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Summary 

Applied tracer tests are used to measure solute transport characteristics of 

fractured rock aquifers. Whilst not always mentioned in the published literature, 

the ultimate purpose of the characterisation is to enable prediction of solute 

transport in the aquifer. The thesis examines the potential for using forced-

gradient, applied tracer tests to predict solute transport under natural gradient 

conditions in fractured rock aquifers. 

 

Analysis of tracer tests to quantify aquifer parameters requires use of an 

interpretative model. Previously it has been assumed that equivalent single 

fracture and matrix parameters can be used to represent complex networks of 

fractures. Given the highly heterogeneous nature of fractured rock aquifers, 

tracer breakthrough curves often contain detailed features that cannot be fully 

replicated by comparatively simple analytical models. This thesis examines the 

parameter and prediction uncertainty that might arise from such discrepancies 

between fitted breakthrough curves and complex measured data. Comparisons 

are made between parameters and predictions obtained using different 

analytical models and the ability of single fracture models to interpret tracer 

transport in networks of fractures is examined. Methods to improve predictions 

of solute transport and quantify uncertainty are identified. Also, previously 

unidentified discretisation requirements are presented to enable accurate 

simulation of tracer transport in numerical groundwater flow and transport 

models. 
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Chapter 1: Introduction 

Objectives 

The occurrence of contaminants in groundwater systems has created a need for 

means to characterise the aquifer properties affecting solute transport. Applied 

tracer tests enable in-situ measurement of solute transport and a means to 

estimate aquifer parameters. Tests conducted under a forced hydraulic gradient 

enable more rapid measurement of tracer breakthrough than could be achieved 

under ambient flow conditions and so these types of tests are usually preferred. 

The interpretation of tracer tests in fractured rock aquifers presents a challenge 

due to their highly heterogeneous nature. There is little in the published 

literature regarding the uncertainty that is inherent in aquifer parameters 

interpreted from tracer tests in fractured rock. Perhaps more importantly, the 

accuracy of predictions of solute transport using made using these inferred 

aquifer parameters is not understood. 

 

The broad objectives of this thesis are to: 

1) evaluate how accurately aquifer parameters can be determined from 

tracer test data, given the inability of analytical models to completely 

describe the complex nature of fractured rock and associated tracer 

breakthrough curves; 

2)  quantify the impact of parameter and interpretative model uncertainty on 

predictions of solute transport under lower hydraulic gradients; 
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3)  identify the most effective ways to improve the accuracy of predictions of 

solute transport in fractured rock aquifers made using tracer test data; 

 

The next four chapters are presented in the form of self-contained scientific 

papers. They comprise two papers which have been published in international 

journals and two papers which have been prepared ready for submission to 

journals. The chapters/papers are as follows: 

 

Weatherill, D, Cook, PG, Simmons, CT and Robinson, NI, 2006. Applied tracer 

tests in fractured rock: Can we predict natural gradient solute transport more 

accurately than fracture and matrix parameters? Journal of Contaminant 

Hydrology 88, 289-305. (Chapter 2) 

Weatherill, D, Graf, T, Simmons, CT, Cook, PG, Therrien, R, and Reynolds, 

DA, 2008. Discretizing the fracture-matrix interface to simulate solute transport. 

Ground Water 46(4), 606-615. (Chapter 3) 

Weatherill, D, McCallum, JL, Simmons, CT, Cook, PG, Robinson, NI. 

Conceptual model choice for dipole tracer tests in fractured rock. In preparation. 

(Chapter 4) 

Weatherill, D, Simmons, CT, Cook, PG. Interpreting dipole tracer tests in 

fractured rock aquifers. In preparation. (Chapter 5). 

 

Each of the following chapters contains a review of relevant literature in the 

introductory phases. Copies of the two published papers are provided in 

Appendix A. 
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Synopsis of the Remaining Chapters 

The following presents a synopsis of the four chapters and their main scientific 

contributions. 

Chapter 2: Applied tracer tests in fractured rock: Can we predict natural 

gradient solute transport more accurately than fracture and matrix 

parameters? 

Applied tracer tests provide a means to estimate aquifer parameters in fractured 

rock. The traditional approach to analysing these tests has been using a single 

fracture model to find the parameter values that generate the best fit to the 

measured breakthrough curve. In many cases, the ultimate aim is to predict 

solute transport under the natural gradient. Usually, no confidence limits are 

placed on parameter values and the impact of parameter errors on predictions 

of solute transport is not discussed. The assumption inherent in this approach is 

that the parameters determined under forced conditions will enable prediction of 

solute transport under the natural gradient. The parameter and prediction 

uncertainty that might arise from analysis of breakthrough curves obtained from 

forced gradient applied tracer tests is examined. By adding noise to an exact 

solution for transport in a single fracture in a porous matrix, multiple realisations 

of an initial breakthrough curve are created. A least squares fitting routine is 

used to obtain a fit to each realisation, yielding a range of parameter values 

rather than a single set of absolute values. The suite of parameters is then used 

to make predictions of solute transport under lower hydraulic gradients and the 

uncertainty of estimated parameters and subsequent predictions of solute 

transport is compared. Results show that predictions of breakthrough curve 
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characteristics (first inflection point time, peak arrival time and peak 

concentration) for groundwater flow speeds orders of magnitude smaller than 

that at which a test is conducted can sometimes be determined even more 

accurately than the fracture and matrix parameters. This paradigm/philosophy 

has not been explored in previous literature. 

Chapter 3: Discretising the fracture-matrix interface for accurate 

simulation of solute transport in fractured rock 

This paper is not targeted at addressing the overall research aims of the thesis. 

Rather, the paper is a by-product of work presented in chapter 5, in which 

applied tracer tests are simulated in fractured rock using a numerical model. 

During that process it became apparent that extremely fine spatial discretisation 

was required in the matrix material immediately adjacent the simulated 

fractures. This had not been previously identified in the literature. Chapter 3 is 

the result of investigation into the causes and occurrences of the need for such 

fine discretisation. 

  

This paper examines the required spatial discretisation perpendicular to the 

fracture-matrix interface (FMI) for numerical simulation of solute transport in 

discretely-fractured porous media. The discrete fracture finite element model 

HydroGeoSphere and a discrete fracture implementation of MT3DMS were 

used to model solute transport in a single fracture and the results were 

compared to an analytical solution. To match analytical results on the relatively 

short timescales simulated in this study, very fine grid spacing perpendicular to 

the FMI, of the scale of the fracture aperture, is necessary if advection and/or 
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dispersion in the fracture are high compared to diffusion in the matrix. The 

requirement of such extremely fine spatial discretisation has not been 

previously reported in the literature. In cases of high matrix diffusion, matching 

the analytical results is achieved with larger grid spacing at the FMI. Cases 

where matrix diffusion is lower can employ a larger grid multiplier moving away 

from the FMI. The very fine spatial discretisation identified in this study for 

cases of low matrix diffusion may limit the applicability of numerical discrete 

fracture models in such cases. 

Chapter 4: Conceptual model choice for dipole tracer tests in fractured 

rock 

Applied tracer tests provide a means to estimate fracture and matrix parameters 

that determine solute transport in fractured rock. Dipole tracer tests utilise an 

injection-extraction well pair to create a forced hydraulic gradient, allowing tests 

to be conducted more rapidly than natural gradient tests. Tracer breakthrough is 

analysed using an analytical model to find the parameters that generate the 

best fit to the data. This study explores the differing interpretation that can be 

drawn from a tracer test when analysed with two different models; one 

assuming a dipole, the other a linear flow field. The two models are able to 

produce almost identical breakthrough curves for a range of scenarios. 

Comparison of the parameters required to create matching breakthrough curves 

demonstrates the non-uniqueness of the 1-D and dipole interpretations, 

resulting in large parameter uncertainty. Considering that neither of the 

conceptual models incorporates the complexity of a real fracture network, it is 

expected that analytically interpreted parameters may be as different, or more 



6 

 

different from reality as they are from those interpreted with a different analytical 

model. Given the complex nature of fractured rock systems and the many 

unknown fracture and matrix properties involved therein, this study highlights 

the benefit of incorporating multiple conceptual models in the analyses of dipole 

tracer tests conducted in fractured rock. 

Chapter 5: Interpreting dipole tracer tests in fractured rock aquifers 

Dipole tracer tests, where transport of applied tracer is measured in a steady 

state flow field between an injection-extraction well pair, provide a means to 

measure solute transport through in-situ aquifer material. A dipole flow field 

allows sampling of a large volume of aquifer and the forced gradient enables 

rapid measurement of tracer transport. The measured tracer breakthrough 

curve is used to infer aquifer properties, usually using an analytical model. For 

tests conducted in fractured rock aquifers it is usually assumed that equivalent 

single fracture and matrix parameters can be used to represent the whole 

network. The extent to which the complex geometry of a fracture network 

affects the interpretation of a dipole tracer test is not known. 

 

The previous chapter examined the different interpretations that can arise when 

using two single fracture analytical models. This study builds on those results to 

look at the performance of the models when used to interpret tracer tests 

conducted in networks of fractures. The first part of this study examines the 

performance of two single fracture analytical models when used to interpret 

simulated dipole tracer tests conducted in hypothetical three-dimensional 

fracture networks. Initially a single dipole tracer test is simulated numerically in 
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a hypothetical fracture network. The analytical models are calibrated to the 

modelled tracer breakthrough curve and used to predict solute transport under a 

much lower hydraulic gradient. The predicted solute transport is then compared 

to the ‘real’ simulated transport. In this way the consequences of the single 

fracture approximation and associated flow geometry of the two interpretative 

analytical models are identified. Both the analytical models are able to produce 

good fits to the initial tracer test data, but the predictive performance of the 

models decreases as they are used to predict transport under increasingly 

lower hydraulic gradients. The study then examines how the predictive 

capability of the analytical models is improved if additional information is 

available to calibrate them. The value of the following is examined: (a) an extra 

tracer test at either higher or lower hydraulic gradient, (b) an additional tracer 

with a different diffusion coefficient included in the initial tracer test and (c) 

knowledge of the length of the shortest fracture flow path between the injection 

and extraction wells (rather than an assumption of a straight line). Results 

indicated that predictions could be most improved by conducting an additional 

test at a lower injection and extraction rate. 

 

The second section of this study applies the methodology used in the 

hypothetical fracture networks to real dipole tracer tests conducted in the Clare 

Valley, South Australia. Application of the methodology to the field environment 

introduces additional variations between the assumptions of the analytical 

models and the reality of the field setting. In correlation with the results for the 

synthetic fracture networks, the predictive performance of the calibrated single 

fracture models was found to decrease as the hydraulic gradient of predictive 
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scenarios was decreased. However, hydraulic data indicated that the 

application of dipoles at different pumping rates resulted in significantly different 

dewatering of the aquifer near the extraction well and therefore tests at different 

hydraulic gradients were not sampling the same fracture pathways between the 

well pair. This phenomenon, combined with the findings from the hypothetical 

fracture networks suggests that dipole tracer tests in unconfined aquifers should 

be performed at the lowest feasible pumping rates where the aim is to predict 

solute transport under ambient groundwater flow conditions. 
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Chapter 2: Applied tracer tests in fractured rock: Can 

we predict natural gradient solute transport more 

accurately than fracture and matrix parameters? 

The work presented in this chapter can be found in the following: 

Weatherill, D, Cook, PG, Simmons, CT and Robinson, NI, 2006. Applied tracer 

tests in fractured rock: Can we predict natural gradient solute transport more 

accurately than fracture and matrix parameters? Journal of Contaminant 

Hydrology 88, 289-305. 

Abstract 

Applied tracer tests provide a means to estimate aquifer parameters in fractured 

rock. The traditional approach to analysing these tests has been using a single 

fracture model to find the parameter values that generate the best fit to the 

measured breakthrough curve. In many cases, the ultimate aim is to predict 

solute transport under the natural gradient. Usually, no confidence limits are 

placed on parameter values and the impact of parameter errors on predictions 

of solute transport is not discussed. The assumption inherent in this approach is 

that the parameters determined under forced conditions will enable prediction of 

solute transport under the natural gradient. This paper considers the parameter 

and prediction uncertainty that might arise from analysis of breakthrough curves 

obtained from forced gradient applied tracer tests. By adding noise to an exact 

solution for transport in a single fracture in a porous matrix we create multiple 

realisations of an initial breakthrough curve. A least squares fitting routine is 
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used to obtain a fit to each realisation, yielding a range of parameter values 

rather than a single set of absolute values. The suite of parameters is then used 

to make predictions of solute transport under lower hydraulic gradients and the 

uncertainty of estimated parameters and subsequent predictions of solute 

transport is compared. The results of this study show that predictions of 

breakthrough curve characteristics (first inflection point time, peak arrival time 

and peak concentration) for groundwater flow speeds orders of magnitude 

smaller than that at which a test is conducted can sometimes be determined 

even more accurately than the fracture and matrix parameters. 

Introduction 

Applied tracer tests provide a means to estimate aquifer parameters in fractured 

rock. Tests conducted under a forced hydraulic gradient, for example 

Novakowski et al. (1985) and Sanford et al. (2002), enable more rapid 

measurement of tracer breakthrough than could be achieved under ambient 

flow conditions and so these types of tests are usually preferred. 

 

Many fractured rock tracer tests are analysed with a single fracture model, 

regardless of whether they were conducted in a single fracture or through a 

network of fractures. The model may be optimised to fit the breakthrough curve 

but the parameters, and indeed the model itself, may not be a good 

representation of reality. An extreme case is when multiple peaks are observed 

such as those reported by Abelin et al. (1991) and Jakob and Hadermann 

(1994). A single flow path model can never describe such a system correctly, 

although a best-fit model could be obtained. Similarly, the choice of whether to 
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model variable apertures, ambient flow and other processes will impact upon 

the integrity of the interpretation. 

 

Complex models incorporating many processes and therefore many parameters 

have greater potential to generate non-unique solutions, whereas simpler 

models may not be able to adequately match the data. Thus due to the complex 

nature of fractured rock, analysis of tracer tests conducted in fracture networks 

is subject to the potential for large errors in the analysis phase, as well as the 

measurement errors associated with any experimental procedure. Maloszewski 

and Zuber (1983) go as far as saying “The great number of non-disposable 

parameters make a correct interpretation of tracer experiments impossible.” 

Knowing that our models are always a simplification of reality, it is probably 

optimistic to place exact values on the parameters obtained from them. There 

may be many parameter sets that will generate an approximation to a 

breakthrough curve, but a conventional best-fit inversion approach yields a 

single set of parameters. For example, for a dipole tracer test in an isolated 

fracture Novakowski et al. (1985) present parameter values of effective fracture 

aperture and dispersivity based on a single fracture model with no matrix 

diffusion. The authors state that due to the goodness of the fit over the entire 

data range and the sensitivity of the model to dispersivity that their fit is unique, 

but they do not quantify the errors on the parameters. Similarly, for a dipole 

tracer test in a fracture network Sanford et al. (2002) present best-fit parameter 

values for fracture path length, fracture aperture, maximum water velocity and 

dispersivity for a single fracture model with dispersion and matrix diffusion. 

Whilst these authors show that different parameter values do not match the 
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measured breakthrough curves quite as well as the best fit parameters do, they 

do not quantify the errors on the parameter values. Numerous examples of 

analyses of tracer tests can be found in the literature in which the absolute 

parameter values that optimise the fit between a modelled breakthrough curve 

and the measured one are found. Whilst some authors make comparisons 

between these parameter values and those obtained using other means or at 

other sites, errors are rarely quantified. With many assumptions made in 

analysing tracer test data, it is valuable to obtain a range of parameter sets that 

fit the data within a prescribed tolerance level and to ascertain the uncertainty 

on these estimations. This is likely to be more useful than a set of absolute 

parameter values where error or uncertainty is not known at all. 

 

There is an additional factor that warrants attention. Typically, forced gradient 

tracer tests are conducted to enable prediction of solute transport under the 

natural gradient (such as leakage from a waste disposal site). The fracture and 

matrix parameters obtained from the inversion process are usually a step 

towards prediction at lower velocities. Yet we have been unable to find any 

previous studies which have considered the effect that the errors on these 

parameters may have for prediction. If prediction is the ultimate aim then the 

errors on the predictions are important. 

 

This paper considers the uncertainty on parameters and predictions that might 

arise from analysis of breakthrough curves obtained from forced gradient 

applied tracer tests. In order to simulate the complexity observed in field data, 

we add noise to an exact solution to create multiple realisations of an initial 
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breakthrough curve simulated using the analytical solution of Tang et al. (1981). 

The best fit for each realisation is found using a least squares fitting routine, 

yielding a range of parameter values rather than a single set of absolute values. 

The suite of parameters is then used to make a range of predictions of solute 

transport under lower hydraulic gradients. The uncertainty of estimated 

parameters from tracer test breakthrough curves and subsequent predictions of 

solute transport at lower groundwater velocities are compared. 

 

Although this study interprets data generated with a particular single fracture 

model, the same process is applicable to other models. The purpose of this 

study is not to provide an absolute description of the behaviour of solute 

transport in fractured rock, but rather to demonstrate that the uncertainty 

associated with solute transport predictions under natural gradients may, in 

some cases, be smaller than the uncertainty of parameters estimated from 

breakthrough curves. This paradigm/philosophy has not been explored in 

previous literature. 

 

The objectives of this study are to identify: 

1) How accurately individual parameters can be determined from a 

breakthrough curve; 

2) How accurately can predictions be made of solute transport under lower 

hydraulic gradients using parameters obtained from fitting a forced gradient 

breakthrough curve; 

3) How the uncertainties on parameters compare to those on predicted solute 

transport. 
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Theory 

Tang et al. (1981) present a solution for solute transport in a single fracture with 

geometry as outlined in Figure 2.1. Fluid flow occurs within the fracture only 

whilst solute transport occurs both within the fracture and the porous matrix. 

The solution incorporates solute transport via advection, longitudinal 

mechanical dispersion and molecular diffusion in the fracture, adsorption onto 

the face of the matrix, diffusion and adsorption within the matrix and radioactive 

decay. Tang et al. (1981) describe transport in the fracture as: 

z
x
c

bR
Dc

z
c

R
D

z
c

R
v

t
c

bx

002

2 ''     (2.1) 

where c = solute concentration (ML-3), t = time (T), v = water velocity (LT-1), R = 

face retardation coefficient, z = spatial coordinate along the fracture, D = 

hydrodynamic dispersion coefficient in the fracture (L2T-1),  = radioactive decay 

constant (T-1),  = matrix porosity (-), b = half fracture aperture (L), D’ = diffusion 

coefficient of solute in the matrix (L2T-1) and x = spatial coordinate perpendicular 

to the fracture axis (L). D is defined to be v + D* where  = dispersivity and D* 

= diffusion coefficient of solute in water and D’ is defined as D*. 

 

The Laplace transformed solution to the problem as presented by Tang et al. 

(1981) is: 
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and R’ = matrix retardation coefficient. 
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Figure 2.1 The fracture-matrix system after Tang et al. (1981) showing fracture aperture 

(2b) and water flow (v). 

 

We solved the Tang et al. (1981) expression by numerical Laplace transform 

inversion using the accurate and robust routine of Piessens and Huysmans 

(1984). The solution method was verified by reproducing the analytical results 

presented in Fig. 9 and Fig. 10 of Tang et al. (1981) and checking with a series 

solution for finite length fractures Robinson and Sharp (1997). 

 

It can be seen from Equation 2.2 that for a solute that does not decay or sorb (  

= 0, R = 1, R’ = 1) the only parameters affecting the solute concentration in the 

fracture are v, D and A. These represent the three processes of advection, 
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dispersion and matrix diffusion respectively. By assuming that hydrodynamic 

dispersion within the fracture is dominated by the mechanical dispersion 

component (ie v >> D*) the 6 parameters (v, , D*, ,  and b) can be reduced 

to v,  and A, where A is now simplified to A = b/ D’1/2. 

Methods 

Forward model 

The Tang et al. (1981) analytical solution for solute transport in a single fracture 

was used to generate breakthrough curves for seven initial parameter sets (see 

Table 2.1 for parameter values). Parameters for the base case were chosen to 

be similar to results presented in the literature. The other six parameter sets 

were chosen by increasing and decreasing the three variable parameters, v,  

and A. In all cases, an input tracer pulse duration of1 hour was used, 

breakthrough curves were measured at a distance z = 10 m along the fracture, 

retardation constants were set to 1 and radioactive decay was set to zero. The 

breakthrough curves were defined by 16 equally (temporally) spaced data 

points over one day. 

Parameter 
Set 

2b 
(m) 

D’ 
(m2/d) 

 
(-) 

 
(m) 

v 
(m/d) 

z 
(m) 

A 
(d-1/2) 

 
(-) 

Base Case 10-4 10-4 0.02 1 100 10 0.25 1.26 

Low  10-4 10-4 0.02 0.001 100 10 0.25 40.00 

High  10-4 10-4 0.02 2 100 10 0.25 0.89 

Low A 10-4 10-4 0.04 1 100 10 0.125 5.06 

High A 10-4 10-4 0.01 1 100 10 0.5 0.32 

Low v 10-4 10-4 0.02 1 50 10 0.25 2.53 

High v 10-4 10-4 0.02 1 200 10 0.25 0.63 

Table 2.1 Initial parameters used for each of the parameter sets 
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Adding noise to the breakthrough curve 

In order to determine the sensitivity of the breakthrough curves to different 

hydrogeologic parameters, 100 realisations were generated from each 

parameter set, each with different added random noise of a specified level 

(ranging from 5% to 20%) added to each data point. The effect of the applied 

noise level is examined in this study. By progressively increasing the number of 

realisations employed, it was found that 100 realisations were more than 

sufficient to achieve converged average fitted parameters.   

 

We first attempted to understand how such noise might appear in field tracer 

experiments. Clearly, the interpreted differences between a real breakthrough 

curve and any mathematical fit (herein after called “noise”) are a function of 

numerous factors including (1) measurement error in instruments, field data 

collection and subsequent analyses, (2) the choice of conceptual and hence 

mathematical model used to fit the field data, (3) the inherent complexity (at 

many spatial and temporal scales) in heterogeneous geologic field settings that 

is not captured by the mathematical model employed, and (4) the fitting 

algorithms and convergence criteria used to define when an optimised fit to the 

data has been obtained. An analysis of typical tracer test results presented by 

Sanford et al. (2002) reveals an average residual of 19% (with residual mode = 

2 to 4%) for bromide and 18% (with residual mode = 6 to 8%) for helium, where 

the residual is defined as the absolute value of (cmeasured – cmodelled)/cmeasured. In 

comparing these average and modes, it is clear that the average is somewhat 

larger owing to a small number of data points which have large associated 

residuals. This comparison with field data is fairly crude and is based upon one 
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case only. However, it suggests that the level of noise applied in this study is 

indeed likely in a field based scenario. It was difficult to determine what 

distribution these residuals followed due to the limited number of points in the 

breakthrough curves. This problem is expected to arise in the analysis of most, 

if not all, previously published breakthrough curves due to the typically limited 

number of measurement points and a resultant inability to construct the precise 

statistical distribution of residuals. To the authors best knowledge the nature of 

such residuals (i.e., discrepancies between measured and modelled data) are 

rarely, if ever, known and have not been the subject of previous investigation. 

Therefore, the choice of noise type used in this study (white noise) might be 

arbitrary, but the aim of this study is intended to be demonstrative rather than 

absolutely quantitative. Therefore, the key trends and outcomes of the study are 

expected to be qualitatively similar regardless of the choice of noise distribution 

employed.  

 

 Random numbers were obtained using a random number generator in which 

each random number had an equal probability of falling anywhere between 0 

and 1 (white noise). The level of noise was specified such that the maximum 

deviation from the initial data was a chosen percentage of the initial data value 

itself. This process is illustrated in Figure 2.2, where the initial data for the base 

case is shown as well as a realisation of the data with 20% noise added. The 

best-fit breakthrough curve for the realisation does not pass directly through the 

initial data points, but is similar to the initial curve. Adding noise creates a fit that 

is not the absolute best fit to the initial data, but that still approximates it. 
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Repeating this process creates a range of similar breakthrough curves that 

approximate the initial data. 

 

0

0.04

0.08

0.12

0.16

0 0.2 0.4 0.6 0.8 1
t  (days)

c
/c
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Figure 2.2 Initial data for the base case (with 20% error bars) and a realisation of the data 

with 20% noise added. The best fit to the realisation is shown as the solid line. 

 

It should be noted that the number of data points and the noise applied to them 

affects the parameter estimation process. As the number of data points 

increases, the range of fits to the data decreases and the realisations more 

closely approximate the forward model. Also the higher the noise level, the 

greater the range of fits to the data. 
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Parameter estimation with PEST 

PEST (Doherty, 2004) is a model-independent parameter estimation program. 

PEST finds the parameters that minimise the squared sum of weighted 

residuals between the target and fitted data values. In our study, equal 

weighting was assigned to all data values. PEST has a number of ways of 

determining when it has found optimal parameter values (or done the best it 

can). The ideal termination criterion is that the objective function (squared sum 

of weighted residuals) reaches zero. This means that the parameters have been 

found such that the modelled values exactly match the measured values. This 

cannot always be achieved, so other termination criteria are required. In our 

study, if 4 iterations pass since the lowest objective function value, or if the 

lowest 4 objective function values are within 0.005, relative to the minimum 

objective function, of each other, PEST stops. Otherwise if 4 iterations pass in 

which the largest relative parameter value change has been less than or equal 

to 0.01, PEST terminates execution. As a final criterion for ending execution, 

PEST will stop after 30 iterations. For further detail on PEST, the reader is 

referred to Doherty (2004). 

 

During the fitting process, bounds must be placed on the parameters. In order 

to find a representative range of possible fits to the data, large bounds were 

placed on the parameters so that they would not interfere with the parameter 

estimation process, except in cases where parameters must be logically 

bounded (ie , v, A  0). 
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Breakthrough curve characteristics 

In order to quantify the differences between breakthrough curves, properties 

that would describe the shape and behaviour of a breakthrough curve were 

required. Three characteristics were used; time to the first inflection point (ti1), 

time to the peak concentration (tp) and the peak concentration (cp). These three 

characteristics are the most basic descriptors of a breakthrough curve and can 

most easily be obtained from tracer test data. Other indicators such as mass 

recovery may be more difficult to quantify accurately and harder to interpret due 

to mass losses that result from non-recovered tracer, long breakthrough curve 

tails resulting from the flow geometry induced by the forced gradient and/or 

matrix diffusion. Thus, mass recovery, whilst theoretically determinable was not 

used here due to the complications associated with quantifying it under field 

conditions. 

 

In order to quantify the spread of parameter values and subsequent predictions 

of the breakthrough characteristics, the coefficients of variation (CV = standard 

deviation / mean) of parameter values and predicted characteristics were found 

for each set of realisations. This enables uniform and consistent comparison of 

the confidence in different estimated parameters/predictions regardless of their 

numerical values. 

 

In order to determine the accuracy of predictions based on parameters obtained 

under a forced gradient (high water velocity), breakthrough curves were 

generated using parameters from each of the best-fit realisations at several 

slower groundwater flow velocities. It is assumed here that the hydraulic 
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pressures associated with the different hydraulic gradients have no effect on the 

fracture apertures or other physical properties of the system other than to 

change the flow velocity of water in the fracture. Characteristics ti1, tp and cp 

were determined at vpr = 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003 and 

0.0001 where: 

)( fittedtest

prediction
pr v

v
v          (2.4) 

where vprediction = prediction water velocity (LT-1) and  vtest (fitted) = fitted water 

velocity under the forced gradient (LT-1). 

 

Scaling down to vpr = 0.0001 is sufficient to cover the scaling required for most 

current forced gradient tracer tests. Love et al. (2002) quote hydraulic gradients 

ranging from 0.005 to 0.1 for a fractured rock catchment. Consider a tracer test 

conducted between two wells 10 m apart in such a system. In order to require a 

scaling factor of vpr = 0.0001, a head difference of 500 m to 10 000 m between 

the two wells would need to be imposed. This head difference is unrealistically 

large and therefore suggests that the range of vpr employed in this study more 

than adequately covers the range likely to be encountered in realistic field 

settings. 

Results 

Figure 2.3 shows the breakthrough curves for the seven initial parameter sets 

outlined in Table 2.1. In fractured rock systems, particularly where the porosity 

of the matrix is greater than the fracture porosity, solute transport over long time 

scales is dominated by matrix diffusion. By applying a forced gradient, tracer  
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Figure 2.3 Initial breakthrough curves for the parameter sets, each consisting of 16 data 

points over 1 day. Parameter values are given in Table 2.1. 

 

tests increase the impact of dispersion and are less sensitive to diffusion. In 

order to assess the predictive capability of parameters obtained under forced 

conditions it was necessary to cover a range of diffusive to dispersive scenarios 

under the forced gradient. Lever and Bradbury (1985) quantify the relative 

importance of diffusion and dispersion by the ratio of time scales over which 

each spreads solute, defined as: 

vA
z
2

23

4
          (2.5) 

Values less than one indicate that dispersion dominates whilst values greater 

than one indicate the dominance of diffusion. Whilst the Lever and Bradbury 

(1985) approach treats diffusion and dispersion as independent processes, in 
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contrast to the coupled solution of Tang et al. (1981), it gives an indication of 

the relative dominance of the processes. The parameters chosen for this study 

cover a range of diffusive versus dispersive scenarios, with  ranging from 

0.316 to 40, with the base case close to unity at 1.26. A complete set of values 

for  is presented in Table 2.1. 

Best-fit parameters 

Figure 2.4 shows the range in optimised parameter values obtained for the base 

case with noise levels of 5%, 10%, 15% and 20%. As would be expected, 

increased noise broadens the range of possible parameter values for , v and 

A. For the case of dispersivity, it can be seen that at a 20% noise level one 

standard deviation (0.472 m) is almost half as large as the average parameter 

value (1.07 m) itself. The average values for , v and A remain close to the 

initial values despite the range of values increasing. However, if sufficient noise 

was applied, the parameter bounds may be reached (ie , v, A  0) causing 

parameter biasing. 

Predictions 

Predictions of solute transport under slower groundwater velocities were made 

using the same solute source duration and the best-fit parameters for each 

realisation (with water velocity scaled by vpr). Figure 2.5 (a) shows the initial 

data points for the base case and best-fit breakthrough curves for the first ten 

realisations with a noise level of 20%. All breakthrough curves could be 

considered to fit the initial data. The noise bounds are shown to indicate the  
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Figure 2.4 Best-fit parameters for 100 realisations of the base case with noise of 5%, 10%, 

15% and 20% for (a) dispersivity, (b) water velocity and (c) matrix diffusion term. 

Averages, minimum, maximum and average +/- 1 standard deviation are shown. 

 

maximum possible variability for the realisations, all of which lie within this 

range. Figures 2.5 (b), (c), (d) and (e) show the predicted breakthrough curves 

for the same ten realisations at vpr = 0.1, 0.01, 0.001 and 0.0001 respectively. 

As velocity decreases, solute arrives at later times (increased ti1 and tp) and at 

lower concentrations (cp). As would be expected, the breakthrough curves are 

less similar as the prediction velocity differs more from the test velocity (ie. vpr 
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gets smaller). However, the rate at which the overall shape of the breakthrough 

curves differ appears to decrease at low vpr. This observation is confirmed  by 

examination of the predicted breakthrough curve characteristics ti1, tp and cp. 
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Figure 2.5 (a) Initial data points (with 20% error bars) for the base case and the best-fit 

breakthrough curves for realisations 1-10 (of 100) with 20% noise. Predictions for 

realisations 1-10 for vpr = (b) 0.1, (c) 0.01, (d) 0.001 and (e) 0.0001. 
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Figure 2.6 Base case coefficient of variation of (a) ti1, (b) tp and (c) cp as a function of vpr 

with noise of 5%, 10%, 15% and 20%. After an initially rapid increase CV levels off at low 

vpr for all characteristics and noise levels. 

 

Coefficients of variation of predicted values of ti1, tp and cp as a function of vpr 

are presented in Figure 2.6. All three characteristics behave in a similar 

manner. Greater noise increases the uncertainty of all predictions. Also, CV 

increases as vpr decreases from 100%, but plateaus at lower values of vpr. It 

should be pointed out that the data is plotted on a log scale and CV/ vpr is non-

zero, but very small and constant at low vpr. As mentioned earlier, the range of 
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vpr values covered in this study is greater than that which would be used in 

current practice. The plots cannot be extrapolated back to vpr =  0  as  this  is  

meaningless. The plateauing is explained by the lessening impact of dispersivity 

on the solution at lower velocity. The behaviour asymptotes towards one in 

which only v and A have an impact. For example, in the 20% noise case, the 

CV values are 44% for , 32% for v and 36% for A. With the dispersion 

coefficient dominated by v, as velocity decreases, so does the dispersion 

coefficient. In addition, slower water flow allows greater matrix diffusion, 

increasing the dominance of A on the solution. Overall at lower water velocity 

(and lower vpr) the solution is governed more by the better constrained 

parameters (A and v) and less by the poorest defined ( ). 

 

In order to demonstrate the range of predicted values around the actual values, 

Figure 2.7 shows the average predicted characteristic values normalised by the 

actual values with error bounds of +/- one standard deviation. The range of 

predictions is best constrained at the test speed and broadens with decreasing 

vpr. Minor biasing of average predictions is evident. Both averages and ranges 

of predictions plateau for lower vpr. 

 

To test whether the results obtained for the base case apply more generally, a 

further 6 parameter sets were tested using the same procedure used for the 

base case, but with decreased and increased , A and v (Table 2.1). Figure 2.8 

shows the behaviour of the predicted transport characteristics. As with the base 

case, breakthrough curve characteristics for all parameter sets display a  
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Figure 2.7 Base case (noise = 20%) average values for (a) ti1, (b) tp and (c) cp, normalised 

by the actual values, as a function of vpr. Therefore 1 represents the correct value for a 

characteristic. Error bars indicate 1 standard deviation from the average. 

 

decrease in certainty with decreasing vpr and then a levelling at the lowest 

values of vpr. Each of the parameter sets reaches a different level of uncertainty. 

It should be pointed out that as vpr is a function of the water velocity at the test 

speed, identical values of vpr for the altered v cases do not correspond to the 

same prediction velocities. 
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Figure 2.8 Coefficient of variation (noise = 20%) of (a) ti1, (b) tp and (c) cp as a function of 

vpr for all parameter sets. After an initial increase CV of all characteristics for all 

parameter sets levels off at low vpr. 

 

The level of uncertainty on the predictions of solute transport under slower 

velocities depends on the uncertainty in the parameters themselves and on the 

dominance of the individual parameters at the different prediction velocities. It 

may be possible to constrain a particular parameter very well at the test speed, 

but that parameter may have less impact on transport at the prediction speed. 

The relative contributions of dispersion in the fracture and diffusion in the matrix 
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at the test and prediction velocities and the degree to which they can be 

identified determines the accuracy of the predictions. 

Uncertainty comparison: parameter estimation vs prediction 

Having determined the uncertainty on the parameters and the predicted 

breakthrough curve characteristics under different flow velocities, we can now 

compare the two. Figure 2.9 shows CV for parameters , v and A and the 

predicted breakthrough curve characteristics ti1, tp and cp (at vpr = 0.0001) for all 

the parameter sets with 20% noise as well as 5%, 10% and 15% noise levels 

for the base case. For each of the base case scenarios ti1 is the least well 

constrained predicted characteristic and is less constrained than the 

parameters. tp is better constrained and almost as well defined as the 

parameters. cp is the most constrained predicted characteristic and even better 

constrained than  and A and almost as constrained as v. Whilst the individual 

values vary, many of the other parameter sets display better constrained 

predicted characteristics than estimated parameter values. 

 

In the low A case all three characteristics can be predicted with greater certainty 

than the individual parameters themselves can be determined. However, in the 

high A case the opposite is observed. The  parameter used by Lever and 

Bradbury (1985) can be used to explain this. A comparison of the uncertainty on 

predicted characteristics relative to parameters with respect to  shows a trend. 

By counting the number of predicted characteristics that are better constrained 

than all the corresponding parameters (Figure 2.9) we see that the low A case 

(  = 5.06) has 3, the low v case (  = 2.53) has 1 but all other scenarios have at  



32 

 

0%

30%

60%

90%

120%

150%

Base
5%

Base
10%

Base
15%

Base
20%

Low 
20%

High 
20%

Low A
20%

High A
20%

Low v
20%

High v
20%

C
V

v A ti1 tp cp

 

Figure 2.9 Coefficient of variation of parameters , v and A and predictions (at vpr = 

0.0001) of ti1, tp and cp for all parameter sets (noise = 20%) and at noise = 5%, 10% and 

15% for the base case. 

 

least 1 parameter better constrained than the predicted characteristics. 

According to their  values, the low A and low v scenarios are relatively 

diffusive. Generally the degree to which the predictions of characteristics can be 

constrained relative to the parameters seems to be controlled by . Scenarios 

with high  values (more diffusive) tend to yield better constrained predictions of 

characteristics than parameters and scenarios with low  values (more 

dispersive) yield less constrained predictions of characteristics than parameters. 

Furthermore, as natural gradient predictions are dominated by diffusion, tests 

conducted under more diffusive conditions will yield greater constrained 

predictions of breakthrough characteristics. This can be seen in Figure 2.8, 
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where the least constrained predictions of characteristics occur for the high  

and high v cases. 

Discussion 

This study has demonstrated that by accepting a range of fits to a simulated 

forced gradient breakthrough curve, not only can bounds be placed on the 

parameters themselves, but also on predicted solute transport under the natural 

gradient. Furthermore the uncertainty on the predicted transport characteristics 

can be lower than that on the individual parameters. This has important 

implications for our ability to predict solute transport in fractured rock. 

Essentially, the results suggest that we are able to conduct a tracer test under a 

forced gradient 4 orders of magnitude larger than the natural gradient and use 

the results to predict transport under the natural gradient with errors on peak 

arrival time of typically CV(tp) = 40 % to 60%. 

 

Results have shown that tracer tests in which  is large give the best predictions 

of solute transport under low gradients (where diffusion dominates). In the field, 

the only parameter in  that can be controlled is v. Therefore as would be 

expected, the lower the velocity of a test is, the better the predictions of solute 

transport under the natural gradient will be. 

 

Besides the physical test conditions, a number of factors affect the uncertainty 

on estimated parameters and subsequent predictions of solute transport. The 

convergence criteria used in the optimisation process determine the accuracy of 

the fit to each realisation. The number of data points and the noise level applied 
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to them affect the range of estimated parameters and predictions. Whilst the 

absolute uncertainties are determined by these choices, we are interested in the 

relative uncertainties and general trends of parameters and predictions and 

have shown that they are of a similar magnitude and that in some cases, 

resultant predictions have less uncertainty than the individual constituent 

parameters. 

 

This previously unreported behaviour provides positive support for the use of 

forced gradient tests to predict transport under natural gradient conditions. It 

was necessary to determine whether this behaviour was real and not a 

numerical artifact of the solution procedure used in the modelling process. To 

do this we compare our numerical implementation of the Tang et al. (1981) 

solution with the zero-dispersivity solution presented by Lever and Bradbury 

(1985). The dispersivity for the low dispersion case in this study was chosen to 

be very low to enable comparison with the Lever and Bradbury (1985) analytical 

solution. The solution for tp presented in Equation 5.1 of Lever and Bradbury 

(1985) is: 

v
z

vA
zt p 22

2 1
6

         (2.6) 

By applying the formula for variance of a linear function: 

i j
jijii

i
i

i
ii PPCovaaPVaraPaUVar 2     (2.7) 

letting a1P1 = z2/6A2v2, a2P2 = z/v and assuming z is accurately known, variance 

of the peak arrival time is: 
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where Var = variance and Cov = covariance. 

 

In the low dispersivity case, a comparison of the actual Var(tp) at vpr = 0.0001 

with that calculated from the variances of the fracture and matrix parameters 

using Equation 8 provides a means to check the validity of the CVs generated 

by the model. To four significant figures, the variances are identical (Var(tp) = 

6.109 x 109 days). Thus, the results of the Tang et al. (1981) and Lever and 

Bradbury (1985) solutions are in excellent agreement and this provides further 

evidence in support of not only the Tang et al. (1981) numerical solution 

employed here but also the findings of this study more generally. 

 

This study is a demonstration of a paradigm. As such, it is limited in that both 

the initial breakthrough curves and fits were generated using a particular model, 

the single fracture solution of Tang et al. (1981). However, the philosophy 

behind this work can be extended to all conceptual models of solute transport in 

fractured rock systems. Indeed, given that the choice of model itself may be the 

biggest source of error, multiple models could be incorporated into the process. 

In a field scenario, tracer may travel in complicated flow geometries through 

channels in multiple fractures with different properties. Whilst tracer tests are 

usually analysed using single flow-path models (with various flow geometries 

incorporated), there has been no definitive study to determine the validity and 

errors associated with this approach for tracer tests conducted on fracture 

networks. This should form the subject of future investigations. 
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Conclusions 

The key findings of this study are: 

 

1. As the hydraulic gradient decreases, the uncertainty of solute transport 

predictions does not increase significantly. In particular, this study has 

shown that a 4 order of magnitude scaling reduction in v results in no worse 

than an 85 % CV on tp but that CVs on the order of 40 % - 60 % are typical. 

This result is not intuitively obvious and is an important finding that has 

consequences for scaling forced gradient tracer tests in hydrogeology. 

2. The uncertainty of solute transport predictions under a natural gradient is 

typically similar to the uncertainty of the parameters estimated from forced 

gradient breakthrough curves, and importantly, it is occasionally better. This 

result suggests that an uncertainty analysis may be more useful than is 

commonplace in the interpretation of field based tracer tests.  Whilst it is 

typical to only determine the best fit to observed data, these findings suggest 

that determining the range of acceptable fits is important in understanding 

the range of both acceptable fitting parameters and hence subsequent 

predictions of solute transport that are likely.  

3. Tracer tests conducted under more diffusive conditions (high ) yield better 

predictions of solute transport under the natural gradient. In practical terms, 

v is usually the most easily controllable parameter in .  Therefore, to 

maximise  to improve predictability necessarily involves conducting tracer 

tests at the lowest forced gradients that are practically feasible. 
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4. Therefore, forced gradient applied tracer tests may be a valuable means of 

estimating solute transport under natural gradients in fractured rock 

providing that an appropriate choice of interpretational conceptual model is 

made. 

 

Further work is required to explore how uncertainties on parameter estimation 

and subsequent predictions at lower velocities are affected by the choice of 

interpretative conceptual model. This may be a fundamental limitation and 

clearly warrants further investigation. 
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Notation and Units 

A   matrix diffusion term    T1/2 

b   half fracture aperture    L 

c   solute concentration     ML-3 

c’   solute concentration in the matrix   ML-3 

Cov   covariance      - 

CV   coefficient of variation    - 

D   hydrodynamic dispersion coefficient  L2T-1 

D*   diffusion coefficient of solute in water  L2T-1 

D’   diffusion coefficient of solute in matrix  L2T-1 

R   face retardation coefficient    - 

R’   matrix retardation coefficient   - 

t   time        T 

tp   peak arrival time     T 

v   water velocity      LT-1 

Var   variance      - 

vpr   prediction water velocity / test water velocity - 

vprediction  prediction water velocity    LT-1 

vtest (fitted)  fitted water velocity under the forced 

gradient      LT-1 

x   spatial coordinate perpendicular to the 

fracture axis      L 

z   spatial coordinate along a fracture  L 

   longitudinal dispersivity    L 
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   ratio of diffusive to dispersive time scales - 

   matrix porosity     - 

   radioactive decay constant    T-1 

   tortuosity      - 
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Chapter 3: Discretising the fracture-matrix interface for 

accurate simulation of solute transport in fractured 

rock 

The work presented in this chapter can be found in the following: 

Weatherill, D, Graf, T, Simmons, CT, Cook, PG, Therrien, R, and Reynolds, DA, 

2008. Discretizing the fracture-matrix interface to simulate solute transport. 

Ground Water 46(4), 606-615. 

Abstract 

This paper examines the required spatial discretisation perpendicular to the 

fracture-matrix interface (FMI) for numerical simulation of solute transport in 

discretely-fractured porous media. The discrete fracture finite element model 

HydroGeoSphere (Therrien et al. 2005) and a discrete fracture implementation 

of MT3DMS (Zheng 1990) were used to model solute transport in a single 

fracture and the results were compared to the analytical solution of Tang et al. 

(1981). To match analytical results on the relatively short timescales simulated 

in this study, very fine grid spacing perpendicular to the FMI, of the scale of the 

fracture aperture, is necessary if advection and/or dispersion in the fracture are 

high compared to diffusion in the matrix. The requirement of such extremely fine 

spatial discretisation has not been previously reported in the literature. In cases 

of high matrix diffusion, matching the analytical results is achieved with larger 

grid spacing at the FMI. Cases where matrix diffusion is lower can employ a 

larger grid multiplier moving away from the FMI. The very fine spatial 
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discretisation identified in this study for cases of low matrix diffusion may limit 

the applicability of numerical discrete fracture models in such cases. 

Introduction 

Recent computational and theoretical advances have allowed the development 

of numerical codes for simulating solute transport in fractured rock. A range of 

models have been suggested which encompass differing complexity in fracture 

geometry and the interaction of solutes between fractures and the rock matrix. 

In a review paper, Neuman (2005) summarises a range of conceptual models 

for flow and transport in fractured rock. Diodato (1994) presents a compendium 

of the available numerical models for flow in fractured media. Equivalent porous 

media (EPM) and multiple-continuum approaches allow solutions which are 

relatively rapid computationally, but are not always suitable on smaller spatial 

and temporal scales due to the conceptual simplifications they employ. Neuman 

(2005) states that a single continuum model of flow and transport in fractured 

rock is usually inadequate. Discrete fracture models, whilst more demanding 

computationally, allow simulation of complex fracture networks where the 

interaction between fractures and the matrix cannot be simplified to an EPM or 

multiple-continuum approach. A range of discrete fracture models exists, 

incorporating a variety of physical and chemical processes. Whilst current 

computing capabilities can limit the application of such models to small scale 

simulations, they are of benefit in studying system processes and phenomena 

that occur on the smaller scale. Examples of discrete fracture models capable 

of simulating solute transport include FRACTRAN (Sudicky and McLaren 1998), 

HydroGeoSphere (Therrien et al. 2005), MAGNUM-2D (England et al. 1986), 
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MOTIF (Chan et al. 1999a, 1999b), PORFLOW (Runchal 2002), SWIFT (HSI-

GeoTrans 2000) and TRACR3D (Travis and Birdsell 1991). Examples of 

numerical simulations of solute transport in discretely-fractured porous media 

with matrix diffusion are found in Grisak and Pickens (1980), Sudicky and 

McLaren (1992), Therrien and Sudicky (1996), VanderKwaak and Sudicky 

(1996), Reynolds and Kueper (2002) and Graf and Therrien (2005). 

 

Solute transport in fractured rock is typically characterised by rapid advection 

within the fractures and minimal advection in the matrix. Much slower solute 

transport can occur by diffusion into porous matrix material thereby complicating 

the simulation of mass transport by introducing an additional timescale. Slough 

et al. (1999) found that longitudinal grid discretisation of fracture elements, 

particularly at fracture intersections, can have a significant impact on simulated 

DNAPL transport paths and rates in fracture networks. Additionally, when matrix 

diffusion is modelled, grid discretisation in the matrix must be fine to correctly 

simulate the high concentration gradients that develop between fractures and 

the matrix (Sudicky and McLaren 1992). Previous numerical studies have 

matched analytical solutions for solute transport in fractured rock despite using 

grid spacing at the fracture-matrix interface (FMI) that is much larger than the 

fracture aperture. For example, Sudicky and McLaren (1992) used a grid 

spacing of 25 mm perpendicular to fractures of aperture 0.1 mm when matching 

the analytical solution of Sudicky and Frind (1982), equating to elements 250 

times the size of the fracture aperture. Cook et al. (2005) matched 

chlorofluorocarbon-12 (CFC-12) concentrations modelled with the analytical 

solution of Sudicky and Frind (1982) in a 0.1 mm fracture using a grid spacing 
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of 25 mm (250 x fracture aperture). In contrast, Reynolds and Kueper (2002) 

used a much finer discretisation of 100 m when modelling DNAPL migration in 

fractures of apertures from 15 to 50 m (2 to 7 x fracture aperture). To date 

there has been no systematic study of the spatial discretisation required for 

accurate simulation of solute transport in fractured rock as a function of the 

parameter values employed in the model domain, in particular the relative 

strength of longitudinal advection and dispersion in the fracture to transverse 

diffusion in the matrix. 

 

This study compares concentrations simulated with the discrete fracture model 

HydroGeoSphere (Therrien et al. 2005) and a discrete fracture implementation 

of MT3DMS (Zheng 1990) to those computed with the analytical solution of 

Tang et al. (1981) for transport in a single fracture embedded in a porous rock 

matrix. Two aspects of spatial discretisation were investigated: (1) the 

discretisation of the elements closest to the fracture ( xmin), and (2) the grid 

multiplier perpendicular the fracture (mx). The work of Sudicky and McLaren 

(1992) and Cook et al. (2005) focussed on scenarios where diffusion is higher 

than that in this study, and demonstrated that over long simulation times 

relatively coarse discretisation is adequate when advection and mechanical 

dispersion within the fracture are small compared to diffusion in the adjacent 

matrix. In contrast, this study examines a scenario with relatively fast fluid flow 

in the fracture which reduces potential for matrix diffusion. Such conditions can 

occur when simulating transport on a small spatiotemporal scale and/or under 

high hydraulic gradients such as those encountered in some tracer tests. 
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Quantitative relationships are developed between  (a ratio of the timescales for 

dispersion and advection in the fracture to diffusion in the matrix) and xmin and 

mx to guide discretisation principles. This study demonstrates that when both 

fracture and matrix domains are modelled with a discrete fracture model not 

only do spatial grids have to be fine at the FMI, but in cases of low matrix 

diffusion they need to be on the scale of the fracture aperture to accurately 

simulate solute transport, not only within the matrix, but also within the fracture. 

Even where matrix diffusion is deemed to be physically unimportant over 

relevant timescales, inappropriate discretisation will lead to an over prediction of 

matrix diffusion and subsequently to an underestimation of advective/dispersive 

transport within the fracture. This required level of spatial discretisation has not 

previously been reported in the literature. Another result reported here is that 

dispersive scenarios can employ a larger grid multiplier moving away from the 

FMI than diffusive scenarios.  

Analytical Modelling 

The geometry and solution for the model presented by Tang et al. (1981) is 

outlined in Chapter 2 (see Figure 2.1 and equations 2.1, 2.2 and 2.3) and is not 

repeated here. 

Numerical Modelling 

The discrete fracture fluid flow and solute transport model HydroGeoSphere 

(Therrien et al. 2005) was used to simulate solute transport in the fracture-

matrix system presented by Tang et al. (1981). The control volume finite 

element (CVFE) method was used to discretise both the flow and transport 
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equations with full upstream weighting of advective flux terms. The discretised 

equations are solved using the WATSIT iterative solver package of general 

sparse matrices (Clift et al. 1996) and a conjugate gradient stabilised 

(CGSTAB) acceleration technique (Rausch et al. 2005). HydroGeoSphere 

represents discrete fractures with 2-D planes of connected nodes that already 

form part of the 3-D grid for the porous medium. The fracture and matrix 

domains are thus coupled by their co-location and by requiring that their 

corresponding hydraulic heads and concentrations be equal. 

 

The discretised solute transport equations used by HydroGeoSphere can be 

simplified for a non-sorbing, non-decaying, non-reactive solute in fully saturated 

media. For the porous medium: 

1 1 1 1 1 1
1/ 2

1 1 1
1/ 21

i i

i i

L L L L L L Li
ij j i ij j iiji i

j j
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 (3.1) 

and for fractures: 
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where: ai = area associated with fracture node i (L2), h = hydraulic head (L), Vi = 

region or control volume associated with porous medium node i (L3), ij = term 

arising from discretisation and describing fluid flow between i and j (L2T-1), i = 

the set of nodes connected to node i, ij = term arising from discretisation and 
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describing diffusive/dispersive solute flux between i and j (L3T-1),  = solute 

exchange rate between fracture and porous medium domains (T-1) and  = finite 

difference time weighting factor (-). Subscript f denotes a fracture property, 

subscripts i and j denote a property of node i or j respectively and superscript L 

denotes the time level, with L+1 corresponding to the time level for which the 

solution is sought. 

 

The first term on the right hand side (RHS) of equations (3.1) and (3.2) 

describes solute transport due to advection. The second term on the RHS 

describes the flux that results from dispersive and diffusive processes. The last 

term incorporates mass exchange fluxes between porous medium and fracture 

domains due to the requirement for their concentrations at common nodes to be 

equal. In equations (3.1) and (3.2), the concentration terms c(ij+1/2) and cf(ij+1/2) 

depend on the type of spatial weighting used for the advective term between 

nodes i and j. For example, c(ij+1/2) and cf(ij+1/2) are equal to the average 

concentration between nodes i and j for the central weighting scheme. Prior to 

solving the transport equations, HydroGeoSphere first solves the fluid flow 

equation for the two domains and simulation errors that result from inadequate 

spatial discretisation of the FMI are generated in the second term of the RHS. 

When simulating solute transport in a coupled system where transport rates 

have the potential to vary by orders of magnitude between the two domains 

(fracture and matrix) it is obvious that inadequate discretisation in the matrix 

could lead to simulation errors in the fractures. 

 



49 

 

 

Figure 3.1 Geometry of the numerical model. 

 

Figure 3.1 illustrates the model domain used to simulate the fracture-matrix 

system. A finite element grid was used to discretise the model domain 

measuring X = 0.1 m, Y = 0.2 m and Z = 2 m. A single fracture of aperture 2b = 

1.2 x 10-4 m was located at x = 0. No flow (or solute flux) boundary conditions 

were imposed on all boundaries except the upper and lower faces (z = 0 m and 

z = 2 m) where specified heads were applied such that the flow rate in the 

fracture was 0.75 m/day. A specified concentration of 1 was applied to the 

fracture nodes at z = 0 m. A regular grid spacing of z = 0.01 m was used 

parallel to flow in the fracture and two 0.1 m elements were used in the y 

dimension (although the problem is essentially 2D). In the x dimension, 

perpendicular to the FMI, symmetrical variable grid spacing was used such that: 

min
n

x xmx )1(          (3.3) 
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where: x = grid spacing in the x direction (L), mx = grid spacing multiplier in the 

x direction (-), n = integer element counter where element number 1 borders the 

fracture centre (-) and xmin = the minimum element size occurring at n = 1 (L). 

 

Spatial discretisation is often conducted in accordance with the grid Peclet 

number: 

vD
zv

Peg '
         (3.4) 

As diffusion is typically much smaller than mechanical dispersion (D’ <<  |v|) 

Peg can be simplified to z/ . Depending on the numerical scheme used the 

necessary Peclet criterion will vary. However, for numerical stability it is usually 

recommended that Peg be less than around 4 (Anderson and Woessner 1992) 

up to as high as 10 (Huyakorn and Pinder 1983) when central weighting of the 

advective term is used, which is the case for the simulations presented here. 

For the chosen grid, Peg is 0.0132 along the fracture. As flow only occurs in the 

z direction, Peg is not applicable for the other dimensions. 

 

Temporal discretisation was conducted using HydroGeoSphere’s variable time-

stepping procedure with a Crank-Nicolson implicit finite difference scheme in 

time, with  = 0.5 in equations (3.1) and (3.2). Once a solution at time L is found, 

the next time-step is determined by: 

L
L

i
L

i

maxL t
cc

ct
1

1

max
        (3.5) 

where cmax = specified maximum change in concentration desired in a time-step 

and ci = calculated concentration at node i. This procedure allows the model to 
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increase time-steps when there are only small changes in concentration and 

similarly reduce them when rapid changes occur. Thus computation time is 

reduced without decreasing numerical accuracy. This study used a very small 

initial time-step of 0.01 s and a target concentration change per time-step of 

cmax = 0.01. A maximum time-step of 1000 s and maximum time-step multiplier 

of 2 were imposed. Model output was generated every 0.4 days for a total 

duration of 4 days. 

 

To provide a check on the performance and accuracy of HydroGeoSphere, the 

solute transport model MT3DMS (Zheng 1990) was also used to simulate the 

system depicted in Figure 3.1. The linked combination of MT3DMS and the 

USGS flow code MODFLOW is one of the most commonly used and widely 

accepted approaches for modelling flow and solute transport in the subsurface. 

In the majority of cases, this combination of models is used to simulate flow and 

transport in fractured media utilising the EPM approach, however it is fully 

capable of simulating a discrete fracture formulation at very fine grid spacings. 

The problem was solved using a third order accurate total variation diminishing 

(TVD) scheme. An identical model domain was used for the MT3DMS 

simulations. Discretisation in the y and z directions was identical to that used in 

HydroGeoSphere. Discretisation perpendicular to the fracture was slightly 

different as MT3DMS uses a block-centred rather than point-centred grid. In all 

cases elements of width 2b = 1.2 x 10-4 m and 100 % porosity were used for the 

fracture. The minimum discretisation in the matrix ( xmin) was varied and a grid 

multiplier of 1.5 was used. An initial time-step of 0.001 s and a time-step 

multiplier of 1.1 were used with a maximum time-step of 100 s. 
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Model parameters for HydroGeoSphere and MT3DMS simulations were chosen 

to match those used by Tang et al. (1981) who in turn successfully replicated 

the earlier numerical results of Grisak and Pickens (1980). Those were 2b = 1.2 

x 10-4 m, D’ = 10-6, 10-7, 10-8, 10-9, 10-10 and 0 cm2s-1, v = 0.75 mday-1,  = 0.76 

m and  = 0.35. The range of diffusion coefficients covers typical values for free 

diffusion in water (10-6 cm2s-1) through to diffusion in tortuous rock (10-11 cm2s-

1). In addition, a matrix hydraulic conductivity of 10-50 ms-1 was used to ensure 

water flow in the matrix was negligible. Model parameters, grid and time-

stepping specifications are summarised in Table 3.1. Grids employing different 

spatial discretisation were used to model the Tang et al. (1981) problem. Unless 

otherwise stated xmin = 2b = 1.2 x 10-4 m and mx = 2. 
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2b (m) 0.00012 

D’ (cm2/s) 10-6 to 10-10, 0 

v (m/d) 0.75 

 (m) 0.76 

 (-) 0.35 

h (m) 0.001658219 

z (m) 0.76 

t (d) 4.0 

X (m) 0.1 

Y (m) 0.2 

Z (m) 2.0 

xmin (m) 0.00012 

y (m) 0.1 

z (m) 0.01 

mx (-) 2 

Table 3.1 Model parameters and base grid specifications for HydroGeoSphere 

simulations. Note: h is measured across the entire model length Z, not the distance 

over which transport is measured, z. 

Results 

HydroGeoSphere results are now presented for a range of grid discretisations. 

They are compared with results obtained using the commonly used MT3DMS 

model. 

 

Figure 3.2 illustrates the effect of spatial discretisation perpendicular to the FMI 

xmin). Concentration contours of 0.2, 0.4, 0.6 and 0.8 are shown after 4 days 

for a solute with a high matrix diffusion coefficient of 10-8 cm2s-1. The elements 
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closest to the fracture were of size xmin = (a) 200b, (b) 20b and (c) 2b. In most 

groundwater models, even the coarsest grid in case (a) would be considered  

 

Figure 3.2 Concentration contours (0.2, 0.4, 0.6 and 0.8) after 4 days for D’ = 10-8 cm2s-1 

with xmin = (a) 200b, (b) 20b and (c) 2b where 2b = 120 m. 
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extremely fine. The results shown in case (c) were found to match the analytical 

solution whilst the larger elements used in cases (a) and (b) are clearly not fine 

enough to correctly model the system. 

 

Figure 3.3 compares the analytical solution of Tang et al. (1981) with 

corresponding numerical results both (a) along the fracture and (b) in time when 

using xmin = 20b and 2b. Results for the finer grid ( xmin = 2b) are close to the 

analytical solution for both D’ = 10-10 and 10-6 cm2s-1. The coarser grid ( xmin = 

20b) is able to reproduce the analytical solution for D’ = 10-6 cm2s-1 but is clearly 

unable to match the analytical solution of the less diffusive scenario where D’ = 

10-10 cm2s-1. 

 

A sensitivity analysis was conducted to assess whether the numerical schemes 

chosen for the simulations had contributed to the requirement for such fine 

discretisation at the FMI. All possible combinations of control volume finite 

element / Galerkin finite element / finite difference discretisation techniques with 

upstream / central / downstream advective weighting and central (Crank-

Nicolson) / fully implicit time weighting were tested in HydroGeoSphere. 

Simulations were run for D’ =  10-10 cm2s-1 with xmin =  2b and 20b and 

concentrations compared after 4 days at z = 0.76 m. In results not shown here, 

all numerical combinations produced good results when xmin = 2b, falling within 

2 % of the analytical solution and 0.052 % of each other. All combinations 

produced very poor results when xmin =  20b, falling 25% from the analytical 

solution, but within 0.17 % of each other. Therefore it is apparent that  
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Figure 3.3 Comparison of the HydroGeoSphere concentrations for xmin =  20b and  2b 

with the analytical solution for D’ =  10-10 and 10-6 cm2s-1: (a) concentration along the 

fracture at t = 4 days and (b) concentration with time at z = 0.76 m. 

 

regardless of the numerical methods used to calculate the solution in 

HydroGeoSphere, a very fine grid is required at the FMI to match the analytical 

solution under the physical conditions simulated in the model. 

 

MT3DMS results presented in Figure 3.4 confirm that the HydroGeoSphere 

results are not a code specific phenomenon. It is immediately obvious that both 

models require extremely fine discretisation to match analytical results for low 



57 

 

diffusion coefficients but that less strict discretisation requirements can be 

tolerated for a higher diffusion coefficient. It is also of interest to note the 

performance of MT3DMS when the element size immediately adjacent to the 

fracture is 200b, which is still a fine grid compared to that used for most field 

scale simulations. The predicted migration of the solute through the fracture is 

severely underestimated, in particular for the case with lower diffusion (D’ = 10-

10 cm2s-1). Erroneously, the value of the diffusion coefficient itself has little effect 

on the model prediction, further emphasising the importance of fine grid 

discretisation in discrete fracture modelling. Given the results for the range of 

numerical schemes tested in HydroGeoSphere, plus the TVD scheme used in 

MT3DMS, it appears that the requirement for fine gridding at the FMI under 

conditions of low diffusion is neither a phenomenon of the codes nor the 

numerical schemes utilised in them. 

 

Figure 3.5 shows simulated concentrations normalised by their corresponding 

analytical values as a function of xmin/2b. It is readily apparent that highly 

diffusive cases are able to achieve better agreement between numerical and 

analytical solutions for larger element sizes but that for low diffusivity cases, 

xmin/2b  1 is required for a match. All cases converge once xmin/2b reduces  
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Figure 3.4 Comparison of MT3DMS results with the analytical solution for concentration 

along the fracture at t = 4 days: (a) D’ = 10-6 and (b) 10-10 cm2s-1. 

 

to 1 ( xmin = 2b) but the converged values of cmodelled/cTang are not all exactly 1. 

This could be due to the approximation made in the analytical model that 

diffusion occurs only perpendicular to the FMI. In reality, diffusion creates 

arrowhead-like concentration contours that are inherently 2-D in nature, as can 

be seen in Figure 3.2. Such a concentration distribution creates concentration 

gradients that are not perpendicular to the fracture wall as is assumed in the 
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analytical approach used by Tang et al. (1981). Thus, minor discrepancies 

should be expected, especially for large diffusion coefficients. 

 

 

Figure 3.5 Ratio of modelled to analytical solute concentration (t = 4 days, z = 0.76 m) in 

the fracture as a function of xmin/2b. 

 

It is apparent that the ability to match the analytical solution with coarser grids is 

strongly dependent on the magnitude of matrix diffusion. Highly diffusive cases 

are easily matched with coarser grids. However, as the magnitude of diffusion is 

reduced the discretisation at the FMI necessarily becomes finer. Previously 

mentioned studies have matched analytical solutions for solute transport in 

fractured rock without requiring the very fine discretisation identified in this 

study. Thus, it is useful to examine the quantitative disparity between numerical 

and analytical results as a function of the relative importance of matrix diffusion 

as a means of solute transport. Lever and Bradbury (1985) define the ratio of 

matrix diffusion to mechanical dispersion in the fracture by their associated 

timescales: 
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vA
z
2

23

4
          (3.6) 

A  value greater than 1 indicates a diffusive scenario whereas a value less 

than 1 indicates a dispersive scenario. It should be noted that  is not an exact 

measure of the transport mode in a fracture-matrix system as it assumes matrix 

diffusion and mechanical dispersion are independent processes. However, it is 

very useful as an indicator of the relative strength of these two processes. 

Results for this study were obtained by altering A only whilst , v and z were 

held constant. Figure 3.6 shows the maximum xmin/2b required to simulate 

concentrations with an accuracy of 5, 10 and 20 % relative to the analytical 

solution as a function of . Simulations were run at discrete values of xmin and 

as such the critical values are not exact. Clearly, scenarios where matrix 

diffusion is more significant (points on the right of this graph) can tolerate 

coarser discretisation. This is easily explained by the way a finite element model 

simulates reality. The concentration gradient is calculated as the difference in 

concentration between one node and the next divided by the distance between 

them. Any resultant transport occurs directly into the node down-gradient. In the 

case of the fracture-matrix system simulated here, a gradient exists from the 

fracture into the matrix. Thus a solute flux occurs from the common node in the 

fracture to the closest node that is purely a porous media node. If this node is 

located further into the matrix than the length scale associated with real matrix 

diffusion in a given timestep, the model will overestimate matrix diffusion. Since 

solute penetrates further into the matrix in more diffusive scenarios, these cases 

are less sensitive to the grid discretisation at the FMI, allowing the use of larger 

elements. Additionally, it can be inferred that scenarios with higher v or  will 
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require finer discretisation because transport along the fracture is more rapid, 

reducing solute contact time with the matrix.  Reduced contact time results in a 

smaller length for diffusion into the matrix and subsequently finer discretisation 

is required in that direction to ensure solute is not spread to a distance greater 

into the matrix than it should be. For a given set of physical parameters, both 

the timescale of the model and timesteps used will also impact the discretisation 

requirements. Because the necessary discretisation at the FMI is related to the 

length scale for diffusion over a timestep, simulations that use longer timesteps 

will be able to utilise larger nodal spacings. Additionally, results generated after 

longer periods of simulation may be accurate even if early time results are not, 

because solute diffuses further into the matrix as time progresses. 

 

 

Figure 3.6 xmin/2b required to reach 5, 10 and 20 % accuracy relative to the analytical 

solution (t = 4 days, z = 0.76 m) as a function of . 

 

In Figure 3.6 the point furthest to the right on the 5 % accuracy plot 

(corresponding to D’ =  10-6 cm2s-1) requires finer discretisation than the less 

diffusive scenario to its left. Figure 3.6 shows that the D’ = 10-6 cm2s-1 does not 
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plateau at the analytical value. As mentioned earlier, this may be due to the 

approximation in the analytical solution of a diffusion gradient exactly 

perpendicular to the FMI. The D’ =  10-6 cm2s-1 scenario is the most diffusive 

case tested and thus differs most from this approximation. 

 

 

Figure 3.7 Ratio of modelled to analytical solute concentration (t = 4 days, z = 0.76 m) in 

the fracture as a function of mx, where xmin = 2b = 1.2 x 10-4 m. 

 

We now consider the rate at which element size can increase into the matrix 

(mx). Given the very fine discretisation required for the elements immediately 

adjacent to the fracture it is desirable that elements can rapidly increase away 

from the fracture to save CPU time and memory. Figure 3.7 shows the effect of 

the grid spacing multiplier, mx, on simulated concentrations normalised by their 

analytical values. Increasing mx leads to reduced simulated concentrations for 

D’ =  10-6 and 10-7 cm2s-1, but has little effect on scenarios where diffusion is 

smaller even up to a large value of mx = 10. This is because in less diffusive 

scenarios solutes do not reach very far into the matrix during the 4 day 

simulation, making fine grid discretisation away from the fracture unnecessary. 
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Therefore, whilst scenarios with low diffusion require very fine elements near 

the fracture, they can tolerate a very large grid multiplier, and thus fewer 

elements in the matrix. However, it should be noted that (for any given timestep 

size) to simulate transport over longer times when solute penetrates further into 

the matrix, such large increases in grid spacing may not be acceptable. 

 

In summary, as expected, both the discretisation at the FMI ( xmin) and the grid 

multiplier perpendicular to the FMI (mx) affect simulation of solute transport in 

fractured rock. For the relatively short durations simulated in this study, low 

diffusion scenarios require very fine elements near the fracture ( xmin), but can 

tolerate a very large grid multiplier (mx), and thus fewer elements within the 

matrix. On the other hand, high diffusion scenarios can be simulated with bigger 

elements near the fracture ( xmin), but with more matrix elements (mx). These 

discretisation requirements are summarised in Table 3.2. 

  < 1 
“dispersive scenario” 

 > 1 
“diffusive scenario” 

Necessary discretisation at the FMI smaller xmin larger xmin 

Necessary grid multiplier 
perpendicular to the FMI larger mx smaller mx 

Table 3.2 Summary of grid requirements xmin and mx for dispersive and diffusive 

scenarios. 

Discussion 

This study has shown by use of two different numerical models and several 

numerical methods that in some cases very fine spatial discretisation (on the 

order of the fracture aperture, 2b) perpendicular to the fracture-matrix interface 

is required in order to match analytical results. This requirement for such 
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extremely fine discretisation has not been reported by previous authors. The 

results indicate that scenarios where matrix diffusion is relatively high (i.e. 

slower water flow, higher porosity or diffusion coefficient, smaller aperture, 

longer times) do not require such small elements. On the other hand scenarios 

with low matrix diffusion require extremely fine grids (see Table 3.2). The 

aforementioned studies of Sudicky and McLaren (1992) and Cook et al. (2005) 

in which elements 250 times the fracture aperture were used to match the 

analytical solution of Sudicky and Frind (1982) were conducted using 

parameters which equate to  values of 0.143 and 885 respectively. These 

represent a slightly dispersive scenario and a highly diffusive scenario and 

combined with their long simulation periods of around 27.5 and 55 years in the 

case of Sudicky and McLaren (1992) and approximately 50 years for Cook et al. 

(2005), explain why they were able to use such large elements without 

encountering significant errors. 

 

Thus, in many cases solute transport may be simulated accurately without 

discretisation on the order of the fracture aperture. However, when simulating 

scenarios involving high water velocity (e.g. forced gradient tracer tests), small 

diffusion coefficients (e.g. large compounds such as Uranium), low matrix 

porosity or very large fractures, simulations are prone to error and a rigorous 

sensitivity analysis of solutions to grid discretisation is warranted. 

 

As a consequence of the inherent discretisation required for some practical 

scenarios, the use of discrete fracture network models in the simulation of 

catchment-scale phenomena may be severely limited by computing capacity. 
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With current computing capabilities, models requiring discretisation on the scale 

of the fracture aperture will be limited to incorporation of very few fractures 

and/or small scale model dimensions. 

Conclusions 

This study has examined the spatial discretisation required perpendicular to the 

fracture-matrix interface (FMI) in a discrete fracture model in order to 

demonstrate how simulation accuracy and required discretisation are influenced 

by the diffusive-dispersive nature of the problem being considered. Comparison 

with the analytical solution of Tang et al. (1981) has indicated: 

 

1. Finite difference and element grids need to be designed according to the 

relative dominance of advection and dispersion in the fracture to diffusion in 

the matrix. 

2. Diffusive scenarios (  > 1) tolerate larger elements close to the FMI (large 

xmin) but require the growth of matrix elements moving away from the 

fracture to be gradual (small mx), a result not reported in previous literature. 

3. Dispersive scenarios (  < 1) require small elements close to the FMI (small 

xmin), but are able to employ larger matrix elements (large mx) for relatively 

short timescales, before solute penetrates far into the matrix, a result not 

reported in previous literature. 

4. Results were compared from a wide range of numerical schemes and two 

different numerical codes. The requirement for fine discretisation at the FMI 

was found to be neither a phenomenon of the codes nor the numerical 

schemes used within them. 
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5. Minor discrepancies between numerical and analytical results were 

observed, especially for diffusive scenarios. These are assumed to be due 

to the assumption made in the analytical solution that matrix diffusion occurs 

only perpendicular to the FMI, but which is inherently 2-D in the numerical 

framework considered here. 

6. Whilst it has previously been reported that fine discretisation is required to 

simulate solute transport in discretely fractured media, this study has 

quantified the relationship between xmin and  showing that the grid 

discretisation required for low matrix diffusion scenarios can be on the order 

of the size of the fracture aperture ( xmin  2b). This necessary grid spacing 

requirement is extremely fine and has not been reported previously in the 

literature. 

7. Whilst the discretisation requirements at the FMI and in the adjacent matrix 

are related to the physical parameters of the system being modelled (eg D’, 

v, z), they are also tied to the timescales used for individual timesteps and 

overall model duration. 

 

The results of this study clearly indicate that caution must be taken when 

modelling solute transport in discrete fracture systems using a numerical model. 

Careful attention must be given to the diffusive/dispersive ratio in the system 

under consideration. Critically, the results of this study provide guidance on the 

choice of xmin and mx that should be employed for the varying cases of 

diffusive/dispersive effects in the physical system under consideration. These 

results are demonstrative and indicative only and we wish to exercise some 

caution in overgeneralising results here. However, it is abundantly clear that a 
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sensitivity analysis must be conducted to determine the precise spatial and 

temporal discretisation required in any given model of solute transport in 

fractured porous media. 
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Notation and Units 

Subscript f denotes a fracture property. 

Subscripts i and j denote a property of node i or j respectively. 

Superscript L denotes the time level in a time-stepping procedure. 

 

A  matrix diffusion term     T1/2 

ai  area associated with fracture node   L2 

b  half fracture aperture     L 

c  solute concentration      ML-3 

c   solute concentration in the Laplace space  TML-3 

c’  solute concentration in the matrix    ML-3 

cmax  specified maximum concentration change 

per time-step       ML-3 

D  hydrodynamic dispersion coefficient   L2T-1 

D*  diffusion coefficient of solute in water   L2T-1 

D’  diffusion coefficient of solute in matrix   L2T-1 

h  hydraulic head      L 

mx  grid spacing multiplier in the x direction   - 

n  integer element counter     - 

p  Laplace space variable     T-1 

Peg  grid Peclet number      - 

R  face retardation coefficient     - 

R’  matrix retardation coefficient    - 

t  time         T 
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v  water velocity       LT-1 

Vi  region or control volume associated with 

porous medium node i     L3 

x, y, z  spatial coordinates      L 

x, y, z grid spacing in x, y and z directions   - 

X, Y, Z model domain size in x, y and z directions  L 

  longitudinal dispersivity     L 

  ratio of diffusive to dispersive timescales   - 

ij  describes fluid flow between i and j   L2T-1 

  finite difference time weighting factor   - 

  matrix porosity      - 

  radioactive decay constant     T-1 

  tortuosity       - 

ij  describes diffusive/dispersive solute flux 

between i and j      L3T-1 

  solute exchange rate between domains   T-1 
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Chapter 4: Conceptual model choice for dipole tracer 

tests in fractured rock 

Abstract 

Applied tracer tests provide a means to estimate fracture and matrix parameters 

that determine solute transport in fractured rock. Dipole tracer tests utilise an 

injection-extraction well pair to create a forced hydraulic gradient, allowing tests 

to be conducted more rapidly than natural gradient tests. Tracer breakthrough is 

analysed using an analytical model to find the parameters that generate the 

best fit to the data. This study explores the differing interpretation that can be 

drawn from a tracer test when analysed with two different models; one 

assuming a dipole, the other a linear flow field. The analytical solution of Tang 

et al. (1981) is used to model a 1-D flow field and a multiple streamline 

summation of the same model is used to represent transport in a dipole flow 

field. The two models are able to produce almost identical breakthrough curves 

for a range of scenarios. Comparison of the parameters required to create 

matching breakthrough curves demonstrates the non-uniqueness of the 1-D 

and dipole interpretations, resulting in large parameter uncertainty. Considering 

that neither of the conceptual models incorporates the complexity of a real 

fracture network, it is expected that analytically interpreted parameters may be 

as different, or more different from reality as they are from those interpreted with 

a different analytical model. Given the complex nature of fractured rock systems 

and the many unknown fracture and matrix properties involved therein, this 
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study highlights the benefit of incorporating multiple conceptual models in the 

analyses of dipole tracer tests conducted in fractured rock. 

Introduction 

Dipole tracer tests are used as an in-situ means of characterising the solute 

transport properties of fractured rock systems. A dipole tracer test is conducted 

by applying tracer to the injection well of an injection-extraction well pair and 

monitoring its concentration in the extraction well. The resultant breakthrough 

curve is analysed with an analytical model to determine the parameters that 

generate the best fit to the observed data. 

 

Grove and Beetem (1971) outlined a method for modelling a 2-D dipole of equal 

pole strength (as would occur in a fracture of infinite extent with smooth parallel 

walls). The approach is a summation of breakthrough curves from multiple 

streamlines. Each streamline has a path length and average flow velocity 

dependent on the angle of departure from the injection well. This method has 

been widely used to interpret dipole tracer tests conducted in single fractures 

(Novakowski, 1988; Novakowski et al., 2004; Novakowski et al., 1985) and in 

fracture networks (Himmelsbach et al., 1998; Himmelsbach and Maloszewski, 

1992; Sanford et al., 2002; Webster et al., 1970). 

 

Besides the usual experimental error, analyses of dipole tracer tests in fracture 

networks are inherently subject to potentially large errors due to the inability of 

analytical models to describe the unknown heterogeneity of complex fracture 

geometries at appropriate spatial scales. Consequently, the choice of model 
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used to analyse a tracer test is potentially the largest error in the analysis. 

Different approaches have been used to explain the long tailing typically 

observed in breakthrough curves from fractured rock. In many cases this is 

attributed to matrix diffusion. Tracers with differing diffusion coefficients have 

been found to produce different breakthrough curves (Jardine et al., 1999; 

Maloszewski et al., 1999; Sanford et al., 2002). The analytical models of Grisak 

and Pickens (1981), Tang et al. (1981) and Sudicky and Frind (1982) 

incorporate matrix diffusion and may be used to obtain transport parameters in 

such cases. Other authors (Becker and Shapiro, 2000; Tsang et al., 1991) 

attribute tracer tailing to complex transport pathways resulting in tracer 

channelling within and between fractures. Becker and Shapiro (2000) presented 

identical late-time breakthrough behaviour for tracers with different diffusion 

coefficients and claimed this proved that matrix diffusion was not responsible for 

the long tailing. Models such as those presented by Maloszewski et al. (1992), 

Neretnieks (1983), Rasmuson and Neretnieks (1986) and Tsang and Tsang 

(1987) may be used to interpret tracer tailing by channelling. In addition to these 

processes, tracer tests conducted in a dipole flow field are subject to long tailing 

due to the flow field geometry. With a range of models available for interpreting 

tracer tests in fractured rock a unique set of hydrogeologic parameters may be 

difficult to identify. As it is often not possible to know which model/s will best 

approximate a system, recent studies have begun to compare the analyses of 

tracer tests with different models (Akin, 2005; Pfingsten and Soler, 2003). 

 

Typically dipole tracer tests are analysed assuming that a perfect dipole is 

attained in the fracture/s. However, laterally finite fractures and variable fracture 
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apertures may channel flow such that infinite dipole flow fields cannot develop 

and therefore a 1-D flow model may in fact better describe some systems. 1-D 

flow models have also previously been used to interpret dipole tracer tests 

where injection and extraction rates are not equal (Pfingsten and Soler, 2003). 

In order to demonstrate the potential non-uniqueness that may arise from the 

choice of conceptual model used to interpret dipole tracer tests, this study 

compares the parameters obtained by two models, one assuming a dipole flow 

field and the other a 1-D flow field. The models otherwise incorporate the same 

physical processes and parameters. These models are chosen as examples 

only in order to demonstrate the principle of non-uniqueness and consequences 

for parameter estimation. This study examines the degree of uncertainty in 

model parameters that can occur due to conceptual model choice when 

interpreting a dipole tracer test conducted in fractured rock. It is demonstrated 

that breakthrough curves can be easily fitted with both the dipole and 1-D 

analytical models. It is not easy to determine which fit, if any, is superior and 

more meaningful. Furthermore the values of the fitting parameters are seen to 

be vastly different and this has major implications for subsequent predictions 

that may be made using these parameters. 

Methods 

In order to compare the best-fit parameters yielded by fitting a breakthrough 

curve with two different flow models, a dipole flow model was used to create 

synthetic breakthrough curves which were subsequently analysed using a 1-D 

flow model. The roles of the two models could have been reversed, but the 

same conclusions would have been reached. The model used for the 1-D flow 
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case was that of Tang et al. (1981) whilst the dipole model followed the 

approach of Grove and Beetem (1971) which sums breakthrough curves from 

multiple streamlines, each representative of a flow line in a 2-D dipole flow field 

constrained to the fracture plane. Transport along each streamline was solved 

using the Tang et al. (1981) model and therefore flow geometry was the only 

difference between the two models. The two sets of model parameters were 

then compared to assess the parameter uncertainty arising from the choice of 

conceptual model. 

 

The geometry and solution for the model presented by Tang et al. (1981) is 

outlined in Chapter 2 (see Figure 2.1 and equations 2.1, 2.2 and 2.3) and is not 

repeated here. 

 

Grove and Beetem (1971) approximate a dipole breakthrough curve as the 

summation of breakthrough curves from multiple streamlines, each of which 

departs the injection well at an angle  as illustrated in Figure 4.1. They present 

solutions for curved streamline length (z ) and travel time (t ) in a dipole. For a 

dipole between two wells separated by a distance z0 within a fluid filled fracture 

of aperture 2b, these can be written as: 

0
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where Q = volumetric injection/extraction rate of the wells (L3T-1). By assuming 

an average velocity along a streamline, v can be solved as z/t which yields: 

0
2

3

0
0 zb

Qv        (4.3a) 

0
cot12
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0bz
Qv      (4.3b) 
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Figure 4.1 The dipole flow approximation presented by Grove and Beetem (1971). Flow 

occurs along streamlines of length (z )  and flow velocity (v ) that are dependent on the 

angle of departure/arrival ( ) from the wells. 

 

Himmelsbach and Maloszewski (1992) used 120 streamlines to model dipole 

tracer breakthrough. Novakowski et al. (1985) found that as few as 12 

streamlines were necessary when using a numerical approach to model 

unequal strength dipole flow whilst Novakowski et al. (2004) found that 45 

streamlines were needed for convergence using the same numerical technique 

to model a dipole with an ambient ground water flow. 
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In order to ensure the results of this study would be appropriate for the typical 

parameters encountered in field studies, the tracer test parameters reported in 

several published natural gradient, monopole and dipole tracer tests conducted 

in fractured rock were examined. As a means of understanding and comparing 

the types of physical scenarios under which these tests were conducted, the 

dimensionless ratio of diffusive to dispersive time scales for the spreading of 

solute as defined by Lever and Bradbury (1985) was used. 

vA
z
2

23

4
          (4.4) 

A  value greater than 1 indicates diffusion dominated spreading of solute whilst 

a  value less than 1 indicates dispersion dominated spreading of solute. It 

should be noted that because  uses the independent time scales for diffusion 

and dispersion, that it is only an approximate measure of their relative 

importance in a coupled system. Additionally 0 is used to denote a  value 

calculated along the direct streamline between the injection and extraction wells 

in a dipole configuration. Figure 4.2 shows the 0 values of several previous 

tracer tests. Values lie in the range 10-7 to 200 with 13 out of 17 cases being 

more dispersive (  < 1) than diffusive. A 0 range of 10-7 to 103 was therefore 

considered representative of tracer tests encountered in the current available 

literature. 
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Figure 4.2 0 values for previous tracer tests conducted in fractured rock. Each column 

corresponds to a set of parameters related to a single tracer test. 

 

Because of the large range of parameter values used in this study it was 

deemed necessary to perform an independent sensitivity analysis on the 

number of streamlines used. 0 values (altered by changing v) spanning the 

entire range used in this study were tested in the sensitivity analysis. For each 

of the sensitivity runs the peak concentration, cp was obtained from the highest 

concentration in a breakthrough curve composed of 96 data points, equally 

spaced in time, and was found to converge using approximately 45 streamlines 

for most cases. However, due to the small computational time required to 

evaluate breakthrough solutions at different times, 105 streamlines were used 

to model dipole transport and this was more than sufficient to ensure solution 

convergence. 
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0  (m) v0 (md-1) A (d1/2) 

10-7 1014 1.2649x109 790.57 

10-6 1012 1.2649x108 250 

10-5 1010 12 649 000 79.057 

10-4 108 1 264 900 25 

10-3 1 000 000 126 490 7.9057 

10-2 10 000 12 649 2.5 

10-1 100 1 264.9 0.79057 

1 1 126.49 0.25 

101 0.01 12.649 0.079057 

102 0.0001 1.2649 0.025 

103 0.000001 0.12649 0.0079057 

Table 4.1 Parameters used to generate breakthrough curves at varied 0 values. The 0 = 

1 values were used as the base case. Where 0 was altered by a parameter the 

corresponding parameter value was substituted for the base case value. 

 

For all simulations a dipole separation of 10 m, tracer pulse of duration 

0.041667 d (1 hour) and fracture aperture of 100 m were used. A base set of 

dipole model parameters was chosen such that 0 =  1.  These  were  a  

dispersivity of  = 1m, direct streamline water velocity of v0 = 126.49 md-1 

(corresponding to Q = 0.13246 m3d-1) and matrix diffusion term A of 0.25 d1/2. In 

order to simulate dipole breakthrough curves for the 0 range 10-7 to 103 at 

order of magnitude intervals, each of , v0 and A were individually modified from 

their base case values whilst the other two parameters values remained fixed. 

The parameters used to create the dipole breakthrough curves for different 0 

values are presented in Table 4.1. Different parameter combinations result in 
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different time for tracer breakthrough. For each breakthrough curve, 96 data 

points equally spaced in time were calculated over durations ranging from 0.1 to 

100,000 d. In each case the total time allowed for tracer breakthrough was 

chosen such that tracer concentration had peaked and dropped by at least 50 

% of the peak concentration. 

 

The generated dipole breakthrough curves were then each fitted by the 1-D flow 

model using the parameter estimation program PEST (Doherty, 2004). A range 

of initial parameter estimates were used in fitting each of the dipole 

breakthrough curves to ensure global best fit parameters were obtained. 

 

Upon completing the fitting process, many initial parameter estimates yielded 

poor fits to the dipole breakthrough curves. In order to incorporate only the 

successful sets of parameters in the analysis, two fitting criteria were used. One 

was the r-squared value, or square of the Pearson product moment correlation 

coefficient 
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where i = integer counter, n = number of data points in the breakthrough curve 

(96 in this study), fit indicates a fitted data value, tar represents a target data 

value and overscore indicates an average over the data set. 

 

For each fit, r2 and E were evaluated across the 96 data points. A minimum r2 of 

98.5% and a maximum average normalised residual of 10% were specified as 

an objective and consistent set of criteria for determining a ‘good’ fit. The 

parameters deemed to have generated a good fit were then used to calculate 

an average and standard deviation for each parameter. 

Results 

Figure 4.3 shows a breakthrough curve generated with the dipole model using  

= 1 m, v0 = 126.49 md-1 (Q = 0.13246 m3d-1) and A = 2.5 d1/2, along with a 1-D 

breakthrough curve optimised to fit the dipole data with resulting parameters  = 

0.1905 m, v = 289.95 md-1 and A = 0.073508 d1/2. If these breakthrough curves 

were the result of optimisation to real field data it would be almost impossible to 

determine which model and associated parameter estimates best describe the 

system in the absence of additional information. It is now useful to explore the 

differences between parameter values for similar breakthrough curves 

generated with the two models. 

 

Figure 4.4a shows the normalised (i.e. the fitted 1-D parameter value divided by 

the dipole parameter value used to generate the initial breakthrough curve) 1-D 

dispersivity values for the range of 0 studied. It is worth noting that dipole and 

1-D parameters are up to more than 7 orders of magnitude different. For 1D( )  
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Figure 4.3 A dipole breakthrough curve generated with  =  1  m,  v0 = 126.49 md-1 (Q = 

0.13246 m3d-1) and A = 2.5 d1/2, fitted with a 1-D breakthrough curve with parameters  = 

0.1905 m, v = 289.95 md-1 and A = 0.073508 d1/2. 

 

(i.e. 0 is altered by  whilst holding v0 and A constant) 1D is underestimated 

for low 0 (high ) and overestimated for high 0 (low ). This is because 1D( ) 

values do not vary greatly, all falling between 104 and 106 m, compared with the 

span of dipole input  values ranging from 10-6 to 1014. Regardless of the  

value used in the dipole model to create the breakthrough curves, the 1-D 

model always requires a high dispersivity to account for the spreading of solute 

along multiple streamlines in the dipole model. 1D( ) is only underestimated by 

the 1-D model in  regions where the  value used to create the dipole 

breakthrough is so high that breakthrough is relatively insensitive to changes in 

dispersivity. This results from  not being an exact descriptor of tracer 

behaviour. Either doubling A or multiplying  by 16 from an initial set of  
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Figure 4.4 1-D parameter estimates normalised by dipole parameter values as a function 

of 0 altered by , v0 and A for (a) dispersivity, (b) water velocity and (c) diffusion term. 

Dashed lines indicate parameter ranges where none of the attempts to fit the data yielded 

results that met the prescribed r2 selection criterion deemed to indicate a good fit. 

 

parameters would result in a  value 4 times smaller, however the breakthrough 

curves could be very different. For the range 0 =  1  to  103 a dashed line for 

1D( ) indicates that none of the attempts to fit the data yielded results that met 
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the r2 selection criterion. Results shown are for those runs that met the E 

criterion alone. The dipole model, even with no dispersivity applied to individual 

streamlines, generates a tailed, smooth breakthrough curve with apparent 

dispersion due to the differing arrival times of each of the streamlines. In the 

high 0 range, the dipole model has a very low input  value. The 1-D model is 

no longer able to match the dipole breakthrough simply by reducing the fitted 

1D value because, as for the low 0 values, breakthrough is no longer sensitive 

to changes in 1D. Hence very similar non-normalised 1D values are returned 

for each breakthrough curve. In this same range 1D(v) and 1D(A) are able to 

match the dipole breakthrough by reducing the fitted 1D values as 

breakthrough for these cases is still sensitive to 1D. It is interesting to note the 

remarkable closeness of the normalised 1D(v) and 1D(A) curves from 0 = 1 to 

103. In this range, tracer breakthrough is dominated by spreading due to matrix 

diffusion. As the influence of dispersion reduces, the transport equation can be 

fitted using these two parameters (v and A) alone. 

 

Results for normalised v1D values are presented in Figure 4.4b. As with the  

results, dipole breakthrough is relatively insensitive to changes in v for the lower 

values of 0 resulting in similar large non-normalised v1D values. Again the 

behaviour of v1D(v) and v1D(A) are remarkably alike for 0 = 1 to 103.  The 1-D 

solution (dashed) was not able to meet the good fit criteria for v1D( ) for the 

range 0 = 1 to 103 as previously mentioned. 
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Figure 4.4c shows normalised A1D values. Normalised A1D(A) increases for the 

entire 0 range, however the raw (non-normalised) A1D(A) values are 

approximately constant for 0  10-2 where diffusion has negligible impact on 

breakthrough. This results in a sloped straight line when parameter values are 

normalised. A1D( ) and A1D(v) decrease and then increase again as 0 

increases. As in the other graphs, normalised A1D(v) and A1D(A) are very 

similar. 

 

Normalised 1D values obtained from the composite average parameters are 

plotted in Figure 4.5. All three means of altering 0 yield a common trend for 

normalised 1D.  At  low 0, 1D is greater than 0 as diffusion is overestimated. 

This overestimation decreases as 0 increases (and scenarios become more 

diffusive). This is because at low 0 there is very little diffusion in the direct 

streamline of the dipole. However, the long streamlines of the dipole cause the 

combined breakthrough to appear as though greater matrix diffusion is 

occurring. At higher 0 the dipole model undergoes greater diffusion. The 1D 

model interprets the presence of significant diffusion, but the effect of matrix 

diffusion is not so overestimated. At high 0 the behaviour caused by modifying 

v and A is very similar, as was the case for the three individually tested 

parameters. 
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Figure 4.5 1-D  estimates normalised by dipole 0 as a function of 0 altered by , v0 and 

A. 

Discussion 

The results presented in Figures 4.4 and 4.5 show that for large ranges of , v 

and A the dipole and 1-D models are able to produce almost identical 

breakthrough curves (see Figure 4.3) by using different parameter 

combinations. The consequence is that dipole tracer tests conducted in some 

fracture networks could be interpreted with either model by obtaining a good fit 

to measured data. Critically however, the parameter values obtained may be 

vastly different. If no other information is available to assist in the determination 

of which model best describes the system, the choice of which interpretative 

model is superior or preferred is difficult. Results demonstrate that there is no 

simple relationship between the best-fit parameters obtained using the two 

different conceptual models. 
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Possibly more important than the individual parameters obtained from the 

interpretation of a tracer test are the predictions of solute transport behaviour 

made in a system using these parameters. For example, a dipole tracer test 

may be conducted to determine hydraulic and solute transport parameters for 

an aquifer in which contamination has occurred, with the aim of ultimately 

predicting transport under the natural hydraulic gradient. Weatherill et al. (2006) 

showed that when using a single conceptual model, in some cases predictions 

of solute transport under lower hydraulic gradients can be better constrained 

than individual parameter values. However, if the initial interpretive model 

chosen poorly describes the system (even though it may fit the breakthrough 

data well), there is potential for large error in subsequent predictions under the 

natural hydraulic gradient. As an illustrative example, predictions of transport 

from a constant solute source were made for hydraulic gradients of 0.1, 0.01 

and 0.001, which for a smooth-walled fracture of aperture 100 m generates 

ground water velocities of 61.92, 6.192 and 0.6192 md-1 respectively.  The 

parameter values from a dipole conceptual model (  = 1 m and A = 2.5 d1/2) and 

1-D conceptual model (  = 0.1905 m and A = 0.073508 d1/2) that generated the 

breakthrough curves in Figure 4.3 were used. Figure 4.6 shows subsequent 

breakthrough 100 m downstream from the solute source using a 1-D transport 

solution with these different parameter values. Lower hydraulic gradients (with 

greatest difference from the forced gradient conditions) yield larger 

discrepancies between the two models, with the time for tracer arrival differing 

by up to three orders of magnitude. Thus, a good fit to measured data in a 

forced gradient tracer test used for parameter estimation may lead to poor 



91 

 

 

0

0.2

0.4

0.6

0.8

1

10 102 103 104 105 106
t (d)

c/
c 0

(b)

0

0.2

0.4

0.6

0.8

1

102 103 104 105 106 107
t (d)

c/
c 0

(c)

0

0.2

0.4

0.6

0.8

1

1 10 102 103 104 105
t (d)

c/
c 0

Dipole
1-D

(a)

0

0.2

0.4

0.6

0.8

1

10 102 103 104 105 106
t (d)

c/
c 0

(b)

0

0.2

0.4

0.6

0.8

1

10 102 103 104 105 106
t (d)

c/
c 0

(b)

0

0.2

0.4

0.6

0.8

1

102 103 104 105 106 107
t (d)

c/
c 0

(c)

0

0.2

0.4

0.6

0.8

1

102 103 104 105 106 107
t (d)

c/
c 0

(c)

0

0.2

0.4

0.6

0.8

1

1 10 102 103 104 105
t (d)

c/
c 0

Dipole
1-D

(a)

0

0.2

0.4

0.6

0.8

1

1 10 102 103 104 105
t (d)

c/
c 0

Dipole
1-D

(a)

 

Figure 4.6 Predicted breakthrough 100 m downstream from a constant source of solute 

with parameters from both dipole (  = 1 m and A = 2.5 d1/2) and 1-D (  = 0.1905 m and A = 

0.073508 d1/2) models under hydraulic gradients of (a) 0.1, (b) 0.01 and (c) 0.001. 

 

predictions under natural (or other) conditions if the interpretative model does 

not adequately represent the system. This may seem obvious, but the point 
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regarding conceptual model choice is rarely demonstrated explicitly and 

quantitatively in ground water hydrology, although the philosophical principle is 

well understood. 

 

Given the potentially large errors that can arise from a poor model choice (even 

if the model generates a good fit the measured data) any additional information 

about the system would assist both in further constraining parameters and 

determining which conceptual model may be more appropriate in the 

interpretation of field based observations. For this reason multiple tracers with 

different aqueous diffusion coefficients are often used in fractured rock tracer 

tests with the aim of isolating the effects of dispersion and diffusion on the 

resultant breakthrough curves. Similarly tests conducted under different forced 

gradients and over different well separations may be useful. Clearly, additional 

information on fracture geometry (e.g. orientations, spatial extent and 

connectedness) will also be beneficial. 

Conclusions 

This study has demonstrated the non-uniqueness that arises in the 

interpretation of dipole tracer tests conducted in fractured rock, when the 

appropriate interpretive model is not known. Breakthrough curves were 

generated for a wide range of parameter values using a dipole flow model and 

then fitted with a 1-D flow model. The parameter values required for each model 

to generate matching breakthrough curves were compared and found to be 

vastly (up to more than 7 orders of magnitude) different in many cases, having 

important implications for subsequent predictions based on these initial 
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parameter estimations. It is understood that conceptual model choice is a major 

issue in hydrogeology, but there are limited quantitative analyses that explicitly 

demonstrate the consequences of choosing different conceptual models over 

and above the general philosophical principle that it is a vital part of interpreting 

field data and making hydrologic predictions. 

 

The key findings of this study are: 

 

5. Dipole tracer test breakthrough curves can be easily fitted with different 

conceptual models yielding vastly different estimated parameter values. 

Given the similarity of the breakthrough curves it is quite surprising just how 

different the parameter values ( , v and A) can be. This is not necessarily 

intuitive. The potential impact of the choice of conceptual model can not be 

overstated. This reinforces that fact that a good model fit does not 

necessarily indicate a unique or correct interpretation of field based data. 

6. Use of an incorrect interpretive model to determine aquifer parameters from 

a measured breakthrough curve can lead to very large errors in subsequent 

predictions (e.g. natural gradient solute transport), even if the fit to the 

original forced gradient breakthrough curve is excellent. 

7. Additional information (such as the use of multiple tracers, multiple tests 

under different forcing conditions or prior knowledge of the extent and 

geometry of fractures) that can be used to identify the physical processes 

causing the spreading of tracer will assist in the interpretation of dipole 

tracer tests conducted in fractured rock. 
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8. For a more complex fractured rock setting, neither of the 1-D or dipole flow 

models assessed in this study is a ‘perfect’ representation of a real field 

scenario. Further work is required to elucidate where one is a better 

approximation than the other. What remains, however, is the potential 

disparity between the often simpler interpretative model chosen and the 

more complex processes occurring in the real world. This study has 

demonstrated differences between the 1-D and dipole interpretative 

parameters for a highly simplified and idealised test case. When interpreting 

transport in a more complex system, it is likely that both may be a poor 

conceptual model choice compared with the real system (which is rarely 

known). Further quantifying the disparity between a ‘real’ conceptual model 

and simplified interpretative models (e.g. 1-D or dipole) remains a subject for 

future inquiry. 
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Notation and Units 

Subscript  denotes a property of a streamline of departure angle . 

A  matrix diffusion term     T1/2 

b  half fracture aperture     L 

c  solute concentration      ML-3 

c’  solute concentration in the matrix    ML-3 

D  hydrodynamic dispersion coefficient   L2T-1 

D*  diffusion coefficient of solute in water   L2T-1 

D’  diffusion coefficient of solute in matrix   L2T-1 

E  average normalised error     - 

Q  fluid injection/extraction rate    L3T-1 

R  face retardation coefficient     - 

R’  matrix retardation coefficient    - 

r2  square of Pearson product moment 

correlation coefficient     - 

t  time         T 

v  water velocity       LT-1 

x, z  spatial coordinates      L 

  longitudinal dispersivity     L 

  ratio of diffusive to dispersive time scales  - 

  matrix porosity      - 

  radioactive decay constant     T-1 

  tortuosity       - 

  streamline departure angle     rad 
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Chapter 5: Interpreting dipole tracer tests in fractured 

rock aquifers 

Abstract 

Dipole tracer tests, where transport of applied tracer is measured in a steady 

state injection-withdrawal dipole, provide a means to characterise in-situ solute 

transport parameters for fractured rock aquifers. Single fracture analytical 

models have been used in previous studies to analyse tracer tests conducted in 

single isolated fractures (Novakowski, 1988; Novakowski et al., 2004; 

Novakowski et al., 1985) and fracture networks (Himmelsbach et al., 1998; 

Himmelsbach and Maloszewski, 1992; Sanford et al., 2002). For tests 

conducted in a fracture network it is usually assumed that equivalent single 

fracture and matrix parameters can be used to represent the whole network. 

This study examines the performance of two single fracture analytical models 

when used to interpret simulated tracer tests conducted in hypothetical three-

dimensional fracture networks and dipole tracer tests conducted in the Clare 

Valley, South Australia, both in terms of parameter estimation and subsequent 

solute transport predictions. The benefit of additional measured tracer data, 

either for a tracer with a different diffusion coefficient or for another test at a 

different injection and extraction rate is examined. The single fracture models 

could be calibrated to generate a good fit to a measured data set, but were not 

able to accurately predict solute transport under lower hydraulic gradients for 

the networks and field scenarios examined in this study. Simulations of 

transport in hypothetical fracture networks indicated that predictions could be 
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most improved by conducting an additional test at a lower injection and 

extraction rate. 

Introduction 

Dipole tracer tests have been used for decades to measure solute transport 

through in-situ aquifer material. A dipole tracer test uses an injection-extraction 

well pair to generate a steady state hydraulic dipole flow field in the aquifer. A 

tracer is introduced at the extraction well and the tracer breakthrough is 

measured at the extraction well. A dipole flow field allows sampling of a large 

volume of aquifer which can be controlled by the spacing of the wells. The 

forced gradient imposed by the dipole flow field enables rapid measurement of 

tracer transport. The measured tracer breakthrough curve is used to infer 

aquifer properties, usually using an analytical model. Single fracture analytical 

models have been used in previous studies to analyse tracer tests conducted in 

single isolated fractures (Novakowski, 1988; Novakowski et al., 2004; 

Novakowski et al., 1985) and fracture networks (Himmelsbach et al., 1998; 

Himmelsbach and Maloszewski, 1992; Sanford et al., 2002). For tests 

conducted in a fracture network it is usually assumed implicitly that equivalent 

single fracture and matrix parameters can be used to represent the whole 

network. The extent to which the complex geometry of a fracture network 

affects the interpretation of a dipole tracer test is not known. 

 

Grove and Beetem (1971) outlined a method for modelling a 2-D dipole of equal 

pole strength (as would occur in a fracture of infinite extent with smooth parallel 

walls). The approach is a summation of breakthrough curves from multiple 
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streamlines. Each streamline has a path length and average flow velocity 

dependent on the angle of departure from the injection well. This method has 

been widely used to interpret dipole tracer tests conducted in single fractures 

(Novakowski, 1988; Novakowski et al., 2004; Novakowski et al., 1985) and in 

fracture networks (Himmelsbach et al., 1998; Himmelsbach and Maloszewski, 

1992; Sanford et al., 2002; Webster et al., 1970). 

 

Typically dipole tracer tests are analysed assuming that a perfect dipole is 

attained in the fracture(s). However, laterally finite fractures and variable 

fracture apertures channel flow such that infinite dipole flow fields cannot 

develop. In some cases a 1-D flow model may in fact better describe the flow 

field generated by an injection-extraction well pair. 1-D flow models have also 

previously been used to interpret dipole tracer tests where injection and 

extraction rates are not equal (Pfingsten and Soler, 2003). Thus a range of 

possible interpretative models exist and are subjectively applied. Systematic 

evaluation of their behaviour is warranted. 

 

The first part of this study examines the performance of the two single fracture 

analytical models (1-D and dipole flow) when used to interpret simulated dipole 

tracer tests conducted in hypothetical three-dimensional fracture networks. The 

results are demonstrative only and the synthetic fracture networks are not 

moderated using real field data. Initially a single dipole tracer test is simulated 

numerically in a hypothetical fracture network. The analytical models are 

calibrated to the modelled tracer breakthrough curve and used to predict solute 

transport under a much lower hydraulic gradient. The predicted solute transport 
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is then compared to the ‘real’ simulated transport. In this way the consequences 

of the single fracture approximation and associated flow geometry of the two 

interpretative analytical models are identified. The study then examines how the 

predictive capability of the analytical models might be improved if additional 

information was available to calibrate them. The value of the following is 

examined: (a) an extra tracer test at either higher or lower hydraulic gradient, 

(b) an additional tracer with a different diffusion coefficient included in the initial 

tracer test and (c) knowledge of the length of the shortest fracture flow path 

between the injection and extraction wells (rather than an assumption of a 

straight line). 

 

The second section of this study applies the methodology used in the 

hypothetical fracture networks to real dipole tracer tests conducted in the Clare 

Valley, South Australia. Application of the methodology to the field environment 

introduces additional variations between the assumptions of the analytical 

models and the reality of the field setting. 

Generating Synthetic Fracture Networks 

For this study three fracture networks were created, each consisting of ten 

orthogonal fractures in the x-y and y-z planes. The use of three networks was 

deemed sufficient to meet the demonstrative aim of this study. By generating 

fractures in two orthogonal orientations, tracer transport could be simulated in a 

three-dimensional network of interconnected fractures, rather than simply in 

parallel fractures that do not interact directly. Fracture apertures were chosen 
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from a negative exponential probability distribution with mean of 500 m (see 

equation 1). 

xexP           (5.1) 

Where P(x) = probability of a parameter value x in a distribution with both mean 

and standard deviation = 1/ . 

 

A minimum fracture aperture cut-off of 100 m was specified such that any 

apertures generated below this were subsequently regenerated from the 

distribution until they exceeded this threshold. Square fracture planes were 

generated with lengths chosen from the probability distribution outlined in 

Equation 1 with mean of 5 m and minimum cut-off of 1 m. The centre of each 

fracture was randomly located in the 10 x 10 x 10 m model domain with all 

locations having equal probability. Fractures protruding beyond the model 

domain were truncated at the boundary and thus not all fractures remained 

square. The three resulting fracture networks are shown in Figure 5.1. 

Network Av. L in 
x-y 

plane 
(m) 

Av. L in 
y-z 

plane 
(m) 

Av. L 
total (m) 

Av. 2b in 
x-y 

plane 
( m) 

Av. 2b in 
y-z ( m) 

Av. 2b 
total 
( m) 

h (m)* 

1 5.20 6.24 5.72 813 428 620 0.017 

2 5.02 5.07 5.04 716 629 673 0.552 

3 5.30 3.33 4.32 331 608 469 0.074 

Table 5.1 Characteristics of the randomly generated fracture networks. * Head 

differences are those measured for Q+ = Q- = 0.6 L/min. 

 

The three fracture networks were generated by sampling the same probability 

distributions for fracture aperture, length and location. However, the random 
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nature of the selection process leads to different statistical properties for each 

network. These are presented in Table 5.1. Statistical measures are based on 

fracture lengths within the model domain, accounting for fracture truncation. 

 

 (a)

(b)

(c)

 

Figure 5.1 The three 10 x 10 m simulated fracture networks. Also shown are the 3 m 

injection and extraction well screens. 
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Numerical Modelling 

Tracer tests were simulated in the 3 hypothetical networks using the discrete 

fracture fluid flow and solute transport model HydroGeoSphere (Therrien et al., 

2005). HydroGeoSphere represents discrete fractures with 2-D planes of 

connected nodes that already form part of the 3-D porous medium finite 

element grid. The fracture and matrix domains are thus coupled by their co-

location and by requiring that their corresponding hydraulic heads and 

concentrations be equal. 

 

The discretised solute transport equations used by HydroGeoSphere can be 

simplified for a non-sorbing, non-decaying, non-reactive solute in fully saturated 

media. For the porous medium: 

1 1 1 1 1 1
1/ 2

1 1 1
1/ 21

i i

i i

L L L L L L Li
ij j i ij j iiji i

j j

L L L L L L
ij j i ij j i ex iij

j j

Vc c c h h c c
t

c h h c c V

 (5.2) 

and for fractures: 

1 1 1 1 1 1
1/ 2

1 1 1
1/ 2

2 2

1 2

f f ii

f f ii

L L L L L L Li
f i f i f f ij f j f i f ij f j f iij

j j

L L L L L L
f f ij f j f i f ij f j f i f iij

j j

bac c b c h h c c
t

b c h h c c a

(5.3) 

where: ai = area associated with fracture node i (L2), b = half fracture aperture 

(L), c = solute concentration (ML-3), h = hydraulic head (L), t =  time  (T)  Vi = 

region or control volume associated with porous medium node i (L3), ij = term 

arising from discretisation and describing fluid flow between i and j (L2T-1), i = 
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the set of nodes connected to node i, ij = term arising from discretisation and 

describing diffusive/dispersive solute flux between i and j (L3T-1),  = finite 

difference time weighting factor (-),  - porosity (-) and  = solute exchange rate 

between fracture and porous medium domains (T-1). Subscript f denotes a 

fracture property, subscripts i and j denote a property of node i or j respectively 

and superscript L denotes the time level, with L+1 corresponding to the time 

level for which the solution is sought. 

 

The model domain measuring X = Y = Z = 10 m was discretised with a finite 

element grid. No flow was specified for all model domain walls. A 3 m injection 

well was located at x = -2.5 m (with the origin (0, 0, 0) positioned at the centre of 

the domain) and a 3 m extraction well at x = 2.5 m. Each well was screened 

over the 3 m interval from z = -1.5 to 1.5 m. A reference hydraulic head of 0 m 

was assigned to the centre of the injection well. Fracture planes and the centres 

and ends of the two wells were specified as required nodal locations. 

Discretisation was then conducted using variable grid spacing such that: 

min
n

L LmL )1(          (5.4) 

where: L = grid spacing in the L direction (L), mL = grid spacing multiplier in 

the L direction (-), n = integer element counter where element number 1 borders 

the specified starting coordinate (-) and Lmin = the minimum element size 

occurring at n = 1 (L). 

 

Weatherill et al. (2008) found that in cases where diffusion between the fracture 

and matrix is relatively small discretisation sometimes as fine as the fracture 
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aperture is required. This study simulates tracer migration under highly forced 

conditions where fluid velocities are high and the time available for diffusion into 

the matrix is reduced. Hence it was considered prudent to employ fine 

discretisation at the fracture-matrix interface. At each fracture plane Lmin was 

set to the size of the fracture aperture to ensure a sufficiently fine spatial 

discretisation. Following the recommendations of Weatherill et al. (2008) a 

sensitivity analysis to mL over the range of forcing conditions was conducted 

and a value of 4 was adopted for discretisation moving away from fracture 

planes. At the wells Lmin = 0.05 m and mL = 2 were used. A global maximum 

grid spacing of 0.5 m was enforced to avoid potential numerical problems 

associated with large elements. Because each network employed a different 

realisation of fracture locations and apertures, they necessarily employed 

different spatial discretisation. 

 

Temporal discretisation was conducted using HydroGeoSphere’s variable time-

stepping procedure with a Crank-Nicolson implicit finite difference scheme in 

time, with  = 0.5 in equations (2) and (3). Once a solution at time L is found, the 

next time-step is determined by: 

L
L

i
L

i

maxL t
cc

ct
1

1

max
        (5.5) 

where cmax = specified maximum change in concentration desired in a time-step 

and ci = calculated concentration at node i. This procedure allows the model to 

increase time-step size when there are only small changes in concentration and 

reduce it when rapid changes occur. Computation time is reduced without 

decreasing numerical accuracy. This study used a very small initial time-step of 
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0.01 s and a target concentration change per time-step of cmax =  0.01.  A  

maximum time-step multiplier of 2 was imposed. 

 

Other than the fracture locations, lengths and apertures, the networks employed 

the same parameter values. These are listed in Table 5.2. Matrix hydraulic 

conductivity was set extremely low to simulate an essentially impermeable 

matrix, forcing all significant fluid flow to occur in the fracture network. 

Parameter Value 

Model domain size X, Y, Z 10 m 

Matrix porosity  0.02 

Matrix hydraulic conductivity K 10-50 ms-1 

Longitudinal dispersivity L 1 m 

Transverse dispersivity T 0.1 m 

Vertical transverse dispersivity VT 0.1 m 

Tortuosity  1 

Fracture longitudinal dispersivity Lf 1 m 

Fracture transverse dispersivity Tf 0.1 m 

Well screen length Lw 3 m 

Well radius rw 0.025 m 

Injection and extraction rate Q+, Q- 10-5 m3s-1 

Table 5.2 Numerical model parameters for the fracture network simulations. 

 

In each of the 3 networks 6 tracer tests were simulated under steady state flow 

with transient solute transport. The base case simulations were for a dipole of 

Q+ = Q- = 0.6 L/min with a tracer pulse of 1 hour. Tracer was injected at a 

nominal concentration of 1 kgm-3. Density effects were not simulated and 

therefore the chosen injectant concentration is immaterial. Tracer transport was 
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simulated for 1 day. Additional tracer tests were simulated at factors of 10, 0.1, 

0.01, 0.001 and 0.0001 of the base case pumping rates. All simulations were for 

1 hour of tracer input, but recovery periods were modified in order to obtain 

tracer breakthrough curves which had peaked and begun decreasing. Tracer 

aqueous diffusion coefficients of 2.01 x 10-9 m2/s and 1.27 x 10-9 m2/s were 

used to simulate bromide (Br-) and sulphur hexafluoride (SF6) respectively. 

Initial tracer concentration was set to zero throughout the domain. 

Analytical Modelling 

The breakthrough curves generated by HydroGeoSphere were fitted using two 

single-fracture analytical models, first to obtain interpreted aquifer parameters 

and then to make predictions of the other tests. The least-squares parameter 

estimation program PEST (Doherty, 2004) was used to fit the analytical models 

to the numerical data. Weights were assigned to data values, calculated as 1/cp, 

so that when fitting multiple breakthrough curves those with higher 

concentrations would not dominate the fitting process. The analytical models 

were those for 1-D flow in a single ‘parallel plate’ fracture (Tang et al., 1981) 

and one using the approach of Grove and Beetem (1971) to sum breakthrough 

curves from multiple streamlines, each representative of a flow line in a 2-D 

dipole flow field constrained to the fracture plane. Transport along each 

streamline was solved using the Tang et al. (1981) model. Therefore the only 

difference between the two analytical models was the flow geometry. 
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The geometry and solution for the model presented by Tang et al. (1981) is 

outlined in Chapter 2 (see Figure 2.1 and equations 2.1, 2.2 and 2.3) and is not 

repeated here. 

 

The geometry and solution for the model presented by Grove and Beetem 

(1971) is outlined in Chapter 4 (see Figure 4.1 and equations 4.1 to 4.3b) and is 

not repeated here. 

 

Himmelsbach and Maloszewski (1992) used 120 streamlines to model dipole 

tracer breakthrough. Novakowski et al. (1985) found that as few as 12 

streamlines were necessary to model unequal strength dipole flow when using a 

numerical approach whilst Novakowski et al. (2004) found that 45 streamlines 

were needed for convergence using the same numerical technique to model a 

dipole with an ambient ground water flow. We conducted an independent 

sensitivity analysis and found that approximately 45 streamlines were sufficient 

for solution convergence for most parameter combinations. However, due to the 

short computational time required, 105 streamlines were used to model dipole 

transport and this was more than sufficient to ensure solution convergence. 

 

Initially the analytical models were calibrated using data from the base case (Q+ 

= Q- = 0.6 L/min) Br- breakthrough curves only. Predicted breakthrough curves 

were then generated with both analytical models using the calibrated 

parameters, but now with scaled pumping rates and corresponding changes to 

v. Now knowing the predictive capabilities of the calibrated models for each of 
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the three networks we assessed how additional calibration information might 

affect the predictions. The information tested was: 

1) An additional tracer test at 10 x base case Q 

2) An additional tracer test at 0.1 x base case Q 

3) An additional tracer (SF6) with a different diffusion coefficient 

4) Knowledge of the length z of the shortest path between the two wells 

(rather than an  assumption of a straight line) 

 

As would be expected, predictions worsen as the difference between the 

hydraulic gradients of the prediction and test (calibration) scenarios increases. 

Fitted and predicted breakthrough curves for network 1 in Figure 5.2 clearly 

illustrate this effect. We use in vpr, defined as the ratio of the water velocity in 

the prediction to that of the calibration tracer test, to quantify the difference 

between predictive scenarios. At vpr = 1 both analytical models fit the simulated 

data well, with the 1-D flow model providing the best fit. At vpr = 0.01 both 

predictions fit the data less well and at vpr = 0.0001 they are very poor. Although 

not shown here, the same trend is observed for all three networks. Interestingly, 

for all networks the dipole model predicts peak concentrations higher than those 

simulated and conversely the 1-D flow model under-predicts peak 

concentrations. This can be explained by the assumed flow geometry of the two  
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Figure 5.2 (a) Simulated tracer breakthrough for the network 1 base case (vpr =1) along 

with fitted curves for the 1-D and dipole models. (b and c) Simulated tracer breakthrough 

along with analytical predictions at vpr = 0.01 and 0.0001 respectively. 
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models. In reality, flow in each connected fracture will not follow a purely 1-D or 

purely dipole geometry. Rather, it is likely to be somewhere between the two. 

Even for a hypothetical case where a single fracture connects the wells, its finite 

extent bounds flow, and a perfect dipole cannot form. Therefore neither model  

would work perfectly for such a simple case, and could not be expected to 

perform any better for a network of connected fractures.  Despite the 

geometrical simplifications employed by the analytical models, the fitting 

process may obtain a good fit to the measured data by over- or under-

estimating one or more of the three fitting parameters; v, , and A. For all three 

networks A is greatly overestimated (by eight to nine orders of magnitude) by 

the dipole model, effectively underestimating the diffusive capability of the 

system. The dipole model is able to replicate the long tailing of the breakthrough 

curve without matrix diffusion because of the prolonged solute travel time along 

the long, slow streamlines that depart at large . However, as vpr is decreased 

in the predictions, the impact of matrix diffusion increases at a greater than 

linear rate in the simulated network transport, but the time taken for advection 

along the long streamlines increases linearly. Therefore whilst the dipole model 

can be ‘forced’ to match measured data for a single tracer test, it does not 

provide good predictions at lower flow speeds. 

 

Having established base case standards for predictive ability by using a single 

test with one tracer, additional information was added to the fitting process to 

assess how it improved subsequent predictions, if at all. Figure 5.3 shows, for 

the range of vpr covered in the study, normalised predictions of three 

characteristics of the network 1 breakthrough curves; the time to the first 
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inflection point ti1, the time to the peak tp and the peak concentration cp. 

Normalisation is performed by dividing the characteristics predicted by the 

calibrated analytical models by those measured in the simulated tracer transport 

in the fracture networks. The predicted values for all characteristics are within  
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Figure 5.3 Normalised predictions of (a) time to the first inflection point, (b) time to the 

peak and (c) peak concentration for the base case and when additional information is 

included in the calibration for network 1. 
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an order of magnitude of the actual values for vpr down to 0.01, but beyond that 

predictions begin to deteriorate rapidly. For the 1-D flow model an additional 

tracer makes negligible difference to the predictions. An additional test at higher 

velocity makes a significant improvement and a test at a lower velocity makes a 

large improvement. The only significant improvement to the dipole model 

predictions is made by adding an additional test at a lower forced gradient. 

Results were similar for all three networks. 

 

Figure 5.4 shows Pearson product moment correlation coefficients, r plotted 

against normalised peak concentrations. Normalised peak concentration 

indicates accuracy of the magnitude of the predicted breakthrough curve whilst r 

is an indicator of phase or timing of concentration increase and decrease across 

the entirety of a breakthrough curve. Plotting r against normalised cp allows 

non-biased comparison of the goodness of fit of all breakthrough curves 

regardless of their respective durations and magnitudes. Figure 5.4a shows that 

the fitted breakthrough curves for both models plot very closely to the measured 

data (i.e. cp =  1,  r = 1). However, many of the predicted breakthrough curves 

summarised in Figure 5.6b are seen to be highly inaccurate. Generally, the 1-D 

model predictions plot between cp = 0.001 and 1 (i.e. under-predicting peak 

concentration) and between r = 0 and 1 (positive correlation). Conversely, the 

dipole model predictions generally over-predict peak concentrations and are 

negatively correlated with the measured breakthrough curves. Generally, it can 

be seen that the 1-D model predictions are better than the dipole model 

predictions. This indicates that the structure of the fracture networks has 

constrained flow to a geometry that is better approximated as 1-D than a dipole.  
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Figure 5.4 Pearson product moment correlation coefficient versus normalised predicted 

peak concentration for the range of fitting scenarios in all three fracture networks (a) at 

the fitting speed and (b) at vpr = 0.0001. 

 

This is an important finding and is not intuitively obvious. A range of fracture 

properties (e.g. length, spacing, orientation and connectedness) as well as the 

model domain size are likely to affect the relative performance of the two 
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models, an analysis of which is beyond the scope of this study. Of the scenarios 

where additional data was included in the calibration process, the best 

performing across the three networks as a whole is when a slower test is added 

when using the 1-D model. For this scenario, predictions for all three networks 

plot relatively close to (1,1). 

 

Also shown in Figure 5.4 are the performances of the two models when 

populated with composite data based on hydraulic and fracture data alone (i.e. 

not fitted to measurement of tracer transport). The average of the fracture 

apertures present in each network was used to calculate the average fracture 

hydraulic conductivity for each network. Combined with the computed head 

differences between the wells, and assuming that all fluid flow occurs within the 

fractures (as was the case for the simulations) this allowed calculation of an 

average Darcy velocity for each network. The dispersivity used in the 

simulations was known (specified) as were the molecular diffusion coefficient 

and matrix porosity, allowing calculation of A. The hydraulically based v, , and 

A were then used to generate breakthrough curves at the test and prediction 

hydraulic gradients for comparison with the breakthrough curves based on 

calibration to measured tracer data. Of the input parameters, the only one that 

could not be calculated purely from hydraulic data was the dispersivity of the 

fractures. In this study the inputs to the numerical model were known. In an 

applied field scenario, if predictions were to be based on measured hydraulic 

data and fracture mapping data alone, estimates of porosity and dispersivity 

would be required to enable prediction of solute transport. The results shown in 

Figure 5.4 show that at the test speed and for the predictions, the purely 



118 

 

hydraulic approach performs very poorly. Clearly, when predicting solute 

transport it is best to use measurements of solute transport to inform prediction 

models. 

Field Tracer Tests 

Following the results obtained with the hypothetical fracture networks, the 

methodology was implemented in real dipole tracer tests to examine whether 

similar outcomes were obtained in a real field setting. A series of equal strength 

(Q+ = Q-) dipole tracer tests were conducted to examine the predictive 

performance of the two analytical models and how additional calibration 

information altered predictions of solute transport. The imposed hydraulic 

gradient between the well pair was varied between tests by altering the injection 

and extraction pumping rates. Following the methodology outlined for the 

synthetic fracture networks, a base case tracer test was carried out with two 

tracers (bromide and helium) at 2.3 L/min. A slower tracer test was conducted 

at 0.7 L/min using sulphur hexafluoride (SF6). This slow tracer test provided the 

measured data against which predictions could be compared. Two additional 

tests were carried out at pumping rates of 6 L/min and 4 L/min using bromide. 

Data from this suite of tracer tests enabled (1) initial predictions based on 

calibration to the 2.3 L/min bromide data only, (2) analysis of the impact of 

including another tracer (helium) and (3) analysis of the impact of an additional 

tracer test at a different pumping rate (the 6 L/min and 4 L/min data). 

 

The tracer tests were conducted in the Clare Valley, approximately 120 km 

north of Adelaide, South Australia. The tests were performed between two wells  
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Figure 5.5 Equipment and geometry for the dipole tracer tests at the Clare Valley field 

site. 

 

completed in the fractured Undalya Quartzite, which constitutes the water table 

aquifer. The wells were separated by 6.2 m, each with piezometers screened 

over a 3 m interval between 30 and 33 m below ground level. The arrangement 

of equipment used to implement the tracer tests is illustrated in Figure 5.5. Two 

tanks were used, one for tracer solution and one for tracer-free water. Copper 

pipe and gas-tight fittings were used to plumb the system to avoid diffusive loss 

of dissolved gas tracers. Gravity injection rates were controlled by placing 

narrower pipe of various diameters and lengths on the end of the injection 

piping to constrict flow. A variable speed submersible pump was used to extract 

groundwater. A flow meter and rubber septum sample port were plumbed in-line 
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at the injection well head an in-line flow meter was used at the head of the 

extraction well. 

 

Injectant samples were taken during injection of tracer and afterwards during 

injection of chaser. Effluent samples were taken initially at 10 minute intervals 

which were allowed to increase once the tracer peak had passed and the rate of 

change in tracer concentration was seen to be decreasing. Gas-tight syringes 

were used to take samples for dissolved gas tracer analysis. Samples for 

bromide analysis were collected in plastic bottles. On-site bromide analysis was 

conducted using an ion-selective electrode. Field measurements were later 

verified by ion chromatography. All dissolved gas samples were analysed on 

site using a gas chromatograph. Details of the tracer tests, conducted at four 

different equal strength dipole flow rates, are provided in Table 5.3. Head 

differences between the two wells before and during application of the dipole 

flow demonstrate that the gradients applied during the tests were much greater 

than those present under ambient aquifer conditions. 

Q+ = Q- (L/min) 6 4 2.3 0.7 

Tracers Br Br Br & He SF6 

Source Br concentration (mg/L) 700 1740 2530 - 

Tracer source (min) 60 60 49 60 

Injection well  drawdown (m) -0.81 -0.51 -0.26 -0.11 

Extraction well drawdown (m) 7.64 4.41 1.49 0.45 

h pre-test (m) -0.124 -0.124 0.01 -0.04 

h forced (m) 8.32 4.80 1.76 0.51 

Mass recovery (%) 55 59 59 & 39 36 

Table 5.3 Details of dipole tracer tests conducted in the Clare Valley. 
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Figure 5.6 Normalised measured peak tracer concentration for dipole tracer tests 

conducted in the fractured Undalya Quartzite of the Clare Valley. 

 

Normalised breakthrough curves for the tracer tests are presented in Figure 5.6. 

Comparison of the three bromide breakthrough curves shows that peak tracer 

concentration and velocity decreases from the 6 L/min to the 4 L/min test and 

again to the 2.3 L/min test. This behaviour is expected in fractured rock aquifers 

where solute diffuses from the fast flowing water in the fractures into the 

relatively immobile water in the rock matrix. A decreased pumping rate causes 

water to flow slower in the fractures, allowing more time for solute to diffuse into 

the matrix, thereby reducing tracer concentration in the fractures. Further 

evidence of matrix diffusion is seen in the comparison of the breakthrough 

curves for bromide and helium in the same 2.3 L/min test. The helium 

breakthrough curve has a lower peak concentration and is retarded relative to 

the bromide. The higher molecular diffusion coefficient of helium causes it to 
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diffuse more rapidly and further into the rock matrix than the bromide, thereby 

experiencing greater effects of matrix diffusion. 

 

Sanford et al. (2006) outline a methodology, based on hydraulic measurements, 

for estimating the maximum tracer mass recovery that can be expected for a 

tracer test between a well pair. The approach is based on apportioning flow that 

goes into the injection well to fractures connecting the wells and fractures that 

are connected to ‘elsewhere’ by their relative conductances. Using this 

methodology conductances were determined to be 8.7 x 10-6 m2s-1 between the 

well pair, 5.2 x 10-5 m2s-1 between the injection well and ‘elsewhere’ and 7.0 x 

10-6 m2s-1 between the extraction well and ‘elsewhere’. A maximum expected 

mass recovery of 58 % was calculated. Two factors dictate that all tracer sent 

along fracture pathways connecting the two wells will never be recovered in a 

real field setting. A dipole flow field creates some long flow paths along which 

water and tracer movement is very slow and therefore it is not likely that this 

tracer will be recovered within the duration of a tracer test. In addition, solute 

that diffuses into the rock matrix is never fully recovered. Therefore the 

theoretical maximum mass recovery is obtainable at infinite time, not within the 

duration of an applied tracer test. Actual tracer mass recoveries for the tests 

were 55 % of bromide at 6 L/min, 59 % of bromide at 4 L/min, 59 % of bromide 

and 39 % of helium at 2.3 L/min and 36 % of SF6 at 0.7 L/min. The measured 

values are generally consistent with the theoretically expected 58 %. Recovery 

of helium was considerably lower than bromide in the 2.3 L/min test, as would 

be expected in a system where matrix diffusion retards solute transport. Had the 
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2.3 and 0.7 L/min tests been continued longer it is expected the recovery of 

helium and SF6 would have approached the theoretical 58 %. 

 

The tracer tests were fitted using PEST to optimise parameters for both the 1-D 

and dipole flow implementations of the Tang et al. (1981) solution. The 2.3 

L/min bromide data set was used as a base case and the optimised parameters 

were then used to predict the 0.7 L/min SF6 breakthrough. Additional data sets 

were included in the calibration process to investigate how different information 

affected the predictions. The helium dataset was included to examine the 

impact of an additional tracer (in the same test) with a different diffusion 

coefficient. Two additional tests using bromide under higher flow rates were 

included, separately and together, to assess the benefit of performing multiple 

tests under different hydraulic gradients. Measured tracer concentrations were 

scaled by the expected maximum mass recovery prior to calibration. The data 

were assigned weights (1/cp and 1/data points in breakthrough) to avoid biasing 

of the calibration to a particular data set with more data points or higher 

concentrations. 

 

Figure 5.7 is analogous to Figure 5.2 for the hypothetical fracture networks. For 

the 4 L/min measured data the 1-D model is seen to provide a better fit than the 

dipole model which is poorly calibrated. The two models generate predictions of 

peak arrival time that lag slightly behind the measured data from the 2.3 L/min 

tracer test. Predictions of the 0.7 L/min SF6 tracer test are poor. Both models 

predict around double the actual time for peak arrival and peak concentration is 

under-predicted. The trend of decreasing predictive capability as the difference  
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Figure 5.7 (a) Measured 4 L/min Br- data and fitted analytical models, (b) measured 2.3 

L/min Br- data and predictions using analytical models calibrated to the 4L/min test and 

(c) measured 0.7 L/min SF6 data and predictions using analytical models calibrated to the 

4L/min test. 
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between the pumping rates of the calibration and prediction tests increases is 

consistent with that observed in the synthetic fracture networks. 

 

Q (L/min) 2.3 2.3 2.3 & 6 2.3 & 4 2.3, 4 & 6 

Tracer(s) Br Br & He Br Br Br 

1-D flow model parameters 

 (m) 2.4 1.2 1.1 0.59 0.95 

v (m/d)* 4.1 6.9 6.0 6.7 6.1 

A (d1/2) 2.4 x 108 1.5 3.9 1.5 3.0 

Dipole flow model parameters 

 (m) 0.48 0.57 0.15 0.12 0.17 

v (m/d)* 22 20 22 17 20 

A (d1/2) 3.6 x 109 4.0 x 109 3.7 x 109 4.5 x 109 3.9 x 109 

Table 5.4 Interpreted parameters for the Clare Valley dipole tracer tests using the two 

analytical models. * Scaled for Q = 0.7 L/min 

 

The predictive performance of the range of calibrations of the two models is 

presented in Figure 5.8 using r and normalised (predicted/actual) cp. Optimised 

parameter values for each of the calibrations are presented in Table 5.4. Nine of 

the ten calibrations result in under-prediction of peak concentration. The dipole 

model predicts higher (and more accurate) peak concentrations for four of the 

five calibration data sets than the 1-D flow model and has better correlation in 

all five predictions. The 1-D solution requires more matrix diffusion to attain the 

same solute retardation and concentration reduction as the dipole model. Matrix 

diffusion has a greater effect on predictions at lower flow rates and therefore 

peak concentrations are lower than those for the dipole flow model, even 

though they may have been very similar for the calibration flow rate. The best 
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predictions with each model are considerably different to the measured data. Of 

the two analytical solutions, the dipole model appears to better describe flow 

and transport in this particular field setting, however there are other processes 

or different flow geometry impacting the transport of tracer between the two 

wells. 
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Figure 5.8 Pearson product moment correlation coefficient versus normalised predicted 

peak concentration for the range of tested calibration data sets when predicting SF6 

breakthrough at 0.7 L/min. 

 

The best predictions are obtained when the models are calibrated with the initial 

data set using only one tracer at a single flow rate. Given the results from the 

synthetic fracture networks, this is an unexpected result. There are a range of 

factors that were not simulated in the hypothetical fracture networks that may 

have impacted tracer transport in the field. These include, but are not limited to, 
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mixing in the plumbing and the wells, ambient groundwater flow in the aquifer, 

density effects, dilation and contraction of fractures with hydraulic pressure, 

residual tracer from previous tracer tests and saturation and desaturation of 

fractures with the applied hydraulic gradients. 

Discussion 

Results from the hypothetical fracture networks indicated that including 

additional information in the calibration of the two analytical models improved 

predictions of solute transport under a reduced hydraulic gradient. However, the 

predictions based on calibration to measured field data did not improve with 

additional calibration data. The best predictions were obtained using only one 

dataset, that with the lowest hydraulic gradient and therefore the most similar to 

the predictive scenario. Of the wide range of factors that may have caused 

variation between the theoretical and field observations, two were identified as 

potentially significant; desaturation of fractures and residual tracer from 

previous tests at the site. 

 

The field tracer tests were conducted in an unconfined aquifer with 

approximately 20 m of saturated aquifer above the well screens prior to 

inducing the dipole flow fields. Injection and extraction at the two wells induced 

hydraulic gradients between the wells that were different for each of the tests. 

Data presented in Table 5.3 indicates that the hydraulic head difference 

between the two wells varied between 0.51 and 8.32 m for the five tests. The 

majority of the head differences was generated by drawdown at the extraction 

well. Drawdown of 7.64 m was observed for the 6 L/min test, reducing the 
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saturated thickness of the aquifer near the well by almost 40 %. Whilst it isn’t 

known what proportion of the previously active fracture pathways between the 

wells were desaturated by the imposed dipole flow field, it is likely that it was 

significant. The relationship between drawdown and pumping rate was greater 

than linear, indicating that conductive fractures were being desaturated. Given 

the hydraulic results, it is evident that tests conducted at different pumping rates 

were each sampling a different network of active fractures. Therefore the 

addition of tracer data for tests at higher pumping rates may bias the calibration 

process to a different interpretation of aquifer parameters that is not 

representative of the active fracture network for the 0.7 L/min test being 

predicted. In this scenario it is quite conceivable that the inclusion of tracer data 

for higher pumping rates in the calibration process could lead to a decrease in 

predictive performance. This helps explain why the addition of data from the 6 

L/min and 4L/min tests to that of the 2.3 L/min lead to worse predictions of the 

0.7 L/min SF6 tracer breakthrough. However, addition of the 4 L/min data 

worsened predictions more than when the 6 L/min data was included, even 

though the network of active fractures would have been more similar to that in 

the predicted test. 

 

It is likely that each of the tests was impacted to a varying degree by residual 

tracer in the aquifer from previous tests. Two tests using bromide were 

conducted prior to any of the tests presented in this study and then each of the 

bromide tests presented here left tracer in the aquifer. In order to account for 

any background bromide in the aquifer, samples of the ambient groundwater 

were taken before each of the tests and this concentration was subtracted from 



129 

 

those measured at the extraction well during the test. This was deemed the best 

approach to account for the residual tracer, but it is a simplification as the 

bromide concentration will not have been uniform throughout the aquifer prior to 

each test. The build-up of background bromide was the reason for using SF6 in 

the final, lowest gradient test. The SF6 and helium data sets were not impacted 

by any previous tracer tests at the site. Of the tests using bromide presented in 

this study, the 6 L/min test was carried out first, followed by the 4 L/min and 2.3 

L/min tests. The background bromide concentration at the site prior to carrying 

out any tests was around 2 mg/L. Prior to the 6 L/min test it had increased to 35 

mg/L then further to 40.5 mg/L before the 4 L/min test. Background bromide had 

decreased considerably to 19 mg/L by the time the 2.3 L/min test was 

conducted. Based on this information it is expected that the simple process 

used to account for background tracer would have the greatest consequences 

in interpreting the 4 L/min test, followed by the 6 L/min test then the 2.3 L/min 

test. Therefore the residual bromide present in the aquifer may explain why the 

predictions made using the 6 L/min data were superior to those using the 4 

L/min data, despite the latter inducing a hydraulic gradient (and associated 

active fractures) more similar to that of the 0.7 L/min prediction. It is not clear 

why the inclusion of the helium data did not improve predictions. 

Conclusions 

This study has examined the ability of two analytical models to predict solute 

transport in fracture networks when calibrated to tracer test data. Dipole tracer 

tests were simulated in three hypothetical fracture networks and a series of field 
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tracer tests were conducted in the Clare Valley, South Australia. Key findings 

can be summarised as follows: 

1) Whilst not being exact descriptions of flow in a fracture network, the 1-D 

flow and dipole flow models could each be calibrated to generate a good 

fit to the measured data. The suitability of the analytical models could 

only be determined when they were calibrated to one data set and used 

to predict another data set under different conditions. Multiple tracer data 

sets should be obtained when characterising a field site to enable 

identification of a suitable interpretive model. 

2) Predictions of solute transport were more accurate when calibrated to 

measured tracer data than when parameters were assigned values 

based on hydraulic data and averaged fracture properties. 

3) For the hypothetical fracture networks, inclusion of additional data sets in 

the calibration process resulted in better predictions. The most useful 

additional data was that obtained at a lower hydraulic gradient, closer to 

that of the prediction. Field confirmation of these results in a confined 

fractured rock aquifer would be useful. 

4) Predictions of the field dipole tracer test conducted at the lowest pumping 

rate were not improved by including additional data sets in the 

calibration process. 

5) In shallow unconfined aquifers the desaturation of the fracture pathways 

between a well pair with increased dipole strength can result in poor 

characterisation of solute transport under lower hydraulic gradients. If 

hydraulic testing indicates significant dewatering of the aquifer near the 
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extraction well tests should be conducted at the lowest practical dipole 

strengths. 
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Notation and Units 

Subscript f denotes a fracture property. 

 

ai  area associated with fracture node   L2 

b  half fracture aperture     L 

c  solute concentration      ML-3 

c   solute concentration in the Laplace space  TML-3 

c’  solute concentration in the matrix    ML-3 

cmax  specified maximum concentration change 

per time-step       ML-3 

cp  peak concentration      ML-3 

D  hydrodynamic dispersion coefficient   L2T-1 

D*  diffusion coefficient of solute in water   L2T-1 

D’  diffusion coefficient of solute in matrix   L2T-1 

h  hydraulic head      L 

K  hydraulic conductivity     LT-1 

Lw  well screen length      L 

mx  grid spacing multiplier in the x direction   - 

n  integer element counter     - 

p  Laplace space variable     T-1 

Q  injection or extraction rate     L3T-1 

rw  well radius       L 

r  Pearson product moment correlation coefficient  - 

R  face retardation coefficient     - 
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R’  matrix retardation coefficient    - 

t  time         T 

v  water velocity       LT-1 

Vi  region or control volume associated with 

porous medium node i     L3 

vpr  prediction water velocity / test water velocity  - 

x, y, z  spatial coordinates      L 

X, Y, Z  model domain size in x, y and z directions L 

L  longitudinal dispersivity     L 

T  transverse dispersivity     L 

VT  vertical transverse dispersivity    L 

ij  describes fluid flow between i and j   L2T-1 

  finite difference time weighting factor   - 

  porosity       - 

  radioactive decay constant     T-1 

  tortuosity       - 

ij  describes diffusive/dispersive solute flux 

between i and j      L3T-1 

  solute exchange rate between domains   T-1 
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Chapter 6: Concluding Remarks 

Summary of Findings 

Through a combination of analytical modelling, numerical modelling and 

implementation of field tracer tests, the research carried out in this thesis has 

delivered new scientific knowledge regarding the use of applied tracer tests to 

predict solute transport in fractured rock. In so doing, the thesis has met its 

stated objectives which are to: 

1) evaluate how accurately aquifer parameters can be determined from 

tracer test data, given the inability of analytical models to completely 

describe the complex nature of fractured rock and associated tracer 

breakthrough curves; 

2)  quantify the impact of parameter and interpretative model uncertainty on 

predictions of solute transport under lower hydraulic gradients; 

3) identify the most effective ways to improve the accuracy of predictions of 

solute transport in fractured rock aquifers made using tracer test data; 

 

Chapter 2 demonstrates that, when ‘accepting’ a number of analytical 

interpretations of a breakthrough curve (all using the same model) non-

uniqueness associated with individual parameters can become significant. 

However, results show that predictions of breakthrough curve characteristics 

(first inflection point time, peak arrival time and peak concentration) for 

groundwater flow speeds orders of magnitude smaller than that at which a test 
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is conducted can sometimes be determined even more accurately than the 

fracture and matrix parameters. 

 

Chapter 4 takes the ideas behind Chapter 2 a step further to examine the non-

uniqueness introduced when two different analytical flow models are considered 

in the interpretation of a dipole tracer test. Results demonstrate that the two 

models can produce almost identical breakthrough curves for a range of 

scenarios. However, in order to do so, sometimes very different and conflicting 

interpreted aquifer parameter values are required in order to produce the same 

tracer breakthrough. The study demonstrates the importance of incorporating 

multiple conceptual models in the analyses of dipole tracer tests conducted in 

fractured rock, where the actual flow geometry may be poorly understood. 

 

Chapter 5 builds on the outcomes of Chapter 4, using two different analytical 

models to interpret breakthrough curves and then subsequently predict 

transport under lower hydraulic gradients. This is done firstly with breakthrough 

curves generated by simulating dipole tracer tests in hypothetical 3-D fracture 

networks for which the characteristics were known, and secondly, with 

breakthrough curves obtained by carrying out dipole tracer tests in the field. 

Several approaches to reducing predictive uncertainty are tested. The most 

effective method is to carry out an additional test at a lower injection and 

extraction rate. In practice this suggests that, when the aim of a tracer test is to 

enable prediction of transport under ambient flow conditions, the test should be 

carried out under the lowest feasible imposed hydraulic gradient. 
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Chapter 3 is a by-product of some of the work carried out in Chapter 5, which 

involved simulating tracer transport in fractured networks between a dipole well 

pair. The study examines the required spatial discretisation perpendicular to the 

FMI for numerical simulation of solute transport in discretely-fractured porous 

media. To match analytical results on the relatively short timescales simulated 

in the study, very fine grid spacing perpendicular to the FMI, of the scale of the 

fracture aperture, is necessary if advection and/or dispersion in the fracture are 

high compared to diffusion in the matrix. The requirement of such extremely fine 

spatial discretisation has not been previously reported in the literature. In cases 

of high matrix diffusion, matching the analytical results is achieved with larger 

grid spacing at the FMI. Cases where matrix diffusion is lower can employ a 

larger grid multiplier moving away from the FMI. 

Further Research 

This thesis has tackled some of the issues associated with using applied tracer 

tests to predict solute transport in fractured rock, but other aspects remain to be 

addressed. The following section outlines areas where further research is 

warranted. 

 

The up-scaling of interpreted aquifer properties from an applied tracer test, 

sampling a particular portion of aquifer, to the aquifer more generally is an issue 

that warrants further attention. Whilst applied tracer tests can be designed to 

sample differing volumes of aquifer, the reality is that most tests will be 

conducted over shorter intervals, and sample lesser volumes of aquifer, than 

that over which predictions are made. The act of applying test-scale results to 



139 

 

the broader aquifer, necessarily assumes that the test has been carried out over 

a sample of aquifer greater than the representative elementary volume (REV). A 

combination of field-based and modelling studies could be used to investigate 

this issue. Activities might include carrying out/simulating tests at different 

locations and over different scales within a fractured rock aquifer. 

 

A similar issue concerns the anisotropy inherent in most fractured rock aquifers. 

Generally, the fracturing in the rock will create anisotropy in bulk hydraulic 

conductivity. A study could focus on the use of applied tracer tests to investigate 

anisotropy and how it varies with spatial scale. 

  

This study examined the uncertainties associated with parameters and 

predictions when using single fracture models to investigate both field derived 

and numerically simulated breakthrough curves. The numerical simulations of 

transport in 3-D fracture networks were numerically cumbersome which limited 

the number of networks that were simulated. However, with ever-increasing 

computational capabilities, particularly recent advances in parallel and could 

computing, the time and memory demands for simulating solute  transport in 3-

D fracture networks are becoming less burdensome. This opens the door to the 

use of stochastic modelling approaches for investigating tracer behaviour in 3-D 

fracture networks. Stochastic modelling, through its ability to deliver probabilistic 

outcomes, has the potential to provide insights into the characteristics of 

networks in which tracer transport can be reasonably approximated by single 

fracture analytical solutions and those that require representation of discrete 

fracture sets or fractures. 
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Similarly, the use of stochastic modelling techniques could allow investigation of 

the linkages between network geometry and the most appropriate analytical 

solution for describing flow geometry. This thesis has made initial comparisons 

between interpretations with 1-D and dipole flow analytical models. The 

applicability of these, and additional flow geometries, could be investigated for 

appropriately chosen network geometry classifications. 
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Appendix A: Published Papers 
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