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Summary 

The amazing electrical and mechanical properties of carbon nanotubes (CNTs) 

make them ideal for use in a variety of applications, many of which require the CNTs 

to be surface bound. Here the applicability of nanostructures based upon CNTs 

chemically attached to silicon to the fields of water filtration, field emission and as 

biomaterial interfaces is investigated. 

Initial experiments studied the chemical attachment and alignment of different 

CNT types to silicon. Single-walled carbon nanotubes (SWCNTs) were found to 

form vertically aligned arrays on both flat silicon and porous silicon (pSi). Double-

walled carbon nanotubes (DWCNTs) were found to exhibit both vertical and random 

alignment while multi-walled carbon nanotubes (MWCNTs) exhibited an exclusive 

horizontal orientation. The variation in alignment is attributed to the level of 

crystallinity and functionalisation of each CNT type as determined by Raman 

spectroscopy. 

The control of the placement of SWCNTs on silicon was further investigated by 

fabricating both surface coverage gradients and patterns of SWCNTs. Gradients were 

fabricated following two protocols, both of which produced surfaces which consist of 

all possible SWCNT coverage’s. SWCNT patterns were produced by forming an 

initial chemical pattern on the silicon surface for subsequent selective SWCNT 

chemical attachment.  

CNT membranes for water filtration were fabricated by chemically attaching 

SWCNTs to permeable pSi membranes. Gaps between the SWCNTs were filled by 

spin coating polystyrene onto the surface. The SWCNT tips were revealed by etching 

the polystyrene matrix via water plasma treatment. The fabricated membranes were 

found to have a water permeability of 0.022 mm3 cm-2 s-1 atm-1. Comparisons to 

commercial nanofiltration membranes and other published CNT membranes are 

made and improvements to membrane fabrication are discussed. 

Field emission experiments were completed for all CNT types chemically 

attached to silicon. All samples exhibited field emission of electrons with 

characteristics varying with CNT diameter and vertical alignment. The emission 
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stability of each CNT type was investigated with the SWCNTs exhibiting the most 

stable emission. Comparison of emission characteristics and stability to other CNT 

field emission substrates are made. 

The behaviour of a mammalian neuronal cell line on SWCNTs chemically 

attached to porous silicon was investigated. Fluorescence microscopy revealed that 

the cells had a strong affinity for the SWCNT substrate and that the SWCNTs may 

compromise the cell membrane allowing small fluorescent molecules to enter the 

nuclear envelope. Experiments to determine if plasmid DNA could be inserted into 

the cell via the SWCNTs was completed with results indicating the SWCNTs did not 

promote DNA transfection for the neuronal cell line. 
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dPBS Dulbecco's phosphate buffered saline 
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Eto turn-on voltage 

FDA fluoroscein diacetate 
FE field emission 

FET field effect transistor 
F-N Fowler-Nordheim 

FTIR fourier transform infrared 
G-band graphene band 

GFP green fluorescent protein 
GO graphene oxide 

HEK human embryonic kidney 
HF hydrofluoric acid 
ITO indium tin oxide 
LCD liquid crystal display 
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