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Summary

Multispecies communities are inherently complex, with a myriad of processes influ-

encing their interacting parts. Yet, these communities often exhibit highly conserved

emergent behaviour, which is suggestive of unifying organisational principles operat-

ing within ecological settings. Through investigating the distributions and scaling of

organisms, their abundances, and metabolic diversity, this doctoral research explores

potential mechanisms behind emergent behaviour at scales of both microbes and eco-

systems. The association between organism physiology and ecosystem structure cap-

tured by size-abundance scaling laws is probed through an allometric setting of the

Rosenzweig-Macarthur differential equations. Through extensions to the model motiv-

ated by empirical biological research and classical biophysics, it is shown that terrestrial

and marine biospheres are fundamentally different, with turbulence restructuring the

dynamics of oceanic ecosystems by imposing additional energetic costs on large or-

ganisms. The macro stability observed in size-abundance scaling laws is mirrored by a

ubiquitous feature of functional stability within the microbial communities which sit at

the base of the food web. To interrogate plausible assembly rules that may give rise to

this behaviour, a network-based framework is used to link taxa and function, resolving

a fundamental challenge in probing taxa-metabolism relationships in microbial ecology.

Analysis across real-world microbial communities spanning major environmental and

host microbiomes reveals a universal taxa-function structure, which would facilitate

horizontal gene transfer and thus strengthen community stability and resilience.
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Chapter 1

Introduction

“I think the next century will be the century of complexity.”

Stephen Hawking, January 2000

1.1 Background

The notion of a universal law, especially one which may be captured by a parsimoni-

ous equation, is central to physics. However, truly universal properties in biological

systems seem likely to remain constrained to principles or descriptors. In 1999, a year

before Hawking’s prediction about the direction of science in the 21st Century, it was

claimed that it was unlikely constructive or useful generalisations may be made about

multispecies assemblages, and doubts were raised that the concept of a scientific law

was realistic or possibly even relevant within community ecology [1]. This is, in many

ways, understandable. Multispecies communities have nonlinear and chaotic dynamics.

They exhibit feedback with and influence over surrounding environments, and adapt

according to changes. Furthermore, the emergent properties of a community often bear

little relation to the behaviours or apparent rules governing its interacting parts. These

are, of course, the hallmarks of a complex system; indeed, serendipitously 1999 also

heralded the emergence of network science - a central focus of which is complex systems

- as a discipline in its own right with the discovery of scale-free networks [2].

The defeatist conclusions within [1] sparked debate - still ongoing - about the re-

spectability of ecology itself as a scientific discipline and what (if anything) may pass

1



1.2. Thesis aims and structure 2

as a ‘law’ within the field [3]. Yet, 1999 was also the year West, Brown and Enquist

developed their model for metabolic scaling, a quarter of a century after the founding

of the complex systems institute at Santa Fe where it was produced [4]. This model is

now generally accepted as the mechanistic principle behind allometric laws, extending

beyond physiology to explain a range of allometric scaling behaviours and linking or-

ganisms to ecosystems [5]. Detractors to the framework have ample counter-examples,

but - as is now a common theme within complex systems research - it is now widely

accepted that ecology is a discipline of scales [6]. The question of whether modelling

aims should prioritise local predictive power or be generalisable has contributed to the

vociferous arguments on either side of the ecological laws debate [7]. Whilst a ‘law’

implies generalisation, it is unlikely such a model in ecology would simultaneously have

strong predictive capability for individual organisms within noisy ecological data. In-

deed, amongst this noisy data and astronomical numbers of variables, it can be difficult

to identify ubiquitous phenomena even before attempting to find an explanation for

the observed pattern. However, there can be multiple levels of explanation, and it

seems likely that top down and bottom up approaches may be necessary to deepen our

understanding of ecological systems.

1.2 Thesis aims and structure

In this thesis, I aim to find unifying organisational principles in multispecies communit-

ies. Through examining the distributions and scaling of organisms, their abundances,

and metabolic diversity, this dissertation investigates potential mechanisms behind

emergent behaviour at scales of both microbes and ecosystems.

Chapters 2 and 3 build on the metabolism-allometry relationship described in [4]

by linking metabolic theory with classical population dynamics. With the goal of

reproducing ecosystem-wide size-abundance scaling laws through a minimal model, al-

lometric settings of population dynamics ODEs are examined from the perspectives

of the mathematical and empirical biological literature. I uncover disparities between

the disciplines, examine how they would impact dynamical behaviour when applied

to large scale domains, before assessing how well my paramaterisation reproduces the

behaviour of data gathered from the terrestrial biosphere. Next, size-abundance scal-
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ing distributions in the ocean are investigated. As far as I am aware, an analysis of

the global marine size-abundance distribution has not been undertaken for over two

decades, and never at this scale: 15,000 data points are collated across over 2000 spe-

cies1 spanning viruses to blue whales. All organisms greater than 10cm exhibit reduced

abundance compared to ecological prediction, with a structural break in the distribu-

tion corresponding to the exponent of the scaling law changing from -0.75 to -1.9. To

explain this, the hypothesis that turbulence fundamentally restructures marine ecolo-

gical scaling dynamics by imposing larger energetic costs on organisms living within

the oceanic environment is assessed. My minimal model is extended to incorporate the

metabolic demands of living in turbulence, derived from classical biophysics models of

swimming organisms, to consider the impact of ocean physics in reshaping the scaling

laws that define marine ecosystem structure and function.

In Chapters 4, 5, and 6, I transition from ecosystem level models to considering

the empirical distributions of functional diversity across prokaryotes. Microbes form

complex, diverse communities of thousands of species, yet a ubiquitous characteristic

of these communities is functional stability. This stability may be a crucial foundation

of the scaling laws discussed in Chapters 2 and 3, as microbes sit at the base of the

food web and are the principal drivers of global biogeochemical cycles. Whilst there is

consensus that the emergent property of community stability is likely due to metabolic

assembly rules, a fundamental obstacle to quantifying these rules has been how to link

taxa and function in microbial ecology. This long standing issue is resolved by utilising

bipartite networks to quantitatively explore the taxa-function relationship in microbial

systems, allowing me to examine the distribution of metabolic pathways across the

prokaryotic tree of life, revealing critical structures in the metabolic organisation of

the biosphere. I then examine the networks of 248 real-world microbial communities

across multiple environments at a planetary scale, exploring the hypothesis that there

is a universal functional redundancy structure within microbiomes that would facilitate

horizontal gene transfer and thus promote stability and resilience.

1Microbes excluded from diversity counts



Chapter 2

Universal parameterisation of a

predator-prey system

Allometric settings of population dynamics models are appealing due to their parsimo-

nious nature and broad utility when studying system level effects. Here, I parameterise

the size-scaled Rosenzweig-MacArthur ODEs to eliminate prey-mass dependency. I

define the functional response term to match experiments, and examine where meta-

bolic theory derivations and observation diverge. Dynamics are produced which are

consistent with observation. My parameterisation of the Rosenzweig-MacArthur sys-

tem is an accurate minimal model across 15+ orders of mass magnitude.

Refer to Appendix A for a link to the code used in this chapter.

2.1 Background

Allometric scaling relationships have been the subject of scrutiny and debate since the

connection between organism size and its metabolic rate was first defined by Rubner

in 1883 [4, 8–11]. These models, which link some characteristic y to the size x of an

organism via the power law y = axb (where a, b are scalar constants), are appealing

due to their capacity to capture a multitude of relationships despite their simplicity.

Scaling laws have been used to express a variety of biological rate measures, such as

metabolism, consumption, and birth or death rates [12–15]. Allometry is also utilised

in modelling behavioural traits and bioenergetic characteristics, such as movement

4
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behaviour or locomotory costs [14, 16–19]. At broad scales, such laws have been applied

to ecosystem-level properties, including predictions of organism population density and

carrying capacity [20–22]. However, despite scaling laws’ wide utility and intensive

study, there has been a limited exploration of the properties of minimally constructed,

size-generalised predator-prey models [23–25].

An extensive literature examines the empirical relationship between organism and

population sizes [20, 21, 26–29]. Reported exponents fall between −1 and −1/4, de-

pending on factors such as taxonomy or environment. The classical −3/4 value de-

scribing the global size-density relationship is the direct inverse of Kleiber’s 3/4 law

for metabolic scaling [9, 21]. This has led the ‘energetic equivalence’ hypothesis: that

is, the net energy contained within each size class is invariant [26, 28]. This conjecture

has been widely debated, particularly with respect to whether this invariance is cause

or effect of other bioenergetic drivers [30, 31]. However, despite disagreement regarding

the specific mechanisms, there is general consensus that the observed consistency of

size-density scaling within empirical data is likely reflective of fundamental physical

constraints [12, 31]. To examine what may be driving the limitations in macro-scaling

behaviour, it is possible to use dynamical size-based models which incorporate organ-

ism traits that scale across the size range [13, 23, 24]. This approach allows for the

investigation of critical breaks in ecosystem-level scaling laws within a global frame-

work. It also provides scope to explore potential impacts from changes that may affect

a large proportion of organisms in a similar way - for example, warming temperatures

or emergent hypoxia in the oceans [32–34]. However, perturbing parameters across

15+ orders of magnitude in size poses challenges. For example, the coexistence regions

of size-generalised predator-prey models are strongly dominated by scaling exponents

[24].

Previous work has attempted to resolve this in several ways. It is more straight-

forward to keep the global model behaviour stable by using the 4-parameter Lokta-

Volterra system, but that setting is unsatisfactorily simple for most applications [13,

25]. Other approaches use series of models solved piece-wise for different sizes, yet this

means that they are not truly generalised. In the most comprehensive study to date,

a size-based parameterisation of the Rosenzweig-MacArthur system places restrictions

on the relationships between the exponents of each parameter [24]. However, this in
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turn limits the types of perturbations that may be applied or investigated. Finally,

there are discrepancies in the treatment of the functional response term between the

mathematical and biological literature. The mathematical literature broadly assumes

that the maximal consumption limit ties predator production to prey production and

thus scales negatively, however, there is evidence in the empirical biological literature

for positive scaling.

Here, I present an alternate approach of parameterising size-based predator-prey

interactions for the classical Rosenzweig-MacArthur system of equations. Under this

framework, I examine the parameter sensitivity and required ranges for species coex-

istence within the context of real-world observations. I am able to show that, despite

the number of assumptions inherent within this style of modelling, the mathematical

restrictions are closely related to biological observations. Finally, I describe the con-

ditions required to create an entirely size-invariant model, and how using the most

commonly observed empirical values for the parameters generates a size-abundance

distribution matching real-world observations.

2.2 Parameterisation of the model

I begin with the Rosenzweig-MacArthur ODEs and Holling II functional response,

dR

dt
= rR(1− R

K
)− bR

1 + hbR
C

dC

dt
= ε

bR

1 + hbR
C − δC.

(2.1)

I designate variables R for resources and C for consumers. The parameters r and δ

are birth and death rates respectively. Carrying capacity is given by K, interaction rate

b, handling time h and the conversion efficiency ε. To investigate the system across the

full size range I scale the parameters by mass. Organism size (in g) is given by SR for

resources and SC for consumers. I depart from [24] by parameterising the functional

response term after empirical settings [13, 35, 36]. The global parameters, which are
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all strictly positive, are expressed as

r = r0S
σr
R

K = K0S
σK
R

b = b0S
σb
C

h = h0S
σhR
R SσhCC

δ = d0S
σδ
C ,

(2.2)

where for each parameter i, the coefficients i0 may be standardised to a boundary value,

and scaling exponents are given by σi. Next, the prey-predator mass ratio is denoted as

ρ, where ρ > 0, allowing me to explore the effects of nonfixed size differences between

predator and prey.

r̂ = r0(ρSC)σr = r0ρ
σrSσrC

ĥ = h0(ρSC)σhRSσhCC = h0ρ
σhRSσhR+σhCC = h0ρ

σhRSσhC

K̂ = K0(ρSC)σK = K0ρ
σKSσKC .

(2.3)

With this approach I extend the results of [24] by placing no restrictions on the ex-

ponents, allowing h to be an independent term which may be matched to empirical

observations. I now also follow standard practice by setting ε ∝ ρ, that is, the con-

version efficiency is proportional to the prey-predator mass ratio [24]. Next, standard

rescaling of the Rosenzweig-MacArthur system is used to reduce the number of para-

meters and simplify the following analyses. I define u = R/R̃ and v = C/C̃. Next, I

set R̃ = 1/(bĥ), C̃ = ε/(bĥ), µ = K̂bĥ. After scaling time by r̂ such that t/r̂ = s, and

defining γ = ε/(ĥr̂) and ω = δ/r̂, I arrive to the new system

du

ds
= u(1− u

µ
)− γuv

1 + u

dv

ds
=

γuv

1 + u
− ωv,

(2.4)

which has the same dynamical behaviour as (2.1). The parameters in (2.4) are also

all strictly positive and scaling across the size range as for (2.2)-(2.3). For clarity, I

provide the explicit relationship between the old and new parameters below in Table
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2.1, and the system of equations with substituted terms is

du

ds
= u(1−

S−σh−σb−σKC

K0h0b0ρσK+σhR
u)−

εS−σh−σrC

h0r0ρσr+σhR
uv

1 + u

dv

ds
=

εS−σh−σrC

h0r0ρσr+σhR
uv

1 + u
−
δ0S

σδ−σr
C

r0ρσr
v.

(2.5)

The expression of size-scaling of SR in terms of SC facilitates interpretability in down-

stream analyses. All of the exponent terms may be collected within SC , which is now

referred to as S. This provides greatly simplified expressions within Table 2.1 and

(2.5), yet preserves the ability to examine the impacts of perturbations to any one

parameter. Table 2.2 provides a summary of these values taken from prior research.

Table 2.1: Relationship between parameters in original and rescaled Rosenzweig-
MacArthur system. Here, σh = σhR + σhC .

Definition Coefficient Exponent

µ K̂ĥb µ0 = K0h0b0ρ
σK+σhR σµ = σK + σh + σb

γ ε/ĥr̂ γ0 = ε/(r0h0ρ
σr+σhR) σγ = −σh − σr

ω δ/r̂ ω0 = δ0/(r0ρ
σr ) σω = σδ − σr

Table 2.2: Literature bounds on parameter values. The top portion of the table outlines
scalarsa. The middle section provides the scaling exponents, and the bottom
the possible exponent range for the rescaled system. I provide the limits
to these values for completeness. However, the general consensus is that
σr, σd ' −1/4, which has been verified in a substantial recent review [37].
Similarly, despite the potential range for σb, typically 1/2 ≤ σb ≤ 1, which
significantly constrains the exponent ranges in the rescaled system.

Symbol Parameter Minimum Maximum References

ρ Predator-prey mass ratio 1E-4 1E2
S (Consumer) mass, g 1E-10 1E7
ε Conversion efficiency 0 ρ

σr Birth rate -0.81 -0.25 [13, 23, 24, 32, 37–42]
σδ Death rate -0.35 -0.22 [13, 23, 24, 32, 37–42]
σb Interaction rate -0.25 1.58 [13, 25, 35, 36, 41]
σK Carrying capacity -0.88 -0.74 [13, 24, 42]
σhR Handling time (resource) 0 1 [23, 35, 36]
σhC Handling time (consumer) -1.1 0 [13, 23, 35, 36]

σµ -2.2 1.84
σγ -0.75 1.92
σω -0.1 0.59

aNote that viruses are not included in the model due to the non-classical role they may play in
interactions with their ‘prey’, e.g. phage may be beneficial to host bacteria, and eukaryotic viruses are
tens of orders of magnitude smaller than their hosts, leading to substantially different dynamics.



2.3. Results 9

2.3 Results

2.3.1 Coexistence & Sensitivity

The non-trivial equilibrium of interest (coexistence) is

u∗ =
ω

γ − ω

v∗ =
(µγ − µω − ω)

µ(γ − ω)2
.

(2.6)

For there to be non-negative values for (u∗, v∗), I require that

γ > ω or
γ

ω
> 1, and (2.7a)

µ >
ω

γ − ω
. (2.7b)

The condition det > 0, where det is the determinant, is also fulfilled by (2.7b). I

may express (2.7b) as γ/ω > 1 + 1/µ. As all parameters are strictly positive, if (2.7b)

is satisfied, it immediately follows that (2.7a) is satisfied also. The inequality

γ

ω
<
µ+ 1

µ− 1
(2.8)

determines the sign of the trace of the Jacobian, which dictates whether the system

converges to a point or to a stable limit cycle. At equality, there is a Hopf bifurcation.

The dynamical characteristics of the Rosenzweig-MacArthur system bave been explored

in depth elsewhere (e.g. [43–46] and references within). My focus is on the interplay

between biological and mathematical constraints. These inequalities are now discussed

in the context of empirical observations.

Handling time

The condition from (2.7a) simplifies to

ε

h0δ0Sσh+σδ
> 1. (2.9)

Examining the scaling exponents, if σδ + σh < 0, the condition may fail for small

organisms. As σδ is tightly constrained (Table 2.2), I examine the behaviour of the

system under different scaling values of the handling time.

The classical null model from Yodzis & Innes [23] based on metabolic theory is
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determined in [35]1 to be equivalent to h ∝ S1
RS
−3/4
C , or ĥ ∝ S1/4. It results in a

maximal consumption rate of c ∝ S−1/4. This matches the setting of [24], where

the birth rate of the predator in the presence of unlimited resources is assumed to

scale with the birth rate of prey. However, more recent functional response research

suggests a more nuanced picture, where physiological traits may affect these exponents.

Attacking, killing, and then physically eating and digesting prey all impact handling

time [36] and there is consensus that it is vital to consider the prey’s contribution

to this process [35, 36, 47]. The term has since been recast to the more biologically

representative form used in this study: h ∝ SσhRR SσhCC , where typically 0 ≤ σhR ≤ 1

and −1 ≤ σhC ≤ 0 [35, 36]. The exponents σhR, σhC have been empirically determined

in several reviews and display considerable variability [13, 35, 36]. I now discuss the

implications this variability has for coexistence under the inequalities in (2.7).

Figure 2.3: Graphical representation of coexistence conditions in (2.7). Rearranging
(2.7b): ln(S−σh−σδ) − ln(1 + c2S

−σK−σh−σb) > −ln(c1), where c1 and c2
are constants derived from the coefficients. I denote the left side of the
inequality as f(S); if f(S) > −ln(c1) , there is coexistence. Under the
feasible values outlined in Table 2.2, σK and σb have less effect than σh;
here I assign σK = −3/4 and σb = 1/2.

Two of the three major reviews listed above conclude that the prey-predator com-

ponents of handling time scale more gently (whether positive, or negative) than null

models predict. However, the resultant exponent for ĥ is positive (' 1/3) in [35], which

reviews arthropod functional responses, and negative (' −1/8) in the broader taxo-

nomic review within [36]. Most of the organisms in [36] display negative scaling for ĥ

in taxa-specific breakdowns due to gentler scaling of the resource exponent. Only σhC

1This derivation assumes predator consumption (the inverse of handling time) scales with metabolic

demand (S
3/4
C ), and the per-prey metabolic demand is therefore S

3/4
C S−1

R . This matches the assump-
tions of [24, 25], however it should be noted that other interpretations of the same model either do not
normalise against prey mass (e.g. [42]) or do so implicitly (e.g. [13]).
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is assessed in [13]. This study estimates σhC for 2D and 3D environments but does

not find a significant difference between them with the resultant empirical σhC ' −1.1.

The authors account for the steeper scaling relative to metabolic expectation by noting

that feeding is an active process which scales with maximal rather than basal metabolic

cost. This review contains a larger mass range than in [36]. To calculate the scaling

of ĥ from the empirical assessment in [13], I use the assumption σhR = 1, which is the

upper limit for the parameter. This implies the exponent σh ≤ −0.1, and again sug-

gests ĥ scales far below the value of 1/4 assumed by previous theoretical work on the

model. Conceptually, this indicates that the parameter may be constrained by physical

processes rather than a bioenergetic flux balance. Note that despite the phenomen-

ological formulation of the functional response predator production is still implicitly

constrained by the prey density.

Taking this into consideration for coexistence conditions (2.7), if σh < −1/5 across

the full size range, smaller organisms may violate this condition (Figure 2.3). If σh '

−σδ then this condition will easily be fulfilled across the size range. There appears to

be empirical support for these observations. The taxonomic group breakdowns in [36]

indicate that smaller taxa may display positive scaling for ĥ as concluded in [35] and

the strongly negative scaling is observed in macro-organisms, particularly vertebrates.

The notable exception of unicellular marine organisms (σh ' −1/3) has a very small

sample size. It is possible further experimental investigations may reach an alternate

conclusion.

Carrying capacity and scaling of population cycling

An alternate expression of (2.7b) is

µ0S
σµ = µ0S

σK+σh+σb > u∗, (2.10)

where u∗ ∝ Sσδ+σh . If I combine (2.7b) and (2.8), I obtain

µ0S
σµ = µ0S

σK+σh+σb > 1. (2.11)

Together, (2.10) and (2.11) indicate the need for a sufficiently high carrying capacity

for a sustainable prey population, and that consumer attack rates must be high enough
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to compensate for mortality across the size range. Assuming reasonable values for σK ,

σb such as those given in Table 2.2, these inequalities will generally hold. Under

the original system (2.1) and assuming coexistence, resource equilibria will scale with

size as R∗ ∝ Sσδ−σb and consumer equilibria will scale as C∗ ∝ Sσr−σb . Despite their

importance for the coexistence domain, the carrying capacity and half saturation do not

meaningfully impact equilibria abundances in allometric parameterisations. However,

they do impact some properties of the limit cycle.

Figure 2.4: Properties of the limit cycle: (a) Predator-prey oscillations for a predator
of size 10g (b) Scaling of the period of the limit cycle for numerical (circles),
empirical (triangles) and analytic (solid line) results. Only predators are
shown. Data is from predator-prey population time series from [25, 48–
55]; periods were calculated by either using supplied data files or software
to extract data from figures [56], and then averaging the time between
peaks. (a)-(b) use empirical scaling of ĥ, where σh = −1/8. (c) Dynamics
of the rescaled system associated with different parameter values. Here,
Γ = γ/ω, which is plotted against µ. The region below the solid line
indicates no coexistence, between the solid and dashed lines denotes a sink
to the equilibrium point, and above the dashed line a stable limit cycle.
Colour indicates the difference between the (log) maximum and minimum
abundances attained for the predator.

Allometric settings of the Rosenzweig-MacArthur system usually result in oscillat-

ing solutions due to size-scaled parameter values relative to the constraints in (2.8) [40].

I find stronger empirical support than in previous work for the period τ to have a dis-

cernible size scaling signal [40]. Indeed, the theoretical scaling τ ∝ Sσδ (derived in both

[24, 40], with a similar result in [23]) agrees well with observed values (Figure 2.4b).

A previous review has found that the ratio of maximum to minimum densities is size-

invariant [40]. Practically speaking, this means that the oscillation amplitude decreases

with increasing size. Further qualitative support that this mathematical behaviour is

aligned with features of real-world biological systems is given by the fact that log-

transformed size-density relationships demonstrate near-constant variance across 15+

orders of magnitude [37, 57]. Under my parameterisation the log-scaled oscillations are
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relatively sinusoidal and may be constrained to 1-3 orders of magnitude (Figure 2.4a).

Hence, they are more realistic than allometric Lotka-Volterra dynamics which push

predator populations to unreasonably low levels with fluctuations exceeding 15 orders

of magnitude [25]. Unfortunately early efforts to find analytic approximations of the

oscillation amplitude of the Rosenzweig-MacArthur system have not been generalised

[58]. More recent results have only been derived for specific - and highly restricted -

parameter values [59]. However, the rescaled system (2.4) does provide scope for me

to examine the effects of perturbations in a simplified manner. In Figure 2.4c, I show

through simulation that perturbations to all parameters may impact the magnitude of

the fluctuation of the limit cycle. However, unless these perturbations are applied to

σr or σδ, the oscillation amplitude will remain (nearly) invariant with respect to the

mean population density. The system’s robustness to different forms of perturbation

may be assessed via a sensitivity analysis which is outlined below.

Sensitivity

A local sensitivity analysis allows me to obtain a first-order approximation of the

relative impact of changing parameters on the solutions of (2.4). I adhered to the

methodology described in [60]. In order to check how sensitive the system, ẋ, is to

small changes in parameters, λi, I construct a sensitivity function, S(t), such that

S(t) =
∂

∂λ
x(t, λ) (2.12)

and x(t, λ) is a solution of ẋ. Next, I characterise the solution to the sensitivity equation

given by

Ṡ(t) = A(t, λ0)S(t) +B(t, λ0), S(t0) = 0. (2.13)

Applying (2.13) to (2.4), A is the Jacobian of (2.4) with respect to variables u and

v, and B is the Jacobian of (2.4) with respect to parameters µ, γ, and ω, both of

which are evaluated at nominal parameter values. After setting initial conditions u0

and v0, I obtain numerical solutions for (2.13). Figure 2.5 shows the trajectories for

two initial conditions. Firstly, for u0 and v0 in the neighborhood of u∗, v∗ respectively,

and secondly for u0, v0 an order of magnitude greater/smaller than u∗, v∗ respectively.

The qualitative behaviour remains the same in both cases. For an initial state near the
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equilibrium (Figure 2.5(a-b)), there is monotonic behaviour as the system converges to

the limit cycle. In the case of Figure 2.5(c-d), the limit cycle will emerge after some

critical time tc. For each, the system is least sensitive to µ, providing further support

that perturbations to r and δ have the largest impacts on the system. The qualitative

behaviour remains similar for other nominal values of the parameters, provided they

are not set on the other side of the bifurcation boundary. The exponents with the least

empirical variance - by a significant margin - are σr and σδ, which aligns well with the

mathematical constraints discussed in this section. That is, the dynamical behaviour

is relatively robust to perturbing the functional response parameters which display the

highest empirical variance.

Figure 2.5: Sensitivity of rescaled system. x-axis denotes time (au). (a-b): Sensitivity
of the solutions of (5) to perturbations to each of the parameters under
an initial condition near the point (u∗, v∗). (c-d): As above, except under
an initial condition (10u∗, 0.1v∗); the trajectory also converges to the limit
cycle.

2.3.2 Applications

By scrutinising the rescaled parameter definitions in Table 2.1, it is possible to determ-

ine an entirely size-invariant system. This is clearly desirable as it is straightforward to

set coexistence for an arbitrary size range, and facilitates analytic study of the equa-

tions. By the definition of ω = δ/r̂, the size scaling of r must match δ, both of which

consistently display an exponent of −1/4. It immediately follows that σh = 1/4 as

γ = ε/ĥr̂. Assuming that carrying capacity scales to a −3/4 power law, and using the

definition µ = K̂ĥb it therefore follows that σb = 1/2. As the dynamics of (2.4) are
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identical to (2.1), eliminating the size-dependency in (2.4) is certainly mathematically

expedient and I note that the majority of allometric studies to date have used this

approach. However, given the tenuous empirical support for ĥ ∝ S1/4, it may be more

biologically suitable to assign a value where σh ≤ 0. It is still feasible to generate

a full size-abundance distribution and match empirical scaling of the parameters. An

extensive recent analysis of size-density scaling suggests that the relationship may scale

closer to N∗ ∝ S−1 than the classical −3/4 exponent (where N∗ is population density

or abundance). Indeed, using empirical scaling of b results in a distribution which

aligns with that result (Figure 2.7). Whilst the lower bound of σb ' 1/2, estimates of

the ‘universal’ value suggest 0.6 < σb < 0.9. A limitation of my treatment of b is no

restrictions are placed on the interactions between a predator and any arbitrary-sized

prey. Interaction processes are a pivotal component of predator-prey systems and in-

creasing evidence suggests they follow a ‘hump-shaped’ curve with the prey-predator

mass ratio, ρ [35]. A natural extension to my model would be to introduce a term

reliant on ρ to the parameter b. This would imply b = f(ρ, b0)S
σb , where f(ρ, b0) may

be any function which assigns a probability of prey capture based on the prey-predator

size ratio. Whilst a theoretical form for f(ρ) has been proposed [24], it would be feas-

ible to use a function that could encode of a broader range of life history traits for

the tradeoff of introducing additional parameters. Processes to consider may include

habitat effects on foraging, prey refuges, and optimal size ratios. This would impose

further constraints on the capacity for predator coexistence.

My final consideration is the contribution of ρ to the conversion efficiency ε. The

empirical distribution of ρ is approximately lognormal with its peak at ' 0.02 [41].

Equilibria population ratios do not follow a 1:1 relationship with the prey-predator

mass ratio when using the relationship ε = ρ (solid white line, Figure 2.6). For a fixed

predator size and increasing prey size, organisms become less efficient at converting

biomass. However, this result does not align with observed data.

A review of 15,000+ predator-prey pairs concludes that size differences between

predator and prey has an upper limit, potentially due to inefficiencies when the size

discrepancy becomes too extreme [61]. Furthermore, the larger the predator, the more

generalist its feeding strategies [35]; increases in prey biomass - which could indicate

predators feeding on smaller prey - do not translate to a proportionate increase in
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Figure 2.6: Impact of perturbing conversion efficiency ε by setting a function on ρ.
Here, ε = ρψ, where −1/2 < ψ < 3/2. Colours map to the value of ψ, and
the white line depicts ψ = 1. Y-axis shows the ratio of the predator-prey
equilibria populations. Result is size invariant.

predator biomass [62]. I therefore apply the assumption that energetic reward (and

biomass conversion) for predator effort declines as the size difference increases, and

that the scaling of ρ with equilibria population ratios is superlinear. I can implicitly

capture the result by assigning a function ε = aρψ, where ψ is a scalar. For simplicity,

I set a to 1, and in Figure 2.6, assess the predator-prey population ratios for varying ψ.

A value of ψ > 1 increases the difference between the predator-prey populations; ψ < 1

reduces it. More sophisticated functional forms may include favourable size ratios or

introduce a size dependency to the value of ε. However, there is limited empirical

research on scaling properties of ε [21, 27, 39]. A theoretical investigation of optimal

predator-prey size ratios together with more complex functional response formulations

reflecting alternate foraging/feeding strategies may yield interesting results, and I leave

this question open for future work.

To generate the full size-abundance distribution shown in Figure 2.7, I use a value

of ψ ' 1.3, together with scaling values of σr = σδ = −1/4, σh = −0.1, σK = −3/4

and σb = 2/3. The model’s full distribution scales to −0.92, close to the −0.95 value

determined in [37]. The inset shows the predator-prey density relationship, which is

0.76, close to the findings of ' 3/4 in [62]. Note that to generate Damuth’s law, a value

of ψ = 1.3 and σb = 1/2 results in exponents of −3/4 and 3/4 for the size-abundance

and predator-prey density scaling respectively.
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Figure 2.7: Main: Size-abundance data generated from the model. Circles depict prey
abundances, and crosses predators. Prey-predator mass ratios were ran-
domly selected within the interval of 1E-4 and 1E2. The full size-abundance
distribution from the model scales to −0.91, close to the empirical distri-
bution in [37] of −0.95. Inset: each pair of points are the maximum and
minimum abundances attained by the predator/prey during limit cycle os-
cillations. I show examples of five predator sizes: 1E-6 (◦), 1E-4(×), 1E-2
(+), 1E0 (4), and 1E2g (∗). For each ρ = 0.02. The slope within each
symbol group ' 0.76. That is, increasing prey density does not result in
a 1:1 increase in predator density. The scaling relationship is sublinear,
matching the observations of [62].

2.4 Conclusions

Here, I investigate the links between empirical and theoretical allometric literature. By

explicitly encoding the prey-predator mass ratio, ρ, I remove the resource size depend-

ency from the system. This simplifies analyses and provides a more parsimonious base

for customising the equations, which may be useful for food web or trophic modelling.

I find that the constraints of the model complement empirical observation. Contrary

to most previous studies, I use an empirically determined parameterisation of the func-

tional response term. My results suggest that the standard approach of setting all

parameters based on metabolic theory may need to be reassessed. The handling time

parameter shows the strongest departure from those assumptions, and the highest vari-

ance, which is consistent with the massive trait variation found in hunting and feeding

strategies and may suggest that organisms are adaptable to changing conditions. Nev-

ertheless, I find that results generated from an empirical setting agree well with results

in recent reviews of size-abundance scaling. This work may be extended in several ways.

Firstly, it would be feasible to incorporate temperature effects, e.g. after [32, 63, 64],
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which may have the effect of further stabilising the model by reducing the interaction

strengths [39]. Secondly, it would be valuable to have more empirical data pertaining

to the functional response at the extreme ends of the size range to more accurately

define the scaling of ĥ and b. It may also be useful to investigate Type I, Type III, or

generalised functional responses, although I note that previous work has found that the

system behaviour usually remains qualitatively similar when considering a large size

ranges [13, 42], potentially indicating the importance of average or maximal feeding

rates rather than the specific shape of the functional response curve.

The broad caveat of allometric modelling is that a generalist strategy can be a

poor predictor of taxon-specific outcomes. Challenges to the framework arise not only

from biological differences but physical or spatial processes, such as prey patchiness

or heterogeneous habitat distribution [65, 66]. Thus, care over interpretation and the

applicability of results must be taken, particularly at the size limits in either direction.

For example, prokaryotic reproduction rates fall between minutes and millenia [67, 68].

Furthermore, large organisms such as whales play a critical role in nutrient recycling;

assuming a single species may be defined as a resource or consumer alone does not

account for the intrinsic complexities within natural environments [69]. However, it can

also be said that when investigating macro properties of a system, allometric approaches

have been found to outperform those which attempt to explicitly encode organisms’

individual and life-history traits [35]. Classical population dynamics models remain

a powerful tool in ecology, and the consistency across many allometric laws suggest

self-organising processes we are yet to unravel. I propose that systematically assessing

where theoretical and empirical properties of allometric modelling diverge may assist

in identifying plausible mechanisms governing these phenomena.



Chapter 3

Synergy of turbulence and fishing

reduce aquatic biomass

A universal scaling relationship exists between organism abundance and body size.

Within ocean habitats this relationship deviates from that generally observed in ter-

restrial systems, where marine macro-fauna display steeper size-abundance scaling than

expected. This is indicative of a fundamental shift in food-web organization, yet a

conclusive mechanism for this pattern has remained elusive. I demonstrate that while

fishing has partially contributed to the reduced abundance of larger organisms, a larger

effect comes from ocean turbulence: the energetic cost of movement within a turbu-

lent environment induces additional biomass losses among the nekton. These results

identify turbulence as a novel mechanism governing the marine size-abundance distri-

bution, highlighting the complex interplay of biophysical forces that must be considered

alongside anthropogenic impacts in processes governing marine ecosystems.

3.1 Motivation

As introduced in Chapter 2, a fundamental scaling relationship exists between organism

abundance and body size, where

N ∝ Sα (3.1)

and the exponent α typically approximates −3/4. This universal rule derives from

resource acquisition as a function of body size [12], which is a barometer for ecosystem

19
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health that simplifies interactions in complex food webs and may direct fisheries man-

agement [70]. However, within marine ecosystems, the exponent for this relationship

often differs from that in terrestrial ecosystems [57]. Life-history, trophic strategies, and

altered productivity proposed to alter the scaling slopes of terrestrial size-abundance

distributions, and these as well as fisheries posited to impact the slope of the univariate

size spectra studied in marine systems [11, 57, 71, 72]. Here, I quantify, empirically

and with an independent model, how fishing and ocean turbulence cause qualitatively

distinct breaks in the global marine size-abundance distribution.

3.2 Data Analysis

3.2.1 Raw data sources and pooling

To assess the size-abundance scaling relationship, I examined data for over 2179 species

ranging from viruses to blue whales. These encompassed over 800 genera.1 For quality

purposes, I undertook analysis with two datasets. The first was manually curated from

over 200 articles to ensure there was not systematic bias within database sources, and

consists of 1719 size-abundance pairs across 700+ species (Appendix A). The second

dataset expands on the first via the inclusion of a further 13,455 entries predominantly

sourced from online databases, for a total of 15,174 data points (Appendix A). Five

databases were used: IMOS (flow cytometry and zooplankton) [73], Tara Oceans (flow

cytometry) [74], Phytobase [75] for phytoplankton, a global diatom database [76], and a

reef fish dataset [77]. Size data was taken from the same source as the abundance data,

or if it was not included, I assigned the average adult size for that taxon referenced

from WoRMS [78], fishbase [79], or [76] for diatoms. All entries which dated pre-2000

were removed to reduce the chance of methodological or quality control problems being

introduced from older data. For Phytobase entries, any data with the flags ‘unrealistic

day or year’ and ‘presumably sedimentary’ were deleted; I note this particular database

is otherwise well suited to this application as capturing local diversity patterns is not

critical for global size density analyses [57]. For the flow cytometry data, any entries

which had not undergone or passed quality control checks were removed. Next, I outline

1Due to their astonishing diversity, bacteria and viruses were excluded from these diversity counts
to ensure that the counts provided are a legitimate reflection of the species diversity studied across the
entire size range, rather than being an artefact of microbial diversity alone.
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pooling information for taxonomic and sampling groups.

For most nekton, abundance estimates were given at the species level, with the

exception of hard-to-differentiate taxa, e.g. striped and common dolphins. Unless

the data had been provided that way by the primary source, no averaging or group-

ing was undertaken. For bacterial and viral data, I elected to use flow cytometric data

rather than DNA-based methods, as the high variance in copy numbers of marker genes

in prokaryotes precludes reliable abundance estimates. In addition, defining ‘species’

grouping is inherently problematic for microbes. No manually curated data was ag-

gregated unless that was its original format. For the databases, I pooled according

to the following principles. Firstly, I took taxa abundance averages by year and loc-

ation. A single location was taken to be one station, or the same degree of latitude

or longitude. We averaged at the lowest available taxonomic level (usually genus for

organisms < 5E−4 m, and species for anything larger), and selected taxa which, to-

gether, provided > 90% of the total abundance of that sample to avoid skewing with

singletons. The exceptions to this pooling rule were for targeted flow cytometry counts

of abundant cyanobacteria (Prochlorococcus, Synechococcus), which was included as

is.2 Figure 3.1 from the consistent variance across the size range and relatively narrow

confidence intervals in the laminar data fits in Table 3.3. Abundance data is localised,

hence spatial and temporal variation across local snapshots captures natural variability

of populations across space and time. Therefore, the inclusion of data from different

environments, e.g. tropical and temperate, or low and high biomass regions, or dif-

ferent species with different life history strategies, or across different sampling efforts,

is suitable – and even desirable – as the goal is to build the universal distribution,

which should ideally contain a broad spread of data [57]. Given the similarity between

the manually curated and complete database results, and the generally well-behaved

nature of the model statistics (Table 3.3, Appendix B), I elected not to transform or

apply other corrections to the data. There is certainly variance introduced from dif-

ferences in species trait differences [80, 81], and potentially from inconsistencies from

2Because microbial abundance data is a heavy tailed distribution, the 20 most abundant species
typically make up over 90% of the total abundance of a sample. The tailed distribution also means
that the abundance of the most prolific species are usually within 1 order of magnitude of each other
as well as the gross abundance across all species. This means that either pooling all species together
or including the densities of some individual, highly abundant, organisms will have negligible impact
across a global size-abundance distribution such that is studied here as it will be within any noise
factor of the data. Indeed, this can be observed in
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underlying experimental methods. However, these impacts remain with noise factor

of this dataset. Furthermore, whilst more targeted studies can be sensitive to this

variance due to scaling size range and data limitations (e.g. bony fish, at 3 orders

of mass magnitude) [57], fitting the scaling exponent over 23 orders magnitude, with

this quantity of aggregated data, drastically mitigates the effect of any one source of

error. Notably, the noise was sufficiently low for a strong statistical signal without the

need for any manipulation, which could introduce other errors or biases, and reduce

transparency of the result.

3.2.2 Standardisation and units

Due to the large mass range (> 23 orders of magnitude) and measuring uncertainty in

the body mass of microorganisms, I used body length, l (m), as the measure of organism

size. To accurately compare data sets where abundance measurements were presented

either as species numbers per unit volume or per unit area, and to account for organism

behaviour, I calculated the separation distance, d (m), between organisms as a proxy

measurement for abundance. To calculate separation distances, it was assumed the

spatial distribution of organisms followed a Poisson distribution. Thus, the separation

distance for organisms where abundance was measured per unit area was given by

d = C−1/2, and per unit volume, d = C−1/3. We now discuss the raw data and

the potential errors that may have arisen due to this standarisation. Plankton data

was near universally presented by volume; I note that plankton distributions are by

definition patchy and this variance far exceeds that of methodological error. Volume-

based measurements in the reef fish dataset were based on study areas <30m deep and

already undergone significant quality controls for accuracy; I did not undertake any

further corrections. We assumed volume-based data for small nekton in the manually

curated literature data did not require further adjustments. We acknowledge some

small amount of error may have been introduced under this assumption in the event

that depths were incorrectly measured, but note that (a) in the context of incorrectly

measured depths, the cube root transformation reduces the impact of that error and

(b) the data covers approximately 0.5 of an order of (length) magnitude, meaning that

impacts on the full distribution would be minimal, particularly after log-transformation.

For marine megafauna, only studies using standard methodologies according to transect
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and aerial surveys were included. Note that as the transformation of both axes is the

same, the standardisation to length does not change the empirical scaling values, but

ensures consistency with units in the physics-based processes and derivations used in

the corrections and model.

3.2.3 Statistical model fitting and preliminary results

To determine the scaling relationship across the dataset, organism length was plot-

ted against the inverse of the separation distance 1/d (m−1) on a logarithmic scale, so

that d ∝ l−τ , where τ is a scaling exponent. Note that I consider a global, bivari-

ate, size-abundance distribution more commonly applied in terrestrial settings, and

not the univariate size distribution often studied in aquatic environments [57]. As pre-

viously observed within individual size spectra [11], nonlinearity was apparent in the

log-transformed global size-abundance plot, where it appeared there was a break at

l ' 0.1 m (Figure 3.1).

Figure 3.1: Size versus abundance for viruses to blue whales. There is a break in the
scaling relationship at ' 0.1 m. Blue triangles represent plankton ranging
from viruses to zooplankton, and benthic invertebrates. Green squares are
fished nekton, ranging from small fish to whales.

In considering model fitting methods, my data is bivariate, meaning that methods

developed for univariate distribution fits are not directly applicable [62]. Regression

methods with log-transformed axes are standard for the bivariate case and may be

used provided the dependent variable contains higher measurement error than the

independent variable [37]. Therefore, models were fitted using ordinary least squares

on log-transformed data. To determine the precise location where the distribution break
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occurred, I used used MATLAB’s fminbnd function to find the segmented regression

breakpoint which minimised mean square error. The breakpoint was bootstrapped

for a percentile-based confidence interval on subsampled data, where the subsampling

methods are as specified in the next paragraph. This revealed a break in the scaling

value at the plankton-nekton transition of l ' 0.1 m (l = 0.08 m, 95% CI (0.06, 0.1)).

Following an assessment of the residuals (Appendix B), I then fit linear models to

determine the exponent within each size range of interest using the following process.

Firstly, a balanced subsampling routine was used to ensure an even spread of data

across the distribution and improve fit quality [82]. We did not use a naive with-

replacement bootstrapping routine as this would simply bias the sampling towards

whichever data (taxa and/or sizes) were most frequent in my database. The data

was stratified by organism sizes, and by taxa. We then randomly sampled m data

points (without replacement) such that the quantity of data per (log)bin was uniform

across the relevant size range and balanced the probabilities of sampling from different

taxonomic groups. The optimal subsampling size m may be estimated by m = knκ,

where n is the size of the dataset being drawn from, k = 3, and κ = 0.5 [82, 83]. We then

generated 10, 000 parameter estimates from subsampled data. Percentile confidence

intervals (95%) were created from the bootstrapped statistics (histograms are included

in B).

Following model fits, it was found that marine virus to marine invertebrate slope at

α = −0.77 is comparable to terrestrial slopes [20, 37]. However, for organisms ≥ 0.1 m

α was −1.9 (Figure 1a, Table 3.3), representing a significant negative perturbation in

the slope. A shift in biomass would only translate the line downward (i.e. change the

intercept via a step break), but the large slope break evidenced by these two exponent

values (Figure 1) is indicative of a more fundamental alteration in the mechanistic

processes shaping the species size-abundance distribution and ecosystem structure.

3.2.4 Correction for Fishing

To find the cause of the break in the marine size-abundance relationship, I note that

fishing has reduced the abundance of fish, pinnipeds, sea turtles and marine mammals

by up to 99% [84]. To investigate the impact of fishing on the observed scaling relation-
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ships, organisms were assigned to groups of impacted large marine animals according

to standard conventions [84]. These included species ≥ 0.08 m, including fish, sharks,

pinnipeds, whales, sea turtles and sea birds. Separation distances were corrected for

each group to reflect theoretical historical abundance values, assuming losses ranging

between 50 and 99.7% [84, 85]. Where no specific loss estimate was available, the mean

decline for all large marine species (89%) was allocated [84].

We corrected for this by adjusting the abundances of impacted populations to pre-

human impact estimates [84]. This caused an upward translation of the scaling line,

removing the step break in the dataset and corroborating earlier findings [70]. However,

whilst the translation is indicative of a decreased abundance of animals larger than 0.1

m, correcting for fishing did not result in a change in exponent, rather just a vertical

shift in the data (Figure 3.2, Table 3.3).

Figure 3.2: Size versus abundance for fishing adjusted data. (a) Shows corrected
abundance for removal by fishing, with green squares the raw data, and yel-
low diamonds showing the fishing-corrected values. (b) Shows the fishing-
corrected data substituted back into the full distribution.

In considering the drivers of this phenomenon, it is to be noted that the size-

abundance distribution may be interpreted as an average or upper bound on local pop-

ulation densities[57]. The slope change is thus indicative of a constraint limiting nekton

abundances which is not present in planktonic or terrestrial systems. To probe for a

mechanistic explanation of the exponent change, I note that many aquatic organism

scaling laws break at ' 0.1 m [14, 71, 86]; this size corresponds to the laminar-turbulent

transition, where the change in the physical fluid environment causally affects the bio-

logy [71, 86]. We subsequently tested the hypothesis that the change in scaling value
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is due to implicit and explicit costs associated with turbulence: that is, nekton must

expend energy actively moving to match planktonic prey distributions, and that this

expenditure propagates through higher trophic levels.

3.2.5 Correction for Turbulence

Aquatic predators and grazers are challenged by the chaotic nature of turbulence. As

absolute abundances of resources scale similarly in three-dimensional aquatic and two-

dimensional terrestrial environments [13], their statistical distribution is scarcer in the

three-dimensional ocean. Plankton live within patches created by an interplay of phys-

ical and biological processes [87]. Within these resource hotspots, plankton foraging

and movement is localised and constrained within the patch, allowing them to use

hunting strategies such as chemotaxis or rheotaxis to maximise their food acquisition

[88, 89]; that is, plankton move passively with the turbulence that creates the aggrega-

tions. Beyond several millimetres and up to ten centimetres is a transition zone where

eddies play an increasingly important role. Whilst they are below the swimming speeds

of most fish, eddies on the scale of tens to hundreds of metres cause bulk transport and

dispersal. Mesoscale eddies reach hundreds of kilometres in diameter and can move

organisms hundreds or thousands of kilometres [90]. Food may not be transported, or

it may be consumed and not replaced due to low light, low temperature or other un-

favourable conditions [91]. Thus, nekton must migrate between patches to feed, which

are continually and unpredictably dispersed, meaning they have resource encounter

rates that typically cannot be bettered using local information [16]. Nekton live at a

scale where the foraging landscape is highly fragmented and disordered due to these

physical processes, and operate on biological timescales which are significantly longer

than eddy lifespans [91, 92]. As they are trophically linked to the plankton, they must

actively work to overcome the dispersal, ultimately increasing their locomotory costs,

which also grow with prey size [93]. Short distance dispersal within or just beyond

local habitats is difficult to quantify. However, at a global scale, physical dispersal –

and consequently the spatial distribution of plankton – follows the Kolmogorov power

law for the turbulent energy cascade [87]. The overall effect is that dispersal, encoded

here as the separation distance, is a key factor in nekton survival. We propose that re-

source acquisition forces nekton movement to follow the turbulence-driven distribution
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of plankton, increasing energy expenditure [94], and consequently reducing available

energy for growth and reproduction, which decreases abundances. The positioning of

the break in the scaling relationship at the laminar-turbulent transition is consistent

with this reasoning.

Table 3.3: Estimates of the scaling exponent (α) with 95% confidence intervals for
the empirical data (raw and adjusted) and the model simulated data, all
calculated from 10,000 bootstrapped values.

Regime Manually curated data Full dataset Model

Laminar −0.74 (−0.79,−0.69) −0.77 (−0.81,−0.73) −0.73 (−0.76,−0.71)
Turbulent (raw) −2.5 (−2.7,−2.3) −1.9 (−2.0,−1.8) -

Turbulent (fishing
adjusted)

-2.5 (−2.6,−2.2) −1.7 (−1.8,−1.6) −2.1 (−2.2,−2.0)

Turbulent (adjusted) −0.94 (−1.1,−0.74) −0.56 (−0.69,−0.43) -
Full spectrum

(turbulence adjusted)
−0.83 (−0.88,−0.79) −0.73 (−0.76,−0.69) −0.71 (−0.72,−0.71)

The influence of turbulence on the scaling relationship for netkon was addressed

by applying a phenomenological correction for the −5/3 relationship arising from the

Kolmogorov power law of the inertial subrange of the energy spectrum3 [95]. The spec-

tral energy density, a proxy of the variance of the variable under consideration, i.e.

turbulent velocity fluctuations in the framework of fully developed turbulence, is given

by E(k) = Ckε
2/3k−2/3, where Ck is the Kolmogorov constant (' 1.5) , ε is the tur-

bulent kinetic energy dissipation rate and k is the wave-number (2π⁄(eddy diameter),

rad.m−1) [95, 96]. Here I approximate this relationship as E(k) ∝ k−5/3, providing

a dimension of m−1. The spatial distribution of plankton has been observed to fol-

low the same power law [87, 97], and the separation distance d as a function of size

(both units in m) may therefore be considered as an implicit measure of the effect of

dispersion due to turbulence. Thus, by considering d ∝ k−5/3 I undertook a phenomen-

ological correction for the abundances of nekton, whose foraging effort is impacted by

the turbulent dispersal of plankton, by subtracting the Kolmogorov power law, inter-

secting at l = 0.1m, and calculated an adjusted scaling value for the entire data range.

3Note that whilst the inertial subrange, at a scale of approximately 0.1 to 1m-5m, scales to −5/3,
as length scales extend beyond 10m, turbulence may begin to exhibit anisotropic properties with the
exponent approaching −2. However, Langmuir circulations (i.e. Langmuir turbulence) that are on
the scale of metres to kilometres are known to have properties of variabilities that are similar to
small scale turbulence. Large eddies are also acknowledged as a source of energy supply to turbulent
energy cascade. Hence the larger eddies (> 1m) have significant contributions to develop the purely
isotropic turbulence which shows the inertial subrange of the energy spectrum. Therefore, I apply
an approximation where scaling behaviour follows that of the inertial subrange across the nekton size
range.
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Testing the hypothesis that turbulence increased the nekton slope by adjusting for

the Kolmogorov power law, which affected small fish the least and large pelagics the

most, removed the structural break in the distribution and resulted in a near-canonical

exponent of α = −0.73 for the entire spectrum (Figure 3.4, Table 3.3).

Figure 3.4: Size versus abundance for turbulent adjusted data. (a) Shows corrected
abundance for removal by fishing and turbulence with yellow diamonds
for fishing adjusted data, and red circles showing the turbulence-corrected
values. (b) Shows the turbulence-corrected data substituted back into the
full distribution. After both corrections all points fall along a line with a
slope of –0.73.

3.3 A mechanistic model

3.3.1 Motivation

To build a minimal model which captures this phenomenon, I note other scaling breaks

for aquatic organisms [71] also occur at 0.1 m due to movement changes at the laminar-

turbulent transition [86]. The classical assumption that swimming is more energetically

efficient than running [10] does not consider drag, which increases with the square

of velocity and carries extreme metabolic cost [98, 99]. Research examining cost of

swimming may also underestimate real-world metabolic effort for nekton as it frequently

uses theoretically ‘optimal’ size-speed scaling [14] rather than utilising empirical values

which are steeper [71]. Finally, relative consumption rates are higher in oceanic than

terrestrial environments, yet a steeper inverse scaling of nekton abundances in marine

systems exists even at high resource densities [13]. This discrepancy has not been
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resolved but indicates there must be a significant energetic cost associated with living

and feeding in oceanic environments that has not been considered. I incorporated

classical formulations of swimming cost for organisms living in laminar and turbulent

environments, together with foraging effort, into a size-dependent predator-prey model

to assess these effects. In short, I expand the trophic transfer efficiency parameter,

ε, in the classical Rosenzweig-MacArthur predator-prey model to account for energy

diversion toward locomotion. The following section, I incorporate classical formulations

of swimming cost for organisms living in laminar and turbulent environments, together

with foraging effort, into a size-dependent predator-prey model to assess these effects.

3.3.2 Predator-prey model

We used the classical Rosenzweig-MacArthur model to investigate the effect of tur-

bulence on population dynamics and size-abundance relationships for consumer and

resource pairs, from phytoplankton to whales. To maintain consistency in units across

empirical data, model, and adjustments, size was given by length l (m) and abundance

was defined as organism separation distance (n.m−1), rather than size (g) and biomass

(density, g.m−3). The base ordinary differential equation contains strictly positive

parameters and is described by

dR

dt
= rR(1− R

K
)− ψR

H +R
C

dC

dt
= ε

ψR

H +R
C − δC

(3.2)

where R and C are resource and consumer abundances, respectively. The parameter H

denotes the half saturation constant for a Holling Type II functional response, whereas

K is the carrying capacity, r and δ are birth and death rates, ε the conversion efficiency,

and ψ the consumption rate for the consumer. Throughout the model definitions and

derivations I use subscript v to denote the viscous or laminar regime and subscript t for

the turbulent regime. Here, I use an alternate expression of the Holling II term than in

Chapter 2. This is because the assumptions applied in the biophysics section below are

distinct to those in Chapter 2 which is predominantly focused on terrestrial settings.

Regardless, it is possible to convert between the two versions of the system using the

relationships ψ = 1/h and H = 1/(bh). As introduced in Chapter 2, each of the para-

meters in (3.2) follows scaling models according to the size of the organism. A 25◦C
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standard temperature was assumed, as whilst temperature has some impact on meta-

bolism, the variance in the data was sufficiently low to indicate that it was reasonable

to not incorporate temperature effects; indeed perturbations to basal metabolic scaling

properties across the livable temperature range in the ocean (approximately 30◦C) are

likely to have less impact on metabolic cost than an organism’s locomotory strategies

and behaviours [94, 99, 100]. Resource-consumer size ratios were varied between 0.01

and 0.5 (corresponding to approximate prey predator mass ratios of 1E-6 and 0.13

respectively). Exponents were given by representative values from previous research,

which was typically specialised on deriving empirical scaling for that specific parameter.

As my dataset ranges over more than 23 orders of mass magnitude, where there was

some variability across literature scaling models, my study used the most “universal”

exponents. Values chosen were (i) frequently reported with consensus (r, δ, ψv,K), (ii)

mid-range (H) or (iii) specifically calculated for aquatic vertebrates (ψt). Here, the

size of the resource (lR) or consumer (lC) and parameters which scale in the laminar

regime are given as

r = r0l
−3/4
R

K = K0l
−3/4
R

H = H0l
−3/4
C

ψv =
ψ0

εv
l
−3/4
C

εv = εv0 l
1/8
C .

(3.3)

Note that length scaling values of−3/4 and 1/8 are equivalent to mass scaling values

of −1/4 and 0.04 respectively. As described in Sections 2.3.1 and 2.3.2, this paramater-

isation is close to the null model of the allometric Rosenweig-Macarthur system. The

scaling values for two parameters change between the viscous and turbulent regime

(organism length > 0.1m): εt = εt0 l
−1.3
C and ψt = ψ0

εt
l
−3/4
C . Under this parameterisa-

tion, there is a switch to a positive consumption rate in the turbulent regime, whilst

half-saturation H remains fixed. This occurs because a greater amount of resource is

required to support a consumer population without translating to new biomass. As

described in Section 2.3.1, the resultant length scaling exponent (' 0.55) is reflective

of observed empirical values for macroscopic fauna in aquatic environments.
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The derivations of ε are outlined in Section 3.3.3, and a table summarising scaling

values is provided in Table 3.5. Coefficients were standardised against phytoplankton/-

zooplankton models to ensure the boundary value for primary producers was feasible.

The smallest primary producer (i.e. 0.7µm in length) was assumed to be the cyanobac-

terium Prochlorococcus [101]. For coefficients, biomass was divided by species mass

to obtain the number of organisms. Model equilibria were calculated using analytical

solutions.

Table 3.5: Base parameters for the Rosenzweig-MacArthur model exponents taken
from prior research (refer to Table 2.2 for references). For biomass-to-
abundance conversions, the smallest primary producer was assumed to be
Prochlorococchus with a mass of 100fg [101].∗Denotes effective scaling in the
laminar and turbulent regimes respectively under my parameterisation.

Type Mass scaling Model value Length scaling

r Birth rate −1/4 −1/4 −3/4
δ Death rate −1/4 to 1 −1/4 −3/4
ψ Max. Consumption −1/3 to 1 −1/4 ∗(−0.29, 0.18) −3/4 ∗(−0.875, 0.55)
K Carrying capacity −3/4 to −1/4 −3/4 −3/4
h Half saturation −1 to 1/4 −1/4 −3/4
ε Conversion efficiency −0.9 to 0 0.04 (−0.43 turb.) 0.125 (−1.3 turb.)

3.3.3 Locomotion cost: biophysics derivations for the model

To remain consistent with the literature, throughout this section, I use scaling of mass

unless otherwise specified. To account for movement cost in the Rosenzweig-MacArthur

system, I consider locomotion energy budgets across the whole size range (bacteria to

whales). If movement energy usage scales equivalently to basal metabolic processes,

its impacts would not be noticeable. However, if it scales differently, some of the

energy previously used to create new biomass would instead be diverted to locomotion.

Alternately, if locomotion were to become more efficient, additional energy could be

provided for biomass. This can be seen by examining the gross metabolic power of an

organism

Pgross = Pbasal + Plocomotion ∝ Sb + Sloc.

Normalising by Pbasal results in

Pgross
Pbasal

= 1 +
Plocomotion
Pbasal

∝ 1 + Sloc−b.
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If there is a discrepancy between the power exponents, the (relative) locomotory power

consumption will change across the size spectrum.

This deviation can be captured within the parameter for biomass transfer efficiency,

summarised in an infographic in Figure 3.6. To achieve this, I use a classical ecological

relation, which links basal and locomotory metabolic cost to abundance [17, 102], given

as

N ∝ S−b−c+q(F−D).

In this master equation, N is the number of individuals, and c is the relative transport

cost scaling. I have c := Υ− b, where b is basal metabolic scaling, and Υ is the scaling

of transport cost (TC) defined below. The term q(F − D) describes search effort,

including q, swimming speed scaling, and the parameters F and D, which describe

density/fragmentation and dimensionality of the resource space. Note that if the term

−c + q(F − D) equates to zero, classical population dynamics apply. That is, the

standard Rosenzweig-MacArthur system, with a typical value of ε e.g. the predator-

prey mass ratio. However, when it is non-zero, it captures the shift in locomotion

energy allocation across the size spectrum. This provides the relationship

ε ∝ S−c+q(F−D). (3.4)

In the subsequent derivations for the exponents of ε, I use empirical swimming speed

scaling results from the review of marine scaling laws in [71]: 1/4 and 1/6 for viscous

and inertial swimmers respectively. This is important because it implies the scaling of

real-world nekton swimming speed is steeper than what would be theoretically derived

for maximum efficiency. ‘Optimal’ speed scaling would be given as 5/24 and 1/12 for

viscous and inertial regimes (calculated according to methods in [14] Supplementary

Information, under the assumption of a 3/4 basal metabolic law).

Search effort scaling (q(F −D))

The parameter q is simply the scaling of swimming speed. The dimensionality of the

space, D, is taken as 3 for the turbulent regime. In the laminar/viscous regime, I

consider D = D′ = 2.4, to account for the patch constraint and the fact that organisms

can use local information to optimise their hunting strategies [88, 89, 102]. We set
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Figure 3.6: Energy partitioning - organisms have a finite energy budget which is split
between movement and creation of new biomass. (a) A search effort term
q(F−D) is described by the scaling of swimming speed (q), as well as para-
meters F and D , which denote resources’ fractal dimension (space-filling
amount) and the physical dimension of the search space respectively. (b)
Energy not spent on locomotion is utilised in reproduction and creation
of new biomass. (c) Transport/swim cost (TC) is defined as power, P , di-
vided by speed u. In the laminar regime, power for viscous paddlers, such
as copepods, is described by length (diameter) l, speed, and viscosity µ.
Viscous undulatory swimmer power (i.e. larvae or small fish) is given by
kick frequency f , kick amplitude a, length l, and viscosity µ. In the tur-
bulent regime power is described by kick frequency and amplitude, frontal
area A and fluid density ρ. I use these formulae to calculate size scaling
exponents for swimming cost. The values can then be used in the master
equation (Equation 3.3.3) to capture changes in energy partitioning across
sizes.

the fractal dimension of the space, F, to a mid-range value of 1.9 [102]. Whilst this

expression has some sensitivity at the extreme ends of the parameter ranges, I note that

the multiplier q makes it a slow parameter. Therefore, standard values for F (between 1

and 2) and D (between 2 and 3) as outlined in [102] provide sensibly bounded solutions

(Appendix A). Search effort is summarised in Figure 3.6a.

Transport cost scaling (Υ, c)

In this section, µ and ρ denote the viscosity and density of the liquid respectively. For

the purposes of this study, I assume fluid properties are a constant value with negligible

changes due to pressure or salinity and a temperature of 25°C. A conceptual summary

of the equations used in this section may be seen in Figure 3.6.
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Transport cost is defined as TC = P/µ where P is power and u is swimming speed

[14]. The master equations for the power of swimmers in the viscous regime are given

by Pvu = µ(fa)2l for undulatory swimmers [14] and Pvp = 6πµ1
2 lu

2 for paddlers [19].

Here, f , a and l are the kick frequency, kick amplitude and body length respectively.

By using the classical equality [86, 103]

f ∝ u

l
(3.5)

and following standard convention by assuming changes in the length measurements a,

l are scaling approximately proportional to S1/3, I have

Pvu = µ(fa)2l = µ(ua/l)2l = µu2a2/l

∝M1/2M2/3M−1/3 = M5/6 and

(3.6)

Pvp = 6πµ
1

2
lu2

∝M1/2M1/3 = M5/6.

(3.7)

That is, the power cost scales equivalently for paddlers and undulatory swimmers

in the viscous regime.

For the turbulent regime, the power of inertial swimmers is given by Pt = ρ(fa)3A,

where A is the frontal area of the organism (scaling as S2/3 accordingly) [14, 86]. Once

again, I use Equation 3.5 and substitute in mass scaling values to obtain Pt ∝ S7/6.

Using the definition of transport cost, I obtain TCv ∝ S7/12 for organisms in the viscous

environment and TCt ∝ S for the turbulent environment. As the units for TC are J/m,

it is possible to non-dimensionalise via multiplying by ρ/µ2, which is simply a constant.

This means that: cv = Υv − b = 7
12 −

3
4 = −1

6 , and ct = Υt − b = 1− 3
4 = 1

4 . With the

values for c, q, F and D, I apply (3.4) to derive the scaling for ε in the viscous (3.8)

and turbulent (3.9) regimes and convert to length scaling via

εv ∝ S−cv+qv(Fv−D
′) = S

1
6
+ 1

4
(− 1

2
) = S

1
24

∝ l1/8, and

(3.8)
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εt ∝ S−ct+qt(Ft−D) = S
1
4
+ 11

10 = S−
13
30

∝ l−1.3.
(3.9)

We switch between the parameterisations at the length of 0.1 m, corresponding to the

transition from laminar/mixed fluid regime to a fully turbulent flow of Re > 1000.

Finally, the normalising constants εt0 ' 1/100 and εv0 ' 9.5 set initial values. The

resultant mean, maximum and minimum conversion efficiencies are 0.09, 0.2 and 4E−3

respectively, which are within expected literature values [104].

For the α−estimates generated from the Rosenzweig-MacArthur simulated data,

I randomly generated m datapoints (matching the empirical subsample sizes) for the

laminar, turbulent, and full size ranges. Confidence intervals were then generated from

least-squares regressions on 10, 000 sets of the log-transformed model equilibria.

3.3.4 Rosenzweig-MacArthur Model results

Including locomotion cost for simulated predator-prey combinations from primary pro-

ducers to blue whales reproduced the empirical results. Calculating the slope for model

equilibria abundances in the turbulent regime resulted in a value of -2.1, consistent with

the data (Figure 3.7a, Table 3.3). For the laminar model, and the turbulence-corrected

predator-prey formulation across the entire data set, the slopes were -0.73 and -0.71 re-

spectively, matching the empirical results (Figure 3.7b, Table 3.3). In my model, living

in a turbulent fluid regime impacts the system by translating the predator abundances

downward. This means prey support fewer predators in a turbulent environment than

they would in viscous or terrestrial regimes because of the increased energetic costs

of foraging in turbulence. Increasing locomotion energy budgets decreases biomass

transfer to higher trophic levels where reduced prey availability places even more re-

strictions on energetic resources [93], pushing large marine organism abundances closer

to an unviable population threshold where natural population fluctuations also render

them more vulnerable to extinction [105].4

As my model includes a parameter for resource density, direct impacts of overfishing

may also be incorporated. We find that whilst heavy fishing could theoretically perturb

4Whilst the model could theoretically provide predictions around the transition zone at 1-10cm, it
is unlikely that a scaling-based model would provide accurate results for small size ranges or specific
organisms.
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Figure 3.7: Rosenzweig-MacArthur model results. (a) Plankton (dark blue) with fish-
ing corrected empirical data (yellow), the laminar model simulated data
(l < 0.1 m, pale blue) and turbulent model simulated data (l ≥ 0.1 m,
red). (b) Fishing and turbulence corrected data (purple circles), are shown
with the model simulated data (pale blue), whereby the laminar model is
applied across the full size range, superimposed over the data-fitted regres-
sion line. Simulated data consists of prey-predator mass ratios between
1E-6 and 0.13.

the size-abundance scaling value by decreasing resource saturation and consequently

reduce the parameter F, which denotes the resource’s space-filling amount,, the search

effort multiplier q is ' 0.17 (relative to mass). This means it is a slow parameter, which

also reaches an asymptotic value as F → 0. Hence, whilst fishing removes biomass,

my integrated model indicates it could only perturb the scaling law by ' −0.2 before

the asymptote is reached. This is an order of magnitude less impact than turbulence

effects, and entirely consistent with the data (Table 3.3).

3.4 Accounting for fishing induced evolution

A complicating factor with my analysis is that organisms and biomes are not fixed

physical or chemical variables. Their characteristics can change in response to envir-

onmental pressures. Ecosystem-wide size shifts in size-abundance relationships may be

exacerbated by compensatory genetic changes, particularly when they have occurred

under strong selection pressures such as fishing. Such a fisheries-induced evolution

(FIE) causes further size reduction and earlier maturation age [106], which could alter

the scaling relationship. To assess the relative impact of FIE, I extracted data from 113
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time series for 10 commercially exploited species of fish, and assessed global changes

in size and age at maturation. In some cases, this was provided as probability norms

of weight or length at 50% maturity (Wp50 or Lp50). Time-series with large gaps or

fewer than 20 measured time points were excluded. Data was manually extracted using

WebPlotDigitizer (v 3.12) and visually verified by replotting and super-positioning over

the original. For plots without discrete data points (i.e. smooth line graphs), one data

point per year was used. Each time series was normalised and then split in two halves,

for which mean values were calculated for the first/second half of study period. This

was imported into a data structure consisting of the mean values, data type (size or age

at maturity, 50% maturity, Wp50 or Lp50), gender, species, and length of study. For

testing the difference in means between the first and second halves of a study period,

data was firstly assessed for normality by using a 2-sided Kolmogorov-Smirnov test

(n = 113, critical value=0.1262, observed values 0.0774 and 0.0958 for pre- and post-

respectively, MATLAB R2016b, Mathworks). A paired t-test (SPSS 24.0.0.0, 2017)

indicated a 10.6% shift in mean value in the second half of the study period (df=112,

95% CI (9.4, 11.9), 2-tailed, t-statistic -17.374, p< 0.001). That is, there was a mean

decline of 11% in size or age at maturity, when accounting for gender, species, and

length of study. The results from 10 of the 14 studies led to the conclusion that these

changes were attributable to fishing pressure [106]. In considering FIE’s contribution

to universal size-abundance scaling, the breadth and size of my dataset gives insight

into the signal-to-noise ratio for this problem. It would be extremely challenging to

detect shifts in a global scaling law over the restricted size range of 0.1 to 2 m used

for FIE impacts. While prior research suggests that FIE can perturb local scaling

properties[107], I argue an 11% impact (or even significantly greater) would not be

enough to shift the global size-abundance scaling value of nekton by −1 or more. We

conclude that scaling alterations occurring due to FIE would be small relative to the

turbulence effect explored in this chapter.

3.5 Conclusions

Global size-abundance laws provide a different form of ecological insight to that given

by local scaling behaviour, as they capture macroscale, aggregate processes rather than
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examining small-scale drivers such as inter- and intra-specific trait variation [57]. In

this context, I introduce turbulence, and its impact on energy and movement cost

for large organisms, showing through empirical and modelling approaches that it is

a novel but important process to consider for the large scale organisation of ocean

ecosystems. Climate change impacts have the potential to exacerbate these costs,

as current and predicted increases in ocean surface energy [108] will increase nekton

locomotion costs [109], forcing increased movement cost and potentially decreasing

energy available for reproduction. These losses may be further exacerbated as warming

temperatures increase respiration rates, reduce global primary productivity [110], and

cause greater resource patchiness [111], effecting higher foraging effort. Turbulence

may thus reduce the capacity of nekton to withstand fishing pressure as I begin to

observe oceanic anthropogenic impacts classically associated with terrestrial systems,

including loss of large apex predators, shifts to smaller size, and a faster onset of sexual

maturity. We propose that a deeper understanding of the role physical mechanistic

processes play in structuring marine ecosystems will be necessary when formulating

strategies to preserve biodiversity and retain the productivity of ocean resources in

future.



Chapter 4

Consistency and stability despite

complexity and chaos in the

microbial biosphere

Chapters 2 and 3 examined the global size-abundance scaling distribution of organisms

spanning all domains of life. Here, I shift from all size scales to focus on prokaryotes,

the smallest living organisms within the distribution, to investigate organising prin-

ciples within microbial communities. These communities anchor scaling laws across

terrestrial, freshwater, and saltwater systems and thus play a key role in determining

ecosystem structure. Given the ubiquity of global scaling laws, I investigate whether

there may also be consistency within the community structure of the microbes that

underpin these macro distributions. Microbiomes across diverse environments display

remarkably similar emergent behaviour, implying communities may be governed by

universal organising principles. Here, I outline some of the challenges behind studying

these communities, existing conjectures behind their ecological properties, and a path

forward for studying the distributions and scaling of taxonomic and genetic diversity

within microbial systems.

39
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4.1 Background

Prokaryotes are ubiquitous and of critical importance for the biosphere. At a global

scale bacteria and archaea control biogeochemical processes, playing a central role in

regulating the carbon, nitrogen, and sulfur cycles [112]. In natural systems prokaryotes

rarely exist as monocultures. Rather, microbes form complex multispecies communities

as they undertake a variety of functions required to survive and reproduce. Yet, despite

their importance, there are many gaps in our understanding of the rules under which

these communities operate. The combinatoric complexity alone poses major challenges

for studying these systems. Global species diversity estimates are in excess of 1012

[113–115]. ‘Low’ alpha diversity systems such as host-mediated microbiomes gener-

ally possess several hundred species [116]. However, environmental biomes may have

thousands - or even tens of thousands - of species, and microscale temporal or spatial

shifts in sampling may present an entirely different community to study [115, 117, 118].

Further adding to the complexity is that the vast majority of microbes are unable to

be cultured in a laboratory [119–122]. Even were it feasible to do so, interaction-based

experiments are a combinatoric impossibility due to the number of species in natural

systems. It is also unknown whether the dynamics of idealised assembly or interaction

based experiments scale up and are genuinely reflective of the rules governing real-

world communities, although it seems likely that accounting for function, as well as

taxonomy, is a necessity [123–125].

Further complications in the study of microbial communities stem from extreme

variance within most of the system parameters. Reproduction times may vary between

under 10 minutes and thousands of years as cells may lie dormant under unfavourable

conditions, yet retain potential for reactivating their metabolic pathways for tens or

hundreds of millions of years [67, 68, 126–128]. Bacterial genomes are fluid, having the

capacity to hypermutate or rapidly assimilate DNA from the environment [129–132].

Population density is also variable with species abundance distributions being power

law or otherwise heavy tailed and 5+ orders of magnitude or more separating the most

abundant and most rare species [117]. Additionally, identical initial conditions may

give rise to differences in dominant species over time as the dynamics are nonlinear

and chaotic on top of underlying processes which are stochastic in nature [133–135].
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Instantaneous growth rates are not necessarily correlated to abundances and population

fluctuations over short timescales may span many orders of magnitude [133, 136].

In light of these factors it is surprising that microbial communities in situ are res-

istant to changes and resilient to perturbation [137–141]. Indeed, this stability appears

to be a feature which is common across all biomes - that is, a universal characteristic

of microbial systems. I propose that this stability is an emergent property of the way

in which metabolic pathways are distributed across taxa: these complex communities

are able to respond to disturbances by leveraging a specific redundancy structure and

gene sharing processes unique to prokaryotes, a signature which should be detectable

through a ubiquitous genetic structure in these systems.

As for many other biological problems, the resolution that the microbiome is meas-

ured at appears to impact the level of stability observed in the community: scale does

matter [123, 133, 142]. Nevertheless, locally sampled communities - whether in a host

or environmental biome - are usually more similar to themselves than to samples taken

elsewhere. This principle appears to apply at multiple levels of resolution. For instance,

the human microbiota can be considered as a ‘fingerprint’ from person to person due

to its individual specificity and asymptotically stable behaviour [140, 143, 144]. That

is, the community may be perturbed under varying conditions but will return to its

original composition when the environment shifts back to its initial state. At a lar-

ger scale, it has been noted that there are national or continental wide patterns in

gut microbiomes, such that geography - and corresponding lifestyle - is predictive of

community composition [145]. In turn, human microbiomes will generally be more

similar to other human microbiomes than the bacterial communities associated with

oceans, soils, lakes, or other environments [115]. This nested self-similarity is also ap-

plicable in other biomes, both in terms of taxonomic and functional diversity, with the

caveat that physical/chemical partitioning of geography is usually a stronger predictor

than distance alone [146–148]. Given the unpredictability and chaotic behaviour of the

individual components within bacterial communities, stability seems so unlikely that

one author has commented that there appears to be an ‘invisible hand’ behind the

processes, which in turn implies consistent organising principles within microbiomes

[141].
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One proposed mechanism for the observed stability is through the biodiversity-

stability relationship, which has been investigated in ecological systems for over 70

years [149–151]. The core principle is that that biodiversity improves stability by

providing functional diversity, allowing for the system to manage a variety of perturba-

tions, and functional redundancy, which mitigates against functional loss following the

extinction of any particular species. Microbial systems classically carry high species

diversity and high functional redundancy [152, 153]. In many natural systems, the di-

versity may be so high that it appears to be in excess of what may be expected given the

presence of opposing processes such as competitive exclusion. However, it is debated

as to what extent purely competitive interactions dominate in real-world communit-

ies [154]. Despite the fact that exclusion is a common outcome in laboratory settings

there are also conflicting results, particularly within more complex environments [124].

Several physical and biological factors are proposed to contribute to this higher than

expected, but empirically evident, community species diversity. Spatial heterogeneity

mitigates against the capacity for a single species to have maximal fitness across all local

conditions, decreasing the likelihood that particular organism can dominate across all

microenvironments [152, 155–157]. Spatial processes can contribute to niche differenti-

ation, which is enhanced both by prokaryotes’ capacity to (a) utilise multiple different

metabolic pathways or cross-feeding for hard-to-obtain nutrients and (b) specialise on

different compounds for key resources [158]. These processes appear to take place

even in oceanic or aquatic environments where fluid movement generates microscale

nutrient gradients [157, 159]. Migration and dispersal may then provide the potential

for organisms to spread, invade, or re-invade, as the resource landscape changes over

time [160, 161]. It has been shown that phylogenetically diverse communities are more

resistant to invasion, potentially due to the lower probability of a particular niche be-

ing vacant [162]. The interplay between resource patchiness and shared metabolism

may be particularly important for oligotrophic environments, where maximal nutrient

affinity and absolute reproduction rate may only be temporarily, and locally, benefi-

cial, providing scope for more variable interactions than competition alone. Additional

complexity is then provided by potential trade-offs via allelopathy, phage or other res-

istances, and buffering against other environmental stressors [152]. Given the extreme

fitness cost of carrying a large genome, in this context, there may be higher levels of
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diversity associated with a finite set of functions than would otherwise be predicted

[163, 164]. The functional overlap between the species then provides redundancy across

the system, which in turn confers stability.

The notion of functional redundancy in microbial systems appears to be more com-

plex than in areas of macroecology. The classical view on the taxonomy-function link

in microbial systems is that diversity and growth and adaptation rates are so high that

it is merely the “environment that selects” [165, 166]. That is, there is always suffi-

cient metabolic capacity in a community for rapid optimisation on current conditions.

However, it is now clear that a more nuanced perspective applies. Whilst it is certainly

the case that functional profiles are generally conserved within similar environments,

taxonomy is not necessarily so [123, 148]. In one of the largest investigations of com-

munity assembly to date, researchers were able to show that despite the emergence

of consistent functional profiles, imposing one environment on different communities

will lead to significantly different species assemblages, whereby the finest phylogenetic

resolution of an attractor is at the family level [123]. Furthermore, it has been shown

that such differences are likely to persist over time [167]. Another issue is that redund-

ancy is typically dependent on which function is quantified. Common functions, such

as production, do not appear to be strongly linked to taxonomic diversity, and the

community may lose a large number of species without any discernible impact on the

level of redundancy in the system [153, 167]. More specialised functions, however, are

far more sensitive to species loss [153]. In turn, when considering multiple specialised

functions, community redundancy of all functions is more reliant on the presence of

broad phylogenetic diversity [153]. Timescale has also been shown to be important. In

the short term, diversity losses may not lead to functional losses or affect the stability

of the system, but with each successive generation, the larger the negative impact is

likely to be [167]. The means to probe the interplay between these effects has improved

over the last decade as the cost of shotgun whole genome sequencing (WGS) has de-

creased, allowing for large scale quantitative approaches to the problem. However,

many challenges are also present within empirical methods, ranging from missing data

to biased or incomplete databases which we outline fully in Section 4.2. Hence, whilst

functional redundancy appears to be an important contributor to community stability,

many open questions remain.
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A second mechanism which has been proposed to effect stability in microbial sys-

tems is horizontal - or lateral - gene transfer (HGT). Prokaryotes are unique in their

capacity to share DNA through HGT, which allows them to obtain novel genes from

other cells in the environment. Of the various types of mobile genetic elements, phage

and plasmids dominate HGT processes in bacteria [132, 168]. HGT is ubiquitous in mi-

crobial communities, with an estimated 20% of genes being recently acquired [169, 170].

It has been hypothesised that microbiomes are connected at a cross-continent global

scale through HGT processes [171]. Genes which have been acquired through HGT are

typically present in specific regions of the genome, in so-called ‘gene islands’, rather

than spread evenly throughout. As metabolic functions usually work in blocks of genes,

this is thought to prevent damaging critical cellular processes such as division [169]. It

also appears that both phylogeny and ecology restricts who shares with who, with HGT

being more probable amongst those occupying similar habitats and between closely re-

lated species [170–172]. Additionally, genes involved in HGT are usually associated

with secondary metabolism and membrane transport, often being associated with cell

defence [169]. Indeed, one of the ways to increase the rates of HGT in a community

is to perturb the environment with a particularly strong driver being the imposition

of a stressor which induces a SOS response in a cell [168]. The proposition that HGT

improves stability in microbial systems has been examined from multiple perspectives,

with a wealth of supporting evidence from experiments, data-driven models, and purely

theoretical models [173, 174]. In essence, HGT stabilises communities by providing a

method for vulnerable populations to acquire survival related genes, whilst also allow-

ing ‘streamlining’, thereby improving an individual cell’s chance of success [174].

Streamlining theory proposes that reduction of cell complexity, typically equating

to a smaller genome through gene loss or smaller cell sizes, confers a fitness advantage.

This is primarily due to the reduction in cost of replication, but may also be due to

physical factors including the increased surface area/volume ratio of a smaller cell,

or biological factors such as the facilitation of alternate metabolic pathways [163].

This advantage may be particularly strong in resource limited landscapes. There is

an expectation that streamlining effects are likely underestimated in nature due to

the difficulty of culturing most environmental bacteria [163]. The persistence of large

genome sizes across multiple biomes may be explained by the fact that certain niches
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require or benefit from more complex functional pathways - it is still possible for cells

to undergo streamlining within the bounds of the restrictions and needs of a particular

niche. In the context of system stability, there is increasing evidence that horizontal

gene transfer is especially prevalent amongst streamlined cells [163]. This would provide

both the efficiency advantages of the small sized, small genome organism, but also

allow for the capacity to uptake genes if and when they become advantageous to hold.

Provided that genetic memory persists somewhere within the full community, the cost

to individual cells may be minimised whilst the system as a whole retains the capacity

to manage the full spectrum of stressors.

The hypothesis motivating the remainder of the thesis is that it is not just functional

redundancy, but how the redundancy is distributed, which is conferring this stability.

We propose that there is a universal genetic structure in microbial communities which

allows for a rapid propagation of genes through the whole system via HGT. In this

way, it would be possible for species to avoid the expense of carrying every stress

or resistance related gene - which would be extremely metabolically expensive - but

simultaneously be able to gain access through closely related organisms should it be

required. In this way, the community as a whole could be robust to all but the most

rapid, extreme perturbations. We shall now investigate this problem by creating an

analysis framework which allows me to assess the paired distribution of taxa and genes,

and whether there are common topological features across all biomes.

4.2 Empirical challenges: taxonomic and functional clas-

sification

Our first consideration is the use of shotgun WGS data to reconstruct the taxonomic

and functional structure of microbial systems. WGS classification software requires

the use of reference databases, even for alignment-free methods. In 2016, Hug et al.

undertook an extensive analysis of unannotated database sequences to examine the

spread of genetic diversity in nature [175]. The results of that analysis near doubled

the known tree of life, with a large portion of diversity belonging to microbes that had

never been seen in a laboratory setting [175]. However, with many of these genomes

belonging in the category of metagenomics assembled genomes (MAGs) they are not
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included in reference genome sets, with the standard being RefSeq from the National

Centre for Biotechnology (NCBI) [176]. This can be problematic when undertaking a

cross-biome survey. Environmental biomes, with their high proportions of microbial

‘dark matter’, may have a significant majority of data which cannot be classified within

standard databases such as RefSeq [119, 177]. A further complication is given by

the fact that most databases are biased toward human microbiome data and species

which can be cultured in the laboratory [176, 178]. For example, RefSeq contains

approximately 15,000 genomes and over 3000 species or strains of E. Coli. This can

create biases within taxonomic classifiers, where there is a methodological tradeoff

between precision and recall [179]. One instance of this may be seen in k -mer based

software, which is extremely fast but there can be a high probability of mismatches

between strains; the more uneven a database, the more serious the potential bias. Other

packages use methods which match to unique marker genes, such as MetaPhlaN, which

uses NCBI’s non-redundant database to accurately detect the presence of individual

species [180]. However, whilst MetaPhlaN’s results can be interpreted with a high

degree of confidence, a significant amount of data may remain unclassified, especially

within non-human biomes.

Given the focus of this project on cross-biome analysis, it is critical that any refer-

ence genome set is reflective of the full spread of prokaryotic diversity, including MAGs.

Additionally, it should not be biased toward species which are more commonly stud-

ied. The Genome Taxonomy Database (GTDB) fulfills both of these criteria [119]. The

number of species selected for each leaf of the phylogenetic tree reflects the proportion

of genetic diversity that clade contributes to the full tree of life, and contains 28,439

prokaryotic genomes. To compare with NCBI’s RefSeq, in GTDB, there are just 4

species of E. Coli - they make up less than than 0.02% of the species in the database

as opposed to RefSeq’s 20%+. GTDB is designed as a phylogenetically balanced and

standardised reference set representative of cross-biome genetic diversity, making it

suited for our application.

Functional profiling also has fundamental challenges. Protein annotation tradition-

ally relies on translated searches to find amino acid (AA) sequence matches in reference

databases, e.g. by using local alignments or hidden Markov models [181, 182]. How-

ever, due to exponentially growing sizes of these reference sets, this approach is increas-
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ingly computationally demanding [183]. Furthermore, as for taxonomic classification,

most tools rely on preexisting database sequences to return a match. However, unlike

phylogenetic assignments for unknown genomes, which may be determined through

software-based methods, functional classification of unknown proteins usually requires

manual experimental assessment. This means that the rate of growth of unknown

protein sequences in databases has far exceeded the rate at which their functions can

be assigned. Further complications are introduced by ontology design. Commonly

used ontologies such as KEGG were developed with a human or eukaryotic focus and

labelling is biased toward those applications; to the best of our knowledge, the only

widely used ontology designed for prokaryotes is SEED-subsystems [184].

As our goal is to study the underlying structure of microbiomes, i.e. how genes are

distributed amongst species, it is desirable to maximise coverage not only for taxonomic

but also functional classification. Coverage of bacterial genomes when annotated with

KEGG is on average just 50%; coverage may be even worse when annotating genes

in environmental samples [177]. The annotation method with the best coverage is

Pfam (protein families), which captures domains within a coding region (CDS). The

issue with using Pfam is that a CDS may have multiple Pfam domains; different com-

binations of Pfam domains may result in different functions. An alternate approach

to maximising coverage is to use software which attempts to gain the best of both

worlds. Eggnog uses a support vector machine trained on a non-redundant sequence

set to match proteins to homologs. These may match to Pfam domains but will return

significant matches to more complex functions. However, Eggnog (like Pfam) is not

organised into an ontology meaning that there is no way to group the tens of thousands

of unique labels into high-level categories for interpretation. These issues motivate our

choice to use a range of annotation methods in our pipeline. This allows us to maxim-

ise the information content, ensures robustness of results, and permits us to place our

results into a biological context through use of an appropriate ontology.

4.3 Network representations of microbial communities

The second consideration in tackling this question is how to structure the data and

perform the analysis. There are multiple works in the literature titled ‘The structure
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and function of ... microbiome.’ [148, 177, 185–190]. However, the overwhelming ma-

jority of these papers - and papers within microbial ecology - study the taxonomic

and functional profiles of samples in isolation. Classical analyses apply measures such

as richness, α- and β- diversity, SIMPER and PERMANOVA [191]; any associations

between taxa and function have either only applied to the dominant taxa and func-

tions or have been achieved through inference by using reference genomes, correlation

methods, or linear or statistical models [153, 187, 190, 192–194]. We propose that a

network representation of the data may allow us to formally elucidate the underlying

structure of microbial communities by explicitly linking taxa and genes, and allowing

us to study their joint distribution through network properties and statistics.

Previous attempts to capture the network structure of microbial communities have

largely been driven by various forms of correlation or similarity analysis [195, 196].

Samples are taken in the form of a spatial or time series, and statistical or information

theory-based tests are applied in a pairwise fashion to determine whether two species

appear to be linked [197]. Unfortunately, there are major problems with this approach,

which also neglects to account for genome function. Most statistical methods have

inherent assumptions regarding the form of the data or the data’s underlying dynamics.

For instance, the application of any correlation test is problematic due to the non-

paramteric distributions in the data. The microbial species abundance distribution is

tailed [117]; making matters worse is that the dominant and rare species may fluctuate

in unpredictable ways. Secondly, the sparse nature of microbial data means that the

number of zeros in the datasets tend to skew the results, giving falsely low p-values and

artificially inflated R2 values on any classical correlation metric. Attempts to rectify

these issues have been only partially successful and there are doubts as to whether

correlation networks may meaningfully infer any properties of microbial systems [197].

An alternate approach which does not need to rely on inference is through applying

network methods to sequence information directly. Networks constructed from k-mer

or genome similarity have been studied since mid-2000, often in the context of study-

ing HGT, and often in prokaryotes [198–200]. Whilst methods of constructing these

networks vary, the common principle is that taxa (or genomes) - represented by nodes

- with more shared genes have a higher probability of being linked together, or that

link may have a higher weight [201]. However, as has been identified as an important
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consideration within the social network literature, these unipartite networks are actu-

ally projections of an underlying bipartite graph [202]. The underlying bipartite graph

is defined by the top set of nodes being taxa, and the bottom set genes. Links indicate

whether a particular taxon has that gene in its genome. It is preferable to study the

bipartite graph rather than its projection. Projections cause a loss of information;

whilst features of the bipartite network do drive the statistics of the projections, it is

often not possible to disentangle which specific properties from the original network

are causing which specific effects within metrics of interest [203]. Secondly, if there is

a tailed degree distribution in one or both of the node sets, the projections become

dense and require thresholding, which loses even more information.

Existing literature using native bipartite networks in microbial systems usually con-

structs them by using a large database of non-redundant protein sequences (the bottom

set), and tools such as blastp to identify homologous matches within viral, plasmid or

prokaryotic genomes (the top set) [204–206]. These networks are simplified by merging

redundant nodes (a set of proteins which share the same two or more genomes), deemed

‘twins’, resulting in a smaller network for downstream analysis. These networks are

used specifically to identify HGT genes in reference databases. Although this method

has the benefit of being able to match genes across the phylogenetic tree, there are

some limitations. Firstly, it requires the use of a secondary plasmid database to con-

struct the network and is built using alignment based methods, which limits scalability.

Secondly, examination of the networks has often been descriptive, using overlap counts

and majority rule analyses rather than using graph-based approaches, especially when

larger databases have been used [207]. Otherwise, the number of genomes has been

limited on the order of hundreds up to approximately one thousand [205, 206].

An alternate approach is to construct the network is by using a taxa-gene func-

tion bipartite network. This network may be used to examine the joint distribution

between taxa and functions. For example, in [192], the authors investigate the human

microbiome, arguing that this network is nested, which in turn increases the functional

redundancy of the community. However, there are limitations with the work. Whilst

nestedness is a classical ecological metric on bipartite networks, its significance has

recently been questioned [208]. Nestedness is extremely common in bipartite networks

as it can emerge as a result of other mechanisms within the graph and is strongly
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correlated to node degree. Indeed, in [192], once the graph’s degree distribution is

controlled for, the p-value for the main result increases to be just within the mar-

gin of significance. Furthermore, the power law species abundance distribution in the

data may affect the functional redundancy metric proposed in the work, due to the

sensitivity of any redundancy score associating reference genomes to abundance dis-

tributions [193]. Finally, whilst biology is clearly of fundamental importance within

microbial communities, meaning that different types of genes may display different

network properties, this was not accounted for.

In the following chapters, we construct and then analyse taxa-gene function bi-

partite networks, firstly for the complete GTDB tree of life, and then within multiple

biomes. Through moving beyond mean-field metrics such as nestedness and breaking

down the behaviours of different gene classes, we are able to determine key topolo-

gical features within microbial communities, and identify whether there is a universal

gene-taxa structure which exists across all environments.



Chapter 5

A graph of the prokaryotic

universe

Bacteria and archaea carry the majority of the world’s genetic diversity, and the meta-

bolic organisation of the prokaryotic tree of life is critical to our understanding of the

composition of the biosphere. Exponential growth in sequencing databases has led to

a need for new and scalable analytical methods to examine distributions of functional

diversity amongst taxa. Here, I show network based methods can reproduce analytic

results grounded in phylogeny, and identify statistical properties in the tree of life’s

taxa-function network to reveal macro scale patterns in metabolic diversity.

5.1 Motivation

The pursuit of deep sequencing to explore the microbial biosphere has led to ever in-

creasing catalogues of taxonomic and functional diversity [175]. Debate is ongoing

over how to best organise and manage the information, from processing the sequencing

data, to analysing the resulting outputs, and even how to define fundamental concepts

such as species [119, 191, 209, 210]. However, the trend is clear: with increased di-

versity comes increased complexity and a need for new analytical approaches [115].

Prior work on the distributions of metabolic pathways in the tree of life is primarily

informed by an evolutionary approach [205, 206, 209], yet here, I consider the problem

from the perspective of ecosystem functionality. Through creating a binary network

51
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encoding of taxa-function relationships in the microbial tree of life, I aim to capture

the organisational principles of functional diversity across the prokaryotic universe.

5.2 Core genome annotation

To create a network representation of the system, it was necessary to develop a database

of annotated reference genomes. To avoid skewing results through database biases, the

reference set was taken from GTDB’s dereplicated taxonomy; this reference set is also

designed to be an balanced representation of functional diversity across the phylogenetic

tree [119]. Whilst the majority of the 28,439 available genomes were sourced through

the NCBI’s Genbank [211], 300 archaeal genomes were downloaded from GTDB site.

At the time of this analysis (November 2018), annotations for the GTDB database were

not available.1 Futhermore, translated sequences were not necessarily available from

Genbank for metagenome assembled genomes. I therefore downloaded all genomes in

nucleic acid format, and then used the software Prokka (v1.14.5) [212] to translate the

sequences, generate the CDS regions and construct files in genbank format (required

in a later step of the pipeline). All amino acid sequences were then annotated. To

ensure that different annotation systems did not substantively alter my results, I ran

my analysis on three different annotation systems - Eggnog, KEGG and Subsystems -

each of which has different drawbacks.

Across all genomes, there were a total of 91,083,952 genes. To maximise the amount

of information within the network, I endeavoured to maximise the annotation coverage;

to achieve this, I used the software Eggnog v4.5 with default thresholds [213]. The

Eggnog software also returns any significant hits to unique KO identifiers from the

KEGG ontology [214]. For the Eggnog-based gene node labels, I compiled a list of all

of the unique functions returned, totalling over 60,000. Many of these ‘unique’ labels

were duplicates with alternate capitalisation or other trivial typographical differences;

I manually dereplicated them to ultimately obtain 30,208 unique labels (refer to code

package for mapping files). For the Subsystems annotations, all available sequences

with a functional annotation were downloaded from PATRIC - over 301 million in total

[178]. These were then dereplicated to form a non-redundant database of 16,475,282

1KEGG, COG and Pfam annotations have since been provided through [209].



5.3. Network construction 53

sequences. Annotations were then obtained for the GTDB reference genome sequences

by using blastp against this database, with an e-value threshold of 1E−5 and taking

the top hit.

In Table 5.1, I show the coverage obtained for each annotation system. Although

Eggnog has the greatest coverage at 79%, which likely captures almost all of the coding

genes, the lack of a hierarchy (ontology) attached to over 30,000 unique labels means it

is extremely difficult to group genes into categories and thus interpret results. I found

the least coverage is given by KEGG at 56%, which is consistent with findings from

recent research [215]. Furthermore, although KEGG has a labelled ontology, many

of the named categories are human or eukaryotic associated, such as ‘cardiovascular

disease’, making their interpretability in a prokaryotic setting problematic. It also has

relatively few hierarchical levels, jumping from 4 classes to 300+, limiting its usefulness

for my application. At 67%, Subsystems had less coverage than Eggnog, but more than

KEGG. As the upper levels of the SEED ontology move from 11 to 30 to 132 classes,

they enable me to summarise the structural behaviours of different functional categories

and thus achieve my goal of quantifying their distributions within the network.

Table 5.1: Annotation hits and percent coverage out of 91,083,952 genes for different
systems or ontologies.

Annotation Number of genes annotated Coverage

Eggnog 72, 039, 807 79.1%
Subsystems 61, 150, 266 67.1%

KEGG 50, 514, 144 55.5%

5.3 Network construction

To construct the networks, each CDS region within a genome was labelled with its

taxonomic and functional annotation. These were then compiled into a unweighted and

undirected edge list to create the bipartite graph, shown in Figure 5.2. For brevity,

I refer to the bottom node set as ‘genes’ or ‘functions’ rather than ‘gene functional

annotations’ throughout. However, they represent the functional assignments. In the

case of Eggnog, the bottom nodes are associated with labels from multiple annotation

systems (e.g. NOG, COG, Pfam and more). For KEGG, they are the unique KO

identifiers, and for Subsystems, they represent the ‘product’ assignments within the
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SEED-Subsystems ontology.

{u1 v1}
{u1 v2}
{u1 v3}
{u2 v1}
{u2 v2}
{u2 v3}
{u3 v3}
{u3 v4}

(a)

{u1 {v1, v2, v3}}
{u2 {v1, v2, v3}}
{u3 {v3, v4}}

(b)

taxa u1 u2 u3

genes v1 v2 v3 v4

(c)

Figure 5.2: Building a taxa-function bipartite network. I create hypothetical taxa u1,
u2 and u3. Let me define that u1 has genes with functional annotations v1,
v2, and v3. Taxon u2 has the same annotations as taxon u1. Taxon u3 has
annotations v3 and v4. Three representations of the same graph: (a) edge
list format (taxon-function labels from every CDS across all genomes), (b)
adjacency list format (every genome and its functional annotation labels),
and (c) the bipartite graph itself.

For multilabel sequences, meaning a sequence from a single CDS which was assigned

to more than one function, an edge was created between the taxon node and each of

the gene functions (Figure 5.3). Eggnog had no multilabel hits, whilst the KEGG and

Subsystems networks had 13,168,921 and 297,145 respectively; in the case of KEGG,

multilabel sequences could include hits to 3 or even 4 functional tags per sequence.

taxa

genes

taxa

genes

(a) (b)

Figure 5.3: The effect of multilabel genes: each plot shows the bipartite graph as-
sociated with a single CDS. (a) depicts Eggnog, which has no multilabel
sequences; each CDS is associated with a taxon and a single gene. (b)
shows an example from KEGG, for which one CDS may create hits to one
or more functional labels.

Whilst I obtained the edge weight information, indicative of gene copy numbers, all

analyses were undertaken on the binarised (unweighted) network. This is for several

reasons: gene copy numbers in prokaryotes are unlikely to be consistent when con-

sidering the same species in different locations or at different times [216]; conclusions
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drawn from an analysis which is sensitive to weighting may therefore be spurious; and

results are less likely to be generalisable than the presence-absence case. Furthermore,

it is often algorithmically simpler or computationally less intensive to study the un-

weighted case. With the large dimensionality of the reference and empirical networks,

this becomes a reasonable consideration given that there is not biological value added

by studying the weighted system. Hence, I introduce an additional representation for

the bipartite graph with the m×n biadjacency matrix B, where m taxa are assigned to

rows and n genes to columns. As I am working with presence-absence of genes rather

than copy numbers, this is a binary matrix where the presence of an edge between a

taxon and a gene is indicated by ones as follows,

B =


1 1 1 0

1 1 1 0

0 0 1 1

 ,
and B shows the same ‘taxa’ and ‘genes’ as shown in Figure 5.2.

In Table 5.4, the basic network statistics for the different annotation systems may

be seen. Note that although KEGG covers significantly fewer genes across the taxa

than the other annotation systems, there are more links in the network. This is because

of the larger proportion of multilabel sequences with KEGG, which results in a denser

network despite there being fewer matches from the original gene set. There were

also some genomes which returned no functional hits in the subsystems-built network,

leading to 27,263 rather than 28,439 taxa for the top node set.

Table 5.4: Basic network statistics for different annotation systems (unweighted net-
work).

Annotation system Number of taxa Number of genes Number of links

Eggnog 28,439 30,208 41, 730, 591
Subsystems 27,263 12,479 33, 506, 568

KEGG 28,439 12,712 45, 203, 803

Figure 5.5 shows the degree distributions are broadly similar for each of the net-

works. The taxa degree distribution - or number of unique gene annotations per taxon

- correlates to the genome size distribution [217]. However, my use of unweighted net-

works means that the total gene counts are slightly below other values in the literature

which have been studied in other contexts [217]. The fact that fewer genes were able
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to be annotated with KEGG is offset by the high number of multilabel sequences,

which shifts the center of the distribution rightward. The taxa degree distributions

are approximately Gaussian. Although the distributions display some spikes, they are

unimodal rather than bimodal as has observed within genome size distributions taken

from highly redundant databases, implying that the previously observed bimodality

may be an artefact of biased databass [218]. However, the gene distributions are heavy

tailed. This indicates that the most ‘common’ type of gene is associated with rare pro-

teins found in fewer than 30 taxa within the database, with 27.9%, 23.0% and 26.5%

of functions falling into this category for the Eggnog, Subsystems and KEGG networks

respectively. Conversely, there are comparatively few functions which are highly pre-

valent, with 1.2%, 3.5% and 4.5% of functions present in 70% or more of taxa for

the Eggnog, Subsystems and KEGG networks respectively. The high degree nodes are

for ubiquitous core functions such as those necessary for cellular replication, and they

create large hubs with high connectivity within the network. If this gene degree dis-

tribution is also observed in the networks of environmental microbiomes, which prior

work suggests is possible [192], it may be that graph based methods are particularly

suited toward studying their compositions. This is because network-based analyses are

able to distinguish ubiquity - or node degree - from importance. I may thus ascertain

how the significant diversity contained within less common functions are distributed

amongst taxa and begin to elucidate the associations between taxonomic diversity and

ecosystem function [186].

5.4 Network structure

5.4.1 Network heatmaps

In Figure 5.6, I present exploratory visualisations of the biadjacency matrices to assess

whether there may be large level organisational features that are immediately evident

within the networks. These were constructed by sorting the rows (taxa) in phylogenetic

order, and sorting the columns (genes) automatically by calculating their pairwise

Jaccard distances and creating a dendrogram with Ward clustering. Again, the Eggnog,

KEGG and Subsystems based networks are qualitatively similar.
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Figure 5.5: Degree distributions for reference network constructed from different an-
notation systems. Top row shows taxa distributions, bottom row gene
distributions.

Blocks of ‘common’ functions cover approximately 10% of the columns, and there

are clear modular elements indicated by the blocks which are only present in certain

phyla or groups of taxa. This shows the presence of local structures within the network

potentially relating to niche functionality. In turn, this indicates a need for at least one

analytic strategy to identify the presence of small scale structures which, in a biological

context, indicate a group of redundant functions shared between metabolically similar

taxa.

The Eggnog-built network has a larger proportion of rare genes - present in < 30

taxa - than the other annotation systems. It should be noted that my threshold for

defining rare (or housekeeping) genes is arbitrary, however altering the values does not

qualitatively impact any of the results discussed in this chapter. In Figure 5.7, I break

down the Subsystems biadjacency to see whether genes grouped together at the top

level of the ontology (‘Superclass’) appear to have similar proportions of housekeeping

or niche genes. Whilst there are differences in the number of genes in each of the

superclasses, there are not obvious differences between the categories; all have genes

which are ubiquitous, rare, and contain blocks or patches indicative of genes unique

to particular phyla or taxonomic group. However, there may be differences at lower
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(a)

(b)

(c)

Figure 5.6: Biadjacency matrices for the three different annotation systems. The rows
(taxa) are sorted in phylogenetic order, and the columns (genes) were sorted
using Ward clustering based on pairwise Jaccard distances between the
genes. (a) shows the Eggnog network, (b) shows the Subsystems network,
and (c) shows KEGG.

levels of the protein ontology. I next move beyond descriptive methods to examine this

question in more detail, with the aim of disentangling the contributions of different

gene types to quantify how metabolic niches are distributed through the network and

relate to large scale organisation within the system.
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Figure 5.7: Heatmaps of the subsystems biadjacency matrix, broken down by Super-
class gene categories.

5.4.2 Spectral properties of the reference network

To interrogate some of the structural features I qualitatively described in the biadja-

cency heatmaps (Figures 5.6 and 5.7), I examine the spectral properties of the network.

This is achieved by applying singular value decomposition (SVD) to the three biad-

jacency matrices from the different annotation systems. To prevent the housekeeping

genes from masking contributions from other rarer genes, I take biadjacency B, trans-
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form each column (gene) to have zero mean and unit variance, and then factor the

matrix using SVD via

B∗ = UΣV T , (5.1)

where B∗ is the standardised biadjacency, Σ is a diagonal matrix with singular values σ

along the diagonal, and U and V contain the left and right singular vectors respectively.

Spectral gaps are evident in the histograms of the first 1,000 singular values of

the biadjacency matrices of the Eggnog, KEGG and Subsystems built networks (Fig-

ure 5.8). The bulk of the singular values are trending toward zero, but for each of

the annotation systems, approximately 15 are significantly larger. This aligns with

well-known graph theoretic results used in spectral clustering, where the bulk of the

spectrum lies within a semicircle around zero, and the magnitude of one or more eigen-

values associated with topologically important community structures is significantly

greater and sits outside of the semicircle [219].

Figure 5.8: The first 1,000 singular values for each network built from different annota-
tion methods.

The singular value distributions imply that principal components (PCs) which are

larger than the bulk of the spectra - being the first 15 PCs in this instance - may

capture the macro structures in the network I wish to identify. Using the Eggnog

network, as it has the best sequence coverage, I test whether there is large level com-

munity organisation by doing a PCA on the taxa and plotting the first two components

(Figure 5.9a). The grouping of similar colours (and therefore species, see figure cap-

tion) indicates that although they capture just 4.5% of the variance, there does appear

to be a signal grouping the taxa which correlates to their phylogeny. I next apply

tSNE (t-distributed stochastic neighbor embedding) to the first 15 principal compon-

ents (Figure 5.9b), where clearer clustering and delineation of the different phylogenetic
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groups may be observed. It is to be emphasised that the goal of this analysis was not

to do a dimension reduction, but to test the hypothesis that the top 15 PCs on the

genes would generate clearly defined communities as suggested by the singular value

distributions; furthermore, whether these may cluster by taxonomy as implied by the

modular elements in the heatmaps, or another underlying property of the networks.

The near-perfect partitioning across phylogenetic groups indicates that niche or taxa-

group specific genes are a critical structural component of the network, despite the fact

they make up a relatively small proportion of nodes.

Whilst this is an intuitive result, to the best of my knowledge, this is the first

time that large scale metabolic organisation across the prokaryotic phylogenetic tree

has been quantified in this fashion. Genome-gene family networks use homology alone,

which will track with phylogeny as an immediate result due to its grounding in se-

quence similarity [200, 206]. Alternately, researchers have used a proxy such as growth

rate to partition a community under the assumption it is reflective of overall metabolic

similarity between organisms [220]; other approaches in phylogenomics use pairwise

sequence similarity between marker genes (not all genes), which are then clustered us-

ing dendrograms [221]. These methods are all significantly more involved than matrix

decomposition, either from the perspective of experimental investment or computa-

tional cost. Furthermore, whilst homology-driven approaches will recover a strong

phylogenetic signal, non-homologous genes may share an identical functional annota-

tion [209]. Whilst it is true that homology and function are correlated, as my focus

is ecosystem functionality, confirming that - for example - metabolic generalists can

clearly be distinguished is an informative result: indeed Figure 5.9b does reveal a very

small proportion of taxa sitting in different taxonomic groups to expectation. However,

the strong clustering signal overall indicates the presence of well defined communities

within the taxa-gene network, captured by relatively few PCs, which is reflective of

metabolic organisation in the tree of life mirroring the phylogeny. The Subsystems and

KEGG derived networks produce equivalent results - PCA and tSNE plots undertaken

on those networks may may be seen in Appendix C.

Next, I assess whether the top principal components are weighted toward specific

types of functions, or whether the weights are distributed evenly amongst all functional

categories. This allows me to determine which types of genes contribute to the high
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(a)

(b)

Figure 5.9: Taxa after clustering on up to 15 PCs of the biadjacency matrix. Colour is
set using continuous colourmap applied to all 28,439 taxa in phylogenetic
order; that is, closely related taxa will have similar colours. (a)PCA applied
to the taxa. (b) tSNE applied to the taxa’s first 15 principal components,
using a perplexity value of 80.

level organisation in the network, and thus drive the large scale variance within the

prokaryotic tree of life. The lack of a hierarchy in Eggnog means I am unable to

group the genes in that network in any way. The KEGG hierarchy has 4 labels for the

first level and >300 labels for the second. These are few and too many categories to

form useful summaries respectively; with 4 categories, there is not enough definition to
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separate the functional groups, but with >300 there are too many to identify macro

patterns in the data. This issue is compounded by a highly uneven distribution of

genes between the labels, meaning that it would be difficult to interpret results from

the KEGG-derived network. However, the Subsytems network is ideal to use in this

setting. The Class level of the ontology has 33 labels, allowing the 12,479 genes to be

grouped into these higher level bins for assessment.

Figure 5.10 shows the distribution of the scores within the eigenvectors of the first

15 principal components. As the x and y axes have the same limits, it is possible

to see that whilst each eigenvector contains a Laplacian-type distribution around the

centre (at 0), there are still substantial differences between their distributions. For

example, the eigenvectors for PC3 and PC13 show skewness in the opposite direction

to those of PC9 and PC10. The distribution associated with PC4 has two groups

situated on either side of a central peak, a characteristic feature of stochastic block

models. Similar, albeit of smaller magnitude, signals may be seen in the eigenvectors

of most of the top PCs. The tails and gaps in these histograms are consistent with

the features I would expect in the distributions given the clear clustering within Figure

5.9. To interrogate this further and identify which types of genes from each PC drive

the large scale network structure, I extracted the highest scoring genes (top 100 and

bottom 100) from eigenvectors 1-8; these were aggregated by class and are plotted in

Figures 5.11 and 5.12.
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Figure 5.10: Distribution of component scores from the first 15 principal components
(subsystems network).
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The breakdown of these eigenvectors (Figures 5.11, 5.12) shows that certain groups

are heavily over- (or under-) represented within the top scoring genes2. PC1’s eigen-

vector is heavily over-represented by protein synthesis, which encompasses the univer-

sal functions associated with ribosomes, tRNA synethases, and translation. However,

there are low quantities of almost all other classes associated with PC1. To check

whether PC1 would not only be weighted towards protein synthesis, but also the most

abundant (and housekeeping) genes, I constructed a binary vector a, where each gene

j was assigned 1 or 0 according to the following rule:

aj =

{
1, if dj > 10905

0, otherwise,
(5.2)

and dj is the degree of that gene’s node. By taking the dot product of a with the top

principal components, I may determine which PC is associated with the housekeeping

or highly abundant genes. Irrespective of the (reasonable) threshold I assigned to

define an abundant function - beginning at 10905 in Equation 5.2 corresponding to a

saturation of 40% and rising to saturation thresholds of 70% - PC1 was the top scoring

component (Table 5.13).

Table 5.13: Dot product between a binary vector indicating the presence of a ‘house-
keeping’ or highly abundant gene and the top 8 eigenvectors, under differ-
ent thresholds for defining a housekeeping gene (total saturation amongst
taxa). Higher values indicate that the eigenvector associated with that
principal component is more strongly weighted towards the abundant
genes.

Saturation Threshold 40% 50% 60% 70%

PC1 15.16 11.24 8.32 6.11
PC2 8.55 5.93 4.25 2.84
PC3 10.14 7.99 6.38 5.05
PC4 8.85 7.14 6.07 5.12
PC5 8.27 6.30 4.76 3.39
PC6 8.41 6.60 5.08 3.66
PC7 5.10 3.49 2.33 1.37
PC8 4.15 2.67 1.77 1.03

The vector for PC2 displays a larger mix of strongly contributing classes, yet those

for PC3 and PC4 also both had an over-representation of protein synthesis. Positive

weights for cell type differentiation - predominantly sporulation related genes - and

negative weights on protein synthesis were evident in the loadings for PC4. The niche-

2 I note for the reader that the classes in Figures 5.11 and 5.12 have been coloured and sorted by
their average entropy, which I cover in the next section.
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specific genes associated with photosynthesis were strong contributors to PC6 and PC7

despite being comparatively rare (0.8%). I note that ubiquitous functions such as those

involved in membrane transport (11.1% of functions) were not strong contributors to

the top principal components. Indeed, the top contributors to the PCs were not correl-

ated to the prevalence of those functional classes in the network, nor to the density of

the genes amongst the taxa, indicating that certain types of genes contain more inform-

ation about taxonomy than others. This is not surprising from a biological standpoint,

but the fact that such a large amount of information is contained in comparatively

few PCs, and that certain functional groups are heavily over represented in the top

principal components suggest that critical elements of network organisation may be

dominated by a small minority of functions.

To assess which gene classes were driving the community partitions seen in Figure

5.9b’s tSNE, I performed k-means clustering on all of the genes within the top 15

PCs (Figure 5.14). Whilst the bar plots in Figures 5.11 and 5.12 provide a general

overview of how the first 8 eigenvectors weight the genes in order to partition taxa

along its own axis, applying k-means reveals how the linear combinations of these

vectors are realised in the full vector space. By clustering the matrix formed by the

first 15 vectors of V , it is possible to determine which genes are located together in the

embedding space, informing me which gene categories drive the clustering effects seen

in the PCA and tSNE plots in Figure 5.9. This consequently reveals which elements of

functional diversity are the strongest contributors to taxonomic community structure

in the network, and may reveal elements in the reference network which would drive

environmental filtering in community assembly processes [194]. These results are shown

in Figure 5.14.
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It is evident that the majority of genes are grouped within a large cluster (Cluster

2, with 8,321 genes), which is also relatively uniformly distributed across the different

gene categories. Similar to the patterns seen in the top gene weights from the eigen-

vectors, photosynthesis (Cluster 7), respiration (Cluster 5), protein synthesis (Cluster

6), RNA processing (Cluster 6), and cell type differentiation (Cluster 3) are dominant.

However, from this analysis it is evident there is also a strong signal resulting from

from the class of prophages, plasmids and transposable elements (Cluster 1). It ap-

pears that a small number of classes - just 6 to 8 out of 33 - are key to the separation

of taxa in the embedding space. Furthermore, these categories are over-represented in

isolation within half of the clusters rather than being present in combination with the

other dominant classes. This indicates that suites of genes involved in highly specific

functional processes, such as photosynthesis, play a key role in splitting the taxonomic

groups (see Clusters 3, 5, 6, and 7) as well as more complex combinations of different

classes (see Clusters 1,4 and 8).

Next, I examine whether it is the common or rare genes which are driving these ef-

fects. This is achieved by constructing 8 binary vectors of length 12, 479, {v1,v2, ...,v8},

to represent the presence (or absence) of genes in each of the 8 clusters. For example,

if a gene belongs to Cluster 1, the value at that gene’s index would be 1 within the first

vector, and 0 in the other 7 vectors. Generalising this principle, I may assign entry vj

for gene j in vector vn as follows:

vj =

{
1, if j ∈ cluster n

0, otherwise.
(5.3)

Note that k-means places each gene in exactly one cluster, meaning that the non-

zero indices from each vn form disjoint sets. Using these vectors, I may assess which

clusters the ubiquitous genes fall into by taking their dot products with another vector

a which encodes the abundant genes. I create this vector by assigning a value of 1 for

all genes j which are present in 10905 (> 40%) of taxa, and 0 for those which are not,

so

aj =

{
1, if dj > 10, 905

0, otherwise,
(5.4)

where dj is the degree of gene j. I may also use the same method to determine
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which clusters the very rare genes (present in < 30 taxa) were assigned to. In this case,

I construct vector r by applying my binarising threshold to have a value of 1 for genes

with a degree of less than 30, and 0 otherwise,

rj =

{
1, if dj < 30

0, otherwise.
(5.5)

These results may be seen in Table 5.15.

Table 5.15: Ubiquity and rarity of genes in clusters. Common genes are defined as
being present in 10,905 (> 40%) of species, and rare genes present in < 30
species.

Cluster 1 2 3 4 5 6 7 8

Common 0 778 3 0 0 0 0 204
Rare 36 2780 5 28 14 0 0 2

The largest cluster, 2, contained the greatest number of both the rarest and most

common genes; even when accounting for the size of the cluster, over a third of the

genes have an intersection with r or a, a far larger proportion than for the other

clusters. Nearly all other remaining genes from the abundant category were found

in Cluster 8 (the second largest), which also displayed a more even representation

and distribution of classes than the other clusters. Crucially, Cluster 2 is the group

centred closest to zero, meaning that that abundant or rare genes do not strongly

contribute to the distinguishing features of the taxa in the embedding space. It is

also possible to interpret Table 5.15 in conjunction with the histograms in Figure 5.10.

The peaks which are situated around zero contain the bulk of the abundant and rare

genes (seen in Cluster 2, and to some extent Cluster 8). Next, I consider the left- and

rightmost extremes of the distributions, especially where there is a high variance, or

there are gaps between the main distribution and small groups of genes; these contain

the biggest contributors to clusters 3 through to 7 and drive the separation of taxa in

the embedded space. This is not only biologically reasonable - after all, if a gene is

present everywhere, it is not taxonomically informative - but also indicates that the low

to medium saturation genes are partitioning the taxa. This result may be of interest

to those researching gene-gene family networks, their projections, or their similarity

matrices, to assist with feature selection to resolve challenges with combinatorics and

thresholding [201, 204]. Similarly, the fact that the taxonomic signal was maximised by
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strong weights on a small proportion of functions may assist in simplifying statistical or

modelling methods in microbial ecology by reducing the number of variables necessary

to capture the majority of system variance [147, 190]. Without the paired taxa-function

distribution, this cannot be quantified without relying on simulation [194]. Finally,

this result implies that mean-field network metrics, such as nestedness, may need to

be treated with caution in microbial taxa-function networks, as these low or medium

saturation functions would make only a small contribution to the statistic and it may

miss key biological detail [186, 222]. I now quantify whether these ‘informative’ (or

other) functional categories are grouped tightly within phylogenetic bins, scattered

across the complete graph, or a combination of both.

5.4.3 Node Entropy

A prevailing challenge in unravelling taxa-function relationships is that the same level

of functional redundancy in a natural system may arise from contributions from closely

or distantly related microbes [194, 223]. Network methods are ideally suited to resolve

these difficulties as they are able to define abundance (degree) as well as network dis-

tribution (relatedness) [204]. To examine how strongly different types of genes are

associated with specific communities within the network, I calculate their entropy. En-

tropy on graphs is classically defined to measure the overall complexity of the network,

and is notoriously challenging to implement for large networks as it is an NP-hard

problem [224]. In this setting, my focus is not to find the overall complexity measure

for the network itself, but to establish whether certain nodes (genes) are decentralised

and non-taxon specific, or are strongly associated with a community. Local entropy

measures defined for vertices often assign the probability distribution based on node

degree [224]. The difficulty with that approach is that unless the node degree is very

high, it does not indicate how widely a particular function is distributed amongst the

taxa. To resolve this issue in the context of my phylogeny, I define a form of Shannon

entropy for the nodes of bipartite graph B, where the entropy of a node vj in the

bottom (gene) set is given by

Sj = −
∑
i

pilog(pi). (5.6)
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In Equation 5.6, if I consider node vj as a column from the biadjacency matrix, each pi

is calculated within a bin (a series of rows) defined by the GTDB phylogeny. I may then

calculate entropy of a gene at different phylogenetic levels, from phylum down to order

(at the genus level there are too few taxa per group for the metric to be meaningful).

To illustrate the method, I have a column vector representing a hypothetical gene

in the biadjacency matrix,

[ 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1 ]T ,

with 3 phylogenetic bins assigned as

[ 1, 0, 1 | 1, 0, 0, 1 | 0, 1, 1, 0, 0, 1 ]T . (5.7)

I may apply (5.6) to (5.7) by taking the sum of the counts in each bin and converting

to probabilities:

[ 2/7 | 2/7 | 3/7 ]T . (5.8)

The gene entropy in this case would be S = −2/7 · log(2/7)− 2/7 · log(2/7)− 3/7 · log(3/7).

Before applying Equation 5.6 to the network, there are several considerations to take

into account. Firstly, I exclude genes which are present in > 70% of the taxa, and set

a minimum degree of 8 for the genes. This is because genes present in almost all taxa

or extremely rare genes are not informative regarding community structure, having

very high and very low entropy respectively by default. For each gene remaining,

I calculate a randomised entropy Sr by shuffling the gene rows and normalise the

entropy S against its random baseline: Ṡ = S/Sr. This allows me to establish the

deviations from a random network; that is, which classes are more tightly clustered

within a community than would be expected by chance. It is also necessary to correct

for the gene degree - higher degree would bias the scores upward. One strategy to

manage that bias may be to apply a subsampling bootstrap where I select n rows per

gene. This would mitigate the discrepancy between high saturation and low saturation

genes. However, this process was extremely computationally intensive and required

a minimum degree threshold that was higher than desirable. I found that applying a

weighted mean per class performed equivalently to a subsampling boostrap whilst being

orders of magnitude faster and less restricted by minimum thresholds. The weighted
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mean is given by

S̄ =

Ṡ1
d1

+ Ṡ2
d2

+ ...+ Ṡn
dn

1
d1

+ 1
d2

+ ...+ 1
dn

, (5.9)

where dj is the degree of gene node j, and the n genes are aggregated by their ontology

labels.

The final correction I made was to account for the imbalances in the size of the

phylogenetic bins. For example, the largest phylum is Proteobacteria, with 8,882 spe-

cies; however there are multiple phyla with fewer than 5 species. This bias needs to

be addressed, otherwise genes falling within Proteobacteria will always have a larger

discrepancy from the random baseline and skew the results. To resolve this issue, I

use a subsampling bootstrap. Taxonomic bins with fewer than 3 species were excluded

from the analysis, and I randomly sampled 3 taxa, or rows of the biadjacency, from

each phylogenetic bin for the bootstrap. I then calculated the average entropy per class

for 1000 bootstrapped networks, producing a distribution of means.

To confirm that the entropy scores were not trivially correlated to the node degrees

I plot the entropy score against the node degree (Figure 5.16). Although an upper

and lower bound of values is apparent, corresponding to the minimum and maximum

possible number of values falling within bins across the network, there is a wide spread

of datapoints within the envelope.

A boxplot of the entropy distributions at the order level may be seen in Figure

5.17 (refer to Appendix D for plots at different phylogenetic levels). Consistent with

prior work, I observe the lowest entropy ratios (highest specificity) in niche related genes

such as photosynthesis and photosynthesis-related genes (respiration), as well as protein

synthesis (encompassing ribosomes3). In addition, the highest entropy ratios - which

fall close to randomly distributed - are seen in genes associated with ‘experimental

subsystems’ (CRISPR), as well as transposable elements, phages and plasmids.

3 Note that species specificity at the lowest functional level does not preclude the class level of the
ontology from being ubiquitous.
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Figure 5.16: Entropy vs. degree for 500 bootstrapped networks. The average entropy
versus the average number of node degrees for each taxa. The distribution
indicates that there is a minimal possible entropy ratio close to the upper
limit of 1. The hyperbolic lower envelope of the points shows the function
for the lower limit of the relationship, i.e. how low the entropy ratio can go
as a degrees increase. The concentration of points toward the upper right
corner indicates that saturation of a function is so high that shuffling has
negligible impact. If the entropy ratio was a simple correlation to node
degree the points would be distributed along the bottom portion of the
triangle.
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My entropy results reproduce previous findings from phylogenetic-based approaches.

The groups of genes with the lowest entropy scores, in network terms considered as

strongly modular and in biological terms niche associated, match those identified as

having low homoplasy (or ‘phylogenetic patchiness’) in [209], such as photosynthesis

and ribsomes. This is further supported by the general correlation of low entropy genes

with those which play the biggest role in separating the taxa in the embedding space

in the top PCs. Conversely, high homoplasy results were seen in [209] for viral (phage)

proteins for which I observed extremely high entropy, and almost no contributions

to the ‘informative’ taxa in the top principal components of the network. The other

high entropy gene groups, including CRISPR, plasmids, and secondary metabolism,

are associated with HGT, and the sporadic distribution of them throughout the phylo-

genetic tree is attributed to them being shared through lateral transfer processes rather

than being vertically transmitted [169, 200, 209]. These results, in conjunction with

the SVD analysis, reveal that large scale metabolic organisation across the prokaryotic

tree of life occurs through a relatively small proportion of low saturation, strongly niche

associated functions.

5.5 Conclusions

By creating a binary network encoding of the prokaryotic tree of life, I provide a rep-

resentation of the system which is less information-dense than nucleic or amino acid

sequences. This allows me to include all genes, rather than marker genes alone, to

examine the distribution of metabolism across taxa [190, 221]. My results show that

a significant amount of biological detail is recoverable and it is possible to capture

the large scale distributions of how functions are shared amongst taxa. Whilst some

spectral methods, such as PCA, are routine in microbial ecology, to the best of my

knowledge, they have never been utilised in the study of bipartite networks to inter-

rogate their structures. In assessing the properties of the first 15 eigenvectors in the

context of a gene ontology, it was surprising to find that individual functional classes

were so clearly delineated in the embedding space. In the top 15 eigenvectors, 8,321

genes - equivalent to 66.7% - were close to zero in the vector space, and most of the

remainder clustered specifically within a single Class in their PC within the gene on-
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tology. This indicates that the taxonomic signal was maximised by strong weights on

a small proportion of genes; building upon observations from prior ecological research,

the result highlights the importance of metabolic niches in the graph structure [186].

Network-based methods examining gene sharing between organisms - whether based

on a bipartite or sequence similarity alone - has generally used descriptive or similarity

based methods, centrality statistics or community detection algorithms [200, 206, 207].

However, I found it was possible to reproduce results from the largest phylogeny-

metabolism study to date through a combination of linear algebra and Shannon en-

tropy alone [209]. The large scale structure in the network, which created a strong

phylogenetic clustering signal, had minimal contribution from HGT associated groups;

rather, the contributions appeared to be from functional categories which would involve

suites of genes contributing to ecological (or phylogenetic) niche associated metabolic

pathways. Previous network-based methods to identify HGT genes have either relied

on constructing the network with both prokaryotic genomes and mobile element gen-

omes explicitly and then measuring overlap or finding communities [205, 225, 226], or

using an observational approach in combination with bioinformatics-based validation

[207]. It is encouraging that my gene-taxa network topology alone is able to reproduce

the results, although I provide some caveats to how generalisable this approach may

be. Firstly, as far as I am aware, this network is the largest of this type ever assembled

across extremely diverse genomes, allowing me to create a large number of bins for the

calculations; it may otherwise be difficult obtain a random baseline without modifying

the method. Secondly, I was not aiming to identify the likelihood an extremely rare

gene may be associated with HGT; my binning strategy relies on a gene being abund-

ant enough for its presence or absence in a bin to provide a meaningful signal. Finally,

whilst it would not necessarily preclude replication, my use of a dereplicated taxonomy

with significant numbers of genomes allowed for an information-rich bootstrap which

I caution may otherwise simply reinforce whichever biases are present in a starting

database. Despite these caveats, the entropy and SVD results indicate that different

gene types display fundamentally different distributions throughout the graph and thus

the tree of life, highlighting that it is unlikely to be reasonable to treat each node in

taxa-function networks interchangeably.

In summary, through interrogation of a paired taxa-function network distribution, I
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have uncovered key topological properties of the prokaryotic tree of life. These include

a heavy tailed functional degree distribution combined with local structures generated

by suites of niche-associated genes, which in turn drive critical large scale organisation

in the system. Functions which are highly diffuse and spread throughout the graph are

found to be uninformative with respect to taxonomy, but are identified as belonging

to HGT-associated processes. These results highlight the utility of network methods

in examining paired taxa-function relationships in microbial systems, and show that

there is - for the first time - quantified taxonomic organisation with respect to ecosystem

function for the most diverse living organisms in the biosphere.



Chapter 6

A universal functional topology

in microbial systems

A fundamental challenge facing microbial ecology is unraveling the assembly processes

and mechanisms which drive community structure and stability. Here, I introduce

a novel network-based framework to examine the shared distribution of functions

amongst taxa, allowing the investigation of the redundancy properties of different meta-

bolic processes in microbial communities. I demonstrate that there is a universal taxa-

function structure across real-world microbiomes which would facilitate horizontal gene

transfer and thus strengthen community stability and resilience. My findings provide

new insight into the relationship between taxonomic diversity and ecosystem function

through a novel quantification of redundancy structures within microbial systems.

6.1 Motivation

Microbiomes are highly dynamic and undergo continual species turnover, yet at a com-

munity level, there are highly conserved functional profiles [123, 148]. Although there

is broad consensus that this stability is likely indicative of universal assembly rules,

mechanisms have remained elusive, in part due to a lack of an analysis framework that

explicitly links taxonomic and functional profiles [123, 153, 227]. The high diversity of

microbiomes means that organisms are subject to continual competitive pressure, and

how functionality is shared across the community is likely to play a profound role for

80
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species and community level success and survival. For individual microbes, a smaller

cell size frequently confers a fitness advantage, with decreased costs of cellular replica-

tion leading to increased competitive success [163]; the active reduction of a microor-

ganism’s cellular size achieved through the pruning of extraneous genes and metabolic

pathways is termed streamlining. The low-cost replication benefits of streamlining are

offset by the need to mitigate against transient stressors, ranging from phage attack,

allelopathic warfare, anthropogenically induced antibiotic pressure, or fluctuations in

the physical or chemical environment such as temperature or pH [138, 228]. Thus, at

a community level, tradeoffs between retaining survival-oriented metabolic potential

and reducing cell size could theoretically be optimised through exploiting the plastic

nature of prokaryotic genomes. Horizontal gene transfer (HGT) confers the ability

for microbes to share DNA, and typically occurs between closely related organisms or

those within an ecological niche [170–172]. In the event of environmental disruption,

the community floods the environment with extracellular DNA, allowing organisms

lacking a particular stress response gene to source it from peers and integrate it into

their genomes, increasing the likelihood of survival and stabilising the community [168].

Indeed, a function may not need to be highly redundant for the community to be re-

silient against an associated stressor: provided it is present across a suitably diverse

cross section of the community, HGT provides the potential for a gene to be readily

accessible should it be required. Here, through analysing sequencing data from natural

communities with network-based methods, I uncover the taxa-function landscape and

reveal quantitative differences between the distributions of functions associated with

metabolic or ecological niches and those with genome editing, phages and extracellular

DNA.

6.2 Data methods

6.2.1 Data sourcing

To investigate joint taxa-function distributions in real-world microbial communities,

I sourced shotgun WGS data from 5 of the earth’s major biomes, including three

free-living environments, encompassing soil, open water marine, and freshwater, and

two host-associated biomes with data from the human gut and rhizosphere. I sourced
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20-80 samples per biome, distributed around the globe, to ensure a spread of data

inclusive of global diversity patterns. The data were downloaded from NCBI’s sequence

read archive (SRA) [229]. Where possible, I used sequencing data from high quality

consortium studies, including Tara Oceans [148], the human microbiome project [230],

and global soil surveys [177, 185]. Otherwise, I used NCBI project summary abstracts

to determine the environmental source of the data. I chose samples with more than 1

million raw paired reads and downloaded the data using fastq-dump.2.9.2, discarding

technical and the first 10,000 reads for quality control reasons. A maximum of 5 million

reads per sample were taken to keep a consistent sequencing depth. A summary of the

sample data may be seen in Table 6.3, and a map showing the locations of the samples

and their associated biomes may be seen in Figure 6.1. A list of SRA Accession IDs

and their associated biomes may be seen in Appendix E.

Figure 6.1: Global map showing locations of samples and their associated biomes.

6.2.2 Bioinformatics and network construction

As within Chapter 5, a network representation of the community is used to study the

taxa-function structure of microbiomes. However, constructing a bipartite network

from shotgun WGS data poses bioinformatics challenges. As soon as sequences are

assembled for functional annotation, they require alignment against some form of ref-

erence database for classification. If certain species or clades are over-represented in

the chosen database, there is a chance for multiple misassignments to closely related
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species which would in turn bias the network statistics. It is unfortunately not possible

to completely eliminate these biases. However, they can be mitigated by the use of

a dereplicated database such as the taxonomically balanced GTDB reference genome

set. This ensures that any biases present will be minimised, and scale consistently and

proportionally with diversity patterns in the samples, allowing a fair comparison of

results across biomes when searching for common patterns [119, 209].

To create per-read taxa and function labels for the shotgun WGS data, I used the

software k-SLAM, which permits the use of a custom reference genome database, for

which I use GTDB [119, 231]. To place the data in a k-SLAM compatible format, I

created custom names.dmp and nodes.dmp files, equivalent to those found in NCBI’s

genbank summaries, to pass taxa IDs and phylogeny from the GTDB taxonomy to k-

SLAM [119, 231]. It was not possible to use NCBI taxa accessions as some assignments

differed from GTDB [119]; for example, taxa designated as two species in GTDB may

have been categorised as a single species within the NCBI taxonomy or vice-versa.

Finally, I provided the genbank (.gbk) format files generated by Prokka as described

in Section 5.2 [212], along with custom taxonomy files, to k-SLAM’s database build

function, which creates a serialised database to use for WGS sample classification.

For sequence classification, k-SLAM uses a heuristic to decrease the computational

cost of sequence assembly. It firstly uses k-mers for lowest common ancestor taxonomic

assignment. Because this step bins the reads, assembly occurs within a smaller search

space and therefore at reduced computational expense. These assembled reads may

then be then aligned. Due to the assembly, it is possible to get accurate species-level

assignments for a significantly higher portion of the data than would usually be possible

using k-mer based methods [231]. Furthermore, because the alignment data to gene

loci is returned, it is possible to map the assembled reads back to their functional

annotations, giving me the taxonomic and functional labels for each read, which in

turn form the basis for network construction. This moves beyond previous research by

explicitly pairing the taxa and functional data in the sample instead of inferring genes

and functions based on taxonomy alone, or being constrained to examining the most

abundant taxa and functions in isolation [153, 192–194].
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6.3 Network methods and results

The WGS samples were processed using cloud computing (Amazon EC2) and cluster

computing servers with the default parameter settings in k-SLAM, and then cross-

referenced hits to gene loci against Eggnog, Subsystems and KEGG gene annotations

from Section 5.2 to create network edgelists of taxa ID and function ID.

6.3.1 Overview

To ensure there are not obvious artefacts or errors arising from the bioinformatics

pipeline that may lead to biases in the resulting networks, I examine summaries of the

sequencing statistics. Figure 6.2 shows the distributions for the proportion of reads

mapped to species-level taxonomy and proportion which received functional assign-

ments (i.e are included in the network edge list) for the 248 WGS samples. Table

6.3 provides averages for these classifications broken down by biome and annotation

system.

Table 6.3: Summary of WGS samples and classification information by biome.

Biome No. samples Avg. sequences
classified

Avg. prop. at
species level

Avg. prop. to networks:
Eggnog/Subsystems/KEGG

Human gut 46 3.1E6 ± 1.2E6 96.5 61.6 / 51.2 / 43.2
Soil 83 4.4E5 ± 3.3E5 76.8 43.7 / 36.9 / 33.4

Rhizosphere 23 9.16E5 ± 2.5E5 70.0 48.2 / 41.6 / 38. 0
Marine 60 1.5E6 ± 2.9E5 91.4 63.6 / 56.1 / 51.5

Freshwater 34 9.0E5 ± 6.1E5 84.1 52.4/ 46.1 / 41.2

The bimodality in the proportion of reads mapped to species assigments (Figure

6.2) is due to lower proportions of classified reads in soil data than in other biomes

(Table 6.3). The gut samples have the highest share of reads mapped to taxa and func-

Figure 6.2: Proportion of reads mapped to network under different annotation schemes.
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tion, followed by those taken from marine systems. This may be explained by historic

sequencing practices and the diversity of the samples. Species-level (and functional) as-

signments rely upon assembly, and the probabilistic capacity for this to occur decreases

with higher diversity, an issue which would be further exacerbated by high numbers

of novel sequences. Multiple years of deep sequencing effort within gut and marine

biomes, together with lower diversity, means that it is likely most of the functional

diversity in those environments has been identified [148, 186]. Conversely, the highly

diverse soil and rhizosphere biomes, which also have the lowest proportion of mapped

reads, have only been recently prioritised for global deep sequencing exploration, in-

creasing the probability that any given sequence in a sample is unknown [177, 185].

This discrepancy will resolve itself over time as additional sequencing is undertaken in

these biomes and coverage improves in the databases. The differences in network cover-

age between Eggnog, KEGG and Subsystems annotations is consistent with the results

seen in the reference genome network (Table 5.1). This suggests that the software is

returning functional annotation hits in a comparatively unbiased fashion, matching the

functional degree distributions in Figure 5.5, where Eggnog has the highest proportion

of hits, followed by Subsystems, and the KEGG ontology returning the fewest.

I now probe the relationships between taxonomic and functional diversity across

ecosystems by quantifying key topological properties of the WGS built graphs. To

assess results in the context of inference-based prior work (e.g. [153, 187, 190, 192–

194]) - which has predicted functional profiles based on taxonomy alone - I also run

analyses on a ‘predicted’ network for each sample, which is constructed by taking the

taxonomic profile and including the entirety of each taxon’s reference genome (rows

of the biadjacency matrices in Section 5.3), whilst noting that the empirical networks

are representative of the real-world environment and thus the key focus of this study.

As for the reference networks discussed in Chapter 5, all networks and analyses are

unweighted.

6.3.2 Summary distributions

I firstly assess overall diversity patterns in the joint taxa-function distributions across

the communities by plotting the number of unique genes per sample against the number
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of taxa (Figure 6.4). This corresponds to the number of columns and rows in the

biadjacency respectively. From inspection of Figure 6.4, it is apparent that within each

biome, there is a positive correlation between the number of taxa and the number of

genes which reaches a horizontal asymptote. This is consistent with observations from

previous studies where functional richness saturates at an upper bound with increasing

species richness [194]. The asymptotic value observed in the empirical networks is

likely a consequence of the sequencing depth. The empirical soil samples sit below the

other biomes with respect to the overall functional richness in the WGS samples. This

is consistent with the reduced numbers of sequences classified in the soil biomes, the

likely cause of which I identified in Section 6.3 as being high taxonomic richness in

combination with novel sequences not yet being incorporated into reference databases.

Figure 6.4: Number of unique taxa (rows in the biadjacency) and genes (columns in
the biadjacency) per sample

Degree distributions

The core topology of the taxa-function networks may be examined by analysing their

degree distributions. Degree distributions drive or are correlated to many statistical

properties of complex networks, and in other applications have been used to investigate

everything from resiliency of a system to its capacity for control [232, 233]. Here, they

provide a snapshot of the macroscale behaviour of the top and bottom node sets,

and thus summarise how taxa are shared amongst functions, and vice-versa, across

communities. Distributions from representative samples in each biome may be seen

in Figure 6.5. Distribution summaries from all samples and annotations (including
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Subsystems and KEGG) are qualitatively consistent and may be seen in Appendices

F.2 and F.1.

The taxa abundance distributions (top panel for each sample) were calculated by

tallying the number of reads assigned to each species, weighting those totals by genome

size, and converting to relative abundances. All taxa hits of fewer than 5E−5 relative

abundance were discarded to reduce the likelihood of false positives. Distributions

across all samples show characteristic power-law tendencies common to prokaryotic

species abundance distributions [117]. However, the networks’ taxa degree distributions

- i.e. how many unique functions each taxon has - differ between the empirical and

predicted networks. This is because networks built from empirical WGS data is driven

by the empirical taxa abundance distribution. Therefore, it shows exponential decay,

as few functions were detected in the rarest species. Conversely, with the predicted

network, every function from those ‘rare’ taxa are included in the network, meaning that

the predicted network taxa degree distribution is more similar to the entire reference

network itself.

The probability mass function for the empirical and predicted network gene distri-

butions indicate heavy tailed behaviour. This is consistent with prior work in genome-

gene family viral networks as well as genome-function networks in the human gut

microbiome [192, 206]. A slight peak in the tail in function degree distributions for

the predicted network is observed due to a binning effect from the housekeeping genes,

where there is a maximum degree corresponding to the number of taxa in the samples.

Whilst prior work has attempted to fit power laws to these distributions through re-

gression on the probability mass function, recent state of the art methods detail funda-

mental theoretical flaws with such approaches and I therefore do not attempt to do so

[206, 234]. From the complementary cumulative distribution functions in Figure 6.5 it

is clear that these are not pure power laws. However, they do display heavy tail prop-

erties, which is the informative feature in a biological context. The tailed behaviour

indicates that a block of core functions across all taxa make up a small but significant

proportion of the functional diversity in the system. Therefore, from the perspective

of multifunctional redundancy, how the ‘uncommon majority’ of functions are distrib-

uted amongst taxa is of high importance, especially as the results indicate that this

tailed function degree distribution is ubiquitous across all biomes [152, 153, 186]. This
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indicates that the first statistical property of the WGS networks - degree distributions

- is consistent across both samples and all of the biomes.

Figure 6.5: Degree distributions in empirical networks annotated with Eggnog, showing
representative samples from different biomes.
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6.3.3 Network analyses

Overview

To quantify redundancy structures within the microbial community networks, and ex-

amine the network distributions of different functional categories, I examine the sin-

gular value distributions and run three statistical measures on the graphs. In short,

to understand the behaviours of different functional groups in microbial communities,

I use statistics which are informative about specific structural elements within bipart-

ite networks by using two mean field metrics and one which is able to capture local

structure. These measures were run on empirical and predicted networks (for each of

the annotation methods) for each of the WGS samples. Furthermore, the metrics were

also run on the degree-preserved randomisations of each network. As many statistical

properties of networks are correlated to node degree, comparing against these random

baselines allows the separation of which characteristics of the system are driven by the

degree distributions, and those which may be indicators of other underlying structure

and require further investigation. Between the different network construction meth-

ods, annotation systems, and randomisations, I generated an ensemble of over 3000

networks to analyse.

The Curveball algorithm was used to randomise the networks [235, 236], with the

Python implementation from [237]. This algorithm was designed for bipartite networks,

and works by swapping individual entries between rows in an adjacency list (whilst pre-

serving the total number of entries per row). It is fast, unbiased, and quickly converges

to the maximal possible perturbation from the original system [235]. The conserved

degree sequences in combination with the tailed gene distribution mean that there are

some links which do not change between the original network and its randomised coun-

terpart. However, it is possible to check that the system has been shuffled as much as

possible within the degree distribution constraint by plotting the proportion of altered

links versus the number of iterations (Figure 6.6). Once the perturbation score reaches

its asymptote, the randomisation may stop. For the randomisations, I ran triple the

iterations expected for each network to be sure asymptote was reached (perturbation

vectors from the randomisations are available in Appendix A).
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Figure 6.6: Perturbation of a network during successive iterations of Curveball al-
gorithm’s randomisation scheme.

Singular value distributions

As introduced in Chapter 5, spectral decomposition of a biadjacency matrix may

quickly identify network community structure should its singular value distribution

reveal a series of large values sitting outside of the bulk of the spectrum. In the natural

communities under investigation, it would indicate that organisms may be grouped into

coarse-grained metabolic niches due to the presence of suites of redundant functions.

Community detection algorithms or modularity scores were not used to identify these

redundancy blocks for multiple reasons. Firstly, community detection is a NP-hard

problem [238]. Whilst there are a large number of heuristics available, their propensity

for success is application specific. Furthermore, heuristics find local minima, or require

maximisation of other parameters, meaning solutions require bootstrapping, making

the computational cost too great in this setting, where we would need to apply them

to several thousand large networks. Given many algorithms rely on spectral methods

to identify network communities, examining singular value distributions directly can

qualitatively confirm the presence (or absence) of community organisation within the

network [219].

Figure 6.7 depicts representative distributions for empirical networks and their ran-

domised counterparts, obtained by applying SVD to the biadjacency matrices (methods

outlined in Section 5.4.2). Singular value distributions for predicted networks and their

randomisations may be seen in Figure 6.8.
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(a)

(b)

Figure 6.7: Distributions of top 300 singular values from (a) empirical networks and
(b) randomised empirical networks. Representative samples are consistent
with those listed in Figure 6.5.
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Similar to the patterns observed within the complete reference network, the empir-

ical and predicted WGS networks yield a series of larger singular values which sit apart

from the bulk of the distributions. It would be expected that the predicted networks

- being samples of complete rows from the reference biadjacency - may display this

behaviour. However, the networks constructed from WGS sequencing data alone also

reveal similar patterns. These distributions are indicative not simply of high saturation

for a few functions (as would be the case for housekeeping genes), but an organisational

principle where suites of functions are segregated across different communities in the

network.

In the randomised predicted networks, there is one large singular value separated

from the bulk of the distribution (Figure 6.8b). That is, the modular elements and

other fine-grained structures in the real-world networks which gave rise to multiple large

singular values have been destroyed by the randomisation. In the randomised empirical

networks (Figure 6.7b), there is a less dramatic difference between the real-world and

randomised networks. This can be explained by the tailed taxa abundance distribution,

as the majority of taxa are found in the rare biosphere, and they therefore contribute

only one or two links in the network. The small number of dominant taxa are also likely

to be more metabolically similar than the taxa within the rare biosphere, meaning that

whilst the modular elements evident in the predicted networks are present, they are

at lower levels of resolution in the empirical WGS data. However, the qualitative

behaviour is consistent, providing evidence that the WGS constructed networks have

detectable community structure.
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(a)

(b)

Figure 6.8: Distributions of top 300 singular values from (a) predicted networks and
(b) randomised predicted networks. Representative samples are consistent
with those listed in Figure 6.5

To examine these distributions in aggregate, the first 30 singular values from each

network decomposition were normalised to a maximal value of 1. For each sample, I

examined the pairwise relative distribution of the real-world network and its random-

isation’s top 30 singular values [239]. Noting that measures such as Kullback-Liebler

divergence reveal if not where distributions differ, the use of relative distributions

provide a scale-invariant, semi-quantitative method to reveal the location of disparities

between non-parametric distributions [239, 240]. Here, they reveal whether there are
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consistently greater numbers of large singular values in the real-world networks com-

pared to the randomised networks. Relative distributions may be visualised in multiple

ways; here, we plot the ratio of the real to randomised singular value against its rank.

Figure 6.9 shows the relative distributions for the empirical samples, and predicted

samples, which are qualitatively the same, are shown in Appendix F.

Figure 6.9: Relative distribution ratios of the top 30 singular values across biomes. For
each network, the top 30 singular values were normalised to a maximum
value of 1. For each sample, pairwise ratios of real-world and randomised
singular values are plotted against their rank. The dotted line indicates a
value of 1; if the distributions are the same, they should fall along or near
the line.

If the real-world and randomised singular value distributions were the same, their

relative distribution ratio would be constant around an approximate value of 1. How-

ever, instead, there is consistently a large peak in the first few ranks before this ratio

drops back to unity: this indicates that across all biomes and samples, real-world net-

works have more large singular values sitting outside of the bulk distribution compared

to their randomised counterparts. From the network perspective, this is reflective of

real-world networks having detectable community structure, and from a biological per-

spective indicates that all biomes appear to display metabolic niche redundancy. That

is, the microbial community is able to be coarsely partitioned by taxa metabolism -

most likely reflecting the major ecological niches within the biome. Whilst this has

been an assumed property of microbiomes, to my knowledge this is the first time it has
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been explicitly shown from WGS data, rather than inferred from reference genomes or

models [153, 192]. I next quantify gross structural features in the networks by assessing

whether the networks have higher levels of nestedness than their random baselines, or

if it is necessary to examine alternate explanations for functional redundancy in the

community.

Nestedness

Nestedness is a classical metric for bipartite networks in ecology. Initially used as a

measure to describe species’ spatial patterns, it has since been applied to a wide range

of organism interaction networks, such as plant-pollinator communities, and in a variety

of economic settings, for example, to study trade networks [241]. It is a measure of self-

similar structures within the network, and in this context measures the extent to which

smaller genomes are subsets of larger genomes. Nestedness has been proposed to either

increase or decrease the stability of networks depending on whether the objective is

to preserve specialist or generalist roles; furthermore, it has been proposed to increase

functional redundancy in microbiomes [192, 241].

Here, I assess whether nestedness appears as a consequence of other topological

features of the network, or is itself a mechanistic feature of the joint taxa-function

distribution within microbial systems as has been proposed in prior work [192]. Whilst

there are several methods to measure nestedness, due to its low levels of bias, I use the

method of ‘overlap and decreasing fill’: NODF [241–243]. It is one of the only nested-

ness measures which is computationally tractable for networks of the dimensionality

used in this study, as it is possible to vectorise the equation in a way that is robust to

changes in the order of rows or columns in the biadjacency.

To calculate NODF, I consider two rows i, j in the biadjacency associated with

vertices of degrees ki and kj . For every pair of vertices within the R rows, a value Sij

is defined by

Sij =

 0, if ki = kj

Iij
min(ki,kj)

, otherwise
, (6.1)

where Iij is the total number of edges in common between them. Equation 6.1 may also
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be applied to determine Sij across the pairs of vertices within the C columns. NODF

is then defined by

NODF =

∑R
i<jSij +

∑C
i<jSij

R(R−1)
2 + C(C−1)

2

, (6.2)

and I implement the vectorised algorithm developed by [244] for the calculations.

There are differences in the NODF scores between the annotation systems, the

biomes, and also the empirical and predicted networks (Figure 6.10). The empirical

networks display lower nestedness than their predicted counterparts. This a result of

the exponential taxa degree distribution, where the rare taxa have only a few genes,

increasing the sparsity of the matrix and therefore decreasing the NODF score [243].

The highest nestedness appears in the gut biome, whereas the lowest is apparent in the

rhizosphere. Other biomes lie between, with the NODF scores appearing to correlate

to the dimensionality of the networks (Figure 6.4). Furthermore, the higher nestedness

observed in the KEGG network over the Subsystems network is likely an artefact of

the multilabel nature of KEGG annotations, which causes a higher network density

[243]. Finally, the similarity in nestedness scores between the randomised and real-

world networks (Figure 6.10) implies that the degree distributions may be the main

driver of NODF values.

To determine whether real-world taxa-function networks display higher nestedness

than would be expected by chance, within each biome, I undertook Mann-Whitney U

tests on the Eggnog NODF scores across real and randomised network ensembles (Table

6.11; refer to Appendix H for qualitatively similar results in other annotation systems).

For the NODF scores, at a threshold of α = 0.05, there were not significant differences

between the empirical networks and their degree preserved randomisations. For the

predicted networks, the randomised networks had significantly higher NODF scores for

the soil and rhizosphere (2.1% and 6.4% respectively) and significantly lower scores

for the marine biome (5.6%). Through simulation, it was possible to infer that the

higher scores in the randomised soil-associated networks arose from modularity in the

network. Thus, whilst some of the predicted networks display minor differences between

the real-world data and random baselines, the effect sizes are small and not in consistent

directions; furthermore, no differences were observed when using the WGS constructed

empirical networks. This differs from the outcomes of the analysis in [192], likely due
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Figure 6.10: NODF in the empirical and predicted networks, as well as each network’s
degree preserved randomisation.
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to my use of a dereplicated taxonomy and database, together with a randomisation

algorithm which preserves the unweighted degree distribution. My results are consistent

with theoretical findings in prior work detailing the problematic nature of interpreting

nestedness in ecological networks, and particularly the extent of its explanatory power

[208, 222]. Indeed, here the degree distribution is the largest contributor to nestedness

scores in taxa-function relationships in microbial communities, likely due to the statistic

being dominated by the power law and exponential behaviour of the bottom and top

node sets. Deviations from random baseline scores are more likely to arise from other

small scale structures in the network, which I explore in later sections.

Table 6.11: Statistical results: identification of differences between Eggnog NODF
scores in the WGS and randomised networks (Mann-Whitney U test, two-
sided). Here (E) denotes empirical networks and (P) denotes predicted
networks. Significant p-values following a Š́ıdák multiple test correction
are noted with an asterisk. †The first value in these columns is for the
real-world networks, the second for the randomised.

Biome n Median† (E) U (E) p-value (E) Median† (P) U (P) p-value (P)

Gut 46 0.22 / 0.22 545 0.29 0.11 / 0.12 948 0.20
Marine 60 0.16 / 0.15 1338 6.6E-03 0.084 / 0.089 2533 5.1E-05∗

Freshwater 35 0.17 / 0.17 567 0.29 0.11 / 0.12 529 0.17
Soil 84 0.18 / 0.20 3358 0.26 0.047 / 0.048 1169 1.6E-11∗

Rhizosphere 23 0.18 / 0.19 280 0.37 0.047 / 0.044 59 3.3E-06∗

Functional redundancy (FR)

As a key project aim is to explain redundancy properties in microbial systems through

topological features of taxa-function networks, I endeavoured to reproduce and extend

recent results presented on functional redundancy in the human microbiome [192].

The authors in [192] define functional redundancy as the taxonomic diversity which

is unexplained by the functional diversity. They consider genome distances across the

community weighted by relative abundance to propose a redundancy measure for a

taxa-function bipartite graph, given by

FR = 1−
∑
i

p2i −
∑
i

∑
j

dijpipj , (6.3)

where the total taxonomic diversity is given by the Gini-Simpson index 1−
∑

i p
2
i , and

total genetic diversity is given by Rao’s quadratic entropy,
∑

i

∑
j dijpipj [192]. The

pi’s are the relative abundances for taxa i, and dij is the Jaccard distance between the
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genomes of species i and j, which can be calculated from the bipartite graph. I note

that the definition of Jaccard distance,

J(A,B) =
A ∩B
A ∪B

, (6.4)

allows for an extremely fast implementation for a graph in adjacency list format with

the use of list and set operations; for networks of the size and sparsity used in this

study, this algorithm was needed to make analyses computationally feasible (Appendix

A).

For calculating the score, I only use the predicted network. This is because using the

empirical networks - for which the function degree distribution is correlated to the taxa

abundance distribution - would bias the result given the taxa abundance distribution

is explicitly encoded into the metric. I also depart from [192] by using an unweighted

graph, for the reasons outlined in Chapter 5. My results broadly mirror the patterns

observed for the NODF scores. Indeed, when I break down the redundancy values to

check the correlation to species richness, we are able to see a natural ‘envelope’ in which

microbial communities appear to sit (Figure 6.12), consistent with the taxa-function

richness saturation curve [152]. This indicates there is an upper and lower bound of

redundancy values, with similar scores across most biomes when considering the taxa

richness. As for NODF, I next test whether this result is driven by unique topological

features within the networks, or alternately whether it is largely driven by the degree

distributions of the network.

Figure 6.12: Functional redundancy score vs. taxonomic diversity: communities sit
within an envelope of values. Calculations undertaken with Eggnog-
annotated networks (refer to Appendix G for KEGG and Subsystems
figures).
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The FR equation links microbial abundances to a network-based Jaccard distance,

necessitating an additional step in the randomisation. In real-world microbial systems,

tailed degree distributions mean that a small number of taxa dominate the community.

As the pi’s in Equation 6.3 follow a power law distribution, and are effectively squared,

the FR value is weighted toward the genome distances between the most abundant

organisms. Naiive degree-preserved randomisation destroys this structure, i.e. there

is no longer a signal which correlates the dominant taxa with those which are - on

balance of probabilities - more closely related than any two random taxa from the rare

biosphere. A coarse approximation for this behaviour may be achieved by sorting the

rows and columns of the biadjacency by node degree. I also sort the taxa abundances to

correlate with the degrees of the randomised network. The ratio of real to randomised

networks for both the unsorted and sorted case may be seen in Figure 6.14.

Table 6.13: Statistical results: identification of differences between Eggnog FR scores
in the WGS and randomised networks (Mann-Whitney U test, two-sided).
Here (E) denotes the sample results, (R) the randomised network and
(RS) the sorted randomised network. Significant p-values following a Š́ıdák
multiple test correction are noted with an asterisk.

Biome n Median (E/R/RS) U (E-R) p-value (E-R) U (E-RS) p-value (E-RS)

Gut 46 0.40 / 0.37 / 0.39 1559 9.3E-5∗ 1271 0.10
Marine 60 0.39 / 0.34 / 0.38 2831 6.3E-8∗ 2008 0.28

Freshwater 35 0.47 / 0.42 / 0.46 673 0.25 568 0.91
Soil 84 0.59 / 0.61 / 0.63 2693 0.01 2179 4.4E-5∗

Rhizosphere 23 0.67 / 0.67 / 0.68 101 0.91 68 0.18

Sorting corrects for the loss of the phylogenetic signal and eliminates what may

have initially appeared to be differences between functional redundancy scores within

real and randomised networks. Similarly, if I test these findings statistically (Table

6.13), what was initially a significantly higher FR score in real-world gut and marine

biomes becomes insignificant. Furthermore, the soil biosphere displays significantly

higher redundancy in the randomised sample by 3.3%, and when the randomised net-

work is sorted, this increases to a difference of 6.3%. This may be understood by the

taxa-function richness curve: at high species diversity, few new functions are intro-

duced via the introduction of new organism, and increasingly large numbers of more

common functions overlap [194], which serves to inflate the FR score. I conclude that

microbial communities from the human gut or other biomes do not display higher levels

of redundancy than their random baselines using the FR metric proposed in [192], and
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that the redundancy levels are consistent across communities for a given level of di-

versity. However, it is be noted that the tailed species abundance (and functional)

distribution makes it challenging to develop a numerical formulation of redundancy

which is not skewed toward the most abundant organisms and functions (an issue also

considered in [153, 193]). This is conceptually problematic as the majority of taxo-

nomic and functional diversity in microbial communities is contained within the rare

biosphere. Furthermore, typically rare genes, e.g. forms of antibiotic resistance, may

rapidly propagate through the community if they become beneficial, and dominant

species change with boom-bust dynamics where up to 40% of species may lie dormant

for long periods of time [245]. Indeed, the sensitivity of functional redundancy meas-

ures to abundance fluctuations, labeled by the authors as ‘robustness’, is examined

in detail within [193]. Therefore, I next consider the network distribution of different

types of functions independent of their, or an organism’s, abundances. This enables

an examination of redundancy from the perspective of how metabolism is organised

across communities, capturing the underlying functional organisation whilst avoiding

biases arising from transient abundances and genome plasticity.
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Figure 6.14: Ratio between real and randomised network functional redundancy scores
across biomes. The first value indicates an unsorted randomised network,
the second value indicates a sorted randomised network and sorted abund-
ance profile to mimic the presence of phylogenetic structure.

Clustering

As an alternate and novel approach to quantifying functional redundancy in microbial

communities, I examine global and local clustering behaviour. This allows for an exam-

ination of local graph structure and whether different types of functions are distributed

differently across the network, irrespective of their saturation. This network-based

method allows certain functions are grouped within metabolically related organisms,

or spread widely across the community.

The bipartite clustering coefficient is the two-mode generalisation of the classical

triadic closure principle of unipartite networks [246]. In bipartite graphs, triadic clos-

ure needs to be generalised to neighbors of neighbors. Each node’s local clustering

coefficient (Equation 6.5) indicates a node’s propensity to form a 4-cycle. That is, it
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captures the likelihood that in general if taxa u1 has function v1 and v2, and taxa u2

has function v1, it also has v2 (Figure 6.15).

u1 u2

v1 v2

Figure 6.15: Schematic of the concept of the local clustering coefficient, which captures
a node’s propensity to form 4-cycles with other nodes in its set (top or
bottom).

The bipartite clustering coefficient of a node, also known as the Latapy clustering

coefficient, is formally defined by

cu =

∑
v∈N(N(v)) cuv

|N(N(u))|
(6.5)

where N(v) are the second order neighbor nodes of u in bipartite graph G, and cuv

is the pairwise clustering between two nodes given by cuv = |N(u)∩N(v)|
|N(u)∪N(v)| [203]. A high

clustering coefficient indicates a node is grouped within a suite of similar taxa and

functions: that is, within a metabolic niche. A low clustering value for a function means

that it is spread across random (i.e. metabolically dissimilar) taxa in the network. The

network’s clustering coefficient is the average of all of the vertices’ individual clustering

coefficients.

In the WGS-built networks, there are similar trends in the network’s average clus-

tering coefficient as there are for the NODF score, with correlations to the dimensions

of the network (Figure 6.16). The sparser networks generated by Eggnog annota-

tions have lower clustering values than those within Subsytsems or KEGG networks.

KEGG-built networks have on average higher clustering scores than those derived from

Subsystems. Testing whether these signals arise purely from the degree distributions

or are indicative of fundamental assembly principles between taxa and functions across

natural communities (Table 6.17), it is evident that unlike the scores for NODF or

functional redundancy which revealed no or weak differences, there are significant dif-

ferences between average clustering real-world and randomised networks across all bio-

mes. The effect is always in the same direction, with the average clustering coefficient
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in the Eggnog empirical and predicted networks being 23.5% and 20.7% larger than

their randomised counterparts respectively; refer to Appendix I for qualitatively similar

results in other annotation systems. The same modular elements which contribute to

the behaviour of the singular value distributions would also increase the network’s av-

erage clustering coefficient, quantitatively supporting the conclusions drawn from the

relative distribution analysis and providing evidence that communities can be clearly

partitioned into metabolic niches across all of the biomes.

Figure 6.16: Clustering coefficients for empirical, predicted and degree preserved ran-
domisations for each sample network.

To break down where these differences occurred and identify which functions were

randomly spread through the community versus associated with metabolic or taxo-

nomic niches, I examine the local clustering coefficients of the functional vertex set

from the Subsystems networks. This allowed me to analyse clustering scores for dif-

ferent functional categories. This analysis was applied to all fully connected empirical

networks, as it was otherwise not possible to undertake node-wise comparisons between
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Table 6.17: Statistical results: identification of differences between Eggnog average
clustering scores in the WGS and randomised networks (Mann-Whitney
U test, two-sided). Here (E) denotes the empirical networks, (P) the pre-
dicted networks. All p-values were significant following a Š́ıdák multiple
test correction. †The first value in these columns is for the real-world net-
works, the second for the randomised.

Biome n Median† (E) U (E) p-value (E) Median† (P) U (P) p-value (P)

Gut 46 9.7E-2/7.3E-2 1917 2.0E-11 0.12/8.5E-2 2114 1.7E-16
Marine 60 7.3E-2/5.8E-2 3371 1.7E-16 8.4E-2/6.8E-2 3600 3.6E-21

Freshwater 33 0.11/8.6E-2 752 7.9E-3 9.5E-2/8.0E-2 912 2.5E-06
Soil 84 6.4E-2/5.7E-2 4354 3.3E-3 0.11/9.9E-2 6495 6.8E-23

Rhizosphere 23 4.5E-2/3.8E-2 186 5.8E-5 0.12/0.11 196 7.5E-06

the real-world networks and their random baselines. To analyse the network scores,

nodes were removed for ubiquitous functions which were 70% saturation or greater in

the reference network. Next, I removed nodes that had fewer than 2 links; as I aimed to

capture the distribution of functions across the full network, this required the function

be associated with at least two taxa. I then transformed the clustering scores for the

remaining nodes to a standard normal distribution using quantile transformation, and

aggregated the mean scores (per sample and functional class) for each biome. This

allowed assessment of the relative ranks (above or below the mean clustering per net-

work) within each biome, revealing the tendency for each gene class to cluster within

a community, or alternately, be shared amongst taxa which otherwise have few similar

genes (Figure 6.18).

There are evident differences in the clustering behaviour of different functional

classes, which is a surprising finding given that the housekeeping genes would have a

significant smoothing effect on the statistic, speaking to a more dramatic real-world

effect. Here, a low value indicates a functional class is shared amongst taxa that have

fewer genes in common (on average). Across all biomes, low scores were ubiquitous for

prophages, transposable elements and plasmids, along with CRISPR, whereas motility

genes were consistently above the mean.

There was a high amount of variability amongst other functions, which may be

indicative of shifting core functionality in the context of changing biochemical envir-

onments [147]. Photosynthesis related genes were especially variable, appearing to be

spread randomly through the network in soil, rhizosphere and gut, and being strongly

niche associated in aquatic environments. However, the aquatic biomes would argu-



6.3. Network methods and results 106

Figure 6.18: Average clustering of different functional categories across biomes. Node
clustering scores were transformed to a standard normal distribution for
each sample, and then aggregated within each biome to reveal whether
different functional categories are tightly clustered or spread widely across
the network.

ably be the only environments which would have those metabolic pathways in full;

there were just 2.7 hits on average within the gut biome samples, where it is clear no
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photosynthesis occurs and it is likely that the functions categorised as belonging to

photosynthesis are being utilised in alternate metabolic pathways.

To assess whether there are statistically significant differences between the distri-

bution of different functional groups across the community, there was an additional

step to correct for potential degree correlation in the clustering scores. Prior to the

normal transformation, I took the ratio of each node’s local clustering value with that

of its random baseline; approximately 100 samples were excluded at this step as fully

connected networks were necessary for a meaningful real-random nodewise compar-

ison. Next, to confirm that there was no degree correlation, the average clustering

ratio against the average degree of the class was plotted (Figure 6.19), and I verified

that the distribution was uncorrelated by undertaking a linear regression (revealing a

slope coefficient p-value of 0.52). As the effect size of the randomisation is reduced due

to the smoothing impact of housekeeping genes on the clustering values, and a large

quantity of data was excluded, samples were aggregated across the biomes to increase

statistical power (Figure 6.20). Finally, multiple comparison tests (Tukey HSD at a

significance and false discovery threshold of 0.05 [247]) were undertaken to assess which

functional classes were significantly different from each other (Figure 6.21).

Figure 6.19: Assessing potential for degree correlation in the clustering ratios, across
all data points (left) and the their averages for each of the 31 Class level
functional categories (right).

Whilst Figure 6.20 shows that many groups are distributed around the mean, the

categories showing high entropy in Chapter 5 (prophages, plasmids and CRISPR) had

the lowest real-random clustering ratios in the natural communities. Conversely, the
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Figure 6.20: Local clustering value of vertices across the biomes (n = 154 samples),
broken down by class and sorted by median clustering ratio.

low entropy groups such as respiration, photosynthesis, RNA processing, and protein

synthesis had higher ratios, suggesting stronger tendencies to associate within a niche.

The high variance in the photosynthesis functional group may be explained by the

aggregation of data across biomes in conjunction with the fact that three of the biomes

(gut, soil and rhizosphere) were unlikely to have organisms undertaking photosynthetic

processes. Regardless, photosynthesis displayed significantly higher clustering values

than every other functional group (outlier in Figure 6.19b, Figure 6.21). This may

be understood by the fact that samples which had photosynthesising taxa would have

suites of functions across similar taxa leading to high clustering values, whereas samples

without photosynthetic organisms would have very few photosynthesis functional hits,

leading to high average clustering values overall. This corroborates recent research

showing photosynthesis occurs in metabolically specialised, and highly specific, phylo-

genetic groups [209]. Whilst this study was not designed to identify HGT genes from

the environment, the functional categories associated with HGT (extracellular DNA

groups such as plasmids, phages and CRISPR) had significantly lower clustering ra-

tios than almost every other functional group (although not compared to each other).

This indicates that these functions are spread in a diffuse pattern throughout the net-

works, meaning that an organism’s overall metabolism is not predictive of whether it
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has genes in these categories or not. When taken in conjunction with Figure 6.16,

this shows that the functional redundancy structure of microbiomes follows universal

behaviours, where HGT associated functions are broadly spread through communit-

ies, and functions known to be specific to an organism’s ecological niche or phylogeny

are clustered within metabolically similar taxa. As there is a higher probability for

genes to be shared between closely related taxa or those within an ecological niche

[132, 171], such a network distribution would facilitate rapid uptake of HGT-linked

genes amongst the full community (even if present at low saturation), providing a

buffer against stressors and thus promoting community survival and stability.

Figure 6.21: Heatmap showing significant pairwise p-values of differences in local node
clustering values for different functional classes. Here, ‘n.s.’ denotes not
significant, and ‘*’, ‘**’ denote significance at a threshold of α = 0.05
and 0.01 respectively. Results failing the FDR q-value test are assigned
as ‘n.s.’.
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6.4 Conclusions

Here, through the use of network-based methods, I analyse the joint-taxa function

distributions of natural microbial communities and identify unifying principles which

define how functional diversity is shared amongst taxa. Multiple levels of metabolic or-

ganisation in the community are revealed through macro and local network properties.

Highly consistent degree distributions are observed across all biomes, with exponential

behaviour in the taxa degree distribution and heavy tailed behaviour being observed

for the functional degree distribution. At the highest level of community organisation,

the ‘tail’ portion of the functional degree distribution captures common functions as-

sociated with housekeeping genes. At the next level, biological communities can be

partitioned into ecological niches based upon emergent community structure in the

networks, evidenced both by the singular value distributions and average clustering

values; such communities indicate metabolic niche redundancy, with large groups of

taxa sharing similar sets of functions. At the lowest level of organisation, functions as-

sociated with HGT are found to be randomly scattered amongst metabolically diverse

taxa, which would increase the speed at which those functions may be taken up by

the community should it undergo a disturbance. This underlying pattern appears to

scale proportionally with the diversity of the biome [115, 148, 177, 185, 186], and is a

universal property across all communities and environments.

With the added complexity that genome plasticity creates when studying these sys-

tems, network methods present an unparalleled opportunity to uncover new ecological

insights, a conclusion also drawn in prior work [200, 204]. However, challenges remain.

The null results for the mean-field scores of NODF and FR, which could ultimately

be explained by the degree distributions alone, highlight the difficulty of identifying

potential sources of error in such analyses. For example, degree (or other) correlations

in network metrics make it notoriously difficult to identify small scale topological fea-

tures driving macro scale statistics [202]. Furthermore, managing potential bias in the

data and bioinformatics methods used to construct the networks is nontrivial; efforts

to systematically address biases in prokaryotic taxonomy are a recent development and

the quality of reference datasets will continue to improve over time [119, 209]. Despite

these caveats, the nature of network methods chosen here mean that my main results
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would be robust to the most likely sources of data-driven error, such as taxonomic mis-

classification to closely related species: as the functions would still sit within the same

network neighborhood, the analyses would have qualitatively similar results. However,

within extreme environments where HGT processes are rare, such as hot springs, it

may be possible for this otherwise ubiquitous taxa-gene distribution to break down,

and I leave exploration of this question open to future work.

My findings provide a new perspective on redundancy structures in microbial com-

munities, and quantitative support for the hypothesis that phage-infected bacteria may

play a beneficial role in the community [248]. Shotgun metagenomics has increasingly

shown the importance of phages as reservoirs of prokaryotic genes and their more subtle

role in microbial dynamics than as predators or parasites alone [147]. With as many

as 60% of cells being infected by lysogenic phage at any one time, viruses are central

in shaping the genetic fate of these communities [248]. Cells infected with lysogenic

phage vertically transmit genetic material, and if there is a temperate-lytic switch, one

such cell may result in thousands of viruses carrying packets of genetic information

being sent into the environment for uptake. An estimated 85% of HGT events occur

through viral transduction and, whilst the majority of phage are in a lysogenic state

the majority of the time, disturbed communities undergo significant increases in lytic

viral activity [132]. It therefore follows that the network topology revealed in this

chapter not only supports the proposition that there are optimal distributions across

the community to effect rapid uptake of HGT genes, but also supports the conjecture

that viruses are one key mechanism driving the emergent stability of natural com-

munities due to their central role in HGT processes [132, 249, 250]. Indeed, despite

general consensus that microbial assemblages likely operate under consistent assembly

rules, quantifying those rules has remained a long lasting challenge [123, 227, 251].

It seems likely that bottom-up and top-down conceptual approaches, in conjunction

with a combination of data-driven and modelling methods, may be needed to generate

hypotheses for further experimental work. Here, using network methods to interrogate

paired taxa-function behaviour in these communities not only reveals new insight, but

provides a rich and flexible framework for exploring the fundamental processes which

govern microbial dynamics in future.



Chapter 7

Conclusions and future work

In this thesis, I explored the mechanistic drivers behind emergent properties of multis-

pecies communities to identify universal principles governing their structure. I began

in Chapter 2 by linking metabolic theory with the classical Rosenzweig-MacArthur

differential equations, and produced a more parsimonious allometric setting than in

prior work by eliminating the prey size-scaling dependency. Through paramaterising

the system with empirical values, it was shown that the model dynamics and equilibria

aligned closely to biological observations. Counter to previously held assumptions re-

garding the explanatory power of minimal allometric models, it was found that scaling

of the period and amplitude of population cycling, along with size-abundance scaling,

were an excellent match to distributions found in large scale terrestrial surveys.

The results concerning the amplitude of the limit cycles were dependent on sim-

ulation, leading to a natural question, what is the analytic solution for the cycling

amplitude in the Rosenzweig-MacArthur ODEs? Whilst some existing work on limit

cycle amplitude in Lokta-Volterra type systems exists, firstly from 1975 in [58] and

more recently in [59], there are restrictions on the relationships between parameters.

A derivation for an assumption-free general case will be required to fully understand

the scaling behaviour of the limit cycle amplitude and form a more complete picture

of the strengths and weaknesses of the model, a task left for future work. Despite this

caveat, I propose that similar minimal model approaches as taken in Chapter 2 may be

useful in food web or trophic modelling by helping reduce the number of parameters

and thus assist in managing overfitting.

112



7. Conclusions and future work 113

In Chapter 3, I shifted from size-abundance distributions in terrestrial to marine

ecosystems, and examined scaling across 15,000 data points ranging in size from vir-

uses to blue whales. It was demonstrated that a structural break in the exponent at

0.1m could not be explained by anthropogenic pressure, but was the result of turbu-

lent dispersal increasing metabolic demand on large organisms, which in turn reduced

abundances. Whilst the effects of the physical parameter of temperature is commonly

considered in shaping ecosystem level properties, the role of turbulence has largely

been restricted to microscale, localised processes [22, 159, 252]. Through extending

my minimal allometric model to include the cost of locomotion and foraging in turbu-

lent environments, it was shown how the physics of fluids are constraining biological

systems at the scale of the global biosphere.

Following an exploration of how abundance diversity is structured by size, I in-

vestigated how metabolic diversity is structured by taxonomy in microbial systems.

Cell size places a hard physical constraint on the number of genes single microbe can

carry, leading to an evolutionary tradeoff between survival and reproductive cost; how

this functional diversity is distributed amongst taxa in turn impacts the resilience of

the microbial community. Through using a network representation of taxa and their

gene functions, in Chapter 5 large scale metabolic organisation was identified across

the prokaryotic tree of life which mirrored organism phylogeny and their ecological

niche. Unlike current phylogenomics methods, which are limited to marker genes from

approximately 10,000 genomes due to computational expense [253], my network-based

analysis would easily scale to hundreds of thousands of genomes. Furthermore, the

network framework introduced may allow for future research to define precise defin-

itions for presently qualitative descriptors, such as, what is a niche gene?, or which

prokaryotes share ecological niches?.

The network approach was then extended to examine the joint taxa-function distri-

butions of real-world microbial communities. With functional and taxonomic profiles

of WGS data usually being studied in isolation, my novel analysis methods explicitly

linking taxa and function resolved a long standing difficulty in microbial ecology. Fur-

thermore, as my networks were generated from empirical WGS data, they reflect the

ground truth of community structure. This marked a significant departure from pre-

vious work attempting to reconcile taxa-function behaviour: whilst multiple analysis
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methodologies have been utilised, all have instead relied on predicting functions based

on reference genomes [153, 187, 190, 192–194]. Through breaking down the network

distributions of different functional classes, it was shown that HGT associated genes

were spread across diverse taxa, effecting a redundancy structure which would promote

community survival in the event of disturbance. This metabolic organisation was uni-

versal across 248 metagenomes sourced from environmental and host-associated biomes

across the globe, and could thus be a key mechanism behind the emergent stability of

microbiomes.

This hypothesis could be tested experimentally in future work. Through taking

WGS samples of a disturbed community over time - for example, by adding antibiotics

to mesocosms - it should be possible to recover the mobile elements and track their

distribution through the system. It would also be feasible to explore this through

modelling. A natural way to encode this would be as a Markov process. The goal would

be to identify the configurations of the system and different functions which provide

the optimal balance between streamlining, i.e. minimising the cost to an organism,

and maximising the public good, i.e. ensuring a gene is present and easily accessible

by the community. It would be possible to provide a series of rules linking gene type,

saturation, and competitive processes within the community, and examine the genes’

diffusion capacity on the network, to probe whether there is emergent community

stability under deletions, insertions, or disturbance.

Whilst multispecies communities have many moving parts and complex interac-

tions, they also display emergent properties. I argue that modelling and data driven

approaches are crucial to identify and explore plausible mechanisms for ubiquitous

behaviours; mechanisms which may then be interrogated through experimental work.

Whether we seek to predict ecosystem tipping points, manipulate a microbiome to im-

prove host health, or achieve one of a myriad of other outcomes reliant on community

ecology ‘rules’, it seems that an understanding of the drivers behind universal ecological

phenomena will be vital to our future success.
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[71] Andersen, K.H., Berge, T., Gonçalves, R. et al. Characteristic sizes of life in the

oceans, from bacteria to whales. Annual review of marine science, 8:217–241,

2016.

[72] Graham, N., Dulvy, N., Jennings, S. et al. Size-spectra as indicators of the effects

of fishing on coral reef fish assemblages. Coral Reefs, 24(1):118–124, 2005.

[73] IMOS, 2020. URL http://www.marine.csiro.au/marq/edd_search.Browse_

Citation?txtSession=9012.

[74] Ibarbalz, F.M., Henry, N., Brandão, M.C. et al. Global trends in marine plankton

diversity across kingdoms of life. Cell, 179(5):1084–1097. e21, 2019. ISSN 0092-

8674.

[75] 2019. URL https://doi.org/10.1594/PANGAEA.904397.

[76] 2012. URL https://doi.org/10.1594/PANGAEA.777384.

[77] Barneche, D., Kulbicki, M., Floeter, S.R. et al. Energetic and ecological con-

straints on population density of reef fishes. Proceedings of the Royal Society B:

Biological Sciences, 283(1823):20152186, 2016. ISSN 0962-8452.

[78] WoRMS, May 2020. URL https://www.marinespecies.org.

[79] Pauly, D., May 2019. URL www.fishbase.org.

http://www.marine.csiro.au/marq/edd_search.Browse_Citation?txtSession=9012
http://www.marine.csiro.au/marq/edd_search.Browse_Citation?txtSession=9012
https://doi.org/10.1594/PANGAEA.904397
https://doi.org/10.1594/PANGAEA.777384
https://www.marinespecies.org
www.fishbase.org


BIBLIOGRAPHY 122

[80] Barrios-O’Neill, D., Kelly, R. and Emmerson, M.C. Biomass encounter rates

limit the size scaling of feeding interactions. Ecology letters, 22(11):1870–1878,

2019.

[81] Brose, U., Archambault, P., Barnes, A.D. et al. Predator traits determine food-

web architecture across ecosystems. Nature ecology & evolution, 3(6):919–927,

2019.

[82] Politis, D.N., Romano, J.P. and Wolf, M. Subsampling. Springer Science Business

Media, 1999. ISBN 0387988548.

[83] Romano, J.P. and Wolf, M. Subsampling intervals in autoregressive models with

linear time trend. Econometrica, 69(5):1283–1314, 2001. ISSN 0012-9682.

[84] Lotze, H.K. and Worm, B. Historical baselines for large marine animals. Trends

in ecology & evolution, 24(5):254–262, 2009.

[85] Williams, I.D., Baum, J.K., Heenan, A. et al. Human, oceanographic and habitat

drivers of central and western pacific coral reef fish assemblages. PLoS One, 10

(4), 2015.

[86] Gazzola, M., Argentina, M. and Mahadevan, L. Scaling macroscopic aquatic

locomotion. Nature Physics, 10(10):758–761, 2014.

[87] Strutton, P.G., Mitchell, J.G., Parslow, J.S. et al. Phytoplankton patchiness:

quantifying the biological contribution using fast repetition rate fluorometry.

Journal of Plankton Research, 19(9):1265–1274, 1997.

[88] Smriga, S., Fernandez, V.I., Mitchell, J.G. et al. Chemotaxis toward phytoplank-

ton drives organic matter partitioning among marine bacteria. Proceedings of the

National Academy of Sciences, 113(6):1576–1581, 2016.

[89] Jiang, H. and Kiørboe, T. The fluid dynamics of swimming by jumping in cope-

pods. Journal of the Royal Society Interface, 8(61):1090–1103, 2011. ISSN 1742-

5689.
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[123] Goldford, J.E., Lu, N., Bajić, D. et al. Emergent simplicity in microbial com-

munity assembly. Science, 361(6401):469–474, August 2018.

[124] Kamneva, O.K. Genome composition and phylogeny of microbes predict their co-

occurrence in the environment. PLOS Computational Biology, 13(2):e1005366–

20, February 2017.

[125] Le Roux, X., Recous, S. and Attard, E. 17 soil microbial diversity in grass-

lands and its importance for grassland functioning. Grassland Productivity and

Ecosystem Services, page 158, 2011.

[126] Cano, R.J. and Borucki, M.K. Revival and identification of bacterial spores in

25-to 40-million-year-old dominican amber. Science, 268(5213):1060–1064, 1995.

[127] Vreeland, R.H., Rosenzweig, W.D. and Powers, D.W. Isolation of a 250 million-

year-old halotolerant bacterium from a primary salt crystal. Nature, 407(6806):

897–900, 2000.

[128] Morono, Y., Ito, M., Hoshino, T. et al. Aerobic microbial life persists in oxic

marine sediment as old as 101.5 million years. Nature Communications, 11(1):

1–9, 2020.

[129] Dubnau, D. and Blokesch, M. Mechanisms of dna uptake by naturally competent

bacteria. Annual review of genetics, 53:217–237, 2019.

[130] Weinert, L.A. and Welch, J.J. Why might bacterial pathogens have small gen-

omes? Trends in ecology & evolution, 32(12):936–947, 2017.

[131] Sousa, S.A., Feliciano, J.R., Pita, T. et al. Burkholderia cepacia complex regu-

lation of virulence gene expression: a review. Genes, 8(1):43, 2017.

[132] Chen, J., Quiles-Puchalt, N., Chiang, Y.N. et al. Genome hypermobility by

lateral transduction. Science, 362(6):207–212, October 2018.

[133] Gilbert, J.A., Steele, J.A., Caporaso, J.G. et al. Defining seasonal marine micro-

bial community dynamics. The ISME Journal, 6(2):298–308, August 2011.



BIBLIOGRAPHY 127

[134] De Vrieze, J., De Mulder, T., Matassa, S. et al. Stochasticity in microbiology:

managing unpredictability to reach the sustainable development goals. Microbial

Biotechnology, 2020.

[135] Maynard, D.S., Serván, C.A., Capitán, J.A. et al. Phenotypic variability pro-

motes diversity and stability in competitive communities. Ecology letters, 22(11):

1776–1786, 2019.

[136] Kurm, V., van der Putten, W.H., de Boer, W. et al. Low abundant soil bacteria

can be metabolically versatile and fast growing. Ecology, 98(2):555–564, February

2017.

[137] Botton, S., Van Heusden, M., Parsons, J. et al. Resilience of microbial systems

towards disturbances. Critical reviews in microbiology, 32(2):101–112, 2006.

[138] Shade, A., Peter, H., Allison, S.D. et al. Fundamentals of microbial community

resistance and resilience. Frontiers in microbiology, 3:417, 2012.

[139] Greenhalgh, K., Meyer, K.M., Aagaard, K.M. et al. The human gut microbiome

in health: establishment and resilience of microbiota over a lifetime. Environ-

mental microbiology, 18(7):2103–2116, 2016.

[140] Mehta, R.S., Abu-Ali, G.S., Drew, D.A. et al. Stability of the human faecal

microbiome in a cohort of adult men. Nature Microbiology, pages 1–12, February

2018.

[141] Fuhrman, J.A., Cram, J.A. and Needham, D.M. Marine microbial community

dynamics and their ecological interpretation. Nature Publishing Group, 13(3):

133–146, February 2015.

[142] Schindler, D.E., Armstrong, J.B. and Reed, T.E. The portfolio concept in ecology

and evolution. Frontiers in Ecology and the Environment, 13(5):257–263, 2015.

[143] Consortium, T.H.M.P. Structure, function and diversity of the healthy human

microbiome. Nature, 486(7402):207–214, June 2012.

[144] Franzosa, E.A., Huang, K., Meadow, J.F. et al. Identifying personal microbiomes

using metagenomic codes. Proceedings of the National Academy of Sciences, 112

(22):E2930–E2938, 2015.



BIBLIOGRAPHY 128

[145] Yatsunenko, T., Rey, F.E., Manary, M.J. et al. Human gut microbiome viewed

across age and geography. nature, 486(7402):222–227, 2012.

[146] Fierer, N. and Jackson, R.B. The diversity and biogeography of soil bacterial

communities. Proceedings of the National Academy of Sciences, 103(3):626–631,

2006.

[147] Dinsdale, E.A., Edwards, R.A., Hall, D. et al. Functional metagenomic profiling

of nine biomes. Nature, 452(7187):629–632, 2008.

[148] Sunagawa, S., Coelho, L.P., Chaffron, S. et al. Structure and function of the

global ocean microbiome. Science, 348(6237):1261359–1261359, May 2015.

[149] De Boeck, H.J., Bloor, J.M., Kreyling, J. et al. Patterns and drivers of

biodiversity–stability relationships under climate extremes. Journal of Ecology,

106(3):890–902, 2018.

[150] Bardgett, R.D. and Caruso, T. Soil microbial community responses to climate

extremes: resistance, resilience and transitions to alternative states. Philosophical

Transactions of the Royal Society B, 375(1794):20190112, 2020.

[151] Yang, G., Wagg, C., Veresoglou, S.D. et al. How soil biota drive ecosystem

stability. Trends in plant science, 23(12):1057–1067, 2018.

[152] Louca, S., Polz, M.F., Mazel, F. et al. Function and functional redundancy in

microbial systems. Nature Ecology & Evolution, pages 1–8, April 2018.

[153] Miki, T., Yokokawa, T. and Matsui, K. Biodiversity and multifunctionality in

a microbial community: a novel theoretical approach to quantify functional re-

dundancy. Proceedings of the Royal Society B: Biological Sciences, 281(1776):

20132498–20132498, December 2013.

[154] Dworkin, J. and Shah, I.M. Exit from dormancy in microbial organisms. Nature

reviews microbiology, 8(12):890–896, 2010.

[155] Franklin, R.B. and Mills, A.L. Multi-scale variation in spatial heterogeneity for

microbial community structure in an eastern virginia agricultural field. FEMS

microbiology ecology, 44(3):335–346, 2003.



BIBLIOGRAPHY 129

[156] Porter, S.S. and Rice, K.J. Trade-offs, spatial heterogeneity, and the maintenance

of microbial diversity. Evolution: International Journal of Organic Evolution, 67

(2):599–608, 2013.

[157] Stocker, R. and Seymour, J.R. Ecology and physics of bacterial chemotaxis in

the ocean. Microbiol. Mol. Biol. Rev., 76(4):792–812, 2012.

[158] Smith, N.W., Shorten, P.R., Altermann, E. et al. The classification and evolution

of bacterial cross-feeding. Frontiers in Ecology and Evolution, 7:153, 2019.

[159] Stocker, R. Marine microbes see a sea of gradients. Science, 338(6107):628–633,

2012.

[160] Nemergut, D.R., Schmidt, S.K., Fukami, T. et al. Patterns and processes of

microbial community assembly. Microbiol. Mol. Biol. Rev., 77(3):342–356, 2013.
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Appendix A

Online code and data

Data and code required to reproduce the analyses and figures in this thesis is available

on github at https://github.com/jcmckerral.
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Appendix B

Turbulence model statistics

Figure B.1: Model statistics plots for the manually curated data fitted with OLS
following log- transformation. L-R: fitted raw residuals, histogram of raw
residuals, and raw residuals QQ plot. Top to bottom: plankton (m =
108), raw nekton (m = 61), fishing corrected nekton (m = 61), and full
(corrected) spectrum (m = 124). (Sub)sample size given by m.
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Figure B.2: Residuals plots for a representative subsample from the complete data-
set, fitted with OLS following log-transformation. L-R: fitted residuals,
histogram, and QQ plot. Top to bottom: plankton (m = 284), raw nek-
ton (m = 36), fishing corrected nekton (m == 236), and full (corrected)
spectrum (m = 70). (Sub)sample size is denoted by m.

Figure B.3: Histograms of 10,000 bootstrapped alpha (slope) estimates for each model
for the values shown in Table 3.3.
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(a)

(b)

Figure C.1: Taxa after clustering on up to 15 PCs of the Subsystems biadjacency mat-
rix. Colour is set using continuous colourmap applied to all taxa in phylo-
genetic order; that is, closely related taxa will have similar colours. (a)PCA
applied to the taxa. (b) tSNE applied to the taxa’s first 15 principal com-
ponents, using a perplexity value of 80.
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(a)

(b)

Figure C.2: Taxa after clustering on up to 15 PCs of the KEGG biadjacency mat-
rix. Colour is set using continuous colourmap applied to all 28,439 taxa
in phylogenetic order; that is, closely related taxa will have similar col-
ours. (a)PCA applied to the taxa. (b) tSNE applied to the taxa’s first 15
principal components, using a perplexity value of 80.
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Table E.1: Sequence read archive run IDs and associated biome for WGS samples ana-
lysed in Chapter 6.

Run ID Biome Run ID Biome Run ID Biome Run ID Biome

ERR1544006 freshwater SRS018656 gut ERR599010 marine ERR1877666 soil
ERR1750013 freshwater SRS019267 gut ERR599012 marine ERR1877677 soil
SRR3306837 freshwater SRS019397 gut ERR599018 marine ERR1877682 soil
SRR3989312 freshwater SRS019582 gut ERR599020 marine ERR1877690 soil
SRR5208983 freshwater SRS078177 gut ERR599023 marine ERR1877692 soil
SRR5209621 freshwater SRS1170700 gut ERR599024 marine ERR1877695 soil
SRR5246518 freshwater SRS1170723 gut ERR599031 marine ERR1877702 soil
SRR5754828 freshwater SRS1170767 gut ERR599034 marine ERR1877709 soil
SRR6050958 freshwater SRS1170770 gut ERR599035 marine ERR1877710 soil
ERR1457091 freshwater SRS1170816 gut ERR599042 marine ERR1877712 soil
ERR1815064 freshwater SRS1170825 gut ERR599045 marine ERR1877714 soil
ERR472738 freshwater SRS1170847 gut ERR599050 marine ERR1877716 soil
SRP100355 freshwater SRS1170891 gut ERR599053 marine ERR1877721 soil
SRR077313 freshwater SRS147022 gut ERR599056 marine ERR1877730 soil
SRR1107072 freshwater SRS147039 gut ERR599057 marine ERR1877733 soil
SRR1173821 freshwater SRS148424 gut ERR599058 marine ERR1877738 soil
SRR167723 freshwater SRS148721 gut ERR599069 marine ERR1877739 soil
SRR3098756 freshwater SRS1596771 gut ERR599092 marine ERR1877746 soil
SRR3184732 freshwater SRS1596811 gut ERR599094 marine ERR1877747 soil
SRR3568916 freshwater SRS1596815 gut ERR599096 marine ERR1877749 soil
SRR3568916 freshwater SRS1596816 gut ERR599107 marine ERR1877750 soil
SRR3986827 freshwater SRS1596876 gut ERR599111 marine ERR1877757 soil
SRR3987495 freshwater SRS1596877 gut ERR599115 marine ERR1877759 soil
SRR3987657 freshwater SRS2320639 gut ERR599119 marine ERR1877764 soil
SRR3987663 freshwater SRS2320642 gut ERR599122 marine ERR1877765 soil
SRR4029415 freshwater SRS475931 gut ERR599130 marine ERR1877775 soil
SRR4198666 freshwater SRS475962 gut ERR599135 marine ERR1877778 soil
SRR5211153 freshwater SRS476034 gut ERR599142 marine ERR1877786 soil
SRR5214089 freshwater SRS476101 gut ERR599144 marine ERR1877789 soil
SRR5216661 freshwater SRS476119 gut ERR599155 marine ERR1877814 soil
SRR5246785 freshwater SRS883031 gut ERR599157 marine ERR1877847 soil
SRR5260362 freshwater SRS883037 gut ERR599159 marine ERR1877848 soil
SRR5260654 freshwater SRS883066 gut ERR599166 marine ERR1877849 soil
SRR5260685 freshwater SRS883067 gut ERR599168 marine ERR1877855 soil
SRR526911 freshwater SRS883113 gut ERR599170 marine ERR1877856 soil
SRR5273324 freshwater SRS883147 gut ERR599176 marine ERR1877858 soil
SRR5277061 freshwater ERR315860 marine SRR5195106 rhizosphere ERR1877859 soil
SRR5298537 freshwater ERR315861 marine SRR5195108 rhizosphere ERR1877863 soil
SRR5468366 freshwater ERR315863 marine SRR5195110 rhizosphere ERR1877865 soil
SRR5468414 freshwater ERR598944 marine SRR5195112 rhizosphere ERR1877868 soil
SRR5581337 freshwater ERR598945 marine SRR5195114 rhizosphere ERR1877869 soil
SRR5581526 freshwater ERR598948 marine SRR5195116 rhizosphere ERR1877870 soil
SRR5818193 freshwater ERR598949 marine SRR5195117 rhizosphere ERR1877878 soil
SRR5818249 freshwater ERR598952 marine SRR5195118 rhizosphere ERR1877881 soil
SRR6048557 freshwater ERR598953 marine SRR5195119 rhizosphere ERR1877887 soil
ERS235535 gut ERR598954 marine SRR5195121 rhizosphere ERR1877888 soil
ERS235587 gut ERR598961 marine SRR5195123 rhizosphere ERR1877893 soil
ERS235598 gut ERR598964 marine SRR5195125 rhizosphere ERR1877912 soil
ERS396405 gut ERR598965 marine SRR5195127 rhizosphere ERR1877914 soil
ERS396472 gut ERR598967 marine SRR5195129 rhizosphere ERR1877915 soil
ERS396473 gut ERR598968 marine SRR5195131 rhizosphere ERR1877916 soil
ERS537325 gut ERR598973 marine SRR5195133 rhizosphere ERR1877921 soil
ERS537340 gut ERR598984 marine SRR5195135 rhizosphere ERR1877926 soil
ERS537384 gut ERR598985 marine SRR5195137 rhizosphere ERR1877933 soil
ERS537387 gut ERR598986 marine SRR5195139 rhizosphere ERR1877936 soil
ERS537410 gut ERR598987 marine SRR5195141 rhizosphere ERR1877937 soil
ERS608499 gut ERR598991 marine SRR5195143 rhizosphere ERR1877661 soil
ERS608510 gut ERR599002 marine SRR5195145 rhizosphere ERR1877663 soil
ERS608530 gut ERR599003 marine SRR5195147 rhizosphere ERR1877657 soil
ERS631833 gut ERR599004 marine ERR1877650 soil
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Figure F.1: Degree distributions in empirical networks annotated with KEGG, showing
representative samples from different biomes.
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Figure F.2: Degree distributions in empirical networks annotated with Subsystems,
showing representative samples from different biomes.
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Figure F.3: Relative distribution ratios of the top 30 singular values across biomes.
For each predicted network, the top 30 singular values were normalised to
a maximum value of 1. For each sample, pairwise ratios of real-world and
randomised singular values are plotted against their rank. The dotted line
indicates a value of 1; if the distributions are the same, they should fall
along or near the line.
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Functional redundancy

supplement

Figure G.1: Functional redundancy score vs. taxonomic diversity: communities sit
within an envelope of values. Calculations undertaken with KEGG-
annotated networks.

154
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Figure G.2: Functional redundancy score vs. taxonomic diversity: communities sit
within an envelope of values. Calculations undertaken with Subsystems-
annotated networks.



Appendix H

NODF statistics supplement

Table H.1: Statistical results: identification of differences between KEGG NODF scores
in the WGS and randomised networks (Mann-Whitney U test, two-sided).
Here (E) denotes empirical networks and (P) denotes predicted networks.
Note that most of the significant p−values place a higher NODF value on
the randomised networks. †The first value in these columns is for the real-
world networks, the second for the randomised.

Biome n Median† (E) U (E) p-value (E) Median† (P) U (P) p-value (P)

Gut 46 2.48E-01/2.77E-01 574 1.60E-04 3.90E-01/3.83E-01 1116 6.53E-01
Marine 60 1.78E-01/1.96E-01 1070 1.29E-04 2.99E-01/2.86E-01 2337 4.86E-03

Freshwater 35 2.00E-01/2.05E-01 522 4.96E-01 3.48E-01/3.68E-01 444 1.02E-01
Soil 84 6.69E-02/6.83E-02 3304 4.78E-01 3.82E-01/4.10E-01 628 3.65E-20

Rhizosphere 23 1.08E-01/1.08E-01 264 1.00E+00 3.77E-01/4.04E-01 31 3.07E-07

Table H.2: Statistical results: identification of differences between Subsystems NODF
scores in the WGS and randomised networks (Mann-Whitney U test, two-
sided). Here (E) denotes empirical networks and (P) denotes predicted
networks. Note that most of the significant p−values place a higher NODF
value on the randomised networks. †The first value in these columns is for
the real-world networks, the second for the randomised.

Biome n Median† (E) U (E) p-value (E) Median† (P) U (P) p-value (P)

Gut 46 2.34E-01/2.55E-01 601 3.64E-04 3.37E-01/3.34E-01 1174 3.67E-01
Marine 60 1.76E-01/1.88E-01 1292 7.73E-03 2.81E-01/2.61E-01 2693 2.81E-06

Freshwater 35 1.96E-01/2.02E-01 534 5.94E-01 2.98E-01/3.07E-01 502 3.54E-01
Soil 84 7.04E-02/7.16E-02 3357 5.89E-01 3.22E-01/3.47E-01 625 3.34E-20

Rhizosphere 23 1.01E-01/1.00E-01 264 1.00E+00 3.21E-01/3.40E-01 36 5.47E-07
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Clustering statistics supplement

Table I.1: Statistical results: identification of differences between KEGG average clus-
tering scores in the WGS and randomised networks (Mann-Whitney U test,
two-sided). Here (E) denotes the empirical networks, (P) the predicted net-
works. †The first value in these columns is for the real-world networks, the
second for the randomised.

Biome n Median† (E) U (E) p-value (E) Median† (P) U (P) p-value (P)

Gut 46 1.00E-01/7.52E-02 1847 7.40E-10 1.28E-01/9.66E-02 2007 1.29E-13
Marine 60 7.05E-02/5.72E-02 3161 9.28E-13 8.64E-02/7.08E-02 3471 1.82E-18

Freshwater 35 9.56E-02/8.20E-02 750 8.56E-03 1.08E-01/9.15E-02 900 5.30E-06
Soil 84 5.78E-02/5.13E-02 4346 3.62E-03 1.27E-01/1.19E-01 6268 7.70E-20

Rhizosphere 23 4.09E-02/3.50E-02 166 1.93E-03 1.35E-01/1.27E-01 171 8.65E-04

Table I.2: Statistical results: identification of differences between Subsystems average
clustering scores in the WGS and randomised networks (Mann-Whitney U
test, two-sided). Here (E) denotes the empirical networks, (P) the predicted
networks. †The first value in these columns is for the real-world networks,
the second for the randomised.

Biome n Median† (E) U (E) p-value (E) Median† (P) U (P) p-value (P)

Gut 46 9.03E-02/7.21E-02 1786 1.34E-08 1.13E-01/8.73E-02 2043 1.50E-14
Marine 60 6.69E-02/5.75E-02 3017 1.71E-10 8.47E-02/7.02E-02 3570 1.58E-20

Freshwater 35 9.33E-02/8.07E-02 725 2.10E-02 9.25E-02/7.91E-02 875 2.32E-05
Soil 84 5.73E-02/5.32E-02 3973 8.81E-02 1.08E-01/9.92E-02 6336 9.92E-21

Rhizosphere 23 4.17E-02/3.65E-02 161 4.08E-03 1.15E-01/1.10E-01 174 5.22E-04

157



Appendix J

Works arising

The following list details journal articles arising from the work in this thesis that is

currently submitted for review or in preparation, under my academic publishing name

JC McKerral. Where applicable, a DOI for an article preprint is provided.

• Chapter 2: Universal allometry from empirical parameters, with coauthors Jerzy

A. Filar, James G. Mitchell, Maria Kleshnina, and Louise Bartle. Contributions:

JCM conceived the work and wrote the paper; JCM and JAF developed the

model; JCM and MK analysed the model; JCM and LB sourced and analysed

data; JGM contributed to writing, interpretation and insight. All authors edited

the manuscript. DOI 10.1101/2021.05.20.444891.

• Chapter 3: Synergy of turbulence and fishing reduce aquatic biomass, with coau-

thors Justin R. Seymour, Trish J. Lavery, Paul J. Rogers, Thomas C. Jeffries,

James S. Paterson, Ben Roudnew, Charlie Huveneers, Kelly Newton, Virginie

van Dongen-Vogels, Nardi P. Cribb, Karina M. Winn, Renee J. Smith, Crystal

L. Beckmann, Eloise Prime, Claire M. Charlton, Maria Kleshnina, Susanna R.

Grigson, Marika Takeuchi, Laurent Seuront, James G. Mitchell. Contributions:

JGM, JCM, JRS and LS conceived the work. JCM, JGM JRS wrote the paper.

SRG, TJL, PJR, TCJ, JSP, BR, CH, KN, VvDV, NPC, KMW, RJS, CLB, EP,

JRS and CMC gathered the data and helped with the analysis. JCM developed

the model, gathered data, and did the analysis. MK contributed to model devel-

opment. MT helped with analysis and contributed to writing, interpretation and

insight. LS helped with analysis, and contributed to writing and interpretation
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and insight. DOI 10.1101/2021.10.04.459351.

• Chapters 4-6 (in preparation): A universal genetic topology in microbial systems,

with coauthors Nima Dehmamy, Robert A Edwards, and James G. Mitchell.

JCM conceived the work, did the analysis, and wrote the paper. RE assisted

with bioinformatics pipelines and methods; ND assisted with analytic method

design. JGM contributed to writing, interpretation and insight.
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