked to each other. 

9.4.1 Basic frame patterns 
In order to create a specific implementation of the prediction-based frame idea, however, 

certain decisions need to be made about how several linked element pairs are combined 

into a larger frame. In this section, I will outline the specific decisions made in the current 

work with regards to the issues outlined above. Alternative implementations may make 

different choices from the ones made here. 
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Figure 8. Examples of prediction-based frames. The arrows shown here point towards the predicted element.

X b;  X c 

cb a 

(i) 

X b X 

cb a

(f) 

X c 

cb a 

(e) 

X b;  X c;  a * X

cb a

(h) 

X * c 

cb a 

(g) 

X b c 

cb a

(d) 

a X;  X c 

cb a 

(c) 

X b Z;  Z b X

cb a

(b) 

X b 

cb a 

(a) 
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In order to demonstrate the effect of these decisions, I identify a number of “primitive” 

frame patterns that are the building blocks of the frames that will be identified in this 

experiment. For each pattern, we have an utterance or utterance fragment consisting of 

the three words “a b c” in sequence. The relationships that exist between these words 

determine the topology of the frames that we identify.  

 

Each of the patterns is illustrated diagrammatically in Figure 8a-i. The relationships 

between words are denoted schematically in the figures by means of arrows. Single-

headed arrows indicate a high unidirectional ΔP value in the direction of the arrow, i.e. 

there is a predictive relationship from the source word to the target word. Double-headed 

arrows indicate high ΔP values in both directions, i.e. there is an equivalence relationship 

and the two words are treated as part of the same unit. 

 

In Figure 8(a), a predicts b. Hence, there exists a relationship in which b is the lexically-

specific element in a frame X b, with X representing the frame slot as in previous chapters. 

Note that c is not involved in any relations with either a or b, and so does not form part of 

the frame. 

 

In Figure 8(b), a and c both predict b, but there is no relationship between a and c. Once 

we think of b as the lexically-specific element in a frame, however, it can be regarded as 

the “link” between a and c. Even though a and c are not related, they are both involved in 

a filler-frame relationship with b, and so we can take the frame to cover the entire string a 

b c: in fact, we have here a single frame with two frame slots, which can be represented 

as X b Z and Z b X, with X being the focal slot and Z an “out-of-focus” slot.  

 

In Figure 8(c), by contrast, the element b predicts both a and c; the decision made in this 

case is not to merge these two frame primitives, but to take them as independent frames. 

This is because a and c are likely to be independent of each other, so that b can be 

expected to occur on occasion with a only, and on other occasions with c only. If a and c 

were not independent, then there would have been an equivalence relationship between 

them. 
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Figure 8(d) and Figure 8(e) demonstrate situations where there are equivalence relations 

in the fragment. Elements which are equivalent to each other can be treated as 

collocations, i.e. they can be regarded as functioning as a unit, regardless of the fact that 

they are written as more than one dictionary word. Collocational units can be either fillers 

or lexically-specific elements in a frame, depending on the direction of the arrow. In 

Figure 8(d), a predicts b, which is equivalent to c. Note that, in this case, it is not required 

that a also predicts c in order to construct a frame out of all three elements, namely X b c. 

Equivalence “lends its transitivity” to the predictive relationship from a to b. In Figure 

8(e), we have a filler consisting of more than one word. This is something not yet 

encountered in the work presented in the previous chapters. The frame in this case is just 

X c, and the filler is the “phrase” a b. 

 

Figure 8(f) demonstrates a similar situation to that of Figure 8(e); however, in this case 

the two equivalent words making up the filler are not even contiguous. This could occur 

for instance in an utterance like pick it up, where the parts of the “separated verb” pick up 

occur as a filler in a frame with two slots on either side of it. The two slots are not 

independent, though (as in Figure 8(b)); instead there is an interaction because the two 

words are equivalent (predict each other). Hence they constitute a kind of collocational 

filler. In this case, the frame is written as X b X, and the filler is a c. 

 

Figure 8(g) represents a situation similar to that of Figure 8(a), in that there is one 

predictive relationship between two elements, and another element that is “isolated” from 

the other two. However, the isolated element occurs between the other two elements. The 

disjunction of a and c is regarded as a major feature of the frame, so that the space 

occupied by b needs to be represented. However, because b does not engage in any 

relations with the other elements, it is not a filler of the frame. In this case, the only frame 

filler is a, and the frame is written as X * c, with the * representing the “unused” position 

in the fragment. 
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Figure 8(h) represents the situation where there is a cycle in the diagram. In such a case, 

there is no easy way to include all the relevant relationships into one consistent frame, 

and so we list each sub-frame separately. Figure 8(h) represents a situation where a 

predicts b, b predicts c, and c predicts a. These three relationships give rise to the frames 

X b, X c, and a * X respectively, following the examples given in previous Figures.  

 

Lastly, Figure 8(i) illustrates the point that predictive relationships are not handled 

transitively; when a predicts b and b predicts c, it does not necessarily follow that a 

predicts c (unless this is explicitly the case in the ΔP matrix). From the diagram, we can 

deduce that there is evidence only for the frames X b, with a as the filler, and X c, with b 

as the filler. The two predictions give rise to two separate frames, and do not merge into 

one larger frame with two levels of nesting (although this possibility could be explored in 

future versions of this approach). 

9.5 Psychological considerations 
As with the other frame discovery procedures, it is assumed that the specific words in a 

prediction-based frame are associated with each other by virtue of their co-occurrence in 

several utterances in the input to the child; in this way, the configuration of words may 

itself become a unit of linguistic knowledge. 

 

These frames may start out as fairly verbatim sequences of words that co-occur, 

involving both the frame and its slot-filler; for instance, in the example phrase of “the 

dog”, as used before, the presence of “dog” can be taken to be associated with the word 

“the” occurring before it. It may thus seem problematic to account for how a slot-filling 

word is eventually separated out from its frame, so as to allow the frame to become 

abstract. But as stated before, the associative links between words are not necessarily 

equally strong in either direction. Whereas the associative link from a predicting word to 

its predicted frame (as modelled by ΔP) is strong, the links from the frame words to the 

predicting word are weak. This may occur due to interference incurred by the many other 

fillers that have appeared in the slot, as in the PARSER model (Perruchet & Vinter, 1998). 

Unlike the situation in PARSER, however, it may be that interference operates on 

asymmetric associative relationships. If a frame has been encountered with filler A and 
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later with filler B, it may be that only the link from the frame to filler A suffers a decrease 

in strength due to interference, while the link from A to the frame remains unchanged 

(because A has not been encountered, its outgoing links are not modified). In this way, 

the frame may become more abstractly represented, whereas a particular filler is still 

associated with each of its potential frames. It may be this asymmetry which eventually 

allows a frame to be segmented off from its fillers. 

 

It is therefore predicted that a particular word may be associated with each of the frames 

in which it could occur, in a kind of “halo” of combinatorial possibility5. Individual 

frames, on the other hand, are not strongly associated with particular fillers. 

 

As suggested earlier, this approach also accounts for the existence of collocations, which 

are sets of words that are in an equivalence relationship to each other by virtue of 

occurring often together. These collocations either form part of the lexically-specific part 

of a frame, or are multi-word fillers of certain frame slots.  

 

This approach therefore allows for both symmetrical predictive relationships 

(collocations), and asymmetrical relationships where item A is associated with item B, 

but not vice versa (the so-called frame primitives). Particular configurations of both of 

these kinds of relationships constitute the frames produced under the prediction-based 

approach. 

 

During processing, each frame plus all of its fillers are then recognized directly in the 

input, and the beginning and end of this set in the utterance are taken to constitute the 

segmentation boundaries of the frame, in contrast to the approaches in the earlier chapters, 

which started from the segmentation boundaries provide by the edges of the utterance.  

 

                                                 
5 An extension to the current work would be to incorporate not only predictive relations between words, but 
also between word roots and affixed morphemes. 
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It should be emphasized that, as with similar remarks on the other frame discovery 

techniques, these remarks are speculative; it remains to be determined empirically 

whether children do exhibit this form of learning behaviour.  

9.6 Frame discovery procedure 

9.6.1 Obtaining frame probabilities 
Conditional probabilities and ΔP statistics can be obtained by collecting counts of n-

grams, sequences of n consecutive items occurring in a corpus. For n equal to 2, n-grams 

are termed bigrams, and for n equal to 3, they are called trigrams.  

 

We are interested primarily in highly local predictive relationships, on the assumption 

that they make up the vast majority of predictive relationships in a language. A stronger 

version of this assumption is to assume that languages develop in such a way as to make 

them be easily learnable by young children, and to propose that local relationships should 

be the norm in most languages, given that they narrow down the space of possibilities 

that need to be considered. Local relationships also seem to embody the intuitive notion 

that concepts that go together are expressed through words that occur together. This too is 

as would be expected if the learning of relationships is mediated by learned associations 

between the words: if related words occur together, that makes it more likely that the 

learner will represent them simultaneously in short-term memory at some point, thereby 

facilitating the forging of an associative link between them. 

 

For this reason, I will only consider relationships between two consecutive words, or 

between two words separated by a third word. I will also assume that in the second case 

the separating word is a necessary prerequisite for the recognition of the relationship 

(regardless of the identity of the separating word), so that a dependency from A to B 

when they appear consecutively is different from a relationship from A to B with a word 

intervening. 

 

Whereas in the previous chapters, the corpus was first rewritten by replacing the 

relatively infrequent words with X’s, the experiments in this chapter make use of the 
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original (“cleaned-up”) corpus directly, so that all words are treated equally. In collecting 

the relevant starting information for this experiment, the bigram frequency matrix was 

obtained, consisting of all bigrams (all two-word sequences) in the corpus, and also the 

disjunct-by-1 frequency matrix, consisting of the “disjunct-by-1 bigrams”, all word pairs 

attested in the corpus where the second word occurs two positions after the first word 

(essentially, this is the set of trigrams, collapsed along the dimension of the middle word).  

 

All bigrams had to occur inside a single utterance, i.e. bigrams were not allowed to 

straddle utterances. Bigrams containing commas were also disallowed, as were bigrams 

containing question marks (recall that full stops were removed from the corpus). The 

same constraints were applied to the disjunct bigrams. 

 

After bigram statistics were collected, the next step was to calculate ΔP values from both 

frequency matrices, in both the “leftward” and “rightward” directions (i.e. ΔP and ΔP’), 

in accordance with the formulas given in Section 9.2. At this point, we have a set of 

relationships between words which will be the basis of the set of frame primitives. For 

every utterance in the input, we have the strength of the predictive (ΔP) relationship 

between every pair of adjacent words (both left-to-right and right-to-left) from the bigram 

frequency matrix, and the strength of the predictive relationship between every pair of 

words that occur with one word intervening (both left-to-right and right-to-left) from the 

disjunct-by-1 bigram frequency matrix. 

 

Next, only the ΔP relationships that are significant are retained. Significance is 

determined by comparison against a fixed threshold: only ΔP values that are above that 

threshold are regarded as significant. While the choice of this threshold is somewhat 

arbitrary, we can see here a major benefit of using ΔP over the more traditional 

conditional probability: with conditional probability, we would have no way of choosing 

a single threshold for all bigrams. This is because there is no way to set a fixed “baseline” 

that would hold for all conditional probability values; each particular conditional 

probability has a different baseline. By contrast, the baseline for ΔP is zero across all 

pairs of items; any ΔP value greater than zero is indicative of an implicational 
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relationship. In practice, the threshold for significance was set not at zero, but at 0.005, a 

value that proved to yield good results in preliminary testing. 

 

At this point, we have a set of significant ΔP relationships; these constitute the set of 

frame primitives. 

9.6.2 Parsing the corpus for frames 
Next, the frame primitives are used in order to parse the corpus again, this time 

assembling frames from the frame primitives present in each utterance. These frames are 

then used for collecting frame-word co-occurrence data.  

 

Having found all the significant predictive ΔP relationships from one word to another, the 

first parsing step is to identify all equivalence groups in the utterance, defined as a set of 

elements (words) from the utterance such that, for any element in the group, there is at 

least one other element in the group with which it has an equivalence relationship (i.e. 

two symmetric significant ΔP relationships, one from element a to b and one from 

element b to a); equivalence is therefore treated as a transitive relation. If an element 

enters into no equivalence relationships with any elements, it is placed in an equivalence 

group on its own. 

 

Take as an example the utterance “I heard you were speaking”. In the implementation 

discussed in the next two sections, there is a high value for ΔP at an offset of 1 (i.e. 

ignoring the intervening word) from “I” to “you”, and also from “you” to “I”. 

Consequently, the words “I” and “you” in this utterance are placed in an equivalence 

class. All other words in the utterance are placed in equivalence classes of their own. 

 

Next, we look for predictive relationships between equivalence groups, which are 

considered to exist if any element in one equivalence group is predictive of any element 

in another equivalence group. Under this definition (as we have seen in Figure (h)), it is 

perfectly possible to have cycles in the graphs, where equivalence group E predicts 

equivalence group F, and vice versa. 
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In the example, the word “heard” strongly predicts “I” (there is a high ΔP from “heard” to 

“I”), and the word “speaking” strongly predicts “you”. Because “I” and “you” are placed 

in an equivalence class, these predictive relationships are treated as one prediction from 

the equivalence class containing only “heard” to the equivalence class consisting of “I” 

and “you”, and another from the equivalence class containing “speaking”, also to the 

equivalence class of “I” and “you”. There is no predictive relationship between “heard” 

and “speaking” in either direction. Hence, the resulting relationship diagram is as in 

Figure 8(b).  

 

Subsequently, for every equivalence group E, collect the set of all equivalence groups 

that predict E. At this point, we have a set of predicting groups and a single predicted 

equivalence group. These are all the words that will be involved in the current frame.  

 

If we take E to be the equivalence class consisting of “I” and “you” in the example, then 

the set of predicting groups consists of the two equivalence classes that consist 

respectively of only the element “heard” and only the element “speaking”. 

 

Now “flatten out” the groups (both the “predicting” groups and the “predicted” group E) 

into their constituent words, and select the word wα that occurs earliest in the utterance 

from among all the words in all the groups, and the word wω that occurs last. The frame 

then stretches from wα to wω. The words belonging to E are taken to be the lexically-

specific words in the frame, and each predicting equivalence group as a whole 

corresponds to a single filler in the frame. In cases where there is more than one word in 

a predicting equivalence group, the filler is a multiword filler constructed by taking each 

of the words in the group in left-to-right sequence, separated by spaces. In cases where 

the members of an equivalence group are not contiguous, they are still listed from left to 

right in order to produce a multi-word filler. 

 

This process performed on the example sentence produces a frame that stretches from “I” 

to “speaking”. The words “I” and “you” are retained as lexically-specific words, and 

“heard” and “speaking” become slot-fillers. 
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Any words that occur between wα and wω but which are not members of either E or any 

of its predicting groups are still included in the frame, but they do not form fillers of any 

frame slot and their positions are indicated by *. 

 

The intervening word “were” is not linked predicatively to any of the other four words, 

but because it is located between the first linked word “I” and the final linked word 

“speaking”, it is included as a non-functional slot and indicated with a *.  

 

The resulting two frames are therefore “I X you * Z” and “I Z you * X”, where the X 

indicates the active slot, filled by “heard” and “speaking” respectively. 

  

In this way, the algorithm parses the entire corpus for frame structures based on ΔP, and 

collects filler-frame data in the same way as in the previous chapters. The resulting data 

matrix is then subjected to clustering analysis and subsequent co-clustering phases, in the 

same way as in the previous chapters. 

9.7 Implementation 
The prediction-based algorithm as outlined above was carried out on the Manchester 

corpus. The resulting data matrix was subjected to co-clustering in the same way as in 

previous chapters. Table 63 shows the numbers of frames and slot fillers (single-word 

and multi-word) in the matrix, after applying the 5-5 criterion, as well as the number of 

words treated as slot-fillers in the model, and the number of utterances that contained at 

least one frame. 

 

Number of frame types 2923 

Number of slot-filler types 4186 

Number of focal words covered 239603 (18.1%) 

Number of utterances containing at least one frame  142706 (42.6%) 

Table 63. Summary numbers regarding coverage of the Manchester corpus by the prediction-based 
frame approach. 
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the X;  X it;  a X;  X you;  it's X;  that's X;  Z the X;  X the Z;  you X;  and X;   

it's a X;  your X;  that X;  are you X;  oh X;  X that;  X now;  X there;  that's a X;  

the X Z;  Z a X;  i X;  X on;  X then;  it X;  and * X;  X a Z;  the Z X;  X in;  he's X;  

you're X;  is it X;  Z the Z X;  you X Z;  they're X;  X up;  Z your X;  Z X it;  don't X;  

X Z the Z;  is that X;  that's the X;  Z that X;  where's the X;  X * you;  X aswell;   

X here;  not X;  Z in the X;  X again;  X it Z;  X your Z;  well X;  you Z X;  Z it X;   

X that Z;  Z the X Z;  X Z it;  X to;  in the X;  X out;  it's not X;  X me;  X * it;   

X you Z;  there's the X;  mummy X;  it's * X;  X in the Z;  X the Z Z;  Z you X;   

just X;  oh * X;  this X;  is he X;  on the X;  two X;  that's X Z;  X one;  X what;   

he X;  no X;  what X;  Z X on;  do you like X;  i'm X;  and X Z;  that's Z X;   

there's X;  a X Z;  X the;  to X;  some X;  Z X the Z;  i X Z;  there's a X;  a Z X;   

Z to X;  like X;  it X Z;   
Table 64. The top 100 most frequently-occurring prediction-based frames in the Manchester corpus. 
 

The top 100 most frequently-occurring prediction-based frames that were discovered in 

the Manchester corpus are shown in Table 64. In addition, a number of selected frames 

along with their fillers are shown in Table 65; a couple of points are illustrated by these 

examples. Firstly, a frame such as “a bit of X”, which is also included in the full-

utterance frame and nested frame approach, takes a fairly reliable set of noun or gerund 

fillers (including multi-word fillers such as “fuzzy felt”). By contrast, the very similar 

frame “a bit of * X” takes mostly nouns, but also a number of adjectives. For members of 

some frame “couples” such as “I’ve Z my X” and “I’ve X my Z”, the slot fillers fall into 

very clear categories, namely verbs and noun phrases respectively; but for many other 

frame couples such as “are they X Z” and “are they Z X”, the fillers are not of a coherent 

class. An example of a frame couple that involves “separable” verbs is “did you X Z X” 

and “did you Z X Z”. While “did you X Z X” accepted a fairly consistent set of fillers 

such as “build bridge” and “put on”, the fillers for the “middle” slot (“did you Z X Z”) 

were a mixed set including nouns, pronouns and the determiner “a”. Other pairs such as 

“shall I X it Z” and “shall I Z it X” demonstrate how the two parts of a separable verb 

may sometimes be identified independently, rather than as the two parts of a single 

collocational filler. And lastly, some frames such as “X Z today” or “more * X” are 
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simply not informative about the word class of the filler at all, as evidenced by the 

disparate set of fillers for that frame. 

 
 

FRAME FILLERS 

Z * Z with the X cows,  juice,  prodding stick,  roller, 
sugar,  whale 

Z * you X Z * Z 
bought, could, never, picking, should, 
won't 

X Z today 
almost, bedroom, being, jelly, quite, 
really horrible, Terence, the water 

X at the bottom of the Z balls, cows, probably, sleep, worm 
Z X Z for another,  shoe,  two,  very,  wet 

a bit of X  
chicken, clown, fluff, fuzzy felt, 
newspaper, running, settee, spaghetti 

a bit of * X 
bumpy, crazy, dead, disaster, hat, hole, 
maybe, misery, puzzle, tantrum 

are they X Z  
both, dry, eating, falling, getting, 
hungry, kissing, molly's 

are they Z X 
biscuits, bones, ducks, each other, 
everywhere, sukie's, their 

did you X Z X  
build bridge, eat banana, put in, put on, 
read story 

did you Z X Z  
a, butter, her, him, salt, stamps, that, 
them, your 

I've X my Z  
brought, changed, drunk, eaten, 
finished, lost 

I've Z my X  
cup of tea, dinner, earring, memory, 
name, spade, teddybear, yoghurt 

more * X  
insist, less, ow, pat, rectangle, 
scratching, shorts, twenty pounds, 
windows 

shall I X it Z  
cut, finish, fix, hatch, open, read, roll, 
send, spin, start, straighten, throw, tie, 
tip, undo, wipe 

shall I Z it X 
away, back, for, now, off, out, over, 
round, then, through, under, while 

Table 65. Some example prediction-based frames and their slot-fillers . 



 283

 

9.7.1 Qualitative results 
Because all words are now allowed to function as slot-fillers, there are a great many word 

types in the final data set for prediction-based frames that were not in the data set for full-

utterance frames or nested frames. So for instance, determiners, pronouns and modal 

verbs are very frequent as slot-fillers. This means that it might not be possible to obtain 

just three clusters using hierarchical clustering that correspond to nouns, verbs and 

adjectives. And in fact, the first three sizeable clusters that form (when 5 clusters are 

created) are not interpretable in this way. Two of these clusters do correspond to verbs 

and nouns, but the third cluster is an amalgamation of adjectives, possessive pronouns, 

proper names and one or two determiners. It is not until ten clusters are formed that the 

class of adjectives separates out from the closed-class words and proper names in that 

cluster. Some examples of frames and the most prevalent words associated with 

particular clusters are shown in Table 66. These details are for 10 clusters (with just the 5 

sizeable clusters shown). 

 

Cluster Frames Words 
Cluster 1 Z * a bit X;  Z * are X;  Z * got X;  

Z X in a minute;  Z a X one;  X all the 
time;  X bag;  X ball;  X chair;  X hair;   
X little boy;  X people;  X than;  a X boy;   
a X one; are they X;  because it was Z X;  
do you think she's X;  gonna be X;   
he hasn't X;  he is X;  if it's X;   
it's not very X;  it's too X;  nice and X;   
no X today;  quite X;  really X;  should X;  
that one's not X;  what were you X;  
where's he X;  which one's X;  you are X 

poorly, broken, dirty, 
cold, crying, black, 
jumping, naughty, new, 
wet, lovely, hot, hungry, 
special, busy, drawing, 
horrible, asleep, hiding, 
funny, noisy, taking, 
sleeping, dark, different, 
driving, happy, tired, 
fluffy, sick, cross, eating, 
saying, stuck, thinking, 
wearing, building, 
holding, quick, real, tiny, 
white, cheeky, coloring, 
drinking, sad, still, thirsty, 
watching, bad, cutting, 
high, reading, sitting, 
sticky, frightened, full, 
playing, running, singing, 
squashed 
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Cluster 2 Z * it's X;  Z * like X;  Z * with X;  Z X back;  
Z X in the water;  X * clean;  X Z for;   
X at the weekend;  X doesn't want;   
X foot;  X going to sleep;  X on the car;   
X said * Z;  and that's X;  and who's X;  
are you gonna put X;  because they're X;  
called X;  can i have X;   
can you remember X;  come on X;   
do it X;  do you have X;  do you think X Z;  
does X like Z;  give it to X;  has X got a Z;  
have you seen X;  here's X;   
i don't think X;  i know it's X;   
is that what X Z;  it is X;  look what X;  
pick X up;  play with X;  push X;  
remember X;  saw X;  talk to X;   
that's not X;  the one with the X;   
there's a little X;  what did X do;   
what does X say;  you can't Z X 

mummy's, childname's, 
daddy, something, yours, 
daddy's, mummy, 
Thomas, yellow, they're, 
childname, those, green, 
he's, blue, my, Caroline, 
red, still, Pingu, Henry, 
James, orange, Anna’s, 
dolly, an, who's, Gordon, 
her, pink, purple, two, 
another, anything, 
everything, right, mine, 
Caroline’s, his, like, milk, 
Nana, panda, Percy, 
Anna, four, Andy, baba, 
grandpa, better, 
grandma, probably, 
dolly's, him, their, 
enough, teddy, yourself 

Cluster 3 Z * Z X the Z;  Z * you X Z * Z;  Z X for;   
Z he X;  Z if i X;  Z you X them;  X * bag;  
X * ball;  X * last night;  X a Z one;   
X a cow;  X at the bottom of the Z;   
X away;  X for him;  X her;  X him out;   
X if you're Z;  X it;  X it to me;  X lots of Z;  
X me;  X me * Z;  X my Z;  X off then;   
X on that;  X on your Z;  X on your own;   
X one of those Z;  X out of the way;   
X sleep;  X some;  X that;  X that one;   
X the Z;  X the green one;  X the monkey;  
X them off;  X these things;  X up then;   
X with this one;  X your bottom;   
X yourself;  all the X are;  and then you X;  
and what did you X;  are you X me;   
are you going to X it * Z;   
because you Z X;  better X;  broken X;  
can X;  careful you don't X;  did X;   
do you want to X;  don't X him;   
give him a X;  going to Z; have they X;   
i didn't X that;  must X;  run out of X;   
shall we X this;  try and X;   
what did they X;  you can X Z 

watch, keep, push, made, 
open, move, hold, bring, 
read, use, break, draw, 
stick, still, cut, pull, sing, 
always, bought, call, 
won't, gave, leave, said, 
wouldn't, brought, stop, 
jump, catch, couldn't, try, 
eat, found, walk, wear, 
ask, missed, will, carry, 
dropped, roll, throw, 
blow, hide, hurt, could, 
willn't, never, listen, 
press, really, wash, and, 
asked, giving, bite, hit, 
just, kick, lost, stay, built, 
done, has, lift, forget, 
moved, should, took, 
getting, given, left, sat, 
say, told, buy, make, 
probably, actually, build, 
paint, pretend, turn, up 
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Cluster 4 Z * in the Z X;  Z Z get X;  Z X for him;  Z 
for the Z X;  Z like that X;  X , did you;  X 
at the bottom;  X if you like;  X Thomas;  
and that's Z X;  are we going X;  aren't 
they X;  can you see the Z X;  do you 
think X;  don't Z it X;  get it X;  go * X;  i Z 
it X;  i don't know X;  i don't think there are 
any more X;  I’ve got your X;  is it going X;  
it is Z X;  mummy do it X;  perhaps it's X;  
she's going X;  that's it X;  the car X;  
wasn't it X;  what do you like X;  you can 
do it X;  you've got a Z X 

yeah, though, aswell, 
now, first, before, but, 
down, so, today, darling, 
up, maybe, outside, yes, 
through, love, yet, again, 
anyway, or, over, please, 
because, yesterday, 
actually, already, later, 
perhaps, sometimes, 
somewhere, from, 
swimming, like that, er, 
properly, says, shopping, 
then, things, fast, fits, 
home, too, anywhere, off, 
round, soon, will, bit, by, 
together, upstairs, car, 
goes, into, made, okay, 
pet, really, tomorrow 

Cluster 5 Z * Z a X;  Z * Z with a X;  Z Z a nice X;   
Z X for you;  Z any X;  Z up to the X;   
X all over the floor;  X back on;  X can;   
X doing Z;  X don't Z;  X for a walk;   
X goes in the Z;  a Z in the X;  a baby X;  
a nice X;  all those X;  are those X;   
are you Z a X;  big X;  bit of a X;  blue X;  
can i have Z X;  can you find another X;  
can you see a X;  coming out of the X;   
do they eat X;  do you need a X;   
do you want some X;  draw * X;  eat * X;  
get a X;  got X on;  he's going to the X;  
here's your X;  i don't like X;  into the X;   
it is a X;  keep * X;  like a X;   
look at all those X;  look like a X;   
make some X;  move * X;  naughty X;   
no more X;  on my X;  poor X;   
put your X down;  shall we get the X out;  
that X; that is a X;  the X;  
there's another X;  this X; this is a Z X;  
through the X;  what X do you want;  
where's your X;  you did Z X;   
you don't like X;  your X 

cat, tractor, dog, tiger, 
house, pig, sheep, truck, 
dolly, lion, fish, duck, ball, 
cake, digger, lady, 
fireengine, picture, cow, 
giraffe, rabbit, bus, hat, 
penguin, dress, egg, 
wheels, bag, hole, panda, 
driver, boat, chicken, 
lorry, thing, snake, teddy, 
bottle, eggs, story, book, 
horse, people, spoon, 
key, leg, tree, whale, zoo, 
hippo, trailer, cars, 
horsie, orange, bed, 
garage, noise, fire, 
spider, trains, bird, bull, 
farm, tomato, banana, 
letters, money, tower, 
balloon, doll, icecream, 
milk, tunnel, babys, bike, 
biscuit, strawberry, 
wheel, daddy, goat, 
lemon, man, chair, 
crayons, van 

Table 66. Some representative frames and words from the hierarchical clustering of the prediction-
based frames, showing representatives for 5 out of 10 clusters 
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9.7.2 Quantitative results 
The frame-word matrix was subjected to the set of hard clustering and co-clustering 

algorithms in the same way as for the data matrices of previous chapters. The quantitative 

evaluation results are shown in Table 67. 

 
 Hard F Fuzzy F Fuzzy W Fuzzy 

FxW 
Confl. Pars. 

Accuracy 0.679 
(0.471) 

0.690 
(0. 471) 

0.820 
(0. 471) 

0.813 
(0. 471) 

0.508 
(0. 471) 

0.808 
(0. 471) 

Completeness 0.403 
(0.279) 

0.528 
(0.360) 

0.565 
(0.325) 

0.636 
(0.369) 

0.888 
(0.824) 

0.620 
(0.361) 

F score 0.506 
(0.351) 

0.598 
(0.409) 

0.669 
(0.385) 

0.714 
(0.414) 

0.647 
(0.600) 

0.702 
(0.409) 

Bookmaker 0.349 0.441 0.557 0.596 0.184 0.553 

Table 67. Evaluation of prediction-based frames, 10 clusters. 
 
It can be seen that the quantitative performance of the prediction-based frame approach 

yielded a reasonably good lexical categorization, with Bookmaker scores of up to 0.596 

(for the Fuzzy FxW co-clustering algorithm). Nevertheless, it is also clear from a 

comparison of this table with the results from previous chapters that this particular 

implementation of the prediction-based approach does not yield as accurate a 

categorization as do the full-utterance frame and (locally context-sensitive) nested frame 

approaches that start off from a dichotomy between slot-filler words and frame-building 

words. It should also be remembered, however, that the coverage in this case is far 

greater than that of the full-utterance frames and nested frames (18% of words and 42% 

of utterances versus 9% and 32% in the context-free nested frame case). Also note that 

the categorization here is much more successful than was the case for nested frames using 

context-free parsing. 

 

Another interesting result is that, as was the case with context-free parsing of nested 

frames, the conflict-based algorithm failed to categorize instances adequately for 

prediction-based frames (the values of all measures are close to their random baselines). 

Further examination of the performance of this algorithm (not shown here) revealed that 
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this was due to its assigning almost every word and frame to the noun category (Cluster 

5). Out of the three co-clustering algorithms, the conflict-based algorithm is by far the 

most sensitive to an initial data set of poor quality. When the data set contains many 

frames that do not reliably indicate the part-of-speech of a focal word embedded in them, 

then it is likely that a majority of words occurring in each frame will belong to the 

majority category (which is the noun category in this case) and hence that a majority of 

conflicts can be solved by allocating all or most of the remaining items in the data set to 

that majority category.  

 

Randomization tests of significance (Table 68 and Table 69) revealed that the parsimony-

based and Fuzzy F × W co-clustering algorithms significantly out-performed the hard 

clustering approach for prediction-based frames, as was found for all other frame 

discovery approaches (hard clustering was significantly better than conflict-based 

clustering). These results also show that the Fuzzy F × W co-clustering algorithm 

achieves a significantly better categorization than the parsimony-based algorithm. 

 

 Fuzzy FxW Confl. Pars. 

Hard F ↑ 
< 0.001** 

← 
< 0.001** 

↑ 
< 0.001** 

Fuzzy FxW  ← 
< 0.001** 

← 
< 0.001** 

Confl.   ↑ 
< 0.001** 

Fuzzy F ↑ 
< 0.001** 

  

Fuzzy W ↑ 
< 0.001** 

  

Table 68. Significance levels of differences in F scores for various 
clustering algorithms, for prediction-based frames, N=290.  

* significant at p=0.05, ** significant at p = 0.01. 
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 Fuzzy FxW Confl. Pars. 

Hard F ↑ 
< 0.001** 

← 
< 0.001** 

↑ 
< 0.001** 

Fuzzy FxW  ← 
< 0.001** 

← 
< 0.001** 

Confl.   ↑ 
< 0.001** 

Fuzzy F ↑ 
< 0.001** 

  

Fuzzy W ↑ 
< 0.001** 

  

Table 69. Significance levels of differences in Bookmaker scores for 
various clustering algorithms, for prediction-based frames, N=290.  

* significant at p=0.05, ** significant at p = 0.01. 

9.8 A comparison with Cameron-Faulkner et al. (2003) 
As was done for the combined nested-and-full-utterance-frame approach in Section 8.7, it 

is possible to compare the prediction-based frames against those manually identified in 

the Manchester corpus by Cameron-Faulkner et al. (CFLT, 2003). 

 

Part of the point of the work by CFLT was to demonstrate that many of the utterances 

that children hear start with a small number of word sequences, which may hence be 

thought to be predictable features of the input. The prediction-based approach could be 

regarded as compatible with this idea if it could be shown that the utterance preambles 

identified by CFLT are also present in the lexically-specific portion of the prediction-

based frames identified for the Manchester corpus. This would mean, amongst other 

things, that CFLT’s preambles are equivalence groups according to the prediction-based 

approach. (Note that, of course, prediction-based frames are not constrained to represent 

the beginnings of utterances, as CFLT’s frames were. Nevertheless, when confronted 

with a sentence starting with a CFLT frame preamble, the prediction-based approach 

would still be likely to treat the preamble as a coherent equivalence group, because of the 

high mutual ΔP values between the words.) 
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Table 70 indicates the number of CFLT frames that were also covered by prediction-

based frames. In brief, a majority (139 out of 152) of the CFLT frames were found in the 

set of prediction-based frames. Only 13 frames were not covered. As was the case for the 

nested-plus-full-utterance-frame approach, most of the errors came from the set of Wh-

questions. In addition, every one of the 52 core frames was covered by a prediction-based 

frame. Full details about the correspondence between prediction-based and CFLT frames 

can be found in Appendix 2. 

 

All frames covered Core frames covered 

139 / 152 52 / 52 

Table 70. Summary of coverage of Cameron-Faulkner et al. (2003)’s frames by the set of prediction-

based frames. 

9.9 Problems with prediction-based frames  
While the above categorization was fairly successful, and the frames produced by the 

prediction-based discovery procedure were for the most part convincing ones (including 

the basic frames that one would expect to see, such as “a X”, “the X”, “this X”, “that X”, 

“it’s X”, “your X”, “a X one”, “X it”, “X me”, “going to X it”, “can you X it”, etc.), a 

major problem with this approach is the question of generalizing the discovered frames to 

the corpus as a whole. Recall that, because these frames are presumed to be constellations 

of words that are simultaneously activated in working memory, the presence of the 

predicting slot-filler word is crucial to activating the entire frame. If an unknown word 

were to be used as a filler in the same frame structure, there are no predictive 

relationships in place from that word to the lexically-specific elements that would 

facilitate their activation. It was presumed earlier that the structures themselves would 

become familiar to the language-learning child as units in their own right. However, 

consider the following situation: there are, in the current data set, two frames “the X” and 

“the X X”, where the slot of the first frame corresponds to a slot for nouns, and the two 

slots of the second frame are typically filled by an adjective and a noun respectively. 

When an utterance is encountered that contains the word “the” followed by two or more 

novel words, which frame should be applied? In the case where only the first following 

word predicts “the”, the answer would be simple, and the frame would be “the X”. 
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Similarly, when both slot-filling words predict “the”, the frame would be “the X X”. 

However, with novel words, it is difficult to decide whether the correct frame to apply is 

“the X” or “the X X”, and therefore it is undecidable whether the word following “the” 

should be categorized with the slot fillers of “the X” (likely to be nouns), or the slot-

fillers of the first slot of “the X X” (likely to be adjectives). 

 

A possible way out of this dilemma would be to extend the current work by taking an 

approach similar to that taken with the full-utterance frames and nested frames, namely to 

recognize frames only in the context of an appropriate surrounding environment that 

indicates the boundaries of the frame (full-utterance frames were recognized only in the 

context of surrounding silence, and nested frames only when embedded in the context of 

an already-recognized frame). This would require expressing the predictability structure 

of an utterance as a whole, which would mean amongst other things listing allowed 

patterns of consecutive, unlinked frames, taking cognizance of words that are never 

linked into any frames, and most importantly, considering frames hierarchically nested 

inside others, as was alluded to in Section 9.4.1 when discussing the kind of relationship 

depicted in Figure 8(i).  

9.10 Discussion 
The results of this chapter show that it is possible to discover lexically-specific frames in 

the input to children based purely on reliably predictive relationships between words, 

conceived of as learned associations, the strength of which is given by the ΔP function, 

and which indicate a dependency relationship between two words. The results also show 

that parts-of-speech can be induced from these discovered frames, although the resulting 

categorization is less successful than that from the techniques from earlier chapters where 

only a circumscribed set of words were allowed to function as frame-building words.  

 

This chapter concludes the reporting of empirical results from implemented experiments. 

The next two chapters take a broad view of the work presented here, firstly situating it 

against other computational models of lexical categorization, and then outlining ways in 

which the current framework could be extended. 
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10 Summary and comparison to other computational 
models 

In this chapter, I will first attempt to summarize the main contributions of this thesis. 

Next I will compare the current work against the computational models reviewed in 

Chapter 4. This comparison will focus on two main aspects of the current models, namely 

(i) the way in which contexts for the induction of paradigmatic categories are discovered, 

and (ii) the way in which context and word information are used in order to arrive at a 

categorization of a focal word in context. 

10.1 Summary of empirical results 
One of Pinker’s (1984, 1987) major objections to distributional bootstrapping of parts-of-

speech is that the number of possibly significant distributional properties to which the 

child should attend is essentially unbounded. Pinker (1987) suggests properties such as 

occurring in seventh serial position in a sentence, co-occurring in a sentence with the 

word “mouse”, etc. 

 

The response to this should be (see also Redington et al, 1998) that the child need not be 

presumed to be attentive to every conceivable distributional property, but only to a small 

number that are psychologically salient. The traditional approach in implemented 

distributional treatments of part-of-speech bootstrapping has been to demonstrate that 

attending to one such property, namely occurrence of a word within a very small window 

of words surrounding a focal word, can provide enough information for a highly 

successful part-of-speech categorization (e.g. Clark, 2000, 2001; Finch, 1993; Finch et al., 

1995; Mintz, 2003, 2006a, 2006b; Redington et al., 1998, Schütze, 1995). 

 

In the current work, I have taken a different starting point, namely that there are a number 

of semi-fixed sentence and sentence fragment patterns in the input to the child, that are 

easily detectible by mechanical means, and which are arguably constituents or 

constructions of the language, either because they represent full utterances, or because 

they correspond to smaller units such as phrases, which can be embedded inside larger 

frames. These constituents are composed of specific words, which facilitates learning the 
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constituents, together with slots in which a variety of items can occur. When these items 

are single words, their occurrence in such a frame is often a reliable indicator of the part-

of-speech of the word. 

 

In order to justify this account, it is necessary to demonstrate a plausible mechanism by 

which these frames can be discovered. One approach that was taken here was to regard 

some of the words in the input to the child as special in some way, and base the frames 

around them. If we presume that the ability to recognize a word (e.g. by neuronal 

assemblies in the brain; Pulvermüller, 1996) is reinforced every time the word is 

recognized, then it follows that the most frequently-occurring words in the input will be 

the ones that are most readily and effortlessly recognized. These words are therefore also 

the most likely substrate from which the first co-occurrence relationships between words 

are learned.  

 

In the speech stream, the most frequent tokens are typically function words and a number 

of semantically light open-class words. These words are marked by diminished semantic 

content, and, in the case of English, often by reduced phonological content. These factors 

may allow these words to retreat into the background so as to allow more attentional and 

processing resources for the more contentful, relatively rarer words (typically open-class 

words).  

 

When several of these words co-occur in an utterance, their co-occurrence pattern is 

presumed to be learnt by virtue of the fact that these words are simultaneously attended to 

and hence associated with each other and stored in memory as a unit (in line with 

proposals by e.g. Logan & Etherton, 1994; Pacton & Perruchet, 2008; Treisman & 

Gelade, 1980). I have proposed that it is not only the frequent words, but also the 

positions of the slots, that are simultaneously represented and associated together as a 

unit. 

 

The first mechanism considered, the full-utterance frame technique, took the approach 

that constructional frames can be identified as complete utterances that follow a familiar 
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pattern, with this pattern defined by the configuration of frequently-occurring English 

words that are found in the utterance. In this view, these constructions were identifiable 

as units because they were delimited in the speech stream by fairly long pauses before 

and after them (as well as by single coherent prosodic contours, and other  linguistic and 

non-linguistic cues). 

 

The second technique explored the idea that some informative constructions may occur 

nested inside others, and that these constructions may quite easily be segmented out of 

the speech stream, because the surrounding context is already familiar from having being 

encountered before with simpler material filling the slot. Two variants of this nested 

frame idea were investigated: one where the surrounding context was required to be 

present in order for the nested construction to be reliably identified (locally context-

sensitive parsing), and one in which the surrounding construction was used only during 

the learning phase, but where the nested construction was thought to be a reliable enough 

unit that it could be reliably recognized in whichever context it occurred (context-free 

parsing). 

 

The full-utterance frames are thus the pathbreakers for discovering certain smaller, 

phrase-like structures which occur in them in the same positions in which single words 

have previously been encountered. 

 

In contrast to the full-utterance and nested frame approach, another possibility is that 

there are no words that are special and marked from the start as frame-building words. 

Instead, frames are built out of associations between any words that happen to co-occur 

reliably in the input. This is the approach taken in creating the prediction-based frames. 

These frames are based around a fundamental asymmetry in the predictive relationships 

between a pair of words, such that one word predicts another, but not vice versa. The 

word configurations predictable from a particular word were described earlier as 

constituting a “halo” of possible contexts in which the predicting word could occur. 

These haloes are taken to be frames which become stored in memory, again by way of 
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associations between mutually-predicting words as well as between the predicted words 

and the unspecified slot-fillers. 

 

Prediction-based frames also differ from full-utterance and nested frames in departing 

from the idea that units can only be learnt or recognized through being noted to occur in 

certain privileged surrounding contexts. In the prediction-based approach, words 

occurring in sequence cohere into larger units due to the learned probabilistic associations 

between them; the words themselves are therefore responsible for the constructional 

nature of the unit, not whether or not these word sequences act as units against a 

particular contextual background. 

 

These three frame discovery processes were applied to the Manchester corpus. The 

constructional status of the full-utterance frames seems strongly supported: these 

structures were all schematic representations of valid English utterances. In the case of 

the nested frames, however, it was noted that while several of the phrase structures that 

one would have hoped to see emerge from this process were in fact produced, many other 

nested frames were not valid constituents. Much the same was true of the prediction-

based frames. The frames from each of the three processes were also compared against 

those produced by Cameron-Faulkner et al. (2003) in a manual analysis of the 

Manchester corpus. Most of the manually-identified frames were also discovered by the 

automatic processes.  

 

The frames so produced were shown to provide a solid basis for part-of-speech induction 

when the frames were grouped together into clusters on the basis of the sets of words 

which occurred in them, thereby dealing with the inherent ambiguity of words. However, 

it was noted that categorization could be improved by taking into account that frames 

could also be ambiguous. The category of a particular word in a frame can be determined 

by combining category information from the word with category information from the 

frame.   
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Three co-clustering techniques were proposed to deal with this issue. Fuzzy co-clustering 

explored the idea that words and frames belong to several different categories with 

specific probabilities, and that assigning a part-of-speech to a word in context is a case of 

choosing the part-of-speech that has the greatest joint (product) probability between the 

word and the frame.  

 

The discrete co-clustering algorithms, on the other hand, produce a list of all the 

categories to which a particular word or frame can belong. The conflict-driven algorithm 

is based on the idea that the child is trying to make coherent meaning out of her 

experience, and that she knows that a word and the context in which it occurs should be 

consistent with each other. Hence, an allocated word occurring in a frame slot that has 

already been allocated to a category is likely to belong to that same category. Evidence of 

category membership is assumed to accumulate, and the more evidence exists for a 

particular frame or word to be allocated to a particular part-of-speech, the more likely it is 

that that allocation will take place in the child’s mind. 

 

The essence of the parsimony-based algorithm is the notion of cognitive conservativeness: 

a word (or frame) should be taken to be ambiguous only if this conclusion is forced on us 

by the data concerning the frames (words) with which it co-occurs, i.e. we seek the 

smallest set of potential categories to which the word could belong that could account for 

its pattern of co-occurrences. A language-learning child may resist assigning a word or 

construction slot to a particular part-of-speech if the evidence does not warrant it, and 

may even reexamine previous conclusions to decide whether they are still correct in the 

face of current knowledge. 

 

The various construction frame discovery methods and clustering algorithms were 

evaluated in terms of their ability to assign words correctly to the parts-of-speech of 

nouns, verbs and adjectives. The first observation that should be made is that 

constructional frames are indeed a good source of information about the part-of-speech of 

a word embedded in them. In addition, the categories noun, verb and adjective appear to 
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be quite robust features of English, that self-organize out of the word-frame co-

occurrence input. 

 

Another observation is that, in the current simulation at least, contextual information is 

most reliable when the construction context has itself been identified as occurring in a 

specific context: the context-free parsing of nested frames and the prediction-based 

frames performed worse at part-of-speech allocation than the full-utterance frame 

approach and context-sensitive parsing of nested frames. 

 

Thirdly, combining word and frame information is always more accurate than using 

frame information only. The fuzzy co-clustering approach was most successful in most 

cases, followed by the parsimony-based algorithm (although these two performed 

comparably for nested frames). The conflict-based algorithm performed well with 

construction frames that had been identified in surrounding contexts of their own, but 

when the initial frame information was less reliable (obtained in a context-free manner), 

the conflict-based algorithm was not robust enough to allocate parts-of-speech correctly. 

 

This work is therefore somewhat similar to the Frequent Frames approach of Mintz (2003, 

2006a, 2006b), and can be seen as an attempt to extend the frames considered in that 

approach to more general, construction-like frame contexts, thereby potentially creating a 

bridge to work by Lieven and colleagues (Lieven et al., 1992, 1997, 1998; Pine & Lieven, 

1993) on the importance of basic constructions for early language development. 

10.2 Differences in the method of context discovery  

10.2.1 The nested frame approach compared to ABL 
The nested frames algorithm described in Chapter 8 can be viewed as broadly similar to 

van Zaanen’s (2001) ABL framework. However, that approach considers every possible 

pair of sentences in a corpus in an attempt to discover possible “alignments”, i.e. ways to 

match up shared structure between the two sentences. The approach outlined here is able 

to extract a reasonable amount of knowledge about the main constituents of English 

without considering nearly the same number of alignments. This is mainly due to its 
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adherence to a basic dichotomy between frequent and less-frequent words, which 

happens to coincide to a large extent with the function-word/content-word distinction. 

Since function words are central to abstract structure in English, one would expect an 

approach that treated the function words as scaffolding for the embedding of content 

words to be successful in locating common English frames. The nested frames approach 

differs from ABL in the following ways: 

• The corpus is not used “raw”, but instead is rewritten in terms of frequent words 

and variable slots, thereby compressing away a very large proportion of the 

information content in the corpus, so that there are far fewer potential alignments 

to consider (different utterances are “collapsed” together as a result of this move). 

• Not all utterance structures are considered for alignment, but only the ones that 

have recurred in the input at least a certain number of times. 

• On top of that, the final nested and nesting structures are required to meet the 

criterion of flexible combination, in that nested structures have to appear in a 

certain number of different nesting structure contexts, and vice versa, further 

restricting the search space to only promising possibilities. 

• Lastly, not all alignments between sub-utterance fragments are considered; only 

fragments that occur in contexts in which a single word can occur are considered 

as potential nested frames. Whether this feature of the nested frames algorithm is 

advantageous, or whether many valuable constituents are actually missed in this 

way is something which would need to be investigated. However, this does of 

course further reduce the search space for the nested frames algorithm. 

 

In ABL, it is presumed that every utterance that the system (the child) has encountered 

has been memorized and can be recalled to some extent, and ABL attempts to align every 

possible pair of utterances. By contrast, by reducing each sentence to its “bare-bones” 

structure, the current approach actually compresses the data set, by collapsing several 

utterances together into one if they are the same utterance in terms of their frequent 

words. This serves to reduce the space of possibilities for finding full-utterance frames 

and for aligning sentences in order to find nested constituents, and makes this process a 

more tractable one.  
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However, this step is not merely a heuristic to be applied prior to performing a process 

that is very similar to ABL. The process is fundamentally different, because I have tried 

to adhere to the principle that the algorithm should take only very simple steps, each one 

justified in terms of a mental architecture that is limited in such resources as memory, 

attention and processing speed. Recall of previously encountered utterances, for the sake 

of comparison against a current utterance, is done only for stored utterances that have 

recurred frequently enough to be regarded as potential units of the language. 

 

As noted before, the combined set of discovered nested and full-utterance frames 

includes such “prototypical” phrase structures as “don’t X it”, “too X”, “very X”, “the X”, 

“your X”, “this X”, “another X”, etc. Van Zaanen has noted (2001, p.76) that ABL does 

not find structures directly corresponding to these phrase structures. Instead, it discovers 

structures such as, for instance, “noun phrase without a determiner” (which is of course a 

coherent category in Categorial Grammar). The fact that the nested frame approach is 

able to identify some of the major phrase structures in English may therefore be viewed 

as an advantage over ABL. It should be emphasized, however, that the identification of 

these structures was entirely due to the heuristic that phrases are often substitutable by 

single words, which is true for English but may not necessarily hold for other languages. 

 

It would be possible to argue that the smaller search space of the nested frames approach 

is an advantage over ABL in terms of psychological plausibility, as ABL is heavily 

memory-based and, as a literal theory of language development, would require that a 

child aligns every pair of sentences it has ever heard – something which would perhaps 

be an unreasonable burden on a child’s supposed limited cognitive resources. 

 

On the other hand, one could counter this line of argument by pointing out that ABL is a 

broad framework for essentially discovering structure via variants of the substitution test, 

and that the reference implementation (Van Zaanen, 2001) is merely one instantiation of 

this framework. 
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Presumably, the psychological model behind ABL is similar to that underlying modern 

exemplar theories of conceptualization (e.g. Goldinger, 1996. 1998; Hintzman, 1986; 

Kruschke, 1992): all experiences are thought to be stored as memory traces, and can be 

reactivated in some way to influence current mental processes. ABL takes this approach 

to a logical extreme: when a new utterance is encountered, it is matched against every 

utterance ever encountered. This is clearly not a realistic proposal if it is believed that this 

comparison should be carried out consciously, with each pair of utterances in turn 

becoming the focus of conscious attention. Instead, a feasible solution may be a model in 

which all sentences that a child encounters are stored in memory as exemplars, and any 

new utterance subconsciously activates memory traces of all utterances that share some 

phonological overlap with it. In, for instance, a connectionist-inspired model, the process 

governing alignment could be simply a matter of incrementally strengthening the 

memory circuits that are responsible for maintaining the memory trace of the portions of 

the two sentences that are shared, and creating weak new circuits for the maintenance, as 

separate new memories, of the portions that are not shared. These memory traces would 

then become stronger with repeated use, or decay with disuse.  

By contrast, the current approach seems, at first glance, to be more compatible with a 

prototype model (e.g. Rosch, 1983), in that an explicit schematic frame is formed fairly 

early on, out of the pattern of frequent words that an utterance contains, and newly-

experienced utterances are matched against these abstract frames only. However, the 

process of frame formation is unlike that of prototype formation, in that the abstract 

frame does not arise out of a comparison between two experiences that entrenches their 

similarities and effaces their differences; instead, certain words (the most frequent words) 

are regarded as familiar signposts in the input stream, and patterns of co-occurrence 

between them are observed, and entrenched in memory every time they occur. The frame 

structure of an utterance is therefore perceived “directly” at the moment it is encountered 

(requiring only the identification of the frequent words and the registering of their 

positional configuration, including the positions of intervening non-frequent words), and 

“resonates” with a stored frame in memory only if the two are identical. Hence, there is 

no heavy load placed on memory processes: comparison of a current utterance against the 

memory of a previous utterance does not enter into this process at all. 
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It may be possible, then, to describe the work on full-utterance and nested frames as 

merely ABL with a number of heuristics. I would disagree with this characterization, 

however. In this work I am instead pursuing a model where there is at first a process of 

unconscious “sifting” and a familiarization with some of the more common structures in 

the input (syllables, words, even whole phrases or utterances), after which these 

structures are assumed to be potentially available to conscious awareness. At this stage 

processes such as alignment can take place on these already familiar items; these are 

taken to be conscious processes (as opposed to the account based on putative implicit 

processes that I have just offered to support ABL), because, as further discussed in 

Chapter 11, the child is continuously trying to make meaningful sense of the language 

that it is exposed to. Hence, the child is biased towards forming linguistic categories that 

also have semantic correlates. This conscious process is then made tractable only by 

limitations to the search space of the kind considered in this thesis. 

10.2.2 The full-utterance frame approach compared to EMILE 
The EMILE model was designed to discover categories that could be compatible with a 

Categorial Grammar approach. It takes full-utterance frames as its starting-point, just as 

the work in Chapter 6 did. However, frames are generated in EMILE by taking each 

sentence from a corpus and turning it into a set of one-slot frames, each one generated by 

replacing each word of the sentence in turn with a slot for variable material. For this 

reason, the number of contexts considered by EMILE is very large compared to the 

current full-utterance frame approach. EMILE’s contexts are roughly a superset of the 

full-utterance frames, except that a full-utterance frame would be able to contain more 

than one slot, something not possible in EMILE at the moment. 

 

EMILE therefore makes even larger demands on memory (both in a computer simulation 

and on the part of a putative human learner) than ABL. Every possible context for every 

possible word is considered, and there is no use of a heuristic to constrain the context 

discovery process to only the most frequent or most flexibly-used contexts and words, as 

done in the current work. As was the case with ABL, EMILE is possibly compatible with 

exemplar-based theories of memory. However, it may be more psychologically plausible 
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for only the most useful contexts and words to be retained, rather than every combination 

from every utterance. 

10.2.3 The current approach compared to Frequent Frames 
The current frame approach is very close in spirit to the work by Mintz (2003, 2006a, 

2006b) on Frequent Frames. One similarity between the two approaches is that contexts 

are explicitly listed, and treated as part of a child’s knowledge of language. Also, both 

approaches aim at finding lexically-specific frames, i.e. the contexts are based on specific 

words rather than abstract word categories. Another similarity is the fact that the frame 

imposes a category on the word that is embedded in its slot, in contrast to work that 

allocates only a single category to a particular word type (e.g. Finch, 1993; Redington et 

al., 1998; Mintz et al., 2002).  

 

However, the approach taken here to defining the context of a word is very different. 

Mintz (2003, 2006a, 2006b) defines the context in what might be called a “topological” 

manner, i.e. in terms of the relative positions of words, using a particular “shape” of 

context that is the same for all focal words. Frequent frames are defined as a disjunct 

frame of the form “a X b”. Mintz therefore takes the approach that it is to a large extent 

the local context in which a word appears that determines its part-of-speech, and is more 

concerned with local cues to part-of-speech in the language input than with constructions 

as such. Mintz justifies the Frequent Frames technique as being supported by, for 

instance, the artificial language learning results of Gómez and Maye (2005), where a X b 

structures were used exclusively. 

 

In the current frame approach, on the other hand, contexts are defined in a more 

“functional” manner – they are all utterances or partial utterances that are plausibly used 

as autonomous units, presumably for the purpose of serving a particular communicative 

function that pertains to the unit as a whole, and indeed they are intended to be 

constructions of the language. For this reason, frames of all topological shapes are 

acceptable. Furthermore, the final set of frames is selected on a criterion of flexible usage, 

i.e. that the frames should accept a variety of different word types into their slots, rather 

than on their frequency of occurrence only. 
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It might seem worthwhile to try to compare the empirical categorization success of the 

two models (e.g. in terms of accuracy, completeness, and F). Mintz (2003) reports 

accuracy and completeness scores of 0.90 and 0.91 for Frequent Frames, suggesting that 

the two models have comparable degrees of success in categorization (at least for the full-

utterance frame approach of Chapters 6 and 7). It is, however, problematic to compare 

the two models directly. This is because there are several other factors (mostly 

parameters of the models) that are presumably tangential to the question of which frame 

approach is “better” for categorization, but which may contribute to a higher or lower 

success rate for each model. For instance, there is a parameter in the Frequent Frames 

model that determines how frequently a frame should appear in the corpus, and hence 

how many frames are used. In Mintz’s reported results, typically around 50 frames are 

used. Comparing this with the 1465 frames of the full-utterance frame approach or 2923 

of the prediction-based approach makes it seem likely that the difference in context set 

sizes might influence the respective outcomes of the two models. Similarly, the current 

approach uses the “5-5 rule” to pick out only the most flexible frames and words; 

however, the value of this parameter could have been set to a higher value than 5, and the 

number of frames would have dropped sharply. 

 

Frequent Frames are undoubtedly highly informative contexts for predicting the part-of-

speech of the slot-filler word, as shown by their empirical results (Mintz 2003, 2006a, 

2006b). I would like to make two arguments in favour of the current approach, however: 

(i) The first point is that the current approach is more closely integrated with 

syntactic learning, in that the lexically-specific frames discovered by the 

techniques presented in this thesis are intended to be constructions. The procedure 

has been designed to find frames that are likely to be whole constructional units. 

The child may be presumed to be learning these items anyway in the course of 

acquiring syntax, as shown by the work of Lieven and colleagues (e.g. Lieven et 

al., 1992, 1997, 2003; Pine & Lieven, 1993), and learning constructions is 

arguably central to what language learning is all about. Mintz is not concerned 

with the discovery of frames that are constructions, but rather with finding local 

cues to category membership, and acknowledges (Mintz, 2003) that many 



 303

Frequent Frames are not constructions. Mintz (2006b) has recently begun to show 

how Frequent Frames may be used to discover constructions in language, in cases 

where a Frequent Frame is embedded inside a larger construction. As an example, 

Mintz suggests that attending to a Frequent Frame such as “what’s _ doing” may 

facilitate learning about larger constructions such as “what’s X doing Y”. 

Nevertheless, the current approach still seems more parsimonious in that it 

attempts to show how constructions may be learned directly, as evidenced by the 

comparison to Cameron-Faulkner et al’s (2003) manual analysis of the 

Manchester corpus. 

(ii) The second point relates to the exclusive use of “a X b” – style frames. Mintz 

argues that the Frequent Frames approach shows that lexical classes can be 

induced even from very limited local contextual information, and earlier, I 

referred to the definition of context used in Frequent Frames as a “topological” 

definition. However, the “a X b” frame is not the most primitive topologically-

defined context that a word could have; the most primitive contexts would rather 

be “a X” or “X b”. These simpler frames are often problematic for the purpose of 

lexical categorization. Take for instance the frame “the X”. Many of the slot-

fillers of this frame are nouns; indeed, when the frame occurs as a full-utterance 

frame, then essentially all its fillers are nouns. However, when we accept as 

instances of “the X” all cases where the frame occurs in an utterance (as would 

happen in a Frequent Frames-style treatment), it often happens that “the X” forms 

the beginning of a phrase of the form “the <Adjective> <Noun>”, in which case 

the filler is an adjective rather than a noun. Hence, the frame “the X”, when 

identified in a context-free manner wherever it occurs in the corpus, is not a 

reliable cue to the part-of-speech of the filler word. This is in fact true of most of 

the primitive “a X” and “X b” frames. It is precisely the combination of two 

disjunct contextual words on either side of the focal word that makes the Frequent 

Frames technique so successful. In the “the X” example, when we know that the 

word after the slot is “and”, the category is pinned down fairly accurately as that 

of noun. But this begs the question of why the child would automatically consider 

only these useful contexts. We as adult speakers of English know that it happens 
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to be the case in English that a two-sided context is very useful for determining 

part-of-speech, but how does the child know that it should pay attention only to “a 

X b” contexts, and ignore the simpler and more obvious “a X” and “X b” contexts, 

as well as any contexts with a more complex shape? 

 

It should be noted that Mintz has indicated that a strict adherence to “a X b” 

structures is not necessarily an indispensable component of the Frequent Frames 

approach. Viewed in this way, the current work can be regarded as an extension 

of Mintz’s Frequent Frames work, and one which allows a greater variety of 

topological context shapes to be considered, under the constraint that they should 

plausibly form linguistic units (i.e. constructions). 

10.2.4 The frame approach compared to Yuret (1998) 
The probability-based frames of Chapter 9 are clearly closely related to the work of Yuret 

(1998). In Yuret’s work, all links between words are undirected, and the probability-

based frames were in fact developed with the purpose of extending Yuret’s approach so 

as to give an explicit statement of the directionality of links between words. For this 

reason, an asymmetric measure of association, ΔP, is chosen. Just as with Yuret’s work, 

links are postulated between specific words, based on their probability of co-occurrence 

in the corpus. But in this case, a high ΔP from element A to element B indicates that A is 

predictive of B. 

 
Another difference between the current probability-based frames and the work of Yuret is 

that once it has been exposed to a sizeable corpus, Yuret’s model tends to link all words 

in an utterance into a single large dependency structure, which is desirable as his model is 

specifically designed for the purpose of finding all such dependencies. In the current 

work, I am concerned only with identifying a number of very prominent constituent 

frames which constitute the local context of a focal word and can be used as a clue to its 

part-of-speech. For this reason, frames are extended only as far as a chain of significant 

(i.e. suprathreshold) ΔP values stretches. The underlying model is that of activation in 

consciousness, which spreads from element A to element B if a strong associative link 

exists from A to B. This allows the current model to pick up slot-filler relationships 
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between words, where the predicted elements are explicitly identified with the specific 

words in a frame, and the predicting elements with the slot-fillers. 

 

Both Yuret’s model and the current probability-based approach suffer from the rather 

serious problem that they are based on the co-occurrence probability between asymmetric 

elements (dependent and depended-on element) which is specific to the pair of elements 

in question. In the current case, it is difficult to extend the frame relation to cover other 

slot-fillers for which there is little evidence of a high co-occurrence probability. 

10.3 Differences in the method of focal word categorization  

10.3.1 Clustering in EMILE 
EMILE takes the approach that both frames and the focal words that occur in them are 

associated with grammatical categories, an approach which was also pursued in this 

thesis. However, EMILE induces clusters of frames and focal words in a different way 

from the techniques that were outlined here. The closest clustering algorithm to the one 

used in EMILE is the conflict-based co-clustering algorithm, and so it will form the basis 

for comparison against EMILE in what follows. 

 

Given any particular cluster of word-frame instances, EMILE will attempt to extend the 

cluster by randomly adding contexts or words to the cluster, within the constraint that, if 

for instance a context is added, a certain proportion of the words already in the cluster 

should appear in that context in the corpus. The proportion specified is a manipulable 

parameter of the EMILE model. Once a context (word) is added to the cluster, it is 

assumed that all words (contexts) already in the cluster are compatible with it, and can 

potentially co-occur with it, even if these co-occurrences have never actually taken place 

in the corpus.  

 

By contrast, the conflict-based co-clustering algorithm adds on each iteration the context 

(i.e. frame) or word that will cover the largest absolute number of attested utterances. If 

(without loss of generality) a context is added to a cluster, the other words already in that 

cluster but which have not appeared in that context are not taken into consideration at all. 
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Both EMILE’s constraint of not generalizing a context too far, and the conflict-based 

algorithm’s constraint of only adding the context with the largest amount of support, are 

heuristics towards conservativeness. EMILE is concerned with making the cluster of 

word-context instances coherent; the conflict-based co-clustering algorithm clusters 

words and frames independently, but clusters them into a shared set of categories and 

uses as a guide only the data from instances that have actually occurred.  

 

Another crucial point to note is that individual word-frame combinations in EMILE can 

potentially be assigned to more than one category. (Presumably, actual utterances would 

be parsed using the grammar as derived from the clusters; the latest version of EMILE 

(4.1) is derived without considering context ambiguity, however.) The work outlined in 

this chapter takes a completely different view: it is assumed that a focal word that occurs 

in a frame slot belongs to one and only one category, and that the category can be 

determined completely from the identities of the frame and the word. Hence, even though 

frames and words on their own may be ambiguous with regards to the parts-of-speech 

with which they are associated, the ambiguity is resolved when the frame and word are 

combined into an utterance. At the level of an individual cell in the co-occurrence matrix, 

it is possible to make a unique category assignment for each cell. 

 

This is a modeling assumption, made in order to come up with a workable computational 

solution to the ambiguity problem. In reality, there are a few cases, even in the 

Manchester corpus, where the assumption does not hold. For example, the word work in 

Are you going to work? is truly ambiguous when the utterance is taken in isolation, 

without either discourse or situational context. The word work could be a verb when the 

utterance is taken to mean “Are you about to/do you intend to do work in the immediate 

future?”, but it could be a noun if the meaning of the utterance is “Are you travelling to 

your place of work?”. Nevertheless, I would argue that such cases are extremely few in 

number, and that the assumption of unicategoricity for matrix cells holds for the vast 

majority of frame-word combinations. 
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Adriaans (1999, p. 30) acknowledges that the categories obtained with EMILE are very 

seldom traditional parts-of-speech. It may well be EMILE’s tolerance of ambiguity at the 

matrix cell level that prevents it from finding these categories. 

 

The EMILE system offers a large number of parameters for the researcher to manipulate, 

which provides a great deal of flexibility, but makes it difficult to explore the parameter 

space exhaustively. There is a parameter type_usefulness_required in EMILE which 

allows the user some control over the degree of cluster overlap. Any cluster needs to 

cover at least type_usefulness_required cells in the data matrix not covered by any other 

cluster in order to be retained in the final clustering. If the parameter value is set to 0, all 

clusters are retained, even if all their cells are accounted for by other clusters. Setting the 

parameter value to higher numbers allows the user to discard clusters that overlap to a 

great extent, potentially making it possible to come up with a small number of large non-

overlapping clusters. However, the problem is that type_usefulness_required is an 

absolute parameter. Its value is the actual number of cells that need to be contributed by a 

cluster, and would hence need to be determined anew for each new dataset. More to the 

point, in a situation where clusters have highly divergent sizes (as is the case for the 

traditional parts-of-speech in at least the Manchester corpus), it is not possible to provide 

a “one-size-fits-all” value for the parameter. Had type_usefulness_required been a 

relative parameter, i.e. if it was the percentage of a cluster’s cells that were required to be 

non-overlapping, then setting that parameter to a value near 100% (i.e. specifying 

maximally non-overlapping clusters) may well have provided results similar to the 

clustering results obtained here. 

10.3.2 Clustering in Frequent Frames  
An important difference in clustering between Frequent Frames and the current approach 

is that the co-clustering algorithms take into account the possibility that the frames 

themselves may be ambiguous cue to parts-of-speech, whereas Frequent Frames are taken 

to be unambiguous. Some evidence to suggest that this might not be the case in all 

languages comes from Erkelens (2008), who found that the top 45 Frequent Frames from 

a corpus of Dutch child-directed speech contained a variety of different parts-of-speech 

as slot fillers. One way to address this issue might be to make use of wider contexts, i.e. 
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the lexically-specific frames considered here. Another approach could be to apply the co-

clustering techniques presented here to Frequent Frames, in order to address both word 

and frame ambiguity. 

 

In contrast to the hierarchical clustering and co-clustering processes used in the work 

presented in this thesis, Mintz (2003, 2006a, 2006b) takes a clustering approach where 

two frames are clustered together if they have more than a certain proportion (20% in 

Mintz, 2003) of their words in common with each other. This difference in clustering 

methods may also have an effect on the results of both models. In fact, the way that these 

issues of frame selection and frame clustering are handled is an important component of 

each model; for instance, if the current full-utterance frames were to be clustered 

according to Mintz’s approach, it is very likely that they would all end up being bundled 

into a single, large category (especially since there are so many more full-utterance 

frames than Frequent Frames, and Mintz’s 20%-overlap rule is applied transitively), and 

hence the model would fail to categorize correctly. 

10.3.3 Criticisms of category formation via clustering  

10.3.3.1 Freudenthal et al.  
Freudenthal et al. (2005) have criticized the Frequent Frames work of Mintz (2003) on 

grounds that apply to the current work as well, and so it is worthwhile to address their 

objections here. Freudenthal et al. (2005) note that, while the Frequent Frames model 

identifies the class of verbs, for instance, it groups together both the root forms of verbs 

and their inflected forms, which would lead to syntactic errors if, say, an inflected form 

were to be substituted for a root form in some contexts. Freudenthal et al. (2005) use their 

MOSAIC model to generate sentences, randomly selecting a particular word and a 

particular context in which that word occurs, and then substituting it with another word 

that is paradigmatically linked to the first word. They argue that the low rates of 

grammatical error produced by this process (as judged by native English speakers) 

indicate that MOSAIC is a superior model of language acquisition to Frequent Frames, 

and indeed to any model that “use[s]… co-occurrence statistics to derive syntactic 

categories” (p. 17). 



 309

 

While it is true that a system which is not able to distinguish between these different 

kinds of verbs would have serious shortcomings, there are a number of problems with 

Freudenthal et al.’s argument.  

 

First is their insistence that only generative models are valid ones. I would argue on the 

contrary that it is incoherent to expect a model derived from heard speech input, and 

hence usable for listening and comprehension (or at least recognition) to be identical to 

one used for speaking. The task of speaking is more difficult than that of listening, 

because it requires a larger number of decisions to be made by the speaker. Most notably, 

the speaker is concerned with expressing meaning, and initiates the process of assembling 

an utterance from the starting-point of the intended meaning, selecting utterance 

constructions and words accordingly. This is a different process from merely randomly 

combining words and contexts as is done by Freudenthal et al. (2005) in their evaluation 

of MOSAIC. I would submit that, whether or not this process produces legitimate English 

sentences is irrelevant, as this is not how a speaker would produce an utterance in the first 

place. 

 

Secondly, the fact that the current work, and also the published results of Mintz (e.g. 

2003), show large clusters corresponding to verbs, nouns, and adjectives, regardless of 

any finer subdivisions that may exist in these classes, is due to factors other than the 

particular contexts used for classification. In the current work, the system was explicitly 

constrained to produce three sizeable clusters. Likewise, Mintz’s clustering approach 

apparently led to a small number of clusters being created. However, this does not mean 

that finer distinctions are not obtainable from the frames used. In fact, as shown in Table 

11, for larger number of clusters, more fine-grained groupings emerge, including 

participial versus root forms of verbs, plural count nouns, mass nouns, body parts and 

clothing, and modal verbs6.  

                                                 
6 Likewise, my own informal simulation on the Manchester corpus revealed that applying the same 
treatment to Frequent Frames as was applied to the frames in the current work (hierarchical clustering and 
the 5-5 criterion) produced a set of clusters that, at the level of 20 clusters, showed very fine-grained and 
sharp distinctions between groups of words, including, notably, separate clusters for root forms of verbs, 
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Finer part-of-speech distinctions are, therefore, available in the current set of models. It 

seems quite plausible that any particular word, expression, construction, etc. will 

necessarily be represented at more than just one level of specificity, e.g. the word “milk” 

in “are you drinking your milk?” is simultaneously a noun, a mass noun, a name for a 

food substance, etc. To the extent that these details are discernible in the clustering results, 

the current models are at least in theory capable of accounting for these distinctions.  

 

However, my purpose in this thesis was to account for the three major parts-of-speech of 

nouns, verbs and adjectives; hence the constraint of producing three large clusters. There 

is nothing akin to the major three categories in the results from EMILE, for instance, as 

Adriaans (1999) acknowledges. The work by Cartwright and Brent, as noted, also 

produces far more than three clusters, and it is likely that the same is true of most of the 

syntactic models reviewed in Section 4.2, such as ADIOS, MOSAIC, SNPR, etc. While 

those models produce categories that are exquisitely sensitive to the context in which 

they occur, there are few mechanisms available to merge many small categories into a 

few large, robust ones. In my view, a model of language development in English which 

does not account for the development of the three major categories does not adequately 

describe language development. 

10.3.3.2 Cartwright and Brent  
Cartwright and Brent (1997) criticize the use of hierarchical clustering in models of the 

distributional discovery of parts-of-speech. Their first criticism is that hierarchical 

clustering potentially produces a huge number of categories, leaving it unclear how many 

clusters should be used, i.e. at what level the hierarchy should be “cut”. One of the major 

strengths of Cartwright and Brent’s (1997) model is that it aims to self-organize the 

number of categories (as opposed to being constrained to produce three sizeable 

categories, as was done throughout the current work). This is also to some extent 

problematic for its quantitative evaluation, because it results in very low completeness 

values (less than 0.18) when the model is evaluated against a natural language corpus, 

                                                                                                                                                 
for transitive versus intransitive participial forms, for modal verbs, and for the root forms of verbs that take 
a clause as direct object (“know”, “remember”, “think”, etc). 



 311

apparently because it made use of too many categories. I agree that a better case could be 

made for the discovery of parts-of-speech on distributional grounds if the number of 

categories in the current model were allowed to self-organize. The results in Section 7.5.1 

suggest that the three main categories of nouns, verbs and adjectives are sufficiently 

prominent “features of the landscape” in child-directed English that the co-clustering 

algorithms automatically converge on them; notably, the conflict-based algorithm makes 

use of only 3 categories closely corresponding to these three classes, even when starting 

out from a division into 20 categories. On the other hand, it is possible that the number of 

categories may not be provided by distributional information alone, but may be imposed 

by the semantics of the situation. 

 

Cartwright and Brent also criticize hierarchical clustering on the grounds that they regard 

it as a highly unfeasible model when it comes to incrementally updating the hierarchy of 

categories. This is a valid criticism, and many familiar algorithms for hierarchical 

clustering that operate in “batch mode” (i.e. coming up with a clustering for the entire 

corpus at once), such as the average linkage clustering algorithm of Sokal and Sneath 

(1963), are probably not adequate models of the updating process for psychological 

content. However, there are other algorithms that can plausibly be viewed as incremental 

hierarchical clustering methods. For instance, self-organizing maps (SOMs; Kohonen, 

1995) map a multi-dimensional space onto a lower-dimensional one in such a way that 

similar items in the multi-dimensional space are mapped onto proximate positions in the 

lower-dimensional space. Consequently, items that are roughly similar occupy the same 

wide area, and items that are more precisely similar share smaller territories. In this way, 

one can “zoom in” from large and more abstract groupings to smaller and more 

specifically related groupings, just as one could move down a hierarchical tree from large, 

broad clusters to small, compact ones. 

 

In any event, the decision was made in the current context to make use of hierarchical 

clustering, purely because some method of grouping on the basis of distributional 

similarity was required, and hierarchical clustering has the benefits of being fast to 

execute and being deterministic, hence expediting the analysis. Details about the 
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dynamics of the categorization process were not considered relevant in the current work, 

although of course a complete model should adequately describe these phenomena as 

well. 

 

 

. 
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11 Future extensions of the part-of-speech discovery 
framework 

The work presented in this thesis has shown that a number of lexically-specific frames 

may provide a reliable substrate for the discovery of parts-of-speech, and has also shown 

that a distributional bootstrapping process might benefit from recognizing the pervasive 

ambiguity of linguistic items, both focal items and their contexts. There are a number of 

ways in which this bootstrapping process might be extended; discussion of these will be 

the focus of the rest of this chapter. 

11.1 Extending distributional bootstrapping  

11.1.1 Extended coverage of the corpus: generalizing beyond 
the current data set 

The current categorization process provides a categorization for reasonably familiar and 

commonly-occurring words that occur in similarly familiar frames. But overall coverage 

of all utterances occurring in the corpus is still fairly low. In general, the categorization 

process should be able to handle unfamiliar words in familiar contexts, and familiar 

words in unknown contexts. It is fairly straightforward to extend the current approach to 

do so. 

  

In the three co-clustering algorithms, frame and word information is combined in order to 

arrive at a final part-of-speech. In cases where either the word information or the frame 

information is missing, the categorization algorithm could merely select the most-

strongly-associated category for the item that is present. In this way the algorithms can 

also account for utterances where one of the frames in the data set is used with a word 

that is not in the data set, and utterances where a word in the data set occurs outside of 

any of the frames in the data set. These constitute context-free identifications of frames 

and words, and the best guess possible is the majority category of the item in question. 

11.1.2 Heuristics about the structure of frames  
There are two heuristics that, when applied to the frame-discovery procedure, yield more 

selective coverage but greatly improved evaluation results. One of these is the prohibition 

of multiple X consecutive slots, used in the full-utterance frames and nested frames (but 
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not in the prediction-based frames). Relaxing this constraint impairs correctness (see 

Section 7.5.2). This constraint was motivated by arguing that it takes into account that a 

specific adjacent word is a more reliable context than a variable slot for the purpose of 

categorization, and possibly also that it is easier to segment a speech stream into words 

(and hence recognize a frame) when the rare words are flanked by frequent ones. This 

constraint is not in force in the case of prediction-based frames: here, slots can occur in 

sequence if there is enough evidence of predictability in the corpus for specific instances 

where the parts of the entire frame can be predicted. It is quite possible that the poorer 

performance of the prediction-based frame categorization may be partly due to the 

absence of this constraint. 

 

The current full-utterance frame approach could of course be extended by first inducing 

categories as was done here, then relaxing the no-multiple-slots constraint and allowing 

known words to stand both as Xes and as their majority category under the original 

categorization. This allows us, for instance, to guess that “glass” in “the empty glass” and 

“the glass broke” is a noun in either case. This allows us to find the frames “the X Noun” 

and “the Noun X”. Because of the ambiguity of word types, this will be a heuristic rather 

than a hard-and-fast rule. Nevertheless, if the frame is a valid one, we would expect a 

larger amount of evidence for it than for spurious frames. 

 

The second heuristic that would have improved categorization was harder to motivate and 

hence was not exploited in this thesis. Informal experimentation (not reported here) has 

indicated that a very significant increase in correctness is obtained by considering only 

frames that start with a specific word (rather than a slot). This heuristic was also seen at 

work in the frames considered by Cameron-Faulkner et al. (2003): in their manual 

analysis of the Manchester corpus, they considered only frames that were defined by their 

initial two or three words. This constraint seems to exploit the fact that dependent words 

tend to occur before their heads in English (e.g. “to ask”, “the caterpillar”, etc.). However, 

prior knowledge of this tendency is not something that one would want to build into the 

model. 
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11.1.3 Morphological awareness 
An important extension to the current approach would be one that is sensitive to 

morphological inflection in deriving frames. For instance, a very salient clue in English 

that a particular word is a verb is its frequent occurrence before the suffix “-ing”. Being 

able to exploit this kind of cue would greatly facilitate identifying verbs from context. 

Some morphemes are ambiguous too: consider “-s” which can be used to pluralize a 

common noun, to form the possessive of a noun (when we ignore conventional English 

spelling, which is not part of the input to the language-learning child anyway), or to form 

the third person singular form of a verb. This means that we would have to consider the 

morpheme in the context of a larger frame: in “That one X-s X”, the filler before the “-s” 

is likely to be a verb, in contrast to the frame “Are they your X-s?” where it is likely to be 

a noun. 

11.1.4 Finding functional categories  
In the current approach, because most of the function words in English ended up as 

frame-building words, very few of these words were placed into categories. This was true 

to some extent for the prediction-based frames, but especially for the full-utterance frame 

and nested frames approaches. However, it might be the case that this highly lexically-

specific approach is too strict. The determiners and possessive pronouns in the frames 

“That’s a X”, “That’s the X”, “That’s another X”, That’s your X”, etc. clearly serve a 

very similar purpose, and occur in highly similar contexts. It might be possible also to 

discover function word categories, based purely on evidence from the existing set of 

frames. This could be done by grouping together frame-building words that can be 

substituted for one another from one frame to the next, as the words before the X slot in 

the examples above can. Again, it would be desirable to cluster function words together 

not on the strength of one or two pairs of aligned frames, but to consider the weight of the 

available evidence for putting any two function words together into a category. 

11.1.5 Extending the prediction-based approach 
It would also be worthwhile to explore other ways of creating and combining frame 

primitives in the prediction-based approach. An especially fruitful technique might be to 

adapt the approach to render an account of hierarchically nested frames. One way in 



 316

which this might be achieved could be to follow the approach followed by Yuret (1997) 

with undirected dependency graphs based on mutual information, where constituents 

were linked in order according to the relative strengths of associative relationships, and 

linked elements were chunked up to form units that could then form associative links 

with other words. This is appropriate in the current case as well: as constituents can 

appear in many different contexts, the associative relationships within a constituent may 

be expected to be stronger than the associations from the constituent to the surrounding 

context. 

11.1.6 Other languages  
All experiments in this thesis focused on English exclusively. It is not crucial for the 

acceptability of the models of lexical categorization presented here that these techniques 

should work for all languages. Most likely, the language-learning child exploits any 

information available in the environment opportunistically, noticing regularities wherever 

they can be found and learning associations between any features that co-occur, whether 

linguistic, semantic or phonological. The function words provide a very reliable source of 

information regarding parts-of-speech in English, and a wealth of evidence, as reviewed 

in Chapter 3, shows that children are sensitive to the combinatorial implications of 

English function words. To the extent that another language exhibits a similarly salient 

“backbone” formed by a set of specific words, the techniques discussed here should work 

for that language also. Languages that are relatively impoverished in terms of function 

words may not be analysed as easily. It still remains to be seen whether the current 

approach would be successful on corpora from other languages. 

 

The most important and fruitful extension to the current system is likely to involve 

incorporating semantic information with the existing distributional information; this is the 

subject of the rest of this chapter. 

11.2 Semantic aspects: MicroJaea 
The experiments in this thesis have considered distributional approaches to part-of-

speech induction only, and have shown that distributional information is rich enough to 
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form the major classes of Noun, Verb and Adjective, and to deal with ambiguity by 

combining word and frame information.  

 

Nevertheless, the algorithms discussed in the previous chapters still did not provide a 

perfectly accurate categorization of words in context, even with the limited set of 

contexts that were actually considered.  

 

An important issue has to do with the substantive content of the categories that are 

induced. The experiment by Brown (1957) shows that children are able to draw semantic 

inferences about a novel word based on the context in which it occurs, something that is 

clearly not possible in an approach that neglects meaning entirely.  

 

Furthermore, all the experiments in this thesis have at their core the notion of forming 

clusters. It is presumed that frames are treated as being similar to other frames based on 

the complete pattern of words used in those frames in the child’s prior experience.  

 

This notion suggests that there is a mental entity corresponding to the cluster, possibly 

physically instantiated as a neural circuit, which is activated by frames belonging to that 

cluster, or by frames with a usage history that makes them similar to the typical pattern of 

usage for that cluster (whether stored in memory as exemplars of frame histories, or a 

single prototypical word usage pattern). 

 

Any frame which has been explicitly associated with a category cluster by whatever 

means will activate the mental representation corresponding to the category itself (and 

possibly weakly activate representations for the other frames associated with the category 

as well). 

 

However, this need not be the only way in which a category is activated, and, given the 

suggestion by Langacker (1987) that parts-of-speech can be defined entirely in semantic 

terms, it seems unlikely that only distributional information is relevant. For Langacker, 

the way in which we are intended to construe a word is what makes that word a noun, 



 318

verb, adjective, etc. If this information is available even for a few words, it would seem to 

be very important information to store in association with the cluster representation. 

Under this view, any usage of a word where the word is clearly meant to refer to an entity, 

whether physical, abstract or figurative, activates the representation of the noun category, 

and allows the new word usage to be associated with that category. Thus the semantic 

aspects become part of the substance of the category, in that the semantic knowledge can 

evoke the category, and can also be invoked by activation of the category, allowing 

semantic inferences to be drawn. 

 

Because of these considerations, the major focus of this research project in the future will 

be to provide computer models with semantic information in conjunction with 

distributional information. The focus in this thesis fell on techniques for finding and 

evaluating frames and for creating clusters of word-frame instances. As a complement to 

this, I have developed a virtual-world simulation software system intended for use in 

language learning experiments, which will form the basis of the research to be carried out 

on lexically-specific frames in the future (this system was developed as part of my thesis 

work, and the original intention was to use it to collect data to investigate the 

development of parts-of-speech on semantic grounds). I will now describe the virtual-

world software and outline the experimental approach to be taken. 

11.2.1 The MicroJaea system 
The virtual-world software system MicroJaea was developed for exploring grounded 

language learning in general. It is implemented in Java3D (version 1.3.1), and can 

therefore run on any underlying computer platform, and with either DirectX or OpenGL 

graphics support. MicroJaea was based on the specifications for the Magrathea virtual-

world system (Hume, 1984). 

11.2.2 Scripting language  
The purpose of MicroJaea is to allow a researcher to create short animated scenes by 

writing scripts in a custom scripting language (MicroJaeaScript) and to play the scenes in 

real-time on a computer display. MicroJaeaScript allows a script writer to (i) define the 

shapes of all objects that will populate the virtual world, (ii) define the actions that these 
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objects can carry out, if any, and (iii) create a script which places selected objects on the 

“stage”, and defines points in time at which various objects carry out their actions. 

During rendering, these objects are placed in a three-dimensional animated scene, and 

perform their actions at the designated times. 

 

Object Type Definitions: The major component in a MicroJaeaScript script is the 

definition of object types. These are abstract definitions of types of objects, both 

inanimate (chairs, tables, footballs) and animate (animals, people), both in terms of their 

shapes and their behaviour. 

Object Shapes: MicroJaea has access to only four primitive geometric shapes: 

cylinders, ellipsoids, cones and blocks. However, objects can be composed out of 

any number of these shapes, allowing an arbitrary number of objects (including 

people and animals) to be constructed. Primitive shapes are attached to each other 

at joints, and the kind of motion allowed at the joints can be defined. MicroJaea 

supports three kinds of joint movement: free rotational movement, rotation around 

an axis, and translation along a fixed line. Primitive shapes can be defined to have 

specific physical sizes and colours. 

 

Object Actions: There are two kinds of primitive actions, translation and rotation. 

However, primitive actions can also be combined into more complex actions. 

Action sequences consist of a number of actions (primitive or complex) carried 

out one after the other. Action routines consist of a number of actions carried out 

simultaneously in parallel. Action routines and sequences can be nested inside 

other action sequences and routines. In addition, there is a “signal” action which 

allows objects to emit a signal to which other objects may react when it occurs. 

This is one way in which coordination between the actions of different objects 

may be effected.  

 

Scene Scripts: After defining object types, the remainder of a script in the MicroJaea 

scripting language is devoted to declaring a number of instances of the object type, 

together with their initial positions and orientations in the scene (analogous to a cast of 
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characters and stage instructions), and then to define the events that occur during the 

movie scene (analogous to an actor’s script). Events can also be viewed as stimulus-

response pairs: one type of event describes the action taken by a character when it 

receives a signal from a particular object or another character; another merely schedules 

an action to take place at a certain point in time after the start of the animation. 

11.2.3 A framework for language learning experiments 
The purpose of MicroJaea is to facilitate language learning experiments. This can be 

achieved by combining visual information obtained from an animated scene with 

utterances in the target language that describe the events in the scene (Li Santi, 

Leibbrandt & Powers, 2007a, 2007b; Powers, Leibbrandt, Li Santi & Luerssen, 2007). In 

other words, the intention is to use MicroJaea for grounded learning of a subset of a 

language, in the manner of the well-known L0 language learning problem (Feldman, 

Lakoff, Stolcke & Weber, 1990). Prior work has shown the feasibility of language 

learning experiments using this platform (Li Santi, 2007).  

11.2.3.1 Visual scene information output 
During playback of an animated MicroJaea movie, the system produces a sequence of 

output records. Each record is produced after a certain periodic time interval, and 

provides details of the objects that are present in the scene at the time, their parts, the 

locations in space of each of the object parts, and any other visual information such as the 

sizes of the parts and their colours. The record is therefore a static snapshot of the objects 

in the scene at that particular point in time, and hence arguably represents (a very stylized 

version of) the visual information available to the child during the event portrayed in the 

scene.  

 

Table 71 shows an example of a visual record for a simple compound object consisting of 

a red sphere perched on top of a blue cylinder. The record gives details of the names of 

the object (Fred), its type (VeryBasicMan) and of its parts (Head and Body), and 

specifies where the parts are in three-dimensional space, as well as their colours and 

dimensions (shapeParameters), their original rotational attitudes (rollPitchYaw), and the 

points at which the Head is joined to the Body. 
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{RECORD TRIGGER TIME_PERIOD AT TIME 578 
 
 {OBJECT REF# 7 NAME Fred TYPE VeryBasicMan 
 
  {PART REF# 10 NAME Fred.Head 
   parent Fred.Body join ( 0, 0.2, 0 ) 
   position ( 0.25, -0.2, 0 ) 
   shape sphere 
   shapeParameters ( 0.05 ) 
   colour ( 1, 0, 0 ) 
   rollPitchYaw ( 3.14159, -0, 0 ) 
  } 
 
  {PART REF# 9 NAME Fred.Body 
   position ( 0.2, 0, 0 ) 
   shape cylinder 
   shapeParameters ( 0.0080, 0.4 ) 
   colour ( 0, 0, 1 ) 
   rollPitchYaw ( 3.14159, -0, 0 ) 
  } 
 } 
END RECORD} 
 
Table 71. An example visual output record from MicroJaea. 

11.2.3.2 Language input/output 
The MicroJaea scripting language also allows script writers to add language information 

to the movie. One can imagine that the scenario is one that a language-learning baby 

would experience, where there is something happening visually, and a speaker of the 

target language (e.g. a caregiver) is speaking to the child at the same time. The content of 

at least some utterances can be expected to be in some way relevant to the scene being 

experienced, whether overtly commenting on events or commenting on aspects of the 

social interaction. This linguistic information is also inserted into the output record of the 

unfolding movie. The intention is that a language-learning computer program can read in 

the visual and time-synchronized language information, and attempt to work out the 

meanings of words and sentence structures based on what is visible in the scene7. 

 

There are a variety of techniques in the literature for learning grounded meanings of 

words from simultaneous language and sensory information. For instance, a very 

                                                 
7 Of course children have access to a wide array of sensory modalities when experiencing reality, and 
nothing in theory precludes the addition of other sensory modalities to the system. 
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influential model has been the cross-situational learning paradigm of Siskind (1996). In 

Siskind’s model, utterances are combined with statements in a first-order-logic-like 

description language, which state the meaning of the utterance using semantic primitives 

such as BALL, WALK, etc. Learning consists in attempting to map words onto their 

referents. This is done by compiling for each word a list of hypotheses about its possible 

meanings, and then filtering this list by a process of elimination as more and more 

utterance-meaning pairs are processed, in accordance with a number of heuristic language 

learning rules. For instance, for any particular word in an utterance, any currently 

hypothesized meanings which are not present in the corresponding utterance meaning 

descriptor may be discarded. Also, if a particular semantic primitive is not present in the 

hypothesis set of any of the words of the utterance, it needs to be added to each one. This 

cross-situational learning process is continued until each word has exactly one associated 

meaning. 

 

It is possible to apply this framework to the current problem of lexical categorization. 

Here, we would be interested not just in the meanings of specific verbs, nouns, and 

adjectives, but rather in the abstract semantic concomitants associated with the class of 

verbs, the class of nouns and the class of adjectives. In other words, what is at issue is 

what has been termed the “notional” meanings associated with a part-of-speech. 

Particularly appealing is Langacker’s (1987) view of parts-of-speech as being grounded 

in the mental interpretations that are imposed on a word depending on whether it has 

been used as a noun, verb, adjective, etc. 

 

Also relevant in this regard is work on language development by Smith and colleagues 

(e.g. Landau et al., 1988, 1992; Jones et al., 1991; Smith, 2001). Smith argues that the act 

of naming an object becomes a familiar situation for young children, presumably in terms 

of not only the situational and social correlates of object naming, but also the 

stereotypical frame in which the object name is embedded (e.g. “That’s a _”, “This is a 

_”), and so comes to serve as a cue which directs selective attention towards the aspects 

of reality (in this case, the shape of the named object) that are relevant to the meaning of 

the novel word.  
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It is an interesting but open question whether children’s developing knowledge of verb 

and adjective frames as reviewed in Section 3.4 can also be interpreted in terms of 

learned cues for selective attention. So, for instance, a verb frame may draw attention to 

the kind or path of motion that a living entity performs, or to a comparison between an 

earlier and a later state of an object or entity (which is carried out in memory). An 

adjectival frame may focus attention on properties of an object other than its shape. 

Solving this general problem of learning where to direct attention is a special instance of 

what is known as the “frame problem” in artificial intelligence: how does a computer 

program or an organism know how to define the scope and boundaries of the problem 

that it has to solve? 

 

Note that, before the motion or properties of the referent object can be attended to, it must 

first be determined that a referent object needs to be singled out, and then which object it 

should be. The referent is most often determined by contextual knowledge, e.g. it is the 

referent on which the child and caregiver are already focused, or it is the one to which the 

caregiver has now directed his or her gaze. Correctly attending to the environment in 

order to learn the meaning of a verb or adjective therefore also presupposes the 

application of implicit knowledge about how to focus attention to locate the referent, 

even prior to preparing to attend to its motion or properties.  

 

At the same time, following Langacker (1987), the child should also be learning how to 

set up the correct representation in her mind that will allow her to understand the 

meaning of the utterance. It is interesting to speculate that a linguistic context or frame 

may also serve as a learned cue to set up the basic required semantic representations in 

the mental domain. In the case of a verb, there should be a representation corresponding 

to what Langacker calls an entity, and another representation corresponding to a process, 

with the two representations linked.  

 

Only a small number of computational models have explored the grounded learning of 

the semantic correlates of parts-of-speech. A study by Roy (2002) is arguably one of the 



 324

benchmark works in this area. Roy collected data from participants who were asked to 

verbally describe a geometric shape on a computer screen (e.g. “The narrow purple 

rectangle below and to the right of the blue square”). A description of the referent was 

created in terms of 8 semantic dimensions (such as height/width ratio, area, etc.). 

Subsequently, Roy defined two distance metrics, one for expressing the semantic distance 

between the referent objects of two words, and the other for expressing the linguistic 

(distribution ally-based) distance between two words, and clustered words together based 

on a distance measure that was a weighted sum of the semantic and linguistic distance. 

Some of the classes formed in this way were readily interpretable linguistically: for 

instance a class consisting of the elements pink, yellow, salmon, orange, grey, red, green, 

purple, colored, blue and brown was clearly a class of colour words. Also, leftmost and 

rightmost formed a cluster together, as did lowest and highest. At the same time, it was 

possible to obtain semantic correlates for each of the classes in terms of the semantic 

variables that were relevant to the meanings of the class members. For instance, for the 

colour words, the important semantic features were the red, green and blue components 

of the colour of the object. By implication, for any new word which behaved in the same 

way distributionally as words in the colour word class, the referent would be likely to 

have salient red, green and blue colour values. 

 

The work by Roy (2002) certainly captures the flavour of what is proposed here. 

However, a number of important issues were neglected. Notably, the frame problem was 

already solved for the learning system in advance: in each case, the referent was already 

known, and the relevant word in the utterance which made reference to it was identified 

manually. It would be preferable for the system to solve the frame problem itself.  

 

Secondly, essentially the only kinds of words used in this experiment were nouns and 

adjectives, thereby allowing word meanings to be learned from a static representation of 

the situation, rather than a dynamically unfolding one. But we would like to be able to 

learn about all parts-of-speech without restriction, including verbs, which would require 

handling dynamic visual information. 
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The language model used by Roy was extremely crude, and more sophisticated models 

(including the ones considered in this thesis) should improve the system’s ability to learn 

about parts-of-speech. 

 

In the experiment proposed here, the meanings of individual words will be learned first, 

by some process such as cross-situational learning. At the same time, the meanings of the 

open-class categories such as nouns, verbs and adjectives are slowly abstracted out from 

these individual words. 

 

The process of understanding the world, including the language spoken in it, entails 

creating a mental representation of that world. Initially, the representation is constructed 

from what can be perceived through the senses; later, such world representations may be 

assembled from the imagination, or in response to hearing or reading a sentence that 

describes a particular situation. 

 

One of the abilities that a child acquires during the course of development is to construct 

such a mental representation from linguistic input. This can be regarded as a 

constructional procedure, triggered by cues in language, and may therefore be subject to 

the kinds of learning processes often implicated in behavioral learning, for example 

reinforcement learning.  

 

In addition, the child needs to learn how to pay selective perceptual attention to the parts 

of the world that are relevant to the meanings of utterances. This may be presumed to be 

driven by two sources of motivation: firstly, curiosity about how language works and 

how it is related to the world, and secondly, a drive to obtain more information about the 

world itself, with language understanding being one powerful way of doing so. The 

tuning of selective attention may also be presumed to be a learning process; a plausible 

candidate might be reinforcement learning (Sutton & Barto, 1998). 

  

Desirable (reinforceable) behaviour corresponds to performing all the steps required to 

attend appropriately to the environment in order to determine the meaning of a novel 
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word, and successfully establish a mental representation of its meaning. Unsuccessful 

behaviour, which should be inhibited, would be incorrectly attending to aspects of the 

sensory input, leading to no or an incorrect hypothesis about the word meaning, or 

otherwise setting up a mental model which turns out to be incongruent with later 

semantic information (often prompting a search for a better representation). 

 

For this reason, the system should be equipped with a number of primitive operations for 

respectively directing selective attention, and building mental representations. These 

primitives can be combined into more complex procedures by performing several 

primitive operations in sequence, and the processes by which these sequences are created 

may be hypothesized to be subject to the same learning processes governing the learning 

of other human behaviours such as motor sequences. The attentional primitives, when 

operating on a visual output record as in Table 71 could be as simple as the operation to 

select one of the fields for attention. In a more developed model, one could more 

accurately model human gaze, and primitives might include moving towards a local 

minimum on a saliency map. Representational primitives include creating an entity 

record, creating a process record, or annotating these with property information. 

 

Suppose that the proposed computer model already has in its lexicon the lexically-

specific construction “that’s a X”. Now consider, for example, a virtual world depicting a 

collection of toy animals on a tabletop, representing the visual scene when a child is 

sitting with its caregiver and playing with the toys. The system would then be exposed to 

a number of utterances such as “That’s a hippo”, “That’s a camel”, etc., with the toy 

hippo, camel, etc, being the focus of the caregiver’s attention at each stage. (There is 

ample evidence suggesting that children are sensitive to the focus of a speaker’s attention 

when they speak, and will form hypotheses about the meanings of novel words that are 

congruent with where the speaker is looking, rather than, say, where they themselves are 

looking (e.g. Baldwin, 1993). How the focus of the speaker’s gaze would be indicated in 

the proposed system will remain to be decided; initially, it may be expedient merely to 

indicate explicitly that attention is focused on one particular object.)  
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The “correct” way to process an utterance of the form “That’s a X” is to find the target 

object of the speaker’s gaze, scan it visually in order to determine its shape only (ignoring 

other potential visual properties such as colour, size or texture), then create in working 

memory a representation record of a single entity, with an associated property record that 

will contain information about its shape. Successfully bringing about this state of affairs 

in response to encountering the linguistic cue “That’s a X” would indicate understanding 

of (part of) the abstract meaning of the object name slot in the “That’s’ a X” construction. 

Initially, however, one might expect that this process is errorful and inefficient, with 

many incorrect aspects of reality being attended to and inadequate representations being 

set up.  

 

The feedback about whether the current set of operations was correct or not is likely to 

come from the expectation that the system has about reality. Recall that, in Siskind’s 

cross-situational learning system, a set of meaning hypotheses is maintained for each 

word. A natural way to implement this in the current scheme may be to associate with the 

word and utterance context the steps required to set up a mental representation of all 

possible aspects of reality (present in the scene) to which the word may refer. Then, when 

this representation is reenacted at a later stage and one or more of the aspects of the 

representation are not present in reality, the operations contributing to those 

representations are inhibited, while the operations contributing to the representations that 

are in line with reality are reinforced (broadly in accordance with the principles of 

reinforcement learning). This corresponds to discarding incorrect hypotheses from the 

hypothesis set when they are disconfirmed by reality. 

 

While this system is learning the meanings of individual words such as “hippo”, “camel”, 

etc., it is also associating these meanings with the context (in this case the frame “That’s 

a X”) in which they occur. The end result will be that the aspects of the eventual mental 

representation that these utterances have in common will be strongly associated with the 

frame in which they all occur, whereas the aspects of meaning peculiar to the individual 

words will cancel each other out. Hence, the frame may be expected eventually to have 

associated with it the operations identified above, which focus on the shape of an object, 
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and place an entity representation with shape information in working memory. The 

specific operation associated with “hippo” will then embellish this representation with the 

specific shape details required for the concept of a hippo. 

 

It is important to note here, in accordance with Langacker (1987), that it is not the fact 

that the entities in question are physical things in the world which is relevant here, but the 

fact that they are conceptually represented as bounded entities which may metaphorically 

take on some of the characteristics of objects. Hence, even abstract nouns could be 

accommodated in this framework. 

 

In the above proposal, the frames are supposed to be known to the system already, and 

could have been derived according to any of the three procedures outlined in previous 

chapters. In an alternative (converse) approach, it might be possible for scenes to be 

perceived “wordlessly” to start with, and for a number of semantic categories such as 

Entity, Process and Atemporal Relation to have self-organized out of the original mental 

representations of these scenes. Then at a later stage, distributional information comes 

into play, and frames and words are associated with the semantic clusters. Yet a third 

possibility is for semantic and distributional information to be available simultaneously, 

and for clusters to form out of expression-meaning pairs that have both semantic and 

distributional information in common. This last proposal would be the one that is most 

strongly compatible with Construction Grammar. 

 

To the extent that the basic sentence frames of a language (see Goldberg, 1995) are vital 

to an understanding of the language, it is important for the child to come to grips with the 

semantic implications of each of these possible frames. However, the task of 

understanding, say, an utterance using a transitive frame, would be made simpler if the 

child (i) had some rough notion of the meaning of the verb, and of the words for any 

entities that are mentioned in the utterance, and (ii) had a number of examples at their 

disposal of how the arguments of a verb are arranged in lexically-specific frames that 

instantiate the subcategorization frame. 
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Currently, it is envisaged that a researcher would make up scenes and associated dialogue. 

However, it might also be possible to elicit linguistic information from native English-

speaking informants. This could be done by devising a number of animated movies, then 

inviting caregiver-child dyads to view the movies together, and recording the comments 

of the caregiver to the child as the movie is played. 
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Appendix 1: Preprocessing performed on the 
Manchester corpus 
In order to turn the sentences spoken by mothers into simple, uniformly-formatted 

sentences that could be batch-processed by a computer program (referred to hereafter as 

the “cleaned-up corpus”), it is necessary to perform a certain amount of preprocessing. 

CHAT makes use of a variety of non-alphabetic characters for corpus annotation. In 

addition, some sentences are not necessarily complete, and it needs to be decided which 

ones represent usable data. Non-alphabetic characters need to be removed, and unsuitable 

utterances discarded, in order to produce a “clean” corpus on which experiments can be 

carried out. The following phenomena are at issue: 

 

Interruptions: When utterances are interrupted (whether by the speakers themselves or 

others), they are marked by the symbols [+/.  +/?  +//.  +//?] at the end of the line. These 

utterances are therefore necessarily incomplete, and hence do not provide promising 

material from which to extract valid full-utterance constructions. Interrupted utterances 

may arguably differ from complete ones in their intonation contour, given that the typical 

intonation contours associated with both statements and questions are most distinctly 

marked only at their endings (by falling and rising intonation respectively). Nevertheless, 

the Manchester corpus does not provide information about intonation, and we cannot 

assume that children (especially at the early stages of language acquisition) can 

competently distinguish between finished and unfinished utterances. Hence, interrupted 

utterances should be included in the cleaned-up corpus. 

 

Trailing off: Utterances where the speaker trails off without completing the utterance 

(and without having been interrupted) are terminated with the symbols [+..  +.?  +!?]. The 

same comments as for interruptions apply, and trailing-off utterances should be included 

in the cleaned-up corpus as well. 

 

Retracings: In some instances, speakers terminate a particular “path” in their utterances, 

fall back to an earlier point in the utterance and resume the utterance with new words. 
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The material which did not form part of the final “approved” utterance is followed in 

CHAT by [/] or [//] (and is surrounded by angle brackets < > when it is longer than one 

word). Arguably, the intended utterance may be recoverable by the child, by “working 

out” which part was corrected or altered and assembling the intended utterance from the 

rest of the spoken material. But again, we cannot assume these abilities on the part of the 

language-learning child, and so need to include the entire utterance, including the part 

which was “retraced over”. 

 

Omitted words: On occasion, researchers include words which should have been part of 

an utterance but were in fact omitted, and mark these omitted words with a 0 (zero) 

before the word. Given the “warts and all” approach taken here, however, it is more 

appropriate to omit these words from the cleaned-up corpus. 

 

Phonological words: Some utterances contain non-words that are phonologically coded 

by the researchers, and are preceded by an & (ampersand). These words should be 

included in the final utterance, even though they are not accepted English words, as they 

formed part of the input. 

 

Unintelligible words and utterances: When a coder is unable to make out a word or 

sometimes an entire utterance, the word or utterance is represented by one of the symbols 

[xx, xxx, yy, yyy, www]. In these cases, we truly cannot make use of the utterance, 

because we don’t actually know what it was (and it is reasonable to consider that the 

child might not have known either). An utterance that contains any of these markers 

should be discarded from the data set. 

 

Quoted speech: Quoted (or reported) speech is marked in CHAT by placing the quoted 

material in double quotes, sometimes combined with other non-alphabetic characters. 

These utterances are not really complete utterances in their own right, but rather either 

two concatenated utterances, or one utterance sandwiched into another. Once again, 

however, it cannot be assumed that the child parses the utterance in the “correct” adult 
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way, and hence these utterances are included in the cleaned-up corpus as they occurred 

(after removing the quotes). 

 

Pauses: the symbol # indicates a pause, and is omitted from the data set. 

 

Compound words and collocational phrases: Compound nouns (such as “diesel truck”) 

and collocational phrases (such as “once upon a time”) can be indicated as such in CHAT 

by joining their constituent words by plusses and underscores respectively. In 

preprocessing, these symbols are simply omitted, and the constituent words are 

concatenated into one word, effectively acknowledging the coders’ intuition that they 

form a single “long word”. 

 

Special form markers: Some words are followed by descriptors to indicate that they 

belong to specific types of word (e.g. letters of the alphabet, onomatopoeic sounds, etc). 

These markers should, of course, be omitted when creating the cleaned-up corpus. 

 

Contracted words: Related to the omitted words are cases where parts of words are 

omitted. This is of course conventional in spoken English for some words, and the 

position of the omitted material is indicated by an apostrophe (e.g. we’re, that’s, etc.). In 

CHAT, the omitted material is occasionally included in parentheses. These parenthetical 

elements should be removed and replaced by apostrophes. 

 

Punctuation: Utterances are terminated in CHAT by either a full stop, an exclamation 

mark or a question mark. I have taken the view that utterances ending with question 

marks typically exhibit a distinct intonational contour identifying them sonically as 

questions, but that utterances ending with full stops and with exclamation marks are not 

so reliably distinguishable from each other, and indicate perhaps nothing more than 

increased volume or heightened affect in the case of exclamation marks. While these 

characteristics may indeed be detectable by the child, they seem to be less important 

linguistically, compared to the function played by rising intonation in identifying 
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questions. For this reason, the only “marked” punctuation marker in the cleaned-up 

corpus is the question mark, while all exclamation marks are turned into full stops. 

Commas are retained in the cleaned-up corpus, with the qualification that we do not need 

to distinguish between tag questions and other syntactic junctures (indicated in CHAT by 

respectively two commas and a single comma) – these are all coded as a single comma. 

 

Fortunately, the CLAN software, developed for working with CHAT data and available 

free-of-charge from the CHILDES website, provides a built-in command, FLO, that 

performs most of the preprocessing described above. The purpose of FLO is to convey 

the “flow” of speech as it occurred, in a slightly more readable format than the full 

CHAT-annotated text on the main tier line. FLO “strips out markers of retracing, 

overlaps, errors, and all forms of main line coding” (CHILDES CLAN manual, p. 71). 

FLO removes nearly all non-alphabetic characters, but leaves interruptions, trailing-off 

utterances, retracings and quotes as they are. Omitted words and special form markers are 

omitted, phonological words are included, and contracted words are contracted (with the 

addition of apostrophes). 

 

On the other hand, FLO retains all instances of unintelligible words, certain non-

alphabetic markers, and double commas. For this reason, all files are preprocessed in two 

steps, firstly by issuing a FLO command on the original data file, and then by running a 

specific Java preprocessing program on the data file that was output by FLO. The 

preprocessing program removes utterances containing markers for unintelligible words, 

removes certain CHAT characters not removed by FLO, changes double commas to 

single ones, omits utterance-final exclamation points and full stops, and changes all 

upper-case letters to lower-case. All utterances appear in a single line on their own in the 

cleaned-up corpus. 

 

In addition, the name of the child in each file is automatically changed to the token 

childname. This is done because a child’s own name may well have a significant role in 

the spoken utterances that the child hears. It is likely to occur very frequently, and to 

occupy a significant position in sentence structures (in many cases, the child’s name is 
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used almost as a synonym for the second-person pronoun you). In order to allow the 

computational procedures to pick up this regularity when the data from all twelve 

mothers is pooled, it is necessary to use a standard token for the child’s name. The 

resulting cleaned-up corpus contains only the lower-case alphabetical letters, the question 

mark, apostrophe, comma and space. Each line contains exactly one utterance.
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Appendix 2: Full comparison of current full-utterance 
and nested frames against the frames identified by 
Cameron-Faulkner et al. (2003) 
 
 
This Appendix shows the ways in which the frames manually identified Cameron-

Faulkner et al. (2003; CFLT) match against those produced by the procedures presented 

in this thesis. Core CFLT frames are in bold and preceded by asterisks.  

 

Nesting (as determined in Chapter 8) and full-utterance frames (as determined in Chapter 

6) are regarded as a single coherent approach; multiply-nested frames are shown only 

when no nesting frame match exists. Prediction-based frames are as determined in 

Chapter 9. 

 

In a few cases, it was difficult to determine prediction-based matches, especially for 

CFLT frames which required the fillers to be of a particular grammatical category. The 

frames produced here do not, of course, make reference to a particular category when 

they are produced, as it is exactly the category of the filler which remains to be 

determined (and the frame itself may be ambiguous for that reason, as discussed). In such 

cases, a prediction-based frame was taken to match a CFLT frame if there was a 

reasonable way to extend the prediction-based frame (by appending a sequence of words) 

so as to produce the required arguments. For instance, to the CFLT frame “he’s [VP NP]”, 

we can match the prediction-based frame “he’s been X”, on the grounds that this frame 

could occur e.g. in an utterance such as “he’s been fighting a fire”. 

 

For full-utterance frames, not only exact matches, but also matches that are somewhat 

more specific than the CFLT frame are shown. 
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Fragments 
Cameron-Faulkner et 

al. (2003) frame 
Nesting frame Multiply-nested frame Full-utterance frame Prediction-based frame

*a [N] a X a X 

*the [N] the X the X 

[Adj] one X one X one 

that [N] that X that X 

not [N] not X not X 

this [N] this X this X 

some [N] some X some X 

poor [N] poor X poor X 

another [N] another X another X 

more [N] more X more X 

big [N] big X big X 

*[Numeral] [N] 

N/A8 
 

one X 
two X 
three X 

one X 
two X 
three X 
four X 
 
 

                                                 
8 Some frames identified by Cameron-Faulkner et al. are marked as “Not Applicable” to nested frames, because they make reference to single words of a 
particular part-of-speech. The nested frames are not restricted in this way, but can accept material of any length. 
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*[Poss][N] his X 
her X 
your X 
my X 

his X 
her X 
your X 
my X 
our X 
their X 

[Colour][N] red X 
yellow X 
blue X 
green X 
orange X 

red X 
yellow X 
blue X 
green X 
orange X 
pink X 
white X 

not [VP] not Y  not X 
not X it 

not X 

put [NP] put Y  put the X put X 
put the X 

don’t [VP] don’t Y  don’t X 
don’t X her X 
don’t X him 
don’t X it X 
don’t X it 
don’t X me 
don’t X that 
don’t X the X 
don’t X them 
don’t X too X 
don’t X your X 
don’t put your X in there

don’t X 
don’t X it X 
don’t X him 
don’t X it 
don’t X it X 
don’t X that 
don’t X them 
don’t be X 
don’t get X 
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got [NP] got Y  got X 
got no X 

got X 
got a X 
got no X 
got some X 
got your X 

make [NP] make Y  make a X 
make some X 

make X 
make a X 
make some X 

can’t [VP] can’t Y   can’t X 
have to [VP]  have [to Y]  have to X 
draw [NP] draw Y  draw X draw X 
*in [NP] in Y  in X 

in a X 
in his X 
in that X 
in the X 
in your X 

in X 
in a X 
in his X 
in that X 
in the X 
in this X 
in your X 

on [NP] on Y  on X 
on a X 
on her X 
on his X 
on my X 
on that X 
on the X 
on your X 

on X 
on her X 
on his X 
on my X 
on that X 
on the X 
on this X  
on your X 
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with [NP] with Y  with X 
with a X 
with his X 
with the X 
with your X 

with X 
with a X 
with her X 
with his X 
with the X 
with this X 
with your X 

for [NP] for Y  for X 
for a X 
for the X 
for your X 

for X 
for a X 
for the X 
for your X 

over [NP] over Y   over the Z 
at [NP] at Y  at X 

at the X 
at X 
at the X 

like [NP] like Y  like X 
like a X 

like X 
like a X 

very [Adj] N/A very X very X 
[Pronoun] isn’t not covered X isn’t 
Table 72. Comparison between Cameron-Faulkner et al. (2003)'s fragments and the current frame approach. 
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Wh-questions 
Cameron-Faulkner et 
al. (2003) frame Nesting frame Multiply-nested frame Full-utterance frame Prediction-based frame

*what’s _ what’s Y?  what's X ? 
what's X doing ? 
what's X now ? 
what's X there ? 
what's a X ? 
what's <child’s name> 

X? 
what's happened to X ? 
what's happened to his 

X? 
what's happened to your 

X? 
what's he X ? 
what's in that X ? 
what's in the X ? 
what's in this X ? 
what's in your X ? 
what's it X ? 
what's on the X ? 
what's on your X ? 
what's she X ? 
what's that X ? 
what's that X called ? 
what's that X doing ? 
what's the X ? 
what's the X called ? 

what is X 
what is it X 
what is that X 
what's * X 
what's X X 
what's X 
what's X doing 
what's X got 
what's childname X 
what's happened to X 
what's happened to the X
what's he X 
what's his X 
what's in the X 
what's mummy X 
what's she X 
what's that * X 
what's that X X 
what's that X 
what's the X 
what's the X X 
what's this X 
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what's the X doing ? 
what's the matter with 

your X ? 
what's this X ? 
what's this X doing ? 

*what’re _ what’re we Y? 
what’re you Y? 

 what’re we going to X? 
what’re you X? 
what’re you X about? 
what’re you X for? 
what’re you X now? 
what’re you doing with 

your X? 
what’re you going to X? 

what're * X 
what're you X X 
what're you X 
what're you doing X 
what're you doing to * X 
what're you going to X 
what are * X 
what are X 
what are we X 
what are you X 
what are you X X 

*what do _  what [do you Y]? what do X do? 
what do X eat? 
what do X say? 
what do you X? 
what do you X? 
what do you want for 

your X? 
what do you want to X? 

what do X X 
what do X do 
what do X say 
what do you X X 
what do you X 
what do you like X 
what do you mean X 
what do you think * X 
what do you think X 
what do you want X 
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*what did _ what did you Y? what [did you Y]? 
what [did we Y]? 

what did X do? 
what did the X do? 
what did you X? 

what did * X 
what did X do 
what did he X 
what did she X 
what did they X 
what did you X X 
what did you X 

*what colour _   what colour are the X? 
what colour is X? 
what colour is the X? 

what color X 
what color are * X 
what color are X 
what color is * X 
what color is X 
what color's * X 
what color's X 
what color's that X 
what color's this X 

*what (ha)s _ same as for “what’s _” above 
*what about _  what [about Y]? what about X ? 

what about a X ? 
what about her X ? 
what about his X ? 
what about some X ? 
what about that X ? 
what about the X ? 
what about the other X ? 
what about these X ? 
what about this X ? 
what about your X ? 

what about * X 
what about X 
what about that X 
what about the X 
what about the other X 
what about this X 
what about your X 
 

*what shall _   what shall we X? what shall i X 
what shall we X 
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what can _   what can you X? 
what can you see on the 

X? 

what can you X 

what does _   what does X say? 
what does a X do? 
what does a X say? 
what does the X say? 

what does * X 
what does X 
what does X do 
what does X say 
what does that X 

what happened _  what [happened to Y]? what happened to the X? 
what happened to your 

X? 

what happened to the X 

what were _ Not covered what were * Z 
what were you Z 

what’ve _  what [have you Y]? what have you X? what've you X 
what've you got X 
what have you X 

what kind of _ Not covered Not covered 
what number _ Not covered Not covered 
*where’s _ where’s Y? 

where’s the Y? 
 where is X ? 

where is the X ? 
where is your X ? 
where shall we put the 
X ? 
where was the X ? 
where's X ? 
where's X going ? 
where's X gone ? 
where's a X ? 
where's he X ? 
where's her X ? 
where's his X ? 

where's * X 
where's X 
where's X going 
where's X gone 
where's childname's X 
where's he X 
where's her X 
where's his X 
where's my X 
where's the * X 
where's the X 
where's the X X 
where's the X then 
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where's my X ? 
where's that X ? 
where's that X gone ? 
where's the X , <child’s 
name> ? 
where's the X ? 
where's the X going ? 
where's the X going to 
go? 
where's the X gone ? 
where's the X then ? 
where's the little X ? 
where's the other X ? 
where's your X ? 
where's your X gone ? 

where's the little X 
where's the other X 
where's your X 
where's your X gone 
 

where’s [has] same as for “where’s _” above 
where’d _  where [did we Y]? where did the X go? where did the X 

where did you go X 
where’re _  where [are you Y]? where are you X? 

where are the X? 
where are your X? 

where're you going X 
 

where shall _   where shall we put the 
X? 

where shall we put the X 

*who’s _ who’s Y?  who’s X? 
who's X it ? 
who's X the X ? 
who's in the X ? 
who's on the X ? 

who's * X 
who's X 
who's gonna X 
who's that X 
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whose [N] 
Not covered 

whose X 
whose X is it 
whose X is that 

who’re _  who [are you Y]?  Not covered 
who did _  who [did you Y]?  who did you X 
why don’t _   why don’t you X? why don't you X 

why don't you X X 
why do _  why [do you want your 

X]? 
 why do you X X 

why do you X 
why’s _  why [is he Y]? 

why [is it Y]? 
why is he X? 
why is it X? 

why is he X 
why is it X 

why not _ Not covered Not covered 
how many _   how many X? 

how many X are there? 
how many X have we 
got? 
how many X have you 
got? 

how many X 
how many X are there 
how many X has he got 
how many X have you 

got 

how did _  how [did you Y]?  Not covered 
*which one _  which [one Y]? which one’s X? which one X 

which one's * X 
which one's X 
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Not covered which Y? 
who Y? 
why Y? 
how Y? 

 where was the X? 
which X? 
which X is it? 
who X a X? 
who X it? 
who X the X? 
why are you X? 

where was the X 
which * X 
which X 
which is * X 
which is X 
who * X 
who X 
who X it 
who X you 
who did you X 
who else X 
who was X 
why X 
why are you X 

Table 73. Comparison between Cameron-Faulkner et al. (2003)'s wh-questions and the current frame approach. 
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Yes/No-questions 
Cameron-Faulkner et 
al. (2003) frame Nesting frame Multiply-nested frame Full-utterance frame Prediction-based frame

*are you _ are you Y? 
 

 are you X , <child’s 
name> ? 

are you X ? 
are you X a X ? 
are you X again ? 
are you X her X ? 
are you X it ? 
are you X me ? 
are you X now ? 
are you X the X ? 
are you X them ? 
are you X to X ? 
are you X your X ? 
are you a X ? 
are you a X boy ? 
are you a bit X ? 
are you going X ? 
are you going to X ? 
are you going to X a X ? 
are you going to X her ? 
are you going to X it ? 
are you going to X it up?
are you going to X that ?
are you going to X the 

X? 
 

are you * X 
are you X a X 
are you X 
are you X X 
are you X him 
are you X it 
are you X me 
are you X them 
are you doing X 
are you going X 
are you going to X 
are you going to X X 
are you going to X her 
are you going to X him 
are you going to X it 
are you going to X it * X
are you going to X that 
are you going to X them 
are you going to be X 
are you going to come 

and X 
are you going to do 

some X 
are you going to have a 

X 
are you going to make a 
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are you going to X 
them ? 

are you going to X your 
X? 

are you going to have a 
X? 

are you going to make a 
X? 

are you going to put the 
X on ? 

are you having a X ? 
are you making a X ? 
are you still X ? 
are you the X ? 

X 
are you gonna X 
are you gonna put X 
are you just X 
are you making a X 
are you not X 
are you putting * X 

are they _ are they Y? 
 

 are they X ? 
are they X now ? 
are they all X ? 
are they going to the X ? 
are they having a X ? 

are they * X 
are they X X 
are they X 
are they all X 
are they going X 
are they going to the X 

are we _ are we Y?  are we X? are we X 
are we going X 
are we going to X 

aren’t you _   aren’t you X? aren't you X 
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*can you _ can you Y?  can you X ? 
can you X a X ? 
can you X him ? 
can you X it ? 
can you X it X ? 
can you X that ? 
can you X the X ? 
can you X them ? 
can you find a X ? 
can you find another X ? 
can you find me the X ? 
can you find some X ? 
can you find the X ? 
can you say X ? 
can you see X ? 
can you see a X ? 
can you see some X ? 
can you see the X ? 

can you X 
can you X X 
can you X it 
can you X that 
can you find X 
can you find a X 
can you find another X 
can you find me * X 
can you find the X 
can you pass me * X 
can you remember X 
can you remember what 

* X 
can you say X 
can you see * X 
can you see X X 
can you see X 
can you see a X X 
can you see a X 
can you see any X 
can you see some X 
can you see the X 
can you see the X X 

can I have _   can i have X ? 
can i have X then ? 
can i have a X ? 
can i have a X please ? 
can i have some X ? 
can i have some X 

please ? 
can i have the X please ?

can i have * X 
can i have X 
can i have X X 
can i have a X 
can i have some X 
can i have some X 

please 
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can’t you _ can’t you Y?  can’t you X? Not covered 
*do you _ do you Y?  do you X ? 

do you X the X ? 
do you know where the 

X is ? 
do you like X ? 
do you like mummy's 

X? 
do you like that X ? 
do you like the X ? 
do you need a X ? 
do you need some X ? 
do you think X like X ? 
do you think it's a X ? 
do you want a X ? 
do you want another X ? 
do you want me to X it ? 
do you want some X ? 
do you want the X ? 
do you want the X out ? 
do you want to X ? 
do you want to X it ? 
do you want to X on the 

X? 
do you want to X the X? 
do you want to X with 

the X ? 
do you want to do some 

X? 
do you want your X ? 
do you want your X out?

do you X X 
do you X 
do you have X 
do you know X 
do you know what X 
do you know where * X 
do you like * X 
do you like X 
do you like X X 
do you like that X 
do you mean X 
do you need a X 
do you remember * X 
do you remember X 
do you think * X 
do you think X 
do you think X X 
do you think it's X 
do you think it's a X 
do you think she's X 
do you wanna X 
do you want * X 
do you want X 
do you want a X 
do you want another X 
do you want it X 
do you want me to X 
do you want me to X it 
do you want some X 
do you want that X 
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do you want this X 
do you want to X 
do you want to X X 
do you want to X it 
do you want to do X 
do you want to do some 

X 
do you want to make a X
do you want to play with 

the X 
do you want your X 

don’t you _ don’t you Y?  don’t you like X? don't you X 
don't you X X 
don't you like X 
don't you want * X 

did you _ did you Y?  did you X ? 
did you X it ? 
did you X the X ? 
did you X your X ? 
did you like the X ? 
did you say X ? 

did you X 
did you X X 
did you X it 
did you X that 
did you get X 
did you go X 
did you have X 
did you like * X 
did you like X 
did you say X 

did we _ did we Y?   did we go to the X 
did we see any X 

does it _   does it X? does it X 
does it look like a X 
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*have you _ have you Y?  have you X ? 
have you X a X ? 
have you X it ? 
have you X your X ? 
have you got X ? 
have you got a X ? 
have you got any X ? 
have you got some X ? 
have you got the X ? 
have you got your X ? 

have you X 
have you X X 
have you X it 
have you X it X 
have you X them 
have you been X 
have you got * X 
have you got X 
have you got X X 
have you got a X 
have you got a X X 
have you got any X 
have you got some X 
have you got that X 
have you got your X 
have you seen X 

has it _   has it X? 
has it got a X? 

has it X 
has it got X 
has it got a X 

*is it _ is it Y?  is it X ? 
is it X now ? 
is it X or X ? 
is it X the X ? 
is it X yet ? 
is it a X ? 
is it a X one ? 
is it a big X ? 
is it a bit X ? 
is it an X ? 
is it in the X ? 
is it still X ? 

is it * X 
is it X 
is it X X 
is it X X * X 
is it a X 
is it a X X 
is it a X one 
is it a big X 
is it going X 
is it going to X 
is it not X 
is it your X 
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is it the X ? 
is it too X ? 
is it your X ? 

*is that _ is that Y?  is that X ? 
is that X 
is that a X ? 
is that a nice X ? 
is that another X ? 
is that her X ? 
is that his X ? 
is that my X ? 
is that one X ? 
is that the X ? 
is that your X ? 

is that * X 
is that X 
is that X X 
is that X there 
is that a X 
is that a X X 
is that one X 
is that what * X 
is that what X 
is that what X X 
is that your X 

*is he _ is he Y?  is he X ? 
is he X a X ? 
is he X his X ? 
is he X now ? 
is he X the X ? 
is he a X ? 
is he having a X ? 
is he in the X ? 

is he * X 
is he X 
is he X X 
is he a X 
is he going X 
is he going to X 
 
 

is this _ is this Y?  is this X ? 
is this a X ? 
is this the X ? 
is this your X ? 

is this * X 
is this X 
is this X X 
is this a X 
is this your X 

is she _ is she Y?  is she X? 
is she X now? 

is she X 
is she going X 
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*shall I _ shall I Y?  shall I X ? 
shall I X it ? 
shall I X the X ? 
shall I X you ? 
shall I X your X ? 

shall i * X 
shall i X 
shall i X X 
shall i X it 
shall i X you 
shall i do X 
shall i draw * X 
shall i get the X X 

*shall we _ shall we Y?  shall we X again ? 
shall we X her X ? 
shall we X it ? 
shall we X some X ? 
shall we X the X ? 
shall we X this one ? 
shall we X with your X? 
shall we build a X ? 
shall we draw a X ? 
shall we find the X ? 
shall we get the X out ? 
shall we have a X ? 
shall we make a X ? 
shall we make some X ? 
shall we put the X on ? 
shall we take the X off ? 

shall we X 
shall we X it 
shall we X the X 
shall we X this 
shall we do X 
shall we do a X 
shall we do some X 
shall we do the X 
shall we do the X X 
shall we find the X 
shall we get X 
shall we get the X 
shall we get the X out 
shall we have X 
shall we have a X 
shall we make a X 
shall we make some X 
shall we make the X 
shall we put X 
shall we put the X 
shall we put the X on 
shall we put this X 
shall we see if * X 
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shall mummy _ Not covered Not covered 
should we _ Not covered Not covered 
Not covered   aren’t they X ? 

do they eat X ? 
does X like X ? 
does <child’s name> 

like X ? 
does he like X ? 
does she like X ? 
does your X hurt? 
has she X her X? 
is there a X ? 
is there a X in there ? 
is there another X ? 
was it X? 
was it a X ? 
was that X ? 
were you X? 
would you like a X ? 
would you like some X ?

are there X 
are there any X 
are these X 
are those * X 
are those X 
aren't they * X 
aren't they X 
aren't we X 
can i X 
can i X X 
can i do X 
did X come 
did daddy X 
did he X 
did i X 
did she X 
did they X 
didn't X 
do they X 
do they eat X 
has he X 
has he got X 
has he got a X 
has she X 
has she got a X 
have they X 
have we got a X 
is there X 
is there a X 
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is there a X X 
is there a X in there 
is there another X 
isn't it X 
was he X 
was it * X 
was it X 
was it X X 
was that X 
was there * X 
wasn't it X 
were they X 
would X 
would you X 
would you like X 
would you like a X 
would you like some X 

Table 74. Comparison between Cameron-Faulkner et al. (2003)'s yes-no questions and the current frame approach. 
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Imperative constructions 
Cameron-Faulkner et 
al. (2003) frame Nesting frame Multiply-nested frame Full-utterance frame Prediction-based frame

*come _ come Y  come here X 
come on, X 
come on then, X 

come * X 
come X 
come and X 
come here X 
come on X 

*look _ look Y  look X 
look at all these X 
look at all those X 
look at that X 
look at the X 
look at this X 
look at your X 

look * X 
look X 
look at * X 
look at X 
look at all the X 
look at all these X 
look at all those X 
look at that X 
look at the X 
look at this X 
look at those X 
look what X 

*let’s _ let’s Y  let’s X it 
let’s X the X 
let’s X 
let’s have a look at your 

X 

let's X 
let's X this 
let's get the X 
let's make * X 
let's put the X 
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*put _ put Y  put her X on 
put it in the X then 
put it in the X 
put it on the X 
put some X on 
put the X away 
put the X in the X 
put the X in 
put the X next to the X 
put the X on the X 
put the X on 
put the X 
put them in the X 
put your X down 
put your X in 
put your X on 
put your X there 

put * X 
put X 
put X on 
put it X 
put it in the X 
put it on X 
put it on the X 
put some X on 
put the X 
put the X X 
put the X away 
put the X back 
put the X in 
put the X in the X 
put the X in there 
put the X on 
put them in the X 
put this X 
put your X 
put your X away 
put your X down 
put your X in 
put your X on 

*don’t _ don’t Y  don't X her X 
don't X him 
don't X it , <child’s 

name> 
don't X it X 
don't X it 
don't X me 
don't X that 

don't X 
don't X X 
don't X him 
don't X it 
don't X it X 
don't X that 
don't X them 
don't be X 
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don't X the X 
don't X them 
don't X too X 
don't X your X 
don't X 
don't put your X in there 
don't you like X ? 

don't get X 
 

*go _ go Y  go and get your X go X 
go and X 
go in the X 

get _ get Y  get X 
get a X 
get the X out 
get your X 

get * X 
get X 
get a X 
get her X 
get it X 
get the X 
get the X out 
get your X 

let me _ Not covered let me X 
see _ see Y   see * X 

see X 
see X X 
see if * X 
see if you can X 
see the X 

take _ take Y  take the X out 
take your X off 

take * X 
take X 
take the X 
take the X X 
take the X out 

turn _   turn the X over turn * X 
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make _ make Y  make a X 
make it X 
make some X 

make * X 
make X 
make a X 
make a X X 
make it X 
make some X 
make sure * X 
make this X 

watch _ 
Not covered 

watch * X 
watch X 
watch out X 

leave him _ Not covered Not covered 
press _ Not covered Not covered 
have a look _  have a [look X] 

have a [look at this X] 
 Not covered 

Not covered   do your X 
draw X 
draw a X 
find the X 
give him a X 
give it a good X 
give me the X 
have a X 
move the X 
move your X 

(several frames start 
with unmarked forms of 
verbs, but not 
necessarily occurring in 
utterance-initial 
position) 

Table 75. Comparison between Cameron-Faulkner et al. (2003)'s imperative constructions and the current frame approach.
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Copula constructions 
Cameron-Faulkner et 
al. (2003) frame Nesting frame Multiply-nested frame Full-utterance frame Prediction-based frame

*that’s [NP/Adj] that’s Y  
 

 that is X 
that is a X 
that's X, <child’s name> 
that's X as well 
that's X for X 
that's X 
that's a X, <child’s 

name> 
that's a X of X 
that's a X one 
that's a X 
that's a baby X 
that's a big X 
that's a bit X 
that's a funny X 
that's a good X 
that's a little X 
that's a mummy X 
that's a nice X 
that's a very good X 
that's an X 
that's another X 
that's for X 
that's for the X 
that's her X 
that's his X 
that's mummy's X 

that's * X 
that's X 
that's X X 
that's a * X 
that's a X 
that's a X X 
that's a X one 
that's a big X 
that's a bit X 
that's a bit of a X 
that's a funny X 
that's a good X 
that's a little X 
that's a nice X 
that's a very good X 
that's all X 
that's all the X 
that's an X 
that's not * X 
that's not X 
that's not X X 
that's not a X 
that's the * X 
that's the X X 
that's the X 
that's the X X 
that's the X one 
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that's my X 
that's not X 
that's not a X 
that's not a baby X 
that's not an X 
that's not the X 
that's not your X 
that's one X 
that's some X 
that's the X one 
that's the X 
that's the right X 
that's very X 
that's your X 

that's the little X 
that's the right X 
that's very X 
that is * X 
that is X 
that is a X 

*it’s [NP/Adj] it’s Y  it's X , <child’s name> 
it's X a X 
it's X again 
it's X in the X 
it's X now 
it's X on the X 
it's X the X 
it's X to X 
it's X 
it's a X , <child’s name> 
it's a X of X 
it's a X one 
it's a X yeah 
it's a X 
it's a baby X 
it's a big X 
it's a bit X 

it's * X 
it's X X 
it's X X X 
it's X a X 
it's X 
it's a * X 
it's a X and X X 
it's a X 
it's a X X 
it's a X one 
it's a big X 
it's a bit X 
it's a bit of X 
it's a funny X 
it's a good X 
it's a little X 
it's a nice X 
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it's a little X 
it's a nice X 
it's a red X 
it's all X 
it's an X 
it's another X 
it's for X 
it's her X 
it's his X 
it's in the X 
it's in your X 
it's like X 
it's like a X 
it's my X 
it's not X 
it's not a X 
it's not the X 
it's not your X 
it's on the X 
it's the X 
it's the other X 
it's too X 
it's very X 
it's your X 

it's a red X 
it's all X 
it's an X 
it's just * X 
it's just X 
it's just a X 
it's like X 
it's like a X 
it's like a X X 
it's no good X 
it's not * X 
it's not X 
it's not X X 
it's not a X 
it's not a X X 
it's not very X 
it's only * X 
it's only X 
it's too X 
it's very X 
it is * X 
it is X 
it is X X 
it is a X 
it is a bit X 

*there’s [NP/Adj] there’s Y  there's X 
there's a X here 
there's a X of X 
there's a X on the X 
there's a X there 
there's a X 

there's * X 
there's X 
there's X X 
there's a * X 
there's a X 
there's a X X 



 364

there's a little X 
there's an X 
there's another X 
there's her X 
there's his X 
there's lots of X 
there's more X 
there's my X 
there's no X 
there's one X 
there's only one X 
there's some X 
there's the X , look 
there's the X 
there's the baby X 
there's two X 
there's your X 

there's a X in the X 
there's a little X 
there's an X 
there's another X 
there's his X 
there's lots of X 
there's more X 
there's no X 
there's not X 
there's one X 
there's only one X 
there's some X 
there's some X here 
there's some more X 
there's the * X 
there's the X 
there's the X X 
there's two X 
there's your X 
there is X 
there is a X 

*he’s [NP/Adj] he’s Y  he's X 
he's a X 
he's in the X 
he's not X 
he's very X 

he is X 
he’s X 
he's a big X 
he's a bit X 
he's just X 
he's not * X 
he's not X 
he's very X 
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*here’s [NP/Adj] here’s Y  here's X 
here's a X 
here's a little X 
here's another X 
here's some X 
here's the X , look 
here's the X 
here's your X 

here's * X 
here's X 
here's another X 
here's some X 
here's your X 
 

*this’s [NP/Adj] this is Y  this is X 
this is a X 
this is my X 
this is the X one 
this is the X 
this is your X 

this is * X 
this is X 
this is X X 
this is a X 
this is a X X 
 

that one’s [NP/Adj]  that [one’s X] that one’s X 
that one’s X, is it? 
that one’s X, isn’t it? 
that one’s a X 
that one’s the X 

that one is X 
that one's * X 
that one's X 
that one's a X 
that one's got X 
that one's got a X 
that one's not X 

this one’s [NP/Adj]  this [one’s X] this one’s X this one X X 
this one's X 
 
 
 
 
 
 
 

*they’re [NP/Adj] they’re Y  they are X they are X 
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they're X the X 
they're X 
they're a bit X 
they're all X 
they're in the X 
they're not X 
they're the X 

they're * X 
they're X 
they're X X 
they're a bit X 
they're all * X 
they're all X 
they're called X 
they're going X 
they're just X 
they're not * X 
they're not X 
they're very X 

*you’re [NP/Adj] you’re Y  you are X 
you're X 
you're a X 
you're all X 
you're going to X 
you're not X 
you're too X 
you're very X 

you are X 
you're * X 
you're X 
you're a X 
you're a X X 
you're a bit X 
you're just X 
you're not X 
you're not X X 
you're not a X 
you're very X 

it was [NP/Adj] it was Y  it was X 
it was a X 

it was X 
it was X X 
it was a X 
it was a X X 
it was a bit X 
it was the X 
 

that was [NP/Adj] that was Y  that was X that was * X 
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that was a big X 
that was a bit X 
that was my X 

that was X 
that was X X 
that was a X 
that was a X X 
that was a big X 
that was a bit X 
that was a good X 
that was a nice X 

your [N] is 
your [N] are N/A Not covered 

 
your X is 
your X are 

Not covered    he was X 
he was a bit X 
it isn’t X 
it isn’t a X 
it wasn’t X 
it wasn’t a X 
they were X 

Table 76. Comparison between Cameron-Faulkner et al. (2003)'s copula constructions and the current frame approach.
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Declarative (transitive, intransitive and complex) constructions 
Cameron-Faulkner et 
al. (2003) frame Nesting frame Multiply-nested frame Full-utterance frame Prediction-based frame 

*you [VP NP] you Y  see Table 789 see Table 78 
*you’ve [VP NP] you’ve Y  you've X a X 

you've X it , have you ? 
you've X it ? 
you've X it now 
you've X it 
you've X my X 
you've X one 
you've X what ? 
you've X your X 
you've got X 
you've got a X ? 
you've got a X in your X 
you've got a X 
you've got lots of X 
you've got the X 
you've got your X on 
you've got your X 

you've X X 
you've X 
you've X it 
you've X it now 
you've been X 
you've got * X 
you've got X 
you've got X X 
you've got X on 
you've got a X 
you've got a X X 
you've got it X 
you've got lots of X 
you've got no X 
you've got one X 
you've got some X 
you've got to X 
you've got two X 
you've got your X 
you've got your X on 
you've just X 
you've just X it 
you've not X 

                                                 
9 Some CFLT frames have a great number of matches in the sets of full-utterance frames and prediction-based frames. For compactness, they are displayed in a more 
concise format in Table 78. 
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you’re [VP NP] you’re Y  you're X get X 
you're X it 
you're X me 
you're X the X ? 
you're X your X 

you're * X 
you're X 
you're X X 
you're doing X 
you're getting * X 
you're getting X 
you're going X 
you're going to * X 
you're going to X X 
you're going to X 
you're going to X it 
you're gonna X 
you're gonna X it 
you're gonna X me 
you're gonna get X 
you're having a X 
you're just X 
you're making X 
you're making a X 
you're not X 
you're not X X 
you're taking * X 
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*I [VP NP] I Y  I X it 
I X the X 
I can see X 
I can see a X 
I can see the X 
I can't X it 
I don't like X 
I don't want X 
I haven't got a X 
I haven't got any X 
I know it's X 
I know it's your X 
I know you like X 
I like X 
I said X 
I want a X 
I want my X 

see Table 78 

I’ll [VP NP] I’ll Y  I’ll X it 
I’ll X that 
I’ll X the X 

I will X 
I’ll X 
I’ll X it 
I’ll X you 
I’ll be X 
I’ll have * X 
I’ll have X 
I’ll have this X 
I’ll have to X 
I’ll just X 
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I’m [VP NP] I’m Y  I’m X it 
I’m X you 

I'm * X 
I'm X 
I'm X X 
I'm going to X 
I'm gonna X 
I'm just X 
I'm making * X 
I'm not * X 
I'm not X 

I’ve [VP NP] I’ve Y  I’ve X a X 
I’ve X it 
I’ve got X 
I’ve got a X 
I’ve got the X 

I've X 
I've got * X 
I've got X 
I've got a X 
I've got to X 
I've got two X 
I've got your X 
I've just X 

*we [VP NP] we Y  we X some X, didn’t we? 
we haven’t got any X 

we * X 
we X X X 
we X the X 
we X 
we X X 
we X X * X 
we X it 
we are X 
we can X 
we can't X 
we could X 
we didn't X 
we don't X 
we don't want X 
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we have X 
we haven't X 
we haven't got X; 
we haven't got a X 
we haven't got any X 
we need the X 
we saw X 
we went to X 
we went to the X 

*it [VP NP] it Y  Not covered it * X 
it X X 
it X X X 
it X a X 
it X 
it X X * X 
it can't be X 
it does X 
it doesn't X 
it goes X 
it looks X 
it looks a bit like X 
it looks like X 
it looks like a X 
it looks very X 
it might X 
it might be X 
it must be X 
it will X 
it willn't X 
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it’s [VP NP] it’s Y  it’s X a X 
it’s X the X 
it’s got X 
it’s got a X 
it’s got X on 
it’s got X in it 

it's * X 
it's X X X 
it's X a X 
it's X 
it's X X 
it's going X 
it's going to X 
it's gonna X 
it's got X X 
it's got X 
it's got X on 
it's got a X 
it's just * X 
it's just X 
it's not * X 
it's not X 
it's not X X 
it's only * X 
it's only X 

that [VP NP] that Y  Not covered that X 
that X X 
that X X X 
that X a X 
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he’s [VP NP] he’s Y  he’s got X 
he’s got a X 

he's * X 
he's X a X 
he's X 
he's X X 
he's been X 
he's going to X 
he's going to X X 
he's going to the X 
he's gonna X 
he's got * X 
he's got X 
he's got a X 
he's got a X X 
he's got a big X 
he's got big X 
he's got his X 
he's got no X 
he's just X 
he's not * X 
he's not X 
 

she [VP NP] she Y  she X a X 
she X her X 

she * X 
she X 
she X X 
she can X 
she doesn't like X 
she likes X 
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they (ve) [VP NP] they X  Not covered they * X 
they X 
they X X 
they can X 
they don't X 
they eat X 
they have X 
they just X 
they look X 
they look like X 

mummy [VP NP] mummy Y  mummy X it 
mummy X the X 

mummy * X 
mummy X 
mummy X X 
mummy X it 
mummy and daddy X 
mummy didn't X 
mummy do it X 

mummy has [VP NP] mummy’s Y  mummy’s got a X mummy's * X 
mummy's X 
mummy's got * X 
mummy's got X 
mummy's got a X 
mummy's not X 

Anne [VP NP] <child’s name> Y  <child’s name> X 
<child’s name> X it 

<child’s name> * X 
<child’s name> X 
<child’s name> X it 
<child’s name> likes X 
 
 
 

*it [VP] it Y (as above)  it X it * X 
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it looks like a X it X X X 
it X a X 
it X 
it X X 
it X X * X 
it does X 
it doesn't X 
it goes X 
it is * X 
it is X X 
it is X 
it is X X 
it isn't X 
it looks X 
it looks a bit like X 
it looks like X 
it looks like a X 
it looks very X 
it might X 
it might be X 
it must be X 
it was X X 
it was X 
it was X X 
it wasn't X 
it will X 
it willn't X 
 
 
 

that one [VP]   that one X that one * X 
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that one is X 
that one's X , is it ? 
that one's X , isn't it ? 
that one's X 
that one's a X 
that one's the X 

that one X 
that one is X 
that one's * X 
that one's X 
that one's not X 

it’s [VP] it’s Y (as above)  it's X , childname 
it's X , is it ? 
it's X , isn't it ? 
it's X ? 
it's X again 
it's X in the X 
it's X now 
it's X on the X 
it's X to X 
it's X 
it's going to X 
it's not X , is it ? 
it's not X 
 

it's * X 
it's X X X 
it's X 
it's X X 
it's going X 
it's going to X 
it's gone X 
it's gonna X 
it's just * X 
it's just X 
it's not * X 
it's not X 
it's not X X 
it's only * X 
it's only X 

*you [VP] you Y (as above)  you X with the X 
you X 
you can X 
you can't X 
you did X , didn't you ? 
you didn't X 
you do X 
you don't X 
you have to X 
you want to X ? 

you * X 
you X X 
you X X X 
you X have X 
you X 
you X X * X 
you X to 
you can X 
you can X X 
you can't X 
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you want to X with your 
X ? 

you can't X X 
you did X 
you did X X 
you didn't X 
you do * X 
you do X X 
you do X 
you don't * X 
you don't X 
you don't X X 
you don't get X 
you go X 
you go and X 
you have to X 
you have to X X 
you haven't X 
you just X 
you should have X;  
you want to X 

you’re [VP] you’re Y (as above)  you are X , aren't you ? 
you are X 
you're X , are you ? 
you're X , aren't you ? 
you're X ? 
you're X on my X 
you're X on the X 
you're X 
you're going to X 
you're not X , are you ? 
you're not X ? 
you're not X 

you're * X 
you're X 
you're X X 
you're a X 
you're a X X 
you're a bit X 
you're being X 
you're going X 
you're getting X 
you're going to X 
you're gonna X 
you're going to the X 
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you're just X 
you're not X 
you're not going X 
you're sitting on X 

you’ve [VP] you’ve Y (as above)  Not covered you've X X 
you've X 
you've been X 
you've got to X 
you've just X 
you've not X 

*I [VP] I Y (as above)  I X 
I can’t X 

I * X 
I X X 
I X X X 
I X 
I X X * X 
I can X 
I can't X X 
I can't X 
I didn't X 
I don't X X 
I don't X;  
I have X 
I haven't X 
I want to X 
 
 
 
 
 
 

he [VP] he Y  he X he * X 
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he can’t X he X 
he X X 
he X in 
he can X 
he can't X 
he did X 
he didn't X 
he doesn't X 
he has X 
he hasn't X 
he went X 
he willn't X 

he’s [VP] he’s Y (as above) 

 

he’s X a X 
he’s X his X 
he’s X it 
he’s X the X 
he’s X you 
he’s X your X 
he’s got X 
he’s got a X 

he's * X 
he's X 
he's X X 
he's been X 
he's going X 
he's going to X 
he's going to X X 
he's gone X 
he's gonna X 
he's just X 
he's not * X 
he's not X 

she’s [VP] she’s Y (as above)  she’s X 
she’s X her X 
she’s going to X 

she's * X 
she's X 
she's going X 
she's going to X 
she's not X 

the phone [VP] Not covered Not covered 
*there [pro] go Not covered there you go X 
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*I think _  I [think Y] 
I [think Y like] 
I [think it Y]  
I [think she Y] 
I [think you Y] 

I think he's X 
I think it's X 
I think it's a X 
I think that's X 
I think that's a X 
I think they're X 
I think you've X it 

I think * X 
I think X 
I think X X 
I think he's X 
I think it X 
I think it might be X 
I think it was X 
I think it's * X 
I think it's X 
I think it's X X 
I think it's a X 
I think she's X 
I think that X X 
I think that's X 
I think that's X X 
I think that's a X 
I think that's the X 
I think they're X 
I think this X 
I think we X 
I think you X 
I think you X X 
I think you're X 
 
 
 
 
 
 

*I don’t think _  I [don’t [think Y]] I don’t think it’s X I don't think * X 
I don't think X 
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I don't think X X 
I don't think it X 
I don't think it's X 
I don't think it's a X 
I don't think that X 
I don't think there are any 

more X 
I don't think there is a X 
I don't think there's X 
I don't think they X 

I thought _  I [thought you X] I thought it was X 
I thought it was a X 

I thought X 
I thought it was X 
I thought it was a X 
I thought you were X 

think _ 

Not covered 

think X 
think X X 
think it's X 
think it's a X 

I don’t know _   I don’t know X 
I don’t know where X is 
I don’t know where the X 

is 

I don't know X 
I don't know what * X 
I don't know where * X 
I don't know where X is 

you know _ 

Not covered 

you know * X 
you know X 
you know it's X 
 
 
 

*if _ 
Not covered 

if * X 
if X 
if X X 
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if I X 
if I X X 
if I X you 
if it's X 
if you X 
if you X X 
if you X it 
if you're X 

*because _ because Y  because he’s X 
because it’s X 

because * X 
because X 
because X X 
because he's X 
because i X 
because i X X 
because i'm X 
because it was X X 
because it's * X 
because it's X 
because she X 
because she's X 
because that's X 
because they X 
because they're X 
because you X 
because you X X 
because you X it 
because you were X 
because you're X 
because you've X 

when _ Not covered when * X 
when X 
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when X X 
when it's X 
when she X 
when they X 
when we go to the X 
when you X 
when you were X 
when you're X 

Table 77. Comparison between Cameron-Faulkner et al. (2003)'s declarative constructions and the current frame approach. 
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Cameron-Faulkner 
et al. (2003) frame 

Lexically-specific frame matches 

You [VP NP] Full-utterance frame matches: you X a X;  you X her;  you X him;  you X his X;  you X it ?;  you X it X;  you X it 
then;  you X it;  you X me;  you X mummy;  you X that X;  you X that one;  you X that;  you X the X;  you X them;  
you X your X;  you X;  you can X it;  you can have X;  you can't X it ?;  you can't X it;  you don't like X , do you ?;  
you don't like X ?;  you don't like X;  you don't want X;  you find me the X;  you find the X;  you have a X;  you hurt 
your X ?;  you like X , do you ?;  you like X , don't you ?;  you like X ?;  you like X;  you like the X , don't you ?;  you 
need a X ?;  you need a X;  you put the X in;  you say X;  you want X ?;  you want X;  you want a X , do you ?;  you 
want a X ?;  you want a X;  you want me to X it ?;  you want some X , do you ?;  you want some X ?;  you want some 
X;  you want the X ?;  you want the X;  you want to X ?;  you want to X it ?;  you want to X with your X ?;  you want 
to have a X ?;  you want to make a X ?;  you want your X ?   

You [VP NP] Prediction-based frame matches: you * X;  you * a X;  you X X;  you X X X;  you X a X X;  you X have X;  you X 
it * X;  you X it X;  you X me * X;  you X that X X;  you X;  you X X * X;  you X him;  you X it;  you X it off;  you X 
it out;  you X it then;  you X me;  you X some;  you X that;  you X that X;  you X that one;  you X them;  you X them 
out;  you X to;  you X what;   
you X your X;  you are X;  you can X;  you can X X;  you can X it;  you can do it X;  you can have * X;   
you can have X;  you can have it X;  you can see X;  you can't X;  you can't X X;  you can't X it;  you can't eat X;   
you can't have X;  you could have X;  you did X;  you did X X;  you didn't X;  you do * X;  you do X X;  you do X;  
you do it X;  you don't * X;  you don't X;  you don't X X;  you don't X it;  you don't get X;  you don't like * X;   
you don't like X X;  you don't like X;  you don't need * X;  you don't need X;  you don't want X;  you don't want a X;  
you find me * X;  you find the X;  you get X;  you get the X out;  you go X;  you go and X;  you got * X;  you got X;  
you got a X;  you got it X;  you had X;  you had a X;  you had a X X;  you have * X;  you have X X;  you have X;   
you have a X;  you have to X;  you have to X X;  you have to X it;  you have to X it X;  you haven't X;   
you haven't got X;  you haven't got a X;  you haven't got any X;  you just X;  you like * X;  you like X;  you like X X;  
you like that X;  you mean X;  you need * X;  you need X;  you need a X;  you put the X;  you put the X in;   
you say X;  you see X X;  you see X;  you should have X; you want * X;  you want X;  you want a X;  you want a X X;  
you want it X;  you want me to X;  you want me to X it;  you want some X;  you want that X;  you want to X;   
you want to X it;  you want your X 
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I [VP NP] Prediction-based frame matches: I * X;  I X X;  I X X X;   I X;  I X X * X;  I X it;  I X it X;  I X you;  I X you * X;  
I can X;  I can have * X;  I can have X;  I can see * X;  I can see X;  I can see the X;  I can't X X;  I can't X;   
I can't X it;  I can't do it X;  I didn't X;  I didn't X that;  I don't X X;  I don't X; I don't like X;  I don't want * X;   
I don't want X;  I don't want any X;  I don't want to X;  I have X;  I haven't X;  I haven't got a X;  I haven't got any X;   
I know X X;  I know X;  I know it's * X;  I know it's X;  I know it's a X;  I know what X;  I know you like X;  I said X;  
I want X;  I want a X;  I want my X;  I want to X 

Table 78. Selected declarative constructions from Cameron-Faulkner et al. (2003) and their lexically-specific frame matches. 
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