Fabrication and Application of Carbon Nanotube/Silicon Nanostructures

Thesis submitted to the School of Chemical and Physical Sciences,

Faculty of Science and Engineering, Flinders University

in fulfilment of the requirements for the degree of

Doctor of Philosophy

October 2011

Cameron J. Shearer

Supervisors: Joe Shapter, Amanda Ellis and Nico Voelcker

The best things in life are beyond money, their price is agony and sweat and devotion...

- Robert A. Heinlein in Starship Troopers

The Scientific man does not aim at an immediate result. He does not expect that his advanced ideas will be readily taken up. His work is like that of the planter – for the future. His duty is to lay the foundation for those who are to come, and point the way. He lives and labours and hopes.

- Nikola Tesla

Any sufficiently advanced technology is indistinguishable from magic.

- Arthur C. Clarke

Table of contents

Table	of c	ontents	i
Summ	nary		vii
Declar	ratio	on	ix
Ackno	owle	dgements	xi
List of	f fig	ures	xiii
List of	f tab	oles	xxv
Gloss	arv	of abbreviations	xxvii
l ist of	fnu	blications	xxix
Chapt	ter	1	
Introd	duct	tion	1
1 1		vorviow	ີ
1.1	0	erview	Z
1.2	Ca	rbon nanotubes	5
1.2	2.1	History and structure	5
1.2	2.2	Properties and applications	9
1.2	.3	Synthesis	12
1.3	Sil	icon	15
1.3	.1	Bulk silicon	15
1.3	.2	Porous silicon	16
1.4	Ch	emical attachment of carbon nanotubes to surfaces	20
1.4	.1	Carbon nanotube chemistry	20
1.4	.2	Carbon nanotube surface attachment	20
1.4	.3	Experimental results	22
1.5	Ca	rbon nanotubes for water filtration	25
1.5	.1	Background	25
1.5	.2	Theoretical studies	26
1.5	.3	Experimental studies	29

1.6 Fi	eld emission from carbon nanotubes	35
1.6.1	Background and theory	
1.6.2	Field emission from carbon nanotubes	
1.7 Ca	arbon nanotubes as biointerfacial substrates	45
171	Background	
1.7.1	6	
1.7.2	Carbon nanotube biointerfaces	
1.7.2	Carbon nanotube biointerfaces	45 51

Chapter 2

Exper	mental details	65
2.1	Carbon nanotubes	66
2.1.	1 Single-walled carbon nanotubes	
2.1.	2 Carbon nanotube filtration	
2.1.	3 Carbon nanotube suspension in dimethyl sulfoxide	
2.1.	4 Double-walled carbon nanotubes	67
2.1.	5 Multi-walled carbon nanotubes	67
2.2	Silicon	68
2.2.	1 Silicon hydroxylation	
2.2.	2 APTES monolayer formation on silicon	
2.2.	3 Porous silicon fabrication	69
2.2.	4 APTES monolayer formation on porous silicon	69
2.3	CNT chemical attachment to silicon	71
2.3.	1 Direct ester attachment of CNTs to Si	71
2.3.	2 APTES mediated attachment of CNTs to Si	
2.3.	3 Ester attachment of CNTs to pSi	
2.3.	4 APTES mediated attachment of CNTs to pSi	74
2.3.	5 Patterned attachment of SWCNTs	74
2.4	CNT growth by chemical vapour deposition	76
2.4 2.5	CNT growth by chemical vapour deposition	76 78

2.5	5.2	Scanning electron microscopy (SEM)	79
2.5	5.3	Confocal Raman spectroscopy and spectral imaging	80
2.5	5.4	X-ray photoelectron spectroscopy (XPS)	85
2.5	5.5	Fourier transform infrared (FTIR) spectroscopy and micros	copy86
2.5	5.6	Contact angle	
2.6	Re	ferences	88
Chap	ter	3	
Devic	ce fa	brication	89
3.1	Int	roduction	90
3.2	SV	/CNT attachment to silicon	92
3.2	2.1	Chemical functionalisation of SWCNTs	92
3.2	2.2	Direct ester attachment of SWCNTs to silicon	93
3.2	2.3	Attachment of SWCNTs to APTES functionalised Si	99
3.3	SV	/CNT attachment to pSi	
3.3	3.1	Porous silicon	
3.3	3.2	Direct ester attachment of SWCNTs to pSi	104
3.3	3.3	Attachment of SWCNTs to APTES functionalised pSi	
3.4	DV	VCNT attachment to silicon	111
3.4	4.1	Chemical functionalisation of DWCNTs	111
3.4	4.2	Attachment of DWCNTs to silicon	112
3.5	MV	VCNT attachment to silicon	115
3.5	5.1	Chemical functionalisation of MWCNTs	
3.5	5.2	Attachment of MWCNT to silicon	116
3.6	CN	IT growth via chemical vapour deposition	118
3.7	Co	nclusions	125
3.8	Re	ferences	126
Chap	ter	4	
Cont	rolle	ed carbon nanotube placement	131
4.1	Int	roduction	

4	4.2	Experimental methods	135
	4.2.	.1 Fabrication of pSi with pore size gradient	
	4.2.	2 Fabrication of an APTES gradient	
4	4.3	Patterned attachment of SWCNTs	137
	4.4	SWCNT surface coverage gradients	143
	4.4.	.1 pSi topographical gradient	
	4.4.	.2 APTES chemical gradient	
4	4.5	Conclusions	154
	4.6	References	155
Ch M	apt _{ass}	er 5 transport through CNT and pSi membrane	es159

5.2 Ex	perimental details	16
5.2.1	Fabrication and functionalisation of pSi membranes	16
5.2.2	Dye transport properties through pSi membranes	16
5.2.3	Water transport	16
5.2.4	Fabrication of SWCNT membrane	16
5.3 Ma	ass transport through pSi	169
5.3.1	Fabrication and characterisation of pSi membranes	16
5.3.2 membr	Dye transport and selectivity properties of functionalised pS anes	i 17:
5.3.3	Pressure driven water transport through pSi membranes	18
5.4 Ma	ass transport through SWCNT membrane	18
5.4.1	Fabrication of SWCNT membrane	
5.4.2	Water transport through SWCNT membrane	19.
5.5 Co	onclusions	20

6.1	Introduction	204
6.2	Experimental details	206
6.3	Field emission from SWCNTs	208
6.3	.1 Effect of SWCNT attachment time	
6.3	.2 Field emission from polymer encapsulated SWCNTs	213
6.4	Field emission from DWCNTs and MWCNTs	215
6.5	Field emission stability from CNTs	219
6.5	.1 SWCNT field emission stability	219
6.5	.2 DWCNT field emission stability	227
6.5	.3 MWCNT field emission stability	229
6.6	Conclusions	232
6.7	References	233
Chapt CNTs	ter 7 as biointerfacial substrates	235
7.1	Introduction	236
7.2	Experimental details	238
7.2	.1 SWCNT biointerface fabrication	238
7.2	.2 Cell culture and staining	238
7.2	.3 Fluorescence microscopy	239
7.2	.4 Gene transfection by permeabilisation	240
7.2	.5 Gene transfection by electroporation	240
7.3	Cell immobilisation	242
7.3	.1 Cell morphology and proliferation	242
7.3	.2 AFM and SEM imaging	249
7.4	Gene transfection	252
7.4	.1 Gene transfection by permeabilisation	
7.4		
	.2 Gene transfection by electroporation	
7.5	.2 Gene transfection by electroporation Conclusions	

v

Chapter 8

271	Conclusions	
272	Conclusions	8.1
274	Future directions	8.2
	References	8.3

Summary

The amazing electrical and mechanical properties of carbon nanotubes (CNTs) make them ideal for use in a variety of applications, many of which require the CNTs to be surface bound. Here the applicability of nanostructures based upon CNTs chemically attached to silicon to the fields of water filtration, field emission and as biomaterial interfaces is investigated.

Initial experiments studied the chemical attachment and alignment of different CNT types to silicon. Single-walled carbon nanotubes (SWCNTs) were found to form vertically aligned arrays on both flat silicon and porous silicon (pSi). Double-walled carbon nanotubes (DWCNTs) were found to exhibit both vertical and random alignment while multi-walled carbon nanotubes (MWCNTs) exhibited an exclusive horizontal orientation. The variation in alignment is attributed to the level of crystallinity and functionalisation of each CNT type as determined by Raman spectroscopy.

The control of the placement of SWCNTs on silicon was further investigated by fabricating both surface coverage gradients and patterns of SWCNTs. Gradients were fabricated following two protocols, both of which produced surfaces which consist of all possible SWCNT coverage's. SWCNT patterns were produced by forming an initial chemical pattern on the silicon surface for subsequent selective SWCNT chemical attachment.

CNT membranes for water filtration were fabricated by chemically attaching SWCNTs to permeable pSi membranes. Gaps between the SWCNTs were filled by spin coating polystyrene onto the surface. The SWCNT tips were revealed by etching the polystyrene matrix via water plasma treatment. The fabricated membranes were found to have a water permeability of 0.022 mm³ cm⁻² s⁻¹ atm⁻¹. Comparisons to commercial nanofiltration membranes and other published CNT membranes are made and improvements to membrane fabrication are discussed.

Field emission experiments were completed for all CNT types chemically attached to silicon. All samples exhibited field emission of electrons with characteristics varying with CNT diameter and vertical alignment. The emission stability of each CNT type was investigated with the SWCNTs exhibiting the most stable emission. Comparison of emission characteristics and stability to other CNT field emission substrates are made.

The behaviour of a mammalian neuronal cell line on SWCNTs chemically attached to porous silicon was investigated. Fluorescence microscopy revealed that the cells had a strong affinity for the SWCNT substrate and that the SWCNTs may compromise the cell membrane allowing small fluorescent molecules to enter the nuclear envelope. Experiments to determine if plasmid DNA could be inserted into the cell via the SWCNTs was completed with results indicating the SWCNTs did not promote DNA transfection for the neuronal cell line.

Declaration

I certify that this Thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Cameron J. Shearer

Acknowledgements

This Thesis would not have been possible without the assistance of many people who I should acknowledge. Chapter 1 contains parts of a review article published in Advanced Materials; this work was co-authored with Kristina Constantopoulos, Amanda Ellis, Nico Voelcker and Joe Shapter. The pattern work presented in Chapter 4 was inspired by an original idea of Ben Flavel, Martin Sweetman then came up with a protocol to form silane patterns which I then used for nanotube attachment. The porous silicon membrane dye transport in Chapter 5 was completed by Leonora Velleman, she also analysed and interpreted the data. The pressure driven water transport, also in Chapter 5, was completed at the University of Bath in the laboratory of Davide Mattia with the help of Fernando Acosta. An ARNAM student travel grant assisted in the travel and accommodation costs for that trip. The field emission experiments shown in Chapter 6 were all completed at the University of Newcastle. I would like to thank Paul Dastoor for allowing me to visit on three occasions. The field emission experiments were assisted originally by Kane O'Donnell and Lars Thomsen, and by Adam Fahy and Matthew Barr on the final visit. The field emission work would never have been completed without the influence of Jamie Quinton, and I thank him for making the most enjoyable and successful aspect of my PhD possible. Fran Harding completed most of the cell culture, cell staining and fluorescence microscopy in Chapter 7, the remainder was completed by Qi Peng. The data presented in Chapter 7 was largely championed by Nico Voelcker who urged collaboration between Fran and myself which became a nice side-project to focus upon when other experiments weren't going as hoped.

I have had the privilege to work in the Smart Surface Structures group at Flinders. Despite only having a single fumehood and rarely containing a post-doc we seem to meet or beat the output of any other group. I think this is largely in part to the hard working culture imparted by Matt Nussio and Ben Flavel. Mark, Lachlan, Chris, Kate, Sam, Anders, Adam, Dan, Ash and others I have forgotten have all been fun to work with. I also spent some time in the Voelcker lab, particularly early in my PhD, where I was helped immensely by the pilots in the cockpit: Steve, Martin and Andy J.

Final professional thank you goes to my supervisors. Amanda and Nico were always willing to chat with me about my research and give advice when requested. Joe has been the perfect supervisor for me; his adaptability has suited my varying style perfectly. When I wanted meetings, Joe would make himself available. When I didn't want meetings, Joe was content to have five minute chats. Thanks for making the entire PhD as stress free and enjoyable as possible.

I am lucky to have two families that have helped me throughout these years of study. Both my parents and Lauren's parents have been happy for me to be poor for another few years in the hope that I will eventually get a real job. I am extremely lucky to have Lauren in my life, she has been very supportive and happy to be the bread winner for the past few years. Hopefully I can repay your kindness in the future.

List of Figures

Figure 1.1: Comparison of (a) top-down and (b) bottom-up approaches toward miniaturisation. In (a), miniature bulls were fabricated following a two-photon polymerisation technique, scale bars, $2 \mu m$. In (b), individual xenon atoms are moved using a scanning tunnelling microscope to form 0.5 nm high letters	3
Figure 1.2: 'Ball and stick' representation of (a) single-walled CNT (SWCNT), (b) double-walled CNT (DWCNT) and (c) multi-walled CNT (MWCNT). Images made using Nanotube Modeller (www.jcrystal.com).	6
Figure 1.3: (a) Schematic of unrolled SWCNT showing chiral vector C and how different values of the integers n and m affect the electronic property of the SWCNT. (b, c, d) The direction of the chiral vector affects the appearance of the nanotube showing (b) (4,4) armchair shape, (c) (6,0) zig-zag shape and (d) (5, 3) example of a chiral shape.	8
Figure 1.4: (a, b, c, d) Band structures in reciprocal space, as calculated by the tight binding method, of (a, b) graphene, (c) metallic (4, 4) SWCNT, (d) semiconducting (5, 3) SWCNT showing the wave-vectors as yellow lines and the K-points (Fermi-level points) as red dots. The blue dot represents energy maxima and the pink points represent saddle (M) points. (e, f) represent electronic band structures of (e) (4, 4) metallic nanotube where wave vectors cross a K-point and (f) (5, 3) semiconducting nanotube where no wave vectors cross a K-point	9
Figure 1.5: Summary of CNT synthesis methods (a) arc discharge, (c) laser ablation, and (e) chemical vapour deposition along with SEM images (b, d, f) showing the morphology of the CNTs produced. Scale bar in (d) 100 nm.	13
Figure 1.6: Schematic of the band diagrams of (a) n-type and (b) p-type semiconductors under no bias and negative bias.	16
Figure 1.7: (a) Schematic of the etching cell used for the anodic etching of silicon. (b) Top-down SEM of porous silicon showing the irregularly shaped pores produced.	17
Figure 1.8: Porous silicon formation mechanism showing (a) reaction steps and (b) hole migration during pore formation.	18
Figure 1.9: Basic reaction scheme of the mechanism of DCC (red) assisted coupling of carboxylic acid functionalised CNTs (molecule 1, black) to amines, alcohols and thiols (molecule 3, blue).(a) The starting carboxylic acid (1) reacts with DCC to form an activated ester (2). (c) This can rearrange to form the stable unwanted by-product N-acylurea (6) or (b) it can undergo nucleophilic attack from the electron rich N, O or S to form a stable amide, ester or thioester linkage to the R_2 group (5).	21

Figure 1.10: Schematics and published AFM images of SWCNTs chemically attached to (a) gold via a cystamine linkage, (b) silicon via direct ester linkage, and (c) patterned amine terminated silane on silicon.	23
Figure 1.11: Water occupancy inside a SWCNT (a) structure of hydrogen bonded chain of water molecules within the SWCNT and (b) probability distribution of water binding energies of (red) confined and (blue) bulk water, the coloured arrows indicate average binding energies.	27
Figure 1.12: Schematic of the fabrication process of aligned MWCNT membranes by Hinds <i>et al.</i>	30
Figure 1.13: Schematic of the DWCNT membrane fabrication of Holt <i>et al.</i>	32
Figure 1.14: Field emission models showing how the shape of the potential barrier changes for (a) no field (b) an electric field, (c) a larger electric field and (d) when the Coulomb potential is included in the calculation.	36
Figure 1.15: (a) SEM of SWCNT deposited from a paste, (b) J-V curves and (c) emission stability from varying plasma treatments.	43
Figure 1.16: (a, b, c) SEM images depicting the attachment of cells to a carpet of VA-CNTs. (a) The tips of the VA-CNTs are in intimate contact with the cell surface. (b) The bending and deformation of the tubes is occurring via biomechanical forces. (c) Neuronal cells adhere preferentially to isolated islands of pristine CNTs. (d) Confocal fluorescence image of neurons (red) and glia cells (green) on a large CNT island. Scale bar in (c, d) 10 μ m.	46
Figure 1.17: Schematics of electroporation. (a) Cells in suspension or (b) cells immobilised on a surfaces are exposed to an electric field in order to deliver target material.	49
Figure 1.18: Summary of results of electroporation on MWCNT showing (a) AFM image of randomly oriented MWCNTs on surface (5 x 5 μ m ²). Fluorescence microscopy images after electroporation and gene transfection of a green fluorescent plasmid showing (b) control surface without MWCNTs and (c) a MWCNT surface. Green cells in (b, c) indicate gene transfection, images 1.5 x 1.5 mm ²	50
Figure 2.1: Schematic of the porous silicon etching cell	69
Figure 2.2: Schematic of the direct ester attachment of CNTs to silicon	71
Figure 2.3: Schematic of the APTES mediated attachment of CNTs to silicon	72
Figure 2.4: Schematic of the direct ester CNT attachment to pSi.	73

Figure 2.5: Schematic of APTES mediated attachment of CNTs to pSi.	74
Figure 2.6: Schematic of patterned attachment of SWCNTs to silicon	75
Figure 2.7: Schematic of CNT growth by chemical vapour deposition.	76
Figure 2.8: Schematic of AFM operation.	78
Figure 2.9: Summary of possible scattering processes.	81
Figure 2.10: (a) Cross sectional view of a SWCNT showing the radial vibration of the RBM, with (b) vibration of D-band, and (c) vibrations of G-band with G^+ peak arising from vibrations along the tube axis and G^- peak arising from vibrations around the circumference of the tube.	82
Figure 2.11: Schematic of principle set up of Raman microscope. Image modified from supplier	83
Figure 2.12: Example of how Raman spectral image is created from many individual spectra.	84
Figure 2.13: Example of water contact angle measurement showing (a) original image and (b) after analysis using the Image J plugin DropSnaker where blue dots were manually inserted and red dots were inserted by the software to give output values.	87
Figure 3.1: (a, b) SEM images (XL-30) of (a) pristine SWCNTs as purchased and (b) SWCNTs 'cut' for 8 hr, as described in Chapter 2. (c, d) Photographs of SWCNTs dispersed in DMSO after 1 day of incubation. (c) Pristine SWCNTs and (d) cut SWCNTs.	92
Figure 3.2: AFM images of SWCNTs attached to silicon via an ester linkage with varying silicon hydroxylation methods, (a,b) 2-step base-acid method, (c) ozone treated and (d) Piranha treated. AFM images are 5 x 5 μ m ² with a z scale of 50 nm	95
Figure 3.3: Graphs of (a) normalised SWCNT coverage and (b) average SWCNT bundle diameter vs. SWCNT attachment time, as determined by AFM. Dashed lines added to guide the eye.	96
Figure 3.4: (a) Raman spectral image and (b) Raman spectrum of SWCNTs chemically attached to silicon via ester attachment. Raman spectrum average of 2 x 120 sec accumulation.	98
Figure 3.5: WCA photographs of (a) Piranha treated silicon and (b) APTES modified silicon.	99

Figure 3.6: AFM images of SWCNTs attached to silicon via APTES monolayer (a) top down and (b) 3-D. AFM images are 5 x 5 μ m ² with a z scale of 50 nm	100
Figure 3.7: (a) Raman spectral image and (b) Raman spectrum of SWCNTs chemically attached to silicon via an APTES monolayer. Raman spectrum average of 2 x 120 sec accumulations.	
Figure 3.8: AFM image of freshly etched pSi. Etching conditions: 1:1 (v/v) HF/ethanol, 66 mA, 120 sec.	
Figure 3.9: FTIR spectra of pSi, which has been (a) freshly etched, (b) ozone oxidised (45 min) and (c) wet chemical oxidised (Piranha solution). Spectra in (b) are offset for clarity.	103
Figure 3.10: AFM image of SWCNTs chemically attached to pSi following the direct ester attachment method on Piranha-oxidised pSi	
Figure 3.11: Schematic representation of (a) oxidised pSi, (b) oxidised pSi after reaction with a carboxylic acid containing molecule (eg., 'cut' SWCNT), (c) oxidised pSi after APTES immobilisation and (d) pSi after APTES immobilisation and carboxylic acid attachment.	105
Figure 3.12: Transmission FTIR spectra of hydroxylated pSi substrates (ozone; 10 min) followed by (a) APTES functionalisation and (b) SWCNT attachment to APTES monolayer (24 hr attachment time). Inset shows zoom of amine peak area $(3500 \text{ cm}^{-1} \text{ to } 3100 \text{ cm}^{-1})$ for the APTES functionalised pSi substrate. Spectra offset for clarity.	106
Figure 3.13: AFM images of (a) pSi after 5 min of APTES treatment (0 % surface coverage, 5 x 5 μ m ² , z scale 50 nm) and SWCNT attachment on APTES functionalised pSi (5 x 5 μ m ² images, z scale 50 nm) for attachment times of (b) 5 min (18 % coverage), (c) 1 hr (48 % coverage), (d) 24 hr (52 % coverage) and (e) 3D image of (c) after 1 hr attachment.	
Figure 3.14: Change in percentage surface coverage with incubation time of APTES silanised pSi wafer in a SWCNT solution. Dashed line added to guide the eye.	109
Figure 3.15: (a) Raman spectral image of SWCNTs chemically attached to pSi via the APTES attachment method and (b) Raman spectrum of SWCNTs on pSi showing the high background fluorescence of pSi. Spectrum average of 3 x 60 sec	110
Figure 3.16: SEM images (XL-30) of (a) pristine DWCNTs and (b) cut/functionalised DWCNTs and (c) Raman spectrum of pristine DWCNTs with zoom of RBM region (inset). Raman spectrum average of 2 x 120 sec accumulations.	

Figure 3.17: (a) Top down and (b) 3-D AFM as well as (c) Raman spectra of DWCNTs chemically attached to silicon with zoom showing RBM region (inset). Raman spectrum average of 2 x 60 sec accumulations.	114
Figure 3.18: AFM images of (a) 'cleaned' MWCNTs and (b) Cut MWCNTs using the '3-acid cutting system' drop-cast onto a silicon wafer. AFM images are $5 \times 5 \mu m^2$ with a z scale of 50 nm.	115
Figure 3.19: (a, b) AFM images and (c) Raman spectrum of MWCNTs chemically attached to silicon via (a) direct ester attachment and (b, c) APTES mediated attachment. AFM images are $5 \times 5 \mu m^2$ with a z scale of 50 nm, Raman spectrum is the average of 2 x 120 sec acquisitions.	117
Figure 3.20: SEM images (CamScan) of CNTs grown on silicon via CVD showing (a, b) vertical alignment, (c) zoom of side view of VA-CNTs and (d) randomly oriented CNTs.	118
Figure 3.21: (a) Raman spectral image of CNTs grown on silicon via CVD and (b) Raman spectrum of the CVD grown CNTs. Raman spectrum is the average of 3 x 30 sec acquisitions.	119
Figure 3.22: (a, c) AFM and (b, d) section analysis of 3 nm iron sputtered onto a silicon surface (a, b) fresh and (c, d) after heating to 750 °C under pre-CNT growth conditions.	121
Figure 3.23: (a, c) AFM and (b, d) section analysis of (a, b) silicon surface with 10 nm of aluminium and 3 nm of iron after heating to 750 °C under pre-CNT growth conditions and (c, d) silicon surface with 10 nm of Al sputtered.	122
Figure 3.24: Plot showing recorded temperature within tube furnace for varying input temperatures from 750 °C (red series) to 680 °C (green series) and 650 °C (blue series).	124
Figure 4.1: Schematic illustrating the fabrication process of SWCNT patterns and gradients. (a) APTES patterning via photolithography to produce a SWCNT gradient, (b) a topographical gradient created by the asymmetric anodisation of silicon and (c) a chemical gradient created by vapour phase diffusion of APTES onto oxidised silicon.	134
Figure 4.2: Etching cell configurations for the fabrication of 'normal' (left) and gradient (right) pSi	135
Figure 4.3: Schematic of the apparatus used for APTES gradient fabrication (top view).	136
Figure 4.4: SEM images of photoresist patterns on silicon showing various shapes and sizes of patterns.	137

Figure 4.5: IR mapping of APTES pattern on pSi showing (a, b) spectra of points (a) within and (b) outside of pattern (insets) with insets showing peaks of interest in more detail, (c) IR spectral map obtained by mapping peak height at 1505 cm^{-1} (indicated by * in (a, b) with (d) optical image of area and (e) overlay of spectral map over optical image.	139
Figure 4.6: Raman spectral images of SWCNT patterns on silicon. (a, b) half-half surface patterns with (a) bare silicon side and (b) Si-APTES-SWCNT side. (c) Optical microscope image of area of investigation for attachment of (c, d) SWCNTs to patterned APTES on silicon.	141
Figure 4.7: (a) Photograph of gradient pSi film indicating the three regions: (region 1) closest to electrode, (region 2) middle region and (region 3) furthest from the electrode. (b) Tapping mode AFM images showing pore size decreasing with distance from the Pt electrode. Scale bars = 500 nm.	143
Figure 4.8: Tapping mode AFM height images of SWCNTs attached to gradient pSi surfaces etched at (a) 40 mA (b) 50 mA, (c) 55 mA and (d) 60 mA showing (i) region 1, (ii) region 2 and (iii) region 3. Scale bars = 1 μ m.	146
Figure 4.9: Plots showing SWCNT coverage as a function of (a) the average and (b) the maximum pore size of the pSi surface.	147
Figure 4.10: (a) Digital photographs and (b) WCA values of water droplets deposited at increasing distance (from $5-30 \text{ mm}$ at 5 mm intervals) from the APTES-filled reservoir.	148
Figure 4.11: Raman spectral images of G-band peak intensity at different distances from the APTES-filled reservoir on the SWCNT-decorated gradient. Scale bar = $4 \mu m$.	149
Figure 4.12: Change in average Raman G-band peak intensity with distance from APTES-filled reservoir after SWCNT covalent attachment without backfill.	150
Figure 4.13: Raman spectral images of G-band peak intensity of SWCNTs immobilised on APTES gradient after PTMS backfilling of silicon wafer at increasing distances from the APTES-filled reservoir. Scale bar $4 = \mu m$.	152
Figure 4.14: (a) Change in average Raman G-band peak intensity with distance from APTES-filled reservoir after SWCNT covalent attachment with PTMS backfill (inset) zoom of area from 15 to 20 mm. (b) Plot of average G-band peak intensity vs. WCA. The dashed line serves as a guide to the eye	153
Figure 5.1: Comparison of CNT membrane fabrication procedures followed by (a) Hinds <i>et al.</i> and (b) Holt <i>et al.</i> Detail of fabrication given in Section 1.5.3	161
Figure 5.2: Schematic of the assembly of a SWCNT membrane supported on a pSi substrate.	163

Figure 5.3: Schematic of the chemical modification of pSi membranes with (a) the hydrophobic fluorinated silane (PFDS), (b) the hydrophilic silane (PEGS) and (c) APTES for SWCNT attachment.	165
Figure 5.4: (a, b) Schematic of U-tube configuration used for dye diffusion experiments with the pSi membrane separating the feed and permeate cells. (a) initial configuration with solvent only in the permeate cell and (b) after experiment completed with dye in permeate cell. Structure of the two dyes investigated (c) the hydrophobic dye Rubpy and (d) the hydrophilic Rose Bengal (RB).	166
Figure 5.5: Schematic of pressure driven water transport apparatus	167
Figure 5.6: Photographs of pSi membranes (a) attached to the silicon wafer and (b) lifted off the silicon wafer.	169
Figure 5.7: SEM images of (a) top and (b) bottom of pSi membrane, (c, d) side views of entire layer (c) and zoom of edge, and (e) pore size distribution graph from the top layer of pSi. Images (a, b, d) from the NanoLab SEM while (c) was from the CamScan.	171
Figure 5.8: XPS analysis of silanes on pSi membranes (red series) pSi-PFDS and (black series) pSi-PEGS.	173
Figure 5.9: High resolution XPS spectra of the C 1s peak from (red series) pSi-PFDS and (black series) pSi-PEGS.	174
Figure 5.10: FTIR spectra of pSi (blue series) ozone oxidised, (red series) pSi-PFDS and (black series) pSi-PEGS.	175
Figure 5.11: Transport of a hydrophobic (Rubpy, green series) and hydrophilic (RB, purple series) dye through pSi membranes. Where (a) is an unfunctionalised membrane, (b) is a hydrophobic (PFDS) functionalised membrane and (c) is a hydrophilic (PEGS) functionalised membrane.	176
Figure 5.12: Dye transport experiments of (I) Rubpy and (II) RB through (a) unfunctionalised pSi, (b) hydrophobic pSi-PFDS and (c) hydrophilic pSi-PEGS at three different initial dye concentrations.	177
Figure 5.13: Pressure driven water transport through (blue series) unfunctionalised and (red series) PFDS (hydrophobic) functionalised pSi at a constant applied pressure (inset).	182
Figure 5.14: Top down (a, c, e) and 3-D (b, d, f) AFM images of SWCNTs on pSi membrane surfaces. Figures (a, b) depict a pSi membrane surface after 1 hr of SWCNT attachment, (c, d) is the same surface after sonication in acetone to remove physisorbed SWCNTs, and (e, f) is a different pSi membrane after 2 hr of SWCNT attachment and sonication in acetone.	185

Figure 5.15: (I) AFM (II) AFM cross sectional analysis and (III) 10 x optical microscope images of polystyrene films spun onto silicon with increasing water plasma etching time: (a) 0 min, (b) 1 min, (c) 2 min, and (d) 3 min.	187
Figure 5.16: (I) Aerial AFM image (5 x 5 μ m, z scale 50 nm), (II) 3-D AFM image, (III) AFM image of scratched cross and (IV) cross section analysis of polystyrene spun onto VA-SWCNTs on pSi surfaces including (a) before water plasma exposure, (b) after 1 min of water plasma exposure and (c) after 2 min of water plasma exposure.	189
Figure 5.17: (I) Optical microscope, (II) aerial (5 x 5 μ m, z scale 50 nm) and (III) 3-D AFM images of different areas (a, b, c, and d) of the same sample prepared by chemically attaching SWCNTs to a permeable pSi membrane and depositing a thin film of polystyrene.	191
Figure 5.18: Schematic of effect of substrate on polymer deposition. (a) pSi film supported on Si substrate leads to even thin polymer film while for (b) the pSi membrane the vacuum can affect the polymer resulting in a inhomogeneous polymer film.	192
Figure 5.19: (a) Aerial AFM (5 x 5 µm, z scale 50 nm), (b) optical microscope image, and (c) 3-D AFM image of PS thin film deposited by the 'spin-drop' method onto a pSi membrane-SWCNT substrate	193
Figure 5.20: Schematic of SWCNT membranes prepared. (a) bare pSi membrane with PS thin film deposited and pSi membrane with attached VA-SWCNTs with PS deposited before (b) and after (c) water plasma exposure	194
Figure 5.21: Summary of pressure driven water flow through pSi-PS sample showing (a) mass of water transported and (b) applied pressure vs. time	195
Figure 5.22: Summary of water flow through pSi-SWCNT-PS (1 min water plasma) showing (a) raw data of mass of water collected (b) applied pressure (c) zoom of area from 2.1 to 3.4 hr, and (d) scale drift removed data vs. time	196
Figure 6.1: Schematic of prepared samples for field emission studies	205
Figure 6.2: Field emission system at the University of Newcastle showing (a) ultra-high vacuum chamber, (b) power supply and picoammeter, (c) sample stage configuration and (d) schematic of field emission experimental apparatus.	206
Figure 6.3: Field emission sweeps for SWCNT chemically anchored to n-type silicon for varying SWCNT attachment times with (inset) Fowler-Nordheim plots	208
Figure 6.4: Graphs of effect of SWCNT attachment time on (a) electric field enhancement factor (β) and (b) the turn-on voltage (E _{to}).	210

Figure 6.5: J-F curve attempting to achieve maximum current output for Si-SWCNT surface. Maximum wattage output of power supply reached before maximum current from sample.	212
Figure 6.6: FE sweeps for SWCNT surfaces with varying thickness of polystyrene	214
Figure 6.7: (a, b, c) Aerial and (d, e, f) 3-D AFM images of (a, d) SWCNTs, (b, e) DWCNTs and (c, f) MWCNTs chemically attached to silicon. White circles in (b) indicate laying down DWCNTs while black circles indicated VA-DWCNTs	215
Figure 6.8: Summary of field emission (I) J-F sweeps and (II) F-N plots for different CNT types chemically attached to silicon showing (a) low current and (b) high current sweeps.	217
Figure 6.9: A 60 hr FE stability test of a Si-SWCNT surface with a constant current of 10 μ A (~10 μ A cm ⁻²).	220
Figure 6.10: A 60 min FE stability test of FE from a Si-SWCNT surface at a current density of $\sim 110 \ \mu A \ cm^{-2}$.	221
Figure 6.11: A 15 hr FE stability test of a Si-SWCNT surface at a constant current density output of 780 μ A cm ⁻² .	223
Figure 6.12: FE stability of a Si-SWCNT surface coated with a thin film of PS.	225
Figure 6.13: Consecutive FE stability experiments from Si-SWCNT-polystyrene electrodes showing the change in time for the roll-off behaviour to occur.	226
Figure 6.14: FE stability of a DWCNT electrode at 80 µA cm ⁻² over 70 min	227
Figure 6.15: FE stability of a Si-DWCNT electrode at ~80 μ A cm ⁻² over 15 hr	228
Figure 6.16: FE stability of a Si-MWCNT electrode at 10 μ A cm ⁻² for 45 min	230
Figure 7.1: Schematic detailing the preparation of (a) a SWCNT-decorated pSi substrate surface and (b) a patterned pSi-SWCNT substrate surface and the resulting attachment of neuroblastoma cells (SK-N-SH). Both preparation schemes involve the chemical attachment of SWCNTs to an amino silane (APTES) on pSi via carbodiimide (DCC) assisted coupling.	237
Figure 7.2: Schematic of the electroporation apparatus	241
Figure 7.3: Fluorescence microscopy images of phalloidin stained SK-N-SH neuroblastoma cells immobilised on (a, d) oxidised pSi, (b, e) APTES-functionalised pSi and (c, f) SWCNT-decorated pSi. Scale bars $(a - c) = 100 \mu m$, $(d - f) 50 \mu m$.	243

Figure 7.4: Fluorescence microscopy images of cytoplasm stained SK-N-SH neuroblastoma cells using CMRA. (a) pSi control, (b) 1 min of SWCNT attachment (low density) and (c) 2 hr of SWCNT attachment (high density). Scale	
bar 50 μm	244
Figure 7.5: Fluorescence microscopy image of membrane stained SK-N-SH neuroblastoma cells using DIOC_{18} (3) on (a, c) oxidised pSi and (b, d) SWCNT-decorated pSi surfaces at different magnifications. Arrows added in (d) to highlight examples of dark spots observed in membrane. Scale bar 50 µm.	245
Figure 7.6: Fluorescence microscopy images of SK-N-SH neuroblastoma cells stained with (a, b) propidium iodide (PI) and (c, d) fluorescein diacetate (FDA) on (a, c) oxidised pSi and (b, d) SWCNT-decorated pSi substrates. Scale bar 50 µm	246
Figure 7.7: Fluorescence microscopy images of SK-N-SH neuroblastoma cells stained with (a) propidium iodide (PI) and (b) fluorescein diacetate (FDA) on a SWCNT-decorated pSi substrates after 48 hr of cell culture. Scale bar 50 µm	247
Figure 7.8: Fluorescence microscopy images of SK-N-SH neuroblastoma cells stained with CellTracker Orange showing preferential attachment to SWCNT-decorated patterns on a pSi substrate showing (a) circle and (b) line pattern. The regions in between those decorated with nanotubes were PEG functionalised. Scale bar 100 µm.	248
Figure 7.9: Summary of SEM images of SK-N-SH on pSi-SWCNT substrates showing cell culture and spreading of lamellipodia (NanoLab SEM)	249
Figure 7.10: AFM image of edge of a SK-N-SH cell on a pSi-SWCNT substrate	250
Figure 7.11: I pDNA fluorescence and II Hoechst staining + pDNA of SK-N-SH cells on (a) pSi, (b) pSi-APTES and (c) pSi-APTES-SWCNT substrates after the gene transfection experiment.	253
Figure 7.12: I pDNA fluorescence and II Hoechst staining + pDNA of SK-N-SH cells on (a) pSi, (b) pSi-APTES and (c) pSi-APTES-SWCNT substrates after gene transfection experiment with Effectene added.	254
Figure 7.13: I pDNA fluorescence and II Hoechst + pDNA staining of SK-N-SH cells on (a) flat Si, (b) flat Si-APTES and (c) flat Si-APTES-SWCNT substrates after gene transfection experiment with Effectene added	256
Figure 7.14: Schematic of SWCNTs chemically attached to Si substrates with positively charged diethylenetriamine (DETA) electrostatically binding pDNA to the substrate prior to cell culture.	257

Figure 7.15: XPS analysis to determine if the amine containing diethylenetriamine (DETA) is bound to the surface after SWCNT attachment via (a, c) direct ester

attachment and (b, d) APTES mediated attachment showing (a, b) survey scans and (c, d) higher resolution spectra of the N 1s peak.	259
Figure 7.16: I pDNA fluorescence and II Hoechst + pDNA staining of SK-N-SH cells on (a) Si-SWCNT, (b) Si-SWCNT-DETA, (c) Si-APTES-SWCNT and (d) Si-APTES-SWCNT-DETA substrates after gene transfection experiment with Effectene added.	260
Figure 7.17: Summary of initial electroporation experiments showing fluorescence microscope images of SK-N-SH cells stained with both Hoechst and pDNA on (a) Si-SWCNT, (b) Si-SWCNT + Effectene and (c) Si + Effectene	262
Figure 7.18: Fluorescence microscope images of electroporation of SK-N-SH cells on Si-SWCNT-DETA substrates at varying applied voltages showing (I) pDNA expressing GFP and (II) Hoechst stain.	264
Figure 8.1: Publication number for articles containing both "carbon nanotube" and "field emission" obtained using SciFinder search function 8/8/11	276
Figure 8.2: Proposed schematic of the chemical attachment of DNA to carboxy-CNTs via a cleavable linker containing a disulphide group.	277
Figure 8.3: Schematic of proposed improved electroporation apparatus where both cell culture and electroporation are completed within the same cell	278

List of Tables

Table 1.1: Characteristics and applications of pressure driven membrane technologies.	26
Table 1.2: Summary of water molecule transport, ion conductance and study of desalination potential of CNT membranes.	28
Table 1.3: Pressure driven flow through MWCNT membranes.	31
Table 1.4: Comparisons of the gas and water flow enhancements (over their respective theoretical models) for 3 DWCNT membranes and a commercial polycarbonate membrane.	
Table 1.5: Summary of field emission properties from carbon nanotubes.	40
Table 3.1: Raman peak position and assignment for SWCNTs on silicon.	98
Table 3.2: RBM peak positions and corresponding calculated diameter for DWCNTs.	112
Table 4.1: AFM pore size analysis of the pore size gradients produced by different applied currents.	144
Table 4.2: Summary of percentage SWCNT coverage on each region of the gradient pSi etched at different etching currents.	145
Table 5.1: Advancing contact angle measurements for the unfunctionalised, PFDS functionalised and PEGS functionalised pSi membranes.	172
Table 5.2: Flux and permeability data for Rubpy and RB transport through unfunctionalised, PFDS-functionalised and PEGS-functionalised pSi membranes.	178
Table 5.3: Effect of water plasma exposure time on polystyrene thin film thickness.	188
Table 5.4: Comparison of membrane permeability between experimental and theoretical carbon nanotube membranes.	197
Table 5.5: Permeability values for commercial polyamide thin film composite nanofiltration and reverse osmosis membranes	199
Table 6.1: Summary of field emission characteristics of Si-SWCNT surfaces with varying polystyrene film thickness.	214

Table 6.2: Summary of FE characteristics of SWCNTs, DWCNTs and MWCNTs chemically attached to silicon.	218
Table 7.1: Summary of WCA and cell area measurements of neuronal cells on the three surfaces used as cell culture substrates.	243
Table 7.2: Summary of transfection efficiencies for pDNA with Effectene on the pSi based substrates.	254
Table 7.3: Summary of transfection efficiencies for pDNA with Effectene on the flat Si based substrates.	256
Table 7.4: Summary of transfection efficiencies adsorbed pDNA with Effectene on SWCNT substrates.	261

Glossary of abbreviations

Abbreviation	Definition
AFM	atomic force microscopy
APTES	3-aminopropyl triexthoxysilane
b	electric field enhancement factor
CMRA	CellTracker orange cytoplasm stain
CNT	carbon nanotube
СТА	chain transfer agent
CVD	chemical vapour deposition
D-band	disorder Band
DCC	dicyclohexyl carbodiimide
DETA	Diethylenetriamine
$DIOC_{18}(3)$	green fluorescent cell membrane stain
DMEM	Dulbecco's modified eagle medium
DMF	dimethyl formamide
DMSO	dimethyl Sulfoxide
DNA	deoxyribosenucleic acid
dPBS	Dulbecco's phosphate buffered saline
DWCNT	double-walled carbon nanotube
E_F	Fermi energy
E _{to}	turn-on voltage
FDA	fluoroscein diacetate
FE	field emission
FET	field effect transistor
F-N	Fowler-Nordheim
FTIR	fourier transform infrared
G-band	graphene band
GFP	green fluorescent protein
GO	graphene oxide
HEK	human embryonic kidney
HF	hydrofluoric acid
ITO	indium tin oxide
LCD	liquid crystal display
MD	molecular dynamics
MWCNT	multi-walled carbon nanotube
pAl	porous alumina
pDNA	plasmid DNA
PECVD	plasma-enhanced chemical vapour deposition

Abbreviation	Definition
PEGS	polyethylene glycol silane
PEI	poly(ethylimine)
PFDS	Fluorinated silane
PI	propidium iodide
PMMA	poly(methylmethacrylate)
PS	poly(styrene)
pSi	porous silicon
PTFE	poly(tetrafluoroethylene)
PTMS	propyl trimethoxysilane
RAFT	reverse addition fragmentation chain transfer
RB	rose bengal
RBM	radial creathing mode
RNA	ribosenucleic acid
RO	reverse Osmosis
Rubpy	ruthenium based dye
SA	self assembly
SAM	self assembled Monolayer
SEM	Scanning Electron Microscopy
Si	Silicon
SK-N-SH	mammalian neuroblastoma cell line
STM	scanning tunnelling microscope
SWCNT	single-walled carbon nanotube
TEM	transmission electron microscopy
VA	vertically aligned
WCA	water contact angle
XPS	X-ray photoelectron spectroscopy

List of publications

- [1] C. J. Shearer, J. G. Shapter, J. S. Quinton, P. C. Dastoor, *et al.*, "Highly resilient field emission from aligned single walled carbon nanotube arrays chemically attached to n-type silicon", *Journal of Materials Chemistry*, 18, 5753 - 60 (2008).
- K. T. Constantopoulos, C. J. Shearer, J. G. Shapter, N. H. Voelcker, et al., in SPIE Smart Materials, Nano+Micro-Smart Systems, Vol. 7267, Melbourne, 72670G (2008).
- [3] C. J. Shearer, K. T. Constantopoulos, N. H. Voelcker, J. G. Shapter, et al., in SPIE Smart Materials, Nano+Micro-Smart Systems, Vol. 7267, Melbourne, 72670I (2008).
- [4] Z. Poh, B. S. Flavel, C. J. Shearer, J. G. Shapter, *et al.*, "Fabrication and electrochemical behavior of vertically-aligned carbon nanotube electrodes covalently attached to p-type silicon via a thioester linkage", *Materials Letters*, 63 (9-10), 757-60 (2009).
- [5] K. T. Constantopoulos, C. J. Shearer, A. V. Ellis, N. H. Voelcker, *et al.*,
 "Carbon Nanotubes Anchored to Silicon for Device Fabrication", *Advanced Materials*, 22 (5), 557-71 (2010).
- [6] C. J. Shearer, A. V. Ellis, J. G. Shapter, and N. H. Voelcker, "Chemically Grafted Carbon Nanotube Surface Coverage Gradients", *Langmuir*, 26 (23), 18468-75 (2010).
- [7] C. J. Shearer, J. Yu, M. Bissett, D. D. Tune, et al., "Surface modifications with carbon nanotubes what might be possible?", Surface Coatings Australia, 47 (4) (2010).
- [8] L. Velleman, C. J. Shearer, A. V. Ellis, D. Losic, *et al.*, "Fabrication of self-supporting porous silicon membranes and tuning transport properties by surface functionalization", *Nanoscale*, 2 (9), 1756-61 (2010).
- [9] C. J. Shearer, L. Velleman, F. Acosta, E. V. Ellis, et al., "Mass transport through nanoporous materials: single walled carbon nanotubes and porous silicon", Proceedings of the 2010 International Conference on Nanoscience and Nanotechnology (ICONN2010), 196-199, Sydney, (2010).

- B. S. Flavel, M. J. Sweetman, C. J. Shearer, J. G. Shapter, *et al.*,
 "Micropatterned Arrays of Porous Silicon: Toward Sensory Biointerfaces", *ACS Applied Materials & Interfaces*, 3 (7), 2463-71 (2011).
- [11] M. J. Sweetman, C. J. Shearer, J. G. Shapter, and N. H. Voelcker, "Dual Silane Surface Functionalization for the Selective Attachment of Human Neuronal Cells to Porous Silicon", *Langmuir*, 27 (15), 9497-503 (2011).
- [12] K. E. Moore, B. S. Flavel, C. J. Shearer, A. V. Ellis, J. G. Shapter, "Electrochemistry of Polystyrene Intercalated Vertically Aligned Single- and Double-Walled Carbon Nanotubes on Gold Electrodes", *Electrochemistry Communications*, 13, 1190 (2011).
- [13] M. A. Bissett, A. Barlow, C. J. Shearer, J. S. Quinton, J. G. Shapter, "Carbon Nanotube Modified Electrodes for Photovoltaic Devices", *Carbon, accepted* (25/8/11) (2011).
- [14] C. J. Shearer, F. Harding, M. J. Sweetman, J. G. Shapter, *et al.*, "Nanostructured biointerfaces based on carbon nanotube-decorated porous silicon films", *Soft Matter*, *(under review)* (2011).
- [15] C. J. Shearer, A. Fahy, M. Barr, K. E. Moore, *et. al.*, "Field emission from single- double- and multi-walled carbon nanotubes chemically attached to silicon", *Journal of Applied Physics, (under review)* (2011).

Parts of the above publications have been reproduced in this Thesis as follows:

- Chapter 1 contains parts of [5]
- Chapter 3 contains parts of [2] and [3]
- Chapter 4 contains parts of [6] and [14]
- Chapter 5 contains parts of [8] and [9]
- Chapter 6 contains parts of [1] and [15]
- Chapter 7 contains parts of [14]

Science is made up of so many things that appear obvious after they are explained.

- Frank Herbert in Dune

We are at the very beginning of time for the human race. It is not unreasonable that we grapple with problems. But there are tens of thousands of years in the future. Our responsibility is to do what we can, learn what we can, improve the solutions, and pass them on.

- Richard P. Feynman

You want a reason? How's about "Because"?

- Joshua Homme in Turnin' on the Screw