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Abstract

This thesis applies several standard nonlinear quantifiers to EEG analysis to

examine both human primary generalised epilepsy (PGE) and rat models of

human epilepsy.

We analysed rat EEG, and then used the analysed data, in parallel with

an impedance recording, to better understand the events during experiments.

Next, the nonlinear analysis of EEG was used to attempt to model the be-

haviour of the impedance data. This modelling did not yield a useful predic-

tive tool, so we recommend the continued recording of impedance data as a

means of augmenting EEG recordings.

The analyses were also applied to human data, and showed differences

between the PGE and control groups in apparently normal EEG. We then

attempted to use these differences to detect the presence of PGE in an unclas-

sified subject – a diagnostic tool. This was done using a feed-forward neural

network. We found that the inter-group differences were exploitable and fa-

cilitated the diagnosis of PGE in previously unknown subjects. The extent to

which this is useful as a diagnostic tool should be assessed by further trials.

Finally, the analyses were used to examine data from a paralysed human

subject, in an attempt to identify the mental task being performed by that

subject. This was not successful, suggesting that the same analyses that were

useful in discriminating between PGE and control were not useful in detecting

the mental state of the subject. It was also apparent that the presence of EMG

(in an unparalysed state) assisted task-classification.
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Chapter 1

Introduction

1.1 What will be in this thesis

This thesis applies mathematical algorithms to the analysis of EEG data. The

work is novel partly because of the data being analysed, and partly the ap-

proach. There are few groups applying a two-pronged human and animal-

model EEG analysis approach that is comparative. Few also record data at

the (high) sampling rate employed by us. Furthermore, although the analy-

ses themselves are not novel, the signal-processing approaches are, as far as I

have found, not attempted elsewhere. In particular the combination of non-

linear quantification of EEG and neural network training and modelling is a

little-investigated area.

Because this thesis is concerned with the application of well-known nonlin-

ear algorithms, it is useful to discuss what is available (the signal processor’s

toolkit), what was chosen, and why. It begins with an examination of signal

processing. Linear analyses are described first, followed by nonlinear, as well

as an explanation of the meaning of the terms linear and nonlinear. Both

chapters 2 and 3 relate the analyses to EEG and epilepsy research, so that the

practical aspects are apparent and the limitations clear.

Chapter 4 discusses classification, and examines several methods as well as

their relative merits and disadvantages.
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1.1. WHAT WILL BE IN THIS THESIS

Chapter 5 introduces some physiological detail about the brain, including

an examination of the important structures. It discusses the origin and lim-

itations of EEG, and some means of analysing EEG data. It then discusses

the current state of epilepsy research and has a brief examination of general

signal-processing-based neuroscientific research.

The analyses contained in this thesis were performed on data collected in

acquisition experiments in two epilepsy research laboratories in the Flinders

Medical Centre, South Australia. I was not involved in the conception and

goal-design stages of these acquisition experiments. However, I was involved

with the execution of some of the rat experiments, and in the group discussing

future developments and directions for the experiments. I was also involved

in some of the fine-detail planning in the human experiments. The work in

this thesis was performed on data derived from these experiments after the

fact, and represents an extension of the original methodology around which

the acquisition experiments were designed.

I have made a conceptual separation between the data acquisition exper-

iments (where the data were acquired, but for a different purpose than that

discussed in this document) and my signal-processing experiments (where I

analysed the data and attempted to draw conclusions). For this reason, I have

included a separate chapter on data acquisition. This helped prevent repetition

(because I made multiple uses of the data from the data-acquisition experi-

ments), but also helps to maintain the aforementioned conceptual separation

between the data-acquisition and the data-analysis experiments. The three

data acquisition experiments are discussed in the three sections of Chapter

6. Similarly, I used similar tools for the analysis of data in all of my exper-

iments, and these tools are discussed in Chapter 7, which provides detail of

those algorithms and processes.

Chapters 8 through 12 detail my analysis experiments. These are all de-
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1.2. EPILEPSY AND EEG ANALYSIS

signed to explore the possibilities of using nonlinear analyses, modelling and

classification to analyse EEG data.

1.2 Epilepsy and EEG analysis

Epilepsy is a poorly understood neurological condition that affects approxi-

mately 8 people in one thousand. Symptoms of the disease vary, but for many,

epilepsy is a serious impingement on their quality of life. Poor understanding

means that drugs prescribed to alleviate symptoms tend to be rather crude

and ineffective – in fact, of the sufferers treated, 20% are not significantly as-

sisted by drug therapy [48]. There are many different types of epilepsy, and

all are characterised by seizures: periods of abnormal brain activity resulting

in altered consciousness or loss of consciousness.

Electroencephalogram (EEG) is probably the most commonly applied neu-

rological tool. EEG is a recording of electrical signals that the brain produces

during its operation, and is thought to reflect the internal operation of the

brain. The transition from normal EEG to a seizure, in a subject with pri-

mary generalised epilepsy, is shown in figure 1.1.
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1.2. EPILEPSY AND EEG ANALYSIS

Figure 1.1: Human multichannel EEG showing seizure

This is an EEG trace, recorded by Gastaut and Broughton in 1976. It shows
6 channels of EEG in two rows. In the first row, there is a progression from
relatively normal EEG through to a seizure, which calms in the second row.

The type of epilepsy shown in figure 1.1 is generalised, meaning that it

emerges, simultaneously, across the entire brain1. The causes of generalised

seizures are not understood, nor are the processes by which they begin and

end. We do know of a genetic predisposition to such seizures (specific genes

are associated with ion channel abnormalities), but this does not completely

describe why some people are susceptible to such seizures while others are not,

nor why some people respond well to medication while others do not.

The examination of EEG by a qualified and experienced technician or clin-

ician is a very useful practice, and one that is likely to continue for some time.

Such examination is able to uncover previously unknown pathologies, or al-

low a specific diagnosis to be made. However, this process is subjective, and

1There is another type of seizure, called a focal seizure, which looks similar, but affects
only one area within the brain. A focal seizure may generalise �become a whole-brain event)
at which point it looks similar to the generalised seizure shown in figure 1.1.
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1.2. EPILEPSY AND EEG ANALYSIS

is not systematic nor necessarily repeatable [61]. Applying signal processing

techniques (linear and nonlinear) allow the visualisation and quantification of

different aspects of the EEG data. These are generally repeatable, automated

and systematic, which are all advantages over the visual inspection of EEG.

For the purpose of better understanding epilepsy, it would be helpful to

better understand the relationship between the disease, the symptoms, and

the EEG. This is something that is needed because our understanding of the

methods of brain function is rudimentary – the mechanisms of memory storage

and retrieval, information processing, integration, decision making, high-level

pattern recognition, and many others, are as yet poorly understood. What

we do have is an understanding of many low-level mechanisms of the brain

(the operation of neurons and simple neural circuits) and knowledge of the

high-level function and operation of the mind (as studied in psychology, soci-

ology, and other areas). What is lacking is a unifying theory by which we can

move between these two worlds, the micro and the macro, and understand the

systems’ levels as greater and greater levels of complexity are reached.

One method of gaining insight into a complex system such as the brain is

to examine it when its behaviour is dysfunctional, by highlighting aspects of

behaviour that are otherwise occluded – it can act as an “extra data point.”

Because of this, a comparison between subjects with and without epilepsy can

potentially provide useful data about brain function.

The process of analysing the brain in this way is made difficult, because our

tools for examining functions of the living brain are crude. The principal tool is

EEG, and this has limited spatial resolution and specificity (sections 2.2.8 and

5.2.1). Also, our ability to understand and analyse complex systems in general

is limited. Emergent characteristics of complex systems are poorly understood,

so the application of reductionist analysis techniques to such systems tends to

result in a partial and fragmented comprehension. This is partly because

our tools for the analysis of nonlinear systems are somewhat rudimentary,
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1.3. HOW TO ANALYSE SIGNALS

and the collaboration between experts in nonlinear theory and neuroscience

is somewhat immature (although great strides have been made in the last

decade). Despite these shortcomings, there has been much success in the

analysis of EEG using both linear and nonlinear tools. This is largely because

it seems as though EEG is reflective of brain state and activity, despite its

coarse-grained nature.

There is a long and successful tradition, probably 50 years, of linear anal-

ysis of EEG. Increasingly, we are becoming aware of some of the limitations

of linear analysis – these are chiefly associated with linear analyses’ inherent

assumptions and resultant constraints. Nonlinear analysis makes fewer as-

sumptions about the data and the system, and it also provides new tools and

perspectives from which to approach signal processing.

1.3 How to analyse signals

Broadly speaking, there are two main groups of analyses. The first are the

“linear” analyses. These are analyses which assume that the system under

scrutiny obeys the rules of linear systems – a rule called superposition, which

means that such a system can be expressed as the sum of its parts (more detail

in chapter 2).

This is a useful principle, and allows the reductionism that is so impor-

tant to many areas of scientific research. However, it is now recognised that

most physical systems do not perfectly exhibit this characteristic, so that the

employment of linear analyses means approximating systems as linear. Often,

assumptions such as these do not greatly impact on the effectiveness – for ex-

ample spectrographic analysis is commonly employed as a means to analyse

systems known to exhibit nonlinear behaviour.

A nonlinear system is one which doesn’t exhibit superposition and hence

cannot be described by linear equations. The result of this is that nonlinear

systems are in general not solvable mathematically, except in particular cases
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1.3. HOW TO ANALYSE SIGNALS

for particular states of the system. This was particularly the case prior to the

modelling afforded by computers. Nonlinear analysis does not make the afore-

mentioned assumptions of superposition, and the result is that the conclusions

drawn from such analyses can be more generalisable.
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Chapter 2

Linear Systems

This chapter provides an outline of what a linear system is, and how it can be

analysed. I then discuss the meaning of data that are descriptive of a system,

and some of the caveats for dealing with such data.

2.1 What is a linear system?

Linear systems exhibit the property of superposition – a combination of the

two properties additivity and homogeneity1 (equations 2.1 and 2.2).

f(x+ y) = f(x) + f(y) (2.1)

f(αx) = αf(x) (2.2)

A system that possesses this quality is able to be disassembled into small

pieces, analysed separately, and the understanding gained therefrom can then

be reassembled from the various parts and understood holistically. This process

is called reductionism and has been, perhaps, the keystone of science for the

past three to four hundred years.

1If I drive my car to buy some topsoil, a common practice is for my car to be weighed
upon arrival and upon departure, so the quantity of soil is calculated as the difference in
these weights. This uses the principle of additivity. The additional weight of the topsoil in
my car will cause a performance decrease that is �approximately) proportional. That is the
principle of homogeneity.
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2.2. LINEAR ANALYSES

A good example of this is an ideal billiard table. If a red billiard ball is

hit by the white ball, we can separate the momentum vector of the white ball

into two orthogonal components, and calculate the effect of these separately.

The resultant velocity vector for the red ball is simply the sum of two similar

orthogonal vectors. Notice that I described this as an ideal billiard table –

on an actual table this is only approximately true. This is because tiny non-

idealities can affect the linearity of the system. For example:

The balls do not behave as perfect springs – there is hysteresis in their

elasticity

Friction in the felt of the table

Air currents over the table

These non-idealities are very small, and in a good table do not significantly af-

fect the linearity of the system. However, billiards is a very carefully controlled

system – the billiards environment is designed to be consistent: the balls are

near-perfect spheres, the table is very even, the bumpers are very consistent

when a ball collides. Contrast billiards with golf (a game using similar princi-

ples) – there are many more parameters that cannot be nicely approximated

as linear. Despite this, if one hits a golf ball at a certain velocity, at a certain

angle, in a certain direction, and there is a cross-wind of a certain speed then

we can use Newton’s (linear) laws of motion to calculate where the ball will

land with a reasonable degree of accuracy. This shows that even for systems

that only approximate linearity, linear methods of analysis are very powerful

and useful.

2.2 Linear analyses

This section discusses some commonly-used linear analyses, and relates them

to the field of neuroscientific research.
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2.2. LINEAR ANALYSES

2.2.1 Autocorrelation function

Equation 2.3 describes the autocorrelation function

φ̂xx [m] =
1

Q

Q−�m�−1�

n=0

x [n] x [n+ |m|] (2.3)

The autocorrelation function is an estimate of how well a discrete-time sig-

nal matches itself at different time displacements. The autocorrelation function

reflects periodicity in the signal, as well as sameness across the signal boundary

(although only when the calculation is circular). Equation 2.3 shows a com-

parison of a signal with a delayed version of itself (auto-correlation), rather

than two separate signals (cross-correlation). In the case of EEG analysis,

both auto- and cross-correlation can be useful. Autocorrelation can reveal in-

formation about an electrode’s patterns over time, and correlation can reveal

shared patterns between electrodes. The autocorrelation function is related to

the power spectral density by the Fourier transform (section 2.2.2) operator.

Larossa et al [38], used a combination of autocorrelation and spectral analy-

sis (section 2.2.2) to identify cyclic behaviour involved in spreading depression

(section 5.4.3) activity of Sprague-Dawley rats. They concluded that glial-

and neuronal-glial interactions were involved with the synchronisation occur-

ring during seizures and spreading depression. However, as the recordings used

brain slices and micro-electrodes, the signal analysis tools used in the study

are not directly applicable to our in vivo experiments. Autocorrelation has

also been used to compare spike-wave discharges within a seizure [52],

2.2.2 Fourier transform

The Fourier transform finds an alternative base in which to represent a time-

series signal. This base is referred to as the frequency domain, and allows one

to view a time-series signal as the sum of its constituent frequency components

and their strength across all time. To find the power contained in each fre-
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2.2. LINEAR ANALYSES

quency we find the Fourier transform of the autocorrelation function. Strictly

speaking, the evaluation of a Fourier transform of a non-stationary system (a

system whose statistical properties change with time – see section 2.3.1) is

meaningless, because of frequency smearing caused by the system’s changing

properties.

One manner in which we can circumvent this is to use spectrograms (also

called a ”Short term Fourier transform”), which uses a sliding window to se-

lectively perform Fourier analysis on small time segments. If a small number

of samples are examined (representing a short duration EEG) then we can

generally say that the signal is approximately stationary for this short dura-

tion. Thus, a spectrogram is really a map of how the power of the constituent

frequencies change with time.

Fourier transforms and spectrographic analysis have been used extensively

in the study of EEG, with good results. Our lab has been using spectrographic

analysis since 1999, and has uncovered many new findings (eg. [47, 46, 45, 54]).

As can be seen from the changes evident through the years, we have attempted

to diversify our analysis of EEG and the experiments. Spectrographic analysis

is, and will likely remain for some time, the default analysis. This is largely

because it is well known, easy to evaluate and easy to interpret – it also

correlates with EEG in a manner that is easy to grasp, allowing inferences

made from examination of the frequency domain to be easily translated back

to the time domain.

Analysis of EEG with a view to examining brain “chirps” [66] has also been

undertaken. Brain chirps are brief periods of synchronised neuronal activity

occurring at a fundamental frequency and also at higher harmonics. Schiff

et al describe chirps as a “highly sensitive and specific marker for epileptic

seizure activity” and propose seizure detection using filters matched to the

chirp. There are several problems with the use of this procedure in a clinical

setting – the primary issue being that it requires brain surface electrodes as
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2.2. LINEAR ANALYSES

the chirps are not detectable through the skull.

Fourier analysis has limitations (figure 2.1). One issue is that the window

to be analysed can only be made as “narrow” as the wavelength of the lowest

frequency to be examined2. However, a sample size of one (wavelength) means

there is likely to be a significant error. This is because as we decrease the width

of the windowing function (and thus give the spectra a finer time resolution),

we have fewer data with which to calculate the spectra, and so the error of

calculation increases. There is a trade-off between accuracy of analysis and

temporal resolution [4], and our temporal resolution (of all frequencies) is

limited by the length of the longest wavelength we wish to resolve.

Figure 2.1: Difference between spectrographic analysis �left) and Wavelet analysis
�right)

http://www.amara.com/IEEEwave/IW wave vs four.html

The two diagrams in this figure show the differences between the fast Fourier
Transform (FFT) and the discreet wavelet transform (DWT). The size of the
windows in the FFT is constant across frequencies, so that the window-size-
requirements imposed by the lowest frequency (the window needs to be at least
as long as the longest wavelength) are imposed on every higher frequency as
well. Contrast this with the wavelet analysis (right) where the smallest required
window is used for each frequency band, thus maximising temporal resolution
of the analysis.

2To resolve a frequency, we must analyse at least a whole wavelength at that frequency.
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2.2. LINEAR ANALYSES

2.2.3 Wavelet analysis

Wavelet transforms represent another form of time-frequency analysis, and

allow a representation of a time-series signal as a summation of wavelets. This

is similar to a Fourier transform, except that wavelets are localised in both

time and frequency, whereas Fourier transforms are specific in frequency only

[4]. What this amounts to is that a wavelet transform provides information

about frequency components at specific times in the evolution of the signal –

in some ways this is similar to a spectrogram.

The Heisenberg-like uncertainty by which spectrographic analysis is con-

strained also exists for wavelets – but where Fourier analysis has a fixed window

width across all frequencies, wavelets allow the uncertainty to be minimised for

each frequency band (the temporal resolution of the wavelet transform varies

across the frequency spectrum, figure 2.1). In particular, when the analysed

signal is non-stationary, wavelet analysis allows better control of the trade-off

between the temporal resolution and frequency domain accuracy [53].

There are many different shaped wavelets; Latka et al [39] use a ”Mexican

Hat”-style wavelet, which they describe as being ”particularly suitable for

studying epileptic events”. Using this, they are able to differentiate between

spikes in the EEG, and noise artifacts.

In practice, wavelet transforms are often used in a manner quite similar

to spectrograms. A good example of this is Saab et al [62], who use a 5-

level Daubechies wavelet frequency analysis, followed by a Bayesian estimation

of the seizure likelihood. The seizure and non-seizure data were manually

classified, and each sample was characterised by 3 parameters, the distributions

of which represented the a priori probabilities. The likelihood that a given

segment of EEG is seizure was then estimated using Bayes’ formula (equation

2.4)

P (A|B) =
P (B|A)P (A)

P (B)
(2.4)

Thus, this analysis is very computationally light – the only analysis that
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occurs is the wavelet analysis, since the a priori probabilities (the P (B|A)

component of Bayes’ equation) are calculated before the experiment. The

inherent simplicity results in a limit to the sensitivity of the analysis, since

any relationship too complicated to be expressed in a relative 3-dimensional

histogram will be ignored.

Nyikos et al [53] have extensively employed wavelet analysis to produce

time-frequency visualisations of EEG. Epileptiform activity was induced in

brain slices (from hippocampus, entorhinal and perirhinal cortex) by perfusion

with an elevated K+ and absent Mg2+ ionic bath. This activity was recorded

via micro and clamp electrodes for offline analysis.

Figure 2.2: Wavelet analysis of single recording during seizure-like activity

These data were recorded from a single cell in a slice of brain tissue exhibit-
ing epileptiform activity due to immersion in an ionic bath (elevated K+ and
absent Mg2+).
The image was produced by Nyikos, et al, and sourced from their article [53].

Using time-frequency wavelet analysis, they were able to examine the pro-

cess of the seizure (shown in figure 2.2), and concluded that initial “precise

temporal synchrony is gradually destroyed during ictal events”. The figure

shows the greater temporal resolution at the higher frequencies, which would

not be the case using spectrographic analysis – making such data much more
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difficult to visualise.

2.2.4 Eigenvalues/vectors

Eigenvalues and eigenvectors are another means of representing a matrix in

a new form. If we look at a matrix, A, then an eigenvector of A, x, has

the property that Ax = cx where c is the eigenvalue of A corresponding to

the particular eigenvector x [35]. They provide a way of specifying one set of

basis functions for a system (described in a matrix). A set of basis functions

completely represent a system, and this relates to transform like Fourier and

wavelet. For example, a signal is able to be represented as a summation of

many frequencies (using a Fourier transform). In this case, the matrix of

eigenvectors is the Fourier transform matrix, which is merely sampled sinusoids

at different frequencies. This transforms the signal from the time basis into the

frequency basis (domain). Alternatively simply putting a wavelet into each row

of the eigenvector matrix (i.e. wavelets with different scales at different time

displacements) will implement a wavelet transform [82]. This property is not

unique to the wavelet or Fourier transform – any basis set can be concatenated

into a matrix to linearly transform the data into a new domain.

2.2.5 Principal component analysis

Principal component analysis (PCA) is one method of blind signal separation

(BSS), a process of estimating a set of original signals from a set of signals

mixed through a linear combination.

When talking about BSS, it is common to refer to a cocktail party, where

there are several people speaking simultaneously, and at least as many micro-

phones scattered around the room recording the sound. Each microphone will

therefore record a different mix of the six voices, depending on their relative

proximity to the speakers. Using ICA and BSS, it is possible to use these

recorded channels of mixed data to produce channels of unmixed data, where
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each channel contains one speaker only. This process becomes more difficult

as the recorded channels become more similar (the microphones and speakers

are closer together).

PCA finds common signal components in discrete signals. It can be used

to detect structural similarities between signals [1], but it also allows one to

construct sets of data that are uncorrelated. Often this is a means of reducing

the volume of data, by reducing or eliminating redundancy between channels.

It differs from Fourier analysis in that Fourier analysis decomposes the signal

into a series of pure sinusoids, whereas PCA reduces it into a set such that

the first principal component describes as much of the signal as possible, the

second describes as much of the remaining signal as possible, etc. In terms

of the phase space, this means that all the vectors are orthogonal, which is

different to Independent Components Analysis (see 2.2.6), which is concerned

with finding independent components.

The method of finding successive principal components is to find eigen-

vectors. These correspond to the direction of new axes, onto which we will

project the n-dimensional data. The eigenvectors are mutually orthogonal.

The eigenvalues that correspond to these eigenvectors indicate how powerful

each particular vector, as a direction for a new axis, is in describing the be-

haviour of the system. Each successive vector describes less and less of the

signals (because the first vector is that which accounts for the maximum pos-

sible variation in all signals). Thus, we can decide when we are satisfied with

the approximation of the signals that this method yields [1]. This can be

viewed as a series approximation.

PCA is useful for providing a data summary, particularly when two data

sets describe the same (or a similar) system and there are a different number

of data in each set. Such a scenario could make comparisons difficult, but

by comparing the n most important principal components, an absolute com-

parison can still be made. This is the procedure used by Kayser and Tenke
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[31] to examine the differences between high- and low-density skull electrode

configurations and their effect on surface Laplacian estimation (section 2.2.8).

They recorded EEG from 17 adults during odd-ball (an example is in section

6.2.2) tasks using 129 electrodes, and then sub-sampled the electrodes to pro-

duce an alternate data set with 31 electrodes. They estimated the current

source density (CSD) using surface Laplacian (section 2.2.8) for both data sets

(high- and low-density electrode configurations), and used PCA to provide a

summary of the CSD estimate for each data set for comparison. Using this

technique, they were able to show that there was a strong correlation between

the CSD estimate for the two data sets during evoked response tasks (ERPs),

meaning that there is only a small gain to be made by increasing the electrode

density of the EEG recording. They are, however, careful to clarify that these

results may vary even using other ERP paradigms, because it “involves rather

subtle and highly-specific topographic effects” [31].

2.2.6 Independent components analysis

Independent components analysis (ICA) is another form of blind signal sepa-

ration. ICA differs from PCA in that PCA attempts to form a new basis using

as few components as possible, whereas ICA attempts to identify the source

signals from which the mixed data were linearly combined. In other words,

ICA seeks a new basis comprised of independent signals, whereas PCA seeks

orthogonal signals. In the context of EEG, the mixed data are the electrical

signals measured on the skull. These are a mixed and smeared version of the

source signals produced by radial (section 2.2.8) dipoles within the brain.

ICA operates under the assumption that the source signals are linearly

mixed summations of statistically independent, discrete sources. Generally,

one of the many solutions3 to ICA can produce the original signals, but prac-

tically (in the context of EEG) what is found is not a compact brain region

3There are several ambiguities inherent in the separation of signals using ICA. This
includes source specificity – i.e. which source belongs where.
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acting as a source, but rather a distributed network responsible for a particular

signal component. In order to be able to separate source signals, one must as-

sume that they are statistically independent, and that they are non-Gaussian.

Thus separation becomes a process of minimising mutual information between

channels.

Mathematically, BSS can be thought of as follows [17]:

x = As

where x are the EEG data (of size m channels by n samples), A is the mixing

matrix (of size m by p) and s are the source signals (of size p sources by n

samples). Since the only observable part of this is x, then we need to estimate

A so that we can find s = A−1x. It is the process of estimating A that varies

between ICA/BSS implementations.

Using blind signal separation to analyse EEG could pose problems because

of source ambiguity. This means that, because the unmixing matrix estimate

is based only on the goal of independent source vectors, there is no spatial

information retained and one cannot know the location of the source vector.

In the above equation, ICA will not actually estimate A−1, but a permutation

and rescaling of it. Source ambiguity can affect calculations and conclusions,

because we won’t know which part of the brain a particular signal comes from.

Similar to ICA is blind deconvolution, which can be used to undo the effects

of an unknown filter. If one assumes that the original signal was white (the

signal’s probability density function4 is uniform), then it becomes a process of

removing correlations across time (i.e. whitening the signal). This process, as

well as that of ICA, can be viewed as a redundancy reduction (in the case of

BSS, reducing mutual information between outputs and in the case of blind

4The calculation of a histogram of a random variable’s amplitudes across all time will
provide an indication of the likelyhood of observing certain values. If the limit of the
histogram is taken so that the bins become arbitrarily small, one obtains the probability
density function �PDF).
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deconvolution, whitening) [6].

Bell, et al [6] have refined and developed some techniques of blind separa-

tion and blind deconvolution, specifically for application to EEG analysis. For

the separation of sources, they use a criterion of information maximisation.

They claim that by maximising the entropy of the outputs, the mutual infor-

mation between the outputs and the inputs is also maximised. They pass the

input through a nonlinear function (typically some variant of a sigmoidal func-

tion) which levels the probability density function of the signal. This means

that the probability of obtaining any value is more even – it normalises the

probability density function, which increases the information transfer (refer to

[70] for more detail).

A common application of ICA in EEG analysis is the removal of muscle

and ocular artifact. This is an important step, as it is increasingly thought

that muscle artifact (EMG5) represents a much larger corruption of EEG than

previously thought [83]. Such is the approach taken by Frank and Frishkoff [17],

when attempting to remove eye blinks and other ocular activity from EEG. A

blink template was constructed, which was tailored to each subject. There were

three criteria by which blinks were identified. The first was that ocular activity

would have a polarity inversion at the level of the eye, the second was that the

signal would correlate to the blink template at a threshold greater than 0.85,

and the third was a correlation between the spectrum of the component and

a known blink sample. They tested their algorithm on EEG with simulated

blinks introduced, and concluded that it was, in general, successful in removing

the blink without removing non-ocular EEG from the data set. They found

that when “blink-splitting” (where the activity from a blink was split into two

source components) then they would tend to also remove non-ocular EEG –

lowering the correlation between the filtered and original (uncorrupted) data.

5Electromyogram �EMG) data are a recording of muscle electrical activity, in the same
way as an EEG is a recording of brain electrical activity. EMG signals are very powerful,
relative to EEG signals, and so represent a common artifact in EEG recordings.
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On real data, they found that often blinks would occupy multiple components,

and that removal of only one was insufficient, whereas removal of two would

improve EEG in frontal areas, but degrade it in posterior areas. This clearly

shows that there are many practical issues associated with the application of

ICA to real-world data.

2.2.7 Autoregressive Analysis

When examining stochastic signals, we are making guesses about the under-

lying system that produces the signal. Generally, this system is treated as a

black-box. An effective way of learning about the system is to model it, and

autoregressive (AR) analysis involves the use of an adapting model of the sys-

tem. The state space (generally interchangeable with ”phase space,” see 3.3.1)

variables of the system are approximated, and only the noisy component (the

innovation – the signal component not described by the model) is stored. This

is also used to refine the attributes of the model to more accurately describe

the system.

The basic theory of AR analysis is that the best way to predict what a

system will do in the future is to look at what the system did in the past.

Hence, we make a prediction of future samples as a weighted sum of previous

samples.

If x [1...n]is a series of n samples measured from a system with an unknown

transfer function, then we can make a prediction of x [n+ 1], as shown in

equation 2.5

x [n+ 1] =
p�

k=1

akx [n− k] + e [n] (2.5)

This formula states that the next sample we measure, x [n+ 1], will be

approximately equal to the weighted sum of previous samples. The number of

previous samples, p, we consider is called the order of our AR analysis, and

will be reflected in the accuracy of our prediction. The term e [n] refers to the

discrepancy between our predicted value and the real value of x [n+ 1], and is
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called the innovation of the system: that part of the system’s behaviour that

we don’t understand and cannot predict.

The analysis discussed here makes the assumption that linear modelling

can describe our system. One can also perform nonlinear AR (NLAR or NAR)

where we consider other relationships between historical samples, in addition

to the weighted sum. Such a model is described by equation 2.6.

x [n+ 1] =
p�

k=1

akx [n− k] + bkx [n− k − u] x [n− k − v] + e [n] (2.6)

Note that this only examines a single nonlinear relationship – namely a

weighted sum of the product of two points, separated in time by a fixed amount

(u − v). If we wish to consider all possible relationships (many values for u

and v), up to second order6 (quadratic), then we would have 3 sigmas (one

for the linear relations, one for sums of products, and one for the squared

components), and many more parameters to each summation. As the order of

the analysis increases, it is clear that the complexity of the calculation increases

exponentially. Because of this, nonlinear terms are generally added sparingly

to AR models.

AR models have been used extensively for EEG analysis, with several ob-

jectives. One use has been to estimate the direction of flow of influence of

rhythms between regions of the brain [50], while modelling using nonlinear au-

toregressive analysis has been used to model seizure mechanisms in an attempt

to identity common structural elements between different seizure types [65].

Some studies have also used AR analysis to estimate the power spectrum [3].

Probably the biggest limitation of using AR analysis occurs when attempt-

ing to model a complex, poorly-understood system. This is because the ex-

perimenter cannot know, prior to the modelling, which parameters to include

in the model, and which to exclude. In an attempt to circumvent this, con-

6Order can mean two things in this context. Firstly it can mean the number of AR
parameters, and secondly it can refer to the mathematical order of the relationship that the
parameters describe. In this case, I mean the latter.
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figurations such as the NLAR (discussed above) have been made. Further

generalisations (attempts to make the models robust to varied kinds of sys-

tem behaviour) have also been introduced – such as autoregressive integrated

moving average (ARIMA) and many others. However the fundamental pos-

tulation of AR (that a sufficiently sized model can approximate any system

to any degree of accuracy) is only relevant if such a model can be practically

constructed.

2.2.8 Laplacian EEG analysis

It is common for EEG to be analysed by examining not lead potentials, but dif-

ferences between lead potentials (eg. [71]). This is referred to as the Laplacian,

and means that the overlap in measured data between electrodes is minimised.

An assessment of the location of sources can be made, and the results adjusted

to minimise overlap between channels.

More specifically, a Laplacian analysis will examine a given electrode, and

attempt to represent the data from that electrode as a linear combination of

the surrounding nearby electrodes. The component of that signal that cannot

be estimated from the surrounding electrodes is called the innovation (this

concept is similar to that of innovation in auto-regressive analysis). It is this

signal that is then used to replace the signal from that particular electrode.

Laplacian analysis yields EEG with a better spatial resolution, and can be

thought of as the application of a high-pass spatial filter [75].

One of the great benefits of Laplacian analysis is that the data it produces

are reference-free. EEG is typically recorded relative to a reference electrode

(since potentials can only be measured between locations). This means that

any effects at the site of the reference electrode are imparted to every other

electrode in the EEG – an undesirable effect. Because Laplacian analysis finds

the component of a signal that is unexplained by nearby electrodes, we are

necessarily removing the effect of the reference (because that is the same in
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every electrode).

The biophysical theory behind Laplacian analysis is as follows: the largest

contributor to EEG are electromagnetic signals caused by radial currents from

pyramidal cells (figure 2.3 and section 5.2). The current passes radially from

the cell, which can be considered as a radial dipole, and reaches the scalp to

air interface. At this point, the current spreads throughout the scalp, perpen-

dicular to the source dipole.

Figure 2.3: Electromagnetic field generated by a pyramidal cell

This figure illustrates the manner in which current from a single cell can affect
the input of multiple EEG electrodes. This is a reminder that EEG recordings
are coarse-grained. The current passes radially from the pyramidal cell, and
reaches the scalp to air interface. At this point, the current spreads throughout
the scalp, perpendicular to the source dipole. In this way, the current from
each pyramidal cell can affect multiple EEG channels.
This figure was adapted from figure 4.26, page 163, Medical Instrumentation,
[81]. (Note that the various elements in this figure are not to scale)

By looking at nearby electrodes, it is possible to estimate the component

of the signal that is radial (i.e the pure signal propagating radially – a good

approximation for the EEG at the dura [16]) and the component of the signal
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that is transverse (i.e the signal that propagates along the surface of the scalp,

from where the radial signal reaches the scalp to air boundary). The analysis

uses splines to interpolate between electrodes. It is possible to do this to

various degrees of accuracy, depending on whether actual electrode coordinates

are used (individually tailored), or a set of generic scalp coordinates are used

(un-tailored) or a set of spherical coordinates are used. The use of these

approximating coordinates allows a great simplification of the mathematics of

calculating the splines7.

EEG is a crude montage of many signals (section 5.2). The CSD8 is defined

as the strength of the local, radial currents that sum to produce the EEG [76].

If we examine a potential at a point on the surface of the scalp (approximating

as spherical), then we can estimate the potential [15] using equations 2.7 and

2.8

V (r) = c0 +
N�

i=1

cigm(r.r�) (2.7)

where

gm(x) =
1

4π

∞�

n=1

2n+ 1

(n(n+ 1))m
Pn(x) (2.8)

Where the function Pn(x) refers to an nth-order Legendre polynomial which

form a set of basis functions for the spherical surface. From these equations,

we obtain a matrix which describes the way in which the potential that we

measure at each electrode site is a linear combination of potentials at other,

nearby, electrode sites. This matrix can then be inverted, and used to calculate

the scalp surface Laplacian (the estimate of the contribution to the measured

potential that is made by the radial currents only).

An important question to examine is: for the purpose of estimating a sur-

face Laplacian of the skull, how do various calculation methods compare? This

is tested by Tadonnet et al [75], who examine several different Laplacian esti-

mates. Firstly Hjorth’s method, which makes a local estimate of the surface

7The process is called the “Laplacian” because of the work done in sperical coordinate
systems by Laplace.

8Current source density: introduced in section 2.2.8.
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Laplacian by calculating the unaccounted-for component of the average poten-

tial of the surrounding electrodes. This is compared with a global estimate,

using surface spline interpolation – which is the analysis described earlier in

this section. Such a global estimate amounts to finding a new basis set for the

EEG data. They found that the two methods resulted in equivalent results –

the main difference being that Hjorth’s method requires equidistantly spaced

adjacent electrodes. This means that it requires a careful electrode layout and

cannot be used to estimate the surface Laplacian at the edge of the EEG cap.

2.3 Data as a representation of the system

When examining data, it is important to remember that it is only the data

that we are examining, and not the system. The data will reflect only certain

aspects of the system (in a Platonic sense), and these may be combinations of

several conceptually different components. Also, the signal that we measure is

corrupted by noise – both external noise, and noise introduced by quantisation

and sampling.

It is very important to be aware of the assumptions inherent in the various

analyses that we perform – if these assumptions are incorrect, then incorrect

interpretation will follow.

2.3.1 Stationarity

This idea is especially important when examining the validity of the conclu-

sions drawn from data analysis. A stationary system is one whose statistical

quantities (e.g. its probability density function) are constant over time [28].

Qualitatively, changes in stationarity can manifest as “changes in structure of

the time series” or changes in the baseline of the time series [78]. For systems

in which this is not the case, stationarity can often be approximated by con-
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sidering a system as stationary only over a short period9, and then conducting

analyses only over this shorter interval [34]. If we consider a physical system

such as a pendulum, then for the system to remain stationary its parameters

must remain constant: the length of the string, the mass of the ball, the air

pressure, wind, etc – anything that would affect the behaviour of the system.

This is not completely an accurate analogy to the brain because the behaviour

of the brain, as a system, is emergent10. Also, the way in which neurons af-

fect each other (excitatory, inhibitory, the strength of the response) will affect

stationarity - although this is much slower to change than the neuron state.

The brain is stationary only locally and only for short periods [42, 39],

and this is an important consideration when implementing signal analyses. To

implement a short-term analysis, we can window the data. Note that generally,

windowing the data will introduce artifacts into the data. The strength of these

artifacts depends on the type of window used, and the analysis conducted.

Weak stationarity is another real-world compromise, and refers to a system

that is stationary only to second order statistics. This is insufficient for a

nonlinear approach – because in order for such analyses to be meaningful for

nonlinear quantities, they must consider higher-order statistics [28].

2.3.1.1 Stationarity assessment

Using linear measures to assess stationarity can be problematic when one is

going to examine the system using nonlinear tools. This is primarily because

linear methods examine statistics up to and including second order, whereas

nonlinear analyses also consider higher orders.

A good method to assess nonlinear stationarity is to use nonlinear predic-

9This is called short-term stationarity, and implies that the system is approximately
stationary over short periods of time.

1�This means that because of its complexity, the brain cannot be understood by under-
standing the rules and properties of the neurons – the system behaves in ways that are not
obvious, and behaviour can change with time. In a sense, this means that although the phys-
ical properties of the neurons �conduction time, membrane permeability, extracellular fluid
composition, etc) are relevant to stationarity there are other properties that are important.
Emergence is discussed in section 5.2.2.
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tive mechanisms. This involves a comparison of prediction errors for different

segments of the time series. These errors should be consistent if the system is

stationary [28].

For testing linear stationarity, it will make more sense to use linear analyses

as part of our stationarity assessment. This forms part of a more general

approach to testing stationarity, which is to use the same functions to test and

analyse the data wherever possible.

2.3.2 How many data are “enough data”?

When performing signal processing, the number of data we have is limited by

the available time we have for collection. Thus, a higher sampling rate will

yield more data in a given time.

Because of this, we must tailor our sampling rate to our knowledge of the

system’s stationarity, and also the number of data we require for our analyses.

This varies depending on the type of analysis we wish to perform.

2.3.2.1 Linear Perspective

When examining a time series from an unknown source, the minimum duration

of the data for analysis should be the inverse of the lowest constituent frequency

when testing the degree of stationarity. This criterion simply means that we

need enough data to be able to resolve the lowest frequency (at least one

wavelength thereof) [4] without a short-term-stationary system changing state.

As we approach the limit of our stationarity approximation (in a non-stationary

system), lengthening this time series adds temporal smearing, because the

system is evolving.

Increasing the sampling rate allows us to obtain more data for a given

time, but not necessarily more information. This means that we are able to

accommodate the recording duration limit that is required to approximate

stationarity, but still obtain enough data to perform useful analyses. A higher
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sampling rate also allows the resolution of higher frequencies. The Nyquist

frequency is the highest frequency in a signal that we are able to resolve during

sampling. In order to create an unambiguous sampled signal, free of aliasing,

we need to sample at least double the Nyquist frequency.

Note that both these “rules” require a recording of a system that is free

from noise. So while it is theoretically true that a frequency is resolvable when

sampling at twice that frequency, this is not always true in practice. Thus, in

a noiseless system, if we sample at double the highest frequency we wish to

resolve, then we completely characterise that system and sampling at a higher

rate, though yielding more data, will provide no additional information.

2.3.2.2 Nonlinear Perspective

Generally, nonlinear analysis does not resolve frequency components in the

same manner as does Fourier analysis and other linear analyses. When analysing

a system where we have no cause to expect a specific upper frequency then

the higher the sampling rate the better. In fact, even if we are only desirous of

resolving frequencies to 300 Hz, then it is still reasonable to sample to a much

greater rate than that suggested by the Nyquist frequency. This is because it

assists us in the removal of noise by processes such as nonlinear filtering (see

3.3.6). This is for several reasons.

The first is that nonlinear systems typically exhibit sensitivity to initial

conditions, so being able to precisely measure the system’s output is important.

In the real world, where we have a limited amount of data, corrupted by

noise, then sampled and quantised, we are necessarily limiting our ability to

precisely measure the desired information. Increasing the sampling rate can

allow nonlinear modelling to try to extract the behaviour of the system from

the acquired data.

Some studies have shown that the sampling rate can have an effect on the

results of nonlinear analyses. Jing and Takigawa [27] showed that, by varying
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the sampling rate of EEG, different results were obtained when analysing the

correlation dimension of the data. Similarly, Martinerie et al [48] said that “to

improve the time window resolution, higher sampling rates would be needed,”

meaning that by sampling at a higher rate, they could perform their analysis

on data of shorter duration, while maintaining the same number of samples.
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Chapter 3

Nonlinear Systems

In chapter 2, I introduced linear systems, and described what they were and

their relative scarcity in the real world. A point I made, was that many non-

linear systems approximate linearity and that for this reason the application

of linear analysis to such systems is a useful enterprise. However, it has limita-

tions. Recall my examples of approximately-linear systems – while it is possible

to make predictions of outcome (eg. a struck billiard-ball) using linear analy-

ses, this method of analysis would not work as well if we needed to extrapolate

the calculations over a longer duration, or more object interactions. Consider

a break in a game of billiards – the white ball hits a cluster of billiard balls

which scatter: rebounding from the sides of the table and each other. Because

of the large number of interactions, nonlinear effects will accumulate. Using

Newton’s (linear) laws to attempt to forecast the outcome of such a scenario

is unlikely to yield accurate results.

This chapter introduces nonlinear theory, beginning with a description of

what the words nonlinear and chaotic mean, and contrasting them with the

linear systems previously discussed. It then describes some nonlinear analy-

ses, and finally discusses some of the requirements and caveats of nonlinear

analysis.
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3.1 What is a nonlinear system?

As mentioned in section 1.3, a nonlinear system is one which does not exhibit

the property of superposition – the combination of two properties additivity

and homogeneity (equations 3.1 and 3.2).

f(x+ y) = f(x) + f(y) (3.1)

f(αx) = αf(x) (3.2)

In actuality, most physical systems are nonlinear, leading Stainslaw Ulam

to say that talking about nonlinear science is “like talking about non-elephant

zoology”. The inapplicability of superposition means that common scientific

methods, such as reductionism, cannot be applied to nonlinear systems – or

can at best be used to approximate the behaviour of the system.

Nonlinear systems are typically described by differential equations which

are often difficult or impossible to solve. Historically, this has made the anal-

ysis of nonlinear systems problematic and is only now changing due to the

increasing sophistication of computer-based modelling.

3.2 What is a chaotic system?

For a system to be chaotic, it must be nonlinear. This is a necessary, but

insufficient condition. The defining characteristic of a chaotic system is an

extreme sensitivity to initial conditions. This means that the future behaviour

of such a system ranges widely, depending on the system’s state at present

or, to put it another way, that small perturbations in the system can cause

large changes in the system’s future behaviour. This concept is also known as

the butterfly effect (“a butterfly flaps its wings in Peking, and the weather in

Tokyo is different”).

The aim of this section is to illustrate the behaviour of a chaotic system.
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For simplicity we will look (as does Kelso [33]) at a simple system of a body

of oil being heated from underneath.

While there is a small heat differential between the cooler top and the

warmer bottom of the body of oil, the heat moves by conduction – the quasi-

random movement of individual atoms. For a level of heating below a certain

threshold, this will produce a stable system.

If the heat differential is made a little larger, then a convection system is

established, whereby hotter, less dense oil from the bottom is displaced by

cooler, denser oil from the top. This forms a steady current that flows in a

closed loop (the direction of flow is random, and is impossible to predict). This

occurrence is called a bifurcation, because a previous steady state of the system

(that of heat conduction at lower temperatures) is (at higher temperatures)

no longer stable, and has been replaced by one of two new stable states (by a

quasi-random decision) [20].

When the temperature differential is increased still further, there is another

set of bifurcations, then another, and another, until a chaotic state is reached.

This is called an emergent property of the system, and it is increasingly thought

that this is relevant to brain operation.
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Figure 3.1: An example of a chaotic system exhibiting bifurcations

This figure is a bifurcation diagram of the logistic map. It was created using the
equation xn+1 = rxn(1 − xn), and shows the likelihood of various final values
for x depending on values of r. As can be seen, while r < 3, there is one
outcome for x. However, when 3 < r < 3.45 there are two potential values.
The transitions at r = 3 and r = 3.45 are called bifurcations, and represent
a “threshold of change” in the system. Note that the bifurcations come more
and more often as r increases until, when we reach the following Feigenbaum
constant (the apparently transcendental ratios between successive bifurcation
intervals), the system becomes chaotic (there are many probable values for x).
If we relate this figure to the heated oil experiment discussed in section 3.2,
then the values of r < 3 correspond to the oil being gently heated so that heat
is distributed throughout the oil by conduction. Values of 3 < r < 3.45 corre-
spond to the temperature being increased slightly, so that a convection system
is established. The two states refer to the direction of oil flow. Above r > 3.45
(as the rate of application of heat increases) progressively more states become
possible for the convection pattern (resulting in more complicated flows), until
chaotic behaviour emerges at the first Feigenbaum constant.
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3.3 Nonlinear analyses

Generally, successful approaches to signal analysis assume that a system is

either linear stochastic1 with an ignorable nonlinear component, or that the

stochastic component is small and the system is nonlinear deterministic. This

is for several main reasons [19]:

1. The future state of a chaotic system is sensitively dependent on the cur-

rent state, so that any noise leads to an inability to predict the future of

the system [28, 20]. This is an important aspect of many signal analyses,

such as autocorrelation and nonlinear phase-space analysis.

2. Because of the sensitivity of nonlinear systems, they often appear to

behave in quasi-random ways, making prediction very difficult, so it can

be unclear which component of a recorded signal is noise, and which is

true data reflecting the behaviour of the system.

3. Sampling (temporal discretisation) and quantisation (signal level dis-

cretisation) always introduce noise [59], so it can become difficult to dis-

tinguish between noise introduced during measurement, noise as a result

of sampling and quantisation, and the actual evolution of the system.

3.3.1 Reconstruction of the Phase Space

A representation of a signal in phase space means forming a ”complete” de-

scription of the signal at every point in time. The phase space variables capture

a full and clear view of the dynamics of the signal, and can reveal information

that is invisible in the time series [74]. There are two main ways in which phase

space variables can be obtained from time series data. The first is by combin-

ing information from multichannel, simultaneous recordings, and the second

1A stochastic system is one that is non-deterministic, and whose behaviour is described
by probability density functions �PDFs).
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is to embed a single channel of time series data into multiple phase space di-

mensions. A combination of the two can also be used (ie. forming a phase

space vector from the embedding of multiple, spatially separated, simultaneous

recordings).

Let us briefly look at an example system to illustrate this. The Lorenz

equation was defined while trying to model weather systems [20], and contains

three system parameters in three differential equations. The three equations

are shown in equation 3.3.

dx
dt
= σ(y − x)

dy
dt
= x(ρ− z)− y (3.3)

dz
dt
= xy − βz

We model the system by choosing values for σ, ρ and β, as well as setting

initial values such that x = y = z = 0.1, and iterating the equations 9000

times with a time increment of 0.001 units per iteration. This process yields

time series data which are displayed in figure 3.2.

Figure 3.2: Time series data of Lorenz model

The Lorenz equations are a simple set of three nonlinear differential equations
that were designed to model a simple weather system. The behaviour that
emerged from the system exhibited extreme sensitivity to initial conditions.
This graph illustrates the behaviour for starting conditions of x = y = z = 0.1.
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Although this is useful in examining the system, it is perhaps not quite

as useful as figure 3.3, which contains the same data, embedded into three

dimensions:

Figure 3.3: Phase-space representation of Lorenz model

By embedding the data (shown in figure 3.2) into a three dimensional phase
space, we are able to more clearly see the behaviour of the system. The process
of embedding is described in section 3.3.1.1.

3.3.1.1 Embedding

Embedding is the process by which the phase space evolution of a system is

derived from its time series. The embedding theorem was developed in the

early 1980s [55].

Embedding involves taking samples from the time-series data, vectorising

them into n dimensions, waiting time Ts (referred to as the lag) and then

repeating the process [30, 19]. Thus if we had a segment of data x(t) =

[1� 2� 3� 4� 5� 6� 7], and we decided to embed it in three dimensions with a lag of

1, then our first three embedded points would be

X1 = [1� 2� 3]� X2 = [2� 3� 4]� and X3 = [3� 4� 5]

Here is a dilemma, especially for an unknown system, because a choice must

be made as to what dimensionality the embedding process should impose on

the data. If our only knowledge of the system we had was time-series data, how
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could we know that the embedding dimension should be three dimensional (as

shown), and not two- or four-dimensional? For instance, if two dimensional

embedding was used, with a lag of one we’d have:

X1 = [1� 2]� X2 = [2� 3]� and X3 = [3� 4]

which is quite different. This is the first problem.

Even if we retain three dimensional embedding, but use a lag of 2, we

obtain

X1 = [1� 3� 5]� X2 = [2� 4� 6]� and X3 = [3� 5� 7]

which is different again. How is the lag chosen? This is the second problem.

The two problems are solved in quite distinct ways.

3.3.1.2 Choosing an embedding dimension

If some time-series data are embedded at a lower dimension than they ought,

a form of aliasing occurs. This results in the mapping (or folding) of points

from a higher dimension to an incorrect place in a lower dimension – this is

called “projection”. Imagine a room full of objects with a distant light shining

from one side onto a wall on the other. The shadows cast by the objects are

essentially a projection – they lack three-dimensional information.

Projection produces a situation where false nearest neighbours occur [2].

These are points that are erroneously placed nearby in the phase space, and

this is an artifact of the projection process. Clearly, this is an undesirable

situation. If, on the other hand, time series data are embedded in a dimension

that is too high, then there is a subspace that contains no useful information

[19]. This isn’t really a problem, however it makes any calculations performed

within this space more computationally intensive. The embedding dimension

is generally found by computing a quantity like the fractional dimension, and

then ensuring that the embedding dimension exceeds this. In practice it can

involve a computation of false-nearest-neighbours (figure 3.4) for a range of

dimensions, and the embedding dimension is chosen to set the number of false
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nearest neighbours to be sufficiently small.

Figure 3.4: Embedding dimension illustration

The same data, represented in a two-dimensional phase space (left) and a three-
dimensional phase space (right). The 3D trajectory casts a blue shadow, on
the x-y plane, from a distant light source directly above the trajectory. Notice
that the shadow corresponds exactly to the trajectory in the two-dimensional
phase space. This is a “projection”.
If we examine these phase-spaces for nearest neighbours, it is clear that we will
obtain different results, because the two-dimensional space results in different
spatial relationships between trajectories, causing points be false-neighbours be-
cause of incorrect mapping. Clearly, information is lost when representing
these data in two dimensions.

3.3.1.3 Choosing a Time Lag

The embedding theorem is not useful in determining an appropriate time lag,

and this is a quantity that must be established using other means. Abar-

banel [2] considers that there are three things to consider when choosing an

appropriate time delay:

Because we are using sampled data, Ts should be an integer multiple of

the sampling period.

If the time delay is too short, the system will not have changed. This

amounts to the two phase-space points lacking sufficient independence

[19], or that the new points contain little new information. This is akin

to over-sampling, and merely results in huge amounts of data, containing
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little information (however, this lack of new information can be used to

assist in noise reduction).

As mentioned, chaotic systems are unpredictable past certain temporal

horizons. If Ts is too long, then the two points are completely unrelated

and we will obtain a string of random points – which will be useless.

Thus, in calculating an appropriate time delay, we examine the mutual infor-

mation (see 3.3.4) of the signal at different time lags. Clearly at a time lag of

zero, the mutual information is very high and as the lag increases the mutual

information drops. Generally speaking, there are local minima and maxima

in the mutual information as Ts changes. If we chose the first local minimum

as the lag, then we have points which have a reasonable level of interdepen-

dence, but are not so close in time as to be redundant. The time lag will affect

what is visible in the phase space, i.e. it controls the obviousness of particular

frequency components. In their paper on nonlinear noise reduction, Kantz, et

al. [29] discuss the effect of embedding at different time lags. This controls

the visibility of different frequency components of a signal. For instance, em-

bedding with a small lag means that high frequency signal components will be

prominent in the phase space, whereas a large lag will result in low frequency

components being more obvious.

There are papers that deal specifically with using multichannel simultane-

ous recordings of the system [12] which can help in the analysis by using the

mutual information between channels.

3.3.2 Correlation dimension

Correlation dimension is an estimate of the number of degrees of freedom of

a signal [34]. It is seriously affected by non-stationarity, which tends to re-

duce the estimated dimension [29], while drift tends to increase the estimated

dimension. Thus, the correlation dimension can also be used to assess station-

arity. There are other measures of dimension (eg. box-counting dimension,
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Hausdorff dimension) but the correlation dimension has the virtue of being

relatively straightforward to calculate.

Correlation dimension is estimated from the correlation integral, which

measures the liklihood that randomly chosen pairs of points are separated by

a distance less than �,

Cx(�) = Pr(Dx < �)�

where Dx is the distance between randomly chosen points of the embedded

signal. The correlation integral is approximately proportional to � raised to

the power of the correlation dimension, and so correlation dimension can be

estimated from the slope of the plot of correlation integral against �.

CD = lim
�→0

log(C(�))

log(�)
.

In the application to real data that are short, noisy and non-stationary,

one might expect that analyses results would be unreliable. However there

is evidence that, if carefully applied and interpreted, nonlinear analyses such

as correlation dimension can yield information superior to linear time- and

frequency-based analyses [41]. A good example is [78], where EEG in patients

with temporal lobe epilepsy were analysed using a correlation dimension and

a correlation entropy. They used implanted electrodes to record EEG from

5 patients and compared 20 s stationary pre- and post-ictal EEG samples,

although they assessed EEG stationarity by eye only. Using these two groups,

they compared their analyses with a visual inspection of the same epochs of

EEG, and found that the nonlinear quantifiers could distinguish between ictal

and non-ictal EEG.

3.3.3 Entropy

The concept of entropy in signal processing was developed by Shannon [70]

who defined it as shown in equation 3.4.
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H = −K
n�

i=1

p(xi)logp(xi)� (3.4)

where p(xi) = Pr(X = xi) is the probability of an event xi in the data set

X, and K is a constant that determines the unit of the output. Shannon’s

definition of entropy relates to the Maxwell-Boltzmann-Gibbs entropy that is

relevant to thermodynamics. This provides a measure of the number of ways

in which the micro-states of a system can be arranged to produce the given,

observed macro-state – which gives an indication of the complexity of the

system.

The preceding equation, when applied to a binary system, states that maxi-

mum entropy occurs when we have the greatest uncertainty about the outcome

of our measurement, as shown in figure 3.5. The figure illustrates the entropy

of new data from a binary system and shows that entropy describes the amount

of information in the data, which is related to our uncertainty regarding new

data. If we consider P (X) as the probability of a new sample being 1, then

the entropy can be viewed as how much information we learn as Pr(X) varies.

If Pr(X) = 1, then we know what to expect (the next sample will be 1), and

we don’t learn anything new – hence the value of the entropy is 0. The same

is true if Pr(X) = 0, since we then are sure that the next sample will be 0. As

we become less certain of the value of the next sample, the entropy increases

until, at the point of maximum uncertainty (where we are equally likely to

receive a 1 or a 0), the entropy attains a maximal value.
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Figure 3.5: Entropy as a function of probability of outcome

This figure was produced using the function H = −x̄∗log(Pi(x̄))−x∗log(Pi(x)),
where x̄ denotes NOT (x). It illustrates the way in which the entropy (or the
information content of a signal) is determined by the likelihood of the learned
information. If we are told something unlikely, (such as “the sun will not rise
tomorrow”) then we learn more than if we’re told something we know already
(such as “the sun will rise tomorrow”). In this figure, incoming data is a bit,
so maximum information is learned when there is equal chance of a 1 or 0,
and there is less information when we’re more likely to receive a 1 than a 0,
or visa versa.

Shannon was the first to define the information content of data, and his

work has come to be known as information theory2. If we are receiving serial

binary data, and the calculated entropy is less than 1 bit per bit of received

2Shannon’s seminal paper [70] discusses many interesting ideas, such as a “series approx-
imation to English”, where a stochastic process produces random letters. It has knowledge
of English words and how letters and words relate to each other �i.e letter and word pat-
terns). It is able to produce very English-like statements, although they ultimately have no
meaningful content. Shannon showed that typical written English text has an entropy of
between 0.6 and 1.3 bits per character. In English, the letters e, a, t and o are common,
whereas the letters j, q, x and z are rare. If English had a more uniform frequency distri-
bution of letters �for example, if the letters e, a, t and o were used less often, while j, q, x
and z were used more often) then it would be more difficult to predict the next letter, and
the average entropy of English would increase. In fact, this is precisely what was done in
early mono-alphabetic substitution cryptography to help defeat cryptanalysis based on the
frequency distribution of letters. It was common to use both the letters y or z to represent
e.
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data, then there is redundancy in the data. Redundancy means that the same

information could be conveyed to the receiver using fewer transmitted bits, if

a more optimised encoding scheme was used. It is this principle that is applied

in data compression software.

3.3.4 Mutual information

Mutual information (MI) is a statistical analysis of the common signal compo-

nents between channels. If one visualises the sets of possible outputs for two

signals (see figure 3.6), then the mutual information is the amount of overlap

between these two sets.

Figure 3.6: A Venn diagram, illustrating Mutual Information

This Venn diagram shows the information contained in two sets of data, with
the overlapping component being the information that is mutual to both sets.

Mutual information between two random variables is defined as shown in

equation 3.5.

I(X;Y ) =
�

y∈Y

�

x∈X

p(x� y)log2
p(x� y)

p(x)p(y)
� (3.5)

where p(x� y) is the joint probability of X and Y, and p(x) and p(y) are

their marginal probabilities. Because this equation takes the log in base-2, our

MI calculation yields an estimation in bits3.

Mutual information is calculated by ranking the data. These rankings are

compared between signals and, broadly speaking, MI is the amount that can

be deduced about one signal if the other is known. This is a way of measuring

3Alternatively, were we to use a log in base-10, our result would be measured in dits.
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dependence between two data sets: A high level of mutual information implies

the data are dependent, and there is little information gained by learning

the second data set, whereas a lower level implies independence, and that

additional information can be gained from the second data set. This tool can

be used in several ways.

Firstly, a signal can be compared with itself (by using a delay), or with a

portion of itself (ie. for establishing an appropriate embedding lag)4. This is

similar to an autocorrelation and can give an indication of long term changes

in the system, by highlighting temporal dependencies.

Also, the mutual information can be found between channels. This is sim-

ilar to a cross-correlation. This will give an indication of how the different

areas within the brain relate to each other. If there is a high level of mutual

information, one might conclude that the two areas are involved in the same

or similar activity, or that there is some other phenomenon (such as seizure)

occurring. Less MI might imply that the two areas are not related.

3.3.5 Nonlinear prediction

When deciding on parameters to embed time series data, we are ascertaining

the state of the system by measuring variables that are controlled by the

state of the system – not measuring its state directly. Thus there is an error

component in our evaluation of exactly what the state of the system is (both

now and then). There are several methods of reducing this error5 but an

interesting method uses a basic phase space prediction algorithm.

Examine a small population of states that are close to the current state, see

how they evolved (to where in the phase space does the system progress after

a certain time lag?), and then perform some averaging (eg. mean) as to their

next movements – this yields an average behaviour of the system for states

4A single channel could be analysed by sliding it along itself �wrapping around the ends)
and calculating the mutual information.

5as mentioned, it can be difficult to ascertain what is error due to the embedding, what
is measurement noise and what is a signal component
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close to the current state. This represents our prediction of the evolution of

the system from the current state [28].

When quantifying the effectiveness of a predictor, one must ensure that

the analysis is actually making a prediction that has not yet happened (out-

of-sample) rather then trying to account for past events (in-sample) [29]. Thus,

it is essential that training data and testing data are separated.

Prediction can be used to test for the presence of, or a change in, nonlinear

quantifiers. For instance, one region of data is used as a ”training ground” for

a nonlinear predictive algorithm (such as described above) and its effectiveness

is tested in another region of data. This will tend to highlight changes in the

data (if the accuracy of the prediction decreases then the training data is not

a good model of the test data). Such changes could suggest that the system

is not stationary across the prediction time and we need to use a temporally

smaller window in our analyses.

The application of the nonlinear predictor to unfamiliar data will always

result in worse performance, so it is more meaningful to compare the relative

prediction accuracy between two sets of testing data, than to just compare

testing and training data sets.

3.3.6 Nonlinear filtering

The concept of prediction can be used in the construction of a nonlinear filter.

By looking in the phase space, and examining how a particular sample differs

from the expected (based upon the evolution of n nearest neighbours), a cor-

rection can be made. Look at a point, and then look at its future position in

the phase space. If this differs from the average of the futures of the n closest

points, then consider it an error and replace it with the average (weighted

mean). Kantz talks about this in his paper nonlinear noise reduction [29],

as well as his book with Schreiber [28]. Alternatively, we could examine just
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the component of the signal that is not predicted (perhaps calling this the

”chaotic” component), in a manner similar to AR analysis.

3.3.7 Lyapunov exponents

It is worth emphasising that if a deterministic system is in exactly the same

state that it was previously, then its future behaviour will mirror exactly what

it did then. Based on this we might expect that if the system is in nearly

the same state, then it will behave in a similar way. However, an important

attribute of chaotic systems is their sensitivity to initial conditions 6. This

means that two points in phase space can be quite close and yet the evolution

of the system will proceed in a completely different manner [20, 19]. In fact,

the rate of divergence is typically exponential, and this has been called a

necessary condition for a system to be chaotic7 [28]. It is possible to calculate

a ”prediction horizon”, by quantifying the rate of divergence of nearby states,

such as those just mentioned. This is called a Lyapunov exponent, and is

denoted by λ. Note that an n-dimensional system has n values of λ that

describe the rate of divergence.

The largest Lyapunov exponent, λmax, is often taken to represent the

“amount of chaos” in the system. A positive value of λmax means exponen-

tial divergence of nearby trajectories and hence the system is chaotic – that

is why it is common to talk only about λmax. It is worth emphasising that

the Lyapunov exponent is so-named because the rate of divergence of nearby

trajectories in a chaotic system is exponential. Lyapunov exponents are rarely

used for real-world EEG analysis, because of their instability and unreliability

when there are insufficient data [7] which is often the case when utilising a

moving-window analysis.

6As stated by Kantz [28], ”...our everyday experience, ��similar causes have similar
effects>>, is invalid for chaotic systems.”

7Exponential divergence is a result of sensitivity to initial conditions.
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3.3.8 Data Compression

A problem commonly encountered with EEG analysis is that of handling the

large number of data. One way to circumvent this is to perform analysis of the

zero-crossings of EEG data. The actual analysis in such a study (eg. [79]) is

concerned with the times between zero-crossings, rather than the actual data

recorded – effectively an implementation of data compression. This means,

however, that much useful data is lost. For example, if there is a low amplitude

high frequency that is added to a large amplitude low frequency, then the high

frequency component may not produce zero crossings causing information loss.

Van Puttan et al’s [79] experiment records multiple channels and attempts

to examine their temporal relations. This is similar to other studies, eg.

Mackenzie [45]. But since Mackenzie et al used raw EEG data, a finer tem-

poral resolution is afforded. The trade-off is that there are many more data,

and therefore calculations take longer and are more involved. Van Puttan’s

research details phase-locking and link rates in the brain. They speculate that,

together, these form transient oscillations between neuronal networks, which

allow coding for individual percepts to represent or operate sensory and cogni-

tive functions [79]. New theories of the brain indicate that thoughts originate

in short-lived patterns of time-dependent synchrony, which links separate ar-

eas of the brain. The researchers believe that synchrony binding between the

neuronal subsystems is reflected in transient phase-locking events.

3.4 Requirements of nonlinear analysis

This heading might better be phrased “Is is reasonable to analyse EEG using

nonlinear measures?” and the answer is not trivial. It has been implicitly

assumed by many researchers that the operation of the brain must be nonlinear.

Even if this is the case, it does not necessarily follow that the system perceived

in the EEG is also nonlinear. Section 5.2 introduces the idea that EEG is
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produced from the summative behaviour of billions of neurons and that, in the

case of human subjects, it has been filtered by its passage through the dura

and the skull. Even if the behaviour of the neurons, or single cell recordings,

yield data containing nonlinearities, it does not necessarily mean that EEG,

recorded from scalp electrodes, will also contain nonlinearities.

Despite the maturation of nonlinear theory, there are many critics. For

example, Lehnertz et al [42] state that ”it is now commonly accepted that the

existence of a deterministic and even chaotic structure underlying neuronal

dynamics is difficult or even impossible to prove.” However, they proceed to say

that ”there is converging evidence that nonlinear approaches to the analysis of

brain systems are able to generate new clinical measures as well as new ways of

interpreting brain function, particularly with regard to epileptic brain states.”

3.4.1 Bootstrapping

This technique can be used when there are insufficient data to analyse, and to

reduce the variance in analysis outcomes.

If we have a data set as shown in 3.6

X = [x1x2...xm] (3.6)

and a statistic of that set, as in 3.7.

θ = E[x] (3.7)

We can take Xi ∈ X, a subset of X at random (and with replacement), and

from this, calculate Si = E[Xi], an estimate of θ, based on Xi. This procedure

can be repeated with i being arbitrarily large. We can make a distribution

of S in order to find θ̂, an approximation for θ based upon the probability

density function [S1 � S2� S3 ...Si]. Because we are taking an average of many

calculations, bootstrap theory tells us that θ̂ will have a smaller variance [13]
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than θ, although this will depend on the specifics of the data.

When bootstrapping, we examine the data and perform statistical analyses

on it. We then ask, how sensitive are these analyses to changes in our data

set. If we hadn’t recorded a particular subset of the samples, how would

our statistical conclusions differ? This is based on the premise that we have

imperfect data, and that there are samples we could have recorded, but didn’t.

How could these missing samples affect our conclusions? That is the question

that bootstrapping attempts to answer.

3.4.2 Surrogate Data

One method of validating the choice to use nonlinear analyses is by the use

of surrogate data [30, 67]. This is a well established method of verifying that

observed phenomena are due to variations in nonlinear quantities, and not

those of a linear system with an added stochastic component.

In order to implement this, a null hypothesis is made. This generally reads

in a manner similar to: ”the data are generated by a Gaussian (linear) process

undergoing a possibly nonlinear static transform [37].” If nonlinear dynamics

are able to be detected from the time series, then the null hypothesis can be

rejected. However, failure to reject the null hypothesis does not imply the

absence of nonlinear dynamics, as there are other causes for this observation.

Kugiumtzis [37] discusses this in detail and suggests that one possibility

is that noise masks the nonlinearity, or that there are insufficient data, or

even that the data does not accurately reflect the behaviour of the system

(see section 2.3). He also suggests that because different nonlinear quantifiers

examine different aspects of the system, it is naive to examine a single analysis

of one data set and form a conclusion. What this amounts to is that failure to

reject the null-hypothesis implies either that it is true, or that there is a lack

of evidence.

Essentially, the aim of the surrogate test is to reduce the possibility of
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false-positive results – we aim to prevent the incorrect identification of chaos.

This is somewhat problematic, because there are several legitimate nonlinear

analyses that are also sensitive to linear dynamics. One such analysis is that

of entropy, which is affected by the amplitude of the analysed signal. This can

be corrected by scaling the output by the inverse of the amplitude of the input

(section 7.1).

As mentioned, surrogate data provide a means of testing the validity of

analysis of data using a particular methodology. In this case, we test whether

the changes we see in our nonlinear quantifiers can be accounted for with-

out them reflecting changes in brain states. For example, let us suppose that

EEG is a linear stochastic process, and that our act of measuring this intro-

duces nonlinearities – the nonlinearity that is apparent in our analysis. This

is equivalent to equation 3.8

Dmeas = f(sn)� (3.8)

where snis a stochastic process, and f is a nonlinear function. It is possible to

test for (and hopefully reject) this possibility using surrogate data tests, thus

helping to validate our analysis techniques.

It is impossible to completely reject the null hypothesis, we can only do so

to a particular level of significance. However, we can show that, despite trying,

we were unable to account for the observed changes using simpler explanations,

and therefore consider it reasonable to attribute these changes to nonlinearities

in EEG. This is really a manifestation of Occam’s Razor: we only accept

the more complicated explanation for observed data (that the appearance of

nonlinear variation in the EEG is a reflection of changes in brain state) if we

are able to reject the simpler explanation (that the appearance is due to our

measurement or recording method, or some other artifact). Practically, this

amounts to modelling multiple data surrogates, using different algorithms, and

testing these with our nonlinear quantifiers.
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3.4.2.1 Non-stationarity

Non-stationarity must be considered in the use of surrogate data, since the sta-

tistical properties of the system change with time. If this is not considered, and

the possibility of non-stationarity is not part of the null hypothesis, then the

null hypothesis could be (incorrectly) rejected because of the non-stationarity,

rather than nonlinearity. Hence, to allow our data to be non-stationary while

still testing for nonlinearity, we must consciously include this in our surrogate

[67]. One method of doing this is by designing our surrogate time series to

mimic the “instantaneous” mean and variance of the original time series.

Figure 3.7: Rat EEG showing seizure

This figure illustrates that EEG is non-stationary. During the seizure there is
an increase in variance in the baseline EEG, due to increases in amplitude,
which represents a change in the statistics of the system.

3.4.2.2 Application

Thus, a precursor to EEG analysis using nonlinear tools is testing of those

tools using surrogate data. There were several aspects to this, as there are
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many different surrogates (and null-hypotheses) to test.

1. The first surrogate tests the null hypothesis that the data were produced

by a linear stochastic process. It was constructed by taking the Fourier

Transform of the data, multiplying it by random phases and then ap-

plying the inverse Fourier Transform to yield the surrogate time series.

This can be viewed as an attempt to make an AR model of the data,

but incorporating some ’flexibility’ into the AR parameters – essentially

attempting to match against multiple AR models. So, if

|Sk|
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�
�
�
�
�

1
√
N
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n=0

sne
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�
�
�
�
�

2

(3.9)

is the discrete Fourier Transform of the original data, then the surrogate

data are found as shown in equation 3.10.

Ssurrogate =
1
√
N

N−1�

k=0

eiαk |Sk| e
−i2Πkn�N (3.10)

where 0 ≤ αk ≤ 2Π are random numbers [67].

2. Let us imagine that inside the brain is an ideal EEG source, which is

a Gaussian linear process. However, attenuation by the dura, skull and

scalp, as well as the transfer function of the measurement apparatus is

a nonlinear function. This is the null hypothesis that the second surro-

gate is designed to test. The algorithm operates as follows. First, make

Gaussian-distributed data of the same length as the EEG data. The

Gaussian data and the EEG data are both sorted by magnitude. The

sorted EEG data are now replaced with the sorted Gaussian data, and

multiplied by a random phase. Then the data are un-sorted, to “recon-

struct” the EEG data. What we have effectively done here is approxi-

mately preserved the shape, and sample-to-sample relationships within

the EEG, but have rescaled it so that it now has a Gaussian distribution
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function. This method of surrogate generation is called the amplitude

adjusted Fourier transform (AAFT) [77].

A problem facing this method of surrogate generation is as follows: Be-

cause we are rescaling a finite number of points, we have only a limited

subset of a Gaussian distribution function to scale to – so the process

isn’t exact. The difference between the ideal scaling and that which is

realised is independent from sample to sample, and hence is white noise.

This additive white noise process causes a flattening of the spectra of

the surrogate relative to the data. Clearly then, this surrogate will have

differing low-order statistics to the original data, which must be repaired

before analysis.

Because of this limitation, the process was refined by Schreiber and

Schmitz [68] to improve its performance. Their method is called iterative

AAFT (iAAFT), and makes successive improvements to the spectrum of

the surrogate so that it matches that of the data as closely as possible.

iAAFT works by shuffling the real data�x} to produce �z�i)} (or just us-

ing white-noise), and then iteratively performing the following two steps,

where i refers to the ith iteration. [36, 67]:

(a) make a power spectrum (but not the phase) of �z�i)} equal to that

of �x}. Define �y�i)} as the time series of �z�i)}.

(b) reorder �x} to the same rank structure as �y�i)}, making their au-

tocorrelation identical.

which, after a finite number of iterations, results in a surrogate with an

abs(FFT) and an autocorrelation close to that of the original data, but

lacking higher-order statistical similarities with the EEG.

This method, due to the iterations, is substantially more computationally in-

tensive than the AAFT surrogate.
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Chapter 4

Classification

This chapter introduces some of the concepts involved in the classification

(automatic identification) of an unknown sample. This is an intersection of

several fields including information theory, statistics and machine learning.

The chapter then discusses several methods of classification, including their

method of implementation and some of their limitations.

Figure 4.1: Linear discriminant analysis – example data

These figures show two fictional experiments, each with 4 classes of data, where
each data point has two measured variables (represented on the axes). The left
example shows data that have much more clearly defined groups than the data
in the right figure. Let us imagine that we obtain data from an object from
an unknown group. We wish to identify the group to which it belongs, so
we compare the variables from our unknown object to the graphs showing the
distribution of the groups. Clearly, the task of classifying the object will be
easier with the left data than the right data (which have a much greater degree
of overlap).
In general, this problem is extended to as many dimensions as there are vari-
ables describing the data.
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Figure 4.1 shows two fictional experiments. Each experiment consists of

two-dimensional data recorded from objects, of which there are four distinct

types. One experiment shows objects that are simple to distinguish by these

measurements, and the other shows objects that are difficult to distinguish. It

may be that we record a new sample, and wish to decide to which group it be-

longs. This will be a much simpler process in the case of easily-distinguishable

objects.

Classification is the process of using a statistical analysis to group items

based on quantitative data reflecting the state of the items. These measured

data are often called a variable, trait or feature of the item (and correspond to

the axes in 4.1). Usually, the classifier is taught to differentiate between groups

(the types or classes of objects) using a training set of data, that has already

been classified. This allows the classifier to learn the relevant component of

the data, and its application in discriminating between groups.

Another way of viewing this is to consider data as being placed into an n-

dimensional space, where n is the number of variables that are used to describe

each item. The goal of the classifier is to find a hyper-surface1 that bisects (in

the case where there are two groups) the training data into groups. This same

surface is then applied to the testing data, to classify the data.

Another method is to approach classification as a probabilistic estimation

of the group. This means saying

P (class | −→x ) = f(−→x ;
−→
Θ)

where
−→
Θ is a vector of parameters – the probability of the class given data −→x

can be found by using the data and parameters,
−→
Θ. This is very similar to the

previous paragraph, if we realise that the parameters in
−→
Θ are equivalent to the

variables in the n-dimensional space, and the function f is the hyper-surface.

1A hyper-surface is a surface in a higher-dimensional space.
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4.1. LINEAR DISCRIMINANT ANALYSIS

The difference is that the hyper-plane produces a binary output, whereas our

estimation yields a likelihood that the item is in a particular class. This can

give information about the certainty of the classification process.

Communications theory and pattern recognition

If we consider classification as an attempt to recognise a noisy code, then

it is clear that the greater the number of unique symbols being transmitted,

the greater the likelihood of incorrectly classifying a symbol. This idea is

illustrated in figure 4.2, and suggests that as the number of classes increases,

classification errors increase.

Figure 4.2: Two figures illustrating why there is more classification error as the
number of classes increases

Let us imagine a system where there are two variables, from which we classify
a datum. In the figures, the idealised class foci are shown by an X and sample
class estimates (measured data) are shown as red dots. The left figure shows
a four-class system and the right figure shows a nine-class system. It’s clear
that the nine-class system results in class foci being closer together, and that
this will increase the rate of incorrect classification.

4.1 Linear discriminant analysis

Linear discriminant analysis, or linear classification is something of a blanket

term, used to describe many linear classification algorithms – algorithms used

to find a combination of attributes from which we can best distinguish between

multiple classes (or categories) of data. The goal is to choose combinations of

attributes so that the within-group variance of the data is minimised, and the
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inter-group variance is maximised [60]. Another way of phrasing this is that we

map these multidimensional data to a single dimension such that the number

of standard deviations between the means of the groups is maximised, and the

variance within groups is minimised. This will yield a one-dimensional group

estimate that (hopefully) exhibits clusters of samples that reflect the groups.

It is clear from figure 4.1 that some data are easier to classify than others.

Imagine that a random sample from an unknown group is placed upon each

figure. If we wish to decide to which group this new sample should belong

we can clearly do this more easily, and with greater likelihood of success, with

disparate groups (left) than overlapping groups (right). This is an optimisation

problem and, as is common with such problems, there are various methods by

which to find the optimal solution. These methods have varying robustness,

which are affected by properties of the data. The ratio of the number of

samples to the dimensionality of the data is important. For data lacking

sufficient independence, it is common to be analysing an under-determined

matrix, which can cause many optimisation methods to fail [26].

Linear discriminant analysis (LDA) is a tool to help discriminate between

groups of data. If we record a set of observations Xtrain and their class Gtrain,

we can call this the training set. If we now record observations Xtest from

an unknown object, then our problem is to estimate the unknown class Gtest.

LDA makes assumptions about the statistics of the data, including that the

pdfs within each group are normal.

The Fisher linear discriminant (FLD) was one of the first such algorithms

to be developed. It was initially restricted to separation between two classes,

but was later extended to n classes [60]. The FLD finds a linear combination

of the variables of the measurands that maximises inter-group variance relative

to intra-group variance. The data are arranged into an n by p matrix, which

is of dimensions observations by variables (in the parlance of our experiments,

this might be subjects by electrodes). We have g groups into which we classify
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data (for our purposes, let g = 2). The intra-group variance is described in

equation 4.1, where m[i] is an estimation of the mean of group i. W is the

covariance matrix of the observations and yi is a vector of parameters for each

sample in group i. G is an n by g matrix, which is all zeros, except that gij = 1

iff2 the ith observation is in the jth group.

Wy =

�
i(yi −m[i])

2

n− g
=
�y −Gm�2

n− g
(4.1)

and the inter-group variance in equation 4.2.

By =

�
i(m[i] − yi)

2

g − 1
=
�Gm−y1�2

g − 1
(4.2)

Linear discriminant analysis is a linear process. It seeks the best projection

(linear combination of variables) that will transform multi-dimensional data

into 1-dimensional data in the manner that best separates the groups. How-

ever, as explained above, it does this by producing a vector of weights and

finding the inner vector product against the vector of parameters describing

an item. This produces a scalar value that estimates the group to which the

item belongs. This process is repeated for every item to be tested. However,

the output is merely a linear combination of the input, hence there are limi-

tations to relationships between parameters that LDA can use. Because LDA

is limited to first order relationships it can fit only a hyper-plane (as opposed

to a hyper-surface) to separate the classes. If we desire a more sophisticated

discrimination between groups (such as two areas corresponding to the same

group), then we need a more sophisticated classifier.

2iff means “if and only if”
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4.2 Artificial Neural Networks

An artificial neural network (ANN) represents an attempt to mimic the be-

haviour of organic neural networks (such as the brain) for the purpose of

performing a computation. It consists of a series of interconnected neurons (a

simplified, artificial model of an organic neuron).

4.2.1 The Neuron Model

As suggested in figure 5.1, neurons in the human brain have a quite sophis-

ticated internal structure. The neuron in a neural network (figure 4.3) is

analogous to a neuron in the brain3, albeit simpler. In summary, the brain

is very plastic and connections between neurons are constantly reinforced or

depreciated depending on use. This is thought to be the manner in which the

brain learns [22], although it is increasingly recognised that other mechanisms

are at work [21].

4.2.1.1 The artificial neuron

Compared with an organic neuron (figure 5.1), an artificial neuron is very

simple.

3See section 5.1 for more information regarding the structure of the brain
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Figure 4.3: The structure of an artificial neuron

This figure illustrates the mechanics of the operation of an artificial neuron,
as is used in an artificial neural network. Multiple inputs to the network are
weighted and summed, and the result of that summation is passed through a
nonlinear function (typically an inverse-tan, sigmoidal, or piecewise function),
and outputted. The offset has the effect of controlling the tendency of the
neuron to fire.

Each input to the artificial neuron is multiplied by a weight, and these are

summated with an offset (the offset controls the excitability of the neuron).

The summation produces a score that passes through a function to determine

the output of the neuron. There are various output functions that can be

used to determine the properties of the neurons, for example a hard limiter

(producing a 1 if the summation is above a threshold, and 0 otherwise4),

logarithm and a tan function (these produce values that tend towards 1 or 0,

but without the hard cutoff produced by the Heavyside function).

If we are to compare this artificial neuron to an organic neuron, then the

weights decide whether an input is excitatory or inhibitory, as well as how

strong an affect it has, and the offset is analogous to basal membrane potential.

Note that in the artificial neuron above, there is nothing akin to the temporal

averaging exhibited by organic neurons (figure 5.2). For this behaviour to be

included, a multi-tap delay would need to be introduced, either at each input,

or feeding back from the output of the summation stage to its input.

4Also known as the Heavyside function
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4.2.2 Network Structure

An ANN is a collection of interconnected neurons. Each neuron has an input

and an output, and produces its output as a linear combination of the inputs

passed through a (possibly nonlinear) function. Figure 4.4 shows a simple

neural network.

Figure 4.4: A small example circuit, showing the internal connections of a group of
neurons

This figure illustrates a manner by which neurons can be connected to form
a network. The example neurons have three inputs (because there are three
neurons in each layer), but in practice this may vary. Each column of three
neurons is a layer – the neurons in each layer receive input from the previous
(left) layer, process the data, and pass output to neurons in the following (right)
layer. In this way, the structure of a neural network is much more rigidly
defined than an organic network, where connections may go (almost) anywhere.

Information typically moves from left to right, with inputs on the left and

outputs on the right. The structure of an ANN is prescribed: there are succes-

sive layers of neurons (columns in the figure), where each neuron in each layer

obtains input from all neurons in the previous (left) layer, and passes output

to all neurons in the following (right) layer. This is a much simpler structure

than that which occurs in the living brain.

The network is “trained” prior to use – a process during which the weights

are iteratively adjusted to values that allow the network to “best” fulfil the

assigned task. Thus, despite the fact that a neuron is connected to all neurons

in the previous and successive layer, only useful connections will retain weights

and contribute to the network. The process of training a network involves
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presenting it with example inputs, and desired outputs, and adjusting the

network’s neurons’ weights so that the actual outputs resemble the desired

outputs. The network can then have the actual inputs applied, and its output

observed.

4.2.2.1 Network memory

If an ANN contains a series of neurons, and there is no delay (or memory),

then the output of the neural network is a function solely of the input, and the

state of the weights. Once the network is trained, the values in the weights

are fixed, so a given input, repeatedly applied, will always produce the same

output. Such a network is described as static. There is another form of network

where delays and/or feedback are present in the circuit. This allows the circuit

to have a memory, and means that the output of the circuit is dependent on the

weights, the inputs, and historical inputs and outputs to and from the circuit.

These networks are referred to as dynamic. There are situations where such a

circuit is preferable to a static circuit (such as modelling a temporal system,

like simple harmonic motion).

A simple method by which to introduce memory into the circuit is simply by

adding a tapped delay at the start of the circuit. Such a node will introduce

historical inputs repeatedly. The tradeoff here is that the circuit becomes

substantially more complex. If we imagine a simple circuit such as the one

above, except with 10 input variables, then our weights matrix is of size [10, 1]

if we have only a single layer of neurons. If we introduce a tapped delay that has

a memory of 5 samples, then at every instant in time, we introduce the present

sample plus the previous 4 samples into the circuit. Thus, the weight matrix

gains an extra dimension and occupies five times more memory, requiring many

more calculations in the training process than our simpler memoryless system5.

This would be more complicated still if we had feedback from output to input,

5This will vary depending on the training method, but there is often an exponential rela-
tionship between the number of network parameters, and the number of training operations.
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and multiple layers of neurons with internal memory. Memory can also be

incorporated into networks in many ways, including feedback loops at the

neuron, layer and network level, or at the input or output of individual neurons.

4.2.3 Network Training

Training is the process of taking example input data, associating it with an

example output data, and configuring the network weights so that the output

of the network, given the example input data, best matches the example output

data. Training is a complicated and poorly understood aspect of ANNs. There

are many different methods of training, and different methods can be optimised

for different outcomes. The different methods also have different computational

and memory requirements.

The process of training is very closely related to that of control of an

autonomous vehicle to seek the lowest point in a terrain. We want the vehicle to

find the lowest point in the terrain, but we want it to take the most direct route

there and use the fewest processing cycles possible, and the vehicle cannot “see”

the terrain – it can only “feel” the slope. The algorithm is trying to optimise

the weights of our network, and we would like to optimise our algorithm to

achieve this.

4.2.3.1 Back-propagation

Back propagation is a training algorithm that uses gradient descent. A simple

implementation is to adjust the weights in the direction that the performance

function decreases the most. This will tend to minimise the performance func-

tion, but it also tends to become “stuck” at a local minimum – which may

not be the global minimum (the best that the network can model the system).

This occurs because, at each iteration, the simple gradient descent algorithm

adjusts the weights in the negative of the gradient of the performance func-

tion. At a local minimum, there is no gradient, so there is no adjustment that

69



4.2. ARTIFICIAL NEURAL NETWORKS

is made to the weights, and the training process stops. It is quite possible

that the local minimum is nowhere near the global minimum. To avoid this

problem, there are several alternatives:

The most common is to apply a concept of momentum. This means that

if the weights of the network are changing in a particular direction, then they

will tend to keep changing in that direction. This can allow a network to keep

moving past a local minimum toward a global minimum. This behaviour is

somewhat akin to a low-pass (moving average) filter, and will tend to result in

better convergence of the network.

4.2.3.2 Supervised vs unsupervised training

Supervised training involves presenting the network with an input, as well as

the desired output. The network processes the input, compares its output with

the desired output and then alters the weight matrices so that the network’s

output more closely matches the desired output. This process is then repeated

many times, with the network’s approximation of the desired output iteratively

improving. It is referred to as “supervised” because there is a teacher – the

teacher being the goal data (desired output).

Unsupervised training occurs when there are no goal data. The network

can respond to this in two main ways.

The first is for the network to self-tune to the environment. Once this is

accomplished, the network can group the data into classes by making associ-

ations between the data. This process is also known as clustering. Training

such as this often uses a layer of neurons that compete with each other, to see

which best models the data.

The second method can also be known as reinforcement learning [22] and

involves the use of a critic to produce an analysis of the environment data.

From the input and the output, the system produces a performance metric,

which it aims to minimise. It does this across time, so there is an inherent
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delay to the learning. A cost function, derived from the performance metric, is

calculated over time. As the system makes changes to its internal parameters,

it reexamines the cost function and the effect these changes have, and then aims

to iteratively adjust the parameters to produce a more favourable cost function.

This is difficult to do because there is no teacher, and also because it can be

difficult to know which parameter adjustment has had which particular effect

on the cost function. Despite this, there have been several implementations of

such algorithms.

4.2.3.3 Parallel and Series-Parallel Networks

As stated, a dynamic network has delayed feedback from the output to the

input, although many dynamic networks also have internal tapped delays. Also

mentioned was that dynamic networks have a tendency to be more complicated

than static networks. If we make a dynamic network that has only delayed

feedback from output to input (without the internal delays), then what we

really have is a static feed-forward network, but with a delay, as shown in

figure 4.5.

Figure 4.5: A series configuration for use of a trained neural network

This configuration is used when simulating the network. The outputs are passed
back to the input, and in this way the system has memory.

When training, however, we are able to make use of a trick: we already

know what the output of the network should be. Hence, during training we

can simply remove the feedback from output to input, and insert the goal data

into the ’feedback’ input, as shown in figure 4.6.
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Figure 4.6: The same circuit, but in a parallel configuration to facilitate network
training

For the purpose of training, the second input (to which the output will be routed
during simulation) is passed the actual goal data.

Doing this results in more effective training, because we’re training with

the real output data. Also, the network is simpler to train because it is feed-

forward only.
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Chapter 5

Brain background

This chapter introduces the brain. Firstly, in section 5.1, there is a description

of what the brain is, what it is made of, and how it is constructed. In section 5.2

I discuss the origin of EEG, the conclusions that can be drawn from EEG, and

some of the limitations of these conclusions. I introduce epilepsy in section 5.3,

describe what it is, the limitations of our current understanding, and several

aspects that are currently under investigation by the scientific community.

Also introduced is the concept of cell-swelling and brain impedance (Z) and

the relationship of this quantity to EEG and epilepsy (section 5.3.3). I conclude

the chapter (section 5.4) with an examination of general analysis of EEG data,

which can provide assistance when attempting to understand and elucidate the

mechanisms at work in the epileptic brain.

5.1 Anatomy

The human brain is quite possibly the most complicated system we know of.

It is composed of many billions of neurons, intercommunicating by means of

chemical neurotransmitters. Aside from neurons, there are hundreds of differ-

ent cell types in the brain, most of which are not thought to be involved with

cognition. Despite the myriad cell types, it is neurons that are the principal

contributors to EEG (section 5.2).
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5.1.1 The neuron

A neuron is commonly regarded as a building block of the brain’s processing

ability. It consists of a cell body or soma, dendrites and an axon.

Figure 5.1: A typical representation of a neuron

http://www.mhhe.com/socscience/intro/ibank/ibank/0002.jpg

This image is an artist’s representation of a neuron. It shows: the cell body,
where most of the signal processing occurs; the dendrites, where signals are
acquired; and the axon, where the outputs signals are conducted to other neu-
rons. Notice the mylin sheaths on the axon – these are present to increase the
conduction velocity through the axon.

Dendrites acquire input to the cell, and axons express the cell’s output.

In the brain, input and output are usually from and to other neurons. Most

neurons acquire input from other neurons – they usually attach at the neu-

ron s dentrite, and obtain input via their axon. Neurons maintain an ionic

potential across their cell membrane by means of ion pumps – this is referred

to as its resting potential. The osmotic gradient is regulated so that there is a

high concentration of sodium ions (Na2+) within the cell, and a high concen-

tration of potassium ions (K+) outside. A neuron’s function is to depolarise

when supplied with appropriate stimuli via its dendrites, and “transmit” the

depolarisation as a stimulus to other neurons who then may, if conditions are

appropriate, depolarise also.

74



5.1. ANATOMY

The action potential

The resting state of the electric potential across the cell membrane is such

that there is an excess of negative charge on the interior of the cell. Thus,

there is a negative electric potential across the cell membrane. Incoming neu-

rotransmitters locally affect this potential. They can either depolarise the

cell (increasing the potential towards a positive potential) or hyper-polarise it

(decreasing the potential towards a stronger negative potantial).

The cell membrane of a neuron contains voltage sensitive ion channels

whose permeability to their specific ion (sodium or potassium) is related to

the electric potential across the cell membrane. At the resting potential (the

default ionic imbalance across the membrane) these gates are closed, but if

the potential increases above a threshold they will open, allowing ions to pass

through the cell membrane. Sodium channels respond most rapidly to these

changes in electric potential. They open, and allow sodium ions to enter the

cell. This further increases the electric potential resulting in more sodium

channels being opened – a chain-reaction. There is a rapid change in the cell’s

membrane potential – a process is called depolarisation, and this propagates

across the cell soma as more channels open.

There are also potassium channels whose permeability is related to the

electric potential. They operate in the same way as the sodium channels,

except that their opening is slower than that of the sodium channels. The

process of depolarisation occurs before the potassium channels open, but when

they do, potassium ions flow out of the cell, reducing the electric potential back

towards the original level. This process is called repolarisation, and includes

the time taken for the cell to re-establish the resting ionic balances, during

which it can not depolarise again. The combination of rapid depolarisation

and repolarisation is referred to as an action potential (see figure 5.2), and the

complex manner determining whether a neuron will depolarise is thought to

be the manner in which neurons process information.
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Figure 5.2: An action potential

http://en.wikipedia.org/wiki/Image:Action potential vert.png
This figure shows an idealised action potential. When the membrane voltage
increases past the threshold voltage, an action potential occurs. When the
threshold is not passed, the potential returns to the resting level. The rising
phase is caused by the influx of sodium ions, and the falling phase is caused by
the exodus of potassium ions (through the slower-opening voltage-gated potas-
sium channels).

Whether or not a cell depolarises depends on whether its electric potential

crosses a threshold. A cell can have inputs from many other cells, and the

neuronal process is summative across cell inputs. It is also summative over

time, because the electric potential will not instantaneously return to a resting

level in the absence of input. Also, the cell has different sensitivity to input at

different input locations. Finally, recall that a given cell can be encouraged or

discouraged from depolarisation by an input, because inputs may raise or lower

the membrane potential. The dendrites of a neuron can receive input from

thousands of other cells [5], and each input can affect other inputs. Hopefully

this conveys the idea that whether or not a cell will produce an action potential

is a complex process, dependent on the number and type of stimuli reaching

the cell, as well as their proximity and temporal relationships, and whether

the cell has recently depolarised.

When an action potential is produced, it propagates down the cell’s axon –

a long conduit used to route the signals to other neurons. Axons have evolved
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so as to maximise the rate of transmission of the action potential. To increase

this rate, the axon is wrapped in a myelin sheath, which provides electrical

and magnetic insulation. The action potential propagates along the axon until

it reaches an axon terminal, where it triggers other membrane-potential sensi-

tive gates. These gates release neurotransmitters into the extracellular space,

where they diffuse across the small gap between the neurons (a synapse), and

affect the electric potential of the next cell. If the polarity of the next cell is

sufficiently affected, then the next cell will depolarise also.

5.1.2 Non-neuronal cells

There are three main types of glial cells. The first are astroglia and are im-

portant to neuronal function. There are also oligodendroglia, which produce

myelin, and microglia that are associated with immune function.

Astrocytes are the most numerous type of glial cell, and are known to per-

form a range of functions, including metabolic regulation and ion concentration

regulation – astrocytes help remove potassium ions, glutamate, and other neu-

rotransmitters from the Extra-cellular fluid (ECF) [86]. Astrocytes are also

responsible for vasomodulation, myelin sheath production and structural sup-

port. Astrocytes are ten times more numerous than neurons, although the

extent to which they outnumber neurons varies across species. One function

of glia is to encircle neurons – providing a supporting role to neuronal function.

Astrocytes prevent the escape of neurotransmitter from synaptic junctions, and

actively remove neurotransmitters from the extracellular fluid. For many years

they were thought to be “support cells to neurons” but without any cognitive

input. This theory has been questioned, and it now seems likely that astro-

cytes can modulate inter-neuron communication [24] and affect the behaviour

of neurons. Astrocytes and neurons are now thought to communicate via the

release of glutamate, ATP and calcium. For example, it has been found that

astrocytic cell membranes have neurotransmitter receptors that can affect the
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interior of the cell and that they can release substances that excite or inhibit

neurons [86].

It is increasingly thought that astrocytes are important in the pathophys-

iology of epilepsy. It has been found that astrocytes in epileptic foci exhibit

functional changes relative to other astrocytes. Another example is Lanerolle

et al [10], who investigated temporal lobe epilepsy (TLE), which (in the spe-

cific case of mesial temporal lobe epilepsy) is characterised by focal seizures

originating in the hippocampus. Because of this, a common successful treat-

ment to control the seizures in TLE is the surgical removal of parts of the

hippocampus and amygdala, which not only results in seizure control but also

improves metabolism in other areas of the brain. Thus, it has been proposed

that astrocytes may increase excitability of neurons in the hippocampal focus,

by changes in their membrane ionic potentials, and increased sensitivity to

glutamate. It has also been shown that in the sclerotic regions, astrocytes

are less efficient at converting glutamate (a by-product of depolarisation) to

glutamine [14] – a process that occurs only in astrocytes.

Sclerotic tissue in people with TLE has reduced numbers of neurons and

additional astrocytes, when compared to normal tissue - the astrocytes are

essentially forming scar tissue. This relates to the idea that astrocytes provide

the structure in the brain [5]. Astrocytes also form networks connected via gap-

junctions, that regulate astrocytic behaviour. It has been proposed that the

astrocytic networks and their connections with neural networks might influence

epileptic events [86].

5.1.3 Neural circuits

The human cortex has approximately 10 billion neurons, each of which are

connected to approximately 6000 other neurons via synapses. The connections,

and the strength of the effect they have on the neurons, are quite plastic – this

allows the brain to adapt its structure to the demands of its environment,
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making it very flexible and adaptable. To aid our understanding of the brain,

it can be divided into regions that specialise in various tasks. For example,

there are areas of neurons that are specialised for controlling motor actions

(the motor cortex) and areas responsible for sensory perception (the sensory

cortex).

The largest concentration of neurons in the cerebrum, and the area that

performs most function in the brain, is the cerebral cortex [81]. This is a thin

layer on the surface of the brain, usually less than 4mm thick. It is thought that

the convoluted shape of the brain exists to maximise the surface area of the

brain, and hence maximise the area (and computational power) of the cerebral

cortex. In general, the more intelligent an animal, the greater the number of

folds in the cerebral cortex, although the density of the neurons there remain

relatively constant between species. This is somewhat of a simplification, since

the cerebral cortex in mammals is referred to as the neocortex, and contains

more layers of cells than the cerebral cortex found in more ancient animals. A

more accurate statement is that, over the course of mammalian evolution, the

amount of cortex has changed, “but its basic structure has not” [5].

There are at least 6 identifiable layers of cells in the cortex, each of which

shows an identifiable structure. There is a cell that is larger, and forms long-

distance connections between disparate layers. This type of cell is called the

pyramidal cell (sections 2.2.8 and 5.2 describe the contribution of pyramidal

cells to EEG), because of the shape of its soma. Pyramidal cells are arranged

radially within the neocortex.

5.1.4 Brain Regions

This chapter began by looking at the components of the brain, and then at

the low-level structures that these components form. We now examine some

of the higher level structures in the brain. It was recognised in the early 20th

century that the brain is organised around functional groups.
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For the purpose of the work in this thesis, there is no need to examine low

level brain regions. For this reason, we briefly describe the four main regions

of the brain.

Frontal lobe: This area can be viewed as the area of cognition. It is

involved with judgement, memory, problem solving and planning.

Parietal lobe: This area integrates sensory information.

Temporal lobe: The temporal lobes process auditory information, resolv-

ing memories, and is involved with establishing meaning.

Occipital lobe: This area is responsible for visual processing.

These four areas are present in both hemispheres of the brain, giving rise

to eight main brain regions (see figure 7.1).

5.2 EEG

An electroencephalogram, or EEG, is the recording of electromagnetic fields

radiated by the brain during the course of its operation. Neurons operate

by the movement of charged ions within the brain and when these dipoles

rapidly change (as they do during an action potential) an electromagnetic field

is produced. Since the orientation of the neurons will affect the orientation

of the electric field they produce, and observation from a distance will be a

summation across many cells, random orientations in the cells will tend to

cancel out the summative electric field to nothing. However, there is a class

of neurons that are all oriented in the same direction relative to the cortical

surface – these are known as pyramidal cells (figure 2.3). Because of their

uniform orientation, a summation of the electrical field over many such cells

will reinforce, and for this reason EEG is composed, almost exclusively, by

signals generated by pyramidal cells.

There are several main methods of obtaining EEG recordings. In humans,

the most common method is to use surface electrodes, which reside on the

surface of the scalp. A second method is to remove a portion of the skull, or
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drill a hole, and place the electrode on the surface of the brain. This can rest

on the dura (a protective membrane between the brain and the skull) or it

can penetrate the dura and rest directly on the surface of the brain itself. A

recording made using this method is often referred to as an electrocorticogram

(ECoG) [81]. A third method is to insert needle electrodes into the brain itself;

these are usually called depth electrodes.

The only way to measure the activity within a single cell is to use a micro-

electrode, and insert it into the cell. As a general rule, data obtained from

surface electrodes are broader (meaning that it is a summation, a more global

measure, of a greater number of cells) whereas needle electrodes provide finer

spatial resolution (they record from fewer neurons).

So in general, EEG is a measure of a summation of electrical activity

amongst many cells, and is mostly attributable to pyramidal cells because

they are similarly oriented [81]. Because neurons aren’t necessarily doing the

same thing, most of the information is “lost in the noise” – much like a single

spectator’s yells at a football game. The structures that we can perceive in

EEG are the result of synchronisation between many neurons – the behaviour

of an individual neuron is imperceptible.

Because of the extremely complicated nature of the brain, it could be

favourable to adopt a reductionist approach, however it is likely that this

would only provide highly specific information, and that for general studies a

more holistic approach would be required. This would mean examining the

function of the brain at all levels of operation, from EEG to individual neu-

rons – which would mean using needle electrodes on a per-neuron basis. In the

future such an approach could be possible – for example, an advanced fMRI1

might be able to resolve action potentials in individual neurons in real time.

1Magnetic resonance imaging �MRI) uses electro-magnets to create images of tissue.
fMRI is a variant of this that is designed to image neuronal activity in the brain.
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5.2.1 Limitations of EEG

That EEG is a summation of the electrical activity of many neurons is some-

what misleading, because it is primarily the action of the neurotransmitter

reception that is measurable – the conduction of the action potential is almost

undetectable. Clearly, the EEG is not the state of the brain. However ”decades

of empirical observation indicate... ...statistical attributes derived from EEG

reflect and track the underlying state of the brain” [58]. This means that a non-

invasive recording and analysis technique is often able to provide information

about the underlying, and apparently invisible, operation of the brain.

Electrodes placed outside the skull experience significant attenuation, due

to the presence of the skull and other membranes, so dural or sub-dural record-

ings will tend to produce better results. Let us, for a moment, consider an ideal

case where we have a number of EEG electrodes that approaches the number of

neurons, and each electrode records EEG data only from the neurons directly

below it. If we contrast this to the setup we are likely to have, the difference is

marked. Firstly, each electrode will be recording data from many many neu-

rons, and secondly there will be significant overlap between the “field of view”

of various electrodes (figure 2.3). To rephrase this, there is much smearing of

data between electrodes, which gives data recorded in adjacent electrodes a

coherence that does not necessarily reflect the activity of the brain, but rather

is a measurement artifact. There are several methods by which we can (at least

partially) circumvent these issues. One such method is the Laplacian (section

2.2.8).

One big limitation of EEG, is that it does not record data from glial cells.

This is because glial cells are randomly oriented, unlike pyramidal cells, so

that even coherent behaviour across many glial cells is likely to be smeared to

nothingness in EEG. For a long time, it was assumed that glial cells did not

contribute to information processing because it was known that they played a

supportive role to neurons. This is starting to be questioned, however because
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of difficulties in recording electric signals from glial cells, significant progress

in understanding the roles of glial cells is yet to be made.

5.2.2 Patterns

It should be emphasised that what all analyses (both linear and nonlinear) are

really trying to achieve is the identification of patterns in EEG that correspond

to macroscopic, comprehensible occurrences in brain activity. This is based

upon the (implicit) assumption that there are detectable patterns within the

EEG that can provide information about the underlying operation of the brain.

There are some interesting ideas emerging in the examination of patterns.

This is necessarily a very broad field, but it is also, by its nature, broadly

relevant. In this review, I have included it in the context of the operation of the

brain – although it could have easily been included with analysis algorithms.

One relatively new idea is that complex systems are able to self-organise,

and that the brain is likely to be such a system [33]. Other studies have

suggested that chaotic patterns in the brain are normal, and Klonowski et al.

[34] even went so far as to say that “it is healthy to be chaotic”. This alludes

to the increasingly held opinion that the operation of the brain is inherently

chaotic, and that any deviation from this is pathological. The ability of a

system to self-organise is dependent on the rules governing the system, however

for complex systems, behaviour of the emergent properties is not necessarily

obvious. A general concept is that for such behaviour to occur, the system

needs to be in an unstable state away from equilibrium – a state universal in

living, biological organisms.

Other new work involves the construction of a systematic method of de-

veloping, organising, documenting and interfacing software patterns. In one

sense this can be seen as a more general form of object-oriented code. One

of the principal advocates of this paradigm is Coplien [9]. He often discusses

the more universally applicable aspects of this theory, and his paper has many
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references to real-world applications of pattern theory – such as bridge-road-

environment networks. An interesting idea is that the concept of a pattern

containing smaller, more specific patterns and being contained within a larger,

broader pattern is similar to the fractal structures often exhibited by chaotic

systems. This concept of repeating patterns at differing scales is related to the

idea of fractals.

To illustrate the relevance of patterns and fractals, let us consider a flock

of birds. Birds, when flocking, obey simple rules from which complex flocking

behaviour emerges. Rules like:

Don’t make sudden moves

Try to maintain a constant distance between neighbours

Imagine that several birds on the left-side of a flock see some food. No other

birds in the flock see it. These birds turn (slightly) towards the food, which

causes their neighbours to also turn slightly. The neighbours then see the food

also, and thus turn even more towards it, causing their neighbours to turn

towards it, etc. In this way, the emergent property of flocking is that there

is a sharing of information across the flock – very few birds need to perceive

something (threat or goal) for the flock to perceive it – the flock can almost be

seen as a single organism� But, notice that this idea of “information sharing”

is not codified into the rules that the individual birds are obeying – this is

emergent behaviour.

In the same way, the neurons in each bird’s brain are governed by simple

rules, but the outcome of those rules is a complex system whose behaviour

cannot be described or predicted from the simple rules – it is emergent be-

haviour. Notice, also, the parallel between the relationship of the bird to the

flock, and the relationship of the neuron to the brain – it is a repeating pattern.

Concepts such as this are discussed by Hofstadter [25].
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5.3 Epilepsy

Epilepsy is a neurological disease that is often detrimental to quality of life.

Its main manifestation is as seizures, which are periods of abnormal and dys-

functional brain activity during which cells fire with an abnormally high level

of synchronicity. Epilepsy is an umbrella word used to describe a group of

pathological conditions where the brain periodically expresses such abnormal

function. The causes of epilepsy are not always well understood. It can be

caused by damage to the brain (such as head trauma, stroke, infection) or it

can appear with no obvious cause. Recent research has shown that some peo-

ple possess a genetic predisposition as well [73, 63], and there are hypothesised

links between epilepsy and migraines. A person who has epilepsy has their

life affected in several ways, perhaps the greatest being the risk of injury each

time they have a seizure involving loss of consciousness. This means that, in

general, they cannot drive cars or operate machinery.

Approximately 0.8% of people exhibit symptoms of epilepsy and of these,

20% are not significantly assisted by drug therapy [48]. This is mainly because

many of the drugs currently prescribed are not selective for the problem and

have the effect of reducing action within the brain as a whole, so that the

incidence of seizure is reduced. Particularly for serious epileptics, there can

be unwanted side effects, such as an overall dulling of awareness. Drugs which

worked on the actual problem would be better targeted, more efficient, and

would have fewer general side effects. Alternatively, if a person with epilepsy

had 1-2 minutes of warning before the onset of a seizure, then they would be

able to drive a car, quite aside from any of the plethora of other safety and

therapeutic benefits having this type of prescience would convey.

There are several different kinds of seizure, and there are several different

ways in which they can be classified. If we divide them according to their

appearance to an external observer:

1. Absence seizures (historically called petit mal) are characterised by dis-
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traction of the sufferer. They will pause, and possibly stare, and will later

resume as if nothing had occurred (consciousness is affected). These are

generalised seizures, meaning that they occur across the whole brain.

2. Tonic-clonic seizures (historically called grand mal) are generalised, and

have an initial muscle contraction phase, followed by rhythmic muscle

contractions (consciousness is affected).

3. Partial seizures cause aura and other focal symptoms, which can be per-

ceived in many ways, and occur when a partial seizure affects a motor

or sensory area of the brain. Partial seizures affect only one area in the

brain, and can cause the person to perceive a range of sensations (includ-

ing smells, taste, movement, light, sound) or make uncontrolled muscle

movements of regions of the body.

Primary generalised seizures involve the whole brain and are a dramatic illus-

tration of the behaviour of a complex system. The brain can be operating,

apparently normally, and can suddenly “switch” into a seizure – this can hap-

pen across the entire brain, simultaneously. In systems terminology, this could

be referred to as a phase boundary, and it means that when the parameters of

the system cross a threshold, the behaviour of the system can change dramat-

ically.

Partial seizures occur only in one part of the brain, and will generally im-

pair the function of that part of the brain. Hence, a partial seizure that is

occurring in the visual cortex can cause the person to experience visual hallu-

cinations, whereas a partial seizure in the motor cortex may cause involuntary

muscle contractions. A partial seizure can spread to other parts of the brain,

sometimes resulting in a generalised seizure. Such a seizure would be termed a

secondary generalised seizure, to indicate that it was initially a partial seizure.
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5.3.1 Epileptic seizure anticipation

Previous research has been directed towards the anticipation of epileptic seizures

by nonlinear analysis. As mentioned, epileptic spindles and seizures seem to

arise spontaneously, and with no apparent reason. Some studies have con-

cluded that a deeper characterisation of the underlying neuronal dynamics

would allow new insights into the mechanisms of seizure generation on a longer

time scale [57].

The use of nonlinear tools in the analysis of EEG has not been restricted

to epilepsy studies, however. A paper by van den Broek discusses the use of

nonlinear tools (such as correlation dimension and dimensional complexity – a

modified correlation dimension) and concluded that “new parameters from the

field of nonlinear dynamics can be an aiding tool in detecting effectual changes

induced by anaesthetics” [11]. This illustrates the rapidly increasing impor-

tance which nonlinear analysis tools are playing in the field of neuroscience.

Klonowski et al [34] made 16-channel EEG recordings from human subjects,

and from these calculated a range of standard quantifiers such as autocorre-

lation function, Lyapunov exponent and embedding dimension. They were

interested in the effect of theory on these quantities, but found no consistent

pattern of change. They speculated that quantities which were able to be cal-

culated directly from the EEG, rather than from the embedded phase space

description (sections 3.3.1 and 3.3.1.1), might be more efficacious and they

concluded by suggesting that fractal dimension might be a useful quantifier.

Lehnertz et al [42] argue for the presence of a third state, between the

inter-ictal and ictal states, heralding an imminent seizure. They introduce a

method of measuring temporal changes in correlation dimension in localised

areas of the brain, to attempt seizure anticipation in patients with mesial

temporal lobe epilepsy. They call their measure neuronal complexity loss,

and it allowed them to identify the location of the epileptogenic area in all

ten of their examined patients. They also found that for patients for whom
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surgery was not successful, there was a more diffuse localisation of estimated

epileptogenic area, indicating that there were several foci for seizures.

5.3.2 Epilepsy diagnosis

A robust clinical diagnosis tool for primary generalised epilepsy (PGE) relies on

witnessed generalised seizures or a diagnostic EEG seizure recording – these

are difficult to obtain. A diagnosis that did not require this would be very

useful, but does not yet exist in a usable form.

Work has proceeded in the identification and diagnosis of focal epilepsies

[72] however, classification of PGE remains an intractable problem. My col-

leagues, Willoughby et al [84] were thought to have found evidence of non-ictal

abnormalities in subjects with PGE in an exploratory study, however further

investigations have yet to yield a useful diagnostic tool.

5.3.3 Cell Swelling

Rapid depolarisation and repolarisation in neurons results in an osmotic gra-

dient across the cell membrane. This causes water to diffuse into the cell, to

equilibrate the internal and external ionic concentrations. As the neurons and

astrocytes swell with incoming water, they occupy a proportionally greater

amount of the volume. This causes an increase in electrical resistance of the

extracellular fluid (ECF), and a decrease in the resistance within the cell –

note that the resistivity of the ECF does not change. Changes in resistance

are due to changes in volume. These are not the only changes that occur

though, since cell-swelling will also alter ionic concentrations, changing the

resistivity of the various components. This is quite a complicated system, and

much work has sought to understand the mechanisms involved. There have

been several studies that examine the relationship between cell swelling and

epilepsy, and some of these are mentioned in [54]. Impedance has also been

used to examine other phenomena, such as hypoxia [43], although they are not
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examining cell-swelling, but rather a (hypoxia-induced) cerebral edema.

5.3.4 Relations between cell-swelling and impedance

The brain can be viewed as neurons resting in a bath of extracellular fluid

(ECF). The neurons’ cell wall is a lipid bilayer, which can be modelled electri-

cally as a capacitor. The surrounding liquid is predominantly resistive, as is the

inside of the neuron. As an electric model, this is a resistor (the intra-cellular

fluid) in series with a capacitor (the cell wall) all in parallel with another re-

sistor (the ECF) (figure 5.3). Hence, if we pass a lower-frequency electrical

signal through the system and measure the impedance, we will be measuring

the impedance of the ECF. If we pass a high-frequency signal however, we will

be measuring the impedance of the whole system. This idea is illustrated in

figures 6.2, 6.3 and 6.4.

As the cells swell, they occupy a greater proportion of the tissue – with

a corresponding reduction in the volume of ECF. Thus, any current passing

only through the ECF (a low frequency current) must take a more convoluted

path between the cells, travelling further. The current will also be condensed

into the (now smaller) spaces between the cells. Both of these result in an

increase in impedance. Hence, there is a relationship between cell swelling and

impedance.

Schwan and Kay [69] performed some early work examining the electrical

resistance of various body tissues, in situ. In particular, they looked at the

effect that blood had on measurements since its conductivity is, in general,

about ten times greater than the conductivity of tissue. For our experiment

[54], we have assumed that blood is 40% cells, and the brain is 80% cells

by volume – which allows us to estimate that brain tissue has a resistivity

approximately three times that of blood. We estimated that a cell volume

increase of 10%, caused by an influx of electrolyte into the cells, would cause

a 66% impedance increase, which would be measured as a 30% impedance
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increase due to current also passing through the blood. Our apparatus lacked

the ability to identify non-homogeneous cell expansion.

Figure 5.3: An electrical model for brain impedance

This figure is a theoretical electrical model of the brain. It considers the brain to
be comprised of neurons as homogeneous black boxes, resting in an ionic bath of
isotropic concentration. The upper branch of the model represents the neurons.
They consist of a lipid-bilayer cell membrane, which acts as a capacitor, and an
internal ionic solution which acts resistively. The lower branch represents the
ECF, which is an ionic solution and hence behaves as a resistor. At relatively
low frequencies the impedance of the capacitor is very high, so the measured
impedance will be the impedance of the extracellular fluid. At high frequencies,
the capacitor has a low impedance, and the circuit is effectively two resistors
in parallel (the resistance of the extra- and intra-cellular fluid).

More detail regarding this subject, as well as information regarding the

hardware that were designed to estimate the impedance can be found in section

6.1.4.

5.4 Nonlinear brain research

There has been much use of nonlinear analyses in other areas of brain research.

Frank et al [18] have made investigations involving recordings of EEG and

of the subjects tapping their finger. In particular, the relationship between

behaviour and neo-cortical activity is examined. In one experiment, a subject

was asked to tap their finger between audible stimuli (off-beat). Every 10 beats,

the beat-to-beat interval was decreased. At a particular frequency (usually

ranging from 1 to 3.2Hz) the subject was unable to continue, and switched
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to on-beat finger tapping. They speculate that the neural control system

undergoes a phase transition at that point. While the finger-tapping was

occurring, MEG (magnetoencephalogram) was recorded, and the data gained

from this was analysed using a variety of linear and nonlinear tools. They found

statistical phase-locking, and it was interpreted as part of the self-organising

nature of the neuronal oscillators.

It is also important that people develop algorithms for the purpose of mod-

elling cerebral function, eg. Scheler [64]. She makes the observation that pro-

jecting a high-dimensional space into a single dimension (such as time) can

only lead to a huge information loss – an idea that has quite serious implica-

tions for Takens’ embedding theorem, see section 3.3.1.1. This seems obvious,

however it is easy to take for granted the recording of electrical signals within

the brain as “how it is done”. Scheler’s idea is that by understanding the

interactions between neurons at a low level (i.e. between few neurons) then

the detail recorded from the brain (by whatever method) will not lose its mul-

tidimensional information.

5.4.1 Mental task classification

Watanabe et al [80] use a Lempel-Ziv compression2 to assess the complexity

of the data, in an attempt to distinguish between different mental tasks. They

found a change in binary complexity of the signal affected by whether the

subject had their eyes open, closed, or they were performing mental arithmetic.

The complexity of the signal can be interpreted as the possible reduction in

message size due to compression, or the size of the dictionary required to

encode the data – both of which are related.

Automated mental task classification is related to the development of a

brain-computer interface (BCI), an application on which much effort is focused,

and one that is related to epilepsy research (both involve analysis of EEG

2Lempel-Ziv is a dictionary-based lossless compression mechanism �the algorithm upon
which gzip is based).
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data, and can also involve classification and prediction algorithms), however a

discussion of BCIs is outside the scope of this thesis.

5.4.2 Modelling of the brain as a system

Breakspear et al [7] have developed a theoretical dynamical model to describe

the behaviour of the brain during PGE seizure. In seeking a formal description

of what occurs during a seizure, they developed a model that exhibits bifur-

cations that replicate real brain behaviour. They suggest that healthy brain

operation reveals only “occasional and weak nonlinearities” in an otherwise

linear stochastic system, and that it is pathological brain states that cause it

to manifest a strong nonlinear component. In this way, the transition from

linear to nonlinear can be seen as a bifurcation (refer to figure 3.1 for an il-

lustration), and different seizure types are represented by different nonlinear

dynamics. Once they had developed their model, they recorded EEG data,

and then used nonlinear analyses to compare the model with the empirical

EEG data. Breakspear et al used a nonlinear predictor to test for nonlineari-

ties, where small errors suggest a good fit and hence nonlinearities in the data.

They also applied a surrogate analysis (using phase randomisation, section

3.4.2) to this algorithm to assess the null-hypothesis that any difference was

due to stochastic linear behaviour.

Their model was relatively simple (it can be described by 8 first-order dif-

ferential equations) and consisted of cortical neurons interacting with neurons

in the thalamic recticular nucleus and specific thalamo-cortical relay neurons.

There were, however, many parameters controlling the behaviour of the var-

ious neuronal structures. By controlling the excitability of the the cortical

pyramidal cells in the model, they were able to affect system stability, and

found a bifurcation at a supercritical instability. Beyond this, they observed

increasing amplitude oscillations – after a few cycles, slow wave oscillations

began to appear. As the parameter representing pyramidal excitability is de-
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creased, the amplitude of these waves decreases, and the system returns to its

original pre-ictal state. They found that their model accurately represented an

absence seizure, however a tonic-clonic seizure model did not perform as well.

They suggest that their model explains the asymmetry between pre- and post-

tonic-clonic seizure EEG, attributing it to the large parameter space that must

be traversed before “a stable linear regime reemerges.”

5.4.3 Spreading depression

The spreading depression (SD) was identified by Leão in 1944 [40], and it is a

slowly moving “wave” of electrical inactivity that passes across the neocortex,

reducing EEG activity. It can be caused in several ways, including electrical

stimulation [40], physical stimulation (our own experiments) and the applica-

tion of various neurotoxins (such as potassium chloride (KCl) [32]). It can also

be induced by large injections of saline solution (presumably affecting ionic

concentrations within the brain). SD leads to a heightened level of Fos3 [23, 8]

and a heightened impedance (refer to section 5.3.3), although both of these

findings are counter-intuitive, since the EEG power is suppressed. It is thought

that SD is linked to migraine [8] and epileptiform activity [54].

The spreading depression is initiated at one location, but will then prop-

agate slowly across the cortex, at approximately 2 - 4 mm/min [8], and the

mechanism of propagation is unknown. Larossa et al [38] have also shown

that there is a measurable neuronal synchronisation that precedes a spreading

depression, that there are oscillations up to 1 mm ahead of the spreading de-

pression onset. They found that SD could be retarded by blocking glutamate

receptors or by preventing ATP production in astrocytes using fluorocitrate (a

3Nerve cell activation initiates several events, one of which is a possible depolarisation.
Another is the expression of certain genes, which can be expressed within minutes of stim-
ulation. c-Fos proto-oncogene is such a gene, and has a rapid and short-lived expression
following nerve stimulation [23]. The presence of the c-Fos protein in a cell, and its relative
abundance, can be ascertained using immunohistochemistry, and gives an indication of nerve
activity.
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metabolic poison that selectively targets astrocytes, blocking the TCA cycle4).

This means that although SD causes a decrease in EEG power, it causes

an increase in Fos (indicating increased activity), an increase in cell swelling

(also indicating increased activity), and is partially caused by glutamate5 re-

lease from cells in the brain. The meaning of this is not yet clear, but it

is possible that a spreading depression represents increased neuronal activity,

but decreased synchroneity (and hence a lower-power EEG), which would also

provide a link between SD and epilepsy.

4The tricarboxylic acid cycle is a series of enzyme-catalysed reactions that allow cells to
metabolise energy. Blocking this process causes starvation of the cells.

5Glutamate is released during excitatory neuronal activity.
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Chapter 6

Data collection

This chapter describes the three source experiments yielding the data used in

this thesis. The first to be described is the rat experiment – these can be viewed

as a model of human epilepsy, and are discussed in section 6.1. The second

data set is sourced from the human experiment that we performed, which

sought to find human parallels to the findings from previous rat experiments,

and is described in section 6.2. Finally, the third source of data was the human

paralysis experiment. This ground-breaking and exciting work was performed

to further analyse and clarify some of the conclusions from the original human

experiment. It is introduced in section 6.3.

As mentioned in section 1.1, my work represents an extention of the exper-

iments’ original methodology.

6.1 Pharmacologically-induced rat epileptoge-

nesis

This experiment was a collaboration between Flinders University, Flinders

Medical Centre, and Sahlgrenska in Gothenberg, Sweden. It involved the col-

lection and analysis of electroencephalogram (EEG) data from rats in which

epileptiform activity (epilepsy-like seizures) have been pharmacologically in-
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duced – a state referred to as acute epileptogenesis1.

6.1.1 Preparation

Inbred adult male Sprague Dawley rats, known not to exhibit spontaneous

spike-wave discharges, were used. They were surgically prepared by Dr Marita

Broberg. While anaesthetised with pentobarbitone, a right-atrial catheter

(for drug administration) was inserted through the jugular vein, and holes

were drilled into the skull for implantation of the screw electrodes (EEG and

impedance recording), which were sized so as to rest against the dura. A ref-

erence electrode was attached anteriorly over the frontal sinus and an earth

electrode to the occipital bone, each using a screw into the skull. The six elec-

trodes were coupled directly to an IC socket, which was fixed to the skull using

dental cement. The cement also covered the electrodes, wires and catheter.

The end of the catheter was temporarily sealed to prevent bleeding.

Fluorocitrate and citrate experiments required a well for direct access to

the surface of the dura. This allowed the drug to be injected directly into the

rat’s brain. Some experiments also involved the measurement of extracellular

ion concentration (measured by an ion-sensitive electrode - ISE), which also

required a well. I did not analyse ISE data. The well was never seated closer

than 4mm to the nearest electrode, and was sealed with wax post-operatively.

The animals were allowed to recover for 1 - 3 days, after which an experiment

was performed.

6.1.2 Experimental procedure

The rat was paralysed by an injection of succinylcholine (scoline). In isolation

this will often cause cardiac arrest, so a protective injection of scopolamine was

given first to block the cardio-inhibitory effects. The rat stopped breathing,

and was attached to a ventilator. If necessary, the protective wax in the

1Epileptogenesis refers to the causes of epileptic activity.
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rat’s head-well was removed. The rat was then placed in a Faraday cage,

and the pre-amplification IC was attached to the exposed IC socket. If the

experiment was measuring ion concentration, the ion-sensitive electrode was

inserted through the well so that it punctured the dura, and penetrated brain

tissue to a depth of 1 mm – a process controlled using a micro-manipulator.

Once the signals were being recorded reliably, the epileptogenic agent was

injected into the rat, via the implanted catheter. The rat’s EEG was recorded

while the drug affected the rat and until the rat’s EEG returned to an ap-

parently normal state. This typically required between 20 and 150 minutes,

depending on the choice of epileptogenic agent (the maximum experimental

duration was 150 minutes). During this time the rat was given repeated injec-

tions of scopolamine and scoline to maintain the paralysis.

The well in the rat’s head exposes the brain to the air, and with time the

surface of the brain would dry somewhat. Because of this, we periodically

added drops of saline to the well to wet the surface of the brain. At the

conclusion of the experiment, the rat was killed by deep anaesthesia, and trans-

cardial perfusion. After death, the positioning of the electrodes was verified

by Dr Broberg.

6.1.3 Pharmacological agents

The drugs in the various studies have been chosen based on their ability to

target various aspects of theories of epileptogenesis.

There are two main effects which a neuron in the brain can convey to other

neurons: excitatory and inhibitory. It is supposed that epileptic seizures are

essentially due to one or both of over-excitation and under-inhibition, which

cause increased brain activity. This appears to make the brain vulnerable to

some form of resonance.
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6.1.3.1 Picrotoxin

It is thought an increase in activity within the brain can lead to epileptic

seizures. Picrotoxin produces seizures by blocking the chloride channel of the

GABAA receptor [45] thereby preventing chloride-induced hyper-polarisation

and thus blocking inhibition, leading to increased brain activity. The resulting

seizure has no apparent location responsible for the initiation. Although this

is thought to mimic the neuronal activity during a primary generalised seizure,

it isn’t known exactly how this increase in brain activity results in seizures.

As mentioned, epilepsy has an element of heritability, and a gene identified

as “epilepsy causing” has been found to cause chloride channel dysfunction

[87], which lends credence to the picrotoxin model. It is known that GABAA

channels are to be found throughout the brain [56], explaining picrotoxin’s

generalised effect.

6.1.3.2 Kainic Acid

Kainic acid is an excitatory amino acid agonist to the AMPA and kainate

receptor [85], and is well known to produce repetitive seizures (thought to

be a result of excess excitation). Experiments have shown that kainic acid

initially affects limbic structures or the cerebral cortex, and for this reason

has been used as a model of temporal lobe and generalised seizures [49]. The

administration of 10 mg/kg kainic acid has been found to produce convulsive

seizures without toxic effects [49, 44].

6.1.3.3 Fluorocitrate

A small dose of fluorocitrate is selectively taken up by astrocytes in preference

to neurons, is reversible (there is no tissue damage), and is known to cause

seizures [86]. Fluorocitrate blocks aconitase – an enzyme which converts citrate

to isocitrate in the tricarboxylic acid cycle. This greatly reduces a cell’s ability

to metabolise energy. A significant dose of fluorocitrate will destroy tissue since
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the cells will die from lack of ATP, however small doses reversibly interfere with

cell function. The fact that it is selectively taken up by astrocytes means that

it can be used to examine the role of astrocytes in brain function. Fluorocitrate

is injected locally into the cortex, and its influence remains local. Therefore,

this can be used to examine the effect of local astrocytic disability and explore

the relationship to epilepsy and seizures.

6.1.3.4 Citrate

Uptake by astrocytes is not the only effect of fluorocitrate – it can bind with

free calcium, potentially leading to other physiological effects. Citrate is an

analogue of fluorocitrate, but is considered neurologically inactive, although

citrate also binds to calcium. For this reason, citrate was used in an attempt

to show that any observed effects of the fluorocitrate injection were not due to

its binding with calcium.

6.1.4 Impedance recording

6.1.4.1 Cell-swelling theory

The impedance recording is a means by which we can estimate cell swelling,

which can occur during abnormal brain operation [54]. The cell wall is com-

posed of a lipid bilayer, which is highly electrically resistive. However, because

it is thin, it can cause capacitative effects. The extracellular fluid (ECF), sur-

rounding the cells, is approximately resistive. Because the brain is in a confined

space, any cell swelling that occurs will result in a decreased volume of ECF,

which will change the electrical properties of the tissue (figures 6.4, 6.2 and

6.3). Impedance is measured by applying an alternating current of constant

amplitude (a constant current) to the brain (figure 6.1), and measuring the

voltage. Depending on the degree of cell swelling, the tissue will show changes

in impedance that are dependent on the frequency of the stimulus current.
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Figure 6.1: EEG electrodes and impedance drivers

The electrodes marked “˜” deliver the constant current to the brain, causing an
electric field to form (approximately as shown). The density of this electric field
is dependent on the impedance (Z) of the tissue, because the driver voltage will
increase if Z increases to maintain constant current levels. The red electrodes
are EEG electrodes. The low frequency component signal (0 - 1000 Hz) recorded
at the EEG electrodes is the EEG, and the high frequency signal component
(above 5 kHz) is the voltage due to the constant current driver from which we
can, with calibration, calculate the impedance of the tissue.

6.1.4.2 Impedance hardware

The impedance system consists of two driver electrodes which apply a con-

stant AC current of 0.1 mA peak-to-peak at 50 kHz to the brain2. This signal

is passed through a reference resistor and also through the stimulating elec-

trodes, injecting the current into the brain. The impedance hardware measures

the voltage across a reference resistor, as well as the voltage across the EEG

electrodes (refer to figure 6.1), and from this measures the impedance – an

analysis performed in real time.

2For the purpose of deciding the optimum frequency at which to stimulate the brain, a
range of frequencies between 2 kHz and 700 kHz were examined, with 50 kHz yielding the
best estimation of brain impedance [54].
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Figure 6.2: The path of low-frequency current through neural tissue

This figure illustrates the path that a low-frequency current (eg. 50 kHz) takes
through tissue. The blue area represents the ECF, the circles represent the
neurons’ cell bodies, and the dotted lines represent the path that the current
takes through the tissue. The current cannot pass through the cells because the
lipid-bilayer membrane has a capacitative effect, making the through-cell path
a high impedance path.
The elements in this diagram (and figures 6.2 and 6.3) are not to scale. Typ-
ically, the extracellular space in the brain is approximately 20� of the tissue
volume.
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Figure 6.3: Swollen cells, and their effect on low-frequency current passage

Because the swollen cells occupy a greater proportion of the tissue (with a cor-
responding reduction in the amount of ECF) the current must take a more
convoluted path through the cells, travelling further. The current is also con-
densed into the (now smaller) spaces between the cells. Both of these result in
an increase in impedance.

Figure 6.4: Path of high-frequency current

Notice that a high-frequency current (eg. 500 kHz) can pass through the cells
unhindered. This shows that the passage of the high-frequency current compo-
nent is unaffected by cell swelling. Notice, in particular, that the route taken
by the high-frequency current is the most direct.
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The hardware that makes the impedance recording was developed primarily

by Professor Torsten Olsson in Gothenburg, Sweden. He came to our lab

in March 2004, and I worked with him to develop software to calculate the

impedance from the data in real time. The output from the device consists

of two voltage measurements – one within the device (due to the constant

current applied across a known impedance), and one measured between the

EEG electrodes. Because the frequency range of the EEG and the impedance

stimulus are so different, we are able to measure both EEG and Z at the same

electrodes. The software consisted of a C library to examine the amplitude

and phase variations of the impedance signal, and calculate the impedance.

The experimental setup was quite complicated, because the Swedish impedance

hardware was not designed to integrate with our experimental hardware. Fig-

ure 6.5 illustrates the arrangement of the hardware. The Z stimulus control

computer manages the stimulus hardware, and regulates the constant current

stimulation. The stimulus hardware also records the 50 kHz signal at the

EEG channels, and calculates the impedance. The hardware uses a 12-bit

ADC, but in order to obtain a better quantisation resolution a shifting scale

was implemented. This meant that the 12-bit ADC was used as though it were

the lower 12-bits of a 16-bit ADC, yielding better resolution but causing the

data to wrap (figure 6.7) when traversing high-bit boundaries. An unwrapped,

low-resolution recording of the impedance was stored on the stimulus control

computer. The high resolution, wrapped impedance data are converted to an

analogue signal and recorded in the recording hardware alongside the EEG, to

provide a high resolution synchronised recording of EEG and impedance.

103



6.1. PHARMACOLOGICALLY-INDUCED RAT EPILEPTOGENESIS

Figure 6.5: Impedance recording experimental setup

The Z stimulus computer controls the behaviour of the Z stimulus hardware –
regulating the amount of applied current, and the applied frequencies. It also
calculates the impedance from the feedback received from the rat by the stim-
ulus hardware. This is stored internally in a low-resolution format, using a
Microsoft Windows memory-mapped file. The stimulus takes the calculated
impedance, and converts it to an analogue signal, for synchronised recording
alongside the EEG in the EEG recording hardware. This high-resolution ana-
logue signal contains wraps, due to limitations in the Z stimulus hardware.

6.1.5 Recorded signals

There are three signals that are measured from the rat:

1. EEG: two channels of EEG are generally recorded.

2. Brain impedance, Z (section 5.3.3)

3. Ionic concentration of Potassium in the extracellular fluid.
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Figure 6.6: The rat head, experimental setup

This image shows a typical setup of the equipment, and the means by which the
signals are controlled and recorded. There are six screw electrodes that record
or inject electric potentials, and these are accessed via the IC socket. Two of
these channels are connected to a constant current oscillator, and apply this
stimulus to the dura. The other two record the EEG and, because the signals
occupy such different frequency ranges, can also be used for the measurement
of the impedance. The reference electrode is attached at the frontal sinus, and
the ground is attached to the bone posteriorally – over the cerebellum.

There are six screw electrodes that are connected to the IC socket (figure

6.6). Two of these are used for injecting the constant-current that allows

the measurement of the impedance. Two are responsible for recording two

EEG channels and an impedance channel (the impedance data are in the high-

frequency component, and the EEG data are in the low-frequency component).

There is also a ground, attached anteriorly and a reference electrode attached

to the skull at the frontal sinus. The constant current oscillator produces

signals at 50 kHz, and by recording the voltage that results at these frequencies

we are able to measure the impedance of the brain. The EEG is low-pass

filtered at 2 kHz, so that none of the constant current driver signal is present

in the recorded EEG.

These are excellent data, recorded from a standard animal model, in a very

low noise environment. Because the animals are paralysed, there is no EMG

artifact. The recording of impedance as well as EEG (at a very high sampling

rate) provides a perspective that is granted to very few researchers.
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6.1.6 Post processing of impedance data

There were several limitations to the recording of the impedance data, largely

because the Swedish hardware was not designed with consideration for the

Australian hardware (figure 6.5). Our experiment used custom hardware de-

veloped at the Flinders Medical Centre, and this was combined with custom

hardware developed in Sweden.

The Swedish impedance hardware digitised the signal at 50 Hz, but was

not synchronised with any other channels, for example the EEG. It was stored

in a Windows memory mapped file, which made analysis on our Linux systems

difficult. The Swedish hardware had been modified to allow an analogue output

of impedance in real time, which our hardware recorded alongside the EEG

(sampled at 4 kHz) to ensure synchronisation, however the impedance was

wrapped. Thus, we had two representations of the impedance signal. One was

high-resolution and synchronised with the EEG, but had wraps. The other

was low-resolution, and un-synchronised, but had no wraps. We needed to

generate high-resolution, synchronised, unwrapped data.

The wrapping in the impedance data was a problem because it made it

impossible to visualise long term trends in the impedance. This problem was

exacerbated because the response time of the ADC is such that approximately

17 samples are measured while the wrap occurs. If we closely examine a wrap,

we see that it is not a true discontinuity (figure 6.7). The data recorded on

the Australian equipment were split across multiple files to allow portability

and analysis on older hardware.
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Figure 6.7: An example of wrapped data – sampled at 2kHz

An example of wrapped data. The main plot has discontinuities. The subset
plot details a close view of a discontinuity, illustrating that it is not a true
discontinuity, but rather occurs over several samples.

To facilitate analysis, I wrote software to read the memory mapped file

(C++ and Matlab). It read in the multiple text files containing the high-

resolution, wrapped impedance and EEG data. It unwrapped the impedance

data, as shown (figure 6.8).

These data were then aligned with the impedance data obtained from the

memory mapped file. This needed to be done because there were disconti-

nuities in the recording that were actual, and ought not to be removed (the

addition of saline to the well caused an abrupt impedance change, due to the

additional conduction pathway). Figure 6.9 shows two data sets. The upper

set is the wrapped data recorded at 2 kHz. The lower set are the data recorded

at 50 Hz and stored in the memory mapped file. Notice that in the lower set

there are still discontinuities at about the 500th and 4000th samples – these are
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Figure 6.8: Wrapped data and unwrapped data – sampled at 2kHz

This figure illustrates the input data that contain wrappings and the output
data that have been repaired.

due to the application of saline to the well in the rat’s skull. In this situation,

the program would determine that the discontinuity should not be removed

(because it was also present in the memory mapped file), and would “undo” its

removal. Once this process was completed, we had contiguous, synchronised

files ready for analysis.
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Figure 6.9: Real discontinuities

There are some discontinuities that are not a measurement artifact
caused by the dynamic shifting of the ADC’s range, but rather are
real and are caused by (for example) the application of saline to the
exposed dura. Such discontinuities should not be removed because
they are real.

6.2 Human data acquisition

In 2003, we ran a pilot study that showed elevated gamma in inter-ictal EEG

in subjects with PGE relative to controls [84]. The larger experiment described

here represents a follow-up to those very exciting and promising results.

6.2.1 Preparation

Volunteers were recruited from within the Flinders Medical Centre (Adelaide,

South Australia), after being recommended by their referring specialist, con-

trols were also recruited by advertisments. These referred volunteers exhibited

various neurological disorders, and were matched to control subjects (by age,
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handedness, etc) – for the experiments in this thesis, we were only interested

in primary generalised epilepsy and control groups. Each subject was booked

in to the lab to conduct an experiment.

The subject’s hair was washed, if necessary, without conditioner, so that

hair oils were reduced – these can affect the behaviour of the electrode-scalp

interface. The appropriately-sized cap (EASYCAP GmbH, Germany) was

fitted to the subject by our EEG technician, and conductive gel was injected

into the electrode-scalp cavity. The subject was then moved into the Faraday

cage, where they remained for the duration of the experiment. They were

seated and connected to the Neuroscan EEG amplifiers which amplified and

digitised the signal, allowing it to be recorded to computer at 16-bits, 2000

samples per second.

As with the rat experiments, the data are of excellent quality. The EEG

cap contains a dense array of 128 electrodes, and signals are digitised at a high

sampling rate. Because the experiment is conducted in a Faraday cage, noise

levels are very low.

The impedance of the interface at each electrode was measured and verified.

The electrodes and gel were adjusted as necessary to reduce the impedance at

each electrode to less than 5kΩ – this sometimes involved the light scraping

of dead skin cells from the surface of the scalp. For the duration of the ex-

periment, the subject was seated in front of a computer monitor and custom

keyboard, built for the project by the Biomedical Engineering Department of

the Flinders Medical Centre.

The experiment was automated, using custom experiment design imple-

mented in the Presentation (Neurobehavioral Systems, California) software

package. It was written so that every subject was presented with an identical

(or, as close as possible) experience. A pre-recorded automated voice presented

the information as well as any required feedback. If needed, the experiment

manager could communicate with the subject via a microphone outside the
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cage. This was sometimes needed if the subject did not understand the in-

structions, or had difficulty with the task.

6.2.2 Experimental procedure

Whilst in the cage, we recorded the subjects’ EEG. During this process, they

performed a series of mental tasks. These tasks were designed to selectively

exercise different brain regions (corresponding to different forms of mental

processing). We did this because we are interested in gamma, and expected

that there was a correlation with mental activity. The tasks were

Eyes closed: This is a basal state of operation of the brain, and can be

viewed as background EEG.

Eyes open: The subject opens their eyes, and stares at the computer

screen, while doing nothing else. This can also be considered as a basal

state, but including the contribution from the visual cortex.

Finger tapping left: The subject taps their left index finger as rapidly as

possible.

Finger tapping right: The subject taps their right index finger as rapidly

as possible.

Mental rotation of computer generated shapes: The subject is presented

with two geometric shapes and needs to decide if they are rotated versions

of each other, or if one is flipped (a mirror image) relative to the other.

Visual Discrimination: They are presented with an original shape, and

four other shapes - one of which is matches the original. The subject

must decide which image is the same.

Auditory Discrimination: Identification of subtle word differences. A se-

ries of similar sounding pairs of words are presented to the subject, who

needs to decide whether pairs of words are identical.
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Reading: The subject silently reads a passage of text and, once finished,

answers some questions.

AVLT (auditory verbal learning test): This task tests a subject’s ability

to recall words from a previously presented list.

Maze: the subject must solve a maze presented to them. An un-revealed

maze is presented on the screen, and the subject must navigate by trial

and error. Correct moves result in progress through the maze, while

incorrect moves result in no progress, and audio reinforcement. To com-

plete the task, the subject must traverse the maze with no incorrect

moves twice in succession (the task ends after 8 minutes).

Subtraction (serial sevens): The subject repeatedly subtracts seven from

a large number, quietly in their head. In this task, it is particularly

emphasised that the subject should not move or vocalise as they perform

the mental operations.

The EEG was recorded for the duration of the experiment, and was labelled

to indicate the start and finish of the various parts of the experiment. For

the purpose of analysis, tasks that had a correct or incorrect response from

the subject (such as the visual discrimination task, where they may identify

the wrong shape) had the EEG divided into two sets – a correct set and an

incorrect set.

6.2.3 Data processing

The data were saved, catalogued, and the details of the subject were entered

into a mySQL database, to allow simple indexing of groups of subjects. The

recording was examined, and areas of EEG in which excessive EMG (muscle

artifact) was present were marked as unuseful.
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6.2.4 Experiment design

Ideally, it would be possible to record subjects’ EEG at the time of seizure,

and then examine EEG immediately prior to the seizure, as well as post-seizure

EEG. This might, for example, allow the detection of a pre- or post-ictal change

of state. To achieve this, we would need to admit a subject to the laboratory

and ask them to remain there until a seizure occurred – however long that may

be. This would be very inconvenient for both the subjects and the researchers,

and would likely result in vastly decreased subject availability, and therefore

a much smaller data set.

Conversely, the experiment as formulated requires the subject to remain at

the laboratory for a predetermined amount of time, and perform a predefined

set of tasks. The fact that subjects are in the lab for a similar duration, and

are performing similar tasks, means that the experiment is more consistent

than if they were waiting an indefinite (and variable) period for a seizure to

occur. Also, because this approach will yield a generic sample of inter-ictal

EEG, any results found therefrom will be more generally applicable.

6.3 Paralysed human data collection

This experiment was very similar to that described in section 6.2, and that

was the base for its design. Because of the ethical issues surrounding the

unnecessary paralysis of a healthy human, all subjects for this experiment

needed to be knowledgeable in the field, and have an understanding of the

safety implications of the procedure. Each individual experiment needed a

separate ethical approval process, and the committee considered the knowledge

of the subject and their relationship to the experimenters (among other things)

each time.
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6.3.1 Preparation

To date, only three subjects have participated in this experiment – all were

knowledgeable in medical fields.

The subjects were prepared for EEG recording as in section 6.2.1. They

were seated in a reclined, fully supported position and connected to the Neu-

roscan EEG amplifiers which digitised the signal and allowed it to be recorded

to computer at 16-bits, 5000 samples per second.

These data are of excellent quality. The EEG cap contains a dense array

of electrodes, and signals are digitised at a high sampling rate. Paralysed

subjects means that no EMG is present in the EEG. Because the experiment

is conducted in a Faraday cage, noise levels are very low.

For the duration of the experiment, ECG, EMG, expired CO2, blood pres-

sure and pulse oximetry were monitored to ensure subject comfort and safety.

While paralysed, the subject required ventilation. They had, prior to the

day of the experiment, practised with the laryngo-pharyngeal airway to in-

crease familiarity with the procedure. All ventilation and monitoring equip-

ment was outside the cage, with the inter-connectors routed through a small

cage port. For the duration of the paralysed experiment, a neurologist and an

anaesthetist remained inside the cage with the subject, and a second anaes-

thetist remained outside the cage, using the monitoring and ventilation equip-

ment to monitor the subject.

Once connected and comfortable, the subject completed the mental tasks

as described in section 6.3.2 in an unparalysed state. Once the tasks had been

completed in an unparalysed state, the subject was prepared for paralysis.

The subject was injected with glycopyrrolate (0.4 mg i.v.) to reduce oral

secretions, as it had been found that the insertion of the laryngeal mask airway

caused a powerful salivation response. Pharyngeal lignocaine was applied as a

local anaesthetic prior to insertion of a laryngo-pharyngeal airway. A manual

sphygmomanometer cuff was applied to their non-dominant arm and inflated
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to a pressure 1.5 times that of blood pressure, preventing the paralysant from

affecting the arm and therefore allowing communication, while paralysed, us-

ing the custom keyboard. The subject was injected with 20mg of cisatracurium

to cause muscular paralysis. To assess muscular paralysis, extensor digitorum

brevis was electrically stimulated, at a level established prior to paralysis, at

the right common peroneal nerve. Complete paralysis occurred approximately

5 minutes after the injection of the paralysant. For the duration of the experi-

ment, the subject’s seated position had the complete support necessary during

paralysis, so their position did not change when they were paralysed.

It is important to note that, because of the presence of the sphygmo-

manometer, the experiment had to be completed quickly. Anoxic paralysis

(due to lack of blood supply) of the communicating arm began at about 18

minutes, at which time the cuff was removed. This allowed a temporary recov-

ery of movement in the arm, before the paralysant acted, and the arm became

paralysed again.

6.3.2 Experimental procedure

The tasks in this experiment were similar to those in section 6.2.2, though

with several differences, because of the limitations imposed by the paralysis.

As mentioned, these tasks were first performed in an unparalysed state, and

then repeated with the subject paralysed.

Eyes closed: This is the basal state of operation of the brain, and can be

viewed as background EEG.

Left eye open: the contribution from the visual cortex to the EEG. The

eye was held open. This is another basal state of the brain.

Photic stimulation: a strobe at 16Hz was used so stimulate the eye.

This was performed with both eyes closed, and then with the left eye

held open.
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Finger tapping left and right: This task is, of course, affected by the

paralysis

AVLT (auditory verbal learning test): This task tests a subject’s ability

to recall words from a previously presented list.

Odd-ball: 180 discreet tones are presented to the subject, sounding for

50ms and spaced at 1 second. There are two tones, 500Hz and 1kHz,

and they are presented at random, with the high tones comprising 25%

of the tones. This is known as an “odd-ball” experiment, because the

subject has to seek that which does not belong - the “odd one out”.

Subtraction (serial sevens): The subject mentally subtracts multiples of

seven from a large number.

6.3.3 Data processing

The data were saved, and catalogued, to allow simple indexing of groups of

subjects. The recording was examined, and areas of pre-paralysis EEG in

which excessive EMG (muscle artifact) was present were removed.
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Chapter 7

Developed algorithms

This chapter provides detail regarding the custom algorithms that were devel-

oped or modified for this project.

7.1 Entropy

Entropy is estimated via

H = −
n�

i=1

Pr(xi) log2 Pr(xi) (7.1)

where x is the binned EEG channel.

This function was based upon a function written by Dr Kenneth Pope and

uses a ranking and bin algorithm to estimate the amount of information in

a signal. For this project, I rewrote the code in vectorised form to increase

performance. A window of 1000 samples was typically used.

Prior to entropy estimation, data were scaled to zero mean and unit vari-

ance. This removes the variance-sensitive portion of the entropy estimation, so

that the measure describes the shape of the probability mass function (pmf).

We also included a correction factor to reduce the bias arising from the analysis

of finite sampled data.
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7.2. MUTUAL INFORMATION

7.2 Mutual Information

This analysis was based upon a function written by Dr David Mewett as part

of his doctoral studies [51].

There is evidence that generalised epilepsy is associated with an increase in

synchronicity of EEG activity across the brain [53]. Mutual information (MI)

measures similarity between signals, and is able to reflect increasing sameness

between EEG channels. It is calculated thus

MI =
�

i

�

j

Pr(xi� yj) log2

�
Pr(xi)Pr(yj)

Pr(xi� yj)

�

(7.2)

where x and y are the binned EEG channels. All histogramming used 100 bins

along each dimension.

After the two data sets are ranked (to ensure consistency between different

data sets), their two-dimensional histogram is evaluated, based on the ranked

data. These data represent the joint probability mass function (JPMF). The

JPMF is used in conjunction with the two individual PMFs to find the mutual

information.

The computational expense of MI precluded analysis of all pairwise combi-

nations of electrodes, and a subset were chosen. To examine local synchronic-

ity, 46 pairs of adjacent electrodes distributed across the head were selected.

To examine non-local synchronicity, 448 pairs of electrodes from different brain

regions (figure 7.1) were selected. These pairs of electrodes were chosen prior

to any analysis, and remained consistent for the analysis of all subjects.
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7.3. CORRELATION DIMENSION

Figure 7.1: Schematic illustration of the brain, indicating the brain regions

http://wps.prenhall.com/ca ph wade psych 1/0,7394,604018-,00.html
Brain regions represent the broad areas where different functional processing
occurs. There are 4 main brain regions that are present in both hemispheres:
frontal, temporal, parietal and occipital. These regions have been defined by
grouping similar cognitive functions.

7.3 Correlation Dimension

Correlation dimension is an estimate of the number of degrees of freedom of a

signal [34]. This is one of the simpler dimension estimates, and this function

was written by me.

Correlation dimension is estimated from the correlation integral, which

measures the number of pairs of points separated by less than a distance �,

Cx(�) = Pr(Dx < �)�

where Dx is the distance between randomly chosen points of the embedded

EEG signal. Correlation dimension is estimated from the slope of the plot of

correlation integral,

CD = lim
�→0

log(C(�))

log(�)
(7.3)

The function embedded the data at various dimensions to find the optimum
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7.4. LINEAR DISCRIMINANT

embedding dimension. Vectors1 were subsampled so that approximately the

same distribution of vectors was retained, while reducing the memory require-

ments. A distance matrix2 was calculated, sorted and scaled to the interval (0

1], and the distances outside a range of interest (Dx > maxdist) were discarded.

The remainder were binned into a histogram with a logarithmic bin spacing.

The cumulative sum of this histogram is the correlation function.

Estimating the correlation dimension then involved calculating the limit in

equation 7.3.

7.4 Linear Discriminant

The theory of discriminant analysis was introduced in section 4.1. The algo-

rithm written here was for the simple case of two classes, to find the degree of

match between the test data and example data representative of each class.

The pairwise covariance matrix of each representative data set was found.

The test data were demeaned, and the pseudo-inverse of the covariance matrix

calculated. The degree of match between the test data and each group was

then calculated,

match = testdata� ∗ pinv(covariancematrix) ∗ testdata.

Experimentation demonstrated that LDA was markedly inferior to neural

networks (results not shown), so LDA was not investigated further.

7.5 Surrogate analysis

The concept of surrogate analysis and the reasons for its use are discussed

in section 3.4.2. We wish to create surrogate data that accurately mimic the

1Each vector is a point in phase-space, corresponding to the state of the system’s param-
eters at a given point in time.

2A distance matrix is an upper-triangular matrix containing the distance between each
pair of points.
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7.5. SURROGATE ANALYSIS

EEG for low order statistics, but lack any higher order statistical similarities.

7.5.1 Testing

The choice of surrogate algorithm is important because we must ensure that

the surrogate data accurately mimic the EEG for low order statistics. Because

of this, we compared different surrogates with EEG using linear statistics.

All of the tested surrogate algorithms destroy higher-order statistical struc-

ture, so the choice of surrogate was based on its mimicry of the low-order

statistics. Hence, the surrogate data were examined with Fourier analysis,

auto-correlation and amplitude distribution functions. The results from the

surrogates were then compared against those from the EEG.

Figure 7.2: Autocorrelation function of EEG and three different surrogates

This figure shows a comparison between the autocorrelation function of three
surrogates and that of EEG. Ideally, the autocorrelation of the surrogates
would minic that of the EEG. It is clear that, while imperfect, the closest
match to the EEG is the iAAFT surrogate.

121



7.5. SURROGATE ANALYSIS

Figure 7.3: FFT of three different surrogates, and EEG

This figure shows a comparison between the FFT of three surrogates and that
of EEG. Ideally, the FFT of the surrogates would minic that of the EEG.

Figure 7.4: Amplitude histogram of surrogates vs EEG

This figure shows the amplitude histogram of the surrogates and EEG, high-
lighting the inadequacy of the FT surrogate.

As shown, each surrogate has its strengths and weaknesses. The FT sur-

rogate is a close match of the autocorrelation, but poor for the FFT and the

amplitude distribution. AAFT matches the amplitude spectrum closely, but is

a relatively poor match for the FFT and the autocorrelation. The amplitude
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7.5. SURROGATE ANALYSIS

spectrum resulting from the iAAFT matches that of the data closely, and its

FFT is also a better match than that of the AAFT algorithm. These results

are unsurprising when one considers the method of construction of the surro-

gates. Based upon these experiments, we chose to test the algorithms using

the iAAFT method of surrogate generation.

7.5.2 Analysis

Rat EEG data (4 kHz, 12-bit, superdural screw electrodes) were used to syn-

thesise 20 iAAFT surrogates (10 per channel). The data were a whole pi-

crotoxin experiment, because it was considered representative of the type of

nonlinear changes that we could expect to see in other rat experiments and

hopefully human experiments also. The EEG and surrogates were analysed by

the nonlinear quantifiers using a sliding window. The results were averaged,

and compared with the results of analysis of EEG. This provided an idea of

the sensitivity of the analyses to nonlinearities in EEG, and lack-of-sensitivity

to linear statistical changes.
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7.5. SURROGATE ANALYSIS

Figure 7.5: MI of surrogates �red; ±σ blue), vs MI of EEG �black).

This figure shows a comparison of a MI analysis of surrogate data vs analysis
of EEG data. 10 pairs of surrogates were fabricated from the 2 channel EEG
data using an IAAFT algorithm, the EEG and each pair of surrogates were
separately analysed using the MI algorithm.
The upper axes shows EEG, and the lower axes show MI. The MI estimate
between two EEG channels is shown in black. The mean MI between pairs of
surrogates (one from each EEG channel) is shown in red, and ±σ shown in
blue.
It is clear that, while there are obvious similarities between the MI of EEG and
the MI of surrogate data, that the two are not the same. This is particularly
striking because the MI of the surrogate data are very consistent.
The iAAFT surrogate applied was univariate, so we would not expect the cross-
correlation to be preserved, contributing to the difference seen here.

124



7.5. SURROGATE ANALYSIS

Figure 7.6: Entropy of EEG �red; ±σ blue) vs surrogate �black)

This figure is equivalent to figure 7.5, with the difference being that the tested al-
gorithm is entropy. This figure shows entropy cannot distinguish between EEG
and surrogate data. This could imply that the entropy analysis is insensitive
to nonlinearities in the data, but it is also likely to be related to the choice of
surrogate (because the iAAFT surrogate preserves the amplitude distribution,
which entropy measures).

Figure 7.7: Correlation dimension of EEG �red; ±σ blue) vs surrogate �black)

This surprising result shows that the variations in the correlation dimension
analysis are wholly described by low-order linear changes in the EEG, and
hence that the correlation dimension algorithm is insensitive to higher-order
statistical changes in the EEG.

125



7.5. SURROGATE ANALYSIS

Figures 7.5, 7.6 and 7.7 show the response of three analyses to surrogate

data. The data are standard experimental data, recorded at 4 kHz. The

surrogate data were produced using an iAAFT algorithm, and for each EEG

channel 10 surrogates were produced – allowing MI to be tested on 10 pairs of

surrogate data. Out of the three examined analyses, only MI show differences

between the surrogate and EEG data.

We also examined graphs containing the analysis of EEG with the mean

of the surrogate analysis subtracted. This is the innovation – the component

in the EEG analysis results that were not accounted for by the analysis of

surrogates. These are shown in figures 7.8, 7.9 and 7.10.

Figure 7.8: Innovation of MI of EEG with respect to MI of surrogates

This figure is produced from the same data as figure 7.5, except that the MI
plot shows the estimated MI of the EEG with the mean MI of the surrogates
subtracted. This can be called innovation: the portion of the MI of the EEG
that is not accounted for by the MI of the surrogates – “the nonlinear bit”.
There is a rapid decrease in MI-innovation after the first spindle and a slight
increase in MI prior to seizure onset – there is no obvious EEG change asso-
ciated with this change in MI.
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7.5. SURROGATE ANALYSIS

Figure 7.9: Innovation of entropy

Although the innovation component of the entropy analysis is much smaller
than that of the MI (figure 7.8), there is a decrease (starting at 8:20) and a
pre-ictal increase (starting at 18:00).

Figure 7.10: Innovation of correlation dimension

The correlation dimension analysis shows essentially no innovation in the EEG
data analysis. This implies that the correlation dimension algorithm is not
usefully detecting nonlinearities in the EEG data – nonlinearities that we know
to exist based upon the MI and entropy analyses.
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7.5. SURROGATE ANALYSIS

7.5.3 Discussion

MI innovation

MI exhibits innovation in the analysis of EEG relative to surrogate. While

it appears that much of this can be related to events in the EEG (such as

spindles and seizure) there are some patterns in the MI that are not. Perhaps

the most prominent of these occurs near 18:00 – a small increase in the MI

innovation. Note also that there is a decrease in MI innovation after the first

spindle, and a further decrease after the seizure.

Entropy innovation

The entropy innovation (figure 7.9) is much smaller than that in the MI

analysis. Its very small amplitude and (relatively) high noise level make it

very difficult to draw many conclusions. Entropy calculation is less sensitive

than MI to nonlinear changes in EEG. It is possible that there is an increase

in the entropy innovation immediately prior to the seizure, however the noise

in this signal precludes a firm conclusion – this would need to be examined

over many experiments.

Correlation dimension innovation

The correlation dimension analysis is utterly insensitive to higher-order non-

linear statistical changes in the EEG data. Correlation dimension is a calcu-

lation that requires many stationary data to enable a robust estimate, and

this has proven difficult to satisfy with the sampling rates that we have used

in these experiments. It may be that the lack of nonlinear sensitivity and

specificity is attributable to a lack of data.
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Chapter 8

Experiment: Nonlinear analysis

of rat epileptiform EEG

We recorded extra-dural EEG and impedance data from respirated, paralysed

rats. Animals were injected with epileptogenic1 drugs, via an implanted venous

catheter, in doses designed to induce epileptiform activity.

The EEG was analysed using entropy, mutual information, correlation di-

mension and auto-correlation algorithms (the analyses). The experimental

data and analyses were examined in an attempt to elucidate some of the under-

lying mechanisms occurring during the progression from normal EEG through

to seizure.

Impedance generally increases as the experiment progresses. Ictal EEG

is related to transient increases in impedance, increases in MI and decreases

in entropy. The analyses reflected changes coincident with (and sometimes

in advance of) EEG events. However, there was no evidence of a consistent

predictive element, and little evidence of a pre-ictal intermediate state. There

appears to be a relationship between the EEG (and analyses thereof) and the

impedance data, but this is of undetermined consistency.

1A drug that induces epilepsy-like symptoms.
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8.1. OBJECTIVE

8.1 Objective

This exploratory experiment was conducted in parallel with the development,

implementation and refinement of the analyses. Although there was no hy-

pothesis, per se, its purpose was to examine the extent to which the analyses

consistently reflected changes in EEG, whether they could detect changes dur-

ing inter-ictal EEG or spreading depression, and whether they had a consistent

relationship with impedance data.

8.2 Data analysis

Data were gathered as described in section 6.1. The method of impedance

recordings and their relationship to cell-swelling is described in section 5.3.3.

Data were processed by software written in Matlab (Mathworks). Discon-

tinuities in the impedance data were repaired (section 6.1.6), the EEG was

analysed using several nonlinear tools (chapter 7) and the results were stored,

ready for visualisation (figure 8.1). Surrogate analysis 7.5, demonstrated that

the implemented entropy and correlation dimension algorithms show little that

was unexplained by low order statistics. That they are not exclusively sensitive

to nonlinear dynamics does not make them useless, but it should be considered

in the interpretation of the results. Entropy is a measure of the information

content of the data, and its sensitivity to linear dynamics was expected (sec-

tion 7.1). It is useful because it provides a means of assessing fluctuations in

mutual information with information content, hence acting as a control. Sim-

ilarly, correlation dimension provides a measure of degrees of freedom of the

signal, which is useful to consider when interpreting MI variations. For these

reasons, they were included in the analysis.

The experiments typically recorded 2-channel EEG, so this was used as a

standard. The analysis took the form of a moving window, yielding chang-

ing analysis results as the experiment progressed. The window size was 1000
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8.2. DATA ANALYSIS

samples for all analyses except correlation dimension2, for which it was 2000

samples. Windows were spaced3 at 1/4 their width (250 or 500 samples).

Analysis results were stored coincident with the most recent EEG used in

their calculation4.

2As mentioned �section 7.5), correlation dimension requires many data to produce a
stable output.

3This refers to the separation between adjacent windows. That the distance between
adjacent windows is only 1/4 their length implies that adjacent windows overlap.

4This ensures that events in the analysis reflect only contemporary and historical EEG,
not future values.
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8.2. DATA ANALYSIS

8.2.1 Display

Figure 8.1: Rat display GUI, kainic acid experiment

This GUI was used to examine the results of the analyses, and shows typical
behaviour of a rat experiment. The EEG channel (uppermost) shows the de-
velopment of the seizures. The impedance channel (second from bottom) shows
a steady increase until the “death curve” (starting at approximately 33 min-
utes). There are three small impedance transients at 00:13:00, 00:21:30 and
00:29:00. These are likely to be incidents of seizure and spreading depression
(section 5.4.3). The death curve, at the end of the experiment, occurred imme-
diately following the administration of a lethal dose of pentobarbitone, which
also caused the decrease in EEG power (due to sedative effects). The strong
interference at approximately 00:02:00 is the result of a connection adjustment
to the rat’s head-piece (manipulating the rat for the connection of the ion sen-
sitive electrode).
Notice the “smooth” tool at the top of the GUI. The ability to smooth the data
was used only as a visualisation tool – none of the figures shown in this chapter
have been smoothed.

A simple GUI was written to facilitate the display of data (figure 8.1). The

impedance channel (second from bottom) shows characteristic behaviour, in-

cluding the death curve5, illustrating a typical progression of an experiment in

which an epileptogenic drug is administered.

Most of the channels are simple to interpret, however the auto-correlation

channel is somewhat less so. We calculated the auto-correlation function for

5The death curve is the impedance change �cell swelling) resulting from the administra-
tion of a lethal dose of pentobarbitone.
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8.3. RESULTS

each position of the sliding window, which was assembled into the image

the same way as a spectrogram is assembled from a series of fast-Fourier-

Transforms. Thus, each column represents the auto-correlation function of

the EEG at a particular time, and the colours represent the strength of that

function – blue (low), yellow (medium), red (high).

8.3 Results

First I will provide a brief overview of the experimental results. Figures are

provided on the following pages, and are referred to in text.

Picrotoxin experiments (eg. figure 8.5) generally have fewer and shorter

seizures but more dramatic impedance changes, compared to kainic acid ex-

periments (eg. figures 8.2 and 8.3), which show continuous dramatic changes

in EEG and repeated seizures. Kainic acid experiments often manifest pre-

seizure EEG events that differ from spindles in that they are broad-spectrum,

including high levels of gamma. Baseline impedance tends to show greater

changes, but these are more gradual (partly due to the longer duration of the

experiment) and are thought to be related to increases in gamma6 that occur

throughout the experiment.

Fluorocitrate (eg. figures 8.6 and 8.7) does not produce seizures in the

same manner as picrotoxin or kainic acid (by affecting neuronal excitability),

but instead affects astrocytic metabolism, resulting in a very different effect.

Few fluorocitrate experiments exhibit seizures, but instead show spreading

depressions7. Citrate experiments show occasional impedance changes, but no

spreading depressions attributable to the drug8.

6Gamma refers to EEG in the band 30 - 100 Hz, and is thought to be associated with
higher level mental activity. Gamma was examined using spectrographic analysis, which is
not shown here.

7Fluorocitrate is only injected into one hemisphere of the brain, so any resulting spreading
depressions are constrained to that hemisphere. Seizures, however, can spread from one
hemisphere to the other.

8Spreading depressions in citrate experiments appear to be caused by physical action on
the brain, such as the insertion of needles, and not as a result of the drug itself.
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8.3. RESULTS

In general, impedance data complement EEG data: epileptiform activity is

associated with changes in brain impedance. However, there are cases where

there are changes in impedance unaccompanied by obviously related changes in

EEG and visa versa. Thus, it appears that both impedance and the analyses

are affected by epileptiform activity, however, they respond differently and

there is not a consistent relationship between them.

8.3.1 Analysis of EEG

Changes in the analyses may correlate with with impedance with no clear

change in contemporary EEG (figure 8.3), although spectrographic analysis

sometimes shows changes in gamma power. Spreading depression (section

5.4.3) tends to reduce EEG activity and increase brain impedance (figure 8.5).

8.3.2 EEG seizure activity

During ictal activity (figures 8.2, 8.3, etc), there was an increase in MI suggest-

ing that there is an increase in brain synchronicity across the hemispheres9.

Entropy generally decreased, indicating a loss of complexity in the EEG10. Ic-

tal activity usually results in an increase in auto-correlation, which appeared

as narrow, repetitive bands of sameness.

Correlation dimension usually increases during the initial stages of ictal

activity, before decreasing sharply. The increase may begin slightly in ad-

vance of obvious ictal EEG activity, but is usually in advance of the associated

transient impedance increase. Such transients are often synchronous with the

sharp decrease in correlation dimension (figures 8.2 and 8.3).

Impedance transiently increases during, or immediately following, ictal

9The increase in MI during ictal activities cannot be attributed to the increase in EEG
amplitude, because the MI calculation operates on rated data – a process that ignores the
absolute amplitude of the data.

1�Recall that prior to entropy analysis the data are demeaned and scaled to unit variance,
reducing sensitivity to signal amplitude changes. This implies that the observed entropy
changes are not merely the result of a change in EEG amplitude.
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events (figure 8.2).

8.3.3 Inter-ictal periods and seizure anticipation

A decrease in baseline11 MI can precede any apparent ictal EEG activity (fig-

ures 8.2 and 8.3), although this is sometimes possibly attributable increases in

gamma EEG energy (eg. SD98, figure 8.2).

There are experiments where a slight increase in baseline entropy may

precede seizure activity (figures 8.2, 8.3 and 8.4) but possibly not changes in

baseline impedance.

Autocorrelation periodically shows bands in inter-ictal periods that are

similar, but less pronounced, to the ictal bands. These are more common

in kainic acid (eg. figures 8.2 and 8.3) experiments, but are not absent in

picrotoxin animals (figure 8.5 shows a spindle at 00:03:00, apparent in the

auto-correlation, that is coincident with a rise in impedance).

8.3.4 Cell swelling

Impedance has a complex relationship with EEG. Cell swelling can occur as a

baseline change, apparently as seizure approaches. We also observe transient

impedance changes that appear to be associated with ictal activity or spread-

ing depression. Impedance recordings show several behaviours: incidences of

spreading depression and cell swelling that precedes ictal EEG activity (figure

8.3), cell swelling that lags ictal EEG activity (figure 8.5), and cell swelling

that is associated with increases in gamma EEG power (figure 8.2). There

are impedance changes that are not associated with ictal activity (figure 8.5 –

the first impedance peak, at 00:08:30, is not coincident with any obvious EEG

activity, whereas the second shows a seizure, marked decrease in correlation

dimension and changes in MI and entropy).

11I use the word baseline to denote a change in the general trend of the analysis – the
trend without the transient changes such as those associated with ictal activity.
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8.3.5 Spreading depression

It appears that seizures might induce spreading depressions (figures 8.4 and

8.5), though they can also arise without obvious associated EEG changes (fig-

ure 8.5, earlier). Such spreading depression can be associated with a change

in baseline MI, chiefly in kainic acid experiments (figure 8.2).

Spreading depressions in fluorocitrate experiments cause changes that MI

appears unable to detect (figures 8.6 and 8.7).

8.4 Discussion

8.4.1 Pre-ictal EEG

Although some experiments showed changes in the impedance and analyses

that were in advance of obvious ictal EEG, we did not see any indication of a

consistent pre-ictal state heralding the immanence of a seizure.

Figure 8.5 shows an interesting pre-ictal phenomonon. There are changes

in MI and entropy, commencing 10 minutes in advance of the first ictal activity.

This was not observed in other experiments.

8.4.2 Ictal EEG

Ictal EEG activity is associated with increased impedance which, as a direct

correlate for cell-swelling, implies that ictal brain activity might cause cell

swelling12. Ictal EEG activity has increased synchronicity and contains less

information, compared with non-ictal EEG. The correlation dimension of ictal

EEG varies in a complex manner. From the observed results, it appears that a

seizure detection algorithm could be implemented using the EEG, impedance

and analyses as input variables.

12Repeated neural firings cause the release of glutamate into the extra-cellular space, where
it is removed by astrocytes. Sufficient quantities will cause them to swell because of osmotic
imbalances �section 5.3.3). Osmotic imbalances can also lead to neuronal swelling, because
of the movement of ions required for action potentials to occur. This is well described in
scientific literature, eg. [54].
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There are sometimes changes that occur in both the analyses and the

impedance data prior to seizure onset. When they occur, these changes are

typically 1 - 2 seconds in advance of apparent changes in EEG. It is worth

attempting seizure prediction by exploiting these changes which, while hav-

ing no immediate practical application, would demonstrate the existence of a

short, detectable, pre-seizure state.

8.4.3 Seeking a predictable relationship between EEG

and impedance

While there are changes in the analyses that reflect changes in EEG, none of the

analyses demonstrate a clear and consistent relationship with changes in the

impedance13. While it seemed possible that changes in impedance reflected

EEG changes (section 5.3.3) and might demonstrate the existence of a pre-

seizure change in EEG occurring in parallel with changes in impedance, we

have not been able to unequivocally observe this.

To view this another way, it is unclear whether there is a consistent rela-

tionship between EEG data, the analyses, and impedance data. There appear

to be changes in the analyses that are indicative of impedance changes, but

this is difficult to quantify14 by visual examination. In order to better exam-

ine the data for such a relationship, a good approach would be to attempt to

model the impedance data – making an estimate of the impedance from the

EEG and EEG-derived analyses. This is examined in chapter 9.

8.4.4 Spreading depression

Interestingly, while brain changes occuring during spreading depression are

detectable in kainic acid and picrotoxin experiments, they are not detectable

13This is unsurprising, since all the analyses are derived from the recorded EEG only and
not the impedance

14For example, it is possible that each analysis, in isolation, does not have a consistent
relationship with impedance but that the analyses together do.
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in fluorocitrate experiments. It may be possible to detect spreading depression

from EEG and analyses, however it appears that such a model would be drug-

specific (due to differences between the epileptogenic drugs).

8.4.5 Surrogate data

Surrogate data analysis (section 7.5) allows verification that the changes ob-

served in nonlinear analyses are due to changes in the nonlinear components of

the EEG. However, it is very computationally expensive15 and for this reason

was not able to be implemented here (the analyses themselves were examined

in section 7.5, however similar simulations were not run for every rat exper-

iment). Improvements in computer power will, in the future, make this a

non-issue and we recommend making use of surrogate analysis as an intrinsic

component of EEG signal analysis, not merely part of an algorithm validation

procedure.

We must also remember that, assuming the EEG data are equivalent to

those in section 7.5, that the correlation dimension is examining only low-order,

linear statistics and that the entropy is not exclusively sensitive to higher-order

statistics.

8.5 Conclusion

There are changes in impedance that occur as the experiment progresses. Ictal

EEG is related to increases in impedance, increases in MI and decreases in

entropy, in accordance with our understanding of seizure processes. While the

various implemented analyses reflect changes coincident with (and sometimes

in advance of) EEG events, there is no evidence of a consistent predictive

element. Nor did we detect evidence of a pre-ictal intermediate state.

15The generation of iAAFT surrogates is computationally expensive and, because many
surrogates must be generated and analysed �to obtain p � 0.05), the analysis time is greatly
increased.
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8.5. CONCLUSION

There appears to be some relationship between the EEG (and analyses

thereof) and the impedance data. Whether this is consistent is something to

be investigated.
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Chapter 9

Experiment: Rat impedance

modelling during epileptiform

events

We recorded extra-dural EEG and impedance data from respirated, paralysed

rats. Animals were injected with kainic acid, via an implanted venous catheter,

in doses designed to induce epileptiform activity.

The EEG was analysed using entropy, mutual information, correlation di-

mension and auto-correlation algorithms (the analyses). The analysis results

and the raw EEG were used to train a feed-forward neural network to model

the recorded impedance from the EEG and analyses only. This attempt was

not successful, therefore we conclude that impedance data are (at least partly)

independent of EEG. We recommend the continued recording of impedance

data along with EEG data.

9.1 Hypothesis

The use of nonlinear analysis of EEG, coupled with contemporary and histor-

ical EEG values, can be used to estimate impedance.
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9.2. INTRODUCTION

9.2 Introduction

The recording of impedance adds complexity to the experimental apparatus,

so it would be useful to demonstrate that the impedance data convey new

information not present in the EEG data. Thus, we attempt to model the

impedance as a function of EEG and the analyses, to demonstrate the worth

of impedance recordings.

Successfully estimating impedance from EEG might seem difficult due to

the holistic and stable nature of impedance and the local and unstable nature

of EEG. However, it seemed possible that locally-derived EEG and analyses

might reflect some aspects of generalised brain electrical activity. For this

reason, we decided to attempt such estimation.

9.3 Method

9.3.1 Data Analysis

For this experiment, the rat EEG data were gathered as described in section

6.1, and analysed as described in section 8.2.

Each channel1 was mapped to the range [-1 1] across all animal experiments

– this maintained differences between animals, but ensured that the amplitude

of each channel (across all animals) was constrained.

9.3.2 Data assembly

Some rat experiments contained discontinuities in the impedance and EEG

channels (eg. due to technical artifacts). These experiments were excluded

from the modelling.

Because of computer limitations, we sub-sampled the impedance data –

these were goal data. Each of these data were associated with a vector of train

1The channels were: EEG1, EEG2, MI, entropy, correlation dimension, auto-correlation
and impedance.
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data: periodic windows of historical EEG and analyses data (700 historical

records, spaced at 8 sample2 intervals). This was repeated for each of the seven

rats, and the results concatenated to yield a vector of impedance values (goal

data), associated with a matrix of contributory historical EEG and analyses

values (train data). This is illustrated in figure 9.1.

Figure 9.1: Neural net training data organisation

This figure illustrates the method by which the data from each rat were as-
sembled into a matrix ready for training the neural network. The two matrices
(top) represent the EEG and analyses from two experiments (channels by time).
Shown in each impedance data set are two chosen values of impedance, each
associated with a series of vectors in the analyses/EEG data. This series of
vectors is linearised and inserted into the training data matrix as shown, while
the goal data are sub-sampled directly from the relevant impedance data. The
train data and goal data are ready for presentation to the neural network.
In the actual experiment, there were 700 historical vectors (instead of 8, as
shown here), 7 rat experiments (instead of 2, as shown here) and there were
many impedance values and associated analyses vectors (two are shown in this
figure).

2Sample refers to a sample of the analyses, which are at a lower sampling rate than the
EEG. Each sample is of equivalent duration to 250 EEG samples �the specifics of the EEG
analysis are described in section 6.1).
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9.3.3 Neural Network modelling

All modelling was performed using a feed-forward neural network with 50 neu-

rons in the hidden layer. After modelling, the network’s training history was

verified to confirm appropriate training had occurred (eg. examining the gra-

dient history). The task of the neural network was to estimate the impedance

measured in the experiment, based on the EEG and analyses thereof. We

trained a simple feed-forward network, but because train data contains histor-

ical data pertaining to each value of impedance goal data, the feed forward

network behaves in a manner similar to that of a feed-forward network with

tapped delay. This is because the network has knowledge of historical values.

However, this approach has the benefit of allowing us to present the network

with all the data (including historical data) for all rats, simultaneously. This

would be difficult if we were presenting EEG and analyses that were contem-

porary with the impedance value we wished to model, expecting the network

to use delay to retain knowledge of historical values.

As an initial step, every experiment was included in the training and those

same experiments were then simulated to estimate the impedance. To em-

phasise, we simulated the same experiments that had been used to train the

network. Such a process could not test the network as a predictive tool, but

only as a transfer function (EEG and analyses → impedance).

We then performed a leave-one-out system of training and testing, whereby

a network was trained on all applicable experiments except one, and then

simulated on that experiment to estimate the impedance – a process repeated

for each experiment. Leave-one-out analysis requires a new network to be

created and trained for every modelling attempt. It is used when there are

insufficient data to split them into train and test groups. In this experiment,

each rat’s data were successively isolated from the other data. A new network

was then trained on the remaining data and simulated on the isolated rat’s

data. This approach examines the generalisability of the trained network, and
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(by repeated application to each rat’s data) gives an indication of the expected

performance of the hypothetical single network that we would implement if

there were more data.

9.4 Results

I first tested a network by training it with all available data, and then testing

it on individual rats (a subset of that data). As can be seen in figure 9.2,

the neural network is able to approximate the impedance signal, although

noisily. This means that, although not demonstrating a generalised predictive

ability, the network is able to form a transfer function that can represent

impedance from the analysis of the EEG data. This demonstrates that the

setup and configuration of both the training and goal data is appropriate, and

the network is correctly configured and trained.

Figure 9.2: Estimate of impedance – familiar data

Each graph shows two data sets. The blue data are the actual impedance data
that the network was attempting to model. The red data are the network’s esti-
mate of the impedance. Over all the experiments, the RMS difference between
the goal and estimate, when performed on familiar data, was 0.17± 0.07
For this test, the data to be tested were included in the training data, so this
model does not test predictive ability. However, it demonstrates that the setup
and training procedures for the neural network were performed correctly – a
validation of the experimental setup.

Next, we implemented a leave-one-out analysis, so that the rat data to be

tested were not included in the training. If this were successful, it would mean
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that a generalised transfer function could be trained on some rats and then

simulated on others. This would allow an estimate of impedance, from EEG

alone, that would render the recording of impedance unnecessary. As shown

in figure 9.3, however, the network was unable to estimate the impedance and

hence cannot be used as a general tool for predicting impedance.

Figure 9.3: Predictive test of impedance estimate

Each graph was produced in a similar fashion to figure 9.2, except that the test
data were not included in the training. The blue data are the actual impedance
data that the network was attempting to model. The red data are the net-
work’s estimate of the impedance. This figure thus illustrates the effectiveness
of the model as a generalised predictive tool (i.e the ability to learn about the
relationship between impedance and EEG in all rats ex�ept one and use the
trained model to test that relationship in the unseen rat). As you can see, the
performance of this model is substantially worse than that in figure 9.2. These
figures are representative of the other results: The RMS difference between goal
and estimate, on unfamiliar data, was 0.79± 0.19.

9.5 Discussion

Figure 9.2 demonstrates that the configuration and training methodology are

appropriate because it shows a reasonable estimation of the impedance record-

ing based only on EEG data. The data shown in this figure are the raw output

of the neural network, and could be improved by additional network training

or post-simulation filtering. However, networks that better model the training

data tend to become over-fit to the train data – and lose generalisability3 as a

3Generalisability is the ability of a network to learn a rule on one set of data and then
apply that rule to novel data.
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result. For this reason, we refrained from training a network to exactly model

the training data.

An attempt to form a generalised model of the relationship between EEG

and impedance is made in figure 9.3. As can be seen, there is little relationship

between the impedance estimate and the measured impedance. This figure is

representative of the all impedance estimate attempts. This failure does not

mean that it is impossible to estimate the impedance from the EEG, but it

suggests that a more sophisticated methodology is required, if it is to work.

As mentioned, not all data were presented to the neural network. This

was due to CPU and RAM limitations. If all the data were presented, the

training matrix would be approximately 17000 x 17000 instead of 2100 x 8500.

Although it would be impractical to manipulate on our current computers, it

is possible that such an analysis would yield more useful results.

9.5.1 EEG vs Impedance

These results suggest that the formation of an estimate of impedance is im-

possible from current EEG recordings, and that a much greater number of

electrodes4 are required. Because impedance, unlike EEG, is a holistic brain

property, it seems likely that it provides data that are (at least partially)

independent of EEG. Such a conclusion is supported by this work, and we

recommend the continued recording of impedance data in parallel with EEG.

9.5.2 Further work

The nonlinear methods and modelling software could be adapted to attempt

seizure prediction. Much effort has been devoted to seizure prediction but,

to our knowledge, none of the attempts to predict the onset of seizures have

used impedance recordings as a signal source. Because we have shown that

4Given sufficient electrode density for EEG recordings, impedance estimation is likely to
be possible, however with only two electrodes successful modelling remains elusive.
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the data in the impedance channel might be complementary to the data that

were derived from the EEG, impedance data could potentially assist attempts

to predict the onset of seizure.

9.6 Conclusions

In this experiment we have attempted to create a model to allow an estima-

tion of rat brain impedance changes from a knowledge of EEG and nonlinear

analysis thereof. We found that the impedance estimate does not adequately

track the measured impedance. Based on this analysis we conclude that the

impedance cannot be predicted from the EEG at this stage, hence measuring

impedance experimentally will yield information about the brain that is not

present in EEG and EEG-derived analyses.
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Chapter 10

Experiment: Human data

analysis

Subjects were chosen from control (15 people) and primary generalised epilepsy

(9 people) groups. Each subject’s EEG was recorded while they performed a

series of mental tasks. All EEG was pre-ictal, ie. no epileptiform EEG activity

was recorded. The data were stored and were analysed offline using entropy,

correlation dimension and mutual information algorithms (the analyses).

The results of these calculations were compared between subject groups,

between mental tasks and between brain regions to evaluate the effectiveness

of the analyses at detecting changes in EEG.

We found that there are detectable differences in the EEG, dependent both

on the task being performed, and on the subject group.

10.1 Hypothesis

Nonlinear analysis of non-ictal scalp EEG can detect differences dependent

on the mental task being performed, and the presence or absence of primary

generalised epilepsy (PGE).
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10.2 Introduction

This experiment follows from our earlier exploratory (n = 3) findings that

there were detectable differences in the gamma frequencies of EEG in subjects

with primary generalised epilepsy [84] – results that were not confirmed by

our larger follow-up experiment. Based upon this work, it yet seems possible

that there are differences, not apparent in a spectral analysis of EEG, but

detectable in phase space using nonlinear analysis.

10.3 Methods

EEG data were collected and stored from human volunteers, in control or

active1 PGE groups, as described in section 6.2.

10.3.1 Data Analysis

Software was written in Matlab (Mathworks) to analyse the data using entropy,

correlation dimension and mutual information algorithms (Chapter 7).

10.3.2 Data display methods

There were two methods by which the data were visualised.

Local MI variations �adjacent electrode pairs) To examine regional

variations of local MI, we calculated the mean and standard error of the mean

(SEM) of the local MI results within each brain region. We displayed the

results from the control and PGE groups (figure 10.1).

Regional MI variations To examine variations in regional MI, we calcu-

lated the mean and SEM of the regional MI results between each combination

of brain regions. We visualised the results from the control and PGE groups.

1Active PGE refers to subjects who were either untreated, or were ineffectively treated.
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Figure 10.2 shows the left-frontal region vs all other brain regions; the other

results are shown in the appendix.

10.4 Results

We found that the various analyses were useful to varying degrees in making

these assessments. In particular, the most useful analyses for distinguishing

between the groups and tasks were the two mutual information analyses, as

shown. The entropy and correlation dimension analysis (shown in appendix A)

did not yield results useful for discriminating in this way, and are not shown

in this chapter. This was unsurprising, considering the results of surrogate

analysis (section 7.5).

10.4.1 Local MI variations �adjacent electrode pairs)

Figure 10.1 illustrates variations in local MI, by task and by brain region.

Depending on the task being performed, there are regional changes in localised

MI in control subjects. There are clear differences between the PGE and

control groups in several of the brain regions. Also the variation across tasks

is similar across brain regions, in both PGE and control groups.

10.4.2 Mutual information analysis by brain region

Figure 10.2 shows the mean MI between the left frontal cortex and each other

region2. Each axis represents a brain region (axis title) and shows MI (rela-

tive to eyes-closed task) between that brain region and the left-frontal region.

MI by brain region shows a difference between the PGE and control groups

is qualitatively less marked, than that in the local MI analysis. There is a

consistent variation across tasks, and this occurs no matter which brain region

2Figures detailing the other regions are shown in the Appendix �section A.1) – these
include the remaining seven regional MI plots �with different regions of interest), as well as
figures showing entropy and correlation dimension changes.
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is the region of interest.

It appears that the subtraction task produces results that are different to

the other tasks, and it also shows separation of the PGE and control groups,

which no other task consistently shows.

10.5 Discussion

10.5.1 Local MI variation

When examining local MI, PGE vs control (figure 10.1), there were many

tasks and regions that exhibited altered MI. Left frontal, left temporal, left

occipital and right occipital all showed elevated MI in PGE vs control subjects.

Individually, these differences were not statistically significant however.

There were many task/region pairs3 that showed significant (p < 0.05)

differences in local MI. Because there are so many comparisons, we would

expect to see 5% appear significant even if there was no difference between

groups. However, the fact that approximately 18% were reported as significant

suggests that there are differences between the tasks.

10.5.2 Regional MI variation

Subtraction is elevated in PGE vs control, in all regions (frontal region, figure

10.2, other figures are in the appendix). Eyesclosed is suppressed in PGE vs

control in most brain regions, as are the visual discrimination and reading

tasks.

There were many tasks/region pairs that showed significant differences be-

tween control and PGE groups. Every task had at least one region that showed

significant (p < 0.05) differences between groups. Of all the comparisons made,

approximately 20% were reported as significant. This suggests that there are

3A task/region pair refers to a comparison of MI between adjacent electrodes in a task
in a region, with MI between adjacent electrodes in another task in another region.
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differences between the two groups.

10.5.3 Group Classification �diagnosis of PGE)

These results suggest that the subtle group differences might be exploited to

diagnose PGE in an unknown subject. This is more difficult than identifying

statistical differences between two populations because there is a large intra-

group variance and a relatively small inter-group variance. There are many

data to use – small differences over many data may allow accurate classification.

Success will depend on there being sufficient statistical independence4 between

the variables. This is the subject of the following chapter.

10.5.4 Task-classification

These results also suggest that it may be possible to identify the task being

performed by the subject using the analysis of EEG. This would have implica-

tions for brain-computer-interface (BCI) research. Robust task identification

will require several variables with sufficient statistical independence because

of small inter-group and large intra-group variances. This is the subject of

chapter 12.

10.6 Conclusion

There are differences in the inter-ictal EEG between control and PGE subjects

that are detectable by local and regional MI analysis. However, the intra-group

variance is quite large, and the inter-group variance is quite small. These

results demonstrate that it may be possible to classify an unknown subject

into their group (control or PGE), if there is sufficient statistical independence

between tasks. Similarly, there are some detectable differences between tasks,

4If two variables, β and α, are statistically independent, then one will learn nothing about
variable β by examining variable α.
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that may allow classification between certain tasks. These two classification

problems are the subject of the following two chapters.
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Chapter 11

Experiment: Diagnosis of PGE

in human subjects

Subjects were chosen from control (15 people) and primary generalised epilepsy

(8 people) groups. Each subject’s EEG was recorded while they performed a

series of mental tasks. All EEG was inter-ictal, ie. no epileptiform EEG ac-

tivity was recorded. The data were stored, and were analysed offline using

entropy, correlation dimension and mutual information algorithms (the analy-

ses).

These data were used to train, via a leave-one-out method, a memoryless

feed-forward neural network to classify the subject as either control or PGE.

The networks had 15 logsig nodes in the hidden layer, and 2 logsig nodes in

the output layer.

The best results showed an accuracy of 87%, an excellent result, apparently

allowing an accurate diagnosis of PGE from analysis of non-ictal EEG. These

exciting results should be pursued and duplicated1 and an improvement in

sensitivity and specificity sought.

1It is important to duplicate this experiment, because of its post-hoc nature. New exper-
iments need to be performed, and the developed algorithms applied, to address the potential
problem of “over-mining” the data �despite great care being taken, over-mining is an inherent
problem with this kind of analysis and needs to be discounted).

162



11.1. HYPOTHESIS

11.1 Hypothesis

It is possible to identify subjects with primary generalised epilepsy by analysis

of experimentally gathered inter-ictal (apparently normal) EEG data.

11.2 Introduction

Chapter 10 sought variations between control and PGE classes. These vari-

ations suggested that classification of an unknown subject might be difficult,

mainly because of the small inter-group variation and large intra-group varia-

tion. That there were multiple variables exhibiting these differences would be

helpful, provided the variables were independent. Given sufficient statistical

independence between several variables, a multi-variate classification process

can take advantage of many small differences to draw a reliable conclusion.

11.3 Method

A brief summary of the method follows:

We have 24 subjects to test. We iterate through the subjects, testing each

subject in turn. Each test subject is quarantined from the remaining subjects.

The un-quarantined subjects are then used to train a feed forwardneural net-

work. Once trained, the network is used to classify the quarantined subject.

We then proceed to the next subject, repeating this procedure.

See figure 11.1 for a graphical representation of this process.

11.3.1 Data collection

EEG data were recorded from control (15) and active primary generalised

epilepsy2 (PGE, 8) subjects, as described in section 6.2. Software was written

in Matlab (Mathworks) to analyse the data using entropy, correlation dimen-

2Active PGE refers to subjects who were either untreated, or were ineffectively treated.
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sion and mutual information algorithms (the analyses, chapter 7). Both the

Laplacian estimate and the raw EEG were used as a basis from which to esti-

mate the various nonlinear quantifiers.

The EEG of each subject’s tasks was divided into epochs3, of minimum

length 3500 samples (1.75 s), and analysed separately. The results were then

collated across all subjects.

11.3.2 Data organisation

Every instance of each subject’s data were read. An instance is a set of analyses

results, calculated from EEG of a subject performing a task. Because the EEG

was epoched, there could be multiple instances per task. Each instance was a

vector comprised of 623 values, as follows

16 upper-triangular 7x7 matrices for regional MI

46 values of adjacent electrode MI

128 values of entropy

1 value of correlation dimension

Each subject’s instances were assembled into a large matrix, where a single

column represented a single unique instance of a particular subject, and a row

represented a particular variable across all instances of all subjects.

Missing data were referred to as a NaN (not a number). Rows with more

than 10% NaNs were discarded, and other NaNs were replaced with the mean

of that row (taken across all subjects), and thus contributed no innovation to

the classification process.

This process resulted in a large matrix of 623 variables describing about

800 instances across 23 subjects. The matrix was stored in single, rather than

double, precision to minimise memory requirements.

3A short segment of EEG.
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11.3.3 Classification

Classification was performed using a memory-less feed-forward neural network.

The algorithm iterated through the subjects, quarantining their data succes-

sively4. For each iteration, 10% of the remaining subjects’ instances were

randomly selected for use as validation data5, and the remaining instances

were used as training data. Networks had a hidden logsig layer of 15 neurons,

and were trained for a maximum of 3000 epochs on the other 90% of the un-

quarantined data. The trained neural network was then used to classify each

instance of the quarantined subject. Networks were trained with a gradient de-

scent with momentum algorithm6, and the validation data were used to control

early stopping, which was employed to help prevent network-overtraining7.

The process of quarantining, initialising, training and testing a network

was repeated for each subject. In this way, we proceeded as though we had a

data-base of 23 known subjects, and tested a 24th unknown subject, and then

repeated this for every subject – a process known as leave-one-out training and

testing.

A summary of the method is shown in figure 11.1.

4For each iteration, all instances of a subject’s data were quarantined similtaneously.
5The use of separate validation and training data means that while the network is being

trained, it examines its performance against the validation data. As the network becomes
more trained, it can tend to become over-trained �too specific to the train data). When this
occurs, the performance of the network using validation data will begin to decrease, and
training will cease.

6The addition of momentum to the gradient descent algorithm helps prevent the network
remaining in a local minimum.

7Network over-training occurs when the network becomes specific to the training data
and lacks generalisability. The use of validation data allow an assessment of network gener-
alisability �during training) that monitors the network’s ability to generalise to novel data.
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Figure 11.1: Summary of analysis of EEG leading to an estimate of the subjects’
class

This figure shows the processes performed on the EEG to classify the subjects.
In summary, the EEG data are divided into tasks, and then further divided into
epochs – each epoch is analysed separately by each analysis. The resultant data
are normalised across subjects and within each analysis, and organised into
a matrix of dimensions [variables� instances], where each instance contains a
analysis results from an epoch for a given task from a given subject.
We now iterate through the subjects. For each subject, we quarantine their
data, train a neural network on the remaining data, and then use that trained
neural network to classify the quarantined subject’s data. The results of the
classification are then mapped to likelihood space to allow averaging within
each subject (across instances) of the results weighted by the estimated relia-
bility (which is simply the average difference between the two classes – a large
difference indicates that the neural network was more confident about its re-
sults).
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11.4 Results

Results data were formed by averaging across the chosen instances8 and are

shown in an XY plot (showing the network’s assessment of each subject).

The same data were reduced to one dimension by subtracting the control

likelihood estimate from the PGE likelihood estimate, and were displayed as

a receiver operating characteristic (ROC9), showing classification performance

as the decision threshold is changed.

Figure 11.2: Subject classification based on all tasks. XY plot �left) and ROC plot
�right)

The XY plot shows the network’s estimation of each subject’s likelihood of being
in each class. Blue circles represent control subjects, and red crosses represent
PGE. The ROC plot shows how true- and false-positives vary as the decision
threshold is changed. The performance of the system is measured by the area
under the ROC curve – perfect performance would go straight up the y-axis,
and across the top of the graph.

Figure 11.2 shows the classification results for each subject when averaged

across all task-instances. There were several variations to the method discussed

above, all of which produced slightly different results.

8Recall that instances were associated with tasks. We were screening to only use certain
tasks to form a decision �as described in the figure title).

9An ROC plot shows the relationship between true-positives and false-positives as the
threshold for identification is changed. This is an atypical method of showing neural network
results. Standard machine-learning protocol involves the generation of a confusion matrix
�true- and false-positive, true- and false-negatives) and several statistics that describe clas-
sification performance. However, these require a classification cut-off value – a choice in the
trade-off between true- and false- positives. The ROC plot shows multiple cut-off choices,
and is therefore more informative.
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11.4.1 Task-based breakdown of classification

A task-based classification breakdown was performed to examine the relative

performance of a subset of the tasks.

Figure 11.3: Subject classification based on eyesclosed �first) task only, XY plot
�left) and ROC plot �right)

Figure 11.4: Subject classification based on eyesclosed and eyesopen tasks only, XY
plot �left) and ROC plot �right)
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Figure 11.5: Subject classification based on first four tasks, XY plot �left) and ROC
plot �right)

Figures 11.3, 11.4 and 11.5 show a good ability to classify subjects into

their correct group. Use of the first task only confers the best results, and the

results become worse as more tasks’ data are used in the classification. Using

these task subsets yields better classification than using all tasks.

11.4.2 Variation: Subject-based instances

Another network arrangement was attempted. Instead of organising data into

task-instances, they were organised into subject-instances. This resulted in a

matrix of size [analyses ∗ tasks� subjects ∗ instances]. Because some tasks

contained more EEG epochs than others10, tasks with fewer epochs were repli-

cated, within a subject, so that all tasks were equal in size. This produced

a matrix of size [17000� 2000] where each subject contained approximately 80

instances. Because there were so many data, a linear statistic was developed to

reduce the number of variables (described in the Appendix, section A.3). The

remaining data were used to train a feed-forward neural network in the same

way as previously described. For clarity, I refer to this method (with subject-

based instances) as the subject-instance classifier, and the earlier method as

the task-instance classifier.

1�Recall that successive epochs of EEG were used to form the instances.
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Figure 11.6 shows the results that were yielded by this process when se-

lecting the best 1000 variables. This number can be varied, and we tested

several values, finding that while there was a variation in performance with

the number of variables used, performance was reasonably consistent.

Figure 11.6: 200 best variables

The XY plot (left) shows two groups of points, corresponding to the estimated
class of the subjects. The points are coloured according to their actual class.
The X axis shows the estimated likelihood that the given subject is PGE, and
the Y axis shows the estimated likelihood that the subject is control. These
results were produced from a network that had 200 variables presented to it.
The ROC plot (right) show the same data. It represents the performance of the
classification system as the cut-off point for positive identification (of PGE) is
shifted.

11.5 Discussion

These results show an ability to diagnose PGE in an unknown subject, and

suggest an important application, which is the potential use of this technique

as a diagnostic tool. Such a tool could provide a quantitative description of the

subject’s likelihood of manifesting PGE epilepsy symptoms (such as seizure)

from a recording of non-ictal EEG. Such a tool does not currently exist, and

would be very useful.

The results show sensitivity to the choice of data for training and testing.

Before application in a clinical environment, this would need to be better

understood.
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11.5.1 Which variables are useful for classification?

We also conducted an examination of which variables were useful in classifying

the subjects.

11.5.1.1 Laplacian analysis

The analysis of Laplacian EEG was never useful for discriminating between

control and PGE subjects. The only analysis useful for classifying subjects

was MI. This result implies that the levels of synchronicity between different

areas of the brain are affected by PGE – even when the PGE subject is not

exhibiting any symptoms.

11.5.1.2 Useful Tasks

We examined which tasks performed best in the individual task-based anal-

ysis. The useful tasks were eyesclosed, eyesopen, fingertapping and auditory

discrimination.

Three of these tasks were the the first tasks performed by subjects, and

were always performed in the same order. Later tasks were undertaken in

random (across subjects) order, which would have made classification more

difficult (because of differences in the fatigue level of different subjects when

performing the same task). Based on this I expect that, were this classification

algorithm to be applied to data that were consistent throughout the entire

experiemnt, the classification accuracy would be improved – simply because of

the the greater number of useful data.

11.5.2 Implications for the application of this method

in a clinical setting

In this analysis, there were approximately equal numbers of subjects examined

in the control class and the PGE class. In a clinical setting, that would not be
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the case – there would be many more non-PGE people tested. The identifica-

tion of a small minority in a population is a difficult problem, in general the

lower the incidence of the sought characteristic, the greater the rate of false-

positives. It is likely that this procedure could suffer from problems similar to

this, were it to be implemented in a clinical environment. Such considerations,

however, are outside the scope of this thesis.

I have exercised great care in ensuring that the development of the al-

gorithm has not been unduly influenced by the data being analysed. This is

always a trap with this type of procedure – one creates an algorithm well-tuned

to the specific data, but one lacking in generalisability. This is an inherent lim-

itation of this approach to post-hoc development and classification. To ensure

that the results seen here are actual, the algorithm (developed and tuned on

these data) must then be applied to new data, to see if its ability to diagnose

PGE remains, and to what degree.

11.5.3 Task performance variations

The performance of the task-instance classifier varies with which task-instances

are presented to the network. In general, earlier tasks (eyesclosed, eyesopen,

fingertapping) showed better classification accuracy than later tasks (AVLT,

maze, visual rotation). The first few tasks were always presented in the same

order, whereas the task presentation order of later tasks varied between sub-

jects. Also, the useful tasks tended to be those that were unaffected by the

subject’s performance – tasks like maze, and visual rotation require interaction

with the subject, which may increase variability.

11.5.4 Future directions

This procedure needs to be applied to more people, in a clinical setting, to

validate the results.

A similar procedure could be used to investigate the relationship between
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various neurological pathologies. We believe (unpublished) there to be a rela-

tionship between epilepsy and migraine. A three classification system between

control, PGE and migraine, and control, PGE and schizophrenia might allow

dendrogrammatic associations between brain pathologies to be established (e.g.

PGE is similar to migraine, but different from schizophrenia, which is similar

to Parkinson’s disease, etc).

11.6 Conclusion

We have successfully demonstrated a method by which we can form a diagnosis

for PGE in previously unknown subjects. The extent to which the observed

good accuracy is replicated in a clinical setting should be examined by further

testing.
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Chapter 12

Experiment: Classification of

mental task in paralysed human

subject

EEG data were recorded from a healthy human subject, in unparalysed and

paralysed states, while they performed a series of mental tasks. The data

were stored, and were analysed offline using entropy, correlation dimension

and mutual information algorithms (the analyses).

These data were used to train, via a leave-one-out method, a memoryless

feed-forward neural network to classify the data from various tasks (mental

task identification). The networks had 15 logsig nodes in the hidden layer, and

2 logsig nodes in the output layer. It was found that the network was unable

to generalise using paralysed data, but that classification was improved when

using unparalysed data – suggesting that the addition of muscle artifact to the

EEG assisted task classification.

12.1 Hypothesis

It is possible to identify the task being performed by a paralysed human subject

by analysis of EEG and subsequent automatic classification techniques.
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12.2 Introduction

The ability to determine the “brain state” from an analysis of EEG would show

that the task differences (chapter 10) can be used to classify the task being

performed. Reliable task classification would demonstrate that classification

for a brain-computer interface (BCI) is not necessarily reliant on muscle artifact

in the EEG.

Aside from this, the ability to differentiate between tasks will provide a

validation that the procedure (nonlinear analysis of EEG and subsequent clas-

sification therefrom) is able to discriminate between different brain states, and

is not merely sensitive to more general patterns of brain operation (ie. differ-

ences between control and PGE).

12.3 Method

12.3.1 Data analysis

The data were collected as discussed in section 6.3. The EEG data in each

task were divided into epochs of EEG for analysis, where the number of epochs

depended on the number of data recorded in the subject’s task. For the purpose

of analysis, each epoch was treated as a separate segment of EEG. This EEG

was then analysed with the analyses discussed in chapter 7 (the analyses), and

the results were stored.

12.3.2 Data collation

Because of the very limited number of experiments and limited time, only

data from one subject was examined. This meant that any developed classifier

would be subject-specific, reducing generalisability in a practical situation1.

This is a less ambitious target than training a generic task-classifier, but success

1Having said this, many BCI systems are designed to be customised to a subject.
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would show that task identification and classification is possible from EEG

data.

Figure 12.1 shows the difference in power between paralysed and unparal-

ysed subjects at rest. From this, we conclude that contamination of EEG by

muscle is a much more pervasive and important problem than is commonly

recognised – by 30 Hz, the difference is nearly an order of magnitude. For this

reason, it seems plausible that much of the classification performed by many

BCI systems is actually based on EMG (muscle artifact) rather than EEG.

Figure 12.1: Graph of EEG spectral energy of paralysed and unparalysed subjects

This graph shows the large difference in gamma power between EEG recorded
from paralysed (green, yellow and blue) and unparalysed (red and pink) subjects.
The black trace was recorded from EEG electrodes in a bucket of water. From
this, we conclude that muscle artifact is a much larger contributer to EEG than
is commonly recognised [83].
The figure shows a clear 50 Hz (and harmonics) artifact, as well as a decrease
in the noise floor above approximately 500 Hz due to the anti-aliasing filter
(cutoff at 1 kHz)
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12.3.3 Assembly of the training matrix

The saved analysed data were collated into a matrix, where each coloumn rep-

resented the analyses from a single unique instance of the subject performing

a particular task in a particular state (paralysis or pre-paralysis). Missing

data were referred to as a NaN (not a number). Rows with more than 10%

NaNs were discarded, and other NaNs were replaced with the mean of that

row (taken across all subjects), and thus contributed no innovation to the

classification process.

12.3.4 Classification

This process produced a matrix [variables, task-instances] from a recording of

a single subject. This matrix was used to train a neural network to classify a

particular instance as a task.

We chose 4 tasks to train and four separate but related tasks to classify

(table 12.1). This ensured the separation of training and testing data. Also, a

smaller number of classes tends to result in better classification (figure 4.2).

Table 12.1: Training tasks �paralysed data)

1. Baseline eyes-closed

2. Odd-ball high tones

3. Finger-tapping left

4. Auditory discrimination incorrect

We then attempted to use the trained network to identify the testing tasks

(table 12.2)
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Table 12.2: Testing tasks �paralysed data)

1. Final baseline eyes-closed

2. Odd-ball low tones

3. Finger-tapping right

4. Auditory discrimination correct

The tasks in the training and testing sets are not exactly the same – in

particular the odd-ball response to high tones is demonstrably different to

the low tone response (as demonstrated by evoked response analysis2, not

shown), however we considered that there should be sufficient similarity to

allow classification.

We trained and tested the network in two ways. Firstly, we trained the

network on the tasks in table 12.1, and then tested it on the same tasks. We

then tested the same network on the tasks in table 12.2. This process was

repeated 15 times. The results were transformed to liklihood space, and the

network results averaged. The repetitions of the neural network simulation

were selected-for based upon the confidence of the classification by multiplica-

tion by the variance of the class estimates3.

12.4 Results

The results for testing the network on the training data are shown in table

12.3. We achieved excellent classification when the test data were familiar to

the network – demonstrating that the setup, training and testing stages of the

network were correctly applied.

The results of testing the network on the previously unseen test data are

shown in table 12.4, and show poor classification.

2Evoked response potential �ERP) is a mean of many EEG traces, synchronised by an
event �in this case, the presentation of the tone). The mean shows the general EEG be-
haviour, without any added noise.

3A large variance implied that one class was favoured over the others.
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Chosen tasks 1 2 3 4

Baseline eyes-closed 1 0.23 0 0.26
Odd-ball high tones 0.35 1 0.06 0
Finger-tapping left 0 0.27 1 0.17

Auditory discrimination incorrect 0.33 0.02 0 1

Table 12.3: Results of task classification attempt on familiar paralysed data

This table shows the neural network task estimates when tested
on the (familiar) training data.

In this table (and tables 12.4 and 12.5), the numbers correspond
to the network’s assessment of the likelihood that data from a par-
ticular task corresponds to each of the possibilities. For instance,
the datum in cell �1,2} = 0.23, is the average network’s estimate of
the likelihood that data from the baseline eyes-closed task actually
came from the odd-ball. To increase readability, the results were
scaled to the interval [0 1].

Chosen tasks 1 2 3 4

Baseline eyes-closed 0.78 1 0.83 0
Odd-ball high tones 0.10 0.19 0 1
Finger-tapping left 1 0 0.56 0.06

Auditory discrimination incorrect 0.94 0.49 1 0

Table 12.4: Results of task classification attempt on unfamiliar paralysed data

This table shows the neural network task estimates when tested
on the (previously unseen) test data.

Chosen tasks 1 2 3 4

Baseline eyes-closed 0 0.58 0.20 1
Odd-ball high tones 1 0.72 0.68 0
Finger-tapping left 1 0.38 0.87 0

Auditory discrimination incorrect 0.50 0 0.28 1

Table 12.5: Results of classifying attempt on unfamiliar unparalysed data

To examine whether the paralysis significantly altered the results
of the classification, a short experiment was run to examine the
effectiveness of the classification of unparalysed data.
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12.5 Discussion

As can be seen, the analyses are poor at identifying the mental task from unfa-

miliar data, although performance was better when classifying novel analysed

unparalysed EEG.

12.5.1 Limitations in the data

Because this experiment was performed on a single subject only, the developed

neural network was tailored to a particular person. This lack of training data

means that the feature space presented to the network was limited, which may

have contributed to the poor performance (lack of training data diversity tends

to result in a trained network that generalizes poorly).

12.5.2 Statistical differences between the tasks

In chapter 10, we showed that there are differences between the mean values

of the tasks (figures 10.1 and 10.2) – note, however, that the differences we

showed were in the SEM, which does not imply that a given sample is easily

classifiable.

The work in this chapter has been unable to exploit any such differences to

perform task classification on paralysed data. While not conclusively shown,

it may be that while there are differences between the tasks’ means, there

are large variances in the populations so that an attempt to examine a sin-

gle subject will result in problems because of large variation in the results.

Repeating the process employed in this chapter, but with more experimental

data, will allow us to draw firm conclusions and also attempt the construction

of a generalised neural network task-classifier.
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12.5.3 EMG artifact in EEG

The performance of the classifier is substantially better for the unparalysed

data. This implies that the network is using the EMG present in the EEG

to assist in the classification. Since (to our knowledge) all BCI research is

being conducted on unparalysed data (human paralysis experiments are very

rare), it is likely that they are using muscle artifact to assist in the classification

process. This is not a problem in and of itself, however it should be recognised.

A major application of a BCI is as an augmentative device for a disabled

person4. If this person has very limited movement (as could be the case for

stroke resulting in paralysis) or highly uncontrolled abnormal movement (cer-

tain types of degenerative nervous disease) then the classifier may not be able

to derive meaning from the muscle artifact. This means that it may be more

difficult to build a functional BCI for the people who need it most.

12.6 Conclusion

The work in this chapter examined whether the analyses were useful in as-

sessing the type of mental activity, and if such classification was affected by

absence of EMG. We found that we could not reliably identify the task in

a paralysed subject, leading to the conclusion that there is not a consistent

distinct identifiable feature, that is detected by the analyses, when there is no

muscle artifact in the EEG. Classification accuracy was improved in the un-

paralysed subject, suggesting that the analyses, were relatively insensitive to

changes in brain state due to mental task and that EMG artifact can improve

classification. Thus, they are unlikely to be useful for the development of a

BCI, particularly for people who lack controlled muscle mobility.

4A person who lacks the muscle control to use a computer can then use a computer to
assist them in their day to day life.
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Chapter 13

Conclusions

This chapter summarises the conclusions and contributions of this thesis, and

provides suggestions for future work.

13.1 Thesis summary

This thesis began with an examination of the literature – both in terms of

signal processing theory and practice, as well as a description of epilepsy and

its effect on the brain. I also discussed the meaning of signal processing as

applied to the brain, as well as several methods of classification. Following this,

I gave some examples of nonlinear signal processing in the field of neurological

research, the validity of such research (some of the caveats and pitfalls) and

some of the conclusions that were able to be drawn.

As a precursor to the chapters regarding my experiments, I described the

sources of the data that I used, and the manner in which the data-collection

experiments were conducted. This chapter also detailed my involvement in the

data-collection experiments, and the work that needed to be performed on the

data prior to analysis. I also described, in detail, the analyses that I applied

for my EEG analysis, and the manner of their application. It is important to

recognise the limitations of these analyses, and I showed how an analysis of

surrogate data using said analyses aided in the interpretation of the results.
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The remaining chapters all detailed the experimental work that I per-

formed. The first, chapter 8, I refer to as an exploratory experiment in the

analysis of rat EEG. I use the word exploratory because the experiment does

not have a prescribed plan, but rather was conducted in parallel with the

implementation and testing of the analyses. Despite this, I was able to ob-

serve that there were changes in EEG that appeared coincident with changes

in measured brain impedance, suggesting that it may be possible to estimate

impedance from EEG using a neural network.

Estimating impedance from EEG was attempted in chapter 9. The network

was trained on a series of historical EEG and impedance values, from several

rat experiments. A similar arrangement of historical values of EEG and the

analyses (from a previously unseen experiment) was then presented to the

network for simulation, to test its ability to estimate impedance. This attempt

failed, but it seems likely that this was in part due to the limited number of

data that were presented to the network (this limitation was mainly imposed by

the number of the data needed from each experiment, and the computational

load the training and simulation required).

The next experiment (chapter 10) examined human data. It sought statis-

tical differences between mental tasks in the control class. We found that there

were such differences, and these were apparent in the MI analysis – both the

adjacent electrode and regional analysis. When we examined these task vari-

ations, in PGE subjects relative to control subjects, we found that there were

class-dependent differences. When measured in units of standard deviation,

the differences were small, but because there were many variables it seemed

plausible that a PGE diagnosis in a single subject might be possible – if there

was sufficient independence between these variables. This was attempted in

chapter 11, using a neural network arrangement similar to that in chapter 9.

We found that it was indeed possible to make a diagnosis of PGE in a pre-

viously unseen subject, using a neural network trained on a training set of
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apparently normal EEG. Although there was some variation in performance,

due to variations in the implementation, overall performance was reasonable.

The final experiment, in chapter 12, examined data from the human paral-

ysis experiment. It used a neural network to attempt to identify the task

being performed by a subject from the analysis of EEG data. This experi-

ment was limited by the small number of data available at the time of writing

(few such paralysis experiments have been performed). We found that, in a

non-predictive test of the network (where the test data are included in the

training data) performance was quite good. However, when a predictive test

was conducted (keeping the test and train data separate – as was done in

chapter 11 for the diagnosis of PGE) the ability to identify the task was very

poor. This was somewhat improved by using un-paralysed data, suggesting

that the network was using variations due to EMG artifact - an observation

that is important for the development of a BCI for people lacking controlled

motor function

13.2 Comments on the analyses

From the analyses performed in these experiments, some conclusions can be

drawn about the reliability of the implemented algorithms. The algorithm that

was most consistently useful, and conferred the most analytical and predictive

power, was mutual information. When applied to human subjects, the method

of estimating regional MI (by the calculation of MI between electrodes in the

two regions and then averaging across the regions to yield an estimate of the

average MI between two regions) was very powerful when used for the detection

of PGE - it was the quantifiers based upon this that were most commonly

useful.

The rat experiments showed that entropy is a useful analysis, despite the

surrogate analysis demonstrating that it is sensitive to low-order statistical

changes in the data.
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13.3 Future work

13.3.1 Diagnosis of PGE from non-ictal EEG

This is perhaps the most exciting and potentially useful finding of this thesis.

The development and implementation of this method could yield a diagnos-

tic tool that could be extremely useful in a clinical environment. The most

immediate requirement for developing this technique is to apply it to more

people. I expect that doing this will make the diagnostic assessment more

reliable, because the classifier will have more examples of the classes. Further

investigation should allow us to target the analyses to the tasks and electrodes

that are useful for classification. From the analysis performed so far, it appears

that examining inter-region MI is the best method by which to determine the

presence or absence of PGE – this knowledge means that our approach to

classification can be more specific. By focusing only on certain tasks, people

need not be subjected to such a drawn-out test. Thus an increase in specificity

will allow us to make a much simpler, more rapid, and probably more reliable

diagnosis.

An obvious generalisation of this method is whether it can be used to de-

tect other neurological pathologies. Perhaps the first to be examined should

be migraine, because of its known links with epilepsy. One could also use a

technique to assess the similarities between these pathologies - for example, if

it were difficult to distinguish between migraine and PGE, yet simple to distin-

guish between PGE and schizophrenia, then we could reasonably conclude that

PGE and migraine were more closely related than PGE and schizophrenia.

13.3.2 Analysis of rat data

This work has shown the impedance recording provides data that are probably

independent of the EEG data. This is concluded because we were unable to

form a reliable model for the impedance data using the EEG data. This
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doesn’t mean that the analysis of EEG is not useful, merely that it does not

yield data that are useful in estimating the impedance. It would be interesting

to combine the impedance data, and the EEG-derived data, and attempt to

make a prediction of the onset of seizure in the rat epilepsy models. This

could be achieved by creating a new binary data set (called seizure flag) that

was mostly zeros, but was ones where there was a seizure. This could be used

with a neural network configuration similar to that implemented in chapter

9. Instead of taking historical values of EEG and analyses as training data,

and impedance as goal data, we would create a set of historical EEG, the

analyses, and the impedance data as the training data, and use a future value

of seizure flag as the goal data. The amount of anticipation between the

most recent train data, and the goal data would represent the duration of

reliable anticipation of seizure (a time of zero would mean seizure recognition,

whereas 10 seconds would imply that the system could anticipate a seizure by

10 seconds).

Seizure prediction is in some ways the holy grail of epilepsy signal processing

work, but none of the attempts to predict the onset of seizures have used

impedance recordings as a component signal to the neural network. Because

we have shown the data in the impedance channel to be complementary to the

data that were derived from the EEG, this could be a strong aid to attempts

to predict the onset of seizure.

I suggest that this is very much worth attempting.

13.3.3 Classification of mental task in paralysed person

There is much work to be done to extend this. This work needs to be applied

to several paralysed subjects, and an attempt made to generalise the task data

across subjects – thus forming a generic classifier. Such a tool would be much

more useful than the current subject-specific classifier that has been developed

– it would likely also be much more robust.
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13.4 Main contributions

Implementation, vectorisation and integration of several nonlinear anal-

yses with the laboratory recording arrangement (chapter 7)

Implementation of an automatic un-wrapper for impedance data, and

integration of impedance hardware into the laboratory setup (section

6.1.6)

Creation of a GUI to facilitate easy visualisation of EEG, nonlinear anal-

yses and impedance from experimental data (figure 8.1)

Demonstration of the validity of recording EEG and impedance data

from rats – as impedance cannot currently be estimated from EEG (figure

9.3)

Development of a framework from which an attempt at prediction of

seizure in a rat experiment can be made (section 9.5)

Demonstration of detectable task and group (control vs PGE) differences

in human EEG (figures 10.1 and 10.2)

Development of a promising diagnostic tool for primary generalised epilepsy

(PGE), able to operate on non-ictal data (section 11.5)

Development of a framework from which to perform additional classifi-

cation of paralysed human data from future experiments (chapter 12)

Further demonstration that muscle artifact is prevalent in unparalysed

human EEG. Also that such artifact aids task recognition – an observa-

tion that may be relevant to brain-computer-interface (BCI) developers

(section 12.5.3)
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13.5 Conclusion

This thesis has established that it is possible to identify primary generalised

epilepsy from an analysis of non-ictal EEG only – a novel finding. The best

accuracy of this diagnosis was 92%, although a real-world accuracy is likely to

be somewhat lower. We think this has excellent potential. Further testing of

this system on other data should allow the development of a robust diagnostic

tool, usable in a clinical environment, for the diagnosis of PGE. Such a tool

would be very useful to practising neurologists.

This thesis also suggests several directions in which further work is justified.

In particular, an attempt at anticipating seizure in rats is worthwhile, as is a

better examination of the task variation and detection in paralysed subjects.

There is much work to be done�
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Appendix A

Appendices

A.1 Appendix A: Additional Figures

A.1.1 Regional differences for entropy and correlation

dimension analysis

Figure A.1: Regional entropy analysis

This figure shows mean and SEM of entropy, when averaged
across subjects (control: red, and PGE, blue) within tasks and
brain regions. None of the task/region instances showed statistical
significance between control and PGE groups.
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Figure A.2: Correlation dimension analysis

This figure shows the correlation dimension averaged across
subjects and brain regions, none of which showed statistically sig-
nificant separation between control and PGE groups.

A.1.2 Mutual information analysis by brain region, PGE

vs control

Figure A.3: Task-based mean and SEM of MI of Right Frontal vs other brain
regions, PGE vs control
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Figure A.4: Task-based mean and SEM of MI of Right Occipital vs other brain
regions, PGE vs control

Figure A.5: Task-based mean and SEM of MI of Left Occipital vs other brain
regions, PGE vs control
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Figure A.6: Task-based mean and SEM of MI of Right Temporal vs other brain
regions, PGE vs control

Figure A.7: Task-based mean and SEM of MI of Left Temporal vs other brain
regions, PGE vs control
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Figure A.8: Task-based mean and SEM of MI of Right Occipital vs other brain
regions, PGE vs control

Figure A.9: Task-based mean and SEM of MI of Left Occipital vs other brain
regions, PGE vs control
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A.2 Appendix B: Neural network choices

When seeking a network for use in estimating impedance from EEG data

(chapter 9) we considered using the series/parallel configuration. The main

difference is that it uses feedback, which would mean changing the way data

were presented to the network for training. During simulation, the impedance

estimate is fed back into the inputs. During training, however, the actual

impedance value would be passed to that input. This means that the net-

work would be able to learn characteristics of the impedance (for example,

the impedance doesn’t change rapidly, it tends to increase throughout the

experiment).

We did not proceed with this configuration for the following reasons:

1. It will tend to make the output of the neural network seem “more cer-

tain”. There will be less variation in the output, because the network

will base future estimates on past estimates – this will result in a ten-

dency for the network to “wander” from where it should be (a false sense

of security).

2. The use of feedback also means that the network is more difficult to con-

ceptualise. The employed network (a basic feed-forward network without

memory) simply produces an output that is a direct result of the inputs

provided. This is not the case when feedback is employed (since the out-

put is affected by previous outputs) making understanding the response

of the network more difficult.

3. Following from point two, the use of feedback would also make it difficult

or impossible to establish upon what basis a network made a decision.

Contrast this with the feed-forward network used, where we know exactly

which historical information was provided.

For these reasons, a simple feed-forward network was chosen for all experi-

ments.
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A.3 Appendix C: Human PGE diagnosis

A.3.1 Selection of useful variables

Classification using 30000 variables is very resource-intensive. To reduce com-

putation requirements, we wished to identify the best variables with which to

classify the subjects – using a linear process (because of the number of data,

it was important that this process was not computationally intensive). As

discussed in section 10.4.2, class-based analysis revealed that there are vari-

ables that show a strong difference between the two classes, but there are also

variables that show no difference. We wanted our classifier to retain the best

variables only – those that allowed us to separate the two classes.

Seeking a simple linear-classifier to choose which variables to use for the

subject classification is almost nonsensical - for if a linear classifier can choose

which electrodes to use, why can’t it classify the subject? The answer to this

that we are hoping to use a fast linear process to reduce the number of data,

and then use a neural network to find high-level relationships in the remaining

data, and classify from that. The hope is that the data reduction will not

remove these high level relationships.

An important consideration when choosing the variables is ensuring that

we are not using a priori knowledge of the test subject ’s class, because in a

true diagnostic scenario, such information would not exist – this is discussed

in section A.3.3.

A subject’s data were quarantined from the rest of the data. That per-

son represented the test subject, and the remaining subjects were the known

subjects. Only the remaining subjects’ data were then used as the basis for

choosing which variables to retain and which to discard – it was hoped that

the decisions based upon these data would be useful in the classification of the

unknown subject.

Several methods of variable selection were tested in conjunction with clas-
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sification, and the method that we found to work best is as follows:

Compare each un-quarantined subject against every other un-quarantined

subject. If they are in the same class, find the variables that best

show this. If they are in different classes, find the variables that

best show this. We use formula A.1 to estimate the distance be-

tween the means of each subjects’ variables. If the subjects are in

the same class, we value variables that have low values of SVF (i.e.

the distance between their means is small), and if the subjects are

in different classes we choose high values of SVF (so that it’s easy

to discriminate between the subjects).

SV F =
diff(mean([subject1� subject2])))

sum(var([subject1� subject2])
(A.1)

This formula expresses the distance between the means in units of

standard deviations (technically the sum of the standard deviations

of the two examined subjects). It provides an estimation of the

separability of the two classes. The formula is vectorised, so it

finds the difference of the subjects’ means, and divides this by the

sum of their variances.

Iterate through the remaining un-quarantined subjects and, eachfor each iter-

ation, produce a list of variables that are considered “good”. After iterating,

we find the sum of these records, so that we obtain a vector showing how many

times each variable was considered “useful”. This was ranked, and we retained

the best variables.

A.3.2 How many variables should be retained?

As discussed in section 11.4.2, a linear algorithm is used to reduce the number

of variables, prior to classification using a neural network. The number cho-

sen is something of a “magic number”, but no matter how it was approached
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(whether by threshold or absolute number) the choice would always be some-

what arbitrary. I found that while the chosen number of variables did affect

classification results, it was not significant. To conclude this, the analysis was

run using different numbers of variables (60, 150, 300, 500, 1000). I found that

this parameter did affect the results of the classification process – there was

always an ability to recognise PGE subjects, but there was variance in the per-

formance. Of course, as computing power and memory increase, I recommend

the inclusion of all variables in network training.

A.3.3 The importance of being earnest about data sep-

aration

It is absolutely imperative that there is a clear and consistent separation be-

tween the data that are to be classified (the test data), and the data that are

used to train the classifier (the training data). If the test data are included

with the training data, and used to train the classifier, then when the test

data are classified, they will be “recognised” by the classifier. This skews the

performance of the classifier, resulting in a much better performance – this is

not real, however, it is cheating. It is cheating because we are using our prior

knowledge of the test subject’s class in the training and classification of that

subject. This is something that, were we to implement a system like this in a

clinical environment, we could not do, because we would be using the system

to classify the subject – we would not have that prior knowledge.

For this reason, great care was taken to ensure that only training data were

presented to the classifier for training, and that test data were never included

at this stage, and the only time the classifier saw the test data, was when it

was being simulated. However, merely isolating test data from the training

process is not sufficient. Test data must not be considered if we perform any

preprocessing on the data, prior to neural net training. For example, the

selection of variables can not use our fore-knowledge of the test subject’s class.
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At no stage can this knowledge be used, because we are trying to develop a

tool to estimate the subject’s class when it is unknown.

A.3.4 Averaging multiple neural network simulations

We wished to find the average class-estimate across multiple network simula-

tions, however, the output stage of the neural network was a logsig function.

Averaging could not be performed on the output of the neural network directly,

because that was in a logsig space (a nonlinear transform) so that simply esti-

mating the mean would not be meaningful. Instead, these results were mapped

to a likelihood space, where −∞ corresponded to an impossible event, and ∞

represented one that was certain. These results could then be averaged across

the simulations, and mapped back to logsig space to provide a result in the

range of [0 1] representing the likelihood that a subject was in a given class.

logsig(n) =
1

1 + e−n
(A.2)

logsig−1(n) = −ln(
1

n− 1
) (A.3)

Once the data were transformed into a likelihood space, they were ready

for the final classification. For each subject, we had results from 15 neural net-

works, each of which had analysed each instance of the subject. Thus, for each

subject we had 15 classification attempts for each of the 100 or so instances.

Multiple neural networks were trained and tested because the random alloca-

tion of weights during initialisation, and the nonlinear training methods mean

that the final performance of networks varies. Thus, we wanted to select for

the networks that performed better. This process was quite simple – we se-

lected for networks where there was a large difference between the probability

estimate of the two classes. If we look at two fictional sets of data (see table

A.1), with ten instances in each we can see an illustration of what I mean by
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“separation” of data. In both classes of data, the upper row is generally high

in the first 5 instances, and low in the second 5. In the first table, however,

the second row varies with the first, whereas in the second table, the second

row is low for the first 5 instances, and high for the second 5.

The first table shows data that have relatively poor separation between the
rows.

0.64 0.99 0.45 0.78 0.89 0.35 0.27 0.18 0.44 0.57

0.47 0.77 0.38 0.54 0.68 0.44 0.07 0.20 0.19 0.59
The second table shows data that have good separation.

0.64 0.99 0.45 0.78 0.89 0.35 0.27 0.18 0.44 0.57

0.08 0.25 0.01 0.44 0.56 0.78 0.99 0.89 0.75 0.95

Table A.1: Fictional data, illustration separation of results

Please note that these two tables contain fictional data, and have identical
upper rows. The data are structured so that there are two classes - the first
5 samples belong to one class, and the second five to another. Both first rows
show a difference between the two classes.
The first table’s second row , however, closely tracks the scores in the first row.
Hence, the neural network that produced these results will not allow classifica-
tion as well as the second table’s second row, where the values are complemen-
tary to the first row.

Clearly the data in the lower table are much more easily separable into two

classes than the data in the upper table.

In the real data, we have 15 tables like each of these, and each table contains

approximately 100 instances. To classify the subject, we want to focus on the

neural networks that produce good separation between data. A simple method,

and the one chosen, was to find the mean of the absolute value of the difference

between the rows. A tempting method would be to then only take the neural

networks whose mean(abs(diff(data))) values were above a certain threshold,

however the selection of this threshold would be arbitrary and would likely be

influenced by the results it produced. This would be cheating�

For this reason, the classification by each neural network was multiplied by

the mean(abs(diff(data))), which amounts to weighting the results of each

neural network by the average separation of the results that it produces. This

is a blind process - it has no consideration for the known classes of the instances.
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