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Abstract 

Epigenetic mechanisms are potentially heritable molecular changes that affect gene 

expression, leading to differences in phenotype without changing the DNA sequence 

of the organism. In plants, such mechanisms are involved in the control of a range of 

processes, including response to stress. DNA methylation is an epigenetic 

mechanism used by organisms to adapt to changing environmental conditions by 

altering localised accessibility of the genome to transcription factors, thus ultimately 

affecting gene expression levels. The sequence and organ specificity of this stress 

induced de-novo DNA methylation in plants is guided by a class of small RNAs 

(sRNAs), typically 23 to 24 nt long.  

 

This project uses epiGBS, a reduced representation genome bisulphite sequencing 

method, coupled with small RNA and whole transcriptome Next Generation 

Sequencing to investigate interactions between sRNAs, DNA methylation and gene 

expression in the leaves and roots of barley under salt stress. EpiGBS was chosen as a 

method for gaining information about the methylation states of the genome since the 

barley genome is large, at 5.1 Gbp, making whole genome sequencing prohibitive. 

The method reduces the complexity of the genome by restriction enzyme 

fragmentation and sequencing based on fragment size selection, with genome 

coverage scalable by size selection and number of reads. Hordeum vulgare (barley) 

was chosen for this study as it is the fifth most important crop in global agriculture 



   

 xiii  

with good coverage of genome sequence information. It is anticipated that findings 

in this research should be applicable to other cereal crops such as wheat. 

 

Analysis of small RNA sequence data identified 59 new H. vulgare microRNAs 

(miRNAs) and corresponding precursor hairpin-loop sequences found that have not 

been previously reported in miRBase. Of these newly discovered miRNAs, 44 did not 

have sequence similarity to any previously identified miRNAs in other plant species 

and 15 were similar to known miRNAs in other plant species. Eight of these newly 

discovered miRNAs correlated with salinity stress and are likely to be involved in 

stress response. DNA methylation changes were found in response to salinity stress, 

with 1,210 loci in leaf tissue and 513 loci in root tissue found corresponding to a 

change in 23/24 nt sRNA expression that targets a protein coding gene. The linkages 

between sequence information from DNA methylation, small RNA and the 

transcriptome will lead to a greater understanding of how this crop deals with this 

important stress, and provide an extremely useful avenue for further research. 
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1 Introduction 

Human food supply is severely affected by abiotic stress in plants, such as drought, 

salinity and heat. With continuing population growth and a decrease in arable land, 

there is an increasing need to effectively manage these stresses in the future (Tilman 

et al. 2002; Godfray et al. 2010). By understanding how plants cope with stress, we 

can potentially utilise and optimise these stress-coping mechanisms to maintain 

yield, and therefore food supply.  

 

Research in stress tolerance of plants has demonstrated the important role that 

epigenetics plays in plant stress response. Epigenetics involves changes in genomic 

markers without changes to the DNA sequence, which can regulate gene expression 

levels and manage genome stability, with some epigenetic information being passed 

onto subsequent generations (Danchin et al. 2011). Environmental factors such as 

abiotic stress can result in changes in epigenetic states, allowing the plant to better 

cope with the environmental conditions (Boyko & Kovalchuk 2011). 

 

Barley (Hordeum vulgare) is an extremely important crop in global agriculture, 

ranking fifth in global production (Mayer et al. 2011). Barley is an economically 

important crop in Australia and is increasingly affected by dryland salinity which 

decreases crop yield (Patterson et al. 2009). Given this, the research presented here 

aims to determine the role that epigenetic mechanisms play in the salt stress response 
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system in barley. 

 

1.1 Stress in plants  

Stress in agricultural crops can cause significant loss in yield. It can be defined as 

biotic (caused by biological disease agents such as fungi, bacteria, viruses and 

insects), and abiotic (caused by environmental factors). The most widespread abiotic 

stresses include drought and salinity (Vinocur & Altman 2005), with global climate 

change expected to increase problems associated with these stress. Other abiotic 

stresses include heat, cold, flooding and nutrient deficiencies or toxicities. Salinity is 

a major problem for yield loss, and production of salt tolerant crops is extremely 

important for global food security in the future (Pitman & Läuchli 2002). 

 

Stress in plants has been shown to stimulate homologous recombination, an effect 

which can be passed on to progeny which were not exposed to the stress (Pecinka et 

al. 2009). Tricker et al. (2012) found that application of stress in young Arabidopsis 

thaliana plants resulted in greater tolerance to the same stress in later development, 

with epigenetic changes involved in the stress response. While some of the stress 

response mechanisms in plants are known, much of the currently unknown 

mechanisms may be related to regulation by epigenetic factors. 
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1.2 Epigenetics in plants  

Epigenetic mechanisms have been defined broadly as ȃthe structural adaptation of 

chromosomal regions so as to register, signal or perpetuate altered activity statesȄ 

(Bird 2007). Certain molecules attached to specific regions of the genome can change 

gene expression levels, or genome stability, based on environmental factors, with 

some of the changes being passed down across multiple generations (Danchin et al. 

2011). Environmental factors such as stress can result in changes in epigenetic states, 

potentially allowing a plant and its progeny to cope with the stress inducing 

conditions (Boyko & Kovalchuk 2011). 

 

Epigenetic mechanisms are observed in plants, animals and fungi, with some 

differences observed between the implementation in these three evolutionary 

branches (Feng & Jacobsen 2011). It has been proposed that the original function of 

epigenetics was to manage selfish DNA (which could harm the host organism), and 

adapted to perform other regulatory functions (Slotkin & Martienssen 2007). 

Modifications to the epigenome can involve DNA methylation, chromatin structure 

changes and small interfering RNA (siRNA) (Feng & Jacobsen 2011). In plants, 24-nt 

siRNAs play a significant role in activation and maintenance of epigenetic signalling 

(Matzke et al. 2007). 

 



   

Introduction  Page 4 

1.2.1 Small RNA 

There are various small RNAs (sRNAs) in plants that regulate various aspects of 

gene expression. Some of the sRNAs can be categorised by the molecular machinery 

that cuts the double-stranded RNA. The dicer-like class of enzymes cleave double-

stranded RNA for different functions as shown in Table 1.1. All four of these proteins 

evolved prior to the evolutionary split between monocotyledonous and 

dicotyledonous plants (Henderson et al. 2006). According to their sizes, the main 

classes of small RNAs in plants are microRNAs (miRNAs) and siRNAs. 

 
Table 1.1. Function of dicer-like enzymes in plants and the relationship with small RNA 

function.

Dicer-like 
protein 

Average size of 
cleaved RNA 

Function of small RNAs 

DCL1 21 nt Post-transcriptional silencing 
DCL2 22 nt Viral resistance 
DCL3 24 nt Guiding DNA methylation 
DCL4 21 nt Post-transcriptional silencing 

 

Some small RNAs have been isolated and sequenced from barley. Schreiber et al. 

(2011) found small RNA sequences in two barley cultivars (Golden Promise and 

Pallas), finding that 24 nt siRNA made up about half of the unique short RNA (18 nt 

to 24 nt) reads. Lv et al. (2012) exposed seedlings of the barley cultivar Clipper to 

Poly Ethylene Glycol (PEG) and NaCl to simulate drought and salt stress 

respectively. Small RNAs were extracted from leaf tissue at various stages in treated 

and non-treated control plants. Some small RNAs were found to be involved in stress 

tolerance.  
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The function of sRNAs in plants in relation to DNA methylation control is different 

to animals (Law & Jacobsen 2010), with 23 nt to 24 nt sRNAs guiding DNA 

methylation in plants (Matzke et al. 2007). De novo methylation is established by the 

RNA directed DNA methylation (RdDM) pathway and is discussed in section 1.2.4. 

 
MircoRNAs in plants are typically 21 nt in size, but can range in size from 20 nt to 24 

nt. They function as a control mechanism in plant gene expression, mostly targeting 

transcription factors and proteins related to stress response, development, growth 

and physiology (Rogers & Chen 2013). The miRNA is created through a transcript 

generated by RNA polymerase II (Pol II). This primary (pri-) miRNA transcript is 

processed into a stem-loop precursor (pre-) miRNA structure, then a small RNA 

duplex with řȂ overhangs by a complex of proteins including DICER-LIKE 1 (DCL1), 

HYPONASTIC LEAVES 1 (HYL1), DOUBLE-STRANDED RNA BINDING 1 (DRB1) 

and SERRATE (SE) (Moro et al. 2018; Wang et al. 2019). The ŘȂ hydroxyl group at the 

řȂ ends are methylated by HUA ENHANCER 1 (HEN1) which decreases the rate of 

degradation of the miRNA (Yu et al. 2005). Without this methylation modification, 

uracil bases are added to the řȂ end (Li et al. 2005), signalling the miRNA for 

degradation (Ji & Chen 2012).  

 

One strand of the microRNA duplex is loaded in to the RNA Induced Silencing 

Complex ǻRISCǼ, this is often the strand with lower thermodynamic stability at the śȂ 

end (Schwab et al. 2006). The strand that is loaded in to the RISC can be called the 
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guide strand and the discarded strand the passenger strand (Schwab et al. 2006), but 

more recently the strands are now defined as the 5p strand and the 3p strand based 

on the position of the miRNA in the hairpin loop precursor (Figure 1.1), with the 5p 

strand usually loaded in to the RISC (Kozomara & Griffiths-Jones 2013). The miRNA 

strand loaded in to the RISC anneals with a partial sequence match from a messenger 

RNA (mRNA) strand and causes degradation or translational repression of that 

mRNA strand, decreasing the expression of the targeted gene (Huntzinger & 

Izaurralde 2011). Generally there is not perfect complementarity between the miRNA 

strand loaded in to the RISC and the mRNA target. Typically, in plants there is 

perfect complementarity between bases 2 to 12 and up to 5 mismatches with the 

target mRNA. There are normally one or two mismatches between the miRNA and 

the mRNA between bases 17 to 21 to prevent double stranded extension of the 

mRNA/miRNA pairing by RNA dependent RNA polymerase (Moissiard et al. 2007; 

Ossowski et al. 2008). 

 

 

 

 

 
Figure 1.1. MicroRNA hairpin-loop precursor and miRNA duplex with 5p and 3p strands. 
A, Hairpin-loop miRN“ precursor with śȂ and řȂ ends labelled, is cleaved to form the 
miRNA duplex. B, The miRNA duplex with the 5p strand and 3p strand definition related to 
the hairpin-loop precursor that it originated from. Exact sequence complementarity between 
strands is not necessary for miRNA and can result in small sections of the miRNA duplex 
that do not pair. 

A 

B 

5’ 

3’ 

5p strand 

3p strand 
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1.2.2 DNA methylation 

DNA methylation occurs when a methyl group is added to the śȂ carbon in a cytosine 

nucleotide (Martienssen & Colot 2001). In animals, DNA methylation is typically 

considered to be important at CG sequences, where the methylation is symmetric at 

both cytosine bases in the double-stranded DNA. In plants methylation can occur at 

symmetric CG and CHG contexts (where H is an A, C or T), and also at asymmetric 

sites with a CHH context; all three contexts are considered important in plants 

(Mirouze & Paszkowski 2011). 

 

When DNA is replicated, the methylation information will not be present on the 

newly replicated strand. The DNA METHYLTRANSFERASE 1 (MET1) maintains the 

methylation state of CG sites in plants during DNA replication by fully methylating 

hemi-methylated CG sites (Saze et al. 2003; Vanyushin & Ashapkin 2011). The DNA 

methylation maintenance method for CHG sites is related to histone modifications, 

which are discussed in further detail in section 1.2.6. Methylation in a CHG context is 

mainly maintained with CHROMOMETHYLASE 3 (CMT3), but also to a lesser 

extent with CHROMOMETHYLASE 2 (CMT2) (Zhang et al. 2018). These enzymes 

cause cytosine methylation at CHG sites based on the methylation state of histone H3 

tail at lysine 9 (H3K9) (Stroud et al. 2014; Yaari et al. 2019). The methylation at CHH 

contexts is predominantly maintained by RdDM (discussed further in section 1.2.4), 

but can also be maintained with CMT2 in large Transposable Elements (TEs) (Stroud 

et al. 2014; Kawakatsu et al. 2017). 
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Demethylation of cytosine bases in plants can occur passively through DNA 

replication without methylation maintenance, or through active removal of the 

methylated cytosine base (Viggiano & de Pinto 2017). The DNA glycosylase 

REPRESSOR OF SILENCING 1 (ROS1), removes the methylated cytosine base, and 

DNA repair mechanisms replace the excised base with an unmethylated cytosine (Li 

et al. 2018). The mechanism for targeting a specific region for demethylation is not 

fully understood. A complex called the Increased DNA Methylation (IDM) complex 

forms and causes histone acetylation which is believed to recruit ROS1 to target the 

site (Nie et al. 2019). Given this discussion on how methylation and demethylation 

occur in plants, it is worth considering its role. 

 

DNA methylation has two main functions in plants; genome stability and regulation 

of gene expression (Castiglione et al. 2010). Transposable Elements can be silenced by 

DNA methylation (Teixeira et al. 2009). Epigenetic activity of TEs influences 

regulation of genes near the TE and can modulate stress response. (McCue et al. 

2012).  

 

DNA methylation is related to suppression of gene expression, however the link 

between DNA methylation and mRNA transcript levels is not simple (Bewick & 

Schmitz 2017). Many cases have been observed where an increase in DNA 

methylation of a promoter causes lower production levels of mRNA (Berdasco et al. 

2008). However there are many documented instances where the opposite is true; 
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hundreds of genes associated with tomato fruit ripening increase expression as a 

result of increased methylation at the promoter (Zhang et al. 2018). An increased 

level of methylation at another site in a gene body has resulted in decreased 

production of mRNA in one example (Anastasiadi et al. 2018) and increased 

production of mRNA in a different example (Shibuya et al. 2009). In most cases an 

increase in methylation results in silencing of the targeted region (Law & Jacobsen 

2010). However there appears to be a greater level of complexity involved than being 

able to observe methylation level changes and having a simple predictable outcome 

for the expression of the associated gene. 

 

1.2.3 Detection of DNA methylation 

There are a number of ways to detect DNA methylation, with differing levels of 

resolution, with some of the more common methods listed in Table 1.2. Methylation 

Sensitive Amplified Polymorphism involves the use of isoschizomer restriction 

enzymes where the same recognition site is used, but with differing ability in cutting 

if methylated cytosines are present within the enzymeȂs recognition site. The 

restriction enzymes HpaII and MspI are commonly used in this application, and the 

methylation states that are cleaved are shown in Table 1.3. Adapters are ligated 

during digestion and act as primers for PCR amplification of a population of 

products. The amplified fragments are run on a denaturing acrylamide gel and any 

unique fragments observed between the HpaII and MspI digested template are cut  
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Table 1.2. Some of the more common methods for determining methylation states across 

the genome in genomic DNA. 

Method Technique overview Resolution 

Whole genome 
bisulphite sequencing 

Conversion of unmethylated 
cytosine (C) to uracil while 
methylated cytosine (5mC) 
remains unchanged. 
Sequencing of modified DNA. 

Methylation states of all 
cytosines that can be mapped 
to the genome can be known. 
Large repetitive elements will 
not be able to be mapped to 
the genome. 

Third generation direct 
sequencing 

Subtle differences in the way 
5mC and C are processed is 
detected with when sequenced 
with extremely high coverage. 

Methylation state 
information for mapped 
cytosines, with potentially 
better mapping than 2nd 
generation sequencing due to 
longer reads. Base calling 
accuracy requires 
improvement before 
matching whole genome 
bisulphite sequencing. 

Reduced Representation 
Bisulphite Sequencing 
(RRBS) 

Like whole genome bisulphite 
sequencing but the complexity 
of the genome is reduced by 
use of restriction enzymes and 
fragment size selection. 

Only methylation states of 
fragments selected in size 
selection process are 
obtained. This is somewhat 
scalable with a trade-off on 
the sequencing reads 
required and the breadth of 
fragment selection. 

methylation-sensitive 
Genotyping-By-
Sequencing (ms-GBS) 

A variant of Methylation 
Sensitive Amplified 
Polymorphism (below) that 
sequences the amplified 
fragments rather than 
observing on a gel. 

Only methylation states at 
restriction digest sites can be 
determined. 

Methylation Sensitive 
Amplified 
Polymorphism (MSAP) 

The genome is digested by 
restriction enzymes that cut at 
the same sequence, but have 
different abilities in cutting a 
methylated cytosine. The 
digested DNA is PCR 
amplified and run on an 
acrylamide gel with the 
presence or absence of bands 
indicating a difference in 
methylation state in samples. 

Only methylation states at 
restriction digest sites can be 
determined. 
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out of the gel and sequenced (Dong et al. 2006; Akimoto et al. 2007; Zhao et al. 2007; 

Li et al. 2008; Lister & Ecker 2009; You et al. 2012; Wu et al. 2013; Avramidou et al. 

2015; Baránek et al. 2015; Sun et al. 2015). Alternatively, if the specific sequence is not 

required, information can be gained from the presence or absence of specific 

fragments. The amplified fragments can be separated by capillary electrophoresis to 

generate a chromatogram (Yaish et al. 2014). This method is quite limited in that only 

methylation differences at the restriction site sequence can be observed. A variant of 

this method is methylation-sensitive Genotyping-By-Sequencing (ms-GBS), where 

digested fragments are sequenced (Xia et al. 2014). This variant is able to identify 

differential methylation to a much greater degree than the presence or absence of a 

band on a gel, but still has the limitation of only providing methylation information 

at the restriction digest site. 

Table 1.3. Restriction enzymes HpaII and MspI digestion and cytosine methylation. Where 
C is an unmethylated cytosine and Cm is a methylated cytosine. The restriction enzymes are 
not perfect; a small amount of digestion will occur when the site would normally remain 
undigested and vice-versa. 

Methylation state of 
sequence 

Restriction enzyme HpaII 
ability to digest 

Restriction enzyme MspI 
ability to digest 

Cm Cm Gm G digested digested 
Cm Cm Gm G undigested digested 
Cm Cm Gm G undigested undigested 
Cm Cm Gm G undigested undigested 

 

The bisulphite conversion method modifies an unmethylated cytosine to a uracil as 

shown in Figure 1.2, while a methylated cytosine will remain unmodified as the 

sulphonation reaction cannot occur. Control of the pH is important for progression of 

the equilibrium reactions to convert almost all unmethylated cytosine bases to uracil 
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(Howkit et al. 2017). The bisulphite converted DNA can then be amplified by PCR, 

during which uracils are copied as thymines before sequencing. It is possible to 

determine the methylation state of the genome when compared to a library that is 

not bisulphite treated or a reference genome. Any C to T conversion indicates an 

unmethylated cytosine, and an unconverted C indicates a methylated cytosine 

(Lizardi et al. 2017). 

 

 

Figure 1.2. Bisulphite conversion of an unmethylated cytosine to a uracil, adapted from 

Tollefsbol (2017). Cytosine on the left is converted to uracil on the right via two intermediate 
molecules, cytosine sulphonate and uracil sulphonate. Adjustment of the pH of the reactions 
results in an equilibrium with uracil as the final product when a low pH in the sulphonation 
stage and a high pH in the desulphonation stage is used. 
 

The bisulphite treatment can be utilised in multiple ways. Either the methylation 

state of the entire genome can be determined, that of a reduced representation of the 

genome, or a melt-curve analysis can be performed for a specific region.  

 

The melt-curve analysis compares the dissociation temperature of PCR amplified 

bisulphite treated and untreated DNA. It is possible to measure the level of 

methylation between different samples by bisulphite treatment, PCR and then 

comparing the dissociation temperature by observing the change in fluorescence 

Sulphonation Hydrolytic deamination Desulphonation 

Cytosine Cytosine sulphonate Uracil sulphonate Uracil 
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with small increments in temperature at the end of the PCR cycle. A shift in the peak 

change in fluorescence indicates a difference in dissociation temperature. A lower 

dissociation temperature indicates a higher AT content, which results from a higher 

level of unmethylated cytosine (Guldberg et al. 2002). 

 

Reduced Representation Bisulphite Sequencing (RRBS) methods combine the use of 

non-methylation sensitive restriction enzymes, bisulphite treatment, restriction 

fragment size selection, and Next Generation Sequencing to reduce the complexity of 

the data obtained. Reduced representation is achieved as the size selection of 

restriction products retain a relatively small number of DNA fragments that are 

shared by all samples (Meissner et al. 2005). This method does not account for single 

nucleotide polymorphisms, insertions, deletions or TE activity differences between 

samples at the restriction digestion sites. What this approach does allow is the 

identification of DNA methylation differences between multiple samples, and at a 

lower cost to that of complete genome sequencing. The level of representation in the 

genome is somewhat scalable, as the size selection step can potentially be tuned to 

deliver a desired level of coverage across the genome (Wang et al. 2012). 

 

More recently, two types of third generation sequencing techniques have become 

available with direct sequencing potential, without the need for bisulphite treatment 

of DNA. These methods are currently not as reliable or cost-effective as bisulphite 

sequencing, but the technology continues to develop and may be a viable alternative 
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for some situations, particularly if long reads are required. The Oxford Nanopore 

MinION measures the changes in the ionic current as a single DNA strand is pushed 

through a tiny pore (Jain et al. 2016). It is able to detect and correctly call a 5-

methylcytosine with an accuracy ranging from 83% to 91%. The higher accuracy is 

achieved when a more strict quality control limit is applied and 32% of the base calls 

are discarded (Simpson et al. 2017). The PacBio SMRT sequencer can also obtain 

cytosine methylation information directly from sequencing, however a minimum 

coverage of 250x is required to detect cytosine methylation (Liu et al. 2020). 

 

Other techniques exist that can determine the methylation states of specific 

sequences of interest, and are summarised by Šestáková et al. ǻŘŖŗ9). Global 

methylation levels can be compared with various techniques detailed by Kurdyukov 

& Bullock (2016). Such techniques are less relevant for this research as this study is 

looking to identify and locate various changes in methylation states across the 

genome. 

 

1.2.4 The RNA directed DNA Methylation (RdDM) pathway 

The RNA directed DNA Methylation (RdDM) pathway is the epigenetic pathway in 

plants where de novo methylation is guided by small RNA (Figure 1.3). This 

pathway involves two RNA polymerases, Pol IV and Pol V, which are only found in 

plants (Matzke & Mosher 2014). The RdDM pathway involves production of  
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Figure 1.3. The RNA Directed DNA Methylation pathway. RNA polymerase IV (Pol IV) 
dependent siRNA is generated when SAWADEE HOMEODOMAIN HOMOLOGUE 1 
(SHH1) recognises methylation state of the histone 3 tail at lysine 9 (H3k9) and recruits Pol 
IV for transcription. The Pol IV transcript is converted to double-stranded RNA (dsRNA) 
with RNA DEPENDENT RNA POLYERASE 2 (RDR2). DICER-LIKE 3 (DCL3) cleaves the 
dsRN“ in to ŘŚ nt siRN“ which is then exported to the cytosol. The řȂ ends are methylated 
by HUA ENHANCER 1 (HEN1) before the siRNA is loaded in to ARGONAUTE 4 (AGO4) 
and imported back in to the nucleus. RNA polymerase V (Pol V) produces a single-stranded 
transcript. When the siRNA loaded in to AGO4 matches with the Pol V transcript, 
DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) causes the de novo 
methylation of the DNA. Reproduced with permission: Matzke & Mosher (2014). 
 

transcripts from Pol IV which are made in to double stranded RNA (dsRNA) by 

RNA DEPENDENT RNA POLYMERASE 2 (RDR2). This dsRNA is then cleaved to 24 

nt siRNA with DICER-LIKE 3 (DCL3) (Zhang & Zhu 2011) and exported to the 

cytoplasm where the řȂ ends are methylated by HUA ENHANCER 1 (HEN1) to 

prevent degradation (Matzke & Mosher 2014). Once a siRNA is loaded into 

ARGONAUTE 4 (AGO4), it is re-imported to the nucleus where the siRNA pairs 
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with a complementary section of scaffold transcript produced by Pol V. This pairing 

results in methylation of cytosine by DOMAINS REARRANGED METHYL-

TRANSFERASE 2 (DRM2) (Lister et al. 2008). This de novo methylation function can 

be performed in all (CG, CHG and CHH) sequence contexts (Zhang & Zhu 2011; 

Matzke & Mosher 2014). 

 

1.2.5 Silencing of Transposable Elements via the RdDM pathway 

Transposable Elements, found in both prokaryotes and eukaryotes, are self-

replicating entities in the genome with the ability to move or copy their sequence 

throughout the genome (Kim 2017). Historically they had been considered parasitic 

genomic elements, but more recently have been found to play a significant role in 

evolution (Makałowski et al. ŘŖŗ9) and also are an important component in plant 

stress response (Horváth et al. 2017). 

 

There are two top-level classes of TEs, the retrotransposons which utilise RNA 

transposition and reverse transcription, and the DNA transposons which do not. 

These are further broken down in classification based on structural patterns that 

make up the sequence such as terminal repeats, coding regions and non-coding 

regions (Wicker et al. 2007). During insertion, the TEs can be incorporated in various 

sections of the genome, which can result in harmful, neutral or beneficial changes 

(Rebollo et al. 2012). The insertion location of some TEs can target regions close to 

genes and can have an impact on the regulation of the targeted gene (Galindo-
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González et al. 2016). A group of TEs called the Long Terminal Repeat (LTR) 

retrotransposons have been found to have a preference for insertion within other 

similar TEs or non-functional TE fragments (Wei et al. 2013; Ma et al. 2019). The LTR 

retrotransposons are the most abundant TE in plants and have resulted in significant 

changes to their host genomes (Sabot & Schulman 2006). The ability of TEs to move 

or replicate throughout the genome is heavily regulated by DNA methylation (Lisch 

2009). 

 

The initiation of epigenetic silencing of active TEs is triggered by 21-22-nt siRNA and 

may be an important part of stress responses in plants (Nuthikattu et al. 2013). Figure 

1.4 shows how stress can inhibit RdDM, enabling TE insertion events which can 

silence or permanently disrupt gene expression (Matzke & Mosher 2014). There is 

evidence that an un-silenced TE is transcribed by Pol II with RDR6 generating double 

stranded RNA which is then cut into 21-nt siRNA by DCL4 or 22-nt siRNA by DCL2 

(Figure 1.5). The 22-nt siRNA guides DNA methylation, and the methylated DNA 

causes production of 24-nt siRNA to reinforce methylation of the TE (Nuthikattu et 

al. 2013).   

 

1.2.6 Histone modification and chromatin silencing 

Chromatin is the complexing of genomic DNA with histone proteins related to DNA 

packaging, protection and gene expression regulation. Histone modification in plants 

can be initiated by DNA methylation and can modulate the accessibility of genomic 



   

Introduction  Page 18 

DNA. Chromatin changes occur in response to drought, salinity, heat, and cold 

stresses in plants (Kim et al. 2015). There are a number of different histone 

modifications that can increase or decrease expression levels with the most common 

forms in plants being methylation, acetylation, phosphorylation and ubiquitination 

(Pfluger & Wagner 2007).  

 

 

Figure 1.4. Activity of Transposable Elements enabled by stress induced inhibition of 

RNA-directed DNA Methylation (RdDM). A, A Transposable Element (TE) is prevented 
from replication by DNA methylation established and maintained by RdDM. B, A stress 
event prevents RdDM from maintaining methylation at the TE which is able to replicate to 
certain locations in the genome. C, RdDM re-establishes methylation which supresses TE 
replication and gene expression remains altered as a result. Reproduced with permission: 
Matzke & Mosher (2014). 
 

 

A 

B 

C 
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Figure 1.5. Initiation and reinforcement of Transposable Element (TE) silencing. RNA 
Polymerase II (Pol II) produces a transcript from the TE which is made double-stranded with 
RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) and cleaved by DICER-LIKE 2 and 4 
(DCL2 and DCL4) in to 21 nt to 22 nt siRNAs. New Pol II transcripts are then cleaved when 
the siRNA is loaded in to ARGONAUTE 1 (AGO1) and sequence complementarity is found. 
DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) methylates the TE when the 
siRNA is loaded in to ARGONAUTE 2 (AGO2) and sequence complementarity is found in a 
Pol V transcript. This methylation is maintained with a feedback loop involving Pol IV 
generating transcripts that RDR2 converts to double-stranded RNA. DCL3 cleaves this 
product in to 24 nt siRNA which is loaded in to AGO4. When a sequence match is found 
between the siRNA and the Pol V transcript, DRM2 reinforces the methylation of the TE. 
Reproduced with permission: Matzke & Mosher (2014). 
 

The DNA sequences that specific histone modifications are associated with can be 

determined by chromatin immunoprecipitation (ChIP). In this technique, the genome 

is fragmented with the histones still attached, then isolated with antibodies specific 

to the histone modification of interest. The isolated fragments can then be sequenced 

to determine the location on the genome and sequence associated with the specific 

histone modifications of interest (Saleh et al. 2008). 
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1.2.7 Epigenetic changes in plants under abiotic stress 

Retaining the memory of a prior stress event can be very useful to a plant. A form of 

stress memory that depends on stress related proteins or metabolites would be 

limited by the half-life of the signalling molecules and only useful over short periods 

of time. A much longer term memory involves more stable epigenetic modifications, 

with potential heritability in some cases (Chinnusamy & Zhu 2009).  

 

A variety of experiments have been performed by various research groups to 

understand how epigenetic changes are related to stress response in plants. Tricker et 

al. (2012) demonstrated that environmentally induced epigenetic responses were lost 

in A. thaliana mutants lacking de novo methylation capability or mutants lacking 

siRNA production capability. Further research showed that A. thaliana exposed to 

low humidity stress induced epigenetic changes. These changes were passed on to 

the next generation, resulting in offspring with changed stomata density, and 

therefore an early increased ability to cope with conditions of low humidity (Tricker 

et al. 2013).  

 

Under salinity stress, rice varieties that are more salt tolerant have a greater level of 

flexibility in methylation changes under salinity stress than non-tolerant varieties 

(Joel 2013). Research in the salinity tolerance of wheat varieties has shown a 

correlation between high salinity tolerance and high global methylation levels when 

not under stress. The high tolerance varieties experienced a greater reduction in 
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methylation during the salinity stress event in a dose-dependent fashion (Zhong et 

al. 2009). When looking at the methylation characteristics of winter and spring wheat, 

Sherman & Talbert (2002) found that winter wheat had higher global levels of 

methylation and that vernalisation (a cold treatment) caused de-methylation in 

sequences related to floral induction. 

 

Research performed by Pecinka et al. (2010) found evidence for environmental 

conditions transiently overriding epigenetic states in A. thaliana. Several repetitive 

elements under epigenetic regulation by transcriptional gene silencing became 

activated by prolonged heat stress. It has also been demonstrated that RNA directed 

DNA Methylation is essential in basal tolerance against heat stress when comparing 

the response of mutant plants without RdDM functionality (Kim et al. 2015). 

 

An inverse correlation was found between DNA methylation and gene expression in 

rice, with the epigenetic changes being heritable. This research also discovered a 

disease resistance gene was activated by demethylation and expression of this 

resistance gene was stably inherited (Akimoto et al. 2007). Boyko et al. (2010) verified 

that the trans-generational response to stress induced changes depended on DNA 

methylation and small RNA. The progeny of stressed plants had an increase in 

homologous recombination under non-stress conditions compared with progeny 

from non-stressed plants.  
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There has been some prior research in methylation changes in barley under salinity 

stress. Demirkiran et al. (2013) grew the barley cultivar Tokak in MS media with 0 

mM, 50 mM and 100 mM NaCl and used MSAP in combination with specific PCR 

primers to further reduce the population of fragments. They found that 5 of the 23 

amplified bands experienced methylation changes when comparing 100 mM salt 

stressed plants with control plants. Konate et al. (2018) used ms-GBS to look for 

differentially methylated markers in five barley varieties in soil exposed to 75 mM, 

150 mM and 200 mM NaCl. This led to the discovery of thousands of significantly 

differentially methylated markers associated with salinity stress. All of these markers 

were limited to methylation differences at the CCGG restriction enzyme recognition 

site. 

 

To our knowledge, there has not been any prior research in barley that has attempted 

to observe this plant under salinity stress and obtain methylation states along with 

small RNAs and mRNA transcript levels from the same tissue samples.  

 

1.2.8 Priming plants for abiotic stress 

Methods have previously been investigated for priming seeds and seedlings to better 

cope with later stresses. Hydropriming involves imbibing seeds in sterilised water at 

a specific temperature, and drying back to the original weight of the seed. This 

method has yielded a 3 to 4 fold increase in the length of roots and shoots in primed 

plants under low water conditions when compared with control plants (Kaur et al. 
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2002). Osmopriming is a method where the seeds are imbibed in a solution that 

possesses a low water potential. This method has been used to improve yields in 

sugarcane, canola and chickpea under salinity stress (Jisha et al. 2013).  

 

A greater understanding of the interactions between small RNAs, DNA methylation 

and salinity stress response mechanisms may lead to treatment methods where small 

RNAs can be introduced to plants to help prime the plant for oncoming stresses. 

 

1.3 Hypotheses 

If gene expression in barley plants under salinity stress is partly controlled by 

epigenetic mechanisms, then exposing the plants to salinity stress will result in 

changes in sRNA and DNA methylation associated with mRNA expression.  

 

1.4 Project aims 

This project aims to identify how different epigenetic mechanisms such as sRNAs 

and DNA methylation interact and lead to changes in gene expression in barley 

plants that have been exposed to salt stress. Understanding such interactions at a 

molecular level will help us understand how barley manages salinity stress, and 

could potentially lead to novel methods of plant tolerance to stress via breeding 

programs or via epigenetic priming of planted crops. 
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2 Barley under salinity stress 

2.1 Introduction 

Salinity stress is an extremely important issue for grain growing regions in Australia 

(Rengasamy 2002). A salt stress (step-wise increases in salt concentration), rather 

than a salt shock (a sudden increase to maximum concentration) more accurately 

represents natural changes (Shavrukov 2012) and was chosen to be applied to this 

experiment. Significant differences have been observed previously in the response to 

salinity stress in barley in soil and in hydroponic systems (Tavakkoli et al. 2010) so 

the experiment was designed around a salt stress in soil. A salinity stress of 100 mM 

NaCl was selected, as it produced a significant biomass difference in about a week, 

and is also in the concentration range most commonly used to impose salt stress in 

barley in the existing literature (Patterson et al. 2009; Shelden et al. 2013). 

 

The variety Morex was chosen for the experiment as the genome had been sequenced 

with the highest degree of coverage (IBGSC 2012) and the transcriptome also has 

good coverage and annotation (Mascher et al. 2013; Mascher et al. 2017). Prior 

preliminary growth tests (data not shown) had highlighted the susceptibility of this 

variety to net blotch and aphid infestations when grown in a glasshouse. These 

issues were removed by growing plants in a growth chamber. This had the added 

advantage that the growth conditions were more controlled and repeatable. 
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Previous observations from growth experiments (data not shown) had indicated that 

the emergence of the third leaf would occur about 14 Days After Sowing (DAS). The 

rate of growth of the third leaf would rapidly decrease by around 20 DAS indicating 

the leaf had reached a relatively mature stage. This was considered important, as the 

observed difference in expressed genes should be more related to the stress rather 

than to potential differences in growth stages. 

 

2.2 Methods 

2.2.1 Seed growth and collection 

Hordeum vulgare variety Morex seeds were germinated to check for viability. Seeds 

were sterilised using the method described by Tavakkoli et al. (2010) where seeds 

were placed in a 70% (v/v) ethanol solution and gently agitated for 1 minute, 

followed by 3% sodium hyperchlorite solution for 5 minutes, then three washes in 

milliQ water. Three seeds per pot (26 cm diameter, 28 cm high) were grown in a soil 

mixture made up of 50% (v/v) University of California mix, 35% (v/v) peat mix and 

15% (v/v) clay loam soil with pH 6.0. Plants were grown to maturity and seeds 

collected and stored in envelopes grouped by seed head. 

 

2.2.2 Plant growth conditions 

Morex seeds which had been collected from a single head from one healthy barley 

plant were sterilised using the method described above. Each pot had 1519 g soil (soil 

mixture as described above) added with an initial water content of 13% (w/w), and 
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each empty pot and saucer weighed 55 g. Three seeds per pot were placed 2 cm 

below the surface, each 3 cm apart, covered, and watered to a final soil moisture 

content of 30% (w/w) making the mass of the pot, saucer and soil 1800 g.  

 

Plants were placed in a Sanyo MLR-352 growth cabinet (Osaka, Japan) set to 20°C 

with a 16 h day / 8 h night cycle at a light intensity of 380 µmol/m2. The eight plants 

were positioned as shown in Figure 2.1 on the middle shelf of the growth cabinet. 

This shelf was previously found to have the most consistent temperature and even 

airflow. Plant positions were allocated by random number generation and were 

rotated daily (Figure 2.2) so that any slight temperature, humidity or lighting bias 

would not persist over the duration of the experiment. A ninth pot, set up in the 

same way as described above, was placed on the bottom shelf to act as a reserve if all 

of the seeds from one pot did not have a successful germination. On the eighth day 

after sowing, the plants of similar height in each pot were kept such that only one 

plant per pot remained, and other seedlings were carefully removed.  

 

2.2.3 Salinity stress treatment 

Plants were exposed to salt stress using a similar method employed by the University 

of Adelaide Plant Accelerator Facility for salinity stress experiments (Asif et al. 2018) 

with some modifications as outlined below. Plants were watered to weight as shown 

in Table 2.1 with a decreasing water content until reaching 20% (w/w) water content.  
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Figure 2.1. Top view diagram of plant positioning in the growth cabinet for the barley 

salinity stress experiment. 

 

 

Position 

DAS A B C D E F G H 

0 1 7 8 6 3 4 5 2 

1 2 1 7 8 6 3 4 5 

2 5 2 1 7 8 6 3 4 

3 4 5 2 1 7 8 6 3 

4 3 4 5 2 1 7 8 6 

5 6 3 4 5 2 1 7 8 

6 8 6 3 4 5 2 1 7 

7 7 8 6 3 4 5 2 1 

8 1 7 8 6 3 4 5 2 

9 2 1 7 8 6 3 4 5 

10 5 2 1 7 8 6 3 4 

11 4 5 2 1 7 8 6 3 

12 3 4 5 2 1 7 8 6 

13 6 3 4 5 2 1 7 8 

14 8 6 3 4 5 2 1 7 

15 7 8 6 3 4 5 2 1 

16 1 7 8 6 3 4 5 2 

17 2 1 7 8 6 3 4 5 

18 5 2 1 7 8 6 3 4 

19 4 5 2 1 7 8 6 3 

20 3 4 5 2 1 7 8 6 

21 6 3 4 5 2 1 7 8 

Figure 2.2. Plant positional rotation scheme for barley salinity stress experiment. Plants 1-4 
were control plants and 5-8 were salt treated. DAS = Days After Sowing. The position refers 
to the label shown in Figure 2.1. 
 

A 

B 

C 

D 

E 

F 

G 

H 

Growth cabinet door (front) 

Lights 

L
ig

h
ts

 

L
ig

h
ts

 



   

Barley under salinity stress  Page 28 

The day before the first salt application, the water content was decreased to 19% 

(w/w). 

 

On both the 14th and 15th day after sowing, 30 ml of a 224 mM NaCl solution was 

added to the saucers in which the pots were sitting, once in the morning and again in 

the evening. The weight of all pots was adjusted by adding water to the saucers to 

achieve the same mass as shown in Table 2.1. For salt treated plants, this gave a final 

salinity concentration of 100 mM at 18-21 DAS. The same procedure was repeated on 

control plants without salt added to the water. 

 
Table 2.1. Watering and salt treatment schedule for salinity stress experiment. 

Days 
after 

sowing 

Mass of soil, 
pot and saucer 
watered to (g) 

Watered 
from top or 

bottom 

NaCl added to 
treated plants  

(g) 

Water 
content of 
soil (w/w) 

Salinity 
concentration in 

soil of treated 
plants (mM) 

0 1800 Top  401 g (30%) 0 
1 1785 Top  386 g (29%) 0 
2 1765 Top  366 g (27%) 0 
3 1745 Top  346 g (26%) 0 
4 1725 Top  336 g (25%) 0 
5 1705 Top  306 g (23%) 0 
6 1685 Top  286 g (21%) 0 

7 to 12 1670 Top  271 g (20%) 0 
13 1650 Bottom  251 g (19%) 0 
14 1690 Bottom 0.393 + 0.393 291 g (22%) 47 
15 1730 Bottom 0.393 + 0.393 331 g (25%) 82 
16 1705 Bottom  306 g (23%) 89 
17 1685 Bottom  286 g (21%) 95 

18 to 21 1670 Bottom  271 g (20%) 100 

 

2.2.4 Tissue harvesting 

At the point of sampling, the 3rd leaf of control and salt treated plants was removed, 
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quickly weighed, then snap frozen in liquid nitrogen, and stored at -80°C until DNA 

and RNA extraction. Immediately after snap freezing the 3rd leaf, the soil was placed 

in a large bucket of water and the roots gently separated from the soil. Once most of 

the soil was removed, roots were placed in a fresh bucket of water, rinsed and dried 

by dabbing with a paper towel. The roots were cut off, weighed, snap frozen in 

liquid nitrogen, and stored at -80°C until DNA and RNA extraction. The fresh mass 

of the shoots without the 3rd leaf was then measured, dried for two days at 80°C and 

the dry mass measured. The total shoot dry mass was estimated to be (dry mass 

without the third leaf) * (3rd leaf fresh mass + fresh mass without 3rd leaf) / (fresh mass 

without 3rd leaf). The water content ratio was calculated as (fresh mass + dry mass) / 

(dry mass).  

 

2.3 Results 

Images of plants just prior to harvesting tissue are shown in Figure 2.3. Plants 1-4 

were control plants and 5-8 received a salt treatment with a final concentration of 100 

mM. A small difference in growth between control and salt treated plants can be 

seen. The fresh mass, dry mass and water content ratio of shoot tissue is shown in 

Figure 2.4. There is a clear statistically significant difference between control and salt 

treated plants for each of these measurements, demonstrating that the plants exposed 

to salt were stressed with a consequential decrease in biomass. 
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Figure 2.3. Barley plants 21 days after sewing, prior to tissue sampling. Plants 1-4 were 
control and 5-8 were salt treated to a final salinity concentration of 100 mM. 
 

 

 

 

 

 

 

Figure 2.4. Comparison of biomass for control and salt treated plants. A: Fresh mass of 
shoot tissue. B: Dry mass of shoot tissue. C: Water content ratio of shoot tissue. Error bars 
represent SEM with ** p < 0.01, *** p < 0.001. 
 

Evaporation and transpiration rates were measured relative to position in the growth 

chamber to ensure water loss positional effects were minimal. The evaporation rate 

over the first six days (before cotyledons emerged from the soil) is shown in Figure 
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different plants. Figure 2.5.B shows evaporation (and transpiration) losses over the 

first 13 days after sowing, and again no statistically significant differences were 

found. 

 

 

 
Figure 2.5. Evaporation/transpiration loss per day for each pot in the growth cabinet. Plant 
identification 1-4 were control plants and 5-8 salt treated plants. A. Average daily 
evaporation loss over 6 days after sowing for each pot (before cotyledons emerged). B. 
Average daily evaporation and transpiration loss over the first 13 days after sowing for each 
pot. Error bars show SEM with n = 6 in A and n = 13 in B. 
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from different parent plants. It was also expected that seeds from one head of one 

plant would develop in a shorter time window than all seeds from different heads, 

and are therefore likely to have a more similar epigenetic starting condition than 

different heads from the one plant. These expectations were not tested due to the cost 

and time required to verify these assumptions. 

 

In this experiment it was important to maintain equal growing conditions between 

control and salt treated plants. To achieve this, the pot positions were rotated and 

weighed daily in an attempt to minimise any confounding variables such as highly 

localised airflow, lighting, temperature and humidity. Such issues had been observed 

in earlier trials investigating drought stress (data not shown), where plants in certain 

locations in the growth chamber lost water at noticeably different rates when left to 

dry over a two week period. These issues with growth chamber spatial variability 

have been noted in prior research (Potvin et al. 1990; Liu et al. 2000). The daily 

watering to maintain identical weights of pots and rotation in the growth chamber 

appears to have minimised any positional effects with relation to transpiration and 

evaporation as seen by the lack of any statistically significant differences in Figure 

2.5.  

 

There were some variations in the measurement of light levels at different locations 

in the growth cabinet and at different light sensor orientations, with a light level 

reading of 352 to 451 µmol/m2 at position B, and 199 to 353 µmol/m2 at position D. 
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Possible impacts from this difference on subsequent data (Chapters 3-6) cannot be 

ruled out. Prior tests had indicated that the middle shelf of the growth cabinet was 

the best choice for minimal variations resulting from the position. The middle and 

bottom shelf was found to be best for minimal differences in soil evaporation rates 

which was presumably related to air flow coming from the top of the growth cabinet. 

The middle shelf was found to have minimal variation in light levels between 

positions and the best with regard to temperature stability. 

 

Salt stressed plants clearly showed a decrease in biomass (Figure 2.4). This indicates 

that the salinity exposure did effectively stress the plants. This decrease in fresh 

mass, dry mass and water content ratio has been observed previously in experiments 

and is consistent with other experiments involving transcriptome changes in 

response to salt stress in barley (Long et al. 2013; Shen et al. 2016).  

 

The salt stress may also have had an effect on leaf growth stages as the salt stressed 

plants were smaller. It is possible that some observed gene expression or epigenetic 

differences may be related to growth cycle stages rather than directly related to 

salinity stress. The timing had been chosen so that the third leaf was relatively 

mature and a similar size in both control and salt treated plants based on prior tests. 

At the time of harvesting, the salt treated total shoot fresh tissue biomass was 36% 

less than the biomass from control plants, however the 3rd leaf experienced a 12% 

lower biomass in salt treated vs control. This suggests that the 3rd leaf had reached a 
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period of less rapid growth compared with other newer leaves on the plant at the 

time of harvesting tissue.  

 

The measurements collected from these control and salt-treated plants indicate that 

the treatment imposed here was effective in eliciting a stress response and consistent 

with other literature reports on salt-stressed barley plants. The following chapters 

describe the subsequent DNA and RNA extraction, messenger RNA and small RNA 

sequencing, and DNA methylation sequencing performed on these plants to identify 

overlapping regions of the genome that respond to salinity stress in barley. 
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3 Messenger RNA changes in barley under salinity stress 

3.1 Introduction 

Transcriptome analysis is an extremely useful tool for observing changes in mRNA 

transcripts under different conditions. Comparing mRNA transcript levels under 

different treatment conditions can highlight genes that are important to and 

potentially related to dealing with the applied treatment. The rapid decrease in costs 

related to sequencing has resulted in a huge increase in transcriptome-related 

experiments (McCarthy et al. 2012). There are two major methods for RNA library 

preparation for transcriptome analysis. The first is poly A capture, which generates 

sequence data from mRNA alone; while the second is more comprehensive, 

employing ribosome depletion, to include other non-coding long RNAs in addition 

to mRNA reads (Zhao et al. 2014). 

 

Prior research by Ziemann et al. (2013) had been performed using transcriptome 

analysis of salt stressed barley using poly A capture. They applied a 150 mM salt 

shock to Hordeum vulgare in soil and recorded mRNA changes 12 hours later. The 

limitations in read count and the incomplete assembly of the barley transcriptome at 

the time meant that only 1.65 million reads per sample could be mapped to an 

mRNA transcript. These limitations resulted in only 110 genes that were found to be 

differentially expressed.  
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In another study, Bahieldin et al. (2015) applied a 500 mM salt shock to Hordeum 

spontaneum (the ancestor to cultivated barley) after two weeks growth in soil and 

observed transcriptome changes in leaf tissue at four time points. They found that a 

high proportion of genes that mapped to the wild barley transcriptome were 

differentially expressed. Some genes were found to increase production of enzymes 

to protect cells from the damaging effects of the Reactive Oxygen Species (ROS) 

produced under stress conditions. These included antioxidants, iron ion binding 

proteins, and dehydrins which are all known to interact with ROS. Some signalling 

molecules, serine threonine-protein kinases and mitogen-activated protein kinases 

were found to have expression related to the salt shock. The involvement of ethylene 

production in barley stress response has been known (Dey & Vlot 2015), and ACC 

oxidase, an enzyme with increased expression in the stressed plants, is required for 

ethylene production. A transcription factor related to ethylene detection (ethylene-

responsive element binding factor) showed increased expression in stressed plants. 

They also found that genes encoding refolding proteins were differentially expressed 

when the seedlings were exposed to the salt shock. 

 

Hill et al. (2016) applied a 100 mM salt stress to germinating H. vulgare seeds and 

observed changes in the transcripts in different root zones three days after 

germination. The gene with the highest increase in expression under salt stress was a 

dehydrin. Carbohydrate-binding glycoproteins were found to be under increased 

expression in the elongation region of roots under salinity stress, and the production 



   

Messenger RNA changes in barley under salinity stress  Page 37 

and transportation of sugars was also increased. An ethylene responsive 

transcription factor BABY BOOM (BBM) had increased expression under salt stress. 

A number of the differentially expressed genes and molecular functions correlated 

with prior research. 

 

Gene Ontology (GO) analysis has become a useful tool for distilling gene expression 

information to gain an insight in to the changes in processes, molecular functions, 

and cellular compartments. It can help with understanding the overall systems that 

are changing rather than looking at specific up and down regulation of individual 

genes, assisting in dealing with and interpreting the large quantity of data generated 

by transcriptome analysis (Doniger et al. 2003). 

 

This chapter investigates the transcriptome changes occurring in barley grown in soil 

under 100 mM salt stress when compared with control plants. Differential expression 

patterns of genes are explored, used for gene ontology analysis and compared with 

prior literature. Observing similarities between the transcriptome changes and GO 

terms in this experiment with prior research provides validity to the use of 

transcriptome analysis in this experiment. It indicates that the tissue under stress 

reacted in the expected fashion, which is also useful for methylation and small RNA 

sequencing of the same tissue. 
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The hypothesis tested in this chapter is: if gene expression in barley is related to 

stress, then exposing barley to a salt stress will result in changes in the transcriptome. 

These changes should be relatable to prior research. 

 

3.2 Methods 

3.2.1 Messenger RNA library preparation 

Snap frozen tissue described in section 2.2.4 was ground under liquid nitrogen. 

Either 100 mg of leaf tissue or 200 mg of root tissue was used for RNA extraction and 

further ground using a 1.5 ml tube and micropestle in liquid nitrogen until it was an 

extremely fine powder. The root tissue extractions had 20 mg of PVP 40 (40,000 MW) 

added. Then 1 ml of TRIzol (Life Technologies, NY, USA) was added and extraction 

proceeded as per the manufacturerȂs instructions with two exceptions. The 

supernatant was poured off after pelleting RNA, and two washes in cold 75% ethanol 

were performed as earlier trial experiments attained better yield, better RNA 

integrity and lower phenol contamination. The final pellet was dissolved in 25 µl of 

DEPC-treated water, with the concentration measured using the Nanodrop 

spectrophotometer (Thermo Fisher, DE, USA) and RNA was stored at -80°C. RNA 

quality and concentration was determined using the Agilent 2100 Bioanalyser with a 

RNA 6000 kit ǻ“gilent Technologies, C“, US“Ǽ following the manufacturerȂs 

instructions with samples diluted to be in optimal instrument range based on the 

previous Nanodrop results. A messenger RNA library was generated by the Flinders 

Genomics Facility (Adelaide, Australia) using the TruSeq messenger RNA library kit 
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(Illumina Incorporated, CA, USA) as per the manufacturerȂs instructions. Sequencing 

was performed by SAHMRI (Adelaide, Australia) using Illumina NextSeq with 76 bp 

+ 76 bp paired-end reads. 

 

3.2.2 Bioinformatics 

Read quality was checked with fastqc (Andrews 2017) and the splice-aware 

sequencing aligner STAR (Dobin et al. 2013) was used to map mRNA reads against 

the ensemble annotated genome for Hordeum vulgare (Kersey et al. 2017). A custom R 

script mRNA_STAR_PCA.R shown in section 10.1 was written to perform principle 

component analysis and observe separation between groups. Differential expression 

between control and salt treated groups was determined by a custom R script 

mRNA_DE.R shown in section 10.2, which used the false discovery rate threshold of 

padj < 0.01 and fold change threshold of |log2(fold change)| > log2(1.5). The scripts 

used the additional R libraries DESeq2 (Love et al. 2014), edgeR (Robinson et al. 

2010), ggplot2 (Wickham 2016a), ggfortify (Tang et al. 2016) and Rsamtools (Morgan 

et al. 2016). PANTHER (Mi et al. 2019) using the GO ontology database released 8 

October 2019 was used to find gene ontology terms for biological, molecular and 

cellular function using the PANTHER overrepresentation test with FisherȂs exact test 

and a false discovery rate correction. 
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3.3 Results 

3.3.1 RNA quality and quantity 

Extracted RNA quality results are shown in Table 3.1 with further information in 

Appendix A (Figure A.9.1 and Figure A.9.2). The RNA Integrity Number (RIN), 

which is an algorithm that calculates RNA degradation, based on a variety of 

parameters including the ratios of the 18S and 25S ribosomal RNAs, was determined 

to be acceptable for all extracted RNA. The RIN for leaf tissue RNA was less than 

root due to the method for calculation not accounting for extra peaks from plastid 

ribosomal RNA. The quality of all RNA preparations was considered acceptable for 

both mRNA and small RNA sequencing. The number of reads obtained by 

sequencing each mRNA library is shown in Table 3.2. 

 
Table 3.1. Extracted RNA concentration and RNA Integrity Number. Tissue samples 1-4 
were from control barley plants and 5-8 were from 100 mM salt treated barley plants. 
Leaf tissue 

sample 
Concentration 

(ng/ul) 
RIN Root tissue Concentration 

(ng/ul) 
RIN 

1 1336 7.1 1 818 9.2 
2 1614 7.1 2 628 9.4 
3 1142 7.2 3 604 9.1 
4 1172 6.4 4 902 9.0 
5 1326 7.3 5 506 9.2 
6 1432 7.2 6 798 8.9 
7 1274 7.3 7 1062 9.1 
8 1796 7.2 8 1305 9.1 

 
 
Table 3.2. Total RNA reads per sample. Tissue samples 1-4 were from control barley plants 
and 5-8 were from 100 mM salt treated barley plants. 

Tissue  1 Control 2 Control 3 Control 4 Control 5 Salt 6 Salt 7 Salt 8 Salt 

Leaf 26,233,942 22,465,779 28,866,034 23,663,568 28,871,394 29,670,450 30,413,398 27,476,863 

Root 27,663,203 29,049,610 28,728,790 36,855,037 26,724,253 29,814,578 27,510,581 26,708,516 

 



   

Messenger RNA changes in barley under salinity stress  Page 41 

Sequence reads were mapped against the reference transcriptome and a Principle 

Component Analysis (PCA) was performed on the counts per million (CPM) of 

mapped reads (Figure 3.1). The PCA plot shows clear separation between leaf and 

root tissue along with separation between control and salt treated plants. The 

separation of tissue type shows a greater contrast than for the salt treatment, 

indicating the difference in gene expression across all samples is primarily from 

tissue type and secondarily from exposure to salinity stress. 

 

Figure 3.1. Principle component analysis of mapped messenger RNA reads from salt 

stressed barley and control plants. Leaf control tissue in green, leaf salt treated tissue in 
orange, root control tissue in blue and root salt treated tissue in purple. Principle 
components 1, 2 and 3 account for 93.3%, 2.7% and 2.0% of the total variance respectively. 
Barley plants were grown in soil and exposed to 100 mM NaCl stress or a control.  
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3.3.2 Differential expression of mRNA 

Differentially expressed genes between salt treated and control plants were found 

and these are summarised in Figure 3.2 with normalised relative expression levels 

shown graphically in Figure 3.3. There was an increase in expression of 762 or 625 

genes in leaf and root tissue respectively, with a decrease in expression of 404 or 591 

genes in leaf and root tissue respectively (padj < 0.01, |log2(fold change)| > log2(1.5)). 

A complete list of genes found to be differentially expressed is also included in 

Appendix A (Table A.9.1 and Table A.9.2). A summary of the ten genes with the 

most increased or decreased transcript expression for leaf and root tissue is shown in 

Table 3.3. 

 

The most highly up-regulated transcript found in barley leaf tissue under salinity 

stress was an RNAse S-like protein which also had 78% protein sequence identity 

with the third most up-regulated transcript. Some other up-regulated transcript 

include a polyamine oxidase, an unknown protein containing a BURP domain, a 

xylanase inhibitor, a dehydrin, an invertase inhibitor, a purine-uracil permease, and a 

papain-like cysteine proteinase. Some of the most heavily down-regulated transcripts 

include a metacaspase, a dirigent protein, and some signalling related proteins. 

 

In root tissue some of the transcripts which had the greatest increase in expression 

under salinity stress were a glycosyltransferase, an aggulutinin isolectin, a sucrose 

synthase, an endo-1,3;1,4-beta-D-gulucanase, an apoplastic invertase and a defence 
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response protein. Some of the transcripts that were heavily down-regulated include a 

peroxidase, an S-adenosylmethionine decarboxylase, a polygalacturonase, a 

SAUR50-like auxin-responsive protein and a calcineurin B-like protein. 

 
Figure 3.2. Venn diagram of differentially expressed genes in salt treated plants relative to 

control plants. Differentially expressed genes determined by use of DESeq2 with adjusted p-
value < 0.01 and |log2(fold change)| > log2(1.5). 
 

3.3.3 Gene Ontology analysis 

The differentially expressed genes were used to find significant changes in GO terms 

using the PANTHER online database. High level biological, molecular and cellular 
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Figure 3.3. Normalised transcript abundance heat-map, comparing control and salt treated 

barley plants in (A) third leaf tissue and (B) root tissue. Dark blue is maximum normalised 
expression and light blue minimum normalised expression. Only transcripts with DESeq2 
adjusted p-values < 0.01 and |log2(fold change)| > log2(1.5) are shown.  

A B 

        Control              100 mM NaCl                                    Control              100 mM NaCl 

                     Leaf tissue                                                                    Root tissue 

L1       L2        L3       L4        L5       L6        L7       L8 R1       R2       R3       R4       R5       R6        R7      R8 



   

Messenger RNA changes in barley under salinity stress  Page 45 

Table 3.3. Shortlist of the ten genes with the greatest increase or decrease in mRNA 

expression in leaf and root tissue of salt stressed barley relative to control. Differential 
expression is represented by log2(fold change) and the log10 of the adjusted p-value is 
shown due to extremely small values. Plants were grown in soil and salt treated plants were 
exposed to a 100 mM NaCl stress. The annotation is shown, and if unknown in the Ensembl 
database a protein BLAST was performed with the highest match with a known protein 
shown and the identity of the match in brackets. 

Tissue Gene Annotation or function of similar BLASTP result 
(identity of BLASTP in brackets if applicable) 

log2(fold 
change) 

log10(adj-
p) 

Leaf HORVU1Hr1G093780 RNAse S-like protein  5.96 -102.3 

 HORVU7Hr1G090410 Polyamine oxidase 3.94 -32.4 

 HORVU1Hr1G093660 RNAse S-like protein (78% identity) 3.83 -30.4 

 HORVU3Hr1G069650 BURP domain containing protein 3-like 3.30 -53.3 

 HORVU2Hr1G043890 Xylanase inhibitor 3.19 -48.9 

 HORVU6Hr1G084070 Dehydrin 3.12 -20.2 

 HORVU7Hr1G008260 Flavonoid O-methyltransferase-like protein (92% identity) 3.01 -23.7 

 HORVU2Hr1G103150 Invertase Inhibitor 2.96 -20.1 

 HORVU7Hr1G073640 Purine-Uracil permease  2.92 -40.6 

 HORVU7Hr1G120060 Papain-like cysteine proteinase  2.90 -54.4 

 HORVU4Hr1G090860 Metacaspase -3.00 -40.9 

 HORVU5Hr1G057090 Alcohol dehydrogenase -2.73 -15.9 

 HORVU7Hr1G047910 MYB-related pretein (transcription factor) -2.44 -32.4 

 HORVU2Hr1G028780 Protease inhibitor -2.37 -13.1 

 HORVU4Hr1G000040 Unknown (no matches) -2.35 -12.9 

 HORVU6Hr1G004440 Wall-associated receptor kinase -2.32 -12.1 

 HORVU0Hr1G000910  Putative Glucan 1,3-beta-glucosidase -2.23 -13.7 

 HORVU4Hr1G000030 Putative LRR receptor-like serine/threonine-protein kinase -2.19 -26.8 

 HORVU7Hr1G036960 Unknown (no matches) -2.16 -9.9 

 HORVU1Hr1G000920 Dirigent protein -2.03 -7.6 

Root HORVU3Hr1G065420 Glycosyltransferase 3.10 -48.9 

 HORVU7Hr1G106900 Agglutinin isolectin (91.1% identity) 2.49 -34.7 

 HORVU2Hr1G030870 Sucrose synthase 2.40 -37.6 

 HORVU3Hr1G009360 Non-specific lipid-transfer protein 2.20 -14.3 

 HORVU4Hr1G087870 Unknown (no matches) 2.19 -16.0 

 HORVU3Hr1G093170 endo-1,3;1,4-beta-D-glucanase (91.4% identity) 2.10 -12.8 

 HORVU2Hr1G073210 Apoplastic invertase 2.07 -10.6 

 HORVU1Hr1G092310 Glucan endo-1,3-beta-glucosidase  1.98 -9.0 

 HORVU2Hr1G011550 Unknown (no matches) 1.97 -8.0 

 HORVU4Hr1G071300 Defence response protein 1.90 -8.3 

 HORVU3Hr1G066090 High affinity nitrate transporter -2.91 -18.2 

 HORVU1Hr1G080790 Calcineurin B-like protein 4 (92.9% identity) -2.84 -20.9 

 HORVU5Hr1G076740 SAUR50-like auxin-responsive protein (87.6% identity) -2.80 -26.8 

 HORVU2Hr1G117610 Serine/threonine protein kinase -2.69 -21.1 

 HORVU5Hr1G114000 Transmembrane transporter -2.59 -29.6 

 HORVU5Hr1G109980 Polygalacturonase (90.8% identity)  -2.51 -12.3 

 HORVU2Hr1G007510 Unknown (no matches) -2.28 -11.6 

 HORVU5Hr1G064040 Unknown (no matches) -2.14 -13.3 

 HORVU3Hr1G071800 Unknown (no matches) -2.12 -12.7 

 HORVU2Hr1G127480 Peroxidase 47 -2.09 -10.6 
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Table 3.5 and Table 3.6 respectively, with lower level GO terms shown in Appendix 

A (Table A.9.3, Table A.9.4 and Table A.9.5 respectively). From the biological GO 

terms, only two high-level GO terms were enriched in both leaf and root tissue: 

GO:1901607, alpha-amino acid biosynthetic process; and GO:0055114 oxidation-

reduction process. In enriched high-level GO terms in molecular processes, two were 

overrepresented in both leaf and root tissue: GO:0005506, iron ion binding; and 

GO:0020037, heme binding. The one high-level cellular function GO term that was 

enriched in both leaf and root tissue of salt treated plants was located in the cell wall. 

 
  



   

Messenger RNA changes in barley under salinity stress  Page 47 

Table 3.4. Biological process gene ontology terms overrepresented in differential 

expression of leaf or root tissue in salinity stressed plants. 

GO term GO term process Fold over-
represented 

  Leaf Root 

0009834 plant-type secondary cell wall biogenesis 29.3 

 0006782 protoporphyrinogen IX biosynthetic process 24.5 

 0031408 oxylipin biosynthetic process 22.6 

 0030244 cellulose biosynthetic process 13.8 

 0005985 sucrose metabolic process 10.9 

 0000302 response to reactive oxygen species 8.7 

 0046677 response to antibiotic 8.2 

 0044247 cellular polysaccharide catabolic process 8.2 

 0009251 glucan catabolic process 8.2 

 0071555 cell wall organization 5.1 

 0019318 hexose metabolic process 5.1 

 0044036 cell wall macromolecule metabolic process 5.0 

 1901607 alpha-amino acid biosynthetic process 4.4 4.4 

0010035 response to inorganic substance 4.2 

 0007017 microtubule-based process 3.9 

 0001101 response to acid chemical 3.6 

 0098869 cellular oxidant detoxification 3.0 

 0055114 oxidation-reduction process 1.9 2.5 

0009627 systemic acquired resistance 
 

23.7 

0006002 fructose 6-phosphate metabolic process 
 

20.2 

0006568 tryptophan metabolic process 
 

14.4 

0042401 cellular biogenic amine biosynthetic process 
 

12.7 

0009664 plant-type cell wall organization 
 

8.1 

0008299 isoprenoid biosynthetic process 
 

6.0 

0048544 recognition of pollen 
 

5.0 

0032269 negative regulation of cellular protein metabolic process 
 

4.6 

0042737 drug catabolic process 
 

4.0 

0017001 antibiotic catabolic process 
 

3.6 

0005975 carbohydrate metabolic process 
 

2.3 

0006468 protein phosphorylation 
 

1.9 

0055085 transmembrane transport   1.9 
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Table 3.5. Molecular function gene ontology terms overrepresented in differential 

expression of leaf or root tissue in salinity stressed plants. 

GO term GO term function Fold over-
represented 

  Leaf Root 

0004575 sucrose alpha-glucosidase activity 21.0  

0016157 sucrose synthase activity 16.3  

0016760 cellulose synthase (UDP-forming) activity 12.6  

0005200 structural constituent of cytoskeleton 12.2  

0033897 ribonuclease T2 activity 12.2  

0051087 chaperone binding 10.9  

0016620 oxidoreductase activity, acting on the aldehyde or oxo group of 
donors, NAD or NADP as acceptor 

5.8  

0008017 microtubule binding 4.0  

0016209 antioxidant activity 3.0  

0005506 iron ion binding 2.5 5.0 

0016705 oxidoreductase activity, acting on paired donors, with 
incorporation or reduction of molecular oxygen 

2.3  

0020037 heme binding 2.1 3.9 

0000234 phosphoethanolamine N-methyltransferase activity  20.5 

0004350 glutamate-5-semialdehyde dehydrogenase activity  20.5 

0004349 glutamate 5-kinase activity  20.5 

0005504 fatty acid binding  18.7 

0005315 inorganic phosphate transmembrane transporter activity  16.5 

0003872 6-phosphofructokinase activity  15.1 

0030410 nicotianamine synthase activity  15.1 

0030598 rRNA N-glycosylase activity  8.6 

0016831 carboxy-lyase activity  7.5 

0030170 pyridoxal phosphate binding  6.3 

0030145 manganese ion binding  5.3 

0004497 monooxygenase activity  4.8 

0042626 ATPase-coupled transmembrane transporter activity  4.7 

0016705 oxidoreductase activity, acting on paired donors, with 
incorporation or reduction of molecular oxygen 

 4.4 

0030246 carbohydrate binding  3.3 

0016758 transferase activity, transferring hexosyl groups  2.6 

0004553 hydrolase activity, hydrolyzing O-glycosyl compounds  2.4 

0004672 protein kinase activity  1.9 

0005524 ATP binding  1.6 
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Table 3.6. Cellular component gene ontology terms overrepresented in differential 

expression of leaf or root tissue in salinity stressed plants. 

GO term GO term component Fold over-
represented 

  Leaf Root 

0042644 chloroplast nucleoid 18.3 

 0005874 microtubule 6.1 

 0005618 cell wall 3.5 6.4 

0005576 extracellular region 2.4 

 0048046 apoplast 
 

5.4 

0016021 integral component of membrane   1.5 

 

3.4 Discussion 

The RNA extracted from root and leaf tissue was of sufficient quality for use in both 

small RNA and mRNA transcriptome sequencing. The transcriptome data used for 

PCA (Figure 3.1) demonstrated clear separation between groups. When observing 

the separation of clusters in the PCA, the separation between root and leaf tissue is 

very clear. This indicates that the largest components of variability in sample groups 

are related to the tissue type. This is expected as different tissue groups specialise in 

different functions and will utilise various transcripts to a greater or lesser extent. 

The separation between salt and control tissue is not as great as the tissue type, but 

can clearly be seen. This indicates that the salt stress had an effect on gene expression 

and that the plants under stress had a similar gene expression response for each 

tissue type. 

 

A number of differentially expressed genes were found in salt treated plants relative 

to control plants, as shown in Figure 3.2. Reports in the literature describe various 

approaches for selection of the most biologically important genes by setting cut-off 
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values for adjusted p-value and fold change. Some researchers have used low 

stringency threshold with adjusted p-value cut-off of 0.2 and a fold change greater 

than 1.3 (McCarthy & Smyth 2009). In doing this, the aim is to capture as much 

biologically significant gene expression data as possible with less concern for the 

collection of false-positive results. Some researchers have suggested the use of more 

strict selection criteria, with adjusted p-values of 0.01 and fold change limits of 1.5. 

This came after comparing results from different platforms and results using p-value 

thresholds of 0.01 and 0.05, and fold change thresholds of 1.5, 2 and 4 (Patterson et al. 

2006). Many researchers choose thresholds for an adjusted p-value of 0.05 and a fold 

change of 2 (or |log2(fold change)| > 1) (Xiao et al. 2012); which can potentially retain 

some genes that are statistically not relevant, while also discarding other genes that 

have some biological relevance. Genes with a fold change of less than 2 can still have 

biological relevance, subject to the appropriate statistical significance test (Patterson 

et al. 2006). In the research presented here, a compromise was used with an adjusted 

p-value < 0.01 (a relatively strict cut-off for statistical significance) and relatively 

relaxed biological significance threshold with a fold change of 1.5 (or |log2(fold 

change)| > log2(1.5). Using the R library DESeq2, the error correction for low read 

count genes has already been incorporated in to the adjusted p-value (Love et al. 

2014). 

 

Of the transcripts that were found to be significantly differentially expressed 

between salt-treated barley and control plants, a few of the most differentially 
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expressed were compared with prior literature. The gene with the greatest increase in 

transcript expression in barley under salt stress was an RNAse S-like protein. The 

protein sequence from this transcript had 100% sequence identity with a rice RNAse 

S-like protein that had been found to have the greatest increase in protein abundance 

in a proteomics study of drought stressed rice (Salekdeh et al. 2002). This protein is 

unable to operate as an RNAse as it lacks histidine residues at the required sites 

(Parry et al. 1997). Using a protein BLAST search, this protein also has a 78% identity 

with the third most increased barley transcript under salinity stress. The transcript in 

salt stressed leaf tissue that experienced the second highest level of increased 

expression was a polyamine oxidase. This enzyme produces hydrogen peroxide 

through polyamine catabolism, which enables hypocotyl growth in soybean under 

salinity stress and is an important factor for salinity tolerance in soybean (Campestre 

et al. 2011). The fourth greatest increase in expression in leaf tissue was from a 

transcript labelled BURP domain containing protein 3-like, which has a 95% 

sequence identity with a transcript found to be related to drought stress in Triticum 

aestivum (bread wheat) (Han et al. 2016). The BURP domain is typically found in 

proteins embedded in the cell wall in plants (Batchelor et al. 2002), indicating a 

probable location for this particular protein. Dehydrin had previously been reported 

as highly increased under salt stress in barley and is known for interactions with 

ROS (Bahieldin et al. 2015; Hill et al. 2016). This transcript was also highly up-

regulated in our salt stressed plant leaves. Other transcripts with highly increased 

expression include a xylenase inhibitor previously found to be required in wheat and 
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Arabidopsis thaliana for salt and drought stress tolerance (Xin et al. 2014); a flavonoid 

O-methyltransferase-like protein, previously shown to increase expression in salt and 

cold stressed Hibiscus cannabinus (Ghosh et al. 2012); an invertase inhibitor, which is 

known to play an important role in development and stress response (Castrillon-

Arbelaez & Delano-Frier 2011); a purine-uracil permease, previously found to have 

increased expression in Saccharum sponteneum under drought stress (Kai-chao et al. 

2018); and a papain-like cysteine proteinase which are known for their involvement 

in biotic and abiotic stress response (Grudkowska & Zagdańska ŘŖŖŚ) 

 

Of the transcripts that experienced the greatest decrease in expression, many were 

found to be related to stress in prior research. A metacaspase transcript experienced 

the greatest down-regulation in salt-stressed barley. Metacaspases are proteases 

whose function is related to stress, programmed cell death and cell proliferation 

(Tsiatsiani et al. 2011). Prior research has found a positive correlation between 

expression of a metacaspase and exposure to biotic and abiotic stresses in rice, and 

that different metacaspases respond differently to a variety of stresses (Fagundes et 

al. 2015). This seemingly opposing result may be explained by research in Arabidopsis 

that has shown that two different metacaspases were regulating the hypersensitive 

response with one acting as a positive regulator and the other a negative regulator 

(Tsiatsiani et al. 2011). In a proteome analysis of soybean, alcohol dehydrogenase was 

found to be at elevated levels in the hypercotyls of salt stressed plants (Sobhanian et 

al. 2010). An increase in alcohol dehydrogenase transcripts has been observed in the 
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leaves of salt stressed barley plants (Lee et al. 2009). The result from our experiment 

does not match earlier findings as alcohol dehydrogenase was found to have 

significantly decreased levels in leaf tissue in the current study. The reason for this is 

unknown. An MYB-related protein is a transcription factor and was under decreased 

expression in the salt stressed leaf tissue in this experiment. Ziemann et al. (2013) 

observed two different MYB-related transcripts that were under decreased 

expression in leaf tissue in barley under salinity stress, and Lee et al. (2007) found 

that an MYB transcription factor was under decreased expression when exposed to a 

waterlogging stress and increased expression under a low-oxygen stress. An MYB 

transcription factor has also been found under increased expression in sugarcane 

under drought and salt stress (Prabu & Prasad 2012). A proteome analysis of soybean 

found that a protease inhibitor was found at decreased levels in salt stressed plants 

(Aghaei et al. 2009), which is in agreement with the findings of our experiment. A 

wall-associated receptor kinase experienced decreased expression in leaf tissue, 

which has also been observed in drought stressed barley, in both the leaf and root 

tissues (Ozturk et al. 2002), and also salt stressed barley root tissue (Marakli & 

Gozukirmizi 2018). A dirigent protein was also found at decreased expression levels 

under salt stress in leaf tissue. The dirigent proteins have been linked to biotic and 

abiotic stress response (Paniagua et al. 2017) and have been observed under 

increased expression in sugarcane under a polyethylene glycol stress (a drought 

simulant) (Jin-long et al. 2012), and decreased expression in alfalfa under heat and 

cold stress (Behr et al. 2015). Overall the transcripts with the greatest decrease in 
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expression in leaf tissue in barley under salinity stress were mostly in concordance 

with prior literature in other plant species, but with lower concordance than shown 

from the transcripts under increased expression in leaf tissue. 

 

In root tissue under salinity stress, a glycosyltransferase had the greatest increase in 

expression when compared with control plants. Glycosyltransferases modify 

compounds by glycosylation which is the transfer of sugars from donor to acceptor 

molecules. They have been observed under increased expression in A. thaliana under 

salinity stress and have improved the salt tolerance of a tobacco plant modified to 

overexpress an A. thaliana glycosyltransferase (Sun et al. 2013). The root transcript 

with the second greatest increase in expression was not known in barley, but had a 

91.1% identity with an agglutinin isolectin from Aegilops taushii. These proteins are 

responsive to salt and drought stress in rice (Lannoo & Van Damme 2010). A sucrose 

synthase increased expression in root tissue under salt stress in our experiment. Prior 

research has shown increased expression of sucrose synthase transcripts in barley 

under hypoxia, drought and salt stress treatments (Barrero-Sicilia et al. 2011). A 

transcript which was unannotated in barley, but had 91.4% translated sequence 

identity with endo-1,3;1,4-beta-D-glucanase protein from A. taushii experienced 

increased expression in root tissue of salt stressed barley. This transcript has 

previously been observed with increased expression in rice when exposed to 

ethylene, wounding, fungal infection, cytokinin or salicylic acid (Simmons et al. 

1992). Ethylene production has been previously established as a signalling molecule 
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for abiotic and biotic stress response (Fujita et al. 2006), which would make our result 

match with this finding. The transcripts of an apoplastic invertase had increased 

expression in the root tissue of salt stressed barley plants in this experiment. 

Research by Fukushima et al. (2001) resulted in a transgenic tobacco plant with 

improved salt stress response by overexpression of a yeast apoplastic invertase. A 

glucan endo-1,3-beta-glucosidase was under increased expression in the roots of salt 

stressed plants in our experiment. This protein has been observed with higher levels 

of expression during drought stress in a wheat variety with higher drought tolerance 

when compared against a variety with lower tolerance (Faghani et al. 2015). The 

transcripts with the greatest increases in expression in root tissue under salt stress 

were in concordance with prior research. 

 

The transcripts with the greatest decrease in expression in barley root tissue under 

salt stress include a high affinity nitrate transporter. In prior research in tomato roots, 

a nitrate transporter was found under significantly decreased expression under 

salinity stress (Yao et al. 2008). An unannotated transcript in barley, which when 

translated had 92.9% identity with a Calcineurin B-like protein 4 from A. taushii had 

the second most decreased transcript abundance in salt treated root tissue. This is a 

somewhat unexpected result as this protein has previously been shown to be 

involved in stress response, with A. thaliana mutants lacking this gene being more 

sensitive to drought and salt stresses (Luan et al. 2002), and expression is induced in 

salt and heat stressed foxtail millet seedlings (Zhang et al. 2017). Another 
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unannotated gene in barley under decreased expression had 87.6% translated 

sequence identity with a SAUR50-like auxin-responsive protein from A. taushii. This 

protein, which is related to growth and development, was previously found to be 

downregulated in gerbera flower stems under low-water stress (Ge et al. 2019). An 

unannotated gene with decreased expression in barley root tissue had a translated 

identity of 90.8% with polygalacturonase from Triticum uratu. Liu et al. (2014) found 

that overexpression of polygalacturonase in rice resulted in increased abiotic 

sensitivity and decreased pectin content, which aligns with the decreased expression 

we observed. A second somewhat unexpected transcript decrease in root tissue was a 

peroxidase. Peroxidases are known for ROS scavenging and increased expression 

under stress events (Zipor & Oren-Shamir 2013). However, Ziemann et al. (2013) 

discovered a peroxidase was under decreased expression in the leaves of salt stressed 

barley plants, so this is not the first time this seemingly unusual result has been 

observed. The transcripts with the greatest level of increase and decrease in root and 

leaf tissue from salt stressed barley generally align with the prior literature, which 

supports the validity of these data. 

 

With a considerable number of differentially expressed genes, it is useful to observe 

groupings of gene functions rather than attempting to look at the function of every 

individual gene. Gene Ontology analysis was used to observe a higher level 

perspective of changes that occurred. PANTHER was chosen for GO analysis due to 

the monthly update and continual improvement of GO annotation terms (Carbon et 
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al. 2017; Mi et al. 2019). In the biological process GO terms (Table 3.4), some highly 

enriched terms related to Reactive Oxygen Species (ROS). ROS is a destructive by-

product of metabolism that needs to be carefully managed to prevent toxicity. This 

class of molecules is also used for signalling and initiating a stress response 

(Choudhury et al. 2017). High-level leaf GO terms related to ROS included; 

GO:0000302, response to reactive oxygen species; GO: 0098869, cellular oxidant 

detoxification; and GO:0055114 oxidation-reduction process. In the root tissue, the 

high-level GO term related to ROS was GO:0055114, oxidation-reduction process.  

 

Prior research of Bahieldin et al. (2015) and Hill et al. (2016) have reported biological 

process GO terms related to salinity stress and these are summarised and compared 

to the findings of this study in Table 3.7 and Table 3.8. Bahieldin et al. (2015) studied 

leaf tissue transcriptome changes in wild barley Hordeum spontaneum under a 500 

mM NaCl salt shock after two weeks growth in soil. Hill et al. (2016) investigated the 

transcriptome of root tissue of H. vulgare germinated in a control or 100 mM NaCl 

nutrient medium and harvested three days after germination. It is important to note 

that recent advances in gene ontology completeness (Carbon et al. 2017) will mean 

that prior research will be likely to yield fewer GO terms. Different enrichment tools 

will use differing background comparisons and will also result in some differences. 

Gene Ontology information and annotations are updated frequently, with changes to 

how information is mapped between GO terms and genes. This can result in 
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variations in enrichment of GO terms between different releases of the same database 

or between separate databases (Rhee et al. 2008). 

 
Table 3.7. Comparing GO term results that are common with prior research. Comparing 
the gene ontology results from this study with prior research by Bahieldin et al. (2015) in leaf 
tissue and Hill et al. (2016) in root tissue.  
GO term GO term function Enriched term 

    Present 
study 
Leaf 

Present 
study 
Root 

Bahieldin 
2015 (leaf) 

Hill 2016 
(root) 

0071554 cell wall organization or biogenesis x 
 

x 
 0009987 cellular process x 

 
x x 

0071840 cellular component organization or biogenesis x 
 

x 
 0044237 cellular metabolic process x 

 
x x 

0008152 metabolic process x 
 

x x 
0071704 organic substance metabolic process x 

 
x 

 0044249 cellular biosynthetic process x 
  

x 
0009058 biosynthetic process x 

 
x x 

0044281 small molecule metabolic process x 
 

x 
 0006629 lipid metabolic process x 

  
x 

0044238 primary metabolic process x 
 

x x 
0009059 macromolecule biosynthetic process x 

  
x 

0005975 carbohydrate metabolic process x 
  

x 
0042221 response to chemical x 

 
x 

 0050896 response to stimulus x 
 

x x 
0016043 cellular component organization x 

 
x x 

0006520 cellular amino acid metabolic process x x 
 

x 
0007017 microtubule-based process x 

 
x 

 0051716 cellular response to stimulus x 
 

x 
 0055114 oxidation-reduction process x x x 
 0006950 response to stress 

 
x x x 

0051707 response to other organism 
 

x x 
 0009605 response to external stimulus 

 
x x x 

0009607 response to biotic stimulus 
 

x x x 
0051704 multi-organism process 

 
x x x 

0006955 immune response 
 

x x 
 0002376 immune system process 

 
x x 

 0008152 metabolic process 
 

x x x 
0071704 organic substance metabolic process 

 
x x 

 0044281 small molecule metabolic process 
 

x x 
 0071554 cell wall organization or biogenesis 

 
x x 

 0009875 pollen-pistil interaction 
 

x 
 

x 
0008037 cell recognition 

 
x x 

 0009056 catabolic process 
 

x x x 
0005975 carbohydrate metabolic process   x   x 
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Table 3.8. Quantity of GO terms and common terms across different studies. Comparing 
the overlap in gene ontology terms found from this study with prior research by Bahieldin et 
al. (2015) in leaf tissue and Hill et al. (2016) in root tissue. 

 Present study 
leaf 

Present study 
root 

Bahieldin 2015 
(leaf) 

Hill 2016  
(root) 

Present study leaf 71 11 15 12 
Present study root  86 1 8 
Bahieldin 2015 (leaf)   176 39 
Hill 2016 (root)    80 

 

3.4.1 Conclusion 

The information provided in this chapter indicates that the transcriptome changes 

that occurred in treated barley plants were in response to the applied salt stress. A 

comparison was performed between this present study and prior research with 

reasonable concordance found in the most significantly modified transcript 

expression levels and enriched gene ontology terms. Perfect matching between the 

transcriptome profile of different experiments is not possible, as many factors 

including timing of sampling, age of plants, growth conditions, stress conditions and 

tissue type all have an impact on the expression profile. However, the correlations 

with prior studies provide confidence that the changes in transcriptome were related 

to the salinity stress. This supports the use of these tissue samples for further 

molecular analysis of small RNA and DNA methylation in chapters 4 and 5 

respectively. 
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4 Small RNA changes in barley under salinity stress 

4.1 Introduction 

Small RNAs (sRNAs) are non-coding RNA molecules less than 200 nucleotides (nt) in 

length, which can be further broken into two classes, microRNAs (miRNAs) and 

small interfering RNAs (siRNAs) (Mallory & Vaucheret 2006; Chen 2012). In plants 

they perform regulatory functions including post-transcriptional regulation and the 

guiding of DNA methylation. 

 

MicroRNAs in plants are generated from cleavage of hairpin-loop RNA structures by 

RNAse III and DICER-LIKE 1 (DCL1) (Liu et al. 2017). The miRNA duplex has two 

imperfectly paired strands, typically around Řŗ nt long with overhangs at the řȂ ends 

(Jones-Rhoades et al. 2006). A naming convention distinguishes the strands based on 

the proximity to the ends of the hairpin-loop precursor. Mature miRNA strands 

processed from the śȂ end of the RN“ hairpin-loop sequence are referred to as ȁśpȂ, 

and strands processed from the řȂ end are named the ȁřpȂ strands (Kozomara & 

Griffiths-Jones 2013). Typically the 5p strand is loaded in to ARGONAUTE 1 (AGO1) 

forming the RNA-Induced Silencing Complex (RISC), however there are instances 

where the 3p strand performs this function (Wang et al. 2019). When the miRNA 

strand loaded into the RISC anneals with a mRNA strand from a partial sequence 

match, the mRNA strand is either degraded or translational repression occurs 

(Huntzinger & Izaurralde 2011). 
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Endogenous siRNA in plants are produced from double-stranded RNA (dsRNA) 

rather than hairpin-loop structures (Mallory & Vaucheret 2006; Zhang et al. 2012). 

Small interfering RNA can be broken in to the sub-categories of trans-acting siRNA 

(ta-siRNA), natural antisense transcript siRNA (nat-siRNA), and heterochromatic 

siRNA (hc-siRNA) (Phillips et al. 2007). 

 

Both ta-siRNAs and nat-siRNAs in plants have a similar mature form and function to 

miRNA, but differ in their method of synthesis. Trans-acting siRNAs are generated 

from a single stranded transcript which is targeted by a miRNA and after cleavage 

becomes double-stranded by the action of RNA Dependant RNA Polymerase 6. It is 

cut into 21 nt long segments with DICER-LIKE 4. Natural antisense transcript 

siRNAs are formed when two complementary sections of different mRNA strands 

generate a dsRNA which is then cut into 21 nt or 24 nt long segments (Phillips et al. 

2007). 

 

The hc-siRNAs in plants are typically 24 nt long and they are involved in RNA-

directed DNA Methylation (RdDM). They are produced by RNA polymerase IV, 

where the product is then made double-stranded by RNA dependant RNA 

polymerase 2. This dsRNA is cleaved by DICER-LIKE 3, methylated by HEN1 and 

loaded in to ARGONAUTE 4 (AGO4). DOMAINS REARRANGED 

METHYLTRANSFERASE 2 (DMR2) is induced to methylate nearby genome 

cytosines when base pairing between the siRNA loaded in AGO4 and an RNA 
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transcript created by RNA polymerase V occurs (Matzke & Mosher 2014; Xie & Yu 

2015).  

 

While 24 nt siRNA targets DNA methylation, there is also a microRNA (miRNA) 

class which can range in size from 23 to 27 nt which also targets DNA methylation. 

These small RNAs (sRNA) were discovered relatively recently and are classified as 

miRNA due to the production involving a hairpin-loop structure forming from a 

single stranded RNA, which is then processed to form a miRNA (Teotia et al. 2017). 

These miRNA are significantly less abundant in quantity than 24 nt siRNA (Jia et al. 

2011), and in some prior research the 23 and 24 nt sRNAs had been grouped together 

(Qi et al. 2006; Kurihara et al. 2008; Groszmann et al. 2011; Blevins et al. 2015) as they 

both caused DNA methylation via the RdDM pathway (Jia et al. 2011). In this 

chapter, the 23 nt sRNA is referred to as miRNA, 24 nt sRNA is referred to as siRNA 

since siRNA makes up a significant majority of 24 nt sRNA reads, and the grouping 

of the two is referred to as 23/24 nt sRNA. Changes in the expression of 23/24 nt 

sRNAs has previously been linked to DNA methylation, which targets genes and 

Transposable Elements (TEs) and modulates expression of these targets (Fultz et al. 

2015). 

 

Small RNAs have been found to be involved with abiotic stress response. A number 

of miRNAs have been identified that are involved in plant management of various 
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abiotic stresses including drought, cold, salinity, nutrient deficiency and radiation 

(Lu & Huang 2008; Khraiwesh et al. 2012). 

 

The objective of this section of the study was to identify sRNAs that were involved in 

salinity stress response. Fifty-nine previously unknown miRNAs in barley were 

found, and six of these previously unknown miRNAs appear to be related to salinity 

stress response. A number of genomic features were targeted for methylation by 

23/24 nt sRNA, these targets are further explored in Chapter 6 when incorporated 

with DNA methylation information from Chapter 5. 

 

4.2 Methods 

4.2.1 Small RNA library preparation 

The small RNA sequencing libraries were prepared from the RNA extraction 

described in Chapter 3. The Flinders Genomics Facility (Adelaide, Australia) 

generated the libraries with size selection of 16 base pairs (bp) to 34 bp performed 

using the Pippin Prep (Sage Science, MA, USA). The library was generated using the 

Illumina Truseq small RNA library kit (Illumina Incorporated, CA, USA). The 

barcode assignment for samples is shown in Appendix A (Table A.9.6). Sequencing 

was performed by SAHMRI (Adelaide, Australia) using Illumina NextSeq with 76 bp 

single end reads. 
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4.2.2 Bioinformatics 

Read quality was examined with fastqc (Andrews 2017) to check that the raw 

sequencing reads were as expected. Adapters were then trimmed, sequences filtered 

for quality of 30 or greater and size filtered for reads between 18 and 26 nt with 

cutadapt (Martin 2011). Reads were aligned using Bowtie2 (Langmead & Salzberg 

2012) against Hordeum vulgare var Morex ribosomal RNA, snRNA and snoRNA 

sequences (Mascher et al. 2017) with matching reads discarded. Relative abundances 

of read sizes and unique reads were calculated using a custom python script 

Count_siRNA.py shown in section 10.3. Unique reads are only counted once for each 

sequence; if a specific sequence is read multiple times, it only counts once as a unique 

read. Reads were matched against the miRBase database entries for H. vulgare. A 

custom script Barley_SmallRNA_PCA.R, shown in section 10.4 was written in R to 

perform Principle Component Analysis (PCA) on the relative read abundance. The 

custom R script used the additional packages Rsamtools (Morgan et al. 2016), ggplot2 

(Wickham 2016a), plyr (Wickham 2016b), and edgeR (Robinson et al. 2010). 

 

Previously unknown small RNAs were inferred using sRNAbench (Aparicio-Puerta 

et al. 2019). PCA was performed with this new set of discovered miRNA using the 

custom R script Barley_SmallRNA_PCA.R, shown in section 10.4 with the variable 

miRBase set to FALSE. The online tool mfold (Zuker 2003) was used to determine the 

secondary structure of the hairpin-loop miRNA precursor. Differential expression 
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and adjusted p-values of miRNA between treatment groups was determined by a 

custom R script Barley_SmallRNA_DE.R, shown in section 10.6.  

 

Small RNAs were grouped by size using the custom python script 

SmallRNA_size_grouping.py shown in section 10.6. SmallRNA targeting DNA 

methylation was analysed by mapping 23-24 nt sRNA reads against the H. vulgare 

genome using Bowtie2. Reads were normalised as counts per million reads for each 

sample and were binned in to 100 bp windows using the custom python program 

smallRNA_windowing.py, shown in section 10.7. Reads that were mapped to 

multiple locations were fractionally assigned to the relevant bins. For example, one 

sRNA that mapped to ten different 100 bp bins only added 0.1 reads to each relevant 

bin (and were later scaled by counts per million reads). The mapped reads for each 

sample were compared by grouping control and treatment and determining the 

adjusted p-value with the two R scripts: windowed_smallRNA_ttests.R and 

ttests_to_adjusted_p.R, shown in section 10.8 and section 10.9 respectively. Genomic 

locations with a statistically significant difference between the control and treatment 

were compared with known genomic features such as Protein Coding Genes (PCGs) 

and TEs using the custom R script Annotate_sRNA.R, shown in section 10.10. A 

modified version of this script Annotate_sRNA_random_sampling.R (section 10.11) 

was used to determine random sampling of the 100 bp windows for comparison of 

sRNA changes targeting certain genomic features. 
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New miRNAs that have a high sequence similarity with existing plant miRNA are 

named hvu-new-miRxxx where xxx is the miR number of the closest existing known 

miRNA. Where a novel miRNA has been found with no similarities to other plants, 

the name is of the form hvu-novel-miRxxxxx where xxxxx is a number assigned from 

90000 so that it does not clash with any known miRNA. These designations are 

temporary placeholders until a paper is published and fixed designators are defined 

by miRBase with the new and novel miRNA that has been found through this 

research. 

 

4.3 Results 

The total reads after filtering out low quality reads and reads that mapped to 

ribosomal RNA, snRNA or snoRNA are shown in Table 4.1. Analysis of the relative 

abundance of sRNA species grouped by size showed prominent peaks at sizes of 21 

and 24 nt in leaf samples (Figure 4.1, unique reads in Figure 4.2). Root tissue small 

RNA did not show the same clear peaks at 21 and 24 nt, but rather a continuous 

spectrum of sizes sloping away from a 24 nt size peak. No statistically significant 

differences (t-tests, p > 0.15) were observed when comparing small RNA size read 

populations between control and salt treated plants. 

 

4.3.1 Small RNAs guiding DNA methylation 

Small RNAs that guide DNA methylation are 23/24 nt long and are involved in the

RNA directed DNA methylation pathway. The 23/24 nt sRNAs were mapped against 
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the reference genome and assigned to 100 bp windows. Control and treatment 

relative count numbers were compared and the genomic features nearby were 

determined. A 23/24 nt sRNA was considered to be targeting a PCG if the differential 

expression occurred within 1.5 kbp of the PCG. For all other genomic features, it was 

considered to be related if the differential sRNA expression fell within the feature. 

Figure 4.3 shows the breakdown of significantly differentially expressed 23/24 nt 

sRNA and the associated genomic features. The differential expression of 23/24 nt 

sRNA targeted PCGs (with or without TEs) at a noticeably higher level than when 

compared against random sampling of the genome (chi-squared for 23/24 nt sRNA 

differential expression targeting PCGs against random sampling, p < 0.001). Changes 

in targeting of PCGs is at a higher level in 23 nt miRNA than 24 nt siRNA in both leaf 

and root tissue. DNA transposons were targeted by changes in 23/24 nt sRNA 

differential expression to a lesser extent than random sampling and retrotransposons 

were targeted to a greater level than random sampling. 

 
Table 4.1. Sequence read numbers for small RNA sequencing of barley before and after 

filtering of reads. Reads were filtered for quality, size of 18 to 26 nt and reads that matched 
rRNA, snRNA or snoRNA were removed. 

Small RNA sequence Reads 

Raw reads 389,086,591 
Total reads after size, quality and contamination filtering 150,318,401 
Average reads per sample for leaf control 7,945,356 
Average reads per sample for leaf salt treated 8,095,103 
Average reads per sample for root control 11,187,958 
Average reads per sample for root salt treated 10,351,184 
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Figure 4.1. Relative abundance of sequenced small RNAs according to read size. Vertical 
bars show the relative abundance (counts per million) of small RNA molecules ranging from 
18 to 26 nucleotides in length in (A) leaf and (B) root tissue collected from plants grown 
under control and salt stress (100 mM NaCl), n = 4. Error bars show SEM.  
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Figure 4.2. Relative abundance of unique small RNAs according to read size. Multiple 
reads of the same sequence count as a single unique read. Vertical bars show the relative 
abundance (%) of unique small RNA reads ranging from 18 to 26 nucleotides in length in (A) 
leaf and (B) root tissue collected from plants grown under control and salt stress (100 mM 
NaCl), n = 4. Error bars show SEM.  
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Figure 4.3. Percentage of significantly differentially expressed 23-24 nt sRNAs targeting 

genomic features in salinity stressed barley plants. SmallRNAs were mapped to the 
genome and grouped in 100 bp windows, differential expression of sRNAs was determined 
across the 100 bp window in 100 mM salinity stressed plants when compared with control 
plants. Transposable Elements are classified according to Wicker et al. (2007). Random 
sampling of 100 bp windows is included for comparison. 
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4.3.2 Identification of previously described microRNAs 

Previously identified miRNAs were categorised by comparison between the small 

RNA library and miRBase 22.1 (Griffiths-Jones 2006) and is summarised in Table 4.2. 

PCA of the relative abundance of miRNA reads identified in miRBase shows that the 

largest fraction of the variability (91.0%) in miRNA expression is explained by the 

tissue of origin (leaf vs root) (Figure 4.4). The second main component of the 

variability is differences in miRNA expression between root samples from plants 

grown under control and salt conditions. Finally, no clear differences between 

treatments in leaf samples were observed. 

 

 

 

 

 

 

 

 

 
 
Figure 4.4. Principle component analysis showing separation of barley miRNA mapped to 

miRBase under 100 mM salinity stress for leaf and root tissue. Leaf control tissue in blue, 
leaf salt treated tissue in red, root control tissue in green and root salt treated tissue in 
orange. Principle component 1 accounts for 91.0% of the total variance, principle component 
2 accounts for 6.1% of the total variance. PCA of miRNA was performed using count per 
million reads on the small RNA sequences that mapped to 40 different known barley miRNA 
on miRBase.   
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Table 4.2. MicroRNA found in barley root or leaf tissue under control or salt treatment 

conditions that have already been identified in miRBase. X indicates a minimum of 10 
reads of the sequence across a treatment/tissue group. 

miRBase 
identifier 

Leaf Root 
Control Salt treated Control Salt treated 

miR156a X X X X 
miR156b X X X X 
miR159a X X X X 
miR159b X X X X 
miR166a X X X X 
miR166b X X X X 
miR166c X X X X 
miR168 X X X X 
miR171 X X   

miR397a  X   
miR397b X X   
miR444b X X X X 
miR1120 X X X X 
miR1130 X X   
miR1436 X X X  
miR5048a X X X X 
miR5048b X X X X 
miR5049a X X   
miR5049b X X X X 
miR5049c X X X  
miR5049e X X X X 
miR5049f X X   
miR5051 X X X X 
miR5052 X X   
miR6177   X X 
miR6181   X X 
miR6184   X X 
miR6186   X  
miR6187    X 
miR6191 X X   
miR6195   X  
miR6196 X X  X 
miR6200 X X   
miR6201 X X X  
miR6204   X X 
miR6205 X X   
miR6206   X X 
miR6207   X X 
miR6209   X X 
miR6213 X X X  
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4.3.3 Identification of microRNA not previously identified in Hordeum 

vulgare 

A total of 59 previously unidentified miRNAs in H. vulgare were discovered. A 

summary of newly discovered sequences that have sequence similarity with existing 

known plant miRNAs, and novel miRNAs that have not been observed in other plant 

species is shown in Table 4.3. Newly discovered mature H. vulgare miRNA and 

hairpin-loop sequences are found in Appendix A in Table A.9.7 and Table A.9.8 

respectively. A PCA plot of the relative abundance of these newly identified miRNAs 

(Figure 4.5) also indicates a prominent separation in tissue type. 

 
Table 4.3. New and novel miRNA found in barley. New sequences are defined as 
sequences that are not already known to exist in barley, but have high sequence similarity to 
other plant miRNA. Novel sequences are defined as being previously unknown in barley 
without having sequence similarity to known miRNA in other plant species. 
Sequence information Number of new sequences 

that have high sequence 
similarity with existing 
known miRNA in other 

plant species 

Number of novel 
sequences that do not 

have similarity with any 
known plant miRNA 

5p miRNA sequence only 1 11 
3p miRNA sequence only 1 13 
Both 5p and 3p miRNA sequences 13 20 
 

4.3.4 Differential expression of miRNA 

The miRNA identified as having statistically significant differential expression 

between control and salt treated groups is shown in Table 4.4. Only one of these 

miRNA had been classified in H. vulgare in miRBase. Only two miRNA, labelled hvu-

new-miR477a and hvu-novel-miR90000 had significant expression differences in both 

leaf and root tissue. The miRNA designated hvu-new-miR477a had decreased 
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expression in both root and leaf tissue in salt treated plants relative to control. 

Conversely, hvu-novel-miR90000 was found to have decreased expression in leaf 

tissue and increased expression in root tissue. 

 

 

 

 

 

 

 

 
Figure 4.5. Principle component analysis showing separation of barley miRNAs not 

represented in miRBase, under 100 mM salinity stress for leaf and root tissue. Leaf control 
tissue in blue, leaf salt treated tissue in red, root control tissue in green and root salt treated 
tissue in orange. Principle component variance is shown in brackets for each axis. PCA of 
small RNA was performed using count per million reads on the miRNA sequences that 
mapped to the miRNA strands previously unknown in barley. A, Root and leaf. B, Leaf only. 
C, Root only. 
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Table 4.4. Differentially expressed miRNA in leaf and root tissue in barley under salinity 

stress. Differential expression of a given small RNA in log2 fold change of 100 mM salt 
treated plants relative to control. 
MicroRNA label Leaf (salt/control) Root (salt/control) 

 Log2 fold 

change 

p-adjusted Log2 fold 

change 

p-adjusted 

hvu-new-miR528 1.88 < 0.0001   
hvu-novel-miR90001 0.31 0.041   
hvu-miR5051 -0.37 0.033   
hvu-novel-miR90002 -0.50 0.0005   
hvu-novel-miR90003 -0.91 0.003   
hvu-novel-miR90000 -1.01 0.043 0.83 0.0005 
hvu-new-miR396a -1.04 0.040   
hvu-new-miR477 -1.32 0.0009 -1.42 0.0003 
hvu-novel-miR90004 -1.71 0.0001   
 

4.3.4.1 hvu-miR5051 

Only one miRNA under differential expression in barley under salt stress was 

previously recorded in miRBase. This miRNA, hvu-miR5051, decreased expression in 

leaf tissue under salt stress conditions. 

 

4.3.4.2 hvu-new-miR396a 

The miRNA designated hvu-new-miR396a (Figure 4.6) is extremely highly conserved 

in various plants with 52 exact matches across 36 plant species when compared with 

the śȂ strand and six exact matches across four monocot species when compared with 

the řȂ strand ǻTable 4.5). 
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A 
UUCCACAGCUUUCUUGAACUG 
 

B 
GUUCAAUAAAGCUGUGGGAAA 
 

C 
UCUUUGCUGUCUUCCACAGCUUUCUUGAACUGCAUCUGCAAUUGGUGGAUGAUGGAUUCUACCGGCAAGAUCUGCAGUUCAAUAAAGCUGUGGG
AAAUUGCAGAGAGA 
 

D 
          10        20        30           40        50    
--       U  C            C          --  -   AAU       UGA  
  UCUUUGC GU UUCCACAGCUUU UUGAACUGCA  UC UGC   UGGUGGA   U 
  AGAGACG UA AGGGUGUCGAAA AACUUGACGU  AG ACG   GCCAUCU   G 
AG       U  A            U          CU  A   ---       UAG  
      100        90        80        70           60       
 

Figure 4.6. Sequences and secondary structure of hvu-new-miR396a. A: śȂ strand sequence. 
”: řȂ strand sequence. C: Hairpin-loop sequence. D: Secondary structure of hairpin-loop.  

 
Table 4.5. List of species with an exact match for hvu-new-miR396a when comparing the 5’ 
or 3’ strand. 

Identical śȂ strand Identical řȂ strand 
Acacia auriculiformis Bruguiera gymnorhiza  Gossypium hirsutum  Populus trichocarpa Aegilops tauschii 

Acacia mangium Camelina sativa Hevea brasiliensis Saccharum officinarum  Brachypodium distachyon 

Aegilops tauschii Carica papaya Linum usitatissimum Saccharum sp. Vriesea carinata 

Aquilegia caerulea Citrus sinensis Lotus japonicus  Salvia sclarea Zea mays 

Arabidopsis lyrata Cucumis melo  Malus domestica  Solanum lycopersicum   

Arabidopsis thaliana  Digitalis purpurea  Manihot esculenta  Sorghum bicolor   

Asparagus officinalis  Eugenia uniflora Medicago truncatula Theobroma cacao  

Brachypodium distachyon Fragaria vesca Nicotiana tabacum  Vitis vinifera   

Bruguiera cylindrica Glycine max  Oryza sativa Zea mays  

 

4.3.4.3 hvu-new-miR477 

The only small RNA to have significant differential expression in both root and leaf 

tissue in the same regulatory direction was the small RNA labelled hvu-new-miR477. 

This small RNA was most similar to miR477 found in a number of plants. Table 4.6 

shows the alignment comparison with miR477 from various plant species. 

 

The analysis with sRNAbench produced a mature small RNA sequence along with 

the hairpin-loop structure sequence. The lowest free-energy state of the hairpin-loop 
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secondary structure is shown in Figure 4.7. The suggested hairpin-loop sequence and 

structure is consistent with a class of small RNA called 451-like miRNA.  

 
Table 4.6. Selection of blast search results comparing hvu-new-miR477 with miRBase. 

Species Designation   Sequence Alignment 
score 

Hordeum vulgare hvu-new-miR477  UUCUCCCUCAAAGGCCUCCAACG  
Vitis vinifera miR477  AUCUCCCUCAAAGGCUUCCAA.. 91 
Physcomitrella patens miR477c  CUCUCCCUCAAAGGCUUCCA... 86 
Physcomitrella patens miR477f  ...UCCCUCAAAGGCUUCCAACAA 86 
Cucumis melo miR477a  ACCUCCCUCAAAGGCUUCCAA.. 86 
Manihot esculenta miR477f  AUCUCCCUCAAAGGCUUCCA... 86 
Populus trichocarpa miR477a  AUCUCCCUCAGAGGCUUCCAA.. 82 
Asparagus officinalis miR477a ACUCUCCCUCAAGGGCUUCCG... 72 
 
 
          5’   UU      CCU    C       G     A 
                 UCCUCU   UCUC CUCAAAG CCUCC \ 
                 GGGAGA   AGAG GAGUUUC GGAGG A 
          3’ UCGC      AGU    U       G     C 
 

Figure 4.7. Hairpin-loop structure of hvu-new-miR477 precursor. The red highlighted 
bases are the mature miRNA sequence.  

4.3.4.4 hvu-new-miR528 

The microRNA hvu-new-miR528 (Figure 4.8) is not reported in miRBase for barley. 

This miRNA had the largest expression difference of all detected miRNAs between 

control and salt treated plants in leaf tissue. This sequence appears to be perfectly 

conserved in a selection of monocots as shown in Table 4.7. 

 

4.3.4.5 hvu-novel-miR90000 

The miRNA hvu-novel-miR90000 (Figure 4.9) showed down-regulation in leaf tissue 

in plants under salt stress, but up-regulation in roots of the same plants. There were 

no notable sequence similarities with other reported plant miRNAs. The differential 
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expression in leaf tissue was largely from the řȂ strand reads, but mainly from śȂ 

strand reads in root tissue. 

Table 4.7. Selection of blast search results comparing hvu-new-miR528 with miRBase. 

Species Designation Sequence Alignment 
score 

Hordeum vulgare hvu-new-miR528 UGGAAGGGGCAUGCAGAGGAG  
Oryza sativa osa-miR528 UGGAAGGGGCAUGCAGAGGAG  105 
Zea mays zma-miR528a UGGAAGGGGCAUGCAGAGGAG 105 
Sorghum bicolor sbi-miR528 UGGAAGGGGCAUGCAGAGGAG 105 
Saccharum sp. ssp-miR528 UGGAAGGGGCAUGCAGAGGAG 105 
Brachypodium distachyon bdi-miR528 UGGAAGGGGCAUGCAGAGGAG 105 
Aegilops tauschii ata-miR528 UGGAAGGGGCAUGCAGAGGAG 105 
Vriesea carinata vca-miR528 UGGAAGGGGCAUGCAGAGGAG 105 
 

A 
UGGAAGGGGCAUGCAGAGGAG 
 

B 
CCUGUGCCUGCCUCUUCCAUU 
 

C 
CCGGAGCAGCAGCGGUGGAAGGGGCAUGCAGAGGAGCGGCCAUGCAUGGGAGCUUUGCUUUGCUUGCCUCUCCUGCUCUGGGCUCUAGCUCUCU
CCUGUGCCUGCCUCUUCCAUUCCUGCCGCUAA 
 

D 
           10        20        30               40          50            
5’ CCGG   A    CG            U   ---   -    ---    AU--   U    -  UUU  U  
       AGC GCAG  GUGGAAGGGGCA GCA   GAG GAGC   GGCC    GCA GGGA GC   GC \ 
       UCG CGUC  UACCUUCUCCGU CGU   CUC CUCG   UCGG    CGU CUCU CG   CG U 
3’   AA   C    CU            C   GUC   U    AUC    GUCU   C    C  UU-  U  
      120       110       100        90        80        70   
          

Figure 4.8. Sequences and secondary structure of hvu-new-miR528. A: śȂ strand sequence. 
”: řȂ strand sequence. C: Hairpin-loop sequence. D: Secondary structure of hairpin-loop with 
mature miRNA shown in red. 
 
 

4.3.4.6 hvu-novel-miR90001 

The miRNA designated hvu-novel-miR90001 did not have any close matches when 

performing a BLAST search against miRBase. A modest increase in expression 

occurred in leaf tissue in plants exposed to salinity stress. The sequence and 

proposed structure of the hairpin-loop precursor is shown in Figure 4.10. 
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A 
UGUAGAGGUGAUUUGGUGAUC 
 

B 
ACACCAAAUCACUUCCACAUG 
 

C 
AAAUGAAAACUUGUAGAGGUGAUUUGGUGAUCACCGAAUCUCUUGUAUUCGGUGCACACCAAAUCACUUCCACAUGCUUUCGUUUUG 
 

D 
             10        20        30        40    
             ACU   A              AU        CUC  
5’   AAAUGAAA   UGU GAGGUGAUUUGGUG  CACCGAAU   \ 
     UUUGCUUU   ACA CUUCACUAAACCAC  GUGGCUUA   U 
3’ GU        CGU   C              AC        UGU  
         80        70        60        50        
 

Figure 4.9. Sequences and secondary structure of hvu-novel-miR90000. A: śȂ strand 
sequence. ”: řȂ strand sequence. C: Hairpin-loop sequence. D: Secondary structure of 
hairpin-loop.  
 
 
A 
CGCCAUGAAUUAUCCCCUUCA 
 

B 
AAGGGGAUAACUCAUGGCGCC 
 

C 
UAGUCACAGGCGCCAUGAAUUAUCCCCUUCAUUACAGUUUUUGUUAGUAAUGAAGGAGAUAACUCAUAAGUUCCUCGAUGCGAAGGAGUUUUAG
GAGAUAGUCACAGGCGCAUGAGUUAUCCCCUUCAUUACAGUUUUUGUUAGUAAUGAAGGGGAUAACUCAUGGCGCCUGUGACUAUCU 
 

D 
              10        20        30        40        50        60          70      80     
                        A                AGUUUUUGUUA          A          AAG     C  U  GA  
5’    UAGUCACAGGCGCCAUGA UUAUCCCCUUCAUUAC           GUAAUGAAGG GAUAACUCAU   UUCCU GA GC  A 
      AUCAGUGUCCGCGGUACU AAUAGGGGAAGUAAUG           CAUUACUUCC CUAUUGAGUA   GAGGA UU UG  G 
3’ UCU                  C                AUUGUUUUUGA          C          *--     -  U  AG  
            170       160       150       140       130       120                  90      
 
                                                                        100      
                                                                        AUA  CA  
                                                                           GU  \ 
                                                                           CG  C 
                                                                        CG-  GA  
                                                                       110       
 

Figure 4.10. Sequences and secondary structure of hvu-novel-miR90001. A: śȂ strand 
sequence. ”: řȂ strand sequence. C: Hairpin-loop sequence. D: Secondary structure of 
hairpin-loop with insertion point of side-loops shown with *.  
 

4.3.4.7 hvu-novel-miR90002 

The miRNA designated hvu-novel-miR90002 (Figure 4.11) was down regulated 

under salt stress in barley leaf tissue. One plant BLAST match was found with 

miR9655 in Triticum aestivum (wheat), however the alignment was poor (Table 4.8). 
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When comparing the hairpin-loop sequences with NEEDLE there was only a 24.2% 

similarity. 

Table 4.8. Blast search results comparing hvu-novel-miR90002 with miRBase. 

Species Designation Sequence Alignment 
score 

Hordeum vulgare hvu-novel-miR90002 UGGGCCAAGGGAAGGAAAUAA  
Triticum aestivum tae-miR9655 .....CAAGGGAAGGAAGUAGCCAAC 66 
 

 

A 
UGGGCCAAGGGAAGGAAAUAA 
 

B 
AUUUUCUUCCCUUGGUCCGUU 
 

C 
GUCAAAGCUAAUGGGCCAAGGGAAGGAAAUAAUGAUGACAUAGAUCCAGCAGGGAACAGUGGGCUACAUGCAUGGCUCUUGAGUGAGUAUAGGA
GUGUGGGAAAUACAUUGACGAAUUAGUUAAUGUAAGAAUCUCUUUCAUUACUAUUUUCUUCCCUUGGUCCGUUAACUUUGAUAG 
 

D 
             10        20        30          40         
            C                       A      CAUAGA   AG  
5’   GUCAAAG UAAUGGGCCAAGGGAAGGAAAUA UGAUGA      UCC  \ 
3’   UAGUUUC AUUGCCUGGUUCCCUUCUUUUAU AUUACU      AGG  C 
   GA       A                       C      *-----   GA  
         170       160       150       140              
 
                                              60          70         80  
                                           ACAGU           GCAUG-    UU  
                                                GGG--CUACAU      GCUC  G 
                                                CUC  GGUGUG      UGAG  A 
                                           UU---   *       AGGAUA    UG  
                                                   100        90         
 
                                                            110       
                                                    GAAA-         GA  
                                                         UACAUUGAC  A 
                                                         AUGUAAUUG  U 
                                                    UAAGA         AU  
                                                     130       120    
 

Figure 4.11. Sequences and secondary structure of hvu-novel-miR90002. A: śȂ strand 
sequence. ”: řȂ strand sequence. C: Hairpin-loop sequence. D: Secondary structure of 
hairpin-loop with insertion point of side-loops shown with *.  
 

4.3.4.8 hvu-novel-miR90003 

The miRNA designated hvu-novel-miR90003 (Figure 4.12) does not return any 

BLAST results in plants against miRBase and therefore appears to be novel in barley. 

The expression of this miRNA decreased by 47% in leaf tissue in plants exposed to 

salinity stress. 
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A 
GAGAACGGGAUGCAGCCAAGG 
 

B 
UUGGCUACACCUAGUUCUCUU 
 

C 
CGCUAAGGGGCAGAGAACGGGAUGCAGCCAAGGAUGACUUGCCGGCUUCUGGUGUUGGGAGUUCGUAGAGCCUUAAGAAUUAGCCGGCAAGCUG
UCCUUGGCUACACCUAGUUCUCUUCUUCUGGUGUU 
 

D 
             10         20        30        40        50        60       
          A    C       -   A  C          GA          UCUGGUG     A    G  
5’   CGCUA GGGG AGAGAAC GGG UG AGCCAAGGAU  CUUGCCGGCU       UUGGG GUUC \ 
     GUGGU CUUC UCUCUUG UCC AC UCGGUUCCUG  GAACGGCCGA       AAUUC CGAG U 
3’ UU     -    U       A   -  A          UC          UUAAG--     -    A  
           120       110        100        90        80           70     
 

Figure 4.12. Sequences and secondary structure of hvu-novel-miR90003. A: śȂ strand 
sequence. ”: řȂ strand sequence. C: Hairpin-loop sequence. D: Secondary structure of 
hairpin-loop.  
 

4.3.4.9 hvu-novel-miR90004 

The microRNA, hvu-novel-miR90004 has three different hairpin loop structures 

which generate the same miRNA sequence in the śȂ strand, but a different sequence 

in the řȂ strand ǻFigure 4.13). There were no close matches when performing a 

”L“STN on the śȂ strand or any of the řȂ strands against miR”ase, so this appears to 

be either unique to barley or currently undetected in other species. 
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A 
hvu-novel-miR90004-5p   UGGCUGCAAGGGCCUUAUCUCUGA 
 

B 
hvu-novel-miR90004a-3p  UGAGUGGCUCUUGACGCCCAU 
hvu-novel-miR90004b-3p  UGAGUGGCUCCUGCUGCCCAU 
hvu-novel-miR90004c-3p  UGAGUGGCUCCUGCGGCCCAU 
 

C 
hvu-novel-miR90004a     CAAUCCUUACAUGGCUGCAAGGGCCUUAUCUCUGAUAGCCAAGGAUGACUUGCCUGUGUC 
hvu-novel-miR90004b     CAAGCCUUACAUGGCUGCAAGGGCCUUAUCUCUGAUAGCCAAGGAUGACUUGCCUGUGUC 
hvu-novel-miR90004c     CAAGCCUUACAUGGCUGCAAGGGCCUUAUCUCUGAUAGCCAAGGAUGACUUGCCUGUGUC 
                        *** ******************************************************** 
 
hvu-novel-miR90004a     UUGCUCCUCCCUCAAGGCAGCUUAAUUGG---CCUUGGGGUGUGGUUUCAUGGGCAGUCU 
hvu-novel-miR90004b     UUGUUCCUCCCUCAAGGC---UUAAUUGG---CCUUGGGGUGUCGUUUCAUGGGCAGUCU 
hvu-novel-miR90004c     UUGUUCCUCCCUCAAGGC---UUAAUUGGUCGCCUUGGGGUGUGGUUUCAUGGGCAGUCU 
                        *** **************   ********   *********** **************** 
 
hvu-novel-miR90004a     CCUUGGCUAGCCUGAGUGGCUCUUGACGCCCAUGCUAGGCGCGCU 
hvu-novel-miR90004b     CCUUGGCUAGCCUGAGUGGCUCCUGCUGCCCAUGCUAGGAUGUCU 
hvu-novel-miR90004c     UCUUGGCUAGCCUGAGUGGCUCCUGCGGCCCAUGCUAGGCUGUCU 
                        ********************* **  ************    ** 

D 
             10         20        30         40        50        60        70        80    
5’   CAAU   UA     C  -        UUAU   UGA-          U    U       UCUU   CCU   U      AGCU  
         CCU  CAUGG UG CAAGGGCC    CUC    UAGCCAAGGA GACU GCCUGUG    GCU   CCC CAAGGC    U 
         GGA  GUACC GC GUUCUCGG    GAG    AUCGGUUCCU CUGA CGGGUAC    UGG   GGG GUUCCG    A 
3’ UCGCGC   UC     C  A        U---   UCCG          -    -       UU--   UGU   -      GUUA  
   160       150       140          130       120         110         100         90       
 

E 
             10         20        30         40        50        60        70        80   
5’   CAAG   UA   -   U   A     UUAU   UGA-          U    U       UCU  UUCCU   U       UA  
         CCU  CAU GGC GCA GGGCC    CUC    UAGCCAAGGA GACU GCCUGUG   UG     CCC CAAGGCU  \ 
         GGA  GUA CCG CGU CUCGG    GAG    AUCGGUUCCU CUGA CGGGUAC   GC     GGG GUUCCGG  A 
3’ UCUGUA   UC   C   U   C     U---   UCCG          -    -       UUU  UGU--   -       UU  
          150       140          130       120        110        100           90         
 

F 
             10         20        30         40        50        60         70        80    
5’   CA     UA   -       A     UUAU   UGA-          U    U       UCUUGUU  UC-         UUAA  
       AGCCU  CAU GGCUGCA GGGCC    CUC    UAGCCAAGGA GACU GCCUGUG       CC   CCUCAAGGC    U 
       UCGGA  GUA CCGGCGU CUCGG    GAG    AUCGGUUCUU CUGA CGGGUAC       GG   GGGGUUCCG    U 
3’ UCUG     UC   C       C     U---   UCCG          -    -       UUU----  UGU         CUGG  
   160       150       140          130       120         110           100        90  
      

Figure 4.13. Sequences and secondary structures for hvu-novel-miR90004. A: śȂ strand 
sequence. ”: “lignment of the three different řȂ strand sequences. C: Sequence alignment of 
the hairpin-loop precursors. D-F: The lowest free-energy secondary structures of the three 
hairpin-loop sequences hvu-novel-miR90004a, hvu-novel-miR90004b and hvu-novel-
miR90004c respectively.  
 

4.4 Discussion 

The sRNA fragment size population (Figure 4.1) in leaf tissue is similar to prior 

research in barley, with 21-nt and 24-nt small RNAs making up the majority of reads 

(Schreiber et al. 2011). The root tissue did not show the expected size population. 



   

Small RNA changes in barley under salinity stress  Page 83 

Potential contaminants have been considered such as degraded barley mRNA, 

bacterial RNA and fungal RNA. Degraded barley mRNA was ruled out as a source of 

contamination by alignment of the sRNA library with the barley transcriptome. 

Microbiome analysis was considered, but the short length of reads is not compatible 

with the existing microbiome analysis tools available.  

 

The number of unique reads (Figure 4.2) for each small RNA size in leaf tissue was in 

concordance with prior research (Schreiber et al. 2011), with the vast majority of 

unique reads coming from 24 nt small RNAs. While there was a significantly higher 

number of 24 nt unique reads in the root tissue, the abundance of other sizes 

indicates some form of contamination.  

 

While the differences in read size populations for control and salt treated libraries 

were not statistically significant, there appears to be a slight bias to larger small 

RNAs in the salt treated root compared with control root samples. The reason for this 

is unknown, it is possible that the difference in salt concentration created a slight size 

selection bias during the RNA extraction process. A search of the literature did not 

find any relevant research that might explain this apparent bias. 

 

Changes in 23/24 nt sRNA expression were mapped to genomic features and 

compared with random sampling of the genome for reference (Figure 4.3). In both 

leaf and root tissue in barley under salt stress, the changes in 23/24 nt sRNA 
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expression was targeting PCGs to a much higher level than random sampling. The 23 

nt miRNAs appeared to target PCG more than 24 nt siRNA. There was a general 

overrepresentation of 23/24 nt sRNAs targeting DNA transposons and an 

underrepresentation of 23/24 nt sRNAs targeting RNA transposons. 

 

4.4.1 Identification of previously categorised miRNA 

While the separation between control and salt treated plants for miRBase mapped 

miRNA was clear in the principle component analysis for root tissue, this was not the 

case for leaf tissue (Figure 3.1). This may be due to the limited number of 71 unique 

miRNAs categorised in miRBase for H. vulgare. Only 40 of these known small RNAs 

(Table 4.2) were expressed at high enough levels to be useful for analysis. 

 

4.4.2 Identification of miRNA not previously identified in Hordeum vulgare 

The principle component analysis of miRNA that had not been previously 

categorised (Figure 4.5) showed clear separation between root and leaf tissue. When 

looking at only root or only leaf tissue, the control miRNA expression separated well 

from the salt treated group, indicating that exposure to salinity stress has an effect on 

at least some of these miRNAs.  

 

Fifty-nine unique miRNAs were discovered that had not previously been classified in 

miRBase. All of these unique miRNAs were expressed and useful for analysis. This 

greater diversity of miRNAs could explain the clear separation in PCA of leaf tissue 
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between control and salt treated groups in the new small RNAs compared with 

previously categorised small RNAs which did not experience a clear separation. At 

the time of writing, there were 71 H. vulgare miRNAs in miRBase. When the newly 

found miRNAs from this study are published and incorporated in miRBase, this will 

represent an increase of 83% in H. vulgare miRBase records. 

 

4.4.3 Differential expression of miRNA 

The observed differences in sRNA size profiles between root and leaf tissue along 

with the small number of differentially expressed miRNA in root tissue may indicate 

problems with the sRNA library obtained for root tissue. The potential issues with 

root tissue sRNA may have resulted in significantly fewer reads of H. vulgare miRNA 

compared with other sources.  

 

4.4.3.1 hvu-miR5051 

The results from differential expression analysis highlighted a single previously 

categorised small RNA in H. vulgare hvu-miR5051. This miRNA was discovered by 

Schreiber et al. (2011). Ozhuner et al. (2013) investigated miRNA changes in barley 

exposed to excess boron stress. They found that there was a 2-fold up-regulation of 

miR5051 in the roots of barley under 1 mM boron toxicity stress compared with 

control plants, with no difference observed in leaves. This is different to the log2 fold 

change of -0.37 (p = 0.033) we observed in leaves under salinity stress relative to 
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control plants. Research by Alpaslan & Gunes (2001) investigating the interaction 

between boron and salinity stress in cucumbers found that a higher dose of boron 

resulted in higher levels of sodium accumulation in the plant. While there may be 

interactions between boron and salinity stress, it is difficult to draw comparisons 

with research in this area. Bai et al. (2017) indicated that miR5051 targets a 

serine/threonine protein kinase by use of degradome sequencing and analysis, 

however this research was focussed on barley seed development and germination. 

Other potential targets for miR5051 may not have been present in the abundance 

required for degradome analysis during seed development and germination stages. 

 

4.4.3.2 hvu-new-miR396a 

In Zea mays (maize), miR396 had a 48% decreased expression in leaves but no 

significant changes in roots under salinity stress (Fu et al. 2017). This result compares 

well with the decrease of 50% in miR396 expression we observed in H. vulgare leaf 

tissue under salinity stress and no significant changes in root tissue. Although it 

should be noted that the salinity stress conditions were different and the salinity 

tolerance between species would also be different. Under drought stress in Z. mays, 

an increase in the expression of miR396 has been reported (Aravind et al. 2017). 

 

In Brachypodium disachyon (a close relative to H. vulgare) the function of miR396 has 

been observed with an increase in expression under cold stress. This miRNA targets 
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a serine/threonine-protein kinase, a PTI1-like protein and seven uncharacterised 

proteins (Zhang et al. 2009; Zhang et al. 2013).  

 

4.4.3.3 hvu-new-miR477 

The microRNA miR477 was first discovered in Populus trichocarpa (poplar) and 

showed differential expression related to tension and compression stress (Lu et al. 

2005). The class of 451-like miRNA are different from other miRNAs by not 

producing a double-stranded mature miRNA, and are produced when a short 

hairpin structure is directly loaded into and cleaved by AGO2 without any Dicer 

processing (Yang et al. 2010). In Vitis vinifera (grape), miR477 was found to be 

expressed at significant levels in the immature berry, veraison and mature berry but 

not in the leaf, inflorescence or root (Mica et al. 2009). In Physcomitrella patens (moss), 

mature miR477 was found in the protonema stage and an incompletely processed 

precursor in gametophores (Fattash et al. 2007). In Manihot esculenta (cassava), 

miR477 was found to be highly expressed in male flower tissue (Khatabi et al. 2016), 

with the GRF transcription factor which is related to leaf and cotyledon growth being 

a target (Chen et al. 2015). Asparagus officinalis (asparagus) expresses miR477 

(Harkess et al. 2017). This is the closest relative to barley that has been shown to 

express this miRNA, but the function of miR477 in asparagus is unknown. 
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4.4.3.4 hvu-new-miR528 

In Saccharum sp. (sugarcane) the expression of miR528 was found to fluctuate heavily 

in shoot tissue under a strong salinity shock of 340 mM, with a sharp increase in 

expression at 1 h, and decreasing at both 6 h and 24 h, but remaining above control 

levels (Bottino et al. 2013). This increase in miR528 is consistent with our findings for 

salinity stress. 

 

4.4.3.5 hvu-novel-miR90000 

The miRNA designated hvu-novel-miR90000 showed down-regulation in leaf tissue 

in plants under salt stress, but up-regulation in roots of the same plants. It should be 

noted that the adjusted p-value of the leaf differential expression is only marginal at 

p = Ŗ.ŖŚř. The differential expression in leaf tissue was largely from the řȂ strand 

reads, but mainly from śȂ strand reads in root tissue. The reason for this is unknown 

and may be worthy of future investigation. 

 

4.4.3.6 hvu-novel-miR90002 

While a BLAST search yields one match of miR9655 from T. aestivum for hvu-novel-

miR90002, the alignment is poor. The two sequences are not similar enough to 

confidently say that they are related. Two known targets for miR9655 in T. aestivum 

by degradome analysis were an RPM1-like disease resistance protein and an 

unknown protein labelled TC402663 (Li et al. 2015). 



   

Small RNA changes in barley under salinity stress  Page 89 

4.4.3.7 hvu-novel-miR90004 

Interestingly, hvu-novel-miR90004 has three different hairpin loop structures which 

generate the same sequence in the śȂ strand, but a different sequence in the řȂ strand 

(Figure 4.13). There were no close matches when performing a ”L“STN on the śȂ 

strand or any of the řȂ strands against miR”ase, so this appears to be either unique to 

barley or currently undetected in other species. The log2 fold change in leaf tissue 

was -1.71. It was not possible to determine which of the three hairpin-loop isoform 

precursors had the greatest effect on the differential expression due to the lower 

number of reads in the řȂ strands.  

 

4.4.4 Conclusion 

Fifty-nine previously unknown barley miRNAs have been identified, with six of 

these miRNAs displaying a significant change in expression in response to salinity 

stress. Genomic features targeted by 23/24 nt sRNA in response to salinity stress 

were discovered with PCGs being targeted at a much higher rate than random 

sampling of the genome. In chapter 6, the targets for 23/24 nt sRNAs are compared 

with DNA methylation changes (Chapter 5) to observe how these changes in sRNA 

expression and DNA methylation come together. 
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5 DNA methylation changes in barley under salinity stress 

5.1 Introduction 

DNA methylation plays an important role in a range of functions including gene 

control, development and cellular differentiation, management of Transposable 

Elements (TEs), and stress response (Dowen et al. 2012; Elhamamsy 2016). A cytosine 

base can be modified to 5-methylcytosine by the addition of a methyl group (Saze et 

al. 2012). The cytosine methylation pathway is related to the context of the cytosine, 

and is grouped by CG, CHG and CHH where H can be A, C or T (He et al. 2011). 

 

There are various techniques for determining methylation changes in a genome. 

Some, like Methylation Sensitive Amplified Polymorphism (MSAP) (Reyna-Lopez et 

al. 1997) or Methylation Sensitive Genotyping By Sequencing (ms-GBS) (Kitimu et al. 

2015), use methylation sensitive restriction enzymes to generate fragments, which 

can then be analysed by comparing bands following polyacrylamide/capillary 

electrophoresis or next generation sequencing. The methylation status of the 

generated fragments is then inferred from presence/absence or relative abundance 

(Rodríguez-López et al. 2012). However, this approach generates information from a 

very limited number of methylation sites (Rauluseviciute et al. 2019). 

 

A method commonly referred to as methyl-capture involves fragmenting the 

genome, capturing methylated cytosines by immunoprecipitation and then 
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sequencing the captured fragments (Down et al. 2008). This method does not provide 

base-pair resolution information of methylation, only methylation states of genomic 

regions (Teh et al. 2016). Two third-generation sequencing techniques, The Oxford 

Nanopore MinIon and PacBio SMTR are able to gain methylation information at 

base-pair resolution by detecting the methylation state of a cytosine base without the 

need for chemically altering bases (Weirather et al. 2017). There are limitations with 

these methods, the MinION accuracy is 91% for correctly calling a 5-methylcytosine 

base when a strict filtering is applied that discards 32% of reads (Simpson et al. 2017). 

The PacBIO SMRT sequencer needs greater than 250 times coverage to accurately call 

a 5-methylcytosine base (Liu et al. 2020). 

 

A bisulphite treatment converts unmethylated cytosines to uracil which are then 

converted to thymine after PCR amplification. Methylated cytosines remain as 

cytosines after the treatment. By comparing the bisulphite treated sequence with 

either untreated DNA, a reference genome, or complementary bisulphite treated 

strands highlights those cytosines that are methylated and those that are not. The 

entire genome bisulphite state can be determined by whole genome bisulphite 

sequencing (Cokus et al. 2008). 

 

The reduced representation bisulphite sequencing method is a compromise between 

full information for each cytosine base and lower resolution methods. It can be useful 

in cases of very large genomes where the information derived from MSAP is 
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technically demanding and very limited in the information obtained, and in the case 

of whole genome bisulphite sequencing, prohibitively expensive. 

 

5.1.1 EpiGBS 

The method used in this study to obtain methylation information was epiGBS 

(epigenetic Genotyping By Sequencing), which is a reduced representation bisulphite 

sequencing method developed by van Gurp et al. (2016). To distinguish the epiGBS 

ȃwet-labȄ protocol from the bioinformatics tools the former will be referred to as the 

epiGBS protocol, and the latter the epiGBS bioinformatics pipeline.  

 

EpiGBS is able to extract bisulphite sequencing information from a reduced portion 

of the genome by restriction digest and size selection. The sites selected for 

sequencing should be the same for each sample, enabling a significantly reduced cost 

compared to that of whole genome bisulphite sequencing. Of course, there is a trade-

off in the number of sites that will be sequenced. In brief, genomic DNA is digested 

with two different Type II restriction enzymes. Then adapters designed with co-

adhesive ends complementary to those generated by the restriction enzymes (Ba and 

Co shown in Figure 5.1), are ligated to the řȂ and the śȂ ends of the restriction 

products. The śȂ end of the adapter is not joined to the řȂ end of the genomic DN“ as 

the adapter is lacking a śȂ phosphate group. That section of the adapter is replaced 

through a process referred to as ȁnick repairȂ, using “, G, T and ś-methylcytosine 

with a DNA polymerase that has śȂ-řȂ exonuclease activity (Figure 5.2). The three 
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base Unique Molecular Identifier ǻUMIǼ ǻNȂs in Figure 5.1 and Figure 5.2) in the 

adapter were not complementary before the nick repair process, but are 

complementary after the process. Following nick repair, the entire adapter section 

has 5-methylcytosine at all cytosine locations except for one base at the řȂ end of the 

barcode. This cytosine is used as a control to measure the conversion rate of the 

bisulphite treatment, and to identify the strand that was bisulphite treated. 

Conversion of all other adapter cytosines to 5-methylcytosine is to maintain the 

sequence after bisulphite treatment.  

 

Ba adapter 

  5’ AXAXTXTTTXXXTAXAXGAXGXTXTTXXGATXTNNNBBBBC   3’ 
  3’ TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGANNNBBBBGAT 5’ 
 

Co adapter 

  5’ XTXGGXATTXXTGXTGAAXXGXTXTTXXGATXTNNNBBBBCTGXA 3’ 
  3’ GAGCCGTAAGGACGACTTGGCGAGAAGGCTAGANNNBBBBG     5’ 
 

Figure 5.1. Sequence of adapters ligated to digested DNA in the epiGBS protocol. B 
represents the barcode sequence used to determine sample identity. N is a random base 
consisting of A, G, T or 5-methylcytosine to make up the Unique Molecular Identifier, and is 
used to find and remove PCR duplicates with a total of 4096 different possible combinations 
when both adapters used. X represents 5-methylcytosine which is used to prevent sequence 
change during the bisulphite treatment process. 
 

The two DNA strands are separated and bisulphite treated, converting unmethylated 

cytosines to uracil. The strands are then PCR amplified as shown in Figure 5.3. The 

strand that is bisulphite treated has the cytosine in the adapter designated as the 

Watson/Crick identifier modified to a uracil then a thymine. The complementary 

strand after PCR replication remains as a cytosine. If both paired reads have a 

cytosine in this location, then this indicates the bisulphite treatment failed to convert 
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that base and can be used to determine the conversion rate. 

     A 
      Ba adapter                                 Genomic insert 

                                       NNN 

   5’ AXAXTXTTTXXXTAXAXGAXGXTXTTXXGATXT   BBBBCTAGCGATXGXAG... 3’ 
   3’ TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA   BBBBGATCGCTAGXGTX... 5’ 
                                       NNN 

                                                  Nick 

     B 
      Ba adapter                                 Genomic insert 

                                        

   5’ AXAXTXTTTXXXTAXAXGAXGXTXTTXXGATXTNNNBBBBCTAGCGATXGXAG... 3’ 
   3’ TGTGAGAAAGGGATGTGXTGXGAGAAGGXTAGANNNBBBBGATCGCTAGXGTX... 5’ 
 

Figure 5.2. Stages of the nick repair process to replace one strand of the adapter after 

ligation in the epiGBS method. This figure only shows one adapter, the same process occurs 
in both Ba and Co adapters. A. After ligation the adapter and genomic insert is not ligated at 
the site shown by the nick label, the UMI site (Ns) does not have sequence complementarity. 
B. After the nick repair process which uses A, G, T and 5-methylcytosine with a DNA 
polymerase that has śȂ-řȂ exonuclease activity the cytosines on the original Ba adapter have 
been replaced with 5-methylcytosine (shown as X) and the UMI has complementarity 
between adapter strands. 
 
     A 
      Ba adapter               Genomic insert              Co adapter 

   5’ AXA...TXTNNNBBBBCTAGCGATXGXAG...TCTTGATCAATGXAGBBBBNNNAGA...GAG 3’ 
   3’ TGT...AGANNNBBBBGATCGCTAGXGTX...AGAAXTTGTTAXGTCBBBBNNNTXT...XTX 5’ 
 
     B 
      Ba adapter               Genomic insert              Co adapter 

   5’ AXA...TXTNNNBBBBTTAGUGATXGXAG...TUTTGATUAATGXAGBBBBNNNAGA...GAG 3’ 
 

     C 
      Ba adapter               Genomic insert              Co adapter 

   5’ ACA...TCTNNNBBBBTTAGTGATCGCAG...TTTTGATTAATGCAGBBBBNNNAGA...GAG 3’ 
   3’ TGT...AGANNNBBBBAATCACTAGCGTC...AGAACTTGTTACGTCBBBBNNNTCT...CTC 5’ 
 
     D 
      Ba adapter               Genomic insert              Co adapter 

   3’ TGT...AGANNNBBBBGATUGUTAGXGTX...AGAAXTTGTTAXGTTBBBBNNNTXT...XTX 5’ 
 
     E 
      Ba adapter               Genomic insert              Co adapter 

   5’ ACA...TCTNNNBBBBCTAACAATCGCAG...TCTTGATCAATGCAGBBBBNNNAGA...GAG 3’ 
   3’ TGT...AGANNNBBBBGATTGTTAGCGTC...AGAACTTGTTACGTTBBBBNNNTCT...CTC 5’ 
 

Figure 5.3. Bisulphite treatment, PCR amplification and identification of Watson and 

Crick strands in the epiGBS method.  A, Double stranded DNA after ligation of adapters 
and nick repair. B, Strand 1 from A after bisulphite treatment. C, Double stranded DNA after 
PCR replication of the single DNA strand from B. D, Strand 2 from A after bisulphite 
treatment. E, Double stranded DNA after PCR replication of the single DNA strand from D. 
The Watson/Crick identifier is shown in light orange with a T indicating that strand had 
received the bisulphite treatment (Watson strand) and a C indicating it was a complementary 
strand to the bisulphite treated strand (Crick strand). 
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The four base barcode in the adaptors is used to identify samples, and the three base 

UMI at either end is used to identify PCR duplicates. Reading the sequence multiple 

times from PCR duplicates does not add any useful information and so these reads 

need to be identified and removed. The total of six UMI bases per sample enables 

identification of 4096 different combinations. If two sequences have an almost 

identical insert sequence, and the same barcode and UMI base combination, then 

there is a very high chance that the read is a PCR duplicate and only the highest 

quality read should be kept for further analysis. 

 

Once PCR duplicates are identified and removed, all the sequences are then mapped 

against the reference genome and the percentage methylation at each mapped 

cytosine is determined for each sample. The differences in percentage methylation 

can then be investigated between control and treatment samples or different tissue 

types. In this study, barley plants grown in saline conditions were compared with 

those in control conditions, and nucleic acid samples collected from roots and third 

leaf of the treated and control plants. 

 
5.2 Methods 

5.2.1 DNA extraction 

DNA was extracted from leaf and root tissue that had been collected as described in 

chapter 2 using the Qiagen DNeasy Kit (CA, USA). Tissue had been ground under 

liquid nitrogen with a mortar and pestle and aliquoted for storage at -80°C for DNA 
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and RNA extractions. Approximately 100 mg of ground leaf or root tissue was 

digested with 400 µl of buffer AP1 and 4 µl of RNAse A, mixed with a vortex and a 

micropestle was used to crush any clumped material. The DNeasy kit was then used 

as per the manufacturerȂs instructions and the final elution used śŖ µl of Buffer AE. 

A Nanodrop spectrophotometer (Thermo Fisher, DE, USA) was used to quantify 

DNA concentration and purity.  

 

5.2.2 EpiGBS 

The epiGBS method is outlined by van Gurp et al. (2016), however modifications 

were needed to obtain useable results. The method with modification is as follows. 

Genomic DNA concentration was checked with a Qubit (Life Technologies, NY, 

USA) and diluted to 20 ng/µl. A 40 µl restriction enzyme digestion reaction 

containing 400 ng of DNA, 4 µl Thermo Fast Digest Buffer (10x) (MA, USA), 6.25 µl 

of 20 mg/ml BSA (NEB B9000S) (MA, USA), 1 µl of 20 units/µl NsiI-HF (NEB R3127S) 

(MA, USA), 2 µl of Csp6I restriction enzyme (Thermo FD0214) (MA, USA) was 

performed over 16 hours at 37°C then held at 4°C. Sequencing adaptors were ligated 

to restriction products in a ligation reaction containing: 40 µl of product from the 

digestion reaction, 2 µl of 5 ng/µl Ba adapter, 2 µl of 6 ng/µl Co adapter, 6 µl of T4 

ligase buffer and 10 µl of T4 ligase (NEB M0202L) (MA, USA) with the reaction held 

at 22°C for 3 hours then 4°C for 16 hours. Adapter design and sequence are shown in 

Figure 5.1 where X is 5-methylcytosine, N is a random UMI base used to later 
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determine PCR duplicates, and B is the barcode sequence as shown in Appendix A 

Table A.9.9.  

 

The ligated products were pooled and split across four Qiaquick spin columns (used 

as per the manufacturers protocol), and each column eluted with 60 µl water. Size 

selection was performed using AMPure XP beads (Beckman Coulter) with 47.2 µl 

beads added to each 59 µl of DNA product from the previous stage and pipette 

mixed 10 times. The bead solution was incubated at room temperature for 5 mins 

then placed on a magnetic rack for 2 mins. Supernatant was pipetted off and 

discarded, then 200 µl of 70% ethanol was added for 2 minutes and the supernatant 

discarded. This step was repeated once more then the beads were allowed to dry in 

air for 4 mins. Tubes were removed from the magnetic rack with 12 µl water added, 

pipette mixed 10x and left to incubate at room temperature away from the magnetic 

rack for 2 mins. The tubes were then transferred to the magnetic rack and left for 2 

mins before 11 µl of the supernatant was collected by pipette for the nick repair 

process.  

 

Four nick repair reactions containing the following reagents were incubated at 15°C 

for 1 hour: 9 µl of size selected DNA from the previous step, 0.625 µl water, 1.25 µl of 

10 mM 5-methylcotisine dNTP mix, 1.25 µl of NEB B7002S Buffer2, 0.375 µl of NEB 

M0209S DNA polymerase. A PCR was used to check the success of the previous 

stages and the products observed by electrophoresis on a 1% agarose gel. The PCR 
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contained 1 µl of the nick repaired products, 3.4 µl water, 5 µl Kappa HiFi HotStart + 

Uracil x2 (Kappa Biosystems, MA, USA), 0.3 µl of 10 mM Illumina PE forward 

primer, 0.3 µl of 10 mM Illumina PE forward primer (CA, USA). The PCR cycling 

conditions consisted of 95°C for 3 min then 18 cycles of 98°C for 10s, 65°C for 15s, 

72°C for 15s then a final 72°C for 5 min before a 4°C hold. 

 

The bisulphite treatment was performed on the nick repaired products using the 

Zymo EZ DNA Methylation-Lightning Kit ǻC“, US“Ǽ as per the manufacturerȂs 

instructions. A PCR was performed immediately after the bisulphite treatment as the 

bisulphite treatment would degrade DNA over time. This PCR consisted of 4 

separate reactions each containing 1 µl of the bisulphite treated DNA, 3.4 µl water, 5 

µl Kappa HiFi HotStart + Uracil x2 (MA, USA), 0.3 µl of 10 mM Illumina PE forward 

primer, 0.3 µl of 10 mM Illumina PE forward primer (CA, USA). The PCR cycling 

conditions consisted of 95°C for 3 min then 18 cycles of 98°C for 10s, 65°C for 15s, 

72°C for 15s then a final 72°C for 5 min before a 4°C hold. The products from this 

PCR were checked by electrophoresis on a 1% agarose gel, and later using an Agilent 

2100 Bioanalyser with a High Sensitivity DNA kit (Agilent Technologies, CA, USA). 

 

5.2.3 First bisulphite sequencing run 

An in-silico digestion (DigestBarleyDouble.R shown in section 10.12) was performed 

on the H. vulgare Morex genome in an attempt to determine the best size selection for 

good sequence coverage. This simulation suggested optimal coverage would be 
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achieved with a selection of fragments ranging from 380 bp (base-pairs) to 560 bp 

(including the adapters). A Pippin prep (Sage Science, MA, USA) was used as per the 

manufacturers protocol to select DNA fragments from 380 bp to 560 bp. The selected 

fragments were dried for shipping to NovoGene (Hong Kong, China) using a DNA 

Speed Vac (Savant, NY, USA). Upon arrival, the DNA was re-suspended and 

checked for quality. The library was spiked with 30% PhiX and sequenced using a 

single lane of an Illumina HiSeq (CA, USA) with 150 + 150 bp paired end reads. 

 

5.2.4 Second bisulphite sequencing run 

The quantity of PCR duplicate reads from the first sequence run indicated a much 

wider size selection should have been used. The library constructed as described in 

section 5.2.2 was used for the size selection process, with 20 µl of DNA library mixed 

with 10 µl of AMPure XP beads and pipette mixed 10 times. This mixture was left to 

incubate at room temperature for 5 minutes and then placed on the magnetic rack for 

2 minutes. The supernatant contained the smaller fragments and was collected, and 

the beads bound the large fragments and were discarded. The supernatant had 0.8x 

AMPure XP beads added and was pipette mixed 10 times. The beads were allowed to 

incubate at room temperature for 5 minutes then were placed on a magnetic rack for 

2 mins. Supernatant was pipetted off and discarded, then 200 µl of 70% ethanol was 

added for 2 minutes then the supernatant discarded. This step was repeated once 

more then the beads were allowed to dry in air for 4 mins. Tubes were removed from 

the magnetic rack with 20 µl water added, pipette mixed 10x and left to incubate at 
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room temperature away from the magnetic rack for 2 mins. The tubes were then 

transferred to the magnetic rack and left for 2 mins before 19 µl of the supernatant 

was collected by pipette. A Bioanalyser with a High Sensitivity DNA Kit (Agilent 

Technologies, CA, USA) was used to check the concentration and size distribution of 

fragments. The DNA library was dried, re-suspended, checked, spiked with 20% 

PhiX and sequenced by NovoGene as described in section 5.2.3. 

 

5.2.5 Bioinformatics 

Sequence reads were quality checked with fastqc (Andrews 2017) and PhiX reads 

were removed by alignment with the PhiX genome using Bowtie2 (Langmead & 

Salzberg 2012) and discarding matching reads. The remaining reads were checked 

again using fastqc to ensure the PhiX reads had been removed. The distribution of 

reads by CG content indicated that PhiX had been removed with the absence of the 

previously visible peak at around 46% GC content. 

 

The epiGBS bioinformatics pipeline provided in the github repository 

(https://github.com/thomasvangurp/epiGBS) contains multiple errors which prevent 

operation without significant modification to the poorly documented code. A 

modified version of this pipeline was used to generate differential methylation 

information, but with the errors and lack of feedback from the author, I was not 

confident with the analysis. Given this, I created a completely different 

bioinformatics pipeline to perform the task. 
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A python program fastqfilter.py was written to perform the filtering of the paired-

end reads and this can be found in section 10.13. To determine the quality thresholds 

that would be most appropriate for the sequence reads, a sample of one million reads 

was used to test the rate of discarded reads at different Phred qualities. The Phred 

sequencing quality is related to probability of accurately calling a base (P), where the 

Phred quality Q = -10 log10(P). A strict quality filtering was applied with any read 

containing a base sequenced with a Phred quality lower than 5 or an average Phred 

quality over the whole paired-end read lower than 35 being discarded. 

 

There were a significant number of PCR duplicates and these reads needed to be 

removed to reduce any resulting bias. Reads were split so that the bioinformatic 

processes could be performed faster in parallel. These split files were further 

separated into files for each barcode combination (each sample) using the custom 

python script Barcodes.py shown in section 10.14. Each sample was split based on 

the six base UMI combination using the two custom programs 

WobbleIndexingToPickle.py (section 10.15) and WobblePickleToFiles02.py (section 

10.16), which generated 4096 files per sample corresponding to each UMI 

combination. These files were then processed with the custom program dedup.py 

(section 10.17) which used multithreading and the custom Cython program 

dedupcy.pyx (section 10.18) to compare reads and remove any duplicates, only 

keeping the highest read quality of the duplicates. After PCR duplicates were 

removed, the 4096 UMI reads were merged again using the linux command cat, and 
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FastQC (Andrews 2017) was used again to check the quality of the remaining reads. 

 

PEAR (Paired-End reAd mergeR) (Zhang et al. 2014) converted each paired end 

sample in to either a merged read or left as two unmerged paired reads if there was 

no significant overlap. The custom program epiGBS2Bismark06.py (section 10.19) 

prepared reads for use with Bismark (Krueger & Andrews 2011) by performing 

reverse complements on all Crick assembled reads, all Crick unassembled second 

strand reads and all Watson unassembled second strand reads. This was necessary as 

PEAR reverse complements all of the second strand reads which needed to be 

converted back for Bismark and the assembled reads were required to all be in 

Watson orientation for Bismark. 

 

A genome index for Bismark was created using the ensemble genome for Hordeum 

vulgare, IBSC v2.45 (Mascher et al. 2017). Bismark was used twice, once with the 

assembled reads and again with the unassembled paired end reads. Bismark 

command-line options for the unassembled reads include -p 8 --maxins 2000 --

unmapped --ambiguous while options for the assembled reads include -p 8 --

unmapped --ambiguous. Then bismark_methylation_extractor.pl ran with the 

options --bedGraph --CX_context to generate files with methylation counts for 

each cytosine read. 

 

The .cov files generated by Bismark for each sample were separated for each 
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chromosome using the custom pypy program splitcov.py (section 10.20). Then 

samples were merged, but keeping separate files for each chromosome using the 

custom pypy program mergecov.py (section 10.21). The context for each cytosine was 

determined by mapping against the reference genome using the custom pypy 

program covcontext.py (section 10.22) and files were split by CG, CHG, or CHH 

context with the custom pypy program cov2R.py (section 10.23) to be able to import 

the data set into custom scripts developed for the R programming language (Team 

2019). 

 

The R programming language was used for data analysis along with the libraries, 

Genomation (Akalin et al. 2015), GenomicFeatures (Lawrence et al. 2013), methylKit 

(Akalin et al. 2012), Rsamtools (Morgan et al. 2016). Principle Component Analysis 

using percentage methylation levels was performed with the custom R script 

PCA_methylation.R (section 10.24). Plots of global methylation levels in 1 million bp 

windows were performed for each cytosine context with the custom R script 

plot_chromosome_methylation.R (section 10.25). The methylation pattern around 

genes and transposable elements for each cytosine context were determined with the 

custom pypy programs methylation_levels_genes.py (section 10.26) and 

methylation_levels_TEs.py (section 10.27) respectively. The custom R script 

find_differentially_methylated.R (section 10.28) grouped the methylation data in 100 

bp windows and by cytosine context and found significantly differentially 

methylated regions using a false discovery rate threshold of padj < 0.01. These 
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differentially methylated regions were epiGBS fragments mapped to 100 bp genomic 

window sites with significantly differential methylation across the window, with the 

results being used in multiple custom R scripts. One generated histograms of the 

distance between the differentially methylated site and TSS (Transcription Start Site) 

dist_to_TSS.R (section 10.29), another looked for location of differential methylation 

and locality with annotated regions such as genes, non-coding RNAs and 

transposable elements (TEs) diff_meth_annotation.R (section 10.30). The enrichment 

of differentially methylated regions with annotated regions was compared by 

generating a random sampling of the bisulphite reads that were mapped to the 

genome, and running diff_meth_annotation.R as though these randomly selected 

were differentially methylated regions using the custom R script 

random_genome_sampling.R (section 10.31). 

 

5.3 Results 

The extracted DNA from root and leaf tissue had concentrations shown in Table 5.1. 

Capillary electrophoresis electropherograms of bisulphite treated DNA libraries used 

for sequencing are shown in Figure 5.4 with the first library being a narrow size 

selection and the second having a much wider size selection profile.  

 

The sequence read numbers are shown in Table 5.2 and the GC content of reads is 

shown in Figure 5.5. The two peaks are from the combination of the bisulphite 

treated barley DNA library at around 28% GC content and the PhiX spike in at 
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around 46% GC content. Only the one broad peak remained after discarding PhiX 

reads, indicating the PhiX reads were successfully removed. The fastq files from the 

two sequence runs were merged, filtered, and samples were determined by matching 

up to the associated barcode as shown in Appendix A Table A.9.9, with Watson and 

Crick reads identified along with unconverted reads as shown in Figure 5.6. The 

unconverted reads were used along with the Watson and Crick reads to determine 

the bisulphite conversion rate was 94.2%. 

 
Table 5.1. Extracted DNA concentration from barley plant leaf and root tissue samples. 
Tissue samples 1-4 were from control plants and 5-8 were from salt treated plants. 

Leaf tissue 
sample 

Concentration 
(ng/ul) 

Root tissue 
sample 

Concentration 
(ng/ul) 

1 41.4 1 38.3 
2 55.8 2 36.7 
3 43.8 3 53.6 
4 54.5 4 51.4 
5 97.3 5 40.0 
6 80.0 6 54.2 
7 45.0 7 54.1 
8 44.5 8 53.9 

 

Table 5.2. Total sequence reads and PhiX spike in reads for epiGBS sequencing runs. 
Sequencing 

run 
Total raw reads Reads after PhiX 

removed 
PhiX % of 

reads 
1 492,629,410 285,503,368 42% 
2 446,094,532 349,415,026 22% 

 

Figure 5.6 shows the reads assigned to each sample by barcode matching. There was 

a noticeable decrease in read quantity in L4, L8, R4 and R8 compared with all other 

reads. These samples all used the Ba4 barcode. 
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Figure 5.4. Capillary electrophoresis results after libraries re-suspended before 

sequencing. A, The first library for sequencing had a narrow size selection using the Pippin 
Prep. B, The second library had a much wider size range with magnetic beads used for the 
size selection profile. These two capillary electrophoresis runs were performed by 
NovoGene. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5. GC content of all sequence reads before and after PhiX removal. A, First 
sequence run. B, Second sequence run. 
 

The methylation levels across each chromosome were grouped in to 1 million base 

A B 

A 

B 
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pair windows and plotted for average methylation levels for each cytosine context as 

shown in Figure 5.7. Methylation levels in CG contexts were highest globally, 

peaking broadly around the centre of chromosomes and sharply decreasing at the 

ends, with an average level of 91.0%. A similar pattern was seen in CHG contexts 

with a lower average methylation level of 59.6%. The CHH context methylation 

levels were the lowest, averaging 4.1%.  

 

 

Figure 5.6. Read counts per sample for barcode recognised epiGBS reads of control and 

salt treated barley plants. Watson and Crick reads are defined based on the strand that was 
bisulphite treated, with a single unmethylated cytosine from each adapter that signals which 
it is. If both unmethylated cytosines from adapters remain unconverted then this indicates 
the non-conversion rate of bisulphite treatment. 
 

Principle Component Analysis (PCA) was performed on the methylation percentage 

in 100 bp windows grouped by cytosine context as shown in Figure 5.8. All cytosine 

contexts show separation between leaf and root tissue. 
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Figure 5.7. Percentage of cytosine methylation in barley grouped by CG, CHG or CHH 

context for each chromosome using 1,000,000 bp windows. The x-axis is the position on the 
chromosome in Mbp, with the y-axis being the cytosine methylation percentage. The y-axis is 
scaled differently for CG, CHG and CHH contexts to show detail.  
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Methylation patterns around Protein Coding Genes (PCGs) were determined and are 

shown in Figure 5.9. The methylation level in a CG context cytosine is high in the 

upstream and downstream flanking sequences of the PCG as well as in the middle of 

the gene body, with the lowest value near the Transcription Start Site (TSS) and a low 

level also observed at the Transcription End Site (TES). Under the CHH context, a 

different pattern is observed with methylation ramping up to a peak about 200 bp 

before the TSS and dropping to a low level in the PCG. 

 

The methylation patterns around TEs are shown in Figure 5.10. A similar pattern is 

seen in CG and CHG contexts with a sharp increase in methylation at the boundary 

of the TE albeit at different average methylation levels. The level of methylation just 

outside of the retrotransposon TE is higher and more consistent than the DNA 

transposon, which decreases to much lower levels until the TE boundary. The 

retrotransposons dominate reads that were mapped to TEs and so the combination of 

all TEs more closely follows the pattern of retrotransposons than DNA transposons. 

In a CHH context, the methylation in retrotransposons takes on a slightly lower level 

than outside the TE, but methylation around the DNA transposons increases to 

higher levels within the TE. 

 

The different TE classes were also plotted for methylation patterns and are shown in 

Appendix A, Figure A.9.3. Two of the patterns that stood out were from methylation 

in a CHH context and is shown in Figure 5.11. The TE grouping DTX (class: DNA  
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Figure 5.8. Principle Component Analysis of barley DNA methylation percentage in 100 

bp windows for all samples categorised by cytosine contexts. A, Cytosine context CG. B, 
Cytosine context CHG. C, Cytosine context CHH. Samples shown are blue: control leaf 
tissue, red: salt treated leaf tissue, green: control root tissue, orange: salt treated root tissue. 
Salinity exposure was 100 mM NaCl in soil.  
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Figure 5.9. Methylation pattern around Protein Coding Genes (PCGs) in barley. The 
methylation patterns for the three different cytosine contexts A: CG methylation, B: CHG 
methylation and C: CHH methylation. All cytosine reads for the relevant context that were 
within 1.5 kbp of a PCG were included. The PCG body from Transcription Start Site (TSS) to 
Transcription End Site (TES) was scaled for each PCG to fit in the same width. 
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Figure 5.10. Methylation pattern around Transposable Elements (TEs) in barley. The 
methylation patterns for the three different cytosine contexts A: CG methylation, B: CHG 
methylation and C: CHH methylation. All cytosine reads for the relevant context that were 
within 1.5 kbp of a TE were included. The TE body from TE start to TE end was scaled for 
each TE to fit in the same width.  
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transposon, order: terminal inverted repeat, superfamily: unknown) and RSX (class: 

retrotransposon, order: non-long terminal repeat, superfamily: unknown). These two 

groupings displayed significant spikes in the methylation levels in the body of the 

TE, even with a reasonable number of average samples per base of 3864 and 964 for 

DTX and RSX respectively. 

 

Figure 5.11. Methylation pattern in CHH context cytosines around two selected TE classes 

in barley. The two TE classes were selected for the highly localised, relatively high 
concentration of methylation. 
 

Individual methylation sites were grouped by cytosine context and 100 bp windows 

throughout the genome. Statistically significant differentially methylated 100 bp 

windows (p-adjusted < 0.05, |methylation difference| > 10%) were found and are 

summarised in Table 5.3. These differentially methylated sites were compared with 

the annotated genome and transposable elements to find the percentage of genomic 

features associated with differentially methylated sites as shown in Figure 5.12, with 

all differentially methylated genes found being listed in Appendix A (Table A.9.10, 
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representation of different genomic features, by random sampling of 100,000 sites 

that had been included in the mapped reduced-representation bisulphite reads was 

also determined. Chi squared analysis was performed comparing the observed count 

of genes associated with differential methylation against the expected count from 

random sampling of mapped regions. The result is shown in Table 5.4 with PCG 

being overrepresented in differentially methylated sites in all leaf tissue and only in 

CHH context in root tissue.  

 
Table 5.3. Differentially methylated 100 bp windowed reads mapping to sites in the 

proximity of Protein Coding Genes (PCGs). 

 Leaf Root 

CG CHG CHH CG CHG CHH 

Number of 100 bp windows 
differentially methylated 

331 639 54,708 3,416 1,823 60,805 

Number of 100 bp windows 
differentially methylated in 
the region of PCGs 

84 69 5,587 247 143 6,295 

Number of unique PCGs 
associated with differential 
methylation 

78 67 4,337 238 134 4,704 

 

Table 5.4. Chi squared analysis of Protein Coding Gene (PCG) count associated with 

differential methylation against random sampling of the bisulphite-mapped genome to 

determine overrepresentation. 

Tissue Leaf Root 

Cytosine context CG CHG CHH CG CHG CHH 

PCG 
overrepresentation  
p-value 

< 0.001 < 0.001 < 0.001 0.26 0.058 < 0.001 
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Figure 5.12. Percentage of differentially methylated sites in barley under 100 mM salinity 

stress associated with genomic functions based on cytosine context and tissue type. 
Cytosine methylation grouped by CG, CHG and CHH context. Transposable elements were 
categorised according to the standard established by Wicker et al. (2007). The same 
annotation was performed with random sampling of mapped locations of bisulphite reads to 
compare targeted genomic features. Gene + TE implies both a gene and a TE were targeted 
by this differentially methylated site, Gene - TE implies only a gene was targeted. 
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Figure 5.13. Frequencies of significantly differentially methylation locations relative to the 

Transcription Start Site (TSS) in barley in salt treated plants vs control. The TSS is at 0 on 
the x-axis with negative numbers being before the TSS and positive within the transcribed 
area. A, Leaf tissue, CG context. B, Root tissue, CG context. C, Leaf tissue, CHG context. D, 
Root tissue, CHG context. E, Leaf tissue, CHH context. F, Root tissue, CHH context. 
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5.4 Discussion 

5.4.1 DNA extraction 

Multiple methods for DNA extraction were explored (data not shown) before settling 

on the Qiagen DNeasy kit with some customised improvements for the specific plant 

tissue, described in section 5.2.1. The other methods that were explored included a 

CTAB protocol (Porebski et al. 1997), a phenol/chloroform/isoamyl alcohol protocol 

(Weining & Langridge 1991), and a Trizol method that was able to extract and 

separate DNA and RNA ǻas per the manufacturerȂs instructions). The Trizol protocol 

resulted in denatured DNA which was not useful for downstream restriction 

digestion, and the other protocols did not produce DNA yields as high as the method 

described in section 5.2.1. 

 

5.4.2 EpiGBS 

The most significant and important deviation from the published epiGBS method 

was the concentration of adapters for ligation. Experimentation demonstrated that 

the amount of adapters for the ligation stage needed to be 12 ng of each Ba and Co 

adapter, while the method from van Gurp et al. (2016) required 1.2 ng. It is possible 

that the difference in the DNA extraction technique may have had some impact on 

the ligation stage. The van Gurp et al. (2016) paper used the Macherey-Nagel 

Nucleospin Plant II kit while the Qiagen DNeasy kit was used by us in this 

experiment. The epiGBS protocol had been further developed by van Gurp et al. 

(2016), after release of the paper, to use restriction enzymes NsiI and Csp6I with the 
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appropriately adjusted adapters. Apart from the extraction process, other reagents 

and kits were from the same manufacturers as van Gurp et al. (2016). Many 

individual changes were systematically made to resolve the adapter concentration 

issue, and along the way minor improvements were also made to the clean-up and 

size selection processes. 

 

An in-silico digest was performed to estimate the coverage with different size 

selection ranges. A size selection of epiGBS fragments from 380 bp to 560 bp which 

included the adapter sequence was chosen based on this in-silico digest. Most of the 

reads from the first sequence run were PCR duplicates with an average of each 

unique sequence read being represented about three times, as determined by the 

combination of barcodes, sequence and the six UMI bases. This suggests that the in-

silico digestion modelling was not particularly useful in determining the optimal 

epiGBS fragment size range. In the second sequence run with a wider size selection 

from approximately 250 bp to 1000 bp, the number of PCR duplicate reads decreased 

such that each unique sequence was represented 1.9 times on average. 

 

The epiGBS library was sent to NovoGene Co. Ltd. for sequencing. For the first 

sequence run the requested PhiX content was 30% based on the advice from 

NovoGene based upon previous bisulphite sequencing they had performed. The 

actual PhiX content in reads was 42%, however the large number of PCR duplicate 

reads meant that a lower PhiX spike-in would not have resulted in many more useful 
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reads as PCR duplicates are only useful once in the bioinformatics pipeline. For the 

second sequence run a PhiX content of 20% was requested and the result was 22% of 

reads mapping to PhiX. The lower PhiX concentration was used after private 

correspondence with Neils Wagemaker stating that they had acceptable read quality 

when PhiX was as low as 8% (Wagemaker 2018). PhiX is added to prevent an 

excessive imbalance in C and G sensing chemistry relative to A & T in the sequencing 

machine, which would cause read quality degradation at the end of reads (Kircher et 

al. 2009). A novel alternative developed by (Suzuki et al. 2018) uses a known library 

with a high GC content to balance out the reads, with fewer reads being assigned to 

the spike-in library, however NovoGene did not have access to such a library. 

 

There was a noticeable decrease in reads that used the Ba4 ligated adapter barcode 

(for barcode designations see Table A.9.9). The cause for this is unknown, the 

concentration of the adapter may have been incorrect or there may have been an 

issue with this particular adapter that caused it to function less efficiently. 

 

The bisulphite conversion rate was 94.2% which is noticeably less than the 99.5% 

claimed conversion rate of the EZ DNA bisulphite conversion kit (Zymo 2020) and 

other common expected conversion rates of 98.7% to 99.9% (Holmes et al. 2014). The 

reason for this low conversion rate is not known. This would have an impact on the 

accuracy of the methylation information. It causes a small over-reporting in global 

methylation, under-reporting in global non-methylation, and increasing the noise in 
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individual un-methylated reads. The error rate of methylated cytosines being 

incorrectly converted is not determined by the epiGBS protocol, but this error will 

also be a source of noise as it has been found to be 2.7% in the EZ DNA bisulphite 

conversion kit (Holmes et al. 2014). 

 

5.4.3 Bioinformatics 

The bioinformatics pipeline for the epiGBS method provided in the github repository 

(https://github.com/thomasvangurp/epiGBS) contains multiple errors. Some of the 

errors could be corrected with modifications to the poorly documented code. The 

most significant error in the pipeline was that PCR duplicates were found but not 

flagged or removed before further processing. Consequently, the library generated 

using this pipeline contained many PCR duplicates. They needed to be removed 

before running the epiGBS bioinformatics pipeline, and a custom written cython & 

python code performed this function.  

 

Errors were found in the epiGBS bioinformatics program demultiplex.py that caused 

almost all Crick reads to be discarded unless read errors were permitted in the 

barcode and restriction enzyme portion of the read. The errors in the epiGBS 

pipeline, combined with a lack of assistance from the author for overcoming many 

issues raised on the github repository from multiple sources, created distrust for the 

validity of information from that epiGBS bioinformatics pipeline. The current 
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literature suggests that this is not a commonly used bioinformatics pipeline, despite 

being cited in review articles.  

 

A well established and frequently used program for mapping bisulphite sequences 

and performing methylation calls is Bismark (Krueger & Andrews 2011). The 

Bismark program is not able to accept reads produced by the epiGBS protocol. To use 

in this study, modifications to the reads were required before using Bismark. The 

sequence fastq files needed to be modified and processed in two batches with aligned 

(overlap between the two read strands) and unaligned reads (no overlap) separately. 

The Bismark bioinformatics protocol is well cited and utilised. This provided the 

necessary confidence to continue with the analysis of the sequence data obtained in 

this research. 

 

The epiGBS pipeline uses the splice aware aligner STAR (Dobin et al. 2013). It is 

possible to choose variables such that read splicing is decreased, but splicing is not 

completely removed, and some reads will be mapped as though there is a splice site. 

Splicing is only relevant to mRNA and not DNA methylation information. This only 

affected 54,002 reads out of the 126,252,514 reads that were mapped (0.04%). This 

error occurs due to the use of an inappropriate aligner, but the error is extremely 

small. Bismark uses the Bowtie2 sequence aligner which does not generate this error. 

While the Bowtie2 sequence aligner is slower than the STAR splice-aware sequence 

aligner (when comparing with the same number of CPU (Central Processing Unit) 
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cores), the entire Bismark pipeline is considerably faster than the epiGBS pipeline. 

Bismark is able to make use of multiple CPUs through the entire process. Much of 

the epiGBS pipeline runs in python or pypy with only a single CPU in use and as a 

result is comparatively slow. In the end, the entire bioinformatics pipeline was re-

written such that no part of the epiGBS pipeline was used in the generation of the 

final results. 

 

Bismark was not able to import reads generated using the epiGBS protocol, and so 

custom code was written to modify the data set so it could be used in the Bismark 

bioinformatics pipeline. Bismark has a PCR duplicate removal function, however this 

is not compatible with the epiGBS method which uses UMI bases for identification of 

duplicates. The PCR duplicates were removed by the custom written program 

dedup.py (section 10.17).  

 

The Bismark pipeline is not capable of appropriately recognising short-insert reads 

from the epiGBS protocol (Figure 5.14) so PEAR (Paired-End reAd mergeR) (Zhang 

et al. 2014) was used to convert overlapping paired reads into merged reads and 

leave reads that do not have overlap unaltered. Bismark could then be used to 

perform two rounds of bisulphite sequence information extraction, with merged 

reads and un-merged reads, and with the methylation calling information being 

combined later.  
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Figure 5.14. Bismark processing of short insert reads by removal of adapters. A. An 
example read expected by Bismark which can be dealt with by strict removal of adapters. B. 
The read after the strict adapter removal. C. An example read from the epiGBS protocol 
where the green epiGBS section represents the single unmethylated cytosine, 3 base UMI, 
and barcode between the sequence read and the adapter. D. The read from C after adapter 
removal by Bismark showing why pre-processing before the use of Bismark is required. E. 
Read merging with the use of PEAR (Paired End reAd mergeR), which can then be used by 
Bismark as a single ended read. 
 

Cytosine methylation information is categorised by the context CG, CHG or CHH 

which exhibit different average levels throughout the genome (Law & Jacobsen 

2010). The pattern of cytosine methylation in Figure 5.7 shows the relatively high 

levels of CG methylation, moderate levels of CHG methylation and low levels of 

CHH methylation. The pattern with higher methylation levels near centromeric 

regions of chromosomes and lower levels toward the chromosome ends, is also 

clearly visible in CG and CHG contexts. Cytosines in CHH contexts had very low 

levels of methylation. These patterns have been observed previously in various plant 

species. Arabidopsis thaliana has broad similarities to this data set with CG contexts 

showing the highest average methylation, followed by CHG then CHH showing the 
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lowest levels (Cokus et al. 2008). While A. thaliana also shows higher methylation 

levels around the centromere and lower at the chromosome ends, the decrease in 

methylation around the centromere was more pronounced than was observed in 

barley. The high average methylation levels in barley in CG and CHG contexts 

compared with A. thaliana are most likely related to higher quantities of TEs in 

barley, which has previously been shown to correlate with higher methylation levels 

(Hirsch & Springer 2017).  

 

The PCA plots for 100 bp windowed methylation levels in different contexts shown 

in Figure 5.8 shows clear separation between leaf and root tissue in CG and CHG 

contexts, similar to reported methylation differentiation patterns in barley leaf and 

root tissue (Konate et al. 2020). The CHH context PCA separation is not as distinct, 

which could be related to the lower levels of methylation associated with this 

context. A greater number of reads per cytosine may be required to separate the 

tissue groups more clearly when comparing small differences in methylation 

percentage. The fourth sample from each treatment or tissue group had noticeably 

lower read numbers (Figure 5.6) and similarly may have contributed to the 

divergence in PCA from others in their group. This does not appear to have a 

noticeable impact on downstream processing. All bioinformatics tools used were also 

run with only three replicates per sample, excluding the fourth sample in each group 

which had lower read quantities, with similar outcomes to using all four samples per 

group. Overall the PCAs are similar to what would be expected based on 
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methylation differences in different tissue groups. 

 

The methylation pattern around genes as shown in Figure 5.9 can be compared with 

prior research in different plants such as Arabidopsis thaliana (Figure A.9.5), Oryza 

sativa (rice) (Figure A.9.6, Figure A.9.7) and Manihot esculenta (cassava) (Figure A.9.8) 

(Cokus et al. 2008; Li et al. 2012; Garg et al. 2015; Wang et al. 2015). Of the mentioned 

species for comparison, the closest relative to barley is O. sativa. The pattern of 

methylation around the gene in a CG context has most similarities with rice with the 

lowest methylation level at the TSS and second lowest point at the TES, and 

relatively high levels in other regions. The average levels of methylation in CG 

context around the gene in barley were higher than rice, presumably due to the 

higher percentage of transposable elements in the barley genome. A generally similar 

pattern is observed in A. thaliana and cassava.  

 

The CHG context methylation pattern around genes in barley is also quite similar to 

rice, with a slightly lower level at the TES than the TSS in barley, but a lower level at 

the TSS than the TES in rice. Again average methylation levels are higher in barley. 

There are some similarities here too with A. thaliana and cassava. Methylation in the 

CHH context from this research produced a pattern where the methylation rose from 

upstream toward the TSS before dropping to a low level in the gene body. This same 

pattern is observed in rice, but is quite different to patterns observed in A. thaliana 

and cassava which look more similar to a low level CHG methylation than CHH 
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methylation found in barley. It is possible that there was an evolutionary split in the 

function of CHH methylation around genes. Barley and rice are both monocot 

grasses while A. thaliana and cassava are dicots. Much more information would be 

needed to establish if this methylation pattern is related to the monocot/dicot 

evolutionary divergence, or perhaps it is something unusual to grasses, or any other 

evolutionary split. As the methylomes and annotations of more genomes become 

available, this question should be able to be answered. 

 

The methylation pattern around transposable elements in barley is shown in Figure 

5.10. The patterns of methylation from CG and CHG context cytosines are similar to 

patterns in rice, A. thaliana and cassava, but with different average methylation 

levels. The notable difference is observed in CHH context methylation around 

transposable elements. In barley the CHH context methylation increases in DNA 

transposons, but in retrotransposons there is a slight rise either side of the TE and 

slightly lower levels in the TE than outside of the TE. The retrotransposons dominate 

the TEs in barley; so when looking at all TEs, the pattern is similar to the 

retrotransposon pattern. Rice, A. thaliana and cassava all adopt the pattern similar to 

DNA transposons in barley in CHH context, but different to retrotransposons in 

barley in the CHH context. 

 

The confirmation of the methylation patterns with existing research indicates the 

success of the epiGBS method along with the custom made Bismark-based 
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bioinformatics pipeline. If the bioinformatics pipeline had not operated correctly, 

then the emergence of these patterns would be extremely unlikely. 

 

The observed level of occurrence of differentially methylated regions corresponding 

to PCGs (Figure 5.12 and Table 5.4) indicates that all cytosine contexts are targeted 

for epigenetic modification in leaves under salt stress, while only in the CHH context 

in root tissue. Leaf tissue CG context differentially methylated regions were targeting 

PCGs at 3.7 times the rate that would be expected of random sampling of bisulphite 

mapped reads. However, root tissue CG context was not significantly different from 

the random sampling when targeting PCGs. It is not clear why there would be such a 

difference between root and leaf tissue. Possible explanations are that the reduced 

representation nature of epiGBS protocol means that not all PCGs are represented, 

and possibly by chance the PCGs important for leaf tissue methylation changes 

happened to be over-represented in restriction digest and size selection. It is possible 

that many PCGs need to be controlled via methylation changes in leaf tissue and 

only relatively few in root tissue. There were only 331 leaf tissue CG context 

differentially methylated sites observed compared to much higher numbers for other 

cytosine contexts (Table 5.3) which may be a factor in explaining this observation, 

where a smaller sample size could create a distortion. Prior research has shown that 

environmental stress results in more methylation changes in CG contexts than non- 

CG contexts (Dubin et al. 2015). 
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The position of differential methylation relative to the Transcription Start Site (TSS) 

shown in Figure 5.13 shows a very weak relationship between the TSS and location 

of differentially methylated sites in CG and CHG contexts. There is a much clearer 

concentration of differentially methylated sites about 200 bp upstream of the TSS in 

CHH methylation and fewer changes in methylation near the start and downstream 

of the transcribed region. The pattern may be more clearly visible in CHH than other 

contexts because of the much larger number of differentially methylated sites that 

could contribute to the frequency analysis plot. Prior research by Wicker et al. (2017) 

found that CHH methylation experienced the greatest methylation levels compared 

with elsewhere in the genome within 1.5 kbp upstream of the TSS, and CG and CHG 

experienced smaller elevated levels. These methylation levels were associated with 

TEs in promoter regions. 

 

Some of the differentially methylated sites identified were associated with PCGs 

without TEs, and some associated both with PCGs and TEs. The selection criterion 

for being classified as associated with a PCG was the differential methylation needed 

to be overlapping or be within 1.5 kbp of the PCG, but TEs needed to be directly 

overlapping the differentially methylated window. 

 

It should not be surprising that most of the differential methylation in salt treated 

plants is related to TEs. Mobile elements and repeat structures make up 84% of the 

barley genome (IBGSC 2012). Prior research has indicated the importance of DNA 
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methylation and transposable elements in stress response (McCue et al. 2012; Mao et 

al. 2015; Zhang et al. 2018), with TE families targeting specific functions rather than 

previous concepts of TEs ending up in locations where the minimum disruptions to 

genomic structure occur (Wicker et al. 2017). 

 

Possibly the most useful future direction for the research presented in this chapter 

would be to further develop the bioinformatics pipeline so that other researchers can 

make use of the epiGBS protocol without the need to deal with the pitfalls in the 

existing epiGBS bioinformatics pipeline. This would require modifications to the 

code to allow different samples, barcodes and restriction enzymes. The many 

individual custom made programs would need to be simplified so that the users only 

need to interact with one or two scripts which then pass commands to the 

appropriate programs. Good documentation and code comments are essential for 

being able to be utilised by other researchers. The current documentation for the 

epiGBS bioinformatics pipeline is almost non-existent, and combined with the lack of 

support via the github repository when issues are discovered, does not make this 

method useful. There are benefits to this protocol over other methods, with the UMI 

bases able to distinguish PCR duplicates and the unmethylated cytosine in the 

adapter providing useful information on the conversion rate. It is unfortunate that 

this useful protocol was let down by the epiGBS bioinformatics pipeline. A new 

pipeline has been created, and will be of use to future research that makes use of this 
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particular reduced representation bisulphite sequencing method for DNA 

methylation studies.  
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6 Associations between small RNA, DNA methylation, and 

mRNA changes in barley under salinity stress 

6.1 Introduction 

The regulation of gene expression is complex, with many counteracting signals 

modulating messenger RNA (mRNA) production, resulting in a unique population 

of transcripts in any given cell type. DNA methylation has been recognised as a 

method for suppression of mRNA production in eukaryotes, but the link between the 

two is not trivial (Bewick & Schmitz 2017). While there are instances where an 

increase in DNA methylation of a promoter region results in decreased production of 

the associated mRNA (Berdasco et al. 2008), there are also instances where increased 

methylation of other sites in the gene body results in similar decreased production of 

mRNA (Anastasiadi et al. 2018) but also instances of increased production of mRNA 

(Shibuya et al. 2009).  

 

The RNA directed DNA Methylation (RdDM) pathway uses complementarity 

between a 24 nt small interfering RNA (siRNA) and a single stranded RNA transcript 

to cause DNA methylation of a cytosine in the region (Matzke & Mosher 2014). This 

pathway controls de-novo methylation of all sequence contexts (CG, CHG, CHH as 

defined in section 5.1) (Williams & Gehring 2017). Maintenance of the symmetric CG 

context methylation after DNA replication is performed by DNA 

METHYLTRANSFERASE 1 (MET1) (Bewick & Schmitz 2017). Maintenance of CHG 
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and CHH sequence context methylation is performed by CHROMOMETHYLASE 3 

(CMT3) and CHROMOMETHYLASE 2 (CMT2) respectively, in conjunction with 

DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), where the feedback 

loop is based on the state of histone methylation at H3K9 (Zemach et al. 2013; Stroud 

et al. 2014). These processes were described in greater detail in section 1.2.4.  

 

While 24 nt siRNA targets DNA methylation, there is also a microRNA (miRNA) 

class which can range in size from 23 to 27 nt which also targets DNA methylation. 

These small RNAs (sRNA) were discovered relatively recently and are classified as 

miRNA due to the production involving a hairpin-loop structure forming from a 

single stranded RNA, which is then processed to form a miRNA (Teotia et al. 2017). 

These miRNA are significantly less abundant in quantity than 24 nt siRNA (Jia et al. 

2011), and in some prior research the 23 and 24 nt sRNAs had been grouped together 

(Qi et al. 2006; Kurihara et al. 2008; Groszmann et al. 2011; Blevins et al. 2015) as they 

both caused DNA methylation via the RdDM pathway (Jia et al. 2011). In this 

chapter, the 23 nt sRNA is referred to as miRNA, 24 nt sRNA is referred to as siRNA 

since siRNA makes up a significant majority of 24 nt sRNA reads, and the grouping 

of the two is referred to as 23/24 nt sRNA. Changes in the expression of 23/24 nt 

sRNAs has previously been linked to DNA methylation, which targets genes and 

Transposable Elements (TEs) and modulates expression of these targets (Fultz et al. 

2015). 
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Transposable elements are known to play an important role in stress response (Negi 

et al. 2016) and are capable of moving or copying their sequence and inserting in 

adjacent or distal regions of the genome (Slotkin et al. 2012). There are two main 

classes of TEs, the DNA transposon which either moves or replicates as a DNA 

intermediate, and the retrotransposon which replicates via an RNA intermediate 

(Wicker et al. 2007). Transposable Elements make up a sizable portion of the barley 

genome, with 84% of the genome sequence being TEs or non-functional sequences 

related to TEs (IBGSC 2012). Transposable Elements played an important role in this 

research with changes in methylation targeting TEs being one of the main foci of 

discussion. 

 

6.1.1 Hypothesis 

The hypothesis under test is that if gene expression in barley under salinity stress is 

at least partially controlled by epigenetic mechanisms, then exposing the plants to 

salinity stress will result in changes in sRNA and DNA methylation associated with 

gene expression. With the expectation being that the change in 23/24 nt sRNA 

expression would correlate with changes in DNA methylation and that in turn would 

inversely correlate with mRNA expression. 

 

6.2 Methods 

The short RNA sequences that were found and described in section 4.3 were 

separated by size with the custom python script SmallRNA_size_grouping.py 
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(section 10.6). Bowtie2 (Langmead & Salzberg 2012) was used to map 23 nt miRNA 

and 24 nt siRNA reads against the ensemble reference genome for Hordeum vulgare, 

IBSC v2.45 (Mascher et al. 2017). Information from multimapped reads was 

preserved. Mapped reads were assigned to 100 bp windows throughout the genome 

with the custom python script sRNA_windowing.py (section 10.7). If a read was 

mapped to multiple locations then the single read was added to the relevant 

windows as a fraction of the number of locations it mapped to. For example, if a read 

was mapped to five locations then 0.2 would be added to each 100 bp window that 

the read mapped to. This was done separately for 23 nt miRNA, 24 nt siRNA, and 

also by combining 23 and 24 nt sRNA reads (referred to as 23/24 nt sRNA). A custom 

R script windowed_sRNA_ttests.R (section 10.8), performed t-tests for each 

windowed location that had at least three biological samples with non-zero reads 

comparing control to salt treated plants. Adjusted p-values were determined using 

the custom R script ttests_to_adjusted_p.R (section 10.9), which utilises the R library 

qvalue (Dabney et al. 2010). Statistically significant differential expression in 23 nt 

miRNA, 24 nt siRNA and differential methylation was binned in 1 Mbp windows to 

generate a map comparing changes in expression of the two data sets across the 

genome with the R script chromosome_mapping_siRNA_meth.R (section 10.33). The 

custom python script sRNA_methylation_co-location.py (section 10.34), found co-

locations of statistically significant differences in sRNA mapped to 100 bp windows 

of the genome with the differential methylation 100 bp window mapped data set  
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which had been created in section 5.3. Co-locations of differentially methylated sites 

and differential sRNA expression were determined by the custom R script 

plot_barley_sRNA_meth_co-locations.R (section 10.35). The genomic functions of the 

differentially methylated sites had already been found in section 5.3 and the sRNA 

sites co-located with methylation were recorded. Annotation was performed by the 

custom R script annotate_co-located_sRNA_methylation.R (section 10.36). The plots 

comparing significantly different methylation levels with significantly different 

mRNA expression levels were created with the custom R script methylation_co-

location_mRNA.R (section 10.37). This script also categorised the methylation targets 

of protein coding genes (e.g. upstream, first intron, etc.), along with information 

about TEs that may have also been targeted by the change in methylation.  

 

6.3 Results 

6.3.1 DNA methylation and 23/24 nt sRNA  

Both methylation and 23/24 nt sRNA were mapped to 100 bp windows across the 

barley genome. Statistically significant differences between control and salt treated 

plants were classified as having an adjusted p-value of less than 0.05. A graphical 

representation of the quantity of significant differentially expressed 23/24 nt sRNA 

and differential methylation in CHH, CG and CHG contexts across the whole 

genome is shown in Figure 6.1, Figure A.9.9 and Figure A.9.10 respectively. 
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Figure 6.1. Quantity of targets of differentially expressed 23 nt miRNA, 24 nt siRNA, and 

differential methylation CHH sites mapped to 1 Mbp windows in barley under salt stress. 
Differential expression of 23 nt miRNA, 24 nt siRNA, and CHH context differential 
methylation was determined by mapping reads to 100 bp windows in the barley reference 
genome and finding differences between salt treated and control with adjusted p-values of 
less than 0.05. The number of differentially expressed 23/24 nt siRNA and CHH context 
differentially methylated sites were counted for each 1 Mbp window in the genome. 
Maximum count values for 23 nt miRNA was 24, for 24 nt siRNA was 90 and DNA 
methylation was 30 differentially methylated 100 bp windows per 1 Mbp genomic window. 
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The differential methylation and sRNA data sets were compared for co-locations. 

Only the methylation data set for the CHH context contained enough data points 

useful for analysis. Figure 6.2 shows the distance between a differentially methylated 

100 bp window and a differentially expressed set of 23/24 nt sRNAs, and how the 

differential expression profile changes with proximity. The number of locations 

where the differential methylation was within two 100 bp windows of the 

differentially expressed 23/24 nt sRNA is noticeably greater than larger distances in 

both leaf and root tissue. The close proximity of differentially methylated sites and 

differential expression of 23/24 sRNA throughout the genome indicates that 23/24 nt 

sRNA and DNA methylation data sets are related. 

 

The genomic functions associated with sites where the differential methylation co-

located with differential 23/24 nt sRNA expression within two 100 bp windows is 

shown in Figure 6.3. A list of all PCGs at sites associated with the co-location of 23/24 

nt sRNA and DNA methylation is shown in Table A.9.16 and Table A.9.17, for leaf 

and root tissue respectively. There is a noticeable increase of 23/24 nt sRNAs co-

located with methylation in PCGs when compared with random sampling of epiGBS 

read mapping locations as shown in Table 6.1. Chi squared analysis showed that 

genes were significantly over-represented relative to random sampling of mapped 

methylation reads with each combination in Table 6.1 resulting in p-values of less 

than 0.001. 
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Figure 6.2. Proximity of differentially methylated sites and targets of differentially 

expressed sRNA in barley under salinity stress. A, Leaf tissue; B, Root tissue. Count of 
differentially expressed siRNA in 100 bp genomic windows is relative to 100 bp windowed 
differentially methylated sites. Counts are normalised relative to the maximum count of 
differentially expressed siRNA per window distance. Small interfering RNA is broken in to 
the categories of 23 nt miRNA, 24 nt siRNA, and 23/24 nt sRNA which includes both 23 and 
24 nt sRNAs.  
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Figure 6.3. Genomic features of methylated sites where the differential methylation co-

locates with differential 23/24 nt sRNA expression within two 100 bp windows. 
Transposable elements (TEs) were categorised according to the standard established by 
Wicker et al. (2007). The random sampling method described in section 5.2.5 is shown for 
comparison. Methylation is classified as targeting a Protein Coding Gene (PCG) if it is 
between 1.5 kbp upstream of the transcription start site and 1.5 kbp downstream of the 
transcription end site of a PCG. Methylation is classified as targeting a TE if the differential 
methylation is inside the transcribed region of the TE. Gene + TE is where both a PCG and a 
TE were targeted, Gene - TE is where a PCG was targeted without a TE being targeted, and 
None is where none of the items listed in the legend were targeted.  
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Table 6.1. Number of Protein Coding Gene (PCG) sites targeted by differential 

methylation co-located with sRNA within two 100 bp genomic windows in barley under 

salt stress. Methylation is classified as targeting a PCG if it is between 1.5 kbp upstream of 
the transcription start site and 1.5 kbp downstream of the transcription end site. Methylation 
is classified as also targeting a TE if the differential methylation is between the start and end 
of the TE. Each cell contains the total count of PCG sites targeted by sRNAs (a single PCG 
may have more than one site targeted), the percentage of sRNA target sites associated with a 
PCG in parenthesis, and the fold change that targets are over-represented, relative to random 
sampling of the epiGBS mapped sites. 
Tissue and sRNA 
length 

sRNA targeting 
CHH methylation of 

PCGs and TEs 

sRNA targeting 
CHH methylation 
of PCGs, not TEs 

sRNA targeting CHH 
methylation of any 

PCG 

Total sRNA 
targeting CHH 

methylation 

Leaf, 23 nt miRNA 445 (22.3%) [x 2.9] 236 (11.8%) [x 8.2] 681 (34.1%) [x 5.0] 1995 
Leaf, 24 nt siRNA 717 (12.6%) [x 2.0] 463 (8.2%) [x 4.6] 1180 (20.8%) [x 3.1] 5668 
Leaf, 23/24nt sRNA 713 (11.8%) [x 2.0] 497 (8.3%) [x 4.3] 1210 (20.1%) [x 3.0] 6020 
Root, 23 nt miRNA 92 (27.5%) [x 4.0] 55 (16.5%) [x 10.1] 147 (44.0%) [x 6.5] 334 
Root, 24 nt siRNA 268 (21.8%) [x 3.3] 166 (13.5%) [x 8.0] 434 (35.2%) [x 5.2] 1232 
Root, 23/24nt sRNA 307 (21.9%) [x 3.6] 206 (14.7%) [x 8.0] 513 (36.6%) [x 5.4] 1403 
Random sampling (2.7%) [x 1.0] (4.1%) [x 1.0] (6.8%) [x 1.0] (100%) 

 
Some transposable elements were highly over-represented when compared with 

random sampling of methylation mapped sites, others notably under-represented as 

shown in Table 6.2. Some of the highest levels of enrichment of TE targets were 

found in root tissue, with 23 nt miRNA differential expression co-located with 

methylation that corresponded to the genomic features of PCGs with a TE classified 

as DTH (class: DNA transposon, order: terminal inverted repeat; superfamily: 

Harbinger), or without a gene but a TE classified as DTX (class: DNA transposon, 

order: terminal inverted repeat; superfamily: unknown) with 91.2 and 72.0 fold 

increase above random sampling respectively. The targeting of most TEs was similar 

in the presence or absence of a PCG, with the exception of RLC, RLG and RLX (class: 

retrotransposon; order: long terminal repeat; superfamily: Copia, Gypsy or unknown, 

respectively). These groups were underrepresented when outside a PCG region and 

overrepresented when inside a PCG region. 
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Table 6.2. Fold difference of Protein Coding Genes (PCGs) and Transposable Element 

(TE) superfamilies targeted by differential methylation co-located with sRNA within two 

100 bp windows when compared with random sampling. Methylation is classified as 
targeting a TE if the differential methylation is inside the TE, and targeting a PCG if it is 
between 1.5 kbp upstream of the transcription start site and 1.5 kbp downstream of the 
transcription end site. Classification of TEs is done according to the standard established by 
Wicker et al. (2007). Only TE classifications where random sampling was greater than 0.01% 
are shown. 
 Differential methylation 

target of siRNA 

  

  

Fold difference relative to random sampling 

Leaf Root 

23 nt 24 nt 23/24 nt 23 nt 24 nt 23/24 nt 

PCG without TE 2.9 2.0 2.0 4.0 3.3 3.6 

PCG with TE 8.2 4.6 4.3 10.1 8.0 8.0 

PCG with or without TE 5.0 3.1 3.0 6.5 5.2 5.4 

DTC without PCG 1.3 2.0 2.1 1.0 1.3 1.3 

DTH without PCG 8.7 8.2 8.0 16.0 14.1 11.4 

DTM without PCG 9.2 9.7 9.3 2.2 9.0 9.4 

DTT without PCG 27.8 10.6 11.5 13.8 15.0 16.4 

DTX without PCG 48.2 19.3 18.2 72.0 47.7 41.9 

DXX without PCG 25.4 12.8 12.9 26.6 24.4 24.6 

RIX without PCG 13.7 9.8 9.5 3.8 12.4 11.8 

RLC without PCG 0.3 0.6 0.6 0.2 0.3 0.3 

RLG without PCG 0.2 0.4 0.4 0.2 0.2 0.2 

RLX without PCG 0.4 0.7 0.7 0.5 0.5 0.5 

RSX without PCG 33.9 19.9 16.9 16.9 27.5 24.1 

XXX without PCG 16.3 7.8 7.7 9.9 15.1 14.7 

DTC with PCG 4.5 4.6 4.2 8.9 6.5 5.0 

DTH with PCG 30.5 10.7 11.0 91.2 33.0 32.6 

DTM with PCG 4.5 6.3 6.0 8.9 24.2 21.3 

DTT with PCG 40.7 44.8 38.8 30.4 49.4 43.4 

DTX with PCG 61.8 32.0 31.3 21.7 47.1 41.3 

DXX with PCG 43.8 20.0 17.6 42.4 43.1 37.0 

RIX with PCG 20.5 10.3 8.8 40.9 30.1 30.6 

RLC with PCG 3.1 2.4 2.3 0.9 2.4 3.3 

RLG with PCG 3.6 1.8 1.8 4.9 2.8 3.8 

RLX with PCG 7.9 4.0 3.9 10.9 6.4 6.6 

RSX with PCG 44.5 17.9 19.0 38.0 61.8 63.3 

XXX with PCG 21.9 10.7 9.8 23.8 22.6 22.7 

DTC with or without PCG 1.5 2.1 2.2 1.4 1.6 1.5 

DTH with or without PCG 13.2 8.8 8.6 31.7 18.0 15.8 

DTM with or without PCG 8.3 9.1 8.6 3.5 12.0 11.8 

DTT with or without PCG 31.8 21.3 20.0 19.0 25.7 24.9 

DTX with or without PCG 51.9 22.7 21.7 58.4 47.5 41.7 

DXX with or without PCG 30.8 14.9 14.3 31.2 29.9 28.2 

RIX with or without PCG 15.4 10.0 9.3 12.9 16.7 16.4 

RLC with or without PCG 0.5 0.6 0.6 0.3 0.4 0.4 

RLG with or without PCG 0.2 0.5 0.5 0.3 0.2 0.3 

RLX with or without PCG 0.6 0.8 0.8 0.8 0.6 0.6 

RSX with or without PCG 37.2 19.3 17.5 23.4 38.0 36.2 

XXX with or without PCG 17.7 8.5 8.2 13.4 17.0 16.7 

None 1.3 1.2 1.2 0.8 1.1 1.0 
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6.3.2 Differential DNA methylation and mRNA differential expression 

Correlations between co-located differential DNA methylation and mRNA 

differential expression were determined and summarised in Table 6.3. In roots, 17 

differentially methylated sites in a CG context were associated with PCGs (both with 

and without TEs). Of these, 69% of differentially methylated sites across PCGs 

without TEs were inversely correlated with a change in gene expression (i.e. an 

increase in CG methylation corresponding with a decrease in gene expression or 

vice-versa). Seventy five percent of the differentially CG methylated sites spanning 

both PCGs and TEs, showed changes in gene expression correlated with differential 

methylation. Forty seven percent of the differentially methylated CHH sites in leaf 

tissue had differentially methylated sites that were inversely correlated with gene 

expression. No differences were observed between differentially CHH methylated 

genes with or without TEs. In roots, 55% of the differentially methylated CHH sites 

showed an inverse correlation between DNA methylation and gene expression levels 

(61% and 52% of differentially methylated CHH sites spanning only genes or genes 

and TEs respectively).  

 

Scatter plots were used to visualise the changes in mRNA expression and differential 

methylation, and are shown in Figure 6.4 and Figure 6.5. There were no significant 

correlations found when performing Pearson correlation tests on the various subsets 

shown in Figure 6.4 and Figure 6.5. All correlation p-values were greater than 0.21. 
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Table 6.3. Correlations between differential methylation and mRNA differential 

expression in different tissue and cytosine contexts in barley under salt stress.  Differential 
methylation determined by finding the average methylation state across 100 bp windows 
throughout the genome for each cytosine context and finding significant differences between 
control and salt treated plants. Methylation is defined as targeting Protein Coding Genes 
(PCGs) if the differential methylation is within 1.5 kbp of the transcribed region of the gene 
and targeting a TE if the differential methylation is within the TE. 
Methylation 
context and tissue 

Methylation 
targeting 

Methylation 
correlated with 

mRNA 

Methylation 
inversely 

correlated with 
mRNA 

Total 

CG Leaf Any PCG 5 (71%) 2 (29%) 7 
 PCG, not TEs 4 (67%) 2 (33%) 6 
 PCG and TEs 1 (100%) 0 (0%) 1 
CHG Leaf Any PCG 0 (0%) 1 (100%) 1 
 PCG, not TEs 0 0 0 
 PCG and TEs 0 (0%) 1 (100%) 1 
CHH Leaf Any PCG 199 (53%) 176 (47%) 375 
 PCG, not TEs 122 (53%) 107 (47%) 229 
 PCG and TEs 77 (53%) 69 (47%) 146 
CG Root Any PCG 7 (41%) 10 (59%) 17 
 PCG, not TEs 4 (31%) 9 (69%) 13 
 PCG and TEs 3 (75%) 1 (25%) 4 
CHG Root Any PCG 2 (33%) 4 (67%) 6 
 PCG, not TEs 2 (40%) 3 (60%) 5 
 PCG and TEs 0 (0%) 1 (100%) 1 
CHH Root Any PCG 33 (45%) 41 (55%) 74 
 PCG, not TEs 22 (48%) 24 (52%) 46 
 PCG and TEs 11 (39%) 17 (61%) 28 
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Figure 6.4. Scatter plot of differentially methylated CHH context sites associated with 

differentially expressed mRNA in barley under salinity stress. Tissue type and presence or 
absence of TE combinations: A. Leaf tissue, Differentially Expressed (DE) Protein Coding 
Genes (PCGs) with or without TEs; B. Root tissue, DE PCGs with or without TEs; C. Leaf 
tissue, DE PCGs without TEs; D. Root tissue, DE PCGs without TEs; E. Leaf tissue, DE PCGs 
and TEs targeted; F. Root tissue, DE PCGs and TEs targeted. PCG targeting is broken into 
upstream (blue, 1.5 kbp upstream to TSS), transcribed region (black, TSS to TES), and 
downstream (red, TES to 1.5 kbp downstream). Overlap between the differential methylation 
site and a TE is required to be classified as targeting a TE. 

Upstream      Transcribed region     Downstream 

A. Leaf tissue CHH methylation targeting PCGs, with or without TEs 

C. Leaf tissue CHH methylation targeting PCGs, without TEs 

E. Leaf tissue CHH methylation targeting PCGs, with TEs 

B. Root tissue CHH methylation targeting PCGs, with or without TEs 

D. Root tissue CHH methylation targeting PCGs, without TEs 

F. Root tissue CHH methylation targeting PCGs, with TEs 
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Figure 6.5. Scatter plot of differentially methylated CHH context sites associated with 

differentially expressed mRNA in barley under salinity stress. Tissue type and presence or 
absence of TE combinations: A. Leaf tissue, all Differentially Expressed (DE) Protein Coding 
Genes (PCGs) with or without TEs; B. Root tissue, all DE PCGs with or without TEs; C. Leaf 
tissue, DE PCGs without TEs; D. Root tissue, DE PCGs without TEs; E. Leaf tissue, DE PCGs 
and TEs targeted; F. Root tissue, DE PCGs and TEs targeted. PCG targeting is broken in to 
upstream (blue, 1.5 kbp upstream to TSS), first intron (dark grey), later introns (light grey), 
first exon (bright green), later exons (pale green) and downstream (red, TES to 1.5 kbp 
downstream). Direct overlap between the differential methylation site and a TE is required to 
be classified as targeting a TE. 

Upstream           Downstream           First intron           Later introns         First exon           Later exons 

A. Leaf tissue CHH methylation targeting PCGs, with or without TEs 

C. Leaf tissue CHH methylation targeting PCGs, without TEs 

E. Leaf tissue CHH methylation targeting PCGs, with TEs 

B. Root tissue CHH methylation targeting PCGs, with or without TEs 

D. Root tissue CHH methylation targeting PCGs, without TEs 

F. Root tissue CHH methylation targeting PCGs, with TEs 
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6.4 Discussion 

6.4.1 23/24 nt sRNA vs DNA methylation 

Patterns of differential expression in 23/24 nt sRNA and changes in DNA 

methylation were not obvious when looking at a genome wide scale (Figure 6.1). This 

was most likely due to the limited sampling of the genome for methylation state 

information which excluded a large number of sites, along with the limitations in 

multimapped reads which would generally be associated with TEs, further discussed 

in section 7.2.2. The density of differential expression in 23/24 nt sRNAs increased at 

the ends of chromosomes, but no similar pattern was observed in changes in DNA 

methylation at the chromosomal scale. A smaller scale observation is required to 

search for differential 23/24 nt sRNA expression around regions where methylation 

read information was available to observe correlations in these two sequence sets. 

 

Differentially expressed 23/24 nt sRNAs in barley under salinity stress were 

frequently found within 200 bp of a differentially methylated site as seen in Figure 

6.2. This indicates that the methylation and 23/24 nt sRNA were related by proximity. 

This was observed in both root and leaf tissue in CHH context methylation. Other 

methylation contexts also hinted at similar patterns, however the small amount of 

statistically significant differentially methylated sites in CG and CHG contexts was of 

limited analytical use. In root tissue the patterns for the proximal relationship 

between differential methylation and siRNA all followed a similar pattern for 23 nt 

miRNA, 24 nt siRNA and the combination of the two (23/24nt sRNA), where the 
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normalised count of differential methylation in combination with differentially 

expressed siRNA dropped rapidly from 100% when aligned to about 65% over a 500 

bp distance, and then decreased slowly to about 50% over a 5000 bp distance. This 

same pattern was observed in the differential expression of 23 nt miRNA with 

differential methylation in leaf tissue. The pattern for 24 nt siRNA and the 

combination of 23 nt and 24 nt sRNA was noticeably different in leaf tissue with 

much higher normalised counts. This may indicate that the 24 nt siRNA was 

involved in clustered targeting of genomic sites than the other sRNAs. It is possible 

that multiple 24 nt siRNAs in leaf tissue targeted multiple sequences over a region of 

thousands of base pairs to a higher degree than in root tissue. Changes in DNA 

methylation can be clustered, with changes frequently occurring over a region rather 

than individual cytosine bases (Gehring & Henikoff 2007). Alternatively it could be 

the result of the reduced representation bisulphite sequencing method creating 

biases in the sections of the genome that are sequenced in combination with different 

responses from different tissue. The amount of 23 nt miRNA reads was considerably 

less than 24 nt siRNA reads (Figure 4.1) and so the combination of 23 and 24 nt sRNA 

had a closer pattern to 24 nt siRNA alone. It is also possible that the lower number of 

23 nt miRNA reads than 24 nt siRNA reads, in combination with extra noise in root 

sRNA (discussed in section 4.4.3) meant that fewer statistically significant sRNA 

expression sites were observable than in leaf 24 nt siRNA. Some combination of these 

possibilities might be able to explain the differences seen when comparing the 

patterns of 23 nt and 24 nt sRNA in proximity to differential methylation in root and 
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leaf tissue. 

 

The genomic features of the methylated sites correlating with changes in 23/24 nt 

sRNA, shown in Figure 6.3, indicate a noticeable increase in siRNAs sharing 

homology with differentially methylated PCGs when compared with random 

sampling of the available sites. Both PCGs without TEs and PCGs with TEs were 

targeted by sRNAs much more than random sampling, with 23 nt miRNA targeting 

methylation of PCGs 5 times and 6.5 times the expectation from random sampling in 

leaf and root tissue respectively. The 24 nt siRNA also had targeted methylation of 

PCGs at a greater level than expected from random sampling, with 3.1 times and 5.2 

times in leaf and root tissue respectively. It is of interest that 23 nt miRNAs appear to 

target differentially methylated PCGs more strongly than 24 nt siRNA. Transposable 

elements appear to have been a greater target in 24 nt siRNA than 23 nt miRNA. This 

indicates that the 23 nt miRNA and 24 nt siRNA have different functions with 

relation to targeting PCGs and TEs.  

 

Transposable elements have been shown to play an important role in stress response 

in plants (Grandbastien 1998; Le et al. 2014; Makarevitch et al. 2015). The over-

representation of siRNA targeting PCGs with TEs as shown in Figure 6.3 is quite 

striking when compared with random sampling of methylation reads mapped to the 

genome. These differences are described in more detail with Table 6.2 and Table 

A.9.18. When siRNA targets PCGs and TEs at the same time, those sites are over-
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represented at a higher rate than sRNA targeting PCGs and not targeting TEs.  

 

In roots under salt stress, the TE classes most highly targeted by siRNAs were DTH 

(class: DNA transposon, order: terminal inverted repeat; superfamily: Harbinger) 

when it was also targeted with a PCG, and DTX (class: DNA transposon, order: 

terminal inverted repeat; superfamily: unknown) when it was targeted without a 

PCG (Table 6.2 and Table A.9.18). Both of these had the highest fold difference 

relative to random in the 23 nt miRNA targeted sites, with lower but still elevated 

levels in 24 nt siRNA targeted sites. A similar pattern for these TE classes was seen in 

leaf tissue with higher levels in 23 nt miRNA targeted sites than 24 nt siRNA targeted 

sites. This provides some confirmation of the difference in function between 23 nt 

miRNA and 24 nt siRNA, as previously reported (Teotia et al. 2017).  

 

The Harbinger superfamily of TEs is known to have autonomous TEs with all of the 

genes required for replication and movement throughout the genome, while also 

having a large number of Miniature Inverted repeat Transposable Elements (MITEs) 

in grasses (Bureau & Wessler 1994; Wicker et al. 2017). MITEs are much smaller than 

full TEs, and rely on some or all genes from functional TEs to mobilise. There are 

10,634 copies of autonomous and non-autonomous Harbinger TEs in the reference 

barley genome, with 25.7% of these being found within 5 kbp of genes, and 40% 

within 10 kbp of genes (Wicker et al. 2017). Many of the methylation reads that were 

mapped to Harbinger TEs would actually have been related to these MITEs due to the 
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large number of MITEs relative to fully functional TEs, and a significant proportion 

of these were in close proximity to genes as seen in Table 6.2.  

 

Most of the TEs were over-represented relative to random sampling in barley under 

salt stress with the clear exception of RLC (class: retrotransposon, order: long 

terminal repeat; superfamily: Copia), RLG (class: retrotransposon, order: long 

terminal repeat; superfamily: Gypsy) and RLX (class: retrotransposon, order: long 

terminal repeat; superfamily: unknown). These three groupings stood out with an 

underrepresentation when not also associated with a gene and mostly an 

overrepresentation when also associated with a gene. 

 

The Copia superfamily contains the most abundant family of TEs in the barley 

genome known as BARE1 (Wicker et al. 2017). This family of TEs is known to form 

virus-like particles (VLPs) (Chang et al. 2013). The transcripts from BARE1 can be 

differentially spliced which causes the formation of the VLPs and is known to be 

involved with stress response (Jääskeläinen et al. 2013). The Gypsy superfamily 

contains the four next most abundant families of TEs in the barley genome. Both 

Gypsy and Copia TEs are relatively evenly spread throughout the genome, but 

individual families of TEs have differing distribution patterns (Wicker et al. 2017). 

Research in Zea mays has shown the importance of RLG (Gypsy), RLC (Copia) and 

RLX (unknown) in stress response of cold, heat, salt and UV stress, where stress 

response activated genes were related to these TEs (Makarevitch et al. 2015). 
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Non-functional sequences associated with TEs account for 84% of the barley genome 

(IBGSC 2012). With such a huge portion of the genome allocated to TEs it is 

reasonable to expect that TEs provide some benefit. If TEs caused more harm than 

benefit to the host genome then individuals with mutations preventing the 

functioning of TEs would have an advantage over those without. Over evolutionary 

timescales, the TEs would decrease in number under those circumstances. 

Transposable Elements are known to play a beneficial role in plant stress response 

(McCue et al. 2012; Mao et al. 2015; Zhang et al. 2018), and with the high proportion 

of the genome related to TEs it would be reasonable to suggest that TEs are more 

beneficial than they are harmful to the survival and reproduction of barley. 

 

The Bismark bisulphite methylation calling program (Krueger & Andrews 2011) has 

limitations in that a read must be mapped to a single location in the genome for 

analysis. Multi-mapped reads cannot be processed without significant extra work 

which is discussed later in section 7.2.2. Transposable Elements are replicated in 

multiple locations throughout the genome. Combined with the fact that epiGBS 

sequence read sizes frequently spanned less than 1 kbp meant that many TEs could 

not be analysed. Of the epiGBS reads that were not filtered out for low quality or 

PCR duplication and could be mapped to the genome, only 42.7% were mapped to a 

single location, with 57.3% mapping to multiple locations and being discarded by 

Bismark. Generally, only reads of TEs that spanned across a TE boundary could be 

mapped to a single location. With a multi-mapping modification to Bismark, this 
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would massively increase the TE data set and enable the gathering of further 

information about the role that TEs play. 

 

The chromosomal pattern of changes in expressed 23 nt miRNA, 24 nt siRNAs and 

methylation in barley under salt stress is shown in Figure 6.1. A noticeable increase 

in differentially expressed 23/24 sRNAs is visible within about 30 Mbp of the ends of 

chromosomes. The same pattern is not observed in the differential methylation data 

set. Research by Mascher et al. (2017) demonstrated that genes, Miniature Inverted 

repeat Transposable Elements (MITEs) and Long Interspersed Nuclear Elements 

(LINEs) also were heavily concentrated at the ends of chromosomes. It is possible 

that many of the bisulphite reads of MITEs and/or LINEs were discarded due to 

multi-mapping and hence would not have shown up clearly in the mapped 

bisulphite reads in Figure 6.1. Improvements in how Bismark handles multi-mapped 

reads and how it copes with TEs could provide further information on why the 

methylation pattern does not also increase at the ends of chromosomes. 

 

6.4.2 DNA methylation vs mRNA expression 

Figure 6.4 and Figure 6.5 plots the differential methylation level and differential 

mRNA expression of salt treated plants relative to control plants. There are not any 

clear patterns observed when breaking the sites in to categories of upstream, 

downstream, first intron, other introns, first exon or other exons. Breaking down 

methylation that targets genes but not TEs or targeting both genes and TEs does not 
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help to show any clear patterns either. The grouping of śȂ Untranslated Region ǻUTRǼ 

and řȂ UTR was also tested, but did not yield any significant patterns (data not 

shown). Correlations were tested for different classes of TEs and how they were 

associated with differential methylation and mRNA differential expression. No 

statistically significant correlations were found in either leaf or root tissue. 

 

Prior research has shown that the link between DNA methylation and mRNA 

expression is not straightforward (Bewick & Schmitz 2017). There are instances 

where increased methylation in the promoter region was correlated with a decrease 

in associated transcript production (Berdasco et al. 2008), and other instances where 

this simple model does not adequately explain the interaction between methylation 

and gene expression (Wang et al. 2015). Some have suggested that gene body 

methylation can be a better indicator of the changes in mRNA production than 

methylation of the promoter (Lou et al. 2014). Anastasiadi et al. (2018) found a clear 

relationship between increased methylation of the first intron and decreased gene 

expression in various vertebrates. Shibuya et al. (2009) found an example where 

increased methylation of the second intron resulted in increased gene expression in 

the pMADS3 gene in Petunia hybrida. Much of this prior research has focussed on CG 

methylation, while the findings in the present research indicates that other cytosine 

contexts also do not present a clear link between methylation and gene expression in 

barley. Clearly there is scope for future work to investigate how DNA methylation 

around genes relates to gene expression in barley as the dataset presented does not 
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provide clear or simple correlations. 

 

6.4.3 Conclusion 

The hypothesis was partially supported. Exposure to salinity stress in barley resulted 

in demonstrable changes in the expression profile of 23/24 nt sRNA, changes in DNA 

methylation and changes in mRNA expression. The link between 23/24 nt sRNA and 

DNA methylation is correlated, however the expected inverse correlation between 

DNA methylation and mRNA expression was not observed. There does not appear 

to be a direct link between genomic methylation of protein coding genes and 

expression of those genes. This could be a result of some unknown intermediary 

complicating the issue. Transposable elements play a greater role in the barley 

genome than many other plants that have been studied, with TEs making up 84% of 

the barley genome (IBGSC 2012). Further work investigating the methylation 

changes that occur in TEs may shed some light on the indirect relationships between 

DNA methylation and gene expression in barley under salt stress. Further work can 

also be performed to gain a greater understanding of the newly discovered 23/24 nt 

sRNAs that guide DNA methylation in barley under salinity stress. 
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7 General discussion 

Understanding and dealing with salinity stress is an important factor for growing 

grain crops in Australia, with a large overlap in regions where grain crops are grown 

in Australia and soil salinity issues (Patterson et al. 2009). Barley and wheat play an 

extremely important role in global agriculture, ranking fifth and first respectively in 

global food production (Mayer et al. 2011). As barley is a close relative of wheat 

(Middleton et al. 2014), research on barley can have a significant impact on global 

food security, as research in barley is likely to be adaptable to wheat and other 

grasses such as rice and maize. 

 

Experiments were performed that investigated the changes in small RNA (sRNA), 

DNA methylation and mRNA expression that occurred when barley plants were 

exposed to a salinity stress. The aim was to overlay these data sets to identify 

sequences that were shared, with the expectation that small RNAs guide methylases 

to genes that are regulated under conditions of salinity stress. The ultimate aim was 

to gain a greater understanding of the plant response to salinity, so as to assist in the 

breeding and/or transgenic approaches to improve salinity and other stress tolerance 

in the future. 

 

The mRNA, sRNA and DNA methylation data sets analysed were overall in 

concordance with prior research. The Protein Coding Genes (PCGs) with the greatest 
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increase and decrease in barley under salinity stress mostly correlated with mRNA 

expression changes from prior research. The number of known sRNAs in barley is 

limited, but correlations between known sRNAs in other plants with high sequence 

similarity indicated the validity of this dataset. Methylation levels at the 

chromosomal scale, and in the vicinity of PCGs and TEs found in this study matched 

those with other plants, and were similar to earlier reports in more closely related 

species. These findings validate the datasets for sRNAs, mRNAs and DNA 

methylation reported here. 

 

As discovered in this study, the interactions between sRNA, DNA methylation and 

mRNA expression are not straightforward in barley under salinity stress. Changes in 

expression of sRNAs that were 23 nt to 24 nt long were found to be well correlated 

with changes in DNA methylation, however these shared sequences did not overlap 

with PCGs that were differentially expressed under salinity stress. Prior research has 

shown that these sRNAs guide DNA methylation through the RNA directed DNA 

Methylation (RdDM) pathway (Matzke & Mosher 2014). Data presented here show 

DNA methylation targeted various genomic features, with PCGs and some classes of 

Transposable Elements (TEs) being highly over-represented when compared with 

random targeting of the locations where methylation sequence data were available. 

The proximal correlations between sRNA differential expression and differential 

methylation give an indication that the two are linked and change in response to salt 

stress in both leaf and root tissue in barley. There were however no clear indications 
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that the changes in DNA methylation in a specific location relative to a PCG resulted 

in consistent expression changes of those genes. Figure 7.1 shows a schematic 

representation of the pathways investigated. While some of these pathways have 

been explored in barley previously, at the time of writing there does not appear to be 

any prior research that integrates sRNAs, DNA methylation and mRNA sequence 

information in barley under salt stress. 

 

The hypothesis under test was that if gene expression in barley under salinity stress 

is at least partly controlled by epigenetic mechanisms, then exposing the plants to 

salinity stress will result in changes in sRNA and DNA methylation associated with 

mRNA expression. This hypothesis was partially accepted and partially rejected. The 

plants exposed to salinity stress clearly had changes in sRNA expression, DNA 

methylation, and mRNA expression. Links between sRNA expression and DNA 

methylation were observed, however the link between DNA methylation changes 

and mRNA expression was not clear. It is possible that some intermediary such as 

TEs or histone modifications were involved in the association between DNA 

methylation changes and mRNA expression in barley. 

 

Further research into TEs, with possible improvements in further analysing the 

collected dataset are suggested in section 7.3.3. The 23/24 nt sRNAs found to be 

differentially expressed in salt treated plants relative to control plants are likely to be 

due to re-establishing silencing of TEs that had recently been enabled. These TE  
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Figure 7.1. Schematic diagram of important pathways investigated for changes that 

occurred when barley was exposed to 150 mM salinity stress in soil vs control plants. Solid 
arrows indicate connections that were observable in this study and dashed arrows indicate 
expected connections which were not verified in this study. 
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insertions could result in increased or decreased expression of a targeted mRNA 

based on where the TE inserted relative to gene features such as enhancers, 

repressors or promoters. There is some precedence for this, with some TEs found to 

target certain genomic features, with an elevated propensity in some TEs for 

insertion at or near existing non-functional TE fragments, thus influencing the 

expression of neighbouring genes (Wei et al. 2013; Ma et al. 2019).  

 

7.1 Novel discoveries and developments from this research 

7.1.1 New and novel micro RNA involved in post-transcriptional repression 

New and novel microRNAs (miRNA) were found in this study by comparing small 

RNA sequences with genomic sequences that could generate an RNA hairpin-loop 

structure corresponding with the sequenced sRNA data set. There were 59 unique 

miRNAs that had not previously been recorded for barley in miRBase. Of these 

newly discovered sequences, 44 were classified as novel as they were not similar to 

any known plant miRNA, and 15 were classified as new since similar sequences were 

known in other plants, but had not been previously recorded in barley. Five of the 

novel miRNAs and three of the new miRNAs were found to be differentially 

expressed in leaf tissue in barley under salt stress, and one novel miRNA and one 

new miRNA were differentially expressed in root tissue. The discovery of these 

miRNAs in barley will contribute to the knowledge of miRNAs in barley once 

published, as only 71 Hordeum vulgare miRNAs were reported in the miRBase at the 

time of writing. 
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7.1.2 Development of bioinformatics tools 

A bioinformatics pipeline was developed that could analyse reads generated by the 

epiGBS method and generate methylation calls by using the Bismark aligning and 

methylation calling program. This development required considerable time, but with 

a comparatively small amount of extra effort, will become a useful tool for other 

researchers who wish to use the epiGBS protocol. 

 

7.1.3 Links between 23/24 nt sRNAs and DNA methylation 

Links between changes in expression of 23/24 nt sRNAs and DNA methylation in 

barley under salinity stress were discovered. The correlations between differential 

23/24 nt sRNA expression and changes in DNA methylation confirmed that the 

changes were linked. These correlated changes were found to cluster with PCGs and 

certain TE classes at a high level indicating that PCGs and some TE classes were 

targeted by 23/24 nt sRNAs and DNA methylation. 

 

7.2 Limitations 

7.2.1 Small RNA 

There was a problem with the sequence data set for sRNAs from root tissue. The 

distribution of sRNAs by size (Figure 4.1) extracted from leaf tissue was as expected, 

but this was not the case for root tissue. The leaf tissue sRNA profile had a clear 

bimodal distribution centred around sRNAs 21 nt and 24 nt long which had been 

observed in prior research (Schreiber et al. 2011), but the root tissue sRNAs had a 
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single peak at 24 nt with a wide span. The considered explanations for the 

unexpected distribution in root sRNA sequences are fragmented barley mRNA, or 

contaminants of bacterial and fungal RNA. Removing reads that mapped to the 

known barley transcriptome removed the same proportion of reads when applied to 

sRNA extracted from root tissue and leaf tissue. Therefore the range of sRNA sizes 

found specifically in root tissue cannot be attributed to endogenous fragmented 

barley root mRNA.  

 

Most microbiome analysis techniques use 16S ribosomal RNA (rRNA) matches to 

determine the make-up of the microbiome (Yuan et al. 2012). Specific regions of the 

16S rRNA are targeted for sequencing where the primers bind in regions of low 

variability, whereas the region between the primers have relatively high variability 

in the 16S rRNA sequence across microbe species (Claesson et al. 2010). In soil 

samples, a correct classification at the family level can be obtained approximately 

70% of the time when using average read lengths of 215 bp or more (Vasileiadis et al. 

2012). The read lengths obtained in the small RNA sequence were size limited in the 

Pippin-prep size selection stage to a maximum of 34 bp. This limitation in fragment 

size means that the small RNA sequence dataset cannot be used with existing 

microbiome tools. It is not possible to determine the cause of the contamination in 

root sRNAs without a significant of further research. The most likely source of this 

contamination is of bacterial or fungal origin. This would explain why it is in root 

tissue and not found in leaf tissue. While microbes will be present on or in leaves, 
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their abundance in and around root tissue is potentially much higher. While efforts 

were made to remove soil from the roots, there was also a need to prevent damaging 

the roots with vigorous cleaning. Plant mRNA expression has been shown to change 

rapidly under mechanical wounding. Research by Koo et al. (2009) demonstrated 

that a gene coding for the protein JA-IIe in the jasmonate signalling pathway had 

been transcribed, translated and exited leaves within two minutes of wounding. 

 

7.2.2 Multi-mapped methylation sequence reads 

The Bismark bisulphite read mapper was unable to deal with reads that map to 

multiple locations. Of the epiGBS reads that were able to be mapped to a sequence on 

the genome, 42.7% mapped to a single location in the genome while 57.3% mapped 

to multiple locations and were thus discarded by Bismark. Many of the reads 

associated with TEs would map to multiple locations as the same TE sequence occurs 

multiple times throughout the genome. Many of the reads that Bismark did 

successfully map to TEs probably either crossed the boundary of the TE, anchoring 

the read to a specific site in the genome, or were somehow different to other TEs, 

perhaps with a unique insertion/deletion or other sequence change. Further work 

could be done to enable the use of larger numbers of multi-mapped reads, and a 

potential method for this is described in section 7.3.3. 

 

7.2.3 DNA methylation 

The epiGBS technique is a reduced representation bisulphite sequencing method, 
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and as a result, only small sampled sections of the genome were assessed for DNA 

methylation. This method was used instead of entire genome sequencing due to cost 

limitations. While it is a very effective tool, the limitations of the epiGBS technique 

prevent a more detailed picture than that attained by entire genome bisulphite 

sequencing. However, there would still be sections that could not be mapped to a 

single location in the genome, typically those related to TEs. Sequencing techniques 

that are able to gain information from long reads such as the Third Generation 

Sequencing technologies offered by PacBio and Oxford Nanopore Technologies 

(Weirather et al. 2017) may be accessible in the future, as costs continue to come 

down and sequence reliability increases. The current bisulphite treatment method 

will often cause damage to large DNA fragments (Yang et al. 2015), but the Oxford 

Nanopore MinION and PacBio SMRT sequencers do not require bisulphite treatment 

to obtain methylation information (Clarke et al. 2009; Flusberg et al. 2010). These 

techniques are not currently as reliable or cost effective as bisulphite sequencing. The 

Oxford Nanopore MinION accuracy varies between 83% and 91% for correctly 

calling a 5-methylcytosine base, but the higher accuracy rate comes at the expense of 

32% of base calls being discarded (Simpson et al. 2017). The PacBio SMRT sequencer 

requires a minimum of 250x coverage to detect cytosine methylation (Liu et al. 2020). 

At current costs, the sequencing of the whole barley genome to identify 5-

methylcytosine at single base resolution would cost about AUD26,000, based on a 

15x coverage recommended by Ziller et al. (2015) and not including library 

preparation costs. For a project of this size, these costs are prohibitive. 
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Many of the sequence reads related to the epiGBS protocol were PCR duplicates. 

Only one copy of a PCR duplicate is useful for analysis. The only time a PCR 

duplicate is of use is when one or more copies have a low read quality score and one 

PCR duplicate has a high read quality score, otherwise they are wasted reads. Using 

more starting material and fewer PCR cycles should reduce the number of reads 

wasted on PCR duplicates. Given the chance to repeat this research, this would be a 

recommended change. Furthermore, the bisulphite conversion rate (94.2%) was 

lower than the manufacturers claimed conversion rate of 99.5% (Zymo 2020). A 

lower conversion rate would have increased the noise in methylation base calling. It 

is not clear why this poor conversion rate occurred, but it would be worth attempting 

to attain a higher bisulphite conversion rate in future experiments. 

 

7.3 Future Directions 

7.3.1 Small RNA 

Existing microbiome tools expect a certain read size, and reads from a specific 

location in the 16S rRNA are required to determine the makeup of the microbiome. It 

may be possible to adapt these tools, or at least use the database of 16S rRNA, to 

reference against the small RNA reads and determine the source of small RNA 

contamination in the root sRNA data found here. A preliminary search against a 16S 

rRNA microbiome database with the Bowtie sequence aligner found that 

approximately 10% of sequences that were 26 nt long in root small RNA reads 

aligned with microbiome 16S rRNA. However, this was after removal of sequences 



   

General discussion  Page 165 

that aligned to the barley rRNA, mitochondria and plastid sequences. The barley 18S 

rRNA would have some similarities to the prokaryotic 16S rRNA, and mitochondria 

and plastid rRNA would also have similarities to parts of other prokaryotic 16S 

rRNA. Only the sections that had not aligned to barley rRNA or rRNA of 

mitochondrial or plastid origin would have remained to align with other microbiome 

16S rRNAs. This indicates that further investigation is warranted to be able to 

understand the microbiome interactions and potentially observe microbiome 

differences between salt and control root tissue. With a more thorough analysis of the 

microbiome it may be possible to ȁclean upȂ the root small RNA reads and get a more 

detailed picture of what is going on with sRNAs in root tissue. 

 

The sRNAs that were involved with DNA methylation warrant further investigation. 

These sRNAs are expected be related to changes in DNA methylation that 

corresponds with increased stress tolerance. Further understanding of the pathway 

between the DNA methylation change and the specific stress tolerance in plants 

could yield useful tools. It may be possible to treat plants with an sRNA or a 

collection of sRNAs that change the methylation state of the desired regions of the 

genome to increase stress tolerance of the plant. Doing this prior to the onset of the 

prolonged stress may result in greater crop yields. Possibilities for application of the 

treatment include spraying or soaking seeds before sewing, or spraying the leaves of 

established plants with a sRNA solution which could potentially enter the plant and 

modify methylation states. It seems to be reasonable to expect that different 
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collections of sRNAs could be developed to prime plants for different stresses. An 

example of a possible use is when a long range forecast predicts drought conditions; 

a farmer could treat their plants with a set of sRNAs that prime the plants for a 

drought stress, enabling a greater yield than without the sRNA treatment. 

 

Further work could also be done with the miRNA data set. This data set was used to 

find new and novel barley miRNAs, and further work could determine the targets of 

these miRNAs. A degradome analysis finds mRNA that has been degraded through 

miRNA induced cleavage (German et al. 2009). By comparing sites of mRNA 

cleavage and sequence similarity of miRNA, it would be possible to understand what 

genes are targeted by specific miRNA. It may also be useful to perform sequencing 

on tissue at multiple time points to see the changes that occur at different times after 

the application of the stress. 

 

7.3.2 DNA methylation 

Enabling the management of reads mapped to multiple locations in the genome is 

another consideration for future research. Bismark is an open source tool with the 

PERL source code easily accessible and with a reasonable level of documentation. It 

would be possible to modify the Bismark code to deal with multi-mapped reads. 

Bismark calls the sequence aligner Bowtie2 which is capable of analysing reads that 

map to multiple locations. There appear to be two ways to increase the number of 

reads mapped to TEs, either significant modification of Bismark to be able to deal 
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with multi-mapped reads, or generate a new reference genome.  

 

Bismark could be used with the normal reference genome. The option of saving 

multi-mapped reads to a different location exists for Bowtie2, so very minor changes 

to Bismark would enable the creation of the multi-mapped files. A reference genome 

of short paired-end reads could be generated from these normally discarded reads. 

Bismark could then be used again with the saved multi-mapped reads mapping to 

the newly generated reference genome. This reference genome could then be 

mapped back to the original genome to find the genomic features associated with 

these multi-mapped reads. It would be expected that a large proportion of these 

reads would be associated with TEs. While it would not be possible to determine a 

single location in the genome, and these methylation calls would be of limited use 

when comparing with the small RNA and mRNA data sets, it would still contain 

useful information about the methylation states of some TEs that may perform 

functions in response to salinity stress. This would be useful future work as it would 

make good use of the 57.3% of mapped reads that were discarded. 

 

A significant number of the total epiGBS reads (37.1%) did not map to any location in 

the genome. A similar operation to that discussed above could be performed with the 

unmapped reads to see if these were found across all samples. It is possible that more 

useful information could be gained by further analysis of the reads that were 

discarded because they did not match the reference genome. 
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It is not clear why the CG differential methylation pattern in leaf tissue is so 

concentrated around PCGs while other cytosine contexts and other tissue appears to 

be more similar to each other (see Figure 5.12). Further work could be done to 

investigate the specific PCGs and TEs that are targeted and compare with other 

contexts and tissue types to see if any significant patterns emerge. 

 

While a bioinformatics pipeline was developed that was able to extract useful 

information from the epiGBS sequence reads, more work needs to be done to make 

this code useful for other users. In many cases the code was written for the specific 

barcode set and a specific number of samples used in this experiment. Some parts of 

the code would need significant changes to be useful for other situations which use 

different sets of barcodes, and different sample designations for control and 

treatment groups. To create useful tools for other users, the documentation needs to 

be detailed enough, and easy enough to understand that a user with some 

bioinformatics knowledge is able to install all the dependencies, and successfully run 

the program on a variety of relevant Linux-based platforms. 

 

7.3.3 Transposable Elements 

Further work could be done to analyse the specific TEs that are targeted by DNA 

methylation and 23/24 nt sRNA. The research suggested above to deal with multi-

mapped reads would also be useful for gaining further information about TEs. The 

analysis performed in this research looked at classes of TEs, but further work to drill 
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down to specific TEs and their interactions with PCGs is warranted. This could 

involve looking at methylation changes in TEs and the proximity of the same TEs or 

non-functional TE fragments at different genomic locations near or within PCGs. 

This would be of particular interest with TEs that are already known to insert close to 

existing TE fragments (Wei et al. 2013; Ma et al. 2019), as changes in methylation in 

those TEs are likely to involve TE insertions at certain sites. Some interesting patterns 

emerged when looking at the methylation levels in two classes of TEs shown in 

Figure 5.11. Understanding why there are spikes in CHH methylation at specific 

locations in DTX (class: DNA transposon, order: terminal inverted repeat; 

superfamily: unknown), and RSX (class: retrotransposon, order: non-long terminal 

repeat, superfamily: unknown) TEs may be worthy of further investigation. 

Transposable Elements are known to play an important role in stress response 

(Horváth et al. 2017) and this project has found some interesting TE groups worthy 

of further investigation.  

 

7.4 Conclusion 

This research resulted in new discoveries in the response of barley to salt stress. New 

miRNAs (previously unknown in barley but with sequence similarity to other plants) 

and novel miRNAs (no sequence similarity with any known miRNA) were found. In 

total, 59 different miRNAs that had not been recorded in the microRNA database 

miRbase are reported here. Of these newly discovered sequences, 44 were novel and 

15 were new. Five of the novel miRNAs and three of the new miRNAs were 
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differentially expressed in barley under salt stress. The latest miRBase release at the 

time of writing had only 71 miRNAs listed for H. vulgare, and once the newly 

discovered miRNAs are published, it would result in an 83% increase in known 

miRNAs for H. vulgare in miRBase.  

 

Correlations between differential expression of 23/24 nt sRNAs and differential 

methylation were observed in barley under salt stress. The sites discovered with 

23/24 nt sRNAs and methylation changes were significantly more enriched at PCGs 

and TEs than random sampling. This indicates that the PCGs and TEs were 

specifically targeted. Some (or all) of these sites targeted by the 23/24 sRNAs would 

be related to changing mRNA expression in relation to the salt stress applied, 

however a direct link between the two was not established. It is possible that further 

research into the targeted TEs would help in understanding how genomic 

methylation changes result in altered mRNA expression in barley under salt stress. A 

greater understanding of how these TE translocations elicit a stress response will also 

help plant breeders develop crops more resilient to the stressful environments that 

are likely in the future. 
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Table A.9.1. Differentially expressed genes in salt stressed barley leaf tissue. Genes 
found to be differentially expressed in 100 mM salt treated plants (third leaf tissue) 
relative to control plants using DESeq2 with adjusted p-value < 0.01 and |log2(fold 
change)| > log2(1.5). The adjusted p-value is shown as log10 as the values are small. 
 

Gene log2(fold change) log10(adj-p) 

HORVU1Hr1G093780 5.96 -102.3 
HORVU7Hr1G090410 3.94 -32.4 
HORVU1Hr1G093660 3.83 -30.4 
HORVU3Hr1G069650 3.30 -53.3 
HORVU2Hr1G043890 3.19 -48.9 
HORVU6Hr1G084070 3.12 -20.2 
HORVU7Hr1G008260 3.01 -23.7 
HORVU2Hr1G103150 2.96 -20.1 
HORVU7Hr1G073640 2.92 -40.6 
HORVU7Hr1G120060 2.90 -54.4 
HORVU7Hr1G021660 2.87 -15.4 
HORVU5Hr1G010860 2.85 -18.9 
HORVU1Hr1G093570 2.79 -14.4 
HORVU4Hr1G084390 2.74 -69.4 
HORVU2Hr1G042240 2.72 -14.0 
HORVU4Hr1G076050 2.70 -23.0 
HORVU4Hr1G074840 2.63 -30.0 
HORVU1Hr1G088840 2.57 -13.0 
HORVU5Hr1G103460 2.56 -14.5 
HORVU7Hr1G098260 2.55 -28.4 
HORVU6Hr1G090280 2.54 -28.3 
HORVU3Hr1G085760 2.51 -11.8 
HORVU6Hr1G079190 2.49 -12.0 
HORVU5Hr1G077880 2.44 -11.6 
HORVU1Hr1G002090 2.42 -15.4 
HORVU5Hr1G073010 2.41 -15.8 
HORVU5Hr1G077810 2.39 -12.4 
HORVU3Hr1G009490 2.38 -14.0 
HORVU4Hr1G076000 2.38 -10.4 
HORVU1Hr1G087570 2.36 -19.2 
HORVU7Hr1G122690 2.34 -10.1 
HORVU3Hr1G108670 2.32 -9.8 
HORVU5Hr1G077140 2.30 -65.8 
HORVU3Hr1G004140 2.28 -9.8 
HORVU6Hr1G088130 2.27 -9.3 
HORVU7Hr1G028920 2.27 -16.4 
HORVU7Hr1G098280 2.24 -27.0 
HORVU7Hr1G098110 2.24 -10.0 
HORVU5Hr1G019110 2.20 -18.1 
HORVU1Hr1G054240 2.19 -16.9 
HORVU4Hr1G052450 2.17 -13.0 
HORVU2Hr1G073680 2.17 -8.6 
HORVU5Hr1G063940 2.12 -65.7 
HORVU2Hr1G042370 2.09 -27.8 
HORVU1Hr1G022020 2.07 -10.3 
HORVU1Hr1G016980 2.07 -9.3 
HORVU6Hr1G034990 2.06 -12.7 
HORVU2Hr1G000430 2.03 -7.3 
HORVU3Hr1G077930 2.03 -11.7 
HORVU5Hr1G021230 2.02 -11.3 
HORVU1Hr1G005920 2.01 -7.3 
HORVU1Hr1G001710 2.01 -7.2 
HORVU6Hr1G000830 2.00 -7.1 
HORVU1Hr1G039820 2.00 -21.1 
HORVU3Hr1G009560 1.99 -32.4 
HORVU3Hr1G087470 1.99 -16.7 
HORVU1Hr1G020140 1.98 -9.5 
HORVU1Hr1G079130 1.96 -11.0 
HORVU7Hr1G011810 1.95 -6.9 
HORVU4Hr1G004820 1.93 -6.6 
HORVU5Hr1G094460 1.92 -7.2 
HORVU2Hr1G115960 1.92 -16.1 

Gene log2(fold change) log10(adj-p) 

HORVU3Hr1G022800 1.91 -7.5 
HORVU7Hr1G086690 1.91 -12.1 
HORVU5Hr1G125620 1.91 -15.4 
HORVU6Hr1G073500 1.90 -7.5 
HORVU2Hr1G030870 1.89 -6.6 
HORVU2Hr1G074770 1.89 -9.7 
HORVU7Hr1G111010 1.88 -6.5 
HORVU2Hr1G001160 1.86 -7.1 
HORVU7Hr1G051560 1.85 -6.1 
HORVU2Hr1G079180 1.85 -14.0 
HORVU2Hr1G081920 1.83 -6.7 
HORVU5Hr1G030830 1.83 -6.0 
HORVU2Hr1G012360 1.81 -7.7 
HORVU2Hr1G013420 1.80 -7.5 
HORVU0Hr1G005360 1.80 -10.0 
HORVU5Hr1G089190 1.79 -7.4 
HORVU7Hr1G050160 1.79 -11.9 
HORVU4Hr1G087250 1.77 -5.7 
HORVU5Hr1G001180 1.77 -17.5 
HORVU5Hr1G022500 1.77 -5.8 
HORVU4Hr1G010160 1.76 -8.6 
HORVU5Hr1G025760 1.76 -10.0 
HORVU5Hr1G095080 1.76 -7.5 
HORVU1Hr1G088270 1.76 -19.9 
HORVU7Hr1G001040 1.75 -17.3 
HORVU1Hr1G070690 1.75 -12.1 
HORVU5Hr1G068110 1.75 -6.6 
HORVU1Hr1G085050 1.75 -6.1 
HORVU3Hr1G002840 1.75 -6.2 
HORVU3Hr1G015850 1.74 -23.5 
HORVU5Hr1G106090 1.74 -10.8 
HORVU3Hr1G116470 1.73 -6.1 
HORVU1Hr1G056090 1.73 -6.5 
HORVU3Hr1G110320 1.73 -5.3 
HORVU4Hr1G072960 1.71 -5.4 
HORVU4Hr1G063430 1.69 -5.4 
HORVU2Hr1G071480 1.69 -5.0 
HORVU5Hr1G125000 1.69 -5.2 
HORVU3Hr1G087420 1.68 -5.1 
HORVU3Hr1G110330 1.67 -12.4 
HORVU1Hr1G087530 1.67 -6.8 
HORVU3Hr1G019140 1.67 -5.8 
HORVU0Hr1G031210 1.66 -5.3 
HORVU7Hr1G098170 1.66 -11.2 
HORVU6Hr1G059500 1.66 -4.9 
HORVU7Hr1G038980 1.66 -7.7 
HORVU3Hr1G081570 1.65 -4.8 
HORVU4Hr1G066900 1.65 -6.6 
HORVU5Hr1G082160 1.64 -5.9 
HORVU4Hr1G076040 1.64 -4.7 
HORVU3Hr1G078940 1.63 -60.9 
HORVU6Hr1G084860 1.62 -4.7 
HORVU5Hr1G098770 1.61 -10.3 
HORVU7Hr1G083090 1.61 -4.8 
HORVU7Hr1G038200 1.61 -5.8 
HORVU4Hr1G066230 1.61 -9.5 
HORVU6Hr1G069340 1.60 -6.1 
HORVU5Hr1G065370 1.60 -6.4 
HORVU2Hr1G000090 1.60 -4.6 
HORVU1Hr1G072250 1.60 -6.5 
HORVU3Hr1G058610 1.59 -12.5 
HORVU3Hr1G058810 1.59 -4.9 
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Gene log2(fold change) log10(adj-p) 

HORVU2Hr1G108290 1.59 -19.3 
HORVU3Hr1G053210 1.59 -5.0 
HORVU3Hr1G059170 1.59 -4.7 
HORVU7Hr1G000260 1.58 -4.6 
HORVU2Hr1G085570 1.58 -12.0 
HORVU1Hr1G039250 1.58 -6.4 
HORVU0Hr1G025800 1.58 -4.4 
HORVU6Hr1G005260 1.58 -5.2 
HORVU5Hr1G082460 1.57 -11.7 
HORVU1Hr1G094010 1.57 -7.0 
HORVU6Hr1G062820 1.57 -5.1 
HORVU4Hr1G085640 1.57 -5.2 
HORVU7Hr1G012300 1.56 -4.7 
HORVU3Hr1G061130 1.56 -6.1 
HORVU3Hr1G028710 1.55 -4.5 
HORVU4Hr1G054790 1.55 -6.4 
HORVU3Hr1G002000 1.55 -4.3 
HORVU3Hr1G092420 1.54 -5.3 
HORVU7Hr1G040680 1.54 -8.6 
HORVU1Hr1G016660 1.53 -5.8 
HORVU5Hr1G070040 1.53 -4.2 
HORVU2Hr1G038040 1.53 -4.7 
HORVU4Hr1G062830 1.52 -4.5 
HORVU7Hr1G056700 1.52 -7.2 
HORVU1Hr1G025870 1.52 -5.7 
HORVU3Hr1G009360 1.52 -12.6 
HORVU4Hr1G087230 1.52 -7.4 
HORVU2Hr1G043900 1.51 -15.2 
HORVU7Hr1G088730 1.50 -7.4 
HORVU7Hr1G000250 1.50 -18.3 
HORVU2Hr1G025150 1.50 -3.9 
HORVU4Hr1G002530 1.50 -5.9 
HORVU2Hr1G120530 1.49 -7.6 
HORVU6Hr1G061390 1.48 -3.9 
HORVU7Hr1G102030 1.48 -5.2 
HORVU3Hr1G106140 1.48 -8.9 
HORVU7Hr1G037080 1.47 -12.3 
HORVU0Hr1G003900 1.47 -5.9 
HORVU6Hr1G029750 1.47 -5.0 
HORVU5Hr1G101820 1.47 -4.0 
HORVU0Hr1G010080 1.47 -7.4 
HORVU3Hr1G015640 1.46 -10.6 
HORVU5Hr1G082040 1.46 -3.9 
HORVU6Hr1G067380 1.46 -4.0 
HORVU2Hr1G083410 1.45 -5.6 
HORVU7Hr1G050980 1.45 -3.7 
HORVU7Hr1G085120 1.45 -5.0 
HORVU7Hr1G001020 1.45 -3.7 
HORVU5Hr1G087730 1.45 -3.8 
HORVU5Hr1G109610 1.44 -4.3 
HORVU7Hr1G010690 1.44 -5.9 
HORVU2Hr1G001150 1.44 -7.0 
HORVU6Hr1G002300 1.44 -6.4 
HORVU5Hr1G077390 1.44 -7.5 
HORVU7Hr1G098330 1.44 -12.5 
HORVU4Hr1G063010 1.43 -7.7 
HORVU5Hr1G103850 1.43 -7.1 
HORVU7Hr1G070010 1.43 -3.8 
HORVU7Hr1G026000 1.42 -4.8 
HORVU7Hr1G002820 1.42 -8.1 
HORVU5Hr1G064230 1.42 -6.2 
HORVU2Hr1G094630 1.41 -3.7 
HORVU1Hr1G002710 1.41 -3.7 
HORVU4Hr1G056770 1.40 -4.5 
HORVU4Hr1G020030 1.40 -12.4 
HORVU7Hr1G113270 1.40 -12.2 
HORVU1Hr1G047010 1.40 -4.6 
HORVU3Hr1G085680 1.40 -4.6 
HORVU2Hr1G088660 1.40 -3.4 
HORVU3Hr1G096120 1.39 -3.9 
HORVU7Hr1G075760 1.39 -3.4 
HORVU5Hr1G026360 1.39 -9.8 
HORVU7Hr1G090560 1.39 -10.6 
HORVU2Hr1G114680 1.39 -3.5 
HORVU7Hr1G082330 1.38 -6.1 

Gene log2(fold change) log10(adj-p) 

HORVU3Hr1G067380 1.38 -8.4 
HORVU7Hr1G028910 1.38 -19.4 
HORVU6Hr1G067670 1.38 -8.0 
HORVU3Hr1G074350 1.38 -4.6 
HORVU1Hr1G087320 1.38 -6.5 
HORVU2Hr1G035020 1.38 -3.3 
HORVU1Hr1G051740 1.38 -3.4 
HORVU3Hr1G108680 1.37 -3.3 
HORVU4Hr1G022950 1.37 -9.9 
HORVU2Hr1G099470 1.37 -3.6 
HORVU4Hr1G011160 1.36 -7.4 
HORVU7Hr1G010230 1.36 -6.4 
HORVU7Hr1G049860 1.36 -3.4 
HORVU3Hr1G037170 1.36 -4.1 
HORVU2Hr1G003400 1.36 -3.3 
HORVU2Hr1G083430 1.36 -4.2 
HORVU1Hr1G065810 1.35 -18.1 
HORVU7Hr1G104660 1.35 -3.5 
HORVU3Hr1G104290 1.35 -4.2 
HORVU1Hr1G037110 1.34 -3.6 
HORVU7Hr1G122470 1.34 -3.3 
HORVU3Hr1G018810 1.34 -3.2 
HORVU4Hr1G073580 1.34 -18.1 
HORVU3Hr1G069590 1.34 -3.8 
HORVU7Hr1G107070 1.34 -3.1 
HORVU3Hr1G034570 1.33 -5.7 
HORVU5Hr1G114330 1.33 -4.6 
HORVU1Hr1G061380 1.33 -4.0 
HORVU4Hr1G063790 1.33 -3.6 
HORVU5Hr1G047630 1.33 -5.2 
HORVU3Hr1G065260 1.33 -3.1 
HORVU2Hr1G115640 1.33 -3.2 
HORVU2Hr1G012460 1.32 -3.1 
HORVU6Hr1G066840 1.32 -3.5 
HORVU3Hr1G003220 1.32 -12.6 
HORVU3Hr1G054240 1.32 -3.4 
HORVU1Hr1G080680 1.32 -3.7 
HORVU3Hr1G084220 1.31 -13.7 
HORVU5Hr1G096390 1.31 -9.7 
HORVU4Hr1G081040 1.31 -5.5 
HORVU4Hr1G087760 1.31 -3.3 
HORVU2Hr1G025090 1.30 -3.1 
HORVU2Hr1G115830 1.30 -3.7 
HORVU4Hr1G023510 1.29 -3.1 
HORVU2Hr1G095080 1.29 -5.5 
HORVU3Hr1G000720 1.29 -2.9 
HORVU2Hr1G117140 1.29 -2.9 
HORVU2Hr1G023770 1.29 -4.2 
HORVU1Hr1G010380 1.28 -7.3 
HORVU4Hr1G079030 1.28 -4.2 
HORVU1Hr1G066450 1.28 -4.7 
HORVU2Hr1G122330 1.28 -2.8 
HORVU1Hr1G046940 1.27 -7.5 
HORVU3Hr1G023750 1.27 -3.3 
HORVU3Hr1G090450 1.27 -3.5 
HORVU1Hr1G075160 1.27 -3.9 
HORVU4Hr1G061770 1.26 -5.5 
HORVU5Hr1G052440 1.26 -6.9 
HORVU3Hr1G019510 1.26 -4.5 
HORVU5Hr1G062940 1.26 -16.4 
HORVU5Hr1G073760 1.25 -6.2 
HORVU4Hr1G010250 1.25 -3.2 
HORVU3Hr1G081260 1.25 -2.8 
HORVU7Hr1G048690 1.25 -6.0 
HORVU7Hr1G100570 1.25 -2.7 
HORVU7Hr1G092330 1.24 -3.5 
HORVU2Hr1G002600 1.24 -16.0 
HORVU3Hr1G071770 1.24 -4.8 
HORVU4Hr1G067630 1.24 -6.9 
HORVU6Hr1G062850 1.24 -4.2 
HORVU7Hr1G046430 1.24 -4.2 
HORVU7Hr1G022250 1.24 -6.5 
HORVU0Hr1G015390 1.23 -3.2 
HORVU4Hr1G087580 1.23 -3.5 
HORVU4Hr1G001450 1.23 -2.8 
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HORVU6Hr1G067060 1.23 -3.7 
HORVU3Hr1G066600 1.22 -2.8 
HORVU7Hr1G061070 1.22 -4.6 
HORVU3Hr1G003330 1.22 -3.2 
HORVU3Hr1G093830 1.22 -7.7 
HORVU3Hr1G022340 1.22 -2.7 
HORVU4Hr1G085050 1.22 -4.1 
HORVU7Hr1G029260 1.22 -7.0 
HORVU2Hr1G093950 1.22 -2.9 
HORVU4Hr1G052090 1.22 -3.6 
HORVU4Hr1G068760 1.22 -9.8 
HORVU5Hr1G093410 1.22 -2.6 
HORVU4Hr1G066750 1.22 -2.7 
HORVU7Hr1G036720 1.21 -2.6 
HORVU1Hr1G070310 1.21 -2.7 
HORVU4Hr1G062440 1.21 -21.9 
HORVU1Hr1G037760 1.21 -8.3 
HORVU3Hr1G076550 1.21 -3.0 
HORVU6Hr1G076760 1.21 -3.6 
HORVU3Hr1G009520 1.21 -8.9 
HORVU2Hr1G118790 1.20 -3.9 
HORVU1Hr1G018350 1.20 -2.7 
HORVU7Hr1G017950 1.20 -8.7 
HORVU1Hr1G046320 1.20 -3.3 
HORVU1Hr1G063420 1.20 -8.5 
HORVU6Hr1G073510 1.20 -6.9 
HORVU3Hr1G030770 1.20 -3.8 
HORVU4Hr1G088080 1.20 -5.5 
HORVU7Hr1G045680 1.19 -10.4 
HORVU2Hr1G108520 1.19 -2.8 
HORVU4Hr1G080460 1.19 -4.2 
HORVU7Hr1G111130 1.19 -5.9 
HORVU4Hr1G068530 1.18 -5.9 
HORVU5Hr1G059070 1.18 -3.6 
HORVU6Hr1G090020 1.18 -2.5 
HORVU1Hr1G030060 1.18 -3.3 
HORVU2Hr1G007840 1.18 -5.6 
HORVU4Hr1G008120 1.18 -5.6 
HORVU4Hr1G082970 1.17 -2.6 
HORVU2Hr1G063820 1.17 -4.7 
HORVU3Hr1G000280 1.17 -5.9 
HORVU2Hr1G013450 1.17 -2.9 
HORVU6Hr1G076020 1.17 -2.8 
HORVU4Hr1G027740 1.17 -16.6 
HORVU7Hr1G006320 1.16 -2.8 
HORVU4Hr1G076750 1.16 -2.8 
HORVU5Hr1G103060 1.16 -2.5 
HORVU5Hr1G095910 1.16 -6.1 
HORVU4Hr1G089200 1.15 -3.5 
HORVU2Hr1G108790 1.15 -4.3 
HORVU6Hr1G087000 1.15 -2.7 
HORVU4Hr1G057790 1.15 -2.3 
HORVU6Hr1G000510 1.15 -2.4 
HORVU4Hr1G085800 1.15 -2.3 
HORVU6Hr1G027620 1.15 -4.2 
HORVU1Hr1G014570 1.15 -2.4 
HORVU6Hr1G023070 1.15 -6.4 
HORVU2Hr1G028590 1.14 -4.3 
HORVU2Hr1G127640 1.14 -4.4 
HORVU5Hr1G000980 1.14 -4.0 
HORVU6Hr1G079630 1.14 -2.4 
HORVU4Hr1G024530 1.14 -4.4 
HORVU3Hr1G095750 1.13 -3.9 
HORVU2Hr1G108820 1.13 -4.5 
HORVU3Hr1G003140 1.13 -5.5 
HORVU3Hr1G078360 1.13 -4.8 
HORVU5Hr1G111780 1.13 -2.4 
HORVU3Hr1G112020 1.13 -2.2 
HORVU5Hr1G080580 1.12 -4.8 
HORVU5Hr1G089230 1.12 -3.6 
HORVU3Hr1G070900 1.12 -3.1 
HORVU5Hr1G077110 1.12 -6.3 
HORVU7Hr1G074490 1.12 -7.0 
HORVU7Hr1G085660 1.12 -2.3 
HORVU2Hr1G107630 1.12 -4.2 

Gene log2(fold change) log10(adj-p) 

HORVU4Hr1G077610 1.12 -3.1 
HORVU7Hr1G076480 1.12 -3.7 
HORVU7Hr1G028290 1.12 -2.4 
HORVU7Hr1G007220 1.12 -2.1 
HORVU4Hr1G089690 1.11 -2.3 
HORVU7Hr1G020300 1.11 -3.1 
HORVU2Hr1G109370 1.11 -3.1 
HORVU4Hr1G025070 1.11 -2.6 
HORVU1Hr1G009110 1.10 -2.4 
HORVU7Hr1G062090 1.10 -4.3 
HORVU3Hr1G026070 1.10 -4.5 
HORVU2Hr1G090670 1.10 -2.8 
HORVU3Hr1G001680 1.10 -3.5 
HORVU1Hr1G029460 1.10 -3.8 
HORVU0Hr1G000850 1.10 -2.1 
HORVU2Hr1G079840 1.09 -11.3 
HORVU3Hr1G115580 1.09 -10.0 
HORVU5Hr1G037430 1.09 -2.0 
HORVU3Hr1G036960 1.09 -2.7 
HORVU6Hr1G080890 1.09 -2.2 
HORVU7Hr1G008390 1.08 -7.4 
HORVU7Hr1G048880 1.08 -6.5 
HORVU4Hr1G084680 1.08 -2.0 
HORVU3Hr1G002040 1.08 -2.3 
HORVU7Hr1G030160 1.08 -2.0 
HORVU1Hr1G051800 1.08 -2.8 
HORVU6Hr1G004000 1.07 -2.0 
HORVU3Hr1G075040 1.07 -2.4 
HORVU4Hr1G063190 1.07 -3.5 
HORVU3Hr1G085520 1.07 -4.2 
HORVU3Hr1G096280 1.07 -3.3 
HORVU1Hr1G015770 1.07 -2.5 
HORVU4Hr1G088860 1.06 -3.3 
HORVU2Hr1G103590 1.06 -2.3 
HORVU6Hr1G030310 1.06 -3.7 
HORVU7Hr1G120030 1.06 -9.9 
HORVU5Hr1G055060 1.06 -2.7 
HORVU2Hr1G075280 1.06 -4.5 
HORVU4Hr1G054370 1.06 -2.9 
HORVU0Hr1G005320 1.06 -3.4 
HORVU3Hr1G079800 1.06 -6.4 
HORVU4Hr1G066270 1.05 -3.3 
HORVU1Hr1G002300 1.05 -2.1 
HORVU6Hr1G057550 1.05 -3.3 
HORVU3Hr1G027970 1.05 -4.6 
HORVU5Hr1G019820 1.04 -2.5 
HORVU3Hr1G007580 1.04 -2.4 
HORVU1Hr1G083550 1.04 -8.2 
HORVU4Hr1G083980 1.04 -4.7 
HORVU4Hr1G023490 1.04 -3.3 
HORVU1Hr1G054060 1.04 -3.3 
HORVU5Hr1G120920 1.04 -4.2 
HORVU7Hr1G114400 1.03 -2.5 
HORVU5Hr1G046900 1.03 -2.6 
HORVU2Hr1G003840 1.03 -5.0 
HORVU5Hr1G081770 1.03 -2.6 
HORVU4Hr1G054910 1.03 -5.9 
HORVU1Hr1G073540 1.03 -3.6 
HORVU6Hr1G033600 1.02 -17.6 
HORVU0Hr1G009140 1.02 -3.4 
HORVU3Hr1G077580 1.02 -4.9 
HORVU5Hr1G099180 1.02 -2.4 
HORVU3Hr1G090970 1.02 -3.1 
HORVU5Hr1G042400 1.02 -3.0 
HORVU4Hr1G064010 1.02 -2.9 
HORVU0Hr1G012140 1.02 -2.8 
HORVU3Hr1G029770 1.02 -2.7 
HORVU3Hr1G056560 1.01 -2.7 
HORVU3Hr1G059470 1.01 -3.4 
HORVU7Hr1G000150 1.01 -3.8 
HORVU3Hr1G037600 1.01 -15.2 
HORVU2Hr1G081790 1.01 -4.2 
HORVU2Hr1G093960 1.00 -2.3 
HORVU1Hr1G060920 1.00 -2.3 
HORVU4Hr1G056500 1.00 -2.3 
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HORVU7Hr1G030370 1.00 -3.0 
HORVU5Hr1G032370 1.00 -2.8 
HORVU1Hr1G058790 1.00 -3.6 
HORVU1Hr1G050720 1.00 -2.6 
HORVU2Hr1G011070 1.00 -2.4 
HORVU1Hr1G074060 0.99 -5.9 
HORVU7Hr1G108790 0.99 -3.1 
HORVU2Hr1G035680 0.99 -2.6 
HORVU1Hr1G089760 0.99 -4.1 
HORVU7Hr1G048170 0.99 -2.4 
HORVU0Hr1G020750 0.99 -2.8 
HORVU2Hr1G096700 0.99 -2.7 
HORVU4Hr1G068830 0.99 -5.6 
HORVU3Hr1G074010 0.99 -2.3 
HORVU7Hr1G043250 0.98 -2.4 
HORVU7Hr1G046920 0.98 -2.5 
HORVU5Hr1G112300 0.98 -2.9 
HORVU5Hr1G022140 0.98 -2.4 
HORVU3Hr1G036020 0.98 -2.7 
HORVU2Hr1G080350 0.98 -2.1 
HORVU2Hr1G038030 0.98 -2.3 
HORVU1Hr1G029180 0.97 -2.5 
HORVU7Hr1G095890 0.97 -5.6 
HORVU2Hr1G077460 0.97 -3.5 
HORVU6Hr1G014500 0.97 -6.9 
HORVU5Hr1G074660 0.96 -8.5 
HORVU7Hr1G041710 0.96 -11.3 
HORVU3Hr1G059810 0.96 -4.1 
HORVU4Hr1G024400 0.95 -2.9 
HORVU1Hr1G026320 0.95 -2.6 
HORVU4Hr1G050250 0.95 -2.6 
HORVU3Hr1G028780 0.95 -4.8 
HORVU1Hr1G083160 0.95 -3.3 
HORVU3Hr1G019480 0.95 -3.9 
HORVU4Hr1G083170 0.95 -3.1 
HORVU7Hr1G057140 0.94 -2.7 
HORVU7Hr1G088920 0.94 -2.3 
HORVU6Hr1G025280 0.94 -2.1 
HORVU7Hr1G041810 0.94 -2.1 
HORVU1Hr1G051330 0.94 -5.3 
HORVU5Hr1G124030 0.94 -3.1 
HORVU5Hr1G074340 0.94 -6.7 
HORVU2Hr1G003470 0.94 -2.7 
HORVU4Hr1G078510 0.94 -5.3 
HORVU3Hr1G116360 0.93 -2.8 
HORVU6Hr1G076820 0.93 -3.1 
HORVU7Hr1G043230 0.93 -2.4 
HORVU2Hr1G072670 0.93 -2.9 
HORVU7Hr1G092300 0.92 -5.2 
HORVU6Hr1G034620 0.92 -5.9 
HORVU4Hr1G049550 0.92 -3.2 
HORVU3Hr1G116200 0.92 -10.3 
HORVU7Hr1G006490 0.92 -6.9 
HORVU2Hr1G010990 0.92 -2.3 
HORVU4Hr1G002330 0.92 -3.1 
HORVU6Hr1G087420 0.92 -3.7 
HORVU6Hr1G070290 0.91 -2.9 
HORVU3Hr1G094820 0.91 -4.1 
HORVU2Hr1G113270 0.91 -2.9 
HORVU0Hr1G009470 0.91 -2.8 
HORVU3Hr1G018630 0.90 -2.6 
HORVU1Hr1G092150 0.90 -2.3 
HORVU3Hr1G091200 0.90 -7.2 
HORVU7Hr1G020590 0.90 -3.8 
HORVU2Hr1G014240 0.90 -4.1 
HORVU6Hr1G075950 0.90 -4.5 
HORVU5Hr1G037440 0.90 -3.5 
HORVU2Hr1G066920 0.90 -8.2 
HORVU1Hr1G017700 0.90 -2.5 
HORVU7Hr1G054130 0.90 -2.4 
HORVU4Hr1G022930 0.90 -3.5 
HORVU7Hr1G035050 0.90 -3.1 
HORVU3Hr1G089510 0.90 -4.0 
HORVU7Hr1G012850 0.90 -2.3 
HORVU6Hr1G029540 0.90 -2.3 

Gene log2(fold change) log10(adj-p) 

HORVU4Hr1G084920 0.89 -6.9 
HORVU3Hr1G003040 0.89 -3.8 
HORVU2Hr1G020340 0.89 -3.0 
HORVU4Hr1G007610 0.89 -2.2 
HORVU0Hr1G016430 0.89 -2.1 
HORVU5Hr1G012780 0.89 -2.6 
HORVU2Hr1G121440 0.89 -4.6 
HORVU4Hr1G012560 0.89 -2.3 
HORVU2Hr1G028430 0.89 -2.8 
HORVU0Hr1G020730 0.89 -4.2 
HORVU3Hr1G116490 0.89 -2.9 
HORVU1Hr1G064870 0.88 -2.9 
HORVU4Hr1G043680 0.88 -6.8 
HORVU2Hr1G059800 0.88 -2.7 
HORVU6Hr1G069400 0.88 -2.2 
HORVU1Hr1G016200 0.88 -3.1 
HORVU7Hr1G021430 0.88 -6.5 
HORVU2Hr1G080140 0.88 -3.4 
HORVU4Hr1G048440 0.88 -6.4 
HORVU2Hr1G123590 0.88 -2.8 
HORVU4Hr1G077420 0.88 -11.0 
HORVU1Hr1G080080 0.87 -4.3 
HORVU6Hr1G041610 0.87 -2.4 
HORVU3Hr1G026110 0.87 -2.1 
HORVU2Hr1G010440 0.87 -8.5 
HORVU1Hr1G047000 0.87 -2.1 
HORVU4Hr1G061070 0.87 -2.4 
HORVU4Hr1G089540 0.86 -2.1 
HORVU4Hr1G063420 0.86 -3.0 
HORVU0Hr1G001760 0.86 -2.1 
HORVU5Hr1G064010 0.86 -2.5 
HORVU4Hr1G065180 0.86 -3.6 
HORVU6Hr1G062140 0.86 -2.0 
HORVU7Hr1G098320 0.86 -2.0 
HORVU1Hr1G051470 0.86 -2.8 
HORVU1Hr1G038620 0.86 -5.5 
HORVU2Hr1G028940 0.86 -2.3 
HORVU3Hr1G002280 0.86 -14.0 
HORVU4Hr1G002350 0.85 -4.0 
HORVU7Hr1G096680 0.85 -3.1 
HORVU2Hr1G045730 0.85 -2.2 
HORVU1Hr1G037650 0.85 -2.5 
HORVU2Hr1G100720 0.85 -3.1 
HORVU2Hr1G104930 0.85 -5.5 
HORVU4Hr1G060970 0.85 -3.3 
HORVU1Hr1G089730 0.85 -2.3 
HORVU1Hr1G083270 0.84 -2.2 
HORVU4Hr1G021960 0.84 -3.8 
HORVU5Hr1G121570 0.84 -4.1 
HORVU1Hr1G088510 0.84 -2.2 
HORVU3Hr1G078960 0.84 -2.8 
HORVU5Hr1G046240 0.84 -3.2 
HORVU7Hr1G035340 0.84 -9.1 
HORVU5Hr1G047730 0.84 -3.7 
HORVU2Hr1G077970 0.84 -2.5 
HORVU4Hr1G084830 0.84 -3.7 
HORVU6Hr1G026340 0.84 -3.2 
HORVU1Hr1G058330 0.83 -4.3 
HORVU5Hr1G053480 0.83 -5.3 
HORVU2Hr1G019180 0.83 -2.7 
HORVU1Hr1G053310 0.83 -4.2 
HORVU5Hr1G124320 0.83 -2.4 
HORVU2Hr1G071170 0.83 -3.1 
HORVU2Hr1G009900 0.83 -2.6 
HORVU2Hr1G005530 0.83 -2.3 
HORVU4Hr1G063270 0.83 -3.6 
HORVU6Hr1G013670 0.82 -5.7 
HORVU6Hr1G050810 0.82 -2.3 
HORVU6Hr1G050750 0.82 -7.1 
HORVU1Hr1G001920 0.82 -2.3 
HORVU5Hr1G107440 0.82 -2.2 
HORVU3Hr1G088970 0.82 -7.5 
HORVU2Hr1G022410 0.82 -4.5 
HORVU4Hr1G056470 0.81 -3.6 
HORVU5Hr1G115340 0.81 -3.2 
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HORVU7Hr1G037420 0.81 -16.4 
HORVU6Hr1G016120 0.81 -2.8 
HORVU5Hr1G080500 0.81 -2.1 
HORVU5Hr1G092740 0.81 -4.8 
HORVU3Hr1G070690 0.81 -10.0 
HORVU1Hr1G090100 0.80 -10.1 
HORVU1Hr1G050970 0.80 -4.5 
HORVU5Hr1G053230 0.80 -6.4 
HORVU1Hr1G009920 0.80 -4.0 
HORVU1Hr1G045520 0.80 -4.8 
HORVU7Hr1G033360 0.80 -3.8 
HORVU3Hr1G024970 0.80 -4.2 
HORVU2Hr1G102620 0.80 -3.7 
HORVU4Hr1G000280 0.80 -7.0 
HORVU0Hr1G000810 0.80 -2.8 
HORVU7Hr1G045140 0.80 -2.7 
HORVU3Hr1G070610 0.79 -2.6 
HORVU5Hr1G064020 0.79 -4.6 
HORVU0Hr1G021630 0.79 -4.2 
HORVU1Hr1G091010 0.79 -2.3 
HORVU5Hr1G016810 0.79 -8.0 
HORVU3Hr1G116450 0.79 -3.1 
HORVU4Hr1G068770 0.79 -2.5 
HORVU7Hr1G078670 0.79 -3.7 
HORVU3Hr1G065240 0.78 -2.4 
HORVU7Hr1G092380 0.78 -2.0 
HORVU6Hr1G002550 0.78 -3.2 
HORVU1Hr1G000040 0.78 -3.7 
HORVU1Hr1G013210 0.78 -4.6 
HORVU7Hr1G002010 0.78 -2.4 
HORVU2Hr1G072500 0.78 -6.9 
HORVU3Hr1G114220 0.78 -3.4 
HORVU5Hr1G007770 0.77 -6.1 
HORVU6Hr1G047300 0.77 -6.3 
HORVU4Hr1G058840 0.77 -2.1 
HORVU6Hr1G015480 0.77 -2.8 
HORVU1Hr1G046400 0.77 -4.6 
HORVU1Hr1G010810 0.77 -2.0 
HORVU3Hr1G105360 0.77 -2.5 
HORVU2Hr1G031310 0.77 -12.8 
HORVU6Hr1G075250 0.77 -2.8 
HORVU5Hr1G118270 0.76 -4.6 
HORVU6Hr1G082060 0.76 -3.1 
HORVU4Hr1G000770 0.76 -4.7 
HORVU2Hr1G109850 0.76 -3.0 
HORVU3Hr1G056270 0.75 -2.5 
HORVU1Hr1G010670 0.75 -3.6 
HORVU5Hr1G020170 0.75 -2.5 
HORVU3Hr1G005560 0.75 -4.0 
HORVU3Hr1G030020 0.75 -5.8 
HORVU3Hr1G113820 0.75 -3.3 
HORVU6Hr1G081000 0.75 -2.4 
HORVU5Hr1G001920 0.74 -2.4 
HORVU3Hr1G078200 0.74 -4.0 
HORVU3Hr1G114920 0.74 -4.8 
HORVU1Hr1G070460 0.74 -2.8 
HORVU2Hr1G056440 0.74 -3.2 
HORVU2Hr1G096850 0.74 -5.9 
HORVU3Hr1G079260 0.74 -2.0 
HORVU7Hr1G082380 0.73 -8.4 
HORVU4Hr1G053760 0.73 -2.4 
HORVU4Hr1G086020 0.73 -4.7 
HORVU1Hr1G056180 0.73 -5.4 
HORVU5Hr1G024470 0.73 -4.4 
HORVU7Hr1G120660 0.73 -2.7 
HORVU7Hr1G040280 0.73 -2.1 
HORVU7Hr1G084940 0.73 -2.0 
HORVU7Hr1G093020 0.72 -3.2 
HORVU6Hr1G078290 0.72 -2.5 
HORVU4Hr1G090840 0.72 -3.8 
HORVU5Hr1G111620 0.72 -9.3 
HORVU4Hr1G024380 0.72 -2.1 
HORVU5Hr1G103990 0.71 -3.3 
HORVU3Hr1G082130 0.71 -2.2 
HORVU7Hr1G002300 0.71 -3.3 

Gene log2(fold change) log10(adj-p) 

HORVU2Hr1G090980 0.71 -7.9 
HORVU4Hr1G084340 0.71 -2.7 
HORVU3Hr1G038290 0.71 -2.5 
HORVU2Hr1G106880 0.71 -3.9 
HORVU1Hr1G062500 0.71 -3.4 
HORVU6Hr1G087220 0.71 -4.2 
HORVU1Hr1G093800 0.71 -3.7 
HORVU5Hr1G011100 0.71 -3.5 
HORVU3Hr1G087210 0.71 -2.7 
HORVU5Hr1G106960 0.70 -3.8 
HORVU5Hr1G104230 0.70 -3.0 
HORVU1Hr1G048360 0.70 -3.4 
HORVU4Hr1G019610 0.70 -2.1 
HORVU3Hr1G085480 0.70 -3.1 
HORVU7Hr1G058940 0.70 -4.3 
HORVU4Hr1G049410 0.70 -6.1 
HORVU3Hr1G019340 0.70 -5.4 
HORVU5Hr1G106790 0.70 -4.0 
HORVU4Hr1G038570 0.70 -4.1 
HORVU1Hr1G030040 0.69 -3.5 
HORVU4Hr1G021190 0.69 -2.3 
HORVU2Hr1G099330 0.69 -4.7 
HORVU1Hr1G008120 0.68 -4.8 
HORVU0Hr1G038320 0.68 -2.2 
HORVU7Hr1G096560 0.68 -2.7 
HORVU2Hr1G123100 0.68 -2.1 
HORVU1Hr1G029870 0.68 -9.6 
HORVU1Hr1G073510 0.68 -2.1 
HORVU5Hr1G003910 0.68 -5.9 
HORVU3Hr1G073780 0.67 -6.6 
HORVU3Hr1G097950 0.67 -6.0 
HORVU1Hr1G043040 0.67 -3.1 
HORVU3Hr1G089910 0.67 -2.2 
HORVU3Hr1G025670 0.67 -2.1 
HORVU2Hr1G005510 0.67 -2.5 
HORVU6Hr1G036570 0.67 -4.5 
HORVU0Hr1G040540 0.66 -3.2 
HORVU2Hr1G059380 0.66 -5.4 
HORVU5Hr1G111640 0.66 -3.0 
HORVU5Hr1G018480 0.66 -2.2 
HORVU2Hr1G085800 0.66 -2.4 
HORVU7Hr1G095960 0.66 -2.4 
HORVU7Hr1G081510 0.66 -3.2 
HORVU5Hr1G081090 0.66 -2.6 
HORVU4Hr1G084900 0.65 -3.0 
HORVU1Hr1G057180 0.65 -4.6 
HORVU1Hr1G036670 0.65 -2.1 
HORVU1Hr1G051700 0.65 -2.5 
HORVU4Hr1G015740 0.65 -4.0 
HORVU5Hr1G000740 0.65 -5.3 
HORVU4Hr1G000050 0.65 -3.3 
HORVU5Hr1G000780 0.65 -4.8 
HORVU4Hr1G069050 0.65 -2.5 
HORVU3Hr1G074040 0.65 -2.5 
HORVU3Hr1G081590 0.64 -3.1 
HORVU7Hr1G033900 0.64 -4.9 
HORVU1Hr1G091490 0.64 -3.1 
HORVU3Hr1G078780 0.64 -2.7 
HORVU3Hr1G094210 0.64 -3.2 
HORVU1Hr1G030200 0.64 -6.3 
HORVU2Hr1G089070 0.64 -2.4 
HORVU4Hr1G082700 0.64 -2.3 
HORVU3Hr1G059840 0.64 -4.8 
HORVU2Hr1G034330 0.64 -2.1 
HORVU6Hr1G031480 0.64 -2.5 
HORVU4Hr1G004800 0.64 -2.7 
HORVU7Hr1G047700 0.63 -5.7 
HORVU5Hr1G024250 0.63 -2.2 
HORVU2Hr1G048870 0.63 -2.7 
HORVU1Hr1G030930 0.63 -2.2 
HORVU6Hr1G020380 0.63 -5.0 
HORVU2Hr1G091990 0.63 -2.1 
HORVU2Hr1G115000 0.63 -2.3 
HORVU6Hr1G075340 0.63 -3.9 
HORVU4Hr1G031530 0.63 -4.0 
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HORVU7Hr1G108230 0.63 -3.1 
HORVU3Hr1G071530 0.62 -2.3 
HORVU3Hr1G033700 0.62 -2.4 
HORVU4Hr1G048970 0.62 -3.1 
HORVU1Hr1G057490 0.62 -2.2 
HORVU2Hr1G123200 0.62 -2.4 
HORVU3Hr1G056370 0.62 -2.2 
HORVU2Hr1G010560 0.62 -2.0 
HORVU2Hr1G110110 0.61 -5.2 
HORVU4Hr1G007890 0.61 -4.2 
HORVU2Hr1G094320 0.61 -3.6 
HORVU1Hr1G023510 0.61 -3.0 
HORVU2Hr1G018820 0.61 -3.1 
HORVU7Hr1G114170 0.61 -2.4 
HORVU4Hr1G003580 0.61 -3.4 
HORVU4Hr1G013170 0.61 -2.0 
HORVU3Hr1G062490 0.60 -2.8 
HORVU3Hr1G050340 0.60 -3.2 
HORVU4Hr1G084410 0.60 -2.8 
HORVU6Hr1G073010 0.60 -4.6 
HORVU3Hr1G003110 0.60 -2.9 
HORVU7Hr1G033820 0.60 -2.6 
HORVU6Hr1G066780 0.60 -3.0 
HORVU3Hr1G019840 0.60 -2.4 
HORVU3Hr1G055700 0.60 -3.8 
HORVU5Hr1G019590 0.60 -4.5 
HORVU4Hr1G000930 0.60 -3.2 
HORVU2Hr1G065960 0.60 -2.1 
HORVU4Hr1G063150 0.60 -3.1 
HORVU1Hr1G083710 0.60 -2.0 
HORVU4Hr1G084840 0.60 -2.2 
HORVU5Hr1G113630 0.60 -2.1 
HORVU5Hr1G062490 0.59 -3.0 
HORVU6Hr1G051070 0.59 -3.1 
HORVU4Hr1G069100 0.59 -2.2 
HORVU3Hr1G096500 0.59 -2.6 
HORVU2Hr1G095070 0.59 -3.5 
HORVU2Hr1G060730 0.59 -5.9 
HORVU1Hr1G000710 0.59 -2.4 
HORVU2Hr1G027640 0.59 -3.1 
HORVU7Hr1G051550 0.59 -3.3 
HORVU3Hr1G073560 -0.59 -5.1 
HORVU7Hr1G038300 -0.59 -2.2 
HORVU6Hr1G013290 -0.59 -4.0 
HORVU6Hr1G061580 -0.59 -2.6 
HORVU1Hr1G092820 -0.59 -4.6 
HORVU5Hr1G068520 -0.59 -3.8 
HORVU4Hr1G079230 -0.60 -3.9 
HORVU1Hr1G022840 -0.60 -3.0 
HORVU2Hr1G113300 -0.60 -5.1 
HORVU3Hr1G096780 -0.60 -2.8 
HORVU5Hr1G081250 -0.60 -2.7 
HORVU7Hr1G101590 -0.61 -4.8 
HORVU7Hr1G008800 -0.61 -2.9 
HORVU6Hr1G069150 -0.61 -4.4 
HORVU6Hr1G039740 -0.61 -4.9 
HORVU5Hr1G103180 -0.61 -2.3 
HORVU5Hr1G045150 -0.61 -6.3 
HORVU4Hr1G044460 -0.61 -3.9 
HORVU7Hr1G001160 -0.61 -2.5 
HORVU1Hr1G025390 -0.61 -3.9 
HORVU5Hr1G068060 -0.61 -6.9 
HORVU0Hr1G000200 -0.61 -11.8 
HORVU7Hr1G095730 -0.61 -3.7 
HORVU4Hr1G083870 -0.61 -2.6 
HORVU6Hr1G036760 -0.61 -2.2 
HORVU3Hr1G002820 -0.61 -4.2 
HORVU7Hr1G055090 -0.62 -6.9 
HORVU7Hr1G120130 -0.62 -3.4 
HORVU5Hr1G124630 -0.62 -4.5 
HORVU3Hr1G089290 -0.62 -6.7 
HORVU3Hr1G095700 -0.63 -6.4 
HORVU4Hr1G065350 -0.63 -5.4 
HORVU5Hr1G018840 -0.63 -23.7 
HORVU3Hr1G080500 -0.63 -9.8 

Gene log2(fold change) log10(adj-p) 

HORVU7Hr1G030810 -0.64 -5.8 
HORVU6Hr1G041590 -0.64 -5.6 
HORVU5Hr1G119230 -0.64 -2.6 
HORVU3Hr1G030580 -0.64 -5.7 
HORVU4Hr1G013310 -0.64 -21.4 
HORVU7Hr1G068230 -0.64 -2.6 
HORVU2Hr1G005320 -0.64 -5.8 
HORVU3Hr1G001940 -0.64 -3.4 
HORVU0Hr1G019750 -0.64 -3.4 
HORVU5Hr1G016340 -0.65 -2.5 
HORVU1Hr1G001510 -0.65 -2.1 
HORVU6Hr1G009090 -0.65 -3.1 
HORVU7Hr1G100520 -0.65 -2.1 
HORVU7Hr1G089480 -0.65 -2.5 
HORVU1Hr1G061160 -0.65 -9.5 
HORVU2Hr1G115620 -0.65 -8.4 
HORVU1Hr1G009590 -0.65 -3.8 
HORVU7Hr1G088620 -0.65 -3.6 
HORVU7Hr1G098580 -0.65 -2.0 
HORVU4Hr1G083650 -0.65 -4.1 
HORVU7Hr1G041850 -0.66 -3.3 
HORVU5Hr1G016320 -0.66 -2.3 
HORVU6Hr1G050370 -0.66 -3.0 
HORVU7Hr1G025910 -0.66 -12.2 
HORVU6Hr1G093060 -0.66 -2.1 
HORVU6Hr1G067840 -0.66 -4.4 
HORVU6Hr1G031340 -0.66 -12.9 
HORVU1Hr1G029370 -0.66 -4.2 
HORVU1Hr1G046630 -0.66 -4.2 
HORVU7Hr1G043620 -0.66 -5.6 
HORVU2Hr1G049700 -0.66 -12.2 
HORVU2Hr1G115010 -0.67 -2.8 
HORVU7Hr1G097550 -0.67 -3.8 
HORVU6Hr1G022950 -0.67 -2.2 
HORVU3Hr1G035590 -0.68 -6.5 
HORVU3Hr1G074250 -0.68 -5.1 
HORVU3Hr1G059290 -0.68 -6.7 
HORVU2Hr1G099510 -0.68 -3.5 
HORVU5Hr1G106120 -0.68 -2.2 
HORVU1Hr1G017380 -0.69 -4.5 
HORVU2Hr1G095720 -0.69 -4.2 
HORVU3Hr1G055260 -0.69 -4.4 
HORVU6Hr1G094950 -0.69 -3.1 
HORVU7Hr1G113890 -0.69 -7.4 
HORVU5Hr1G093960 -0.70 -4.2 
HORVU6Hr1G054050 -0.70 -3.1 
HORVU3Hr1G115940 -0.70 -3.4 
HORVU3Hr1G014590 -0.70 -3.6 
HORVU1Hr1G081240 -0.70 -2.9 
HORVU2Hr1G070720 -0.70 -2.6 
HORVU4Hr1G001040 -0.71 -2.1 
HORVU2Hr1G080630 -0.71 -5.7 
HORVU3Hr1G085320 -0.71 -2.7 
HORVU6Hr1G054940 -0.71 -10.0 
HORVU1Hr1G019660 -0.71 -3.7 
HORVU3Hr1G012850 -0.71 -7.0 
HORVU5Hr1G099670 -0.72 -2.0 
HORVU5Hr1G082940 -0.72 -4.3 
HORVU7Hr1G101110 -0.72 -3.9 
HORVU7Hr1G049260 -0.72 -2.1 
HORVU1Hr1G086460 -0.72 -4.5 
HORVU6Hr1G087390 -0.72 -3.8 
HORVU3Hr1G066240 -0.73 -7.0 
HORVU6Hr1G059520 -0.73 -4.2 
HORVU5Hr1G062410 -0.73 -2.9 
HORVU3Hr1G013100 -0.73 -2.3 
HORVU3Hr1G057140 -0.73 -4.9 
HORVU0Hr1G016860 -0.73 -5.2 
HORVU4Hr1G022630 -0.74 -3.5 
HORVU1Hr1G049210 -0.74 -3.1 
HORVU6Hr1G063700 -0.74 -2.7 
HORVU4Hr1G028310 -0.74 -3.1 
HORVU2Hr1G107180 -0.74 -2.4 
HORVU1Hr1G027980 -0.74 -6.0 
HORVU7Hr1G040040 -0.75 -2.3 
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HORVU1Hr1G021620 -0.75 -2.8 
HORVU2Hr1G090310 -0.75 -2.9 
HORVU1Hr1G089310 -0.75 -3.0 
HORVU5Hr1G097440 -0.75 -2.8 
HORVU1Hr1G021760 -0.75 -3.8 
HORVU3Hr1G070340 -0.75 -7.6 
HORVU5Hr1G092990 -0.76 -2.2 
HORVU6Hr1G006310 -0.76 -6.4 
HORVU4Hr1G023260 -0.76 -4.5 
HORVU4Hr1G039410 -0.76 -10.5 
HORVU7Hr1G099560 -0.76 -9.9 
HORVU1Hr1G064300 -0.76 -2.0 
HORVU4Hr1G027660 -0.76 -12.4 
HORVU2Hr1G021090 -0.76 -9.4 
HORVU2Hr1G044680 -0.77 -2.4 
HORVU4Hr1G079600 -0.77 -4.8 
HORVU7Hr1G071300 -0.77 -3.0 
HORVU5Hr1G093310 -0.77 -4.6 
HORVU3Hr1G081600 -0.77 -3.2 
HORVU1Hr1G052930 -0.77 -3.0 
HORVU7Hr1G050030 -0.77 -3.1 
HORVU2Hr1G071880 -0.77 -4.6 
HORVU4Hr1G064440 -0.78 -4.2 
HORVU2Hr1G071850 -0.78 -4.0 
HORVU5Hr1G095490 -0.78 -2.1 
HORVU3Hr1G073740 -0.78 -8.4 
HORVU5Hr1G011650 -0.78 -2.4 
HORVU1Hr1G078120 -0.78 -2.5 
HORVU2Hr1G075010 -0.78 -8.5 
HORVU7Hr1G035430 -0.78 -5.6 
HORVU7Hr1G118010 -0.79 -3.3 
HORVU1Hr1G052860 -0.79 -4.2 
HORVU5Hr1G099410 -0.79 -4.4 
HORVU2Hr1G015980 -0.79 -4.2 
HORVU7Hr1G011890 -0.79 -4.8 
HORVU4Hr1G067620 -0.79 -14.9 
HORVU3Hr1G055910 -0.79 -5.1 
HORVU3Hr1G027700 -0.79 -3.8 
HORVU6Hr1G002460 -0.79 -2.0 
HORVU2Hr1G077630 -0.80 -5.7 
HORVU4Hr1G076690 -0.80 -3.8 
HORVU7Hr1G047210 -0.80 -2.3 
HORVU7Hr1G039800 -0.80 -2.8 
HORVU7Hr1G121100 -0.80 -2.0 
HORVU2Hr1G060350 -0.80 -6.0 
HORVU5Hr1G029060 -0.80 -5.1 
HORVU5Hr1G020320 -0.80 -5.2 
HORVU5Hr1G012240 -0.81 -2.1 
HORVU5Hr1G045850 -0.81 -3.4 
HORVU2Hr1G028540 -0.81 -2.3 
HORVU7Hr1G118090 -0.81 -3.3 
HORVU3Hr1G070540 -0.81 -5.6 
HORVU1Hr1G071430 -0.82 -2.0 
HORVU1Hr1G079070 -0.82 -4.2 
HORVU6Hr1G090560 -0.82 -6.9 
HORVU4Hr1G017860 -0.82 -3.3 
HORVU2Hr1G117490 -0.82 -2.4 
HORVU4Hr1G066000 -0.83 -8.4 
HORVU1Hr1G091540 -0.83 -3.7 
HORVU6Hr1G066740 -0.83 -4.9 
HORVU3Hr1G066220 -0.83 -2.8 
HORVU1Hr1G043550 -0.83 -3.4 
HORVU3Hr1G013390 -0.83 -7.0 
HORVU1Hr1G057860 -0.83 -2.0 
HORVU1Hr1G075580 -0.83 -3.7 
HORVU5Hr1G006350 -0.83 -6.8 
HORVU3Hr1G002270 -0.84 -4.2 
HORVU7Hr1G089450 -0.84 -4.7 
HORVU3Hr1G075790 -0.84 -8.9 
HORVU1Hr1G050220 -0.84 -4.3 
HORVU2Hr1G118110 -0.84 -3.1 
HORVU0Hr1G000250 -0.84 -3.2 
HORVU6Hr1G077770 -0.84 -2.5 
HORVU5Hr1G103430 -0.84 -9.2 
HORVU5Hr1G048810 -0.85 -3.3 

Gene log2(fold change) log10(adj-p) 

HORVU3Hr1G012650 -0.85 -3.4 
HORVU3Hr1G021810 -0.85 -4.6 
HORVU1Hr1G008810 -0.85 -7.0 
HORVU3Hr1G013810 -0.85 -2.4 
HORVU7Hr1G078380 -0.86 -2.4 
HORVU7Hr1G072240 -0.86 -15.5 
HORVU7Hr1G008050 -0.86 -8.8 
HORVU1Hr1G066050 -0.86 -3.5 
HORVU7Hr1G040030 -0.87 -13.9 
HORVU4Hr1G054970 -0.87 -3.2 
HORVU3Hr1G029350 -0.87 -5.7 
HORVU7Hr1G002390 -0.87 -2.7 
HORVU4Hr1G063590 -0.88 -2.2 
HORVU7Hr1G028160 -0.88 -7.7 
HORVU3Hr1G035820 -0.88 -2.6 
HORVU6Hr1G013750 -0.88 -3.3 
HORVU2Hr1G005990 -0.88 -3.3 
HORVU6Hr1G092990 -0.88 -2.7 
HORVU2Hr1G065450 -0.88 -5.4 
HORVU2Hr1G106240 -0.89 -2.8 
HORVU1Hr1G063010 -0.89 -8.6 
HORVU3Hr1G083540 -0.89 -2.0 
HORVU6Hr1G058930 -0.90 -22.3 
HORVU2Hr1G027080 -0.90 -4.9 
HORVU7Hr1G098600 -0.90 -4.9 
HORVU4Hr1G026810 -0.90 -3.1 
HORVU5Hr1G093860 -0.90 -4.2 
HORVU7Hr1G006910 -0.91 -2.5 
HORVU7Hr1G001670 -0.91 -3.5 
HORVU7Hr1G089540 -0.92 -14.7 
HORVU1Hr1G004650 -0.92 -4.3 
HORVU6Hr1G068990 -0.92 -9.0 
HORVU0Hr1G022610 -0.92 -4.2 
HORVU5Hr1G120790 -0.93 -3.8 
HORVU6Hr1G022760 -0.93 -2.1 
HORVU6Hr1G004380 -0.93 -2.6 
HORVU4Hr1G080890 -0.93 -2.2 
HORVU6Hr1G016750 -0.94 -3.1 
HORVU6Hr1G017860 -0.94 -2.1 
HORVU7Hr1G010740 -0.94 -2.5 
HORVU3Hr1G092580 -0.94 -6.5 
HORVU6Hr1G085710 -0.94 -6.4 
HORVU5Hr1G062450 -0.94 -11.1 
HORVU6Hr1G079730 -0.94 -3.6 
HORVU3Hr1G030340 -0.95 -2.3 
HORVU5Hr1G059410 -0.95 -5.8 
HORVU1Hr1G093950 -0.95 -2.9 
HORVU3Hr1G013180 -0.95 -2.4 
HORVU5Hr1G023480 -0.96 -3.2 
HORVU4Hr1G078230 -0.96 -6.0 
HORVU0Hr1G008640 -0.96 -2.7 
HORVU3Hr1G050590 -0.96 -3.2 
HORVU4Hr1G055220 -0.97 -2.7 
HORVU6Hr1G031360 -0.97 -3.3 
HORVU1Hr1G057680 -0.97 -6.0 
HORVU4Hr1G013380 -0.97 -2.9 
HORVU3Hr1G002210 -0.97 -3.0 
HORVU3Hr1G070560 -0.98 -2.0 
HORVU1Hr1G020420 -0.98 -2.4 
HORVU5Hr1G014170 -0.98 -2.4 
HORVU3Hr1G010830 -0.98 -2.6 
HORVU1Hr1G017770 -0.99 -6.2 
HORVU3Hr1G059060 -0.99 -9.7 
HORVU6Hr1G004640 -1.00 -2.3 
HORVU4Hr1G002600 -1.00 -2.0 
HORVU2Hr1G025400 -1.00 -4.0 
HORVU0Hr1G040210 -1.00 -3.1 
HORVU1Hr1G044770 -1.01 -6.5 
HORVU3Hr1G004090 -1.01 -2.0 
HORVU3Hr1G098940 -1.01 -3.1 
HORVU5Hr1G098640 -1.01 -2.3 
HORVU3Hr1G068380 -1.01 -2.4 
HORVU4Hr1G050990 -1.02 -2.1 
HORVU1Hr1G026780 -1.02 -4.4 
HORVU6Hr1G011790 -1.02 -3.4 
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Gene log2(fold change) log10(adj-p) 

HORVU1Hr1G075570 -1.02 -2.4 
HORVU1Hr1G070640 -1.03 -2.7 
HORVU2Hr1G124530 -1.03 -3.2 
HORVU7Hr1G057460 -1.03 -5.5 
HORVU5Hr1G063480 -1.03 -3.5 
HORVU1Hr1G080480 -1.03 -4.8 
HORVU2Hr1G004230 -1.03 -2.6 
HORVU2Hr1G107250 -1.04 -6.7 
HORVU3Hr1G090000 -1.04 -4.6 
HORVU5Hr1G025690 -1.05 -3.1 
HORVU3Hr1G087180 -1.05 -3.1 
HORVU4Hr1G072310 -1.05 -5.6 
HORVU0Hr1G005140 -1.05 -8.6 
HORVU6Hr1G058780 -1.05 -9.8 
HORVU6Hr1G030050 -1.05 -4.5 
HORVU5Hr1G052310 -1.06 -2.2 
HORVU7Hr1G001570 -1.06 -2.7 
HORVU5Hr1G093660 -1.06 -4.6 
HORVU3Hr1G095360 -1.06 -3.2 
HORVU4Hr1G002390 -1.07 -2.2 
HORVU6Hr1G083680 -1.07 -2.5 
HORVU1Hr1G066530 -1.07 -6.3 
HORVU3Hr1G007720 -1.07 -2.3 
HORVU5Hr1G114700 -1.07 -2.3 
HORVU4Hr1G060230 -1.08 -4.5 
HORVU4Hr1G005500 -1.08 -6.5 
HORVU0Hr1G005210 -1.08 -2.4 
HORVU2Hr1G094870 -1.09 -2.1 
HORVU2Hr1G062890 -1.09 -4.4 
HORVU7Hr1G072670 -1.09 -2.1 
HORVU3Hr1G022960 -1.09 -3.3 
HORVU1Hr1G072890 -1.10 -3.4 
HORVU5Hr1G010870 -1.10 -2.1 
HORVU0Hr1G020630 -1.11 -3.7 
HORVU5Hr1G122390 -1.11 -2.6 
HORVU2Hr1G116670 -1.11 -9.3 
HORVU2Hr1G083100 -1.11 -13.9 
HORVU4Hr1G001060 -1.12 -8.2 
HORVU3Hr1G117590 -1.12 -15.7 
ENSRNA049482489 -1.12 -2.2 
HORVU5Hr1G095580 -1.12 -6.6 
HORVU2Hr1G014900 -1.12 -7.0 
HORVU2Hr1G010270 -1.13 -3.1 
HORVU4Hr1G081210 -1.13 -2.6 
HORVU1Hr1G015210 -1.13 -2.3 
HORVU1Hr1G088680 -1.13 -4.3 
HORVU4Hr1G071040 -1.13 -11.1 
HORVU3Hr1G027080 -1.14 -3.3 
HORVU3Hr1G035470 -1.14 -5.2 
HORVU2Hr1G063620 -1.14 -2.4 
HORVU7Hr1G096690 -1.15 -2.3 
HORVU5Hr1G097900 -1.15 -4.0 
HORVU3Hr1G013380 -1.15 -3.9 
HORVU1Hr1G005110 -1.16 -3.9 
HORVU3Hr1G056960 -1.17 -7.1 
HORVU7Hr1G028730 -1.17 -3.7 
HORVU1Hr1G076460 -1.19 -3.5 
HORVU2Hr1G123850 -1.19 -3.5 
HORVU2Hr1G121050 -1.20 -6.9 
HORVU1Hr1G095020 -1.21 -5.1 
HORVU2Hr1G034280 -1.22 -2.6 
HORVU2Hr1G060040 -1.22 -3.1 
HORVU3Hr1G095240 -1.22 -2.7 
HORVU4Hr1G024580 -1.23 -3.8 
HORVU7Hr1G103870 -1.23 -14.6 
HORVU4Hr1G076970 -1.23 -2.9 
HORVU7Hr1G018590 -1.24 -2.9 
HORVU5Hr1G041660 -1.24 -2.8 
HORVU2Hr1G010520 -1.25 -7.7 
HORVU2Hr1G007990 -1.25 -4.9 
HORVU3Hr1G067330 -1.25 -2.9 
HORVU5Hr1G120390 -1.25 -73.5 

Gene log2(fold change) log10(adj-p) 

HORVU2Hr1G112120 -1.27 -2.9 
HORVU3Hr1G063620 -1.27 -2.9 
HORVU2Hr1G125250 -1.27 -4.5 
HORVU2Hr1G030610 -1.27 -7.0 
HORVU1Hr1G089840 -1.28 -16.1 
HORVU5Hr1G004700 -1.29 -6.2 
HORVU3Hr1G002220 -1.29 -3.3 
HORVU5Hr1G122950 -1.31 -7.2 
HORVU6Hr1G090040 -1.31 -4.4 
HORVU3Hr1G002570 -1.32 -12.0 
HORVU5Hr1G092770 -1.32 -6.9 
HORVU5Hr1G124710 -1.32 -5.2 
HORVU3Hr1G006740 -1.32 -5.7 
HORVU2Hr1G109040 -1.33 -7.1 
HORVU3Hr1G116060 -1.34 -28.3 
HORVU3Hr1G085690 -1.35 -4.8 
HORVU7Hr1G079600 -1.35 -3.2 
HORVU5Hr1G112610 -1.35 -5.2 
HORVU5Hr1G025680 -1.35 -4.1 
HORVU3Hr1G002370 -1.36 -3.6 
HORVU7Hr1G109580 -1.37 -11.3 
HORVU6Hr1G004320 -1.37 -5.2 
HORVU1Hr1G016080 -1.38 -8.4 
HORVU2Hr1G014930 -1.38 -5.6 
HORVU3Hr1G117510 -1.39 -3.8 
HORVU3Hr1G062430 -1.39 -5.6 
HORVU4Hr1G077310 -1.39 -3.7 
HORVU2Hr1G029490 -1.40 -4.9 
HORVU2Hr1G038940 -1.40 -3.4 
HORVU2Hr1G079810 -1.40 -5.2 
HORVU6Hr1G004340 -1.42 -5.3 
HORVU3Hr1G064710 -1.42 -4.8 
HORVU7Hr1G074030 -1.44 -5.4 
HORVU5Hr1G001800 -1.46 -5.3 
HORVU7Hr1G099520 -1.46 -4.7 
HORVU5Hr1G077450 -1.47 -10.9 
HORVU6Hr1G090600 -1.47 -6.3 
HORVU2Hr1G099540 -1.48 -19.3 
HORVU1Hr1G001670 -1.48 -8.8 
HORVU6Hr1G001350 -1.49 -5.7 
HORVU6Hr1G008550 -1.49 -6.0 
HORVU3Hr1G097810 -1.51 -8.9 
HORVU6Hr1G001420 -1.52 -8.5 
HORVU1Hr1G080520 -1.53 -7.2 
HORVU3Hr1G002520 -1.55 -5.6 
HORVU1Hr1G001660 -1.57 -5.4 
HORVU2Hr1G018570 -1.59 -6.5 
HORVU5Hr1G010960 -1.60 -5.7 
HORVU0Hr1G007620 -1.61 -4.7 
HORVU5Hr1G106370 -1.61 -5.0 
HORVU6Hr1G078260 -1.66 -5.3 
HORVU2Hr1G008140 -1.69 -7.6 
HORVU2Hr1G110080 -1.73 -6.5 
HORVU0Hr1G021970 -1.74 -13.9 
HORVU2Hr1G010250 -1.75 -6.9 
HORVU2Hr1G127440 -1.87 -17.1 
HORVU3Hr1G018390 -1.97 -18.8 
HORVU3Hr1G114800 -1.99 -29.7 
HORVU1Hr1G092290 -1.99 -11.2 
HORVU2Hr1G108460 -1.99 -8.9 
HORVU3Hr1G116010 -2.01 -8.4 
HORVU1Hr1G000920 -2.03 -7.6 
HORVU7Hr1G036960 -2.16 -9.9 
HORVU4Hr1G000030 -2.19 -26.8 
HORVU0Hr1G000910 -2.23 -13.7 
HORVU6Hr1G004440 -2.32 -12.1 
HORVU4Hr1G000040 -2.35 -12.9 
HORVU2Hr1G028780 -2.37 -13.1 
HORVU7Hr1G047910 -2.44 -32.4 
HORVU5Hr1G057090 -2.73 -15.9 
HORVU4Hr1G090860 -3.00 -40.9 
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Table A.9.2. Differentially expressed genes in salt stressed barley root tissue. Genes 
found to be differentially expressed in 100 mM salt treated plants relative to control 
plants using DESeq2 with adjusted p-value < 0.01 and |log2(fold change)| > log2(1.5). 
The adjusted p-value is shown as log10 as the values are small. 
 

Gene log2(fold change) log10(adj-p) 

HORVU3Hr1G065420 3.10 -48.9 
HORVU7Hr1G106900 2.49 -34.7 
HORVU2Hr1G030870 2.40 -37.6 
HORVU3Hr1G009360 2.20 -14.3 
HORVU4Hr1G087870 2.19 -16.0 
HORVU3Hr1G093170 2.10 -12.8 
HORVU2Hr1G073210 2.07 -10.6 
HORVU1Hr1G092310 1.98 -9.0 
HORVU2Hr1G011550 1.97 -8.0 
HORVU4Hr1G071300 1.90 -8.3 
HORVU3Hr1G082370 1.86 -10.8 
HORVU2Hr1G085270 1.84 -11.6 
HORVU2Hr1G079890 1.84 -12.6 
HORVU3Hr1G085760 1.84 -15.3 
HORVU3Hr1G013290 1.83 -12.8 
HORVU3Hr1G093160 1.83 -6.9 
HORVU4Hr1G018150 1.83 -21.4 
HORVU2Hr1G012280 1.83 -14.0 
HORVU2Hr1G012220 1.79 -10.6 
HORVU1Hr1G059020 1.76 -11.9 
HORVU5Hr1G094080 1.73 -8.6 
HORVU3Hr1G076640 1.72 -11.7 
HORVU6Hr1G000480 1.72 -10.7 
HORVU2Hr1G118010 1.71 -7.0 
HORVU7Hr1G036720 1.69 -5.3 
HORVU1Hr1G092660 1.67 -5.6 
HORVU2Hr1G004610 1.66 -11.4 
HORVU2Hr1G002720 1.64 -5.4 
HORVU6Hr1G008640 1.63 -12.9 
HORVU2Hr1G097480 1.63 -9.1 
HORVU4Hr1G073790 1.62 -5.1 
HORVU2Hr1G012340 1.62 -10.2 
HORVU3Hr1G076630 1.61 -11.7 
HORVU2Hr1G029290 1.61 -8.6 
HORVU5Hr1G057090 1.60 -4.9 
HORVU3Hr1G100190 1.58 -7.2 
HORVU1Hr1G074230 1.57 -5.3 
HORVU7Hr1G086890 1.57 -12.9 
HORVU1Hr1G005510 1.55 -11.7 
HORVU5Hr1G067760 1.54 -7.5 
HORVU3Hr1G076650 1.54 -8.2 
HORVU6Hr1G025830 1.53 -13.2 
HORVU5Hr1G047920 1.53 -6.1 
HORVU7Hr1G020770 1.53 -6.2 
HORVU0Hr1G021480 1.52 -5.3 
HORVU6Hr1G090500 1.52 -13.0 
HORVU3Hr1G006230 1.49 -5.9 
HORVU2Hr1G004620 1.48 -8.0 
HORVU2Hr1G004530 1.47 -8.3 
HORVU3Hr1G115700 1.47 -9.8 
HORVU1Hr1G008300 1.47 -13.2 
HORVU2Hr1G114390 1.47 -5.3 
HORVU3Hr1G099760 1.46 -16.2 
HORVU2Hr1G003400 1.46 -4.5 
HORVU2Hr1G004510 1.46 -11.7 
HORVU1Hr1G084900 1.46 -9.2 
HORVU7Hr1G008260 1.46 -12.1 
HORVU3Hr1G098910 1.45 -6.1 
HORVU2Hr1G004600 1.44 -11.0 
HORVU7Hr1G083230 1.44 -5.0 
HORVU2Hr1G004480 1.43 -11.4 
HORVU1Hr1G058940 1.42 -8.5 
HORVU4Hr1G087400 1.42 -13.2 
HORVU4Hr1G081330 1.42 -8.6 
HORVU2Hr1G033090 1.41 -7.1 
HORVU2Hr1G126150 1.41 -6.6 
HORVU5Hr1G065620 1.40 -9.1 

Gene log2(fold change) log10(adj-p) 

HORVU2Hr1G085500 1.40 -4.7 
HORVU7Hr1G122800 1.40 -3.7 
HORVU7Hr1G117850 1.40 -4.3 
HORVU5Hr1G080790 1.39 -6.8 
HORVU2Hr1G004540 1.39 -6.5 
HORVU0Hr1G000850 1.38 -8.2 
HORVU1Hr1G069830 1.38 -7.0 
HORVU3Hr1G082870 1.38 -13.9 
HORVU6Hr1G012800 1.38 -19.8 
HORVU5Hr1G006910 1.37 -3.6 
HORVU7Hr1G116310 1.37 -10.3 
HORVU2Hr1G004550 1.36 -6.9 
HORVU4Hr1G087430 1.36 -8.4 
HORVU7Hr1G030690 1.36 -8.5 
HORVU3Hr1G053210 1.36 -4.2 
HORVU7Hr1G019380 1.35 -6.4 
HORVU1Hr1G000340 1.35 -4.3 
HORVU2Hr1G117540 1.35 -8.2 
HORVU4Hr1G075470 1.34 -5.8 
HORVU1Hr1G005230 1.34 -7.8 
HORVU5Hr1G075050 1.33 -6.4 
HORVU3Hr1G074360 1.33 -3.2 
HORVU2Hr1G116730 1.32 -4.5 
HORVU0Hr1G002720 1.32 -5.3 
HORVU5Hr1G000420 1.32 -3.9 
HORVU2Hr1G073680 1.32 -15.5 
HORVU2Hr1G015720 1.31 -3.8 
HORVU6Hr1G091490 1.31 -4.9 
HORVU2Hr1G124320 1.31 -5.8 
HORVU4Hr1G022280 1.31 -3.7 
HORVU7Hr1G020830 1.30 -3.5 
HORVU2Hr1G114450 1.29 -3.9 
HORVU7Hr1G008830 1.29 -5.0 
HORVU5Hr1G007660 1.29 -6.1 
HORVU2Hr1G073670 1.29 -6.6 
HORVU3Hr1G092520 1.28 -3.3 
HORVU2Hr1G120190 1.28 -14.5 
HORVU7Hr1G001150 1.28 -4.6 
HORVU5Hr1G111210 1.28 -5.6 
HORVU2Hr1G111760 1.28 -9.0 
HORVU6Hr1G034250 1.27 -3.6 
HORVU2Hr1G117490 1.27 -8.0 
HORVU4Hr1G013840 1.27 -5.4 
HORVU3Hr1G111600 1.27 -3.8 
HORVU7Hr1G021000 1.27 -3.0 
HORVU3Hr1G065320 1.26 -3.4 
HORVU5Hr1G012290 1.25 -4.4 
HORVU2Hr1G044460 1.24 -10.4 
HORVU3Hr1G109430 1.24 -3.3 
HORVU2Hr1G040540 1.24 -4.9 
HORVU5Hr1G059300 1.23 -10.4 
HORVU4Hr1G022270 1.23 -4.0 
HORVU1Hr1G080850 1.23 -10.1 
HORVU1Hr1G007830 1.23 -2.7 
HORVU5Hr1G125800 1.23 -3.4 
HORVU3Hr1G076660 1.22 -3.4 
HORVU4Hr1G018180 1.22 -2.9 
HORVU2Hr1G038140 1.22 -8.6 
HORVU0Hr1G015930 1.22 -4.8 
HORVU7Hr1G106660 1.22 -19.8 
HORVU5Hr1G016810 1.21 -5.0 
HORVU2Hr1G001960 1.21 -5.1 
HORVU2Hr1G106140 1.21 -3.1 
HORVU3Hr1G006130 1.21 -7.2 
HORVU5Hr1G084980 1.20 -7.6 
HORVU4Hr1G011760 1.20 -4.4 
HORVU7Hr1G019390 1.20 -5.0 
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Gene log2(fold change) log10(adj-p) 

HORVU1Hr1G092360 1.20 -4.0 
HORVU3Hr1G113620 1.19 -3.1 
HORVU5Hr1G103820 1.19 -4.9 
HORVU3Hr1G093100 1.19 -2.7 
HORVU4Hr1G075460 1.19 -2.9 
HORVU4Hr1G059930 1.18 -2.5 
HORVU2Hr1G070310 1.18 -5.8 
HORVU1Hr1G005690 1.18 -3.4 
HORVU2Hr1G096890 1.18 -4.7 
HORVU4Hr1G066000 1.18 -7.3 
HORVU6Hr1G013710 1.18 -4.2 
HORVU5Hr1G047610 1.18 -6.2 
HORVU0Hr1G020630 1.17 -3.5 
HORVU0Hr1G039010 1.17 -4.4 
HORVU4Hr1G043960 1.17 -4.3 
HORVU2Hr1G116800 1.17 -4.1 
HORVU1Hr1G000470 1.17 -3.7 
HORVU3Hr1G087690 1.17 -6.1 
HORVU4Hr1G053190 1.17 -3.6 
HORVU6Hr1G061420 1.17 -5.8 
HORVU7Hr1G091860 1.17 -3.2 
HORVU3Hr1G081970 1.16 -2.6 
HORVU1Hr1G064680 1.16 -2.7 
HORVU3Hr1G074960 1.15 -5.1 
HORVU7Hr1G089310 1.15 -3.1 
HORVU5Hr1G105900 1.15 -2.6 
HORVU7Hr1G116080 1.15 -2.4 
HORVU7Hr1G048820 1.15 -2.4 
HORVU7Hr1G001190 1.15 -5.4 
HORVU6Hr1G084080 1.15 -5.2 
HORVU6Hr1G014600 1.14 -2.7 
HORVU5Hr1G056300 1.14 -2.4 
HORVU5Hr1G016780 1.14 -7.3 
HORVU6Hr1G091840 1.14 -4.2 
HORVU1Hr1G008540 1.13 -7.3 
HORVU3Hr1G006240 1.13 -2.6 
HORVU3Hr1G004840 1.13 -2.9 
HORVU2Hr1G076320 1.13 -3.0 
HORVU7Hr1G087250 1.13 -3.4 
HORVU3Hr1G107160 1.13 -6.0 
HORVU5Hr1G070400 1.13 -5.6 
HORVU2Hr1G095210 1.13 -3.6 
HORVU1Hr1G088300 1.13 -4.2 
HORVU5Hr1G052150 1.13 -3.2 
HORVU2Hr1G124430 1.13 -5.3 
HORVU2Hr1G000090 1.13 -2.7 
HORVU2Hr1G124310 1.12 -4.4 
HORVU2Hr1G021530 1.12 -2.3 
HORVU3Hr1G071470 1.12 -2.4 
HORVU5Hr1G110180 1.12 -4.2 
HORVU7Hr1G028870 1.12 -3.1 
HORVU0Hr1G011720 1.12 -3.8 
HORVU4Hr1G004820 1.12 -3.0 
HORVU3Hr1G091680 1.11 -8.6 
HORVU7Hr1G027440 1.11 -4.5 
HORVU3Hr1G068760 1.11 -3.1 
HORVU2Hr1G108530 1.11 -2.4 
HORVU2Hr1G124300 1.11 -3.6 
HORVU5Hr1G009220 1.11 -4.8 
HORVU4Hr1G079620 1.11 -3.3 
HORVU5Hr1G124810 1.10 -2.3 
HORVU1Hr1G044000 1.10 -6.7 
HORVU2Hr1G011720 1.10 -3.4 
HORVU2Hr1G105560 1.10 -13.8 
HORVU1Hr1G089520 1.10 -2.4 
HORVU1Hr1G000450 1.10 -2.5 
HORVU1Hr1G012680 1.10 -3.9 
HORVU1Hr1G092240 1.10 -6.4 
HORVU4Hr1G000050 1.10 -4.0 
HORVU6Hr1G084370 1.10 -2.2 
HORVU3Hr1G018980 1.10 -4.1 
HORVU7Hr1G104180 1.10 -3.2 
HORVU5Hr1G023940 1.09 -7.0 
HORVU2Hr1G108260 1.09 -9.3 
HORVU3Hr1G108100 1.09 -8.6 

Gene log2(fold change) log10(adj-p) 

HORVU3Hr1G064990 1.09 -3.2 
HORVU5Hr1G024550 1.09 -4.1 
HORVU6Hr1G054940 1.09 -7.4 
HORVU2Hr1G101710 1.09 -3.7 
HORVU3Hr1G116310 1.09 -6.5 
HORVU7Hr1G119840 1.09 -2.8 
HORVU1Hr1G083210 1.09 -2.8 
HORVU5Hr1G051970 1.09 -2.6 
HORVU3Hr1G026540 1.08 -3.5 
HORVU2Hr1G109640 1.08 -5.5 
HORVU2Hr1G044450 1.08 -2.8 
HORVU5Hr1G014130 1.08 -2.5 
HORVU3Hr1G059170 1.08 -2.5 
HORVU2Hr1G114440 1.08 -2.7 
HORVU7Hr1G084140 1.08 -5.8 
HORVU5Hr1G118800 1.08 -3.7 
HORVU6Hr1G015480 1.08 -2.3 
HORVU3Hr1G074950 1.07 -2.3 
HORVU4Hr1G060370 1.07 -2.8 
HORVU2Hr1G117680 1.07 -3.3 
HORVU2Hr1G035160 1.07 -4.4 
HORVU2Hr1G010060 1.07 -2.7 
HORVU4Hr1G088930 1.07 -2.6 
HORVU5Hr1G023730 1.07 -4.0 
HORVU1Hr1G000350 1.06 -3.2 
HORVU6Hr1G020540 1.06 -3.2 
HORVU5Hr1G094700 1.06 -2.7 
HORVU7Hr1G002370 1.06 -4.1 
HORVU7Hr1G009140 1.06 -2.5 
HORVU4Hr1G071020 1.06 -3.7 
HORVU4Hr1G072500 1.06 -3.7 
HORVU3Hr1G076840 1.05 -2.6 
HORVU5Hr1G094710 1.05 -3.3 
HORVU2Hr1G003070 1.05 -2.4 
HORVU7Hr1G078670 1.05 -4.2 
HORVU4Hr1G001250 1.05 -3.3 
HORVU5Hr1G110220 1.04 -3.0 
HORVU7Hr1G078960 1.04 -3.8 
HORVU4Hr1G080820 1.04 -2.4 
HORVU5Hr1G123310 1.04 -2.2 
HORVU7Hr1G120270 1.04 -2.5 
HORVU4Hr1G090190 1.04 -3.4 
HORVU3Hr1G081580 1.04 -3.8 
HORVU3Hr1G076670 1.04 -9.5 
HORVU2Hr1G018480 1.04 -2.1 
HORVU2Hr1G022820 1.04 -3.4 
HORVU2Hr1G043890 1.04 -5.2 
HORVU1Hr1G091220 1.04 -5.8 
HORVU6Hr1G084030 1.04 -3.8 
HORVU1Hr1G082910 1.04 -2.4 
HORVU0Hr1G019800 1.04 -3.8 
HORVU1Hr1G057220 1.03 -3.0 
HORVU1Hr1G061380 1.03 -3.0 
HORVU5Hr1G055570 1.03 -3.1 
HORVU5Hr1G119270 1.03 -5.7 
HORVU2Hr1G085280 1.03 -2.9 
HORVU5Hr1G006880 1.03 -4.6 
HORVU1Hr1G092640 1.02 -2.9 
HORVU6Hr1G020690 1.02 -3.8 
HORVU4Hr1G078220 1.02 -3.5 
HORVU5Hr1G099470 1.02 -3.5 
HORVU4Hr1G079600 1.02 -4.4 
HORVU3Hr1G083670 1.02 -2.2 
HORVU2Hr1G006830 1.02 -2.2 
HORVU5Hr1G064280 1.02 -2.7 
HORVU2Hr1G105510 1.01 -7.1 
HORVU1Hr1G013450 1.01 -2.6 
HORVU2Hr1G110420 1.01 -4.4 
HORVU5Hr1G023660 1.01 -3.4 
HORVU4Hr1G023680 1.01 -2.6 
HORVU1Hr1G045020 1.01 -2.1 
HORVU3Hr1G003860 1.01 -2.3 
HORVU3Hr1G081180 1.01 -2.6 
HORVU6Hr1G065080 1.01 -5.8 
HORVU7Hr1G088790 1.01 -2.2 
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HORVU2Hr1G125050 1.01 -5.7 
HORVU7Hr1G093630 1.00 -2.9 
HORVU2Hr1G019400 1.00 -2.6 
HORVU5Hr1G097320 1.00 -3.1 
HORVU0Hr1G031210 1.00 -2.7 
HORVU2Hr1G047260 1.00 -5.1 
HORVU4Hr1G074480 1.00 -3.6 
HORVU7Hr1G105170 0.99 -3.8 
HORVU7Hr1G101580 0.99 -3.4 
HORVU5Hr1G012320 0.99 -2.2 
HORVU0Hr1G011730 0.99 -2.2 
HORVU2Hr1G090250 0.99 -2.0 
HORVU2Hr1G123050 0.99 -2.5 
HORVU2Hr1G007720 0.99 -3.8 
HORVU1Hr1G072690 0.99 -3.1 
HORVU7Hr1G098280 0.99 -3.2 
HORVU2Hr1G086050 0.99 -6.7 
HORVU6Hr1G027930 0.98 -3.9 
HORVU4Hr1G073580 0.98 -6.9 
HORVU7Hr1G040460 0.98 -2.2 
HORVU7Hr1G045150 0.98 -3.2 
HORVU2Hr1G102100 0.98 -5.2 
HORVU5Hr1G122410 0.98 -2.6 
HORVU1Hr1G054230 0.98 -4.2 
HORVU5Hr1G023720 0.98 -3.3 
HORVU1Hr1G049100 0.98 -3.0 
HORVU6Hr1G091180 0.98 -3.8 
HORVU5Hr1G102900 0.98 -2.4 
HORVU2Hr1G104220 0.97 -2.6 
HORVU1Hr1G057560 0.97 -2.1 
HORVU5Hr1G119050 0.97 -3.4 
HORVU4Hr1G088080 0.97 -4.0 
HORVU6Hr1G023210 0.96 -3.4 
HORVU5Hr1G122060 0.96 -4.1 
HORVU1Hr1G015190 0.96 -2.4 
HORVU3Hr1G091320 0.96 -5.9 
HORVU3Hr1G080550 0.96 -2.2 
HORVU0Hr1G030160 0.96 -2.6 
HORVU5Hr1G106850 0.96 -2.9 
HORVU5Hr1G097940 0.96 -3.0 
HORVU7Hr1G029460 0.95 -2.7 
HORVU4Hr1G043990 0.95 -4.0 
HORVU5Hr1G014090 0.95 -2.1 
HORVU7Hr1G118770 0.95 -5.2 
HORVU4Hr1G053790 0.95 -2.5 
HORVU2Hr1G043900 0.94 -6.7 
HORVU3Hr1G116400 0.94 -2.0 
HORVU1Hr1G025440 0.94 -4.1 
HORVU5Hr1G077670 0.94 -2.3 
HORVU7Hr1G002740 0.94 -3.8 
HORVU2Hr1G110230 0.94 -2.4 
HORVU2Hr1G034860 0.93 -3.9 
HORVU7Hr1G116830 0.93 -7.4 
HORVU4Hr1G055620 0.93 -3.7 
HORVU4Hr1G058160 0.93 -2.0 
HORVU2Hr1G016290 0.93 -2.4 
HORVU3Hr1G013470 0.93 -6.3 
HORVU2Hr1G003230 0.93 -2.4 
HORVU6Hr1G094070 0.93 -2.2 
HORVU5Hr1G094750 0.93 -3.2 
HORVU5Hr1G062300 0.93 -2.4 
HORVU5Hr1G045990 0.93 -7.5 
HORVU2Hr1G121340 0.92 -2.2 
HORVU5Hr1G081950 0.92 -4.3 
HORVU3Hr1G115610 0.92 -6.0 
HORVU1Hr1G065100 0.92 -2.1 
HORVU4Hr1G068530 0.92 -19.4 
HORVU2Hr1G062910 0.92 -4.0 
HORVU4Hr1G010720 0.91 -3.8 
HORVU4Hr1G053980 0.91 -4.1 
HORVU6Hr1G018510 0.91 -2.8 
HORVU7Hr1G043880 0.91 -4.6 
HORVU3Hr1G016970 0.91 -2.3 
HORVU2Hr1G116670 0.91 -2.9 
HORVU5Hr1G010880 0.91 -2.9 

Gene log2(fold change) log10(adj-p) 

HORVU1Hr1G093890 0.91 -3.8 
HORVU6Hr1G022360 0.90 -11.4 
HORVU0Hr1G008830 0.90 -4.3 
HORVU1Hr1G088580 0.90 -2.6 
HORVU0Hr1G013950 0.90 -2.1 
HORVU4Hr1G088580 0.90 -2.2 
HORVU7Hr1G077590 0.90 -3.0 
HORVU5Hr1G066360 0.90 -2.5 
HORVU5Hr1G108610 0.90 -4.5 
HORVU6Hr1G031640 0.90 -4.3 
HORVU4Hr1G027180 0.89 -5.6 
HORVU5Hr1G075670 0.89 -6.9 
HORVU1Hr1G019500 0.89 -4.4 
HORVU6Hr1G086410 0.89 -2.3 
HORVU7Hr1G088920 0.89 -2.1 
HORVU2Hr1G034740 0.89 -3.4 
HORVU5Hr1G096000 0.89 -3.5 
HORVU4Hr1G053150 0.88 -2.9 
HORVU3Hr1G096280 0.88 -3.5 
HORVU1Hr1G071260 0.88 -4.7 
HORVU4Hr1G072560 0.88 -3.1 
HORVU7Hr1G098600 0.88 -2.7 
HORVU3Hr1G026330 0.88 -2.7 
HORVU4Hr1G022620 0.88 -2.3 
HORVU3Hr1G002080 0.88 -3.1 
HORVU5Hr1G012120 0.87 -2.9 
HORVU5Hr1G047150 0.87 -2.2 
HORVU5Hr1G122510 0.87 -2.6 
HORVU6Hr1G067740 0.87 -2.4 
HORVU6Hr1G035370 0.87 -2.0 
HORVU7Hr1G104350 0.87 -2.2 
HORVU5Hr1G015140 0.87 -2.3 
HORVU5Hr1G019030 0.87 -4.5 
HORVU4Hr1G064790 0.86 -4.8 
HORVU5Hr1G123280 0.86 -2.1 
HORVU1Hr1G019380 0.86 -4.2 
HORVU7Hr1G028290 0.86 -2.2 
HORVU3Hr1G022780 0.86 -2.3 
HORVU3Hr1G097860 0.86 -2.2 
HORVU4Hr1G010470 0.86 -2.5 
HORVU4Hr1G017390 0.86 -3.8 
HORVU7Hr1G026070 0.86 -6.4 
HORVU5Hr1G115880 0.86 -2.1 
HORVU3Hr1G076620 0.86 -3.6 
HORVU4Hr1G086520 0.86 -3.4 
HORVU5Hr1G067390 0.86 -2.2 
HORVU5Hr1G053790 0.86 -2.9 
HORVU0Hr1G005300 0.85 -3.2 
HORVU1Hr1G000230 0.85 -4.5 
HORVU3Hr1G000390 0.85 -6.2 
HORVU1Hr1G090860 0.85 -3.3 
HORVU5Hr1G063320 0.85 -3.2 
HORVU4Hr1G020970 0.85 -3.1 
HORVU2Hr1G122610 0.84 -2.5 
HORVU4Hr1G078010 0.84 -2.2 
HORVU4Hr1G010740 0.84 -2.8 
HORVU5Hr1G093290 0.84 -8.8 
HORVU1Hr1G018010 0.84 -2.3 
HORVU2Hr1G102110 0.84 -5.1 
HORVU0Hr1G009470 0.84 -2.3 
HORVU2Hr1G014890 0.84 -3.1 
HORVU2Hr1G096230 0.84 -2.1 
HORVU1Hr1G021170 0.84 -3.0 
HORVU3Hr1G111150 0.84 -8.5 
HORVU3Hr1G077950 0.83 -7.4 
HORVU7Hr1G101590 0.83 -4.6 
HORVU5Hr1G028030 0.83 -9.0 
HORVU2Hr1G029840 0.83 -2.3 
HORVU3Hr1G097160 0.83 -3.6 
HORVU0Hr1G016410 0.83 -5.3 
HORVU7Hr1G019400 0.83 -3.4 
HORVU7Hr1G113510 0.82 -2.6 
HORVU6Hr1G090910 0.82 -2.2 
HORVU1Hr1G020450 0.82 -2.0 
HORVU7Hr1G029750 0.82 -3.1 
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HORVU3Hr1G031000 0.82 -2.3 
HORVU7Hr1G029870 0.82 -4.2 
HORVU6Hr1G080050 0.82 -2.6 
HORVU2Hr1G079840 0.81 -8.1 
HORVU5Hr1G005310 0.81 -6.6 
HORVU4Hr1G020320 0.81 -3.0 
HORVU1Hr1G039670 0.81 -2.8 
HORVU1Hr1G058520 0.81 -2.9 
HORVU4Hr1G007190 0.81 -2.5 
HORVU5Hr1G103430 0.80 -5.8 
HORVU6Hr1G001200 0.80 -5.0 
HORVU2Hr1G081670 0.80 -3.1 
HORVU5Hr1G047250 0.80 -2.1 
HORVU4Hr1G005440 0.80 -2.3 
HORVU2Hr1G045200 0.79 -2.5 
HORVU2Hr1G082160 0.79 -4.0 
HORVU7Hr1G115370 0.79 -5.8 
HORVU4Hr1G083650 0.78 -3.7 
HORVU5Hr1G019820 0.78 -4.4 
HORVU5Hr1G062940 0.78 -7.4 
HORVU2Hr1G108330 0.78 -2.1 
HORVU4Hr1G054120 0.78 -6.0 
HORVU4Hr1G080350 0.78 -2.6 
HORVU4Hr1G010410 0.78 -8.8 
HORVU5Hr1G087440 0.78 -4.3 
HORVU4Hr1G008550 0.78 -2.0 
HORVU6Hr1G026810 0.77 -2.7 
HORVU2Hr1G093950 0.77 -2.8 
HORVU1Hr1G074380 0.77 -2.6 
HORVU4Hr1G018800 0.77 -2.4 
HORVU1Hr1G070460 0.77 -2.3 
HORVU1Hr1G021160 0.77 -2.4 
HORVU6Hr1G021320 0.77 -3.0 
HORVU7Hr1G017640 0.77 -2.5 
HORVU2Hr1G005470 0.76 -4.6 
HORVU7Hr1G035190 0.76 -2.3 
HORVU5Hr1G095430 0.76 -3.2 
HORVU6Hr1G065960 0.76 -3.6 
HORVU2Hr1G033100 0.76 -6.3 
HORVU0Hr1G014630 0.76 -3.0 
HORVU1Hr1G067370 0.76 -5.5 
HORVU0Hr1G000780 0.76 -5.0 
HORVU3Hr1G065810 0.76 -4.3 
HORVU2Hr1G102710 0.76 -3.0 
HORVU0Hr1G018190 0.76 -2.2 
HORVU5Hr1G064000 0.76 -3.8 
HORVU5Hr1G067880 0.76 -6.0 
HORVU2Hr1G111780 0.75 -2.1 
HORVU7Hr1G024930 0.75 -2.4 
HORVU4Hr1G089750 0.75 -3.0 
HORVU6Hr1G005400 0.75 -2.2 
HORVU3Hr1G083250 0.75 -2.6 
HORVU4Hr1G063790 0.74 -3.0 
HORVU3Hr1G067840 0.74 -3.0 
HORVU3Hr1G072810 0.74 -2.4 
HORVU7Hr1G105150 0.74 -2.5 
HORVU7Hr1G042260 0.74 -2.3 
HORVU3Hr1G012860 0.74 -2.1 
HORVU5Hr1G083620 0.74 -2.5 
HORVU2Hr1G066480 0.74 -3.9 
HORVU2Hr1G071270 0.74 -2.2 
HORVU7Hr1G121520 0.74 -2.5 
HORVU3Hr1G112520 0.74 -2.5 
HORVU1Hr1G017080 0.74 -2.0 
HORVU7Hr1G077640 0.73 -2.2 
HORVU7Hr1G082450 0.73 -5.3 
HORVU4Hr1G078210 0.73 -2.1 
HORVU2Hr1G122370 0.73 -7.0 
HORVU4Hr1G089870 0.73 -3.6 
HORVU6Hr1G064740 0.73 -2.4 
HORVU3Hr1G066310 0.73 -3.4 
HORVU3Hr1G024210 0.73 -4.6 
HORVU2Hr1G063690 0.73 -5.1 
HORVU3Hr1G036970 0.73 -7.7 
HORVU3Hr1G096570 0.73 -2.1 

Gene log2(fold change) log10(adj-p) 

HORVU5Hr1G124650 0.73 -3.8 
HORVU1Hr1G065150 0.72 -3.1 
HORVU0Hr1G009400 0.72 -3.1 
HORVU1Hr1G048450 0.72 -3.1 
HORVU1Hr1G064970 0.72 -2.3 
HORVU1Hr1G075760 0.72 -4.4 
HORVU3Hr1G067380 0.72 -2.5 
HORVU4Hr1G071140 0.72 -4.1 
HORVU2Hr1G116960 0.72 -2.9 
HORVU3Hr1G114990 0.72 -3.0 
HORVU2Hr1G062700 0.71 -3.0 
HORVU0Hr1G000760 0.71 -3.2 
HORVU2Hr1G072180 0.71 -2.3 
HORVU6Hr1G058840 0.71 -4.0 
HORVU7Hr1G012560 0.71 -2.4 
HORVU2Hr1G044590 0.71 -2.7 
HORVU1Hr1G019410 0.71 -2.6 
HORVU1Hr1G063420 0.71 -3.7 
HORVU2Hr1G005550 0.71 -3.8 
HORVU4Hr1G072880 0.71 -2.4 
HORVU2Hr1G124980 0.71 -3.6 
HORVU2Hr1G036800 0.70 -3.4 
HORVU5Hr1G104580 0.70 -3.1 
HORVU2Hr1G013440 0.70 -2.8 
HORVU6Hr1G075950 0.70 -2.5 
HORVU3Hr1G104360 0.70 -3.4 
HORVU1Hr1G049230 0.70 -5.0 
HORVU1Hr1G076460 0.70 -3.8 
HORVU3Hr1G029520 0.69 -3.6 
HORVU1Hr1G093480 0.69 -7.8 
HORVU5Hr1G119830 0.69 -2.0 
HORVU7Hr1G085270 0.69 -2.1 
HORVU2Hr1G018710 0.69 -2.4 
HORVU5Hr1G058000 0.69 -2.6 
HORVU2Hr1G113180 0.69 -3.7 
HORVU2Hr1G102050 0.69 -2.5 
HORVU2Hr1G040570 0.69 -2.9 
HORVU7Hr1G079600 0.69 -2.7 
HORVU1Hr1G001390 0.69 -3.2 
HORVU6Hr1G083720 0.69 -4.3 
HORVU4Hr1G000620 0.68 -2.3 
HORVU7Hr1G114660 0.68 -4.2 
HORVU3Hr1G099570 0.68 -2.2 
HORVU3Hr1G013970 0.68 -2.1 
HORVU3Hr1G078840 0.68 -3.4 
HORVU7Hr1G108150 0.67 -3.2 
HORVU6Hr1G035040 0.67 -2.8 
HORVU2Hr1G024740 0.67 -2.6 
HORVU7Hr1G055410 0.67 -2.9 
HORVU2Hr1G012010 0.67 -2.5 
HORVU7Hr1G114610 0.67 -3.5 
HORVU7Hr1G084500 0.67 -4.5 
HORVU2Hr1G084210 0.67 -2.2 
HORVU7Hr1G012610 0.67 -2.7 
HORVU6Hr1G072990 0.66 -2.0 
HORVU1Hr1G018540 0.66 -2.8 
HORVU7Hr1G053260 0.66 -2.4 
HORVU6Hr1G034900 0.66 -2.0 
HORVU3Hr1G109740 0.66 -2.6 
HORVU7Hr1G074690 0.66 -3.5 
HORVU3Hr1G019840 0.66 -3.5 
HORVU3Hr1G107280 0.65 -2.1 
HORVU4Hr1G061120 0.65 -3.6 
HORVU1Hr1G092200 0.65 -2.7 
HORVU7Hr1G101310 0.65 -2.3 
HORVU4Hr1G010540 0.65 -2.6 
HORVU3Hr1G098340 0.65 -2.7 
HORVU5Hr1G093390 0.65 -4.7 
HORVU4Hr1G087340 0.65 -2.7 
HORVU1Hr1G092290 0.65 -2.3 
HORVU7Hr1G114880 0.65 -4.5 
HORVU3Hr1G092280 0.65 -2.9 
HORVU1Hr1G069620 0.65 -3.5 
HORVU2Hr1G016440 0.64 -4.0 
HORVU3Hr1G076790 0.64 -2.5 
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HORVU0Hr1G012460 0.64 -2.2 
HORVU3Hr1G098360 0.64 -3.9 
HORVU7Hr1G047700 0.64 -3.4 
HORVU5Hr1G018240 0.64 -3.8 
HORVU3Hr1G006830 0.64 -3.1 
HORVU4Hr1G085310 0.64 -2.2 
HORVU2Hr1G114580 0.63 -2.5 
HORVU4Hr1G017430 0.63 -4.5 
HORVU4Hr1G085050 0.63 -2.4 
HORVU2Hr1G104690 0.63 -2.5 
HORVU5Hr1G070160 0.63 -4.5 
HORVU7Hr1G119020 0.63 -2.5 
HORVU1Hr1G075550 0.63 -6.2 
HORVU2Hr1G101140 0.62 -3.3 
HORVU3Hr1G079620 0.62 -4.2 
HORVU7Hr1G074640 0.62 -6.4 
HORVU5Hr1G006630 0.62 -3.4 
HORVU7Hr1G048570 0.62 -2.1 
HORVU4Hr1G018430 0.62 -2.3 
HORVU2Hr1G044890 0.62 -2.1 
HORVU0Hr1G019840 0.62 -2.9 
HORVU1Hr1G078350 0.62 -2.6 
HORVU7Hr1G036420 0.62 -3.1 
HORVU1Hr1G050780 0.61 -5.1 
HORVU6Hr1G081000 0.61 -4.5 
HORVU3Hr1G089170 0.61 -2.8 
HORVU7Hr1G041610 0.61 -2.0 
HORVU4Hr1G087390 0.61 -2.1 
HORVU7Hr1G028850 0.61 -2.5 
HORVU2Hr1G014130 0.60 -12.4 
HORVU6Hr1G058000 0.60 -3.3 
HORVU4Hr1G024530 0.60 -4.4 
HORVU4Hr1G083210 0.60 -3.3 
HORVU7Hr1G012530 0.60 -2.2 
HORVU5Hr1G082050 0.60 -2.3 
HORVU1Hr1G072780 0.60 -3.5 
HORVU2Hr1G114190 0.59 -2.3 
HORVU2Hr1G103180 0.59 -3.0 
HORVU2Hr1G022780 0.59 -3.7 
HORVU2Hr1G027640 0.59 -3.7 
HORVU7Hr1G025390 0.59 -3.5 
HORVU2Hr1G084750 0.59 -3.1 
HORVU6Hr1G095330 -0.59 -2.1 
HORVU1Hr1G035160 -0.59 -2.1 
HORVU2Hr1G027040 -0.59 -3.1 
HORVU4Hr1G082240 -0.59 -4.3 
HORVU5Hr1G095530 -0.59 -4.2 
HORVU5Hr1G086650 -0.59 -2.0 
HORVU2Hr1G016760 -0.59 -2.1 
HORVU3Hr1G108500 -0.59 -2.4 
HORVU4Hr1G062460 -0.60 -2.2 
HORVU1Hr1G092730 -0.60 -3.1 
HORVU1Hr1G013210 -0.60 -3.5 
HORVU1Hr1G026590 -0.60 -5.3 
HORVU4Hr1G067620 -0.60 -2.2 
HORVU2Hr1G003990 -0.60 -2.4 
HORVU6Hr1G072620 -0.60 -8.8 
HORVU7Hr1G007900 -0.60 -3.4 
HORVU1Hr1G092440 -0.60 -3.8 
HORVU4Hr1G022990 -0.60 -2.8 
HORVU1Hr1G043280 -0.60 -2.8 
HORVU1Hr1G010940 -0.60 -3.4 
HORVU3Hr1G062320 -0.61 -3.7 
HORVU4Hr1G019990 -0.61 -2.7 
HORVU5Hr1G098980 -0.61 -3.0 
HORVU4Hr1G028310 -0.61 -2.0 
HORVU6Hr1G040770 -0.61 -3.1 
HORVU5Hr1G109570 -0.61 -2.5 
HORVU0Hr1G012050 -0.62 -2.4 
HORVU4Hr1G060440 -0.62 -2.7 
HORVU3Hr1G047030 -0.62 -2.8 
HORVU4Hr1G075360 -0.62 -2.8 
HORVU2Hr1G113830 -0.62 -3.2 
HORVU2Hr1G097780 -0.63 -2.1 
HORVU0Hr1G040310 -0.63 -2.1 

Gene log2(fold change) log10(adj-p) 

HORVU4Hr1G009520 -0.63 -4.0 
HORVU2Hr1G098860 -0.63 -3.1 
HORVU2Hr1G071100 -0.63 -2.4 
HORVU3Hr1G099220 -0.63 -2.1 
HORVU3Hr1G024220 -0.63 -2.4 
HORVU7Hr1G096430 -0.63 -4.6 
HORVU6Hr1G003300 -0.63 -2.1 
HORVU4Hr1G016080 -0.63 -2.3 
HORVU0Hr1G032410 -0.64 -2.0 
HORVU5Hr1G086670 -0.64 -2.1 
HORVU3Hr1G047980 -0.64 -2.8 
HORVU6Hr1G071950 -0.64 -2.3 
HORVU7Hr1G073860 -0.64 -2.3 
HORVU7Hr1G109020 -0.64 -2.1 
HORVU7Hr1G118240 -0.64 -5.0 
HORVU5Hr1G045150 -0.64 -5.2 
HORVU3Hr1G098450 -0.64 -2.6 
HORVU7Hr1G073510 -0.64 -3.0 
HORVU2Hr1G005880 -0.64 -2.1 
HORVU3Hr1G060920 -0.64 -2.8 
HORVU4Hr1G026340 -0.64 -3.8 
HORVU5Hr1G119790 -0.64 -12.7 
HORVU1Hr1G063610 -0.64 -2.7 
HORVU5Hr1G048810 -0.65 -2.4 
HORVU2Hr1G014710 -0.65 -3.7 
HORVU2Hr1G060460 -0.65 -4.4 
HORVU2Hr1G123890 -0.65 -3.6 
HORVU7Hr1G103870 -0.65 -4.6 
HORVU7Hr1G021860 -0.65 -5.7 
HORVU6Hr1G064620 -0.65 -2.7 
HORVU7Hr1G076120 -0.66 -6.2 
HORVU3Hr1G058580 -0.66 -2.9 
HORVU5Hr1G042290 -0.66 -2.6 
HORVU6Hr1G037460 -0.66 -2.9 
HORVU0Hr1G010080 -0.66 -2.2 
HORVU2Hr1G096400 -0.66 -2.7 
HORVU1Hr1G017970 -0.66 -3.4 
HORVU7Hr1G120660 -0.67 -2.7 
HORVU2Hr1G097010 -0.67 -4.8 
HORVU6Hr1G032760 -0.67 -2.3 
HORVU7Hr1G023980 -0.67 -3.4 
HORVU7Hr1G115960 -0.67 -2.5 
HORVU6Hr1G071840 -0.67 -2.4 
HORVU4Hr1G067410 -0.67 -2.4 
HORVU2Hr1G060510 -0.67 -3.7 
HORVU3Hr1G041820 -0.67 -2.2 
HORVU2Hr1G005570 -0.67 -2.0 
HORVU5Hr1G084010 -0.67 -9.0 
HORVU4Hr1G063730 -0.68 -3.3 
HORVU1Hr1G002820 -0.68 -2.6 
HORVU4Hr1G081600 -0.68 -5.1 
HORVU7Hr1G100090 -0.68 -2.2 
HORVU1Hr1G066610 -0.68 -2.8 
HORVU4Hr1G056950 -0.68 -3.8 
HORVU3Hr1G090350 -0.68 -5.3 
HORVU5Hr1G103790 -0.69 -2.7 
HORVU7Hr1G009610 -0.69 -2.6 
HORVU7Hr1G101270 -0.69 -15.3 
HORVU1Hr1G091880 -0.69 -3.2 
HORVU5Hr1G059770 -0.69 -7.5 
HORVU7Hr1G098560 -0.69 -2.6 
HORVU1Hr1G060530 -0.69 -2.3 
HORVU7Hr1G021890 -0.69 -2.3 
HORVU4Hr1G003480 -0.70 -2.0 
HORVU6Hr1G090780 -0.70 -4.6 
HORVU3Hr1G009940 -0.70 -2.0 
HORVU1Hr1G085790 -0.70 -2.4 
HORVU7Hr1G119570 -0.71 -8.3 
HORVU5Hr1G114220 -0.71 -2.6 
HORVU2Hr1G096360 -0.71 -2.4 
HORVU2Hr1G037550 -0.71 -3.8 
HORVU7Hr1G048710 -0.71 -3.1 
HORVU6Hr1G072710 -0.71 -2.6 
HORVU2Hr1G046050 -0.71 -3.6 
HORVU7Hr1G074050 -0.71 -4.4 
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HORVU2Hr1G072040 -0.71 -2.8 
HORVU5Hr1G122080 -0.71 -2.3 
HORVU3Hr1G018110 -0.71 -3.8 
HORVU5Hr1G016730 -0.72 -2.4 
HORVU2Hr1G029070 -0.72 -4.9 
HORVU2Hr1G094760 -0.72 -2.8 
HORVU0Hr1G008590 -0.72 -3.5 
HORVU1Hr1G091970 -0.72 -3.2 
HORVU5Hr1G076730 -0.72 -3.1 
HORVU6Hr1G059970 -0.72 -2.9 
HORVU4Hr1G077070 -0.72 -3.9 
HORVU1Hr1G040160 -0.72 -3.0 
HORVU1Hr1G046010 -0.72 -4.8 
HORVU1Hr1G076660 -0.72 -2.7 
HORVU2Hr1G018970 -0.72 -2.8 
HORVU6Hr1G000090 -0.72 -2.4 
HORVU4Hr1G085090 -0.73 -3.5 
HORVU4Hr1G083030 -0.73 -3.2 
HORVU1Hr1G003230 -0.73 -4.6 
HORVU1Hr1G085840 -0.73 -2.5 
HORVU5Hr1G122290 -0.73 -2.6 
HORVU3Hr1G070540 -0.73 -6.5 
HORVU6Hr1G075650 -0.73 -2.3 
HORVU5Hr1G062030 -0.73 -4.2 
HORVU1Hr1G049760 -0.73 -2.6 
HORVU4Hr1G003220 -0.73 -2.8 
HORVU7Hr1G108960 -0.73 -4.9 
HORVU7Hr1G038330 -0.73 -3.7 
HORVU1Hr1G022710 -0.74 -3.2 
HORVU2Hr1G064640 -0.74 -3.1 
HORVU2Hr1G007530 -0.74 -2.0 
HORVU4Hr1G082710 -0.74 -3.2 
HORVU7Hr1G089850 -0.74 -2.4 
HORVU3Hr1G112010 -0.74 -2.5 
HORVU4Hr1G074530 -0.74 -2.5 
HORVU2Hr1G116880 -0.75 -3.6 
HORVU5Hr1G001030 -0.75 -3.5 
HORVU7Hr1G049400 -0.75 -3.6 
HORVU4Hr1G089540 -0.76 -3.5 
HORVU2Hr1G015360 -0.76 -2.1 
HORVU7Hr1G036180 -0.76 -3.1 
HORVU4Hr1G067930 -0.76 -9.1 
HORVU3Hr1G075770 -0.76 -2.7 
HORVU4Hr1G052470 -0.76 -3.3 
HORVU1Hr1G002410 -0.76 -2.5 
HORVU3Hr1G024920 -0.76 -3.8 
HORVU4Hr1G006790 -0.76 -2.2 
HORVU1Hr1G047090 -0.76 -2.2 
HORVU4Hr1G089030 -0.77 -2.8 
HORVU3Hr1G023910 -0.77 -4.3 
HORVU6Hr1G005570 -0.77 -2.6 
HORVU1Hr1G017240 -0.77 -3.6 
HORVU4Hr1G004540 -0.77 -2.4 
HORVU7Hr1G122160 -0.77 -2.5 
HORVU5Hr1G001080 -0.77 -9.3 
HORVU7Hr1G028160 -0.77 -15.0 
HORVU4Hr1G004590 -0.78 -8.1 
HORVU0Hr1G027670 -0.78 -2.2 
HORVU4Hr1G064440 -0.78 -2.2 
HORVU3Hr1G069410 -0.78 -3.4 
HORVU6Hr1G093820 -0.78 -4.4 
HORVU3Hr1G031850 -0.78 -2.2 
HORVU3Hr1G068280 -0.78 -2.3 
HORVU6Hr1G010140 -0.78 -2.2 
HORVU2Hr1G091680 -0.78 -5.7 
HORVU1Hr1G005600 -0.78 -7.1 
HORVU3Hr1G051650 -0.78 -2.9 
HORVU7Hr1G001090 -0.79 -4.5 
HORVU3Hr1G010290 -0.79 -2.2 
HORVU5Hr1G118510 -0.79 -3.3 
HORVU5Hr1G056330 -0.79 -2.2 
HORVU7Hr1G081770 -0.79 -2.5 
HORVU4Hr1G049960 -0.79 -2.2 
HORVU1Hr1G006940 -0.79 -3.0 
HORVU2Hr1G121080 -0.79 -6.2 
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HORVU0Hr1G017570 -0.79 -2.7 
HORVU2Hr1G105890 -0.79 -5.1 
HORVU2Hr1G113270 -0.79 -2.2 
HORVU2Hr1G087860 -0.79 -6.3 
HORVU7Hr1G108000 -0.80 -2.9 
HORVU1Hr1G008130 -0.80 -3.6 
HORVU6Hr1G005580 -0.80 -2.5 
HORVU2Hr1G112050 -0.80 -2.5 
HORVU5Hr1G005650 -0.80 -2.7 
HORVU6Hr1G064430 -0.80 -2.7 
HORVU2Hr1G009980 -0.80 -2.0 
HORVU6Hr1G089540 -0.80 -4.0 
HORVU6Hr1G046980 -0.80 -5.2 
HORVU7Hr1G091250 -0.80 -3.0 
HORVU2Hr1G012440 -0.80 -2.7 
HORVU1Hr1G059550 -0.80 -3.7 
HORVU5Hr1G065200 -0.81 -3.0 
HORVU6Hr1G089600 -0.81 -4.6 
HORVU6Hr1G054110 -0.81 -2.3 
HORVU6Hr1G029520 -0.82 -2.3 
HORVU1Hr1G001850 -0.82 -6.0 
HORVU2Hr1G113260 -0.82 -2.6 
HORVU6Hr1G010150 -0.82 -2.3 
HORVU1Hr1G012240 -0.82 -2.0 
HORVU7Hr1G091100 -0.82 -2.3 
HORVU4Hr1G013170 -0.82 -2.4 
HORVU2Hr1G007580 -0.82 -2.2 
HORVU4Hr1G053530 -0.82 -3.0 
HORVU7Hr1G089240 -0.83 -2.6 
HORVU6Hr1G095020 -0.83 -3.4 
HORVU6Hr1G092430 -0.83 -3.9 
HORVU2Hr1G105130 -0.83 -2.1 
HORVU3Hr1G112020 -0.83 -2.3 
HORVU4Hr1G047260 -0.83 -2.6 
HORVU5Hr1G114330 -0.83 -2.8 
HORVU3Hr1G079560 -0.83 -2.4 
HORVU5Hr1G012900 -0.84 -3.0 
HORVU3Hr1G079230 -0.84 -2.3 
HORVU3Hr1G081600 -0.84 -3.2 
HORVU4Hr1G000770 -0.84 -4.5 
HORVU7Hr1G011250 -0.84 -2.3 
HORVU4Hr1G076690 -0.84 -7.1 
HORVU1Hr1G049440 -0.84 -2.9 
HORVU7Hr1G027630 -0.85 -2.9 
HORVU6Hr1G067430 -0.85 -4.2 
HORVU4Hr1G076760 -0.85 -2.0 
HORVU5Hr1G086970 -0.85 -5.3 
HORVU3Hr1G057140 -0.85 -3.5 
HORVU1Hr1G073870 -0.85 -2.6 
HORVU7Hr1G047060 -0.85 -2.8 
HORVU7Hr1G083360 -0.86 -2.1 
HORVU2Hr1G096430 -0.86 -2.8 
HORVU5Hr1G072370 -0.86 -2.3 
HORVU2Hr1G027210 -0.86 -4.2 
HORVU4Hr1G009140 -0.86 -10.7 
HORVU0Hr1G020400 -0.86 -2.1 
HORVU3Hr1G018070 -0.86 -3.8 
HORVU3Hr1G067280 -0.86 -5.2 
HORVU2Hr1G112620 -0.86 -3.3 
HORVU6Hr1G036760 -0.87 -3.1 
HORVU1Hr1G002210 -0.87 -3.8 
HORVU6Hr1G087050 -0.87 -3.7 
HORVU5Hr1G080150 -0.87 -2.5 
HORVU3Hr1G022840 -0.87 -2.7 
HORVU7Hr1G036900 -0.87 -2.3 
HORVU3Hr1G056630 -0.87 -5.6 
HORVU1Hr1G070190 -0.87 -2.9 
HORVU2Hr1G101370 -0.87 -2.4 
HORVU1Hr1G073760 -0.87 -5.2 
HORVU3Hr1G026920 -0.87 -6.7 
HORVU3Hr1G030580 -0.88 -11.0 
HORVU7Hr1G009770 -0.88 -6.9 
HORVU7Hr1G085570 -0.88 -3.7 
HORVU1Hr1G023690 -0.88 -3.1 
HORVU6Hr1G009480 -0.88 -2.5 
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HORVU4Hr1G072840 -0.88 -5.0 
HORVU0Hr1G040190 -0.88 -3.5 
HORVU4Hr1G062650 -0.89 -6.1 
HORVU2Hr1G117110 -0.89 -5.9 
HORVU3Hr1G082030 -0.89 -2.8 
HORVU7Hr1G021490 -0.89 -2.9 
HORVU6Hr1G073090 -0.89 -4.6 
HORVU4Hr1G008200 -0.89 -2.5 
HORVU3Hr1G060390 -0.90 -6.9 
HORVU7Hr1G074030 -0.90 -2.0 
HORVU5Hr1G032980 -0.90 -2.2 
HORVU5Hr1G066250 -0.90 -3.4 
HORVU5Hr1G125420 -0.90 -3.6 
HORVU3Hr1G031380 -0.90 -2.9 
HORVU3Hr1G064790 -0.90 -4.8 
HORVU0Hr1G022030 -0.91 -2.6 
HORVU5Hr1G041680 -0.91 -2.1 
HORVU0Hr1G012190 -0.91 -4.3 
HORVU4Hr1G072660 -0.91 -2.3 
HORVU0Hr1G022280 -0.91 -5.1 
HORVU3Hr1G085690 -0.91 -3.7 
HORVU1Hr1G029920 -0.91 -3.8 
HORVU5Hr1G086710 -0.91 -8.8 
HORVU4Hr1G072320 -0.92 -5.0 
HORVU5Hr1G081460 -0.92 -4.4 
HORVU4Hr1G013540 -0.92 -3.1 
HORVU6Hr1G010110 -0.92 -5.5 
HORVU7Hr1G116220 -0.92 -3.4 
HORVU4Hr1G023500 -0.92 -5.4 
HORVU4Hr1G081440 -0.92 -2.2 
HORVU7Hr1G045400 -0.93 -3.3 
HORVU5Hr1G041660 -0.93 -6.9 
HORVU2Hr1G113160 -0.93 -4.0 
HORVU4Hr1G077300 -0.93 -2.5 
HORVU1Hr1G065250 -0.93 -2.6 
HORVU6Hr1G023100 -0.93 -6.9 
HORVU1Hr1G003140 -0.94 -2.2 
HORVU5Hr1G121280 -0.94 -2.1 
HORVU3Hr1G068750 -0.94 -2.4 
HORVU5Hr1G097010 -0.94 -12.5 
HORVU4Hr1G087760 -0.94 -2.1 
HORVU6Hr1G054010 -0.94 -7.7 
HORVU7Hr1G030920 -0.94 -2.1 
HORVU2Hr1G090280 -0.94 -3.7 
HORVU7Hr1G007890 -0.94 -2.7 
HORVU2Hr1G091990 -0.95 -2.7 
HORVU0Hr1G033250 -0.95 -5.6 
HORVU6Hr1G092210 -0.95 -5.9 
HORVU3Hr1G085520 -0.95 -2.8 
HORVU5Hr1G043200 -0.95 -2.4 
HORVU7Hr1G000320 -0.95 -3.8 
HORVU3Hr1G081570 -0.95 -4.5 
HORVU3Hr1G064240 -0.95 -2.6 
HORVU2Hr1G018530 -0.96 -4.6 
HORVU1Hr1G001960 -0.96 -6.0 
HORVU3Hr1G062490 -0.96 -5.3 
HORVU7Hr1G122510 -0.96 -3.8 
HORVU3Hr1G087180 -0.96 -4.0 
HORVU3Hr1G098950 -0.96 -5.0 
HORVU5Hr1G106350 -0.96 -3.1 
HORVU2Hr1G007540 -0.97 -6.5 
HORVU7Hr1G012180 -0.97 -5.3 
HORVU2Hr1G093210 -0.97 -2.8 
HORVU2Hr1G109040 -0.97 -4.6 
HORVU1Hr1G076700 -0.97 -5.3 
HORVU6Hr1G087070 -0.97 -10.7 
HORVU4Hr1G077310 -0.97 -3.3 
HORVU3Hr1G099080 -0.98 -4.6 
HORVU7Hr1G044100 -0.98 -4.2 
HORVU4Hr1G012540 -0.98 -2.5 
HORVU7Hr1G095030 -0.98 -4.3 
HORVU5Hr1G037890 -0.98 -4.4 
HORVU7Hr1G072670 -0.98 -3.2 
HORVU2Hr1G074210 -0.99 -3.5 
HORVU6Hr1G054910 -0.99 -6.3 

Gene log2(fold change) log10(adj-p) 

HORVU7Hr1G000630 -0.99 -2.8 
HORVU4Hr1G003340 -0.99 -2.5 
HORVU5Hr1G049420 -0.99 -5.8 
HORVU5Hr1G048820 -1.00 -3.0 
HORVU2Hr1G091910 -1.00 -4.1 
HORVU2Hr1G079810 -1.00 -3.5 
HORVU2Hr1G126440 -1.00 -2.4 
HORVU0Hr1G017850 -1.00 -2.4 
HORVU6Hr1G023050 -1.00 -8.5 
HORVU2Hr1G045090 -1.00 -4.6 
HORVU4Hr1G080430 -1.00 -2.2 
HORVU6Hr1G032680 -1.00 -2.7 
HORVU3Hr1G084230 -1.01 -5.0 
HORVU6Hr1G035280 -1.01 -2.7 
HORVU7Hr1G077740 -1.01 -4.0 
HORVU2Hr1G003840 -1.01 -3.6 
HORVU1Hr1G078280 -1.01 -6.3 
HORVU5Hr1G115500 -1.01 -3.1 
HORVU1Hr1G094180 -1.02 -3.0 
HORVU2Hr1G002830 -1.02 -11.0 
HORVU0Hr1G000020 -1.02 -3.8 
HORVU2Hr1G107060 -1.02 -3.2 
HORVU5Hr1G067480 -1.02 -7.5 
HORVU1Hr1G004650 -1.02 -2.0 
HORVU3Hr1G100060 -1.03 -3.8 
HORVU7Hr1G119790 -1.03 -2.1 
HORVU1Hr1G006920 -1.03 -3.4 
HORVU5Hr1G113490 -1.03 -2.0 
HORVU1Hr1G077560 -1.03 -2.2 
HORVU4Hr1G009060 -1.03 -9.2 
HORVU1Hr1G056270 -1.04 -3.0 
HORVU1Hr1G076670 -1.04 -4.4 
HORVU1Hr1G082410 -1.04 -4.9 
HORVU2Hr1G124530 -1.05 -16.6 
HORVU3Hr1G035820 -1.05 -10.0 
HORVU2Hr1G077680 -1.05 -5.4 
HORVU2Hr1G092170 -1.06 -2.0 
HORVU4Hr1G010050 -1.06 -2.1 
HORVU4Hr1G072580 -1.06 -2.6 
HORVU5Hr1G058690 -1.07 -2.0 
HORVU7Hr1G111190 -1.07 -2.5 
HORVU2Hr1G057700 -1.07 -2.2 
HORVU2Hr1G098890 -1.07 -5.6 
HORVU4Hr1G066140 -1.07 -4.2 
HORVU6Hr1G015390 -1.07 -5.7 
HORVU1Hr1G082460 -1.08 -7.2 
ENSRNA049486349 -1.08 -2.1 
HORVU4Hr1G050790 -1.08 -2.7 
HORVU7Hr1G122290 -1.08 -3.4 
HORVU2Hr1G046370 -1.08 -4.0 
HORVU4Hr1G082600 -1.08 -4.8 
HORVU6Hr1G055960 -1.08 -6.7 
HORVU5Hr1G063810 -1.08 -5.3 
HORVU0Hr1G038420 -1.09 -4.5 
HORVU1Hr1G044260 -1.09 -6.2 
HORVU5Hr1G099170 -1.09 -3.4 
HORVU1Hr1G061170 -1.09 -5.9 
HORVU2Hr1G045340 -1.09 -2.4 
HORVU2Hr1G007590 -1.09 -4.7 
HORVU2Hr1G060210 -1.09 -3.1 
HORVU3Hr1G018820 -1.09 -2.8 
HORVU4Hr1G055220 -1.10 -5.5 
HORVU7Hr1G100570 -1.10 -5.6 
HORVU4Hr1G026150 -1.10 -2.3 
HORVU6Hr1G094410 -1.10 -5.0 
HORVU3Hr1G095070 -1.10 -2.4 
HORVU7Hr1G045580 -1.10 -3.1 
HORVU7Hr1G077750 -1.10 -2.7 
HORVU7Hr1G038130 -1.10 -3.8 
HORVU0Hr1G023150 -1.11 -3.4 
HORVU5Hr1G077450 -1.11 -19.7 
HORVU2Hr1G088570 -1.11 -9.6 
HORVU4Hr1G015050 -1.11 -3.4 
HORVU2Hr1G016070 -1.11 -4.4 
HORVU1Hr1G007630 -1.12 -2.5 
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Gene log2(fold change) log10(adj-p) 

HORVU1Hr1G086780 -1.12 -5.9 
HORVU5Hr1G014170 -1.12 -3.5 
HORVU5Hr1G000480 -1.12 -2.2 
HORVU3Hr1G081980 -1.12 -4.4 
HORVU7Hr1G087750 -1.12 -3.4 
HORVU1Hr1G010210 -1.12 -2.3 
HORVU2Hr1G002520 -1.12 -2.3 
HORVU1Hr1G001060 -1.13 -2.6 
HORVU2Hr1G093700 -1.13 -2.5 
HORVU5Hr1G107540 -1.13 -6.1 
HORVU1Hr1G087010 -1.13 -2.4 
HORVU1Hr1G026780 -1.13 -2.9 
HORVU5Hr1G000690 -1.13 -2.3 
HORVU7Hr1G088260 -1.13 -7.1 
HORVU3Hr1G082300 -1.13 -7.5 
HORVU3Hr1G092580 -1.14 -7.1 
HORVU2Hr1G072120 -1.14 -3.4 
HORVU1Hr1G082420 -1.14 -14.6 
HORVU1Hr1G076650 -1.14 -5.5 
HORVU7Hr1G114950 -1.15 -8.5 
HORVU7Hr1G046250 -1.15 -3.4 
HORVU7Hr1G047750 -1.15 -2.6 
HORVU3Hr1G013390 -1.15 -3.1 
HORVU2Hr1G072150 -1.16 -4.6 
HORVU5Hr1G103040 -1.16 -5.9 
HORVU2Hr1G113110 -1.16 -3.9 
HORVU7Hr1G020270 -1.16 -3.1 
HORVU4Hr1G018450 -1.16 -4.5 
HORVU3Hr1G003410 -1.16 -3.7 
HORVU1Hr1G018480 -1.17 -9.2 
HORVU7Hr1G037000 -1.17 -3.1 
HORVU2Hr1G019720 -1.17 -4.0 
HORVU1Hr1G054520 -1.18 -3.7 
HORVU3Hr1G071170 -1.18 -3.7 
HORVU3Hr1G052710 -1.18 -5.2 
HORVU4Hr1G011110 -1.18 -4.9 
HORVU1Hr1G011990 -1.18 -10.8 
HORVU1Hr1G061970 -1.19 -3.2 
HORVU2Hr1G036680 -1.19 -5.4 
HORVU5Hr1G040620 -1.19 -6.0 
HORVU1Hr1G067080 -1.19 -2.6 
HORVU7Hr1G055930 -1.20 -6.6 
HORVU2Hr1G003780 -1.20 -2.7 
HORVU5Hr1G063650 -1.20 -2.6 
HORVU5Hr1G052760 -1.20 -5.7 
HORVU1Hr1G025890 -1.21 -9.2 
HORVU1Hr1G074790 -1.21 -10.0 
HORVU1Hr1G004720 -1.21 -5.5 
HORVU2Hr1G040800 -1.21 -3.5 
HORVU7Hr1G091350 -1.21 -9.9 
HORVU2Hr1G034650 -1.21 -3.0 
HORVU5Hr1G087290 -1.21 -2.6 
HORVU5Hr1G065350 -1.22 -3.4 
HORVU7Hr1G001550 -1.22 -2.9 
HORVU0Hr1G003480 -1.22 -3.2 
HORVU4Hr1G066120 -1.22 -5.0 
HORVU5Hr1G020500 -1.22 -2.7 
HORVU6Hr1G060720 -1.22 -5.4 
HORVU2Hr1G082150 -1.23 -3.6 
HORVU0Hr1G027070 -1.23 -5.0 
HORVU1Hr1G076730 -1.23 -3.9 
HORVU5Hr1G099030 -1.23 -3.8 
HORVU4Hr1G090860 -1.24 -6.8 
HORVU1Hr1G083910 -1.24 -3.9 
HORVU3Hr1G010240 -1.25 -3.6 
HORVU0Hr1G000620 -1.25 -4.3 
HORVU6Hr1G080150 -1.25 -7.8 
HORVU4Hr1G015740 -1.25 -8.6 
HORVU2Hr1G007500 -1.25 -10.9 
HORVU2Hr1G127670 -1.25 -3.7 
HORVU6Hr1G013400 -1.26 -10.2 
HORVU5Hr1G001060 -1.27 -19.3 
HORVU1Hr1G000920 -1.27 -6.1 
HORVU5Hr1G071270 -1.27 -5.0 
HORVU2Hr1G109210 -1.27 -5.1 

Gene log2(fold change) log10(adj-p) 

HORVU4Hr1G076010 -1.27 -9.9 
HORVU6Hr1G001160 -1.28 -3.1 
HORVU2Hr1G066780 -1.28 -3.7 
HORVU6Hr1G080820 -1.28 -3.0 
HORVU0Hr1G022690 -1.29 -3.0 
HORVU2Hr1G003580 -1.29 -11.8 
HORVU3Hr1G095340 -1.29 -11.3 
HORVU2Hr1G007070 -1.30 -5.9 
HORVU1Hr1G069200 -1.30 -4.8 
HORVU7Hr1G075960 -1.31 -9.8 
HORVU5Hr1G012740 -1.31 -4.5 
HORVU2Hr1G105140 -1.32 -9.3 
HORVU7Hr1G109800 -1.32 -5.4 
HORVU2Hr1G012850 -1.32 -7.7 
HORVU3Hr1G106880 -1.33 -5.5 
HORVU2Hr1G004230 -1.33 -7.0 
HORVU2Hr1G040790 -1.33 -4.1 
HORVU0Hr1G022650 -1.34 -3.8 
HORVU5Hr1G007770 -1.34 -7.5 
HORVU3Hr1G079720 -1.34 -6.4 
HORVU1Hr1G054020 -1.34 -12.0 
HORVU6Hr1G087120 -1.34 -12.9 
HORVU1Hr1G053990 -1.35 -11.6 
HORVU0Hr1G020750 -1.35 -4.2 
HORVU3Hr1G098580 -1.37 -3.8 
HORVU7Hr1G000760 -1.37 -8.2 
HORVU7Hr1G000040 -1.37 -5.9 
HORVU2Hr1G023560 -1.37 -13.1 
HORVU7Hr1G031790 -1.38 -6.1 
HORVU6Hr1G059520 -1.38 -24.9 
HORVU2Hr1G089620 -1.38 -7.6 
HORVU7Hr1G012310 -1.38 -7.2 
HORVU2Hr1G092200 -1.39 -3.8 
HORVU4Hr1G060150 -1.40 -6.1 
HORVU2Hr1G007490 -1.40 -7.5 
HORVU6Hr1G079030 -1.41 -6.2 
HORVU6Hr1G089450 -1.41 -5.4 
HORVU1Hr1G053440 -1.41 -4.8 
HORVU4Hr1G065270 -1.43 -4.7 
HORVU3Hr1G061450 -1.43 -5.5 
HORVU2Hr1G109200 -1.43 -5.9 
HORVU6Hr1G005590 -1.43 -5.0 
HORVU7Hr1G096250 -1.45 -7.3 
HORVU5Hr1G048100 -1.45 -5.9 
HORVU2Hr1G001130 -1.45 -4.2 
HORVU6Hr1G080270 -1.45 -9.0 
HORVU1Hr1G082370 -1.46 -11.8 
HORVU3Hr1G006270 -1.46 -3.9 
HORVU6Hr1G016750 -1.46 -10.9 
HORVU3Hr1G092240 -1.47 -8.7 
HORVU1Hr1G045080 -1.47 -5.1 
HORVU2Hr1G100420 -1.47 -4.0 
HORVU3Hr1G088080 -1.48 -7.4 
HORVU7Hr1G041470 -1.48 -11.1 
HORVU2Hr1G030610 -1.48 -10.3 
HORVU3Hr1G095240 -1.49 -6.1 
HORVU6Hr1G059940 -1.49 -15.1 
HORVU3Hr1G021750 -1.49 -6.5 
HORVU3Hr1G023800 -1.53 -4.4 
HORVU3Hr1G085460 -1.54 -5.2 
HORVU5Hr1G095580 -1.54 -4.3 
HORVU7Hr1G002820 -1.54 -26.9 
HORVU1Hr1G063340 -1.55 -7.2 
HORVU2Hr1G118740 -1.55 -38.6 
HORVU1Hr1G056120 -1.55 -4.5 
HORVU5Hr1G076690 -1.56 -16.0 
HORVU5Hr1G013640 -1.56 -25.6 
HORVU0Hr1G019630 -1.56 -6.5 
HORVU3Hr1G085230 -1.56 -7.5 
HORVU1Hr1G027500 -1.56 -4.9 
HORVU7Hr1G079870 -1.57 -7.7 
HORVU1Hr1G018200 -1.58 -11.2 
HORVU2Hr1G018430 -1.59 -9.7 
HORVU7Hr1G025240 -1.60 -5.6 
HORVU5Hr1G074820 -1.60 -6.4 
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Gene log2(fold change) log10(adj-p) 

HORVU6Hr1G030080 -1.61 -8.8 
HORVU2Hr1G098110 -1.63 -5.9 
HORVU2Hr1G065000 -1.64 -6.7 
HORVU2Hr1G089210 -1.68 -5.2 
HORVU7Hr1G009350 -1.73 -5.8 
HORVU4Hr1G080890 -1.74 -13.7 
HORVU7Hr1G001070 -1.77 -10.9 
HORVU7Hr1G114020 -1.78 -19.8 
HORVU7Hr1G025340 -1.78 -6.6 
HORVU7Hr1G002560 -1.79 -17.1 
HORVU7Hr1G114000 -1.79 -14.7 
HORVU3Hr1G028840 -1.81 -7.8 
HORVU1Hr1G051450 -1.81 -14.0 
HORVU1Hr1G090990 -1.81 -11.3 
HORVU2Hr1G012980 -1.84 -6.7 
HORVU3Hr1G095700 -1.85 -15.3 
HORVU0Hr1G017490 -1.93 -10.9 
HORVU6Hr1G005600 -1.96 -8.7 
HORVU6Hr1G051860 -1.97 -20.7 
HORVU5Hr1G042230 -2.03 -18.2 
HORVU5Hr1G057840 -2.05 -16.7 
HORVU7Hr1G119800 -2.07 -21.5 
HORVU5Hr1G056480 -2.07 -8.2 
HORVU2Hr1G127480 -2.09 -10.6 
HORVU3Hr1G071800 -2.12 -12.7 
HORVU5Hr1G064040 -2.14 -13.3 
HORVU2Hr1G007510 -2.28 -11.6 
HORVU5Hr1G109980 -2.51 -12.3 
HORVU5Hr1G114000 -2.59 -29.6 
HORVU2Hr1G117610 -2.69 -21.1 
HORVU5Hr1G076740 -2.80 -26.8 
HORVU1Hr1G080790 -2.84 -20.9 
HORVU3Hr1G066090 -2.91 -18.2 
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Table A.9.3. Complete biological process gene ontology hierarchy for leaf and root tissue 

in salt stressed barley. 

GO 
term 

GO term function Fold over-
represented 

  Leaf Root 

0009834 plant-type secondary cell wall biogenesis 29.3 

 0009832   plant-type cell wall biogenesis 12.2 

 0042546     cell wall biogenesis 6.9 

 0071554       cell wall organization or biogenesis 5.2 

 0009987         cellular process 1.5 

 0071840         cellular component organization or biogenesis 1.8 

 0071669     plant-type cell wall organization or biogenesis 5.3 

 0006782 protoporphyrinogen IX biosynthetic process 24.5 

 0051186       cofactor metabolic process 2.6 

 0044237         cellular metabolic process 1.4 

 0008152           metabolic process 1.6 

 0071704           organic substance metabolic process 1.6 

 0044249       cellular biosynthetic process 1.9 

 0009058         biosynthetic process 1.9 

 1901576         organic substance biosynthetic process 1.9 

 0046501   protoporphyrinogen IX metabolic process 24.5 

 0031408 oxylipin biosynthetic process 22.6 

 0031407   oxylipin metabolic process 21.0 

 0006631     fatty acid metabolic process 4.3 

 0032787       monocarboxylic acid metabolic process 3.2 

 0019752         carboxylic acid metabolic process 2.7 

 0043436           oxoacid metabolic process 2.6 

 0006082             organic acid metabolic process 2.6 

 0044281               small molecule metabolic process 2.5 

 0006629         lipid metabolic process 2.4 

 0044238           primary metabolic process 1.6 

 0006633   fatty acid biosynthetic process 5.6 

 0072330     monocarboxylic acid biosynthetic process 5.0 

 0046394       carboxylic acid biosynthetic process 3.9 

 0016053         organic acid biosynthetic process 3.9 

 0030244 cellulose biosynthetic process 13.8 

 0051274   beta-glucan biosynthetic process 10.0 

 0009250     glucan biosynthetic process 9.0 

 0033692       cellular polysaccharide biosynthetic process 8.1 

 0009059           macromolecule biosynthetic process 1.7 

 0044264         cellular polysaccharide metabolic process 7.3 

 0005976           polysaccharide metabolic process 6.1 

 0005975             carbohydrate metabolic process 4.1 

 0044262           cellular carbohydrate metabolic process 6.1 

 0000271         polysaccharide biosynthetic process 8.1 

 0016051           carbohydrate biosynthetic process 5.8 

 0034637         cellular carbohydrate biosynthetic process 6.0 

 0006073       cellular glucan metabolic process 7.8 

 0044042         glucan metabolic process 7.8 

 0051273     beta-glucan metabolic process 9.4 

 0030243   cellulose metabolic process 11.6 
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GO 
term 

GO term function Fold over-
represented 

  Leaf Root 

0005985 sucrose metabolic process 10.9 

 0000302 response to reactive oxygen species 8.7 

 1901700   response to oxygen-containing compound 3.5 

 0042221     response to chemical 2.5 

 0050896       response to stimulus 1.7 

 0046677 response to antibiotic 8.2 

 0044247 cellular polysaccharide catabolic process 8.2 

 0009251 glucan catabolic process 8.2 

 0071555 cell wall organization 5.1 

 0045229   external encapsulating structure organization 5.1 

 0016043     cellular component organization 1.8 

 0019318 hexose metabolic process 5.1 

 0005996   monosaccharide metabolic process 4.7 

 0044036 cell wall macromolecule metabolic process 5.0 

 1901607 alpha-amino acid biosynthetic process 4.4 4.4 

1901605   alpha-amino acid metabolic process 3.6 5.1 

0006520     cellular amino acid metabolic process 2.5 3.9 

0008652   cellular amino acid biosynthetic process 3.6 

 0010035 response to inorganic substance 4.2 

 0007017 microtubule-based process 3.9 

 0001101 response to acid chemical 3.6 

 0098869 cellular oxidant detoxification 3.0 

 1990748   cellular detoxification 3.0 

 0098754     detoxification 3.0 

 0009636       response to toxic substance 3.2 

 0097237     cellular response to toxic substance 3.0 

 0070887       cellular response to chemical stimulus 2.9 

 0051716         cellular response to stimulus 1.8 

 0055114 oxidation-reduction process 1.9 2.5 

0009627 systemic acquired resistance 
 

23.7 

0009814   defense response, incompatible interaction 
 

14.7 

0045087     innate immune response 
 

12.1 

0098542       defense response to other organism 
 

7.1 

0006952         defense response 
 

6.0 

0006950           response to stress 
 

2.1 

0051707         response to other organism 
 

6.1 

0043207           response to external biotic stimulus 
 

6.1 

0009605             response to external stimulus 
 

3.9 

0009607             response to biotic stimulus 
 

5.5 

0051704           multi-organism process 
 

4.8 

0006955       immune response 
 

12.1 

0002376         immune system process 
 

10.8 

0006002 fructose 6-phosphate metabolic process 
 

20.2 

0006796   phosphate-containing compound metabolic process 
 

1.9 

0006793     phosphorus metabolic process 
 

1.9 

0008152         metabolic process 
 

1.5 

0071704     organic substance metabolic process 
 

1.3 

0006568 tryptophan metabolic process 
 

14.4 

1901564       organonitrogen compound metabolic process 
 

1.5 
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GO 
term 

GO term function Fold over-
represented 

  Leaf Root 

0019752       carboxylic acid metabolic process 
 

3.5 

0043436         oxoacid metabolic process 
 

3.5 

0006082           organic acid metabolic process 
 

3.4 

0044281             small molecule metabolic process 
 

2.4 

0009072   aromatic amino acid family metabolic process 
 

7.3 

0006586   indolalkylamine metabolic process 
 

14.4 

0042430     indole-containing compound metabolic process 
 

12.6 

0006576     cellular biogenic amine metabolic process 
 

11.6 

0044106       cellular amine metabolic process 
 

11.6 

0009308         amine metabolic process 
 

7.8 

0042401 cellular biogenic amine biosynthetic process 
 

12.7 

0009309   amine biosynthetic process 
 

12.7 

0009664 plant-type cell wall organization 
 

8.1 

0071555   cell wall organization 
 

3.4 

0071554     cell wall organization or biogenesis 
 

3.3 

0045229     external encapsulating structure organization 
 

3.3 

0071669   plant-type cell wall organization or biogenesis 
 

7.4 

0008299 isoprenoid biosynthetic process 
 

6.0 

0048544 recognition of pollen 
 

5.0 

0009875   pollen-pistil interaction 
 

4.8 

0008037   cell recognition 
 

5.0 

0032269 negative regulation of cellular protein metabolic process 
 

4.6 

0051248   negative regulation of protein metabolic process 
 

4.6 

0046394     carboxylic acid biosynthetic process 
 

3.2 

0016053       organic acid biosynthetic process 
 

3.2 

0044283         small molecule biosynthetic process 
 

2.5 

0042737 drug catabolic process 
 

4.0 

0044248   cellular catabolic process 
 

2.2 

0009056     catabolic process 
 

2.2 

0017144   drug metabolic process 
 

3.3 

0017001 antibiotic catabolic process 
 

3.6 

0016999   antibiotic metabolic process 
 

3.5 

0005975 carbohydrate metabolic process 
 

2.3 

0006468 protein phosphorylation 
 

1.9 

0016310   phosphorylation 
 

1.9 

0055085 transmembrane transport   1.9 
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Table A.9.4. Complete molecular function gene ontology hierarchy for leaf and root tissue 

in salt stressed barley. 

GO 
term 

GO term function Fold over-
represented 

  Leaf Root 

0004575 sucrose alpha-glucosidase activity 21.0  

0090599   alpha-glucosidase activity 21.0  

0004553       hydrolase activity, hydrolyzing O-glycosyl compounds 4.0  

0016798         hydrolase activity, acting on glycosyl bonds 3.9  

0016787           hydrolase activity 2.0  

0003824             catalytic activity 1.7  

0004564   beta-fructofuranosidase activity 21.0  

0016157 sucrose synthase activity 16.3  

0035251   UDP-glucosyltransferase activity 9.8  

0008194     UDP-glycosyltransferase activity 5.5  

0016757       transferase activity, transferring glycosyl groups 3.0  

0016740         transferase activity 1.5  

0046527     glucosyltransferase activity 8.3  

0016758       transferase activity, transferring hexosyl groups 3.1  

0016760 cellulose synthase (UDP-forming) activity 12.6  

0016759   cellulose synthase activity 12.6  

0005200 structural constituent of cytoskeleton 12.2  

0005198   structural molecule activity 2.1  

0033897 ribonuclease T2 activity 12.2  

0016892   endoribonuclease activity, producing 3'-phosphomonoesters 10.9  

0051087 chaperone binding 10.9  

0005488   binding 1.4  

0016620 oxidoreductase activity, acting on the aldehyde or oxo group of donors, 
NAD or NADP as acceptor 

5.8  

0016903   oxidoreductase activity, acting on the aldehyde or oxo group of donors 4.9  

0016491     oxidoreductase activity 2.0  

0008017 microtubule binding 4.0  

0016209 antioxidant activity 3.0  

0005506 iron ion binding 2.5 5.0 

0046872     metal ion binding 1.5 2.1 

0043169       cation binding 1.6 2.1 

0043167         ion binding 1.4 1.9 

0016705 oxidoreductase activity, acting on paired donors, with incorporation or 
reduction of molecular oxygen 

2.3  

0020037 heme binding 2.1 3.9 

0046906   tetrapyrrole binding 2.0 3.7 

0048037   cofactor binding 1.9  

0000234 phosphoethanolamine N-methyltransferase activity  20.5 

0016740         transferase activity  1.7 

0003824           catalytic activity  1.9 

0004350 glutamate-5-semialdehyde dehydrogenase activity  20.5 

0016491       oxidoreductase activity  2.7 

0004349 glutamate 5-kinase activity  20.5 

0016772     transferase activity, transferring phosphorus-containing groups  1.8 

0016301     kinase activity  2.0 

0005504 fatty acid binding  18.7 

0008289   lipid binding  4.6 
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GO 
term 

GO term function Fold over-
represented 

  Leaf Root 

0005488     binding  1.4 

0033293   monocarboxylic acid binding  16.9 

0031406     carboxylic acid binding  11.8 

0043168       anion binding  1.6 

0043177       organic acid binding  11.8 

0036094         small molecule binding  1.7 

0005315 inorganic phosphate transmembrane transporter activity  16.5 

0022857     transmembrane transporter activity  2.0 

0005215       transporter activity  2.1 

0015291   secondary active transmembrane transporter activity  4.2 

0022804     active transmembrane transporter activity  4.1 

0003872 6-phosphofructokinase activity  15.1 

0016773     phosphotransferase activity, alcohol group as acceptor  2.0 

0030410 nicotianamine synthase activity  15.1 

0030598 rRNA N-glycosylase activity  8.6 

0030597   RNA glycosylase activity  8.6 

0016798       hydrolase activity, acting on glycosyl bonds  2.6 

0016831 carboxy-lyase activity  7.5 

0016830   carbon-carbon lyase activity  6.5 

0016829     lyase activity  4.3 

0030170 pyridoxal phosphate binding  6.3 

0050662   coenzyme binding  2.2 

0048037     cofactor binding  2.9 

0070279   vitamin B6 binding  6.3 

0097159     organic cyclic compound binding  1.4 

0019842     vitamin binding  5.3 

0008144     drug binding  1.8 

1901363     heterocyclic compound binding  1.4 

0030145 manganese ion binding  5.3 

0046914   transition metal ion binding  2.6 

0004497 monooxygenase activity  4.8 

0042626 ATPase-coupled transmembrane transporter activity  4.7 

0015399   primary active transmembrane transporter activity  4.1 

0016705 oxidoreductase activity, acting on paired donors, with incorporation or 
reduction of molecular oxygen 

 4.4 

0030246 carbohydrate binding  3.3 

0016758 transferase activity, transferring hexosyl groups  2.6 

0016757   transferase activity, transferring glycosyl groups  2.2 

0004553 hydrolase activity, hydrolyzing O-glycosyl compounds  2.4 

0004672 protein kinase activity  1.9 

0140096   catalytic activity, acting on a protein  1.5 

0005524 ATP binding  1.6 

0032559   adenyl ribonucleotide binding  1.6 

0030554     adenyl nucleotide binding  1.6 

0097367         carbohydrate derivative binding  1.5 
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Table A.9.5. Complete cellular component gene ontology hierarchy for leaf and root tissue 

in salt stressed barley. 

GO 
term 

GO term function Fold over-
represented 

  Leaf Root 

0042644 chloroplast nucleoid 18.3 

 0009570   chloroplast stroma 5.7 

 0009507     chloroplast 2.4 

 0009536       plastid 2.3 

 0110165               cellular anatomical entity 1.2 

 0009532     plastid stroma 5.6 

 0005874 microtubule 6.1 

 0015630   microtubule cytoskeleton 5.2 

 0099513   polymeric cytoskeletal fiber 6.0 

 0099512     supramolecular fiber 6.0 

 0099081       supramolecular polymer 6.0 

 0099080         supramolecular complex 4.9 

 0005618 cell wall 3.5 6.4 

0030312   external encapsulating structure 3.5 

 0071944     cell periphery 2.4 2.2 

0005576 extracellular region 2.4 

 0030312   external encapsulating structure 
 

6.4 

0110165     cellular anatomical entity 
 

1.2 

0048046 apoplast 
 

5.4 

0005576   extracellular region 
 

4.5 

0016021 integral component of membrane 
 

1.5 

0031224   intrinsic component of membrane 
 

1.4 

0016020     membrane   1.4 
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Figure A.9.1. Agilent Bioanalyser results for leaf RNA extractions. Samples designated s1-
s8 for leaf tissue samples 1-8 where 1-4 were control plants and 5-8 were salt treated. 
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Figure A.9.2. Agilent Bioanalyser results for root RNA extractions.  Samples designated r1-
r8 for root tissue samples 1-8 where 1-4 were control plants and 5-8 were salt treated. 
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Table A.9.6. Illumina barcodes and corresponding samples for small RNA sequencing. 

Sample Identifier Tissue Control or Salt 
treated 

Barcode sequence 

L1 Leaf Control GATCAG 

L2 Leaf Control TAGCTT 

L3 Leaf Control GGCTAC 

L4 Leaf Control CTTGTA 

L5 Leaf Salt treated AGTCAA 

L6 Leaf Salt treated AGTTCC 

L7 Leaf Salt treated ATGTCA 

L8 Leaf Salt treated CCGTCC 

R1 Root Control ATCACG 

R2 Root Control CGATGT 

R3 Root Control TTAGGC 

R4 Root Control TGACCA 

R5 Root Salt treated ACAGTG 

R6 Root Salt treated GCCAAT 

R7 Root Salt treated CAGATC 

R8 Root Salt treated ACTTGA 

 

  



   

Appendix A, Supplementary figures and tables  Page 217 

Table A.9.7. Listing of previously undocumented mature miRNA in barley. These miRNA 
have not been previously categorised in miRBase. MicroRNA are named with hvu-new-miR 
for sequences that have not been found previously in barley. Where a similar miRNA has 
been found in other species, the numbering of that closest miRNA is used. When no similar 
sequences have been found in other species, the miRNA are named hvu-novel-miR900xx so 
that the numbers do not clash with any existing miRNA. The 5p or 3p at the end of the name 
is related to the mature miRN“ read being closer to the śȂ or řȂ end of the hairpin-loop 
precursor. 
 
>hvu-new-miR11115-3p 
AGACTTCGCTGGGACATCAGC 
>hvu-new-miR11115-5p 
TGGTATGTCAGTTGTAATGCA 
>hvu-new-miR11481a-3p 
ATGCATCGATTTAAATGGACGAGC 
>hvu-new-miR11481a-5p 
TTGTTTGTTTGGATTCGTGTGAAT 
>hvu-new-miR1509a-3p 
CCAGTTGTCAGACAACCGGGAC 
>hvu-new-miR1509a-5p 
CCCGGATTGTAACCTGCACAGGGC 
>hvu-new-miR166a-3p 
TCGGACCAGGATTCCATTATT 
>hvu-new-miR166a-3p 
TCGGACCAGGATTCCATTATTC 
>hvu-new-miR3440-3p 
CGGGTTGGACGGAGTACTAAAG 
>hvu-new-miR3440-5p 
TAAGCTACTGCATCTGATCCGAA 
>hvu-new-miR3672-3p 
CTGTCGCAAGGATTCGTAAA 
>hvu-new-miR3672-3p 
CTGTCGCAAGGATTCGTAAAA 
>hvu-new-miR396a-3p 
GTTCAAGAAAGTCCTTGGAAAA 
>hvu-new-miR396a-3p 
GTTCAATAAAGCTGTGGGAAA 
>hvu-new-miR396a-5p 
TCCACAGGCTTTCTTGAACTG 
>hvu-new-miR396a-5p 
TTCCACAGCTTTCTTGAACTG 
>hvu-new-miR477-5p 
TTCTCCCTCAAAGGCCTCCAACG 
>hvu-new-miR528-3p 
CCTGTGCCTGCCTCTTCCATT 
>hvu-new-miR528-5p 
TGGAAGTGGCATGCAGAGGAG 
>hvu-new-miR5803-3p 
CCCACTGTTGGATATTCACC 
>hvu-new-miR5803-5p 
ATTGTATCCGATATGGCCT 
>hvu-new-miR8604-3p 
AATGAAGGGGATAACTCATGCGCCT 
>hvu-new-miR8604-5p 
GCCATGAGTTATCCCCTTCATTAC 
>hvu-new-miR867-3p 
TTGAACATCCCAGAGCCACC 
>hvu-new-miR867-3p 
TTGAACATCCCAGAGCCACCG 
>hvu-new-miR867-5p 
CGGCTCTGTGGTGTTCAAGC 
>hvu-new-miR867-5p 
GCGGCTCTGTGGTGTTCAAGC 
>hvu-new-miR9555-3p 
GTAGAAACCAGGGTTGTCCAGCAAG 
>hvu-novel-miR90000-3p 
ACACCAAATCACTTCCACATG 
>hvu-novel-miR90000-5p 
TGTAGAGGTGATTTGGTGATC 
>hvu-novel-miR90001-3p 
AAGGGGATAACTCATGGCGCC 

>hvu-novel-miR90001-5p 
CGCCATGAATTATCCCCTTCA 
>hvu-novel-miR90002-3p 
ATTTTCTTCCCTTGGTCCGTT 
>hvu-novel-miR90002-5p 
TGGGCCAAGGGAAGGAAATAA 
>hvu-novel-miR90003-3p 
TTGGCTACACCTAGTTCTCTT 
>hvu-novel-miR90003-5p 
GAGAACGGGATGCAGCCAAGG 
>hvu-novel-miR90004-5p 
TGGCTGCAAGGGCCTTATCTCTGA 
>hvu-novel-miR90004a-3p 
TGAGTGGCTCTTGACGCCCAT 
>hvu-novel-miR90004b-3p 
TGAGTGGCTCCTGCTGCCCAT 
>hvu-novel-miR90004c-3p 
TGAGTGGCTCCTGCGGCCCAT 
>hvu-novel-miR90005-5p 
TCGTGACCCTGACCATCATCTT 
>hvu-novel-miR90006-5p 
TCGTGACCGTGACCATTATCTT 
>hvu-novel-miR90007-5p 
TCGTGACCGTGACCATCATTTT 
>hvu-novel-miR90008-5p 
TCGTGACCCTGACAATGTTTC 
>hvu-novel-miR90009-3p 
TTTCTCCTTTGCTCGAGCAGAG 
>hvu-novel-miR90009-5p 
CTCGCGAGCAACGGATGAATC 
>hvu-novel-miR90010-3p 
CCTTGCTCTCTACCTCTGCTGT 
>hvu-novel-miR90010-5p 
GAAAGAGGCAGAGAGTGGAATG 
>hvu-novel-miR90011-3p 
CGTCAGTCGATGTGGTCAAGG 
>hvu-novel-miR90011-5p 
TTGGCCACATCGACTGACGGC 
>hvu-novel-miR90012-3p 
TGGCCAGAGCCTCGTCAGCTAG 
>hvu-novel-miR90012-5p 
AGCCGGCGAGTCACGGGCGATC 
>hvu-novel-miR90013-3p 
GTGCTATGGATAAATTTAACC 
>hvu-novel-miR90013-5p 
TTAAATTTCTCCATAGCATCA 
>hvu-novel-miR90014-3p 
ATATTTGACAATAACGATAGT 
>hvu-novel-miR90014-5p 
TATTGTTATCGTCTAAAAACCT 
>hvu-novel-miR90015-3p 
CGCCGAATGTACATGCTCAGT 
>hvu-novel-miR90015-5p 
TGAGCATGATCAATCGGTGAT 
>hvu-novel-miR90016-5p 
TCGTGACCGTGACCATTATCT 
>hvu-novel-miR90017-5p 
TCGTGACCGTGACCATCATTT 
>hvu-novel-miR90018-3p 
ATAGACGCACGTCGCGACGCT 
>hvu-novel-miR90019-3p 
CGGGTTGGACGGAGTACTAAAGT 
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>hvu-novel-miR90019-5p 
ATAAGCTACTGCATCTGATCCGAA 
>hvu-novel-miR90020-3p 
TTTTAGATTTGGATCGGCACCGTG 
>hvu-novel-miR90020-5p 
TTTGGTCGGTCGTTCTTTTTTG 
>hvu-novel-miR90021-3p 
CTCACGATTCTCGGCATTTT 
>hvu-novel-miR90022-3p 
CTATGTCCCATTTTTCAGGCGA 
>hvu-novel-miR90022-5p 
TCTTGAACACCCATGGCTATAGTC 
>hvu-novel-miR90023-3p 
TTAAAACATCGAAACGTCCGACGA 
>hvu-novel-miR90023-5p 
GTGGGTTGTGTAGAGTGGTAGTG 
>hvu-novel-miR90024-3p 
TTCCGATAGGTGCAGTGGCATA 
>hvu-novel-miR90024-5p 
TGCACCTGCACCTACGGAGGA 
>hvu-novel-miR90025-5p 
TTTATGAACGCATTGAATTTTT 
>hvu-novel-miR90026-3p 
TCGATTCCCGCCTTCGGCACCT 
>hvu-novel-miR90027-3p 
TCGATTCCCCCCCTCGGCACCC 
>hvu-novel-miR90028-3p 
TCGATTCCCCCCCTCGGCACC 
>hvu-novel-miR90029-3p 
ATTGCTAATAGAATAATGTATTTCC 
>hvu-novel-miR90030-3p 
TCGGCTCGTCGCATCGTGGTGT 
>hvu-novel-miR90031-5p 
GCCTTCGGTGTTGTGGGATCT 
>hvu-novel-miR90032-3p 
TAGAGATCTGGTGGAACACC 
>hvu-novel-miR90033-3p 
GTTCGAGTCCCCCCGTCGGCGC 
>hvu-novel-miR90034-3p 
GTTCGAGTCCCCCCGTCGGCATC 
>hvu-novel-miR90035-3p 
TGAGATCTGCGCATCCCGGATGCA 
>hvu-novel-miR90035-5p 
GATCTGAGATCCGCGGTCTCATC 
>hvu-novel-miR90036-5p 
CCGGAGTCGGTGAGGGAACC 
>hvu-novel-miR90037-5p 
AACCGAAGCTGTTCGATTGCG 
>hvu-novel-miR90038-3p 
CCTCGGGTGGGCACTGTAGC 
>hvu-novel-miR90038-5p 
GTGAGGATCGGCCGAGGCG 
>hvu-novel-miR90039-5p 
TCCGTGGATTTCCGACTGGGG 
>hvu-novel-miR90040-3p 
TCGATTCCCCCCCTCGGCACCT 
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Table A.9.8. Listing of previously undocumented hairpin-loop precursors for miRNAs in 

barley These miRNA have not been previously categorised in miRBase. MicroRNA are 
named with hvu-new-miR for sequences that have not been found previously in barley. 
Where a similar miRNA has been found in other species, the numbering of that closest 
miRNA is used. When no similar sequences have been found in other species, the miRNA 
are named hvu-novel-miR900xx so that the numbers do not clash with any existing miRNA. 
 
>hvu-new-miR11115 
CATACAAATACTGGTATGTCAGTTGTAATGCAAAGGGCAGATAAGTGATGACATGATATTACAAACACGCAAAAGGACCTTCTACTCTGGTGGG
GCATCAGCTCGGTGGGGCATCATTAGACTTACAAACACGCAAAAGGGCCTTCTACTTTCGTGGGGCATCATCAGACTTCGCTGGGACATCAGCA
TACAGTG 
>hvu-new-miR11481a 
CCATTTCATCTGTCGTTGTTTGTTTGGATTCGTGTGAATACGAAAGACGGTTTAATGCATCGATTTAAATGGACGAGCGTTCGTTTTTT 
>hvu-new-miR1509a 
CCTACATTAGCCCCGGATTGTAACCTGCACAGGGCAATACACATGAGGTCTTGAGTTCGATTCCCCCGAGTTGCATTGGTCGGAGGCATTATTT
TTTTCTAGCCTGGAAGACCTTTAGTCCCAGTTGTCAGACAACCGGGACTAAAGGATCATG 
>hvu-new-miR166a 
AGACGCAACTATGAATTTTGCGAGTGCCGGTCGGACCAGGATTCCATTATTCAGCAGCCAC 
>hvu-new-miR3440 
TATACAAATATAAGCTACTGCATCTGATCCGAATTATTTGACGCATCCTCTACACAGTATAAAATGGGGTATTGTATAGAGGTTGCGTCAATTA
ATTCGGGTTGGACGGAGTACTAAAGTTGAGGTAGGC 
>hvu-new-miR3672 
GCCGACAAATTTATGACTATCTTCCTGGCACTGTCGCAAGGATTCGTAAAACATTTTTAT 
>hvu-new-miR396a 
CGGCCATGCTCTCCACAGGCTTTCTTGAACTGTCAACTCGCGCGCGCCAGCCATCCATGGCCTGCTGCTCAATTCAACCGCCTGCTGTCGCATA
TTGAGATCCGATCCATTGTTCAATCCATGGATCTTTGCCTTGCCTTGCCTTGTTGATGGTTCAAGAAAGTCCTTGGAAAACATGCC 
>hvu-new-miR396b 
TCTTTGCTGTCTTCCACAGCTTTCTTGAACTGCATCTGCAATTGGTGGATGATGGATTCTACCGGCAAGATCTGCAGTTCAATAAAGCTGTGGG
AAATTGCAGAGAGA 
>hvu-new-miR477 
TTTCCTCTCCTTCTCCCTCAAAGGCCTCCAACGGAGGGCTTTGAGTGAGATGAAGAGGGCGCT 
>hvu-new-miR528 
CCGGAGCAGCAGCGGTGGAAGGGGCATGCAGAGGAGCGGCCATGCATGGGAGCTTTGCTTTGCTTGCCTCTCCTGCTCTGGGCTCTAGCTCTCT
CCTGTGCCTGCCTCTTCCATTCCTGCCGCTAA 
>hvu-new-miR5803 
TCGTAGAATATGTAGTATCCGATATGGCCTTCCAGGTCCCACTGTTGGATATTCACCGGAGAGTGTCT 
>hvu-new-miR8604 
TAGTCACAGGCGCCATGAGTTATCCCCTTCATTACTAACAAAAACTGTAATGAAGGGGATAACTCATGCGCCTGTGACTATCTC 
>hvu-new-miR867a 
CGCGGAGCCCGGCGGCTCTGTGGTGTTCAAGCAGGAACCTCATGCTACCGGCAGCATGCGGCGCTTGCTTGAACATCCCAGAGCCACCGGCGTG
CCAAA 
>hvu-new-miR867b 
CGCGGAGCCCGGCGGCTCTGTGGTGTTCAAGCAGGAACCTCATGCTACCGGCAGCATGCGGCGCTTGCTTGAACATCCCAGAGCCACCGGCGTG
CCAAAA 
>hvu-new-miR9555 
TTTCCTGTCCGGATAAGTTGACAATGGTTTGTAGAAACCAGGGTTGTCCAGCAAGGGTGC 
>hvu-novel-miR90000 
AAATGAAAACTTGTAGAGGTGATTTGGTGATCACCGAATCTCTTGTATTCGGTGCACACCAAATCACTTCCACATGCTTTCGTTTTG 
>hvu-novel-miR90001 
TAGTCACAGGCGCCATGAATTATCCCCTTCATTACAGTTTTTGTTAGTAATGAAGGAGATAACTCATAAGTTCCTCGATGCGAAGGAGTTTTAG
GAGATAGTCACAGGCGCATGAGTTATCCCCTTCATTACAGTTTTTGTTAGTAATGAAGGGGATAACTCATGGCGCCTGTGACTATCT 
>hvu-novel-miR90002 
GTCAAAGCTAATGGGCCAAGGGAAGGAAATAATGATGACATAGATCCAGCAGGGAACAGTGGGCTACATGCATGGCTCTTGAGTGAGTATAGGA
GTGTGGGAAATACATTGACGAATTAGTTAATGTAAGAATCTCTTTCATTACTATTTTCTTCCCTTGGTCCGTTAACTTTGATAG 
>hvu-novel-miR90003 
CGCTAAGGGGCAGAGAACGGGATGCAGCCAAGGATGACTTGCCGGCTTCTGGTGTTGGGAGTTCGTAGAGCCTTAAGAATTAGCCGGCAAGCTG
TCCTTGGCTACACCTAGTTCTCTTCTTCTGGTGTT 
>hvu-novel-miR90004a 
CAATCCTTACATGGCTGCAAGGGCCTTATCTCTGATAGCCAAGGATGACTTGCCTGTGTCTTGCTCCTCCCTCAAGGCAGCTTAATTGGCCTTG
GGGTGTGGTTTCATGGGCAGTCTCCTTGGCTAGCCTGAGTGGCTCTTGACGCCCATGCTAGGCGCGCT 
>hvu-novel-miR90004b 
CAAGCCTTACATGGCTGCAAGGGCCTTATCTCTGATAGCCAAGGATGACTTGCCTGTGTCTTGTTCCTCCCTCAAGGCTTAATTGGCCTTGGGG
TGTCGTTTCATGGGCAGTCTCCTTGGCTAGCCTGAGTGGCTCCTGCTGCCCATGCTAGGATGTCT 
>hvu-novel-miR90004c 
CAAGCCTTACATGGCTGCAAGGGCCTTATCTCTGATAGCCAAGGATGACTTGCCTGTGTCTTGTTCCTCCCTCAAGGCTTAATTGGTCGCCTTG
GGGTGTGGTTTCATGGGCAGTCTTCTTGGCTAGCCTGAGTGGCTCCTGCGGCCCATGCTAGGCTGTCT 
>hvu-novel-miR90005 
GGCGTAGTCGTCGTGACCCTGACCATCATCTTGATTGTCGTCGTCACTATGCGCCTCGTTG 
>hvu-novel-miR90006a 
CGGGTAGTCATCGTGACCGTGACCATTATCTTGATTGTCGTCGTCACTATGCGCCTCATTG 
>hvu-novel-miR90006b 
GGCGTAGTCGTCGTGACCGTGACCATTATCTTGATTGTCGTTGTCACTATGCGCCTCGTTG 
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>hvu-novel-miR90007a 
GGCGTAGTCGTCGTGACCGTGACCATCATTTTGATTGTCATCGTCACTATGCGCCTCGTTGT 
>hvu-novel-miR90007b 
GGCGTAGTCGTCGTGACCGTGACCATCATTTTGATTGTCGTCGTCACTATGCGCCTCGTTGT 
>hvu-novel-miR90008 
GGCAAGATGATCGTGACCCTGACAATGTTTCTAGCTTTGTTATGCCTAGTTGAGTCGTTT 
>hvu-novel-miR90009 
AGATTCTTTCTCTCGCGAGCAACGGATGAATCAGCCTCTCTGTTATCCAGAGAGATGGCCGATTTCTCCTTTGCTCGAGCAGAGAAAGAGCATC
G 
>hvu-novel-miR90010 
AGAGCCACGCAGAAAGAGGCAGAGAGTGGAATGCAGCCAAGGATGACTTGCCGACATCACAGAACAAGGTGGTAGTAATCTTGCCGGCAAGTCC
GTCCTTGGCTACACCTTGCTCTCTACCTCTGCTGTGTGGCTTGGG 
>hvu-novel-miR90011 
AGCGTAGAGCCTTGGCCACATCGACTGACGGCAACGACCGGTCGCGACCACGGGGGAGGGGGGTAGGGCGGAATCTGCTGCCGCGATCGATCGT
TGCCGTCAGTCGATGTGGTCAAGGCTCTACGCCAGGC 
>hvu-novel-miR90012 
GCTGAGCTAATAGCCGGCGAGTCACGGGCGATCGGGCGGCTGTCGATGTCGTTGAGGCGGTGACGGGCGTCGACGGCTGCCCGGATGGCCAGAG
CCTCGTCAGCTAGCAGCTCAGCTC 
>hvu-novel-miR90013 
CAATCCTCTGGTTAAATTTCTCCATAGCATCAGCCATATTCCCATTCAACCGCGTTTTTGCACATTGGGGATGTTGACTGGTGCTATGGATAAA
TTTAACCCGATGGTTTCG 
>hvu-novel-miR90014 
TCCTTTAGTTATATTGTTATCGTCTAAAAACCTGAAATGAAGATATTTGACAATAACGATAGTAGAACAATTTT 
>hvu-novel-miR90015 
TATGGGATCACTGAGCATGATCAATCGGTGATCTCGACTTGTAAGTCGGGGTCCCCACAGTTAGAAATTTTTGGTGGGTGCAGAAAATCTCATG
TGTTAAGGCTGAGTGCACTACTCGTCTCGGCTATCGTCCATGCTACCTATGGTTTCCTACAGTCAGGATGGCTCTAATACCAGCTCTGTGGGGA
CCTCAATTTACGAGTTGAGATCGCCGAATGTACATGCTCAGTGGTCCCAGAGATC 
>hvu-novel-miR90016 
CGGGTAGTCATCGTGACCGTGACCATTATCTTGATTGTCGTCGTCACTATGCGCCTCAT 
>hvu-novel-miR90018 
TCATGCATGTGTGAAAGTGATGTGACATCGATAGACGCACGTCGCGACGCTCCGGTGTGTG 
>hvu-novel-miR90019 
CTTATACAAATATAAGCTACTGCATCTGATCCGAATTATTTGACGCATCCTCTACACAGTATAAAATGGGGTATTGTATAGAGGTTGCGTCAAT
TAATTCGGGTTGGACGGAGTACTAAAGTTGAGGTAGGC 
>hvu-novel-miR90020 
TTTTTGTTTGTTTTGGTCGGTCGTTCTTTTTTGTCTGTTTTGGTCGGCCGTCCGTCCGACGTCCGCACTGTTTTAGATTTGGATCGGCACCGTG
TCCATGTTAAT 
>hvu-novel-miR90021 
TTCATCTTCGACGGTGGCATTGAGGAAAATCTCACGATTCTCGGCATTTTTGAACACCTT 
>hvu-novel-miR90022 
GTCTTTCCTCTTCTTGAACACCCATGGCTATAGTCTTTTCTATGTCCCATTTTTCAGGCGACATGTTGTA 
>hvu-novel-miR90023 
TTCTGTGGGCTGTGGGTTGTGTAGAGTGGTAGTGTGTTGAGATGAGAGGGAGTTTGTGGTCCGTGACACGCGTTTTAAAACATCGAAACGTCCG
ACGACTAAACCAATG 
>hvu-novel-miR90024 
GGAGCTGCATTTGCACCTGCACCTACGGAGGAAGATGGGCATGCATGTGTGCATGCATGCAAGAGAAAGAACGCCGGCCGTCCTTGGCCCTCTT
GCTCTTCCGATAGGTGCAGTGGCATATGCAACTCTAC 
>hvu-novel-miR90025 
TAGTTTTTCCTTTATGAACGCATTGAATTTTTTTGGCAAGTTGATAAACTCTTTGATATTAC 
>hvu-novel-miR90026 
GCGCGTGTGCCTGATGAGAAGGGCGCGGGTTCGATTCCCGCCTTCGGCACCTTATTTTTGA 
>hvu-novel-miR90028 
TGGTTTTGGTGCTAGTTGGAGGTCGTGGATTCGATTCCCCCCCTCGGCACCCTTTTGCATT 
>hvu-novel-miR90029 
CATGGTTCACAAATAAGGCCATTACTCTAGATTGCTAATAGAATAATGTATTTCCATGCC 
>hvu-novel-miR90030 
CGCGGTGGCACGGTTCATGAAGATTAGGCATCGGCTCGTCGCATCGTGGTGTTAGTGTGCTAG 
>hvu-novel-miR90031 
TCACCGAGCTGCCTTCGGTGTTGTGGGATCTCCGCACAACTCCGAATAGATCTACAGGGCG 
>hvu-novel-miR90032 
ATTTCACTAGAGTCATATTTTTACATCTCATAGAGATCTGGTGGAACACCATTGGCAGTA 
>hvu-novel-miR90033 
CATATGCATGCGCCTGATGAGAGGTCCAGGGTTCGAGTCCCCCCGTCGGCGCCTTTTGTTCC 
>hvu-novel-miR90034 
TGTGTGTTGTTGCCTGTCAGGAGGGCGTGGGTTCGAGTCCCCCCGTCGGCATCCTTTTTACTT 
>hvu-novel-miR90035 
GCCATTGATGGATCTGAGATCCGCGGTCTCATCGCCTGAGATCTGCGCATCCCGGATGCAATCAACTACTA 
>hvu-novel-miR90036 
TGAGATCATACCGGAGTCGGTGAGGGAACCCATAGTAGAGTCGGCACCGGAGCCATGGAG 
>hvu-novel-miR90037 
GCTATCCTGCAACCGAAGCTGTTCGATTGCGATCGAACGGCTCGAATTGGTGCAACCCCC 
>hvu-novel-miR90038 
ATCGAGGGGAGGTGAGAATCGGCCGAGGCTGGCCACCTTTTCCTCGGGTGGGCACTGTAGCGTGCCTAGA 
>hvu-novel-miR90039 
GTCATTTTCTTCCGTGGATTTCCGACTGGGGTGCAAGAGGTCTAGGAGGTGAGGTGGTA 
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Table A.9.9. EpiGBS barcode combinations used with biological samples. Samples with L 
are for the third leaf tissue, R for root tissue, C for control and S for salt treated. The cytosine 
used in the śȂ barcodes is ś-methylcytosine to ensure the barcode does not change during 
bisulphite treatment. 

Sample Ba Adapter Co Adapter 

Identifier Barcode 

Sequence 

Identifier Barcode 

Sequence 

L1C 1 AACT 2 CCAG 
L2C 2 CCTA 2 CCAG 
L3C 3 TTAC 3 TTGA 
L4C 4 AGGC 3 TTGA 
L5S 1 AACT 4 GGTC 
L6S 2 CCTA 4 GGTC 
L7S 3 TTAC 5 ACTA 
L8S 4 AGGC 5 ACTA 
R1C 1 AACT 6 CAGC 
R2C 2 CCTA 6 CAGC 
R3C 3 TTAC 7 TGAT 
R4C 4 AGGC 7 TGAT 
R5S 1 AACT 8 GTCG 
R6S 2 CCTA 8 GTCG 
R7S 3 TTAC 9 ATAC 
R8S 4 AGGC 9 ATAC 
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Figure A.9.3. Methylation patterns in barley around different TE classes. The methylation 
patterns for the three different cytosine contexts A: CG methylation, B: CHG methylation 
and C: CHH methylation. All cytosine reads for the relevant context that were within 1.5 kbp 
of a TE were included. The TE body from TE start to TE end was scaled for each TE to fit in 
the same width. TE classification based on the standard established by Wicker et al. (2007) 
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Figure A.9.4. Arabidposis thaliana methylation pattern across each chromosome and 

cytosine context, reproduced from Cokus et al. (2008). 
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Figure A.9.5. Methylation patterns around different genomic features in Arabidopsis 

thaliana, reproduced from Cokus et al. (2008). 
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Figure A.9.6. DNA methylation patterns for all cytosine contexts around genes in three 

different rice varieties, reproduced from Garg et al. (2015). 
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Figure A.9.7. DNA methylation patterns in wild rice for (A) genes and (B) transposable 

elements, reproduced from Li et al. (2012) 
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Figure A.9.8. DNA methylation patterns in cassava for all cytosine contexts for genes and 

Transposable Elements (TEs), reproduced from Wang et al. (2015). A-C: Methylation 
pattern for genes. D-F: Methylation pattery for TEs. G-I: Methylation pattern for certain 
selected classes of TEs. 
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Table A.9.10. Differentially methylated CG context genes in barley leaf tissue under salt 

stress. Genes within 1.5 kbp of differentially methylated sites in CG contexts in plant leaf 
tissue are listed. Difference in % methylation is the difference between methylation 
percentage in salt treated plants minus the methylation percentage in control plants. Some 
genes are listed more than once if more than one differentially methylated site fell in the 
region of the gene. 
 

Gene Difference in  
% methylation 

log10(adj-p) 

HORVU6Hr1G033380 100.0 -1.69 
HORVU6Hr1G011260 92.3 -3.37 
HORVU3Hr1G004480 88.2 -6.53 
HORVU7Hr1G040550 78.6 -1.89 
HORVU3Hr1G099160 74.1 -3.28 
HORVU1Hr1G010390 73.3 -1.35 
HORVU3Hr1G113890 68.9 -1.80 
HORVU5Hr1G079970 66.5 -3.41 
HORVU4Hr1G070620 65.0 -1.69 
HORVU3Hr1G095430 58.0 -1.46 
HORVU7Hr1G120030 55.0 -2.71 
HORVU7Hr1G103020 54.2 -1.38 
HORVU2Hr1G122620 53.6 -1.42 
HORVU2Hr1G013370 52.7 -3.18 
HORVU6Hr1G001880 52.1 -1.72 
HORVU3Hr1G030560 51.7 -1.32 
HORVU1Hr1G091650 44.0 -1.31 
HORVU3Hr1G017270 42.5 -2.33 
HORVU2Hr1G122620 40.7 -1.58 
HORVU3Hr1G018250 39.8 -1.48 
HORVU7Hr1G002720 39.6 -1.89 
HORVU7Hr1G080200 37.9 -1.78 
HORVU3Hr1G107760 37.7 -2.19 
HORVU7Hr1G000040 37.5 -1.34 
HORVU1Hr1G061230 36.8 -1.76 
HORVU3Hr1G085760 35.5 -1.98 
HORVU3Hr1G021970 34.2 -3.28 
HORVU2Hr1G039030 33.3 -1.38 
HORVU2Hr1G101470 33.3 -2.14 
HORVU6Hr1G037950 28.9 -1.56 
HORVU7Hr1G120030 28.4 -2.19 
HORVU4Hr1G059270 28.2 -1.58 
HORVU3Hr1G090850 28.1 -2.49 
HORVU7Hr1G077810 27.9 -1.33 
HORVU5Hr1G064470 27.5 -1.32 
HORVU7Hr1G000040 25.8 -1.78 
HORVU3Hr1G047180 25.8 -3.46 
HORVU5Hr1G000940 24.6 -2.08 
HORVU6Hr1G020670 24.3 -1.43 
HORVU4Hr1G002120 19.4 -1.52 
HORVU7Hr1G085060 18.7 -1.31 
HORVU7Hr1G105580 17.5 -1.44 
HORVU1Hr1G005470 16.1 -2.06 

Gene Difference in  
% methylation 

log10(adj-p) 

HORVU2Hr1G032280 13.5 -1.50 
HORVU1Hr1G048900 12.8 -2.83 
HORVU1Hr1G004930 12.5 -2.55 
HORVU6Hr1G008870 12.3 -1.45 
HORVU7Hr1G021000 11.3 -2.24 
HORVU7Hr1G033530 -13.0 -2.47 
HORVU1Hr1G024540 -15.0 -1.33 
HORVU1Hr1G041030 -16.7 -2.11 
HORVU4Hr1G001450 -20.0 -2.06 
HORVU3Hr1G075970 -20.1 -4.38 
HORVU7Hr1G028190 -27.5 -1.57 
HORVU2Hr1G092080 -29.1 -2.61 
HORVU5Hr1G110490 -29.2 -3.00 
HORVU5Hr1G068590 -31.0 -1.57 
HORVU3Hr1G003860 -31.7 -2.19 
HORVU6Hr1G001960 -33.7 -1.73 
HORVU7Hr1G117010 -35.7 -2.29 
HORVU3Hr1G016230 -37.5 -2.09 
HORVU1Hr1G085240 -38.2 -1.44 
HORVU7Hr1G118180 -38.7 -2.61 
HORVU7Hr1G117320 -38.8 -1.53 
HORVU4Hr1G088760 -39.7 -1.48 
HORVU2Hr1G070490 -40.0 -1.72 
HORVU3Hr1G010140 -40.5 -1.38 
HORVU7Hr1G081220 -42.2 -1.40 
HORVU5Hr1G064830 -43.3 -1.40 
HORVU5Hr1G075400 -44.0 -1.93 
HORVU7Hr1G049190 -49.1 -1.85 
HORVU5Hr1G064830 -50.0 -3.57 
HORVU5Hr1G026160 -54.5 -1.54 
HORVU1Hr1G075780 -61.8 -3.97 
HORVU2Hr1G012540 -61.9 -2.43 
HORVU5Hr1G097670 -62.9 -1.58 
HORVU6Hr1G008870 -64.3 -2.09 
HORVU7Hr1G068410 -64.3 -1.31 
HORVU7Hr1G103870 -69.2 -1.41 
HORVU1Hr1G062730 -70.0 -1.31 
HORVU3Hr1G013650 -72.8 -4.56 
HORVU7Hr1G000040 -73.0 -2.13 
HORVU3Hr1G031320 -92.3 -1.79 
HORVU4Hr1G080050 -92.9 -1.61 
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Table A.9.11. Differentially methylated CHG context genes in barley leaf tissue under salt 

stress. Genes within 1.5 kbp of differentially methylated sites in CHG contexts in plant leaf 
tissue are listed. Difference in % methylation is the difference between methylation 
percentage in salt treated plants minus the methylation percentage in control plants. Some 
genes are listed more than once if more than one differentially methylated site fell in the 
region of the gene. 
 

Gene Difference in  
% methylation 

log10(adj-p) 

HORVU4Hr1G044370 80.0 -2.13 
HORVU2Hr1G060460 78.6 -2.36 
HORVU4Hr1G081660 66.1 -1.39 
HORVU3Hr1G081410 64.4 -1.50 
HORVU5Hr1G123050 62.6 -1.49 
HORVU2Hr1G059320 57.6 -1.82 
HORVU4Hr1G085290 55.8 -1.38 
HORVU5Hr1G119490 54.5 -2.69 
HORVU1Hr1G013990 52.5 -1.34 
HORVU1Hr1G003140 46.2 -1.41 
HORVU7Hr1G111630 45.9 -1.98 
HORVU6Hr1G026400 45.8 -2.55 
HORVU2Hr1G008140 44.0 -2.00 
HORVU4Hr1G057520 42.9 -1.49 
HORVU5Hr1G031470 42.1 -1.64 
HORVU7Hr1G099800 41.5 -2.65 
HORVU6Hr1G018420 39.1 -1.69 
HORVU7Hr1G045660 38.7 -2.13 
HORVU5Hr1G056760 37.5 -1.34 
HORVU6Hr1G078520 37.5 -1.39 
HORVU6Hr1G083130 36.9 -2.69 
HORVU7Hr1G006070 36.9 -2.05 
HORVU5Hr1G017930 34.9 -1.43 
HORVU3Hr1G000590 31.8 -1.59 
HORVU3Hr1G098440 31.8 -2.42 
HORVU1Hr1G092000 30.0 -1.82 
HORVU2Hr1G103130 29.2 -1.47 
HORVU2Hr1G085850 28.6 -1.52 
HORVU5Hr1G037160 24.2 -1.69 
HORVU3Hr1G078300 24.1 -1.88 
HORVU2Hr1G103130 23.9 -1.64 
HORVU4Hr1G084910 22.1 -2.46 
HORVU5Hr1G048550 22.0 -2.48 
HORVU0Hr1G007540 21.7 -1.43 
HORVU7Hr1G092280 20.7 -2.00 

Gene Difference in  
% methylation 

log10(adj-p) 

HORVU2Hr1G091580 19.2 -1.59 
HORVU7Hr1G042890 19.1 -1.42 
HORVU5Hr1G122540 16.2 -1.42 
HORVU4Hr1G039540 13.0 -1.39 
HORVU3Hr1G035730 12.7 -1.52 
HORVU2Hr1G025510 12.5 -1.39 
HORVU5Hr1G051570 -11.2 -2.64 
HORVU2Hr1G099160 -13.2 -1.83 
HORVU2Hr1G066890 -16.0 -1.38 
HORVU7Hr1G053070 -16.7 -1.44 
HORVU1Hr1G092110 -18.2 -1.49 
HORVU0Hr1G040200 -20.0 -1.70 
HORVU3Hr1G110590 -20.0 -1.73 
HORVU3Hr1G095940 -20.7 -1.54 
HORVU5Hr1G068600 -22.2 -1.52 
HORVU7Hr1G085570 -22.2 -1.75 
HORVU2Hr1G056510 -27.3 -1.72 
HORVU4Hr1G088760 -27.7 -1.48 
HORVU3Hr1G099430 -28.6 -3.45 
HORVU4Hr1G088760 -29.4 -2.55 
HORVU2Hr1G013700 -33.3 -1.33 
HORVU3Hr1G006760 -38.0 -1.31 
HORVU3Hr1G090910 -41.9 -1.40 
HORVU2Hr1G035080 -43.5 -1.47 
HORVU1Hr1G032310 -45.3 -4.43 
HORVU2Hr1G119310 -46.3 -2.00 
HORVU2Hr1G108370 -48.7 -1.50 
HORVU4Hr1G004270 -55.7 -1.52 
HORVU3Hr1G057330 -58.3 -1.33 
HORVU2Hr1G024680 -65.2 -1.41 
HORVU2Hr1G034320 -66.0 -1.80 
HORVU7Hr1G009770 -71.1 -2.53 
HORVU3Hr1G050400 -73.7 -2.65 
HORVU3Hr1G032660 -100.0 -2.55 
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Table A.9.12. Differentially methylated CHH context genes in barley leaf tissue under salt 

stress. Genes within 1.5 kbp of differentially methylated sites in CHH contexts in plant leaf 
tissue are listed. Difference in % methylation is the difference between methylation 
percentage in salt treated plants minus the methylation percentage in control plants. A 
number of genes are listed more than once where more than one differentially methylated 
site fell in the region of the gene. 
 
 
 
 
 
 
 
 
 
This table is too large to show here. Please follow the link below to view this table. 
https://github.com/MagnificaScience/Salinity_stress_response_in_barley  
 
 
 
 
  

https://github.com/MagnificaScience/Salinity_stress_response_in_barley
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Table A.9.13. Differentially methylated CG context genes in barley root tissue under salt 

stress. Genes within 1.5 kbp of differentially methylated sites in CG contexts in plant root 
tissue are listed. Difference in % methylation is the difference between methylation 
percentage in salt treated plants minus the methylation percentage in control plants. Some 
genes are listed more than once if more than one differentially methylated site fell in the 
region of the gene. 
 

Gene Difference in  
% methylation 

log10(adj-p) 

HORVU1Hr1G016600 100.0 -2.38 
HORVU3Hr1G031320 100.0 -6.72 
HORVU4Hr1G003360 100.0 -1.63 
HORVU6Hr1G063130 100.0 -1.84 
HORVU7Hr1G047720 100.0 -1.49 
HORVU7Hr1G122200 100.0 -1.63 
HORVU5Hr1G024800 91.7 -1.49 
HORVU2Hr1G103020 90.9 -1.41 
HORVU6Hr1G080620 90.0 -1.31 
HORVU2Hr1G030040 85.5 -2.28 
HORVU4Hr1G009870 83.3 -2.33 
HORVU6Hr1G021260 83.3 -2.71 
HORVU7Hr1G006800 80.0 -2.82 
HORVU7Hr1G068450 80.0 -1.95 
HORVU5Hr1G009040 76.9 -1.47 
HORVU1Hr1G057910 75.0 -1.63 
HORVU5Hr1G081840 72.7 -1.36 
HORVU1Hr1G025280 72.2 -5.16 
HORVU0Hr1G022520 68.8 -3.26 
HORVU7Hr1G076810 68.4 -2.03 
HORVU5Hr1G075920 67.6 -3.11 
HORVU5Hr1G107990 67.6 -1.39 
HORVU1Hr1G077910 66.7 -1.30 
HORVU2Hr1G103490 66.7 -1.43 
HORVU5Hr1G041660 63.5 -1.50 
HORVU5Hr1G044220 62.5 -2.75 
HORVU1Hr1G057460 58.3 -1.35 
HORVU3Hr1G108500 58.3 -1.75 
HORVU7Hr1G033530 58.3 -2.93 
HORVU2Hr1G013370 57.6 -3.23 
HORVU1Hr1G077080 56.4 -1.38 
HORVU5Hr1G117220 54.5 -1.40 
HORVU3Hr1G081180 53.9 -2.56 
HORVU7Hr1G026510 53.6 -1.73 
HORVU3Hr1G102840 52.9 -1.39 
HORVU3Hr1G000230 52.4 -3.24 
HORVU7Hr1G099320 52.3 -1.53 
HORVU1Hr1G057910 52.2 -2.70 
HORVU1Hr1G079410 50.0 -1.31 
HORVU6Hr1G000810 50.0 -1.87 
HORVU7Hr1G122750 50.0 -2.49 
HORVU4Hr1G048210 49.0 -1.95 
HORVU5Hr1G059030 48.5 -2.52 
HORVU1Hr1G048870 47.9 -1.69 
HORVU5Hr1G005910 45.8 -1.50 
HORVU4Hr1G079800 45.8 -1.51 
HORVU6Hr1G064370 45.0 -1.58 
HORVU2Hr1G107600 44.4 -2.69 
HORVU1Hr1G072160 44.4 -3.30 
HORVU6Hr1G092270 43.5 -7.27 
HORVU3Hr1G095940 43.5 -1.65 
HORVU6Hr1G070170 43.4 -1.50 
HORVU6Hr1G083960 43.3 -1.68 
HORVU7Hr1G009420 42.9 -2.78 
HORVU7Hr1G111260 41.8 -2.13 
HORVU5Hr1G015220 41.2 -2.71 
HORVU3Hr1G056830 40.0 -1.44 
HORVU5Hr1G023720 40.0 -1.59 
HORVU5Hr1G084410 39.3 -1.49 
HORVU2Hr1G106480 38.7 -1.65 
HORVU3Hr1G097400 38.5 -2.03 
HORVU1Hr1G062740 37.5 -1.59 
HORVU3Hr1G038050 37.1 -1.55 

Gene Difference in  
% methylation 

log10(adj-p) 

HORVU4Hr1G035180 36.7 -1.81 
HORVU7Hr1G109020 36.1 -2.00 
HORVU6Hr1G008550 35.2 -1.41 
HORVU2Hr1G127440 35.0 -1.38 
HORVU6Hr1G013290 34.8 -2.05 
HORVU2Hr1G003990 34.5 -1.44 
HORVU1Hr1G090670 33.3 -1.44 
HORVU6Hr1G000440 32.5 -1.78 
HORVU4Hr1G018610 31.7 -1.79 
HORVU3Hr1G020490 31.3 -2.73 
HORVU3Hr1G086610 30.9 -5.25 
HORVU5Hr1G096560 30.3 -1.87 
HORVU2Hr1G018430 29.5 -3.06 
HORVU3Hr1G038610 29.4 -2.58 
HORVU5Hr1G012770 29.3 -1.39 
HORVU1Hr1G035960 28.6 -2.35 
HORVU3Hr1G020900 28.6 -1.43 
HORVU0Hr1G010390 28.2 -1.43 
HORVU2Hr1G083430 28.0 -2.05 
HORVU1Hr1G086110 27.4 -1.65 
HORVU5Hr1G105780 26.7 -1.79 
HORVU3Hr1G013150 25.9 -1.39 
HORVU2Hr1G011070 25.7 -2.31 
HORVU7Hr1G006980 25.7 -2.10 
HORVU3Hr1G117400 24.6 -2.98 
HORVU5Hr1G056760 24.6 -1.44 
HORVU4Hr1G069790 24.3 -2.52 
HORVU7Hr1G120030 23.8 -1.36 
HORVU3Hr1G071480 23.6 -3.25 
HORVU1Hr1G021000 22.6 -1.45 
HORVU3Hr1G028020 22.2 -1.34 
HORVU7Hr1G008140 22.1 -1.62 
HORVU5Hr1G112930 21.9 -1.65 
HORVU2Hr1G126180 21.7 -2.20 
HORVU5Hr1G016670 21.6 -1.64 
HORVU2Hr1G018430 21.5 -2.09 
HORVU2Hr1G031120 21.4 -1.45 
HORVU4Hr1G072840 21.1 -1.43 
HORVU7Hr1G083580 20.6 -2.06 
HORVU3Hr1G040500 20.2 -1.51 
HORVU4Hr1G034660 20.0 -1.49 
HORVU7Hr1G027680 19.6 -1.51 
HORVU3Hr1G110540 19.2 -2.16 
HORVU5Hr1G012120 19.1 -2.10 
HORVU7Hr1G090440 19.0 -1.45 
HORVU3Hr1G057990 19.0 -2.18 
HORVU6Hr1G082310 18.9 -1.76 
HORVU3Hr1G026970 18.6 -1.49 
HORVU2Hr1G069470 18.1 -1.64 
HORVU2Hr1G123270 18.1 -1.44 
HORVU2Hr1G048070 17.9 -1.34 
HORVU2Hr1G126180 17.9 -1.98 
HORVU3Hr1G015800 17.8 -1.98 
HORVU6Hr1G008870 17.8 -3.14 
HORVU5Hr1G078500 16.7 -1.86 
HORVU7Hr1G097070 16.7 -1.43 
HORVU7Hr1G023100 16.0 -1.59 
HORVU4Hr1G015530 15.7 -1.75 
HORVU3Hr1G002130 15.3 -1.37 
HORVU5Hr1G070390 15.0 -1.60 
HORVU6Hr1G048850 15.0 -1.59 
HORVU2Hr1G084170 14.6 -2.08 
HORVU3Hr1G037030 14.6 -1.99 
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Gene Difference in  
% methylation 

log10(adj-p) 

HORVU4Hr1G034660 14.3 -1.66 
HORVU2Hr1G023830 12.7 -1.44 
HORVU5Hr1G118500 12.2 -1.73 
HORVU3Hr1G112190 11.7 -1.64 
HORVU2Hr1G101470 11.4 -1.49 
HORVU2Hr1G125640 11.4 -1.58 
HORVU5Hr1G044640 11.1 -1.40 
HORVU2Hr1G036530 10.8 -1.41 
HORVU5Hr1G071530 10.7 -1.68 
HORVU1Hr1G083340 10.6 -1.70 
HORVU2Hr1G014240 10.3 -1.86 
HORVU5Hr1G067530 10.0 -1.82 
HORVU4Hr1G054940 -10.3 -1.30 
HORVU7Hr1G084580 -11.3 -1.44 
HORVU3Hr1G010920 -11.5 -1.54 
HORVU4Hr1G071690 -12.0 -1.41 
HORVU6Hr1G063790 -12.1 -1.37 
HORVU2Hr1G003400 -12.5 -1.86 
HORVU1Hr1G074260 -12.8 -1.43 
HORVU3Hr1G075970 -13.1 -1.86 
HORVU2Hr1G050270 -13.1 -1.30 
HORVU7Hr1G099870 -13.2 -1.34 
HORVU2Hr1G099160 -13.4 -1.65 
HORVU6Hr1G073170 -14.6 -1.92 
HORVU2Hr1G032540 -15.4 -1.31 
HORVU7Hr1G013300 -15.6 -1.89 
HORVU3Hr1G095800 -15.7 -1.37 
HORVU1Hr1G082670 -16.0 -1.36 
HORVU4Hr1G002240 -16.7 -1.50 
HORVU4Hr1G021270 -16.7 -1.32 
HORVU7Hr1G118740 -17.1 -1.42 
HORVU6Hr1G013110 -17.3 -1.66 
HORVU4Hr1G052810 -17.4 -1.34 
HORVU7Hr1G019770 -17.6 -1.51 
HORVU1Hr1G035760 -18.2 -1.43 
HORVU1Hr1G061160 -18.5 -1.52 
HORVU1Hr1G056340 -18.6 -2.22 
HORVU6Hr1G014360 -19.3 -2.78 
HORVU2Hr1G026540 -19.4 -2.71 
HORVU2Hr1G010690 -20.0 -1.69 
HORVU4Hr1G003660 -20.0 -1.49 
HORVU7Hr1G000320 -21.1 -1.50 
HORVU1Hr1G081570 -21.3 -2.53 
HORVU6Hr1G027460 -21.3 -2.80 
HORVU6Hr1G013110 -21.6 -1.31 
HORVU1Hr1G028250 -22.2 -1.72 
HORVU2Hr1G085910 -22.2 -1.45 
HORVU4Hr1G064660 -23.1 -1.36 
HORVU2Hr1G100660 -23.5 -1.36 
HORVU3Hr1G087640 -23.8 -1.37 
HORVU3Hr1G077170 -23.8 -1.49 
HORVU7Hr1G093790 -24.0 -1.34 
HORVU2Hr1G095130 -24.0 -1.38 
HORVU4Hr1G011850 -24.1 -3.17 
HORVU5Hr1G069620 -24.7 -1.40 
HORVU2Hr1G009580 -25.0 -1.36 
HORVU4Hr1G008370 -25.2 -1.71 
HORVU5Hr1G120770 -26.6 -1.36 
HORVU5Hr1G044150 -26.8 -2.17 
HORVU5Hr1G049810 -27.4 -1.85 
HORVU6Hr1G044840 -27.5 -1.91 

Gene Difference in  
% methylation 

log10(adj-p) 

HORVU1Hr1G076670 -27.5 -2.82 
HORVU1Hr1G087800 -27.6 -2.44 
HORVU3Hr1G075840 -27.8 -1.88 
HORVU1Hr1G055600 -27.9 -1.72 
HORVU5Hr1G068350 -28.2 -2.04 
HORVU1Hr1G016280 -28.6 -1.67 
HORVU3Hr1G101540 -30.9 -4.11 
HORVU7Hr1G083580 -31.0 -2.14 
HORVU6Hr1G001960 -31.0 -1.34 
HORVU3Hr1G079490 -31.3 -1.33 
HORVU7Hr1G101050 -31.7 -2.35 
HORVU3Hr1G031640 -32.6 -2.33 
HORVU1Hr1G052930 -33.3 -1.41 
HORVU4Hr1G073070 -33.3 -1.67 
HORVU2Hr1G092080 -33.9 -1.86 
HORVU4Hr1G052890 -34.3 -1.76 
HORVU6Hr1G079880 -36.8 -1.46 
HORVU0Hr1G011860 -37.6 -1.85 
HORVU0Hr1G011860 -38.3 -1.54 
HORVU5Hr1G023960 -41.4 -3.72 
HORVU7Hr1G095570 -42.4 -2.32 
HORVU3Hr1G018300 -44.1 -1.47 
HORVU7Hr1G118180 -44.5 -3.47 
HORVU5Hr1G079380 -45.8 -1.85 
HORVU5Hr1G042080 -46.1 -1.73 
HORVU3Hr1G039290 -46.7 -4.14 
HORVU5Hr1G124360 -46.7 -1.72 
HORVU7Hr1G117320 -49.2 -2.17 
HORVU3Hr1G039250 -49.2 -1.46 
HORVU2Hr1G101900 -50.0 -1.65 
HORVU1Hr1G039440 -50.4 -5.00 
HORVU1Hr1G059550 -54.4 -1.36 
HORVU0Hr1G038830 -54.5 -1.92 
HORVU4Hr1G072520 -55.0 -1.36 
HORVU7Hr1G117010 -55.2 -4.72 
HORVU1Hr1G085240 -57.7 -3.64 
HORVU5Hr1G078310 -58.8 -1.86 
HORVU6Hr1G058590 -59.7 -2.82 
HORVU7Hr1G036000 -60.4 -1.87 
HORVU1Hr1G076680 -61.1 -1.31 
HORVU7Hr1G106280 -62.2 -1.39 
HORVU7Hr1G122750 -62.5 -1.51 
HORVU2Hr1G126170 -65.2 -1.99 
HORVU2Hr1G050270 -70.0 -1.68 
HORVU7Hr1G008130 -71.4 -1.43 
HORVU1Hr1G094570 -75.0 -1.43 
HORVU5Hr1G079390 -75.0 -2.96 
HORVU5Hr1G006960 -76.9 -1.84 
HORVU3Hr1G113340 -78.3 -2.71 
HORVU2Hr1G039880 -80.0 -1.52 
HORVU3Hr1G082670 -80.0 -1.36 
HORVU3Hr1G093140 -80.0 -1.41 
HORVU4Hr1G067870 -80.0 -1.69 
HORVU2Hr1G056510 -85.7 -1.45 
HORVU5Hr1G006220 -90.0 -1.52 
HORVU1Hr1G001950 -100.0 -1.34 
HORVU1Hr1G070740 -100.0 -1.84 
HORVU3Hr1G033980 -100.0 -1.49 
HORVU3Hr1G060080 -100.0 -2.38 
HORVU7Hr1G089720 -100.0 -2.25 
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Table A.9.14. Differentially methylated CHG context genes in barley root tissue under salt 

stress. Genes within 1.5 kbp of differentially methylated sites in CHG contexts in plant root 
tissue are listed. Difference in % methylation is the difference between methylation 
percentage in salt treated plants minus the methylation percentage in control plants. Some 
genes are listed more than once if more than one differentially methylated site fell in the 
region of the gene. 
 

Gene Difference in  
% methylation 

log10(adj-p) 

HORVU6Hr1G025500 100.0 -2.23 
HORVU5Hr1G092290 88.0 -2.05 
HORVU4Hr1G045760 81.8 -2.26 
HORVU5Hr1G079390 81.8 -1.37 
HORVU1Hr1G060710 79.4 -2.92 
HORVU5Hr1G079390 77.3 -2.90 
HORVU2Hr1G088270 76.1 -1.57 
HORVU6Hr1G039660 70.6 -5.63 
HORVU7Hr1G068450 70.0 -1.34 
HORVU5Hr1G079740 68.9 -1.58 
HORVU5Hr1G021940 68.2 -2.05 
HORVU2Hr1G041470 64.5 -2.06 
HORVU4Hr1G062060 64.2 -1.52 
HORVU1Hr1G048870 63.5 -5.98 
HORVU2Hr1G050270 63.0 -2.04 
HORVU3Hr1G043440 61.8 -1.37 
HORVU3Hr1G056830 61.3 -2.48 
HORVU6Hr1G002980 60.0 -1.41 
HORVU6Hr1G029540 60.0 -1.47 
HORVU2Hr1G107600 59.3 -2.48 
HORVU5Hr1G111670 57.9 -3.83 
HORVU5Hr1G092470 57.7 -2.61 
HORVU1Hr1G092640 57.5 -2.04 
HORVU3Hr1G083990 56.5 -1.68 
HORVU7Hr1G090560 53.6 -1.83 
HORVU4Hr1G050230 53.3 -1.55 
HORVU5Hr1G095540 52.4 -2.04 
HORVU2Hr1G001190 51.8 -1.35 
HORVU3Hr1G107170 50.0 -1.94 
HORVU4Hr1G025470 50.0 -1.74 
HORVU2Hr1G050270 48.4 -1.75 
HORVU7Hr1G000320 47.6 -1.34 
HORVU2Hr1G087820 47.3 -1.65 
HORVU7Hr1G077710 47.2 -1.40 
HORVU5Hr1G063070 46.7 -2.74 
HORVU1Hr1G082140 44.7 -2.25 
HORVU5Hr1G033480 43.7 -1.35 
HORVU6Hr1G087930 41.7 -1.44 
HORVU7Hr1G084240 41.6 -1.71 
HORVU7Hr1G002970 40.9 -1.33 
HORVU7Hr1G070080 39.6 -1.73 
HORVU6Hr1G031370 39.0 -1.34 
HORVU1Hr1G093250 37.7 -1.78 
HORVU2Hr1G067340 35.2 -1.78 
HORVU7Hr1G025850 35.1 -1.36 
HORVU3Hr1G042050 34.2 -1.40 
HORVU4Hr1G057520 33.3 -2.92 
HORVU4Hr1G057520 33.3 -1.33 
HORVU6Hr1G052490 33.0 -1.96 
HORVU6Hr1G022890 32.7 -1.97 
HORVU7Hr1G006250 32.4 -1.62 
HORVU3Hr1G027580 32.4 -2.85 
HORVU2Hr1G039100 32.3 -1.63 
HORVU6Hr1G085080 32.3 -1.51 
HORVU3Hr1G027580 31.8 -1.30 
HORVU6Hr1G030590 31.7 -1.63 
HORVU4Hr1G078830 31.5 -1.71 
HORVU5Hr1G089880 31.4 -1.79 
HORVU5Hr1G009150 31.4 -1.55 
HORVU5Hr1G121230 31.3 -1.39 
HORVU1Hr1G035960 31.0 -1.42 
HORVU7Hr1G035420 30.7 -2.10 
HORVU7Hr1G047800 30.7 -1.56 

Gene Difference in  
% methylation 

log10(adj-p) 

HORVU2Hr1G056510 30.3 -1.59 
HORVU1Hr1G092060 30.1 -1.33 
HORVU0Hr1G016720 30.0 -1.31 
HORVU4Hr1G087570 29.6 -1.63 
HORVU7Hr1G091400 29.2 -1.51 
HORVU4Hr1G018610 28.8 -1.45 
HORVU5Hr1G095060 28.8 -1.36 
HORVU2Hr1G088980 25.7 -1.34 
HORVU7Hr1G034080 25.3 -1.44 
HORVU7Hr1G023100 24.9 -1.73 
HORVU4Hr1G071600 24.7 -1.83 
HORVU0Hr1G010530 24.0 -1.40 
HORVU2Hr1G015940 23.8 -1.56 
HORVU0Hr1G018800 23.0 -2.31 
HORVU2Hr1G007170 22.8 -1.41 
HORVU2Hr1G031120 22.7 -2.92 
HORVU6Hr1G028620 22.5 -1.63 
HORVU7Hr1G006370 21.9 -1.34 
HORVU1Hr1G034400 20.1 -1.62 
HORVU2Hr1G091580 19.9 -1.73 
HORVU5Hr1G019370 19.2 -1.95 
HORVU2Hr1G031120 17.8 -1.84 
HORVU5Hr1G028110 17.7 -2.34 
HORVU4Hr1G022540 15.6 -1.51 
HORVU5Hr1G108810 14.8 -2.31 
HORVU2Hr1G073590 14.1 -1.35 
HORVU7Hr1G122600 12.2 -2.18 
HORVU6Hr1G039740 12.0 -1.63 
HORVU3Hr1G113280 10.7 -1.65 
HORVU5Hr1G039780 -10.6 -1.69 
HORVU3Hr1G081720 -12.0 -2.05 
HORVU5Hr1G086950 -12.3 -1.32 
HORVU4Hr1G065620 -12.5 -1.58 
HORVU3Hr1G117730 -13.3 -1.93 
HORVU2Hr1G081360 -14.3 -1.50 
HORVU2Hr1G012280 -14.6 -1.51 
HORVU1Hr1G078450 -16.7 -1.44 
HORVU3Hr1G077450 -16.7 -1.66 
HORVU3Hr1G011330 -19.1 -1.35 
HORVU3Hr1G039160 -19.6 -1.43 
HORVU4Hr1G003660 -20.0 -2.39 
HORVU7Hr1G117680 -22.9 -2.31 
HORVU2Hr1G073590 -24.3 -1.31 
HORVU1Hr1G038880 -25.0 -2.01 
HORVU5Hr1G087670 -25.0 -1.69 
HORVU5Hr1G009440 -28.6 -1.36 
HORVU5Hr1G074660 -28.8 -1.72 
HORVU4Hr1G075750 -31.6 -1.52 
HORVU2Hr1G091720 -31.9 -1.96 
HORVU6Hr1G074220 -33.2 -1.80 
HORVU6Hr1G012570 -34.6 -1.35 
HORVU4Hr1G022080 -35.3 -1.35 
HORVU2Hr1G073590 -36.8 -3.71 
HORVU4Hr1G067680 -40.6 -1.50 
HORVU5Hr1G006960 -41.7 -1.30 
HORVU7Hr1G062190 -41.7 -1.34 
HORVU6Hr1G008200 -42.5 -1.71 
HORVU6Hr1G071710 -43.5 -1.58 
HORVU4Hr1G063360 -44.0 -1.36 
HORVU0Hr1G027170 -49.3 -2.38 
HORVU7Hr1G058250 -50.0 -1.32 
HORVU6Hr1G011550 -50.8 -1.35 
HORVU1Hr1G055600 -52.4 -1.34 
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Gene Difference in  
% methylation 

log10(adj-p) 

HORVU2Hr1G031110 -52.4 -1.53 
HORVU3Hr1G031460 -52.5 -1.36 
HORVU7Hr1G070490 -54.5 -1.99 
HORVU2Hr1G114610 -55.2 -1.31 
HORVU2Hr1G100680 -55.6 -1.74 
HORVU3Hr1G073780 -57.1 -1.52 
HORVU5Hr1G021830 -57.3 -1.46 
HORVU6Hr1G036640 -59.6 -1.33 
HORVU5Hr1G031470 -61.7 -1.82 
HORVU3Hr1G065770 -66.7 -1.68 
HORVU6Hr1G031080 -75.0 -2.10 
HORVU2Hr1G089440 -83.8 -1.96 
HORVU5Hr1G006960 -92.7 -13.78 
HORVU1Hr1G081310 -100.0 -1.33 
HORVU3Hr1G033980 -100.0 -4.19 
HORVU3Hr1G033980 -100.0 -3.26 
HORVU5Hr1G043010 -100.0 -2.68 
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Table A.9.15. Differentially methylated CHH context genes in barley root tissue under salt 

stress.  Genes within 1.5 kbp of differentially methylated sites in CHH contexts in plant root 
tissue are listed. Difference in % methylation is the difference between methylation 
percentage in salt treated plants minus the methylation percentage in control plants. Some 
genes are listed more than once if more than one differentially methylated site fell in the 
region of the gene. 
 
 
 
 
 
 
 
 
 
This table is too large to show here. Please follow the link below to view this table. 
https://github.com/MagnificaScience/Salinity_stress_response_in_barley  
 
 
  

https://github.com/MagnificaScience/Salinity_stress_response_in_barley
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Figure A.9.9. Quantity of differentially expressed 23 nt miRNA, 24 nt siRNA, and CG 

context differential methylation mapped to 1 Mbp windows in barley under salt stress. 
Differential expression of 23 nt miRNA, 24 nt siRNA and CG context differential methylation 
was determined by mapping to 100 bp windows in the barley reference genome and finding 
differences between salt treated and control with adjusted p-values of less than 0.05. The 
number of differentially expressed 23/24 nt siRNA and CG context differentially methylated 
sites were counted for each 1 Mbp windows in the genome. Maximum count values for 23 nt 
miRNA is 24, for 24 nt siRNA is 90 and DNA methylation is 30 per 1 Mbp window. 
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Figure A.9.10. Quantity of differentially expressed 23 nt miRNA, 24 nt siRNA, and CHG 

context differential methylation mapped to 1 Mbp windows in barley under salt stress. 
Differential expression of 23 nt miRNA, 24 nt siRNA and CHG context differential 
methylation was determined by mapping to 100 bp windows in the barley reference genome 
and finding differences between salt treated and control with adjusted p-values of less than 
0.05. The number of differentially expressed 23/24 nt siRNA and CHG context differentially 
methylated sites were counted for each 1 Mbp windows in the genome. Maximum count 
values for 23 nt miRNA is 24, for 24 nt siRNA is 90 and DNA methylation is 30 per 1 Mbp 
window.  
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Table A.9.16 List of Protein Coding Genes (PCGs) targeted by differential 23/24 nt sRNA 

expression correlated with CHH context differential DNA methylation in leaf tissue in 

barley under salt stress. Correlations between differential sRNA expression and differential 
DNA methylation were within two 100 bp windows, and classified as targeting a PCG if the 
differential DNA methylation occurred between 1.5 kbp upstream of the transcription start 
site and 1.5 kbp downstream of the transcription end site. 
 
HORVU0Hr1G000390 
HORVU0Hr1G007860 
HORVU0Hr1G008350 
HORVU0Hr1G009460 
HORVU0Hr1G012260 
HORVU0Hr1G016350 
HORVU0Hr1G017260 
HORVU0Hr1G017690 
HORVU0Hr1G018470 
HORVU0Hr1G018510 
HORVU0Hr1G020490 
HORVU0Hr1G020750 
HORVU0Hr1G021610 
HORVU0Hr1G022520 
HORVU0Hr1G022790 
HORVU0Hr1G038730 
HORVU0Hr1G040490 
HORVU0Hr1G040540 
HORVU1Hr1G000830 
HORVU1Hr1G000990 
HORVU1Hr1G001510 
HORVU1Hr1G002970 
HORVU1Hr1G003200 
HORVU1Hr1G003340 
HORVU1Hr1G004580 
HORVU1Hr1G005120 
HORVU1Hr1G005450 
HORVU1Hr1G005460 
HORVU1Hr1G005470 
HORVU1Hr1G005520 
HORVU1Hr1G006020 
HORVU1Hr1G007290 
HORVU1Hr1G007600 
HORVU1Hr1G007830 
HORVU1Hr1G008520 
HORVU1Hr1G008690 
HORVU1Hr1G009250 
HORVU1Hr1G010130 
HORVU1Hr1G013600 
HORVU1Hr1G013720 
HORVU1Hr1G014140 
HORVU1Hr1G014570 
HORVU1Hr1G014610 
HORVU1Hr1G014950 
HORVU1Hr1G017900 
HORVU1Hr1G017920 
HORVU1Hr1G018350 
HORVU1Hr1G020240 
HORVU1Hr1G020600 
HORVU1Hr1G021100 
HORVU1Hr1G021530 
HORVU1Hr1G021990 
HORVU1Hr1G022310 
HORVU1Hr1G022470 
HORVU1Hr1G023320 
HORVU1Hr1G024190 
HORVU1Hr1G024580 

HORVU1Hr1G024860 
HORVU1Hr1G025530 
HORVU1Hr1G030390 
HORVU1Hr1G031950 
HORVU1Hr1G032470 
HORVU1Hr1G032610 
HORVU1Hr1G034400 
HORVU1Hr1G034730 
HORVU1Hr1G035200 
HORVU1Hr1G035760 
HORVU1Hr1G036500 
HORVU1Hr1G037760 
HORVU1Hr1G039400 
HORVU1Hr1G039540 
HORVU1Hr1G039670 
HORVU1Hr1G039870 
HORVU1Hr1G040450 
HORVU1Hr1G041240 
HORVU1Hr1G041790 
HORVU1Hr1G043280 
HORVU1Hr1G043620 
HORVU1Hr1G043900 
HORVU1Hr1G044440 
HORVU1Hr1G046010 
HORVU1Hr1G046610 
HORVU1Hr1G047690 
HORVU1Hr1G048010 
HORVU1Hr1G051260 
HORVU1Hr1G052010 
HORVU1Hr1G052160 
HORVU1Hr1G052280 
HORVU1Hr1G053260 
HORVU1Hr1G053280 
HORVU1Hr1G053400 
HORVU1Hr1G054300 
HORVU1Hr1G055580 
HORVU1Hr1G056000 
HORVU1Hr1G056340 
HORVU1Hr1G056560 
HORVU1Hr1G058230 
HORVU1Hr1G058810 
HORVU1Hr1G058940 
HORVU1Hr1G059010 
HORVU1Hr1G059920 
HORVU1Hr1G060090 
HORVU1Hr1G060940 
HORVU1Hr1G061090 
HORVU1Hr1G061630 
HORVU1Hr1G061830 
HORVU1Hr1G062290 
HORVU1Hr1G062470 
HORVU1Hr1G064040 
HORVU1Hr1G064150 
HORVU1Hr1G064240 
HORVU1Hr1G064400 
HORVU1Hr1G066230 
HORVU1Hr1G066760 

HORVU1Hr1G066830 
HORVU1Hr1G069130 
HORVU1Hr1G069510 
HORVU1Hr1G069650 
HORVU1Hr1G070220 
HORVU1Hr1G070390 
HORVU1Hr1G071210 
HORVU1Hr1G071380 
HORVU1Hr1G071930 
HORVU1Hr1G072140 
HORVU1Hr1G072230 
HORVU1Hr1G074030 
HORVU1Hr1G074960 
HORVU1Hr1G074970 
HORVU1Hr1G075270 
HORVU1Hr1G075580 
HORVU1Hr1G076610 
HORVU1Hr1G076690 
HORVU1Hr1G077200 
HORVU1Hr1G077910 
HORVU1Hr1G078500 
HORVU1Hr1G078650 
HORVU1Hr1G078720 
HORVU1Hr1G079410 
HORVU1Hr1G080410 
HORVU1Hr1G080950 
HORVU1Hr1G081270 
HORVU1Hr1G081890 
HORVU1Hr1G081920 
HORVU1Hr1G081990 
HORVU1Hr1G082410 
HORVU1Hr1G082820 
HORVU1Hr1G083050 
HORVU1Hr1G083160 
HORVU1Hr1G084230 
HORVU1Hr1G085140 
HORVU1Hr1G085190 
HORVU1Hr1G085240 
HORVU1Hr1G085960 
HORVU1Hr1G086200 
HORVU1Hr1G088190 
HORVU1Hr1G088510 
HORVU1Hr1G088810 
HORVU1Hr1G089380 
HORVU1Hr1G090460 
HORVU1Hr1G090860 
HORVU1Hr1G091520 
HORVU1Hr1G092060 
HORVU1Hr1G092250 
HORVU1Hr1G092340 
HORVU1Hr1G092440 
HORVU1Hr1G093250 
HORVU1Hr1G093990 
HORVU1Hr1G094320 
HORVU1Hr1G094450 
HORVU1Hr1G094610 
HORVU1Hr1G094650 

HORVU1Hr1G094880 
HORVU2Hr1G000280 
HORVU2Hr1G001160 
HORVU2Hr1G001410 
HORVU2Hr1G001690 
HORVU2Hr1G002040 
HORVU2Hr1G003150 
HORVU2Hr1G003210 
HORVU2Hr1G003360 
HORVU2Hr1G003640 
HORVU2Hr1G005150 
HORVU2Hr1G005680 
HORVU2Hr1G005960 
HORVU2Hr1G006130 
HORVU2Hr1G006250 
HORVU2Hr1G006280 
HORVU2Hr1G007170 
HORVU2Hr1G007490 
HORVU2Hr1G008890 
HORVU2Hr1G009580 
HORVU2Hr1G010690 
HORVU2Hr1G010830 
HORVU2Hr1G010960 
HORVU2Hr1G011300 
HORVU2Hr1G012280 
HORVU2Hr1G012980 
HORVU2Hr1G013080 
HORVU2Hr1G013150 
HORVU2Hr1G013700 
HORVU2Hr1G014020 
HORVU2Hr1G014150 
HORVU2Hr1G016650 
HORVU2Hr1G017380 
HORVU2Hr1G017760 
HORVU2Hr1G018430 
HORVU2Hr1G019590 
HORVU2Hr1G021280 
HORVU2Hr1G022140 
HORVU2Hr1G022180 
HORVU2Hr1G023210 
HORVU2Hr1G023660 
HORVU2Hr1G024360 
HORVU2Hr1G024680 
HORVU2Hr1G024940 
HORVU2Hr1G026550 
HORVU2Hr1G026740 
HORVU2Hr1G026750 
HORVU2Hr1G027470 
HORVU2Hr1G028210 
HORVU2Hr1G028930 
HORVU2Hr1G029150 
HORVU2Hr1G029160 
HORVU2Hr1G029290 
HORVU2Hr1G029560 
HORVU2Hr1G030140 
HORVU2Hr1G030550 
HORVU2Hr1G032280 

HORVU2Hr1G032690 
HORVU2Hr1G033370 
HORVU2Hr1G033470 
HORVU2Hr1G033820 
HORVU2Hr1G034470 
HORVU2Hr1G034740 
HORVU2Hr1G035170 
HORVU2Hr1G036750 
HORVU2Hr1G039030 
HORVU2Hr1G039040 
HORVU2Hr1G039500 
HORVU2Hr1G041180 
HORVU2Hr1G041300 
HORVU2Hr1G041530 
HORVU2Hr1G042550 
HORVU2Hr1G044280 
HORVU2Hr1G044680 
HORVU2Hr1G045020 
HORVU2Hr1G045330 
HORVU2Hr1G046160 
HORVU2Hr1G046290 
HORVU2Hr1G048870 
HORVU2Hr1G050270 
HORVU2Hr1G052220 
HORVU2Hr1G052250 
HORVU2Hr1G052430 
HORVU2Hr1G052960 
HORVU2Hr1G053480 
HORVU2Hr1G054100 
HORVU2Hr1G055230 
HORVU2Hr1G055870 
HORVU2Hr1G056440 
HORVU2Hr1G056820 
HORVU2Hr1G059170 
HORVU2Hr1G059750 
HORVU2Hr1G060550 
HORVU2Hr1G063250 
HORVU2Hr1G063840 
HORVU2Hr1G064460 
HORVU2Hr1G065000 
HORVU2Hr1G065330 
HORVU2Hr1G065430 
HORVU2Hr1G066060 
HORVU2Hr1G066100 
HORVU2Hr1G067330 
HORVU2Hr1G067790 
HORVU2Hr1G068050 
HORVU2Hr1G068120 
HORVU2Hr1G070720 
HORVU2Hr1G071860 
HORVU2Hr1G073370 
HORVU2Hr1G073740 
HORVU2Hr1G074360 
HORVU2Hr1G074530 
HORVU2Hr1G075740 
HORVU2Hr1G075970 
HORVU2Hr1G076620 
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HORVU2Hr1G080480 
HORVU2Hr1G080710 
HORVU2Hr1G082170 
HORVU2Hr1G082480 
HORVU2Hr1G082840 
HORVU2Hr1G085270 
HORVU2Hr1G085850 
HORVU2Hr1G085910 
HORVU2Hr1G087030 
HORVU2Hr1G087970 
HORVU2Hr1G088390 
HORVU2Hr1G088440 
HORVU2Hr1G088840 
HORVU2Hr1G089440 
HORVU2Hr1G090280 
HORVU2Hr1G092070 
HORVU2Hr1G093610 
HORVU2Hr1G093930 
HORVU2Hr1G094620 
HORVU2Hr1G096160 
HORVU2Hr1G096350 
HORVU2Hr1G096470 
HORVU2Hr1G096550 
HORVU2Hr1G096920 
HORVU2Hr1G096960 
HORVU2Hr1G097110 
HORVU2Hr1G097360 
HORVU2Hr1G097530 
HORVU2Hr1G097780 
HORVU2Hr1G098160 
HORVU2Hr1G098550 
HORVU2Hr1G099370 
HORVU2Hr1G099550 
HORVU2Hr1G099740 
HORVU2Hr1G099820 
HORVU2Hr1G100450 
HORVU2Hr1G100600 
HORVU2Hr1G100690 
HORVU2Hr1G101600 
HORVU2Hr1G102300 
HORVU2Hr1G103000 
HORVU2Hr1G103800 
HORVU2Hr1G103930 
HORVU2Hr1G104530 
HORVU2Hr1G105700 
HORVU2Hr1G105830 
HORVU2Hr1G105960 
HORVU2Hr1G106020 
HORVU2Hr1G106480 
HORVU2Hr1G106820 
HORVU2Hr1G108210 
HORVU2Hr1G108250 
HORVU2Hr1G108370 
HORVU2Hr1G108460 
HORVU2Hr1G108520 
HORVU2Hr1G109240 
HORVU2Hr1G109590 
HORVU2Hr1G109980 
HORVU2Hr1G110080 
HORVU2Hr1G110130 
HORVU2Hr1G110800 
HORVU2Hr1G110940 
HORVU2Hr1G112790 
HORVU2Hr1G113120 
HORVU2Hr1G113380 
HORVU2Hr1G114210 
HORVU2Hr1G115010 

HORVU2Hr1G115020 
HORVU2Hr1G115200 
HORVU2Hr1G115690 
HORVU2Hr1G116680 
HORVU2Hr1G118640 
HORVU2Hr1G118680 
HORVU2Hr1G118740 
HORVU2Hr1G119180 
HORVU2Hr1G119210 
HORVU2Hr1G119430 
HORVU2Hr1G119480 
HORVU2Hr1G119520 
HORVU2Hr1G120440 
HORVU2Hr1G120780 
HORVU2Hr1G121030 
HORVU2Hr1G123080 
HORVU2Hr1G123150 
HORVU2Hr1G124030 
HORVU2Hr1G124210 
HORVU2Hr1G124720 
HORVU2Hr1G124870 
HORVU2Hr1G125910 
HORVU2Hr1G126950 
HORVU3Hr1G000030 
HORVU3Hr1G000600 
HORVU3Hr1G000880 
HORVU3Hr1G001280 
HORVU3Hr1G001400 
HORVU3Hr1G001430 
HORVU3Hr1G001910 
HORVU3Hr1G002780 
HORVU3Hr1G002840 
HORVU3Hr1G002920 
HORVU3Hr1G003140 
HORVU3Hr1G003470 
HORVU3Hr1G003960 
HORVU3Hr1G004520 
HORVU3Hr1G005430 
HORVU3Hr1G005580 
HORVU3Hr1G007680 
HORVU3Hr1G009110 
HORVU3Hr1G009360 
HORVU3Hr1G009980 
HORVU3Hr1G010030 
HORVU3Hr1G010480 
HORVU3Hr1G012260 
HORVU3Hr1G012520 
HORVU3Hr1G012650 
HORVU3Hr1G012860 
HORVU3Hr1G013110 
HORVU3Hr1G013470 
HORVU3Hr1G014580 
HORVU3Hr1G016430 
HORVU3Hr1G017020 
HORVU3Hr1G017530 
HORVU3Hr1G017930 
HORVU3Hr1G019790 
HORVU3Hr1G023230 
HORVU3Hr1G025590 
HORVU3Hr1G025820 
HORVU3Hr1G026150 
HORVU3Hr1G027220 
HORVU3Hr1G027530 
HORVU3Hr1G028550 
HORVU3Hr1G028990 
HORVU3Hr1G029010 
HORVU3Hr1G029020 

HORVU3Hr1G029430 
HORVU3Hr1G030150 
HORVU3Hr1G030270 
HORVU3Hr1G031730 
HORVU3Hr1G032090 
HORVU3Hr1G033220 
HORVU3Hr1G034020 
HORVU3Hr1G034310 
HORVU3Hr1G034950 
HORVU3Hr1G035450 
HORVU3Hr1G035810 
HORVU3Hr1G035840 
HORVU3Hr1G036180 
HORVU3Hr1G036860 
HORVU3Hr1G040230 
HORVU3Hr1G041640 
HORVU3Hr1G042500 
HORVU3Hr1G045480 
HORVU3Hr1G045900 
HORVU3Hr1G049910 
HORVU3Hr1G050430 
HORVU3Hr1G050990 
HORVU3Hr1G051540 
HORVU3Hr1G053760 
HORVU3Hr1G054120 
HORVU3Hr1G054680 
HORVU3Hr1G056270 
HORVU3Hr1G056830 
HORVU3Hr1G059230 
HORVU3Hr1G059480 
HORVU3Hr1G061210 
HORVU3Hr1G061930 
HORVU3Hr1G061980 
HORVU3Hr1G062130 
HORVU3Hr1G063470 
HORVU3Hr1G064130 
HORVU3Hr1G065000 
HORVU3Hr1G065520 
HORVU3Hr1G065770 
HORVU3Hr1G066930 
HORVU3Hr1G067020 
HORVU3Hr1G068640 
HORVU3Hr1G068660 
HORVU3Hr1G070090 
HORVU3Hr1G070150 
HORVU3Hr1G070510 
HORVU3Hr1G071320 
HORVU3Hr1G071910 
HORVU3Hr1G072070 
HORVU3Hr1G072100 
HORVU3Hr1G072340 
HORVU3Hr1G073100 
HORVU3Hr1G074160 
HORVU3Hr1G074210 
HORVU3Hr1G074920 
HORVU3Hr1G075710 
HORVU3Hr1G076220 
HORVU3Hr1G078330 
HORVU3Hr1G078470 
HORVU3Hr1G078530 
HORVU3Hr1G079050 
HORVU3Hr1G080650 
HORVU3Hr1G081170 
HORVU3Hr1G081220 
HORVU3Hr1G081290 
HORVU3Hr1G082070 
HORVU3Hr1G085040 

HORVU3Hr1G085270 
HORVU3Hr1G085760 
HORVU3Hr1G085780 
HORVU3Hr1G085900 
HORVU3Hr1G086970 
HORVU3Hr1G087430 
HORVU3Hr1G087710 
HORVU3Hr1G087800 
HORVU3Hr1G088210 
HORVU3Hr1G088310 
HORVU3Hr1G088360 
HORVU3Hr1G088910 
HORVU3Hr1G090310 
HORVU3Hr1G091360 
HORVU3Hr1G091850 
HORVU3Hr1G093140 
HORVU3Hr1G094160 
HORVU3Hr1G094210 
HORVU3Hr1G095090 
HORVU3Hr1G095580 
HORVU3Hr1G096040 
HORVU3Hr1G096600 
HORVU3Hr1G097390 
HORVU3Hr1G097570 
HORVU3Hr1G098150 
HORVU3Hr1G098940 
HORVU3Hr1G098950 
HORVU3Hr1G099120 
HORVU3Hr1G099220 
HORVU3Hr1G099740 
HORVU3Hr1G100420 
HORVU3Hr1G101540 
HORVU3Hr1G104320 
HORVU3Hr1G105880 
HORVU3Hr1G107970 
HORVU3Hr1G108370 
HORVU3Hr1G108610 
HORVU3Hr1G109380 
HORVU3Hr1G109600 
HORVU3Hr1G110580 
HORVU3Hr1G110890 
HORVU3Hr1G112450 
HORVU3Hr1G112690 
HORVU3Hr1G113670 
HORVU3Hr1G113740 
HORVU3Hr1G113790 
HORVU3Hr1G113850 
HORVU3Hr1G115610 
HORVU3Hr1G115650 
HORVU3Hr1G116580 
HORVU4Hr1G000100 
HORVU4Hr1G001450 
HORVU4Hr1G002090 
HORVU4Hr1G002360 
HORVU4Hr1G003250 
HORVU4Hr1G004150 
HORVU4Hr1G004410 
HORVU4Hr1G005450 
HORVU4Hr1G010200 
HORVU4Hr1G010410 
HORVU4Hr1G011200 
HORVU4Hr1G011500 
HORVU4Hr1G012330 
HORVU4Hr1G012780 
HORVU4Hr1G013720 
HORVU4Hr1G014300 
HORVU4Hr1G014720 

HORVU4Hr1G015060 
HORVU4Hr1G015490 
HORVU4Hr1G017200 
HORVU4Hr1G017780 
HORVU4Hr1G020000 
HORVU4Hr1G021040 
HORVU4Hr1G023100 
HORVU4Hr1G025670 
HORVU4Hr1G027080 
HORVU4Hr1G031290 
HORVU4Hr1G032120 
HORVU4Hr1G033610 
HORVU4Hr1G033650 
HORVU4Hr1G033850 
HORVU4Hr1G035180 
HORVU4Hr1G036620 
HORVU4Hr1G037750 
HORVU4Hr1G038750 
HORVU4Hr1G039640 
HORVU4Hr1G040140 
HORVU4Hr1G041810 
HORVU4Hr1G045980 
HORVU4Hr1G046590 
HORVU4Hr1G046610 
HORVU4Hr1G048620 
HORVU4Hr1G050230 
HORVU4Hr1G050680 
HORVU4Hr1G051230 
HORVU4Hr1G051590 
HORVU4Hr1G052340 
HORVU4Hr1G052430 
HORVU4Hr1G052610 
HORVU4Hr1G052890 
HORVU4Hr1G052990 
HORVU4Hr1G053150 
HORVU4Hr1G054820 
HORVU4Hr1G055070 
HORVU4Hr1G055690 
HORVU4Hr1G056320 
HORVU4Hr1G056610 
HORVU4Hr1G057510 
HORVU4Hr1G057690 
HORVU4Hr1G058350 
HORVU4Hr1G058480 
HORVU4Hr1G061440 
HORVU4Hr1G062330 
HORVU4Hr1G063350 
HORVU4Hr1G063360 
HORVU4Hr1G063980 
HORVU4Hr1G064920 
HORVU4Hr1G065310 
HORVU4Hr1G066130 
HORVU4Hr1G066150 
HORVU4Hr1G066430 
HORVU4Hr1G067140 
HORVU4Hr1G067680 
HORVU4Hr1G069100 
HORVU4Hr1G069350 
HORVU4Hr1G069700 
HORVU4Hr1G070070 
HORVU4Hr1G071040 
HORVU4Hr1G071070 
HORVU4Hr1G071690 
HORVU4Hr1G072190 
HORVU4Hr1G072660 
HORVU4Hr1G072670 
HORVU4Hr1G072700 
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HORVU4Hr1G072840 
HORVU4Hr1G076010 
HORVU4Hr1G076050 
HORVU4Hr1G076260 
HORVU4Hr1G076630 
HORVU4Hr1G077300 
HORVU4Hr1G077680 
HORVU4Hr1G077720 
HORVU4Hr1G078130 
HORVU4Hr1G079300 
HORVU4Hr1G079920 
HORVU4Hr1G081130 
HORVU4Hr1G081250 
HORVU4Hr1G081290 
HORVU4Hr1G081800 
HORVU4Hr1G082040 
HORVU4Hr1G082570 
HORVU4Hr1G082630 
HORVU4Hr1G083650 
HORVU4Hr1G083680 
HORVU4Hr1G083840 
HORVU4Hr1G084140 
HORVU4Hr1G084590 
HORVU4Hr1G084730 
HORVU4Hr1G084760 
HORVU4Hr1G085050 
HORVU4Hr1G085480 
HORVU4Hr1G087500 
HORVU4Hr1G087670 
HORVU4Hr1G087780 
HORVU4Hr1G088340 
HORVU4Hr1G088350 
HORVU4Hr1G088570 
HORVU4Hr1G089290 
HORVU4Hr1G090490 
HORVU5Hr1G000640 
HORVU5Hr1G002970 
HORVU5Hr1G003510 
HORVU5Hr1G006950 
HORVU5Hr1G007750 
HORVU5Hr1G009230 
HORVU5Hr1G009390 
HORVU5Hr1G010440 
HORVU5Hr1G010690 
HORVU5Hr1G011230 
HORVU5Hr1G011860 
HORVU5Hr1G012160 
HORVU5Hr1G012300 
HORVU5Hr1G013160 
HORVU5Hr1G013170 
HORVU5Hr1G014920 
HORVU5Hr1G016400 
HORVU5Hr1G018010 
HORVU5Hr1G019220 
HORVU5Hr1G019310 
HORVU5Hr1G020200 
HORVU5Hr1G020990 
HORVU5Hr1G022590 
HORVU5Hr1G025710 
HORVU5Hr1G027290 
HORVU5Hr1G028000 
HORVU5Hr1G028140 
HORVU5Hr1G028870 
HORVU5Hr1G030970 
HORVU5Hr1G031720 
HORVU5Hr1G033960 
HORVU5Hr1G035300 

HORVU5Hr1G036160 
HORVU5Hr1G036490 
HORVU5Hr1G037920 
HORVU5Hr1G038090 
HORVU5Hr1G039730 
HORVU5Hr1G039740 
HORVU5Hr1G042400 
HORVU5Hr1G044350 
HORVU5Hr1G045630 
HORVU5Hr1G046830 
HORVU5Hr1G047250 
HORVU5Hr1G048030 
HORVU5Hr1G049050 
HORVU5Hr1G049220 
HORVU5Hr1G049440 
HORVU5Hr1G050480 
HORVU5Hr1G050720 
HORVU5Hr1G051140 
HORVU5Hr1G051370 
HORVU5Hr1G051500 
HORVU5Hr1G051530 
HORVU5Hr1G052340 
HORVU5Hr1G056350 
HORVU5Hr1G056760 
HORVU5Hr1G057140 
HORVU5Hr1G059930 
HORVU5Hr1G060090 
HORVU5Hr1G060980 
HORVU5Hr1G061150 
HORVU5Hr1G061480 
HORVU5Hr1G061530 
HORVU5Hr1G062820 
HORVU5Hr1G062940 
HORVU5Hr1G063390 
HORVU5Hr1G065620 
HORVU5Hr1G066020 
HORVU5Hr1G067200 
HORVU5Hr1G067530 
HORVU5Hr1G068070 
HORVU5Hr1G068590 
HORVU5Hr1G068600 
HORVU5Hr1G069350 
HORVU5Hr1G069480 
HORVU5Hr1G069510 
HORVU5Hr1G069710 
HORVU5Hr1G069960 
HORVU5Hr1G069980 
HORVU5Hr1G072170 
HORVU5Hr1G072760 
HORVU5Hr1G075400 
HORVU5Hr1G075540 
HORVU5Hr1G075670 
HORVU5Hr1G076330 
HORVU5Hr1G078000 
HORVU5Hr1G078450 
HORVU5Hr1G078850 
HORVU5Hr1G079630 
HORVU5Hr1G082210 
HORVU5Hr1G082390 
HORVU5Hr1G082480 
HORVU5Hr1G082650 
HORVU5Hr1G083330 
HORVU5Hr1G083620 
HORVU5Hr1G083890 
HORVU5Hr1G084820 
HORVU5Hr1G084980 
HORVU5Hr1G085020 

HORVU5Hr1G085220 
HORVU5Hr1G085550 
HORVU5Hr1G085900 
HORVU5Hr1G086120 
HORVU5Hr1G086500 
HORVU5Hr1G086630 
HORVU5Hr1G087780 
HORVU5Hr1G088260 
HORVU5Hr1G088510 
HORVU5Hr1G092000 
HORVU5Hr1G092200 
HORVU5Hr1G092490 
HORVU5Hr1G093040 
HORVU5Hr1G093410 
HORVU5Hr1G093700 
HORVU5Hr1G094080 
HORVU5Hr1G094840 
HORVU5Hr1G095990 
HORVU5Hr1G096010 
HORVU5Hr1G096760 
HORVU5Hr1G097130 
HORVU5Hr1G097290 
HORVU5Hr1G098000 
HORVU5Hr1G098340 
HORVU5Hr1G098780 
HORVU5Hr1G100300 
HORVU5Hr1G101480 
HORVU5Hr1G101820 
HORVU5Hr1G102240 
HORVU5Hr1G103060 
HORVU5Hr1G103280 
HORVU5Hr1G103450 
HORVU5Hr1G104380 
HORVU5Hr1G104490 
HORVU5Hr1G104690 
HORVU5Hr1G104880 
HORVU5Hr1G105000 
HORVU5Hr1G105660 
HORVU5Hr1G106030 
HORVU5Hr1G106160 
HORVU5Hr1G106200 
HORVU5Hr1G107380 
HORVU5Hr1G109380 
HORVU5Hr1G110440 
HORVU5Hr1G111000 
HORVU5Hr1G111570 
HORVU5Hr1G111620 
HORVU5Hr1G113540 
HORVU5Hr1G114260 
HORVU5Hr1G115440 
HORVU5Hr1G115470 
HORVU5Hr1G116860 
HORVU5Hr1G116920 
HORVU5Hr1G117770 
HORVU5Hr1G117790 
HORVU5Hr1G117920 
HORVU5Hr1G118010 
HORVU5Hr1G118340 
HORVU5Hr1G118410 
HORVU5Hr1G119100 
HORVU5Hr1G119850 
HORVU5Hr1G121440 
HORVU5Hr1G122220 
HORVU5Hr1G122660 
HORVU5Hr1G122840 
HORVU5Hr1G122860 
HORVU5Hr1G122960 

HORVU5Hr1G123520 
HORVU5Hr1G123860 
HORVU5Hr1G124210 
HORVU5Hr1G124750 
HORVU5Hr1G125320 
HORVU5Hr1G125380 
HORVU6Hr1G000060 
HORVU6Hr1G000620 
HORVU6Hr1G000680 
HORVU6Hr1G000720 
HORVU6Hr1G001200 
HORVU6Hr1G001580 
HORVU6Hr1G002980 
HORVU6Hr1G003990 
HORVU6Hr1G004320 
HORVU6Hr1G005480 
HORVU6Hr1G006480 
HORVU6Hr1G006620 
HORVU6Hr1G008670 
HORVU6Hr1G009270 
HORVU6Hr1G010650 
HORVU6Hr1G010980 
HORVU6Hr1G011120 
HORVU6Hr1G011580 
HORVU6Hr1G012290 
HORVU6Hr1G012630 
HORVU6Hr1G013530 
HORVU6Hr1G013830 
HORVU6Hr1G014600 
HORVU6Hr1G016530 
HORVU6Hr1G016570 
HORVU6Hr1G016810 
HORVU6Hr1G017720 
HORVU6Hr1G018350 
HORVU6Hr1G018690 
HORVU6Hr1G018790 
HORVU6Hr1G018820 
HORVU6Hr1G019450 
HORVU6Hr1G020190 
HORVU6Hr1G020310 
HORVU6Hr1G025350 
HORVU6Hr1G025500 
HORVU6Hr1G029540 
HORVU6Hr1G030350 
HORVU6Hr1G031080 
HORVU6Hr1G031190 
HORVU6Hr1G031230 
HORVU6Hr1G031470 
HORVU6Hr1G031600 
HORVU6Hr1G032050 
HORVU6Hr1G032310 
HORVU6Hr1G032610 
HORVU6Hr1G032800 
HORVU6Hr1G035210 
HORVU6Hr1G036810 
HORVU6Hr1G036840 
HORVU6Hr1G037510 
HORVU6Hr1G039140 
HORVU6Hr1G044030 
HORVU6Hr1G044080 
HORVU6Hr1G044840 
HORVU6Hr1G048280 
HORVU6Hr1G050090 
HORVU6Hr1G052250 
HORVU6Hr1G055910 
HORVU6Hr1G056230 
HORVU6Hr1G056460 

HORVU6Hr1G057630 
HORVU6Hr1G057700 
HORVU6Hr1G057990 
HORVU6Hr1G059800 
HORVU6Hr1G059920 
HORVU6Hr1G060720 
HORVU6Hr1G061660 
HORVU6Hr1G062320 
HORVU6Hr1G063590 
HORVU6Hr1G065120 
HORVU6Hr1G065800 
HORVU6Hr1G067660 
HORVU6Hr1G068950 
HORVU6Hr1G069260 
HORVU6Hr1G069310 
HORVU6Hr1G070010 
HORVU6Hr1G070020 
HORVU6Hr1G070230 
HORVU6Hr1G070300 
HORVU6Hr1G070330 
HORVU6Hr1G070540 
HORVU6Hr1G073180 
HORVU6Hr1G074660 
HORVU6Hr1G076020 
HORVU6Hr1G076080 
HORVU6Hr1G076600 
HORVU6Hr1G077260 
HORVU6Hr1G077320 
HORVU6Hr1G077610 
HORVU6Hr1G077790 
HORVU6Hr1G078650 
HORVU6Hr1G079660 
HORVU6Hr1G080270 
HORVU6Hr1G081570 
HORVU6Hr1G081790 
HORVU6Hr1G081850 
HORVU6Hr1G082310 
HORVU6Hr1G082900 
HORVU6Hr1G087120 
HORVU6Hr1G087300 
HORVU6Hr1G087800 
HORVU6Hr1G088070 
HORVU6Hr1G088420 
HORVU6Hr1G088480 
HORVU6Hr1G088580 
HORVU6Hr1G088630 
HORVU6Hr1G088680 
HORVU6Hr1G088900 
HORVU6Hr1G089670 
HORVU6Hr1G090460 
HORVU6Hr1G090990 
HORVU6Hr1G091460 
HORVU6Hr1G092010 
HORVU6Hr1G092540 
HORVU6Hr1G092910 
HORVU6Hr1G094170 
HORVU6Hr1G094480 
HORVU6Hr1G094950 
HORVU6Hr1G095190 
HORVU7Hr1G000040 
HORVU7Hr1G000320 
HORVU7Hr1G001020 
HORVU7Hr1G001160 
HORVU7Hr1G001340 
HORVU7Hr1G001570 
HORVU7Hr1G002370 
HORVU7Hr1G002600 
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HORVU7Hr1G002800 
HORVU7Hr1G002880 
HORVU7Hr1G005300 
HORVU7Hr1G006840 
HORVU7Hr1G006990 
HORVU7Hr1G007590 
HORVU7Hr1G007610 
HORVU7Hr1G007900 
HORVU7Hr1G009190 
HORVU7Hr1G009420 
HORVU7Hr1G009630 
HORVU7Hr1G010430 
HORVU7Hr1G010680 
HORVU7Hr1G010690 
HORVU7Hr1G010850 
HORVU7Hr1G012820 
HORVU7Hr1G012880 
HORVU7Hr1G013890 
HORVU7Hr1G017060 
HORVU7Hr1G018000 
HORVU7Hr1G018420 
HORVU7Hr1G019670 
HORVU7Hr1G019730 
HORVU7Hr1G021840 
HORVU7Hr1G022230 
HORVU7Hr1G022250 
HORVU7Hr1G022310 
HORVU7Hr1G022530 
HORVU7Hr1G023000 
HORVU7Hr1G023760 
HORVU7Hr1G024370 
HORVU7Hr1G024550 
HORVU7Hr1G024960 

HORVU7Hr1G024990 
HORVU7Hr1G025670 
HORVU7Hr1G025800 
HORVU7Hr1G026540 
HORVU7Hr1G027600 
HORVU7Hr1G028050 
HORVU7Hr1G028730 
HORVU7Hr1G029160 
HORVU7Hr1G029420 
HORVU7Hr1G030420 
HORVU7Hr1G030860 
HORVU7Hr1G031580 
HORVU7Hr1G032100 
HORVU7Hr1G033230 
HORVU7Hr1G035430 
HORVU7Hr1G035900 
HORVU7Hr1G035970 
HORVU7Hr1G036450 
HORVU7Hr1G036760 
HORVU7Hr1G037080 
HORVU7Hr1G037140 
HORVU7Hr1G037580 
HORVU7Hr1G038040 
HORVU7Hr1G038370 
HORVU7Hr1G038420 
HORVU7Hr1G038440 
HORVU7Hr1G038710 
HORVU7Hr1G039220 
HORVU7Hr1G039550 
HORVU7Hr1G040030 
HORVU7Hr1G040550 
HORVU7Hr1G045150 
HORVU7Hr1G048730 

HORVU7Hr1G049070 
HORVU7Hr1G049190 
HORVU7Hr1G049200 
HORVU7Hr1G049290 
HORVU7Hr1G050270 
HORVU7Hr1G051860 
HORVU7Hr1G052210 
HORVU7Hr1G053780 
HORVU7Hr1G053930 
HORVU7Hr1G055880 
HORVU7Hr1G056530 
HORVU7Hr1G057640 
HORVU7Hr1G057870 
HORVU7Hr1G059870 
HORVU7Hr1G062510 
HORVU7Hr1G063030 
HORVU7Hr1G065590 
HORVU7Hr1G065740 
HORVU7Hr1G065950 
HORVU7Hr1G066510 
HORVU7Hr1G067060 
HORVU7Hr1G069520 
HORVU7Hr1G069750 
HORVU7Hr1G069840 
HORVU7Hr1G070700 
HORVU7Hr1G071060 
HORVU7Hr1G072200 
HORVU7Hr1G073020 
HORVU7Hr1G074650 
HORVU7Hr1G075120 
HORVU7Hr1G079210 
HORVU7Hr1G082120 
HORVU7Hr1G082420 

HORVU7Hr1G082590 
HORVU7Hr1G082720 
HORVU7Hr1G083440 
HORVU7Hr1G083610 
HORVU7Hr1G085060 
HORVU7Hr1G085220 
HORVU7Hr1G085240 
HORVU7Hr1G086180 
HORVU7Hr1G088300 
HORVU7Hr1G089930 
HORVU7Hr1G090350 
HORVU7Hr1G090390 
HORVU7Hr1G092360 
HORVU7Hr1G093200 
HORVU7Hr1G093380 
HORVU7Hr1G093620 
HORVU7Hr1G093790 
HORVU7Hr1G094850 
HORVU7Hr1G095410 
HORVU7Hr1G096020 
HORVU7Hr1G096460 
HORVU7Hr1G096550 
HORVU7Hr1G096930 
HORVU7Hr1G097020 
HORVU7Hr1G097780 
HORVU7Hr1G098390 
HORVU7Hr1G098550 
HORVU7Hr1G099520 
HORVU7Hr1G101740 
HORVU7Hr1G105250 
HORVU7Hr1G106480 
HORVU7Hr1G108210 
HORVU7Hr1G109770 

HORVU7Hr1G111000 
HORVU7Hr1G111120 
HORVU7Hr1G111630 
HORVU7Hr1G112470 
HORVU7Hr1G112740 
HORVU7Hr1G112980 
HORVU7Hr1G113020 
HORVU7Hr1G114130 
HORVU7Hr1G114220 
HORVU7Hr1G115120 
HORVU7Hr1G115770 
HORVU7Hr1G116310 
HORVU7Hr1G116340 
HORVU7Hr1G116940 
HORVU7Hr1G117320 
HORVU7Hr1G117450 
HORVU7Hr1G117640 
HORVU7Hr1G118470 
HORVU7Hr1G118500 
HORVU7Hr1G118740 
HORVU7Hr1G119270 
HORVU7Hr1G119680 
HORVU7Hr1G120030 
HORVU7Hr1G120960 
HORVU7Hr1G121040 
HORVU7Hr1G121170 
HORVU7Hr1G121250 
HORVU7Hr1G121600 
HORVU7Hr1G121810 
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Table A.9.17 List of Protein Coding Genes (PCGs) targeted by differential 23/24 nt sRNA 

expression correlated with CHH context differential DNA methylation in root tissue in 

barley under salt stress. Correlations between differential sRNA expression and differential 
DNA methylation were within two 100 bp windows, and classified as targeting a PCG if the 
differential DNA methylation occurred between 1.5 kbp upstream of the transcription start 
site and 1.5 kbp downstream of the transcription end site. 
 
HORVU0Hr1G000390 
HORVU0Hr1G001570 
HORVU0Hr1G010040 
HORVU0Hr1G010760 
HORVU0Hr1G012050 
HORVU0Hr1G012230 
HORVU0Hr1G016130 
HORVU0Hr1G017080 
HORVU0Hr1G024100 
HORVU0Hr1G040340 
HORVU0Hr1G040490 
HORVU1Hr1G000350 
HORVU1Hr1G001400 
HORVU1Hr1G001510 
HORVU1Hr1G002970 
HORVU1Hr1G003200 
HORVU1Hr1G003340 
HORVU1Hr1G003530 
HORVU1Hr1G004580 
HORVU1Hr1G005140 
HORVU1Hr1G006020 
HORVU1Hr1G010970 
HORVU1Hr1G011400 
HORVU1Hr1G016000 
HORVU1Hr1G021800 
HORVU1Hr1G024390 
HORVU1Hr1G025530 
HORVU1Hr1G028720 
HORVU1Hr1G030200 
HORVU1Hr1G030390 
HORVU1Hr1G036720 
HORVU1Hr1G037760 
HORVU1Hr1G040050 
HORVU1Hr1G040660 
HORVU1Hr1G044500 
HORVU1Hr1G046620 
HORVU1Hr1G050780 
HORVU1Hr1G051260 
HORVU1Hr1G051450 
HORVU1Hr1G053280 
HORVU1Hr1G053420 
HORVU1Hr1G056560 
HORVU1Hr1G057910 
HORVU1Hr1G058680 
HORVU1Hr1G059130 
HORVU1Hr1G059550 
HORVU1Hr1G061630 
HORVU1Hr1G062210 
HORVU1Hr1G064830 
HORVU1Hr1G066760 
HORVU1Hr1G069310 
HORVU1Hr1G069620 
HORVU1Hr1G070710 
HORVU1Hr1G072690 
HORVU1Hr1G072850 
HORVU1Hr1G073500 
HORVU1Hr1G077910 

HORVU1Hr1G078650 
HORVU1Hr1G079410 
HORVU1Hr1G080640 
HORVU1Hr1G081050 
HORVU1Hr1G081990 
HORVU1Hr1G082250 
HORVU1Hr1G082670 
HORVU1Hr1G083160 
HORVU1Hr1G085130 
HORVU1Hr1G085680 
HORVU1Hr1G085960 
HORVU1Hr1G086330 
HORVU1Hr1G087010 
HORVU1Hr1G087900 
HORVU1Hr1G089540 
HORVU1Hr1G089620 
HORVU1Hr1G089840 
HORVU1Hr1G090850 
HORVU1Hr1G091110 
HORVU1Hr1G094320 
HORVU2Hr1G000090 
HORVU2Hr1G000280 
HORVU2Hr1G000590 
HORVU2Hr1G003720 
HORVU2Hr1G005680 
HORVU2Hr1G006180 
HORVU2Hr1G006320 
HORVU2Hr1G007980 
HORVU2Hr1G010520 
HORVU2Hr1G010830 
HORVU2Hr1G011580 
HORVU2Hr1G012010 
HORVU2Hr1G012980 
HORVU2Hr1G013370 
HORVU2Hr1G014020 
HORVU2Hr1G016300 
HORVU2Hr1G017370 
HORVU2Hr1G017640 
HORVU2Hr1G019950 
HORVU2Hr1G020100 
HORVU2Hr1G021700 
HORVU2Hr1G024360 
HORVU2Hr1G024790 
HORVU2Hr1G025160 
HORVU2Hr1G027290 
HORVU2Hr1G032280 
HORVU2Hr1G034860 
HORVU2Hr1G035170 
HORVU2Hr1G036590 
HORVU2Hr1G037260 
HORVU2Hr1G038720 
HORVU2Hr1G041530 
HORVU2Hr1G042550 
HORVU2Hr1G042560 
HORVU2Hr1G045440 
HORVU2Hr1G045730 
HORVU2Hr1G055830 

HORVU2Hr1G059320 
HORVU2Hr1G071570 
HORVU2Hr1G073920 
HORVU2Hr1G074360 
HORVU2Hr1G074670 
HORVU2Hr1G075690 
HORVU2Hr1G076910 
HORVU2Hr1G080630 
HORVU2Hr1G082090 
HORVU2Hr1G084170 
HORVU2Hr1G085560 
HORVU2Hr1G087030 
HORVU2Hr1G087380 
HORVU2Hr1G089440 
HORVU2Hr1G090280 
HORVU2Hr1G091270 
HORVU2Hr1G091530 
HORVU2Hr1G091720 
HORVU2Hr1G091800 
HORVU2Hr1G093610 
HORVU2Hr1G095050 
HORVU2Hr1G095990 
HORVU2Hr1G096550 
HORVU2Hr1G097580 
HORVU2Hr1G101690 
HORVU2Hr1G101980 
HORVU2Hr1G104170 
HORVU2Hr1G107980 
HORVU2Hr1G108460 
HORVU2Hr1G109080 
HORVU2Hr1G109980 
HORVU2Hr1G110800 
HORVU2Hr1G110900 
HORVU2Hr1G112170 
HORVU2Hr1G112590 
HORVU2Hr1G112790 
HORVU2Hr1G114950 
HORVU2Hr1G116880 
HORVU2Hr1G121110 
HORVU2Hr1G123650 
HORVU2Hr1G124850 
HORVU2Hr1G125200 
HORVU2Hr1G125430 
HORVU2Hr1G127540 
HORVU3Hr1G001020 
HORVU3Hr1G001430 
HORVU3Hr1G002710 
HORVU3Hr1G004140 
HORVU3Hr1G005810 
HORVU3Hr1G006600 
HORVU3Hr1G006770 
HORVU3Hr1G015510 
HORVU3Hr1G017020 
HORVU3Hr1G018680 
HORVU3Hr1G022030 
HORVU3Hr1G022500 
HORVU3Hr1G022770 

HORVU3Hr1G023230 
HORVU3Hr1G024170 
HORVU3Hr1G024200 
HORVU3Hr1G027530 
HORVU3Hr1G031000 
HORVU3Hr1G032820 
HORVU3Hr1G033440 
HORVU3Hr1G033660 
HORVU3Hr1G034020 
HORVU3Hr1G035450 
HORVU3Hr1G035810 
HORVU3Hr1G038950 
HORVU3Hr1G041250 
HORVU3Hr1G051050 
HORVU3Hr1G055670 
HORVU3Hr1G057530 
HORVU3Hr1G061210 
HORVU3Hr1G062730 
HORVU3Hr1G063470 
HORVU3Hr1G067020 
HORVU3Hr1G068170 
HORVU3Hr1G068830 
HORVU3Hr1G069320 
HORVU3Hr1G069560 
HORVU3Hr1G069890 
HORVU3Hr1G070220 
HORVU3Hr1G071570 
HORVU3Hr1G074210 
HORVU3Hr1G075710 
HORVU3Hr1G077210 
HORVU3Hr1G078470 
HORVU3Hr1G080040 
HORVU3Hr1G081320 
HORVU3Hr1G081710 
HORVU3Hr1G083180 
HORVU3Hr1G083350 
HORVU3Hr1G086970 
HORVU3Hr1G087400 
HORVU3Hr1G087550 
HORVU3Hr1G087720 
HORVU3Hr1G090730 
HORVU3Hr1G091170 
HORVU3Hr1G091460 
HORVU3Hr1G092600 
HORVU3Hr1G094160 
HORVU3Hr1G095360 
HORVU3Hr1G095580 
HORVU3Hr1G096290 
HORVU3Hr1G098940 
HORVU3Hr1G099120 
HORVU3Hr1G099810 
HORVU3Hr1G108000 
HORVU3Hr1G108170 
HORVU3Hr1G109010 
HORVU3Hr1G110370 
HORVU3Hr1G112190 
HORVU3Hr1G112920 

HORVU3Hr1G113720 
HORVU3Hr1G116930 
HORVU4Hr1G001400 
HORVU4Hr1G004160 
HORVU4Hr1G005710 
HORVU4Hr1G006870 
HORVU4Hr1G006930 
HORVU4Hr1G007450 
HORVU4Hr1G007990 
HORVU4Hr1G008850 
HORVU4Hr1G011040 
HORVU4Hr1G012660 
HORVU4Hr1G014120 
HORVU4Hr1G014760 
HORVU4Hr1G015890 
HORVU4Hr1G017680 
HORVU4Hr1G022680 
HORVU4Hr1G024460 
HORVU4Hr1G024590 
HORVU4Hr1G026770 
HORVU4Hr1G030380 
HORVU4Hr1G032550 
HORVU4Hr1G037750 
HORVU4Hr1G038670 
HORVU4Hr1G043620 
HORVU4Hr1G045980 
HORVU4Hr1G048400 
HORVU4Hr1G049950 
HORVU4Hr1G050900 
HORVU4Hr1G051010 
HORVU4Hr1G051710 
HORVU4Hr1G052880 
HORVU4Hr1G054350 
HORVU4Hr1G058180 
HORVU4Hr1G058210 
HORVU4Hr1G060310 
HORVU4Hr1G064440 
HORVU4Hr1G065150 
HORVU4Hr1G069810 
HORVU4Hr1G070650 
HORVU4Hr1G071510 
HORVU4Hr1G071570 
HORVU4Hr1G072670 
HORVU4Hr1G073070 
HORVU4Hr1G073290 
HORVU4Hr1G073610 
HORVU4Hr1G075740 
HORVU4Hr1G075950 
HORVU4Hr1G076150 
HORVU4Hr1G078890 
HORVU4Hr1G080610 
HORVU4Hr1G081130 
HORVU4Hr1G081550 
HORVU4Hr1G082910 
HORVU4Hr1G083340 
HORVU4Hr1G084210 
HORVU4Hr1G085030 
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HORVU4Hr1G086320 
HORVU4Hr1G087780 
HORVU5Hr1G001090 
HORVU5Hr1G001260 
HORVU5Hr1G006400 
HORVU5Hr1G008270 
HORVU5Hr1G009040 
HORVU5Hr1G010120 
HORVU5Hr1G010150 
HORVU5Hr1G010420 
HORVU5Hr1G010560 
HORVU5Hr1G012020 
HORVU5Hr1G012040 
HORVU5Hr1G012300 
HORVU5Hr1G013160 
HORVU5Hr1G017890 
HORVU5Hr1G018010 
HORVU5Hr1G018160 
HORVU5Hr1G018210 
HORVU5Hr1G027290 
HORVU5Hr1G028290 
HORVU5Hr1G038090 
HORVU5Hr1G039100 
HORVU5Hr1G046050 
HORVU5Hr1G048010 
HORVU5Hr1G048030 
HORVU5Hr1G052340 
HORVU5Hr1G055260 
HORVU5Hr1G055740 
HORVU5Hr1G056350 
HORVU5Hr1G060340 
HORVU5Hr1G067230 
HORVU5Hr1G068970 
HORVU5Hr1G069350 
HORVU5Hr1G071480 
HORVU5Hr1G072020 
HORVU5Hr1G072980 
HORVU5Hr1G074260 
HORVU5Hr1G074720 
HORVU5Hr1G075300 
HORVU5Hr1G075920 

HORVU5Hr1G076400 
HORVU5Hr1G076780 
HORVU5Hr1G079390 
HORVU5Hr1G079470 
HORVU5Hr1G080150 
HORVU5Hr1G080530 
HORVU5Hr1G080540 
HORVU5Hr1G080610 
HORVU5Hr1G080700 
HORVU5Hr1G082480 
HORVU5Hr1G084230 
HORVU5Hr1G084820 
HORVU5Hr1G086960 
HORVU5Hr1G089140 
HORVU5Hr1G089290 
HORVU5Hr1G093180 
HORVU5Hr1G101340 
HORVU5Hr1G104580 
HORVU5Hr1G106140 
HORVU5Hr1G111570 
HORVU5Hr1G111870 
HORVU5Hr1G112870 
HORVU5Hr1G113040 
HORVU5Hr1G114700 
HORVU5Hr1G115670 
HORVU5Hr1G116920 
HORVU5Hr1G121700 
HORVU5Hr1G122360 
HORVU5Hr1G122860 
HORVU5Hr1G125320 
HORVU6Hr1G001200 
HORVU6Hr1G002500 
HORVU6Hr1G004270 
HORVU6Hr1G005800 
HORVU6Hr1G005900 
HORVU6Hr1G008870 
HORVU6Hr1G011120 
HORVU6Hr1G012020 
HORVU6Hr1G014360 
HORVU6Hr1G017720 
HORVU6Hr1G019300 

HORVU6Hr1G019450 
HORVU6Hr1G020570 
HORVU6Hr1G020840 
HORVU6Hr1G025850 
HORVU6Hr1G031080 
HORVU6Hr1G034660 
HORVU6Hr1G035470 
HORVU6Hr1G036840 
HORVU6Hr1G040780 
HORVU6Hr1G042410 
HORVU6Hr1G044030 
HORVU6Hr1G044080 
HORVU6Hr1G052600 
HORVU6Hr1G053490 
HORVU6Hr1G053910 
HORVU6Hr1G055910 
HORVU6Hr1G056260 
HORVU6Hr1G057570 
HORVU6Hr1G058690 
HORVU6Hr1G062050 
HORVU6Hr1G062320 
HORVU6Hr1G067360 
HORVU6Hr1G069390 
HORVU6Hr1G069570 
HORVU6Hr1G072260 
HORVU6Hr1G073090 
HORVU6Hr1G074220 
HORVU6Hr1G074440 
HORVU6Hr1G076660 
HORVU6Hr1G078130 
HORVU6Hr1G080690 
HORVU6Hr1G081160 
HORVU6Hr1G082310 
HORVU6Hr1G082630 
HORVU6Hr1G083600 
HORVU6Hr1G085030 
HORVU6Hr1G087330 
HORVU6Hr1G088570 
HORVU6Hr1G089670 
HORVU6Hr1G090040 
HORVU6Hr1G090470 

HORVU6Hr1G090890 
HORVU6Hr1G091320 
HORVU6Hr1G091700 
HORVU6Hr1G092730 
HORVU6Hr1G093640 
HORVU6Hr1G093820 
HORVU6Hr1G095190 
HORVU7Hr1G000040 
HORVU7Hr1G000320 
HORVU7Hr1G000980 
HORVU7Hr1G001020 
HORVU7Hr1G006900 
HORVU7Hr1G009700 
HORVU7Hr1G010320 
HORVU7Hr1G012910 
HORVU7Hr1G013890 
HORVU7Hr1G017660 
HORVU7Hr1G018000 
HORVU7Hr1G020300 
HORVU7Hr1G022230 
HORVU7Hr1G024290 
HORVU7Hr1G024990 
HORVU7Hr1G025400 
HORVU7Hr1G026540 
HORVU7Hr1G026650 
HORVU7Hr1G028550 
HORVU7Hr1G030540 
HORVU7Hr1G033230 
HORVU7Hr1G034290 
HORVU7Hr1G035440 
HORVU7Hr1G035770 
HORVU7Hr1G038500 
HORVU7Hr1G040250 
HORVU7Hr1G041260 
HORVU7Hr1G042940 
HORVU7Hr1G045150 
HORVU7Hr1G047800 
HORVU7Hr1G049200 
HORVU7Hr1G049240 
HORVU7Hr1G055290 
HORVU7Hr1G059240 

HORVU7Hr1G060260 
HORVU7Hr1G060310 
HORVU7Hr1G065240 
HORVU7Hr1G065740 
HORVU7Hr1G070420 
HORVU7Hr1G070490 
HORVU7Hr1G071060 
HORVU7Hr1G074970 
HORVU7Hr1G075960 
HORVU7Hr1G076810 
HORVU7Hr1G076850 
HORVU7Hr1G080820 
HORVU7Hr1G081590 
HORVU7Hr1G081770 
HORVU7Hr1G084240 
HORVU7Hr1G090350 
HORVU7Hr1G090380 
HORVU7Hr1G092680 
HORVU7Hr1G094730 
HORVU7Hr1G095180 
HORVU7Hr1G095810 
HORVU7Hr1G096020 
HORVU7Hr1G096460 
HORVU7Hr1G097020 
HORVU7Hr1G097790 
HORVU7Hr1G103170 
HORVU7Hr1G104490 
HORVU7Hr1G108810 
HORVU7Hr1G114920 
HORVU7Hr1G115040 
HORVU7Hr1G115920 
HORVU7Hr1G116680 
HORVU7Hr1G116940 
HORVU7Hr1G117320 
HORVU7Hr1G118220 
HORVU7Hr1G118740 
HORVU7Hr1G119570 
HORVU7Hr1G119680 
HORVU7Hr1G121090 
HORVU7Hr1G121250 
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Table A.9.18. Log2 fold difference between Protein Coding Genes (PCGs) and 

Transposable Element (TE) superfamilies targeted by differential methylation correlated 

with sRNA within two 100 bp windows when compared with random sampling. 
Methylation is classified as targeting a TE if the differential methylation is inside the TE, and 
targeting a PCG if it is between 1.5 kbp upstream of the transcription start site and 1.5 kbp 
downstream of the transcription end site. Classification of TEs is done according to the 
standard established by Wicker et al. (2007). Only TE classifications where random sampling 
was > 0.01% shown. 
Differential methylation 

target of siRNA 

  

  

log2(fold difference relative to random sampling) 

Leaf Root 

23 nt 24 nt 23/24 nt 23 nt 24 nt 23/24 nt 

PCG without TE 1.5 1.0 1.0 2.0 1.7 1.8 

PCG with TE 3.0 2.2 2.1 3.3 3.0 3.0 

PCG with or without TE 2.3 1.6 1.6 2.7 2.4 2.4 

DTC without PCG 0.3 1.0 1.0 -0.1 0.3 0.3 

DTH without PCG 3.1 3.0 3.0 4.0 3.8 3.5 

DTM without PCG 3.2 3.3 3.2 1.1 3.2 3.2 

DTT without PCG 4.8 3.4 3.5 3.8 3.9 4.0 

DTX without PCG 5.6 4.3 4.2 6.2 5.6 5.4 

DXX without PCG 4.7 3.7 3.7 4.7 4.6 4.6 

RIX without PCG 3.8 3.3 3.2 1.9 3.6 3.6 

RLC without PCG -1.5 -0.8 -0.8 -2.0 -1.7 -1.7 

RLG without PCG -2.5 -1.2 -1.2 -2.7 -2.4 -2.2 

RLX without PCG -1.3 -0.6 -0.6 -1.1 -1.1 -1.1 

RSX without PCG 5.1 4.3 4.1 4.1 4.8 4.6 

XXX without PCG 4.0 3.0 2.9 3.3 3.9 3.9 

DTC with PCG 2.2 2.2 2.1 3.2 2.7 2.3 

DTH with PCG 4.9 3.4 3.5 6.5 5.0 5.0 

DTM with PCG 2.2 2.7 2.6 3.2 4.6 4.4 

DTT with PCG 5.3 5.5 5.3 4.9 5.6 5.4 

DTX with PCG 5.9 5.0 5.0 4.4 5.6 5.4 

DXX with PCG 5.5 4.3 4.1 5.4 5.4 5.2 

RIX with PCG 4.4 3.4 3.1 5.4 4.9 4.9 

RLC with PCG 1.6 1.3 1.2 -0.1 1.2 1.7 

RLG with PCG 1.8 0.9 0.9 2.3 1.5 1.9 

RLX with PCG 3.0 2.0 2.0 3.4 2.7 2.7 

RSX with PCG 5.5 4.2 4.2 5.2 5.9 6.0 

XXX with PCG 4.5 3.4 3.3 4.6 4.5 4.5 

DTC with or without PCG 0.6 1.1 1.1 0.5 0.7 0.6 

DTH with or without PCG 3.7 3.1 3.1 5.0 4.2 4.0 

DTM with or without PCG 3.1 3.2 3.1 1.8 3.6 3.6 

DTT with or without PCG 5.0 4.4 4.3 4.2 4.7 4.6 

DTX with or without PCG 5.7 4.5 4.4 5.9 5.6 5.4 

DXX with or without PCG 4.9 3.9 3.8 5.0 4.9 4.8 

RIX with or without PCG 3.9 3.3 3.2 3.7 4.1 4.0 

RLC with or without PCG -1.1 -0.6 -0.7 -1.9 -1.3 -1.2 

RLG with or without PCG -2.0 -1.2 -1.1 -2.0 -2.1 -1.8 

RLX with or without PCG -0.7 -0.4 -0.4 -0.4 -0.6 -0.7 

RSX with or without PCG 5.2 4.3 4.1 4.5 5.2 5.2 

XXX with or without PCG 4.1 3.1 3.0 3.7 4.1 4.1 

none 0.3 0.3 0.3 -0.3 0.1 0.0 
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10 Appendix B, Custom Bioinformatics Code 

This appendix records the code that was produced and used to analyse the sequence 

data set. 

10.1 mRNA_STAR_PCA.R 

library( Rsamtools ) 
library( compiler ) 
library( ggplot2 ) 
library( scales ) 
library( plotly ) 
library( ggfortify ) 
enableJIT(3) 
 
ptm = proc.time() 
 
L1_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\L1.ReadsPerGene.out.tab" 
L2_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\L2.ReadsPerGene.out.tab" 
L3_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\L3.ReadsPerGene.out.tab" 
L4_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\L4.ReadsPerGene.out.tab" 
L5_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\L5.ReadsPerGene.out.tab" 
L6_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\L6.ReadsPerGene.out.tab" 
L7_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\L7.ReadsPerGene.out.tab" 
L8_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\L8.ReadsPerGene.out.tab" 
R1_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\R1.ReadsPerGene.out.tab" 
R2_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\R2.ReadsPerGene.out.tab" 
R3_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\R3.ReadsPerGene.out.tab" 
R4_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\R4.ReadsPerGene.out.tab" 
R5_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\R5.ReadsPerGene.out.tab" 
R6_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\R6.ReadsPerGene.out.tab" 
R7_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\R7.ReadsPerGene.out.tab" 
R8_in = "C:\\BaseSpace\\mRNA_04_STAR_align_count\\R8.ReadsPerGene.out.tab" 
 
L1 = read.csv( L1_in, header = FALSE, sep = "\t" ) 
L2 = read.csv( L2_in, header = FALSE, sep = "\t" ) 
L3 = read.csv( L3_in, header = FALSE, sep = "\t" ) 
L4 = read.csv( L4_in, header = FALSE, sep = "\t" ) 
L5 = read.csv( L5_in, header = FALSE, sep = "\t" ) 
L6 = read.csv( L6_in, header = FALSE, sep = "\t" ) 
L7 = read.csv( L7_in, header = FALSE, sep = "\t" ) 
L8 = read.csv( L8_in, header = FALSE, sep = "\t" ) 
R1 = read.csv( R1_in, header = FALSE, sep = "\t" ) 
R2 = read.csv( R2_in, header = FALSE, sep = "\t" ) 
R3 = read.csv( R3_in, header = FALSE, sep = "\t" ) 
R4 = read.csv( R4_in, header = FALSE, sep = "\t" ) 
R5 = read.csv( R5_in, header = FALSE, sep = "\t" ) 
R6 = read.csv( R6_in, header = FALSE, sep = "\t" ) 
R7 = read.csv( R7_in, header = FALSE, sep = "\t" ) 
R8 = read.csv( R8_in, header = FALSE, sep = "\t" ) 
 
L1summary = L1[ 1:4, ] 
L2summary = L2[ 1:4, ] 
L3summary = L3[ 1:4, ] 
L4summary = L4[ 1:4, ] 
L5summary = L5[ 1:4, ] 
L6summary = L6[ 1:4, ] 
L7summary = L7[ 1:4, ] 
L8summary = L8[ 1:4, ] 
R1summary = R1[ 1:4, ] 
R2summary = R2[ 1:4, ] 
R3summary = R3[ 1:4, ] 
R4summary = R4[ 1:4, ] 
R5summary = R5[ 1:4, ] 
R6summary = R6[ 1:4, ] 
R7summary = R7[ 1:4, ] 
R8summary = R8[ 1:4, ] 
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L1 = L1[ 5:nrow( L1 ), ] 
L2 = L2[ 5:nrow( L2 ), ] 
L3 = L3[ 5:nrow( L3 ), ] 
L4 = L4[ 5:nrow( L4 ), ] 
L5 = L5[ 5:nrow( L5 ), ] 
L6 = L6[ 5:nrow( L6 ), ] 
L7 = L7[ 5:nrow( L7 ), ] 
L8 = L8[ 5:nrow( L8 ), ] 
R1 = R1[ 5:nrow( R1 ), ] 
R2 = R2[ 5:nrow( R2 ), ] 
R3 = R3[ 5:nrow( R3 ), ] 
R4 = R4[ 5:nrow( R4 ), ] 
R5 = R5[ 5:nrow( R5 ), ] 
R6 = R6[ 5:nrow( R6 ), ] 
R7 = R7[ 5:nrow( R7 ), ] 
R8 = R8[ 5:nrow( R8 ), ] 
 
 
L1_un = data.frame( L1 = L1[,2], row.names = L1[,1] ) 
L2_un = data.frame( L2 = L2[,2], row.names = L2[,1] ) 
L3_un = data.frame( L3 = L3[,2], row.names = L3[,1] ) 
L4_un = data.frame( L4 = L4[,2], row.names = L4[,1] ) 
L5_un = data.frame( L5 = L5[,2], row.names = L5[,1] ) 
L6_un = data.frame( L6 = L6[,2], row.names = L6[,1] ) 
L7_un = data.frame( L7 = L7[,2], row.names = L7[,1] ) 
L8_un = data.frame( L8 = L8[,2], row.names = L8[,1] ) 
R1_un = data.frame( R1 = R1[,2], row.names = R1[,1] ) 
R2_un = data.frame( R2 = R2[,2], row.names = R2[,1] ) 
R3_un = data.frame( R3 = R3[,2], row.names = R3[,1] ) 
R4_un = data.frame( R4 = R4[,2], row.names = R4[,1] ) 
R5_un = data.frame( R5 = R5[,2], row.names = R5[,1] ) 
R6_un = data.frame( R6 = R6[,2], row.names = R6[,1] ) 
R7_un = data.frame( R7 = R7[,2], row.names = R7[,1] ) 
R8_un = data.frame( R8 = R8[,2], row.names = R8[,1] ) 
 
L1_1 = data.frame( L1 = L1[,3], row.names = L1[,1] ) 
L2_1 = data.frame( L2 = L2[,3], row.names = L2[,1] ) 
L3_1 = data.frame( L3 = L3[,3], row.names = L3[,1] ) 
L4_1 = data.frame( L4 = L4[,3], row.names = L4[,1] ) 
L5_1 = data.frame( L5 = L5[,3], row.names = L5[,1] ) 
L6_1 = data.frame( L6 = L6[,3], row.names = L6[,1] ) 
L7_1 = data.frame( L7 = L7[,3], row.names = L7[,1] ) 
L8_1 = data.frame( L8 = L8[,3], row.names = L8[,1] ) 
R1_1 = data.frame( R1 = R1[,3], row.names = R1[,1] ) 
R2_1 = data.frame( R2 = R2[,3], row.names = R2[,1] ) 
R3_1 = data.frame( R3 = R3[,3], row.names = R3[,1] ) 
R4_1 = data.frame( R4 = R4[,3], row.names = R4[,1] ) 
R5_1 = data.frame( R5 = R5[,3], row.names = R5[,1] ) 
R6_1 = data.frame( R6 = R6[,3], row.names = R6[,1] ) 
R7_1 = data.frame( R7 = R7[,3], row.names = R7[,1] ) 
R8_1 = data.frame( R8 = R8[,3], row.names = R8[,1] ) 
 
L1_2 = data.frame( L1 = L1[,4], row.names = L1[,1] ) 
L2_2 = data.frame( L2 = L2[,4], row.names = L2[,1] ) 
L3_2 = data.frame( L3 = L3[,4], row.names = L3[,1] ) 
L4_2 = data.frame( L4 = L4[,4], row.names = L4[,1] ) 
L5_2 = data.frame( L5 = L5[,4], row.names = L5[,1] ) 
L6_2 = data.frame( L6 = L6[,4], row.names = L6[,1] ) 
L7_2 = data.frame( L7 = L7[,4], row.names = L7[,1] ) 
L8_2 = data.frame( L8 = L8[,4], row.names = L8[,1] ) 
R1_2 = data.frame( R1 = R1[,4], row.names = R1[,1] ) 
R2_2 = data.frame( R2 = R2[,4], row.names = R2[,1] ) 
R3_2 = data.frame( R3 = R3[,4], row.names = R3[,1] ) 
R4_2 = data.frame( R4 = R4[,4], row.names = R4[,1] ) 
R5_2 = data.frame( R5 = R5[,4], row.names = R5[,1] ) 
R6_2 = data.frame( R6 = R6[,4], row.names = R6[,1] ) 
R7_2 = data.frame( R7 = R7[,4], row.names = R7[,1] ) 
R8_2 = data.frame( R8 = R8[,4], row.names = R8[,1] ) 
 
LeafCounts_un = data.frame( L1 = L1_un, 
                            L2 = L2_un, 
                            L3 = L3_un, 
                            L4 = L4_un, 
                            L5 = L5_un, 
                            L6 = L6_un, 
                            L7 = L7_un, 
                            L8 = L8_un ) 
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RootCounts_un = data.frame( R1 = R1_un, 
                            R2 = R2_un, 
                            R3 = R3_un, 
                            R4 = R4_un, 
                            R5 = R5_un, 
                            R6 = R6_un, 
                            R7 = R7_un, 
                            R8 = R8_un ) 
 
LeafCounts_1 =  data.frame( L1 = L1_1, 
                            L2 = L2_1, 
                            L3 = L3_1, 
                            L4 = L4_1, 
                            L5 = L5_1, 
                            L6 = L6_1, 
                            L7 = L7_1, 
                            L8 = L8_1 ) 
 
RootCounts_1 =  data.frame( R1 = R1_1, 
                            R2 = R2_1, 
                            R3 = R3_1, 
                            R4 = R4_1, 
                            R5 = R5_1, 
                            R6 = R6_1, 
                            R7 = R7_1, 
                            R8 = R8_1 ) 
 
LeafCounts_2 =  data.frame( L1 = L1_2, 
                            L2 = L2_2, 
                            L3 = L3_2, 
                            L4 = L4_2, 
                            L5 = L5_2, 
                            L6 = L6_2, 
                            L7 = L7_2, 
                            L8 = L8_2 ) 
 
RootCounts_2 =  data.frame( R1 = R1_2, 
                            R2 = R2_2, 
                            R3 = R3_2, 
                            R4 = R4_2, 
                            R5 = R5_2, 
                            R6 = R6_2, 
                            R7 = R7_2, 
                            R8 = R8_2 ) 
 
fileoutLeaf_un = "C:\\BaseSpace\\mRNA_DE\\Leaf counts STAR unstranded.tsv" 
fileoutLeaf_1 = "C:\\BaseSpace\\mRNA_DE\\Leaf counts STAR 1st read aligned.tsv" 
fileoutLeaf_2 = "C:\\BaseSpace\\mRNA_DE\\Leaf counts STAR 2nd read aligned.tsv" 
fileoutRoot_un = "C:\\BaseSpace\\mRNA_DE\\Root counts STAR unstranded.tsv" 
fileoutRoot_1 = "C:\\BaseSpace\\mRNA_DE\\Root counts STAR 1st read aligned.tsv" 
fileoutRoot_2 = "C:\\BaseSpace\\mRNA_DE\\Root counts STAR 2nd read aligned.tsv" 
 
fileinLeaf = fileoutLeaf_un 
fileinRoot = fileoutRoot_un 
fileinLeaf = fileoutLeaf_1 
fileinRoot = fileoutRoot_1 
fileinLeaf = fileoutLeaf_2 
fileinRoot = fileoutRoot_2 
 
a = read.table( fileinLeaf, sep = "\t" ) 
b = a[ , 1:8 ] 
c = t( b ) 
bsum = colSums( b ) 
bnorm = b / bsum 
cnorm = t( bnorm ) 
 
library( edgeR ) 
UQ = calcNormFactors( b, method = "upperquartile" ) 
mCGt = t( sweep( b, 2, UQ, FUN = "*" ) ) 
cnorm = mCGt 
#cnorm = log2( mCGt + 0.001 ) 
 
 
pc = prcomp( cnorm ) 
summary( pc ) 
plot( pc ) 
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pcap = data.frame( PCA1 = pc$x[,1], PCA2 = pc$x[,2], PCA3 = pc$x[,3], group = c( 
"LC","LC","LC","LC","LS","LS","LS","LS" ) ) 
p = plot_ly( pcap, x = ~PCA1, y = ~PCA2, z = ~PCA3, color = ~group, opacity = 0.7 ) %>% 
  add_markers() %>% 
  layout( scene = list( xasis = list( title = "PCA1" ),  
                        yaxis = list( title = "PCA2" ), 
                        zaxis = list( title = "PCA3" ))) 
p 
 
plot( pc$x[,1], pc$x[,2], main = sprintf( "PCA Leaf mRNA" ), xlab = "PCA1", ylab = "PCA2", pch 
= 32 ) 
points( pc$x[1:4,1], pc$x[1:4,2], col = "blue", pch = c( 49,50,51,52 ) ) 
points( pc$x[5:8,1], pc$x[5:8,2], col = "red", pch = c( 53,54,55,56 ) ) 
 
a = read.table( fileinRoot, sep = "\t" ) 
b = a[ , 1:8 ] 
c = t( b ) 
bsum = colSums( b ) 
bnorm = b / bsum 
cnorm = t( bnorm ) 
 
library( edgeR ) 
UQ = calcNormFactors( b, method = "upperquartile" ) 
mCGt = t( sweep( b, 2, UQ, FUN = "*" ) ) 
cnorm = mCGt 
 
pc = prcomp( cnorm ) 
summary( pc ) 
plot( pc ) 
 
pcap = data.frame( PCA1 = pc$x[,1], PCA2 = pc$x[,2], PCA3 = pc$x[,3], group = c( 
"LC","LC","LC","LC","LS","LS","LS","LS" ) ) 
p = plot_ly( pcap, x = ~PCA1, y = ~PCA2, z = ~PCA3, color = ~group, opacity = 0.7 ) %>% 
  add_markers() %>% 
  layout( scene = list( xasis = list( title = "PCA1" ),  
                        yaxis = list( title = "PCA2" ), 
                        zaxis = list( title = "PCA3" ))) 
p 
 
plot( pc$x[,1], pc$x[,2], main = sprintf( "PCA Root mRNA" ), xlab = "PCA1", ylab = "PCA2", pch 
= 32 ) 
points( pc$x[1:4,1], pc$x[1:4,2], col = "darkgreen", pch = c( 49,50,51,52 ) ) 
points( pc$x[5:8,1], pc$x[5:8,2], col = "darkorange", pch = c( 53,54,55,56 ) ) 
 
a1 = read.table( fileinLeaf, sep = "\t" ) 
a2 = read.table( fileinRoot, sep = "\t" ) 
 
a = cbind( a1, a2 ) 
 
b = a[ , 1:16 ] 
 
mask = rowSums( b ) > 10 
b = b[ mask, ] 
 
c = t( b ) 
bsum = colSums( b ) 
bnorm = b / bsum 
cnorm = t( bnorm ) 
 
library( edgeR ) 
UQ = calcNormFactors( b, method = "upperquartile" ) 
mCGt = t( sweep( b, 2, UQ, FUN = "*" ) ) 
cnorm = mCGt 
 
pc = prcomp( cnorm ) 
summary( pc ) 
plot( pc ) 
 
pcap = data.frame( PCA1 = pc$x[,1], PCA2 = pc$x[,2], PCA3 = pc$x[,3], group = c( 
"LC","LC","LC","LC","LS","LS","LS","LS","RC","RC","RC","RC","RS","RS","RS","RS" ) ) 
p = plot_ly( pcap, x = ~PCA1, y = ~PCA2, z = ~PCA3, color = ~group, opacity = 0.9 ) %>% 
  add_markers() %>% 
  layout( scene = list( xasis = list( title = "PCA1" ),  
                        yaxis = list( title = "PCA2" ), 
                        zaxis = list( title = "PCA3" ))) 
p 
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plot( pc$x[,1], pc$x[,2], main = sprintf( "PCA" ), xlab = "PCA1", ylab = "PCA2", pch = 32 ) 
points( pc$x[1:4,1], pc$x[1:4,2], col = "blue", pch = c( 49,50,51,52 ) ) 
points( pc$x[5:8,1], pc$x[5:8,2], col = "red", pch = c( 53,54,55,56 ) ) 
points( pc$x[9:12,1], pc$x[9:12,2], col = "darkgreen", pch = c( 49,50,51,52 ) ) 
points( pc$x[13:16,1], pc$x[13:16,2], col = "darkorange", pch = c( 53,54,55,56 ) ) 
 
plot( pc$x[,1], pc$x[,3], main = sprintf( "PCA" ), xlab = "PCA1", ylab = "PCA3", pch = 32 ) 
points( pc$x[1:4,1], pc$x[1:4,3], col = "blue", pch = c( 49,50,51,52 ) ) 
points( pc$x[5:8,1], pc$x[5:8,3], col = "red", pch = c( 53,54,55,56 ) ) 
points( pc$x[9:12,1], pc$x[9:12,3], col = "darkgreen", pch = c( 49,50,51,52 ) ) 
points( pc$x[13:16,1], pc$x[13:16,3], col = "darkorange", pch = c( 53,54,55,56 ) ) 
 
 

10.2 mRNA_DE.R 

library( DESeq2 ) 
library( pasilla ) 
library( ggplot2 ) 
library( reshape2 ) 
library( plyr ) 
library( scales ) 
 
Leaf = FALSE 
#Leaf = TRUE 
 
LeafCountsFile = "C:\\BaseSpace\\mRNA_DE\\Leaf counts STAR 2nd read aligned.tsv" 
RootCountsFile = "C:\\BaseSpace\\mRNA_DE\\Root counts STAR 2nd read aligned.tsv" 
LeafTreatFile  = "C:/BaseSpace/mRNA_DE/Leaf treatment.csv" 
RootTreatFile  = "C:/BaseSpace/mRNA_DE/Root treatment.csv" 
 
if( Leaf == TRUE ) 
{ 
  #cts = as.matrix( read.csv( LeafCountsFile, sep = "\t", row.names = "Geneid" ) ) 
  cts = as.matrix( read.table( LeafCountsFile, sep = "\t" ) ) 
  coldata = read.csv( LeafTreatFile, row.names = 1 ) 
  TotalReads = colSums( cts ) 
} else { 
  #cts = as.matrix( read.csv( RootCountsFile, sep = "\t", row.names = "Geneid" ) ) 
  cts = as.matrix( read.table( RootCountsFile, sep = "\t" ) ) 
  coldata = read.csv( RootTreatFile, row.names = 1 ) 
  TotalReads = colSums( cts ) 
} 
all( rownames( coldata ) == colnames( cts ) ) 
 
dds <- DESeqDataSetFromMatrix( countData = cts, 
                               colData = coldata, 
                               design = ~ condition ) 
dds 
 
dds = dds[ rowMeans( counts( dds ) ) > 10, ] 
 
dds$condition = factor( dds$condition, levels = c( "Control", "Salt" ) ) 
 
dds = DESeq( dds ) 
res = results( dds ) 
res 
 
resOrdered = res[ order( res$padj ), ] 
summary( res ) 
sum( res$padj < 0.01, na.rm = TRUE ) 
 
res0_01 = results( dds, alpha = 0.05 ) 
summary( res0_01 ) 
 
 
plotMA( res0_01, ylim = c( -3,3 ) ) 
 
plotCounts(dds, gene=which.min(res$padj), intgroup="condition") 
 
restemp = res[ complete.cases( res$padj ), ] 
resOnlySig = restemp[ restemp$padj < 0.05, ] 
restemp$log2FoldChange > 1 ) ), ] 
restemp$log2FoldChange > 0.585 ) ), ] 
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resOnlySig = resOnlySig[ order( resOnlySig$log2FoldChange ), ] 
 
#Want to get the names from this list 
SigGenes = row.names( resOnlySig ) 
 
SigGenesRoot0.001 = SigGenes 
#SigGenesLeaf0.001 = SigGenes 
 
rarray = NULL 
 
counts1 = 0 
counts2 = 0 
counts3 = 0 
counts4 = 0 
 
for( GeneName in  SigGenes ) 
{ 
  counts1 = counts1 + 1 
  r = grep( GeneName, row.names( cts ) ) 
  if( !isEmpty(r) ) 
  { 
    counts2 = counts2 + 1 
    if( r > 0 ) 
    { 
      counts3 = counts3 + 1 
      rarray = append( rarray, r ) 
    } 
  } 
} 
 
cts2 = counts(dds, normalized = TRUE ) 
 
SigGenesCounts = cts[ rarray, ] 
 
SigGenesNormCol = SigGenesCounts 
   
SigGenesNormCol.m = melt( SigGenesNormCol ) 
SigGenesNormCol.m = ddply( SigGenesNormCol.m, .(Var1), transform, rescale = rescale( value, to 
= c(-1,1) ) ) 
 
(p = ggplot( SigGenesNormCol.m, aes( Var2, Var1, fill = rescale ) ) + geom_tile())# aes(fill = 
rescale), colour = "white" )+ scale_fill_gradient(low = "white", high = "steelblue")) 
 
nrow( SigGenesNormCol ) 
 
df1 = data.frame( SigGenesNormCol ) 
 
if( Leaf == TRUE ) 
{ 
  write.table( df1, file = "Significant mRNA DE Leaf.tsv", sep = "\t" ) 
  write.table( resOnlySig, file = "Significant mRNA DE Leaf resOnlySig.tsv", sep = "\t" ) 
} else { 
  write.table( df1, file = "Significant mRNA DE Root.tsv", sep = "\t" ) 
  write.table( resOnlySig, file = "Significant mRNA DE Root resOnlySig.tsv", sep = "\t" ) 
} 
ggsave( paste0( "Heatmap 0.001 Root test.png" ),  width = 14, height = 20 ) 
 
nba <- read.csv("http://datasets.flowingdata.com/ppg2008.csv") 
nba$Name <- with(nba, reorder(Name, PTS)) 
nba.m <- melt(nba) 
nba.m <- ddply(nba.m, .(variable), transform, rescale = rescale(value)) 
 
(p <- ggplot(nba.m, aes(variable, Name)) + geom_tile(aes(fill = rescale), colour = "white") + 
scale_fill_gradient(low = "white", high = "steelblue")) 
 
(p <- ggplot(nba.m, aes(variable, Name)) + geom_tile(aes(fill = rescale))) 
 
nba <- read.csv("http://datasets.flowingdata.com/ppg2008.csv") 
nba$Name <- with(nba, reorder(Name, PTS)) 
nba.m <- melt(nba) 
nba.m <- ddply(nba.m, .(variable), transform, rescale = rescale(value)) 
 
(p <- ggplot(nba.m, aes(variable, Name)) + geom_tile(aes(fill = rescale), colour = "white") + 
scale_fill_gradient(low = "white", high = "steelblue")) 
 
summary( SigGenesRoot ) 
summary( SigGenesLeaf ) 
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summary( SigGenesRoot0.001 ) 
summary( SigGenesLeaf0.001 ) 
 
counter1 = 0 
counter2 = 0 
counter3 = 0 
 
for( st in SigGenesRoot0.001 ) 
{ 
  r = grep( st, SigGenesLeaf0.001 ) 
  counter1 = counter1 + 1 
  if( !isEmpty( r ) ) 
  { 
    counter2 = counter2 + 1 
    if( r > 0 ) 
    { 
      counter3 = counter3 + 1 
    } 
  } 
} 
 
 

10.3 Count_siRNA.py 

import gzip 
import os 
import glob 
 
dir_in_1 = '/home/jason/Share/Jason_SmallRNA_24_concat_18_26nt/' 
dir_in_2 = '/home/jason/Share/Jason_SmallRNA_25_remove_mito_plastid_rRNA_18-26nt/' 
file_out = 
'/home/jason/Share/Jason_SmallRNA_26_remove_cDNA_mito_plastid_rRNA_18_26nt/count_siRNA2.tsv' 
 
count = 0 
bins = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
 
f_out = open( file_out, "w" ) 
f_out.write( 
"File\tCount\t0\t1\t2\t3\t4\t5\t6\t7\t8\t9\t10\t11\t12\t13\t14\t15\t16\t17\t18\t19\t20\t21\t22
\t23\t24\t25\t26\t27\t28\t29\t30\n" ) 
f_out.close() 
 
filesin = glob.glob( dir_in_2 + "*.gz" ) 
 
for filein in filesin: 
    print( filein ) 
    with gzip.open( filein, 'rb' ) as fin: 
        for line in fin: 
            count = count + 1 
            if ( ( count%4 ) == 2 ): 
                i = len( line ) - 1 
                if( i < 28 ): 
                    bins[i] = bins[i] + 1 
    f_out = open( file_out, "a" ) 
    f_out.write( filein + "\t" + str( count/4 ) + "\t" + "\t".join( str(x) for x in bins ) + 
"\n" ) 
    f_out.close() 
    count = 0 
    bins = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
 
 

10.4 Barley_SmallRNA_PCA.R 

#Change to TRUE for miRBase, or FALSE for sRNABench 
miRBase = TRUE 
 
ptm = proc.time() 
 
library( Rsamtools ) 
library( compiler ) 
library( ggplot2 ) 
library( scales ) 



Appendix B, Custom Bioinformatics Code  Page 252 

library( reshape2 ) 
library( plyr ) 
 
enableJIT(3) 
 
if( miRBase == TRUE ) 
{ 
  dir1 = 'C:\\BaseSpace\\Jason_SmallRNA_30_aligned_miRBase' 
} else { 
  dir1 = 'C:\\BaseSpace\\Jason_SmallRNA_34_aligned_sRNAbench' 
} 
 
FileListL = list.files( dir1, pattern = "^L[A-Za-z0-9_.]*bam$") 
FileListR = list.files( dir1, pattern = "^R[A-Za-z0-9_.]*bam$") 
FileCounts = paste0( dir1, "\\count_siRNA.tsv" ) 
FileList = c( FileListL, FileListR ) 
 
fc = 1 
c_mapped = NULL 
c_unmapped = NULL 
c_na = NULL 
A_df = NULL 
CountsAll = NULL 
 
for( fc in 1:length( FileList ) ) 
{ 
  cat("\nFile ", fc, " ", FileList[fc], "\n" ) 
  fl = paste0( dir1, "\\", FileList[fc] ) 
   
  p1 = ScanBamParam( what = c( "rname", "strand", "pos", "qwidth", "flag", "qname" ) ) 
  bamFile = scanBam( fl, param = p1 ) 
  p1 = NULL 
   
  rnames = levels( bamFile[[1]]$rname ) 
  counts_raw = array( 0, length( rnames ) ) 
  names( counts_raw ) = rnames 
   
  ptm = proc.time() 
  lbf = length( bamFile[[1]]$rname ) 
   
  for( i in 1:length( bamFile[[1]]$rname ) ) 
  { 
    if( !is.na( bamFile[[1]]$rname[ i ] ) ) 
    { 
      ind = which( names(counts_raw) == bamFile[[1]]$rname[ i ] ) 
      counts_raw[ ind ] = counts_raw[ ind ] + 1 
    } 
    if( i%%1000 == 0 ) 
    { 
      cat( sprintf( "\rChecked %i of %i                                      ", i,  lbf  ) ) 
    } 
  } 
  cat( "\n" ) 
  cat( proc.time() - ptm ) 
  CountsAll[[ fc ]] = data.frame( t( counts_raw ), row.names = sprintf( "%s", substring( 
FileList[fc], 1, 2) ) ) 
} 
 
a = rbind( CountsAll[[1]],  
           CountsAll[[2]], 
           CountsAll[[3]], 
           CountsAll[[4]], 
           CountsAll[[5]], 
           CountsAll[[6]], 
           CountsAll[[7]], 
           CountsAll[[8]], 
           CountsAll[[9]],  
           CountsAll[[10]], 
           CountsAll[[11]], 
           CountsAll[[12]], 
           CountsAll[[13]], 
           CountsAll[[14]], 
           CountsAll[[15]], 
           CountsAll[[16]] ) 
 
if( miRBase == TRUE ) 
{ 
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  save( a, file = paste0( "SmallRNA leaf and root rRNA mito plastid removed mapped to miRBase 
opt1.Rdata" )) 
} else { 
  save( a, file = paste0( "SmallRNA leaf and root rRNA mito plastid removed mapped to 
sRNAbase.Rdata" )) 
} 
 
miRNAcountTable = read.csv( FileCounts, sep = "\t" ) 
cat( sprintf( "L1, %s", miRNAcountTable[17,1] ) ) 
 
mask = colSums( a ) > 10 
 
b = a[ , mask ] 
 
browsum = rowSums( b ) 
 
c = rbind( b[1,]/browsum[1],  
           b[2,]/browsum[2], 
           b[3,]/browsum[3], 
           b[4,]/browsum[4], 
           b[5,]/browsum[5], 
           b[6,]/browsum[6], 
           b[7,]/browsum[7], 
           b[8,]/browsum[8], 
           b[9,]/browsum[9],  
           b[10,]/browsum[10], 
           b[11,]/browsum[11], 
           b[12,]/browsum[12], 
           b[13,]/browsum[13], 
           b[14,]/browsum[14], 
           b[15,]/browsum[15], 
           b[16,]/browsum[16]) 
 
d = c * 1000000 
 
# d is CPM 
 
#edgeR is required for different normalisation methods 
library( edgeR ) 
 
f = t( b ) 
fsum = colSums( f ) 
group = c( "LC","LC","LC","LC","LS","LS","LS","LS","RC","RC","RC","RC","RS","RS","RS","RS" ) 
 
UQ = calcNormFactors( f, method = "upperquartile" ) 
UQn = t( sweep( f, 2, UQ, FUN = "*" ) ) 
UQnl = log2( UQn + 0.1 ) 
 
pc = prcomp( d ) 
 
summary( pc ) 
plot( pc ) 
 
plot( pc$x[,1], pc$x[,2], main = sprintf( "PCA" ), xlab = "PCA1", ylab = "PCA2", pch = 32 ) 
points( pc$x[1:4,1], pc$x[1:4,2], col = "blue", pch = c( 49,50,51,52 ) ) 
points( pc$x[5:8,1], pc$x[5:8,2], col = "red", pch = c( 53,54,55,56 ) ) 
points( pc$x[9:12,1], pc$x[9:12,2], col = "darkgreen", pch = c( 49,50,51,52 ) ) 
points( pc$x[13:16,1], pc$x[13:16,2], col = "darkorange", pch = c( 53,54,55,56 ) ) 
 
plot( pc$x[,3], pc$x[,4], main = sprintf( "PCA" ), xlab = "PCA3", ylab = "PCA4", pch = 32 ) 
points( pc$x[1:4,3], pc$x[1:4,4], col = "blue", pch = c( 49,50,51,52 ) ) 
points( pc$x[5:8,3], pc$x[5:8,4], col = "red", pch = c( 53,54,55,56 ) ) 
points( pc$x[9:12,3], pc$x[9:12,4], col = "darkgreen", pch = c( 49,50,51,52 ) ) 
points( pc$x[13:16,3], pc$x[13:16,4], col = "darkorange", pch = c( 53,54,55,56 ) ) 
 
library( plotly ) 
#library( ggfortify ) 
 
pcap = data.frame( PCA1 = pc$x[,1], PCA2 = pc$x[,2], PCA3 = pc$x[,3], group = c( 
"LC","LC","LC","LC","LS","LS","LS","LS","RC","RC","RC","RC","RS","RS","RS","RS" ) ) 
p = plot_ly( pcap, x = ~PCA1, y = ~PCA2, z = ~PCA3, color = ~group, opacity = 0.5 ) %>% 
  add_markers() %>% 
  layout( scene = list( xasis = list( title = "PCA1" ),  
                        yaxis = list( title = "PCA2" ), 
                        zaxis = list( title = "PCA3" ))) 
p 
 



Appendix B, Custom Bioinformatics Code  Page 254 

d = UQn 
 
pc = prcomp( d[1:8,] ) 
summary( pc ) 
plot( pc ) 
 
plot( pc$x[,1], pc$x[,2], main = sprintf( "PCA" ), xlab = "PCA1", ylab = "PCA2", pch = 32 ) 
points( pc$x[1:4,1], pc$x[1:4,2], col = "blue", pch = c( 49,50,51,52 ) ) 
points( pc$x[5:8,1], pc$x[5:8,2], col = "red", pch = c( 53,54,55,56 ) ) 
 
plot( pc$x[,3], pc$x[,4], main = sprintf( "PCA" ), xlab = "PCA3", ylab = "PCA4", pch = 32 ) 
points( pc$x[1:4,3], pc$x[1:4,4], col = "blue", pch = c( 49,50,51,52 ) ) 
points( pc$x[5:8,3], pc$x[5:8,4], col = "red", pch = c( 53,54,55,56 ) ) 
 
library( plotly ) 
 
pcap = data.frame( PCA1 = pc$x[,1], PCA2 = pc$x[,2], PCA3 = pc$x[,3], group = c( 
"LC","LC","LC","LC","LS","LS","LS","LS" ) ) 
p = plot_ly( pcap, x = ~PCA1, y = ~PCA2, z = ~PCA3, color = ~group, opacity = 0.5 ) %>% 
  add_markers() %>% 
  layout( scene = list( xasis = list( title = "PCA1" ),  
                        yaxis = list( title = "PCA2" ), 
                        zaxis = list( title = "PCA3" ))) 
p 
 
pc = prcomp( b[9:16,] ) 
 
d = UQnl 
 
mask = colSums( d[9:16,] ) > 10 
e = d[9:16,] 
e = e[ , mask ] 
 
pc = prcomp( e ) 
summary( pc ) 
plot( pc ) 
 
plot( pc$x[,1], pc$x[,2], main = sprintf( "PCA" ), xlab = "PCA1", ylab = "PCA2", pch = 32 ) 
points( pc$x[1:4,1], pc$x[1:4,2], col = "darkgreen", pch = c( 49,50,51,52 ) ) 
points( pc$x[5:8,1], pc$x[5:8,2], col = "darkorange", pch = c( 53,54,55,56 ) ) 
 
plot( pc$x[,3], pc$x[,4], main = sprintf( "PCA" ), xlab = "PCA3", ylab = "PCA4", pch = 32 ) 
points( pc$x[1:4,3], pc$x[1:4,4], col = "darkgreen", pch = c( 49,50,51,52 ) ) 
points( pc$x[5:8,3], pc$x[5:8,4], col = "darkorange", pch = c( 53,54,55,56 ) ) 
 
 
library( plotly ) 
 
pcap = data.frame( PCA1 = pc$x[,1], PCA2 = pc$x[,2], PCA3 = pc$x[,3], group = c( 
"LC","LC","LC","LC","LS","LS","LS","LS","RC","RC","RC","RC","RS","RS","RS","RS" ) ) 
p = plot_ly( pcap, x = ~PCA1, y = ~PCA2, z = ~PCA3, color = ~group, opacity = 0.5 ) %>% 
  add_markers() %>% 
  layout( scene = list( xasis = list( title = "PCA1" ),  
                        yaxis = list( title = "PCA2" ), 
                        zaxis = list( title = "PCA3" ))) 
p 
cat( "end\n") 
 
 

10.5 Barley_SmallRNA_DE.R 

ptm = proc.time() 
 
library( Rsamtools ) 
library( compiler ) 
library( ggplot2 ) 
library( scales ) 
library( reshape2 ) 
library( plyr ) 
 
enableJIT(3) 
 
dir_miRBase = 'C:\\BaseSpace\\Jason_SmallRNA_31_aligned_miRBase_rm_mpr' 
dir_sRNAbench = 'C:\\BaseSpace\\Jason_SmallRNA_34_aligned_sRNAbench' 
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#Need to load 2 files, : 
# SmallRNA leaf and root rRNA mito plastid removed mapped to sRNAbase.Rdata 
# SmallRNA leaf 21nt with rRNA plastid mito removed mapped to miRBase.Rdata (or opt1) 
 
miRNAcountTable = read.csv( FileCounts, sep = "\t" ) 
cat( sprintf( "L1, %s", miRNAcountTable[17,1] ) ) 
 
load( file = paste0( "SmallRNA leaf and root rRNA mito plastid removed mapped to 
sRNAbase.Rdata" )) 
a_sRNAbase = a 
 
load( file = paste0( "SmallRNA leaf and root rRNA mito plastid removed mapped to miRBase 
opt1.Rdata" )) 
a_miRbase = a 
 
a = cbind( a_sRNAbase, a_miRbase ) 
 
mask = colSums( a ) > 10 
 
b = a[ , mask ] 
 
# d is CPM 
 
#edgeR is required for different normalisation methods 
library( edgeR ) 
 
f = t( b ) 
fsum = colSums( f ) 
group = c( "LC","LC","LC","LC","LS","LS","LS","LS","RC","RC","RC","RC","RS","RS","RS","RS" ) 
 
library( DESeq2 ) 
library( pasilla ) 
library( ggplot2 ) 
library( reshape2 ) 
library( plyr ) 
library( scales ) 
 
#Change this option to select only leaf or root tissue 
#Leaf = TRUE 
Leaf = FALSE 
 
LeafTreatFile  = "C:/BaseSpace/mRNA_DE/Leaf treatment.csv" 
RootTreatFile  = "C:/BaseSpace/mRNA_DE/Root treatment.csv" 
 
if( Leaf == TRUE ) 
{ 
  cts = f[,1:8] 
  coldata = read.csv( LeafTreatFile, row.names = 1 ) 
  TotalReads = colSums( cts ) 
} else { 
  cts = f[,9:16] 
  coldata = read.csv( RootTreatFile, row.names = 1 ) 
  TotalReads = colSums( cts ) 
} 
all( rownames( coldata ) == colnames( cts ) ) 
 
dds <- DESeqDataSetFromMatrix( countData = cts, 
                               colData = coldata, 
                               design = ~ condition ) 
dds 
 
dds$condition = factor( dds$condition, levels = c( "Control", "Salt" ) ) 
 
dds = DESeq( dds ) 
res = results( dds ) 
res 
 
resOrdered = res[ order( res$padj ), ] 
summary( res ) 
sum( res$padj < 0.05, na.rm = TRUE ) 
 
res0_01 = results( dds, alpha = 0.05 ) 
summary( res0_01 ) 
 
plotMA( res0_01, ylim = c( -3,3 ) ) 
 
plotCounts(dds, gene=which.min(res$padj), intgroup="condition") 
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restemp = res[ complete.cases( res$padj ), ] 
resOnlySig = restemp[ restemp$padj < 0.05, ] 
restemp$log2FoldChange > 1 ) ), ] 
restemp$log2FoldChange > 0.585 ) ), ] 
resOnlySig = resOnlySig[ order( resOnlySig$log2FoldChange ), ] 
 
#Want to get the names from this list 
 
SigGenes = row.names( resOnlySig ) 
 
SigGenesRoot0.001 = SigGenes 
 
rarray = NULL 
 
counts1 = 0 
counts2 = 0 
counts3 = 0 
counts4 = 0 
 
for( GeneName in  SigGenes ) 
{ 
  counts1 = counts1 + 1 
  r = grep( GeneName, row.names( cts ) ) 
  if( !isEmpty(r) ) 
  { 
    counts2 = counts2 + 1 
    if( r > 0 ) 
    { 
      counts3 = counts3 + 1 
      rarray = append( rarray, r ) 
    } 
  } 
} 
 
cts2 = counts(dds, normalized = TRUE ) 
 
SigGenesCounts = cts[ rarray, ] 
SigGenesNormCol = SigGenesCounts 
SigGenesNormCol.m = melt( SigGenesNormCol ) 
SigGenesNormCol.m = ddply( SigGenesNormCol.m, .(Var1), transform, rescale = rescale( value, to 
= c(-1,1) ) ) 
 
(p = ggplot( SigGenesNormCol.m, aes( Var2, Var1, fill = rescale ) ) + geom_tile())# aes(fill = 
rescale), colour = "white" )+ scale_fill_gradient(low = "white", high = "steelblue")) 
 
nrow( SigGenesNormCol ) 
 
df1 = data.frame( SigGenesNormCol ) 
 
if( Leaf == TRUE ) 
{ 
  write.table( df1, file = "Significant miRNA DE Leaf.tsv", sep = "\t" ) 
  write.table( resOnlySig, file = "Significant miRNA DE Leaf resOnlySig.tsv", sep = "\t" ) 
} else { 
  write.table( df1, file = "Significant miRNA DE Root.tsv", sep = "\t" ) 
  write.table( resOnlySig, file = "Significant miRNA DE Root resOnlySig.tsv", sep = "\t" ) 
} 
 
 

10.6 SmallRNA_size_grouping.py 

This python program takes smallRNA that has had contaminants removed and sorts 

in to separate files based on the smallRNA sequence length. 

import gzip 
import os 
import glob 
 
filein0 = '/home/jason/Share/Jason_SmallRNA_25_remove_mito_plastid_rRNA_18-26nt/R' 
#filein0 = '/home/jason/Share/Jason_SmallRNA_25_remove_mito_plastid_rRNA_18-26nt/L' 
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filein2 = '_remove_mito_plastid_rRNA.fastq.gz' 
filesin = [] 
fileout0 = 'R' 
#fileout0 = 'L' 
fileout2 = '.fastq' 
filesout = [] 
for x in range( 1, 9 ): 
    filesin.append( filein0 + str(x) + filein2 ) 
    filesout.append( fileout0 + str(x) + fileout2 ) 
     
f20d = '/home/jason/Share/Jason_SmallRNA_27_Root_20nt/' 
f21d = '/home/jason/Share/Jason_SmallRNA_27_Root_21nt/' 
f22d = '/home/jason/Share/Jason_SmallRNA_27_Root_22nt/' 
f23d = '/home/jason/Share/Jason_SmallRNA_27_Root_23nt/' 
f24d = '/home/jason/Share/Jason_SmallRNA_27_Root_24nt/' 
#f20d = '/home/jason/Share/Jason_SmallRNA_27_Leaf_20nt/' 
#f21d = '/home/jason/Share/Jason_SmallRNA_27_Leaf_21nt/' 
#f22d = '/home/jason/Share/Jason_SmallRNA_27_Leaf_22nt/' 
#f23d = '/home/jason/Share/Jason_SmallRNA_27_Leaf_23nt/' 
#f24d = '/home/jason/Share/Jason_SmallRNA_27_Leaf_24nt/' 
 
count = 0 
 
for x in range( 0, 8 ): 
    print( filesin[x] ) 
    f20 = open( f20d + filesout[x], 'a' ) 
    f21 = open( f21d + filesout[x], 'a' ) 
    f22 = open( f22d + filesout[x], 'a' ) 
    f23 = open( f23d + filesout[x], 'a' ) 
    f24 = open( f24d + filesout[x], 'a' ) 
    with gzip.open( filesin[x], 'rb' ) as fin: 
        for line in fin: 
            if( count % 4000000 == 0 ): 
                print( count/4 ) 
            count = count + 1 
            if ( ( count%4 ) == 1 ): 
                line1 = line 
            if ( ( count%4 ) == 2 ): 
                line2 = line 
            if ( ( count%4 ) == 3 ): 
                line3 = line 
            if ( ( count%4 ) == 0 ): 
                line4 = line 
                if( len( line2 ) - 1 == 20 ): 
                    f20.write( line1 + line2 + line3 + line4 ) 
                if( len( line2 ) - 1 == 21 ): 
                    f21.write( line1 + line2 + line3 + line4 ) 
                if( len( line2 ) - 1 == 22 ): 
                    f22.write( line1 + line2 + line3 + line4 ) 
                if( len( line2 ) - 1 == 23 ): 
                    f23.write( line1 + line2 + line3 + line4 ) 
                if( len( line2 ) - 1 == 24 ): 
                    f24.write( line1 + line2 + line3 + line4 ) 
    count = 0 
    f20.close() 
    f21.close() 
    f22.close() 
    f23.close() 
    f24.close() 

 

 

10.7 siRNA_windowing.py 

This python program counts the number of siRNA reads in each 100 bp window of 

the genome and also the number of mapped and total smallRNA reads. 

#!/usr/bin/python 
# 
# Batches siRNA reads in to windows 
# 
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# Jason Smith 
# Last modified 14/2/2020 (d/m/y) 
 
import sys 
import gzip 
import os 
import time 
 
window_size = 100 
step_size = 100 
 
starttime = time.time() 
if( sys.platform[0] == 'w' ): 
    basedir = 'C:/BaseSpace/' 
else: 
    basedir = '/home/jason/Share/' 
 
dir_in = basedir + 'Jason_SmallRNA_40_Root_aligned_23nt/' 
dir_out = basedir + 'Jason_SmallRNA_40_Root_aligned_23nt/' 
 
chromosomes = [ 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ] 
chr_sizes = [ 558535432, 768075024, 699711114, 647060158, 670030160, 583380513, 657224000, 
249774706 ] 
s = [ 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 
'R7', 'R8' ] 
 
sL = s[ 8:16 ] 
 
for samp in sL: 
    mapped_counts = [ None ] * 8 
    for c1 in range( 8 ): 
        mapped_counts[ c1 ] = [ 0.0 ] * ( chr_sizes[ c1 ] / step_size + 1 ) 
    fname = dir_in + samp + '.fastq.gz.bowtie.aligned.sam.gz' 
    print( 'Reading %s' % fname ) 
    fh = gzip.open( fname, 'rb' ) 
    # Need to read and discard the header lines 
    keep_going = True 
    while( keep_going ): 
        next_line = fh.readline().strip() 
        if( next_line[0] != '@' ): 
            keep_going = False 
    keep_going = True 
    loop_count = 0 
    total_reads = 0 
    mapped_reads = 0 
    while( keep_going ): 
        line_split = next_line.split() 
        line_ID = line_split[0] 
        # Need to find all instances with the same ID 
        same_ID = True 
        multilines = [] 
        multilines.append( line_split ) 
        total_reads += 1 
        while( same_ID ): 
            next_line = fh.readline().strip() 
            if( next_line == '' ): 
                keep_going = False 
                same_ID = False 
                break 
            line_split = next_line.split() 
            if( line_split[0] == line_ID ): 
                # It is the same ID 
                multilines.append( line_split ) 
            else: 
                same_ID = False 
             
        # Check that they are all the same match level 
        if( ( int( multilines[ 0 ][ 1 ] ) & 4 ) == 4 ): 
            pass 
        else: 
            mapped_reads += 1 
            for c1 in range( len( multilines ) ): 
                if( multilines[ c1 ][ 2 ] in chromosomes ): 
                    ind1 = chromosomes.index( multilines[ c1 ][ 2 ] ) 
                    ind2 = int( ( int( multilines[ c1 ][ 3 ] ) + 11 ) / window_size ) 
                    mapped_counts[ ind1 ][ ind2 ] += 1.0 / len( multilines ) 
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        # Note that bowtie2 mapping location is relative to the genome and goes from that 
        # point to the right regardless of it being forward or reverse strand alignment 
        # BAM flags 
        # Bit     Description 
        #    1   0x1 template having multiple segments in sequencing 
        #    2   0x2 each segment properly aligned according to the aligner 
        #    4   0x4 segment unmapped 
        #    8   0x8 next segment in the template unmapped 
        #   16  0x10 SEQ being reverse complemented 
        #   32  0x20 SEQ of the next segment in the template being reverse complemented 
        #   64  0x40 the first segment in the template 
        #  128  0x80 the last segment in the template 
        #  256 0x100 secondary alignment 
        #  512 0x200 not passing filters, such as platform/vendor quality controls 
        # 1024 0x400 PCR or optical duplicate 
        # 2048 0x800 supplementary alignment 
 
        loop_count += 1 
        if( ( loop_count % 100000 ) == 0 ): 
            print( loop_count ) 
 
    fh.close() 
    fname_mc = dir_in + 'n1.mapped.counts.window.%d.step.%d.%s.totals.tsv' % ( window_size, 
step_size, samp ) 
    fo_mc = open( fname_mc, 'wb' ) 
    fo_mc.write( 'Total reads = %d\n' % total_reads ) 
    fo_mc.write( 'Mapped reads = %d\n' % mapped_reads ) 
    fo_mc.close() 
    for chr_ind in range( len( chromosomes ) ): 
        fname_mc = dir_in + 'n1.mapped.counts.window.%d.step.%d.%s.%s.tsv' % ( window_size, 
step_size, samp, chromosomes[ chr_ind ] ) 
        fo_mc = open( fname_mc, 'wb' ) 
        for c2 in range( len( mapped_counts[ chr_ind ] ) ): 
            fo_mc.write( '%.4g\n' % mapped_counts[ chr_ind ][ c2 ] ) 
        fo_mc.close() 
 
endtime = time.time() 
print( "End time - start time = %f" % ( endtime - starttime ) ) 
 

 

10.8 windowed_siRNA_ttests.R 

This R script takes the output from smallRNA_windowing.py and performs t-tests 

for each genomic window with reads in at least three of the biological replicates. This 

output is not useful in itself as the t-tests need  

 
# This R script takes the windowed small RNA data set from pypy smallRNA_windowing_04.py 
# and determines statistical significance between groups 
 
ptm = proc.time() 
 
library( compiler ) 
library( data.table ) 
 
enableJIT( 3 ) 
 
lr = 'L' 
#lr = 'R' 
chromosomes = c( 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ) 
s = c( 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 
'R7', 'R8' ) 
 
if( lr == 'L' ) 
{ 
  ss = s[ 1:8 ] 
  dirs = c( 'C:/BaseSpace/Jason_SmallRNA_40_Leaf_aligned_23nt/', 
'C:/BaseSpace/Jason_SmallRNA_40_Leaf_aligned_24nt/' ) 
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  dirout = 'C:/BaseSpace/Jason_SmallRNA_40_Leaf_aligned_23-24nt/' 
} else { 
  ss = s[ 9:16 ] 
  dirs = c( 'C:/BaseSpace/Jason_SmallRNA_40_Root_aligned_23nt/', 
'C:/BaseSpace/Jason_SmallRNA_40_Root_aligned_24nt/' ) 
  dirout = 'C:/BaseSpace/Jason_SmallRNA_40_Root_aligned_23-24nt/' 
} 
total_reads = numeric( length = length( chromosomes ) ) 
mapped_reads = numeric( length = length( chromosomes ) ) 
 
for( samp_ind in 1:length( ss ) ) 
{ 
  filename23 = paste0( dirs[ 1 ], 'mapped.counts.window.100.step.100.', ss[ samp_ind ], 
'.totals.tsv' ) 
  totals23 = fread( filename23, sep = '=' ) 
  filename24 = paste0( dirs[ 2 ], 'mapped.counts.window.100.step.100.', ss[ samp_ind ], 
'.totals.tsv' ) 
  totals24 = fread( filename24, sep = '=' ) 
  total_reads[ samp_ind ] = as.numeric( totals23[ 1, 2 ] ) + as.numeric( totals24[ 1, 2 ] ) 
  mapped_reads[ samp_ind ] = as.numeric( totals23[ 2, 2 ] ) + as.numeric( totals24[ 2, 2 ] ) 
} 
 
chr_ind = 1 
samp_ind = 1 
 
for( chr_ind in 1:length( chromosomes ) ) 
{ 
  cpm = NULL 
  for( samp_ind in 1:length( ss ) ) 
  { 
    filename23 = paste0( dirs[ 1 ], 'n1.mapped.counts.window.100.step.100.', ss[ samp_ind ], 
'.', chromosomes[ chr_ind ], '.tsv' ) 
    filename24 = paste0( dirs[ 2 ], 'n1.mapped.counts.window.100.step.100.', ss[ samp_ind ], 
'.', chromosomes[ chr_ind ], '.tsv' ) 
    a1 = fread( filename23, sep = '\n' ) 
    a2 = fread( filename24, sep = '\n' ) 
    cpm[[ samp_ind ]] = ( a1 + a2 ) * 1000000 / mapped_reads[ samp_ind ] 
  } 
  rm( a1, a2 ) 
   
  cat( 'directory ', dirs[ 1 ], ', chromosome ', chromosomes[ chr_ind ], '\n', sep = '' ) 
  cat( 'directory ', dirs[ 2 ], ', chromosome ', chromosomes[ chr_ind ], '\n', sep = '' ) 
  # Need do lots of t-tests then work out the q-value (p-value adjusted for false discovery 
rate) 
  wins = NROW( cpm[[1]] ) 
  pvals = numeric( length = wins ) + 1 
  mean_c = numeric( length = wins ) * NA 
  mean_t = numeric( length = wins ) * NA 
  indices = numeric( length = wins ) 
  counter = 0 
   
  for( win_ind in 1:wins ) 
  { 
    t1 = as.numeric( cpm[[ 1 ]][ win_ind ] ) 
    t2 = as.numeric( cpm[[ 2 ]][ win_ind ] ) 
    t3 = as.numeric( cpm[[ 3 ]][ win_ind ] ) 
    t4 = as.numeric( cpm[[ 4 ]][ win_ind ] ) 
    t5 = as.numeric( cpm[[ 5 ]][ win_ind ] ) 
    t6 = as.numeric( cpm[[ 6 ]][ win_ind ] ) 
    t7 = as.numeric( cpm[[ 7 ]][ win_ind ] ) 
    t8 = as.numeric( cpm[[ 8 ]][ win_ind ] ) 
     
    if( t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 > 0 ) 
    { 
      counter = counter + 1 
      x1 = c( t1, t2, t3, t4 ) 
      y1 = c( t5, t6, t7, t8 ) 
      if( ( sum( x1 != 0 ) >= 3  ) | ( sum( y1 != 0 ) >= 3  ) ) 
      { 
        pt = t.test( x = x1, y = y1  ) 
        if( !is.nan( pt$p.value ) ) 
        { 
          pvals[ counter ] = pt$p.value 
          mean_c[ counter ] = pt$estimate[ 1 ] 
          mean_t[ counter ] = pt$estimate[ 2 ] 
          indices[ counter ] = win_ind 
        } else { 
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          indices[ counter ] = win_ind 
        } 
      } else { 
        indices[ counter ] = win_ind 
      } 
    } 
    if( win_ind %% 100000 == 0 ) 
    { 
      temp_time = proc.time() - ptm 
      cat( win_ind, ' of ', wins, ', user time = ', temp_time[ 1 ], 's, system time = ', 
temp_time[ 2 ], 's, elapsed time = ', temp_time[ 3 ], 's\n', sep = '' ) 
    } 
  } 
  temp_time = proc.time() - ptm 
  cat( 'user time = ', temp_time[ 1 ], 's, system time = ', temp_time[ 2 ], 's, elapsed time = 
', temp_time[ 3 ], 's\n', sep = '' ) 
  #shorten everything 
  pvals = pvals[ 1:counter ] 
  mean_c = mean_c[ 1:counter ] 
  mean_t = mean_t[ 1:counter ] 
  indices = indices[ 1:counter ] 
   
   
  statr = data.table( index = indices, pvals = pvals, mean_c = mean_c, mean_t = mean_t ) 
  filename = paste0( dirout, 'n1.mapped.counts.window.100.step.100.stats.', chromosomes[ 
chr_ind ], '.tsv' ) 
  write.table( statr, file = filename, col.names = TRUE, row.names = FALSE, sep = '\t' ) 
} 

 
 

10.9 ttests_to_adjusted_p.R 

This R script uses the output from windowed_smallRNA_ttests.R to determine 

adjusted p-values. 

# This R script takes the p-values from windowed_smallRNA_ttests.R 
# and determines statistical significance with q-value and false discovery rate adjustments 
 
ptm = proc.time() 
 
library( compiler ) 
library( data.table ) 
library( qvalue ) 
 
enableJIT( 3 ) 
 
dir1 = 'C:/BaseSpace/Jason_SmallRNA_40_Leaf_aligned_23nt/' 
dir1 = '~/Share/Jason_SmallRNA_40_Leaf_aligned_23-24nt/' 
lr = 'L' 
#lr = 'R' 
chromosomes = c( 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ) 
chr_sizes = c( 558535432, 768075024, 699711114, 647060158, 670030160, 583380513, 657224000, 
249774706 ) 
s = c( 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 
'R7', 'R8' ) 
 
for( lr in c( 'L', 'R' ) ) 
{ 
  if( lr == 'L' ) 
  { 
    ss = s[ 1:8 ] 
    dirs = c( '~/Share/Jason_SmallRNA_40_Leaf_aligned_23-24nt/' ) 
  } else { 
    ss = s[ 9:16 ] 
    dirs = c( '~/Share/Jason_SmallRNA_40_Root_aligned_23-24nt/' ) 
  } 
  for( dir1 in dirs ) 
  { 
    for( chr_ind in 1:NROW( chromosomes ) ) 
    { 
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      filenamein = paste0( dir1, 'n1.mapped.counts.window.100.step.100.stats.', chromosomes[ 
chr_ind ], '.tsv' ) 
      if( file.exists( filename = filenamein ) ) 
      { 
        cat( filenamein, ' exists\n', sep = '' ) 
        filenameout = paste0( dir1, 'n1.mapped.counts.window.100.step.100.stats.qvals.', 
chromosomes[ chr_ind ], '.tsv' ) 
        if( file.exists( filename = filenameout ) ) 
        { 
          cat( filenameout, ' exists, so not overwriting\n', sep = '' ) 
        } else { 
          cat( filenamein, ' does not exist, so determining q-values and fdr\n', sep = '' ) 
          # read the input file 
          dtin = fread( filenamein, sep = '\t', showProgress = FALSE ) 
          cat( 'Number of rows = ', NROW( dtin ), sep = '' ) 
          # calculate the qvalues 
          qvals = qvalue( dtin$pvals ) 
          summary( qvals ) 
          # save the new data.table 
          statr = data.table( index = dtin$index, pvals = dtin$pvals, qvals = qvals$qvalues, 
lfdr = qvals$lfdr, mean_c = dtin$mean_c, mean_t = dtin$mean_t ) 
          write.table( statr, file = filenameout, col.names = TRUE, row.names = FALSE, sep = 
'\t' ) 
        } 
      } else { 
        cat( filenamein, ' does not exist yet, so cannot process that one yet\n', sep = '' ) 
      } 
    } 
  } 
} 

 
 

10.10 Annotate_siRNA.R 

This custom R script takes the statistically significant differences in expression over 

100 bp windows of heterochromatic siRNA in salt treated vs control plants from 

ttests_to_adjusted_p.R and finds genomic features nearby. Genes within 1.5 kbp are 

counted and other genomic features with direct overlap of the 100 bp window are 

counted. 

 
library( 'methylKit' ) 
library( 'genomation' ) 
library( 'GenomicFeatures' ) 
library( 'data.table' ) 
library( 'compiler' ) 
enableJIT( 3 ) 
 
if( exists( 'alreadyread' ) == FALSE ) 
{ 
  gff = gffToGRanges( '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.gz', ensembl = TRUE, zero.based = FALSE ) 
  genes = gffToGRanges( '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.gz', ensembl = TRUE, zero.based = FALSE, filter = 'gene' ) 
  filter.types =  c( 'gene', 'ncRNA_gene', 'lnc_RNA', 'tRNA', 'rRNA', 'snRNA', 'snoRNA', 
'pre_miRNA' ) 
  gff.filtered =  gff[ !is.na( match( gff$type, filter.types  ) ) ] 
  rm( gff ) 
   
  te.table = fread( file = '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Barley_TE_annotation_v2_18Aug16.tsv', sep = '\t', header = TRUE ) 
  t2 = data.table( chr = te.table$seq_id, start = te.table$start, end = te.table$end, TE_code 
= te.table$TE_code ) 
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  te.chr1H = t2[ t2$chr == 'chr1H' ] 
  te.chr2H = t2[ t2$chr == 'chr2H' ] 
  te.chr3H = t2[ t2$chr == 'chr3H' ] 
  te.chr4H = t2[ t2$chr == 'chr4H' ] 
  te.chr5H = t2[ t2$chr == 'chr5H' ] 
  te.chr6H = t2[ t2$chr == 'chr6H' ] 
  te.chr7H = t2[ t2$chr == 'chr7H' ] 
  te.chrUn = t2[ t2$chr == 'chrUn' ] 
  rm( t2, te.table ) 
   
  t1 =  genes[ seqnames( genes ) == 'chrchr1H' ] 
  genes.chr1H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr2H' ] 
  genes.chr2H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr3H' ] 
  genes.chr3H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr4H' ] 
  genes.chr4H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr5H' ] 
  genes.chr5H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr6H' ] 
  genes.chr6H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr7H' ] 
  genes.chr7H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchrUn' ] 
  genes.chrUn = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  gff.chr1H = gff.filtered[ seqnames( gff.filtered) == 'chrchr1H' ] 
  gff.chr2H = gff.filtered[ seqnames( gff.filtered) == 'chrchr2H' ] 
  gff.chr3H = gff.filtered[ seqnames( gff.filtered) == 'chrchr3H' ] 
  gff.chr4H = gff.filtered[ seqnames( gff.filtered) == 'chrchr4H' ] 
  gff.chr5H = gff.filtered[ seqnames( gff.filtered) == 'chrchr5H' ] 
  gff.chr6H = gff.filtered[ seqnames( gff.filtered) == 'chrchr6H' ] 
  gff.chr7H = gff.filtered[ seqnames( gff.filtered) == 'chrchr7H' ] 
  gff.chrUn = gff.filtered[ seqnames( gff.filtered) == 'chrchrUn' ] 
   
} 
alreadyread = 1 
 
lr = 'R' 
offset = 0 
offset = 1000 
offset = 1500 
chromosomes = c( 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ) 
chromosome = 'chrUn' 
filebase = '/home/jason/Share/Jason_SmallRNA_40_Leaf_aligned_24nt/' 
 
for( filebase in c( '/home/jason/Share/Jason_SmallRNA_40_Leaf_aligned_23nt/', 
                    '/home/jason/Share/Jason_SmallRNA_40_Leaf_aligned_24nt/', 
                    '/home/jason/Share/Jason_SmallRNA_40_Leaf_aligned_23-24nt/', 
                    '/home/jason/Share/Jason_SmallRNA_40_Root_aligned_23nt/', 
                    '/home/jason/Share/Jason_SmallRNA_40_Root_aligned_24nt/', 
                    '/home/jason/Share/Jason_SmallRNA_40_Root_aligned_23-24nt/' ) ) 
{ 
  for( chromosome in chromosomes ) 
  { 
    offset = 1500 
    ptm = proc.time() 
     
    file_in = paste0( filebase, 'n1.mapped.counts.window.100.step.100.stats.qvals.', 
chromosome, '.tsv' ) 
    dat1 = fread( file = file_in, header = TRUE ) 
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    dat2 = dat1[ dat1$pvals < 0.05 , ] 
    cat( paste0( file_in, '\n' ) ) 
 
    len1 = NROW( dat2 ) 
    prev_chr = 'chr1H' 
    gene_chr = gff.chr1H 
    te_chr = te.chr1H 
    annotation = NULL 
    for( ind1 in 1:len1 ) 
    { 
      seqname = chromosome 
      flag_change = 0 
      if( seqname != prev_chr ){ 
        if( seqname == 'chr2H' ){ 
          prev_chr = 'chr2H' 
          gene_chr = gff.chr2H 
          te_chr = te.chr2H 
          flag_change = 1 
        } 
        if( seqname == 'chr3H' ){ 
          prev_chr = 'chr3H' 
          gene_chr = gff.chr3H 
          te_chr = te.chr3H 
          flag_change = 1 
        } 
        if( seqname == 'chr4H' ){ 
          prev_chr = 'chr4H' 
          gene_chr = gff.chr4H 
          te_chr = te.chr4H 
          flag_change = 1 
        } 
        if( seqname == 'chr5H' ){ 
          prev_chr = 'chr5H' 
          gene_chr = gff.chr5H 
          te_chr = te.chr5H 
          flag_change = 1 
        } 
        if( seqname == 'chr6H' ){ 
          prev_chr = 'chr6H' 
          gene_chr = gff.chr6H 
          te_chr = te.chr6H 
          flag_change = 1 
        } 
        if( seqname == 'chr7H' ){ 
          prev_chr = 'chr7H' 
          gene_chr = gff.chr7H 
          te_chr = te.chr7H 
          flag_change = 1 
        } 
        if( seqname == 'chrUn' ){ 
          prev_chr = 'chrUn' 
          gene_chr = gff.chrUn 
          te_chr = te.chrUn 
          flag_change = 1 
        } 
      } 
       
      # The location is from ( dat2$index - 1 ) * 100 + 1 to dat2$index * 100 
       
      temp1 = gene_chr[ ( ( dat2$index[ ind1 ]*100  < end( gene_chr ) + offset  ) & ( 
dat2$index[ ind1 ]*100  > start( gene_chr ) - offset ) ) | 
                        ( ( ( dat2$index[ ind1 ] - 1 )*100 + 1  < end( gene_chr ) + offset  ) 
& ( ( dat2$index[ ind1 ] - 1 )*100 + 1  > start( gene_chr ) - offset ) ) ] 
      
       
      mid =  ( dat2$index[ ind1 ]*100 + ( dat2$index[ ind1 ] - 1 )*100 + 1 ) / 2 
       
      temp2 = te_chr[ ( ( mid < te_chr$end  ) & ( mid > te_chr$start ) ) |  
                      ( ( dat2$index[ ind1 ]*100 < te_chr$end  ) & ( dat2$index[ ind1 ]*100 > 
te_chr$start ) ) | 
                      ( ( ( dat2$index[ ind1 ] - 1 )*100 + 1 < te_chr$end  ) & ( ( dat2$index[ 
ind1 ] - 1 )*100 + 1 > te_chr$start ) ) ] 
       
       
      temp3 = data.frame( chr = character(), start = integer(), end = integer(), TE_code = 
character(), stringsAsFactors = FALSE  ) 
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      # if everything is empty then the none flag is set 
      if( ( NROW( temp1 ) == 0 ) & ( NROW( temp2 ) == 0 ) ) 
      { 
        none = 1 
      } else { 
        none = 0 
      } 
      #If it is a gene, then want to know the annotation 
      qv = dat2$pvals[ ind1 ] 
      mean_c = dat2$mean_c[ ind1 ] 
      mean_t = dat2$mean_t[ ind1 ] 
       
      if( as( sum( temp1$type == 'gene' ) > 0, 'integer' ) ) 
      { 
        temp4 = temp1[ temp1$type == 'gene' ] 
        geneID = temp4$gene_id[ 1 ] 
      } else { 
        geneID = '' 
      } 
      # if it is a gene at the same time as a TE then the TE label with 'g' at the start is 
used rather than the TE label 
      if( ( as( sum( temp1$type == 'gene' ) > 0, 'integer' ) == 1 ) & ( NROW( temp2 ) != 0 ) ) 
      { 
        temp1 = temp1[ 0, ] 
        temp3 = temp2 
        temp2 = data.frame( chr = character(), start = integer(), end = integer(), TE_code = 
character(), stringsAsFactors = FALSE  ) 
      }  
 
      df1 = data.frame( chr = seqname, 
                        start = ( dat2$index[ ind1 ] - 1 )*100 + 1, 
                        end = dat2$index[ ind1 ]*100, 
                        gene = as( sum( temp1$type == 'gene' ) > 0, 'integer' ), 
                        ncRNA_gene = as( sum( temp1$type == 'ncRNA_gene' ) > 0, 'integer' ), 
                        lnc_RNA = as( sum( temp1$type == 'lnc_RNA' ) > 0, 'integer' ), 
                        tRNA = as( sum( temp1$type == 'tRNA' ) > 0, 'integer' ), 
                        rRNA = as( sum( temp1$type == 'rRNA' ) > 0, 'integer' ), 
                        snRNA = as( sum( temp1$type == 'snRNA' ) > 0, 'integer' ), 
                        snoRNA = as( sum( temp1$type == 'snoRNA' ) > 0, 'integer' ), 
                        pre_miRNA = as( sum( temp1$type == 'pre_miRNA' ) > 0, 'integer' ), 
                        DHH = as( sum( temp2$TE_code == 'DHH' ) > 0, 'integer' ), 
                        DTA = as( sum( temp2$TE_code == 'DTA' ) > 0, 'integer' ), 
                        DTC = as( sum( temp2$TE_code == 'DTC' ) > 0, 'integer' ), 
                        DTH = as( sum( temp2$TE_code == 'DTH' ) > 0, 'integer' ), 
                        DTM = as( sum( temp2$TE_code == 'DTM' ) > 0, 'integer' ), 
                        DTT = as( sum( temp2$TE_code == 'DTT' ) > 0, 'integer' ), 
                        DTX = as( sum( temp2$TE_code == 'DTX' ) > 0, 'integer' ), 
                        DXX = as( sum( temp2$TE_code == 'DXX' ) > 0, 'integer' ), 
                        RIX = as( sum( temp2$TE_code == 'RIX' ) > 0, 'integer' ), 
                        RLC = as( sum( temp2$TE_code == 'RLC' ) > 0, 'integer' ), 
                        RLG = as( sum( temp2$TE_code == 'RLG' ) > 0, 'integer' ), 
                        RLX = as( sum( temp2$TE_code == 'RLX' ) > 0, 'integer' ), 
                        RSX = as( sum( temp2$TE_code == 'RSX' ) > 0, 'integer' ), 
                        RXX = as( sum( temp2$TE_code == 'RXX' ) > 0, 'integer' ), 
                        XXX = as( sum( temp2$TE_code == 'XXX' ) > 0, 'integer' ), 
                        gDHH = as( sum( temp3$TE_code == 'DHH' ) > 0, 'integer' ), 
                        gDTA = as( sum( temp3$TE_code == 'DTA' ) > 0, 'integer' ), 
                        gDTC = as( sum( temp3$TE_code == 'DTC' ) > 0, 'integer' ), 
                        gDTH = as( sum( temp3$TE_code == 'DTH' ) > 0, 'integer' ), 
                        gDTM = as( sum( temp3$TE_code == 'DTM' ) > 0, 'integer' ), 
                        gDTT = as( sum( temp3$TE_code == 'DTT' ) > 0, 'integer' ), 
                        gDTX = as( sum( temp3$TE_code == 'DTX' ) > 0, 'integer' ), 
                        gDXX = as( sum( temp3$TE_code == 'DXX' ) > 0, 'integer' ), 
                        gRIX = as( sum( temp3$TE_code == 'RIX' ) > 0, 'integer' ), 
                        gRLC = as( sum( temp3$TE_code == 'RLC' ) > 0, 'integer' ), 
                        gRLG = as( sum( temp3$TE_code == 'RLG' ) > 0, 'integer' ), 
                        gRLX = as( sum( temp3$TE_code == 'RLX' ) > 0, 'integer' ), 
                        gRSX = as( sum( temp3$TE_code == 'RSX' ) > 0, 'integer' ), 
                        gRXX = as( sum( temp3$TE_code == 'RXX' ) > 0, 'integer' ), 
                        gXXX = as( sum( temp3$TE_code == 'XXX' ) > 0, 'integer' ), 
                        none = none, 
                        geneID = geneID,  
                        qvalue = qv, 
                        mean_c = mean_c, 
                        mean_t = mean_t ) 
      annotation = rbind( annotation, df1 ) 
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    } 
 
    write.table( annotation, file = paste0( file_in, '.annotation.offset', offset, '.tsv' ), 
sep = '\t', row.name = FALSE, col.name = TRUE, quote = FALSE ) 
    annotationup = annotation[ annotation$mean_t > annotation$mean_c, ] 
    annotationdown = annotation[ annotation$mean_t < annotation$mean_c, ] 
    annotationsums = colSums( annotation[ , -c( 1, 2, 3, 43, 44, 45, 46 ) ] ) 
    annotationupsums = colSums( annotationup[ , -c( 1, 2, 3, 43, 44, 45, 46 ) ] ) 
    annotationdownsums = colSums( annotationdown[ , -c( 1, 2, 3, 43, 44, 45, 46 ) ] ) 
    check = rowSums( annotation[ , -c( 1, 2, 3, 43, 44, 45, 46 ) ] ) 
    write.table( annotationsums, file = paste0( file_in, '.annotationsums.offset', offset, 
'.tsv' ), sep = '\t', col.name = FALSE, row.name = TRUE, quote = FALSE ) 
    write.table( annotationupsums, file = paste0( file_in, '.annotationsums.up.offset', 
offset, '.tsv' ), sep = '\t', col.name = FALSE, row.name = TRUE, quote = FALSE ) 
    write.table( annotationdownsums, file = paste0( file_in, '.annotationsums.down.offset', 
offset, '.tsv' ), sep = '\t', col.name = FALSE, row.name = TRUE, quote = FALSE ) 
     
    temp_time = proc.time() - ptm 
    cat( 'user time = ', temp_time[ 1 ], 's, system time = ', temp_time[ 2 ], 's, elapsed time 
= ', temp_time[ 3 ], 's\n', sep = '' ) 
  } 
} 

 
 

10.11 Annotate_siRNA_random_sampling.R 

This custom R script is a modified version of Annotate_siRNA.R to determine the 

genomic features that would be targeted by random sampling of 100 bp windows of 

the genome. 

library( 'methylKit' ) 
library( 'genomation' ) 
library( 'GenomicFeatures' ) 
library( 'data.table' ) 
library( 'compiler' ) 
enableJIT( 3 ) 
 
if( exists( 'alreadyread' ) == FALSE ) 
{ 
  gff = gffToGRanges( '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.gz', ensembl = TRUE, zero.based = FALSE ) 
  genes = gffToGRanges( '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.gz', ensembl = TRUE, zero.based = FALSE, filter = 'gene' ) 
  filter.types =  c( 'gene', 'ncRNA_gene', 'lnc_RNA', 'tRNA', 'rRNA', 'snRNA', 'snoRNA', 
'pre_miRNA' ) 
  gff.filtered =  gff[ !is.na( match( gff$type, filter.types  ) ) ] 
  rm( gff ) 
   
  te.table = fread( file = '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Barley_TE_annotation_v2_18Aug16.tsv', sep = '\t', header = TRUE ) 
  t2 = data.table( chr = te.table$seq_id, start = te.table$start, end = te.table$end, TE_code 
= te.table$TE_code ) 
  te.chr1H = t2[ t2$chr == 'chr1H' ] 
  te.chr2H = t2[ t2$chr == 'chr2H' ] 
  te.chr3H = t2[ t2$chr == 'chr3H' ] 
  te.chr4H = t2[ t2$chr == 'chr4H' ] 
  te.chr5H = t2[ t2$chr == 'chr5H' ] 
  te.chr6H = t2[ t2$chr == 'chr6H' ] 
  te.chr7H = t2[ t2$chr == 'chr7H' ] 
  te.chrUn = t2[ t2$chr == 'chrUn' ] 
  rm( t2, te.table ) 
   
  t1 =  genes[ seqnames( genes ) == 'chrchr1H' ] 
  genes.chr1H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr2H' ] 
  genes.chr2H = data.table( start = start( t1 ), 
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                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr3H' ] 
  genes.chr3H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr4H' ] 
  genes.chr4H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr5H' ] 
  genes.chr5H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr6H' ] 
  genes.chr6H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr7H' ] 
  genes.chr7H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchrUn' ] 
  genes.chrUn = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  gff.chr1H = gff.filtered[ seqnames( gff.filtered) == 'chrchr1H' ] 
  gff.chr2H = gff.filtered[ seqnames( gff.filtered) == 'chrchr2H' ] 
  gff.chr3H = gff.filtered[ seqnames( gff.filtered) == 'chrchr3H' ] 
  gff.chr4H = gff.filtered[ seqnames( gff.filtered) == 'chrchr4H' ] 
  gff.chr5H = gff.filtered[ seqnames( gff.filtered) == 'chrchr5H' ] 
  gff.chr6H = gff.filtered[ seqnames( gff.filtered) == 'chrchr6H' ] 
  gff.chr7H = gff.filtered[ seqnames( gff.filtered) == 'chrchr7H' ] 
  gff.chrUn = gff.filtered[ seqnames( gff.filtered) == 'chrchrUn' ] 
   
} 
alreadyread = 1 
 
lr = 'R' 
offset = 0 
offset = 1000 
offset = 1500 
chromosomes = c( 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ) 
chromosome = 'chrUn' 
filebase = '/home/jason/Share/Jason_SmallRNA_40_Leaf_aligned_24nt/' 
 
chr_sizes = c( 558535432, 768075024, 699711114, 647060158, 670030160, 583380513, 657224000, 
249774706 ) 
nsamp = 10000 
 
for( filebase in c( '/home/jason/Share/Jason_SmallRNA_40_Random/' ) ) 
{ 
  for( chromosome in chromosomes ) 
  { 
    chr_sz = chr_sizes[ match( chromosome, chromosomes ) ] 
     
    offset = 1500 
    ptm = proc.time() 
     
    dat2 = data.table( index = sort( sample( 1:floor( chr_sz/100 ), size = floor( nsamp * 
chr_sz / sum( chr_sizes ) ) ) ) ) 
     
    file_in = paste0( filebase, 'random.', chromosome, '.tsv' ) 
     
    len1 = NROW( dat2 ) 
    prev_chr = 'chr1H' 
    gene_chr = gff.chr1H 
    te_chr = te.chr1H 
    annotation = NULL 
    for( ind1 in 1:len1 ) 
    { 
      seqname = chromosome 
      flag_change = 0 
      if( seqname != prev_chr ){ 
        if( seqname == 'chr2H' ){ 
          prev_chr = 'chr2H' 
          gene_chr = gff.chr2H 
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          te_chr = te.chr2H 
          flag_change = 1 
        } 
        if( seqname == 'chr3H' ){ 
          prev_chr = 'chr3H' 
          gene_chr = gff.chr3H 
          te_chr = te.chr3H 
          flag_change = 1 
        } 
        if( seqname == 'chr4H' ){ 
          prev_chr = 'chr4H' 
          gene_chr = gff.chr4H 
          te_chr = te.chr4H 
          flag_change = 1 
        } 
        if( seqname == 'chr5H' ){ 
          prev_chr = 'chr5H' 
          gene_chr = gff.chr5H 
          te_chr = te.chr5H 
          flag_change = 1 
        } 
        if( seqname == 'chr6H' ){ 
          prev_chr = 'chr6H' 
          gene_chr = gff.chr6H 
          te_chr = te.chr6H 
          flag_change = 1 
        } 
        if( seqname == 'chr7H' ){ 
          prev_chr = 'chr7H' 
          gene_chr = gff.chr7H 
          te_chr = te.chr7H 
          flag_change = 1 
        } 
        if( seqname == 'chrUn' ){ 
          prev_chr = 'chrUn' 
          gene_chr = gff.chrUn 
          te_chr = te.chrUn 
          flag_change = 1 
        } 
      } 
       
      # The location is from ( dat2$index - 1 ) * 100 + 1 to dat2$index * 100 
      temp1 = gene_chr[ ( ( dat2$index[ ind1 ]*100  < end( gene_chr ) + offset  ) & ( 
dat2$index[ ind1 ]*100  > start( gene_chr ) - offset ) ) | 
                        ( ( ( dat2$index[ ind1 ] - 1 )*100 + 1  < end( gene_chr ) + offset  ) 
& ( ( dat2$index[ ind1 ] - 1 )*100 + 1  > start( gene_chr ) - offset ) ) ] 
      
       
      mid =  ( dat2$index[ ind1 ]*100 + ( dat2$index[ ind1 ] - 1 )*100 + 1 ) / 2 
       
      temp2 = te_chr[ ( ( mid < te_chr$end  ) & ( mid > te_chr$start ) ) |  
                      ( ( dat2$index[ ind1 ]*100 < te_chr$end  ) & ( dat2$index[ ind1 ]*100 > 
te_chr$start ) ) | 
                      ( ( ( dat2$index[ ind1 ] - 1 )*100 + 1 < te_chr$end  ) & ( ( dat2$index[ 
ind1 ] - 1 )*100 + 1 > te_chr$start ) ) ] 
       
       
      temp3 = data.frame( chr = character(), start = integer(), end = integer(), TE_code = 
character(), stringsAsFactors = FALSE  ) 
       
       
      # if everything is empty then the none flag is set 
      if( ( NROW( temp1 ) == 0 ) & ( NROW( temp2 ) == 0 ) ) 
      { 
        none = 1 
      } else { 
        none = 0 
      } 
      #If it is a gene, then want to know the annotation 
      qv = 0.01 
      mean_c = 1 
      mean_t = 2 
       
      if( as( sum( temp1$type == 'gene' ) > 0, 'integer' ) ) 
      { 
        temp4 = temp1[ temp1$type == 'gene' ] 
        geneID = temp4$gene_id[ 1 ] 
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      } else { 
        geneID = '' 
      } 
      # if it is a gene at the same time as a TE then the TE label with 'g' at the start is 
used rather than the TE label 
      if( ( as( sum( temp1$type == 'gene' ) > 0, 'integer' ) == 1 ) & ( NROW( temp2 ) != 0 ) ) 
      { 
        temp1 = temp1[ 0, ] 
        temp3 = temp2 
        temp2 = data.frame( chr = character(), start = integer(), end = integer(), TE_code = 
character(), stringsAsFactors = FALSE  ) 
      }  
 
      df1 = data.frame( chr = seqname, 
                        start = ( dat2$index[ ind1 ] - 1 )*100 + 1, 
                        end = dat2$index[ ind1 ]*100, 
                        gene = as( sum( temp1$type == 'gene' ) > 0, 'integer' ), 
                        ncRNA_gene = as( sum( temp1$type == 'ncRNA_gene' ) > 0, 'integer' ), 
                        lnc_RNA = as( sum( temp1$type == 'lnc_RNA' ) > 0, 'integer' ), 
                        tRNA = as( sum( temp1$type == 'tRNA' ) > 0, 'integer' ), 
                        rRNA = as( sum( temp1$type == 'rRNA' ) > 0, 'integer' ), 
                        snRNA = as( sum( temp1$type == 'snRNA' ) > 0, 'integer' ), 
                        snoRNA = as( sum( temp1$type == 'snoRNA' ) > 0, 'integer' ), 
                        pre_miRNA = as( sum( temp1$type == 'pre_miRNA' ) > 0, 'integer' ), 
                        DHH = as( sum( temp2$TE_code == 'DHH' ) > 0, 'integer' ), 
                        DTA = as( sum( temp2$TE_code == 'DTA' ) > 0, 'integer' ), 
                        DTC = as( sum( temp2$TE_code == 'DTC' ) > 0, 'integer' ), 
                        DTH = as( sum( temp2$TE_code == 'DTH' ) > 0, 'integer' ), 
                        DTM = as( sum( temp2$TE_code == 'DTM' ) > 0, 'integer' ), 
                        DTT = as( sum( temp2$TE_code == 'DTT' ) > 0, 'integer' ), 
                        DTX = as( sum( temp2$TE_code == 'DTX' ) > 0, 'integer' ), 
                        DXX = as( sum( temp2$TE_code == 'DXX' ) > 0, 'integer' ), 
                        RIX = as( sum( temp2$TE_code == 'RIX' ) > 0, 'integer' ), 
                        RLC = as( sum( temp2$TE_code == 'RLC' ) > 0, 'integer' ), 
                        RLG = as( sum( temp2$TE_code == 'RLG' ) > 0, 'integer' ), 
                        RLX = as( sum( temp2$TE_code == 'RLX' ) > 0, 'integer' ), 
                        RSX = as( sum( temp2$TE_code == 'RSX' ) > 0, 'integer' ), 
                        RXX = as( sum( temp2$TE_code == 'RXX' ) > 0, 'integer' ), 
                        XXX = as( sum( temp2$TE_code == 'XXX' ) > 0, 'integer' ), 
                        gDHH = as( sum( temp3$TE_code == 'DHH' ) > 0, 'integer' ), 
                        gDTA = as( sum( temp3$TE_code == 'DTA' ) > 0, 'integer' ), 
                        gDTC = as( sum( temp3$TE_code == 'DTC' ) > 0, 'integer' ), 
                        gDTH = as( sum( temp3$TE_code == 'DTH' ) > 0, 'integer' ), 
                        gDTM = as( sum( temp3$TE_code == 'DTM' ) > 0, 'integer' ), 
                        gDTT = as( sum( temp3$TE_code == 'DTT' ) > 0, 'integer' ), 
                        gDTX = as( sum( temp3$TE_code == 'DTX' ) > 0, 'integer' ), 
                        gDXX = as( sum( temp3$TE_code == 'DXX' ) > 0, 'integer' ), 
                        gRIX = as( sum( temp3$TE_code == 'RIX' ) > 0, 'integer' ), 
                        gRLC = as( sum( temp3$TE_code == 'RLC' ) > 0, 'integer' ), 
                        gRLG = as( sum( temp3$TE_code == 'RLG' ) > 0, 'integer' ), 
                        gRLX = as( sum( temp3$TE_code == 'RLX' ) > 0, 'integer' ), 
                        gRSX = as( sum( temp3$TE_code == 'RSX' ) > 0, 'integer' ), 
                        gRXX = as( sum( temp3$TE_code == 'RXX' ) > 0, 'integer' ), 
                        gXXX = as( sum( temp3$TE_code == 'XXX' ) > 0, 'integer' ), 
                        none = none, 
                        geneID = geneID,  
                        qvalue = qv, 
                        mean_c = mean_c, 
                        mean_t = mean_t ) 
      annotation = rbind( annotation, df1 ) 
                           
    } 
 
    write.table( annotation, file = paste0( file_in, '.annotation.offset', offset, '.tsv' ), 
sep = '\t', row.name = FALSE, col.name = TRUE, quote = FALSE ) 
    check = rowSums( annotation[ , -c( 1, 2, 3, 43, 44, 45, 46 ) ] ) 
    write.table( annotationsums, file = paste0( file_in, '.annotationsums.offset', offset, 
'.tsv' ), sep = '\t', col.name = FALSE, row.name = TRUE, quote = FALSE ) 
    temp_time = proc.time() - ptm 
    cat( 'user time = ', temp_time[ 1 ], 's, system time = ', temp_time[ 2 ], 's, elapsed time 
= ', temp_time[ 3 ], 's\n', sep = '' ) 
  } 
} 
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10.12 DigestBarleyDouble.R 

This is an R script which performs in-silico digestion of the barley genome. It 

generates a histogram of the number of fragments per genomic window of an 

inputted size selection and determines the coverage that should be generated by 

sequencing. 

library( BSgenome ) 
library( Rsamtools ) 
library( ggplot2 ) 
 
BarleyGenomeFilenameHome = "~/Uni/2015 PhD/Not Synched/Barley 
Genome/Barley_2017_genome/barley_morex_pseudomolecules.fasta" 
# This takes a long time the first time, the result is saved as an .idx file (speeds up the 
next read enormously) 
idx = scanFaIndex( BarleyGenomeFilenameHome ) 
 
starts = NULL 
 
EnzName = "AseI" 
CutSeq = "ATTAAT"   # Cutting seq AT|TAAT 
Offset = 2          # shift by 2 bases to find the start of the cut 
AseI = data.frame( EnzName, CutSeq, Offset ) 
 
EnzName = "NsiI"    # Best in NEBuffer 3.1 at 37C 
CutSeq = "ATGCAT"   # Cutting seq ATGCA|T 
Offset = 5          # shift by 5 bases to find the start of the cut 
NsiI = data.frame( EnzName, CutSeq, Offset ) 
 
EnzName = "Csp6I"   # NEB have CviQI, best in NEBuffer 3.1 at 25C, Csp6I 37C, thermo buffer B 
CutSeq = "GTAC"     # Cutting seq G|TAC 
Offset = 1          # shift by 1 bases to find the start of the cut 
Csp6I = data.frame( EnzName, CutSeq, Offset ) 
 
EnzName = "MseI" 
CutSeq = "TTAA"     # Cutting seq T|TAA 
Offset = 1          # shift by 1 bases to find the start of the cut 
MseI = data.frame( EnzName, CutSeq, Offset ) 
 
EnzName = "PstI"    # POSSIBLE METHYLATION SENSITIVITY 
CutSeq = "CTGCAG"   # Cutting seq CTGCA|G 
Offset = 5          # shift by 5 bases to find the start of the cut 
PstI = data.frame( EnzName, CutSeq, Offset ) 
 
EnzName = "" 
CutSeq = "" 
Offset = 0 
REnzNull = data.frame( EnzName, CutSeq, Offset ) 
 
 
#Change this if only using 1 restriction enzyme 
 
SizeLimLower = 240 
SizeLimUpper = 420 
SeqWidth = 250-16 
 
# Note they had problems with PstI not cutting near hypermethylation 
# PstI is a 6 base cutter 
#RestrictionEnzymesUsed = 1 
#REnz1 = PstI 
#REnz2 = REnzNull 
#RestrictionEnzymesUsed = 2 
#REnz1 = AseI 
#REnz2 = NsiI 
#RestrictionEnzymesUsed = 1 
#REnz1 = MseI 
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#REnz2 = REnzNull 
RestrictionEnzymesUsed = 2 
REnz1 = Csp6I 
REnz2 = NsiI 
REnz3 = REnzNull 
# Always assume that enzyme 2 and enzyme 3 have the same sticky end and are interchangable (if 
3 enzymes used) 
#RestrictionEnzymesUsed = 1 
#REnz1 = Csp6I 
#REnz2 = REnzNull 
#REnz3 = REnzNull 
 
 
CutLoc_df = data.frame(NULL) 
CutLocDiff_df = data.frame(NULL) 
ChrSize = NULL 
 
#for loop to go through each chromosome in barley 
for( i in 1:length( idx ) ) 
{ 
  cat( "Current chromosome in use: ", seqlevelsInUse( idx[ i ] ), "\n", sep = "" ) 
   
  cat(">>> Reading chromosome: ", seqlevelsInUse( idx[ i ] ), "\n", sep = "" ) 
  Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ i ] ) 
   
  #Have to change the name of the label or it can't be run in a loop 
  names(Chromosome) = c("chr") 
  StartBase = 1 
  EndBase = length(Chromosome$chr) 
   
  cat(">>> Looking for Matches between: ", seqlevelsInUse( idx[ i ] ), " and ", levels( 
REnz1$EnzName ), "\n", sep = "" ) 
  m1 = matchPattern( levels( REnz1$CutSeq ), Chromosome$chr ) 
   
  if( RestrictionEnzymesUsed == 1 ) 
  { 
    m2 = NULL 
    CutStarts =  start( m1 ) + REnz1$Offset 
 
    CutStarts = sort( CutStarts ) 
    CutEnds = c( CutStarts - 1, EndBase ) 
    CutStarts = c( 1, CutStarts ) 
    CutLengths = CutEnds - CutStarts 
    ChrLabel = array( seqlevelsInUse( idx[ i ] ), length( CutStarts ) ) 
     
     
     
  } 
  if( RestrictionEnzymesUsed == 2 ) 
  { 
    cat(">>> Looking for Matches between: ", seqlevelsInUse( idx[ i ] ), " and ", levels( 
REnz2$EnzName ), "\n", sep = "" ) 
    m2 = matchPattern( levels( REnz2$CutSeq ), Chromosome$chr ) 
    CutStarts = append( start( m1 ) + REnz1$Offset,  start( m2 ) + REnz2$Offset ) 
 
    # I had to do this as a temporary fix to deal with the situation where there were 2 6-base 
cutters 
    CutStartsEnz = append( width( m1 ),  width( m2 )*100 ) 
     
    # Am I able to keep the old code, get all the fragments then later identify the 'good' 
fragments' 
     
    indexOrder = order( CutStarts ) 
    CutStarts = sort( CutStarts ) 
    CutterLength = CutStartsEnz[indexOrder] 
    CutEnds = c( CutStarts - 1, EndBase ) 
    CutStarts = c( 1, CutStarts ) 
    CutLengths = CutEnds - CutStarts 
    CutDiffEnds = array( 0, length( CutStarts ) ) 
    for( ig in 2:( length( CutStarts ) - 2 ) ) 
    { 
      if( CutterLength[ig-1] != CutterLength[ig] ) 
      { 
        CutDiffEnds[ig] = 1 
      } 
    } 
    ChrLabel = array( seqlevelsInUse( idx[ i ] ), length( CutStarts ) ) 
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  } 
  if( RestrictionEnzymesUsed == 3 ) 
  { 
    cat(">>> Looking for Matches between: ", seqlevelsInUse( idx[ i ] ), " and ", levels( 
REnz2$EnzName ), "\n", sep = "" ) 
    m2 = matchPattern( levels( REnz2$CutSeq ), Chromosome$chr ) 
    cat(">>> Looking for Matches between: ", seqlevelsInUse( idx[ i ] ), " and ", levels( 
REnz3$EnzName ), "\n", sep = "" ) 
    m3 = matchPattern( levels( REnz3$CutSeq ), Chromosome$chr ) 
    CutStarts = append( start( m1 ) + REnz1$Offset,  start( m2 ) + REnz2$Offset ,  start( m3 ) 
+ REnz3$Offset ) 
  } 
 
  ChrSize[ i ] = EndBase 
  CutLoc_df = rbind( CutLoc_df, data.frame( ChrLabel, CutStarts, CutLengths, CutDiffEnds )  ) 
  CutLocDiff_df = subset( CutLoc_df, CutDiffEnds == 1 ) 
   
  #Set up a count window along each chromosome 
  WindowSize = 100000 
   
  #for( i in 1:8 ){ 
  if( i == 1 ) 
    CountWChr1H = array( 0, length( 1:ceiling( ChrSize[ 1 ]/WindowSize ) ) ) 
  if( i == 2 ) 
    CountWChr2H = array( 0, length( 1:ceiling( ChrSize[ 2 ]/WindowSize ) ) ) 
  if( i == 3 ) 
    CountWChr3H = array( 0, length( 1:ceiling( ChrSize[ 3 ]/WindowSize ) ) ) 
  if( i == 4 ) 
    CountWChr4H = array( 0, length( 1:ceiling( ChrSize[ 4 ]/WindowSize ) ) ) 
  if( i == 5 ) 
    CountWChr5H = array( 0, length( 1:ceiling( ChrSize[ 5 ]/WindowSize ) ) ) 
  if( i == 6 ) 
    CountWChr6H = array( 0, length( 1:ceiling( ChrSize[ 6 ]/WindowSize ) ) ) 
  if( i == 7 ) 
    CountWChr7H = array( 0, length( 1:ceiling( ChrSize[ 7 ]/WindowSize ) ) ) 
  if( i == 8 ) 
    CountWChrUn = array( 0, length( 1:ceiling( ChrSize[ 8 ]/WindowSize ) ) ) 
   
} 
 
rm( m1 ) 
rm( m2 ) 
rm( Chromosome ) 
 
rm( ChrLabel ) 
rm( CutStarts ) 
rm( CutLengths ) 
 
gc()    #Garbage collection - frees up memory 
 
save( CutLoc_df, file = paste0( "CutLoc_df ", levels( REnz1$EnzName ), " ", levels( 
REnz2$EnzName ), ".Rdata" ) ) 
 
SizeSelFrag = CutLoc_df[ ( CutLoc_df$CutLengths >= SizeLimLower ) & ( CutLoc_df$CutLengths <= 
SizeLimUpper ) , ] 
 
cat( ">>> Finding the frequency of cuts in a ", WindowSize, " bp window\n", sep = "" ) 
 
CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr1H"] 
for( i3 in 1:length( CountWChr1H ) ) 
{ 
  CountWChr1H[ i3 ] = sum( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < 
WindowSize*( i3 ) ) ) 
} 
CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr2H"] 
for( i3 in 1:length( CountWChr2H ) ) 
{ 
  CountWChr2H[ i3 ] = sum( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < 
WindowSize*( i3 ) ) ) 
} 
CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr3H"] 
for( i3 in 1:length( CountWChr3H ) ) 
{ 
  CountWChr3H[ i3 ] = sum( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < 
WindowSize*( i3 ) ) ) 
} 
CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr4H"] 
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for( i3 in 1:length( CountWChr4H ) ) 
{ 
  CountWChr4H[ i3 ] = sum( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < 
WindowSize*( i3 ) ) ) 
} 
CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr5H"] 
for( i3 in 1:length( CountWChr5H ) ) 
{ 
  CountWChr5H[ i3 ] = sum( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < 
WindowSize*( i3 ) ) ) 
} 
CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr6H"] 
for( i3 in 1:length( CountWChr6H ) ) 
{ 
  CountWChr6H[ i3 ] = sum( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < 
WindowSize*( i3 ) ) ) 
} 
CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr7H"] 
for( i3 in 1:length( CountWChr7H ) ) 
{ 
  CountWChr7H[ i3 ] = sum( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < 
WindowSize*( i3 ) ) ) 
} 
CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chrUn"] 
for( i3 in 1:length( CountWChrUn ) ) 
{ 
  CountWChrUn[ i3 ] = sum( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < 
WindowSize*( i3 ) ) ) 
} 
 
FragCounts = c( CountWChr1H, CountWChr2H, CountWChr3H, CountWChr4H, CountWChr5H, CountWChr6H, 
CountWChr7H, CountWChrUn) 
FragPos = c( ( 1:length( CountWChr1H ) ) * WindowSize, 
             ( 1:length( CountWChr2H ) ) * WindowSize, 
             ( 1:length( CountWChr3H ) ) * WindowSize, 
             ( 1:length( CountWChr4H ) ) * WindowSize, 
             ( 1:length( CountWChr5H ) ) * WindowSize, 
             ( 1:length( CountWChr6H ) ) * WindowSize, 
             ( 1:length( CountWChr7H ) ) * WindowSize, 
             ( 1:length( CountWChrUn ) ) * WindowSize ) 
FragChr = c( array( seqlevelsInUse( idx[ 1 ] ), length( CountWChr1H ) ), 
             array( seqlevelsInUse( idx[ 2 ] ), length( CountWChr2H ) ), 
             array( seqlevelsInUse( idx[ 3 ] ), length( CountWChr3H ) ), 
             array( seqlevelsInUse( idx[ 4 ] ), length( CountWChr4H ) ), 
             array( seqlevelsInUse( idx[ 5 ] ), length( CountWChr5H ) ), 
             array( seqlevelsInUse( idx[ 6 ] ), length( CountWChr6H ) ), 
             array( seqlevelsInUse( idx[ 7 ] ), length( CountWChr7H ) ), 
             array( seqlevelsInUse( idx[ 8 ] ), length( CountWChrUn ) ) ) 
                     
 
FragmentPos_df = data.frame( FragChr, FragPos, FragCounts ) 
 
save( FragmentPos_df, file = paste0( "FragmentPos_df ", 
                                     levels( REnz1$EnzName ), 
                                     " ", 
                                     levels( REnz2$EnzName ), 
                                     " ", 
                                     SizeLimLower, 
                                     "-",  
                                     SizeLimUpper, 
                                     ".Rdata" ) ) 
 
ggplot( FragmentPos_df,  
        aes( x = FragPos, y = FragCounts ) ) + 
  geom_point( alpha = 1, size = .5 ) +  
  facet_grid( FragChr~. ) +  
  ggtitle( paste0( "Number of ",  
                   SizeLimLower, 
                   "-",  
                   SizeLimUpper, 
                   " bp size selected fragments in ", 
                   WindowSize,  
                   " bp windows in the barley genome using ", 
                   levels( REnz1$EnzName ), " ", levels( REnz2$EnzName ) ) ) + 
  ylab( paste0("Number of fragments per ", WindowSize," bp window" ) ) +  
  xlab( "Genome position") 
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ggsave( paste0( "plot_fragments ", 
                levels( REnz1$EnzName ), 
                " ", 
                levels( REnz2$EnzName ), 
                " ", 
                SizeLimLower, 
                "-",  
                SizeLimUpper, 
                ".png" ), 
        width = 10,  
        height = 7 ) 
 
cat( ">>> Total number of fragments sequenced = ", sum( FragCounts ), "\n", sep = "" ) 
cat( ">>> Total number of reads = ", sum( FragCounts )*2, "\n", sep = "" ) 
cat( ">>> Assuming 300 million reads on NextSeq, 20 samples, 15 million reads per sample, 
coverage = ", 15e6/(sum( FragCounts )*2), "\n", sep = "" ) 
cat( ">>> Assuming 250 million reads on HiSeq lane, 20 samples, 12.5 million reads per sample, 
coverage = ", 12.5e6/(sum( FragCounts )*2), "\n", sep = "" ) 
cat( ">>> Assuming 250 million reads on HiSeq lane, 12 samples, 20.8 million reads per sample, 
coverage = ", 20.83e6/(sum( FragCounts )*2), "\n" , sep = "" ) 
cat( ">>> Assuming 300 million reads on HiSeq4000 lane, 16 samples, 18.75 million reads per 
sample, coverage = ", 18.75e6/(sum( FragCounts )*2), "\n", sep = "" ) 
cat( ">>> Total number of ", WindowSize," bp window unrepresented in sequencing = ", sum( 
FragCounts == 0 ), ", or ", 100 * sum( FragCounts == 0 )/length( FragCounts ), "% of 
windows\n", sep = "") 
 
sink( paste0( "log for ", 
              levels( REnz1$EnzName ),  
              " ", 
              levels( REnz2$EnzName ), 
              " ", 
              SizeLimLower, 
              "-",  
              SizeLimUpper, 
              ".txt" ) ) 
cat( c( paste0( "***THESE ARE FRAGMENT SIZES BEFORE ADAPTORS ARE ADDED***\n", 
                "Total number of fragments sequenced = ", sum( FragCounts ), "\n", 
                "Total number of reads = ", sum( FragCounts )*2, "\n", 
                "Assuming 300 million reads on NextSeq, 20 samples, 15 million reads per 
sample, coverage = ", 15e6/(sum( FragCounts )*2 ), "\n", 
                "Assuming 250 million reads on HiSeq lane, 20 samples, 12.5 million reads per 
sample, coverage = ", 12.5e6/(sum( FragCounts )*2), "\n", 
                "Assuming 250 million reads on HiSeq lane, 12 samples, 20.8 million reads per 
sample, coverage = ", 20.83e6/(sum( FragCounts )*2), "\n", 
                "Assuming 300 million reads on HiSeq4000 lane, 16 samples, 18.75 million reads 
per sample, coverage = ", 18.75e6/(sum( FragCounts )*2), "\n", 
                "Total number of ", WindowSize," bp window unrepresented in sequencing = ", 
sum( FragCounts == 0 ), ", or ", 100 * sum( FragCounts == 0 )/length( FragCounts ), "% of 
windows\n" ) ) ) 
sink() 
 
png( paste0( "histogram_fragments ",  
             levels( REnz1$EnzName ), 
             " ", 
             levels( REnz2$EnzName ), 
             " ", 
             SizeLimLower, 
             "-",  
             SizeLimUpper, 
             ".png"), 
     width = 800, 
     height = 600 ) 
hist( FragCounts,  
     breaks = 60,  
     xlim = c(0, 40),  
     main = paste0( "Frequency of fragments in ",  
                    WindowSize,  
                    " bp windows in the barley genome, size selection ",  
                    SizeLimLower, 
                    "-",  
                    SizeLimUpper, 
                    " bp using ", 
                    levels( REnz1$EnzName ), " ", levels( REnz2$EnzName ) ), 
     xlab = "Number of fragments per window")# 
dev.off() 
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ptm = proc.time() 
 
temprun = TRUE 
if( temprun ) 
{ 
  cat("***** Note that this is only one direction, paired end reads are not included *****\n") 
  ChrSize = end(ranges(idx)) 
  CountWChr1H = array( 0, length( 1:ceiling( ChrSize[ 1 ]/WindowSize ) ) ) 
  t = CountWChr1H 
  CountWChr1CG = t 
  CountWChr1CHG = t 
  CountWChr1CHH = t 
  CountWChr2H = array( 0, length( 1:ceiling( ChrSize[ 2 ]/WindowSize ) ) ) 
  t = CountWChr2H 
  CountWChr2CG = t 
  CountWChr2CHG = t 
  CountWChr2CHH = t 
  CountWChr3H = array( 0, length( 1:ceiling( ChrSize[ 3 ]/WindowSize ) ) ) 
  t = CountWChr3H 
  CountWChr3CG = t 
  CountWChr3CHG = t 
  CountWChr3CHH = t 
  CountWChr4H = array( 0, length( 1:ceiling( ChrSize[ 4 ]/WindowSize ) ) ) 
  t = CountWChr4H 
  CountWChr4CG = t 
  CountWChr4CHG = t 
  CountWChr4CHH = t 
  CountWChr5H = array( 0, length( 1:ceiling( ChrSize[ 5 ]/WindowSize ) ) ) 
  t = CountWChr5H 
  CountWChr5CG = t 
  CountWChr5CHG = t 
  CountWChr5CHH = t 
  CountWChr6H = array( 0, length( 1:ceiling( ChrSize[ 6 ]/WindowSize ) ) ) 
  t = CountWChr6H 
  CountWChr6CG = t 
  CountWChr6CHG = t 
  CountWChr6CHH = t 
  CountWChr7H = array( 0, length( 1:ceiling( ChrSize[ 7 ]/WindowSize ) ) ) 
  t = CountWChr7H 
  CountWChr7CG = t 
  CountWChr7CHG = t 
  CountWChr7CHH = t 
  CountWChrUn = array( 0, length( 1:ceiling( ChrSize[ 8 ]/WindowSize ) ) ) 
  t = CountWChrUn 
  CountWChrUnCG = t 
  CountWChrUnCHG = t 
  CountWChrUnCHH = t 
  #1 
  Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 1 ] ) 
  names(Chromosome) = c("chr") 
  CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr1H"] 
  CutEnd_sized = SizeSelFrag$CutLengths[SizeSelFrag$ChrLabel == "chr1H"] + CutLoc_sized 
  cat( "Chromosome 1\n" ) 
   
  #ptm = proc.time() 
  for( i3 in 1:length( CountWChr1H ) ) 
  #for( i3 in 1:20 ) 
    { 
    if( i3%%10 == 0 ) 
    { 
      cat( "Chr1, ", i3, "of", length( CountWChr1H ), "\n" ) 
    } 
    t_ind = which( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < WindowSize*( 
i3 ) ) ) 
    CountWChr1CG[ i3 ] = 0 
    CountWChr1CHG[ i3 ] = 0 
    CountWChr1CHH[ i3 ] = 0 
    for( i4 in t_ind ) 
    { 
      t1 = narrow( Chromosome, start = CutLoc_sized[ i4 ], width = SeqWidth ) 
      t2 = maskMotif( t1$chr, "N" ) 
      CountWChr1CG[ i3 ] = CountWChr1CG[ i3 ] + length( matchPattern( DNAString("CG"), t2 ) ) 
      CountWChr1CHG[ i3 ] = CountWChr1CHG[ i3 ] + length( matchPattern( DNAString("CHG"), t2, 
fixed = FALSE ) ) 
      CountWChr1CHH[ i3 ] = CountWChr1CHH[ i3 ] + length( matchPattern( DNAString("CHH"), t2, 
fixed = FALSE ) ) 
    } 
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  } 
  #2   
  cat( "Chromosome 2\n" ) 
  Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 2 ] ) 
  names(Chromosome) = c("chr") 
  CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr2H"] 
  CutEnd_sized = SizeSelFrag$CutLengths[SizeSelFrag$ChrLabel == "chr2H"] + CutLoc_sized 
  for( i3 in 1:length( CountWChr2H ) ) 
  { 
    if( i3%%10 == 0 ) 
    { 
      cat( "Chr2, ", i3, "of", length( CountWChr2H ), "\n" ) 
    } 
    t_ind = which( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < WindowSize*( 
i3 ) ) ) 
    CountWChr2CG[ i3 ] = 0 
    CountWChr2CHG[ i3 ] = 0 
    CountWChr2CHH[ i3 ] = 0 
    for( i4 in t_ind ) 
    { 
      t1 = narrow( Chromosome, start = CutLoc_sized[ i4 ], width = SeqWidth ) 
      t2 = maskMotif( t1$chr, "N" ) 
      CountWChr2CG[ i3 ] = CountWChr2CG[ i3 ] + length( matchPattern( DNAString("CG"), t2 ) ) 
      CountWChr2CHG[ i3 ] = CountWChr2CHG[ i3 ] + length( matchPattern( DNAString("CHG"), t2, 
fixed = FALSE ) ) 
      CountWChr2CHH[ i3 ] = CountWChr2CHH[ i3 ] + length( matchPattern( DNAString("CHH"), t2, 
fixed = FALSE ) ) 
    } 
  } 
  #3 
  cat( "Chromosome 3\n" ) 
  Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 3 ] ) 
  names(Chromosome) = c("chr") 
  CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr3H"] 
  CutEnd_sized = SizeSelFrag$CutLengths[SizeSelFrag$ChrLabel == "chr3H"] + CutLoc_sized 
  for( i3 in 1:length( CountWChr3H ) ) 
  { 
    if( i3%%10 == 0 ) 
    { 
      cat( "Chr3, ", i3, "of", length( CountWChr3H ), "\n" ) 
    } 
    t_ind = which( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < WindowSize*( 
i3 ) ) ) 
    CountWChr3CG[ i3 ] = 0 
    CountWChr3CHG[ i3 ] = 0 
    CountWChr3CHH[ i3 ] = 0 
    for( i4 in t_ind ) 
    { 
      t1 = narrow( Chromosome, start = CutLoc_sized[ i4 ], width = SeqWidth ) 
      t2 = maskMotif( t1$chr, "N" ) 
      CountWChr3CG[ i3 ] = CountWChr3CG[ i3 ] + length( matchPattern( DNAString("CG"), t2 ) ) 
      CountWChr3CHG[ i3 ] = CountWChr3CHG[ i3 ] + length( matchPattern( DNAString("CHG"), t2, 
fixed = FALSE ) ) 
      CountWChr3CHH[ i3 ] = CountWChr3CHH[ i3 ] + length( matchPattern( DNAString("CHH"), t2, 
fixed = FALSE ) ) 
    } 
  } 
  #4 
  cat( "Chromosome 4\n" ) 
  Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 4 ] ) 
  names(Chromosome) = c("chr") 
  CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr4H"] 
  CutEnd_sized = SizeSelFrag$CutLengths[SizeSelFrag$ChrLabel == "chr4H"] + CutLoc_sized 
  for( i3 in 1:length( CountWChr4H ) ) 
  { 
    if( i3%%10 == 0 ) 
    { 
      cat( "Chr4, ", i3, "of", length( CountWChr4H ), "\n" ) 
    } 
    t_ind = which( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < WindowSize*( 
i3 ) ) ) 
    CountWChr4CG[ i3 ] = 0 
    CountWChr4CHG[ i3 ] = 0 
    CountWChr4CHH[ i3 ] = 0 
    for( i4 in t_ind ) 
    { 
      t1 = narrow( Chromosome, start = CutLoc_sized[ i4 ], width = SeqWidth ) 
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      t2 = maskMotif( t1$chr, "N" ) 
      CountWChr4CG[ i3 ] = CountWChr4CG[ i3 ] + length( matchPattern( DNAString("CG"), t2 ) ) 
      CountWChr4CHG[ i3 ] = CountWChr4CHG[ i3 ] + length( matchPattern( DNAString("CHG"), t2, 
fixed = FALSE ) ) 
      CountWChr4CHH[ i3 ] = CountWChr4CHH[ i3 ] + length( matchPattern( DNAString("CHH"), t2, 
fixed = FALSE ) ) 
    } 
  } 
  #5 
  cat( "Chromosome 5\n" ) 
  Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 5 ] ) 
  names(Chromosome) = c("chr") 
  CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr5H"] 
  CutEnd_sized = SizeSelFrag$CutLengths[SizeSelFrag$ChrLabel == "chr5H"] + CutLoc_sized 
  for( i3 in 1:length( CountWChr5H ) ) 
  { 
    if( i3%%10 == 0 ) 
    { 
      cat( "Chr5, ", i3, "of", length( CountWChr5H ), "\n" ) 
    } 
    t_ind = which( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < WindowSize*( 
i3 ) ) ) 
    CountWChr5CG[ i3 ] = 0 
    CountWChr5CHG[ i3 ] = 0 
    CountWChr5CHH[ i3 ] = 0 
    for( i4 in t_ind ) 
    { 
      t1 = narrow( Chromosome, start = CutLoc_sized[ i4 ], width = SeqWidth ) 
      t2 = maskMotif( t1$chr, "N" ) 
      CountWChr5CG[ i3 ] = CountWChr5CG[ i3 ] + length( matchPattern( DNAString("CG"), t2 ) ) 
      CountWChr5CHG[ i3 ] = CountWChr5CHG[ i3 ] + length( matchPattern( DNAString("CHG"), t2, 
fixed = FALSE ) ) 
      CountWChr5CHH[ i3 ] = CountWChr5CHH[ i3 ] + length( matchPattern( DNAString("CHH"), t2, 
fixed = FALSE ) ) 
    } 
  } 
  #6 
  cat( "Chromosome 6\n" ) 
  Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 6 ] ) 
  names(Chromosome) = c("chr") 
  CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr6H"] 
  CutEnd_sized = SizeSelFrag$CutLengths[SizeSelFrag$ChrLabel == "chr6H"] + CutLoc_sized 
  for( i3 in 1:length( CountWChr6H ) ) 
  { 
    if( i3%%10 == 0 ) 
    { 
      cat( "Chr6, ", i3, "of", length( CountWChr6H ), "\n" ) 
    } 
    t_ind = which( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < WindowSize*( 
i3 ) ) ) 
    CountWChr6CG[ i3 ] = 0 
    CountWChr6CHG[ i3 ] = 0 
    CountWChr6CHH[ i3 ] = 0 
    for( i4 in t_ind ) 
    { 
      t1 = narrow( Chromosome, start = CutLoc_sized[ i4 ], width = SeqWidth ) 
      t2 = maskMotif( t1$chr, "N" ) 
      CountWChr6CG[ i3 ] = CountWChr6CG[ i3 ] + length( matchPattern( DNAString("CG"), t2 ) ) 
      CountWChr6CHG[ i3 ] = CountWChr6CHG[ i3 ] + length( matchPattern( DNAString("CHG"), t2, 
fixed = FALSE ) ) 
      CountWChr6CHH[ i3 ] = CountWChr6CHH[ i3 ] + length( matchPattern( DNAString("CHH"), t2, 
fixed = FALSE ) ) 
    } 
  } 
  #7 
  cat( "Chromosome 7\n" ) 
  Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 7 ] ) 
  names(Chromosome) = c("chr") 
  CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr7H"] 
  CutEnd_sized = SizeSelFrag$CutLengths[SizeSelFrag$ChrLabel == "chr7H"] + CutLoc_sized 
  for( i3 in 1:length( CountWChr7H ) ) 
  { 
    if( i3%%10 == 0 ) 
    { 
      cat( "Chr7, ", i3, "of", length( CountWChr7H ), "\n" ) 
    } 
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    t_ind = which( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < WindowSize*( 
i3 ) ) ) 
    CountWChr7CG[ i3 ] = 0 
    CountWChr7CHG[ i3 ] = 0 
    CountWChr7CHH[ i3 ] = 0 
    for( i4 in t_ind ) 
    { 
      t1 = narrow( Chromosome, start = CutLoc_sized[ i4 ], width = SeqWidth ) 
      t2 = maskMotif( t1$chr, "N" ) 
      CountWChr7CG[ i3 ] = CountWChr7CG[ i3 ] + length( matchPattern( DNAString("CG"), t2 ) ) 
      CountWChr7CHG[ i3 ] = CountWChr7CHG[ i3 ] + length( matchPattern( DNAString("CHG"), t2, 
fixed = FALSE ) ) 
      CountWChr7CHH[ i3 ] = CountWChr7CHH[ i3 ] + length( matchPattern( DNAString("CHH"), t2, 
fixed = FALSE ) ) 
    } 
  } 
  #Un 
  cat( "Chromosome Un\n" ) 
  Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 8 ] ) 
  names(Chromosome) = c("chr") 
  CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chrUn"] 
  CutEnd_sized = SizeSelFrag$CutLengths[SizeSelFrag$ChrLabel == "chrUn"] + CutLoc_sized 
  for( i3 in 1:length( CountWChrUn ) ) 
  { 
    if( i3%%10 == 0 ) 
    { 
      cat( "ChrUn, ", i3, "of", length( CountWChrUn ), "\n" ) 
    } 
    t_ind = which( ( CutLoc_sized >= WindowSize*( i3 - 1 ) ) & ( CutLoc_sized < WindowSize*( 
i3 ) ) ) 
    CountWChrUnCG[ i3 ] = 0 
    CountWChrUnCHG[ i3 ] = 0 
    CountWChrUnCHH[ i3 ] = 0 
    for( i4 in t_ind ) 
    { 
      t1 = narrow( Chromosome, start = CutLoc_sized[ i4 ], width = SeqWidth ) 
      t2 = maskMotif( t1$chr, "N" ) 
      CountWChrUnCG[ i3 ] = CountWChrUnCG[ i3 ] + length( matchPattern( DNAString("CG"), t2 ) 
) 
      CountWChrUnCHG[ i3 ] = CountWChrUnCHG[ i3 ] + length( matchPattern( DNAString("CHG"), 
t2, fixed = FALSE ) ) 
      CountWChrUnCHH[ i3 ] = CountWChrUnCHH[ i3 ] + length( matchPattern( DNAString("CHH"), 
t2, fixed = FALSE ) ) 
    } 
  } 
   
  FragCounts = c( CountWChr1CG, CountWChr1CHG, CountWChr1CHH, 
                  CountWChr2CG, CountWChr2CHG, CountWChr2CHH, 
                  CountWChr3CG, CountWChr3CHG, CountWChr3CHH, 
                  CountWChr4CG, CountWChr4CHG, CountWChr4CHH, 
                  CountWChr5CG, CountWChr5CHG, CountWChr5CHH, 
                  CountWChr6CG, CountWChr6CHG, CountWChr6CHH, 
                  CountWChr7CG, CountWChr7CHG, CountWChr7CHH, 
                  CountWChrUnCG, CountWChrUnCHG, CountWChrUnCHH) 
   
  FragPos = c( ( 1:length( CountWChr1H ) ) * WindowSize, 
               ( 1:length( CountWChr1H ) ) * WindowSize, 
               ( 1:length( CountWChr1H ) ) * WindowSize, 
               ( 1:length( CountWChr2H ) ) * WindowSize, 
               ( 1:length( CountWChr2H ) ) * WindowSize, 
               ( 1:length( CountWChr2H ) ) * WindowSize, 
               ( 1:length( CountWChr3H ) ) * WindowSize, 
               ( 1:length( CountWChr3H ) ) * WindowSize, 
               ( 1:length( CountWChr3H ) ) * WindowSize, 
               ( 1:length( CountWChr4H ) ) * WindowSize, 
               ( 1:length( CountWChr4H ) ) * WindowSize, 
               ( 1:length( CountWChr4H ) ) * WindowSize, 
               ( 1:length( CountWChr5H ) ) * WindowSize, 
               ( 1:length( CountWChr5H ) ) * WindowSize, 
               ( 1:length( CountWChr5H ) ) * WindowSize, 
               ( 1:length( CountWChr6H ) ) * WindowSize, 
               ( 1:length( CountWChr6H ) ) * WindowSize, 
               ( 1:length( CountWChr6H ) ) * WindowSize, 
               ( 1:length( CountWChr7H ) ) * WindowSize, 
               ( 1:length( CountWChr7H ) ) * WindowSize, 
               ( 1:length( CountWChr7H ) ) * WindowSize, 
               ( 1:length( CountWChrUn ) ) * WindowSize, 
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               ( 1:length( CountWChrUn ) ) * WindowSize, 
               ( 1:length( CountWChrUn ) ) * WindowSize ) 
  FragPos = FragPos - WindowSize/2 
  FragChr = c( array( seqlevelsInUse( idx[ 1 ] ), length( CountWChr1H ) ), 
               array( seqlevelsInUse( idx[ 1 ] ), length( CountWChr1H ) ), 
               array( seqlevelsInUse( idx[ 1 ] ), length( CountWChr1H ) ), 
               array( seqlevelsInUse( idx[ 2 ] ), length( CountWChr2H ) ), 
               array( seqlevelsInUse( idx[ 2 ] ), length( CountWChr2H ) ), 
               array( seqlevelsInUse( idx[ 2 ] ), length( CountWChr2H ) ), 
               array( seqlevelsInUse( idx[ 3 ] ), length( CountWChr3H ) ), 
               array( seqlevelsInUse( idx[ 3 ] ), length( CountWChr3H ) ), 
               array( seqlevelsInUse( idx[ 3 ] ), length( CountWChr3H ) ), 
               array( seqlevelsInUse( idx[ 4 ] ), length( CountWChr4H ) ), 
               array( seqlevelsInUse( idx[ 4 ] ), length( CountWChr4H ) ), 
               array( seqlevelsInUse( idx[ 4 ] ), length( CountWChr4H ) ), 
               array( seqlevelsInUse( idx[ 5 ] ), length( CountWChr5H ) ), 
               array( seqlevelsInUse( idx[ 5 ] ), length( CountWChr5H ) ), 
               array( seqlevelsInUse( idx[ 5 ] ), length( CountWChr5H ) ), 
               array( seqlevelsInUse( idx[ 6 ] ), length( CountWChr6H ) ), 
               array( seqlevelsInUse( idx[ 6 ] ), length( CountWChr6H ) ), 
               array( seqlevelsInUse( idx[ 6 ] ), length( CountWChr6H ) ), 
               array( seqlevelsInUse( idx[ 7 ] ), length( CountWChr7H ) ), 
               array( seqlevelsInUse( idx[ 7 ] ), length( CountWChr7H ) ), 
               array( seqlevelsInUse( idx[ 7 ] ), length( CountWChr7H ) ), 
               array( seqlevelsInUse( idx[ 8 ] ), length( CountWChrUn ) ), 
               array( seqlevelsInUse( idx[ 8 ] ), length( CountWChrUn ) ), 
               array( seqlevelsInUse( idx[ 8 ] ), length( CountWChrUn ) )) 
  Motif = c( array( "CG", length( CountWChr1H ) ), 
             array( "CHG", length( CountWChr1H ) ), 
             array( "CHH", length( CountWChr1H ) ), 
             array( "CG", length( CountWChr2H ) ), 
             array( "CHG", length( CountWChr2H ) ), 
             array( "CHH", length( CountWChr2H ) ), 
             array( "CG", length( CountWChr3H ) ), 
             array( "CHG", length( CountWChr3H ) ), 
             array( "CHH", length( CountWChr3H ) ), 
             array( "CG", length( CountWChr4H ) ), 
             array( "CHG", length( CountWChr4H ) ), 
             array( "CHH", length( CountWChr4H ) ), 
             array( "CG", length( CountWChr5H ) ), 
             array( "CHG", length( CountWChr5H ) ), 
             array( "CHH", length( CountWChr5H ) ), 
             array( "CG", length( CountWChr6H ) ), 
             array( "CHG", length( CountWChr6H ) ), 
             array( "CHH", length( CountWChr6H ) ), 
             array( "CG", length( CountWChr7H ) ), 
             array( "CHG", length( CountWChr7H ) ), 
             array( "CHH", length( CountWChr7H ) ), 
             array( "CG", length( CountWChrUn ) ), 
             array( "CHG", length( CountWChrUn ) ), 
             array( "CHH", length( CountWChrUn ) ) ) 
   
  FragmentPos_df = data.frame( FragChr, FragPos, FragCounts, Motif ) 
   
  ggplot( FragmentPos_df,  
          aes( x = FragPos, y = FragCounts, col = Motif ) ) + 
    geom_point( alpha = .2, size = .1 ) +  
    facet_grid( FragChr~. ) +  
    ggtitle( paste0( "Number of C's in ",  
                     SizeLimLower, 
                     "-",  
                     SizeLimUpper, 
                     " bp size selected fragments in ", 
                     WindowSize,  
                     " bp windows in the barley genome using ", 
                     levels( REnz1$EnzName ), " ", levels( REnz2$EnzName ) ) ) + 
    ylab( paste0("Number of fragments per ", WindowSize," bp window" ) ) +  
    xlab( "Genome position") 
   
  ggsave( paste0( "C frequencies ", 
                  levels( REnz1$EnzName ), 
                  " ", 
                  levels( REnz2$EnzName ), 
                  " ", 
                  SizeLimLower, 
                  "-",  
                  SizeLimUpper, 
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                  ".png" ), 
          width = 10,  
          height = 7 ) 
   
  save( FragmentPos_df, file = paste0( "Fragment Cs df ", levels( REnz1$EnzName ), " ", 
levels( REnz2$EnzName ), " ", SizeLimLower, "-", SizeLimUpper, ".Rdata" ) ) 
   
} 
 
proc.time()-ptm 
ptm2 = proc.time() 
 
#Comparing fragments to the entire genome to see how unique fragments are  
#for loop going through each fragment with 2 differences, mask all Ns 
 
Mismatches = 5 
TestStart = 100 
TestEnd = 200 
 
CutLoc_sized = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr1H"] 
CutEnd_sized = SizeSelFrag$CutLengths[SizeSelFrag$ChrLabel == "chr1H"] + CutLoc_sized 
cat( "Chromosome 1\n" ) 
 
#Mismatches 
CountHits1 = array( 0, TestEnd ) 
Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 1 ] ) 
names(Chromosome) = c("chr") 
Chromosome1 = Chromosome 
ChromosomeMasked = maskMotif( Chromosome$chr, "N" ) 
rm( Chromosome ) 
cat( "************* Chromosome 1\n" ) 
for( i1 in TestStart:TestEnd ) 
{ 
  t1 = narrow( Chromosome1, start = CutLoc_sized[ i1 ], width = SeqWidth ) 
 
  tn = t1$chr 
  C_loc = matchPattern( 'C', tn ) 
  G_loc = matchPattern( 'G', tn ) 
  tn = replaceLetterAt( tn, start( C_loc ), paste( replicate( length( start( C_loc ) ), "Y" ), 
collapse = "") ) 
  tn = replaceLetterAt( tn, start( G_loc ), paste( replicate( length( start( G_loc ) ), "R" ), 
collapse = "") ) 
   
  CountHits1[ i1 ] = length( matchPattern( tn, ChromosomeMasked, max.mismatch = Mismatches, 
fixed = FALSE )) 
  cat( "Ch1, Frag =", i1, ", Hits = ", CountHits1[ i1 ], "\n" ) 
} 
 
CountHits2 = array( 0, TestEnd ) 
Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 2 ] ) 
names(Chromosome) = c("chr") 
ChromosomeMasked = maskMotif( Chromosome$chr, "N" ) 
rm( Chromosome ) 
cat( "************* Chromosome 2\n" ) 
for( i1 in TestStart:TestEnd ) 
{ 
  t1 = narrow( Chromosome1, start = CutLoc_sized[ i1 ], width = SeqWidth ) 
   
  tn = t1$chr 
  C_loc = matchPattern( 'C', tn ) 
  G_loc = matchPattern( 'G', tn ) 
  tn = replaceLetterAt( tn, start( C_loc ), paste( replicate( length( start( C_loc ) ), "Y" ), 
collapse = "") ) 
  tn = replaceLetterAt( tn, start( G_loc ), paste( replicate( length( start( G_loc ) ), "R" ), 
collapse = "") ) 
   
  CountHits2[ i1 ] = length(matchPattern( tn, ChromosomeMasked, max.mismatch = Mismatches, 
fixed = FALSE  )) 
  cat( "Ch2, Frag =", i1, ", Hits = ", CountHits2[ i1 ], "\n" ) 
} 
 
CountHits3 = array( 0, TestEnd ) 
Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 3 ] ) 
names(Chromosome) = c("chr") 
ChromosomeMasked = maskMotif( Chromosome$chr, "N" ) 
rm( Chromosome ) 
cat( "************* Chromosome 3\n" ) 
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for( i1 in TestStart:TestEnd ) 
{ 
  t1 = narrow( Chromosome1, start = CutLoc_sized[ i1 ], width = SeqWidth ) 
   
  tn = t1$chr 
  C_loc = matchPattern( 'C', tn ) 
  G_loc = matchPattern( 'G', tn ) 
  tn = replaceLetterAt( tn, start( C_loc ), paste( replicate( length( start( C_loc ) ), "Y" ), 
collapse = "") ) 
  tn = replaceLetterAt( tn, start( G_loc ), paste( replicate( length( start( G_loc ) ), "R" ), 
collapse = "") ) 
   
  CountHits3[ i1 ] = length(matchPattern( tn, ChromosomeMasked, max.mismatch = Mismatches, 
fixed = FALSE  )) 
  cat( "Ch3, Frag =", i1, ", Hits = ", CountHits3[ i1 ], "\n" ) 
} 
 
CountHits4 = array( 0, TestEnd ) 
Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 4 ] ) 
names(Chromosome) = c("chr") 
ChromosomeMasked = maskMotif( Chromosome$chr, "N" ) 
rm( Chromosome ) 
cat( "************* Chromosome 4\n" ) 
for( i1 in TestStart:TestEnd ) 
{ 
  t1 = narrow( Chromosome1, start = CutLoc_sized[ i1 ], width = SeqWidth ) 
   
  tn = t1$chr 
  C_loc = matchPattern( 'C', tn ) 
  G_loc = matchPattern( 'G', tn ) 
  tn = replaceLetterAt( tn, start( C_loc ), paste( replicate( length( start( C_loc ) ), "Y" ), 
collapse = "") ) 
  tn = replaceLetterAt( tn, start( G_loc ), paste( replicate( length( start( G_loc ) ), "R" ), 
collapse = "") ) 
   
  CountHits4[ i1 ] = length(matchPattern( tn, ChromosomeMasked, max.mismatch = Mismatches, 
fixed = FALSE  )) 
  cat( "Ch4, Frag =", i1, ", Hits = ", CountHits4[ i1 ], "\n" ) 
} 
 
CountHits5 = array( 0, TestEnd ) 
Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 5 ] ) 
names(Chromosome) = c("chr") 
ChromosomeMasked = maskMotif( Chromosome$chr, "N" ) 
rm( Chromosome ) 
cat( "************* Chromosome 5\n" ) 
for( i1 in TestStart:TestEnd ) 
{ 
  t1 = narrow( Chromosome1, start = CutLoc_sized[ i1 ], width = SeqWidth ) 
   
  tn = t1$chr 
  C_loc = matchPattern( 'C', tn ) 
  G_loc = matchPattern( 'G', tn ) 
  tn = replaceLetterAt( tn, start( C_loc ), paste( replicate( length( start( C_loc ) ), "Y" ), 
collapse = "") ) 
  tn = replaceLetterAt( tn, start( G_loc ), paste( replicate( length( start( G_loc ) ), "R" ), 
collapse = "") ) 
   
  CountHits5[ i1 ] = length(matchPattern( tn, ChromosomeMasked, max.mismatch = Mismatches, 
fixed = FALSE  )) 
  cat( "Ch5, Frag =", i1, ", Hits = ", CountHits5[ i1 ], "\n" ) 
} 
 
CountHits6 = array( 0, TestEnd ) 
Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 6 ] ) 
names(Chromosome) = c("chr") 
ChromosomeMasked = maskMotif( Chromosome$chr, "N" ) 
rm( Chromosome ) 
cat( "************* Chromosome 6\n" ) 
for( i1 in TestStart:TestEnd ) 
{ 
  t1 = narrow( Chromosome1, start = CutLoc_sized[ i1 ], width = SeqWidth ) 
   
  tn = t1$chr 
  C_loc = matchPattern( 'C', tn ) 
  G_loc = matchPattern( 'G', tn ) 
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  tn = replaceLetterAt( tn, start( C_loc ), paste( replicate( length( start( C_loc ) ), "Y" ), 
collapse = "") ) 
  tn = replaceLetterAt( tn, start( G_loc ), paste( replicate( length( start( G_loc ) ), "R" ), 
collapse = "") ) 
   
  CountHits6[ i1 ] = length(matchPattern( tn, ChromosomeMasked, max.mismatch = Mismatches, 
fixed = FALSE  )) 
  cat( "Ch6, Frag =", i1, ", Hits = ", CountHits6[ i1 ], "\n" ) 
} 
 
CountHits7 = array( 0, TestEnd ) 
Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 7 ] ) 
names(Chromosome) = c("chr") 
ChromosomeMasked = maskMotif( Chromosome$chr, "N" ) 
rm( Chromosome ) 
cat( "************* Chromosome 7\n" ) 
for( i1 in TestStart:TestEnd ) 
{ 
  t1 = narrow( Chromosome1, start = CutLoc_sized[ i1 ], width = SeqWidth ) 
   
  tn = t1$chr 
  C_loc = matchPattern( 'C', tn ) 
  G_loc = matchPattern( 'G', tn ) 
  tn = replaceLetterAt( tn, start( C_loc ), paste( replicate( length( start( C_loc ) ), "Y" ), 
collapse = "") ) 
  tn = replaceLetterAt( tn, start( G_loc ), paste( replicate( length( start( G_loc ) ), "R" ), 
collapse = "") ) 
   
  CountHits7[ i1 ] = length(matchPattern( tn, ChromosomeMasked, max.mismatch = Mismatches, 
fixed = FALSE  )) 
  cat( "Ch7, Frag =", i1, ", Hits = ", CountHits7[ i1 ], "\n" ) 
} 
 
CountHits8 = array( 0, TestEnd ) 
Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 8 ] ) 
names(Chromosome) = c("chr") 
ChromosomeMasked = maskMotif( Chromosome$chr, "N" ) 
rm( Chromosome ) 
cat( "************* Chromosome 8\n" ) 
for( i1 in TestStart:TestEnd ) 
{ 
  t1 = narrow( Chromosome1, start = CutLoc_sized[ i1 ], width = SeqWidth ) 
   
  tn = t1$chr 
  C_loc = matchPattern( 'C', tn ) 
  G_loc = matchPattern( 'G', tn ) 
  tn = replaceLetterAt( tn, start( C_loc ), paste( replicate( length( start( C_loc ) ), "Y" ), 
collapse = "") ) 
  tn = replaceLetterAt( tn, start( G_loc ), paste( replicate( length( start( G_loc ) ), "R" ), 
collapse = "") ) 
   
  CountHits8[ i1 ] = length(matchPattern( tn, ChromosomeMasked, max.mismatch = Mismatches, 
fixed = FALSE  )) 
  cat( "ChUn, Frag =", i1, ", Hits = ", CountHits8[ i1 ], "\n" ) 
} 
 
FragCounts = c( CountHits1, 
                CountHits2, 
                CountHits3, 
                CountHits4, 
                CountHits5, 
                CountHits6, 
                CountHits7, 
                CountHits8 ) 
                 
FragPos = c( 1:TestEnd, 
             1:TestEnd, 
             1:TestEnd, 
             1:TestEnd, 
             1:TestEnd, 
             1:TestEnd, 
             1:TestEnd, 
             1:TestEnd ) 
 
              
FragChr = c( array( seqlevelsInUse( idx[ 1 ] ), TestEnd ), 
             array( seqlevelsInUse( idx[ 2 ] ), TestEnd ), 
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             array( seqlevelsInUse( idx[ 3 ] ), TestEnd ), 
             array( seqlevelsInUse( idx[ 4 ] ), TestEnd ), 
             array( seqlevelsInUse( idx[ 5 ] ), TestEnd ), 
             array( seqlevelsInUse( idx[ 6 ] ), TestEnd ), 
             array( seqlevelsInUse( idx[ 7 ] ), TestEnd ), 
             array( seqlevelsInUse( idx[ 8 ] ), TestEnd ) ) 
 
Good = c( CountHits1 == 1, 
             CountHits2 == 0, 
             CountHits3 == 0, 
             CountHits4 == 0, 
             CountHits5 == 0, 
             CountHits6 == 0, 
             CountHits7 == 0, 
             CountHits8 == 0 ) 
 
FragmentHits_df = data.frame( FragChr, FragPos, FragCounts, Good ) 
 
save( FragmentHits_df, file = paste0( "Fragment Hits using ", 
                                      SizeLimLower, 
                                      "-",  
                                      SizeLimUpper, 
                                      " bp size selected fragments with ", 
                                      levels( REnz1$EnzName ), 
                                      " ", 
                                      levels( REnz2$EnzName ),  
                                      " ", 
                                      TestStart, 
                                      " ", 
                                      TestEnd, 
                                      " ", 
                                      Mismatches, 
                                      " with Y and R replacements.Rdata" ) ) 
 
ggplot( FragmentHits_df,  
        aes( x = FragPos, y = FragCounts, col = Good ) ) + 
  geom_point( alpha = 1, size = .3 ) +  
  facet_grid( FragChr~. ) +  
  ggtitle( paste0( "Number of fragment hits in ",  
                   SizeLimLower, 
                   "-",  
                   SizeLimUpper, 
                   " bp size selected fragments using ", 
                   levels( REnz1$EnzName ), " ", levels( REnz2$EnzName ) ) ) + 
  ylab( paste0("Number of hits" ) ) +  
  xlab( "Fragment number") 
 
ggsave( paste0( "Fragment Hits using ", 
                SizeLimLower, 
                "-",  
                SizeLimUpper, 
                " bp size selected fragments with ", 
                levels( REnz1$EnzName ), 
                " ", 
                levels( REnz2$EnzName ),  
                " ", 
                TestStart, 
                " ", 
                TestEnd, 
                " ", 
                Mismatches, 
                " with Y and R replacements.png" ),  
        width = 10,  
        height = 7 ) 
 
Gooda = c( ( CountHits1 == 1) & ( CountHits2 == 0 ) & ( CountHits3 == 0 ) & ( CountHits4 == 0 
) & ( CountHits5 == 0 ) & ( CountHits6 == 0 ) & ( CountHits7 == 0 ) & ( CountHits8 == 0 ) ) 
FragCountsa = CountHits1 + 
                CountHits2 + 
                CountHits3 + 
                CountHits4 + 
                CountHits5 + 
                CountHits6 + 
                CountHits7 + 
                CountHits8 
 
FragPosa = 1:TestEnd 
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FragmentHits_dfa = data.frame( FragPosa, FragCountsa, Gooda ) 
 
ggplot( FragmentHits_dfa,  
        aes( x = FragPosa, y = FragCountsa, col = Gooda ) ) + 
  geom_point( alpha = 1, size = .3 ) +  
  ggtitle( paste0( "Number of fragment total hits in ",  
                   SizeLimLower, 
                   "-",  
                   SizeLimUpper, 
                   " bp size selected fragments using ", 
                   levels( REnz1$EnzName ), " ", levels( REnz2$EnzName ) ) ) + 
  ylab( paste0("Number of hits" ) ) +  
  xlab( "Fragment number") 
 
ggsave( paste0( "Fragment Hits Total using ", 
                SizeLimLower, 
                "-",  
                SizeLimUpper, 
                " bp size selected fragments with ", 
                levels( REnz1$EnzName ), 
                " ", 
                levels( REnz2$EnzName ),  
                " ", 
                TestStart, 
                " ", 
                TestEnd, 
                " ", 
                Mismatches, 
                " with Y and R replacements.png" ),  
        width = 10,  
        height = 7 ) 
 
gr = sum( Gooda[TestStart:TestEnd] == TRUE ) 
gt = length( Gooda[TestStart:TestEnd] ) 
cat( "Number of fragments with only 1 hit in the whole genome when using C->Y and G->R ", gr, 
", out of ", gt, ", or ", 100*gr/gt, "% (assuming ", Mismatches," bp error)\n", sep = "" ) 
 
proc.time()-ptm2 
 
# This is checking to see if the different ends is working correctly by comparing ends 
 
filename = "" 
 
# If NsiI then Csp6I then fragment is T.........G 
# If Csp6I then NsiI then fragment is TAC...ATGCA 
# Check some of the sequences using  
# 
Chromosome = scanFa( BarleyGenomeFilenameHome, idx[ 3 ] ) 
 
CutLoc_start = SizeSelFrag$CutStarts[SizeSelFrag$ChrLabel == "chr3H"] 
CutLoc_length = SizeSelFrag$CutLength[SizeSelFrag$ChrLabel == "chr3H"] 
totalcounter = 0 
diffcounter = 0 
 
for( i3 in 101001:102000) 
{ 
  t1 = narrow( Chromosome, start = CutLoc_start[i3], width = CutLoc_length[i3]+1 ) 
  ta = start( vmatchPattern( "TAC", narrow( t1, start = 1, width = 3 ) ) ) 
  tb = start( vmatchPattern( "T", narrow( t1, start = 1, width = 1 ) ) ) 
  tc = start( vmatchPattern( "ATGCA", narrow( t1, start = CutLoc_length[i3]-3, width = 5 ) ) ) 
  td = start( vmatchPattern( "G", narrow( t1, start = CutLoc_length[i3]+1, width = 1 ) ) ) 
  E1 = 0 
  E2 = 0 
  if( length( ta[[1]] ) == 1 ) 
  { 
    # The start restriction enzyme must have been Csp6I 
    E1 = 1 
  } 
  else if( length( tb[[1]]) == 1 ) 
  { 
    # The start restriction enzyme must have been NsiI 
    E1 = 2 
  } 
  if( length( td[[1]] ) == 1 ) 
  { 
    # The start restriction enzyme must have been Csp6I 
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    E2 = 1 
  } 
  else if( length( tc[[1]] ) == 1 ) 
  { 
    # The start restriction enzyme must have been NsiI 
    E2 = 2 
  } 
  totalcounter = totalcounter + 1 
  if( E1 != E2 ) 
  { 
    diffcounter = diffcounter + 1 
  } 
} 
 
cat( "diffcounter ", diffcounter ) 
cat( "totalcounter ", totalcounter ) 
cat( "diffcounter/totalcounter ", diffcounter/totalcounter ) 
 
 

10.13 fastqfilter.py 

This custom python program filters paired-read fastq files with arguments for the 

minimum acceptable phred value for any base and the minimum average phred 

value. 

# fastq_filter 
# Discards all reads with a single base quality less than filter1 
# Discards all reads where the average quality is less than filter2 
# Only works with paired end reads 
# 
# By Jason Smith, last modified 27/11/2019 (d/m/y) 
 
import sys 
import gzip 
import os 
import time 
import argparse 
 
parser = argparse.ArgumentParser( description = 'Filter fastq files' ) 
parser.add_argument( 'r1', help = 'Read 1 file in fastq format' ) 
parser.add_argument( 'r2', help = 'Read 2 file in fastq format' ) 
parser.add_argument( 'outdir', help = 'output directory (needs / at the end)' ) 
args = parser.parse_args() 
filename1 = args.r1 
filename2 = args.r2 
outdir = args.outdir 
 
f1 = open( filename1, 'r' ) 
f2 = open( filename2, 'r' ) 
 
countreads = 0 
countkept = 0 
countids = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
countwc = 0 
 
keptfile1 = 'kept.' + filename1[filename1.rindex('/')+1:] 
keptfile2 = 'kept.' + filename2[filename2.rindex('/')+1:] 
discardedfile1 = 'discarded.' + filename1[filename1.rindex('/')+1:] 
discardedfile2 = 'discarded.' + filename2[filename2.rindex('/')+1:] 
 
starttime = time.time() 
of1 = open( outdir + keptfile1, "w" ) 
of2 = open( outdir + keptfile2, "w" ) 
 
#filter value needs 33 added for phred33 standard 
filter1 = 5 + 33 
filter2 = 35 + 33 
t1 = '' 
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t2 = '' 
 
for x in range( 1, 100000000 ): 
    h1 = f1.readline() 
    s1 = f1.readline() 
    p1 = f1.readline() 
    q1 = f1.readline() 
    if q1 == "": 
        print( "Breaking out of loop" ) 
        break 
    h2 = f2.readline() 
    s2 = f2.readline() 
    p2 = f2.readline() 
    q2 = f2.readline() 
    countreads += 1 
    #filter reads that have a single base in read 2 less than filter1 
    if( all( [ ord( qt2 ) > filter1 for qt2 in q2.strip() ] ) ): 
        #filter reads that have a single base in read 1 less than filter1 
        if( all( [ ord( qt1 ) > filter1 for qt1 in q1.strip() ] ) ): 
            #filter reads that have an average less than filter2 
            if( sum( [ ord( c ) for c in ( q1.strip() + q2.strip() ) ] ) / 300 > filter2 ): 
                of1.write( h1 + s1 + p1 + q1 ) 
                of2.write( h2 + s2 + p2 + q2 ) 
                countkept += 1 
 
of1.close() 
of2.close() 
f1.close() 
f2.close() 
 
endtime = time.time() 
print( "End time - start time = %f" % ( endtime - starttime ) ) 
print( "Total reads = %d" % countreads ) 
print( "Kept reads = %d" % countkept ) 
 
 

10.14 Barcodes.py 

This custom python program does what demultiplex.py from the epiGBS 

bioinformatics pipeline should do. It determines the sample identity based on the 

barcode, works out if the read is Watson or Crick orientation, and reports bisulphite 

conversion rate based on the number of reads unmethylated at both ends of the 

Watson/Crick identifying cytosine. The generated files follow the file format required 

for the epiGBS pipeline and files need to be modified to be ready for Bismark. 

# This program does what demultiplex.py in the epiGBS suite should do 
# It determines the sample identity based on the barcode 
# It determines if the read is a Watson or a Crick read 
# It determines the conversion rate of unmethylated cytosine by counting instances where both 
#   Cs in the adapter remain unchanged 
# 
# Jason Smith 
# Last modified 27/11/2019 (d/m/y) 
 
import sys 
import gzip 
import os 
import time 
import argparse 
 
parser = argparse.ArgumentParser( description = 'Filter fastq files' ) 
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parser.add_argument( 'r1in', help = 'Read 1 file in .fq or fq.gz' ) 
parser.add_argument( 'r2in', help = 'Read 2 file in .fq or fq.gz' ) 
parser.add_argument( 'r1out', help = 'Read 1 file out .fq or fq.gz' ) 
parser.add_argument( 'r2out', help = 'Read 2 file out .fq or fq.gz' ) 
parser.add_argument( 'summaryfile', help = 'summary output file' ) 
args = parser.parse_args() 
 
filein1 = args.r1in 
filein2 = args.r2in 
fileout1 = args.r1out 
fileout2 = args.r2out 
summaryfile = args.summaryfile 
 
if( filein1[-2:] == 'gz' ): 
    f1 = gzip.open( filein1, 'rb' ) 
    f2 = gzip.open( filein2, 'rb' ) 
else: 
    f1 = open( filein1, 'r' ) 
    f2 = open( filein2, 'r' ) 
 
if( fileout1[-2:] == 'gz' ): 
    fo1 = gzip.open( fileout1, 'wb' ) 
    fo2 = gzip.open( fileout2, 'wb' ) 
else: 
    fo1 = open( fileout1, 'w' ) 
    fo2 = open( fileout2, 'w' ) 
 
# set up the barcodes 

bc1 = ❴ "AACT":1, "CCTA":2, "TTAC":3, "AGGC":4 } 
bc2 = ❴ "CCAG":2, "TTGA":3, "GGTC":4, "ACTA":5, "CAGC":6, "TGAT":7, "GTCG":8, "ATAC":9 } 
bcid = ❴ "12":"L1", "22":"L2", "33":"L3", "43":"L4", "14":"L5", "24":"L6", "35":"L7", 
"45":"L8", "16":"R1", "26":"R2", "37":"R3", "47":"R4", "18":"R5", "28":"R6", "39":"R7", 
"49":"R8" } 

bcidn = ❴ "12":0, "22":1, "33":2, "43":3, "14":4, "24":5, "35":6, "45":7, "16":8, "26":9, 
"37":10, "47":11, "18":12, "28":13, "39":14, "49":15 } 
chipid = 'HHVK2CCXY_8_' 
 
# set up all the counters 
countreads = 0 
countCT = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
countTC = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
countCC = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
countNN = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
countids = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
countwc = 0 
testing = 0 
 
starttime = time.time() 
 
while 1: 
    h1 = f1.readline() 
    s1 = f1.readline() 
    p1 = f1.readline() 
    q1 = f1.readline() 
 
    if q1 == "": 
        print( "Breaking out of loop" ) 
        break 
    bcs1 = str( bc1.get( s1[3:7] ) ) 
    if bcs1 == "None": 
        bcs1 = " " 
    h2 = f2.readline() 
    s2 = f2.readline() 
    p2 = f2.readline() 
    q2 = f2.readline() 
 
    bcs2 = str( bc2.get( s2[3:7] ) ) 
    bcsc = bcs1 + bcs2 
    if bcs2 == "None": 
        bcs2 = " " 
    id = str( bcid.get( bcsc ) ) 
    idn = bcidn.get( bcsc ) 
    if id == "None": 
        id = " " 
    else: 
        countids[ bcidn.get( bcsc ) ] = countids[ bcidn.get( bcsc ) ] + 1 
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        if ( ( s1[ 7:8 ] == "C" ) & ( s2[ 7:8 ] == "T" ) ): 
            countCT[ bcidn.get( bcsc ) ] = countCT[ bcidn.get( bcsc ) ] + 1 
            #write to file output 
            #The header consists of 
            #1. The header from the fastq file up to the first space 
            #2. BL:Z is left_bc (barcode, watson/crick identifier = Y, enzyme seq) 
            #3. BR:Z is right_bc (barcode, watson/crick identifier = Y, enzyme seq) 
            #4. RG:Z is the chip id, seq lane and sample ID, RG_id 
            #5. ML:i is the left mismatch 
            #6. MR:i is the right mismatch 
            #7. ST:Z is the strand (watson or crick) 
            #8. RN:Z is the wobble bases for de-duplication 
            header = h1.split( ' ' )[0] +  '\t' +\ 
                     'BL:Z:' + s1[3:7] + 'YTAC' + '\t' +\ 
                     'BR:Z:' + s2[3:7] + 'YTGCAT' + '\t' +\ 
                     'RG:Z:' + chipid + id + '\t' +\ 
                     'ML:i:0\tMR:i:0\t' +\ 
                     'ST:Z:Crick\t' +\ 
                     'RN:Z:' + s1[0:3] + '_' + s2[0:3] 
            fo1.write( header + '\n' +\ 
                       s1[ 8: ] +\ 
                       p1 +\ 
                       q1[ 8: ] ) 
            fo2.write( header + '\n' +\ 
                       s2[ 8: ] +\ 
                       p2 +\ 
                       q2[ 8: ] ) 
        elif ( ( s1[ 7:8 ] == "T" ) & ( s2[ 7:8 ] == "C" ) ): 
            countTC[ bcidn.get( bcsc ) ] = countTC[ bcidn.get( bcsc ) ] + 1 
            #write to file output 
            header = h1.split( ' ' )[0] +  '\t' +\ 
                     'BL:Z:' + s1[3:7] + 'YTAC' + '\t' +\ 
                     'BR:Z:' + s2[3:7] + 'YTGCAT' + '\t' +\ 
                     'RG:Z:' + chipid + id + '\t' +\ 
                     'ML:i:0\tMR:i:0\t' +\ 
                     'ST:Z:Watson\t' +\ 
                     'RN:Z:' + s1[0:3] + '_' + s2[0:3] 
            fo1.write( header + '\n' +\ 
                       s1[ 8: ] +\ 
                       p1 +\ 
                       q1[ 8: ] ) 
            fo2.write( header + '\n' +\ 
                       s2[ 8: ] +\ 
                       p2 +\ 
                       q2[ 8: ] ) 
        elif ( ( s1[ 7:8 ] == "C" ) & ( s2[ 7:8 ] == "C" ) ): 
            countCC[ bcidn.get( bcsc ) ] = countCC[ bcidn.get( bcsc ) ] + 1 
        else: 
            countNN[ bcidn.get( bcsc ) ] = countNN[ bcidn.get( bcsc ) ] + 1 
    countreads = countreads + 1 
    if( countreads % 100000 == 0): 
        print( countreads ) 
 
fo1.close() 
fo2.close() 
 
out1 = open( summaryfile, 'w' ) 
out1.write( 'Total reads processed\n' ) 
out1.write( str( countreads ).strip( '[]' ) + '\n') 
out1.write( ' ,L1,L2,L3,L4,L5,L6,L7,L8,R1,R2,R3,R4,R5,R6,R7,R8\n') 
out1.write( 'countids,' + str( countids ).strip( '[]' ) + '\n') 
out1.write( 'countCT,' + str( countCT ).strip( '[]' ) + '\n') 
out1.write( 'countTC,' + str( countTC ).strip( '[]' ) + '\n') 
out1.write( 'countCC,' + str( countCC ).strip( '[]' ) + '\n') 
out1.write( 'countNN,' + str( countNN ).strip( '[]' ) + '\n') 
out1.close() 
 
endtime = time.time() 
print( "End time - start time = %f" % ( endtime - starttime ) ) 
print( "Total reads = %d" % countreads ) 
 
f1.close() 
f2.close() 
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10.15 WobbleIndexingToPickle.py 

This custom python program takes the result from Barcodes.py and uses the pickle 

function to save the information sorted by barcode UMI (previously called the 

wobble) combination and sample combination. This is later used by 

WobblePickleToFiles.py and dedup.py to remove PCR duplicates. 

import sys 
import gzip 
import os 
import time 
import pickle 
import argparse 
 
# This gets rid of PCR duplicates in 3 stages. 
# WobbleIndexingToPickle__.py (This program) Finds the locations of reads and assigns it to  
#  the relevant sample and wobble combinatin 
# WobblePickleToFiles__.py Saves the reads in the relevant files, this saves a lot of time 
#  opening and closing files 
# dedup.py which uses dedupcy.pyx to compare reads and remove any duplicates 
# 
# Jason Smith 
# Last modified 26/11/2019 (d/m/y) 
 
parser = argparse.ArgumentParser( description = 'Finds the index of reads' ) 
parser.add_argument( 'r1in', help = 'Read 1 file in .fq format' ) 
parser.add_argument( 'r2in', help = 'Read 2 file in .fq format' ) 
parser.add_argument( 'outdir', help = 'Output directory (including start of filename if 
multiple)' ) 
args = parser.parse_args() 
 
filename1 = args.r1in 
filename2 = args.r2in 
outdir    = args.outdir 
 
print( "Starting" ) 
f1 = open( filename1, 'r' ) 
f2 = open( filename2, 'r' ) 
 
L1i = [ [] for i in range( 4096 ) ] 
L2i = [ [] for i in range( 4096 ) ] 
L3i = [ [] for i in range( 4096 ) ] 
L4i = [ [] for i in range( 4096 ) ] 
L5i = [ [] for i in range( 4096 ) ] 
L6i = [ [] for i in range( 4096 ) ] 
L7i = [ [] for i in range( 4096 ) ] 
L8i = [ [] for i in range( 4096 ) ] 
R1i = [ [] for i in range( 4096 ) ] 
R2i = [ [] for i in range( 4096 ) ] 
R3i = [ [] for i in range( 4096 ) ] 
R4i = [ [] for i in range( 4096 ) ] 
R5i = [ [] for i in range( 4096 ) ] 
R6i = [ [] for i in range( 4096 ) ] 
R7i = [ [] for i in range( 4096 ) ] 
R8i = [ [] for i in range( 4096 ) ] 
 
countsaves = 0 
 
countreads = 0 
approxsizecalc = 1 
 
starttime = time.time() 
testing = 0 
 
currentindex1 = 0  
currentindex2 = 0 
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bpdict = ❴ 'A':0, 'C':1, 'G':2, 'T':3 ❵ 
kept = 0 
 
while 1: 
    h1 = f1.readline() 
    s1 = f1.readline() 
    p1 = f1.readline() 
    q1 = f1.readline() 
    h2 = f2.readline() 
    s2 = f2.readline() 
    p2 = f2.readline() 
    q2 = f2.readline() 
    if q1 == "": 
        print( "Breaking out of loop" ) 
        break 
    if( len( t[ 7 ] ) == 12 ): 
        bc = t[ 3 ][ len( t[ 3 ] ) - 2 : len( t[ 3 ] ) ] 
        wob = t[ 7 ][ len( t[ 7 ] ) - 7 : len( t[ 7 ] ) ] 
        wob = wob.strip( ":" ) 
        wob = wob[0:3] + wob[4:7] 
        wobv = 0 
        mul = 0 
        for bp in wob: 
            wobv += ( bpdict.get( bp, 10000 ) )*( 4**mul ) 
            mul += 1 
        if( wobv < 4096 ): 
            kept += 1 
            if( bc == "L1" ): 
                L1i[ wobv ].append( currentindex1 ) 
                L1i[ wobv ].append( currentindex2 ) 
            elif( bc == "L2" ): 
                L2i[ wobv ].append( currentindex1 ) 
                L2i[ wobv ].append( currentindex2 ) 
            elif( bc == "L3" ): 
                L3i[ wobv ].append( currentindex1 ) 
                L3i[ wobv ].append( currentindex2 ) 
            elif( bc == "L4" ): 
                L4i[ wobv ].append( currentindex1 ) 
                L4i[ wobv ].append( currentindex2 ) 
            elif( bc == "L5" ): 
                L5i[ wobv ].append( currentindex1 ) 
                L5i[ wobv ].append( currentindex2 ) 
            elif( bc == "L6" ): 
                L6i[ wobv ].append( currentindex1 ) 
                L6i[ wobv ].append( currentindex2 ) 
            elif( bc == "L7" ): 
                L7i[ wobv ].append( currentindex1 ) 
                L7i[ wobv ].append( currentindex2 ) 
            elif( bc == "L8" ): 
                L8i[ wobv ].append( currentindex1 ) 
                L8i[ wobv ].append( currentindex2 ) 
            elif( bc == "R1" ): 
                R1i[ wobv ].append( currentindex1 ) 
                R1i[ wobv ].append( currentindex2 ) 
            elif( bc == "R2" ): 
                R2i[ wobv ].append( currentindex1 ) 
                R2i[ wobv ].append( currentindex2 ) 
            elif( bc == "R3" ): 
                R3i[ wobv ].append( currentindex1 ) 
                R3i[ wobv ].append( currentindex2 ) 
            elif( bc == "R4" ): 
                R4i[ wobv ].append( currentindex1 ) 
                R4i[ wobv ].append( currentindex2 ) 
            elif( bc == "R5" ): 
                R5i[ wobv ].append( currentindex1 ) 
                R5i[ wobv ].append( currentindex2 ) 
            elif( bc == "R6" ): 
                R6i[ wobv ].append( currentindex1 ) 
                R6i[ wobv ].append( currentindex2 ) 
            elif( bc == "R7" ): 
                R7i[ wobv ].append( currentindex1 ) 
                R7i[ wobv ].append( currentindex2 ) 
            elif( bc == "R8" ): 
                R8i[ wobv ].append( currentindex1 ) 
                R8i[ wobv ].append( currentindex2 ) 
        else: 
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            fdiscard = open( outdir + 'discarded' + filename1[ filename1.rfind( '/' ) + 1: ], 
'a' ) 
            fdiscard.write( h1 + s1 + p1 + q1 ) 
            fdiscard.close() 
    currentindex1 += len(h1) + len(s1) + len(p1) + len(q1) 
    currentindex2 += len(h2) + len(s2) + len(p2) + len(q2) 
    countreads = countreads + 1 
    if ( countreads % 1000000 ) == 0: 
        fprog = open( outdir + 'progress' + filename1[ filename1.rfind( '/' ) + 1: ] + '.txt', 
'a' ) 

        fprog.write( 'Reads ' +  "❴:,❵".format( countreads ) + ' kept ' + "❴:,❵".format( kept 
) + '\n' ) 
        fprog.close() 
) 
    if ( countreads % 1000000000 ) == 0: 
        print( 'Saving pickle files...' ) 
        fnp = open( outdir + 'L1i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( L1i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'L2i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( L2i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'L3i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( L3i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'L4i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( L4i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'L5i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( L5i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'L6i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( L6i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'L7i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( L7i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'L8i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( L8i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'R1i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( R1i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'R2i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( R2i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'R3i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( R3i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'R4i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( R4i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'R5i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( R5i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'R6i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( R6i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'R7i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( R7i, fnp ) 
        fnp.close() 
        fnp = open( outdir + 'R8i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
        pickle.dump( R8i, fnp ) 
        fnp.close() 
        countsaves += 1 
        L1i = [ [] for i in range( 4096 ) ] 
        L2i = [ [] for i in range( 4096 ) ] 
        L3i = [ [] for i in range( 4096 ) ] 
        L4i = [ [] for i in range( 4096 ) ] 
        L5i = [ [] for i in range( 4096 ) ] 
        L6i = [ [] for i in range( 4096 ) ] 
        L7i = [ [] for i in range( 4096 ) ] 
        L8i = [ [] for i in range( 4096 ) ] 
        R1i = [ [] for i in range( 4096 ) ] 
        R2i = [ [] for i in range( 4096 ) ] 
        R3i = [ [] for i in range( 4096 ) ] 
        R4i = [ [] for i in range( 4096 ) ] 
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        R5i = [ [] for i in range( 4096 ) ] 
        R6i = [ [] for i in range( 4096 ) ] 
        R7i = [ [] for i in range( 4096 ) ] 
        R8i = [ [] for i in range( 4096 ) ] 
 
print( 'Saving pickle files...' ) 
fnp = open( outdir + 'L1i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( L1i, fnp ) 
fnp.close() 
fnp = open( outdir + 'L2i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( L2i, fnp ) 
fnp.close() 
fnp = open( outdir + 'L3i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( L3i, fnp ) 
fnp.close() 
fnp = open( outdir + 'L4i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( L4i, fnp ) 
fnp.close() 
fnp = open( outdir + 'L5i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( L5i, fnp ) 
fnp.close() 
fnp = open( outdir + 'L6i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( L6i, fnp ) 
fnp.close() 
fnp = open( outdir + 'L7i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( L7i, fnp ) 
fnp.close() 
fnp = open( outdir + 'L8i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( L8i, fnp ) 
fnp.close() 
fnp = open( outdir + 'R1i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( R1i, fnp ) 
fnp.close() 
fnp = open( outdir + 'R2i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( R2i, fnp ) 
fnp.close() 
fnp = open( outdir + 'R3i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( R3i, fnp ) 
fnp.close() 
fnp = open( outdir + 'R4i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( R4i, fnp ) 
fnp.close() 
fnp = open( outdir + 'R5i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( R5i, fnp ) 
fnp.close() 
fnp = open( outdir + 'R6i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( R6i, fnp ) 
fnp.close() 
fnp = open( outdir + 'R7i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( R7i, fnp ) 
fnp.close() 
fnp = open( outdir + 'R8i_' + str( countsaves ).zfill(6) + '.pickle', 'wb' ) 
pickle.dump( R8i, fnp ) 
fnp.close() 
 
 
endtime = time.time() 
print( "End time - start time = %f" % ( endtime - starttime ) ) 
print( "Total reads = %d" % countreads ) 
 
f1.close() 
f2.close() 
 
 

10.16 WobblePickleToFiles.py 

This custom python program reads in the pickle files created by 

WobbleIndexingToPickel.py and then saves as a separate file for each UMI 
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(previously called the wobble) combination and each sample. The output of this 

program is used by dedup.py to remove PCR duplicates. 

# This gets rid of PCR duplicates in 3 stages. 
# WobbleIndexingToPickle__.py (This program) Finds the locations of reads and assigns it to 
#  the relevant sample and wobble combinatin 
# WobblePickleToFiles__.py (This program) Saves the reads in the relevant files, this saves a 
#  lot of time opening and closing files 
# dedup.py which uses dedupcy.pyx to compare reads and remove any duplicates 
# 
# Jason Smith 
# Last modified 26/11/2019 (d/m/y) 
 
import sys 
import gzip 
import os 
import time 
import pickle 
import argparse 
 
$HOME/Share/epiGBS_89_demux_new/test.2.fq  $HOME/Share/epiGBS_90_wobble/ 
$HOME/Share/epiGBS_90_wobble/test L1 
 
parser = argparse.ArgumentParser( description = 'Uses read indexes to generate files for each 
wobble combination' ) 
parser.add_argument( 'r1in', help = 'Read 1 file in .fq format' ) 
parser.add_argument( 'r2in', help = 'Read 2 file in .fq format' ) 
parser.add_argument( 'indir', help = 'Input directory for pickle files (including start of 
filename if multiple)' ) 
parser.add_argument( 'outdir', help = 'Output directory (including start of filename if 
multiple)' ) 
parser.add_argument( 'samp', help = 'Sample name (L1, L2, ... R8 )' ) 
 
args      = parser.parse_args() 
filename1 = args.r1in 
filename2 = args.r2in 
indir     = args.indir 
outdir    = args.outdir 
samp      = args.samp 
 
f1 = open( filename1, 'r' ) 
f2 = open( filename2, 'r' ) 
 
starttime = time.time() 
 
samples = [ 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 
'R6', 'R7', 'R8' ] 
 
fp = open( indir + samp + 'i_000000.pickle', 'rb' ) 
ind = pickle.load( fp ) 
fp.close() 
for c in range( 0, 4096 ): 
    fo1 = open( outdir + samp + str( c ).zfill( 4 ) + '.1.fq', 'w' ) 
    fo2 = open( outdir + samp + str( c ).zfill( 4 ) + '.2.fq', 'w' ) 
    for i in range( 0, len( ind[ c ] ) ): 
        if( ( i % 2 ) == 0 ): 
            t = f1.seek( ind[c][i] ) 
            fo1.write( f1.readline() ) 
            fo1.write( f1.readline() ) 
            fo1.write( f1.readline() ) 
            fo1.write( f1.readline() ) 
        else: 
            t = f2.seek( ind[c][i] ) 
            fo2.write( f2.readline() ) 
            fo2.write( f2.readline() ) 
            fo2.write( f2.readline() ) 
            fo2.write( f2.readline() ) 
    fo1.close() 
    fo2.close() 
 
endtime = time.time() 
print( "End time - start time = %f" % ( endtime - starttime ) ) 
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f1.close() 
f2.close() 
 
 

10.17 dedup.py 

This custom python program takes the output files from WobblePickleToFiles.py and 

removes any PCR duplicates, keeping only the read with the highest phred quality 

score. This program utilises 8 CPU cores and requires the cython compiled program 

dedupcy.pyx. 

from multiprocessing import Pool, TimeoutError 
import time 
import os 
import dedupcy 
 
indir = "/scratch/user/smit1191/epiGBS_90_wobble/joined/" 
outdir = "/scratch/user/smit1191/epiGBS_91_dedup/" 
samples = [ 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 
'R6', 'R7', 'R8' ] 
logh = open( outdir + 'log.txt', 'a' ) 
logh.write( 'Starting...\n' ) 
logh.close() 
 
if __name__ == '__main__': 
    # start 8 worker processes 
    with Pool( processes = 8 ) as pool: 
        counter = 0 
        samp = samples[ 0 ] 
        dir = os.listdir( indir + samp + '/' ) 
        dir1 = [ x for x in dir if ".1.fq" in x ] 
        dir2 = [ samp + '/' + file for file in dir1 ] 
        logh = open( outdir + samp + 'log.txt', 'a' ) 
        logh.write( 'Files found in ' + indir + samp + '/\n' + str( dir2 ) + '\n' ) 
        logh.close() 
        dir2 = [] 
        for c in range( 0, 10 ): 
            dir2.append( samp + '/' + samp + str( c ).zfill( 4 ) + '.1.fq.gz' + '\t' + indir + 
'\t' + outdir ) 
        for i in pool.imap_unordered( dedupcy.f, dir2 ): 
            logh = open( outdir + samp + 'log.txt', 'a' ) 
            logh.write( i + '  ' + str( counter ) + '\n' ) 
            logh.close() 
            counter += 1 
 
 

10.18 dedupcy.pyx 

This custom program was written in cython for speed improvements when 

comparing reads to remove PCR duplicates. It is used by dedup.py to find and 

remove PCR duplicates. 

import os 
import array 
from cpython cimport array 
import cython 
import gzip 
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@cython.boundscheck(False) 
cpdef str f( str inputstrs ): 
    inputs = inputstrs.split('\t') 
    cdef str filein = inputs[0] 
    cdef str indir = inputs[1] 
    cdef str outdir = inputs[2] 
    cdef int fq = 1 
    if( filein[-2:] == 'gz' ): 
        fq = 0 
 
    if( fq ): 
        filein1 = indir + filein 
        filein2 = indir + filein[:-4] + '2.fq' 
        fileout1 = outdir + filein 
        fileout2 = outdir + filein[:-4] + '2.fq' 
        logh = open( outdir + 'log.txt', 'a' ) 
        logh.write( 'Starting ' + filein1 + '\n' ) 
        logh.close() 
        fh = open( filein1, 'r' ) 
        r1buf = fh.read().splitlines() 
        fh.close() 
        fh = open( filein2, 'r' ) 
        r2buf = fh.read().splitlines() 
        fh.close() 
    else: 
        filein1 = indir + filein 
        filein2 = indir + filein[:-7] + '2.fq.gz' 
        fileout1 = outdir + filein 
        fileout2 = outdir + filein[:-7] + '2.fq.gz' 
        logh = open( outdir + 'log.txt', 'a' ) 
        logh.write( 'Starting ' + filein1 + '\n' ) 
        logh.close() 
        fh = gzip.open( filein1, 'r' ) 
        r1buf = fh.read().decode( encoding = 'UTF-8' ).splitlines() 
        fh.close() 
        fh = gzip.open( filein2, 'r' ) 
        r2buf = fh.read().decode( encoding = 'UTF-8' ).splitlines() 
        fh.close() 
 
    cdef int cont = 1 
    cdef ccount = 0 
    cdef long r1len = len( r1buf ) 
    cdef list nr1wi = [] 
    cdef list nr2wi = [] 
    cdef list nr1ci = [] 
    cdef list nr2ci = [] 
    while( ccount < r1len ): 
        if( 'Watson' in r1buf[ ccount ] ): 
            nr1wi.append( r1buf[ ccount ] ) 
            nr1wi.append( r1buf[ ccount + 1 ] ) 
            nr1wi.append( r1buf[ ccount + 2 ] ) 
            nr1wi.append( r1buf[ ccount + 3 ] ) 
            nr2wi.append( r2buf[ ccount ] ) 
            nr2wi.append( r2buf[ ccount + 1 ] ) 
            nr2wi.append( r2buf[ ccount + 2 ] ) 
            nr2wi.append( r2buf[ ccount + 3 ] ) 
        else: 
            nr1ci.append( r1buf[ ccount ] ) 
            nr1ci.append( r1buf[ ccount + 1 ] ) 
            nr1ci.append( r1buf[ ccount + 2 ] ) 
            nr1ci.append( r1buf[ ccount + 3 ] ) 
            nr2ci.append( r2buf[ ccount ] ) 
            nr2ci.append( r2buf[ ccount + 1 ] ) 
            nr2ci.append( r2buf[ ccount + 2 ] ) 
            nr2ci.append( r2buf[ ccount + 3 ] ) 
        ccount += 4 
         
    cdef list r1w = [] 
    cdef list r1c = [] 
    cdef list r2w = [] 
    cdef list r2c = [] 
    cdef list nr1w = [] 
    cdef list nr1c = [] 
    cdef list nr2w = [] 
    cdef list nr2c = [] 
    cdef int l 
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    cdef list r1wh = [] 
    cdef list r1wf = [] 
    cdef array.array r1wq = array.array( 'i', [] ) 
    cdef list r2wh = [] 
    cdef list r2wf = [] 
    cdef array.array r2wq = array.array( 'i', [] ) 
    for l in range( 0, int( len( nr1wi )/4 ) ): 
        if( min( [ ord(x)-33 for x in nr1wi[ l*4+3 ] ] + [ ord(x)-33 for x in nr2wi[ l*4+3 ] ] 
) > 11 ): 
            nr1w.append( nr1wi[ l*4 ] ) 
            nr1w.append( nr1wi[ l*4+1 ] ) 
            nr1w.append( nr1wi[ l*4+2 ] ) 
            nr1w.append( nr1wi[ l*4+3 ] ) 
            nr2w.append( nr2wi[ l*4 ] ) 
            nr2w.append( nr2wi[ l*4+1 ] ) 
            nr2w.append( nr2wi[ l*4+2 ] ) 
            nr2w.append( nr2wi[ l*4+3 ] ) 
    for l in range( 0, int( len( nr1ci )/4 ) ): 
        if( min( [ ord(x)-33 for x in nr1ci[ l*4+3 ] ] + [ ord(x)-33 for x in nr2ci[ l*4+3 ] ] 
) > 11 ): 
            nr1c.append( nr1ci[ l*4 ] ) 
            nr1c.append( nr1ci[ l*4+1 ] ) 
            nr1c.append( nr1ci[ l*4+2 ] ) 
            nr1c.append( nr1ci[ l*4+3 ] ) 
            nr2c.append( nr2ci[ l*4 ] ) 
            nr2c.append( nr2ci[ l*4+1 ] ) 
            nr2c.append( nr2ci[ l*4+2 ] ) 
            nr2c.append( nr2ci[ l*4+3 ] ) 
r2wi[l].letter_annotations['phred_quality'] ) > 11 ): 
r2ci[l].letter_annotations['phred_quality'] ) > 11 ): 
    cdef list r1wo = [] 
    cdef list r1co = [] 
    cdef list r2wo = [] 
    cdef list r2co = [] 
    cdef array.array r1ws = array.array( 'i', [] ) 
    cdef array.array r2ws = array.array( 'i', [] ) 
    cdef array.array r1cs = array.array( 'i', [] ) 
    cdef array.array r2cs = array.array( 'i', [] ) 
    cdef list r1wt = [] 
    cdef list r2wt = [] 
    cdef list r1ct = [] 
    cdef list r2ct = [] 
    cdef long i 
    cdef long j 
    cdef long k 
    cdef long matchc 
    cdef long keepind 
    cdef long currentmax 
    cdef long currentrefind = 0 
    cdef array.array indsw = array.array( 'l', range( 0, ( len( nr1w )/4 ) ) ) 
    cdef int stopping = 0 
    while( stopping == 0 ): 
        r1ws = array.array( 'i', [0] * ( len( nr1w )/4 ) ) 
        seqref = nr1w[currentrefind*4+1] 
        for i in indsw: 
            matchc = 0 
            for j in range( 0, len( seqref ) ): 
                if( seqref[j] == nr1w[i*4+1][j] ) : 
                    matchc += 1 
            r1ws[ i ] = matchc 
        r1wsind = [ ind for ind,v in enumerate( r1ws ) if v > 135 ] 
        r1wsind.sort( reverse = True ) 
        r1wt = [] 
        r2wt = [] 
        for k in r1wsind: 
            r1wt.append( nr1w[ k*4 ] ) 
            r1wt.append( nr1w[ k*4+1 ] ) 
            r1wt.append( nr1w[ k*4+2 ] ) 
            r1wt.append( nr1w[ k*4+3 ] ) 
            r2wt.append( nr2w[ k*4 ] ) 
            r2wt.append( nr2w[ k*4+1 ] ) 
            r2wt.append( nr2w[ k*4+2 ] ) 
            r2wt.append( nr2w[ k*4+3 ] ) 
            del indsw[ indsw.index( k ) ] 
        if( not indsw ): 
            stopping = 1 
        elif( currentrefind == max( indsw ) ): 



Appendix B, Custom Bioinformatics Code  Page 297 

            stopping = 1 
            currentrefind += 1  #Stop it from running next time 
        else: 
            currentrefind = min( indsw ) 
min( indsw ) ) + ', max( indsw ) = ' + str( max( indsw ) ) ) 
        keepind = 0 
        currentmax = 0 
        for l in range( 0, len( r1wt )/4 ): 
            tmin = min( [ ord(x)-33 for x in r1wt[ l*4+3 ] ] + [ ord(x)-33 for x in r2wt[ 
l*4+3 ] ] ) 
            if currentmax < tmin: 
                keepind = l 
                currentmax = tmin 
currentmax, keepind ) ) 
        r1wo.append( r1wt[ keepind*4 ] ) 
        r1wo.append( r1wt[ keepind*4+1 ] ) 
        r1wo.append( r1wt[ keepind*4+2 ] ) 
        r1wo.append( r1wt[ keepind*4+3 ] ) 
        r2wo.append( r2wt[ keepind*4 ] ) 
        r2wo.append( r2wt[ keepind*4+1 ] ) 
        r2wo.append( r2wt[ keepind*4+2 ] ) 
        r2wo.append( r2wt[ keepind*4+3 ] ) 
    if( fq ): 
        fout1 = open( fileout1, 'w' ) 
        for item in r1wo: 
            fout1.write( item + '\n' ) 
        fout1.close() 
        fout2 = open( fileout2, 'w' ) 
        for item in r2wo: 
            fout2.write( item + '\n' ) 
        fout2.close() 
    else: 
        buffer = '' 
        for item in r1wo: 
            buffer += item + '\n' 
        fout1 = gzip.open( fileout1, 'w' ) 
        fout1.write( buffer.encode( encoding = 'UTF-8' ) ) 
        fout1.close() 
        buffer = '' 
        for item in r2wo: 
            buffer += item + '\n' 
        fout2 = gzip.open( fileout2, 'w' ) 
        fout2.write( buffer.encode( encoding = 'UTF-8' ) ) 
        fout2.close() 
 
    cdef array.array indsc = array.array( 'l', range( 0, ( len( nr1c )/4 ) ) ) 
    stopping = 0 
    currentrefind = 0 
    while( stopping == 0 ): 
        r1cs = array.array( 'i', [0] * ( len( nr1c )/4 ) ) 
        seqref = nr1c[currentrefind*4+1] 
        for i in indsc: 
            #print( "i %d" % i ) 
            matchc = 0 
            for j in range( 0, len( seqref ) ): 
                #print( "j %d" % j ) 
                if( seqref[j] == nr1c[i*4+1][j] ) : 
                    matchc += 1 
            #print( "i %d, matchc %d" % ( i, matchc ) ) 
            r1cs[ i ] = matchc 
        r1csind = [ ind for ind,v in enumerate( r1cs ) if v > 135 ] 
        r1csind.sort( reverse = True ) 
        r1ct = [] 
        r2ct = [] 
        for k in r1csind: 
            r1ct.append( nr1c[ k*4 ] ) 
            r1ct.append( nr1c[ k*4+1 ] ) 
            r1ct.append( nr1c[ k*4+2 ] ) 
            r1ct.append( nr1c[ k*4+3 ] ) 
            r2ct.append( nr2c[ k*4 ] ) 
            r2ct.append( nr2c[ k*4+1 ] ) 
            r2ct.append( nr2c[ k*4+2 ] ) 
            r2ct.append( nr2c[ k*4+3 ] ) 
            del indsc[ indsc.index( k ) ] 
        if( not indsc ): 
            stopping = 1 
        elif( currentrefind == max( indsc ) ): 
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            stopping = 1 
            currentrefind += 1  #Stop it from running next time 
        else: 
            currentrefind = min( indsc ) 
        keepind = 0 
        currentmax = 0 
        for l in range( 0, len( r1ct )/4 ): 
            tmin = min( [ ord(x)-33 for x in r1ct[ l*4+3 ] ] + [ ord(x)-33 for x in r2ct[ 
l*4+3 ] ] ) 
            if currentmax < tmin: 
                keepind = l 
                currentmax = tmin 
        r1co.append( r1ct[ keepind*4 ] ) 
        r1co.append( r1ct[ keepind*4+1 ] ) 
        r1co.append( r1ct[ keepind*4+2 ] ) 
        r1co.append( r1ct[ keepind*4+3 ] ) 
        r2co.append( r2ct[ keepind*4 ] ) 
        r2co.append( r2ct[ keepind*4+1 ] ) 
        r2co.append( r2ct[ keepind*4+2 ] ) 
        r2co.append( r2ct[ keepind*4+3 ] ) 
    if( fq ): 
        fout1 = open( fileout1, 'a' ) 
        for item in r1co: 
            fout1.write( item + '\n' ) 
        fout1.close() 
        fout2 = open( fileout2, 'a' ) 
        for item in r2co: 
            fout2.write( item + '\n' ) 
        fout2.close() 
    else: 
        buffer = '' 
        for item in r1co: 
            buffer += item + '\n' 
        fout1 = gzip.open( fileout1, 'a' ) 
        fout1.write( buffer.encode( encoding = 'UTF-8' ) ) 
        fout1.close() 
        buffer = '' 
        for item in r2co: 
            buffer += item + '\n' 
        fout2 = gzip.open( fileout2, 'a' ) 
        fout2.write( buffer.encode( encoding = 'UTF-8' ) ) 
        fout2.close() 
    retstr = r1wo[0][-7:] + '  ' + filein1[-11:] + ', Input length = ' + str( len( r1buf )/4 ) 
+ ', Output length = ' + str( len( r1wo )/4 + len( r1co )/4 ) 
    return retstr 
 
 

10.19 epiGBS2Bismark.py 

This custom python program takes the library which has been assembled by PEAR 

and converts it in to a format that can be used by Bismark. 

# This converts a library assembled by PEAR in to something Bismark can use 
#   1st argument is the unassembled input read 1 (forward) from pear 
#   2nd argument is the unassembled input read 2 (reverse) from pear 
#   3rd argument is the assembled input read from pear 
#   4th argument is the output directory and start of filename 
# 
# IMPORTANT NOTE, pear reverse complements the second unassembled read 
# 
# Watson R1 reads get w1 added to the header and reads are unmodified and sent to .1.fq 
# Watson R2 reads get w1 added to the header and reads are reverse complemented (because pear  
# already reverse complemented it) and sent to .2.fq 
# Crick R1 reads get c1 added to the header and reads are sent to .2.fq 
# Crick R2 reads get c1 added to the header and reads reverse complemented (because pear  
# already reverse complemented it) and sent to .1.fq 
# Watson assembled reads get wa added to the header and are unmodified and sent to .a.fq (a  
# for assembled) 
# Crick assembled reads get ca added to the header and are reverse complemented and sent to  
# .a.fq (a for assembled) 
# 
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# Jason Smith 
# Last modified 08/12/2019 (d/m/y) 
 
import sys 
import gzip 
import os 
import time 
import argparse 
import string 
 
parser = argparse.ArgumentParser( description = 'Finds the index of reads' ) 
parser.add_argument( 'r1in', help = 'Unassembled read 1 file in .fq or .fq.gz format' ) 
parser.add_argument( 'r2in', help = 'Unassembled read 2 file in .fq or .fq.gz format' ) 
parser.add_argument( 'rain', help = 'Assembled file in .fq or .fq.gz format' ) 
parser.add_argument( 'outfile', help = 'Output directory and start of file name (.1.fq, .2.fq 
or .a.fq will be added)' ) 
args = parser.parse_args() 
 
filename1 = args.r1in 
filename2 = args.r2in 
filenamea = args.rain 
filenameo = args.outfile 
 
if( filename1[-2:] == 'gz' ): 
    f1 = gzip.open( filename1, 'rb' ) 
    f2 = gzip.open( filename2, 'rb' ) 
    fa = gzip.open( filenamea, 'rb' ) 
else: 
    f1 = open( filename1, 'r' ) 
    f2 = open( filename2, 'r' ) 
    fa = open( filenamea, 'r' ) 
 
fo1 = open( filenameo + '.1.fq', 'w' ) 
fo2 = open( filenameo + '.2.fq', 'w' ) 
 
countreads = 0 
starttime = time.time() 
testing = 0 
 
trans = string.maketrans( 'ATGC', 'TACG' ) 
 
#NOTE pear already reverse complemented read 2 
while 1: 
    h1 = f1.readline() 
    s1 = f1.readline() 
    p1 = f1.readline() 
    q1 = f1.readline() 
    h2 = f2.readline() 
    s2 = f2.readline() 
    p2 = f2.readline() 
    q2 = f2.readline() 
    if q1 == "": 
        print( "Finished R1" ) 
        break 
    if( h1.find( 'Watson' ) > 0 ): 
        fo1.write( '@w1' + h1[1:] + s1 + p1 + q1 ) 
        fo2.write( '@w1' + h2[1:] + s2.strip().translate( trans )[ ::-1 ] + '\n' + p2 + q2[ 
::-1 ].strip() + '\n' ) 
    else: 
        fo1.write( '@c1' + h2[1:] + s2.strip().translate( trans )[ ::-1 ] + '\n' + p2 + q2[ 
::-1 ].strip() + '\n' ) 
        fo2.write( '@c1' + h1[1:] + s1 + p1 + q1 ) 
    countreads += 1 
fo1.close() 
fo2.close() 
 
fo = open( filenameo + '.a.fq', 'w' ) 
while 1: 
    h1 = fa.readline() 
    s1 = fa.readline() 
    p1 = fa.readline() 
    q1 = fa.readline() 
    if q1 == "": 
        print( "Finished R assembled" ) 
        break 
    if( h1.find( 'Watson' ) > 0 ): 
        fo.write( '@wa' + h1[1:] + s1 + p1 + q1 ) 



Appendix B, Custom Bioinformatics Code  Page 300 

    else: 
        fo.write( '@ca' + h1[1:] + s1.strip().translate( trans )[ ::-1 ] + '\n' + p1 + q1[ ::-
1 ].strip() + '\n' ) 
    countreads += 1 
fo.close() 
 
endtime = time.time() 
print( "End time - start time = %f" % ( endtime - starttime ) ) 
     
print( "Total reads = %d" % countreads ) 
 
f1.close() 
f2.close() 
fa.close() 
 
 

10.20 splitcov.py 

This is a custom pypy program that takes the .cov file output from Bismark and splits 

the file by chromosome. 

# This splits .cov.gz files by chromosome to be handled later 
# Input file has columns separated with \t 
#    Chromosome, Position, Position, % methylation, Methylated count, Unmethylated count 
# Output files are by chromosome and has columns separated with \t 
#    Chromosome, Position, Methylated count, Unmethylated count 
# 
# Jason Smith 
# Last modified 09/12/2019 (d/m/y) 
 
import sys 
import gzip 
import os 
import time 
import glob 
 
dir_in = 'C:/BaseSpace/epiGBS_98_bismark/important' 
dir_out = 'C:/BaseSpace/epiGBS_98_bismark/split' 
dir_in = '/home/jason/Share/epiGBS_98_bismark/important' 
dir_out = '/home/jason/Share/epiGBS_98_bismark/split' 
 
chromosomes = [ 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn', 'Mt', 
'Pt' ] 
 
files_in = glob.glob( dir_in + '/*.cov.gz') 
 
for file_in_temp in files_in: 
    file_in = file_in_temp.replace( '\\', '/' ) 
    file_base = dir_out + '/' + file_in[ file_in.rfind( '/' ) + 1 : file_in.rfind( '.bismark' 
) ] 
    print( file_in ) 
    print( file_base ) 
 
    filenames = [] 
    outfiles = [] 
 
    sort_chr = [[]] 
    for i in range( 0, len( chromosomes ) ): 
        sort_chr.append( [] ) 
        outfiles.append( open( file_base + '.' + chromosomes[ i ] + '.tsv', 'w' ) ) 
 
    countlines = 0 
    starttime = time.time() 
    testing = 0 
    unknown_chr = 0 
 
    fi = gzip.open( file_in, 'rb' ) 
 
    while( True ): 
        line = fi.readline() 
        if( line == '' ): 
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            break 
        l1 = line.split( '\t' ) 
        try: 
            outfiles[ chromosomes.index( l1[ 0 ] ) ].write( l1[0] + '\t' + l1[1] + '\t' + 
l1[4] + '\t' + l1[5] ) 
        except: # Exception: 
            #There is an error here 
            unknown_chr += 1 
        countlines += 1 
        if( countlines % 10000000 == 0 ): 
            print( "Current line = %d" % countlines ) 
    fi.close() 
 
    for i in range( 0, len( chromosomes ) ): 
        outfiles[ i ].close() 
 
    endtime = time.time() 
    print( "End time - start time = %f" % ( endtime - starttime ) ) 
    print( "Total lines = %d" % countlines ) 
    print( "Lines with unknown chromosome labels = %d" % countlines ) 
 
 

10.21 mergecov.py 

This is a custom pypy program that takes the output from splitcov.py and merges by 

sample resulting in .tsv files that have all samples per chromosome with number of 

methylated reads and total reads for cytosines. 

import sys 
import gzip 
import os 
import time 
 
# This merges .tsv from splitcov01.py files by chromosome to be used in R 
# 
# Jason Smith 
# Last modified 10/12/2019 (d/m/y) 
 
dir_in = 'C:/BaseSpace/epiGBS_98_bismark/split' 
dir_out = 'C:/BaseSpace/Share/epiGBS_98_bismark/merged' 
dir_in = '/home/jason/Share/epiGBS_98_bismark/split' 
dir_out = '/home/jason/Share/epiGBS_98_bismark/merged' 
 
chromosomes = [ 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn', 'Mt', 
'Pt' ] 
s = [ 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 
'R7', 'R8' ] 
sample = [] 
for st in s: 
    sample.append( st + '.assembled' ) 
    sample.append( st + '.unassembled_pe' ) 
 
for chromosome in chromosomes: 
    print( chromosome ) 
    infiles = [] 
    outfile = dir_out + '/cov.' + chromosome + '.tsv' 
    header = 'position' 
    for samp in sample: 
        infiles.append( open( dir_in + '/' + samp + '.' + chromosome + '.tsv', 'r' ) ) 
        header = header + '\t' + samp + '.methylated.count\t' + samp + '.unmethylated.count' 
 
    countlines = 0 
    starttime = time.time() 
    testing = 0 
    unknown_chr = 0 
    latest_line = [] 
    latest_pos = [] 
    latest_meth = [] 
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    latest_unmeth = [] 
    fo = open( outfile, 'w' ) 
    fo.write( header + '\n' ) 
    # Set up the different identifiers 
    current_pos = 0 
    for fi in infiles: 
        latest_line.append( fi.readline() ) 
    for i in range( 0, len( infiles ) ): 
        line_split = latest_line[ i ].strip().split( '\t' ) 
        latest_pos.append( int( line_split[ 1 ] ) ) 
        latest_meth.append( line_split[ 2 ] ) 
        latest_unmeth.append( line_split[ 3 ] ) 
     
    while( True ): 
        current_pos = min( latest_pos ) 
        line_build = str( current_pos ) 
        for i in range( 0, len( latest_pos ) ): 
            if( latest_pos[ i ] == current_pos ): 
                line_build = line_build + '\t' + latest_meth[ i ] + '\t' + latest_unmeth[ i ] 
                latest_line[ i ] = infiles[ i ].readline() 
                if( latest_line[ i ] == '' ): 
                    latest_pos[ i ] = max( latest_pos ) 
                    latest_meth[ i ] = '0' 
                    latest_unmeth[ i ] = '0' 
                else: 
                    line_split = latest_line[ i ].strip().split( '\t' ) 
                    latest_pos[ i ] = ( int( line_split[ 1 ] ) ) 
                    latest_meth[ i ] = ( line_split[ 2 ] ) 
                    latest_unmeth[ i ] = ( line_split[ 3 ] ) 
            else: 
                line_build = line_build + '\t0\t0' 
        fo.write( line_build + '\n' ) 
        if( latest_line == ['']*len( latest_line ) ): 
            break 
    #if all lines are empty then go to the next chromosome 
    fo.close() 
    endtime = time.time() 
    print( "End time - start time = %f" % ( endtime - starttime ) ) 
    print( "Total lines = %d" % countlines ) 
    print( "Lines with unknown chromosome labels = %d" % countlines ) 
 
 

10.22 covcontext.py 

This is a pypy (or python) program that takes the files generated in mergecov.py and 

references against the genome to find the context of each cytosine. 

# This looks at the context of cytosines in the .tsv from mergecov01.py and saves to 
# <dir_out>/contect.<chromosome>.tsv 
# 
# Jason Smith 
# Last modified 10/12/2019 (d/m/y) 
 
import sys 
import gzip 
import os 
import time 
 
dir_in = '/home/jason/Share/epiGBS_98_bismark/merged' 
dir_out = '/home/jason/Share/epiGBS_98_bismark/merged' 
genome = '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.dna.toplevel.fa.gz' 
 
chromosomes = [ 'chr1H', 'Mt', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ] 
s = [ 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 
'R7', 'R8' ] 
 
fg = gzip.open( genome, 'rb' ) 
 
for chromosome in chromosomes: 
    print( 'Searching genome for ' + chromosome ) 
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    while( True ): 
        gline = fg.readline() 
        if( gline == '' ): 
            print( 'Reached end of genome, chromosomes must have been out of order, sorry, try 
reordering' ) 
            print( 'zcat <genome.fa.gz> | grep \'>\' ' ) 
            sys.exit() 
        if( gline.find( '>' + chromosome ) == 0 ): 
            print( 'Found ' + chromosome ) 
            gline = fg.readline().strip() 
            chr_line_start = 1 
            chr_line_end = chr_line_start + len( gline ) - 1 
            break 
    infile = dir_in + '/cov.' + chromosome + '.tsv' 
    outfile = dir_out + '/context.' + chromosome + '.tsv' 
 
    countlines = 0 
    starttime = time.time() 
    testing = 0 
    unknown_chr = 0 
    fi = open( infile, 'r' ) 
    fo = open( outfile, 'w' ) 
    header = 
'position\tcontext_1.CGfwd_2.CGrev_3.CHGfwd_4.CHGrev_5.CHHfwd_6.CHHrev_7.N_8.CNfwd_9.CNrev_10.
CHNfwd_11.CHNrev_12.Error\n' 
    fo.write( header ) 
 
    fi.readline() #get rid of the header line 
     
    while( True ): 
        lt = fi.readline() 
        if( lt == '' ): 
            break 
        line = lt.split( '\t' ) 
        position = int( line[0] ) 
        # Need to get 5 bases from the genome, 2 before, the base in question and 2 after 
        wanted_start = position - 2 
        wanted_end = position + 2 
        while( wanted_end > chr_line_end ): 
            # need to go forward until the desired section of the genome is in gline_p  
            # and gline 
            gline_p = gline 
            chr_line_start_p = chr_line_start 
            chr_line_end_p = chr_line_end 
            gline = fg.readline().strip() 
            chr_line_start = chr_line_end_p + 1 
            chr_line_end = chr_line_start + len( gline ) - 1 
        if( wanted_start >= chr_line_start ): 
            seq = gline[ ( wanted_start - chr_line_start ):( wanted_end - chr_line_start + 1 ) 
] 
        else: 
            seq = gline_p[ ( wanted_start - chr_line_start_p ): ] + \ 
                  gline[ 0:( wanted_end - chr_line_start + 1 ) ] 
        seq = seq.upper() 
        # Context notation 
        # 1.CGfwd 
        # 2.CGrev 
        # 3.CHGfwd 
        # 4.CHGrev 
        # 5.CHHfwd 
        # 6.CHHrev 
        # 7.N 
        # 8.CNfwd 
        # 9.CNrev 
        # 10.CHNfwd 
        # 11.CHNrev 
        # 12.Error 
        if( seq[ 2 ] == 'C' ): 
            #Narrowed it down to forward CG, CHG, CHH, CN, CHN 
            if( seq[ 3 ] == 'G' ): 
                #It is forward CG 
                context = '1' 
            elif( ( seq[ 3 ] == 'A' ) or ( seq[ 3 ] == 'C' ) or ( seq[ 3 ] == 'T' ) ): 
                #Narrowed it down to forward CHG, CHH or CHN 
                if( seq[ 4 ] == 'G' ): 
                    #It is forward CHG 
                    context = '3' 
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                elif( ( seq[ 4 ] == 'A' ) or ( seq[ 4 ] == 'C' ) or ( seq[ 4 ] == 'T' ) ): 
                    #It is forward CHH 
                    context = '5' 
                elif( seq[ 4 ] == 'N' ): 
                    #It is forward CHN 
                    context = '10' 
                else: 
                    #Otherwise it is an error 
                    context = '12' 
            elif( seq[ 3 ] == 'N' ): 
                #It is forward CN 
                context = '8' 
            else: 
                #Otherwise it is an error 
                context = '12' 
        elif( seq[ 2 ] == 'G' ): 
            #Narrowed it down to reverse CG, CHG, CHH, CN, CHN 
            if( seq[ 1 ] == 'C' ): 
                #It is reverse CG 
                context = '2' 
            elif( ( seq[ 1 ] == 'A' ) or ( seq[ 1 ] == 'G' ) or ( seq[ 1 ] == 'T' ) ): 
                #Narrowed it down to reverse CHG, CHH or CHN 
                if( seq[ 0 ] == 'C' ): 
                    #It is reverse CHG 
                    context = '4' 
                elif( ( seq[ 0 ] == 'A' ) or ( seq[ 0 ] == 'G' ) or ( seq[ 0 ] == 'T' ) ): 
                    #It is reverse CHH 
                    context = '6' 
                elif( seq[ 0 ] == 'N' ): 
                    #It is reverse CHN 
                    context = '11' 
                else: 
                    #Otherwise it is an error 
                    context = '12' 
            elif( seq[ 1 ] == 'N' ): 
                #It is reverse CN 
                context = '9' 
            else: 
                #Otherwise it is an error 
                context = '12' 
        elif( seq[ 2 ] == 'N' ): 
            context = '7' 
        else: 
            #Otherwise it is an error 
            context = '12' 
        fo.write( line[0] + '\t' + context + '\n' ) 
         
 
    fo.close() 
    fi.close() 
    endtime = time.time() 
    print( "End time - start time = %f" % ( endtime - starttime ) ) 
    print( "Total lines = %d" % countlines ) 
    print( "Lines with unknown chromosome labels = %d" % countlines ) 
 
 

10.23 cov2R.py 

This pypy program takes the files generated by covcontext and separates by context. 

Each input file generates 3 .tsv output files, one for each of the contexts CG, CHG, 

and CHH. 

# This looks at the context of cytosines in the .tsv from mergecov01.py and saves to 
# <dir_out>/contect.<chromosome>.tsv 
# 
# Jason Smith 
# Last modified 10/12/2019 (d/m/y) 
 



Appendix B, Custom Bioinformatics Code  Page 305 

import sys 
import gzip 
import os 
import time 
 
dir_in = '/home/jason/Share/epiGBS_98_bismark/merged' 
dir_out = '/home/jason/Share/epiGBS_98_bismark/merged' 
 
chromosomes = [ 'chr1H', 'Mt', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ] 
s = [ 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6',\ 
      'R7', 'R8' ] 
 
for chromosome in chromosomes: 
    infile_cov = dir_in + '/cov.' + chromosome + '.tsv' 
    infile_context = dir_out + '/context.' + chromosome + '.tsv' 
    outfile = dir_out + '/R.' + chromosome + '.tsv' 
    outfile_CG = dir_out + '/R.' + chromosome + '.CG.tsv' 
    outfile_CHG = dir_out + '/R.' + chromosome + '.CHG.tsv' 
    outfile_CHH = dir_out + '/R.' + chromosome + '.CHH.tsv' 
 
    countlines = 0 
    starttime = time.time() 
    testing = 0 
    unknown_chr = 0 
    fi_cov = open( infile_cov, 'r' ) 
    fi_context = open( infile_context, 'r' ) 
    fo = open( outfile, 'w' ) 
    fo_CG = open( outfile_CG, 'w' ) 
    fo_CHG = open( outfile_CHG, 'w' ) 
    fo_CHH = open( outfile_CHH, 'w' ) 
    header = 'position\tcontext' 
    for samp in s: 
        header += '\t' + samp + '_methylation_reads\t' + samp + '_total_reads' 
    fo.write( header + '\n' ) 
    fo_CG.write( header + '\n' ) 
    fo_CHG.write( header + '\n' ) 
    fo_CHH.write( header + '\n' ) 
 
    fi_cov.readline() #get rid of the header line 
    fi_context.readline() #get rid of the header line 
     
    while( True ): 
        lt_cov = fi_cov.readline() 
        lt_context = fi_context.readline() 
        if( lt_cov == '' ): 
            break 
        line_cov = lt_cov.split( '\t' ) 
        line_context = lt_context.split( '\t' ) 
        if( line_cov[ 0 ] != line_context[ 0 ] ): 
            print( 'Error' ) 
            print( line_cov ) 
            print( line_context ) 
            sys.exit() 
        meth_array = [ 0 ] * len( s ) 
        unmeth_array = [ 0 ] * len( s ) 
        reads_array = [ 0 ] * len( s ) 
        read_filter_pass = 0 
        for i in range( len( s ) ): 
            meth_array[ i ] = int( line_cov[ i*4 + 1 ] ) + int( line_cov[ i*4 + 3 ] ) 
            unmeth_array[ i ] = int( line_cov[ i*4 + 2 ] ) + int( line_cov[ i*4 + 4 ] ) 
            reads_array[ i ] = meth_array[ i ] + unmeth_array[ i ] 
            if( reads_array[ i ] >= 2 ): 
                read_filter_pass += 1 
        if( read_filter_pass >= 6 ): 
            write_line = line_context[ 0 ] + '\t' + line_context[ 1 ].strip() 
            for i in range( len( s ) ): 
                write_line += '\t%d' % meth_array[ i ] + '\t%d' % reads_array [ i ] 
            fo.write( write_line + '\n' ) 
            lc1 = line_context[ 1 ].strip() 
            if( ( lc1 == '1' ) or ( lc1 == '2' ) ): 
                fo_CG.write( write_line + '\n' ) 
            elif( ( lc1 == '3' ) or ( lc1 == '4' ) ): 
                fo_CHG.write( write_line + '\n' ) 
            elif( ( lc1 == '5' ) or ( lc1 == '6' ) ): 
                fo_CHH.write( write_line + '\n' ) 
 
    fo.close() 
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    fo_CG.close() 
    fo_CHG.close() 
    fo_CHH.close() 
    fi_cov.close() 
    fi_context.close() 
    endtime = time.time() 
    print( "End time - start time = %f" % ( endtime - starttime ) ) 
    print( "Total lines = %d" % countlines ) 
 
 

10.24 PCA_methylation.R 

This R script generates PCA plots of methylation levels from the files generated by 

cov2R.py. 

library( data.table ) 
library( compiler ) 
enableJIT(3) 
 
ptm = proc.time() 
 
sysinfo = Sys.info() 
if( sysinfo['sysname'] == "Windows" ){ 
  dir_base = 'C:/BaseSpace/' 
} else { 
  dir_base = '/scratch/user/smit1191/' 
} 
 
dir_in_b = paste0( dir_base, 'epiGBS_98_bismark/merged' ) 
dir_in_e = paste0( dir_base, 'epiGBS_93_varcall/merged' ) 
 
samples = c( 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 
'R6', 'R7', 'R8' ) 
chromosomes = c( 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ) 
context = c( 'CG', 'CHG', 'CHH' ) 
 
for( j in 1:3 ){ 
  s_threshold = 50 
  i = 1 
  samp_in = paste( dir_in_b, '/R.', chromosomes[ i ], '.', context[ j ], '.tsv', sep = '' ) 
  dts1 = fread( samp_in ) 
  dts1 = dts1[ ( ( L1_total_reads + L2_total_reads + L3_total_reads + L4_total_reads > 
s_threshold ) & ( L5_total_reads + L6_total_reads + L7_total_reads + L8_total_reads > 
s_threshold ) ) | ( ( R1_total_reads + R2_total_reads + R3_total_reads + R4_total_reads > 
s_threshold ) & ( R5_total_reads + R6_total_reads + R7_total_reads + R8_total_reads > 
s_threshold ) ) ]  
  i = 2 
  samp_in = paste( dir_in_b, '/R.', chromosomes[ i ], '.', context[ j ], '.tsv', sep = '' ) 
  dts2 = fread( samp_in ) 
  dts2 = dts2[ ( ( L1_total_reads + L2_total_reads + L3_total_reads + L4_total_reads > 
s_threshold ) & ( L5_total_reads + L6_total_reads + L7_total_reads + L8_total_reads > 
s_threshold ) ) | ( ( R1_total_reads + R2_total_reads + R3_total_reads + R4_total_reads > 
s_threshold ) & ( R5_total_reads + R6_total_reads + R7_total_reads + R8_total_reads > 
s_threshold ) ) ]  
  i = 3 
  samp_in = paste( dir_in_b, '/R.', chromosomes[ i ], '.', context[ j ], '.tsv', sep = '' ) 
  dts3 = fread( samp_in ) 
  dts3 = dts3[ ( ( L1_total_reads + L2_total_reads + L3_total_reads + L4_total_reads > 
s_threshold ) & ( L5_total_reads + L6_total_reads + L7_total_reads + L8_total_reads > 
s_threshold ) ) | ( ( R1_total_reads + R2_total_reads + R3_total_reads + R4_total_reads > 
s_threshold ) & ( R5_total_reads + R6_total_reads + R7_total_reads + R8_total_reads > 
s_threshold ) ) ]  
  i = 4 
  samp_in = paste( dir_in_b, '/R.', chromosomes[ i ], '.', context[ j ], '.tsv', sep = '' ) 
  dts4 = fread( samp_in ) 
  dts4 = dts4[ ( ( L1_total_reads + L2_total_reads + L3_total_reads + L4_total_reads > 
s_threshold ) & ( L5_total_reads + L6_total_reads + L7_total_reads + L8_total_reads > 
s_threshold ) ) | ( ( R1_total_reads + R2_total_reads + R3_total_reads + R4_total_reads > 
s_threshold ) & ( R5_total_reads + R6_total_reads + R7_total_reads + R8_total_reads > 
s_threshold ) ) ]  
  i = 5 
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  samp_in = paste( dir_in_b, '/R.', chromosomes[ i ], '.', context[ j ], '.tsv', sep = '' ) 
  dts5 = fread( samp_in ) 
  dts5 = dts5[ ( ( L1_total_reads + L2_total_reads + L3_total_reads + L4_total_reads > 
s_threshold ) & ( L5_total_reads + L6_total_reads + L7_total_reads + L8_total_reads > 
s_threshold ) ) | ( ( R1_total_reads + R2_total_reads + R3_total_reads + R4_total_reads > 
s_threshold ) & ( R5_total_reads + R6_total_reads + R7_total_reads + R8_total_reads > 
s_threshold ) ) ]  
  i = 6 
  samp_in = paste( dir_in_b, '/R.', chromosomes[ i ], '.', context[ j ], '.tsv', sep = '' ) 
  dts6 = fread( samp_in ) 
  dts6 = dts6[ ( ( L1_total_reads + L2_total_reads + L3_total_reads + L4_total_reads > 
s_threshold ) & ( L5_total_reads + L6_total_reads + L7_total_reads + L8_total_reads > 
s_threshold ) ) | ( ( R1_total_reads + R2_total_reads + R3_total_reads + R4_total_reads > 
s_threshold ) & ( R5_total_reads + R6_total_reads + R7_total_reads + R8_total_reads > 
s_threshold ) ) ]  
  i = 7 
  samp_in = paste( dir_in_b, '/R.', chromosomes[ i ], '.', context[ j ], '.tsv', sep = '' ) 
  dts7 = fread( samp_in ) 
  dts7 = dts7[ ( ( L1_total_reads + L2_total_reads + L3_total_reads + L4_total_reads > 
s_threshold ) & ( L5_total_reads + L6_total_reads + L7_total_reads + L8_total_reads > 
s_threshold ) ) | ( ( R1_total_reads + R2_total_reads + R3_total_reads + R4_total_reads > 
s_threshold ) & ( R5_total_reads + R6_total_reads + R7_total_reads + R8_total_reads > 
s_threshold ) ) ]  
  i = 8 
  samp_in = paste( dir_in_b, '/R.', chromosomes[ i ], '.', context[ j ], '.tsv', sep = '' ) 
  dtsU = fread( samp_in ) 
  dtsU = dtsU[ ( ( L1_total_reads + L2_total_reads + L3_total_reads + L4_total_reads > 
s_threshold ) & ( L5_total_reads + L6_total_reads + L7_total_reads + L8_total_reads > 
s_threshold ) ) | ( ( R1_total_reads + R2_total_reads + R3_total_reads + R4_total_reads > 
s_threshold ) & ( R5_total_reads + R6_total_reads + R7_total_reads + R8_total_reads > 
s_threshold ) ) ]  
 
  dtsf_b = rbind( dts1[ , .( chr = 'chr1H', 
position,L1_methylation_reads,L1_total_reads,L2_methylation_reads,L2_total_reads,L3_methylatio
n_reads,L3_total_reads,L4_methylation_reads,L4_total_reads,L5_methylation_reads,L5_total_reads
,L6_methylation_reads,L6_total_reads,L7_methylation_reads,L7_total_reads,L8_methylation_reads,
L8_total_reads,R1_methylation_reads,R1_total_reads,R2_methylation_reads,R2_total_reads,R3_meth
ylation_reads,R3_total_reads,R4_methylation_reads,R4_total_reads,R5_methylation_reads,R5_total
_reads,R6_methylation_reads,R6_total_reads,R7_methylation_reads,R7_total_reads,R8_methylation_
reads,R8_total_reads )], 
                     dts2[ , .( chr = 'chr2H', 
position,L1_methylation_reads,L1_total_reads,L2_methylation_reads,L2_total_reads,L3_methylatio
n_reads,L3_total_reads,L4_methylation_reads,L4_total_reads,L5_methylation_reads,L5_total_reads
,L6_methylation_reads,L6_total_reads,L7_methylation_reads,L7_total_reads,L8_methylation_reads,
L8_total_reads,R1_methylation_reads,R1_total_reads,R2_methylation_reads,R2_total_reads,R3_meth
ylation_reads,R3_total_reads,R4_methylation_reads,R4_total_reads,R5_methylation_reads,R5_total
_reads,R6_methylation_reads,R6_total_reads,R7_methylation_reads,R7_total_reads,R8_methylation_
reads,R8_total_reads )], 
                     dts3[ , .( chr = 'chr3H', 
position,L1_methylation_reads,L1_total_reads,L2_methylation_reads,L2_total_reads,L3_methylatio
n_reads,L3_total_reads,L4_methylation_reads,L4_total_reads,L5_methylation_reads,L5_total_reads
,L6_methylation_reads,L6_total_reads,L7_methylation_reads,L7_total_reads,L8_methylation_reads,
L8_total_reads,R1_methylation_reads,R1_total_reads,R2_methylation_reads,R2_total_reads,R3_meth
ylation_reads,R3_total_reads,R4_methylation_reads,R4_total_reads,R5_methylation_reads,R5_total
_reads,R6_methylation_reads,R6_total_reads,R7_methylation_reads,R7_total_reads,R8_methylation_
reads,R8_total_reads )], 
                     dts4[ , .( chr = 'chr4H', 
position,L1_methylation_reads,L1_total_reads,L2_methylation_reads,L2_total_reads,L3_methylatio
n_reads,L3_total_reads,L4_methylation_reads,L4_total_reads,L5_methylation_reads,L5_total_reads
,L6_methylation_reads,L6_total_reads,L7_methylation_reads,L7_total_reads,L8_methylation_reads,
L8_total_reads,R1_methylation_reads,R1_total_reads,R2_methylation_reads,R2_total_reads,R3_meth
ylation_reads,R3_total_reads,R4_methylation_reads,R4_total_reads,R5_methylation_reads,R5_total
_reads,R6_methylation_reads,R6_total_reads,R7_methylation_reads,R7_total_reads,R8_methylation_
reads,R8_total_reads )], 
                     dts5[ , .( chr = 'chr5H', 
position,L1_methylation_reads,L1_total_reads,L2_methylation_reads,L2_total_reads,L3_methylatio
n_reads,L3_total_reads,L4_methylation_reads,L4_total_reads,L5_methylation_reads,L5_total_reads
,L6_methylation_reads,L6_total_reads,L7_methylation_reads,L7_total_reads,L8_methylation_reads,
L8_total_reads,R1_methylation_reads,R1_total_reads,R2_methylation_reads,R2_total_reads,R3_meth
ylation_reads,R3_total_reads,R4_methylation_reads,R4_total_reads,R5_methylation_reads,R5_total
_reads,R6_methylation_reads,R6_total_reads,R7_methylation_reads,R7_total_reads,R8_methylation_
reads,R8_total_reads )], 
                     dts6[ , .( chr = 'chr6H', 
position,L1_methylation_reads,L1_total_reads,L2_methylation_reads,L2_total_reads,L3_methylatio
n_reads,L3_total_reads,L4_methylation_reads,L4_total_reads,L5_methylation_reads,L5_total_reads
,L6_methylation_reads,L6_total_reads,L7_methylation_reads,L7_total_reads,L8_methylation_reads,
L8_total_reads,R1_methylation_reads,R1_total_reads,R2_methylation_reads,R2_total_reads,R3_meth
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ylation_reads,R3_total_reads,R4_methylation_reads,R4_total_reads,R5_methylation_reads,R5_total
_reads,R6_methylation_reads,R6_total_reads,R7_methylation_reads,R7_total_reads,R8_methylation_
reads,R8_total_reads )], 
                     dts7[ , .( chr = 'chr7H', 
position,L1_methylation_reads,L1_total_reads,L2_methylation_reads,L2_total_reads,L3_methylatio
n_reads,L3_total_reads,L4_methylation_reads,L4_total_reads,L5_methylation_reads,L5_total_reads
,L6_methylation_reads,L6_total_reads,L7_methylation_reads,L7_total_reads,L8_methylation_reads,
L8_total_reads,R1_methylation_reads,R1_total_reads,R2_methylation_reads,R2_total_reads,R3_meth
ylation_reads,R3_total_reads,R4_methylation_reads,R4_total_reads,R5_methylation_reads,R5_total
_reads,R6_methylation_reads,R6_total_reads,R7_methylation_reads,R7_total_reads,R8_methylation_
reads,R8_total_reads )], 
                     dtsU[ , .( chr = 'chrUn', 
position,L1_methylation_reads,L1_total_reads,L2_methylation_reads,L2_total_reads,L3_methylatio
n_reads,L3_total_reads,L4_methylation_reads,L4_total_reads,L5_methylation_reads,L5_total_reads
,L6_methylation_reads,L6_total_reads,L7_methylation_reads,L7_total_reads,L8_methylation_reads,
L8_total_reads,R1_methylation_reads,R1_total_reads,R2_methylation_reads,R2_total_reads,R3_meth
ylation_reads,R3_total_reads,R4_methylation_reads,R4_total_reads,R5_methylation_reads,R5_total
_reads,R6_methylation_reads,R6_total_reads,R7_methylation_reads,R7_total_reads,R8_methylation_
reads,R8_total_reads )] ) 
 
  rm( dts1, dts2, dts3, dts4, dts5, dts6, dts7, dtsU ) 
 
  dtsf_tots_b = dtsf_b[ , .( 
L1_total_reads,L2_total_reads,L3_total_reads,L4_total_reads,L5_total_reads,L6_total_reads,L7_t
otal_reads,L8_total_reads,R1_total_reads,R2_total_reads,R3_total_reads,R4_total_reads,R5_total
_reads,R6_total_reads,R7_total_reads,R8_total_reads )] 
  sum_b = sum( dtsf_tots_b ) 
   
  dts_pca = dtsf_b[ , .( L1pc = L1_methylation_reads/L1_total_reads, L2pc = 
L2_methylation_reads/L2_total_reads, L3pc = L3_methylation_reads/L3_total_reads, L4pc = 
L4_methylation_reads/L4_total_reads, L5pc = L5_methylation_reads/L5_total_reads, L6pc = 
L6_methylation_reads/L6_total_reads, L7pc = L7_methylation_reads/L7_total_reads, L8pc = 
L8_methylation_reads/L8_total_reads, R1pc = R1_methylation_reads/R1_total_reads, R2pc = 
R2_methylation_reads/R2_total_reads, R3pc = R3_methylation_reads/R3_total_reads, R4pc = 
R4_methylation_reads/R4_total_reads, R5pc = R5_methylation_reads/R5_total_reads, R6pc = 
R6_methylation_reads/R6_total_reads, R7pc = R7_methylation_reads/R7_total_reads, R8pc = 
R8_methylation_reads/R8_total_reads  ) ] 
  dts_pca[ is.na( dts_pca ) ] = 0 
  pc = prcomp( t( dts_pca ) ) 
  summary( pc ) 
  t1 = summary( pc ) 
  t2 = t1$importance 
   
  plot( pc$x[1:16,1], pc$x[1:16,2], main = sprintf( "%s", context[ j ] ),  
        xlab = paste0( "PCA1, (", sprintf( "%.1f", t2[ 2, 1 ] * 100 ), "% of variance)" ),  
        ylab = paste0( "PCA2, (", sprintf( "%.1f", t2[ 2, 2 ] * 100 ), "% of variance)" ),  
        pch = 32 ) 
  points( pc$x[1:4,1], pc$x[1:4,2], col = "blue", pch = c( 49,50,51,52 ) ) 
  points( pc$x[5:8,1], pc$x[5:8,2], col = "red", pch = c( 53,54,55,56 ) ) 
  points( pc$x[9:12,1], pc$x[9:12,2], col = "darkgreen", pch = c( 49,50,51,52 ) ) 
  points( pc$x[13:16,1], pc$x[13:16,2], col = "darkorange", pch = c( 53,54,55,56 ) ) 
 
   
  t_b_rs = tryCatch( { tt = t.test( x = pc$x[ 1:8, 1 ], y = pc$x[ 9:16, 1 ] ) 

  tt$p.value }, error = function( cond ) ❴ return( 1 ) ❵, warning = function( cond ) ❴ return( 
1 ) ❵ ) 
  if( sysinfo['sysname'] == "Windows" ){ 
    if( t_b_rs != 1 ){ 
      png( paste0( dir_in_b, '/pca.nomt.b_rs.s_thr', s_threshold, '.', context[ j ], 
'largetxt.png' ), width = 1000, height = 1000, pointsize = 24 ) 
      plot( pc$x[1:16,1], pc$x[1:16,2], main = sprintf( "%s", context[ j ] ),  
            xlab = paste0( "PCA1, (", sprintf( "%.1f", t2[ 2, 1 ] * 100 ), "% of variance)" ),  
            ylab = paste0( "PCA2, (", sprintf( "%.1f", t2[ 2, 2 ] * 100 ), "% of variance)" ),  
            pch = 32 ) 
      points( pc$x[1:4,1], pc$x[1:4,2], col = "blue", pch = c( 49,50,51,52 ) ) 
      points( pc$x[5:8,1], pc$x[5:8,2], col = "red", pch = c( 53,54,55,56 ) ) 
      points( pc$x[9:12,1], pc$x[9:12,2], col = "darkgreen", pch = c( 49,50,51,52 ) ) 
      points( pc$x[13:16,1], pc$x[13:16,2], col = "darkorange", pch = c( 53,54,55,56 ) ) 
      dev.off() 
    }} 
} 
 
temp_time = proc.time() - ptm  
cat( 'user time = ', temp_time[1], 's, system time = ', temp_time[2], 's, elapsed time = ', 
temp_time[3], 's', sep = '' ) 
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10.25 plot_chromosome_methylation.R 

This custom R script plots the percentage methylation of cytosines in 1 million base 

pair windows across each chromosome of the genome. Each cytosine context (CG, 

CHG, and CHH) is plotted separately as these have different levels and different 

functions. The average methylation level for each context is also calculated. 

 
library( GenomicRanges ) 
library( data.table ) 
library( compiler ) 
library( ggplot2 ) 
enableJIT(3) 
 
ptm = proc.time() 
 
sysinfo = Sys.info() 
if( sysinfo['sysname'] == "Windows" ){ 
  dir_base = 'C:/BaseSpace/' 
} else { 
  dir_base = '/scratch/user/smit1191/' 
} 
 
dir_in_b = paste0( dir_base, 'epiGBS_98_bismark/merged' ) 
dir_in_e = paste0( dir_base, 'epiGBS_93_varcall/merged' ) 
 
samples = c( 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 
'R6', 'R7', 'R8' ) 
chromosomes = c( 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ) 
contexts = c( 'CG', 'CHG', 'CHH' ) 
 
context = 'CG' 
 
files_in = c( paste0( dir_in_b, '/R.for.win.4reps.windowed1000000.step1000000.CG.L.Rdata' ), 
              paste0( dir_in_b, '/R.for.win.4reps.windowed1000000.step1000000.CHG.L.Rdata' ), 
              paste0( dir_in_b, '/R.for.win.4reps.windowed1000000.step1000000.CHH.L.Rdata' ) ) 
 
for( ind1 in 1:3 ) 
{ 
  file_in = files_in[ ind1 ] 
  load( file_in ) 
  reads.dt = data.table( r1 = meth.granges$coverage1, 
                         r2 = meth.granges$coverage2, 
                         r3 = meth.granges$coverage3, 
                         r4 = meth.granges$coverage4, 
                         r5 = meth.granges$coverage5, 
                         r6 = meth.granges$coverage6, 
                         r7 = meth.granges$coverage7, 
                         r8 = meth.granges$coverage8 ) 
  meths.dt = data.table( r1 = meth.granges$numCs1, 
                         r2 = meth.granges$numCs2, 
                         r3 = meth.granges$numCs3, 
                         r4 = meth.granges$numCs4, 
                         r5 = meth.granges$numCs5, 
                         r6 = meth.granges$numCs6, 
                         r7 = meth.granges$numCs7, 
                         r8 = meth.granges$numCs8 ) 
  chrs = as( seqnames( meth.granges ), 'factor' ) 
  starts = start( meth.granges ) 
   
  sumreads = rowSums( reads.dt, na.rm = TRUE ) 
  summeths = rowSums( meths.dt, na.rm = TRUE ) 
  cat( 'Average methylation level = ', sum( summeths )/sum( sumreads ), '\n' ) 
   
  min( sumreads ) 
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  pc.meth = summeths/sumreads 
   
  plot.df = data.frame( x = NULL, y = NULL, chrs = NULL ) 
   
  png( filename = paste0( file_in, '.asterisk.new.png' ), width = 1000, height = 1200, units = 
'px', pointsize = 12 ) 
  par( mfrow = c( 7, 1 ), mar = c( 3, 4.5, 0.4, 0.1 ), xaxt = 's' ) 
  if( ind1 == 1 ) 
  { 
    maxy = 100 
  } else if( ind1 == 2 ) { 
    maxy = 80 
  } else { 
    maxy = 10 
  } 
  maxx = 8e8 
  for( chromosome in chromosomes[1:7] ) 
  { 
    mask1 = which( chrs == chromosome ) 
    plot( x = c( starts[ mask1 ], maxx )/1000000, y = c( pc.meth[ mask1 ]*100, 100), pch = 
'*', main = '', xlab = '', ylab = '', ylim = c( 0, maxy ), xlim = c( 0, maxx/1000000 ), axes = 
FALSE ) 
    axis( 2, at = c( 0, maxy/2, maxy ), las = 1, cex.axis = 2.5 ) 
    plot.df = rbind( plot.df, data.frame( x = starts[ mask1 ], y = pc.meth[ mask1 ]*100, chrs 
= chrs[ mask1 ] ) ) 
  } 
  axis( 1, at = seq( 0, maxx/1000000, maxx/8000000 ), cex.axis = 2.5, padj = 0.5 ) 
  dev.off() 
} 
 
temp_time = proc.time() - ptm  
cat( 'user time = ', temp_time[1], 's, system time = ', temp_time[2], 's, elapsed time = ', 
temp_time[3], 's', sep = '' ) 
 
 

10.26 methylation_levels_genes.py 

This program determines the methylation pattern in and 1.5 kbp either side of genes. 

# Gets methylation information around genes for plotting of methylation patterns  
# 
# Jason Smith 
# Last modified 6/3/2020 (d/m/y) 
 
import sys 
import gzip 
import os 
import time 
import csv 
 
#lr = 'L' 
lr = 'R' 
 
starttime = time.time() 
if( sys.platform[0] == 'w' ): 
    basedir = 'C:/BaseSpace/' 
else: 
    basedir = '/home/jason/Share/' 
 
dir_in_m = basedir + 'epiGBS_98_bismark/merged/' 
dir_out = basedir + 'epiGBS_98_bismark/merged/' 
 
genes_file = basedir + 'Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.genes.tsv' 
 
chromosomes = [ 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ] 
chr_sizes = [ 558535432, 768075024, 699711114, 647060158, 670030160, 583380513, 657224000, 
249774706 ] 
s = [ 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 
'R7', 'R8' ] 
contexts = [ 'CHH', 'CG', 'CHG' ] 
context = 'CHH' 
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before_gene = 1500 
in_gene = 1000 
after_gene = 1500 
 
total_count_f = [ 0 ] * ( before_gene + in_gene + after_gene ) 
meth_count_f = [ 0 ] * ( before_gene + in_gene + after_gene ) 
total_count_r = [ 0 ] * ( before_gene + in_gene + after_gene ) 
meth_count_r = [ 0 ] * ( before_gene + in_gene + after_gene ) 
 
f_g = open( genes_file, 'rb' ) 
genes_header = f_g.readline().strip().split() 
 
gene_line = f_g.readline().strip() 
gene_split = gene_line.split() 
chr_count = 0 
 
# skip the gene forward to chr1H 
current_chr_meth = chromosomes[ 0 ] 
current_chr_gene = 'chr' + current_chr_meth 
while( gene_split[0] != 'chrchr1H' ): 
    gene_line = f_g.readline().strip() 
    gene_split = gene_line.split() 
 
# open the relevant chromosome and context combination 
meth_file = dir_in_m + 'R.' + current_chr_meth + '.' + context + '.tsv.gz' 
f_m = gzip.open( meth_file, 'rb' ) 
meth_header = f_m.readline().strip().split() 
meth_line = f_m.readline().strip() 
meth_split = meth_line.split() 
print( current_chr_meth ) 
cont = True 
exitnext = False 
nextChr = False 
 
while( cont ): 
    while( int( gene_split[ 2 ] ) + after_gene < int( meth_split[ 0 ] ) ): 
        gene_line = f_g.readline().strip() 
        gene_split = gene_line.split() 
        if( gene_split[ 0 ] != current_chr_gene ): 
            current_chr_gene = gene_split[ 0 ] 
            current_chr_meth = current_chr_gene[ 3: ] 
            print( current_chr_meth ) 
            f_m.close() 
            meth_file = dir_in_m + 'R.' + current_chr_meth + '.' + context + '.tsv.gz' 
            f_m = gzip.open( meth_file, 'rb' ) 
            meth_header = f_m.readline().strip().split() 
            meth_line = f_m.readline().strip() 
            meth_split = meth_line.split() 
    if( gene_split[ 4 ] == '+' ): 
        # first deal with upstream 
        minval = int( gene_split[ 1 ] ) - before_gene 
        maxval = int( gene_split[ 1 ] ) - 1 
        if( meth_line == '' ): 
            meth_split[ 0 ] = 1000000000 
            nextChr = True 
            break 
 
        while( int( meth_split[ 0 ] ) <= maxval ): 
            while( int( meth_split[ 0 ] ) < minval ): 
                meth_line = f_m.readline().strip() 
                if( meth_line == '' ): 
                    meth_split[ 0 ] = 1000000000 
                    nextChr = True 
                    break 
                meth_split = meth_line.split() 
            if( int( meth_split[ 0 ] ) <= maxval ): 
                # add it to the relevant arrays 
                ind1 = int( meth_split[ 0 ] ) - minval 
                meth_add = 0 
                count_add = 0 
                for c1 in range( 0, 16 ): 
                    meth_add += int( meth_split[ 2 * c1 + 2 ] ) 
                    count_add += int( meth_split[ 2 * c1 + 3 ] ) 
                meth_count_f[ ind1 ] += meth_add 
                total_count_f[ ind1 ] += count_add 
            meth_line = f_m.readline().strip() 
            if( meth_line == '' ): 
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                meth_split[ 0 ] = 1000000000 
                nextChr = True 
                break 
            meth_split = meth_line.split() 
        # then deal with the gene body 
        minval = int( gene_split[ 1 ] ) 
        maxval = int( gene_split[ 2 ] ) 
        while( int( meth_split[ 0 ] ) <= maxval ): 
            while( int( meth_split[ 0 ] ) < minval ): 
                meth_line = f_m.readline().strip() 
                meth_split = meth_line.split() 
            if( int( meth_split[ 0 ] ) <= maxval ): 
                # add it to the relevant arrays 
                # This time the array position is based on the position relative 
                # to the TSS and TES 
                dl = int( meth_split[ 0 ] ) - minval 
                dr = maxval - int( meth_split[ 0 ] ) 
                ind1 = int( round( before_gene + dl * 1000.0 / ( dl + dr ) ) ) 
                meth_add = 0 
                count_add = 0 
                for c1 in range( 0, 16 ): 
                    meth_add += int( meth_split[ 2 * c1 + 2 ] ) 
                    count_add += int( meth_split[ 2 * c1 + 3 ] ) 
                meth_count_f[ ind1 ] += meth_add 
                total_count_f[ ind1 ] += count_add 
            meth_line = f_m.readline().strip() 
            if( meth_line == '' ): 
                meth_split[ 0 ] = 1000000000 
                nextChr = True 
                break 
            meth_split = meth_line.split() 
        # then deal with downstream 
        minval = int( gene_split[ 2 ] ) + 1 
        maxval = int( gene_split[ 2 ] ) + after_gene 
        while( int( meth_split[ 0 ] ) <= maxval ): 
            while( int( meth_split[ 0 ] ) < minval ): 
                meth_line = f_m.readline().strip() 
                meth_split = meth_line.split() 
            if( int( meth_split[ 0 ] ) <= maxval ): 
                # add it to the relevant arrays 
                ind1 = int( meth_split[ 0 ] ) - minval + before_gene + in_gene 
                meth_add = 0 
                count_add = 0 
                for c1 in range( 0, 16 ): 
                    meth_add += int( meth_split[ 2 * c1 + 2 ] ) 
                    count_add += int( meth_split[ 2 * c1 + 3 ] ) 
                meth_count_f[ ind1 ] += meth_add 
                total_count_f[ ind1 ] += count_add 
            meth_line = f_m.readline().strip() 
            if( meth_line == '' ): 
                meth_split[ 0 ] = 1000000000 
                nextChr = True 
                break 
            meth_split = meth_line.split() 
 
    if( gene_split[ 4 ] == '-' ): 
        # first deal with upstream 
        minval = int( gene_split[ 1 ] ) - before_gene 
        maxval = int( gene_split[ 1 ] ) - 1 
        if( meth_line == '' ): 
            meth_split[ 0 ] = 1000000000 
            nextChr = True 
            break 
 
        while( int( meth_split[ 0 ] ) <= maxval ): 
            while( int( meth_split[ 0 ] ) < minval ): 
                meth_line = f_m.readline().strip() 
                if( meth_line == '' ): 
                    meth_split[ 0 ] = 1000000000 
                    nextChr = True 
                    break 
                meth_split = meth_line.split() 
            if( int( meth_split[ 0 ] ) <= maxval ): 
                # add it to the relevant arrays 
                ind1 = int( meth_split[ 0 ] ) - minval 
                meth_add = 0 
                count_add = 0 
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                for c1 in range( 0, 16 ): 
                    meth_add += int( meth_split[ 2 * c1 + 2 ] ) 
                    count_add += int( meth_split[ 2 * c1 + 3 ] ) 
                meth_count_r[ ind1 ] += meth_add 
                total_count_r[ ind1 ] += count_add 
            meth_line = f_m.readline().strip() 
            if( meth_line == '' ): 
                meth_split[ 0 ] = 1000000000 
                nextChr = True 
                break 
            meth_split = meth_line.split() 
        # then deal with the gene body 
        minval = int( gene_split[ 1 ] ) 
        maxval = int( gene_split[ 2 ] ) 
        while( int( meth_split[ 0 ] ) <= maxval ): 
            while( int( meth_split[ 0 ] ) < minval ): 
                meth_line = f_m.readline().strip() 
                meth_split = meth_line.split() 
            if( int( meth_split[ 0 ] ) <= maxval ): 
                # add it to the relevant arrays 
                # This time the array position is based on the position relative  
                # to the TSS and TES 
                dl = int( meth_split[ 0 ] ) - minval 
                dr = maxval - int( meth_split[ 0 ] ) 
                ind1 = int( round( before_gene + dl * 1000.0 / ( dl + dr ) ) ) 
                meth_add = 0 
                count_add = 0 
                for c1 in range( 0, 16 ): 
                    meth_add += int( meth_split[ 2 * c1 + 2 ] ) 
                    count_add += int( meth_split[ 2 * c1 + 3 ] ) 
                meth_count_r[ ind1 ] += meth_add 
                total_count_r[ ind1 ] += count_add 
            meth_line = f_m.readline().strip() 
            if( meth_line == '' ): 
                meth_split[ 0 ] = 1000000000 
                nextChr = True 
                break 
            meth_split = meth_line.split() 
        # then deal with downstream 
        minval = int( gene_split[ 2 ] ) + 1 
        maxval = int( gene_split[ 2 ] ) + after_gene 
        while( int( meth_split[ 0 ] ) <= maxval ): 
            while( int( meth_split[ 0 ] ) < minval ): 
                meth_line = f_m.readline().strip() 
                meth_split = meth_line.split() 
            if( int( meth_split[ 0 ] ) <= maxval ): 
                # add it to the relevant arrays 
                ind1 = int( meth_split[ 0 ] ) - minval + before_gene + in_gene 
                meth_add = 0 
                count_add = 0 
                for c1 in range( 0, 16 ): 
                    meth_add += int( meth_split[ 2 * c1 + 2 ] ) 
                    count_add += int( meth_split[ 2 * c1 + 3 ] ) 
                meth_count_r[ ind1 ] += meth_add 
                total_count_r[ ind1 ] += count_add 
            meth_line = f_m.readline().strip() 
            if( meth_line == '' ): 
                meth_split[ 0 ] = 1000000000 
                nextChr = True 
                break 
            meth_split = meth_line.split() 
 
    if( nextChr == True ): 
        nextChr = False 
        # Need to skip forward to the next chromosome 
        #print( 'nextChr' ) 
        while( gene_split[ 0 ] == current_chr_gene ): 
            if( current_chr_gene == 'chrchrUn' ): 
                cont = False 
                break 
            gene_line = f_g.readline().strip() 
            gene_split = gene_line.split() 
            if( gene_split[ 0 ] != current_chr_gene ): 
                #print( 'if gene_split' ) 
                current_chr_gene = gene_split[ 0 ] 
                current_chr_meth = current_chr_gene[ 3: ] 
                print( current_chr_meth ) 
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                f_m.close() 
                meth_file = dir_in_m + 'R.' + current_chr_meth + '.' + context + '.tsv.gz' 
                f_m = gzip.open( meth_file, 'rb' ) 
                meth_header = f_m.readline().strip().split() 
                meth_line = f_m.readline().strip() 
                meth_split = meth_line.split() 
                break 
 
    else: 
        gene_line = f_g.readline().strip() 
        if( gene_line == '' ): 
            nextChr = True 
            break 
        gene_split = gene_line.split() 
 
    if( gene_split[ 0 ] != current_chr_gene ): 
        #print( 'it ended up getting the next chromosome here' ) 
        current_chr_gene = gene_split[ 0 ] 
        current_chr_meth = current_chr_gene[ 3: ] 
        print( current_chr_meth ) 
        f_m.close() 
        meth_file = dir_in_m + 'R.' + current_chr_meth + '.' + context + '.tsv.gz' 
        f_m = gzip.open( meth_file, 'rb' ) 
        meth_header = f_m.readline().strip().split() 
        meth_line = f_m.readline().strip() 
        meth_split = meth_line.split() 
 
f_o_f = open( dir_out + 'gene.meth.forward.' + context + '.tsv', 'wb' ) 
f_o_f.write( 'meth\ttotal\n' ) 
f_o_r = open( dir_out + 'gene.meth.reverse.' + context + '.tsv', 'wb' ) 
f_o_r.write( 'meth\ttotal\n' ) 
 
for c2 in range( 0, before_gene + in_gene + after_gene ): 
    f_o_f.write( '%d\t%d\n' % ( meth_count_f[ c2 ], total_count_f[ c2 ] ) ) 
    f_o_r.write( '%d\t%d\n' % ( meth_count_r[ c2 ], total_count_r[ c2 ] ) ) 
 
f_o_f.close() 
f_o_r.close() 
f_m.close() 
f_g.close() 
 
endtime = time.time() 
print( "End time - start time = %f" % ( endtime - starttime ) ) 
 
sys.exit() 
 
 

10.27 methylation_levels_TEs.py 

This program determines the methylation pattern in and 1.5 kbp either side of TEs 

for each TE class. 

#!/usr/bin/python 
# 
# Gets methylation information around TEs (not differential meth) 
# 
# Jason Smith 
# Last modified 7/3/2020 (d/m/y) 
 
import sys 
import gzip 
import os 
import time 
import csv 
 
#lr = 'L' 
lr = 'R' 
 
starttime = time.time() 
if( sys.platform[0] == 'w' ): 
    basedir = 'C:/BaseSpace/' 
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else: 
    basedir = '/home/jason/Share/' 
 
dir_in_m = basedir + 'epiGBS_98_bismark/merged/' 
dir_out = basedir + 'epiGBS_98_bismark/merged/' 
 
genes_file = basedir + 'Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.genes.tsv' 
TE_file_base = basedir + 'Reference_Genome/Hvu_dl_2019-12-05/Barley_TE_annotation_v2_18Aug16.' 
 
chromosomes = [ 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ] 
chr_sizes = [ 558535432, 768075024, 699711114, 647060158, 670030160, 583380513, 657224000, 
249774706 ] 
s = [ 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 
'R7', 'R8' ] 
contexts = [ 'CHH', 'CG', 'CHG' ] 
context = 'CHH' 
TE_types = [ 'DHH', 'DTA', 'DTC', 'DTH', 'DTM', 'DTT', 'DTX', 'DXX', 'RIX', 'RLC', 'RLG', 
'RLX', 'RSX', 'RXX', 'XXX' ] 
 
for TE_type in TE_types: 
    print( TE_type ) 
    before_gene = 1500 
    in_gene = 1000 
    after_gene = 1500 
 
    total_count_f = [ 0 ] * ( before_gene + in_gene + after_gene ) 
    meth_count_f = [ 0 ] * ( before_gene + in_gene + after_gene ) 
    total_count_r = [ 0 ] * ( before_gene + in_gene + after_gene ) 
    meth_count_r = [ 0 ] * ( before_gene + in_gene + after_gene ) 
 
    TE_file = TE_file_base + TE_type + '.tsv' 
 
    f_g = open( TE_file, 'rb' ) 
    genes_header = f_g.readline().strip().split() 
 
    gene_line = f_g.readline().strip() 
    gene_split = gene_line.split() 
    chr_count = 0 
 
    # This starts at chrUn 
    current_chr_gene = 'chrUn' 
    current_chr_meth = current_chr_gene 
 
    # open the relevant chromosome and context combination 
    meth_file = dir_in_m + 'R.' + current_chr_meth + '.' + context + '.tsv.gz' 
    f_m = gzip.open( meth_file, 'rb' ) 
    meth_header = f_m.readline().strip().split() 
    meth_line = f_m.readline().strip() 
    meth_split = meth_line.split() 
    print( current_chr_meth ) 
    cont = True 
    exitnext = False 
    nextChr = False 
 
    while( cont ): 
        while( int( gene_split[ 2 ] ) + after_gene < int( meth_split[ 0 ] ) ): 
            gene_line = f_g.readline().strip() 
            if( gene_line == '' ): 
                cont = False 
                break 
            gene_split = gene_line.split() 
            if( gene_split[ 0 ] != current_chr_gene ): 
                current_chr_gene = gene_split[ 0 ] 
                current_chr_meth = current_chr_gene 
                print( current_chr_meth ) 
                f_m.close() 
                meth_file = dir_in_m + 'R.' + current_chr_meth + '.' + context + '.tsv.gz' 
                f_m = gzip.open( meth_file, 'rb' ) 
                meth_header = f_m.readline().strip().split() 
                meth_line = f_m.readline().strip() 
                meth_split = meth_line.split() 
        if( gene_line == '' ): 
            cont = False 
            break 
        if( gene_split[ 4 ] == 'F' ): 
            # first deal with upstream 
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            minval = int( gene_split[ 1 ] ) - before_gene 
            maxval = int( gene_split[ 1 ] ) - 1 
            if( meth_line == '' ): 
                meth_split[ 0 ] = 1000000000 
                nextChr = True 
                break 
 
            while( int( meth_split[ 0 ] ) <= maxval ): 
                while( int( meth_split[ 0 ] ) < minval ): 
                    meth_line = f_m.readline().strip() 
                    if( meth_line == '' ): 
                        meth_split[ 0 ] = 1000000000 
                        nextChr = True 
                        break 
                    meth_split = meth_line.split() 
                if( int( meth_split[ 0 ] ) <= maxval ): 
                    # add it to the relevant arrays 
                    ind1 = int( meth_split[ 0 ] ) - minval 
                    meth_add = 0 
                    count_add = 0 
                    for c1 in range( 0, 16 ): 
                        meth_add += int( meth_split[ 2 * c1 + 2 ] ) 
                        count_add += int( meth_split[ 2 * c1 + 3 ] ) 
                    meth_count_f[ ind1 ] += meth_add 
                    total_count_f[ ind1 ] += count_add 
                meth_line = f_m.readline().strip() 
                if( meth_line == '' ): 
                    meth_split[ 0 ] = 1000000000 
                    nextChr = True 
                    break 
                meth_split = meth_line.split() 
            # then deal with the gene body 
            minval = int( gene_split[ 1 ] ) 
            maxval = int( gene_split[ 2 ] ) 
            while( int( meth_split[ 0 ] ) <= maxval ): 
                while( int( meth_split[ 0 ] ) < minval ): 
                    meth_line = f_m.readline().strip() 
                    meth_split = meth_line.split() 
                if( int( meth_split[ 0 ] ) <= maxval ): 
                    # add it to the relevant arrays 
                    # This time the array position is based on the position relative 
                    # to the TSS and TES 
                    dl = int( meth_split[ 0 ] ) - minval 
                    dr = maxval - int( meth_split[ 0 ] ) 
                    ind1 = int( round( before_gene + dl * 1000.0 / ( dl + dr ) ) ) 
                    meth_add = 0 
                    count_add = 0 
                    for c1 in range( 0, 16 ): 
                        meth_add += int( meth_split[ 2 * c1 + 2 ] ) 
                        count_add += int( meth_split[ 2 * c1 + 3 ] ) 
                    meth_count_f[ ind1 ] += meth_add 
                    total_count_f[ ind1 ] += count_add 
                meth_line = f_m.readline().strip() 
                if( meth_line == '' ): 
                    meth_split[ 0 ] = 1000000000 
                    nextChr = True 
                    break 
                meth_split = meth_line.split() 
            # then deal with downstream 
            minval = int( gene_split[ 2 ] ) + 1 
            maxval = int( gene_split[ 2 ] ) + after_gene 
            while( int( meth_split[ 0 ] ) <= maxval ): 
                while( int( meth_split[ 0 ] ) < minval ): 
                    meth_line = f_m.readline().strip() 
                    meth_split = meth_line.split() 
                if( int( meth_split[ 0 ] ) <= maxval ): 
                    # add it to the relevant arrays 
                    ind1 = int( meth_split[ 0 ] ) - minval + before_gene + in_gene 
                    meth_add = 0 
                    count_add = 0 
                    for c1 in range( 0, 16 ): 
                        meth_add += int( meth_split[ 2 * c1 + 2 ] ) 
                        count_add += int( meth_split[ 2 * c1 + 3 ] ) 
                    meth_count_f[ ind1 ] += meth_add 
                    total_count_f[ ind1 ] += count_add 
                meth_line = f_m.readline().strip() 
                if( meth_line == '' ): 
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                    meth_split[ 0 ] = 1000000000 
                    nextChr = True 
                    break 
                meth_split = meth_line.split() 
 
        if( gene_split[ 4 ] == 'R' ): 
            # first deal with upstream 
            minval = int( gene_split[ 1 ] ) - before_gene 
            maxval = int( gene_split[ 1 ] ) - 1 
            if( meth_line == '' ): 
                meth_split[ 0 ] = 1000000000 
                nextChr = True 
                break 
 
            while( int( meth_split[ 0 ] ) <= maxval ): 
                while( int( meth_split[ 0 ] ) < minval ): 
                    meth_line = f_m.readline().strip() 
                    if( meth_line == '' ): 
                        meth_split[ 0 ] = 1000000000 
                        nextChr = True 
                        break 
                    meth_split = meth_line.split() 
                if( int( meth_split[ 0 ] ) <= maxval ): 
                    # add it to the relevant arrays 
                    ind1 = int( meth_split[ 0 ] ) - minval 
                    meth_add = 0 
                    count_add = 0 
                    for c1 in range( 0, 16 ): 
                        meth_add += int( meth_split[ 2 * c1 + 2 ] ) 
                        count_add += int( meth_split[ 2 * c1 + 3 ] ) 
                    meth_count_r[ ind1 ] += meth_add 
                    total_count_r[ ind1 ] += count_add 
                meth_line = f_m.readline().strip() 
                if( meth_line == '' ): 
                    meth_split[ 0 ] = 1000000000 
                    nextChr = True 
                    break 
                meth_split = meth_line.split() 
            # then deal with the gene body 
            minval = int( gene_split[ 1 ] ) 
            maxval = int( gene_split[ 2 ] ) 
            while( int( meth_split[ 0 ] ) <= maxval ): 
                while( int( meth_split[ 0 ] ) < minval ): 
                    meth_line = f_m.readline().strip() 
                    meth_split = meth_line.split() 
                if( int( meth_split[ 0 ] ) <= maxval ): 
                    # add it to the relevant arrays 
                    # This time the array position is based on the position relative 
                    # to the TSS and TES 
                    dl = int( meth_split[ 0 ] ) - minval 
                    dr = maxval - int( meth_split[ 0 ] ) 
                    ind1 = int( round( before_gene + dl * 1000.0 / ( dl + dr ) ) ) 
                    meth_add = 0 
                    count_add = 0 
                    for c1 in range( 0, 16 ): 
                        meth_add += int( meth_split[ 2 * c1 + 2 ] ) 
                        count_add += int( meth_split[ 2 * c1 + 3 ] ) 
                    meth_count_r[ ind1 ] += meth_add 
                    total_count_r[ ind1 ] += count_add 
                meth_line = f_m.readline().strip() 
                if( meth_line == '' ): 
                    meth_split[ 0 ] = 1000000000 
                    nextChr = True 
                    break 
                meth_split = meth_line.split() 
            # then deal with downstream 
            minval = int( gene_split[ 2 ] ) + 1 
            maxval = int( gene_split[ 2 ] ) + after_gene 
            while( int( meth_split[ 0 ] ) <= maxval ): 
                while( int( meth_split[ 0 ] ) < minval ): 
                    meth_line = f_m.readline().strip() 
                    meth_split = meth_line.split() 
                if( int( meth_split[ 0 ] ) <= maxval ): 
                    # add it to the relevant arrays 
                    ind1 = int( meth_split[ 0 ] ) - minval + before_gene + in_gene 
                    meth_add = 0 
                    count_add = 0 
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                    for c1 in range( 0, 16 ): 
                        meth_add += int( meth_split[ 2 * c1 + 2 ] ) 
                        count_add += int( meth_split[ 2 * c1 + 3 ] ) 
                    meth_count_r[ ind1 ] += meth_add 
                    total_count_r[ ind1 ] += count_add 
                meth_line = f_m.readline().strip() 
                if( meth_line == '' ): 
                    meth_split[ 0 ] = 1000000000 
                    nextChr = True 
                    break 
                meth_split = meth_line.split() 
 
        if( nextChr == True ): 
            nextChr = False 
            # Need to skip forward to the next chromosome 
            while( gene_split[ 0 ] == current_chr_gene ): 
                if( current_chr_gene == 'chr7H' ): 
                    cont = False 
                    break 
                gene_line = f_g.readline().strip() 
                gene_split = gene_line.split() 
                if( gene_split[ 0 ] != current_chr_gene ): 
                    current_chr_gene = gene_split[ 0 ] 
                    current_chr_meth = current_chr_gene 
                    print( current_chr_meth ) 
                    f_m.close() 
                    meth_file = dir_in_m + 'R.' + current_chr_meth + '.' + context + '.tsv.gz' 
                    f_m = gzip.open( meth_file, 'rb' ) 
                    meth_header = f_m.readline().strip().split() 
                    meth_line = f_m.readline().strip() 
                    meth_split = meth_line.split() 
                    break 
 
        else: 
            gene_line = f_g.readline().strip() 
            if( gene_line == '' ): 
                nextChr = True 
                break 
            gene_split = gene_line.split() 
 
        if( gene_split[ 0 ] != current_chr_gene ): 
            #print( 'it ended up getting the next chromosome here' ) 
            current_chr_gene = gene_split[ 0 ] 
            current_chr_meth = current_chr_gene 
            print( current_chr_meth ) 
            f_m.close() 
            meth_file = dir_in_m + 'R.' + current_chr_meth + '.' + context + '.tsv.gz' 
            f_m = gzip.open( meth_file, 'rb' ) 
            meth_header = f_m.readline().strip().split() 
            meth_line = f_m.readline().strip() 
            meth_split = meth_line.split() 
 
    f_o = open( dir_out + 'TE.meth.' + context + '.' + TE_type + '.tsv', 'wb' ) 
    f_o.write( 'meth\ttotal\n' ) 
 
    for c2 in range( 0, before_gene + in_gene + after_gene ): 
        c3 = before_gene + in_gene + after_gene - c2 - 1 
        f_o.write( '%d\t%d\n' % ( meth_count_f[ c2 ] + meth_count_r[ c3 ], total_count_f[ c2 ] 
+ total_count_r[ c3 ] ) ) 
 
    f_o.close() 
    f_m.close() 
    f_g.close() 
 
    endtime = time.time() 
    print( "End time - start time = %f" % ( endtime - starttime ) ) 
 
sys.exit() 
 
 

10.28 find_differentially_methylated.R 

library( 'methylKit' ) 
 
setwd( '/home/jason/Share/epiGBS_98_bismark/merged/' ) 
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for( filebase in c( '/home/jason/Share/epiGBS_98_bismark/merged/', 
'/home/jason/Share/epiGBS_93_varcall/merged/' ) ) 
{ 
  for( context1 in c( 'CG', 'CHG', 'CHH' ) ) 
  { 
    for( lr in c( 'L', 'R' ) ) 
    { 
      file.list = list( paste0( filebase, 'R.methylKit.', lr, '1.', context1, '.tsv' ), 
                        paste0( filebase, 'R.methylKit.', lr, '2.', context1, '.tsv' ), 
                        paste0( filebase, 'R.methylKit.', lr, '3.', context1, '.tsv' ), 
                        paste0( filebase, 'R.methylKit.', lr, '4.', context1, '.tsv' ), 
                        paste0( filebase, 'R.methylKit.', lr, '5.', context1, '.tsv' ), 
                        paste0( filebase, 'R.methylKit.', lr, '6.', context1, '.tsv' ), 
                        paste0( filebase, 'R.methylKit.', lr, '7.', context1, '.tsv' ), 
                        paste0( filebase, 'R.methylKit.', lr, '8.', context1, '.tsv' ) ) 
       
      myobj = methRead( file.list,  
                        sample.id = list( 'c1', 'c2', 'c3', 'c4', 's1', 's2', 's3', 's4' ), 
                        assembly = 'Hvu', treatment = c( 0, 0, 0, 0, 1, 1, 1, 1 ), 
                        context = context1, mincov = 5 ) 
      tiles = tileMethylCounts( myobj, win.size = 100, step.size = 100 ) 
      meth = unite( tiles, destrand = FALSE, min.per.group = 1L, mc.cores = 3 ) 
      myDiff = calculateDiffMeth( meth, mc.cores = 1 ) 
      myDiff10p = getMethylDiff( myDiff, difference = 10, qvalue = 0.05 ) 
      cat( paste0( filebase, 'R.methylKit.diff.4reps.mincov5.windowed100.step100.',  
           context1, '.', lr, '.tsv\n' ) ) 
      cat( nrow( myDiff10p ), '\n' ) 
       
      #need to save the values as .tsv and .Rdata 
      write.table( myDiff10p,  
                   file = paste0( filebase,  
                                  'R.methylKit.diff.4reps.mincov5.windowed100.step100.',  
                                  context1, '.', lr, '.tsv' ), 
                   sep = '\t', row.name = FALSE, col.name = TRUE, quote = FALSE ) 
      save( myDiff10p,  
            file = paste0( filebase,  
                           'R.methylKit.diff.4reps.mincov5.windowed100.step100.',  
                           context1, '.', lr, '.Rdata' ) ) 
    } 
  } 
} 
 
 

10.29 dist_to_TSS.R 

This custom R script compares the distances between the gene transcription start site 

and the location of differentially methylated regions and generates histograms of 

these distances. 

library( 'methylKit' ) 
library( 'genomation' ) 
library( 'GenomicFeatures' ) 
library( 'data.table' ) 
library( 'compiler' ) 
enableJIT( 3 ) 
 
if( exists( 'alreadyread' ) == FALSE ) 
{ 
  gff = gffToGRanges( '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.gz', ensembl = TRUE, zero.based = FALSE ) 
  genes = gffToGRanges( '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.gz', ensembl = TRUE, zero.based = FALSE, filter = 'gene' ) 
   
  t1 =  genes[ seqnames( genes ) == 'chrchr1H' ] 
  genes.chr1H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
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  t1 =  genes[ seqnames( genes ) == 'chrchr2H' ] 
  genes.chr2H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr3H' ] 
  genes.chr3H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr4H' ] 
  genes.chr4H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr5H' ] 
  genes.chr5H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr6H' ] 
  genes.chr6H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr7H' ] 
  genes.chr7H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchrUn' ] 
  genes.chrUn = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
} 
alreadyread = 1 
 
setwd( '/home/jason/Share/epiGBS_98_bismark/merged/' ) 
 
for( filebase in c( '/home/jason/Share/epiGBS_98_bismark/merged/', 
                    '/home/jason/Share/epiGBS_93_varcall/merged/' ) ) 
{ 
  for( context1 in c( 'CG', 'CHG', 'CHH' ) ) 
  { 
    for( lr in c( 'L', 'R' ) ) 
    { 
      file_in = paste0( filebase, 'R.methylKit.diff.4reps.mincov5.windowed100.step100.',  
                        context1, '.', lr, '.Rdata' ) 
      load( file = file_in ) 
      cat( paste0( file_in, '\n' ) ) 
      diffval = 10 
      #diffval = 25 
      #qval = 0.05 
      qval = 0.01 
      myDiff_sl = getMethylDiff( myDiff10p, difference = diffval, qvalue = qval ) 
      myDiff.GRanges = as( myDiff_sl, 'GRanges' ) 
      len1 = NROW( myDiff.GRanges ) 
      prev_chr = 'chr1H' 
      gene_chr = genes.chr1H 
      promoters = NULL 
      for( ind2 in 1:NROW( gene_chr )) 
      { 
        if( gene_chr[ ind2 ]$strand == '+' ) 
        { 
          promoters[ ind2 ] = gene_chr[ ind2 ]$start 
        } else { 
          promoters[ ind2 ] = gene_chr[ ind2 ]$end 
        } 
      } 
      promoter.dt = data.table( promoters, val = promoters ) 
      setattr( promoter.dt, 'sorted', 'promoters' ) 
      dt.chr = NULL 
      dt.start = NULL 
      dt.end = NULL 
      dt.mid = NULL 
      dt.qvalue = NULL 
      dt.meth.diff = NULL 
      dt.dist.to.gene.start = NULL 
      for( ind1 in 1:len1 ) 
      { 
        seqname = as( seqnames( myDiff.GRanges[ ind1 ] ), 'vector' ) 
        flag_change = 0 
        if( seqname != prev_chr ){ 
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          if( seqname == 'chr2H' ){ 
            prev_chr = 'chr2H' 
            gene_chr = genes.chr2H 
            flag_change = 1 
          } 
          if( seqname == 'chr3H' ){ 
            prev_chr = 'chr3H' 
            gene_chr = genes.chr3H 
            flag_change = 1 
          } 
          if( seqname == 'chr4H' ){ 
            prev_chr = 'chr4H' 
            gene_chr = genes.chr4H 
            flag_change = 1 
          } 
          if( seqname == 'chr5H' ){ 
            prev_chr = 'chr5H' 
            gene_chr = genes.chr5H 
            flag_change = 1 
          } 
          if( seqname == 'chr6H' ){ 
            prev_chr = 'chr6H' 
            gene_chr = genes.chr6H 
            flag_change = 1 
          } 
          if( seqname == 'chr7H' ){ 
            prev_chr = 'chr7H' 
            gene_chr = genes.chr7H 
            flag_change = 1 
          } 
          if( seqname == 'chrUn' ){ 
            prev_chr = 'chrUn' 
            gene_chr = genes.chrUn 
            flag_change = 1 
          } 
          if( flag_change == 1 ) 
          { 
            promoters = NULL 
            for( ind2 in 1:NROW( gene_chr )) 
            { 
              if( gene_chr[ ind2 ]$strand == '+' ) 
              { 
                promoters[ ind2 ] = gene_chr[ ind2 ]$start 
              } else { 
                promoters[ ind2 ] = gene_chr[ ind2 ]$end 
              } 
            } 
            promoter.dt = data.table( promoters, val = promoters ) 
            setattr( promoter.dt, 'sorted', 'promoters' ) 
          } 
        } 
        start = start( myDiff.GRanges[ ind1 ] ) 
        end = end( myDiff.GRanges[ ind1 ] ) 
        mid = ( start + end )/2 
 
        ind3 = promoter.dt[ J( as( mid, 'integer' ) ), roll = 'nearest', which = TRUE ] 
        closest_pr = promoter.dt[ ind3 ]$promoters 
        if( gene_chr[ ind3 ]$strand == '+' ) 
        { 
          dist = - ( closest_pr - mid ) 
        } else { 
          dist = closest_pr - mid 
        } 
        dt.chr[ ind1 ] = seqname 
        dt.start[ ind1 ] = start 
        dt.end[ ind1 ] = end 
        dt.mid[ ind1 ] = mid 
        dt.qvalue[ ind1 ] = myDiff.GRanges[ ind1 ]$qvalue 
        dt.meth.diff[ ind1 ] = myDiff.GRanges[ ind1 ]$meth.diff 
        dt.dist.to.gene.start[ ind1 ] = dist 
      } 
      dist.to.gene = data.table( dist.to.gene.start = dt.dist.to.gene.start,  
                                 chr = dt.chr, start = dt.start, end = dt.end, mid = dt.mid, 
                                 qvalue = dt.qvalue, meth.diff = dt.meth.diff ) 
      dist.to.gene.sl = dist.to.gene[ ( dist.to.gene$dist.to.gene.start < 5000  ) &  
                                      ( dist.to.gene$dist.to.gene.start > -5000 ) ] 
      save( dist.to.gene.sl, file = paste0( file_in, '.dist_to_gene_sl5000.qval', qval,  
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                                            '.diff', diffval, '.Rdata' ) ) 
      write.table( dist.to.gene.sl,  
                   file = paste0( file_in, '.dist_to_gene_sl5000.qval', qval,  
                                  '.diff', diffval, '.tsv' ),  
                   sep = '\t', row.name = FALSE, col.name = TRUE, quote = FALSE ) 
      hist( dist.to.gene.sl$dist.to.gene.start, breaks = 50, 
            xlim = c(-5000, 5000 ) , 
            xlab = 'Distance to start of gene', 
            main = file_in ) 
      png( filename = paste0( file_in, '.dist_to_gene_sl5000.qval', qval, '.diff', diffval, 
                              '.png' ), width = 1000, height = 1000 ) 
      hist( dist.to.gene.sl$dist.to.gene.start, breaks = 50, 
            xlim = c(-5000, 5000 ) , 
            xlab = 'Distance to start of gene', 
            main = file_in ) 
      dev.off() 
       
      dist.to.gene.sl = dist.to.gene[ ( dist.to.gene$dist.to.gene.start < 1000  ) &  
                                      ( dist.to.gene$dist.to.gene.start > -1000 ) ] 
      save( dist.to.gene.sl,  
            file = paste0( file_in, '.dist_to_gene_sl1000.qval', qval, '.diff', diffval,  
                           '.Rdata' ) ) 
      write.table( dist.to.gene.sl, 
                   file = paste0( file_in, '.dist_to_gene_sl1000.qval', qval, '.diff', 
                          diffval, '.tsv' ),  
                   sep = '\t', row.name = FALSE, col.name = TRUE, quote = FALSE ) 
      hist( dist.to.gene.sl$dist.to.gene.start, breaks = 50, 
            xlim = c(-1000, 1000 ) , 
            xlab = 'Distance to start of gene', 
            main = file_in ) 
      png( filename = paste0( file_in, '.dist_to_gene_sl1000.qval', qval, '.diff', diffval, 
                              '.png' ), width = 1000, height = 1000 ) 
      hist( dist.to.gene.sl$dist.to.gene.start, breaks = 50, 
            xlim = c(-1000, 1000 ) , 
            xlab = 'Distance to start of gene', 
            main = file_in ) 
      dev.off() 
    } 
  } 
} 
 
 

10.30 diff_meth_annotation.R 

This custom R script compares the differentially methylated regions of the genome 

with known genes and other annotated features from Ensembl Hordeum vulgare v2.45 

and the known transposable elements published by the IBSC (2012) 

library( 'methylKit' ) 
library( 'genomation' ) 
library( 'GenomicFeatures' ) 
library( 'data.table' ) 
library( 'compiler' ) 
enableJIT( 3 ) 
 
if( exists( 'alreadyread' ) == FALSE ) 
{ 
  gff = gffToGRanges( '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.gz', ensembl = TRUE, zero.based = FALSE ) 
  genes = gffToGRanges( '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.gz', ensembl = TRUE, zero.based = FALSE, filter = 'gene' ) 
  filter.types =  c( 'gene', 'ncRNA_gene', 'lnc_RNA', 'tRNA', 'rRNA', 'snRNA', 'snoRNA', 
                     'pre_miRNA' ) 
  gff.filtered =  gff[ !is.na( match( gff$type, filter.types  ) ) ] 
  rm( gff ) 
   
  te.table = fread( file = '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Barley_TE_annotation_v2_18Aug16.tsv', sep = '\t', header = TRUE ) 
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  t2 = data.table( chr = te.table$seq_id, start = te.table$start, end = te.table$end, 
                   TE_code = te.table$TE_code ) 
  te.chr1H = t2[ t2$chr == 'chr1H' ] 
  te.chr2H = t2[ t2$chr == 'chr2H' ] 
  te.chr3H = t2[ t2$chr == 'chr3H' ] 
  te.chr4H = t2[ t2$chr == 'chr4H' ] 
  te.chr5H = t2[ t2$chr == 'chr5H' ] 
  te.chr6H = t2[ t2$chr == 'chr6H' ] 
  te.chr7H = t2[ t2$chr == 'chr7H' ] 
  te.chrUn = t2[ t2$chr == 'chrUn' ] 
  rm( t2, te.table ) 
   
  t1 =  genes[ seqnames( genes ) == 'chrchr1H' ] 
  genes.chr1H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr2H' ] 
  genes.chr2H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr3H' ] 
  genes.chr3H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr4H' ] 
  genes.chr4H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr5H' ] 
  genes.chr5H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr6H' ] 
  genes.chr6H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr7H' ] 
  genes.chr7H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchrUn' ] 
  genes.chrUn = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  gff.chr1H = gff.filtered[ seqnames( gff.filtered) == 'chrchr1H' ] 
  gff.chr2H = gff.filtered[ seqnames( gff.filtered) == 'chrchr2H' ] 
  gff.chr3H = gff.filtered[ seqnames( gff.filtered) == 'chrchr3H' ] 
  gff.chr4H = gff.filtered[ seqnames( gff.filtered) == 'chrchr4H' ] 
  gff.chr5H = gff.filtered[ seqnames( gff.filtered) == 'chrchr5H' ] 
  gff.chr6H = gff.filtered[ seqnames( gff.filtered) == 'chrchr6H' ] 
  gff.chr7H = gff.filtered[ seqnames( gff.filtered) == 'chrchr7H' ] 
  gff.chrUn = gff.filtered[ seqnames( gff.filtered) == 'chrchrUn' ] 
   
} 
alreadyread = 1 
 
setwd( '/home/jason/Share/epiGBS_98_bismark/merged/' ) 
filebase = '/home/jason/Share/epiGBS_98_bismark/merged/' 
for( context1 in c( 'CG', 'CHG', 'CHH' ) ) 
{ 
  for( lr in c( 'L', 'R' ) ) 
  { 
    for( offset in c( 1500 ) ) 
    { 
      ptm = proc.time() 
       
      file_in = paste0( filebase, 'R.methylKit.diff.4reps.mincov5.windowed100.step100.', 
                        context1, '.', lr, '.Rdata' ) 
      load( file = file_in ) 
      cat( paste0( file_in, '\n' ) ) 
      diffval = 10 
      qval = 0.05 
      myDiff_sl = getMethylDiff( myDiff10p, difference = diffval, qvalue = qval ) 
      myDiff.GRanges = as( myDiff_sl, 'GRanges' ) 
      len1 = NROW( myDiff.GRanges ) 
      prev_chr = 'chr1H' 
      gene_chr = gff.chr1H 



Appendix B, Custom Bioinformatics Code  Page 324 

      te_chr = te.chr1H 
      annotation = NULL 
      for( ind1 in 1:len1 ) 
      { 
        seqname = as( seqnames( myDiff.GRanges[ ind1 ] ), 'vector' ) 
        flag_change = 0 
        if( seqname != prev_chr ){ 
          if( seqname == 'chr2H' ){ 
            prev_chr = 'chr2H' 
            gene_chr = gff.chr2H 
            te_chr = te.chr2H 
            flag_change = 1 
          } 
          if( seqname == 'chr3H' ){ 
            prev_chr = 'chr3H' 
            gene_chr = gff.chr3H 
            te_chr = te.chr3H 
            flag_change = 1 
          } 
          if( seqname == 'chr4H' ){ 
            prev_chr = 'chr4H' 
            gene_chr = gff.chr4H 
            te_chr = te.chr4H 
            flag_change = 1 
          } 
          if( seqname == 'chr5H' ){ 
            prev_chr = 'chr5H' 
            gene_chr = gff.chr5H 
            te_chr = te.chr5H 
            flag_change = 1 
          } 
          if( seqname == 'chr6H' ){ 
            prev_chr = 'chr6H' 
            gene_chr = gff.chr6H 
            te_chr = te.chr6H 
            flag_change = 1 
          } 
          if( seqname == 'chr7H' ){ 
            prev_chr = 'chr7H' 
            gene_chr = gff.chr7H 
            te_chr = te.chr7H 
            flag_change = 1 
          } 
          if( seqname == 'chrUn' ){ 
            prev_chr = 'chrUn' 
            gene_chr = gff.chrUn 
            te_chr = te.chrUn 
            flag_change = 1 
          } 
        } 
        temp1 = gene_chr[ ( ( end( myDiff.GRanges[ ind1 ] )  < end( gene_chr ) + offset  ) & 
                         ( end( myDiff.GRanges[ ind1 ] )  > start( gene_chr ) - offset ) ) | 
                         ( ( start( myDiff.GRanges[ ind1 ] )  < end( gene_chr ) + offset  ) & 
                         ( start( myDiff.GRanges[ ind1 ] )  > start( gene_chr ) - offset ) ) ] 
        mid =  ( start( myDiff.GRanges[ ind1 ] ) + end( myDiff.GRanges[ ind1 ] ) ) / 2 
        temp2 = te_chr[ ( ( mid < te_chr$end  ) & ( mid > te_chr$start ) ) |  
                        ( ( start( myDiff.GRanges[ ind1 ] ) < te_chr$end  ) &  
                        ( start( myDiff.GRanges[ ind1 ] ) > te_chr$start ) ) | 
                        ( ( end( myDiff.GRanges[ ind1 ] ) < te_chr$end  ) &  
                        ( end( myDiff.GRanges[ ind1 ] ) > te_chr$start ) ) ] 
         
        temp3 = data.frame( chr = character(), start = integer(), end = integer(),  
                            TE_code = character(), stringsAsFactors = FALSE  ) 
         
        # If everything is empty then the none flag is set 
        if( ( NROW( temp1 ) == 0 ) & ( NROW( temp2 ) == 0 ) ) 
        { 
          none = 1 
        } else { 
          none = 0 
        } 
        qv = myDiff.GRanges$qvalue[ ind1 ] 
        dv = myDiff.GRanges$meth.diff[ ind1 ] 
        # If it is a gene, then want to know the annotation 
        if( as( sum( temp1$type == 'gene' ) > 0, 'integer' ) ) 
        { 
          temp4 = temp1[ temp1$type == 'gene' ] 
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          geneID = temp4$gene_id[ 1 ] 
        } else { 
          geneID = '' 
        } 
        # If it is a gene at the same time as a TE then the TE label with 'g' at the start  
        # is used rather than the TE label 
        if( ( as( sum( temp1$type == 'gene' ) > 0, 'integer' ) == 1 ) &  
            ( NROW( temp2 ) != 0 ) ) 
        { 
          temp1 = temp1[ 0, ] 
          temp3 = temp2 
          temp2 = data.frame( chr = character(), start = integer(), end = integer(), 
                              TE_code = character(), stringsAsFactors = FALSE  ) 
        df1 = data.frame( chr = seqname, 
                          start = start( myDiff.GRanges[ ind1 ] ), 
                          end = end( myDiff.GRanges[ ind1 ] ), 
                          gene = as( sum( temp1$type == 'gene' ) > 0, 'integer' ), 
                          ncRNA_gene = as( sum( temp1$type == 'ncRNA_gene' ) > 0, 'integer' ), 
                          lnc_RNA = as( sum( temp1$type == 'lnc_RNA' ) > 0, 'integer' ), 
                          tRNA = as( sum( temp1$type == 'tRNA' ) > 0, 'integer' ), 
                          rRNA = as( sum( temp1$type == 'rRNA' ) > 0, 'integer' ), 
                          snRNA = as( sum( temp1$type == 'snRNA' ) > 0, 'integer' ), 
                          snoRNA = as( sum( temp1$type == 'snoRNA' ) > 0, 'integer' ), 
                          pre_miRNA = as( sum( temp1$type == 'pre_miRNA' ) > 0, 'integer' ), 
                          DHH = as( sum( temp2$TE_code == 'DHH' ) > 0, 'integer' ), 
                          DTA = as( sum( temp2$TE_code == 'DTA' ) > 0, 'integer' ), 
                          DTC = as( sum( temp2$TE_code == 'DTC' ) > 0, 'integer' ), 
                          DTH = as( sum( temp2$TE_code == 'DTH' ) > 0, 'integer' ), 
                          DTM = as( sum( temp2$TE_code == 'DTM' ) > 0, 'integer' ), 
                          DTT = as( sum( temp2$TE_code == 'DTT' ) > 0, 'integer' ), 
                          DTX = as( sum( temp2$TE_code == 'DTX' ) > 0, 'integer' ), 
                          DXX = as( sum( temp2$TE_code == 'DXX' ) > 0, 'integer' ), 
                          RIX = as( sum( temp2$TE_code == 'RIX' ) > 0, 'integer' ), 
                          RLC = as( sum( temp2$TE_code == 'RLC' ) > 0, 'integer' ), 
                          RLG = as( sum( temp2$TE_code == 'RLG' ) > 0, 'integer' ), 
                          RLX = as( sum( temp2$TE_code == 'RLX' ) > 0, 'integer' ), 
                          RSX = as( sum( temp2$TE_code == 'RSX' ) > 0, 'integer' ), 
                          RXX = as( sum( temp2$TE_code == 'RXX' ) > 0, 'integer' ), 
                          XXX = as( sum( temp2$TE_code == 'XXX' ) > 0, 'integer' ), 
                          gDHH = as( sum( temp3$TE_code == 'DHH' ) > 0, 'integer' ), 
                          gDTA = as( sum( temp3$TE_code == 'DTA' ) > 0, 'integer' ), 
                          gDTC = as( sum( temp3$TE_code == 'DTC' ) > 0, 'integer' ), 
                          gDTH = as( sum( temp3$TE_code == 'DTH' ) > 0, 'integer' ), 
                          gDTM = as( sum( temp3$TE_code == 'DTM' ) > 0, 'integer' ), 
                          gDTT = as( sum( temp3$TE_code == 'DTT' ) > 0, 'integer' ), 
                          gDTX = as( sum( temp3$TE_code == 'DTX' ) > 0, 'integer' ), 
                          gDXX = as( sum( temp3$TE_code == 'DXX' ) > 0, 'integer' ), 
                          gRIX = as( sum( temp3$TE_code == 'RIX' ) > 0, 'integer' ), 
                          gRLC = as( sum( temp3$TE_code == 'RLC' ) > 0, 'integer' ), 
                          gRLG = as( sum( temp3$TE_code == 'RLG' ) > 0, 'integer' ), 
                          gRLX = as( sum( temp3$TE_code == 'RLX' ) > 0, 'integer' ), 
                          gRSX = as( sum( temp3$TE_code == 'RSX' ) > 0, 'integer' ), 
                          gRXX = as( sum( temp3$TE_code == 'RXX' ) > 0, 'integer' ), 
                          gXXX = as( sum( temp3$TE_code == 'XXX' ) > 0, 'integer' ), 
                          none = none, 
                          geneID = geneID,  
                          qvalue = qv, 
                          diff = dv ) 
        annotation = rbind( annotation, df1 ) 
      } 
      write.table( annotation, file = paste0( file_in, 
                   '.fixed.annotation.withTE.geneIDs.mod3.offset', offset, '.tsv' ),  
                   sep = '\t', row.name = FALSE, col.name = TRUE, quote = FALSE ) 
      annotationsums = colSums( annotation[ , -c( 1, 2, 3, 43, 44, 45 ) ] ) 
      check = rowSums( annotation[ , -c( 1, 2, 3, 43, 44, 45 ) ] ) 
      write.table( annotationsums, file = paste0( file_in,  
                   '.fixed.annotationsums.withTE.mod3.offset', offset, '.tsv' ), sep = '\t', 
                   col.name = FALSE, row.name = TRUE, quote = FALSE ) 
       
      temp_time = proc.time() - ptm 
      cat( 'user time = ', temp_time[ 1 ], 's, system time = ', temp_time[ 2 ], 's,  
           elapsed time = ', temp_time[ 3 ], 's\n', sep = '' ) 
    } 
  } 
} 
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10.31 random_ genome_sampling.R 

This custom R script generates 100,000 non-overlapping 100 bp random out of the 

sites methylation mapped sites. Since the methylation information does not map to 

the entire genome, there may be some biases in methylation mapping, so 

comparisons should be done with sites that the methylation sequence data maps to. 

library( 'methylKit' ) 
library( 'genomation' ) 
library( 'GenomicFeatures' ) 
library( 'data.table' ) 
library( 'compiler' ) 
enableJIT( 3 ) 
 
if( exists( 'alreadyread' ) == FALSE ) 
{ 
  gff = gffToGRanges( '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.gz', ensembl = TRUE, zero.based = FALSE ) 
  genes = gffToGRanges( '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.gz', ensembl = TRUE, zero.based = FALSE, filter = 'gene' ) 
  filter.types =  c( 'gene', 'ncRNA_gene', 'lnc_RNA', 'tRNA', 'rRNA', 'snRNA', 'snoRNA', 
'pre_miRNA' ) 
  gff.filtered =  gff[ !is.na( match( gff$type, filter.types  ) ) ] 
  rm( gff ) 
   
  te.table = fread( file = '/home/jason/Share/Reference_Genome/Hvu_dl_2019-12-
05/Barley_TE_annotation_v2_18Aug16.tsv', sep = '\t', header = TRUE ) 
  t2 = data.table( chr = te.table$seq_id, start = te.table$start, end = te.table$end, TE_code 
= te.table$TE_code ) 
  te.chr1H = t2[ t2$chr == 'chr1H' ] 
  te.chr2H = t2[ t2$chr == 'chr2H' ] 
  te.chr3H = t2[ t2$chr == 'chr3H' ] 
  te.chr4H = t2[ t2$chr == 'chr4H' ] 
  te.chr5H = t2[ t2$chr == 'chr5H' ] 
  te.chr6H = t2[ t2$chr == 'chr6H' ] 
  te.chr7H = t2[ t2$chr == 'chr7H' ] 
  te.chrUn = t2[ t2$chr == 'chrUn' ] 
  rm( t2, te.table ) 
   
  t1 =  genes[ seqnames( genes ) == 'chrchr1H' ] 
  genes.chr1H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr2H' ] 
  genes.chr2H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr3H' ] 
  genes.chr3H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr4H' ] 
  genes.chr4H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr5H' ] 
  genes.chr5H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr6H' ] 
  genes.chr6H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchr7H' ] 
  genes.chr7H = data.table( start = start( t1 ), 
                            end = end( t1 ),  
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                            strand = as( strand( t1 ), 'vector' ) ) 
  t1 =  genes[ seqnames( genes ) == 'chrchrUn' ] 
  genes.chrUn = data.table( start = start( t1 ), 
                            end = end( t1 ),  
                            strand = as( strand( t1 ), 'vector' ) ) 
  gff.chr1H = gff.filtered[ seqnames( gff.filtered) == 'chrchr1H' ] 
  gff.chr2H = gff.filtered[ seqnames( gff.filtered) == 'chrchr2H' ] 
  gff.chr3H = gff.filtered[ seqnames( gff.filtered) == 'chrchr3H' ] 
  gff.chr4H = gff.filtered[ seqnames( gff.filtered) == 'chrchr4H' ] 
  gff.chr5H = gff.filtered[ seqnames( gff.filtered) == 'chrchr5H' ] 
  gff.chr6H = gff.filtered[ seqnames( gff.filtered) == 'chrchr6H' ] 
  gff.chr7H = gff.filtered[ seqnames( gff.filtered) == 'chrchr7H' ] 
  gff.chrUn = gff.filtered[ seqnames( gff.filtered) == 'chrchrUn' ] 
   
} 
alreadyread = 1 
 
setwd( '/home/jason/Share/epiGBS_98_bismark/merged/' ) 
lr = 'R' 
#lr = 'L' 
 
for( filebase in c( '/home/jason/Share/epiGBS_98_bismark/merged/', 
'/home/jason/Share/epiGBS_93_varcall/merged/' ) ) 
{ 
  for( randsampling in c( 20000 ) ) 
  { 
    for( context1 in c( 'CG', 'CHG', 'CHH' ) ) 
    { 
      ptm = proc.time() 
       
      file_in =  paste0( filebase, 'randomised_bs_mapped_sampling_omit_some_na', randsampling, 
'.', context1, '.tsv' ) 
      readin = read.csv( file_in, sep = '\t' ) 
      colnm = colnames( readin ) 
      colnames( readin ) = c( 'seqname', 'start', 'end' ) 
      cat( paste0( file_in, '\n' ) ) 
      len1 = NROW( readin ) 
      prev_chr = 'chr1H' 
      gene_chr = gff.chr1H 
      te_chr = te.chr1H 
      annotation = NULL 
      for( ind1 in 1:len1 ) 
      { 
        # create a data.table with columns: 
        # chr, start, end, qvalue, meth.diff, dist_to_gene_start, overlapping_genes, 
overlapping_other 
         
        seqname = readin$seqname[ ind1 ] 
        flag_change = 0 
        if( seqname != prev_chr ){ 
          if( seqname == 'chr2H' ){ 
            prev_chr = 'chr2H' 
            gene_chr = gff.chr2H 
            te_chr = te.chr2H 
            flag_change = 1 
          } 
          if( seqname == 'chr3H' ){ 
            prev_chr = 'chr3H' 
            gene_chr = gff.chr3H 
            te_chr = te.chr3H 
            flag_change = 1 
          } 
          if( seqname == 'chr4H' ){ 
            prev_chr = 'chr4H' 
            gene_chr = gff.chr4H 
            te_chr = te.chr4H 
            flag_change = 1 
          } 
          if( seqname == 'chr5H' ){ 
            prev_chr = 'chr5H' 
            gene_chr = gff.chr5H 
            te_chr = te.chr5H 
            flag_change = 1 
          } 
          if( seqname == 'chr6H' ){ 
            prev_chr = 'chr6H' 
            gene_chr = gff.chr6H 
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            te_chr = te.chr6H 
            flag_change = 1 
          } 
          if( seqname == 'chr7H' ){ 
            prev_chr = 'chr7H' 
            gene_chr = gff.chr7H 
            te_chr = te.chr7H 
            flag_change = 1 
          } 
          if( seqname == 'chrUn' ){ 
            prev_chr = 'chrUn' 
            gene_chr = gff.chrUn 
            te_chr = te.chrUn 
            flag_change = 1 
          } 
        } 
        temp1 = gene_chr[ ( ( readin$end[ ind1 ]  < end( gene_chr ) + offset  ) & ( 
readin$end[ ind1 ]  > start( gene_chr ) - offset ) ) | 
                            ( ( readin$start[ ind1 ]  < end( gene_chr ) + offset  ) & ( 
readin$start[ ind1 ]  > start( gene_chr ) - offset ) ) ] 
         
        mid =  ( readin$start[ ind1 ] + readin$end[ ind1 ] ) / 2 
         
        temp2 = te_chr[ ( ( mid < te_chr$end  ) & ( mid > te_chr$start ) ) |  
                        ( ( readin$start[ ind1 ] < te_chr$end  ) & ( readin$start[ ind1 ] > 
te_chr$start ) ) | 
                        ( ( readin$end[ ind1 ] < te_chr$end  ) & ( readin$end[ ind1 ] > 
te_chr$start ) ) ] 
         
        temp3 = data.frame( chr = character(), start = integer(), end = integer(), TE_code = 
character(), stringsAsFactors = FALSE  ) 
         
        # as( sum( temp1$type = '____' ) > 0, 'integer' ) so that it is either 0 or 1, not 2 
or more which can occur. 
         
        # if everything is empty then the none flag is set 
        if( ( NROW( temp1 ) == 0 ) & ( NROW( temp2 ) == 0 ) ) 
        { 
          none = 1 
        } else { 
          none = 0 
        } 
        # if it is a gene at the same time as a TE then the TE label with 'g' at the start is 
used rather than the TE label 
        if( ( as( sum( temp1$type == 'gene' ) > 0, 'integer' ) == 1 ) & ( NROW( temp2 ) != 0 ) 
) 
        { 
          temp1 = temp1[ 0, ] 
          temp3 = temp2 
          temp2 = data.frame( chr = character(), start = integer(), end = integer(), TE_code = 
character(), stringsAsFactors = FALSE  ) 
        }  
 
        df1 = data.frame( chr = seqname, 
                          start = readin$start[ ind1 ], 
                          end = readin$end[ ind1 ], 
                          gene = as( sum( temp1$type == 'gene' ) > 0, 'integer' ), 
                          ncRNA_gene = as( sum( temp1$type == 'ncRNA_gene' ) > 0, 'integer' ), 
                          lnc_RNA = as( sum( temp1$type == 'lnc_RNA' ) > 0, 'integer' ), 
                          tRNA = as( sum( temp1$type == 'tRNA' ) > 0, 'integer' ), 
                          rRNA = as( sum( temp1$type == 'rRNA' ) > 0, 'integer' ), 
                          snRNA = as( sum( temp1$type == 'snRNA' ) > 0, 'integer' ), 
                          snoRNA = as( sum( temp1$type == 'snoRNA' ) > 0, 'integer' ), 
                          pre_miRNA = as( sum( temp1$type == 'pre_miRNA' ) > 0, 'integer' ), 
                          DHH = as( sum( temp2$TE_code == 'DHH' ) > 0, 'integer' ), 
                          DTA = as( sum( temp2$TE_code == 'DTA' ) > 0, 'integer' ), 
                          DTC = as( sum( temp2$TE_code == 'DTC' ) > 0, 'integer' ), 
                          DTH = as( sum( temp2$TE_code == 'DTH' ) > 0, 'integer' ), 
                          DTM = as( sum( temp2$TE_code == 'DTM' ) > 0, 'integer' ), 
                          DTT = as( sum( temp2$TE_code == 'DTT' ) > 0, 'integer' ), 
                          DTX = as( sum( temp2$TE_code == 'DTX' ) > 0, 'integer' ), 
                          DXX = as( sum( temp2$TE_code == 'DXX' ) > 0, 'integer' ), 
                          RIX = as( sum( temp2$TE_code == 'RIX' ) > 0, 'integer' ), 
                          RLC = as( sum( temp2$TE_code == 'RLC' ) > 0, 'integer' ), 
                          RLG = as( sum( temp2$TE_code == 'RLG' ) > 0, 'integer' ), 
                          RLX = as( sum( temp2$TE_code == 'RLX' ) > 0, 'integer' ), 
                          RSX = as( sum( temp2$TE_code == 'RSX' ) > 0, 'integer' ), 
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    seq1_name = '%(code)s_%(Flowcell)s_s_%(lane)s_fastq.txt' % \ 
      (❴'code': 'R1samplecode123', 'Flowcell': Flowcell, 'lane': Lane❵) 
    seq2_name = '%(code)s_%(Flowcell)s_s_%(lane)s_fastq.txt' % \ 
      (❴'code': 'R2samplecode123', 'Flowcell': Flowcell, 'lane': Lane❵) 
    if not os.exists(os.path.join(dir_in, seq1_name)): 
        seq1_name += ".gz" 
        seq2_name += ".gz" 

 

                          RXX = as( sum( temp2$TE_code == 'RXX' ) > 0, 'integer' ), 
                          XXX = as( sum( temp2$TE_code == 'XXX' ) > 0, 'integer' ), 
                          gDHH = as( sum( temp3$TE_code == 'DHH' ) > 0, 'integer' ), 
                          gDTA = as( sum( temp3$TE_code == 'DTA' ) > 0, 'integer' ), 
                          gDTC = as( sum( temp3$TE_code == 'DTC' ) > 0, 'integer' ), 
                          gDTH = as( sum( temp3$TE_code == 'DTH' ) > 0, 'integer' ), 
                          gDTM = as( sum( temp3$TE_code == 'DTM' ) > 0, 'integer' ), 
                          gDTT = as( sum( temp3$TE_code == 'DTT' ) > 0, 'integer' ), 
                          gDTX = as( sum( temp3$TE_code == 'DTX' ) > 0, 'integer' ), 
                          gDXX = as( sum( temp3$TE_code == 'DXX' ) > 0, 'integer' ), 
                          gRIX = as( sum( temp3$TE_code == 'RIX' ) > 0, 'integer' ), 
                          gRLC = as( sum( temp3$TE_code == 'RLC' ) > 0, 'integer' ), 
                          gRLG = as( sum( temp3$TE_code == 'RLG' ) > 0, 'integer' ), 
                          gRLX = as( sum( temp3$TE_code == 'RLX' ) > 0, 'integer' ), 
                          gRSX = as( sum( temp3$TE_code == 'RSX' ) > 0, 'integer' ), 
                          gRXX = as( sum( temp3$TE_code == 'RXX' ) > 0, 'integer' ), 
                          gXXX = as( sum( temp3$TE_code == 'XXX' ) > 0, 'integer' ), 
                          none = none ) 
        annotation = rbind( annotation, df1 ) 
                             
      } 
 
      write.table( annotation, file = paste0( file_in, '.fixed.annotation.withTE.mod2.offset', 
offset, '.tsv' ), sep = '\t', row.name = FALSE, col.name = TRUE, quote = FALSE ) 
      annotationsums = colSums( annotation[ , -c( 1, 2, 3 ) ] ) 
      check = rowSums( annotation[ , -c( 1, 2, 3 ) ] ) 
      write.table( annotationsums, file = paste0( file_in, 
'.fixed.annotationsums.withTE.mod2.offset', offset, '.tsv' ), sep = '\t', col.name = FALSE, 
row.name = TRUE, quote = FALSE ) 
       
      temp_time = proc.time() - ptm 
      cat( 'user time = ', temp_time[ 1 ], 's, system time = ', temp_time[ 2 ], 's, elapsed 
time = ', temp_time[ 3 ], 's\n', sep = '' ) 
    } 
  } 
} 
 
 

10.32 demultiplex.py from the epiGBS suite 

The following section of code needed to be modified in order to work. The original 

python code segment from the function put_output with errors is shown in Figure 

B.10.1 with the modified code in Figure B.10.2. The unedited code can be found at the 

github repository https://github.com/thomasvangurp/epiGBS/blob/epiGBS-Nature_ 

methods/demultiplex.py. The errors and fixes were reported in repository issue #23 

on 7 December 2018, but they remain un-actioned at the time of writing. 

 
 
 
 
 
 
 
 
 

Figure B.10.1, Section of code from the put_output function in demultiplex.py with errors 

preventing correct operation. 
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    seq1_name = '%(code)s_%(Flowcell)s_s_%(lane)s_fastq.txt' % \ 
      (❴'code': 'R1_%s' % opts.output.split('/')[-2], 'Flowcell': Flowcell, 'lane': Lane}) 
    seq2_name = '%(code)s_%(Flowcell)s_s_%(lane)s_fastq.txt' % \ 
      (❴'code': 'R2_%s' % opts.output.split('/')[-2], 'Flowcell': Flowcell, 'lane': Lane}) 
    if not os.path.exists(os.path.join(dir_in, seq1_name)): 
        seq1_name += ".gz" 
        seq2_name += ".gz" 

 
 
 
 
 
 
 
 
 
 

Figure B.10.2, Section of code from the put_output function in demultiplex.py fixed for 

correct operation. 

 

10.33 chromosome_mapping_sRNA_meth.R 

This R script takes statistically significantly differentially expressed 23/24 nt sRNA 

and CHH differential methylation and counts the occurances in each 1 Mbp window 

in the genome. The resulting information is saved in an image. 

library( data.table ) 
library( png ) 
 
hvuGenome = list(  'chr1H' = 558535432,  
                   'chr2H' = 768075024,  
                   'chr3H' = 699711114,  
                   'chr4H' = 647060158,  
                   'chr5H' = 670030160,  
                   'chr6H' = 583380513,  
                   'chr7H' = 657224000 )  
 
# The data set in the file below is already filtered for only significant reads 
# Loads in to the variable myDiff10p 
load( 
'~/Share/epiGBS_98_bismark/merged/R.methylKit.diff.4reps.mincov5.windowed100.step100.CHH.L.Rda
ta' ) 
 
bigwin = 10000 
ptm = proc.time() 
chrm = matrix( data = NA, nrow = 786, ncol = 21 ) 
indexmul = 1 
 
chromosomes = c( 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H' ) 
 
siRNAarray = array( data = 0, dim = c( 786, 7 ) ) 
metharray = array( data = 0, dim = c( 786, 7 ) ) 
 
lim = 5 
for( chrind in 1:7 ) 
{ 
  siRNA1 = fread( paste0( '~/Share/Jason_SmallRNA_40_Leaf_aligned_23-
24nt/n1.mapped.counts.window.100.step.100.stats.qvals.chr', chrind, 'H.tsv' ) ) 
  siRNA2 = siRNA1[ !is.na( siRNA1$mean_c ) ] 
  siRNA2 = siRNA2[ siRNA2$pvals < 0.05 ] 
  for( c1 in 1:NROW( siRNA2 ) ) 
  { 
    siRNAarray[ ceiling( siRNA2[ c1 ]$index / bigwin ), chrind ] = siRNAarray[ ceiling( 
siRNA2[ c1 ]$index / bigwin ), chrind ] + 1 
  } 
   
  methvals = myDiff10p[ myDiff10p$chr == chromosomes[ chrind ] ] 
  for( c2 in 1:NROW( methvals ) ) 
  { 
    metharray[ ceiling( methvals[ c2 ]$start / ( bigwin * 100 ) ), chrind ] = metharray[ 
ceiling( methvals[ c2 ]$start / ( bigwin * 100 ) ), chrind ] + 1 
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  } 
} 
 
img1 = array( data = 1, dim = c( 786, 680, 3 ) ) 
siRNAscaling = max( siRNAarray ) 
methscaling = max( metharray ) 
 
for( chrind in 1:7 ) 
{ 
  xstart = 25 * 3 * chrind - 25 
  for( pos in 1:floor( as.numeric( hvuGenome[ chrind ] ) / 1000000 ) ) 
  { 
    img1[ pos + 1, xstart:( xstart + 23 ), 1 ] = 1 - array( data = siRNAarray[ pos, chrind ] / 
siRNAscaling, dim = c( 1, 24, 1 ) ) 
    img1[ pos + 1, xstart:( xstart + 23 ), 2 ] = img1[ pos + 1, xstart:( xstart + 23 ), 1 ] 
    img1[ pos + 1, xstart:( xstart + 23 ), 3 ] = img1[ pos + 1, xstart:( xstart + 23 ), 1 ] 
  } 
  xstart = 25 * 3 * chrind - 0 
  for( pos in 1:floor( as.numeric( hvuGenome[ chrind ] ) / 1000000 ) ) 
  { 
    img1[ pos + 1, xstart:( xstart + 23 ), 1 ] = 1 - array( data = metharray[ pos, chrind ] / 
methscaling, dim = c( 1, 24, 1 ) ) 
    img1[ pos + 1, xstart:( xstart + 23 ), 2 ] = img1[ pos + 1, xstart:( xstart + 23 ), 1 ] 
    img1[ pos + 1, xstart:( xstart + 23 ), 3 ] = img1[ pos + 1, xstart:( xstart + 23 ), 1 ] 
  } 
} 
 
# ticks for chromosome size 
for( y in ( 0:7 ) * 100 + 2 ) 
{ 
  img1[ y, 44:48, 1 ] = array( data = 0, dim = c( 1, 5, 1 ) ) 
  img1[ y, 44:48, 2 ] = array( data = 0, dim = c( 1, 5, 1 ) ) 
  img1[ y, 44:48, 3 ] = array( data = 0, dim = c( 1, 5, 1 ) ) 
} 
 
# colour scale bar 
scsize = 500 
for( sc in ( 0:scsize ) ) 
{ 
  ys = 600 
  xs = 625 
  img1[ ys - sc, xs:( xs + 23 ), 1 ] = array( data = ( scsize - sc ) / scsize, dim = c( 1, 24, 
1 ) ) 
  img1[ ys - sc, xs:( xs + 23 ), 2 ] = array( data = ( scsize - sc ) / scsize, dim = c( 1, 24, 
1 ) ) 
  img1[ ys - sc, xs:( xs + 23 ), 3 ] = array( data = ( scsize - sc ) / scsize, dim = c( 1, 24, 
1 ) ) 
} 
 
# ticks for colour scale bar 
for( yt in c( ys, round( ys - scsize / 3 ), round( ys - scsize * 2 / 3 ), round( ys - scsize ) 
) ) 
{ 
  cat( paste0( 'yt = ', yt, ' xs = ', xs, '\n' ) ) 
  img1[ yt, ( xs - 6 ):( xs - 2 ), 1 ] = array( data = 0, dim = c( 1, 5, 1 ) ) 
  img1[ yt, ( xs - 6 ):( xs - 2 ), 2 ] = array( data = 0, dim = c( 1, 5, 1 ) ) 
  img1[ yt, ( xs - 6 ):( xs - 2 ), 3 ] = array( data = 0, dim = c( 1, 5, 1 ) ) 
  img1[ yt, ( xs + 25 ):( xs + 29 ), 1 ] = array( data = 0, dim = c( 1, 5, 1 ) ) 
  img1[ yt, ( xs + 25 ):( xs + 29 ), 2 ] = array( data = 0, dim = c( 1, 5, 1 ) ) 
  img1[ yt, ( xs + 25 ):( xs + 29 ), 3 ] = array( data = 0, dim = c( 1, 5, 1 ) ) 
} 
rasterImage( as.raster( img1 ), 0, 0, 1, 1 ) 
 
writePNG( img1, target = '~/Share/chromosome_mapping_siRNA_methylation_04_CHH_Leaf.png' ) 
 
temp_time = proc.time() - ptm 
cat( 'user time = ', temp_time[ 1 ], 's, system time = ', temp_time[ 2 ], 's, elapsed time = 
', temp_time[ 3 ], 's\n', sep = '' ) 
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10.34 sRNA_methylation_co-location.py 

This python program compares differential sRNA expression mapped to the genome 

with differential methylation and determined the distance between the two. 

#!/usr/bin/python 
# 
# Looks for co-locations of differential siRNA expression and differential methylation 
# 
# Jason Smith 
# Last modified 04/06/2020 (d/m/y) 
 
import sys 
import gzip 
import os 
import time 
import csv 
 
q_cutoff_methylation = 0.05 
q_cutoff_siRNA = 0.05 
q_cutoff_siRNA_st = '' 
win_size = 100 
step_size = 100 
n_windows = 100 
 
starttime = time.time() 
if( sys.platform[0] == 'w' ): 
    basedir = 'C:/BaseSpace/' 
else: 
    basedir = '/home/jason/Share/' 
 
dir_in_m = basedir + 'epiGBS_98_bismark/merged/' 
dir_out = basedir + 'corr_04_siRNA_methylation/' 
 
chromosomes = [ 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ] 
chr_sizes = [ 558535432, 768075024, 699711114, 647060158, 670030160, 583380513, 657224000, 
249774706 ] 
s = [ 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 
'R7', 'R8' ] 
contexts = [ 'CHH', 'CG', 'CHG' ] 
 
for siRNA_sz in [ '23', '24', '23-24' ]: 
    print( siRNA_sz ) 
    for lr in [ 'L', 'R' ]: 
        print( lr ) 
        if( lr == 'L' ): 
            if( siRNA_sz == '24' ): 
                dir_in_s = basedir + 'Jason_SmallRNA_40_Leaf_aligned_24nt/' 
            elif( siRNA_sz == '23' ): 
                dir_in_s = basedir + 'Jason_SmallRNA_40_Leaf_aligned_23nt/' 
            else: 
                dir_in_s = basedir + 'Jason_SmallRNA_40_Leaf_aligned_23-24nt/' 
        else: 
            if( siRNA_sz == '24' ): 
                dir_in_s = basedir + 'Jason_SmallRNA_40_Root_aligned_24nt/' 
            elif( siRNA_sz == '23' ): 
                dir_in_s = basedir + 'Jason_SmallRNA_40_Root_aligned_23nt/' 
            else: 
                dir_in_s = basedir + 'Jason_SmallRNA_40_Root_aligned_23-24nt/' 
        print( dir_in_s ) 
        current_m_index = 0 
        current_s_index = 0 
        for context in contexts: 
            chromosome = chromosomes[ 0 ] 
            fh_s = open( dir_in_s + 'n1.mapped.counts.window.100.step.100.stats.qvals.' +  
                         chromosome + '.tsv' ) 
            header_s = fh_s.readline().strip().split() 
            sinram = [] 
            while( True ): 
                next_s = fh_s.readline().strip().split() 
                if( next_s == [] ): 
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                    break 
                if( float( next_s[ 1 ] ) < q_cutoff_siRNA ): 
                    sinram.append( next_s ) 
            fh_s.close() 
             
            fh_m = gzip.open( dir_in_m + 'R.methylKit.diff.4reps.mincov5.windowed100.step100.' 
                              + context + '.' + lr + '.tsv.gz', 'rb' ) 
            header_m = fh_m.readline().strip().split() 
            next_m = fh_m.readline().strip().split() 
            fo0 = open( dir_out + 'corr.windowed100.step100.siRNA' + siRNA_sz + 'nt.' +  
                        context + '.' + lr + q_cutoff_siRNA_st + '.0.tsv', 'wb' ) 
            fop = [] 
            fon = [] 
            for ct1 in range( 0, n_windows ): 
                fop.append( open( dir_out + 'corr.windowed100.step100.siRNA' + siRNA_sz +  
                                  'nt.' + context + '.' + lr + q_cutoff_siRNA_st + '.p%d.tsv' 
                                  % ( ct1 + 1 ), 'wb' ) ) 
                fon.append( open( dir_out + 'corr.windowed100.step100.siRNA' + siRNA_sz +  
                                  'nt.' + context + '.' + lr + q_cutoff_siRNA_st + '.n%d.tsv'  
                                  % ( ct1 + 1 ), 'wb' ) ) 
            header = 'chr\tmeth_start\tmeth_end\tmeth_q\tmeth_diff\tsiRNA_index\tsiRNA_q\t' +  
                     'siRNA_mean_c\tsiRNA_mean_t\tsame_dir\n' 
            fo0.write( header ) 
            for ct1 in range( 0, n_windows ): 
                fop[ ct1 ].write( header ) 
                fon[ ct1 ].write( header ) 
            print( 'Context ' + context ) 
            print( 'Chromosome ' + chromosome ) 
            while( next_m != [] ): 
                if( float( next_m[ 5 ] ) < q_cutoff_methylation ): 
                    if( next_m[ 0 ] != chromosome ): 
                        chromosome = next_m[ 0 ] 
                        print( 'Chromosome ' + chromosome ) 
                        fh_s = open( dir_in_s +  
                                     'n1.mapped.counts.window.100.step.100.stats.qvals.' +  
                                     chromosome + '.tsv' ) 
                        header_s = fh_s.readline().strip().split() 
                        sinram = [] 
                        while( True ): 
                            next_s = fh_s.readline().strip().split() 
                            if( next_s == [] ): 
                                break 
                            if( float( next_s[ 1 ] ) < q_cutoff_siRNA ): 
                                sinram.append( next_s ) 
                        fh_s.close() 
                    sramind = 0 
                    index_m = int( next_m[ 1 ] ) / win_size 
                    index_s = int( float( sinram[ sramind ][ 0 ] ) ) 
                    # deal with negative windows first (starting at - n_windows) 
                    for ct2 in range( - n_windows, 0 ): 
                        if( index_s < index_m + ct2 ): 
                            # Need to skip forward  
                            while( index_s < index_m + ct2 ): 
                                sramind += 1 
                                if( sramind > len( sinram ) - 1 ): 
                                    sramind = len( sinram ) - 1 
                                    index_s = int( 1000000000 ) 
                                else: 
                                    index_s = int( float( sinram[ sramind ][ 0 ] ) ) 
                        # Now the siRNA index is either in the right place or doesn't exist 
                        if( index_s == index_m + ct2 ): 
                            #print( 'index_s %d, index_m %d, ' % ( index_s, index_m ) ) 
                            if( float( sinram[ sramind ][ 1 ] ) < q_cutoff_siRNA ): 
                                # This is a valid point, write to file 
                                if( ( ( float( next_m[ 6 ] ) > 0 ) &  
                                      ( float( sinram[ sramind ][ 5 ] ) >  
                                        float( sinram[ sramind ][ 4 ] ) ) ) | 
                                    ( ( float( next_m[ 6 ] ) < 0 ) &  
                                      ( float( sinram[ sramind ][ 5 ] ) <  
                                        float( sinram[ sramind ][ 4 ] ) ) ) ): 
                                    same = '1' 
                                else: 
                                    same = '0' 
                                fon[ - ct2 - 1 ].write( chromosome + '\t' +\ 
                                                       next_m[ 1 ] + '\t' +\ 
                                                       next_m[ 2 ] + '\t' +\ 
                                                       next_m[ 5 ] + '\t' +\ 
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                                                       next_m[ 6 ] + '\t' +\ 
                                                       sinram[ sramind ][ 0 ] + '\t' +\ 
                                                       sinram[ sramind ][ 1 ] + '\t' +\ 
                                                       sinram[ sramind ][ 4 ] + '\t' +\ 
                                                       sinram[ sramind ][ 5 ] + '\t' +\ 
                                                       same + '\n' ) 
                    # deal with the overlapping window 
                    if( index_s < index_m ): 
                        # Need to skip forward  
                        while( index_s < index_m ): 
                            sramind += 1 
                            if( sramind > len( sinram ) - 1 ): 
                                sramind = len( sinram ) - 1 
                                index_s = int( 1000000000 ) 
                            else: 
                                index_s = int( float( sinram[ sramind ][ 0 ] ) ) 
                    # Now the siRNA index is either in the right place or doesn't exist 
                    if( index_s == index_m ): 
                        #print( 'index_s %d, index_m %d, ' % ( index_s, index_m ) ) 
                        if( float( sinram[ sramind ][ 1 ] ) < q_cutoff_siRNA ): 
                            # This is a valid point, write to file 
                            if( ( ( float( next_m[ 6 ] ) > 0 ) &  
                                  ( float( sinram[ sramind ][ 5 ] ) >  
                                    float( sinram[ sramind ][ 4 ] ) ) ) | 
                                ( ( float( next_m[ 6 ] ) < 0 ) &  
                                  ( float( sinram[ sramind ][ 5 ] ) <  
                                    float( sinram[ sramind ][ 4 ] ) ) ) ): 
                                same = '1' 
                            else: 
                                same = '0' 
                            fo0.write( chromosome + '\t' +\ 
                                       next_m[ 1 ] + '\t' +\ 
                                       next_m[ 2 ] + '\t' +\ 
                                       next_m[ 5 ] + '\t' +\ 
                                       next_m[ 6 ] + '\t' +\ 
                                       sinram[ sramind ][ 0 ] + '\t' +\ 
                                       sinram[ sramind ][ 1 ] + '\t' +\ 
                                       sinram[ sramind ][ 4 ] + '\t' +\ 
                                       sinram[ sramind ][ 5 ] + '\t' +\ 
                                       same + '\n' ) 
                    # Now deal with the positive windows 
                    for ct2 in range( 1, n_windows + 1): 
                        if( index_s < index_m + ct2 ): 
                            # Need to skip forward  
                            while( index_s < index_m + ct2 ): 
                                sramind += 1 
                                if( sramind > len( sinram ) - 1 ): 
                                    sramind = len( sinram ) - 1 
                                    index_s = int( 1000000000 ) 
                                else: 
                                    index_s = int( float( sinram[ sramind ][ 0 ] ) ) 
                        # Now the siRNA index is either in the right place or doesn't exist 
                        if( index_s == index_m + ct2 ): 
                            #print( 'index_s %d, index_m %d, ' % ( index_s, index_m ) ) 
                            if( float( sinram[ sramind ][ 1 ] ) < q_cutoff_siRNA ): 
                                # This is a valid point, write to file 
                                if( ( ( float( next_m[ 6 ] ) > 0 ) &  
                                      ( float( sinram[ sramind ][ 5 ] ) >  
                                        float( sinram[ sramind ][ 4 ] ) ) ) | 
                                    ( ( float( next_m[ 6 ] ) < 0 ) &  
                                      ( float( sinram[ sramind ][ 5 ] ) <  
                                        float( sinram[ sramind ][ 4 ] ) ) ) ): 
                                    same = '1' 
                                else: 
                                    same = '0' 
                                fop[ ct2 - 1 ].write( chromosome + '\t' +\ 
                                                      next_m[ 1 ] + '\t' +\ 
                                                      next_m[ 2 ] + '\t' +\ 
                                                      next_m[ 5 ] + '\t' +\ 
                                                      next_m[ 6 ] + '\t' +\ 
                                                      sinram[ sramind ][ 0 ] + '\t' +\ 
                                                      sinram[ sramind ][ 1 ] + '\t' +\ 
                                                      sinram[ sramind ][ 4 ] + '\t' +\ 
                                                      sinram[ sramind ][ 5 ] + '\t' +\ 
                                                      same + '\n' ) 
                next_m = fh_m.readline().strip().split() 
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            fo0.close() 
            for ct1 in range( 0, n_windows ): 
                fop[ ct1 ].close() 
                fon[ ct1 ].close() 
 
endtime = time.time() 
print( "End time - start time = %f" % ( endtime - starttime ) ) 

 
 

10.35 plot_barley_sRNA_meth_co-locations.R 

This R script takes the output from sRNA_methylation_co-location.py and generates 

information for plotting the distance between significantly different windows in 

sRNA expression and methylation levels. 

 
# This R script looks at the correlation output from the pypy script  
# sRNA_methylation_co-location.py 
 
ptm = proc.time() 
 
library( compiler ) 
library( data.table ) 
 
enableJIT( 3 ) 
 
chromosomes = c( 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H' ) 
chr_sizes = c( 558535432, 768075024, 699711114, 647060158, 670030160, 583380513,  
               657224000, 249774706 ) 
s = c( 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5',  
       'R6', 'R7', 'R8' ) 
 
dir_in = 'C:/BaseSpace/corr_04_siRNA_methylation/' 
 
shift_nums = c( paste0( 'n', 100:1 ), '0', paste0( 'p', 1:100 ) ) 
 
df1 = data.frame( lr = NULL, siRNA_size = NULL, context = NULL, shift_num = NULL,  
                  same_dir = NULL, count = NULL ) 
df3 = data.frame( lr = NULL, siRNA_size = NULL, context = NULL, shift_num = NULL,  
                  same_dir = NULL, count = NULL ) 
for( lr in c( 'L', 'R' ) ) 
{ 
  for( siRNA_sz in c( '23', '24', '23-24' ) ) 
  { 
    for( context in c( 'CHH', 'CG', 'CHG' ) ) 
    { 
      df2 = data.frame( lr = NULL, siRNA_size = NULL, context = NULL, shift_num = NULL,  
            same_dir = NULL, count = NULL ) 
      for( shift_num in shift_nums ) 
      { 
        filein = paste0( dir_in, 'corr.windowed100.step100.siRNA', siRNA_sz, 'nt.', context, 
                         '.', lr, '.', shift_num, '.tsv' ) 
        dat1 = fread( filein, header = TRUE ) 
        same_dir = sum( dat1$same_dir ) 
        cat( paste0( paste( lr, siRNA_sz, context ), 
                     ', shift number ', shift_num,  
                     ', same direction ', sprintf( same_dir / NROW( dat1 ) * 100,  
                                                   fmt = '%#.1f' ),  
                     '%, count ', NROW( dat1 ), 
                     '\n' ) ) 
        df1 = rbind( df1,  
                     data.frame( lr = lr, siRNA_size = siRNA_sz, context = context,  
                                 shift_num = shift_num, same_dir = same_dir,  
                                 count = NROW( dat1 ) ) ) 
        df2 = rbind( df2,  
                     data.frame( lr = lr, siRNA_size = siRNA_sz, context = context,  
                                 shift_num = shift_num, same_dir = same_dir,  
                                 count = NROW( dat1 ) ) ) 



Appendix B, Custom Bioinformatics Code  Page 336 

      } 
      y = df2$same_dir / df2$count 
      t1 = df2[ seq( 100, 1 ), ] 
      t2 = df2[ 102:201, ] 
      for( t3 in 1:100 ) 
      { 
        t2$same_dir[ t3 ] = ( t2$same_dir[ t3 ] + t1$same_dir[ t3 ] ) / 2 
        t2$count[ t3 ] = ( t2$count[ t3 ] + t1$count[ t3 ] ) / 2 
      } 
       
      df3 = rbind( df3, df2[ 101, ], t2 ) 
    } 
  } 
} 
 
write.table( df3, file = paste0( dir_in, 'dist.between.siRNA.methylation.tsv' ), sep = '\t', 
quote = FALSE, row.names = FALSE ) 
 
temp_time = proc.time() - ptm 
cat( 'user time = ', temp_time[ 1 ], 's, system time = ', temp_time[ 2 ], 's, elapsed time = 
', temp_time[ 3 ], 's\n', sep = '' ) 
 
 

10.36 annotate_co-located_sRNA_methylation.R 

This R script annotates the 100 bp genomic windows where there is co-location 

between differential sRNA expression and differential DNA methylation. Only sites 

where the co-location occurs within two windows are considered. 

 
# This R script looks at the co-location output from the pypy script  
# smallRNA_methylation_co-location.py 
 
ptm = proc.time() 
 
library( compiler ) 
library( data.table ) 
 
enableJIT( 3 ) 
 
chromosomes = c( 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ) 
chr_sizes = c( 558535432, 768075024, 699711114, 647060158, 670030160, 583380513, 657224000, 
249774706 ) 
s = c( 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 
'R7', 'R8' ) 
contexts = c( 'CG', 'CHG', 'CHH' ) 
 
 
#Just looking at siRNA 200bp around the methylation 
shifts = '200bp' 
shift_nums = c( 'n2', 'n1',  
                '0',  
                'p1', 'p2' ) 
 
dir_in_m = 'C:/BaseSpace/epiGBS_98_bismark/merged/' 
dir_in_c = 'C:/BaseSpace/corr_01_siRNA_methylation/' 
 
df1 = data.frame( lr = NULL, siRNA_size = NULL, context = NULL, shift_num = NULL, same_dir = 
NULL, count = NULL ) 
df3 = data.frame( lr = NULL, siRNA_size = NULL, context = NULL, shift_num = NULL, same_dir = 
NULL, count = NULL ) 
for( lr in c( 'L', 'R' ) ) 
{ 
  for( siRNA_sz in c('23', '24', '23-24' ) ) 
    { 
    filein_m = paste0( dir_in_m, 'R.methylKit.diff.4reps.mincov5.windowed100.step100.CHH.', 
lr, '.Rdata.fixed.annotation.withTE.geneIDs.mod3.offset1500.tsv' ) 
    cat( filein_m, '\n' ) 
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    dat_m = fread( filein_m, header = TRUE ) 
    shift_c = 1 
    dat_c = NULL 
    t3 = data.frame( NULL ) 
    for( shift_num in shift_nums ) 
    { 
      filein_c = paste0( dir_in_c, 'corr.windowed100.step100.siRNA', siRNA_sz, 'nt.CHH.', lr, 
'.siRNAcutoff40pc.', shift_num, '.tsv' ) 
      t1 = fread( filein_c, header = TRUE ) 
      t2 = t1[ t1$same_dir == 1, ] 
      t3 = rbind( t3, t2 ) 
      #dat_c[[ shift_c ]] = t1 
      #shift_c = shift_c + 1 
    } 
    t4 = data.frame( NULL ) 
    t3.1 = t3[ t3$chr == 'chr1H', ] 
    t3.2 = t3[ t3$chr == 'chr2H', ] 
    t3.3 = t3[ t3$chr == 'chr3H', ] 
    t3.4 = t3[ t3$chr == 'chr4H', ] 
    t3.5 = t3[ t3$chr == 'chr5H', ] 
    t3.6 = t3[ t3$chr == 'chr6H', ] 
    t3.7 = t3[ t3$chr == 'chr7H', ] 
    t3.U = t3[ t3$chr == 'chrUn', ] 
    for( ind_m in 1: NROW( dat_m ) ) 
    { 
      if( ( dat_m$chr[ ind_m ] == 'chr1H' ) & 
          ( sum( as.numeric( t3.1$meth_start ) == as.numeric( dat_m$start[ ind_m ] ) ) > 0 ) ) 
      { 
        t4 = rbind( t4, dat_m[ ind_m, ] ) 
      } else if( ( dat_m$chr[ ind_m ] == 'chr2H' ) & 
                 ( sum( as.numeric( t3.2$meth_start ) == as.numeric( dat_m$start[ ind_m ] ) ) 
> 0 ) ) 
      { 
        t4 = rbind( t4, dat_m[ ind_m, ] ) 
      } else if( ( dat_m$chr[ ind_m ] == 'chr3H' ) & 
                 ( sum( as.numeric( t3.3$meth_start ) == as.numeric( dat_m$start[ ind_m ] ) ) 
> 0 ) ) 
      { 
        t4 = rbind( t4, dat_m[ ind_m, ] ) 
      } else if( ( dat_m$chr[ ind_m ] == 'chr4H' ) & 
                 ( sum( as.numeric( t3.4$meth_start ) == as.numeric( dat_m$start[ ind_m ] ) ) 
> 0 ) ) 
      { 
        t4 = rbind( t4, dat_m[ ind_m, ] ) 
      } else if( ( dat_m$chr[ ind_m ] == 'chr5H' ) & 
                 ( sum( as.numeric( t3.5$meth_start ) == as.numeric( dat_m$start[ ind_m ] ) ) 
> 0 ) ) 
      { 
        t4 = rbind( t4, dat_m[ ind_m, ] ) 
      } else if( ( dat_m$chr[ ind_m ] == 'chr6H' ) & 
                 ( sum( as.numeric( t3.6$meth_start ) == as.numeric( dat_m$start[ ind_m ] ) ) 
> 0 ) ) 
      { 
        t4 = rbind( t4, dat_m[ ind_m, ] ) 
      } else if( ( dat_m$chr[ ind_m ] == 'chr7H' ) & 
                 ( sum( as.numeric( t3.7$meth_start ) == as.numeric( dat_m$start[ ind_m ] ) ) 
> 0 ) ) 
      { 
        t4 = rbind( t4, dat_m[ ind_m, ] ) 
      } else if( ( dat_m$chr[ ind_m ] == 'chrUn' ) & 
                 ( sum( as.numeric( t3.U$meth_start ) == as.numeric( dat_m$start[ ind_m ] ) ) 
> 0 ) ) 
      { 
        t4 = rbind( t4, dat_m[ ind_m, ] ) 
      } 
    } 
     
     
    fileout = paste0( dir_in_c, 'annotate.corr.siRNA', siRNA_sz,'.methylation.', lr, 
'.shifts', shifts,'.tsv' ) 
    write.table( t4, file = fileout, sep = '\t', quote = FALSE, row.names = FALSE ) 
    t5 = t4[ , -c( 1, 2, 3, 43, 44, 45 ) ] 
    t6 = colSums( t5 ) 
    fileout = paste0( dir_in_c, 'annotatesums.corr.siRNA', siRNA_sz,'.methylation.', lr, 
'.shifts', shifts,'.tsv' ) 
    write.table( t6, file = fileout, sep = '\t', quote = FALSE, row.names = TRUE, col.names = 
FALSE ) 
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  } 
} 
 
temp_time = proc.time() - ptm 
cat( 'user time = ', temp_time[ 1 ], 's, system time = ', temp_time[ 2 ], 's, elapsed time = 
', temp_time[ 3 ], 's\n', sep = '' ) 
 
 

10.37 methylation_co-location_mRNA.R 

This R script annotates and plots the differential methylation and mRNA 

differentially expressed sites.  

 
# This R script looks at the co-location output from the pypy script  
# smallRNA_methylation_co-location.py 
 
ptm = proc.time() 
 
library( compiler ) 
library( ggplot2 ) 
library( data.table ) 
library( GenomicRanges ) 
 
enableJIT( 3 ) 
 
dir1 = 'C:/BaseSpace/corr_02_methylation_mRNA/' 
#dir1 = '~/Share/corr_02_methylation_mRNA/' 
#lr = 'L' 
lr = 'R' 
context = 'CHH' 
chromosomes = c( 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ) 
chr_sizes = c( 558535432, 768075024, 699711114, 647060158, 670030160, 583380513, 657224000, 
249774706 ) 
s = c( 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 
'R7', 'R8' ) 
contexts = c( 'CG', 'CHG', 'CHH' ) 
 
load( 'C:/BaseSpace/Reference_Genome/Hvu_dl_2019-12-
05/Hordeum_vulgare.IBSC_v2.45.gff3.genes.Rdata' ) 
load( 'C:/BaseSpace/Reference_Genome/Hvu_dl_2019-12-05/Hordeum_vulgare.IBSC_v2.45.gff3.Rdata' 
) 
gff$gene_id[ is.na( gff$gene_id ) ] = '' 
extend = 2000 
filein = paste0( dir1, 'methylation_location_correlation_with_mRNA_DE.tsv' ) 
cat( filein, '\n' ) 
dat = fread( filein, header = TRUE ) 
mask = !( is.na( dat$mRNA_log2fc ) ) 
dat = dat[ mask, ] 
 
lr = 'L' 
lr = 'R' 
context = 'CHH' 
  if( lr == 'L' ) 
  { 
    tissue = 'leaf' 
  } else { 
    tissue = 'root' 
  } 
   
mask = dat$tissue == tissue 
dat_lr = dat[ mask, ] 
mask = dat_lr$context == context 
dat_context = dat_lr[ mask, ] 
 
udie = NULL 
cl = NULL 
for( i2 in 1:NROW( dat_context ) ) 
{ 
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  testgff = gff[ gff$gene_id == dat_context[ i2]$geneID ] 
  testgff2 = gff[ seqnames( gff ) == as.character( seqnames( testgff ) ) ] 
  testgff3 = testgff2[ ( start( testgff2 ) >= start( testgff ) ) & ( end( testgff2 ) <= end( 
testgff ) ) ] 
  testgff4 = testgff3[ testgff3$type == 'exon' ] 
   
  if( NROW( testgff4 ) == 0 ) 
  { 
    cat( i2, dat_context[ i2]$geneID, 'no exons found\n' ) 
    l_introns = IRanges( start = NULL, end = NULL ) 
    l_exons = IRanges( start = NULL, end = NULL ) 
    testgff4 = testgff[ testgff$type == 'gene' ] 
    if( NROW( testgff4 ) == 0 ) 
    { 
      cat( 'Couldn\'t find the gene either \n' ) 
       
    } else { 
      if( as.character( strand( testgff4 )[ 1 ] ) == '+' ) 
      { 
        upstream = IRanges( start = min( start( testgff4[ 1 ] ) ) - extend, end = min( start( 
testgff4[ 1 ] ) ) - 1 ) 
        downstream = IRanges( start = max( end( testgff4[ 1 ] ) ) + 1, end = max( end( 
testgff4[ 1 ] ) ) + extend ) 
      } else if( as.character( strand( testgff4 )[1] ) == '-' ) { 
        downstream = IRanges( start = min( start( testgff4[ 1 ] ) ) - extend, end = min( 
start( testgff4[ 1 ] ) ) - 1 ) 
        upstream = IRanges( start = max( end( testgff4[ 1 ] ) ) + 1, end = max( end( testgff4[ 
1 ] ) ) + extend ) 
      } 
    } 
  } else { 
    cat( i2, 'of', NROW( dat_context ), 'finding', dat_context[ i2]$geneID, '\n' ) 
    l_exons = ranges( testgff4 ) 
   
    l_introns = IRanges( start = NULL, end = NULL ) 
     
    if( NROW( l_exons ) > 1 ) 
    { 
      l_exons_ends = end( l_exons ) 
      l_exons_starts = start( l_exons ) 
      # remove duplicates 
      if( NROW( l_exons_ends > 0 ) ) 
      { 
        if( NROW( which( duplicated( l_exons_ends ) ) ) > 0 ) 
        { 
          l_exons_ends = sort( l_exons_ends[ - which( duplicated( l_exons_ends ) ) ] ) 
        } 
        if( NROW( which( duplicated( l_exons_starts ) ) ) > 0 ) 
        { 
          l_exons_starts = sort( l_exons_starts[ - which( duplicated( l_exons_starts ) ) ] ) 
        } 
      } 
      ts = NULL 
      te = NULL 
      for( i1 in 1:( NROW( l_exons_ends ) - 1 ) ) 
      { 
        if( sum( l_exons_starts >= l_exons_ends[ i1 ] + 1 ) > 0 ) 
        { 
          ts = c( ts, l_exons_ends[ i1 ] + 1 ) 
          te = c( te, min( l_exons_starts[ l_exons_starts >= l_exons_ends[ i1 ] + 1 ] ) - 1 ) 
        } 
      } 
      l_introns = IRanges( start = ts, end = te ) 
    } 
     
    if( as.character( strand( testgff4 )[1] ) == '+' ) 
    { 
      upstream = IRanges( start = min( start( l_exons ) ) - extend, end = min( start( l_exons 
) ) - 1 ) 
      downstream = IRanges( start = max( end( l_exons ) ) + 1, end = max( end( l_exons ) ) + 
extend ) 
    } else if( as.character( strand( testgff4 )[1] ) == '-' ) { 
      downstream = IRanges( start = min( start( l_exons ) ) - extend, end = min( start( 
l_exons ) ) - 1 ) 
      upstream = IRanges( start = max( end( l_exons ) ) + 1, end = max( end( l_exons ) ) + 
extend ) 
    } 
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    #  check: 
    #    is it in upstream 
    #    is it in downstream 
    #    is there any exon informaiton, if not then leave blank 
    #    is it in the first exon 
    #    is it in any other exon 
    #    is it in the first intron 
    #    anywhere else is an intron 
 
    classification = '' 
    centre = ( dat_context[ i2]$start + dat_context[ i2]$end + 1 ) / 2 
    if( ( centre >= start( upstream ) ) & ( centre <= end( upstream ) ) ) 
    { 
      classification = 'upstream' 
    } else if( ( centre >= start( downstream ) ) & ( centre <= end( downstream ) ) )  
    { 
      classification = 'downstream' 
    } else if( NROW( l_exons ) != 0  ){ 
      # it is either in an intron, an exon, or something went wrong 
      if( ( centre >= start( l_exons[ 1 ] ) ) & ( centre <= end( l_exons[ 1 ] ) ) ) 
      { 
        classification = 'firstexon' 
      } else { 
        mask = ( start( l_exons ) <= centre ) & ( end( l_exons ) >= centre ) 
        t1 = l_exons[ mask ] 
        if( NROW( t1 ) != 0 ) 
        { 
          classification = 'laterexon' 
        } else { 
          if( ( centre >= start( l_introns[ 1 ] ) ) & ( centre <= end( l_introns[ 1 ] ) ) ) 
          { 
            classification = 'firstintron' 
          } else { 
            mask = ( start( l_introns ) <= centre ) & ( end( l_introns ) >= centre ) 
            t1 = l_introns[ mask ] 
            if( NROW( t1 ) != 0 ) 
            { 
              classification = 'laterintron' 
            } 
          } 
        } 
      } 
       
    } 
    cl = c( cl, classification ) 
    cat( classification, '\n' ) 
  } 
 
} 
 
new1 = cbind( dat_context, cl ) 
fname = paste0( dir1, 'classification_of_methylation_location_in_gene_', tissue, '_', context, 
'.tsv' ) 
write.table( new1, file = fname, row.names = FALSE, col.names = TRUE, quote = FALSE, sep = 
'\t' ) 
 
 
if( lr == 'L' ) 
{ 
  dat = fread( paste0( dir1, 'classification_of_methylation_location_in_gene_leaf_CHH.tsv' ) ) 
  tissue = 'Leaf' 
} else { 
  dat = fread( paste0( dir1, 'classification_of_methylation_location_in_gene_root_CHH.tsv' ) ) 
  tissue = 'Root' 
} 
context = 'CHH' 
chromosomes = c( 'chr1H', 'chr2H', 'chr3H', 'chr4H', 'chr5H', 'chr6H', 'chr7H', 'chrUn' ) 
chr_sizes = c( 558535432, 768075024, 699711114, 647060158, 670030160, 583380513, 657224000, 
249774706 ) 
s = c( 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 
'R7', 'R8' ) 
contexts = c( 'CG', 'CHG', 'CHH' ) 
 
theme_set( theme_bw( base_size = 50 ) ) 
dset = 'all genes' 
dsetf = 'all_genes' 
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simp = 'full' 
gg = ggplot( dat, aes( x = meth_diff, y = mRNA_log2fc ) ) + 
  geom_point( aes( col = cl ), alpha = 0.7, size = 5 ) + theme( legend.position = 'none' ) + 
  labs( x = 'Methylation change (%)', 
        y = expression("Messenger RNA "*log[2]*"(fold change)" ), 
        title = paste( tissue, context, dset ), 
        color = 'Gene region' ) + 
  scale_colour_manual( name = 'Gene region',  
                       values = c( 'downstream' = 'red',  
                                   'firstintron' = 'black',  
                                   'laterintron' = 'darkgrey',  
                                   'firstexon' = 'green',  
                                   'laterexon' = 'lightgreen',  
                                   'upstream' = 'blue' ) ) 
plot( gg )     
ggsave( filename = paste0( dir1, 'n1.scatterplot.nolegend.meth.mRNA.', tissue, '.', context, 
'.', dsetf, '.', simp, '.png'), device = 'png', dpi = 160, width = 20, height = 16) 
 
cat( paste( tissue, dsetf, simp, '\n' ) ) 
features = levels( factor( dat$cl ) ) 
for( feature in features ) 
{ 
  ta = dat[ dat$cl == feature, ] 
  ctest = cor.test( ta$mRNA_log2fc, ta$meth_diff, method = 'pearson' ) 
  cat( paste( feature, 'p-value', ctest$p.value, 'correlation', ctest$estimate, '\n' ) ) 
} 
 
dat2 = dat 
dat2$cl[ dat$cl == 'firstexon' ] = 'gene' 
dat2$cl[ dat$cl == 'laterexon' ] = 'gene' 
dat2$cl[ dat$cl == 'firstintron' ] = 'gene' 
dat2$cl[ dat$cl == 'laterintron' ] = 'gene' 
 
simp = 'simplified' 
gg = ggplot( dat2, aes( x = meth_diff, y = mRNA_log2fc ) ) + 
  geom_point( aes( col = cl ), alpha = 0.7, size = 5 ) + theme( legend.position = 'none' ) + 
  labs( x = 'Methylation change (%)', 
        y = expression("Messenger RNA "*log[2]*"(fold change)" ), 
        title = paste( tissue, context, dset ), 
        color = 'Gene region' ) + 
  scale_colour_manual( name = 'Gene region',  
                       values = c( 'downstream' = 'red', 'gene' = 'black', 'upstream' = 'blue' 
) ) 
plot( gg )     
ggsave( filename = paste0( dir1, 'n1.scatterplot.nolegend.meth.mRNA.', tissue, '.', context, 
'.', dsetf, '.', simp, '.png'), device = 'png', dpi = 160, width = 20, height = 16) 
 
cat( paste( tissue, dsetf, simp, '\n' ) ) 
features = levels( factor( dat2$cl ) ) 
for( feature in features ) 
{ 
  ta = dat2[ dat2$cl == feature, ] 
  ctest = cor.test( ta$mRNA_log2fc, ta$meth_diff, method = 'pearson' ) 
  cat( paste( feature, 'p-value', ctest$p.value, 'correlation', ctest$estimate, '\n' ) ) 
} 
 
 
dset = 'targeting genes, not TEs' 
dsetf = 'genes_no_TE' 
datnoTE = dat[ dat$gene == 1, ] 
dat2noTE = dat2[ dat2$gene == 1, ] 
 
simp = 'full' 
gg = ggplot( datnoTE, aes( x = meth_diff, y = mRNA_log2fc ) ) + 
  geom_point( aes( col = cl ), alpha = 0.7, size = 5 ) + theme( legend.position = 'none' ) + 
  labs( x = 'Methylation change (%)', 
        y = expression("Messenger RNA "*log[2]*"(fold change)" ), 
        title = paste( tissue, context, dset ), 
        color = 'Gene region' ) + 
  scale_colour_manual( name = 'Gene region',  
                       values = c( 'downstream' = 'red',  
                                   'firstintron' = 'black',  
                                   'laterintron' = 'darkgrey',  
                                   'firstexon' = 'green',  
                                   'laterexon' = 'lightgreen',  
                                   'upstream' = 'blue' ) ) 
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plot( gg )     
ggsave( filename = paste0( dir1, 'n1.scatterplot.nolegend.meth.mRNA.', tissue, '.', context, 
'.', dsetf, '.', simp, '.png'), device = 'png', dpi = 160, width = 20, height = 16) 
 
cat( paste( tissue, dsetf, simp, '\n' ) ) 
features = levels( factor( datnoTE$cl ) ) 
for( feature in features ) 
{ 
  ta = datnoTE[ datnoTE$cl == feature, ] 
  ctest = cor.test( ta$mRNA_log2fc, ta$meth_diff, method = 'pearson' ) 
  cat( paste( feature, 'p-value', ctest$p.value, 'correlation', ctest$estimate, '\n' ) ) 
} 
 
 
simp = 'simplified' 
gg = ggplot( dat2noTE, aes( x = meth_diff, y = mRNA_log2fc ) ) + 
  geom_point( aes( col = cl ), alpha = 0.7, size = 5 ) + theme( legend.position = 'none' ) + 
  labs( x = 'Methylation change (%)', 
        y = expression("Messenger RNA "*log[2]*"(fold change)" ), 
        title = paste( tissue, context, dset ), 
        color = 'Gene region' ) + 
  scale_colour_manual( name = 'Gene region',  
                       values = c( 'downstream' = 'red', 'gene' = 'black', 'upstream' = 'blue' 
) ) 
plot( gg )     
ggsave( filename = paste0( dir1, 'n1.scatterplot.nolegend.meth.mRNA.', tissue, '.', context, 
'.', dsetf, '.', simp, '.png'), device = 'png', dpi = 160, width = 20, height = 16) 
 
cat( paste( tissue, dsetf, simp, '\n' ) ) 
features = levels( factor( dat2noTE$cl ) ) 
for( feature in features ) 
{ 
  ta = dat2noTE[ dat2noTE$cl == feature, ] 
  ctest = cor.test( ta$mRNA_log2fc, ta$meth_diff, method = 'pearson' ) 
  cat( paste( feature, 'p-value', ctest$p.value, 'correlation', ctest$estimate, '\n' ) ) 
} 
 
 
dset = 'targeting genes and TEs' 
dsetf = 'genes_with_TE' 
datwithTE = dat[ dat$gene == 0, ] 
dat2withTE = dat2[ dat2$gene == 0, ] 
 
simp = 'full' 
gg = ggplot( datwithTE, aes( x = meth_diff, y = mRNA_log2fc ) ) + 
  geom_point( aes( col = cl ), alpha = 0.7, size = 5 ) + theme( legend.position = 'none' ) + 
  labs( x = 'Methylation change (%)', 
        y = expression("Messenger RNA "*log[2]*"(fold change)" ), 
        title = paste( tissue, context, dset ), 
        color = 'Gene region' ) + 
  scale_colour_manual( name = 'Gene region',  
                       values = c( 'downstream' = 'red',  
                                   'firstintron' = 'black',  
                                   'laterintron' = 'darkgrey',  
                                   'firstexon' = 'green',  
                                   'laterexon' = 'lightgreen',  
                                   'upstream' = 'blue' ) ) 
plot( gg )     
ggsave( filename = paste0( dir1, 'n1.scatterplot.nolegend.meth.mRNA.', tissue, '.', context, 
'.', dsetf, '.', simp, '.png'), device = 'png', dpi = 160, width = 20, height = 16) 
 
cat( paste( tissue, dsetf, simp, '\n' ) ) 
features = levels( factor( datwithTE$cl ) ) 
for( feature in features ) 
{ 
  ta = datwithTE[ datwithTE$cl == feature, ] 
  #cor( ta$mRNA_log2fc, ta$meth_diff, method = 'pearson' ) 
  ctest = cor.test( ta$mRNA_log2fc, ta$meth_diff, method = 'pearson' ) 
  cat( paste( feature, 'p-value', ctest$p.value, 'correlation', ctest$estimate, '\n' ) ) 
} 
 
simp = 'simplified' 
gg = ggplot( dat2withTE, aes( x = meth_diff, y = mRNA_log2fc ) ) + 
  geom_point( aes( col = cl ), alpha = 0.7, size = 5 ) + theme( legend.position = 'none' ) + 
  labs( x = 'Methylation change (%)', 
        y = expression("Messenger RNA "*log[2]*"(fold change)" ), 
        title = paste( tissue, context, dset ), 
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        color = 'Gene region' ) + 
  scale_colour_manual( name = 'Gene region',  
                       values = c( 'downstream' = 'red', 'gene' = 'black', 'upstream' = 'blue' 
) ) 
plot( gg )     
ggsave( filename = paste0( dir1, 'n1.scatterplot.nolegend.meth.mRNA.', tissue, '.', context, 
'.', dsetf, '.', simp, '.png'), device = 'png', dpi = 160, width = 20, height = 16) 
 
cat( paste( tissue, dsetf, simp, '\n' ) ) 
features = levels( factor( dat2withTE$cl ) ) 
for( feature in features ) 
{ 
  ta = dat2withTE[ dat2withTE$cl == feature, ] 
  #cor( ta$mRNA_log2fc, ta$meth_diff, method = 'pearson' ) 
  ctest = cor.test( ta$mRNA_log2fc, ta$meth_diff, method = 'pearson' ) 
  cat( paste( feature, 'p-value', ctest$p.value, 'correlation', ctest$estimate, '\n' ) ) 
} 
 
temp_time = proc.time() - ptm 
cat( 'user time = ', temp_time[ 1 ], 's, system time = ', temp_time[ 2 ], 's, elapsed time = 
', temp_time[ 3 ], 's\n', sep = '' ) 
 
 
 
 

 


