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Abstract 

The coronavirus disease of 2019 (COVID-19) affected the whole world economically, socially, 

and healthily. By the fourth quarter of 2022, over 600 million people were infected, with a 

mortality rate of around 6.5 million. The global response to COVID-19 management has been 

multi-faceted, involving restrictions, lockdowns, and immunisation programs. Forecasting 

models have also been widely utilised to estimate future case numbers and inform government 

policy. Reliable forecasts of disease case numbers are also very important from a medical 

perspective, as they can significantly assist with resource allocation and planning. 

 

The scientific literature reports on an extensive range of models that have been applied to the 

modelling and forecasting of the COVID-19 case number dataset. Models investigated range 

from agent-based computational approaches to statistical stochastic process models and 

machine learning approaches. Many of the models investigated were successfully applied; 

however, many were applied in limited country-specific contexts, and substantial limitations 

were identified regarding the reliability of forecasts. A wealth of data on the COVID-19 

pandemic has now been collected, and this data provides an opportunity to address model 

limitations and develop improved models for future pandemic management. 

 

This project aims to address the gaps identified in the literature by evaluating a wide range of 

relevant statistical stochastic process models and neural network COVID-19 forecasting 

models across multiple countries. Furthermore, this project introduces and evaluates a novel 

modelling approach (ARMA-ELM) that combines both statistical and machine learning models. 

Model performance was assessed across multiple models and countries, with the ARMA-ELM 

providing enhanced performance in certain circumstances. Overall, significant differences 

were found in the COVID-19 data structures between different countries, resulting in no 

particular model performing best in all circumstances. 
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Chapter 1 Introduction 

1.1 Introduction 

Statistical stochastic process and neural network models have emerged as essential tools in 

a wide range of domains, including economics, medicine, and biology. These classes of 

models describe statistical patterns within datasets, accounting for both deterministic and 

generative random components. Potential uses of statistical stochastic process models 

include understanding data structure, statistical significance comparisons, prediction and 

forecasting of future observations. There are several approaches to forecast time series, 

including classical statistical models and machine learning algorithms. For instance, the 

ARIMA (Auto-regressive Integrated Moving Average) models are an important class of 

statistical stochastic process models that are utilised for the modelling univariate time series 

data. Despite their relatively simple mathematical structure the ARIMA models are well-suited 

for many applications including COVID-19 incidences (Yang et al. 2020, p. 1417). Major 

potential benefits of the ARIMA models include the ability to estimate model parameters with 

a relatively small amount of data and the capability to provide accurate short-term forecasts. 

The global COVID-19 pandemic has provided an unprecedented amount of data regarding 

disease transmission dynamics at the population level. Predictive models proved essential to 

pandemic response, informing health authorities of likely future incidence numbers and 

hospital admissions. A wide range of models were developed including epidemiological 

(COVID19 disease transmission dynamics), computational (agent-based models) (Lejenue & 

Linder 2020), mathematical (differential equations) (Jourdain & Lelievre 2003), statistical 

(data-driven) (Chintalapudi, Battineni & Amenta 2020), and machine learning (data-driven) 

(Brunton & Kutz 2022). Data-driven models were particularly successful as they relied on 

observable patterns rather than implicit assumptions about the mechanisms of disease 

transmission. The statistical modelling approaches focused on models that were assumed to 

have particular mathematical structures incorporating a deterministic and random component. 

The statistical models required the estimation of parameters from the data under the assumed 

mathematical model structure. In contrast, machine learning methods such as the neural 

network place less assumptions on the data generative structure and focus instead on 

attempting to learn a model to describe the data. Both the statistical and machine learning 

approaches have advantages and disadvantages, the statistical approaches provide a better 

understanding of the mathematical model generating the data but, in many cases, the 

assumed model dose not capture all of the complexities associated with the disease 

transmission process. In contrast, machine learning approaches often provide greater forecast 

accuracy but at the expense of understanding the structure of the data generation model. It is 
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currently unknown whether the statistical or machine learning approach is best suited to 

COVID-19 forecasting applications. Furthermore, it might be beneficial to combine statistical 

and machine learning approaches to obtain the advantages of both paradigms. This project 

will focus on a kay task faced by forecast modellers during COVID-19 pandemic. Specifically, 

7-days ahead daily incidence and mortality forecasts will be estimated and evaluated for a 

range of state-of-the-art and novel models across five counties. The statistical models 

evaluated include (ARMA, ARIMA, WARIMA, ARFIMA), neural machine learning models 

(ANN, ELM), and novel hybrid models (ARMA-ELM). Models will be developed and evaluated 

using World Health Organisation (WHO) COVID-19 incidences and mortalities datasets at a 

critical stage in the pandemic (corresponding to the middle of the 4th global wave). By this 

stage a sufficiently large data set had been collected within each country to allow both 

statistical and machine learning model fitting. Furthermore, the model training data set will 

describe a range of complex disease transmission dynamics including the initiation, 

establishment, and response phases of the pandemic (lockdowns, vaccination campaigns) 

along with the evolution of COVID-19 variants. This scenario, although limited to one particular 

point in the pandemic timeline is believed to be highly informative for model comparisons and 

form the foundation of future research involving more comprehensive investigations across all 

stages of the pandemic. These future investigations are require considerable computational 

resources, this research will inform whether such experiments should proceed and guide 

experimental design. 

 

1.2 Chapters Summary 

The introduction and chapters summary have been discussed in Chapter one. In Chapter two 

the literature review of the statistical stochastic process models and neural network 

approaches is represented. Chapter three discusses the methodology of the project and 

introduces the novel ARMA-ELM model. In Chapter four the project results are presented. The 

discussion of the results is contained in Chapter five. Chapter six provides project conclusion 

followed by the references list. 
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Chapter 2 Literature Review 

2.1 COVID-19 Forecasting with Stochastic Process Models 

   2.1.1 Introduction 

There have been considerable prior research utilising statistical stochastic process and neural 

network models to forecast the COVID-19 incidence and mortality numbers. Statistical 

stochastic process and neural network models are of major scientific interest to this application 

because of their ability to address random fluctuations in incidence numbers within a 

mathematical context without full knowledge of the underlying epidemiological processes. The 

statistical stochastic process and neural network models reviewed are predominately data-

driven and only require estimation of model parameters from the COVID-19 incidence and 

mortality numbers for their implementation. These benefits have encouraged substantial 

research into a range of potentially suitable models utilising statistical stochastic process and 

neural networks. As evidenced in this review the stochastic process modelling approach to 

COVID-19 incidence and mortality numbers are overall quite effective. However, there is 

considerable scope for scientific research to improve model forecasting performance. 

 

   2.1.2 Auto-Regressive Integrated Moving Average (ARIMA) Models 

The Auto-Regressive Integrated Moving Average (ARIMA) model is widely applied in demand 

forecasting and future stock price and electricity prices prediction based on past prices. For 

instance, Contreras et al. (2003, p. 1018) found that the performance of the ARIMA model 

needs five hours for the Spanish electricity price market to predict a one-day ahead price 

forecasting, while the Californian electricity price market needs only two hours for a one-day 

ahead forecast. Moreover, utilising the ARIMA model, a food manufacturing firm can estimate 

the demand for its products and make accurate projections ten months in advance (Fattah et 

al. 2018, p. 7). The ARIMA model is described mathematically via the following form in 

equation (1). 

  (1 − ∑ Φi β
ip

i = 0 ) (1 − B)d yt =  (1 + ∑ θi β
iq

i = 0 ) εt .   for     εt~𝑁(0, 𝜎2)         (1) 

Chakraborty et al. (2022, p. 1035) 

where, B is the backshift operator, p and q are ARIMA parameters, and d is the differencing 

term.  

The ARIMA model is also a generalisation of a wider class of models including Auto-

Regressive (AR), Moving Average (MA), and Auto-regressive moving Average (ARMA) (the 

ARIMA model with difference parameter d = 0)  

 

The ARIMA model, as described by Box et al. (2015, p. 11), is an effective model in detecting 

linear trends in stationary time series data. The ARIMA model has been applied to COVID-19 
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incidences forecasting in various studies such as Alzahrani, Aljamaan and Al-Fakih (2020, p. 

916) used ARIMA model to forecast the daily confirmed incidences of COVID-19 in Saudi

Arabia from the 2nd of March 2020 till the 20th of April 2020, also the ARIMA model was utilised 

to predict a ten-days ahead forecasting for the new confirmed incidences, mortalities and 

recovery in Pakistan form the 8th of March 2020 to 27th of June 2020 (Khan, Saeed & Ali 2020, 

p. 1). The ARIMA model was found to be beneficial for COVID-19 forecasting because of the

performance and accuracy of the model. According to Ribeiro et al. (2020, p. 7) ARIMA model 

was the second out of five models that was used to predict COVID-19 confirmed incidences 

from the beginning of the pandemic until late April 2020 in Brazil. However, the ARIMA model 

was found to have substantial limitations to COVID-19 new confirmed incidences forecasting, 

it performed poorly for non-stationary time series datasets. Chakraborty et al. (2022, p. 1058) 

states that the vast majority of time series datasets relating to epidemics are non-stationary. 

The ARIMA model is only suitable for stationary time series datasets or time series that can 

be mathematically transformed to be stationary, hence ARIMA models could be of limited 

utility for COVID-19 forecasting. Mélard and Pasteels (2000, p. 505) mentioned that the 

ARIMA model is also limited when it comes to forecasting outliers or extreme values lying 

outside the general trend captured by the model. These extreme values are very important for 

the COVID-19 incidence and mortality forecasting. To address these shortcomings, several 

innovations were proposed, including the Wavelet-Based ARIMA (WARIMA), the 

Autoregressive Fractionally Integrated Moving Average (ARFIMA), and the Self-exciting 

Threshold Autoregressive (SETAR) (Chakraborty et al. 2022, pp. 1023-1059 & Chakraborty & 

Ghosh 2020, pp. 2-9). 

     2.1.2.1 Wavelet-Based ARIMA (WARIMA) Model 

The Wavelet-Based ARIMA (WARIMA) model was designed to address the issue of non-

stationary time series dataset (change mean or variance) (Chakraborty et al. 2022, p. 1034).  

Chakraborty and Ghosh (2020, p. 3) claim that the WARIMA model has the capability to 

provide information within the signals for both the scale or frequency and time domain. The 

WARIMA applies the wavelet transform prior to ARIMA modelling. The wavelet transform 

coefficients are stationary across time and scale under assumptions about the signal 

properties. The WARIMA model relates signal properties across scales using equation (2). 

 øm,n(t) =  
1

√|m|
ø (

t−n

m
) ;     m, n ∈ ℛ        (2) 

(Chakraborty et al. 2022, p. 1034) 

Where, m (≠0) is the scaling parameter, n is the translation parameter. The scaling coefficients 

øm,n(t) thereby describe different properties at different scales (m), allowing the model to 

describe different trends (e.g., daily, weekly, monthly, etc). 
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Empirical inspection of the COVID-19 new confirmed incidences and mortalities datasets 

reveal that it often exhibits non-stationary patterns Figure (2.1) and Figure (2.2). 

Figure (2.1) 

Figure (2.2) 

Chakraborty et al. (2022, p. 1034) claim that the WARIMA model performs better in predicting 

COVID-19 incidences when compared to ARIMA model because most of the COVID-19 time 

series data are non-stationary. The limitation of the WARIMA model is that it requires large 

sample of data to describe all of the multi-scale trend (seasonal trends) in order to produce 

accurate forecasts. This limitation is problematic in the emerging phases of COVID-19 

pandemic forecasting, as limited data might be available, and prevent accurate estimation of 

the WARIMA model in such circumstances. 
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     2.1.2.2 Autoregressive Fractionally Integrated Moving Average (ARFIMA) 

Model 

The Autoregressive Fractionally Integrated Moving Average (ARFIMA) model extends the 

ARIMA model to better match time series data with long memory (Masa & Diaz 2017, p. 28). 

As Chakraborty et al. (2022, p. 1035) put it, the ARFIMA models are suitable for time series 

data that has a slowly long-run mean decay deviation rather than an exponential decay 

assumed in ARIMA models. Moreover, Liu, Chen & Zhang (2017, p. 2) claim that when it 

comes to dealing with data that have the Long-range dependency attribute, the ARFIMA 

model provides a superior fit and outcome when compared to the traditional integer order 

models in terms of how well it fits the data. The ARFIMA model has the same mathematical 

form as ARIMA model, however, the difference parameter (d) is restricted to non-negative 

integers. 

 (1 − ∑ Φi β
ip

i = 0 ) (1 − B)d yt =  (1 + ∑ θi β
iq

i = 0 ) εt .   for     εt~𝑁(0, 𝜎2)  (3) 

Chakraborty et al. (2022, p. 1035) 

The ARFIMA model has widely been used in analysing time series such as gold prices, stock 

returns, trade securities, financial markets, air traffic, and crude oil prices. For example, 

Armachie (2017, p. 66) found that when compared to the ARIMA models, the ARFIMA model 

was able to predict values with a reduced standard error as well as a narrower confidence 

interval in the stock returns. The ARFIMA model is likely very useful for COVID-19 forecasting 

as such data is likely to have long-range dependencies (Chakraborty et al. 2022, p. 1031). 

     2.1.2.3 Self-exciting Threshold Autoregressive (SETAR) Model 

The Self-exciting Threshold Autoregressive (SETAR) model is an extension of Auto-

Regressive models such as ARIMA and ARFIMA. The SETAR model address regime 

switching behaviour within datasets, which occurs when different magnitudes of response 

variable correspond to different models. In the SETAR models, each regime is associated with 

a separate autoregressive (AR) component. According to Davidescu, Apostu & Marin (2021, 

p. 11) a 2-regime SETAR model may be written mathematically as in equation (4).

 yt =  {
∅0(1) + ∑p(1)

i=1  ∅i(1)yt−i +  εt(1)  ;   if yt−1 ≤ c ,

∅0(2) + ∑  
p(2)
i=1 ∅i(2)yt−i +  εt(2)  ;   if yt−1 < c ,

 (4) 

Where, ∅i is the coefficients in the regime εt is error terms, c is the threshold value at which 

the regime switches and p is the parameter of AR. 

The SETAR model is good at modelling time series data where a higher level of flexibility is 

required in model parameters (Davidescu, Apostu & Marin 2021, p. 11). According to Tong 

(1990, p. 321) the SETAR model is applied in predicting future value with assumption that the 

time series changes the moment the series enters a dissimilar regime. Furthermore, foresight 
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is achieved using the SETAR model on the premise that the time series' behaviour changes 

when it transitions into a new regime (Chakraborty et al. 2022, p. 1036). The SETAR modelling 

approach is highly relevant to COVID-19 incidence numbers forecasting, as COVID-19 

incidence number datasets often exhibit high non-stationarity and underlying random shifts in 

incidence numbers driven by unobservable processes. Chakraborty et al. (2022, p. 1052) 

applied the SETAR model to COVID-19 incidences number forecasting in Brazil, and it 

performed quite well and out-performed other models such as ARIMA and ARFIMA for short-

term forecasting 15 days ahead of COVID-19 incidence numbers. In another words, the 

SETAR model performs better in terms of accuracy metrics for shorter period forecasting of 

COVID-19, when compared to other single models. The limitation with this model is that it is 

less effective if there is no regime switching behaviour. In such scenarios, The SETAR model 

is over-parametrised and requires greater amounts of data to estimate model parameters. 
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2.1.3 Neural Network Models 

 2.1.3.1 Artificial Neural Networks (ANN) Model 

The Artificial Neural Networks (ANN) model has been widely utilised in epidemiological 

forecasting. Applications of the ANN model includes COVID-19, water resources and building 

electrical energy (Niazkar & Niazkar 2020 p. 4; Pavlicko, Vojteková & Blažeková 2022 p. 1). 

According to Hilal et al. (2020, p. 4) the mathematical format of the ANN model can be written 

as listed in equations (5) and (6) below. 

 v  =  ∑ (wiinput ∗ xim
i=1 ) +  βiinput  (5) 

 yt  =  βiinput + ∑ (vi ∗n
i=1 wioutput)  (6) 

Where, i is the input neurones, m is the first hidden layer, n is the second hidden layer, wi is 

the node weights and βi is the node bias. 

The ANN model calculates the neuron’s net input as weighted sum of inputs making it suitable 

for forecasting of problems of time series dataset (Faraway & Chatfield 1998, p. 234). The 

ANN model is suitable modelling tool for non-stationary or non-linear datasets, however there 

are several practical challenges associated with its usage. The selection of the optimal number 

of model hyper-parameters and hidden layers along with computational complexity make the 

ANN model more challenging to implement in practice compared to other ARIMA-style models 

(Maier & Dandy 2000, p. 119). A large number of hidden layers and parameters might also 

require a greater amount of data to reliably estimate the model. Chakraborty et al. (2022, p. 

1050) evaluated ANN models for COVID-19 incidences number forecasting in India. Overall, 

the ANN model performed the best comparing to the single predicting models for 15 and 30 

days ahead forecasts.  

     2.1.3.2 Autoregressive Neural Network (ARNN) Model 

The Autoregressive Neural Network (ARNN) model introduces an auto-regressive component 

into the ANN model, which provide advantages by incorporating the influence of preceding 

observations (similar to ARIMA). Jurado et al. (2013, p. 186) claim that due to a decrease in 

recurrent connections, the autoregressive multi-context recurrent neural network accelerates 

the training process and is an excellent technique for approximating daily peak demand. 

According to Chakraborty et al. (2022, p. 1050) the mathematical form of the ARNN model as 

in equation (7). 

 f(  −
x )  =  c0 + ∑ wjϕ (aj +  b′j

k
j=1   −

x )                                     (7)

Where,  −
x is p-lagged inputs, c0, wj, aj are connecting strengths, bj are p-dimensional weight 

vector and ϕ is a bounded nonlinear sigmoidal function. 

The ARNN has been in applications as good at forecasting in arrange of applications, 

especially for airline and is well-suited for forecasting of non-seasonal time series (Hyndman 
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& Athanasopoulos 2018, p. 447). Chakraborty et al. (2022, p. 1048) applied the AENN model 

to the forecasting COVID-19 incidences number in the USA and found that compared to 

ARIMA, that the ARNN model offers relatively competitive accuracy metrics for 15-day-ahead 

projections.  

 2.1.3.3 Extreme Learning Machine (ELM) Model 

Recent times have seen a rise in the amount of research utilising neural networks and machine 

learning methods. The Extreme Learning Machine (ELM) is one such neural machine learning 

algorithm that has been successfully utilised across a range of domains including illness 

diagnostics, traffic sign recognition TSR, and image quality (Li & Huang 2022, p. 166). The 

ELM was developed to train single hidden layer feedforward neural network (SLFN) which is 

a very popular form of artificial neural network (Wang et al. 2021, p. 2). The ELM has layers 

of hidden nodes, called neurones, with randomly assigned input weights (Chen 2019, p. 4). 

The architecture of the Extreme Learning Machine is shown in Figure (2.3).

Figure (2.3) “The architecture of the Extreme Learning Machine” 

by (Rajpal et al. 2022, p. 197) 

The ELM model performs non-linear regression as per equation (8). 

 yj =  ∑ βi gi (ai xj +  bi
L
i=1 )         (8) 

Where,  xj ∈  ℝn is the training vector,   yj ∈  ℝm is the target values,  ai is the weight vector

between the input layer to the ith hidden node,  bi is the bias, βi is the weight vector between

the ith hidden node and output neurones and gi(xi) is a non-linear “activation” function such

as the Sigmoid function (9),

Figure removed due to copyright restriction.
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gi(xi) = (
1

1+ e(−ai
T xi +  bi)

)  (9) 

or Gaussian function (10),         

gi(xi) =  e(−bi ‖ai− xi‖
2)                                               (10)

(Huang, Yu & Gu 2018, p. 109). 

The ELM regression process is illustrated in Figure (2.3) the input values (x1, … , xj, … , xn) are 

supplied to the ELM network architecture. A set randomly generated weight (a1, … , ai, … , aL) 

and biases (b1, … , bi, … , bL) are then applied to linearly modify the (x1, … , xj, … , xn) inputs. 

These linearly modified inputs are then further modified by a per-specified activation function 

g(•) with additional weights (β1, … , βi, … , βL) linearly optimised for regression to each observed 

variable (y1, … , yj, … , ym).  

The ELM model can be described in matrix form as, 

Y = Hβ  (11) 

where, 

H =  [
g1(a1x1 +  b1) ⋯ g1(aLx1 +  bL)

⋮ ⋱ ⋮
g1(a1xn +  b1) ⋯ g1(aLxn +  bL)

] ,   β = [
β1

…
βL

]

T

 ,   Y =   [

y1

…
yL

]

T

 (12) 

The optimal β weights are selected via minimisation of the least-squares solution. 

That is,   

‖Hβ̂ − Y‖ =  min
β

‖Hβ̂ − Y‖  (13) 

Which is found using the Moore-Penrose generalised inverse of the H matrix. 

β̂ =  H†Y                                                       (14) 

    (Shi, Chen & Li 2018, pp. 1352-1353). 

The use of the Moore-Penrose inverse and random weights initialisation provides the ELM 

with comparatively faster model estimation performance compared to other standard neural 

network modelling approaches based on back-propagation (Huang, Zhu & Siew 2006, p. 490). 

Therefore, the ELM seems appropriate for situations requiring rapid prediction and reaction 

capacity (Huang, Zhu & Siew 2006, p. 499). The ELM models have been used in various real-

world applications such as transportation, and animal images where it has demonstrated 

advantages in term of speed, accuracy, and generalisation (Qing et al. 2020, p. 430). Zhang 

et al. (2015, p. 4) applied the ELM model on different transportation type datasets such as 

cars, bikes, and airplanes. They found on their study that the ELM is faster and higher on 

performance and accuracy compared to other state-of-the-art statistical machine learning 

models such as the support vector machines (SVM). Khan et al. (2021, p. 1014) applied the 

ELM model to the forecasting COVID-19 incidence numbers via testing the COVID-19 

pneumonia and normal chest computed tomography scans. They found that the ELM classifier 
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outperformed other models such as Quadratic SVM (Q-SVM) and Logistic Regression in terms 

of predictive accuracy. This application of the ELM was for image datasets, which has a 

fundamentally different structure compared to the COVID-19 time series datasets that are of 

interest in this research. Nonetheless, the ELM appears to be a good candidate for further 

research due to its reported excellence performance of the ELM in COVID-19 incidence 

number forecasting. Despite these benefits, the ELM model has some limitations that might 

affect the overall performance. In contrast to other modelling options, such as the ARIMA, the 

ELM does not include specific components to address the separate seasonal, trend or 

stochastic components. There is no autoregressive component within the ELM, which instead 

assumes a linear combination of activation function. In the case of time series data, the Y 

observations are ordered and likely correlated. Such auto-correlation is not explicitly 

addressed within the ELM and instead the ELM model is permitted to find an optimal set of β 

least-squares regression weights. This observation suggests that the ELM is best utilised to 

describe the overall linear or non-linear structure of the data set, whist the residual component 

might best be described utilised other models such as ARIMA. 
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2.1.4 Auto-Correlation Function (ACF)

Auto-correlation function (ACF) is the correlation of a signal with a delayed copy of itself. 

Autocorrelation, described informally, is the similarity of observations as a function of their 

distance in time (Flores et al. 2012, p. 3). The ACF describes the various autocorrelations 

obtained at different lags, r,  in the stochastic process. Specifically, the autocorrelation function 

is defined as: 

RXX(t1,t2) = E[Xt1X̅t2]  (15) 

     (Zięba & Ramza 2011, p. 532) 

In practice, on actual discrete time series datasets, the ACF is estimated by 

RXX(t1, t2) = ∑ x(t)x(t − r)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (16) 

 (Zięba & Ramza, 2011, p. 532) 

Autocorrelation function can be used to locate missing fundamental frequencies in signals 

inferred by their harmonic frequencies or to detect periodic signals disguised by noise. It is 

frequently employed in signal processing when examining functions or collections of values, 

such as time-domain signals. From a statistical perspective, it is extremely useful to detect 

hidden dependencies within stochastic processes or identify the order of Auto-regressive or 

Moving-Average models. 

2.1.5 Partial Auto-Correlation Function (PACF) 

The partial autocorrelation (PACF) is similar to the ACF; however, it controls the effects of other lags 

when performing an estimate. It can be considered a conditional autocorrelation; the autocorrelation is 

calculated conditional on those observations at shorter time lags. The 1st order (lag) partial 

autocorrelation will be equal to the 1st order autocorrelation (as there are no preceding lags). That is,  

∅11 = 𝑐𝑜𝑟𝑟(𝑥𝑡+1, 𝑥𝑡) =  𝜌(1) (17) 

 The 2nd  order partial autocorrelation is however given by,  

∅22 = 𝑐𝑜𝑟𝑟(𝑥𝑡+2 − 𝑥̂𝑡+2, 𝑥𝑡 − 𝑥̂𝑡) =  
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑥𝑡,𝑥𝑡−2|𝑥𝑡−1)

√𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑥𝑡|𝑥𝑡−1)𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑥𝑡|𝑥𝑡−1) 
(18) 

(Dürre, Fried & Liboschik 2015, p. 207) 

More generally, 

∅ℎℎ = 𝑐𝑜𝑟𝑟(𝑥𝑡+ℎ − 𝑥̂𝑡+ℎ , 𝑥𝑡 − 𝑥̂𝑡),    ℎ ≥ 2                                    (19)

The PACF can be used to examine the autocorrelation structure of a process with the effects of the other 

lags removed. A useful aspect of the PACF is that it can be utilised to identify order of AR process 

models. The theoretical PACF for an AR model "shuts off" after the model's order. The term "shuts off" 

refers to the theoretical limit beyond which the partial autocorrelations are equal to 0. In other words, 

the number of partial autocorrelations that are non-zero determines the order of the AR model. 
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Chapter 3 Methodology

3.1 Overview: The COVID-19 Pandemic: 

Pandemics are large disease outbreaks that affect several countries and pose major health, 

social, and economic risks (Madhav et al. 2018, p. 315). A quick-moving pathogen spreading 

across the globe has the potential to kill tens of millions of people, disrupt economies, and 

destabilise national security just as the Spanish flu influenza, HIV/AIDS, and COVID-19 has 

demonstrated. On the 31st of December 2019, a group of people who worked at the Huanan 

Seafood Open Market in Wuhan, Hubei Province, all got infection pneumonia infection (World 

Health Organisation 2020). In the early stages of the COVID-19, some of the patients had 

been in contact with a wholesale seafood market and this suggests animal to person 

transmission (Yang et al. 2020, p. 2). A total of 1975 people have been infected and 25 

reported mortalities due to the COVID-19 by the end of January 2020 in mainland China 

(Wang, Tang & Wei 2020, p. 443). The first confirmed incidences reported outside mainland 

China was a person who travelled to Thailand form Wuhan on the 8 th of January 2020 (World 

Health Organisation 2020). From this date, COVID-19 pandemic spread rapidly across the 

globe. The COVID-19 outbreak was designated a worldwide pandemic by the World Health 

Organization (WHO) on the 11th of March 2020 (Cucinotta & Vanelli 2020). According to the 

WHO by 2022 the total number of people who contracted COVID-19 is over 600 million with 

over 6.5 million mortalities (https://covid19.who.int).   

3.2 Datasets: 

The COVID-19 daily prevalence datasets were collected from the World Health Organisation’s 

(WHO) official website (https://covid19.who.int). The WHO COVID-19 website is an 

authoritative data source with information reported by countries across the world. Table (3.1) 

summarises the data collected from the WHO COVID-19 website across countries and data 

collection periods. The daily new confirmed incidences and mortalities datasets were collected 

for five countries including Brazil, India, Saudi Arabia, Spain, and the United States of America 

(USA) between April 2020 and September 2021. These countries were selected due to the 

disproportionally high impact of the COVID-19 pandemic in these countries compared to 

neighbourhood countries. For instance, Saudi Arabia had the highest new confirmed 

incidences during this period comparing to other Gulf Arab countries. Moreover, Brazil and the 

USA also had the highest number of COVID-19 incidences within the South and North 

American regions. The specific time frames collected were because of the difficulties the 

counties faced due to not understanding the virus, multiple waves, and variants such as alpha 

and delta.  

https://covid19.who.int/
https://covid19.who.int/
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Table (3.1). COVID -19 Incidences and Mortalities Datasets Summary 

Location Total Min Max Date Length 

D
a
ily

 C
o
n
fi
rm

e
d
 

in
c
id

e
n
c
e
s
 

Brazil 21283107 0 150106 

From 

April 2020 

To 

September 2021 

548 

DAYS 

India 33664783 336 414188 

Saudi Arabia 545527 39 4919 

Spain 4814258 113 40902 

The United States of America 42809418 8363 294541 

D
a
ily

 C
o
n
fi
rm

e
d

 

M
o
rt

a
lit

ie
s
 

Brazil 594740 23 4249 

     From 

April 2020 

To 

September 2021 

548 

DAYS 

India 451490 5 6148 

Saudi Arabia 8693 0 58 

Spain 85837 0 913 

The United States of America 685243 135 4746 

3.3 ARMA-ELM Model: 

The literature review demonstrated that statistical time series models such as ARIMA, 

WARIMA, AFRIMA, and non-linear models such as ANN, and ELM are helpful for modelling 

and predicting time series similar to the COVID-19 datasets. A novel approach might be to 

combine the benefits of statistical and machine learning models. The statistical models would 

provide partial understanding of the data generative process whilst the machine learning 

models could describe the non-linear components.  

The combined models are the Extreme Learning Machine (ELM) which is a type of feedforward 

artificial neural network that is trained using a single step learning algorithm, in contrast to the 

iterative learning algorithms used in other types of neural networks. And the Autoregressive 

Moving Average (ARMA) model is a type of statistical model that is used to describe the 

temporal dependencies in time series data. 

It is possible to combine an ELM model with an ARMA model by using the ELM model to 

predict the next value in the time series based on the previous values, which can be modelled 

using an ARMA model. To do this, the input to the ELM model would be the past values of the 

time series, and the output would be the next value in the series. The ELM model could then 

be trained to minimise the difference between the predicted next value and the actual next 

value in the time series. 

Alternatively, the ELM model could be used to predict the residuals of an ARMA model, which 

are the differences between the observed values of the time series and the values predicted 

by the ARMA model. This approach could potentially improve the accuracy of the ARMA model 
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by capturing any remaining temporal dependencies that are not captured by the ARMA model. 

The mathematical form of the combined model is displayed as follow in equation (20). 

yt =  xt +  εt,           for   εt~ N(0, σ2)     (20)

= dt  + st  +  εt 

Where, yt is the observation of time series dataset, εt is the error term, dt is the ELM model,   

dt =  ∑ βi gi (ai xt +  bi
L
i=1 ) (21) 

 st is the ARMA model, 

𝑠𝑡 =  𝑦𝑡 =  𝛼0 + ∑ 𝛽𝑖 𝑦𝑡−𝑖
𝑝
𝑖 = 0 +  𝛾𝑡 −  ∑ 𝛼𝑗  𝛾𝑡−𝑗

𝑞
𝑗 = 0                        (22)

where, 𝛾𝑡  ~ 𝑁(0, 𝜎2) is the error term.

Combining two or more time series models could improve the quality and performance of 

these models. The benefit of combining models is that some models have difficulty dealing 

with non-stationary such as ARMA time series data sets. In contrast, others, such as ELM, 

have no problem dealing with stationary and non-stationary time series datasets. The Auto-

Regressive Moving Average (ARMA) and ELM algorithms have been discussed earlier in the 

literature review section. Furthermore, ARMA and ELM algorithms could perform much better 

with COVID-19 time series datasets for short-term forecasting. Several models such as the 

SETAR and ARNN were reviewed but not evaluated dur to difficulties in practical 

implementation within the timelines available in the project. 



16 

3.4 Experimental Analysis: 

   3.4.1 Model Performance Metrics: 

When forecasting time series models, the different methods of the model performance metrics 

needed to evaluate the performance of these models. The most well-known and widely used 

model performance metrics are as follow: 

- Root Mean Square Error (RMSE)

RMSE is a measure of the difference between predicted and actual values that is popular 
because it is in the same unit as the original data, which makes it easy to interpret. It is 
calculated as the square root of the mean squared error (MSA), which is the mean of the 
squared differences between the predicted and actual values. 

RMSE = √ 
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1  (23) 

  (Chai & Draxler 2014, p. 1248) 

- Mean Absolute Error (MAE)

MAE is another measure of the difference between predicted and actual values, but it is less 
sensitive to outliers than RMSE. It is calculated as the mean of the absolute differences 
between the predicted and actual values. 

MAE = 
1

𝑛
 ∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1  (24) 

 (Chai & Draxler 2014, p. 1248) 

- Mean Absolute Percentage Error (MAPE)

MAPE, is a measure of the difference between the predictions made by a model and the true 

values, expressed as a percentage. It is calculated by taking the average of the absolute 

differences between the predictions and the true values, divided by the true values, and 

multiplied by 100. 

MAPE = 
100

𝑛
 ∑ |

 𝑦̂𝑖  − 𝑦𝑖

𝑦𝑖
| 𝑛

𝑖=1  (25) 

 (Chakraborty et al.  2022, p. 1045) 
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- Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE, is a variant of MAPE that is more suitable for use when the true values can be 

negative. It is calculated by taking the average of the absolute differences between the 

predictions and the true values, divided by the average of the true values and the absolute 

value of the predictions, and multiplied by 100. 

SMAPE = 
100

𝑛
 ∑

|𝑦̂𝑖 − 𝑦𝑖|

(| 𝑦̂𝑖|+ |𝑦𝑖|)/2
𝑛
𝑖=1     (26) 

(Chakraborty et al.  2022, p. 1045) 

Where, 𝑦𝑖 are actual values of the time series response and 𝑦𝑖̂ are the forecasts of the time 

series 𝑦𝑖 response several (n) time series in the future. However, the forecasting model that 

performs the best is the one that has the most accurate metrics as assessed on data 

previously unseen (not used to fit the model) but several (n) time steps in the future. A 7-days 

ahead forecast was evaluated in this project as it corresponds to a weekly response strategy. 

Note that these metrics are also summative over this time period, all daily forecast and a 7-

day ahead forecast. Model performance metrics may be useful for measuring the average 

prediction error and tracking forecast performance over time. Understanding model forecast 

performance can be utilised to guide the selection of the most appropriate model. 
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     3.4.2  Methods: 

There are several methods used to analysis the COVID-19 confirmed incidences and 

mortalities time series datasets such as ARMA, ARIMA, ELM and ELM-ARMA. However, 

these methods respond differently regarding to the performance of the model performance 

metrics such as RMSE, MAE, MAPE, and SMAPE. These metrics were selected and utilised 

due to their wide use within the scientific literature for evaluation of forecast model 

performance. Table (3.2) is showing the models that used for specific COVID-19 time series 

datasets and the model performance metrics. Table (3.3) displays the functions and packages 

that used in R programming for each model. Table(3.4) shows the functions used in Microsoft 

Excel software to calculate the model performance metrics used in this project. 

Table (3.2) Methods, Data and Model Performance Metric 

Table (3.3) The Implementation of the Functions and Package used in R programming 

Table (3.4) The Implementation of the Functions used in Excel 

Methods Data Model Performance Metrics 

ARMA 

COVID-19 Incidences 
and Mortalities 

Datasets for Five 
Countries 

RMSE 
MAE 

MAPE 
SMAPE 

ARIMA 

WARIMA 

ARFIMA 

ANN 

ELM 

ARMA-ELM 

Models Functions Packages Resources 

ARMA arima forecast (Hyndman & Khandakar 2008) 

ARIMA auto.arima forecast (Hyndman & Khandakar 2008) 

WARIMA WaveletFittingarma WaveletArima (Paul & Samanta 2017) 

ARFIMA arfima forecast (Hyndman & Khandakar 2008) 

ANN mlp nnfor (Kourentzes 2022) 

ELM elm nnfor (Kourentzes 2022) 

ARMA-ELM ---- ---- ---- 

Model Performance Metrics Functions 

RMSE 
=sum() 
=min() 
=max() 

MAE 

MAPE 

SMAPE 
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3.5 Summary: 

Accurate forecasting models can help with the management of the COVID-19 pandemic. A 

large amount of data has now been collected that can assist with the development and 

refinement of existing models. The COVID-19 confirmed incidences and mortalities time series 

datasets for five countries such as (Brazil, India, Saudi Arabia, Spain, and the USA) were 

collected daily from April 2020 to September 2021. These data sets were gathered to forecast 

using different statistical stochastic process and neural network models such as (ARMA, 

ARIMA, WARIMA, WARFIMA, ANN, ELM, and ARMA-ELM). These models have different 

performance which can be checked via virous model performance metrics such as (RMSE, 

MAE, MAPE, and SMAPE). Assessment of model performance across multiple countries 

through these metrics will be used to gain further insights regarding the most suitable model 

for COVID-19 pandemic forecasting. 
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Chapter 4 Results 
4.1 Analysis of Results: 

In this chapter, several stochastic process time series models are used to perform forecasts 

of confirmed incidences and mortalities of COVID-19 daily datasets. The COVID-19 time 

series datasets divided into two periods, (i) the training dataset and (ii) testing dataset. For the 

daily new confirmed incidences and mortalities, the first 541 days of the time series used for 

training, while 7 days ahead used for forecasting test set. Fitting a model using training data 

and testing it with test data is typical. Most test data comparisons involve distinct forecast 

timeframes. Our forecasting model was calculated on training data and tested on the latest 

seven observations. Forecast error will be measured summatively 7-days ahead. Tables (4.1) 

and (4.2) show the training (shown in black) and testing (shown in red) datasets for Brazil, 

India, Saudi Arabia, Spain, and the USA. These tables also present the autocorrelation 

function (ACF) and partial autocorrelation function (PACF) plots for their respective time series 

datasets. The ACF and PACF provide insights into the different statistic dependency 

structures in the COVID-19 datasets. For the purpose of short-term forecasting of COVID-19 

confirmed incidences and mortalities in five countries, seven distinct statistical stochastic 

process and shallow neural network forecasting models (ARMA, ARIMA, WARIMA, ARFIMA, 

ANN, ELM, and ARMA-ELM) have been evaluated as potential competitors. Forecasts for the 

next 7 days have been created for each model, and model forecasting metrics have been 

calculated, in order to discover which models, provide the most accurate forecasts. The 

performance of each model was evaluated using several error metrics (RMSE, MAS, MAPE, 

and SMAPE), and the models ranked according to optimal performance on each of these 

metrics for forecasting COVID-19 according to each country’s datasets.
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Table (4.1) COVID-19 time series of daily confirmed incidences and corresponding ACF and PACF plots

Location Time Series ACF Plot PACF Plot 

Brazil 

India 

Saudi Arabia 

Spain 

USA 
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Table (4.2) COVID-19 time series of daily confirmed mortalities and corresponding ACF and PACF plots 

Location Time Series ACF Plot PACF Plot 

Brazil 

India 

Saudi Arabia 

Spain 

USA 
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   4.1.1 Results for Brazil COVID-19 Datasets: 
  4.1.1.1 Daily Confirmed Incidences: 

The model performance metrics for 7-days ahead forecasts for the COVID-19 daily confirmed 

incidences in Brazil are shown in table (4.3). The table displays that the novel model ARMA-

ELM has the best performance based on the model performance metrics results for 7-days 

ahead forecasts. Also, the table shows competitive model performance measures between 

the statistical stochastic process models ARMA and WARIMA and shallow neural network 

model ANN and ELM respectively. 

Table (4.3) Results of Model Performance Metrics for COVID-19 Daily Incidences in Brazil 

Model Rank 
7-Days Ahead Forecast

RMSE MAE MAPE SMAPE 

ARMA 2 17468.24 15805.13 103.8758 0.6907718 

ARIMA(3,1,2) 7 30929.31 26272.625 168.3126 0.7927868 

WARIMA 5 18358.17 14140.16 79.89341 0.4975719 
ARFIMA(5,0,1) 6 27305.34 22286.41 126.0224 0.84137 

ANN 3 17428.01 16977.48 113.5309 0.6616902 

ELM 4 18233.9 16364.62 119.5199 0.6489345 
ARMA-ELM 1 8949.213 7775.971 51.13834 0.3922376 

 4.1.1.2 Daily Confirmed Mortalities: 

ARIMA(3,1,2) model performs better in terms of model performance measures for a 7-days 

ahead forecast in case of Brazil COVID-19 daily confirmed mortalities dataset than other 

single models. The WARIMA model also indicated competitive model performance metrics for 

Brazil COVID-19 daily confirmed mortalities data for 7-days ahead forecasts. 

Table (4.5) Results of Model Performance Metrics for COVID-19 Daily Mortalities in Brazil 

Model Rank 
7-Days Ahead Forecast

RMSE MAE MAPE SMAPE 

ARMA 6 447.7734 370.6344 118.7944 0.5594492 

ARIMA(3,1,2) 1 160.2656 133.2710 31.19412 0.2735234 

WARIMA 2 205.9289 169.3075 35.83052 0.3541215 
ARFIMA(3,0,3) 5 377.6871 293.0789 96.97163 0.4874408 

ANN 7 602.4776 567.4116 110.7475 1.66141 
ELM 3 303.7401 268.1312 268.1312 0.5407471 

ARMA-ELM 4 341.9699 304.4522 52.20345 0.6264325 
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4.1.2 Results for India COVID-19 Datasets: 

 4.1.2.1 Daily Confirmed Incidences: 

Table (4.6) shows that overall, the ARMA-ELM model has the best model performance whilst 

the ARFIMA(1,0.3,1) has the best performance of all statistical stochastic process time series 

models. In contrast, the WARIMA was the worst model for 7-days ahead forecast because it 

has the largest error metrics performance. On the other hand, the shallow neural network 

models (ANN, ELM) performed similarly based on the model performance metrics for 7-days 

ahead forecasts.  

Table (4.6) Results of Model Performance Metrics for COVID-19 Daily Incidences in India 

Model Rank 
7-Days Ahead Forecast

RMSE MAE MAPE SMAPE 
ARMA 6 8602.309 7053.537 33.0063 0.2603236 

ARIMA(0,1,0) 3 8162.070 6700.286 31.356635 0.2498328 
WARIMA 7 14294.09 13320.25 58.86671 0.4301177 

ARFIMA(1,0.3,1) 2 7579.647 6006.097 28.47378 0.2283468 

ANN 5 8534.936 6960.871 32.63198 0.2575118 

ELM 4 8409.729 6933.597 32.39021 0.2568567 

ARMA-ELM 1 4826.279 3777.928 17.78628 0.1544262 

 4.1.1.2 Daily Confirmed Mortalities: 

For 7-days ahead forecasts, table (4.7) clarify that the ARIMA(1,1,2) is found to have the best 

scores based on the model performance metrics. The ARMA-ELM, ELM, and WARIMA 

models have competitive model performance metrics in the same forecasting test period. 

From table (4.7) ANN model has the largest error metrics for 7-days ahead forecast. This 

means that ANN model is the worst model among statistical stochastic process and shallow 

neural network models. 

Table (4.7) Results of Model Performance Metrics for COVID-19 Daily Mortalities in India 

Model Rank 
7-Days Ahead Forecast

RMSE MAE MAPE SMAPE 
ARMA 6 70.23672 53.71193 23.17055 0.1876006 

ARIMA(1,1,2) 1 58.00556 43.60589 17.95554 0.1572433 
WARIMA 3 62.01478 47.30692 18.76769 0.1704964 

ARFIMA(2,0.26,2) 5 69.47171 53.08754 22.89292 0.1857575 

ANN 7 120.4137 100.3295 41.46147 0.3078169 
ELM 4 62.09704 46.94246 20.02149 0.1674212 

ARMA-ELM 2 60.69611 44.51769 18.88216 0.1598831 



25 

4.1.2 Results for Saudi Arabia COVID-19 Datasets: 

     4.1.2.1 Daily Confirmed Incidences: 

Among the single models shown in table (4.8), the ARIMA(4,1,2) model performs the best for 

7-days ahead forecasts based on the model performance metrics results. In comparison, the

ARMA and ARFIMA(1,0.08,1) models have competitive model performance metrics results for 

7-days ahead forecasts with each other.

Table (4.8) Results of Model Performance Metrics for COVID-19 Daily Incidences in Saudi Arabia 

Model Rank 
7-Days Ahead Forecast

RMSE MAE MAPE SMAPE 

ARMA 3 35.53531 32.6039 66.85814 0.4785586 
ARIMA(4,1,2) 1 5.905277 5.00311 10.860020 0.1014873 

WARIMA 2 21.66 15.35638 29.2011 0.4061347 

ARFIMA(1,0.08,1) 4 38.86632 35.55259 72.63117 0.5079171 

ANN 6 80.81619 75.30142 152.2493 0.8233498 
ELM 7 255.537 234.2958 468.5573 1.325971 

ARMA-ELM 5 53.42374 52.39692 107.4632 0.6830167 

 4.1.2.2 Daily Confirmed Mortalities: 

Table (4.9) shows a strong competition between most of the single models in term of the model 

performance metrics for 7-days ahead forecasts. However, the WARIMA model has the lowest 

model performance metrics scores which means that the performance of the model is the best 

compared to other models such as ARMA, ARIMA(1,1,2) and ANN.  

Table (4.9) Results of Model Performance Metrics for COVID-19 Daily Mortalities in Saudi Arabia 

Model Rank 
7-Days Ahead Forecast

RMSE MAE MAPE SMAPE 

ARMA 3 1.623874 1.481426 32.8618 0.2718467 
ARIMA(1,1,2) 2 1.452730 1.269477 28.51576 0.2382759 

WARIMA 1 1.165185 1.00046 22.49156 0.1936144 

ARFIMA(2,0,0) 5 2.074942 1.904782 42.03926 0.3331312 

ANN 4 1.656425 1.469885 32.84141 0.2694078 
ELM 7 3.671586 3.484829 75.34023 0.5274326 

ARMA-ELM 6 2.289793 2.196469 47.80663 0.3755856 
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4.1.4 Results for Spain COVID-19 Datasets: 

 4.1.4.1 Daily Confirmed Incidences: 

Table (4.10) shows the model performance metrics scores for the COVID-19 daily confirmed 

incidences forecasting in Spain. ARIMA(5,1,2) is found to have the best performance in terms 

of the model performance metrics for 7-days ahead forecasts among statistical stochastic 

process and shallow neural network models for COVID-19 daily confirmed incidences in 

Spain.  

Table (4.10) Results of Model Performance Metrics for COVID-19 Daily Incidences in Spain 

Model Rank 
7-Days Ahead Forecast

RMSE MAE MAPE SMAPE 
ARMA 7 4139.345 3789.202 255.5722 0.9467358 

ARIMA(5,1,2) 1 317.989 270.7406 17.97392 0.155588 
WARIMA 2 439.97 310.1688 21.70497 0.1769777 

ARFIMA(0,0.49,2) 6 2785.83 2582.656 177.4441 0.7940297 
ANN 4 793.1334 476.3264 46.77364 0.2674402 
ELM 5 1649.367 1368.386 104.2062 0.5330315 

ARMA-ELM 3 663.5095 642.337 41.15941 0.3612768 

 4.1.4.2 Daily Confirmed Mortalities: 

The COVID-19 daily confirmed mortalities forecasting models in Spain have different model 

performance metrics results. Table (4.11) shows that ARMA-ELM performs the best in terms 

the model performance metrics for 7-days ahead forecasts. Additionally, the table also shows 

competitive model performance metrics results for 7-days ahead forecast among the single 

models such as ARMA, ARIMA(0,2,4), and ARFIMA(2,0.06,3) models. 

Table (4.11) Results of Model Performance Metrics for COVID-19 Daily Mortalities in Spain 

Model Rank 
7-Days Ahead Forecast

RMSE MAE MAPE SMAPE 

ARMA 6 14.29874 12.79646 59.91859 0.4286964 
ARIMA(0,2,4) 4 13.79661 12.50071 58.06993 0.4218927 

WARIMA 7 19.39089 16.70897 79.58947 0.509387 

ARFIMA(2,0.06,3) 5 13.97416 12.66925 58.84455 0.4260493 
ANN 3 11.36071 10.23447 47.63107 0.3628892 
ELM 2 9.49796 8.90565 40.33561 0.3239295 

ARMA-ELM 1 7.267706 6.804329 30.67781 0.2605935 
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   4.1.3 Results for the USA COVID-19 Datasets: 

 4.1.3.1 Daily Confirmed Incidences: 

Forecasting models of the daily incidences in the USA shown in table (4.12) illustrates that the 

novel model ARMA-ELM has the best performance based on the model performance metrics 

results for 7-days ahead forecasts. However, WARIMA and ARFIMA(5,0.13,2) models also 

have competitive model performance metrics. 

Table (4.12) Results of Model Performance Metrics for COVID-19 Daily Incidences in USA 

Model Rank 
7-Days Ahead Forecast

RMSE MAE MAPE SMAPE 

ARMA 5 27731.59 22869.58 23.9978 0.2010715 
ARIMA(0,1,5) 7 39683.07 37035.528 36.96837 0.2999612 

WARIMA 2 18721.4 17887.17 16.98363 0.1549072 

ARFIMA(5,0.13,2) 3 19156.81 17157.44 14.96898 0.1380828 

ANN 6 28763.36 26431.98 26.40542 0.2251015 

ELM 4 22481.25 19642.13 20.07649 0.1754591 
ARMA-ELM 1 17566.55 14498.01 15.01234 0.135726 

 4.1.3.2 Daily Confirmed Mortalities: 

Results shown in table (4.13) clarify that among all the statistical stochastic process and 

shallow neural network models that used in this project, ARIMA(3,1,2) performs the best in 

terms of the model performance metrics for 7-days ahead forecasts. Further, ANN, 

ARFIMA(1,0.49,0), and ELM models also have competitive model performance metrics for the 

same predicting period. 

Table (4.13) Results of Model Performance Metrics for COVID-19 Daily Mortalities in USA 

Model Rank 
7-Days Ahead Forecast

RMSE MAE MAPE SMAPE 
ARMA 5 383.0114 328.3725 22.97733 0.2060458 

ARIMA(3,1,2) 1 261.1251 195.0309 14.07068 0.1274668 
WARIMA 7 466.0928 364.8011 21.09943 0.2392982 

ARFIMA(1,0.49,0) 3 352.5501 303.0633 20.97745 0.1928247 

ANN 2 305.1653 244.9936 18.46981 0.1563767 
ELM 4 361.2123 293.1694 22.06462 0.1838653 

ARMA-ELM 6 388.5118 336.739 23.02036 0.2111565 
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4.2  Models Summary 

The project used seven different time series models to forecast the COVID-19 incidences and 

mortalities for the five countries. Figure (4.1) displays the number of times each models had 

top performance (according to the model performance metrics) for COVID-19 incidences 

datasets. These results indicate that for the COVID-19 incidence data showed that ARIMA 

model performs better for both Saudi Arabia and Spain time series. In contrast, the novel 

model ARMA-ELM performs better for Brazil, India, and the USA time series datasets. 

Figure (4.1) Top Model Counts for COVID-19 Incidences datasets across all countries 

Figure (4.2) displays the top-model performing counts for the COVID-19 mortalities datasets 

according to the model performance metrics. The ARIMA model performed the best three 

times (for the COVID-19 mortalities datasets of Brazil, India, and the USA). Whereas the 

WARIMA and ARMA-ELM models both performed the best once (for the COVID-19 mortalities 

datasets of Saudi Arabia and Spain respectively).  

Figure (4.2) Top Model Counts for COVID-19 Mortalities datasets across all countries 
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Figures (4.3), (4.4), (4.5), and (4.6), respectively illustrate the mean, minimum, and maximum 

of the RMSE, MAE, MAPE, and SMAPE metrics for the COVID-19 incidences datasets across 

all countries. 

Figure (4.3) RMSE for Incidences datasets for all countries 

Figure (4.4) MAE for Incidences datasets for all countries 

Figure (4.5) MAPE for Incidences datasets for all countries 
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Figure (4.6) SMAPE for Incidences datasets for all countries 

Figures (4.7), (4.8), (4.9), and (4.10), respectively display the mean, minimum, and maximum 

of the RMSE, MAE, MAPE, and SMAPE metrics for the COVID-19 mortalities datasets across 

all countries.  

Figure (4.7) RMSE for Mortalities datasets for all countries 

Figure (4.8) MAE for Mortalities datasets for all countries 
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Figure (4.9) MAPE for Mortalities datasets for all countries 

Figure (4.10) SMAPE for Mortalities datasets for all countries 
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Chapter 5 Discussion 

5.1 Discussion 

Daily confirmed incidences and mortalities of COVID-19 were used to evaluate multiple 

statistical time series, shallow neural network, and hybrid combined models across five 

nations (Brazil, India, Saudi Arabia, Spain, and the USA) form April 2020 to September 

2021.Preliminary analysis and inspection of the data indicated substantial differences in both 

the appearance and correlation structures of these different datasets. In this project seven 

forecasting models (ARMA, ARIMA, WARIMA, ARFIMA, ANN, ELM, and ARMA-ELM) applied 

for 7-day ahead projections to the same ten datasets (five incidence datasets, and five 

mortalities datasets). These models tested using four different model performance metrics 

(RMSE, MAE, MAPE, and SMAPE). The project results found that there is no specific model 

has performed the best for all the COVID-19 time series datasets. 

Non-linear and non-stationary behaviour were observed to be common features of daily 

COVID-19 incidences and mortalities records. Table (4.1) shows the COVID-19 time series, 

ACF, and PACF for daily incidences in five countries (Brazil, India, Saudi Arabia, Spain, and 

the USA) respectively. The ACF plot for the COVID-19 incidences time series in Brazil, India, 

Spain, and the USA show several significant lags for example at 7, 14, and 21 lags. These 

significant might be that the COVID-19 incidences influenced by the action of last three weeks. 

In contrast, the plot of ACF for the COVID-19 incidences in Saudi Arabia shows that there are 

only two significant lags at 3, and 5. For the PACF plot of COVID-19 incidences in India, Saudi 

Arabia, and the USA there is a strong correlation with the adjacent observation where lag = 1. 

Whereas the PACF plot for the COVID-19 incidences in Brazil has significant lags at 1, 6, and 

7. Furthermore, the PACF plot for the COVID-19 incidences in Spain has strong correlation at

lag = 1,3,6,8.Table (4.2) shows the COVID-19 time series, ACF, and PACF for daily mortalities 

in five countries (Brazil, India, Saudi Arabia, Spain, and the USA) respectively. The ACF plot 

for the COVID-19 mortalities time series in Brazil, and the USA show a few strong significant 

lags for example at 7, 14, and 21 lags, while in India, and Spain show only one strong 

correlation at lag = -0.5. Moreover, the ACF plot for the COVID-19 mortalities time series in 

Saudi Arabia there are several significant lags, but the first two lags are correlated strongly 

than the rest. For the PACF plot of COVID-19 mortalities in all the five countries has a common 

strong correlation at lag = 1. Additionally, the PACF plot of COVID-19 mortalities in Brazil, 

India, Saudi Arabia, and the USA also have significant lags at 6 and 7, 2 and 3, 2, and 5, 6, 

and 7 respectively. A limitation noted with use of both the ACF and PACF is that the 

assumption of stationarity is unlikely to hold for all datasets, which could be bias some of the 

observed ACF and PACF magnitudes.  
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The models that used in this project responded differently to the COVID-19 time series 

datasets. For the COVID-19 incidences datasets the ARIMA model performed better in two 

countries’ datasets (Saudi Arabia, and Spain), while the novel ARMA-ELM model has better 

performance in the other countries (Brazil, India, and the USA) in term of the model 

performance metrics for 7-days ahead forecasts. On the other hand, for the COVID-19 

mortalities datasets the ARIMA model has better performance for the dataset of three counties 

(Brazil, India, and the USA), whereas the WARIMA model and novel ARMA-ELM model 

performed better for the data of Saudi Arabia, and Spain respectively based on the model 

performance metrics for 7-days ahead forecasts. Statistically, the ARIMA model performed 

better with 50% of the datasets, the hybrid model ARMA-ELM has better performance of 40% 

of the datasets, and the WARIMA model performed better with only 10% of the datasets. 

Generally, the forecasting of these datasets show that the statistical stochastic process 

models perform better than the neural network models. Additionally, the novel ARMA-ELM 

model also has competitive performance compared to other models such as (ARFIMA, ANN). 

Another important consideration of these comparisons was revealed in figure (4.3) – (4.6), for 

the incidence’s datasets, the ARMA-ELM had the lowest mean RSME and the maximum 

RSME as calculated over all 7-days ahead forecasts. A similar result was obtained for the 

mean MAS and maximum MAS metrics. The WARIMA model performed best for the mean 

MAPE and maximum MAPE metric but was closely followed by ARMA-ELM (which had a 

smaller minimum MAPE than WARIMA). However, the ARIMA had the smallest minimum 

MAPE for all models. For the SMAPE metric, the ARMA-ELM model was outperformed for 

minimum, mean and maximum statistics but for each case it was nonetheless still within top 

three performing models. Both RSME and MAE are key metrics of importance when 

evaluating forecast error. For mortalities datasets, as presented in figures (4.7) – (4.10) the 

ARIMA model had the lowest mean, minimum, and maximum RMSE. Similarly, the MAE and 

SMAPE results showed the lowest mean, minimum, and maximum for the ARIMA model. 

However, the ARIMA model had the smallest mean and minimum MAPE, while the ARMA-

ELM model had the lowest maximum value for the same metric. These results suggest that 

the ARMA-ELM modelling approach is promising for COVID-19 incidence forecasting and 

might overall the best general performance at an aggregate level (when models are 

considered globally). Evaluation of model performance for each specific country is still 

recommended as the ARMA-ELM is not always the top-performing model for each country. 

A key finding of this research project is that there are substantial differences in the COVID-19 

data correlation structures between different countries. This is potentially due to differences in 

the underlying transmission dynamics and other medical factors between countries. There 

was a range of interesting contrasts and comparisons including the correlation lags at lag 7, 
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14, and 21. These correlated lags might improve the performance of the models specially the 

ARIMA model. 

5.2 Limitations of the Research and Future Directions 

This project achieved its objectives through a comprehensive investigation of COVID-19 

forecasting model performance across a range of countries and models. In addition, the 

ARMA-ELM a novel forecasting was evaluated and found to be very promising especially for 

COVID-19 incidence datasets. Despite the progress achieved in this project , there are 

limitations which need to be acknowledged. These limitations also indicated future research 

directions. 

- A limited range of statistical and machine learning models were evaluated, further

comparisons including other Markov process models and machine learning models

such as Support Vector Regression or LSTM (Deep Learning Regression) could have

been performed.

- Model assessments and comparisons were still very limited. Only one scenario and a

single 7-days ahead forecast was evaluated. More extensive comparisons should

include incorporate a running window forecast evaluation, for instance, after a certain

minimum amount of data (30 days) models are fit to the data and evaluated for up to

7-days ahead forecasts. The model is then re-trained on 31 days and the forecast

errors re-assessed; this process can be repeated throughout. This would be more 

realistic and comprehensive but would very large amount of computation and currently 

beyond the scope of the project. 

- A major limitation of the ARIMA model is that it assumes a continuous real-valued

response, whereas COVID-19 incidence numbers and recorded mortalities are in fact

count data.

- Forecast error was evaluated summatively at 7 days. It does not assess the error on

each day, some models might be better at shorter range forecast (e.g., 1-day ahead)

than others.

- The selection of 7 days ahead forecast was also arbitrary, a one week ahead forecast

seems useful but requires further consultation with medical staff and government

planners.

- Forecast errors (uncertainty of forecast) were not considered, this could be important

in practice. The understanding of acceptable magnitudes of forecast errors is also

important in the medical context.
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- Data from other counties could also be explored and evaluated to determine if there

any particular patterns or characteristics that make certain models more suitable for

certain countries.

- The project assumed the recorded incidences and mortalities were perfect records of

the situation. This is unlikely in practice and needs to be accounted for in the

development and evaluation of novel models.

5.3 Summary 

The evaluations of the different forecasting models have been discussed and compared for 

performance across different countries and for different applications (incidence and mortality 

forecasting). Both the ACF and PACF analysis suggested the presence of long-range 

dependencies and that the data correlation structure differed between countries. A substantial 

limitation of both the ACF and PACF is the assumption of data stationarity, which appears 

unlikely to hold for these datasets. Nonetheless, there is some evidence to indicate long-range 

dependencies in these datasets. Utilising such long-range dependencies was not deemed 

practical due to the long duration required before sufficient data could be collected in order to 

estimate the model parameters. 

A total of 7 forecasting models were evaluated on COVID-19 datasets from 5 countries. Model 

performance varied dependant on country and application (incidence or mortality) forecasting. 

In all scenarios examined, it is recommended to evaluate a range of models to determine the 

best performing model for each country and application. In terms of general recommendations, 

both the ARIMA and the ARMA-ELM models were top-performing models, the ARMA-ELM 

was most promising for the COVID-19 incidence datasets, whilst the ARIMA was best for the 

COVID-19 mortality datasets. Both of these models should be first choices if a comprehensive 

comparison of model performance is not possible when developing country specific COVID-

19 forecasts.
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Chapter 6 Conclusion 

6.1 Conclusion 

Statistical stochastic process time series models and neural network models have played an 

important pivotal role in short-term forecasting of pandemics. The project has focussed on 

pre-existing models (ARMA, ARIMA, WARIMA, ARFIMA, ANN and ELM). In addition to these 

models the project has explored a novel model which combined between a statistical 

stochastic process time series model with a neural network to produce the ARMA-ELM. Seven 

different models used to forecast the COVID-19 daily confirmed incidence and mortalities 

datasets for five countries (Brazil, India, Saudi Arabia, Spain, and USA) from April 2020 to 

September 2021. A 7-days ahead forecast for these time series datasets used to evaluate 

and compare the model performance metrics (RMSE, MAE, MAPE, and SMAPE) for all 

counties datasets. The project results found that for the COVID-19 incidences datasets, the 

ARIMA and ARMA-ELM models overall have better model performance metrics than other 

models such as WARIMA and ANN. The ARMA-ELM was found to be very competitive when 

evaluating model performance metrics at a global scale instead of at a country specific level. 

The COVID-19 mortalities forecast indicated that ARIMA model performed the best overall 

(smallest error metrics for Brazil, India, and the USA). In contrast, according to the model 

performance metrics, the COVID-19 mortalities forecasts in Saudi Arabia and Spain were best 

described using the WARIMA and ARMA-ELM models respectively. Overall, none of the 

forecasting models performs equally well across all datasets, highlighting the need to explore 

a range of models when developing country-specific forecasts. Future research should 

validate the reliability of the COVID-19 datasets and address any uncertainties in these data 

sets. More extensive investigations and assessments beyond this scenario presented should 

also be conducted to develop a more comprehensive understanding of model performance. 
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