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ABSTRACT 

Water systems and biophysical environments undergo multiple complex interactions at both spatial 

and temporal scales. Over recent years, our understanding of hydrological processes and the 

conceptual details have remarkably increased. Much of the knowledge on these subjects results from 

applying remote sensing techniques and in situ observational information, which has significantly 

augmented data availability and coincidently increased computing capabilities. However, modelling 

hydrological processes on a large scale presents challenges, particularly in the context of climate 

change and Land Use-Land Cover (LULC) changes. The efficacy of current hydrologic models under 

conditions of change remains uncertain. To effectively integrate land cover dynamics and deepen our 

understanding of their impacts, assessing how LULC is represented in existing models and identifying 

any shortcomings is essential. These models consist of various components, each tailored to simulate 

specific elements of water partitioning within the hydrological cycle. Moreover, it is necessary to 

evaluate whether the variability in current LULC data is substantial enough to justify its inclusion in 

modelling efforts and how this variability might influence other processes like Actual 

Evapotranspiration (AET). Therefore, this study deals with these important subjects in three phases. 

First, in a comprehensive review, we discuss the hydrological processes affected by LULC and how 

conceptual models capture physical hydrologic processes and conceptualise LULC. This review 

highlights the existing gaps in LULC modelling and identifies avenues for improvement. Emphasis is 

placed on selecting the best model based on expected outcomes and improving LULC data. Finally, 

it highlights the need for a standardised LULC classification system for uniform modelling and 

comparison. 

In the second phase of the investigation, we conduct a detailed analysis of year-on-year land cover 

changes within the Murray Darling Basin (MDB), leveraging the most accurate and contemporary 

datasets available. This endeavour aims to explain the significance of these land cover dynamics, 

pinpointing spatial and temporal patterns and emerging trends within MDB, which holds paramount 

economic and ecological value in Australia. The results indicate significant increases in natural bare 

surfaces and decrease in water bodies, with shifts in agricultural land use driven by water recovery 

initiatives and infrastructure developments. The drivers of LULC changes are influenced by climate 

variability, natural disasters, and water management practices, demonstrating varied impacts across 

different regions within the basin.  

Subsequently, the third phase analyses the CMRSET and MODIS AET datasets over MDB. The study 

examines the temporal patterns and differences in AET across various land cover types, along with 

the existence of notable AET variation among the major land cover categories within the MDB. The 

research aims to determine if AET, on a broad scale, is affected by variations in rainfall or changes in 
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land cover. The study reveals a reasonable alignment between the datasets in overall AET patterns, 

but significant variations in magnitude were observed. Basin-scale water balance assessments 

indicate that MODIS considerably underestimates AET. Rainfall is identified as the primary driver of 

AET variability across different land covers in most catchments.  

This thesis points out areas that need improvement and the challenges we face because of limited 

and not always accurate data. It contributes to improved decision-making, formulating effective policy 

options, and predicting the likely unforeseen impacts for sustainable land and water management. 

Furthermore, the study highlights the need for regional studies given diverse hydrological 

characteristics and the significant influence of regional climate, terrain, and land cover changes on 

the hydrological process.  
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1.1 Introduction  

Land Use-Land Cover (LULC) change is a global issue with numerous physical, ecological, and socio-

economic consequences (Teklay et al., 2019; Zeng et al., 2020). It is important for its impact on 

processes ranging from local water supply to water balance and carbon cycling on the global scale 

(Dile et al., 2018; Li et al., 2018). Further, it has been shown that the hydrologic cycle can be adversely 

affected by LULC change more than climate change (Aghsaei et al., 2020). Therefore, knowledge of 

how LULC impacts the hydrologic cycle is needed to optimise natural resources management 

(Cartwright et al., 2017; Sun et al., 2017). 

Along with LULC change, climate change has significantly impacted our environment in recent 

decades. This trend is exacerbated by ever-increasing greenhouse gas emissions, resulting in a rise 

in global air temperature, a significant increase in evapotranspiration, and shifting rainfall patterns 

(Pour et al., 2020). The increased temperature is associated with increased air capacity to hold water 

vapour, resulting in more frequent and intense rainfall events (Al‐Ghussain, 2019; Letz et al., 2021). 

It is expected to be accompanied by a decrease in the frequency of medium and low-intensity events 

or an overall drop in rainfall frequency (Ghasemi Tousi et al., 2021; Owor et al., 2009). 

Changes in LULC and rainfall patterns can significantly impact Actual Evapotranspiration (AET). 

However, the hydrological partitioning response to these changes will depend heavily on climate, land 

cover, soil type, and other land features (Luo et al., 2020; Peng et al., 2021). Traditionally, vegetation 

and water storage interaction are poorly conceptualised and represented in most hydrological models. 

Despite major advances in our understanding of hydrologically relevant vegetation processes and 

properties, we lack integration of these features in hydrological models (Sun et al., 2017). Hydrological 

models simplify the process by a hypothesis or set of hypotheses relevant to the model objective, 

making simulation possible at large-scale studies where experimental methods are difficult to apply 

(Liu et al., 2019).  

Understanding land cover dynamics and the significance of year-to-year changes is critical in gaining 

insights into the potential hydrological consequences that may follow these changes. By analysing 

these changes, we can identify the impacts that they may have on the water cycle, including changes 

to runoff, infiltration, and evapotranspiration. Despite the availability of airborne and satellite remote 

sensing techniques for monitoring land surface parameters and processes, the dynamics of LULC 

are still not well incorporated into hydrological models or undermined by their simplistic assumptions 

(e.g., stationarity). Even in more recent dynamic modelling practices, land use is typically allowed to 

vary over time but held constant for processes related to land use for months or years. Thus, better 

integration of the LULC dynamics in hydrological modelling is needed to accurately represent the 

interactions between land use, climate, and hydrology (Castillo et al., 2014). Understanding the role 
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of LULC in hydrological processes is crucial, as these processes are intricate and interdependent. 

Identifying gaps in current hydrological modelling practice and necessary future developments 

requires thoroughly comprehending LULC's impact. 

1.2 Research gaps 

Despite the significant progress in understanding the effects of LULC changes on hydrological 

processes, research gaps still need to be addressed. One such gap is the lack of a systematic 

synthesis of how LULC is characterised and incorporated into hydrological modelling frameworks. 

While LULC has been utilised in hydrological models for decades, existing reviews often focus on 

specific hydrological processes or limited geographical contexts. There is no comprehensive overview 

that evaluates the overarching methodologies, integration approaches, and uncertainties associated 

with LULC characterisation in hydrological models. Addressing this gap would provide a clearer 

understanding of the state of LULC characterisation and inform future modelling improvements. 

Another research gap relates to the year-to-year dynamics of land cover, particularly at catchment 

scales. Despite the growing recognition of the importance of analysing land cover dynamics at the 

catchment scale, there is still a significant research gap regarding the lack of consensus on reliable 

data sources and the need to test their accuracy. No single data source can capture all the relevant 

information, and different data sources have varying degrees of accuracy, coverage, resolution and 

temporal frequency. Furthermore, there is a lack of consensus on the effects of land cover changes 

on AET at large scales. While some studies have shown that AET change is derived from land cover 

change, others have reported that the impact of climatic factors is more important (Feng et al., 2020; 

Wei et al., 2021).  

1.3 Research questions 

The emergence of remote sensing technologies has dramatically improved our capability to monitor 

LULC changes dynamically, enabling a more detailed assessment of their impacts on hydrological 

processes amidst climate change. This technological progress prompts a crucial inquiry: Given these 

advancements, how significant are the dynamics of land cover changes, and what potential do they 

hold for improving LULC representation in hydrological models? Such improvements are vital for a 

deeper comprehension of the influence of LULC dynamics on various hydrological processes. In this 

study, we conduct a thorough exploration of these research questions, structured across three 

comprehensive chapters, each dedicated to a detailed examination of distinct aspects of this topic: 

Chapter 2: 
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• Which hydrological processes are influenced by LULC changes, and what limitations exist 

within current modelling methodologies that could be enhanced for better accuracy? 

• Can current modelling practices accurately capture LULC and its impact on hydrological 

processes? 

Chapter 3: 

• How significant are land cover dynamics on a yearly time scale in the Murray-Darling Basin 

(MDB)? 

• What are the spatial and temporal patterns and trends in land cover changes over three 

decades in the MDB? 

• What are the main drivers of land cover change within different catchments in MDB? 

Chapter 4: 

• How significant are AET dynamics on a yearly time scale in MDB catchments? 

• Is AET variation dominated by precipitation or land cover? 

• Are there any significant differences in average AET among different land cover types over 

MDB catchments? 

1.4 Research hypothesis 

Chapter 2 Hypotheses: 

• Hydrological processes are significantly influenced by LULC, with current models showing 

limitations in accurately capturing these dynamics. 

• Enhancements in the modeling process have the potential to improve accuracy. 

Chapter 3 Hypotheses: 

• Yearly land cover dynamics are significant in the MDB over 31 years (1990-2020). 

• The MDB has experienced significant land cover changes over the last three decades, driven 

by natural and anthropogenic factors. 

Chapter 4 Hypotheses: 

• Yearly AET dynamics are significant in MDB catchments, with impacts on water availability 

and hydrological processes over 20 years (2001-2020). 

• AET variation across MDB catchments is influenced by both precipitation and land cover 

changes, with the relative impact of these factors varying by location. 
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• There is a significant difference between average AET over different land cover types and 

catchments in the MDB. 

1.5 Research objectives 

This research is dedicated to understanding the complex relationships between LULC and 

hydrological processes, critically evaluating the existing knowledge base while pinpointing gaps in the 

research. A key element of this investigation is determining whether LULC experiences significant 

annual variations or exhibits a degree of stability over time. This initial exploration is crucial for 

appreciating the potential benefits of integrating LULC data with high spatial and temporal resolution 

into hydrological models. Among hydrological processes, AET emerged as a key process for detailed 

examination, given its essential role in the water cycle and its responsiveness to land cover 

modifications. The Murray Darling Basin was chosen as the focal area for this investigation, reflecting 

its importance as an agricultural and ecological zone in Australia, characterised by intricate water 

resource management issues and the notable impact of land cover changes on its hydrological 

dynamics. The research will unfold in three phases, with specific research questions guiding each 

chapter as follows: 

Chapter 2 

To evaluate the theory and assumptions that underlie the considerations of LULC in current 

hydrological models. This involves reviewing how LULC is integrated into hydrological models and 

identifying gaps in current practices. 

Chapter 3 

To investigate three decades of land cover changes in the MDB to understand the yearly dynamics 

of land cover types and identify spatial and temporal patterns and trends. 

Chapter 4 

To investigate two decades (2001-2020) of AET dynamics in the MDB to understand how AET 

responds to land cover changes and how these responses vary across different catchments. 

1.6 Significance of Research 

The LULC changes are important for their impact on processes ranging from local water supply to 

water balance and carbon cycling on the global scale (Cohn et al., 2019; Lawrence & Vandecar, 

2015). Understanding the effects of LULC changes (e.g., deforestation) on the dynamics of 

hydrological variables, mainly AET, would significantly improve the comprehension of vast 
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hydrological consequences followed by these changes (Liu et al., 2019). Dramatic land cover change 

has been recorded over Australia in the past decades, with significant impacts on hydrologic 

characteristics of basins such as streamflow, recharge rate, temperature, and precipitation (Grafton 

et al., 2020; Liu et al., 2019). Particularly the MDB is vulnerable for LULC change at it is highly 

dependent on the available water resources for agricultural, industrial, and domestic purposes 

(Baumgartner et al., 2020; Pollino et al., 2021). 

The MDB, located in southeastern Australia, is one of the most significant river systems in the country, 

providing water for agriculture, industry, and urban centers. In 2020 ABC NEWS reported that from 

2012 to 2019 more than 2 trillion liters of water have gone missing from the largest and most precious 

river system — the Murray-Darling Basin (NEWS, 2020). MDB is experiencing increasingly severe 

water scarcity due to a combination of factors, including changes in land cover and climate, leading 

to more significant variability in temperature and rainfall (Grafton, 2019; Wheeler, 2022; Wheeler et 

al., 2020). Understanding the hydrological responses to these changes would help locate vulnerable 

areas, prevent water losses, increase long-term terrestrial ecosystem sustainability, and have better 

interannual water allocation planning due to changing land cover and precipitation patterns (Cheng & 

Yu, 2019; Cohn et al., 2019; Lawrence & Vandecar, 2015). In this regard, validating AET products 

and evaluating their dynamic and water balance analysis is crucial to maintain sustainable water 

exploitation and allocation (Mohamed & Gonçalvès, 2021; Tangdamrongsub et al., 2021). 

Understanding the water balance in the Murray Darling Basin is crucial for effective water 

management, particularly in the face of climate change and land cover change. 

1.7 Scope and limitations 

This study aims to provide insights into the dynamic interaction between land cover changes and 

AET. The study investigates the impact of climate and LULC changes on hydrological processes, 

specifically the trend and dynamics of AET across different land cover types over MDB. The study's 

limitations include the reliability of data, which could affect the accuracy of the analysis. Moreover, 

the study may not cover all the factors that affect hydrological processes, and it may not be possible 

to capture all the complexities involved in the dynamic interaction between rainfall, AET, and land 

cover changes. This study can provide insights into the subject and guide future research in MDB. 

1.8 Organization of the thesis 

The thesis will be structured into three chapters, each of which will be dedicated to specific objectives 

related to the research topic. 

The first chapter critically evaluates the current state of LULC conceptualisation in hydrological 

models at the catchment scale. This evaluation includes an overview of LULC processes, 
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conceptualisation, theory, and assumptions and a review of how LULC has been integrated into 

hydrological models and the hydrological processes affected by LULC. This chapter aims to provide 

a comprehensive understanding of the status of LULC in hydrological modelling, which can help 

researchers select suitable models for their study objectives and spatiotemporal scales and pave the 

way for future model developments. 

The second chapter of the thesis focuses on analysing LULC trends and variability over the Murray 

Darling Basin and its catchments using the latest DEA Land cover dataset. This analysis provides 

valuable insights into the dynamic nature of land cover at different spatial and temporal scales, which 

can inform water resource management decisions. 

The third chapter investigates the relationship between land cover change, rainfall variability, and AET 

dynamics in the MDB. This analysis focuses on the interaction between land cover dynamics, rainfall 

variability, and AET from a data-driven perspective, as they are the most important elements in the 

water balance. The results of this investigation provide a better understanding of the impact of land 

cover changes on water resources in the basin, which can guide policy decisions aimed at improving 

water sustainability.  
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2 CHAPTER 2 

LAND USE-LAND COVER AND HYDROLOGICAL 
MODELLING: A REVIEW 

 

Highlights 

High-resolution, consistent Land use-land cover (LULC) data is often unavailable. 

LULC changes introduce significant uncertainty in model parameters. 

Accurate modelling of interception remains a challenge in hydrological models. 

LULC changes violate the assumption of hydrological stationarity.  

Dynamic LULC complicates calibration but enhances model validity. 
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2.1 Abstract 

Given the extent of recent land use-land cover changes and the consequences for hydrological 

effects, it is important to capture the role that land use-land cover plays in hydrological model 

conceptualisation. This need is amplified under a changing climate, as the hydrological sensitivity of 

catchments to climate change can vary depending on the land use-land cover. Despite the availability 

of airborne and satellite remote sensing techniques for monitoring land surface parameters over large 

scales and frequently in time, the spatiotemporal characteristics of land use are still not well integrated 

into hydrological models. By analysing the conceptualisations of land use-land cover related 

hydrological processes within models, this paper reviews the progress in and current state of 

modelling approaches and discusses future research needs and directions.  

Keywords: Hydrological modelling, land use, land cover, conceptualisation  
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2.2 Introduction 

The extent and nature of different land cover types and how people utilise the landscape are 

documented by land use and land cover (LULC) data. Land cover refers to the physical materials on 

the earth's surface, such as vegetation, water bodies, and artificial structures, which can be identified 

through satellite and aerial imagery analysis (Green et al., 1994). On the other hand, land use denotes 

how these land covers are utilised by humans, a less directly observable dimension from remote 

sensing techniques (Green et al., 1994). Despite their differences, land use and land cover are often 

analysed as LULC changes, reflecting their intertwined roles in shaping environmental outcomes. 

LULC change has significant implications for hydrological processes, among other physical, 

ecological, and socioeconomic dimensions (Li et al., 2018a; Teklay et al., 2019; Zeng et al., 2020). 

For example, constructing a dam can have important local to regional impacts on water balances, or 

deforestation can impact carbon cycling (Dile et al., 2018; Li et al., 2018b). Understanding the effects 

of LULC change on the hydrological processes is needed to optimise natural resources management 

(Scanlon et al., 2005). Documenting the spatial patterns and determining the magnitude of LULC 

change effects is essential for understanding and managing hydrological systems (Cheng & Yu, 

2019). Moreover, the global impact of LULC change on hydrological processes may surpass the 

impact of climate change or could be amplified by it (Aghsaei et al., 2020). Therefore, a better 

understanding of LULC's role in hydrological processes is vital to employing adaptive measures to 

minimise the inevitable adverse effects of change in LULC (Cartwright et al., 2017; Sun et al., 2017).  

Many different types of hydrological models that incorporate LULC have been used to simulate the 

implications of LULC change (Dwarakish et al., 2015; Dey & Mishra, 2017). The four primary 

processes affected by LULC are radiation energy partitioning, water interception dynamics, on-ground 

water partitioning, and subsurface processes. Hydrological models represent these processes with 

different detail and complexity levels and allow simulations at various spatial and temporal scales. 

Although a simplified integration of LULC provides valuable insights into the functioning of 

hydrological systems, the underlying assumptions and simplifications used for simulating hydrological 

processes may introduce inaccuracies in the results (Beven, 2018; Beven, 2019a). Yet, there are 

challenges to realistically incorporate each of these processes. 

Traditionally, most hydrological models represent a highly simplified version of the interaction between 

vegetation and water. Despite major advances in our understanding of hydrologically relevant 

vegetation processes and properties in recent years, we lack integration of these features in 

hydrological models (Sun et al., 2017). Furthermore, even with the advancements in airborne and 

satellite remote sensing techniques for monitoring land surface parameters, the temporal dynamics 

of LULC have not been fully integrated into models. While current data availability permits LULC 

variations over time, models often assume constant land use for extended periods, spanning months 
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or even years. To accurately capture the interactions between LULC, climate, and hydrology, tighter 

temporal integration of LULC dynamics and hydrological processes is required (Castillo et al., 2014). 

Although there are many reviews of the state of the art of hydrological modelling, an overall picture of 

the current status of LULC characterisation in the processes used in hydrological models does not 

exist (Sood & Smakhtin, 2015; Noszczyk, 2019; Moges et al., 2020; Van Stan II & Friesen, 2020).  

Therefore, in this work, we start with four key processes influenced by LULC and a brief overview of 

the physical mechanisms affected by LULC. Further, we review how these processes are typically 

represented within hydrological models and discuss the associated challenges and limitations. With 

this foundation established, we guide the reader through a discussion on the current LULC data 

sources and their limitations. We emphasise the importance of selecting an appropriate model to 

investigate LULC impacts and enhancing the LULC representation within the model process to better 

align with study objectives. Finally, we delve into current model evaluation and calibration techniques 

and discuss ways to refine them. Readers are encouraged to refer to the supplementary material for 

the overview of the main hydrological model types and their respective strengths and limitations. We 

believe this work helps better evaluate the current gaps in hydrological modelling practice and the 

needed future developments, and it promotes best practices in modelling LULC impacts. 

2.3 Review of main hydrological processes affected by LULC  

2.3.1 Radiation energy partitioning and surface energy balance 

2.3.1.1 Physical mechanisms 

LULC influences solar radiation partitioning through alterations in surface albedo, landscape thermal 

properties, and vegetation cover dynamics. This impact extends to sensible and latent heat fluxes, 

plant growth, wind patterns, and snowmelt (Zhang et al., 2010). Variations in vegetation can shift 

surface radiative properties and contribute to greenhouse gas emissions, notably from activities such 

as deforestation. Consequently, energy partitioning is influenced by local conditions including 

vegetation type and density. Specific ecosystem features such as soil type, water availability, and 

biodiversity, along with daylight hours and altitude, further influence this energy partitioning 

(Hammerle et al., 2007; Zhang et al., 2010). Such shifts can impact local climate and surface energy 

balance, underscoring the significant influence of LULC on radiation balance (Duveiller et al., 2018). 

Radiation splits into direct (solar) and diffuse (reflection and emittance) forms, as shown in Figure 2.1. 

Atmospheric transmissivity, governed by cloud cover and pollution, dictates the fraction of solar 

radiation reaching the Earth. The discrepancy between incoming and outgoing radiation, termed net 

radiation, is vital for evaporation, snowmelt, and soil heat flux. 
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Figure 2.1: Schematic picture of surface energy partitioning by vegetation 

2.3.1.2 Modelling approaches  

The global water budget is intrinsically linked to the global energy budget due to its impact on 

processes like evapotranspiration, snowmelt, and soil heat dynamics (Wang et al., 2018). When water 

changes of phase (solid, liquid, and gas), energy is absorbed or released, thus affecting the energy 

budget (Healy et al., 2007). Incoming solar radiation is the fundamental energy driving the processes 

of photosynthesis, evaporation, heating of the soil, and energy storage in vegetation (Gu et al., 2005). 

Evaporation is the phenomenon by which water is converted from its liquid into its vapour phase, 

regardless of whether it resides in the soil, on the surface (including plants) or in vegetation. A simple 

energy budget for the Earth is (Sellers, 1969):  

𝑅𝑅𝑛𝑛 = 𝐺𝐺 + 𝐿𝐿𝐿𝐿 + 𝐻𝐻       Eq. 1 

Where Rn is net radiation, the sum of incoming solar and longwave radiation minus reflected solar 

and emitted longwave radiation; G is the surface heat flux, i.e., the energy used to warm soil or water 

in the case of a surface-water body; LE is the latent heat flux, i.e., the energy used to evaporate water; 

and H is the sensible heat flux, or the energy used to warm air (Healy et al., 2007). Equation 1 states 

that available energy at the Earth’s surface goes to heating the surface, warming the air, and 
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evaporating water (Figure 2.1). Latent heat flux is the product of latent heat of vaporisation (λ) and 

evapotranspiration rate (ET); i.e., LE = λET. Evapotranspiration directly links the energy and the water 

budget because it appears in both.  

In hydrological models, radiation energy partitioning and surface energy balance are pivotal in shaping 

processes such as evapotranspiration, soil moisture dynamics, snowmelt, and vegetation growth. 

These processes, in turn, have a significant impact on water temperature and surface runoff. Thus, 

vegetation dynamics inevitably affect or provide feedback to surface energy partitioning and water 

budget (Forzieri et al., 2020; Lan et al., 2021). The following subsections will focus on 

evapotranspiration and snow processes, as these are critical elements of energy partitioning.  

2.3.1.2.1 Evapotranspiration 

Evapotranspiration, in conditions without snow, refers to the collective water vapour from direct 

evaporation from the soil’s surface layer, transpiration from both the roots and canopy of vegetation, 

and the evaporation of precipitation captured by the plant canopy (Singh, 2017). Hydrological models 

typically handle evapotranspiration by either accepting it as input or calculating it as an output 

parameter. These models may treat evaporation in several ways: as a constant, as a set of monthly 

average values, as a user-defined time series of values on different temporal scales 

(monthly/seasonal), or compute them based on climatological variables like temperatures, wind, and 

sunshine hours (Bormann et al., 1996; Li et al., 2009; Zhang et al., 2016; Singh, 2017; Chia et al., 

2020). 

There are two groups of evapotranspiration estimation methods in hydrological models: one first 

estimates separately open water evaporation, soil evaporation and vegetation transpiration and then 

integrates them to calculate actual evapotranspiration. The other one first estimates potential 

evapotranspiration and then converts it into actual evapotranspiration, applying a soil moisture 

extraction function. Zhao et al. (2013) called the first classification gathering methods and the second 

integrated converting methods. Integrated converting methods are typically applied in lumped 

conceptual, system, and distributed models. Conversely, physically based hydrological models often 

employ classification gathering methods for estimating basin evapotranspiration; for more details, 

refer to Zhao et al. (2013). 

The ratio of the actual over the potential evapotranspiration changes with water availability in the soil. 

Hydrological models commonly utilise soil moisture extraction functions to depict the relationship 

between actual and potential evapotranspiration. Based on the function employed, it can be 

associated with the soil type and the Leaf Area Index (LAI). The LAI is intricately linked to the growth 

stage of the vegetation (Ritchie, 1972; Mintz & Walker, 1993).  
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The potential evapotranspiration estimation methods can be divided into energy-based, temperature-

based and mass transfer-based methods, depending on their mechanisms. Consequently, they vary 

strongly in data needs. Widely used methods are Hargreaves (Hargreaves & Samani, 1985), 

Priestley-Taylor (Priestley & Taylor, 1972), and Penman-Monteith (Monteith, 1965).  

The Penman-Monteith method requires air temperature, relative humidity, solar radiation, and wind 

speed. The Priestley-Taylor method requires solar radiation, air temperature and relative humidity. 

The Hargreaves method requires air temperature only. Independent “ground truth” data is preferably 

used as a benchmark to assess the performance of these models. Eddy Covariance (EC) systems 

are widely regarded as the premier method for continuous evaporation measurement (Wang & 

Dickinson, 2012) and are used worldwide, e.g., FLUXNET (Baldocchi et al., 2001). 

2.3.1.2.2 Snow process 

The most common snow modelling approaches are based on either conceptual (temperature-based 

models) or physically based models (energy balance-based models) (Singh, 2017; Liu & Ren, 2019). 

Bucket-type snow models are typically based on a temperature-index approach, assuming a direct 

relationship between temperature and snow accumulation and melt. Most of these models aggregate 

data spatially into areas with similar hydrological responses, known as Hydrological Response Units 

(HRUs), which facilitates faster computational times and reduces the amount of input data required. 

HRUs are defined through a detailed hydrological systems analysis using Geographic Information 

System (GIS) techniques (Flügel, 1995). This analysis incorporates key physiographic basin 

properties, including topography, soils, geology, rainfall patterns, and land use (Freudiger et al., 

2017). By integrating these diverse factors, GIS helps ensure that each HRU accurately reflects the 

unique hydrological characteristics of its area, facilitating more precise and effective hydrological 

modelling. 

Extended temperature-index approaches that include spatially distributed solar radiation are 

frequently used in hybrid methods, reducing the computational effort (Hock, 1999). The inclusion of 

solar radiation is particularly relevant for high elevations, often glacierised areas, where temperatures 

seldom rise above freezing. This adaptation enhances model accuracy by accounting for the 

significant role of solar radiation in melting processes under consistently cold conditions (Pellicciotti 

et al., 2014; Gabbi et al., 2017). 

More complex models are evolving from uniform snow cover models to more complex ones, allowing 

non-uniform cover due to topography, drifting, shading, and land cover. These models are generally 

highly complex, distributed, physically based, and very detailed, with a high spatial and temporal 

resolution. All energy fluxes are considered in these models (Lundberg & Halldin, 2001). Still, their 
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use is thus constrained by data availability and computational time, rendering them most suitable for 

small catchments or plot scales and limited durations, such as a few winter seasons or specific events 

only (Lundberg & Halldin, 2001).  

2.3.1.3 Challenges 

Differences between evaporation models and observations stem from both conceptual limitations in 

the models and flaws in measurement techniques (Coenders-Gerrits et al., 2020). In his 2004 article, 

Savenije criticises the term ‘evapotranspiration’, deeming it outdated due to its oversimplified grouping 

of diverse evaporative processes such as evaporation from intercepted water, transpiration from 

plants, soil evaporation, and open-water evaporation. He notes that these processes vary significantly 

in their temporal dynamics, physical properties, climatic interactions, and isotopic compositions, 

advocating for a more nuanced approach in hydrological studies (Savenije, 2004). 

In this context, the complexity of accurately modelling evaporation becomes evident when considering 

the role of atmospheric composition in influencing radiative fluxes, as highlighted by Dhara (2020). 

These fluxes significantly affect the earth’s surface heating, which impacts evaporation rates. 

Similarly, Yin et al. (2019) emphasised the critical role of evaporative cooling on the earth’s surface, 

which modulates radiation conversion into sensible heat, affecting temperature readings and further 

complicating evaporation modelling. These insights emphasise the complex interplay between 

atmospheric conditions and evaporation, reinforcing the need for sophisticated modelling approaches 

that can accurately reflect these dynamics. 

In most existing studies, water budget and surface energy partitioning were generally examined in 

isolation regarding vegetation greening (Lan et al., 2021). However, these elements should not be 

analysed in isolation due to their close interdependencies with LAI-related biophysical processes 

(Pitman, 2003; Bagley et al., 2017; Zeng et al., 2017). The continuous rise in LAI, a result of vegetation 

greening, impacts surface albedo, thereby influencing the net terrestrial radiation (Rn) that is crucial 

for driving both latent and sensible heat fluxes (Kala et al., 2014). This, in turn, modifies the surface 

energy partitioning (Kleidon, 2019; Forzieri et al., 2020). Therefore, a detailed examination of how 

surface energy partitioning and water budgets respond to vegetation dynamics amid widespread 

greening is essential (Kala et al., 2014; Ma et al., 2017). 

Though the Penman-Monteith method is the standard for modelling potential evapotranspiration, its 

detailed process might not align with other models’ accuracies, especially concerning soil moisture 

extraction functions (Neitsch et al., 2011). Some soil moisture extraction methods consider factors 

like root suction and canopy density, yet they often fail to account for spatial and temporal variations 

in surface characteristics. This oversight can lead to significant errors when calculating average daily 

soil moisture values (Baier & Robertson, 1966). Moreover, using the Penman-Monteith equation with 
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mean daily climatic parameters can result in substantial inaccuracies. Such errors are due to diurnal 

variations in wind speed, humidity, and net radiation, which are conditions not captured by daily 

averages, leading to potential discrepancies in evapotranspiration estimates. (Neitsch et al., 2011). 

Hence, we need further research on how to select appropriate potential evapotranspiration equations 

and soil moisture extraction functions for different hydrological models to reduce their uncertainty.  

Operational hydrology simplifies snow interception, even though snow storage, both in mass and 

duration, typically exceeds that for rain, making it a critical model component. The evaporation of 

snow intercepted by forest canopies remains a poorly understood element of the winter water-balance 

equation (Lundberg & Halldin, 2001). Ignoring it in hydrological models can alter the timing and 

volume of simulated snowmelt and affect the catchment water balance (Freudiger et al., 2017). In 

catchment-scale hydrological modelling, simulating separately the snow cover accumulation inside 

and beneath the canopy has rarely been applied so far, so more effort is needed in modelling snow 

processes (Gouttevin et al., 2015; Förster et al., 2018).  

The effects of the forest canopy on snow accumulation and snowmelt processes need to be 

considered in simulations of the hydrological response of catchments with a significant fraction of the 

forested area. Despite the well-established accuracy of process-based, energy-budget snowmelt 

models, there is a propensity towards using temperature-index or degree-day snowmelt relationships 

in hydrological models to simulate snowpack processes (Walter et al., 2005). However, the critical 

temperature of these methods is not constant across basins; it varies with topography and elevation 

(Walter et al., 2005; Liu & Ren, 2019). Models must also consider variations in canopy albedo due to 

its significant impact on snow interception (Lundberg & Halldin, 2001). Oddly, many models employ 

energy balance approaches, like the Penman equation, for estimating potential evapotranspiration. 

Thus, it is inconsistent that these models do not employ the same energy balance approaches for 

modelling snowmelt (Walter et al., 2005). 

The dynamics of precipitation characteristics, including type, duration, spatial distribution, and 

intensity, can significantly impact evaporation. Additionally, the interaction between precipitation and 

interception effects on sublimation and condensation poses challenges for accurate modelling 

(Svoma, 2016; Gutmann, 2020). Sublimation from canopies in winter, although less in volume than 

summer evaporation, plays a more significant role than evaporation in modelling winter hydrological 

processes, and measurements are scarce (Frank et al., 2019). Energy budgets have challenges 

explaining snow interception losses, as they need to account for melting, evaporation, and sublimation 

(Molotch et al., 2007; Allen et al., 2020). Incorrect snowmelt modelling affects not only the day on 

which the melt event was predicted inaccurately but also the day of the actual melt event, resulting in 

multiple periods of incorrect streamflow simulation (Zeinivand & De Smedt, 2008). Hence, accurate 

spatial distribution of snow depth is vital for precise runoff calculations (Liu & Ren, 2019). 
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2.3.2 Water interception dynamics 

2.3.2.1 Physical mechanisms 

Interception refers to the portion of rainfall captured by the Earth’s surface (e.g., vegetation). Part of 

this intercepted water evaporates back into the atmosphere (Muzylo et al., 2009; Meili et al., 2021). 

LULC, rainfall patterns, and evaporative demand influence the rate, capacity, and loss of interception 

(Van Meter et al., 2016; Zhou, 2022). While built-up areas experience interception, its significance is 

more pronounced in vegetated regions. With their vast surface area, trees, shrubs and litter capture 

a large volume of rainwater, shielding the soil from direct impact (Figure 2.2). This conserves soil 

integrity and curtails erosion while modulating water flow to streams, thereby reducing flooding 

potential (Gerrits & Savenije, 2011).  

Canopy water storage varies based on intrinsic factors like vegetation density and plant morphology 

and extrinsic factors like storm conditions (intensity and duration) and temperature (Van Stan II & 

Friesen, 2020). These factors differ across plant species, leading to diverse canopy storage capacities 

(Klamerus-Iwan et al., 2020). Similarly, these factors influence a canopy’s ability to store snow. Snow 

storage in canopies surpasses rain and has been observed to cover a significantly broader spectrum 

and seasonal variation depending on storm and climate conditions (Lundberg & Halldin, 2001; Storck 

et al., 2002; Förster et al., 2018). Several extrinsic factors impact the response and capacity of the 

canopy reservoir, like hydrometeorological (storm) conditions that control crystal form, internal 

bonding of snow and adhesion of snow to vegetation (Satterlund & Haupt, 1967; Schmidt & Pomeroy, 

1990; Klamerus-Iwan et al., 2020). As a large proportion of intercepted water evaporates from the 

canopy, also the understorey and litter layer can significantly affect subsequent hydrological 

processes (Gerrits & Savenije, 2011; Van Der Ent et al., 2014; Porada et al., 2018). 

The ground layer’s characteristics vary by region and ecology, ranging from short vegetation to 

decomposing organic materials or bare soil (Gerrits & Savenije, 2011). These variations significantly 

influence local water processes, including precipitation interception and evaporation (Gerrits & 

Savenije, 2011). The litter layer, often lacking deep-rooted vegetation, primarily experiences water 

movement through gravity and evaporation, with minimal transpiration (Klamerus-Iwan et al., 2020). 

This layer serves as a transitional zone, impacting water storage through variations in litter 

composition and its seasonal dynamics (Gerrits & Savenije, 2011; Van Stan et al., 2017; Klamerus-

Iwan et al., 2020). Hence, conceptualising water storage at the land surface is challenging due to the 

litter layer but also due to the variability in precipitation type and intensity (Gerrits et al., 2007; Gerrits 

et al., 2010; Klamerus-Iwan et al., 2020). Although forest floor evaporation seems to overlap with soil 

evaporation, the distinction is that soil evaporation pertains to the water in the root zone (Groen & 

Savenije, 2006). 
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In forest ecosystems, microclimates significantly influence hydrological processes. Wind plays a role 

in understory evaporation but has limited impact on litter storage due to vegetation’s wind-reducing 

effects (Singh, 2017). The forest floor experiences less evaporation than the overstory due to lower 

radiation, yet intermittent storms can heighten evaporation, affecting litter storage and throughfall 

(Gerrits et al., 2009; Gerrits & Savenije, 2011). Additionally, snow dynamics under the canopy are 

complex. Canopies can alter ground snow processes, causing non-uniform snow patterns and 

influencing melt timing (Förster et al., 2018). Snow interception by dense canopies and subsequent 

sublimation or melt of intercepted snow can reduce sub-canopy snow accumulation by up to 60% 

(Hardy et al., 1997). Factors like shading and reduced wind contribute to delayed melting, while 

increased tree-emitted radiation accelerates it (Sicart et al., 2004; Essery et al., 2008; Pomeroy et al., 

2009; Strasser et al., 2011; Lundquist et al., 2013).  

The primary factors influencing snow processes are canopy density and specific geographical 

attributes such as elevation, slope, and weather conditions (Pomeroy et al., 2002; Jost et al., 2007; 

Strasser et al., 2011). In contrast to the influence of phenology and morphology on the movement of 

liquid water, the discharge of intercepted snow is predominantly determined by hydrometeorological 

factors rather than the specific characteristics of individual trees. However, these relationships have 

not been extensively researched (Satterlund & Haupt, 1970; Schmidt & Gluns, 1991; Gouttevin et al., 

2015). These nuanced interactions underscore the complex interdependencies within forest 

hydrology, shaped by the delicate balance of microclimatic factors and vegetative structures. 
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Figure 2.2: Schematic representation of the multi-layer reservoirs within vegetated ecosystems, 
highlighting the water storage and movement dynamics (Reservoir capacities are based on Klamerus-

Iwan et al. (2020)). 

2.3.2.2 Modelling approaches  

In large-scale modelling, the concept of interception predominantly pertains to vegetated areas. 

Considering that the proportion of urban areas is typically minimal in comparison to other LULC 

categories, it is widely accepted that, over extended periods like a year, rainwater intercepted by 

ground surfaces and building roofs tends to evaporate fully (Daba & You, 2020; Zhou, 2022). 

Therefore, the runoff coefficient determines solely the rainwater interception evaporation on sealed 

ground and pavement (Zhou, 2022). 

Numerous models have been developed for simulating interception, especially in forested contexts. 

These models can be adapted to account for interception on the forest floor or any other surface 
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(Gerrits & Savenije, 2011). The modelling of this interception incorporates diverse approaches, each 

characterised by its unique methodology (Muzylo et al., 2009). The Gash Analytical Model (Gash, 

1979) is a prominent example among models frequently utilised in hydrological studies, known for its 

grounding in observed data and statistical correlations. This model, and others like it, employs 

parameters such as total precipitation, canopy evaporation, throughfall, and storage capacity. While 

the strength of the Gash Analytical Model lies in its simplicity and robust empirical basis, this simplicity 

may also limit its comprehensive applicability in capturing all aspects of hydrological processes (Gash, 

1979). It is important to note that this limitation is not unique to the Gash Analytical Model but is a 

characteristic shared by similar models in the field.  

Conceptual models usually deal with redistributing rainfall volume using a mass balance equation. 

For example, the Rutter model uses a bucket-type approach to divide rainfall into intercepted and 

throughfall components based on canopy storage capacity (Gash & Morton, 1978). Stochastic models 

in this category may use Markov Chains to represent the probabilistic nature of rainfall (De Groen, 

2002). Conceptual models provide a more structured representation compared to empirical models, 

dividing the canopy into different layers and using parameters like total precipitation, storage capacity, 

and evaporation rate to estimate interception, storage, and evaporation processes (Muzylo et al., 

2009).  

Physical models are the most detailed, often employing differential equations to simulate water flow 

over leaves, infiltration, and evaporation. (Muzylo et al., 2009; Paniconi & Putti, 2015). These models 

may be three-dimensional and incorporate variables such as wind speed, temperature, relative 

humidity, LAI, and storage capacity. These parameters are crucial for accurately modelling the 

complex behaviours involved in water interception by vegetation, including how water is captured, 

stored, and eventually evaporated or absorbed by the plant (Herwitz & Slye, 1995; Bussière et al., 

2002; Muzylo et al., 2009). 

2.3.2.3 Challenges 

Operational hydrology often oversimplifies the interception process, potentially leading to evaporation 

underestimation in hydrological models (Lindström et al., 1994; Lundberg & Halldin, 2001; Mueller et 

al., 2013; Liu et al., 2016). Modelling interception is challenging due to the complexities of landscapes. 

While short vegetation is frequently reasonably modelled, forests are multi-layered and have varying 

water interception rates across layers, which presents modelling challenges (Breuer et al., 2003; 

Gerrits & Savenije, 2011). Comparing different forest evapotranspiration models with Eddy 

Covariance (EC) data has shown the highest discrepancy, indicating that forest systems are likely not 

yet modelled correctly (Ershadi et al., 2014; Ha et al., 2015).  
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In vegetated areas, the mechanisms of water interception are often modelled and simplified as the 

dynamic processes of filling and emptying static water storage compartments. Most models 

conceptualise the storage and redistribution of precipitation water on vegetation as a uniform-sized 

reservoir, or, more recently, the LAI is used by models to compute the maximum storage at any time 

in the land cover/crop growth cycle. However, accurately measuring and quantifying LAI is challenging 

due to sensor spectral and spatial resolution limitations and the variability in vegetation structure and 

density (Luo et al., 2020; Xu et al., 2020; Chen et al., 2023; Li et al., 2023).  

Numerous hydrological models directly correlate canopy storage with the LAI, adjusted by a daily 

phenological multiplier specific to different plant functional types (Gerten et al., 2004; Murray, 2014; 

Klamerus-Iwan et al., 2020). The storage capacities indicated by these models are generally low (0.2–

2 mm) compared to field measurements (1–16 mm), likely due to the limitation of LAI in encompassing 

the diverse other storage components present within vegetated ecosystems (Gerrits & Savenije, 

2011; Van Stan II & Pypker, 2015; Porada et al., 2018; Klamerus-Iwan et al., 2020). Vegetated 

ecosystems possess interconnected reservoirs with different capacities and operational timescales. 

Components such as tree crowns, trunks, understory and litter are often overlooked in models, 

although their storage capacities can be significant (Klamerus-Iwan et al., 2020).  

In multilayer systems (e.g., forested systems), multiple storages’ filling and spilling characteristics 

induce temporal shifts (Gerrits et al., 2010). Moreover, the potential evaporation below the canopy is 

typically lower than that above the canopy. Coupled with the generally larger storage capacity of the 

forest floor, this leads to residence times for forest floor interception ranging from several hours to 

days. In contrast, water intercepted by the canopy typically has a residence time of less than an hour 

(Levia et al., 2011; Wang-Erlandsson et al., 2014; Li et al., 2017; Coenders-Gerrits et al., 2020).  

In fact, modelling the sequence in the understorey and forest floor storage and the uncertainty in 

potential evaporation are the major challenges in modelling the forested setting (Coenders-Gerrits et 

al., 2020). In addition, there is high seasonal variation and complexity in vegetated systems. For 

example, using LAI methods, the wintertime interception is close to zero for deciduous trees; however, 

the forest floor can still have significant water content that can be evaporated (Gerrits et al., 2010; 

Gerrits & Savenije, 2011; Van Stan et al., 2017). Furthermore, if the growing season’s length is not 

considered in the model, apparently, the vegetation transpired more efficiently than would be 

expected from air temperature alone (Blöschl & Montanari, 2010). The amount of actual 

evapotranspiration contributed by intercepted rainfall can be significant, especially in forests where, 

in some instances, evaporation of intercepted rainfall is greater than transpiration (Neitsch et al., 

2011). 
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It is commonly assumed that interception in leafless deciduous vegetation is low due to rapid 

unloading under dry snow conditions. However, this may contrast with conifers, where denser 

intercepted snow can lead to significant snow storage. This discrepancy can result in models 

overestimating the amount of water entering the unsaturated zone. Consequently, transpiration rates 

may be inaccurately high, either in reality or as a result of calibration (Van den Hoof et al., 2013). 

However, this suggests that the model is fundamentally flawed, carrying significant implications for 

research involving, for instance, climate and/or change modelling (Coenders-Gerrits et al., 2020). To 

accurately depict snow processes in forested areas, it is essential to adopt a comprehensive approach 

that simulates both the snow melt rate and the timing of meltwater release (Whitaker & Sugiyama, 

2005; Zheng et al., 2016; Förster et al., 2018). The potential benefits of incorporating intercepted 

snow evaporation into models have been highlighted in recent studies, suggesting a possible route 

to refining their accuracy (Lundberg & Halldin, 2001).  

2.3.3 Water partitioning between runoff and infiltration 

2.3.3.1 Physical mechanisms 

Upon reaching the ground, precipitation partitions into runoff and infiltration. Both processes are 

influenced by LULC following precipitation or melting events. Vegetation and litter layers protect soil 

from raindrop splashes by intercepting precipitation, preventing surface sealing and crusting of soil, 

extending the time of soil infiltration, and enhancing sediment deposition by increasing soil surface 

roughness (Li et al., 2014). Additionally, factors like terrain, slope, geology, rainfall characteristics and 

climate play crucial roles in determining runoff and infiltration, with variations often linked to LULC 

(Bhark & Small, 2003; Wu et al., 2021).  

Human activities associated with different LULC patterns significantly influence on-ground water 

partitioning. For instance, agricultural practices such as tillage can modify infiltration patterns, either 

retaining or directing water (Hangen et al., 2002). In urban areas, impermeable surfaces like roads 

increase runoff and reduce infiltration (Shuster et al., 2005). Urban storm sewers can also amplify 

streamflow, potentially leading to flooding (Shadmehri Toosi et al., 2019). Infrastructure 

developments, such as dams, play a role in altering outflow and the volume of water downstream 

(Schmutz & Moog, 2018). 

Moreover, changes in LULC, such as deforestation or the expansion of agriculture, expose soil to 

erosion. This erodes the nutrient-rich topsoil and diminishes its infiltration and retention capacities 

(Belay & Mengistu, 2021; Alem, 2022; Prashanth et al., 2023). As erosion continues, it degrades the 

soil, forming surface crusts that further impede infiltration. The eroded particles accumulate in 

depressions and streams, elevating runoff levels. This process can lead to the formation of gullies or 

rills, which act as fast channels for water, reducing the time available for infiltration. Without the 
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protective cover of vegetation, the health of soil biota, essential for maintaining soil quality, 

deteriorates. Overall, these LULC-induced alterations result in increased runoff. 

2.3.3.2 Modelling approaches  

Hydrological models employ diverse techniques to partition rainfall into runoff and infiltration (Sitterson 

et al., 2018). Empirical models are best suited for ungauged watersheds where runoff is the primary 

output of interest due to their simplicity, quick computational turnaround, and cost efficiency (Dawson 

& Wilby, 2001; Pechlivanidis et al., 2011). A typical example is the Curve Number (CN) method, 

developed by the USDA (Mishra & Singh, 2003). It provides a runoff estimate predicated on soil 

attributes and overarching LULC (Kokkonen et al., 2001; Devia et al., 2015; Sitterson et al., 2018). 

Another example is the Rational Method, which is used to estimate peak flow rates based on runoff 

coefficient, rainfall intensity, and drainage area. While the Rational Method incorporates a runoff 

coefficient, it does not have the same level of detail or methodology as the CN method (Rossi, 1994). 

Models, such as Horton’s equation designed for infiltration assessment, indirectly aid in runoff 

estimation. In its original form, Horton’s equation does not explicitly include LULC like the CN method. 

However, the parameters of Horton’s equation can be adjusted based on LULC and other factors in 

practical modelling applications (Horton, 1940). The limitations of empirical models include their 

dependence on field observations, which are sometimes unavailable (Morbidelli et al., 2018). 

Conceptual models like HSPF, TOPMODEL, HBV, Stanford, and ABCD are on the other end of the 

spectrum, offering a simplified representation of physical hydrological processes (Crawford & Linsley, 

1966; Bergström, 1976; Beven & Kirkby, 1979; Thomas Jr, 1981; Bicknell et al., 1997). Conceptual 

models view a catchment as interconnected storage units with flow movements defined by 

mathematical functions (Jehanzaib et al., 2022). A significant limitation is that their parameters are 

not directly derived from catchments, necessitating calibration (Madsen, 2000). In the HSPF model, 

different LULC types are represented through land segments, each with its distinct set of parameters 

tailored to the hydrological response of that specific LULC (Bicknell et al., 1997). TOPMODEL 

integrates LULC by influencing the topographic wetness index with different land covers, affecting 

parameters like evapotranspiration rates (Beven et al., 2021). The HBV model adopts a distributed 

approach, where different LULC types are represented by unique response units, each characterised 

by its hydrological parameters (Bergström & Forsman, 1973). The Stanford Watershed Model 

employs land use coefficients to adjust hydrological parameters in accordance with the specific LULC 

type (Crawford & Linsley, 1966). Lastly, the ABCD hydrological model simulates the rainfall-runoff 

process in a catchment using four parameters: A, B, C, and D (Thomas Jr, 1981). The model can 

account for the effects of LULC changes on hydrology by adjusting the values of these parameters 

according to the characteristics of different LULC types.  
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Physical (process-based) models employ differential equations to simulate catchment behaviour over 

space and time, as highlighted in the review by Devia et al. (2015). These models intricately describe 

mass and momentum balances for individual grid cells or sub-catchments and incorporate boundary 

conditions to account for interconnectivity (Todini, 1988). A key aspect of these models is their 

approach to modelling infiltration and runoff processes. Infiltration is typically modelled by considering 

the soil’s capacity to absorb water, which is influenced by soil texture, structure, and moisture content. 

This can involve the use of equations like the Richards equation to simulate the movement of moisture 

through unsaturated soils. On the other hand, runoff is modelled based on the excess water that 

cannot infiltrate, often using approaches like the kinematic wave model or the diffusion wave model 

to represent overland flow dynamics (Orlandini & Rosso, 1996; Singh, 1997; Kim et al., 2012). While 

these models do not require extensive meteorological and hydrological data for calibration, they do 

necessitate a detailed assessment of watershed physical characteristics, including soil profiles and 

topographical features, as emphasised by (Devia et al., 2015). This detailed characterisation is crucial 

for accurately capturing the complex interactions between infiltration, soil moisture dynamics, and 

surface runoff in varied catchment conditions. 

Notable physical models include MIKE-SHE, KINEROS, VIC, and PRMS (Abbott et al., 1986; Todini, 

1988). These modelling approaches are grounded in different mathematical and physical laws 

(Sitterson et al., 2018). The MIKE-SHE model, known for its comprehensive approach, integrates 

LULC by determining evapotranspiration, runoff coefficients, and infiltration rates, allowing for a 

spatial representation of different land covers (Refsgaard & Storm, 1995). KINEROS, an event-

oriented model, emphasises the role of LULC in overland flow generation and infiltration, representing 

different land covers as distinct polygons or grid cells (Goodrich et al., 2012). The Variable Infiltration 

Capacity (VIC) model, designed for macro-scale hydrologic simulations, uses LULC to define 

parameters like albedo, roughness length, and root zone depths, adopting a grid-based approach 

where each cell can encompass multiple LULC types (Liang et al., 1994). The soil in the model is 

structured into three layers: the top layer facilitates rapid soil evaporation, the middle layer captures 

the soil’s dynamic response to rainfall, and the bottom layer depicts soil moisture behaviour (Devia et 

al., 2015). Lastly, the Precipitation-Runoff Modelling System (PRMS) offers a deterministic, 

distributed-parameter perspective. LULC influences processes from snow accumulation to runoff 

generation, utilising a modular approach to represent varied land covers (Leavesley, 1983).  

2.3.3.3 Challenges 

Despite advances in remote sensing for land surface monitoring, models often overlook the temporal 

dynamics of LULC, assuming static land use for extended periods. The generation of runoff from 

rainfall events is a spatially and temporally complex process profoundly shaped by the terrain’s 
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topography and LULC. Modelling the effects of slope remains an unresolved issue, especially when 

vegetated surfaces are in play (Singh, 2017).  

Many models are formulated for horizontal land surfaces (i.e., SWAT does not adjust curve numbers 

for slope by default). Moreover, the known morphological evolution of many catchments is frequently 

sidelined, either for simplification or due to data constraints (Ghomash et al., 2019). The Digital 

Elevation Model (DEM) quality, crucial for many applications, is influenced by various factors, 

including land cover and terrain slope (Zhao et al., 2010; Sulis et al., 2011; Polidori & El Hage, 2020).  

Landscape connectivity, which denotes how landscapes facilitate or hinder movement across them, 

plays a pivotal role in runoff production (Zhao & Huang, 2022). It is vital to grasp as it affects 

hydrological outcomes, such as heightened flood risks or diminished groundwater recharge. With 

impervious structures like roads and buildings, urbanisation disrupts natural water flow, amplifying 

surface runoff. In contrast, natural terrains with dense vegetation promote infiltration, curbing direct 

runoff. The complexity of various terrains and the nuanced configurations of landforms at different 

scales pose additional difficulty in creating accurate hydrological models (Gao et al., 2018; Galin et 

al., 2019). The role of vegetation litter in influencing surface runoff and soil erosion remains an enigma 

(Li et al., 2014).  

Further, changes such as deforestation, urbanisation, or agricultural expansion can amplify soil 

erosion (Nampak et al., 2018; Hu et al., 2021). Removing vegetation exposes soil to direct rainfall 

impact and accelerates surface runoff, which can dislodge soil particles (Zuazo & Pleguezuelo, 2009; 

Zhao et al., 2022). As erosion progresses, nutrient-rich topsoil is lost, potentially exposing less 

permeable layers like clay or bedrock (Zuazo & Pleguezuelo, 2009). This further complicates 

modelling as it can alter infiltration rates and increase runoff (Mohr et al., 2013; Wu et al., 2023).  

Another critical yet often overlooked challenge is the phenomenon of soil hydrophobicity. The water-

repellent nature of certain soils, often due to organic compounds from plant residues or microbial 

activity, can drastically reduce water infiltration rates. This, in turn, leads to increased surface runoff, 

posing challenges for accurate modelling (Orfánus et al., 2021).  

Generalising hydrological processes as an empirical parameter may not be representative of actual 

hydrological behaviours and dynamics (Sun et al., 2017). Models, such as the SCS curve number, 

have been critiqued for their lack of physical justification (Beven, 2011). Numerical models such as 

Regression, Artificial Neural Network (ANN), Fuzzy, and Genetic Algorithms (GA) are data-driven 

models incapable of modelling spatially explicit relationships of hydrological responses concerning 

physical characteristics of the basin, like the influence of change in vegetation on various hydrological 

components.  
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2.3.4 Subsurface processes  

2.3.4.1 Physical mechanisms 

One of the hydrological processes that can be affected by LULC change is groundwater recharge. A 

recharge area can be defined as that portion of the drainage basin in which the net saturated flow of 

groundwater is directed away from the water table (Freeze & Cherry, 1979). Recharge can be 

categorised into several types, like natural groundwater recharge, artificial groundwater recharge, 

induced recharge, inter-aquifer recharge, and incidental recharge. Among the factors affecting 

recharge (climate, LULC, soil type, topography, and landforms), LULC has been found to be one of 

the key parameters in estimating recharge (Allison et al., 1990; Allison et al., 1994; Sandvig & Phillips, 

2006; Batelaan & De Smedt, 2007; Crosbie et al., 2010; Kim & Jackson, 2012; Li et al., 2018a). The 

nature of the LULC, e.g., urban, agricultural, or forested area, can influence the volume, quality and 

type of this recharge. Seasonal LULC variations affect recharge due to the diverse recharge potential 

in different seasons (Siddik et al., 2022). 

Urbanisation often replaces permeable surfaces with impermeable ones like asphalt, reducing natural 

recharge (Abdelaziz et al., 2020). Conversely, human activities and infrastructure like building artificial 

surface water storage structures like dams, ponds, lakes, and canals can enhance groundwater 

recharge by allowing water to infiltrate the soil below and enter the groundwater storage (Gale et al., 

2002). Induced recharge can also occur when human activities, like heavy groundwater extraction, 

cause surface water to seep into aquifers (Ayotte et al., 2011). 

Artificial or managed aquifer recharge can augment groundwater levels (Zhang et al., 2020; Raja 

Shekar & Mathew, 2023). Plantations may also help enhance groundwater recharge as planted 

landscapes are regularly rotated and monitored (Kristanto et al., 2022). Moreover, water extraction in 

plantations tends to be less extensive than in dense forests, consequently significantly reducing 

evapotranspiration (Geng et al., 2022). Thus, if dense forests turn to fragmented landscapes, 

groundwater recharge can potentially increase (Scanlon et al., 2007). In contrast, expanding 

impervious surfaces means less land where recharge may occur. On the other hand, fewer trees in 

urban areas abstract lots of water and lose it through evapotranspiration (Hornbeck et al., 1993).  

In some places, water moves upward due to capillary forces, influencing soil moisture, while in areas 

with shallow water tables, phreatophytes might directly tap into this subsurface reservoir, extracting 

and releasing it via evapotranspiration (Batelaan et al., 2003; Wang et al., 2023). Incidental recharge 

results unintentionally from human activities like irrigation or canal seepage (Asano & Cotruvo, 2004; 

Wakode et al., 2018). Agricultural practices offer a dichotomy. While irrigation can enhance 

groundwater recharge (Zhang et al., 2023), the expansive agricultural areas often extract groundwater 
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at rates surpassing the recharge. Moreover, these practices can lead to soil issues, such as 

salinisation, which impede natural recharge (Kulmatov et al., 2020).  

In vegetated systems, root characteristics such as form, diameter, depth, distribution, and 

developmental state significantly influence their function (Collins & Bras, 2007; McCormack et al., 

2015; Coleman & Aubrey, 2018). Consequently, recharge rates demonstrate variability primarily 

attributed to the diverse root distributions characteristic of various topographical features, including 

tablelands, upslopes, midslopes, and downslopes (Collins & Bras, 2007; Li et al., 2018a). 

Root depth and distribution are key to how plants manage soil moisture, particularly in water-limited 

ecosystems (Collins & Bras, 2007). Deep-rooted vegetation can significantly affect groundwater 

recharge, especially in areas with shallow water tables (Barua et al., 2021). Due to evolutionary 

adaptation, e.g., osmotic adjustment or hydraulic redistribution, arid and semi-arid native vegetation 

is capable of making better use of soil moisture and accessing deeper soil water reserves as 

compared to crops (Scanlon et al., 2005; Chen & Jiang, 2010; Sardans & Peñuelas, 2014). Water 

limitations in arid and semi-arid regions lead to a general trend where evapotranspiration rates among 

different vegetation types tend to be more comparable than in more water-abundant environments 

(Owuor et al., 2016). However, within this overall trend, there are variations. Forests and shrubs, due 

to their deeper root systems and physiological adaptations, are typically more efficient at transpiring 

water than grasslands or crops, resulting in lower recharge rates (Scanlon et al., 2002; Scanlon et al., 

2005; Li et al., 2018a). Consequently, non-vegetated areas, or those with less efficient water use, 

may experience higher recharge rates (Fitts, 2013), but this, too, is subject to the influence of other 

factors mentioned earlier.  

2.3.4.2 Modelling approaches  

Modelling subsurface hydrological processes focuses on water movement through subsurface areas, 

including the unsaturated (vadose) zone and saturated groundwater flow. Empirical models of 

recharge employ advanced techniques such as geostatistics and Markov chain models to represent 

the variability of subsurface attributes (Yu & Lin, 2015; Maples et al., 2020). Models like Kostiakov 

and Horton, which are either semi-empirical or empirical, are typically derived from field or lab data 

and are often represented as straightforward equations (Mishra et al., 2003; Ma et al., 2010). 

Moreover, machine learning models can draw connections between groundwater levels and 

associated rainfall amounts based on dominant patterns (Yifru et al., 2021).  

Conceptual groundwater models typically utilise interconnected storage components or tanks, which 

are intrinsically tied to a water budget (Yifru et al., 2021). These tanks symbolise distinct storage 

zones in the soil, such as surface and root zone or unsaturated and saturated zone (Liu et al., 2017). 

Each zone has unique storage dynamics crucial to the soil water budget. These models assume one-
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dimensional vertical water flow through unsaturated zones, considering single or multiple 

noninteracting soil columns (Healy, 2010). Transfer functions transport drainage from the bottom of 

the root zone to the groundwater. Conceptual models may explicitly account for plant growth, water 

uptake from soil by plant roots, and release of that water to the atmosphere through leaf stomata 

(Fischer et al., 2008; Healy, 2010). 

In contrast, physically based models offer a more comprehensive view of subsurface processes. 

Notably, the Richards equation and the Green–Ampt model are among the most prevalent physically 

based models (Ma et al., 2010). The Green-Ampt model is primarily designed to describe soil 

infiltration (Green & Ampt, 1911; Chen et al., 2015). While the Green-Ampt model does not inherently 

incorporate LULC factors, it can be integrated with other models or systems considering LULC 

changes.  

Other groups of physical models rely on Darcy’s law for the saturated domain, and the Richards 

equation for the unsaturated conditions, which describes the vertical movement of water in response 

to capillary and gravitational forces. LULC and root characteristics can be integrated into models 

based on the Richards equation by specifying distinct zones within the soil profile where hydraulic 

properties like conductivity and water retention curves are altered. The hydraulic conductivity itself 

may also be modified in root-affected zones to account for changes in soil structure (Kutílek, 2004). 

Additionally, plant water uptake can be modelled as a sink term in the equation, with the rate of uptake 

influenced by both root density and soil moisture conditions (Yadav & Mathur, 2008). Finally, spatial 

variability in vegetation types and root characteristics can be integrated into using LULC data, thus 

making the Richards equation-based model more adept at capturing the complex interactions 

between root systems and soil moisture dynamics.  

2.3.4.3 Challenges 

The relationship between LULC and groundwater recharge is often non-linear and influenced by 

various interacting factors like soil properties, climate, and human activities, making it challenging to 

capture these complex interactions accurately. Estimating infiltration at different spatial scales grows 

more intricate due to the natural variability in soil hydraulic properties and the range of rainfall patterns 

(Morbidelli et al., 2012). Adding LULC to groundwater and recharge models introduces an additional 

layer of complexity to this challenge, requiring an interdisciplinary, context-sensitive approach. 

However, by incorporating dynamic LULC data, groundwater models can become more reliable, 

versatile, and applicable for various temporal and spatial scales. 

The integration of LULC data into subsurface process modelling is critically hampered by the limited 

availability of high-resolution LULC data, especially detailed information on root systems and soil 

interactions (Sun & Li, 2023). This deficiency is significant since vegetation, a key element of LULC, 
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substantially affects subsurface moisture dynamics. Specifically, plant roots can extract water from 

deeper soil layers, thereby influencing moisture balance. These interactions are complex and vary 

widely across different spatial and temporal scales (Beven et al., 2014; Xie et al., 2022). For example, 

root structures undergo seasonal variations, and external climatic factors further complicate these 

changes.  

Adding to the complexity is the dynamic nature of LULC, which can change over time due to factors 

like urbanisation, agriculture, and deforestation. Rapid or extensive LULC changes can profoundly 

alter subsurface water pathways, storage, and availability (Foley et al., 2005; Owuor et al., 2016; Xie 

et al., 2022). This requires models to incorporate time-series data, a resource that is not always readily 

available. However, this inclusion also adds new parameters that require additional calibration, 

validation and uncertainty assessment, especially in areas where observational data are sparse. 

Further complicating is the mismatch in spatial and temporal scales between groundwater processes 

and changes. This scale mismatch can result in misleading or inaccurate model outcomes if not 

adequately addressed (Xie et al., 2022). 

Some LULCs, like urban areas, pose challenges in balancing water due to altering natural drainage 

patterns and widely distributed new abstraction points in the urbanised region (Wakode et al., 2018). 

Calculating overall recharge can be achieved by combining separate estimates of natural recharge 

from precipitation with recharge from water supply and wastewater systems (Lerner, 2002; Wakode 

et al., 2018). However, the challenge here is unpermitted water extraction. These unlicensed 

groundwater abstractions introduce unknown variables, leading to inaccuracies and uncertainties in 

model predictions. 

Moreover, specific LULC alterations, such as certain agricultural practices or the deployment of heavy 

machinery, can induce soil compaction, thereby affecting its porosity and permeability and, 

consequently, the subsurface water movement. Legacy effects from past LULC changes, like 

deforestation or wetland drainage, can persistently influence subsurface water dynamics 

(Lamichhane & Shakya, 2019; Guo et al., 2020; Lamichhane & Shakya, 2020). The repercussions of 

historical land management decisions can reverberate, affecting subsurface hydrological processes 

for extended periods. Given these complexities, relying exclusively on empirical equations might fall 

short of accurately capturing the multifaceted impacts of LULC variability. While climate change and 

land cover shifts can significantly impact shallow groundwater systems, how future recharge will 

influence these systems is unclear (Mussa et al., 2020). Changes, particularly in built-up areas, have 

been a focal point in many studies, but alterations in agricultural practices often go unnoticed. In 

regions with intensive agriculture, a shift in crop type can significantly affect water recharge. It is 

essential to account for both transient (like vegetation shifts) and permanent (like urban expansion) 

changes (Adhikari et al., 2022). 
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While fundamental to vadose zone hydrology, the Richards equation has been critiqued for its inability 

to capture the intricacies and heterogeneities of soil water flow, prompting calls for a re-evaluation 

and the development of more comprehensive measurement techniques. It assumes a soil continuum 

in basic form, potentially missing small-scale soil variations. The equation excludes tortuous water 

pathways, air entrapment, and plant root effects. Its reliance on the Darcy-based relationship for 

unsaturated flow also overlooks specific kinematic effects and dynamics between liquid and gas 

phases (Beven & Germann, 1982; Beven, 2011; Beven & Germann, 2013; Beven, 2018). It also may 

not capture preferential flow paths in soils with features like cracks (Beven, 1989; Binley et al., 1989a; 

Binley et al., 1989b). Beven (2019a) states that the Richards equation should be reconsidered, rooted 

in an experiment that ignored preferential flows. This stance is backed by both experimental evidence 

and inherent physics, especially considering soil property heterogeneity (Beven & Germann, 1982; 

Beven, 2011; Beven & Germann, 2013; Beven, 2018). Flows, in reality, can be localised, variable, 

and have spatial-temporal complexities (Freer et al., 1997; Jencso et al., 2009; McGuire & McDonnell, 

2010; Klaus & Jackson, 2018). Yet, we lack effective measurement techniques for studying such 

flows. Instead of focusing on intricate details, there is a suggestion to develop measurement 

techniques for larger scales that encapsulate these details (Beven & Germann, 1982; Beven, 2011; 

Beven & Germann, 2013; Beven, 2018). 

2.4 Discussion 

2.4.1 LULC data 

Space agencies are deploying satellites equipped with advanced sensors for LULC mapping, utilising 

Earth Observation (EO) data (Petrişor et al., 2010; Diaz-Pacheco & Gutiérrez, 2014; Pandey et al., 

2021). Satellite imagery is characterised by various attributes, including spatial, spectral, and temporal 

resolutions, which determine their suitability for diverse applications. Higher spatial resolution 

enhances mapping accuracy by providing detailed images, while increased spectral resolution assists 

in distinguishing different features (Pandey et al., 2021). Temporal resolution is equally important for 

detecting changes and understanding dynamics over time. For instance, seasonal resolution is vital 

for monitoring agricultural cycles, while annual resolution helps in urban and forest cover studies. 

Increasing remote sensing data has led to the emergence of new classification systems for evaluating 

LULC and spatial changes. Understanding the input dimensions, types of remotely sensed data, and 

the correct implementation of classifiers in LULC mapping is essential. This understanding enables 

one to effectively assess the advantages and limitations of various approaches and their combinations 

as applied in the study (Pandey et al., 2021). Detailed information regarding Earth observation data 

sources and classifiers can be found in the study by (Pandey et al., 2021). 
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Various sources of LULC data exist worldwide (Pérez-Hoyos et al., 2012; Szarek-Iwaniuk, 2021). 

Among the most prominent ones are the Corine Land Cover (CLC) system, developed by the 

European Environment Agency for Europe’s environmental monitoring (Büttner, 2014); the United 

States Geological Survey (USGS) Land Use and Land Cover Classification System (LULC) (Witmer, 

1978), used in the United States for standardised land classification; and the FAO Land Cover 

Classification System (LCCS) (Herold & Schmullius, 2004), offering a flexible framework adaptable to 

various regions and scales. Additionally, the Modified UNESCO Classification (Becker et al., 1998), 

the International Geosphere-Biosphere Programme (IGBP) Land Cover Classification (Loveland et 

al., 2010), the Global Land Cover (GLC) project (Bartholome & Belward, 2005), and the MODIS Land 

Cover Type play crucial roles in supporting global environmental research and providing 

comprehensive land cover data (Friedl et al., 2002). 

While LULC products are diverse and accessible, they have limitations like limited coverage (both 

temporal and spatial), data validity, detail level, and inconsistent nomenclatures. LULC databases are 

updated inconsistently and may not meet current research demands (Pandey et al., 2021; Szarek-

Iwaniuk, 2021). Moreover, many landscapes and sensors have spawned varied classification 

techniques, complicating comparative analyses. Further, many LULC maps are overly generalised, 

lacking the detail needed for specific research (Pandey et al., 2021; Szarek-Iwaniuk, 2021). This 

simplified categorisation disregards the inherent variations within the same category, which can 

significantly influence vegetation’s water storage and transportation mechanisms. These factors 

impose constraints on the efficacy of hydrological models, potentially causing them to succeed in 

specific case studies while yielding suboptimal results in others.  

A crucial improvement lies in augmenting the current LULC data with additional information to 

enhance surface characterisation. Without that, sparsely vegetated boreal evergreen needleleaf 

forests could be functionally interchangeable with a coastal temperate evergreen needleleaf forest as 

they may fall into the same LULC category. Even if labelled similarly, LULC can exhibit vastly different 

hydrological behaviours depending on the context, such as variations in the understorey and litter 

layers and temporal factors like seasonal changes. This generic categorisation often results in models 

exhibiting sensitivity based on parameter settings and temporal scales (Huang et al., 2013; Jin et al., 

2019).  

Advancements in satellite remote sensing have ushered in a new era for monitoring 

evapotranspiration, particularly on broader scales with heightened spatiotemporal precision 

(McShane et al., 2017). While these technological strides provide significant insights, ground 

observation data continues to be pivotal for the calibration of such imagery, solidifying the 

trustworthiness of subsequent forecasts (Chia et al., 2020). Beyond mere data collection, remote 

sensing has proven instrumental in discerning snow cover nestled within forest canopies, offering a 
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more profound understanding of snow interception dynamics (Allen et al., 2020). This improvement 

in satellite innovation and ground observations is a promising pathway to refine and enhance 

hydrological models. 

Yet, despite advancements in vegetation understanding and remote sensing, many models 

inadequately incorporate LULC dynamics (Sun et al., 2017). Even with data allowing for LULC 

temporal variations, many models persistently use static LULC. However, it is essential to integrate 

continuous LULC changes for accurate LULC-climate-hydrology interactions in a rapidly changing 

world (Castillo et al., 2014). Accurate and consistent mapping of change dynamics requires attention 

to aspects from spatial to spectral and temporal dimensions. In large-scale hydrological studies, pre-

modelling data analysis is crucial to understanding the dynamics and inconsistencies between LULC 

datasets (Kauffeldt et al., 2013). Analysing different datasets independently aids in forming robust 

conclusions on choosing the best model to get the desired outcome (Juston et al., 2013; Magnusson 

et al., 2015). 

2.4.2 Selecting the appropriate model 

While modelling every physical process is not viable, it is essential to understand desired outputs and 

choose an optimal model structure based on data and budget constraints. Process simplification 

results from limited knowledge and data, imprecise measurements, and involvement of multiple scales 

and interactive processes. These simplifications introduce uncertainty and make it an intrinsic 

property of any model (Moges et al., 2020). More intricate models prove beneficial for exploring 

natural hydrological principles and mirroring real-world processes with higher fidelity (Zhao et al., 

2013). 

However, model performance does not always indicate increased accuracy; outcomes can 

significantly vary based on factors like the specific hydrological variable (e.g., runoff vs. soil moisture), 

hydrological conditions (floods vs. droughts), and temporal scale (Orth et al., 2015). Complex models 

may suffer from over-parametrization but miss relevant processes if they are too simple (Orth et al., 

2015). For example, Lopez et al. (2020) demonstrated that setting up an energy-balance model with 

a simplified snowpack structure can provide nearly identical performance as a much more complex 

snow-physics model.  

Model complexity is vital while evaluating the ability of the models to simulate the desired LULC and 

climate change scenarios. However, when more detailed results are needed, a fully distributed and/or 

physically based approach may be required, and it may be necessary to collect detailed data to apply 

the model (Bormann et al., 2009; Elfert & Bormann, 2010). Besides spatial discretisation, the model’s 

temporal resolution, which may be restricted to specific intervals (e.g., sub-daily, daily, monthly), 

significantly impacts data availability and model complexity (Chien et al., 2013).  
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Differences in simulation quality among models arise from uncertainties in input data, calibration 

approaches, parameterisation, and model structures (Cornelissen et al., 2013; Dwarakish et al., 

2015). Therefore, it is essential to be aware of the assumptions, trade-offs, and sources of error 

inherent to each downscaled data set and understand how those issues might apply to the particular 

question and location (Singh, 2017). Researchers must apply models judiciously, re-evaluating 

processes like the Buckingham–Richards as suggested by Beven (2019a). Beven further underscores 

that uncertainties are a fundamental characteristic of hydrological data (Beven, 2019b; Beven, 

2019a). These uncertainties are frequently treated as aleatory, a classification largely driven by the 

ease of applying statistical techniques for analysis.  

The broader modelling landscape, especially related to LULC, is undergoing significant shifts. For 

instance, the widespread online availability of hydrological data facilitates expansive and efficient 

simulations with platforms like Google Earth Engine. This accessibility, combined with diverse 

modelling approaches, not only refines our comprehension of hydrological processes but also 

elucidates the nuanced interplay between LULC changes and climate shifts (Cornelissen et al., 2013).  

Moreover, while it is challenging to account for all processes associated with LULC, their effects are 

evident in the data. Advanced analytical techniques, enhanced by data-mining innovations, have the 

potential to offer more universally relevant solutions and introduce alternative process perspectives. 

Given the limitations of empirical, physical-based, and conceptual models, there is a growing interest 

in advanced data-driven models, including machine learning (ML) and deep learning (DL) (Jehanzaib 

et al., 2022). 

2.4.3 Enhancing model mechanisms 

While remote sensing offers qualitative insights into landscape patterns, they carry epistemic 

uncertainties (e.g., rainfall and soil moisture estimation). Complexities arise in capturing soil 

variations, antecedent moisture, infiltration, topography, and rainfall distribution. Further, dealing with 

human-made infrastructures and vegetation is still associated with many uncertainties. LULC 

significantly impacts hydrological processes in models with natural LULC changes typically evolve 

gradually because of ecological processes. In contrast, human activities like deforestation, agricultural 

expansion, and urbanisation cause rapid LULC alterations. Significant natural shifts, such as those 

from bushfires or floods, can arise due to extreme climate events.  

These rapid changes, whether from human activity like dam construction or natural events like 

bushfires, can profoundly impact landscapes and the water balance of an area (Singh, 2017). The 

rapid and significant changes in vegetation and climate violate the prevailing assumption of a long-

term steady water balance in hydrological models. This presumption, which does not account for 

abrupt or substantial environmental shifts, introduces considerable uncertainty in water balance, 
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particularly in regions experiencing extensive LULC transformations (Devia et al., 2015; Liu et al., 

2019).  

Understanding the hydrological response to rapid LULC changes is challenging (Dwarakish et al., 

2015). In many studies, large and frequent inconsistencies between climate datasets and observed 

discharge showed clear spatial patterns, possibly caused by anthropogenic influences (e.g. inter-

basin transfers, irrigation and reservoirs) (Devia et al., 2015; Liu et al., 2019). Infrastructure and 

urbanisation can alter surface connectivity, potentially increasing runoff and flooding risks (Wang et 

al., 2022).  

While some changes may seem minor or localised, their ripple effects on the hydrological processes 

can be substantial. For instance, the escalation of erosion due to deforestation in sloped areas results 

in an accumulation of sediments in aquatic systems (Brandolini et al., 2018; Kumar et al., 2023). This 

process alters flow regimes and storage capacities and degrades water quality, presenting additional 

challenges in hydrological modelling and water resource management.  

One of the challenges in incorporating dynamic LULC is that LULC changes impact hydrological 

components across varied timeframes. For example, deforestation instantly eliminates interception, 

but its effects on groundwater recharge manifest later. Enhancing the quality and quantity of 

hydrological data on both spatial and temporal scales is pivotal to capturing these nuances.  

The intricacies of evapotranspiration, especially in forests, remain an area for enhancement in 

hydrological models. Transpiration is dominant, yet interception evaporation, especially in forests, can 

sometimes surpass it (Wang-Erlandsson et al., 2014; Wei et al., 2017). Modern modelling often 

overlooks forests’ ability to store heat and vapour across multiple layers, from the air column to the 

soil (Coenders-Gerrits et al., 2020). Studies should delve deeper into the canopy interactions and 

understand water, vapour, and heat dynamics to better grasp forest evaporation. Future efforts should 

prioritise understanding the interactions among leaf growth, abscission, leaf litter dynamics, and 

evaporation partitioning (Mert, 2021). Additionally, understanding the processes within and beneath 

the canopy and how evaporation splits between interception, transpiration, and soil evaporation is 

crucial (Dubbert et al., 2013; Van den Hoof et al., 2013). Incorporating stable water isotopes can aid 

in comprehensive modelling from vegetation top to forest floor. 

LULC influences the hydrological processes through manifold (Afonso de Oliveira Serrão et al., 2022; 

Siddik et al., 2022). Land cover dictates soil erosion, with forests acting as protective barriers. 

Urbanisation complicates channel flows, while deforestation affects snowpack dynamics. LULC also 

modulates water quality, with agricultural lands potentially introducing nutrients and urban zones 

contributing to pollutants (Roy et al., 2022; Gu & Li, 2024). Drained or altered wetlands disrupt regional 
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water balances and flood mitigation. Soil moisture, key to the critical zone and, hence, the hydrology, 

is directly linked to LULC. 

Moreover, critical aspects like hydraulic conductivity of aquifers and roughness of the land surface 

are inadequately addressed spatially. While these challenges are recognised, hydrological models 

might miss some nuances. For instance, the temporal dynamics of soil hydrophobicity, the micro-

scale impacts of LULC on soil structure, or the feedback loops between erosion, landscape 

connectivity, and local hydrology might not be fully captured (Blume et al., 2009; Stephens et al., 

2021; Vereecken et al., 2022). Addressing these gaps requires a holistic approach, integrating 

interdisciplinary knowledge and continuously updating models based on new findings. 

The modelling community needs to access web services from data providers and improve the spatial 

resolution of data to account for the great variability in climate, topography and land cover (Sitterson 

et al., 2018). The availability of the model and data to the public increases their usefulness, reduces 

duplication of efforts, and saves time and money (Sitterson et al., 2018). Also, novel remote sensing 

products such as vegetation optical depth may provide additional useful information on global scales 

of canopy structure (Rodríguez-Fernández et al., 2018). Overall, capturing LULC nuances in 

hydrological models is essential for accurate predictions, urging continued improvements in 

understanding these interplays. Future studies should examine potential shifts in the LULC pattern, 

considering both biophysical and socio-economic factors in a catchment with diverse vegetation 

(Dwarakish et al., 2015).  

2.4.4 Scale issue in Hydrological modelling 

Hydrological models are inherently sensitive to the spatial and temporal scales at which data are 

acquired, processed, and applied. At the most fundamental level, scale relates to the resolution (both 

spatial and temporal) and the extent over which key hydrological processes, parameters, and data 

inputs are represented (Blöschl & Sivapalan, 1995). Understanding scale dependencies is essential 

when incorporating LULC information into hydrological models, as different scales highlight different 

facets of hydrological behaviour and produce varying outcomes in model simulations (Beven, 2001). 

Large catchments typically encompass considerable heterogeneity in climate, soils, topography, and 

vegetation, necessitating more aggregated representations of LULC and hydrological parameters 

(Locke, 2024; Tetzlaff et al., 2010). These models often face challenges related to data consistency 

and the computational complexity of integrating diverse datasets. Conversely, smaller catchments 

allow for the use of high-resolution data, enabling more detailed and localised modelling. 

Remotely sensed imagery or national land use datasets, for example, often provide broad-brush 

classifications of land cover that overlook finer spatial details and changes (Zhang & Li, 2022). While 

this generalised approach is computationally manageable and aids in regional decision-making, it 
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may overlook fine-scale patterns—such as localised irrigation practices or small patches of riparian 

vegetation—that can exert disproportionate influences on local runoff and evapotranspiration. In 

contrast, smaller catchments can be studied at finer resolutions, enabling the capture of subtle LULC 

gradients and more nuanced parameterisation of hydrological models (Blöschl & Sivapalan, 1995). 

The hydrological responses of small catchments can be highly sensitive to land use changes (Forio 

et al., 2020). Enhanced spatial detail often comes at the cost of greater data demands and the need 

for frequent updates to ensure that temporal changes—such as land cover transitions due to 

deforestation or agricultural expansion—are accurately represented. 

Blöschl and Sivapalan (1995) highlight the importance of scale issues in hydrological modelling, 

noting that integrating formulations at different scales remains an unresolved challenge in the field. 

This issue is critical as many hydrological processes are nonlinear and vary spatially and temporally, 

making their study in isolation at smaller scales only somewhat insightful for their behaviour at larger 

catchment scales. Hydrological models need to reconstruct these complex processes to validate their 

representations and interactions at different scales and to test which conceptualisations of these 

processes are consistent with observations. 

The temporal scale is also important in capturing dynamic LULC effects. Changes in vegetation cover, 

crop cycles, and land management practices occur at seasonal to decadal times, influencing 

hydrological processes such as infiltration, interception, and transpiration (Li et al., 2019). High-

frequency observations can reveal rapid shifts in hydrological responses following land use changes, 

allowing for more responsive and adaptive model structures. Conversely, long-term datasets can 

explain trends in catchment behaviour under evolving climatic conditions and land management 

regimes, supporting strategic decision-making at the basin scale (Yang et al., 2024). Balancing the 

demands of temporal detail with computational feasibility and data availability remains a persistent 

challenge. 

A key unresolved issue in hydrological science is translating the knowledge gained at fine scales to 

broader extents—so-called “scaling up”—while maintaining process fidelity (Blöschl & Sivapalan, 

1995). Many hydrological processes exhibit nonlinear behaviours and interactions that do not simply 

aggregate from small to large scales. Studies at small catchments can offer valuable process 

understanding. However, applying these insights at larger scales can be problematic if models fail to 

integrate complex spatial patterns and temporal dynamics effectively. Researchers should 

incorporate multi-scale observations, experiments, and models that explicitly consider how land use 

patterns and their parameters vary through space and time (Dube et al., 2023). Scale considerations 

must remain at the forefront of model selection, calibration, and validation efforts, ensuring that 

hydrological models capture the complexity of real-world systems as faithfully and usefully as 

possible. 
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2.4.5 Model evaluation and calibration  

In the calibration process of hydrological models, the direct alteration of LULC data is not typical. 

Instead, the focus is usually on adjusting model parameters rather than improving the representation 

of process dynamics (Rajat & Athira, 2021). However, aspects connected to LULC are often fine-

tuned or more deeply scrutinised to achieve optimal results (Sai Veena et al., 2019). That may improve 

the reproduction of discharge without change, albeit not always for the right reasons (Beven, 2019a). 

For instance, the available LULC data might be reclassified or adjusted to fit the model’s specific 

requirements or resolution better. Obtaining better results for the wrong reasons may lead to 

misleading interpretations, especially when simulating the impacts of LULC change (Merz et al., 2011; 

Peel & Blöschl, 2011; Hollaway et al., 2018).  

The poor process dynamics in the model reduce its predictive power (Rajat & Athira, 2021). Several 

hydrological parameters, such as curve numbers or Manning’s ‘n’ values, are intrinsically tied to 

specific LULC types. These parameters can be refined during calibration to improve model fit.  

Hydrological systems are nonlinear and complex, and we have few techniques for studying patterns 

of processes at the catchment scale. In many instances, models have shown different sets of 

calibration parameters for different periods (Merz et al., 2011). Therefore, identifying and 

understanding the time stability of catchment model parameters and how they may change with time 

needs to be understood better (Wagener et al., 2010).  

Traditionally, hydrological models have assumed stationary conditions (the model parameters do not 

change with time). Therefore, accounting for temporal changes in the model parameters is not 

straightforward (Peel & Blöschl, 2011). This is mainly because it is not easy to find a unique 

relationship between the changing parameters and complex correlations among the parameters and 

with various catchment characteristics (Wagener, 2007; Merz et al., 2011). All these assumptions can 

produce significant errors in the simulation process if climate and/or catchment conditions change 

much over time (Merz et al., 2011). These errors potentially extend with increasing the scale and time 

lag between the calibration and simulation periods.  

Incorporating dynamic LULC into hydrological models substantially influences the calibration process, 

offering both challenges and advantages. Dynamic LULC introduces the need for time-variable 

parameters, ensuring that associated hydrological parameters like runoff coefficients evolve 

correspondingly as land cover changes. This necessitates a calibration dataset that spans diverse 

temporal conditions, capturing the intricacies of changing landscapes. While this more realistic 

portrayal of land changes enhances the model’s applicability, it complicates calibration by increasing 

the number of tenable parameters, potentially elevating model uncertainty. Such increased complexity 
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demands a rigorous validation process, testing the model’s proficiency across various LULC change 

periods. 

Furthermore, the risk of overfitting emerges, where the model might echo the calibration data closely 

but falter with new independent datasets (Fowler et al., 2016; Dakhlaoui et al., 2017; Pool et al., 2017; 

Fowler et al., 2018). As the model’s sensitivity to parameters can oscillate with changing LULC, 

periodic sensitivity analyses become pivotal. Merging data from assorted sources, like remote sensing 

and land surveys, can pose challenges, emphasising the need for consistent scale, resolution, and 

accuracy. Calibrating a model with point data and assuming that some simple power law will hold over 

the range of the data is essentially misleading (Westerberg et al., 2020). Lastly, dynamic LULC often 

ushers in scenario-based calibrations, enabling the exploration of potential land management or 

future trajectories. While undeniably intricate, including dynamic LULC ensures models stay in step 

with real-world land changes, granting them enhanced relevance and reliability when appropriately 

calibrated (Yonaba et al., 2021).  

Regions with substantial LULC shifts during the calibration period necessitate acknowledging these 

changes for accurate modelling (Birhanu et al., 2019). For instance, Birhanu et al. (2019) 

demonstrated that in regions undergoing significant LULC changes, the HBV model—which was both 

accurately calibrated and validated—exhibited only minor and insignificant fluctuations (±5%) in 

projected water balance components like discharge, evapotranspiration, soil moisture, and 

groundwater recharge. However, when the actual discharge data was statistically assessed, 

noticeable increasing trends were observed throughout the study. It shows that static data can impede 

successful calibration if a model does not factor in such dynamics and there are notable LULC 

alterations.  

Further nuances, like distinct management practices on similar land covers, might also be 

incorporated to boost calibration accuracy. While LULC data is rarely manipulated directly, its 

associated parameters and processes are vital in refining hydrological models. 

2.5 Conclusions 

This article has endeavoured to present an overview of LULC-related mechanisms involved in 

hydrological processes, their modelling approach and the shortcomings of the models in representing 

processes.  

Physically based semi-distributed and distributed models have gained prominence for their efficacy 

in studying the impacts of heterogeneous LULC patterns. Nonetheless, the field of hydrology 

continues to face substantial constraints due to limitations in observational data. The responses of 
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hydrological processes to LULC changes are notably diverse, shaped by a multitude of factors, 

including geographical attributes and other physical factors such as slope and soil characteristics. 

This complexity is further compounded by human interventions and the nuanced relationship between 

evaporative factors and vegetation canopies, posing significant challenges for the modelling 

community. In addressing these challenges, contemporary research leverages a combination of field 

data, experimental studies, and sophisticated modelling techniques. The advent of remote sensing 

has markedly enhanced our comprehension of LULC dynamics. However, fully grasping the 

hydrological implications of changes requires an interdisciplinary strategy that extends beyond 

conventional methodologies. Embracing innovative technologies and integrated modelling 

approaches will be instrumental in advancing watershed management practices. 

Despite the progress in hydrological modelling, several challenges persist. Current models, while 

insightful, struggle to overcome observational constraints and often fall short in effectively utilising 

remote sensing data or accurately representing hydrological complexities. Traditional empirical 

formulas, born in data scarcity, impede modern modelling efforts, particularly in rapidly changing 

landscapes. Specific processes, such as snow-related interception, evapotranspiration, and soil 

moisture estimation, remain inadequately represented, particularly in multi-layered environments like 

forest areas.  

Models integrate various physical processes with certain simplifications and empirical elements, 

making them a hybrid of purely empirical and fully physically based models. However, balancing 

between them is essential as this hugely impacts all subsequent processes. For example, existing 

limitations in soil water extraction functions hamper the full potential of the Penman-Monteith method. 

To move forward, hydrological science requires a standardised LULC classification system to facilitate 

uniform modelling and enhance comparison across studies. A comprehensive modelling approach is 

essential, incorporating extensive validation, innovative process depiction, uncertainty management, 

and a nuanced recognition of data constraints. Continued exploration into the responses of 

hydrological processes to LULC changes, coupled with refined uncertainty quantification in parameter 

estimates and modelling, will remain at the forefront of hydrological research. 

As we progress, it becomes imperative to adopt a more critical perspective on modelling practices, 

acknowledging the constraints imposed by data availability, study scope, desired output, and resource 

allocation. A concerted effort within the hydrological community is necessary to advance these models 

as viable hypotheses, fostering new process representations and effectively managing predictive 

uncertainties. A systematic evaluation of potential error sources, encompassing input data, boundary 

conditions, model design, and software assumptions, is crucial for developing reliable simulation 
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models. The journey through hydrological research is replete with uncharted territories, from 

pioneering observational techniques to theoretical breakthroughs and explorations of diverse 

ecological landscapes. The path ahead for LULC and hydrological modelling is one of embracing 

technological advancements and methodological rigour, ensuring our strategies are comprehensive 

and genuinely representative of the multifaceted realities we seek to simulate.  
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3 CHAPTER 3 

THREE DECADES OF LAND COVER CHANGE IN THE 
MURRAY DARLING BASIN: INSIGHTS AND IMPLICATIONS 

Highlights: 

Floods and droughts have a strong regional impact on land cover change. 

Large parts of MDB showed increases in natural bare and artificial surfaces. 

The western part of MDB showed a decreasing trend in the cultivated area. 

Impacts of policy change are not discernible in land cover change. 

Land use data shows irrigated agriculture expanding despite limiting policies. 
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3.1 Abstract 

Temporal and spatial variability of land cover data plays a crucial role in understanding the 

changes that are taking place in our landscape over time. These changes can significantly 

impact ecosystem health, the economy, and society; thus, it is crucial to identify and 

understand them. This study focuses on the Murray Darling Basin, Australia's most important 

agricultural region, and examines the changes in land cover over 31 years (1990-2021). The 

dynamics between each land cover class were investigated using the latest Geoscience 

Australia level 3 land cover dataset. Further, we evaluated the effects of water recovery 

initiatives and infrastructure developments on agricultural land use at the sub-catchment 

scale. The Sustainable Diversion Limit (SDL) units (closely aligned with sub-catchment 

boundaries) with the highest total water recovery were investigated using Australian Bureau 

of Agricultural and Resource Economics (ABARES) land use data. The results revealed a 

significant increase in the natural bare surface and a notable decline in the Basin's water 

bodies. There was a decreasing trend in cultivated terrestrial vegetation across the western 

part of the Basin. Although the magnitude of changes substantially varied across the 

catchments, the eastern part of the Murray Darling Basin has undergone fewer changes 

overall. Climate, rainfall variability and terrain were strong drivers of land cover spatiotemporal 

variability in the Murray Darling Basin. The land use data indicates an expansion of irrigated 

agriculture in the SDL units with the highest total water recovery, suggesting that 

improvements in water use efficiency may have enabled an increase in agricultural land, 

indicative of a rebound effect. This study provides a comprehensive understanding of the 

Basin's temporal land cover variability. It contributes to improved decision-making, formulating 
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effective policy options, and predicting the likely impact of changes to preserve the region's 

natural resources.  

Keywords: Land cover dynamics, Land conversion, Environmental management, Murray 

Darling Basin, Land-use policy  
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3.2 Introduction  

Land use - land cover change is occurring at the global scale with numerous physical, 

ecological, and socio-economic consequences (Teklay et al., 2019; Zeng et al., 2020). The 

changing landscape impacts processes ranging from local water supply to global water 

balance and carbon cycling (Obahoundje et al., 2017; Dile et al., 2018; Li et al., 2018; 

Saddique et al., 2020). In recent decades, global population growth and urbanisation have 

exacerbated land cover change to meet the demands for food and habitable spaces. To 

accurately describe the interactions between land use, climate, and hydrology, we first need 

to understand the land use - land cover change dynamics (Castillo et al., 2014). Therefore, 

monitoring and comprehending the extent of these changes is crucial for effective 

environmental management and sustainable development. 

Land cover change has been recorded over Australia in the past decades, with significant 

impacts on basin hydrologic characteristics such as streamflow, recharge rate, temperature, 

and precipitation (Saha et al., 2019; Tulbure & Broich, 2019; Lane et al., 2023). The 

assessment of land cover changes largely relies on classified spatial data, typically 

accompanied by additional, complementary variables (Hasegawa et al., 2017; Calderón-Loor 

et al., 2021b). This information is used to assess land cover changes over time. Numerous 

coarse-resolution, global land-cover products exist, such as the 250 m resolution MODIS Land 

Cover dataset (Friedl et al., 2010), the 300 m resolution GLOBCOVER, the 5 ha resolution 

Corine Land Cover (Bossard et al., 2000), and others (Hansen et al., 2000; Loveland et al., 

2010; Bontemps et al., 2013; Calderón-Loor et al., 2021a). However, these datasets are 

usually limited by spatial resolution and temporal range. In addition, inconsistent classification 

systems can make using and integrating data from various sources difficult, particularly in 

regions with dynamic environments, hindering efforts to track changes in land cover and 

understand its interaction with hydrological processes. 

Land cover change monitoring has advanced due to the increasing availability of high and 

medium-resolution satellite imagery and the emergence of cloud-computing services (Xiong 

et al., 2017). High computational costs generally restrict the analysis of consistent high-

resolution land-cover maps over large areas. However, the emergence of proprietary, web-

based platforms such as Google Earth Engine drastically reduces computation times and 

expands the potential for analysing and accessing massive geospatial data (Gorelick et al., 

2017; Calderón-Loor et al., 2021a).  

Land cover change is a critical issue in Australia, driven by various factors, including 

agricultural expansion, urbanisation, and climate change. Understanding these changes is 
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essential for effective land management and conservation efforts. One of the areas that has 

experienced the greatest potential for change is the Murray Darling Basin (MDB). The MDB is 

notable for being home to Australia's most fertile agricultural regions (Postel, 2000), which 

contributes $30 billion to the Australian economy every year (MDBA, 2023c). Furthermore, the 

Basin plays a critical role in delivering water resources in Australia, with its rivers and 

groundwater systems contributing to over 70% of the country’s total irrigation water (Gonzalez 

et al., 2020; Fu et al., 2022). However, the development of the basin for water supply and 

agriculture has impacted its ecosystems, leading to altered flow regimes, water pollution, 

habitat loss, and biodiversity decline (Alexandra, 2018; Hart et al., 2020; McLoughlin et al., 

2020). To balance anthropogenic use with ecosystem health, the MDB has received significant 

public investment to modernise irrigation infrastructure and implement strategic water policies, 

including the 2007 Water Act and the 2012 MDB Plan (Alexandra, 2018; Grafton & Wheeler, 

2018). The goal has been to reduce the amount of water extracted for irrigation and return 

water to the environment to improve river and wetland ecosystem health. 

Given its significance, management of natural resources in the MDB will benefit from a long-

term, comprehensive analysis of land-cover change using high-resolution land cover data to 

better understand whether MDB policy has impacted key land system processes and the 

intricate patterns involved in local land cover change (Hoskins et al., 2016; Klotz et al., 2016). 

Integrating this knowledge is crucial for tackling the challenges related to water quality and 

quantity within the Basin, ensuring both ecological stability and resource sustainability 

(Holland et al., 2015; Papas, 2018; Hart et al., 2020). This includes an awareness of the 

variability in these changes and an assessment of the primary trends over time. Although 

several studies have explored national-scale land-use changes, they often do not provide 

consistent temporal coverage and lack detailed regional insights. For example, Bryan et al. 

(2009) offer valuable insights into the land use dynamics in the MDB, but the data is now over 

two decades old and covers only a brief period before the 2007 Water Act and 2012 MDB 

Plan. Among few studies investigating land use and land cover dynamics in MDB, no previous 

study has employed complete spatiotemporal land cover and land use data to examin changes 

within the MDB throughly. 

Utilising Digital Earth Australia level 3 land cover data with a resolution of 25 m, the study 

examines annual changes over the 31-year period from 1990 to 2020. By examining the land 

cover changes and their spatial and temporal characteristics, this study aims to provide 

insights into the drivers of land cover change in the MDB and discuss their potential impacts. 

Additionally, we evaluate the potential effects of water recovery initiatives and irrigation 

infrastructure developments on agricultural land use at the Sustainable Diversion Limit (SDL) 
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units level (commensurate with sub-catchments) using land use data. Drawing on prior 

studies, this research provides valuable perspectives to the discourse on sustainable water 

resource management in arid and semi-arid regions globally.  

3.3 Methods and material 

3.3.1 Study area 

The MDB covers more than a million square km (~106 million hectares). It spans across four 

states - Queensland, New South Wales, Victoria, and South Australia - and the Australian 

Capital Territory. The MDB is an extensive and interconnected system of rivers, consisting of 

22 catchments extending over 1365 km from north to south and 1250 km from east to west 

(Figure 3.1). Most of the Basin is characterised by extensive floodplains and low-rolling terrain. 

However, the western slopes of the Great Dividing Range and Snowy Mountains are included 

in the Basin towards the east and southeast (Camilleri et al., 2010). 

 

Figure 3.1: Murray Darling Basin and its 22 catchments with their catchment area as a 
percentage of the total Basin area. 

The sub-catchments of the MDB play a vital function in producing the source water of the main 

rivers of the Basin, the Murray and Darling Rivers. Each sub-catchment has unique 

characteristics; for example, the Upper Murray River has primarily higher elevation and 
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forested land, while the Lower Murray River has mostly flat and agricultural land. The sub-

catchments, therefore, play a critical role in water management for irrigation, hydroelectric 

power generation, and environmental conservation. With over 40% of Australia's annual 

agricultural production coming from the MDB, it is the country's most intensive agricultural 

region (Pink, 2008). 

The Basin is home to diverse ecosystems and habitats, including wetlands, forests, and 

grasslands, making it a vital area for preserving the health of rivers, lakes, and wetlands for 

future generations. However, many of the sub-catchments have been impacted by climate 

change and increased climate variability, particularly the low river flows in the 2000s Millenium 

Drought (Cai & Cowan, 2008; Pink, 2008) and the recent 2018-2020 drought. The increasing 

human use of the waterways for agriculture has also contributed to the decline of the Basin's 

health (Williams et al., 2022). Additionally, over the past several decades, extensive clearing 

of native vegetation for agriculture has occurred (Hart et al., 2020; Walker & Prosser, 2021), 

including some of the highest clearing rates in the northern portions of the Basin in the last 

decade (Reside et al., 2017; Pickering & Guglyuvatyy, 2019). 

3.3.2 Data 

3.3.2.1 Land Cover data 

Digital Earth Australia (DEA) is a national platform that offers access to a vast array of 

geospatial data, including land use and land cover datasets (Tissott & Mueller, 2022). DEA 

Land Cover is based on the Food and Agriculture Organization's (FAO) Land Cover 

Classification System (LCCS) taxonomy version 2, which is globally applicable (Gregrio & 

Jansen, 2000). The DEA Land Cover classifications are generated by combining qualitative 

or quantitative environmental information obtained from the annual composites of  

Landsat satellite sensor data, resulting in annual classifications of Australia's land cover from 

1990 to 2020. The DEA Land Cover product consists of eight datasets: the base (level 3) 

classification, seven additional descriptor layers (which can be either quantitative or qualitative 

environmental information), and the final (level 4) classification that combines the base classes 

with the associated descriptors. In this study, we used the base classification to 

comprehensively understand the data set (Tissott & Mueller, 2022). 

DEA Land Cover provides metadata explaining the land cover; however, interpretation can be 

complex as the same terminology is used to report on land use. The Cultivated Terrestrial 

Vegetation (CTV) category in the DEA Land Cover map refers to areas where active cultivation 

has been observed, including crop planting, harvesting (including grass production), 

fertilisation, and ploughing. In the DEA dataset, only herbaceous cultivation is depicted and 
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encompasses vegetation with varying cover levels, from bare (ploughed) areas to fully-grown 

crops. These agricultural areas may transition between cultivated and natural covers as 

management practices change, moving from actively cropped or grazed to fallow, low cover 

due to climate effects such as drought or other covers based on the dominant conditions 

during the year. The Natural Terrestrial Vegetation (NTV) category represents areas that 

possess the characteristics of natural or semi-natural herbaceous or woody vegetation (based 

primarily on floristics, structure, function, and dynamic characteristics). This approach 

considers NTV primarily vegetated if a pixel's vegetated fraction is more than 30%. The 

vegetation can transition between photosynthetic vegetation fraction and non-photosynthetic 

fraction states throughout the year. When urban regions contain vegetation such as suburbs 

with trees, they are categorised as NTV only if the vegetation proportion in the pixel is greater 

than or equal to 30% and as Artificial Surfaces (AS) if it is less than that. The approach enables 

the incorporation of semi-natural vegetation, such as native grasslands or pasture lands, into 

the NTV category. 

Natural Aquatic Vegetation (NAV) is associated mainly with wetlands, where woody or 

herbaceous vegetation dominates the area. This type of vegetation is commonly seen in 

flooded forests, swamps, salt marshes, fens, and mangroves, with only the latter being 

included in the current release. Artificial Surfaces (AS) refers to areas created by human 

activity, composed mainly of impermeable surfaces such as industrial and urban structures, 

railways, and roads. These surfaces are easily recognisable when they are larger than the 25-

m spatial resolution of the sensor and often include open-cut extraction sites. Natural Surfaces 

(NS) comprise primarily non-consolidated materials, such as mudflats or saltpans, or 

consolidated materials, such as bare rock or bare soil. Finally, the Water class encompasses 

terrestrial and coastal open water bodies, including dams, lakes, large rivers, and the coastal 

and near-shore zones. 

DEA level 3 data provides valuable information about land cover types over MDB. DEA 

datasets typically provide annual coverage over the same period, derived from continuous 

satellite monitoring throughout the year. The exact temporal windows used by DEA may differ 

slightly depending on the product and acquisition availability. In practice, we assume the 

classification datasets represent land conditions around the focal years, recognising minor 

temporal offsets. However, the categorisation and classification of cover data can impact its 

accuracy. Disagreements often arise regarding the most suitable land cover categories, and 

temporal changes within a given category may not be reflected in the classification, potentially 

masking important ecological shifts. 
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Managed plantations, some orchards, and tree crops cannot currently be distinguished from 

semi-natural or natural terrestrial vegetation and are not included in the CTV area. There may 

be instances where areas of NTV, NS, or NAV are misclassified as CTV due to the variable 

cycles associated with events such as fires, inundation, drought, and rainfall, which can cause 

greening or browning of natural vegetation that resembles the seasonal or management-

induced behaviour of cultivated land. 

The distinction between surfaces that are mainly barren with no remaining photosynthetic 

vegetation and partially covered surfaces is based on the spectral reflectance difference. 

When vegetation coverage is very low, it should be classified as NS instead of NTV, but 

confusion can occur due to spectral variability in the soil reflectance compared to the sparse 

vegetation reflectance. There can also be some confusion between CTV and NTV due to 

natural variations in native vegetation throughout the year. Similarly, artificial surfaces (AS) 

and natural surfaces have similarities in the annual variation of spectral signatures; NS may 

temporarily change to or from CTV during a drought.  

As per the DEA documentation, the total accuracy of the DEA dataset is 80% for a total of 

12,000 samples tested for all classes in both 2010 and 2015 (Owers et al., 2021; Tissott & 

Mueller, 2022). Classes such as artificial surfaces, natural aquatic vegetation, and water have 

high accuracies. However, classifying cultivated terrestrial vegetation and bare surfaces 

proved difficult, resulting in the lowest accuracy among the land cover classes, with F1 scores* 

ranging from 0.55-0.74 and 0.62-0.67, respectively. The dataset is appropriate to use at the 

national scale where other more detailed land cover information is unavailable (Lucas et al., 

2019; Owers et al., 2021; Tissott & Mueller, 2022).  

3.3.2.2 Land use data 

The Australian Land Use and Management (ALUM) Classification system offers a nationally 

consistent approach to collecting and presenting land use information, catering to a broad user 

base across Australia (ABARES, 2021; ABARES, 2022). National-scale land use data were 

available for multiple years, from which we chose 1996–97, 2000–01, 2005–06, 2010–11, and 

2015–16. Since national land use data was unavailable for 2020, we used 2020 catchment 

scale land use data, which uses the same classification method but offers higher resolution. 

We assume that this dataset represents accurately the land use for 1995, 2000, 2005, 2010, 

2015, and 2020. Its products are typically derived from remote sensing imagery (e.g., 

Landsat), agricultural statistics, field surveys, and expert knowledge, ensuring a robust 

 
* The “F1 score” is a combination of precision and recall and an overall measure of accuracy. “Precision” refers to 
the ability of a classification model to return only relevant instances. “Recall” refers to the ability to identify all 
relevant instances. 
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foundation for understanding land use patterns. To validate the classification, ALUM datasets 

undergo ground-truthing, expert review, and cross-referencing against high-resolution 

imagery, topographic maps, agricultural census records, orthophotos, and ancillary geospatial 

layers.  

In this study, we employed the primary classes of ALUM land use, which consisted of six 

primary classes: Conservation and natural environments, land primarily used for conserving 

essentially natural ecosystems; Production from relatively natural environments, land mainly 

utilised for primary production with minimal alterations to native vegetation; Production from 

dryland agriculture and plantations, land predominantly employed for primary production 

based on dryland farming systems; Production from irrigated agriculture and plantations, land 

mostly used for primary production involving irrigated farming; Intensive uses, land extensively 

modified for residential, commercial, or industrial purposes; and Water, which includes bodies 

of water. 

ABARES reports that overall classification accuracy for broad land use categories is generally 

greater than 80% at national scales, though specific accuracy figures can vary regionally 

depending on data availability and land use complexity.  Uncertainties in land use datasets 

include classification errors, often due to the challenge of distinguishing between visually or 

spectrally similar land uses in imagery (Dong et al., 2015). Uncertainties persist due to factors 

such as temporal discrepancies in data acquisition, image quality variations, spectral 

similarities between certain land cover types, and limited ground-reference data in remote 

regions. Land use data is typically updated every five years and may not accurately reflect the 

most recent state of land use. It should be noted that there is a difference in resolution between 

older and newer datasets. In this study, we assume that the chosen datasets are 

representative and sufficiently accurate for the purpose of capturing broad-scale land use 

patterns over time. We further assume that, collectively, these datasets accurately reflect land 

use patterns for the periods of interest (i.e., 1995, 2000, 2005, 2010, 2015, and 2020). While 

some degree of uncertainty remains inherent in any classification product, the ALUM datasets 

provide one of the most reliable, systematically produced land use information sources 

available for the MDB. 

3.3.3 Preprocessing and analysis 

Land cover data were downloaded from Amazon Web Services (AWS). ArcGIS (Esri, 2020) 

was used for mosaicking data, combining multiple individual images or datasets into a 

seamless image to analyse land use patterns or monitor changes over time. The projection of 

all images was GDA94 / Australian Albers, which is EPSG:3577 (https://epsg.io/3577). 

https://epsg.io/3577
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The Tabulate Area tool in ArcGIS Pro was used to summarise data and get insights into land 

cover patterns within the study area. We summarised the land cover dynamics for Level 3 

DEA Land Cover (Landsat) for the whole Basin and 22 catchments in MDB. Similarly, the 

Tabulate Area tool was employed to summarise land use data throughout the Basin and within 

individual SDL units. Additionally, the reported total water recovery figures were normalised 

by the area of each SDL unit, allowing for a more accurate comparison. 

 The "Unique" method in ArcGIS Pro was used to identify the unchanged land covers across 

the time axis. This method can be used to identify pixels with unique values within the time 

axis of the multidimensional dataset, showing the unchanged pixels and pixels that vary 

between several land cover classes over time. For example, if the same value always appears 

for the given pixels, those pixels are unchanged. If different values occur in one pixel across 

time, then this pixel has experienced other land cover classes. 

We conducted a trend analysis to examine the temporal changes in land cover. First, we 

estimated the total area of each land cover for each year across the entire Basin, providing a 

comprehensive view of the overall land cover changes over time. Next, the analysis was 

repeated for catchments to see if there was any pattern in the trend of change and in which 

catchments. Here, Mann-Kendall trend analysis was used to measure the degree of monotonic 

association between the data and time and indicates whether there is an upward or downward 

trend in the data (Mann, 1945; Kendall, 1975).  

Test statistic S is used to calculate the p-value, which quantifies the likelihood of observing a 

data trend as pronounced as the one identified, assuming that no actual trend exists in the 

data. Essentially, it assesses whether the observed trend could have occurred by random 

chance. If the p-value is below a certain significant level (in this case, 0.05), it was concluded 

that there is an indication of a trend in the data. The data were organised into a time series 

format, with the dependent variable (e.g., percentage of each land cover) recorded for each 

time. The Mann-Kendall tau statistic measures the degree of monotonic association between 

the data and time. A positive Kendall's tau indicates an upward trend, while a negative 

Kendall's tau indicates a downward trend (Salehi et al., 2020). Further, the Sen slope was 

used to estimate the slope of a trend in data, validate the results, and provide a more 

comprehensive analysis of the data (Sen, 1968). The Sen slope test works by dividing the 

data into multiple segments and calculating the median slope for each segment. The overall 

trend is then estimated as the median of the slopes of all segments. The Sen slope estimator 

is robust to outliers and less sensitive to the assumption of normality than other regression 

methods. However, it is not suitable for detecting non-monotonic trends. 
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To calculate water recovery in millimetres (mm) per SDL unit, we utilised the total registered 

surface water recovery data under the Basin Plan (as of 30 September 2023), expressed in 

gigaliters (GL). Following unit conversion, the total water volume was divided by the SDL unit 

area to determine the water recovery for each SDL unit in mm. This approach standardises 

the measure of water recovery, enabling comparisons across different units. The top six units 

with the highest recovery numbers were selected for further investigation. 

3.4 Results 

3.4.1 Land cover change in the whole Basin 

The pixel analysis map shows the number of changes, though it is unclear what the frequency 

is, when, and how the change has happened (Figure 3.2). 27% of the Basin was associated 

with only one land cover class over the 31 years, indicating that no land cover change has 

happened during this period. Comparing these results with the CSIRO-reported broad land 

use in 1996/97 and 2000/01 shows that many areas with one unique land cover type are 

categorised as Conservation and Other Minimal Use (Bryan & Marvanek, 2004). For 34% of 

the MDB, land cover transitions were primarily between two categories, NTV and CTV, 

suggesting a tendency for areas to switch between these two land covers. This percentage 

was 38% and 1.4% for the area that changed between 3 and 4 classes, respectively. On 

average, over 31 years, NTV constitutes 68% of the whole Basin, followed by CTV at 21% 

and NS at 11% of the Basin. The Water coverage was 0.7% and less than 0.03% for other 

Land covers. On average, the highest relative standard deviations were observed in the whole 

Basin over 31 years for NTV, CTV, and NS, with 6.2%, 5.4%, and 6.3%.  
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Figure 3.2: Number of land covers per pixel occurring within 31 years, between 1990-2020. 

NTV was the dominant land cover over all years, and its peaks corresponded to a decline in 

NS and CTV (Figure 3.3, Table A.1). In 1990, NTV comprised 64% of the MDB, followed by 

CTV, constituting 33% of the whole Basin. Further, NS and Water accounted for 1.7 and 1.5% 

of the MDB, respectively. In 2020, NTV was still the dominant land cover, accounting for 57% 

of the Basin. Similarly, CTV remained the second significant land cover, declining by nearly 

9% from 1990, while Water fell to 0.6%. In contrast, NS increased significantly from 1.7 to 

18%. Artificial surfaces gradually increase each year (300% increase over 31 years), though 

they constitute a very small proportion of the basin. Finally, the percentage of NO data (N/A) 

decreased over time.  
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Figure 3.3: (a) Land cover map for 1990; (b) Land cover map for 2020; (c) Areal percentage of 
different land cover classes per year from 1990 till 2020; the important policies that may have 
impacted land cover are listed on top of the chart and the important climatic events are listed 
below the chart (NTV: Natural Terrestrial Vegetation, CTV: Cultivated Terrestrial Vegetation, 

NAV:  Natural Aquatic Vegetation, AS: Artificial Surface, NS: Natural Bare Surface). 

The results from the analysis of the spatiotemporal variation of land use in the MDB culminated 

in some areas of considerable landscape alteration between 1990 and 2020. Figure 3.4 

highlights an area adjacent to Lake Victoria in the southwestern New South Wales Riverina 

region, where notable changes in land cover have occurred annually. The analysis for this 

region revealed a negative correlation between NS (-0.79) and Water, as well as NTV (-0.54). 

We further investigated Level 4 land cover data for this small area to investigate changes 
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between land cover classes. “NS bare area, unvegetated” showed a -0.73 correlation with 

“Non-perennial water (1-3 months),” which was reflected in level 3 data too. Additionally, there 

was a -0.8 correlation between “NS bare area, unvegetated” and “NTV herbaceous open (15 

to 40%)” and a 0.66 correlation between “CTV herbaceous sparse (54% to 15%)” and “NTV 

herbaceous scattered (1 to 4%)”. Furthermore, there was a -0.61 correlation between “CTV 

herbaceous closed (>65%)” and “NS very sparsely vegetated area”, which may indicate the 

abandonment of agricultural land in certain years. 

The land cover maps show that for the whole basin, the NS area has grown steadily from a 

low of 1.2% in 1990 to a peak of 30% in 2019. A noticeable variation in NS cover can be seen 

in Figure 3.3, wherein NS land cover is more notable in the dry years. In 2011, the peak in 

NTV coverage of 82% of the entire Basin occurred, which may have been associated with the 

La Niña wet period. The percentage of NTV again dipped to 55% by 2019, a year after another 

period of below-average rainfall and low water flows. CTV ranged from 11% to 33%, with a 

peak value recorded in 1990 and a minimum in 2018. Most variations in the percentage of 

land cover were observed between NTV and CTV, with NS experiencing a comparatively 

smaller share of this variation (Figure 3.2). 
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Figure 3.4: Land cover dynamics between 1990 and 2020 for a 22,222 km2 area near Lake 
Victoria, the western Riverina region of southwestern New South Wales, Australia. 
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The Mann-Kendall test signalled a decreasing trend in CTV and Water and a considerably 

increasing trend in NS and AS areas (Table 3.1). The Sen Slopes were highest for CTV (-0.3) 

followed by NS (0.35). The decreasing trend for CTV may be partly explained by the decline 

in rainfall after 1990. Further, the Spearman correlation analysis revealed a positive correlation 

of 0.38 between mean rainfall and NTV, indicating that NTV also tends to increase as rainfall 

increases. Interestingly, when NTV was shifted by one year, the correlation increased to 0.72, 

suggesting that NTV takes approximately one year to respond to changes in rainfall. In 

contrast, NS showed a negative correlation of -0.59 with mean rainfall, while water exhibited 

a strong positive correlation of 0.70. 

Table 3.1:Trend analysis tests for the MDB. 
 Mann Kendal's test result  Sen's Slope test 

result 
Land 
cover 

Kendall's tau 
statistic 

Mann-Kendal's 
score 

Trend p-
value Slope  intercept 

CTV 0.3462 -161 decreasing 0.0065 -0.301 25.857 
NTV -0.230 -107.000 no trend 0.072 -0.041 67.118 
NAV 0.092 43.000 no trend 0.475 0.000 0.000 
AS 0.841 391.000 increasing 0.000 0.001 0.009 
NS 0.325 151.000 increasing 0.011 0.349 4.574 

Water -0.299 -139.000 decreasing 0.019 -0.014 0.845 

3.4.2 Land cover changes in catchments 

Considering the Basin-scale heterogeneity, the results are also presented at the catchment 

scale to identify better regional variation and controlling factors. The percentage of areas in 

the Murray-Darling catchments that have not changed land cover between 1990 and 2020 

ranged from 10 to 71% for each catchment over 31 years (Figure 3.5). The Lower Darling was 

the only catchment that showed significant oscillation between at least three land cover 

classes, and more than 70% of its area had three land covers or more. Further, in more than 

90% of six south-eastern catchments (Ovens, Mitta Mitta, Upper Murray, Kiewa, Campaspe, 

and Goulburn Broken), the land cover only changed between two land cover classes or 

remained unchanged. Very few pixels changed between five classes in all catchments. 
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Figure 3.5: Percentage of area categorised as pixels with 1,2, 3, 4, and 5 land cover classes 
over 31 years, and the percentage of unchanged land cover area per catchment. 

Considering the changes in land cover per catchment between 1990-2020, the area of NS 

increased significantly since 1990 in all catchments (Figure 3.6). The largest increases (more 

than 3% of whole MDB) were recorded in the Lower Darling, Lower Murray, and Condamine 

catchments. Moreover, there was a decrease in water area (ranging between 0.01 and 0.22%) 

between 1990-2020 in all catchments, with Lachlan and Lower Darling accounting for the 

largest share of change (Figure 3.6). Investigation of changes in NTV and CTV from 1990 to 

2020 revealed that most MDB catchments experienced a decline in CTV, with NTV decreasing 

in near half of them. Only three catchments (Condamine, London-Avoca, and Wimmera) 

exhibited a slight increase in CTV. For NTV, several catchments noted slight rises, with the 

most significant being in Murrumbidgee corresponding to 0.69% of NTV change between 

1990-2020. A reduction in NTV and CTV appeared to correspond to increase in NS in most 

catchments (Figure A.1). For example, from 1990-2020 in Condamine NS increased by 3.24%, 

while NTV and CTV decreased by 2.74% and 0.52%, respectively. Further, a rise in NTV 

percentage was observed in the area where CTV decreased. For example, between 1990-
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2020 in Murrumbidgee CTV decreased by -0.78%, while NTV and NS increased by 0.69% 

and 0.17%, respectively.  

 

Figure 3.6: 1990-2020 change in land cover as percentage of the total MDB for (a) Natural 
Terrestrial Vegetation (NTV); (b) Cultivated Terrestrial Vegetation (CTV); (c) Natural 

Bare Surface (NS); (d) Water. 

Small catchments such as Kiewa corresponded to less than 1% of land cover changes in the 

whole Basin (Figure 3.6). However, CTV and NTV in Kiewa changed by roughly 6%, showing 

that CTV has turned to NTV during this period. Wimmera, Murrumbidgee, MD Murray, London 

Avoca, and Lachlan catchments were highly cultivated in 1990, and CTV underwent only a 

negligible change by 2020. NS covered a significant part of the Warrego, Lower Murray, and 

Lower Darling catchments in 2020, although it was negligible in 1990 (Figure 3.7). 
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Figure 3.7: Distribution of different land covers over MDB in (a) 1990 and (b) 2020. 

We applied trend analysis tests for each catchment to get more insight into the trend of land 

cover change over the MDB. The Mann-Kendall and Sen's slope tests for all the catchments 

showed a decreasing trend in CTV for all western catchments (Figure 3.8, Table A.2). The 

largest Sen's slope was found in Lower Darling and Lower Murray, respectively -0.765 and -

0.613. Further, the results showed an increasing trend in NS, particularly in the northern and 

southern catchments. In contrast, no trend has been observed in the central catchments of 

the MDB for NS. Moreover, except for the Border Rivers catchment, which showed a 

decreasing trend, no trend was observed in all other catchments for NTV areas. This may 

indicate that Mann-Kendall is not suitable when there are non-monotonic trends. 
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Figure 3.8: 1990-2020 trend analysis of land cover classes for all catchments. (a) NTV: Natural 
Terrestrial Vegetation, (b) CTV: Cultivated Terrestrial Vegetation, (c) NS: Natural Bare Surface, 

(d) Water. 

3.4.3 Land use change over Murray-Darling Basin 

3.4.3.1 Overall land use change 

The land use data were used to investigate changes in agricultural areas across the MDB. 

The conservation and natural environment areas in the whole basin gradually increased from 

7% in 1995 to a peak of 15% in 2010 before declining to 9% by 2020 (Figure 3.9). In contrast, 

in the first decade, production from relatively natural environments was under 20%, surged to 

45% in 2005, after that maintaining levels above 26 to 35% towards the end of the period. The 

share of land utilised for dryland agriculture and plantations started at 75%, witnessed a 
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minimum of 41%, then recovered but failed to reach the initial decade's levels, stabilising 

below 60%. 

Production from irrigated agriculture and plantations, represented in orange, exhibited 

significant fluctuations, starting below 2% before reaching a peak of 3% in 2020. Water 

resources followed a similar trend, remaining below 2% but spiking to 3% in 2010 and 2015, 

only to drop below 2% again by 2020. Intensive land uses stayed under 1% until it gradually 

increased, surpassing the 1% mark by 2010. 

 

Figure 3.9: Temporal dynamics of land use in the Murray-Darling Basin: 1995-2020. 

3.4.3.2 Water recovery over MDB Sustainable Diversion Limits (SDL) units 

The Murray-Darling Basin Authority (MDBA) reports show a general upward trend in total 

water recovery for the environment across SDL units (Figure A.2). In the beginning, direct 

purchases of water entitlements were the main type of water recovery. However, over time, 

there is a noticeable shift towards off-farm and on-farm infrastructure efficiency investments 

as a way to recover water for the environment (Figure A.2). Water recovery volumes 

experienced a significant increase from the 2013-14 period onwards, reaching a plateau in 

2019 and remaining at that level through 2023. 
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Looking at the total water recovery map (Figure 3.10), distinct regional patterns emerge when 

considering the Northern Basin and Southern Basin separately. Over 80% of recovery takes 

place in South Australian Murray, New South Wales Murray, Goulburn, Victorian Murray and 

Murrumbidgee. Analysing total water recovery normalised by SDL unit areas revealed that the 

Murrumbidgee, New South Wales Murray, Goulburn, Victorian Murray, South Australian 

Murray and Barwon-Darling Watercourse had higher recoveries, with respective figures of 5, 

14, 19, 24, 60 mm, and the highest at 420 mm (Figure 3.10). 

 

Figure 3.10: Total water recovery (mm) per unit area in surface water SDL Resource Units. 

3.4.3.3 Land use change over SDL units with the highest water recovery 

Over the examined period (1995-2020), there has been a discernible fluctuation in the total 

area dedicated to agriculture. Overall, the area under production for dryland agriculture and 

plantations has declined in most of the SDL catchments, especially after 2005 (Figure 3.11). 

On the other hand, the area of production from irrigated agriculture and plantations has 

increased in most SDL units with the highest water recovery levels. The increase in production 

rate from irrigated agriculture and plantations differed between SDLs’ units. 

The data on intensive land use also indicate a steady rise towards the end of the period 

studied, particularly in the Goulburn area, which increased from 1% in 1995 to 8% by 2020. 

Furthermore, the expansion of the water-covered regions is evident after 2010 in the majority 

of the SDL units with the highest water recovery.  
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Figure 3.11: Comparative analysis of land use trends across regions with highest water 
recovery in the Murray-Darling Basin: 1995-2020.  
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3.5 Discussion 

Land cover plays a vital role in shaping the hydrology of a catchment, exerting a significant 

influence on the overall water cycle (Gebremicael et al., 2019; Jose et al., 2021). Evaluating 

land cover dynamics is necessary for sustainable resource management and economic 

growth. This study analysed various aspects of land cover distribution and dynamics in the 

MDB, examining basin and catchment level statistics to understand the changes in land cover 

across the region. To achieve this, the DEA level 3 landcover dataset was used to get a 

general overview of the dominant land cover types and the overall distribution of land cover in 

the Basin. This top-down approach allowed us to understand the land cover patterns at both 

a broad and a detailed scale. 

The extent of land cover change in the Murray-Darling Basin varied significantly among 

catchments, with some catchments displaying minimal year-to-year fluctuations and a higher 

percentage of unchanged land cover. This included Border Rivers, Upper Murray, Ovens and 

Kiewa. Since 1990, the western part of the Murray-Darling Basin has experienced a 

decreasing trend in Cultivated Terrestrial Vegetation (CTV). On the other hand, the Natural 

Bare Surface (NS) expanded in several catchments, particularly in the Lower Darling, Lower 

Murray, and Condamine catchments. (Semi-)Natural Terrestrial Vegetation (NTV) consistently 

dominated the land cover throughout the years, with its peaks corresponding to declines in 

NS and CTV. Additionally, there has been a decline in water areas across 11 catchments, with 

the most significant proportional decrease occurring in the Lachlan and Lower Darling 

catchments.  

In the subsequent sections, we will examine the factors driving land cover change over time, 

focusing on the prevailing climate and policy conditions. However, we acknowledge that these 

are not the sole drivers. We will also summarise the environmental implications of the 

observed changes in specific land cover types. 

3.5.1 Decadal land cover change 

3.5.1.1 Land cover change 1990-2000 

Climate shifts have played a significant role in rainfall after 1990. Between 1977 and 1990, 

persistent, blocking high-pressure systems in the south of Australia along longitude 140°E with 

a low to its north were observed, leading to high rainfall in the MDB (Callaghan, 2019). In 

1990, the water land cover class was at its highest level in 31 years in the Basin, accounting 

for 1.49% of the total area. In contrast, in 1990, the percentage of NS, indicating areas with 

sparse or no vegetation cover, was at its lowest level, 1.71% of the Basin. Since the 1990s, 

climate change has decreased cool-season rainfall in the southern Murray-Darling Basin, 



 

86 
 

which has affected the Basin's agricultural region (Speer et al., 2021). Due to climate variability 

and changes in land cover management practices, irrigated agriculture in the Murray Darling 

Basin has experienced significant shifts (Grafton et al., 2014). Following a peak in 1991, the 

percentage of CTV experienced a decline and maintained values below 28% toward the end 

of 2000 (Figure 3.3). Particularly after the start of the millennium drought in 1997, it declined 

to 19% and remained at that level for several years. The decrease in cropland from 1990 to 

2000 in the MDB is consistent with the results reported by (Yao et al., 2017).  

3.5.1.2 Land cover change 2000-2010 

Changes in climate patterns and droughts significantly impacted the land cover across the 

MDB between 2000 and 2010 (Speer et al., 2021). During the Millennium Drought, which 

lasted from 1997 to 2009, there were prolonged periods, specifically from 2001 to 2004 and 

2004 to 2007, when there was no occurrence of La Niña or negative Indian Ocean Dipole 

event (King et al., 2020). The millennium drought caused stress to communities and 

ecosystems (Ashton et al., 2009; van Dijk et al., 2013). This is reflected in the percentage of 

water area in the whole Basin, ranging from 1.5% to 0.3%, with the lowest recorded in 2007 

and the highest in 1990. Total storage did not recover until the unusually wet La Niña period 

in early 2010 (van Dijk et al., 2013). The water land cover class increased to more than 1% in 

2010 after being below 0.7% of the Basin area for around seven years. It suggests that the 

Basin function required above-average rainfall conditions to be restored (McKernan, 2005).  

Furthermore, the NS cover was more than 11% of the total area during the Millennium Drought 

except for the first two years. During the Millennium drought, distinct ecosystems within the 

Basin experienced harm due to high salinity levels in the water (MDBA, 2023b). In many 

cases, water was too saline to be used for drinking or watering animals and crops, resulting 

in reduced crop production and agricultural land abandonment (Alcantara et al., 2013). An 

increase in bare surfaces can also be linked to an increase in salinity, as long periods of high 

salinity may harm the natural environment, crops, and livestock (Warrence et al., 2002; 

Shrivastava & Kumar, 2015). On the other hand, the decrease in water supply led to lower 

crop yields, changes in the types of crops grown in the region, and a decline in some 

agricultural industries (Bryan & Marvanek, 2004). This may explain the reduction in CTV during 

these years, especially in the western part of the study area.  

Between 2000 and 2010, Australia's population experienced a steady growth rate of around 

16% over the decade (ABS, 2011). Population growth increased the demand for land to 

support housing, infrastructure, and economic activities (Avtar et al., 2019). From 2000 to 

2010, the increase in AS accounted for less than 0.01% of the total Basin area. Although the 
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percentage of AS is small compared to other land cover classes, the need for food and other 

agricultural commodities can increase AS in the MDB, the agricultural hub of Australia (Pollino 

et al., 2021; Lane et al., 2023). In the eastern part of the study area, there was an increase in 

CTV toward the end of the decade, which is in line with Hu et al. (2020). Expansion of 

agricultural lands, including large-scale commercial agriculture, smallholder farming, and 

shifting cultivation, can lead to deforestation, conversion of natural habitats to croplands, and 

changes in land use patterns (Pendrill et al., 2022; Tao et al., 2023), which is evident from the 

dynamic of land cover classes CTV, NTV and NS during this period (Figure A.1). 

3.5.1.3 Land cover change 2010-2021 

Climate-driven natural disasters, such as bushfires, floods, and droughts, have significantly 

influenced land cover changes from 2010-2021. In 2010, negative phases of the Interdecadal 

Pacific Oscillation (IPO) and positive phases of the Southern Oscillation Index caused high 

rainfall (Callaghan, 2019). This led to significant flooding within the northern MDB, including 

in the Warrego, Paroo, Nebine, Moonie, Maranoa, Balonne, Condamine, Culgoa, and Weir 

Rivers (MDBA, 2010). These events were reflected by a significant increase in the water land 

cover class, which jumped from 0.3% in 2009 to 1% in 2010 and to a rise in NTV from 62% to 

73% during the same period.  

In 2016, widespread rainfall in the MDB was caused by a negative Indian Ocean Dipole event, 

whereby anomalously warm sea surface temperatures in the east Indian Ocean gave rise to 

dynamic and thermodynamic conditions (King et al., 2020). The winter of 2016 was particularly 

wet in southeast Australia and ranked the fourth wettest for the MDB since 1900, the start of 

the instrumental record (King et al., 2020). The observed increase in NTV and decrease in 

NS, as depicted in Figure 3.3, aligns with the impact of this phenomenon. These results were 

also supported by changes in land cover patterns observed in a small section of the study 

area near Lake Victoria in the western Riverina region of southwestern New South Wales 

(Figure 3.4). 

After 2016, there were unusually dry conditions in the MDB, the most prolonged since 1900. 

Large swaths of Australia, particularly the MDB region of south-eastern Australia, were in 

drought from 2017-2020 (King et al., 2020). In 2019-2020, extensive bushfires burned large 

parts of forested and rural regions in southeast NSW and north-eastern Victoria (Biswas et al., 

2021). Nearly one-third of the 15,000 km2 forested and rural areas of the Upper Murray 

catchment in south-east NSW and north-eastern Victoria were burnt during the 2019-2020 fire 

season (Joehnk et al., 2020). Bushfires had significant impacts on the land cover in the MDB, 

reflected in the percentage of NS and decrease in NTV. The highest percentage of NS was 
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observed in 2019 (30%), while NTV went under 60%. This is likely because 2018-20 was an 

arid year, and much land (CTV and NTV) would have been bare in 2020, also reflected in 

Water land cover (Figure 3.3a, b and Figure 3.6). Between 2010 and 2020, the expansion of 

artificial surfaces surged to 0.015% from less than 0.01% between 2000 and 2010.  

3.5.2 Unveiling the dynamic nature of major land cover types 

3.5.2.1 Natural terrestrial vegetation 

The northern and southern parts of the MDB showed distinct spatial and temporal variations 

in the impact of land cover change. The cross-correlation analysis unveiled a correlation, 

without a time lag, between NTV and precipitation in the northern part of the Basin. However, 

in the southern part of the MDB, a one-year time lag was required for the correlation to reach 

significance (Table A.3). This could be due to the variability in rainfall seasonality within the 

MDB catchments (BOM, 2020). In the northern part, the rainfall tends to be more concentrated 

in the summer months (December to February) due to the influence of monsoonal systems 

(Gallant et al., 2012; BOM, 2020). Southern parts of the Basin typically experience a more 

evenly distributed rainfall throughout the year, with a peak in winter (June to August) due to 

the passage of cold fronts and mid-latitude weather systems (Murphy & Timbal, 2008; Speer 

et al., 2021). Further, the northern Basin is mainly flat, with few hills or mountain ranges. The 

water in the northern Basin moves slowly in wide, shallow rivers and evaporates more quickly, 

and there are fewer places to store large volumes of water (MDBA, 2023a). Additionally, the 

northern region of the MDB is typically hotter and drier than its southern counterpart. This can 

result in sparse vegetation, reducing the landscape's ability to retain water (Chen et al., 2021).  

In most southern catchments, introducing a one-year lag reveals a persistent correlation 

between NTV and rainfall, with the correlation strength increasing in some catchments (Figure 

A.1). NTV typically shows a gradual decrease in vegetation cover in response to the depletion 

of terrestrial water storage (TWS) (Chen et al., 2021). Topographic differences help form 

natural reservoirs and channels that can hold and direct water, which may explain the increase 

in correlation between precipitation and NTV with a one-year lag.  

The southern Basin receives higher levels of rainfall, which often results in vegetation being 

less reliant on precipitation (MDBA, 2023a), as the minimum water requirement is usually 

fulfilled. Precipitation was not the limiting factor for the occurrence of NTV in five catchments 

that received the highest amount of precipitation: the Goulburn-Broken, Kiewa, Upper Murray, 

Campaspe, Ovens and Mitta Mitta (Figure A.1). In these catchments, the correlation between 

NTV and precipitation was low. 

3.5.2.2 Cultivated terrestrial vegetation 
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The CTV area comprised a lower percentage than NTV. The observed reduction in CTV during 

the millennium drought can be attributed directly to the decline in river inflows and consequent 

declines in reservoir storage and released volumes (van Dijk et al., 2013). Overall, the 

reduction in CTV and water areas and the increase in NS areas corroborated the results of 

the Mann-Kendall trend test. The decreasing CTV trend in the western part of the study area 

could be attributed to its mainly dryland agriculture. The drier interior regions of the MDB have 

low returns from agriculture per hectare (Bryan & Marvanek, 2004). Although the total volume 

of water used for irrigation drastically decreased during the Millennium drought, the value 

derived from each unit of water used increased significantly (Kirby et al., 2014). This is 

attributed to notable advancements in irrigation efficiency at the farm level and irrigation water 

supply systems (Kirby et al., 2012; Kirby et al., 2014), reflecting higher economic efficiency 

and a shift towards more valuable crops per unit of water used. Irrigated agriculture is 

widespread in the MDB, including the Murrumbidgee catchment, Murray Valley, and Goulburn 

Valley. In remote sensing imagery, cultivation practices often lead to highly dynamic spectral 

signals within and between years and regular transitions between vegetation and bare soil 

(Tissott & Mueller, 2022). This can be inferred from the standard deviation of the remote 

sensing-based estimated CTV in these areas. CTV's highest standard deviation over time was 

in the Goulburn-Broken, Mitta Mitta, and Upper Murray catchments (Table A.4), corresponding 

to high rainfall variation in those catchments (Table A.5). Dryland agriculture is common in this 

part of the Basin (van Dijk et al., 2009), and the response to the weather can be seen in the 

variability of CTV. 

Greater diversity of land cover occurs in the southern part of the MDB, hosting the most 

profitable agricultural regions, including Goulburn (Vic) and the Murrumbidgee (NSW). In 

these areas, it is common for irrigated and/or high-value agricultural land uses to be adjacent 

to low-value land uses such as beef and sheep grazing and cereals (Bryan & Marvanek, 2004). 

The southern regions are also the most intensively farmed part of the MDB, making it 

particularly vulnerable to the impacts of climate change on agriculture and food production. 

These changes are anticipated to considerably impact fluctuations in surface runoff, 

evapotranspiration, groundwater recharge, and hence the water balance on both spatial and 

temporal scales (Lawrence & Vandecar, 2015; Cohn et al., 2019; Adhikari et al., 2020). 

3.5.2.3 Natural bare surfaces 

The increasing area of natural bare surfaces in the MDB has far-reaching implications for the 

environment, water quality, air quality, and agriculture. NS leaves the soil exposed and one of 

the major implications is the increased risk of erosion, as bare soils are more susceptible to 

erosion by wind and water. An increase in NS can significantly increase the risk of flooding, 
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as these surfaces reduce the land's ability to absorb and retain rainwater. Therefore, the loss 

of natural vegetation and soil, combined with an increase in impervious surfaces, can 

considerably impact the amount and timing of water entering rivers and streams, ultimately 

leading to an increased risk of flooding. The loss of vegetation cover can also disrupt the 

balance of the ecosystem, affecting wildlife habitat and biodiversity. The lower reaches of the 

MDB are a hotspot for freshwater biodiversity (Hammer et al., 2013); loss of vegetation cover 

associated with the observed increase in NS indicates increased stress on the region’s 

ecosystems. There was a declining trend in water areas in 11 of the 22 catchments. Almost 

all are located in the western and southern parts of MDB. The findings align with other reports 

which attributed the below-average annual rainfall in the southern Basin to climate change 

(Hope, 2017; Speer et al., 2021; CSIRO & BOM, 2022). Previous studies have shown that the 

southeastern region of the Basin has been particularly affected by climate change (Pittock & 

Connell, 2010; Pittock & Finlayson, 2011). This is consistent with the results of rainfall trend 

analysis, which reveal a declining trend in four catchments situated in the southeast part of 

the MDB - Upper Murray, Ovens, Mitta Mitta, and Goulburn-Broken and also for the Namoi 

catchment, which is located in the eastern part of the Basin (Table A.6). 

3.5.3 Impact of water management policies on land use dynamics in the MDB 

While land cover data, especially CTV, has proven effective in delineating the general extent 

of cultivated areas, its utility is constrained when it comes to pinpointing specific land use traits, 

such as areas under irrigation. Even at Level 4, DEA land cover data elaborates on cover 

density but falls short of offering granular insights into irrigation practices. Therefore, land use 

data was used to discuss the impact of policy. From 1995 to 2020, the MDB experienced 

significant land use changes, heavily influenced by climatic events such as the millennium 

drought and subsequent periods of substantial rainfall. Moreover, policy interventions have 

also played a crucial role in land use transitions by influencing the allocation and management 

of resources and offering incentives or subsidies for sustainable practices. 

During the Millennium Drought, the increased demand for scarce water supplies for 

agriculture, urban, industrial, and environmental uses shifted the national policy focus toward 

more sustainable management of Australia's water resources (Ashton et al., 2009). The 

impact of drought became evident during the middle of the drought in 2005, marked by 

significant land use changes, particularly a notable decline in dryland agriculture and 

plantations. The National Water Initiative (2004) and Water Act (2007) focused on balancing 

the needs of different stakeholders and reforming the water agenda to address issues related 

to water management, allocation and sustainability (Connell & Grafton, 2011; Garrick et al., 

2012; Dyson, 2021; Kirsch et al., 2021).  
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Since 2010, the MDB has experienced a remarkable environmental shift, largely due to 

substantial rainfall that dramatically reversed previous dry conditions (MDBA, 2010; 

Callaghan, 2019). This shift was evidenced by a rapid increase in water storage levels, rising 

from 26% at the beginning of 2010 to 80% by early 2011 (Wei et al., 2011). Concurrently, 

significant policy reforms were implemented, focusing on sustainable water management 

(Hart, 2016; MDBA, 2018). These reforms encompassed both financial allocations for 

improving irrigation efficiency and the implementation of the Basin Plan in 2012, which 

introduced Sustainable Diversion Limits (SDL) to enhance water management and mitigate 

over-allocation and environmental degradation in the MDB (Crossman et al., 2010; Wheeler 

et al., 2013). Consequently, these measures necessitated a reduction in water allocations for 

irrigated agriculture. Additionally, subsidies were provided for developing more efficient 

agricultural infrastructure, enabling farmers to utilise water resources more effectively. 

Theoretically, improvements in irrigation efficiency, infrastructure, and agricultural policies 

promoting water-saving technologies were expected to enable the expansion of irrigated land 

while reducing water use (Wei et al., 2011). However, the practical effectiveness of these 

measures in terms of return flows and increased stream flows remains debatable (Grafton & 

Wheeler, 2018). Over recent decades, MDB irrigators have extensively upgraded their 

systems with private and government subsidies to boost agricultural productivity and 

environmental outcomes (Meyer, 2005; Crossman et al., 2010; Wheeler et al., 2013; DAWR, 

2019a). Nevertheless, research indicates that these subsidies have inadvertently increased 

water extractions, altered crop patterns, and intensified on-farm water use (Steinfield & 

Kingsford, 2013; Slattery et al., 2019). Additional concerns include the construction of new 

private dams, funded by subsidies, which capture overland flows and potentially increase 

water extractions beyond the Cap limits (Slattery et al., 2019). The cost-effectiveness of 

subsidising irrigation infrastructure versus buying direct water entitlements is contentious. 

Although the former is more costly, its actual impact on water savings and environmental 

outcomes has been questioned, sometimes leading to expanded irrigated areas or shifts to 

more water-intensive crops (Grafton & Wheeler, 2018; Wheeler et al., 2020; Wheeler, 2022). 

These issues highlight the critical need to reassess the effectiveness of these financial outlays 

in achieving their intended environmental benefits compared to the reported water savings 

(Grafton & Williams, 2019). 

The SDL units that have achieved the greatest levels of water recovery are located along the 

main channel of the Murray River and its significant tributaries within the MDB, more 

particularly, the four units, Murrumbidgee, New South Wales Murray, Goulburn and Victorian 

Murray, which are all located in the southeast of the MDB. Detailed analysis of individual units 
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reveals unique patterns of land use change, each reflecting local environmental, economic, 

and policy influences. For example, in Goulburn and Victorian Murray, agricultural productivity 

is a major economic driver known for its dairy and crop production. In Goulburn, there is a 

decrease in ‘Production from dryland agriculture and plantation’ and an increase in ‘Production 

from irrigated agriculture and plantations’, which could indicate the adoption of more water-

efficient but intensive farming practices, possibly reflecting a rebound effect. The rebound 

effect on water use occurs when the increase in water demand from improved water 

productivity surpasses the technical efficiency savings, leading to higher water extractions 

(Wheeler et al., 2020). The Victorian Murray unit shows a general increase in ‘Conservation 

and natural environments’ with a simultaneous decline in ‘Production from dryland agriculture 

and plantations’ while the water shows the highest percentage in 2010 and 2015; at the same 

time, irrigated agriculture increased.  

The volume of water that farmers buy, or sell is influenced by rainfall, water allocations, and 

storage, which in turn impacts agricultural practices. There has been a significant shift towards 

market-based water management in the region. The establishment of water trading 

mechanisms allows for the reallocation of water towards higher-value uses, which may explain 

the shift away from traditional dryland agriculture towards more water-efficient agricultural 

practices and conservation efforts. For example, at low water allocation prices, dairy farmers 

typically use their own water allocations to grow pasture. However, as prices increase (above 

AUD$220/ML), it becomes more profitable for them to purchase supplemental feed or ‘dry out’ 

their cows and sell their available water (Grafton et al., 2016). This suggests a transformation 

that might be associated with changes in water policy and agricultural strategies (Grafton et 

al., 2014).  

Although the irrigated area experienced reductions during dry years, data, particularly from 

after 2010, indicate an increase in irrigated lands. This trend may highlight a sustained shift 

towards more perennial types of land use, suggesting a long-term adaptation to the availability 

of subsidies and the economic benefits associated with perennial crops. Adamson and Loch 

(2014) noted that subsidies led to an expansion of the area under irrigated cultivation and 

prompted a shift towards more perennial planting. These subsidies facilitated the adoption of 

perennial plants such as trees, vines, nuts, and stone fruits, requiring significant initial 

investments and long-term commitments due to their consistent water needs (Grafton et al., 

2016). However, these crops also have lower water requirements and yield higher net returns 

(Grafton et al., 2016). 

Our research indicated an increase rather than a decrease in intensive uses and production 

from irrigated agriculture and plantations across several SDL units, alongside a reduction of 
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conservation and natural environments. This pattern confirms the rebound effect, where 

efforts to enhance irrigation efficiency and promote water recovery are not translating into the 

anticipated environmental benefits. Indeed, despite substantial governmental incentives 

aimed at boosting irrigation efficiency, these improvements have paradoxically led to 

increased water extractions, particularly under conditions of water scarcity, minimal idle 

capacity, subsidised irrigation infrastructure, and low water and energy costs (Grafton et al., 

2018; Ward & Pulido-Velazquez., 2008; Loch & Adamson, 2015; Wheeler et al., 2020). The 

subsidies encouraged expanding irrigated areas and using diverse water sources, raising 

concerns about the actual environmental benefits versus the reported water savings.  

The coincidence of heavy rain events in 2010 and 2016 could have impacted both water 

availability and recovery. While superficially suggesting successful water recovery, this 

increase may reflect the coincidental interplay between favourable climate conditions and 

water policy implementations, making it difficult to distinguish the true drivers (ABARES, 

2020). The temporal delay in observable changes in land cover post-policy implementation, 

coupled with the complexities of climate variability, land management practices, and socio-

economic dynamics, complicates the accurate assessment of policy impacts.  

3.6 Conclusion and future insights 

This study provides a detailed analysis of land cover and land use changes in the Murray 

Darling Basin (MDB), examining annual land cover data from 1990 to 2020 and land use data 

at five-year intervals from 1995 to 2020. The land cover changes were investigated across 22 

MDB catchments using the Geoscience Australia level 3 land cover dataset, while land use 

changes were assessed across Sustainable Diversion Limit (SDL) units based on ABARES 

data. Significant findings include an increase in natural bare surfaces and a decrease in water 

bodies, alongside shifts in agricultural land use driven by water recovery initiatives and 

infrastructure developments. 

Various factors, including climate variability, agricultural expansion, changes in water 

management, and natural disasters influenced land cover changes across catchments. Their 

distribution and magnitude varied due to regional and local factors like topography, climate, 

and land management practices. 

The cross-correlation analysis identified a direct correlation between (Semi-)Natural 

Terrestrial Vegetation (NTV) and precipitation in the northern Basin, while a one-year lag is 

necessary to observe a significant correlation in the southern part of the MDB. This highlights 

the varied influence of environmental drivers throughout the basin. Climate change is 
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anticipated to impact the northern and southern regions of the MDB differently. Although the 

southern region will experience effects from climate change, these are expected to be less 

severe due to the region's higher rainfall and greater water availability compared to the north. 

Trend analysis results indicated a decrease in Cultivated Terrestrial Vegetation (CTV) in 

MDB's western region and an increase in Natural Bare Surface (NS) across majority of 

catchments. The increasing stress on the ecosystem due to the rise in NS points towards a 

greater risk of erosion and potential impacts on water and air quality. Reducing CTV areas 

risks the local economy and food security; thus, promoting sustainable farming and investing 

in climate-resilient crops is essential in the dryer part of the MDB. The evaluation of land use 

changes in the Murray-Darling Basin indicates a notable expansion of irrigated and intensively 

used areas, particularly in SDL units with significant water recovery. Initiatives such as the 

Water Act and the Basin Plan were originally introduced to reallocate water from consumptive 

uses back to the environment. Measures aimed at increasing irrigation efficiency and 

implementing water buybacks were intended as practical means to achieve these 

environmental recovery targets. However, outcomes have frequently deviated from 

expectations, leading to increased irrigation rather than containment. Evidence from previous 

research and our study suggests a rebound effect, where enhancements in water efficiency 

paradoxically expand agricultural land use (Loch & Adamson, 2015; Wheeler et al., 2020). 

In formulating policies, special attention should be given to the management of irrigated land 

cover, recognising its significance in altering hydrology and addressing associated risks such 

as increased recharge, nutrient leaching, elevated water tables, waterlogging, and soil 

salinisation (Stewardson et al., 2021; Beavis et al., 2023; Lane et al., 2023). While 

acknowledging the positive impacts of water efficiency measures, policy development should 

consider broader implications and complexities, including regional variations, technological 

limitations, behavioural factors, rebound effects, and complex interactions. Policy and 

technical complacency and reliance on inadequate data have hampered informed water 

management and policy decisions in the MDB (Wheeler & Garrick, 2020). Rebound effects 

resulting from efficiency improvements must be mitigated to prevent unsustainable water 

practices (Wheeler et al., 2020). Improved monitoring through the use of satellite imagery, 

metered data, and standardised data collection is an aspect to ensure effective and 

sustainable land cover and land use management (Turner et al., 2019). 

The Digital Earth Australia (DEA) platform's LCCS Level 3 data provides insights into the land 

cover changes across the MDB. On the other hand, national land use data offers broader 

details at a lower resolution, proving invaluable for monitoring agricultural changes and 

assessing the impact of policies on a large scale. The findings from this research indicate that 
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high-level national land use and land cover data are useful for understanding overall trends 

and climatic impacts, prioritising conservation efforts, and making informed land-use 

decisions. Continued monitoring and research are crucial for a deeper understanding of the 

long-term effects of the Basin Plan on land cover and ecosystem health within the MDB.  

Under the existing cap, irrigators may acquire additional water from others, leveraging 

efficiency gains and water harvesting practices to intensify land and water use. Such 

infrastructure can intercept flows that would otherwise enter river systems, effectively 

redistributing water availability and enabling new or expanded irrigation enterprises without 

exceeding the overall 1995 diversion limit. Although this does not increase the total volume of 

water diverted, it can lead to localised intensifications in production, thereby introducing 

complexity and unintended outcomes to environmental water recovery efforts. The challenge 

lies in achieving sustainable agricultural expansion while acknowledging that improvements 

in water-use efficiency and related infrastructure can reshape water allocation patterns. These 

highlight the importance of strategies that consider market dynamics, infrastructural 

influences, and socio-economic behaviours to safeguard environmental objectives.  

Uncertainty in datasets, such as difficulties in distinguishing spectrally similar land use and 

land cover or temporal inconsistencies, could result in errors in identifying specific land use 

and land cover patterns. This might lead to over- or underestimation of key land use and land 

cover changes, affecting conclusions about regional development, conservation priorities, or 

policies. Future research should focus on refining the spatial and temporal resolution of land 

cover and land use data to capture their changes. Additionally, applying advanced remote 

sensing methods and machine learning algorithms is crucial for identifying land use and land 

cover transitions and minimising classification errors. 
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4 CHAPTER 4 

UNCOVERING EVAPOTRANSPIRATION PATTERNS IN THE 
MURRAY DARLING BASIN OVER TWO DECADES: A LAND 

COVER PERSPECTIVE 

Highlights: 

CMRSET performed better than MODIS AET in long-term basin water balance. 

Significant differences in AET among MDB catchments. 

Temporal AET variability is dominated by rainfall in most catchments. 

Significant differences in AET/P between major land covers were unusual. 
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4.1 Abstract 

The Murray Darling Basin (MDB) is one of Australia's most important water and land 

resources, contributing significantly to the country's economy. Actual evapotranspiration (AET) 

plays a critical role in the water balance of the Basin, influencing water availability for irrigation 

and other uses. Understanding the dynamics of AET in the MDB under changing land cover 

and climate is essential for managing water resources sustainably, predicting water availability 

for agriculture, and ensuring the long-term sustainability of the region's economy and 

ecosystems. This study provides a comprehensive analysis of the long-term changes in AET 

over the MDB at both the Basin and catchment levels over the two-decade period 2001-2020. 

To investigate the dynamics of AET within various land cover types, high-resolution Digital 

Earth Australia (DEA) Land Cover data was employed alongside the MODIS and CMRSET 

AET datasets. 

While the MODIS dataset showed limitations in water balance assessment compared to 

CMRSET, overall, both datasets generally agreed on AET patterns despite variations in 

magnitude. Rainfall was the primary driver of variability in AET across most catchments. There 

were significant differences in average AET across three major land cover classes within most 

MDB catchments, except for a few in the northern part. The results of this study highlight the 

importance of comparing and testing AET products. Furthermore, the study highlights the need 

for regional studies given diverse hydrological characteristics and the significant influence of 

regional climate, terrain, and land cover changes on AET. 

Keywords: CMRSET, MODIS, Actual Evapotranspiration (AET), land cover, ecohydrology  
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4.2 Introduction 

Evapotranspiration (ET) is the sum of the water lost to the atmosphere through transpiration 

by vegetation and evaporation from wet canopy, soil, and surface water bodies (Irmak, 2008). 

Actual Evapotranspiration (AET) is the amount of water that is evaporated and transpired from 

the land surface and vegetation, whereas Potential Evapotranspiration (PET) is the maximum 

amount of water that could be evaporated and transpired under ideal (non-water limited) 

conditions (Jin et al., 2017). Understanding AET and PET is important for effective water 

resource management, as it helps quantify water use and assess the impacts of climate and 

land cover changes on water availability.  

Researchers have long assumed that there is a significant difference in average 

evapotranspiration between different land cover classes, as vegetation types and densities 

can influence the amount of water that transpires and evaporates (Liu et al., 2010; Chen et 

al., 2011; Yang et al., 2022). Land use and land cover changes, such as deforestation or 

urbanisation, can significantly alter the rate and pattern of AET, which in turn can affect the 

availability of water resources for human and ecological needs (He et al., 2008; Pal et al., 

2021). Conversion of natural vegetation to croplands and other forms of human development 

has reduced vegetation cover. Reducing vegetation cover diminishes evapotranspiration, 

affecting moisture recycling and surface runoff patterns (Wierik et al., 2021). This disruption 

to the water cycle and recharge processes can result in water stress in certain regions.  

Leaf area, root depth, and stomatal conductance can influence the evapotranspiration rates 

(Garrigues et al., 2015; Yang et al., 2023). Climate conditions also impact evapotranspiration 

rates, including temperature, humidity, solar radiation, and wind speed (McColl et al., 2019). 

Moreover, soil properties such as texture and water-holding capacity, topography and land 

management practices affect water availability for evapotranspiration (Pradhan, 2019; Zhao 

et al., 2019). Incorporating all these variables over a large scale to estimate evapotranspiration 

poses challenges due to data availability, spatial heterogeneity, temporal variability, model 

complexity, and computational requirements. 

Many studies have concentrated on the variability in AET under different climates and its 

change. Wei et al. (2021) showed that climate change plays a dominant role in affecting water 

yield (calculated as the annual precipitation minus the annual actual evapotranspiration), while 

land use and land cover change have a small impact. Feng et al. (2020) indicated that the 

dominant factor of AET variability depended on the timescale and dry-wet conditions. 

Brümmer et al. (2012) studied various sites across Canada from 2003 to 2006. Despite varied 

annual precipitation (250−1450 mm) across sites, evapotranspiration consistently ranged 
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between 400 and 500 mm when precipitation exceeded 700 mm and never went below 200 

mm. Beaulieu et al. (2016) found that the response of land plants to climate change in the 

future seems only slightly to affect water resources. They also emphasised the current 

deficiencies and constraints in simulating and assessing the effects of climate change. 

In large catchments, accurately tracking water use and allocations is essential for effective 

water management, especially during drought and water scarcity (Bretreger et al., 2020). To 

achieve this, comprehensive monitoring and metering are required to ensure equitable 

distribution of limited water resources among stakeholders (Nguyen et al., 2020). However, 

monitoring ET on a large scale can be challenging (Karimi et al., 2019; Bretreger et al., 2020; 

Simons et al., 2020). Remote sensing has become a valuable tool for estimating AET at 

regional and global scales (Dimitriadou & Nikolakopoulos, 2020). However, the accuracy of 

remote sensing AET products can vary depending on factors such as the type of remote 

sensing data used, the algorithm employed for ET estimation, and the spatial and temporal 

resolution of the data (Zhang et al., 2016; McShane et al., 2017).  

Several remote sensing-based AET datasets are available, each with its strengths and 

limitations. Among these datasets, MODIS (Moderate Resolution Imaging Spectroradiometer) 

AET has been widely applied in research in various fields, including hydrology, agriculture, 

ecology, and climate science (Petus et al., 2013; Running et al., 2019; Dimitriadou & 

Nikolakopoulos, 2020; Deus & Gloaguen, 2013; Zhang & Chen, 2017; Liu et al., 2019; 2022). 

Guerschman et al. (2009) developed the CMRSET model for estimating AET at monthly and 

1 km spatial resolutions across Australia. Using MODIS reflectance data, the model adjusts 

potential evapotranspiration with vegetation indices to compute AET. This model has been 

extensively validated and applied in various studies (Swaffer et al., 2020; Crosbie & 

Rachakonda, 2021; Gelsinari et al., 2021; Kunnath-Poovakka et al., 2021; Peña-Arancibia et 

al., 2021a; 2021b). It was found to provide the best result among five satellite-driven remote 

sensing AET products when benchmarked against independent evaluation datasets in 

Australia (King et al., 2011). In the latest data release, the spatial resolution and temporal 

frequency of CMRSET have been enhanced, and data were calibrated using an enhanced 

collection of observed AET from eddy covariance flux towers (Guerschman et al., 2022). 

These characteristics make CMRSET particularly well-suited for monitoring agriculture, 

irrigation, and wetlands and providing input for assessing structural and policy improvements 

(Guerschman et al., 2022). 

While land cover and climate changes exert complex and varying influences on AET, there 

remains a significant gap in comprehensively understanding the response of ET to specific 
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vegetation change drivers, with model-based estimations of these responses marked by 

considerable uncertainty (Liu et al., 2013; Wang et al., 2021; Li et al., 2022; Yang et al., 2023). 

This research examined long-term shifts in the CMRSET AET within a large Australian 

catchment of agricultural and ecological significance, focusing on both the Basin and 

catchment scales. By utilising the high-resolution Digital Earth Australia (DEA) Level 3 25 m 

Land Cover data, this study meticulously examines AET in relation to land cover changes over 

a two-decade period (2001-2020). The primary objectives of this study are: 

1. To compare the CMRSET and MODIS datasets in estimating AET. 

2. To evaluate the trend and dynamics of AET across different land cover types over time 

across the MDB. 

3. To test whether there is a significant difference in AET between major LULC types.  

4.3 Methods and material 

4.3.1 Study area 

The Murray Darling Basin (MDB) spans an area of over one million km2, encompassing four 

Australian states - Queensland, New South Wales, Victoria, and South Australia - along with 

the Australian Capital Territory (Figure 4.1). The Basin consists of 22 catchments (Table B.1), 

with over 30,000 kilometres of rivers, creeks, and streams. The MDB's rainfall patterns are 

strongly influenced by the El Niño, La Niña, Indian Ocean Dipole, and the Southern Annular 

Mode (King et al., 2020). The MDB transitions from subtropical in the north to a dry, arid 

climate in the south, with a large rainfall spatial variability (Shen et al., 2017).  

In the early 2000s, the Basin experienced severe droughts, record-low rainfall, and high 

temperatures (Leblanc et al., 2009; 2012). More recently, the drought also established the 

preconditions for the catastrophic 2019–20 bushfires (Wang & Cai, 2020), which were followed 

by floods in 2022/2023 (Gissing et al., 2022; Alexandra, 2023; Beavis et al., 2023). Climate 

proxies demonstrate that the alternating patterns of droughts and floods are characteristic 

features of the MDB's climate (Gallant & Gergis, 2011; Alexandra, 2023). Climate change can 

potentially intensify the flood-drought oscillations in the MDB, set against an overarching trend 

of increasing aridity (CSIRO, 2022). These climatic conditions have markedly affected 

agriculture in the MDB and strained the region's water resources (Leblanc et al., 2012; 

Dreverman, 2013). This change is important, as the Basin is home to over two million people 

and provides the country with food, water, important economic activities, and high ecological 

values. Given the significance of agriculture in the Basin and the impacts of high water demand 

on the ecology, a comprehensive water management plan was established in 2012 (Hart, 

2016; MDBA, 2018), which targets an environmental water recovery of 2,075 GL/y. 
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Figure 4.1: Study area; Murray-Darling Basin within Australia with catchments and elevation 
(mAHD). 

4.3.2 Data 

In this study, the level 3 (base classification) Digital Earth Australia (DEA) Land Cover data 

with a spatial resolution of 25 m were used (Tissott & Mueller 2022). DEA land cover data is 

based on the Food and Agriculture Organization's (FAO) Land Cover Classification System 

(LCCS) taxonomy Version 2, which is globally applicable (Di Gregorio & Jansen, 1998; 2000; 

Di Gregorio, 2005). DEA Land Cover is produced by combining qualitative and quantitative 

environmental information derived from Landsat satellite sensor data, resulting in annual 

classifications of Australia's land cover from 1988 to 2020 (Tissott & Mueller 2022). It consists 

of seven descriptor layers: Cultivated Terrestrial Vegetation (CTV), (Semi-)Natural Terrestrial 

Vegetation (NTV), Natural Aquatic Vegetation (NAV), Artificial Surface (AS), Natural 

Bare Surface (NS), and Water. This study concentrated on three major land cover classes: 

CTV, NTV and NS. The selection of these specific classes was driven by their significant 

relevance to AET studies. Moreover, these classes collectively constitute over 97% of the total 

Basin area, rendering them the predominant land cover types within the study's scope.  

CMRSET evapotranspiration dataset provides AET for Australia with a spatial resolution of 30 

m and a monthly frequency. CMRSET combines reflective remote sensing indices and PET 
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calculated from the Bureau of Meteorology's daily meteorological data. The combination of 

high-resolution, low-frequency AET estimates (such as those from Landsat) with low-

resolution, high-frequency AET estimates (such as those from MODIS and VIIRS) creates a 

dataset that is both high-resolution and high-frequency, with no gaps caused by cloud 

coverage. We used Google Earth Engine to download CMRSET AET for Australia by obtaining 

and aggregating monthly data to obtain yearly data with GDA94/Australian Albers projection.  

Annual AET datasets from the MODIS early AET dataset were requested from the NASA 

website (https://appeears.earthdatacloud.nasa.gov/). The MOD16A3 Version 6.1 product is a 

yearly composite dataset that provides estimates of yearly Evapotranspiration (ET), Latent 

Heat Flux (LE), PET and Potential LE (PLE) along with a quality control layer. These estimates 

are derived from satellite data with a spatial resolution of 500 m and are available from 2001 

to the present (Running & Mu, 2021). The pixel values for the two ET layers (AET and PET) 

are the sum for all days within the defined year.  

The MOD16A2 product estimates AET using the Penman-Monteith equation and provides 8-

day composite data at a spatial resolution of 1 km (Zhang et al., 2008). The model inputs 

include daily meteorological reanalysis data and MODIS remotely sensed data products such 

as vegetation property dynamics, albedo, and land cover (Running & Mu, 2021). The MODIS 

AET, specifically the Version 6.1 Level-1B (L1B) product, has undergone significant 

improvements and calibration changes compared to the preceding Version 6.0 (Running & 

Mu, 2021).  

Daily rainfall from the Australian Gridded Climate Data (AGCD) v2 (Bureau of Meteorology), 

was downloaded from the National Computational Infrastructure (NCI) data catalogue (Evans 

et al., 2023). This dataset covers the Australian continent and surrounding regions, with a 

spatial resolution of approximately 0.05 degree (~5 km) (Evans et al., 2020).  

4.3.3 Data preprocessing and analysis 

Data were collected, mosaiced, projected and resampled to match corresponding land cover 

pixels to ensure that each pixel's size and extent matched. The data was also masked for the 

study area. All preprocessing was done in ArcGIS Pro (Esri, 2023). The zonal statistics method 

in ArcGIS Pro was used to calculate the average parameter of each catchment in different 

years. 

4.3.3.1 Normalization for rainfall impact 

The ratio of AET to Precipitation (P) (AET/P) provides a detailed measure of the fraction of 

precipitation expended through evapotranspiration over a year. To calculate the AET/P ratio, 

https://appeears.earthdatacloud.nasa.gov/
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the MODIS dataset MOD16A3, which provides annual AET estimates, is utilised alongside the 

CMRSET dataset, which has been aggregated on a yearly basis. These annual AET values 

from both datasets are then divided by the corresponding gridded precipitation data for the 

same period. The resulting values were spatially averaged to produce maps representing the 

AET/P ratio at both the Basin and catchment scales. 

4.3.3.2 Coefficient of variation 

The coefficient of variation for temporal variability for each catchment was calculated as 

follows: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶 𝑇𝑇𝐶𝐶 𝑉𝑉𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶 =
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 Eq. 1 

Where: 

n is the number of years the AET or AET/P values. 

X̄i is the average of all AET or AET/P pixel values within the i-th catchment on an annual basis. 

μX̄i is the mean of the yearly averages of AET or AET/P for all pixels within the same 

catchment. 

The coefficient of variatizon for spatial variability is formulated as: 

𝑆𝑆𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇 𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶 𝑇𝑇𝐶𝐶 𝑣𝑣𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶 =
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Where: 

σi is the standard deviation of AET or AET/P over all pixels for a given catchment in the given 

year. 

4.3.3.3 Water balance 

The water balance was calculated as: 

� 𝑇𝑇𝑜𝑜𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑜𝑜 ~ � 𝑃𝑃
2020
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−
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 Eq. 2 
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Where the difference between the cumulative precipitation (P) and the combined values of 

AET and recharge (R) for the entire  Basin from 2001 to 2020 equates to the cumulative 

outflow. For comparison between outflow calculation for CMRSET and MODIS data, we have 

assumed that R is negligible across the Basin. 

4.3.3.4 Trend analysis 

The Mann-Kendall tau statistic was used to measure the degree of monotonic association 

between the data and time (Mann 1945, Kendall 1975, Gilbert 1987). A positive Kendall's tau 

indicates an upward trend, while a negative Kendall's tau indicates a downward trend (Salehi 

et al., 2020). The Sen slope was used to estimate the slopes of identified trends, validate the 

results, and provide a more comprehensive analysis of the data (Sen, 1968). The Sen slope 

test works by dividing the data into multiple segments and calculating the median slope for 

each segment. The overall trend was then estimated as the median of the slopes of all 

segments. The Sen slope estimator is robust to outliers and less sensitive to the assumption 

of normality than other regression methods. However, it is not suitable for detecting non-

monotonic trends. 

4.3.3.5 ANOVA and t-test 

A two-step statistical approach was adopted to test the hypothesis that AET varies significantly 

across different land cover classes. A one-way ANOVA was conducted to determine if there 

were any statistically significant differences in AET among the three landcover classes at the 

basin and catchment levels. Following the ANOVA, pairwise comparisons between the land 

cover classes were conducted using Student's t-test (Figure 4.2). The statistical analyses were 

performed using the Scipy package in Python.  
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Figure 4.2: Flowchart for the systematic interpretation of ANOVA and subsequent t-test 
outcomes. 

4.4 Results 

4.4.1 Precipitation 

Between 2001 and 2020, the MDB experienced an average annual precipitation of 428 mm 

(Figure 4.3). The Basin's average rainfall exhibits considerable year-to-year variability. While 

the highest recorded average annual precipitation of 810 mm occurred in 2010, the lowest 

was observed in 2019 at 231mm. Prior to 2010, southeastern Australia endured its driest 

period since 1900 (Van Dijk et al., 2013). Except for the years 2011, 2012 and 2016, the 

majority of the 2001-2020 period witnessed below-average precipitation compared to the 20-

year average (Figure 4.3). Additionally, the data distribution skewed towards higher values, 

with the median often falling below the mean due to the highly variable rainfall patterns, both 

spatially and temporally, on the Basin scale. 

There was a significant variation in average rainfall among the analysed catchments. The data 

revealed a broad range of precipitation, with certain catchments averaging over 900 mm, while 

others recorded less than 300 mm of rainfall (Figure 4.3b). Kiewa, Mitta Mitta, Upper Murray, 

and Ovens catchments received higher rainfall, while the Lower Darling, Lower Murray and 

Paroo received less rainfall than average. Out of the 22 catchments, only Goulburn-Broken, 
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Gwydir, Kiewa, Lower Darling, Macquarie-Castlereagh, Mid-Murray, Ovens and Warrego, 

have an average precipitation that is greater than that of the whole basin average. 

 

Figure 4.3: (a) Annual variability of rainfall over MDB for the years 2001 to 2020; (b) 
Distribution of annual rainfall across various MDB catchments during the 20-year period. Each 
boxplot displays the interquartile range, indicating the middle 50% of the data, with the central 
line representing the median rainfall. The 'whiskers' extend to the furthest points that are not 
considered outliers, and any data point outside of this range is represented as an open dot, 

which signifies a year with unusually high or low rainfall. The red dashed line across the plot 
denotes average rainfall over 20 years over the whole Basin. 
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The analysis of rainfall data in the MDB over a two-decade period revealed distinct patterns 

of temporal and spatial variations across the different catchments (Figure 4.4). The only 

catchments that showed both a high temporal and spatial variation were the northern Basin 

Border Rivers, Gwydir, and Namoi. The western part of the MDB, Warrego, Paroo, Lower 

Darling, and Barwon Darling, showed higher temporal variation in rainfall but low spatial 

variations. The southern catchments, especially Goulburn-Broken and Ovens, tend to exhibit 

low temporal but high spatial variation.  

 

Figure 4.4: Temporal and spatial classification of the coefficient of variation for rainfall from 
2001-2020, categorised into low, moderate, and high variability using Jenks natural breaks. 

4.4.2 Comparative analysis of AET and AET/P: MODIS vs. CMRSET datasets 

4.4.2.1 AET and AET/P changes at the whole basin scale 

Using the CMRSET dataset, the time series of AET over the MDB was evaluated across 

various land cover classes (Figure 4.5a). For CTV, the average mean AET was recorded at 

1.1 mm/day, with the minimum and maximum mean AET values at 0.78 mm/day and 1.47 

mm/day, respectively (Table B.2). The NTV class exhibited a slightly higher average mean 

AET of 1.22 mm/day, extending from 1.10 mm/day to 1.45 mm/day. However, The NS class 

showed the lowest AET rates with an average mean of 0.77 mm/day and the minimum and 
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maximum mean values of 0.61 mm/day and 0.94 mm/day, respectively. In the CMRSET 

dataset, the difference between the AET of the CTV, NTV and NS classes was more 

noticeable than MODIS AET. Overall, there was generally good agreement between the two 

datasets, although there were some variations in the magnitude of the estimates.  

 

Figure 4.5: (a) AET and (b) AET/P time series 2001-2020 for CMRSET dataset (CTV: Cultivated 
Terrestrial Vegetation; NS: Natural Bare Surface; NTV: Natural Terrestrial Vegetation). 

AET was lower than 1 mm/day in the MODIS dataset in most years (Figure B.1). In contrast, 

in the CMRSET dataset, AET was greater than 1 mm/day for the NTV class throughout the 

entire period and for many years, it was also higher than 1 mm/day for the CTV class. 

However, AET was less than 1 mm/day for the NS class in all years. The MODIS AET data 

analysis revealed a distinct variation across different land cover classes. The NTV class and 

CTV class exhibited higher AET rates, with the NTV class showing a range of 0.65-1.24 

mm/day and an average of 0.87 mm/day, while the CTV class ranged from 0.53-1.16 mm/day 

with an average of 0.84 mm/day over 20 years. In contrast, the NS class demonstrated the 

lowest AET, ranging from 0.36-0.76 mm/day, with a basin-wide average of 0.52 mm/day from 

2001 to 2020.  

For Basin average AET/P time series, AET/P significantly narrowed the gap between different 

land cover classes for CMRSET datasets (Figure 4.5b) and MODIS (Figure B.1). However, 

the results demonstrate that AET/P was less than 1 for the entire period for MODIS until 2017 

when it began to surpass the value of 1. On the other hand, for the CMRSET dataset, AET/P 

was primarily greater than 1 for most years across all land covers. The comparison of the two 

datasets showed that during drought years, the CMRSET dataset demonstrates a superior 

capacity to distinguish between CTV and NTV, as the difference in AET between CTV and 

NTV was more pronounced in the CMRSET dataset. Following 2010, the CTV and NTV for 

both datasets began to overlap, signalling a convergence in their behaviour until 2014, when 
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a new drought period commenced (King et al., 2020). After 2016, the MODIS and CMRSET 

AET/P ratios show a remarkably increasing trend. The AET/P time series minimised the 

difference between the land cover classes compared to the AET time series. However, in the 

CMRSET dataset, a subtle difference is still more apparent (Figure 4.5b). The average AET/P 

map for MODIS and CMRSET data revealed a different pattern over MDB (Figure B.3). The 

AET/P map derived from CMRSET consistently showed higher values than the MODIS map. 

The MODIS data showed a much smaller part of the Basin with values of AET/P exceeding 1, 

highlighting a discrepancy between the two datasets.  

4.4.2.2 AET and AET/P changes at the catchment level 

Analysis of the AET based on MODIS data across the 22 catchments revealed significant 

variability, with the Paroo and Barwon Darling catchments having the lowest average AET of 

0.43 and 0.54 mm/day, respectively, and the Mitta Mitta and Kiewa catchments having the 

highest with 2.13 and 2.02 mm/day, respectively (Table 4.1). The analysis of AET based on 

the CMRSET data showed similar results, with the Kiewa and Mitta Mitta catchments having 

the highest AET values of 2.02 mm/day, while Lower Darling and Paroo had the lowest with 

0.74 mm/day. Kiewa, Mitta Mitta, and Upper Murray consistently exhibited relatively high AET 

values, while Lower Darling and Paroo had relatively low AET values.  

Table 4.1: Average AET (mm/d) and AET/precipitation ratio based on the CMRSET and MODIS 
datasets for different catchments of the MDB. 

Catchment AET (mm/d) (CMRSET) AET/P  

(CMRSET) 

AET (mm/d) (MODIS) AET/P  

(MODIS) 

BARWON-DARLING 0.88 1.20 0.54 0.72 

BORDER RIVERS 1.50 1.06 1.03 0.68 

CAMPASPE 1.41 1.07 1.21 0.91 

CONDAMINE 1.22 1.11 0.76 0.62 

GOULBURN-BROKEN 1.63 1.06 1.55 0.99 

GWYDIR 1.60 1.08 1.09 0.69 

KIEWA 2.02 0.85 2.02 0.88 

LACHLAN 1.10 1.03 0.85 0.77 

LODDON-AVOCA 1.08 1.17 1.00 1.08 

LOWER DARLING 0.74 1.29 0.62 1.10 

LOWER MURRAY 0.84 1.32 0.84 1.18 

MACQUARIE-CASTLEREAGH 1.29 1.05 0.92 0.70 

MID MURRAY 1.19 1.32 0.98 1.04 

MITTA MITTA 2.02 0.83 2.13 0.90 

MOONIE 1.18 0.96 0.75 0.58 

MURRUMBIDGEE 1.25 1.04 1.10 0.87 

NAMOI 1.55 1.05 1.13 0.73 

OVENS 1.88 0.91 1.74 0.83 

PAROO 0.74 1.20 0.43 0.67 

UPPER MURRAY 1.99 0.91 1.90 0.87 

WARREGO 1.08 1.08 0.59 0.54 

WIMMERA 0.97 1.07 0.95 1.04 
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Based on the MODIS AET data, Warrego, Moonie, and Condamine catchments had AET/P values 

of 0.54, 0.58, and 0.62, respectively, indicating lower AET relative to precipitation. Conversely, Lower 

Murray, Lower Darling, and Loddon-Avoca catchments exhibited AET/P values of 1.18, 1.10, and 

1.08, respectively, suggesting a relatively higher proportion of AET than precipitation. For the 

CMRSET data, the catchments with the lowest AET/P values were Mitta Mitta and Kiewa, with values 

of 0.83 and 0.85, respectively. In contrast, Lower Murray, Mid Murray, and Lower Darling catchments 

exhibited higher AET/P values of 1.32, 1.32, and 1.29, respectively. 

The temporal and spatial variability of AET and AET/P for MODIS (Figure B.2) and CMRSET (Figure 

4.6) showed distinct patterns of variability across the MDB, with few exceptions. Jenks natural breaks 

were used to classify the values into three groups, minimising variation within groups and maximising 

variation between groups. The results revealed some overlap between the two datasets but no clear 

overall pattern. MODIS AET/P showed less spatial and temporal variability over six catchments, 

primarily located in the northern part of the basin. Conversely, CMRSET data showed more 

dispersed variability patterns, reflecting differences in how each dataset captures AET and 

precipitation dynamics. 

 

Figure 4.6: Temporal and spatial classification of the coefficient of variation for CMRSET (a) AET and 
(b) AET/P for 2001-2020, categorised into low, moderate, and high variability using Jenks natural 

breaks. 

4.4.2.3 Water balance: MODIS vs CMRSET datasets 

Across the Basin, a noticeable east-west gradient was observed for rainfall and AET (Figure 4.7). 

Mean annual precipitation ranged from over 1,000 mm in the southeast to less than 300 mm in the 

central and western regions of the MDB. The overall pattern of MODIS and CMERSET AET were 

the same. However, the spatial correlation between average 20 years MODIS AET and rainfall data 

was 0.27, while for CMRSET, it was much higher at 0.70.  
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Figure 4.7: Average 20 years (2001-2020) (a) rainfall; (b) MODIS AET; (c) CMRSET AET. 

The southern region of the study area exhibits low and negative precipitation values minus AET (P-

AET) for the MODIS dataset (Figure 4.8). However, in the CMRSET AET product, negative values 

are distributed throughout the entire Basin, with the southwestern part showing a relatively greater 

abundance of negative P-AET values.  

 

Figure 4.8: Average 20 years (2001-2020) estimated balance (P-AET) based on (a) MODIS; (b) 
CMRSET  

The MODIS AET dataset indicated an average annual evapotranspiration of 313 mm, while the 

CMERSET dataset exhibited an average annual evapotranspiration of 416 mm. Dreverman (2013) 

reported an average runoff of 23,850 GL/year, equating to an average of 22 mm across the whole 

Basin. This value is in close agreement with the 20-year average for P-AET as reported by the 

CMRSET dataset, which is 12 mm. In contrast, the P-AET estimated using the MODIS AET dataset 

is significantly higher, at 115 mm. Consequently, an annual average discrepancy of approximately 
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93 mm was observed between the P-AET values derived from the MODIS dataset and the average 

outflow reported by the MDBA according to Wentworth Group of Concerned Scientists (2020).  

4.4.3 Temporal dynamics of CMRSET AET and AET/P 

The time series analysis of AET across various land covers demonstrated variations in AET values 

among different land use types (Figure B.5). However, when considering the AET/P, the 

discrepancies between land covers were noticeably reduced. Among the 22 catchments studied, 

Kiewa, Mitta Mitta, Ovens, and Upper Murray exhibited higher AET ranges and averages (typically 

exceeding 1.75 mm) during the study period (Figure B.6). Time series of AET demonstrated that in 

nearly 50% of the 22 catchments, overall, the values of AET within NTV were higher than in other 

land covers. AET/P reached its lowest value for all land uses in 2010, and a sharp increase in AET/P 

was observed in most catchments after 2016. 

The analysis of AET and AET/P trends across various land covers and catchments demonstrates a 

predominance of stable patterns, with no significant trends in most regions. Notable exceptions were 

observed in the Kiewa and Mitta Mitta catchments, which displayed increasing AET trends (Table 

4.2). The AET trends observed within NTV land cover in these catchments aligned with the overall 

increases in AET. The Lower Murray catchment showed an increasing trend in CTV, while a 

decreasing trend of AET was observed over NS land cover in Border River and Gwydir. No overall 

trend in AET/P was observed; however, an increasing trend in AET/P was identified in the 

Condamine-Balonne over CTV land cover and in the Moonie over NS. 

Table 4.2: Significant trend analysis test statistics (2001-2020) for AET and AET/P across different 
land cover classes in MDB catchments. Note: Only statistically significant results are reported in this 

table. For all other land cover classes, no significant trends were observed. 
   Mann Kendal's test result Sen's Slope test result 

Catchment names   Tau s trend p Slope  intercept 
BORDER RIVERS AET NS -0.44 -84.00 decreasing 0.01 -0.02 1.54 
GWYDIR AET NS -0.58 -110.00 decreasing 0.00 -0.04 2.02 

KIEWA AET NTV 0.43 82.00 increasing 0.01 0.01 1.92 
MITTA MITTA AET NTV 0.41 78.00 increasing 0.01 0.01 1.88 

LOWER MURRAY AET CTV 0.47 90.00 increasing 0.00 0.01 0.72 
CONDAMINE AET\P CTV 0.33 62.00 increasing 0.05 0.02 0.81 

MOONIE AET\P NS 0.39 74.00 increasing 0.02 0.02 0.55 
KIEWA AET overall  0.38 72.00 increasing 0.02 0.01 1.92 
MITTA MITTA AET overall  0.41 78.00 increasing 0.01 0.01 1.92 

 

4.4.4 ANOVA and t-test between land covers for the CMRSET dataset  

The ANOVA test results indicated significant differences in average AET across major land cover 

classes within all the MDB's catchments, except for the northern catchments Condamine, Border 

Rivers, and Gwydir (Figure 4.9). Similarly, pairwise comparison showed significant differences in 

average AET between NTV and NS in most catchments (Figure 4.9b). However, in the case of CTV 
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AET versus NS (Figure 4.9a) and CTV AET versus NTV (Figure 4.9c), many regions exhibited no 

statistically significant differences in average AET. 

 

Figure 4.9: The result of ANOVA and t-test for CMRSET AET between (a) CTV (Cultivated Terrestrial 
Vegetation) and NS (Natural Bare Surface); (b) NTV (Natural Terrestrial Vegetation) and NS; (c) CTV 

and NTV; and (d) CTV, NTV and NS. (* indicates the catchments with significant differences in 
precipitation among given land covers) 

Among the 22 catchments, Goulburn Broken, Lachlan, Mid Murray and Upper Murray are the only 

catchments that showed a significant difference between three major land covers, AET and AET/P 

(p < 0.05) (Figure 4.9d). Only the Gwydir and Campaspe catchments demonstrated a meaningful 

difference in AET/P between CTV and NTV (Figure 4.9c). 

For NTV and NS, most catchments exhibited significant differences in average AET and/or AET/P 

(Figure 4.9b). Conversely, in 10 out of 22 catchments, CTV and NTV showed no significant 

divergence in both AET and AET/P (Figure 4.9c). For CTV versus NS, eight catchments displayed 

no substantial difference in AET and AET/P, six of them are in the northern MDB (Figure 4.9a). 
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Notably, the Goulburn Broken catchment showed a significant difference between CTV and NTV for 

AET and AET/P (p < 0.05) (Figure 9c). 

4.5 Discussion 

4.5.1 Comparison of CMRSET and MODIS AET datasets 

The comparative analysis of AET and AET/P using MODIS and CMRSET datasets over the MDB 

highlights distinct variations in evapotranspiration dynamics across different land cover classes and 

spatial scales. During the dry years from 2001 to 2009, the average Actual Evapotranspiration (AET) 

values among CTV and NTV were more distinctly differentiated. This clearer distinction likely reflects 

the varied responses of these vegetation types to water stress, with CTV possibly experiencing more 

pronounced AET reductions due to its reliance on available moisture for agricultural productivity. 

However, post-2010, increased rainfall, which alleviates moisture stress across both types of 

vegetation, may have contributed to the distinction in AET between CTV and NTV becoming less 

apparent in both the MODIS and CMRSET datasets. The improved Algorithm of CMRSET seems to 

contribute a clearer distinction between different vegetation types, particularly during drought 

conditions. 

Our results highlight the significant difference between 20 years of average P-AET for MODIS vs 

CMRSET (Figure 4.8). The MODIS data tends to underestimate AET, resulting in a consequential 

overestimation of water yield. The magnitude of this error was estimated to be about 50 times greater 

than the recovery targets outlined in the Basin Plan. This significant disparity cannot be disregarded, 

as it represents a substantial portion of the contracted surface water recovery estimated by the MDB 

Authority. Similar to our results, Wentworth Group of Concerned Scientists (2020) demonstrated that 

the discrepancies between observed and expected river flows under prevailing climatic conditions, 

including dry and drought periods from 2012/13 to 2018/19, were significantly smaller in the Northern 

Basin compared to the Southern Basin. The average differences were 104 GL/y and 521 GL/y, 

respectively. 

The accuracy of AET products is heavily influenced by unique catchment characteristics, local 

climate, and terrain conditions, reflecting the inherent complexity in modelling these factors 

worldwide (Zhao et al., 2019). MODIS, despite its widespread use, has been found to systematically 

underestimate AET due to structural weaknesses within its algorithm, as reported in several studies 

(Kim et al., 2012; Velpuri et al., 2013; Hu et al., 2015; Baik et al., 2018). These weaknesses often 

lead to inaccurate estimates of moisture demand in arid and temperate zones, largely because 

MODIS relies on indices such as NDVI and LAI, which may not fully capture the environmental 

variability influencing AET (Baik et al., 2018). Although CMRSET has demonstrated greater accuracy 

in water balance, the product is not without its limitations. Bretreger et al. (2020) found that CMRSET 

tends to overestimate AET, especially in irrigation-intensive regions. Research by McVicar et al. 
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(2017) demonstrated that while the Landsat-only CMRSET AET product performed well when 

compared to eddy-covariance flux tower AET measurements, its accuracy declined at the catchment 

or reach water balance scale, showing a systematic overestimation. This discrepancy is further 

intensified by spectral differences between sensors and the lower temporal resolution of Landsat 

compared to MODIS. Blending Landsat and MODIS data has been shown to mitigate some of these 

errors, but CMRSET's sensitivity to these discrepancies remains a significant factor affecting its 

accuracy (McVicar et., 2017). 

Unlike MODIS, many more regional details can be observed in P-AET in the CMRSET dataset. It is 

in line with Zhao et al. (2019), who found a poor consistency between AET products in northern MDB 

catchments (e.g., Kiewa, Upper Murray, Mitta Mitta). In the MODIS dataset, a few regions that exhibit 

significant negative values, contrasting sharply with the more homogeneous distribution of negative 

values across the Basin seen in the CMRSET dataset (Figure 4.8b). The CMRSET P-AET map is in 

line with the MDB Authority report stating that around 86% of the Basin contributes minimal to no 

runoff to the river system, except during floods (MDBA, 2021). The catchments draining the Great 

Dividing Range on the southeast and southern margins of the Basin make the largest contributions 

to total runoff, despite their smaller size (MDBA, 2023d). This is also supported by an average 20-

year AET/P map (Figure B.3). CMRSET consistently depicts elevated AET/P ratios surpassing 1 

across numerous pixels, indicating that a substantial portion of the Basin experiences water use 

exceeding precipitation inputs. This may arise from irrigation practices, where the water applied to 

support agricultural activities exceeds natural rainfall, thus inflating the AET values.  

Based on our results, the CMRSET model has proven reliable and accurate in estimating AET, 

supported by a water balance estimation close to the Basin outflow. Guerschman et al. (2022) 

independently evaluated the CMRSET model by comparing its mean annual precipitation and AET 

estimates with measured streamflow data from 638 catchments in Australia. The evaluation revealed 

that the CMRSET model had an RMSE (root mean square error) of 0.50 mm/d (relative RMSE of 

0.26) and an R2 value of 0.70 when considering long-term differences (5 years or more).  

The divergence in AET magnitudes between the CMRSET and MODIS datasets, particularly the 

higher AET/P ratios observed in CMRSET, can be attributed to differences in the algorithms and 

inputs used by these two products. For instance, Weerasinghe et al. (2020) noted that MODIS 

reliance on vapour pressure deficit often led to significant underestimations of AET during warmer 

periods. Zhao et al. (2019) found that land cover and rainfall significantly influence the reliability of 

AET products, particularly the areas with intensive land uses showed a higher correlation in 

inaccuracies of AET products. The MODIS algorithm assumes uniform biophysical parameters, 

without considering factors like soil water content, terrain, or subpixel variability, which impacts AET 

accuracy. A study by Sharma et al. (2016) showed that Landsat-derived AET estimates can explain 

91% of the variability in the observed AET, in contrast to 59% by MODIS-based estimates. According 



 

124 

to Zhang et al. (2016) study in Jordan, MODIS data tends to underestimate AET by up to 50% in 

irrigated agricultural lands and also shows underestimations for sparsely vegetated areas. Given 

that the Murray-Darling Basin consists predominantly of natural terrestrial vegetation, along with 

extensive agricultural areas, these factors could contribute to the underestimation of AET using 

MODIS AET. Moreover, the large pixel size of MODIS and its inability to capture subpixel 

heterogeneities can result in inaccurate AET estimates. Intensive water uses like agricultural areas 

may have significant localised impacts that are missed at the 500m resolution. In contrast, the finer 

resolution of CMRSET is better suited for capturing these small-scale variations, which could explain 

the lower AET/P ratios observed in MODIS data compared to CMRSET.  

The underestimation of AET can severely impact water balance calculations (Liu et al., 2020). 

Notably, this issue is particularly pronounced in arid and temperate regions, where such errors may 

lead to overestimated water availability, affecting reservoir operations, agricultural water distribution, 

and drought management strategies (Ruud et al., 2004). Moreover, these underestimations 

introduce biases into hydrological models, affecting the accuracy of soil moisture and streamflow 

simulations, which are crucial for long-term climate change projections (Ding et al., 2022). During 

model calibration, the incorporation of different AET datasets results in variable parameter estimates, 

influencing model sensitivity and water resource assessments (Taia et al., 2023). For instance, in 

arid zones where accurate water availability predictions are critical, any discrepancies can result in 

severe resource mismanagement based on erroneous data suggesting inflated water availability. 

The implications of these findings are significant, spanning water resources management and 

hydrological forecasting.  

4.5.2 Spatiotemporal dynamics of CMRSET AET and AET/P 

The Kiewa, Mitta Mitta, Ovens, and Upper Murray catchments exhibit higher rates of AET compared 

to other catchments. This observation is attributed to substantial rainfall and extensive forest 

coverage in these areas. For instance, approximately 80% of the Upper Murray is forested (MDBA, 

2023f). Additionally, a higher rate of AET over CTV suggests more intensive agricultural practices. 

For instance, in the Kiewa catchment, which is characterised by intensive cultivation of crops such 

as tobacco, there is a notable increase in AET due to heightened water demands (Guang et al., 

2019; MDBA, 2023b). Conversely, the Barwon-Darling, Lower Darling, Lower Murray, Paroo, and 

Warrego catchments display lower average AET values, corresponding to lower rainfall in these 

areas. The western part of MDB has a higher temporal variation of rainfall, consistent with the 

literature (Heimhuber et al., 2016, Evans et al., 2010). The El Niño-Southern Oscillation (ENSO) also 

plays a role, with El Niño events causing drier conditions and potentially exacerbating temporal 

variations (Freund et al., 2021).  

The time series data from CMRSET demonstrates consistently high AET/P ratios, typically 

exceeding 1, primarily due to decreased rainfall in last two decades. The finding of Weligamage 
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(2023) in the Victoria, Australia showed that despite varying precipitation levels, AET remained 

relatively stable from the pre-drought to the Millennium Drought periods. This stability resulted in 

higher AET/P ratios during the drought compared to pre-drought conditions, when significant 

decreases in rainfall were recorded. In the MDB, the predominance of irrigated agriculture has a 

substantial impact on these ratios, as irrigation sustains AET levels that often surpass precipitation. 

The MDB's catchments, being more water-limited than energy-limited, display a greater sensitivity 

to rainfall fluctuations over potential energy changes. Zhang et al. (2001) identified canopy resistance 

and the availability of water stored in the soil as key determinants of ET in drier conditions. This 

sensitivity is further evidenced in the western parts of the MDB, where lower rainfall increases the 

variability in AET/P ratios, a finding echoed by Massari et al. (2022). They noted that changes in the 

rainfall-runoff relationship occur regardless of whether a catchment is water-limited or energy-limited. 

Figure 4.6a from the Paroo and Lower Darling catchments illustrates the high spatial and temporal 

variability of AET and AET/P in arid zones, contrasting with their lower spatial but high temporal 

variability in rainfall. In such areas, when water is scarce, AET is limited by the available moisture, 

leading to similar AET levels across different land covers—whether forest, grassland, or agricultural 

fields. In contrast, humid areas, with their frequent and uniform rainfall, exhibit a stable relationship 

between precipitation and AET, resulting in lower spatial variability in AET/P ratios. This stability 

reflects the non-limiting nature of water, which supports consistent AET rates across the landscape. 

In arid regions, the high spatial variability of AET/P is driven by sporadic and scarce precipitation, 

patchy vegetation, variable soil moisture, and elevated evaporative demands. These factors 

contribute to a heterogeneous distribution of AET, exacerbated by topographical influences that can 

significantly amplify variability. For instance, valleys may receive more runoff, thus exhibiting higher 

AET, while adjacent ridges may experience drier conditions. Conversely, more consistent water 

availability and homogenous vegetation cover in humid regions lead to more uniform AET patterns 

and lower spatial variability in AET/P ratios. Here, the consistent precipitation mitigates the impact 

of topographical differences on water distribution. 

The AET/P time series of CMRSET data shows an increase in the AET/P ratio after 2016 (Figure 

4.5b). Following 2016, there were dry conditions in the MDB, with 12 consecutive seasons of below-

average rainfall, the longest since 1900 (King et al., 2020). The AET/P values exceeding 1 from 2017 

to 2020 can be attributed to a pattern of exceptionally wet years followed by subsequent dry years. 

While AET/P ratios generally reduce disparities among various land covers, this trend is not 

universally observed across different catchments (Figure 4.6b, B.5). In more arid areas of MDB (e.g., 

Northwest), the temporal variation of AET/P is higher than in humid areas (e.g., Southeast) due to 

the high variation of both AET and P in the northwest regions (Figure 4.4, 4.6a). Conversely, the 

southeast areas exhibit a low spatial and temporal variation of AET/P (Figure 4.6b), which can be 

attributed to the low variation of both P and AET (Figure 4.4, 4.6a). This suggests that temporal 



 

126 

variability in AET and P is predominantly controlled by climatic factors. In contrast, a high spatial 

variability of AET/P is observed in arid areas (Figure 4.6b), driven by a high spatial variability of AET 

and a low variability of P, highlighting the impact of land use on AET.  

Mitta Mitta, Ovens, Kiewa, and Upper Murray were the only catchments that exhibited an average 

AET/P ratio of less than 1. Spatial-temporal analysis indicated low temporal and low to moderate 

spatial variability in these catchments. This suggests a more consistent and predictable rainfall 

pattern over time within these areas. On the other hand, the Namoi, Gwydir, Border Rivers, and Mitta 

Mitta catchments displayed relatively low variability in rainfall at both temporal and spatial scales 

(Figure 4.4). 

The analysis of AET across different land covers from 2001 to 2020 revealed significant changes. 

While a 20-year period may be relatively short for robust trend analysis, few catchments showed 

significant trends. The Kiewa and Mitta Mitta catchments (Table 4.2) showed a consistent increase 

in overall AET, aligning with trends observed in NTV. This pattern suggests that changes in land 

cover, potentially driven by commercial forest management practices, may contribute to higher 

evapotranspiration rates in these areas, as discussed by Sun et al. (2022). Further, In the Mitta Mitta 

catchment, dams alter natural flow patterns and water availability (MDBA, 2023e), further influencing 

evapotranspiration rates (Zhan et al., 2019). The stable AET trend over most of the catchments NTV 

highlights the resilience of these ecosystems, while the decreasing trend of AET over NS in Border 

Rivers and Gwydir points to potential changes in soil moisture. Similarly, the development of irrigated 

agriculture, diverse horticultural industry and dryland agriculture in the Lower Murray explain the 

observed increase in evapotranspiration in the CTV land cover type (MDBA, 2023c). 

The observed variations in AET across CTV suggest changes in agricultural practices, including both 

irrigated and dryland agriculture. These fluctuations in AET are indicative of evolving agricultural 

practices and water management strategies. This aligns with the observations made by Xiao et al. 

(2024), who noted that both crop type and climatic changes collectively influence agricultural water 

dynamics. 

The AET/P ratio showed no trend in all catchments. This implies that increases or decreases in AET 

are directly linked to similar changes in precipitation, keeping their ratio relatively stable. Analysing 

the time series data, it is evident that AET/P reduces the gap between different land cover types. 

This could mean that water availability from precipitation dictates the rate of evapotranspiration. It is 

consistent with research showing that climate change may play a role as shifts in precipitation 

patterns and rising temperatures can affect evapotranspiration rates (Feng et al., 2019; Konapala et 

al., 2020).  

There was no AET/P trend within NTV in all catchments. The lack of trend in AET/P could suggest 

that ecosystems are adapting to changing conditions in a way that maintains a balance between 
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water use and water availability. In the Condamine, the rise in AET/P within CTV can be attributed 

to increased irrigation in the drier areas with limited water storage, where agricultural practices and 

irrigation intensify AET relative to precipitation. Similarly, an upward trend in AET/P over NS land 

cover is observed in the Moonie catchment, which can be attributed to its semi-arid climate and 

irregular river flows, which contribute to soil saturation and moisture availability, leading to higher 

AET/P. Furthermore, the impact of landscape alterations and groundwater availability may contribute 

to this trend (Te Wierik et al., 2021; Glanville et al., 2023).  

The variations in AET and AET/P across land covers and catchments are influenced, in part, by 

differences in precipitation patterns associated with each land-cover type. It may appear 

counterintuitive that precipitation differs among CTV, NTV, and NS categories since rainfall patterns 

are generally expected to be spatially uniform at broader scales. However, these land-cover classes 

are not evenly distributed across the MDB. Each category tends to occur in regions with distinct 

climatic regimes, topographies, and moisture gradients. For example, areas classified as NS may 

be located in more arid zones with inherently lower precipitation, whereas regions dominated by CTV 

or NTV might coincide with river corridors, floodplains, or areas that receive comparatively greater 

rainfall due to local climate variability or orographic effects. Additionally, the spatial resolution and 

interpolation methods used in gridded precipitation datasets can introduce differences in estimated 

rainfall totals across varying landscapes. Thus, differences in precipitation values reflect the 

geographic and climatic characteristics of where each land-cover category predominantly occurs, 

rather than indicating that rainfall itself is intrinsically different over identical land areas. 

4.5.3 Differences in AET between LULC 

Large-scale AET modelling across diverse land covers is challenging due to the variability and 

complexity of land surface characteristics, including spatial heterogeneity, temporal changes, soil 

moisture variations and human impacts (Yang et al., 2023). We employed ANOVA and t-tests to 

evaluate the disparity in AET across major land covers to understand if the CMRSET dataset 

accurately reflects these differences on a larger scale. Our findings revealed a lack of significant 

difference between average AET over major land cover types in Gwydir, Condamine, and Border 

River, which can be attributed to the high value of AET over NS land cover in these catchments. For 

example, Gwydir's AET over NS land cover has been higher than NTV and CTV for many years 

(Figure B.5). Similarly, the Condamine-Balonne catchment has a high AET over NS, which can stem 

from water harvesting for irrigation, contributing to water availability in the soil (MDBA, 2023a). What 

stands out from their AET time series (Figure B.5) is the consistently higher evapotranspiration over 

NS compared to CTV and NTV during the millennium drought. Soil moisture levels can be uniformly 

low across different land covers in drought periods; this can result in similar AET rates regardless of 

the vegetation or land cover type (Figure B.5). Furthermore, the Gwydir catchment is characterised 

by summer-dominant rainfall. Under conditions of summer-dominant rainfall, bare surfaces can 

exhibit higher AET compared to areas with dense canopy vegetation due to the direct exposure of 
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soil moisture to evaporative forces and the absence of moderating microclimatic effects provided by 

vegetation. Vegetation under drought stress reduces transpiration through stomatal closure and 

decreased leaf area, thereby limiting its AET. In contrast, bare soil lacks these biological control 

mechanisms. Even small amounts of moisture—such as from light rainfall events or dew—evaporate 

directly from the soil surface. This direct evaporation can exceed the heavily curtailed transpiration 

of drought-stressed vegetation, leading to relatively higher AET rates for NS despite the overall 

scarcity of water. 

The pairwise comparison of land covers shows that the catchments in the northern part of the MDB 

mostly lack significant differences in average AET and AET/P over land covers. Generally, the 

northern and western parts of the MDB tend to be drier compared to the southern part. Zhao et al. 

(2019) found a disparity in the consistency of AET products in drier catchments, like the Condamine-

Balonne, in contrast to the greater consistency found in more humid areas, such as the Upper 

Murray. This may help explain the lack of significant difference in AET and AET/P between land 

covers. The few catchments that showed significant differences between both AET and AET/P for 

different land covers are in the southern part of the Basin (Figure 4.9), which generally has higher 

water availability and receives more precipitation. Similarly, the study by Gao et al. (2007) in a region 

in southeastern China demonstrated that annual AET closely follows the trend of rainfall. Despite an 

increase in temperature, AET exhibited a decreasing trend, mirroring the trend in rainfall. 

The question arises: does the variability of AET follow that of PET? To investigate this, we analysed 

the AET/P and PET/P ratios across 20-year averages and spatial variability across all catchments 

(Figure B.4). Generally, AET/P and PET/P long-term average tend to follow each other closely, 

indicating a balance between actual water usage by vegetation and atmospheric water demand, 

given the precipitation. However, exceptions are noted in the Moonie, Goulburn-Broken, and 

Campaspe regions. These results, along with the t-test results (Figure 4.9 and Figure B.8), show 

that the land cover impact is prominent in AET. The contrasting patterns of spatial variability of PET/P 

and AET/P in northwest areas suggest a land use effect because AET is calculated as AET =K*PET, 

where K is closely related to land cover types (Figure B.4).  

DEA Level 3 data provides valuable information about land cover in the MDB, but some uncertainties 

affect its accuracy and reliability. How data is categorised and classified can impact accuracy, 

leading to inconsistencies and difficulties in comparing data over time and locations. The dataset's 

overall accuracy is 80%, with challenges in classifying cultivated vegetation and bare surfaces 

(Tissott & Mueller, 2022). Limitations exist in distinguishing managed plantations and orchards from 

natural vegetation, and misclassifications can occur due to natural events that resemble cultivated 

land behaviour. Despite these uncertainties, the data remains valuable for national-scale analysis 

when detailed information is lacking.  



 

129 

4.6 Conclusions 

In this study, we analysed the actual evapotranspiration in the Murray Darling Basin using CMRSET 

and MODIS datasets. The findings demonstrate a reasonable alignment between these datasets in 

overall AET patterns, yet with significant variations in magnitude. Specifically, the CMRSET dataset 

indicated higher AET rates for all analysed land cover types, including Natural Terrestrial vegetation, 

Cultivated Terrestrial Vegetation and Natural Bare Surface. A Basin-scale water balance 

assessment indicated that MODIS considerably underestimates AET, thereby underscoring the 

heightened precision of CMRSET in estimating water balances. Consequently, CMRSET was 

selected for further analysis. 

The 2001-2020 trend analysis revealed an increasing AET trend in the southeastern catchments and 

the northern part of the MDB in the CMRSET dataset. In the study of AET across all analysed land 

cover types in the MDB, most catchments exhibited significant differences, primarily in AET values, 

but not in AET/P. However, this pattern was not uniform across all regions. Assuming the CMRSET 

dataset accurately reflects real-world evapotranspiration, the minimal variation in AET between land 

cover types, observed at this broad categorisation and catchment scale, could either imply a 

dominant role of rainfall over land cover in determining AET, or it might indicate a need for further 

refinement of the model employed in this analysis to more accurately detect such variations. 

An observed pattern indicated that catchments exhibiting significant differences in both AET and 

AET/P were generally in the southern part and in those areas with higher levels of rainfall. However, 

it is important to note that this trend was not consistently observed across all catchments. Unique 

amongst these, the Campaspe catchment displayed significant differences in AET/P between CTV 

and NTV. This indicates a nuanced interaction of hydrological processes, which varies considerably 

across different catchments within the MDB.  

This study illustrates the complex and varied hydrological processes across different catchments in 

the MDB, highlighting the need for tailored management strategies to address the Basin's diverse 

hydrological characteristics. It emphasises the significant influence of regional climate, terrain, and 

land cover changes on AET. Understanding these factors is essential for improving AET estimation, 

identifying product limitations, and refining calibration and validation processes, especially 

considering ongoing climate and land cover change. The study also stresses the importance of 

accurate and reliable water data, robust monitoring, and transparent reporting in the MDB. Data 

availability and quality can vary by source, region, and scale. Differences in data collection methods, 

the aggregation of information from multiple jurisdictions, and uneven reporting standards can lead 

to gaps and inconsistencies. Discrepancies between MDB authority outflow data and outflow 

estimation with MODIS data highlight the need for precise water accounting, which is critical for 

managing various needs and understanding crop and vegetation water requirements. Improving data 
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harmonisation, accessibility, and timeliness would support more effective policy evaluations and 

environmental management decisions.  

With the MDB facing climate change challenges, including drying and warming trends, continuous 

monitoring and assessing water recovery targets becomes imperative for effective decision-making 

and climate change adaptation. Accurate quantification of AET, as a fundamental component of the 

water balance, is increasingly recognised as key for robust water resource management. The 

findings advocate for future research concentrating on detailed land cover analysis to enhance AET 

estimation accuracy, which is essential for developing robust water security strategies under 

changing climatic conditions.   
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5.1 Summary of findings 

This thesis began with an overview of land cover and land use (LULC) conceptualisation in 

hydrological models. To identify the gaps in our understanding of LULC, we first investigated the 

main hydrological processes that are impacted by LULC and explored how they were conceptualised 

in models. Then, we discussed the processes within models that could be improved to integrate 

LULC dynamics effectively. This is followed by the important question of whether we have enough 

data to address LULC-related issues in models. Even if data is available, are the land cover dynamics 

significant enough that it is worth the effort of adding complexity to hydrological models? To answer 

these questions, we require context, so we chose the Murray-Darling Basin (MDB) as a case study. 

The MDB is an ideal location to study the impact of LULC dynamics on hydrological processes. It 

has undergone significant changes in LULC and climate, resulting in changes in its water balance, 

including vanishing flows that remain a mystery. The next study focused on actual evapotranspiration 

(AET) within the basin as the most important component in the water balance and hydrological 

modelling. We investigated AET over different land covers to learn how significant the differences 

are and what the possible drivers might be. 

The key findings from each of the three specific studies are as follows: 

• Hydrological modelling is further constrained by the reliance on traditional empirical formulas, 

which may not be suitable for rapidly changing landscapes. LULC changes can significantly 

influence hydrological processes with impacts that are highly diverse and influenced by factors 

beyond land cover alone. The scale and magnitude of these impacts can vary greatly, by factors 

like geographical location, slope, climate, and others, highlighting the importance of region-

specific studies. Additionally, accurately modelling processes like interception and AET remains 

a significant challenge. LULC transformations challenge the foundational assumption of 

hydrological stationarity, and while dynamic LULC complicates the calibration process, it 

enhances model validity. Our research showed the need for a standardised LULC classification 

system, comprehensive modelling approaches that incorporate extensive validation. Current 

models often have untapped potential to fully utilise remote sensing data, which could 

significantly improve their accuracy and representation of real-world conditions. A critical 

perspective on modelling practices, acknowledging data constraints and embracing 

technological advancements, is essential for developing more reliable and representative 

simulations. 

• The study revealed significant LULC changes in the MDB over 31 years. These changes, driven 

by climate variability, agricultural practices, water management initiatives, and natural disasters, 

vary substantially across the basin's catchments. Notably, there has been an increase in natural 

bare surfaces and a decrease in water bodies, along with shifts in agricultural land use, 

particularly in areas with significant water recovery efforts. A complex relationship existed 
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between land cover and rainfall, with differing responses observed in the northern and southern 

regions of the MDB. While Cultivated Terrestrial Vegetation (CTV) in land cover showed a 

general decreasing trend, the land use data showed that irrigated agriculture increased. It 

highlighted the importance of using different data sources according to the scale and purpose of 

the study. Further investigation into the rebound effect of water efficiency improvements is crucial 

for developing policies that promote truly sustainable water use. While water efficiency 

improvements have led to agricultural expansion, this has also resulted in a rebound effect. 

Although total water extractions are capped at 1995 levels, water recovered for the environment 

can be traded, allowing irrigators who have improved their water-use efficiency to sell part of 

their allocation. This market-based redistribution enables other agricultural enterprises to expand 

or intensify production, thus giving the appearance of increased agricultural water use despite 

stable overall extractions, highlighting the unintended consequences of some water recovery 

initiatives. The study emphasised the need for refined data, advanced monitoring techniques, 

and policy considerations that address the complex interactions between land use, water 

management, and environmental outcomes in the MDB. 

• Our research highlighted the crucial sensitivity of AET products to basic water balance 

calculation. The CMRSET dataset, with its enhanced algorithm, more accurately differentiates 

AET during drought conditions compared to the MODIS dataset, which tends to underestimate 

AET consistently. Such underestimation by MODIS can significantly affect water flow 

assessments and subsequent management strategies within the MDB. Variability in AET across 

MDB catchments is predominantly influenced by rainfall, with only a few catchments exhibiting 

significant AET differences across major land cover types, highlighting the role of regional 

factors. Notably, an increasing AET trend was observed in only two out of 22 catchments, likely 

due to changes in land cover or management practices that increase evapotranspiration. 

Additionally, minimal variation in the AET/P ratio across most catchments indicates that rainfall 

is the primary driver of AET at this broad scale. Catchments showing significant differences in 

both AET and AET/P were generally located in the southern, higher-rainfall areas. This study 

highlighted the complexities involved in accurately capturing environmental variables and 

stressed the necessity for meticulous selection and comparative analysis of different AET 

datasets to effectively understand and manage hydrological processes in the MDB, especially 

considering the implications of climate change.  
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5.2 Future research directions 

• Enhancing hydrological models with advanced empirical methods:  

While using simple empirical equations for modelling hydrological processes in models has 

traditionally been favoured for their ease of use and efficiency, there remains significant 

potential for integrating more advanced methodologies, such as machine learning, to improve 

LULC modelling. Despite the availability of land use data, inconsistencies in nomenclature 

and classification systems persist, necessitating the adoption of standardised frameworks 

that enhance model accuracy and applicability. 

• Dynamic representation of LULC in hydrological modelling:  

While our understanding of hydrologically relevant LULC processes has improved, their 

integration into hydrological models remains inadequate. There is a critical need for research 

focused on developing standardised and comprehensive approaches that account for the 

spatial heterogeneity and temporal dynamics of LULC. Emphasising dynamic data 

incorporation—which varies significantly based on regional climate, topography, and land 

management—is vital for refining models and enhancing predictive accuracy. 

• Impact of agricultural practices on evapotranspiration:  

Diverse agricultural practices, such as varied irrigation methods, crop rotation, and the use 

of cover crops, significantly impact evapotranspiration rates. Research in this area is crucial 

for developing sustainable agricultural strategies that optimise water use while ensuring crop 

productivity. Further investigation into the rebound effect of water efficiency improvements 

will also be pivotal in shaping policies that support sustainable water use. 

• Improving spatial and temporal data resolution:  

Current discrepancies in AET data across different catchments underscore the need for more 

localised studies. Enhancing both the spatial and temporal resolution of this data is crucial, 

as even minor improvements in model components could lead to significant advancements 

in our understanding and management of hydrological processes. While large-scale water 

balances such as those of the MDB typically rely on aggregated data, improving spatial and 

temporal data resolution can still be beneficial. Even incremental enhancements in the 

resolution of AET and related hydrological variables can help identify critical local-scale 

dynamics—such as variations in land cover, irrigation practices, or microclimatic conditions—

that may not be captured by more coarsely aggregated data. These refined insights support 

more targeted management interventions, better calibration of basin-wide models, and 

improved allocation decisions. By enabling more precise assessments of where and when 
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water is used, these finer-grained data can contribute to a more nuanced understanding of 

the basin’s overall water balance, ultimately informing adaptive strategies under varying 

climatic and land-use scenarios. 

• Interdisciplinary approaches to LULC change:  

Collaborative research that spans hydrology, ecology, and social sciences is essential to 

comprehensively understand the socio-economic drivers of land use changes and their 

hydrological impacts. Constructing comprehensive models that incorporate human behaviour 

and economic dynamics will inform more effective land management and policy decisions. 

• Long-term impact studies and remote sensing integration:  

Continued long-term studies are necessary to assess the impacts of climate change on LULC 

dynamics and hydrological processes. Additionally, the potential of remote sensing data to 

improve model accuracy and representation of real-world conditions should be explored to 

enhance the reliability and effectiveness of hydrological models. 



 

143 

APPENDIX A 

Table A.1: Areal percentage of different land cover for 1990 till 2020 for the whole MDB. 

Year No data CTV NTV *NAV AS NS Water 

1990 0.02 32.91 63.87 0.00 0.01 1.71 1.49 

1991 0.00 32.77 61.88 0.00 0.01 4.58 0.75 

1992 0.01 24.91 63.76 0.00 0.01 10.56 0.75 

1993 0.02 15.75 76.20 0.00 0.02 7.12 0.89 

1994 0.04 22.05 69.80 0.00 0.01 7.50 0.60 

1995 0.04 26.55 66.51 0.00 0.01 6.18 0.70 

1996 0.03 23.70 68.13 0.00 0.01 7.36 0.76 

1997 0.03 23.27 68.01 0.00 0.02 7.96 0.71 

1998 0.01 26.16 65.50 0.00 0.02 6.92 1.40 

1999 0.08 19.35 69.27 0.00 0.02 10.54 0.73 

2000 0.07 19.32 74.77 0.00 0.02 4.90 0.93 

2001 0.07 18.51 73.15 0.00 0.02 7.63 0.63 

2002 0.02 18.89 64.59 0.00 0.02 16.07 0.41 

2003 0.00 18.89 66.27 0.00 0.02 14.42 0.38 

2004 0.00 23.36 64.85 0.00 0.02 11.35 0.43 

2005 0.01 24.27 64.13 0.00 0.02 11.16 0.42 

2006 0.00 29.39 58.21 0.00 0.02 12.05 0.33 

2007 0.01 23.23 60.55 0.00 0.03 15.88 0.31 

2008 0.00 11.91 69.84 0.00 0.03 17.71 0.50 

2009 0.00 21.47 62.65 0.00 0.03 15.53 0.33 

2010 0.00 20.96 73.14 0.00 0.02 4.81 1.06 

2011 0.01 14.38 81.92 0.00 0.02 2.53 1.14 

2012 0.02 16.60 78.65 0.00 0.03 3.53 1.17 

2013 0.01 21.10 72.39 0.00 0.03 5.84 0.63 

2014 0.01 21.35 68.34 0.00 0.03 9.81 0.46 

2015 0.00 18.29 68.60 0.00 0.03 12.67 0.40 

2016 0.01 25.97 66.26 0.00 0.03 6.94 0.79 

2017 0.01 14.09 75.33 0.00 0.03 10.00 0.54 

2018 0.01 10.68 63.94 0.00 0.03 24.96 0.37 

2019 0.00 15.09 54.61 0.00 0.04 29.94 0.32 

2020 0.00 24.28 57.25 0.00 0.04 17.88 0.55 

*Note: The values for NAV are consistently zero, indicating negligible or non-existent coverage during the studied period.  
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Table A.2: Trend analysis (1990-2020) test statistics for land cover classes for MDB catchments. 
  Mann Kendal's test result Sen's Slope test result 
Catchment names  Tau s trend p Slope  intercept 
GOULBURN-BROKEN CTV -0.148 -69.000 no trend 0.248 -0.239 39.423 

GOULBURN-BROKEN NTV 0.170 79.000 no trend 0.185 0.263 57.942 

GOULBURN-BROKEN AS 0.832 387.000 increasing 0.000 0.003 0.029 

GOULBURN-BROKEN NS 0.531 247.000 increasing 0.000 0.009 0.094 

GOULBURN-BROKEN Water -0.454 -211.000 decreasing 0.000 -0.025 1.604 

GOULBURN-BROKEN NAV 0.000 0.000 no trend 1.000 0.000 0.000 

GWYDIR CTV -0.110 -51.000 no trend 0.395 -0.116 19.774 

GWYDIR NTV -0.243 -113.000 no trend 0.057 -0.149 80.010 

GWYDIR AS 0.639 297.000 increasing 0.000 0.000 0.004 

GWYDIR NS 0.320 149.000 increasing 0.012 0.131 1.116 

GWYDIR Water -0.217 -101.000 no trend 0.089 -0.009 0.617 

KIEWA CTV -0.088 -41.000 no trend 0.497 -0.099 25.415 

KIEWA NTV 0.075 35.000 no trend 0.563 0.096 73.422 

KIEWA AS 0.785 365.000 increasing 0.000 0.011 0.125 

KIEWA NS 0.669 311.000 increasing 0.000 0.015 0.142 

KIEWA Water -0.131 -61.000 no trend 0.308 -0.001 0.380 

LACHLAN CTV -0.114 -53.000 no trend 0.377 -0.250 37.362 

LACHLAN NTV 0.015 7.000 no trend 0.919 0.060 58.161 

LACHLAN AS 0.798 371.000 increasing 0.000 0.000 0.004 

LACHLAN NS 0.222 103.000 no trend 0.083 0.090 0.608 

LACHLAN Water -0.230 -107.000 no trend 0.072 -0.011 0.503 

LOWER MURRAY CTV -0.505 -235.000 decreasing 0.000 -0.613 31.520 

LOWER MURRAY NTV -0.049 -23.000 no trend 0.708 -0.099 56.529 

LOWER MURRAY AS 0.897 417.000 increasing 0.000 0.001 0.013 

LOWER MURRAY NS 0.385 179.000 increasing 0.002 0.617 9.281 

LOWER MURRAY Water -0.295 -137.000 decreasing 0.021 -0.005 1.652 

LOWER MURRAY NAV 0.090 42.000 no trend 0.486 0.000 0.001 

MACQUARIE-CASTLEREAGH CTV -0.247 -115.000 no trend 0.053 -0.526 29.900 

MACQUARIE-CASTLEREAGH NTV 0.019 9.000 no trend 0.892 0.059 70.872 

MACQUARIE-CASTLEREAGH AS 0.781 363.000 increasing 0.000 0.001 0.007 

MACQUARIE-CASTLEREAGH NS 0.333 155.000 increasing 0.009 0.139 1.158 

MACQUARIE-CASTLEREAGH Water -0.196 -91.000 no trend 0.126 -0.003 0.234 

MITTA MITTA CTV -0.101 -47.000 no trend 0.434 -0.044 10.694 

MITTA MITTA NTV 0.157 73.000 no trend 0.221 0.080 86.576 

MITTA MITTA AS 0.578 269.000 increasing 0.000 0.000 0.002 

MITTA MITTA NS 0.217 101.000 no trend 0.089 0.001 0.016 

MITTA MITTA Water -0.265 -123.000 decreasing 0.038 -0.013 2.200 

NAMOI CTV -0.213 -99.000 no trend 0.096 -0.222 16.145 

NAMOI NTV -0.071 -33.000 no trend 0.587 -0.057 82.501 

NAMOI AS 0.772 359.000 increasing 0.000 0.001 0.009 

NAMOI NS 0.277 129.000 increasing 0.030 0.093 0.292 

NAMOI Water -0.286 -133.000 decreasing 0.025 -0.009 0.528 

OVENS CTV -0.105 -49.000 no trend 0.415 -0.118 23.873 

OVENS NTV 0.110 51.000 no trend 0.395 0.122 75.492 

OVENS AS 0.798 371.000 increasing 0.000 0.003 0.029 

OVENS NS 0.587 273.000 increasing 0.000 0.005 0.064 

OVENS Water -0.325 -151.000 decreasing 0.011 -0.005 0.501 
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Table A.2: Continue 
  Mann Kendal's test result Sen's Slope test result 
Catchment names  Tau s trend p Slope intercept 
PAROO CTV -0.333 -155.000 decreasing 0.009 -0.308 14.931 

PAROO NTV -0.015 -7.000 no trend 0.919 -0.067 63.269 

PAROO NS 0.131 61.000 no trend 0.308 0.376 24.349 

PAROO Water -0.256 -119.000 decreasing 0.045 -0.018 0.713 

WARREGO CTV -0.312 -145.000 decreasing 0.014 -0.165 9.051 

WARREGO NTV -0.187 -87.000 no trend 0.144 -0.249 87.685 

WARREGO AS 0.748 348.000 increasing 0.000 0.000 0.000 

WARREGO NS 0.265 123.000 increasing 0.038 0.387 2.914 

WARREGO Water -0.234 -109.000 no trend 0.066 -0.003 0.191 

WIMMERA CTV 0.062 29.000 no trend 0.634 0.057 52.720 

WIMMERA NTV -0.084 -39.000 no trend 0.518 -0.083 44.078 

WIMMERA AS 0.845 393.000 increasing 0.000 0.001 0.012 

WIMMERA NS 0.277 129.000 increasing 0.030 0.054 1.604 

WIMMERA Water -0.346 -161.000 decreasing 0.007 -0.028 1.148 

MURRUMBIDGEE CTV -0.127 -59.000 no trend 0.324 -0.290 44.772 

MURRUMBIDGEE NTV 0.049 23.000 no trend 0.708 0.080 55.059 

MURRUMBIDGEE AS 0.828 385.000 increasing 0.000 0.002 0.023 

MURRUMBIDGEE NS 0.385 179.000 increasing 0.002 0.048 0.070 

MURRUMBIDGEE Water -0.368 -171.000 decreasing 0.004 -0.031 1.515 

UPPER MURRAY CTV -0.019 -9.000 no trend 0.892 -0.016 19.934 

UPPER MURRAY NTV 0.045 21.000 no trend 0.734 0.026 78.892 

UPPER MURRAY AS 0.755 351.000 increasing 0.000 0.000 0.002 

UPPER MURRAY NS 0.419 195.000 increasing 0.001 0.003 0.020 

UPPER MURRAY Water -0.247 -115.000 no trend 0.053 -0.008 1.058 

MID MURRAY CTV -0.157 -73.000 no trend 0.221 -0.362 48.387 

MID MURRAY NTV 0.161 75.000 no trend 0.208 0.371 47.690 

MID MURRAY AS 0.798 371.000 increasing 0.000 0.003 0.033 

MID MURRAY NS 0.449 209.000 increasing 0.000 0.059 0.046 

MID MURRAY Water -0.553 -257.000 decreasing 0.000 -0.109 3.614 

MOONIE CTV -0.230 -107.000 no trend 0.072 -0.162 17.568 

MOONIE NTV -0.161 -75.000 no trend 0.208 -0.157 83.803 

MOONIE NS 0.346 161.000 increasing 0.007 0.177 0.349 

MOONIE Water 0.243 113.000 no trend 0.057 0.003 0.104 

BORDER RIVERS CTV -0.028 -13.000 no trend 0.838 -0.018 13.413 

BORDER RIVERS NTV -0.316 -147.000 decreasing 0.013 -0.176 85.905 

BORDER RIVERS AS 0.699 325.000 increasing 0.000 0.000 0.003 

BORDER RIVERS NS 0.299 139.000 increasing 0.019 0.102 0.979 

BORDER RIVERS Water 0.105 49.000 no trend 0.415 0.002 0.294 

BARWON-DARLING CTV -0.406 -189.000 decreasing 0.001 -0.365 15.184 

BARWON-DARLING NTV 0.166 77.000 no trend 0.196 0.329 76.462 

BARWON-DARLING AS 0.716 333.000 increasing 0.000 0.000 0.001 

BARWON-DARLING NS 0.058 27.000 no trend 0.659 0.062 5.809 

BARWON-DARLING Water -0.247 -115.000 no trend 0.053 -0.003 0.159 
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Table A.2: Continue 
  Mann Kendal's test result Sen's Slope test result 
Catchment names  Tau s trend p Slope  intercept 
LODDON-AVOCA CTV -0.071 -33.000 no trend 0.587 -0.111 53.542 

LODDON-AVOCA NTV 0.037 17.000 no trend 0.786 0.070 42.421 

LODDON-AVOCA AS 0.802 373.000 increasing 0.000 0.003 0.026 

LODDON-AVOCA NS 0.286 133.000 increasing 0.025 0.051 1.171 

LODDON-AVOCA Water -0.239 -111.000 no trend 0.062 -0.010 1.061 

CAMPASPE CTV -0.209 -97.000 no trend 0.103 -0.493 45.094 

CAMPASPE NTV 0.204 95.000 no trend 0.110 0.465 54.524 

CAMPASPE AS 0.884 411.000 increasing 0.000 0.006 0.023 

CAMPASPE NS 0.548 255.000 increasing 0.000 0.013 0.174 

CAMPASPE Water -0.295 -137.000 decreasing 0.021 -0.013 1.155 

CONDAMINE CTV -0.342 -159.000 decreasing 0.007 -0.183 10.216 

CONDAMINE NTV -0.222 -103.000 no trend 0.083 -0.327 87.609 

CONDAMINE AS 0.626 291.000 increasing 0.000 0.001 0.005 

CONDAMINE NS 0.312 145.000 increasing 0.014 0.432 1.323 

CONDAMINE Water -0.006 -3.000 no trend 0.973 0.000 0.194 

LOWER DARLING CTV -0.402 -187.000 decreasing 0.002 -0.765 29.702 

LOWER DARLING NTV -0.002 -1.000 no trend 1.000 -0.007 44.338 

LOWER DARLING AS 0.385 179.000 increasing 0.002 0.000 0.016 

LOWER DARLING NS 0.170 79.000 no trend 0.185 0.744 18.441 

LOWER DARLING Water -0.312 -145.000 decreasing 0.014 -0.031 1.179 
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Table A.3: Correlation between land cover percentage and precipitation: Green indicates a significant 
correlation (p<0.05), while red denotes no significant correlation (p>0.05). 

Basin NTV 1 Lag NTV no Lag NS 1 lag NS No lag Water 1 Lag Water No Lag 

PAROO 0.612 0.506 -0.554 -0.600 0.470 0.801 

BORDER RIVERS 0.519 0.522 -0.331 -0.673 0.566 0.651 

MOONIE 0.550 0.631 -0.533 -0.668 0.435 0.509 

CONDAMINE 0.763 0.744 -0.641 -0.704 0.648 0.607 

WARREGO 0.607 0.636 -0.623 -0.666 0.456 0.761 

NAMOI 0.715 0.084 -0.395 -0.718 0.630 0.617 

MACQUARIE-CASTLEREAGH 0.613 0.064 -0.435 -0.591 0.378 0.647 

BARWON-DARLING 0.451 0.393 -0.518 -0.424 0.654 0.592 

LOWER DARLING 0.685 0.424 -0.474 -0.477 0.601 0.527 

GOULBURN-BROKEN 0.294 -0.258 -0.254 -0.617 0.536 0.710 

GWYDIR 0.498 0.027 -0.260 -0.706 0.710 0.642 

LOWER MURRAY 0.575 0.233 -0.235 -0.398 0.420 0.478 

LACHLAN 0.566 0.242 -0.535 -0.519 0.578 0.623 

KIEWA 0.075 -0.292 -0.148 -0.348 0.626 0.662 

WIMMERA 0.511 0.185 -0.144 -0.588 0.524 0.558 

UPPER MURRAY -0.189 -0.327 -0.053 -0.591 0.518 0.815 

CAMPASPE 0.229 -0.236 -0.151 -0.610 0.612 0.504 

MURRUMBIDGEE 0.504 0.139 -0.429 -0.702 0.533 0.660 

MID MURRAY 0.548 -0.013 -0.257 -0.575 0.405 0.519 

LODDON-AVOCA 0.525 0.102 -0.173 -0.717 0.352 0.716 

OVENS 0.275 -0.287 -0.252 -0.586 0.347 0.750 

MITTA MITTA -0.098 -0.390 -0.152 -0.756 0.536 0.746 
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Table A.4: Standard deviation (1990-2020) of land cover (%) in MDB’s catchments. 

 CTV NTV *NAV AS NS Water 

BARWON-DARLING 6.58 9.19 NA 0.00 6.81 0.56 

BORDER RIVERS 3.22 4.07 NA 0.00 5.45 0.14 

CAMPASPE 14.84 14.79 NA 0.06 0.31 0.33 

CONDAMINE 3.88 9.17 NA 0.01 9.50 0.24 

GOULBURN-BROKEN 10.38 10.44 0.00 0.03 0.20 0.38 

GWYDIR 7.22 6.55 NA 0.00 7.66 0.25 

KIEWA 6.19 6.34 NA 0.11 0.25 0.14 

LACHLAN 10.55 10.37 NA 0.00 6.10 0.55 

LODDON-AVOCA 10.49 10.19 NA 0.03 1.36 0.30 

LOWER DARLING 11.54 15.80 NA 0.00 18.58 0.78 

LOWER MURRAY 8.05 7.81 0.00 0.01 9.00 0.25 

MACQUARIE-CASTLEREAGH 10.87 10.58 NA 0.01 8.09 0.30 

MID MURRAY 12.71 11.98 NA 0.03 3.41 1.43 

MITTA MITTA 2.72 3.11 NA 0.00 0.11 0.37 

MOONIE 6.40 8.97 NA  7.89 0.09 

MURRUMBIDGEE 10.85 10.35 NA 0.02 4.05 0.47 

NAMOI 6.31 6.15 NA 0.01 5.37 0.23 

OVENS 7.84 7.87 NA 0.03 0.07 0.11 

PAROO 6.86 14.24 NA  14.10 0.98 

UPPER MURRAY 4.52 4.72 NA 0.00 0.32 0.23 

WARREGO 4.66 9.01 NA 0.00 8.30 0.23 

WIMMERA 7.68 7.64 NA 0.01 1.38 0.47 
* Note: The entries for NAV are zero, indicating negligible coverage. NA values, where present, signify that the cover does not exist 

in the given catchment. 
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Table A.5: Summary of statistics for precipitation for the whole MDB. 

Year MIN MAX MEAN STD 

1990 173.2012 2418.966 529.4195 245.5769 

1991 112.8271 2218.881 428.0512 229.5523 

1992 227.4961 2368.462 561.3789 248.6039 

1993 179.8701 2621.813 515.4917 224.3683 

1994 83.93066 1514.342 325.9952 159.2186 

1995 201.1992 2529.909 536.4529 228.9407 

1996 136.7012 2614.265 542.5032 269.6811 

1997 178.4482 1483.698 443.6373 189.82 

1998 133.4893 2317.508 571.1741 247.1461 

1999 162.3213 1932.66 582.4711 211.2486 

2000 230.5459 2273.047 574.2423 201.8892 

2001 119.6924 1941.792 405.7512 208.9133 

2002 57.12988 1486.798 279.4138 165.4796 

2003 149.376 2056.217 440.594 193.2744 

2004 123.3887 1805.013 463.8856 235.4619 

2005 96.21582 2071.034 439.7165 216.7747 

2006 92.77051 1195.347 275.1724 127.0729 

2007 191.4258 1926.84 472.7581 185.2628 

2008 137.5879 1581.794 448.4786 200.6458 

2009 124.9795 1853.406 406.9997 161.653 

2010 307.3975 2740.509 810.2043 264.4522 

2011 145.3691 2212.564 600.8763 203.9217 

2012 151.6982 2115.126 498.0745 212.9032 

2013 104.1621 2214.305 368.727 205.3108 

2014 182.1055 1706.767 416.4459 181.2696 

2015 125.7373 1631.637 428.1483 187.5188 

2016 258.7432 2609.296 620.6371 241.7515 

2017 117.749 2073.819 402.6755 202.5732 

2018 57.36426 1812.829 290.4505 170.8818 

2019 37.96289 1626.65 230.8489 146.4931 

2020 36.0918 908.0674 269.0009 115.5498 
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Table A.6: Precipitation statistics per catchment (P-Mean: Average precipitation 1990-2020; P-Mean-STD: 
Standard Deviation of mean precipitation over Time, reflecting temporal variation; P-STD-Mean: Mean of 

precipitation standard deviation over time, reflecting spatial variation; P-Trend: Result of the Mann-Kendall 
test). 

 P_mean (mm) P_Mean_STD P_STD_Mean P_trend 

BARWON-DARLING 331 125 54 no trend 

BORDER RIVERS 604 154 109 no trend 

CAMPASPE 559 157 133 no trend 

CONDAMINE 484 150 114 no trend 

GOULBURN-BROKEN 690 176 270 decreasing 

GWYDIR 639 165 117 no trend 

KIEWA 1057 271 287 no trend 

LACHLAN 458 136 143 no trend 

LODDON-AVOCA 392 118 103 no trend 
LOWER DARLING 259 107 33 no trend 
LOWER MURRAY 287 90 78 no trend 

MACQUARIE-CASTLEREAGH 531 162 124 no trend 

MID MURRAY 382 118 72 no trend 

MITTA MITTA 1040 253 208 decreasing 

MOONIE 522 155 50 no trend 

MURRUMBIDGEE 529 147 214 no trend 

NAMOI 627 167 117 decreasing 

OVENS 921 243 283 decreasing 

PAROO 307 131 61 no trend 

UPPER MURRAY 951 234 233 decreasing 

WARREGO 452 170 106 no trend 

WIMMERA 380 106 92 no trend 
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Table A.7: Average (1990-2020) percentage of major land covers in MDB’s catchments. 

 CTV NTV *NAV AS NS Water 

BARWON-DARLING 10.04 81.01 NA 0.00 8.65 0.30 

BORDER RIVERS 12.87 82.38 NA 0.01 4.39 0.36 

CAMPASPE 37.30 61.28 NA 0.12 0.44 0.84 

CONDAMINE 8.31 80.36 NA 0.02 11.03 0.28 

GOULBURN-BROKEN 32.85 65.24 0.00 0.08 0.28 1.27 

GWYDIR 17.92 75.94 NA 0.01 5.60 0.53 

KIEWA 23.98 74.62 NA 0.31 0.42 0.39 

LACHLAN 34.90 59.69 NA 0.01 4.94 0.45 

LODDON-AVOCA 51.02 45.81 NA 0.07 2.10 0.98 

LOWER DARLING 18.85 48.05 NA 0.02 32.12 0.95 

LOWER MURRAY 22.91 56.93 0.00 0.03 18.48 1.63 

MACQUARIE-CASTLEREAGH 23.17 71.14 NA 0.02 5.36 0.30 

MID MURRAY 41.81 53.72 NA 0.08 2.20 2.19 

MITTA MITTA 10.67 86.94 NA 0.00 0.07 1.95 

MOONIE 15.76 78.77 NA  5.32 0.16 

MURRUMBIDGEE 39.32 57.22 NA 0.06 2.48 0.90 

NAMOI 15.00 80.54 NA 0.02 4.03 0.41 

OVENS 21.86 77.42 NA 0.07 0.15 0.44 

PAROO 10.88 60.88 NA  27.35 0.89 

UPPER MURRAY 19.91 78.82 NA 0.00 0.15 0.90 

WARREGO 6.92 82.18 NA 0.00 10.68 0.21 

WIMMERA 52.46 44.17 NA 0.04 2.64 0.69 
* Note: The entries for NAV are zero, indicating negligible coverage. NA values, where present, signify that the cover does not exist 

in the given catchment. 
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Figure A.1: Major land covers (%) in MDB catchments from 1990 to 2020.  
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Continuation of Figure A.1: Major land covers (%) in MDB catchments from 1990 to 2020.  
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Continuation of Figure A.1: Major land covers (%) in MDB catchments from 1990 to 2020  
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Continuation of Figure A.1 Major land cover (%) in MDB catchments from 1990 to 2020.  
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Continuation of Figure A.1 Major land cover (%) in MDB catchments from 1990 to 2020.  
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Continuation of Figure A.1 Major land cover (%) in MDB catchments from 1990 to 2020. 

 

Figure A.2: Basin water reform timeline agriculture, economy and water trade themes 2007-24. Sourced from 
Marsden Jacob, adapted from (MDBA, 2020).
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APPENDIX B 

Table B.1: Descriptions of 22 catchments in the Murray-Darling Basin (MDB) 

Catchment Annual stream flow 

Catch
ment 
area 

(% of 
MDB) 

 Contribu
tion to 
Basin 
water (% 
of MDB 
outflow) 

Major water storages River length Key water users 

Barwon-
Darling 

3,500 GL/yr (Bourke) 13% 
 

2.80% None 1,600 km (approx.) 
Urban water supply, stock, 

domestic and irrigation 

Border 
Rivers 

130 GL/yr (Macintyre 

River at Wallangra) 
4% 

 
5% 

Pindari Lake (312 GL), Glenlyon Lake (261 GL), Lake 

Coolmunda (69 GL)  Urban centres, agriculture 

Campaspe Campaspe: 352 GL/yr 0.4% 

 

0.90% 

Lake Eppalock (304 GL) on the Campaspe; Malmsbury (18 

GL), Lauriston (20 GL) and Upper Coliban (32 GL) reservoirs 

on the Coliban 

220 km 
Urban water supply, industry, 

stock and domestic, irrigation 

Central 
Murray  3% 

 

- 
Yarrawonga Weir (118 GL), Torrumbarry Weir (37 GL), mid-

Murray storages (58 GL), Mildura Weir (37 GL) 

2,500 km total; approx. 

1,200 km Hume Dam to 

Wentworth 

Irrigated agriculture, urban 

water supply, stock and 

domestic 

Condamine
-Balonne 

1,305 GL/yr (St George) 13% 

 

8.50% 
Beardmore Dam (94 GL), Leslie Dam (106 GL), Cooby Dam 

(21 GL) 

1,195 km (Condamine, 

Balonne, and Culgoa 

channel) 

Urban centres, agriculture 

Goulburn-
Broken 

3,000 GL/yr 2% 

 

11% 

Goulburn River: Lake Eildon (3,334 GL), Goulburn Weir (26 

GL), Waranga Basin (432 GL), Greens Lake (33 GL) Broken 

River: Lake Nillahcootie (40 GL) 

Goulburn River: 570 km, 

Broken River: 174 km 

Irrigated agriculture, urban 

water supply, industry 
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Gwydir 
336 GL/yr (Bundarra - 

unregulated flow) 
~ 2% 

 

3.40% Copeton Dam (1,364 GL) 480 km 

Irrigated agriculture, urban 

water supply, stock and 

domestic, mining 

Kiewa 689 GL/yr 
< 

0.2%  

 

 Rocky Valley Dam (28 GL) 109 km 

Urban water supply, stock 

and domestic, 

hydroelectricity, irrigation 

Lachlan 834 GL/yr (Cowra) 8% 

 

6.50% 
Wyangala (1,220 GL), Lake Cargelligo (36 GL), Carcoar 

Dam (36 GL) 
1,339 km 

Urban water supply, stock 

and domestic, irrigated 

agriculture, mining 

Loddon-
Avoca 

Loddon River: 201 GL/yr 

(Laanecoorie Weir) 

Avoca River: 84 GL/yr 

(Coonooer Bridge) 

2.3% 

 

1.70% 

Loddon River: Cairn Curran Reservoir (147 GL), Tullaroop 

Reservoir (73 GL), Laanecoorie Reservoir (8 GL) Avoca 

River: none 

Loddon River: 310 km 

Avoca River: 270 km 
2.3% of the MDB 

Lower 
Darling  3% 

 

 
Lakes Menindee, Cawndilla, Pamamaroo and Wetherell 

(1,730 GL) 
530 km 

Urban water supply, stock, 

domestic and irrigation 

Lower 
Murray  9% 

 

- Lake Victoria (677 GL) 

2,500 km total, approx. 

1,000 km Wentworth to 

Southern Ocean 

Irrigated agriculture, urban 

centres (including Adelaide), 

stock and domestic supply 

Macquarie-
Castlereag
h 

1,175 GL/yr (Macquarie 

at Dubbo) 
7% 

 

8.40% 
Burrendong (1,190 GL), Windamere (353 GL), Oberon (45 

GL), Ben Chifley (31 GL), Suma Park (18 GL) 

Castlereagh River: 549 

km Macquarie River: 960 

km Bogan River: 590 km 

Irrigated agriculture, urban 

water supply, industrial water 

supply 

Mitta Mitta 
900 GL/yr (into 

Dartmouth Dam) 
0.9% 

 
10% Dartmouth (3,856 GL) 204 km 

Urban water supply, stock 

and domestic, irrigation 

Moonie  1.4% 
 

0.80% Thallon Weir (0.2 GL) 542 km 
Stock and domestic, 

irrigation 
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Murrumbid
gee 

4,000 GL/yr (Wagga 

Wagga) 
8% 

 

16% 
Burrinjuck (1,026 GL), Blowering (1,628 GL), Talbingo (921 

GL), Tantangara (254 GL), Googong (125 GL) 
1,485 km 

Irrigated agriculture, 

hydroelectricity, urban water 

supply 

Namoi 696 GL/yr (Gunnedah) 4% 

 

3.20% 
Keepit Dam (426 GL), Split Rock Dam (397 GL), Chaffey 

Dam (101 GL) 
700 km 

Irrigated agriculture, urban 

water supply, stock and 

domestic, mining 

Ovens 
1,775 GL/yr (at 

Peechelba) 
0.7% 

 

6% Lake Buffalo (24 GL), Lake William Hovell (14 GL) 191 km 

Irrigated agriculture, urban 

water supply, stock and 

domestic 

Paroo 
445 GL/yr (Calwarro 

gauge) 
3% 

 
2% None 600 km Stock and domestic 

Upper 
Murray 

2,550 GL/yr (Hume Dam 

unregulated inflow) 
2% 

 
17% 

Hume Dam (3,005 GL), Khancoban Pondage (26 GL), Geehi 

Reservoir (21 GL) and Tooma Reservoir (26 GL) 

2,500 km in total; 300 km 

source to Hume Dam 

Hydroelectricity, urban water 

supply, stock and domestic 

Warrego 
422 GL/yr (Wyandra 

stream gauging station) 
7% 

 
< 1% Cunnamulla Weir (4.8 GL) 900 km Stock and domestic 

Wimmera 
206 GL/yr (at Mackenzie 

River confluence) 
3% 

 

1.70% 

Lake Bellfield (79 GL), Lake Fyans (19 GL), Lake Lonsdale 

(66 GL), Lake Wartook (29 GL), Taylors Lake (27 GL), 

Rocklands Reservoir (348 GL), Lake Toolondo (92 GL) 

278 km 
Urban water supply, industry, 

stock and domestic, irrigation 
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Table B.2: Comparison of AET statistics between MODIS and CMRSET datasets average across 
various land cover classes over 20 years (2001-2020) 

 MODIS CMRSET 

 MEAN Min Max MEAN Min Max 
Cultivated Terrestrial Vegetation (CTV) 0.84 0.53 1.16 1.11 0.78 1.47 
(Semi-)Natural Terrestrial Vegetation (NTV) 0.87 0.65 1.24 1.22 1.10 1.45 
Natural Aquatic Vegetation (NAV) 9.13 5.03 11.25 2.45 1.45 3.03 
Artificial Surface (AS) 8.67 7.77 9.46 1.64 1.48 1.83 
Natural Bare Surface (NS) 0.53 0.36 0.76 0.77 0.61 0.94 
water 8.54 5.33 10.91 3.74 2.95 4.15 
Grand Total 4.45 0.36 11.25 1.94 0.61 4.15 

 

Figure B.1: (a) AET; and (b) AET/P time series for MODIS dataset 2001-2020 

 

Figure B.2: Temporal and spatial classification of the coefficient of variation for MODIS (a) AET and 
(b) AET/P for 2001-2020, categorised into low, moderate, and high variability using Jenks natural 

breaks.  
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Figure B.3: Average 20 years (2001-2020) AET/P (a) MODIS; (b) CMRSET 

 

Figure B.4: (a) 20-year average of AET/P and PET/P, categorised into low, moderate, and high (b) 
Spatial classification of the coefficient of variation for CMRSET AET and MODIS PET/P for 2001-2020 

using Jenks natural breaks.  
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Figure B.5: AET, P and AET/P time series (2001-2020) for CMRSET dataset for different catchments 
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Figure B.5: Continued 
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Figure B.1: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.5: Continued 
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Figure B.6: Annual AET distribution across various MDB catchments during the 20-year period. Each 
boxplot displays the interquartile range, indicating the middle 50% of the data, with the central line 
representing the median AET. The 'whiskers' extend to the furthest points that are not considered 
outliers, and any data point outside of this range is represented as an open dot, which signifies a 

year with unusually high or low AET.  
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Figure B.7: Distribution of annual AET/P across various MDB catchments during the 20-year period. 
Each boxplot displays the interquartile range, indicating the middle 50% of the data, with the central 

line representing the median AET/P. The 'whiskers' extend to the furthest points that are not 
considered outliers, and any data point outside of this range is represented as an open dot, which 

signifies a year with unusually high or low AET\P. 
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Figure B.8: The result of ANOVA and t-test for MODIS PET between (a) CTV (Cultivated Terrestrial 
Vegetation) and NS (Natural Bare Surface); (b) NTV (Natural Terrestrial Vegetation) and NS; (c) CTV 

and NTV; and (d) CTV, NTV and NS. (* indicates the catchments with significant difference in 
precipitation among given land covers) 
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