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Abstract 

Flexible structures are widely used in many engineering systems due to their lightweight. This 

kind of structures is normally vulnerable to vibrations, especially when the system changes. To 

such systems, the fixed-parameter active vibration controllers cannot provide the best control 

performance and sometimes even help to excite the system. Therefore, a Real-Time Adaptive 

Control Scheme (RTACS) is highly demanded to maintain control performance in real-time. 

The RTACS is required to respond to changes in the system (adjust the parameters of controller 

online) and provide sufficient vibration attenuations. 

In this thesis, a top thin plate bonded connected to a vibration base plate by three pairs of 

sensors/actuators is used as a research vehicle. The top plate can be mathematically modelled 

as a three-input three-output resonant flexible structure with an infinite number of modes near 

the natural frequencies of the structure itself. However, only the first three modes are in the 

concerned frequency range. Therefore, for the controller design purpose, a simplified State- 

Space Representation (SSR) model and Second-order Differential Model including these three 

modes are constructed (the D term is neglected for simplicity).  

Positive Position Feedback (PPF) is one of the most effective active control algorithms and is 

widely applied to many MIMO flexible systems due to its advantages. The PPF utilizes a 

second-order low-pass filter that is insensitive to spillover effect and can control multiple 

modes through one pair of sensor/actuator. However, designing a PPF requires simultaneous 

optimization of all controller parameters for different modes and PPF also lead to a relatively 

large steady-state error for the closed-loop system. According to the above analysis, two new 

control methodologies based on the technique of PPF are proposed and implemented on the 

plate system. 

The first proposed method is Independent Modal Positive Position Feedback (IMPPF) 

combining the advantages of the Independence Modal Space Control (IMSC) algorithm with 

the PPF. Thus, the parameters of IMPPF can be designed separately for each vibration mode. 

The structure of IMPPF is relatively simple as it only uses two controller parameters for each 

mode (i.e., the control gain and time constant are designed through error elimination method 

and root locus technology respectively). The computation load of the proposed IMPPF is low, 

therefore, IMPPF can easily realise online update parameters and be implemented in the 

proposed RTACS. The second method is the Modified Positive Position Feedback (MPPF), 
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which is developed by adding a first-order filter in parallel to the conventional PPF. The first-

order filter has the potential to reduce the damping of the compensator, thereby reducing the 

steady-state error of the closed-loop system while maintaining the control performance of PPF. 

The parameters of MPPF can be optimized by utilizing the 𝐻∞ norm and Genetic Algorithm. 

Finally, an RTACS is proposed based on a pre-designed frequency estimator that can select the 

better controller between IMPPF and MPPF and update controller parameters in real-time.  

To validate the effectiveness of the proposed methods, numerical simulations are conducted on 

MATLAB Simulink©. Both IMPPF and MPPF are designed for the built SSR model. The 

simulation results show that the vibration attenuation effect of IMPPF can reach up to 13 dB, 

and MPPF can reach up to 20 dB. The simulation result of the RTACS clearly demonstrates its 

effectiveness in vibration attenuations of the given MIMO flexible plate-structure after the 

onset of system changes. 

A real-time physical experiment is conducted upon successful validation of the proposed 

IMPPF, MPPF and RTACS in simulation. The experiment results show that the control 

performance of IMPPF and MPPF can reach up to 17dB and 20dB, respectively, that agrees 

with the results of simulation study. The experiment results also verify the effectiveness of the 

proposed RTACS to control the first three vibration modes of the given MIMO flexible plate-

structure, especially after a system change is introduced to the original MIMO flexible plate-

structure. 
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Chapter 1: Introduction 

This chapter introduces the motivation of the thesis, followed by the background of the research 

project. Finally, the research methodology with an outline of the thesis is shown. 

1.1 Motivation 

In order to enhance the efficiency and dynamic performance of machines, researchers are 

increasingly inclined to make the system design light. More and more designers are prompted 

to put lightweight materials to devices. Lightweight materials make the structures more 

flexible. The flexible structure offers many benefits, such as reduces weight, wind resistance, 

and space requirements. These have made it possible to achieve some outcomes in many fields, 

such as enhancing the agility of the robotic arm and reducing the energy consumption of 

vehicles. In the biomedical field, these outcomes have led to the creation of devices for micro-

invasive surgery and the possibility of artificial mechanical limbs. 

However, there is one big problem of flexible structures: it is susceptive to the environment 

changes which bring unwanted vibrations to the system. Due to the light and thin design of the 

flexible structure, it is easily damaged by the unwanted vibrations. Especially, the vibration 

frequency is close to the natural frequency of the structure, the resonance is derived. The 

resonance causes the structure oscillates with a large amplitude, which may lead to poor 

performance, short lifetime and the destruction. One classical example of the damage of 

resonance phenomenon is the collapsed of Tacoma Narrows Bridge in 1940. The narrow and 

thin bridge can be seen as a kind of flexible structure. The bridge was destroyed by the wind 

caused a resonance phenomenon. This shows the importance of vibration cancellation. 

However, the problem becomes not simply to eliminate vibration, as the system tends to change 

over time. For example, an aircraft constantly burns fuel to provide energy during flight, its 

total mass also constantly reduces, and all the parameters of the flexible structure are varying 

with time accordingly. Therefore, controlling the dynamic system with a fixed controller often 

leads to poor control effects and even destabilizes the entire system. However, rather than 

rebuilding the structures or using non-lightweight materials, people are more willing to control 

vibration with the environment changing which is known as adaptive online control. 

Adaptive online control is not an easy task, that because of several difficult points: 
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1. The flexible structure has very large amounts of modes, which means the mathematic model 

is nearly infinity orders. It is extremely tough to build the mathematic model. It is impossible 

to design a controller or algorithm to control all of the modes. Hence, researchers always only 

consider several significant modes. Generally, the modes with low frequencies influence the 

structure most. Hence, the mathematic model is built for several low frequencies modes to 

realise simplified to low order substitute function. Nevertheless, the system is still affected by 

the ignored modes. That causes the spillover effect which may lead to low performance and 

unstable of the system. 

2. The controller of the flexible structure is requested to control multiple modes in a wide band. 

It is hard because researchers need to balance the better attenuation control effect for one mode 

or sensitive to control several modes. 

3. The parameters of the flexible structure are varying with time. The variation is usually small 

but continuous. As the aeroplane in the previous example, the controller has to change the 

parameters in time to ensure a smooth flight. Unfortunately, most parameters are unknown or 

request large computations. 

4. The controller needs to respond to the flexible system quickly enough. Since the system is 

changing continuously, the previous parameters may make the system work poorly or even 

unstable. Therefore, the controller needs to calculate and replace new parameters quickly. But 

less time means less accuracy. The trade-off between time and accuracy is also a major topic 

of the research. 

These four points can assist to determine the requests of the research and design an appropriate 

controller to cancel the vibration for a flexible structure. The research of flexible system 

controller has always been a research hotspot, so many researches have been established. The 

motivation of this thesis is to find solutions to these difficulties so that to get an effective online 

control method for plate structure which is a common flexible structure. 

1.2 Project Background  

The project is centred on a plate system. The plate system is a multi-input-multi-output (MIMO) 

system. The physical setup can be seen as Figure 1.1. This system consists of a top plate, a base 

plate, three coupled sensor/actuator transducers and a disturbance transducer. They are 

presented as a grey area, yellow area, T1-T3 and T4 respectively in Figure 1.1. The 

sensor/actuator banded the top plate and base plate together by screws. Assume the plate system 
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initial state is static without vibration. The disturbance T4 received a signal which causes the 

vibration of the base plate, the vibration transfer to three sensors, then to the top plate by screws 

on the three actuators. Since the T1, T2 and T3 are sensors and also actuators, the system can 

be seen as three inputs and three outputs system. The goal of the thesis is to design a controller 

that can effectively reduce the vibration of the top plate, even if the base plate vibration exists, 

and still have a good control effect when the environment (load, etc.) of the top plate changes. 

 

Figure 1-1 - Physical Model 

 

1.3 Methodology and Outline of the Thesis 

The research can be divided into 5 steps.  

In the first step, a literature review is summarized by reading a large number of relevant flexible 

system control algorithm works of literature, to analysis the advantages and disadvantages of 

each method. With the process, the scope of the thesis worked on is continuously narrowed 

down and determined until the appropriate control algorithms are selected. Based on the gaps 

in the suitable algorithms, the new control methods are proposed in follow. This part is 

presented in detail in Chapter 2. 

The second step is to build a mathematical model of the plate system. Since some studies have 

done by previous researchers, the second step focuses on building a State-Space Representation 

and Second-order Representation that are simpler and available to extract data faster than the 
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transfer function. However, since the laboratory plate system has amended after the previous 

researches, the data is obtained again for the new plate system. This part is indicated in Chapter 

3. 

In the third step, the analysis of the controller strategies to be explored is interpreted by 

gradually expanding from the systems under tight conditions in original literature to the 

relatively loose conditions for general systems. Then according to the characteristics of the 

plate system, it is simplified to achieve high-efficiency and effective online control. The details 

of this part are in Chapter 4. 

In the fourth step, the controllers established in the third step are simulated numerically in 

MATLAB Simulink© to verify the analysis results and observe the control effects. This content 

of this step will be described in Chapter 5. 

The final step verified the effects of designed new controllers experimentally, which starts with 

the offline experiments, then do the online experiments. This step is shown in Chapter 6. 

Finally, conclusions are presented in Chapter 7. 
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Chapter 2: Literature Review 

This chapter outlines large amounts of literature on adaptive MIMO vibration cancellation, it 

can be divided into four parts. Section 2.1 will focus on the previous work of the project related 

to the theme of this thesis. Section 2.2 analyses several algorithms of the adaptive controller 

with their advantages and disadvantages. In Section 2, three control methods (PPF, IMPPF and 

MPPF) which are appropriate for the plate system are summarized. These three control 

algorithms are very important in the entire thesis. Section 2.3 will introduce methods of 

frequency estimator generation. The frequency estimator is the key to detecting system changes 

while obtaining useful controller parameters that make online adaptive controllers possible . 

Section 2.4 summarizes the original contributions of this thesis. 

2.1 Previous Work 

The project has been undertaken by several researchers and they achieved certain results, but 

there are still some deficiencies. This part will indicate previous related work.  

2.1.1 System Modelling 

The mathematic modelling of the physical system is made by Zhang and He [1], who simplif ied 

the plant system by changing each infinity-order nonlinear transfer function to be three added 

second-order linear functions, which is 6-order transfer function. The system can be simplif ied 

because the high-frequency modes affect the vibration of the system slightly, in this project, it 

only considers the first three modes, so there are three second-order functions. Due to this 

breakthrough work, the controller design is much easier. However, due to the physical system 

has already replaced also, the data need to be acquired again. In addition, as the research plate 

system is a MIMO system, the matrix-based expression model is clearer and more concise. 

Therefore, a State-Space Representation and a Second-order Differential function 

representation can be constructed to upgrade the original transfer function model. 

2.1.2 Controller Optimization Design 

Chen [2] researched the online optimization problem of PPF controller. He compared several 

optimization methods and finally selected the genetic algorithm (GA) for calculating the H∞ 

norm as the limit or constraint to select the appropriate parameters. The results showed that the 

optimization method can further cause up to 5 dB of attenuation. Chen's work can provide an 

optimization method that is noise-free and has no spillover. But it needs to be improved because 
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it is not ready to optimize parameters in the system with unknown changes, and the 

optimization parameters provided by GA are too slow, which can reach up to more than 40 

minutes [3]. Thus, it cannot be used directly to the online adaptive control scheme. 

2.2 Controller Algorithms 

The control algorithm is the key to the adaptive online control system. To explore the control 

algorithm suitable for the board system, this section indicates several controller design 

methods. 

2.2.1 Least-Mean-Square (LMS) Algorithm 

Considering the harmful effects of unwanted vibration from vehicle seats on human health, 

Gan [4] built an active seat system which can reduce vibrations through the LMS adaptive 

algorithm. LMS algorithm has a signal filtering process and a filter coefficients adaptive 

process. Gan [4] tried to use finite impulse response (FIR), shown in Figure 2-1, to be the filter 

structure for adaptive filtering in digital signal processing, because FIR is always stable. After 

mathematic modelling the filter and using the LMS recursive algorithm, the weight equation 

can be indicated as: 

𝒘(𝑛 + 1) = 𝛽𝒘(𝑛) + 𝜇𝒙(𝑛)𝑒(𝑛) 

where:  

𝒘(𝑛)  is the filter coefficient vector, 𝒘(𝑛) = [w0(n),w1(n), … , wL−1(n)] , which can be 

adjusted by LMS adaptive algorithm to minimise the error signal; 

𝒙(𝑛) is input vector, 𝒙(𝑛) = [x0(n), x1(n), … , xL−1(n)]; 

𝑒(𝑛) is error signal, 𝑒(𝑛) = 𝑓𝑖𝑙𝑡𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑦(𝑛) − 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑑(𝑛); 

𝜇  is a positive real constant which can be calculated by stability condition of the LMS 

algorithm;  

𝛽 is leakage factor which is used to control the weight update of the LMS algorithm. The 

leakage factor can improve convergence and stability of the the LMS algorithm and solve the 

problem of drifting in the LMS algorithm [32], and can be chosen in the range of 0 to 1. 
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Figure 2-1 - Adaptive FIR filter structure 

This method can give a simple way to design the controller and obtain parameters quickly.  

However, the added controller may cause secondary path dynamics. Although the Filtered-x 

LMS (FXLMS) algorithm and a secondary path identifier Fast-block LMS (FBLMS) system 

were derived to compensate the secondary path effect, the added elements made the structure 

very complex. If the method is used to a MIMO system, the complexity of designing structure 

increases exponentially. Also, the LMS method is a linear adaptive filtering algorithm. Using 

this method in non-linear system may cause unsatisfactory performance. 

2.2.2 Backstepping Fuzzy Control 

Adaptive backstepping fuzzy control strategy has been widely studied in flexible structures. 

Fuzzy control performs well in many different systems which were confirmed by experimental 

results. To indicate few, Fang et al. [5] using an adaptive backstepping sliding mode controller 

with a fuzzy system to control a cantilever beam structure. They presented an adaptive 

backstepping fuzzy sliding mode control approach can improve the tracking error. Zhao [6] et 

al. found that a fuzzy adaptive controller can effectively bound all signals and track the target 

signal in a small error for unknown nonlinear models of strict-feedback systems with unknown 

disturbances. Li et al. [7] presented a fuzzy adaptive controller with the hybrid parameter 

adaptive laws is useful for a MIMO nonlinear system. The backstepping fuzzy control not only 

independents on the system model improves the robustness of the plant system, but also can 

avoid the cancellation of useful nonlinearities and can relax the matching condition for the 

strict feedback system. In addition, [5]-[8] all verified this method can be used with state-space 

representation. It also has self-learning ability, so it is also widely used in artificial intelligent 

technology. However, the fuzzy logic needs large programming work to realize it, because the 
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less information fuzzy control may lead the system to reduce results accuracy and dynamic 

performance. Besides, fuzzy logic lacks the inherent systematisms to define control targets. 

The mathematical model of the system discussed in this thesis can be constructed, so there is 

no need to use a fuzzy algorithm. 

2.2.3 Independent Modal Space Control (IMSC) 

IMSC is developed by Meirovitch [9]. The biggest advantage of the algorithm is that it controls 

the modes separately, but, because of this, the spillover between mode and mode is significant. 

Figure 2-3 shows the block diagram of the IMSC compensated system. The φ transfers the 

output into displacement and then calculate a force which equals to the vibration caused force 

to suppress the vibration [27].  Due to the IMSC structure, one coupled sensor/actuator only 

can control one mode. In this thesis, only the first three modes will be considered and the 

physical structure has 3 coupled sensor/actuator, but for more modes control, more 

sensors/actuators are needed. Besides, in the MIMO system, the φ will become a 9x9 matrix, 

so the inverse of φ is a very complicated calculation, which multiplies the difficulty of online 

calculation. Therefore, it is quite difficult to build a suitable IMSC for this system. 

 

Figure 2-2 – Block Diagram for IMSC compensated system 

2.2.4 Positive Position Feedback (PPF) Control 

The main advantage of PPF is that it is not sensitive to spillover effect because it is a low-pass 

filter [1], and the controller design is simple because it has a simple decentralized structure 

[10].  PPF controller has been proved effectiveness in many algorithms: consensus-PPF [11], 

fractional-order PPF [12], collocated [10]-[12] and non-collocated PPF [13]. Besides, the PPF 

controller also used to control different structure systems: sandwich plate [13], clamped beams 
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[14] and so on. All the above prove that PPF controller has strong adjustability and flexibility. 

PPF controller has a second-order mathematic model, shown in (2.1).  

 𝐻𝑃𝑃𝐹(𝑠)𝑖 =
𝑔𝑖𝜔𝑓

2

𝑠2+2𝜁𝑓𝜔𝑓𝑠+𝜔𝑓
2 (2.1)  

 

Figure 2-3 - General block diagram with PPF controller 

The general compensated system block diagram is shown in Figure 2-2, the 𝑔𝑖𝜔
2  block 

transfers displacements to forces, which is proportional to the acceleration [15]. The principle 

is: 

Assume a sinusoidal signal is: 

𝑥 = 𝐴𝑠𝑖𝑛(𝜔𝑡) 

Where 𝑥 is displacement of the signal. The velocity (𝑣) is �̇�, the acceleration (𝑎) is �̈�, therefore: 

𝑣 = �̇� = 𝐴𝜔𝑐𝑜𝑠(𝜔𝑡) 

𝑎 = �̈� = −𝐴𝜔2sin (𝜔𝑡) 

The MIMO system in this project is a time-varying dynamic system. The adaptive controllers’ 

characteristics request the controller responses the system in time and feedback to control the 

vibration in force, velocity or acceleration. According to above, several adaptive controller 

design methods, the PPF controller is suitable to the MIMO plate system, because the PPF 

transfer function is a second-order function which is same as the mathematic model of the plant 

system so that the controller design will be much easier. Another advantage of PPF is not 

sensitive to spillover effects. Besides, the input and output of PPF are displacements, which 

has a simple dynamic relationship between displacement, velocity, acceleration and force. The 
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sensor/actuator of the plate system is acceleration actuators, hence, PPF is one choice of the 

system.  

However, although the PPF can use a coupled sensor/actuator to control several modes, it 

cannot control the mode separately, which makes it difficult to modify the controller as a target 

control element. In addition, the optimization of PPF parameters needs to be obtained by GA 

[2], and the calculation time is long. Besides, PPF provides large damping ratio to the closed-

loop of flexible structure [17]. Therefore, other control algorithms based on PPF will be 

proposed to control the vibration. 

2.2.5 Independent Model Positive Position Feedback (IMPPF) & Modified 

Positive Position Feedback (MPPF) 

Since the advantages and disadvantages of PPF and IMSC can be complementary, Baz and 

Hong [16] proposed a new method named Independent Model Positive Position Feedback 

(IMPPF) in 1997, which includes a first-order filter and a controller gain. It adds the advantage 

of the IMSC algorithm that can control the mode separately to the PPF controller, so that the 

controller can not only control multiple modes at the same time, but also control the specified 

mode separately. The mathematic model of the controller is very simple, that makes it possible 

to update controller parameters online. However, the simplified mathematical model may result 

in poor control effect. 

In 2010, Nima Mahmoodi et al. [17] added a parallel second-order filter to IMPPF, the second-

order filter has the same structure with the conventional PPF, they called the method as 

Modified Positive Position Feedback (MPPF). It can reduce the damping of the compensator 

in the PPF control system, thus reducing the steady-state error while maintaining the control 

performance of PPF over transient vibration and spillover effects. At the same time, due to the 

large stability range of parameters in MPPF, the MPPF is more robust. This method strengthens 

the control performance of PPF but also more complex.  

According to the above analysis about the advantages and disadvantages of IMPPF and MPPF, 

a Real-Time Adaptive Control Scheme (RTACS) with the advantages of both controllers can 

be designed based on these two control algorithms. 
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2.3 Frequency Estimator 

A frequency estimator is needed in the online system because the frequency changes imply the 

changes in the system. It is an alert to tell whether the controller needs to update parameter 

now. It has many methods to generate a frequency estimator, such as modal filter method [18], 

Recursive Least Square method [19], and auto-regressive [20]. This part will simply introduce 

two methods of frequency estimator.  

2.3.1 Zero-crossing 

The first one is zero crossing, which is to record the interval time between two adjacent zero 

crossings of the signal, the time is half of period T. Then the frequency can be calculated based 

on the T [21]. This method is on time-domain space, it only can find one frequency at one time, 

it much prefers to be used in single damping mode signal. If used in multiple modes signal, it 

needs many bandpass filters to filter out unwanted frequencies, so that it may cause larger 

errors and made the structure in more complex.  

2.3.2 Fast Fourier Transform (FFT) 

FFT can calculate all frequencies in the system at a time and it can reduce the time cost from 

𝑂(𝑁2) to 𝑂(𝑁𝑙𝑜𝑔𝑁), where 𝑁 is data size. The principle is to continuously divide the data to 

be processed into two, and reduce the number of Fourier transforms to speed up the operation 

[22] [23]. However, it also has shortages, such as it has to store all the data of a signal, so need 

large storage in the computer, that leads time consumption which is unwanted in the adaptive 

controller. The storage and calculation time can be reduced by using FFT in a very small period 

signal and then repeat the work in the following time.  

2.4 Original Contributions  

This thesis has three original contributions: 

1. Construct SSR and Second-order Differential Model on the basis of transfer function 

representation. Both models can be easily extended and applied to more inputs and outputs 

systems. 

2. Upgrade IMPPF and MPPF that can only be used in SISO systems to be implemented in 

MIMO systems and implement the two controllers to plate system. The stability derivation of 

compensated MIMO system is the key to the success of this contribution. 
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3. Design an RTACS. That combined the advantages of IMPPF and MPPF. It can quickly 

respond to the changes in the system online and give relatively good control effect. 
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Chapter 3: System Modelling for the Plate Structure 

In this chapter, through mathematical derivation, the transfer function representation 

established by previous students is transformed into the State-Space Representation (SSR) and 

Second-order Differential Model. The relevant function simplification process on the basis of 

control purpose is displayed in section 3.1. Section 3.2 and 3.3 show the mathematical 

derivation process from transfer function representation to SSR and Second-order Differential 

Model in detail.  

3.1 Mathematical Model Simplification  

The plate system is three inputs and three outputs system, so the transfer function representation 

of the open-loop system can be shown as: 

 [

𝑌1(𝑠)

𝑌2(𝑠)

𝑌3(𝑠)
] = [

𝐺11(𝑠) 𝐺12(𝑠) 𝐺13(𝑠)

𝐺21(𝑠) 𝐺22(𝑠) 𝐺23(𝑠)

𝐺31(𝑠) 𝐺32(𝑠) 𝐺33(𝑠)
] × [

𝑈1(𝑠)

𝑈2(𝑠)

𝑈3(𝑠)
] (3.1) 

where 𝑌𝑖(𝑠), 𝑖 = 1,2,3 are the three outputs of the system,  𝑈𝑖(𝑠), 𝑖 = 1,2,3 are the three inputs 

of the system,  𝐺ij(𝑠), 𝑖, 𝑗 = 1,2,3 are the transfer functions for the 𝑖𝑡ℎ output and 𝑗𝑡ℎ input. The 

number follows the label of transducers shown in Figure 1.1. The block diagram is expressed 

by Figure 3-1 based on (3.1).  

 

Figure 3-1 - Block Diagram of Open-Loop System 

A sweep sinusoidal signal between 20 Hz to 200 Hz are inserted into three transducers 

respectively as input and the output signals generated in three transducers are measured. Those 

signals data are acquired by NI DAQ module, then transport the data to software ModalVIEW, 

the inputs and outputs relationships are produced in nine frequency response function (FRF) 
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plots by ModalVIEWsoftware [1].  The FRF curves are represented the 9 transfer functions in 

the real world which are shown as the blue curves in Figure 3-2.  In the physical model, each 

transfer function has a very large number of modes when the top plate vibrating.  To simplify , 

a Multiple Degree of Freedom (MDOF) polynomial curve fitting method in ModalVIEWcan 

generate similar curve as a substitute function of the real large-order transfer function. The 

substitute curves are displayed as the origin curves in Figure 3-2. In Figure 3-2, the horizontal 

axis is frequency (Hz) and the vertical axis is the magnitude which is corresponding voltage to 

the acceleration because the data from sensor and actuator is measured by accelerometers.  

𝐺11  𝐺21 𝐺31 

   

𝐺12  𝐺22 𝐺32 

   

𝐺13  𝐺23 𝐺33 

   

Figure 3-2 - FRF of Open-Loop Transfer Function  

(Blue – Real Curve, Origin – Fitting Curve) 

The new transfer function is the sum of 23 standard second-order transfer functions which are 

represented 23 modes. The number 23 was chosen because 23 functions best fit the trend of 

the original curve for each𝐺ij(𝑠). Now, the original nine large-order transfer functions are 

simplified to nine 46-order transfer functions. The new corresponding transfer function 𝐺𝑖𝑗(𝑠) 

can be respected by (3.2). 
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 𝐺𝑖𝑗(𝑠) = ∑ (
φ𝑖𝑗
𝑘

𝑠2+2Ϛ𝑖𝑗
𝑘𝜔𝑖𝑗

𝑘 𝑠+𝜔𝑖𝑗
𝑘 2)

23
𝑘=1  (3.2) 

where, 𝜔𝑖𝑗
𝑘 , Ϛ𝑖𝑗

𝑘  and φ𝑖𝑗
𝑘  is the frequency, damping ratio and mode shape for the 𝑘𝑡ℎ mode of 

𝑖𝑡ℎ output 𝑗𝑡ℎ input. 

For further simplification, this thesis only considers the first three modes. Since the low-

frequency modes have a greater influence on the system vibration than high-frequency modes 

[24]. It is discussed about the control method, three low-frequency modes are selected so that 

the control work can exhibit multi-mode MIMO system control effects. It is easy to extend 

control effects to more than three modes. The ModalVIEW also provided the frequency, 

damping ratio and mode shape for the 23 functions. Then (3.2) can be rewritten to (3.3). 

 𝐺𝑖𝑗(𝑠) = ∑ (
φ𝑖𝑗
𝑘

𝑠2+2Ϛ𝑖𝑗
𝑘𝜔𝑖𝑗

𝑘 𝑠+𝜔𝑖𝑗
𝑘 2)

3
𝑘=1  (3.3) 

The parameters for (3.3) are listed in Table 3-1. The mode shape is calculated by transfer the 

voltage of acceleration to displacement, so the whole system is considering the displacement 

changing via the method demonstrated in the paper of Zhang and He [1].  
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Table 3-1 - Parameters of Transfer Function Model 

 Mode No. 𝑘 
Frequency 𝜔 

(rads/s) 

Damping  𝜁 

(%) 

Mode shape 

𝜑 

𝐺11 

1 136.7221 1.401 0.0330 

2 174.2327 1.425 0.0127 

3 211.4292 1.318 0.0056 

𝐺12 

1 135.9053 1.292 0.0113 

2 174.9867 0.9791 0.0055 

3 211.8690 1.725 0.0198 

𝐺13 

1 134.7743 1.622 0.0062 

2 173.0389 1.423 0.0068 

3 210.7380 1.959 0.0152 

𝐺21 

1 136.2823 1.238 0.0148 

2 174.7982 1.631 0.0186 

3 211.1779 1.717 0.0169 

𝐺22 

1 135.9681 0.8888 0.0093 

2 174.7354 1.61 0.0104 

3 210.8009 2.097 0.0515 

𝐺23 

1 136.2823 0.156 0.0005 

2 174.1071 1.501 0.0097 

3 211.2407 2.245 0.0407 

𝐺31 

1 137.4133 1.232 0.0134 

2 174.7354 1.554 0.0156 

3 210.9894 1.592 0.0077 

𝐺32 

1 136.5336 0.001793 0.0002 

2 173.9814 1.365 0.0079 

3 210.1725 2.061 0.0277 

𝐺33 

1 133.0779 2.342 0.0088 

2 174.4841 1.074 0.0070 

3 212.1203 1.533 0.0155 

 

3.2 State-Space Representation Derivation 

State-Space Representation (SSR) is a matrix-based system representation method [25]. It can 

be used to represent large systems with simple symbols and more convenient to simulate in 

MATLAB-based controller development. Therefore, this section focuses on transforming the 

above transfer function representation into SSR. 

According to Figure 3-1 and (3.3), the transfer function representation for 3 outputs is shown 

as: 
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Output 1: 

 𝑌1 = 𝑌1 
1 + 𝑌1 

2 + 𝑌1 
3 (3.4) 

𝑌1 
1 = 𝐺11  

1 𝑈1 +𝐺12 
1 𝑈2 +𝐺13 

1 𝑈3

=
𝜑11 
1

𝑠2+ 2𝜁11
1 𝜔11

1 𝑠 + 𝜔11
1 2𝑈1 +

𝜑12 
1

𝑠2 +2𝜁12
1 𝜔12

1 𝑠 +𝜔12
1 2𝑈2 +

𝜑13  
1

𝑠2 + 2𝜁13
1 𝜔13

1 𝑠 + 𝜔13
1 2𝑈3 

𝑌1 
2 = 𝐺11 

2 𝑈1 +𝐺12 
2 𝑈2 +𝐺13 

2 𝑈3

=
𝜑11 
2

𝑠2+ 2𝜁11
2 𝜔11

2 𝑠 +𝜔11
2 2𝑈1 +

𝜑12 
2

𝑠2 +2𝜁12
2 𝜔12

2 𝑠 +𝜔12
2 2 𝑈2 +

𝜑13 
2

𝑠2+ 2𝜁13
2 𝜔13

2 𝑠 +𝜔13
2 2𝑈3 

𝑌1 
3 = 𝐺11 

3 𝑈1 +𝐺12 
3 𝑈2 +𝐺13 

3 𝑈3

=
𝜑11 
3

𝑠2+ 2𝜁11
3 𝜔11

3 𝑠 +𝜔11
3 2𝑈1 +

𝜑12 
3

𝑠2 +2𝜁12
3 𝜔12

3 𝑠 +𝜔12
3 2 𝑈2 +

𝜑13 
3

𝑠2+ 2𝜁13
3 𝜔13

3 𝑠 +𝜔13
3 2𝑈3 

Output 2: 

 𝑌2 = 𝑌2 
1 + 𝑌2 

2 +𝑌2 
3  (3.5) 

𝑌2 
1 = 𝐺21

1 𝑈1 + 𝐺22 
1 𝑈2 + 𝐺23 

1 𝑈3

=
𝜑21 
1

𝑠2 +2𝜁21
1 𝜔21

1 𝑠 +𝜔21
1 2𝑈1 +

𝜑22 
1

𝑠2 + 2𝜁22
1 𝜔22

1 𝑠 +𝜔22
1 2𝑈2 +

𝜑23 
1

𝑠2 +2𝜁23
1 𝜔23

1 𝑠 +𝜔23
1 2𝑈3 

𝑌2 
2 = 𝐺21

2 𝑈1 +𝐺22 
2 𝑈2 +𝐺23 

2 𝑈3

=
𝜑21 
2

𝑠2 +2𝜁21
2 𝜔21

2 𝑠+ 𝜔21
2 2𝑈1 +

𝜑22 
2

𝑠2 +2𝜁22
2 𝜔22

2 𝑠 +𝜔22
2 2𝑈2 +

𝜑23 
2

𝑠2 +2𝜁23
2 𝜔23

2 𝑠+ 𝜔23
2 2𝑈3  

𝑌2 
3 = 𝐺21

3 𝑈1 + 𝐺22 
3 𝑈2 +𝐺23 

3 𝑈3

=
𝜑21 
3

𝑠2 +2𝜁21
3 𝜔21

3 𝑠 +𝜔21
3 2𝑈1 +

𝜑22 
3

𝑠2 + 2𝜁22
3 𝜔22

3 𝑠 + 𝜔22
3 2𝑈2 +

𝜑23 
3

𝑠2 +2𝜁23
3 𝜔23

3 𝑠 +𝜔23
3 2𝑈3 

Output 3: 

 𝑌3 = 𝑌3 
1 + 𝑌3 

2 +𝑌3 
3  (3.6) 

𝑌3 
1 = 𝐺31 

1 𝑈1 + 𝐺32 
1 𝑈2 +𝐺33 

1 𝑈3

=
𝜑31 
1

𝑠2 +2𝜁31
1 𝜔31

1 𝑠 +𝜔31
1 2𝑈1 +

𝜑32 
1

𝑠2 + 2𝜁32
1 𝜔32

1 𝑠 +𝜔32
1 2𝑈2 +

𝜑33 
1

𝑠2 +2𝜁33
1 𝜔33

1 𝑠 +𝜔33
1 2𝑈3 



Chapter 3: System Modelling for Plate Structure 

18 
 

𝑌3 
2 = 𝐺31 

2 𝑈1 +𝐺32 
2 𝑈2 +𝐺33 

2 𝑈3

=
𝜑31 
2

𝑠2 +2𝜁31
2 𝜔31

2 𝑠 +𝜔31
2 2𝑈1 +

𝜑32 
2

𝑠2 + 2𝜁32
2 𝜔32

2 𝑠 + 𝜔32
2 2𝑈2 +

𝜑33 
2

𝑠2 +2𝜁33
2 𝜔33

2 𝑠 +𝜔33
2 2𝑈3 

𝑌3 
2 = 𝐺31 

2
𝑈1 +𝐺32  

2
𝑈2 +𝐺33  

2
𝑈3

=
𝜑31 
2

𝑠2 +2𝜁31
2 𝜔31

2 𝑠+ 𝜔31
2 2𝑈1 +

𝜑32 
2

𝑠2+ 2𝜁32
2 𝜔32

2 𝑠+ 𝜔32
2 2𝑈2 +

𝜑33 
2

𝑠2 +2𝜁33
2 𝜔33

2 𝑠+ 𝜔33
2 2𝑈3 

It can be seen from Table 3-1 that the normal frequency of the same mode has little difference 

in different transfer functions. For the convenience of expression, for one mode, take mean of 

the nine frequencies in the nine transfer functions to get 𝜔1 , 𝜔2  and 𝜔3 . And take the 

maximum damping ratio in the same way to get Ϛ1, Ϛ2 and Ϛ3. The demonstrator of each output 

can be the same. The transfer matrix can be built as: 

𝐘(s) = [

𝑌1(𝑠)

𝑌2(𝑠)

𝑌3(𝑠)
] = [

𝑌1
1(𝑠) + 𝑌1

2(𝑠) + 𝑌1
3(𝑠)

𝑌2
1(𝑠) + 𝑌2

2(𝑠) + 𝑌2
3(𝑠)

𝑌3
1(𝑠) + 𝑌3

2(𝑠) + 𝑌3
3(𝑠)

] =

[
 
 
 
 
 
𝜑11
1 𝑈1(𝑠)+𝜑12

1 𝑈2(𝑠)+𝜑13
1 𝑈3(𝑠)

𝑠2+2Ϛ1𝜔1𝑠+𝜔1
2 +

𝜑11
2 𝑈1(𝑠)+𝜑12

2 𝑈2(𝑠)+𝜑13
2 𝑈3(𝑠)

𝑠2+2Ϛ2𝜔2𝑠+𝜔2
2 +

𝜑11
3 𝑈1(𝑠)+𝜑12

3 𝑈2(𝑠)+𝜑13
3 𝑈3(𝑠)

𝑠2+2Ϛ3𝜔3𝑠+𝜔3
2

𝜑21
1 𝑈1(𝑠)+𝜑22

1 𝑈2(𝑠)+𝜑23
1 𝑈3(𝑠)

𝑠2+2Ϛ1𝜔1𝑠+𝜔1
2 +

𝜑21
2 𝑈1(𝑠)+𝜑22

2 𝑈2(𝑠)+𝜑23
2 𝑈3(𝑠)

𝑠2+2Ϛ2𝜔2𝑠+𝜔2
2 +

𝜑21
3 𝑈1(𝑠)+𝜑22

3 𝑈2(𝑠)+𝜑23
3 𝑈3(𝑠)

𝑠2+2Ϛ3𝜔3𝑠+𝜔3
2

𝜑31
1 𝑈1(𝑠)+𝜑32

1 𝑈2(𝑠)+𝜑33
1 𝑈3(𝑠)

𝑠2+2Ϛ1𝜔1𝑠+𝜔1
2 +

𝜑31
2 𝑈1(𝑠)+𝜑32

2 𝑈2(𝑠)+𝜑33
2 𝑈3(𝑠)

𝑠2+2Ϛ2𝜔2𝑠+𝜔2
2 +

𝜑31
3 𝑈1(𝑠)+𝜑32

3 𝑈2(𝑠)+𝜑33
3 𝑈3(𝑠)

𝑠2+2Ϛ3𝜔3𝑠+𝜔3
2 ]

 
 
 
 
 

       (3.7) 

The mode shape φ𝑖𝑗
𝑘   can be seen as the product of φ𝑖

𝑘 and φ𝑗
𝑘 due to coupled sensor/actuator, 

(3.7) can be rewritten as: 

𝐘(s)

=

[
 
 
 
 
 
 
𝜑1 
1(𝜑1 

1𝑈1 + 𝜑2 
1𝑈2 +𝜑3 

1𝑈3)

𝑠2 +2𝜁1𝜔1𝑠+ (𝜔1)2
+
𝜑1 
2(𝜑1 

2𝑈1 + 𝜑2 
2𝑈2 + 𝜑3 

2𝑈3)

𝑠2 + 2𝜁2𝜔2𝑠 + (𝜔2)2
+
𝜑1 
3(𝜑1 

3𝑈1 +𝜑2 
3𝑈2 + 𝜑3 

3𝑈3)

𝑠2 +2𝜁3𝜔3𝑠 + (𝜔3)2

𝜑2 
1(𝜑1 

1𝑈1 + 𝜑2 
1𝑈2 +𝜑3 

1𝑈3)

𝑠2+ 2𝜁1𝜔1𝑠 + (𝜔1)2
+
𝜑2 
2(𝜑1 

2𝑈1 + 𝜑2 
2𝑈2 +𝜑3 

2𝑈3)

𝑠2 + 2𝜁2𝜔2𝑠 + (𝜔2)2
+
𝜑2 
3(𝜑1 

3𝑈1 + 𝜑2 
3𝑈2 +𝜑3 

3𝑈3)

𝑠2 + 2𝜁3𝜔3𝑠 + (𝜔3)2

𝜑3 
1(𝜑1 

1𝑈1 + 𝜑2 
1𝑈2 +𝜑3 

1𝑈3)

𝑠2+ 2𝜁1𝜔1𝑠 + (𝜔1)2
+
𝜑3 
2(𝜑1 

2𝑈1 + 𝜑2 
2𝑈2 +𝜑3 

2𝑈3)

𝑠2 + 2𝜁2𝜔2𝑠 + (𝜔2)2
+
𝜑3 
3(𝜑1 

3𝑈1 + 𝜑2 
3𝑈2 +𝜑3 

3𝑈3)

𝑠2 + 2𝜁3𝜔3𝑠 + (𝜔3)2 ]
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=

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜑1 
1 [𝜑1 

1 𝜑2 
1 𝜑3 

1 ] [
𝑈1
𝑈2
𝑈3

]

𝑠2 + 2𝜁1𝜔1𝑠 + (𝜔1)2
+

𝜑1 
2 [𝜑1 

2 𝜑2 
2 𝜑3 

2 ] [
𝑈1
𝑈2
𝑈3

]

𝑠2+ 2𝜁2𝜔2𝑠 + (𝜔2)2
+

𝜑1 
3 [𝜑1 

3 𝜑2 
3 𝜑3 

3 ] [
𝑈1
𝑈2
𝑈3

]

𝑠2 +2𝜁3𝜔3𝑠 + (𝜔3)2

𝜑2 
1 [𝜑1 

1 𝜑2 
1 𝜑3 

1 ] [

𝑈1
𝑈2
𝑈3

]

𝑠2 +2𝜁1𝜔1𝑠+ (𝜔1)2
+

𝜑2 
2 [𝜑1 

2 𝜑2 
2 𝜑3 

2 ] [

𝑈1
𝑈2
𝑈3

]

𝑠2 + 2𝜁2𝜔2𝑠 + (𝜔2)2
+

𝜑2 
3 [𝜑1 

3 𝜑2 
3 𝜑3 

3 ] [

𝑈1
𝑈2
𝑈3

]

𝑠2 +2𝜁3𝜔3𝑠 + (𝜔3)2

𝜑3 
1 [𝜑1 

1 𝜑2 
1 𝜑3 

1 ] [
𝑈1
𝑈2
𝑈3

]

𝑠2 +2𝜁1𝜔1𝑠+ (𝜔1)2
+

𝜑3 
2 [𝜑1 

2 𝜑2 
2 𝜑3 

2 ] [
𝑈1
𝑈2
𝑈3

]

𝑠2 + 2𝜁2𝜔2𝑠 + (𝜔2)2
+

𝜑3 
3 [𝜑1 

3 𝜑2 
3 𝜑3 

3 ] [
𝑈1
𝑈2
𝑈3

]

𝑠2 +2𝜁3𝜔3𝑠 + (𝜔3)2 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

= [

𝜑1 
1𝜂1 +𝜑1 

2𝜂2 + 𝜑1 
3𝜂3

𝜑2 
1 𝜂1 + 𝜑2 

2 𝜂2+ 𝜑2
3𝜂3

𝜑3 
1 𝜂1 + 𝜑3 

2 𝜂2+ 𝜑3 
3𝜂3

] 

= [

𝜑1 
1 𝜑1 

2 𝜑1 
3

𝜑2 
1 𝜑2 

2 𝜑2 
3

𝜑3 
1 𝜑3 

2 𝜑3 
3

] [

𝜂1
𝜂2
𝜂3
]  (3.8) 

where: 

𝜂1 ≜

[𝜑1 
1 𝜑2 

1 𝜑3 
1 ] [

𝑈1
𝑈2
𝑈3

]

𝑠2 + 2𝜁1𝜔1𝑠 + (𝜔1)2
 

 

𝜂2 ≜

[𝜑1 
2 𝜑2 

2 𝜑3 
2 ] [

𝑈1
𝑈2
𝑈3

]

𝑠2 +2𝜁2𝜔2𝑠 + (𝜔2)2
 

 

 𝜂3 ≜

[𝜑1 
3 𝜑2 

3 𝜑3 
3 ][

𝑈1
𝑈2
𝑈3

]

𝑠2+2𝜁3𝜔3𝑠+(𝜔3)2
 (3.9) 

To represent the function into SSR, the transfer functions need to be in the time domain [26]. 

Hence, apply the inverse Laplace transfer function into (3.9), the result will be seen as: 

 �̈�1 +2𝜁
1𝜔1�̇�1 + (𝜔

1)2𝜂1 = [𝜑1 
1 𝜑2 

1 𝜑3 
1 ] [

𝑢1
𝑢2
𝑢3
] (3.10) 
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 �̈�2 + 2𝜁
2𝜔2�̇�2+ (𝜔

2)2𝜂2 = [𝜑1 
2 𝜑2 

2 𝜑3 
2 ] [

𝑢1
𝑢2
𝑢3
] (3.11) 

 �̈�3 + 2𝜁
3𝜔3�̇�3+ (𝜔

3)2𝜂3 = [𝜑1 
3 𝜑2 

3 𝜑3 
3 ] [

𝑢1
𝑢2
𝑢3
] (3.12) 

where, 𝑢𝑖 is control input in the time domain. 

According to (3.10), convert each second-order differential equation into two first-order 

differential equations. That is shown as: 

{
 
 

 
 

𝑥1 = 𝜂1
�̇�1 = �̇�1 = 𝑥2

�̇�2= �̈�1 = [𝜑1
1 𝜑2

1 𝜑3
1] [

𝑢1
𝑢2
𝑢3
] − 2Ϛ1𝜔1𝑥2− 𝜔

12𝑥1

 

 [
�̇�1
�̇�2
] = [

0 1

−𝜔1
2

−2Ϛ1𝜔1
] [
𝑥1
𝑥2
] + [

0 0 0
𝜑1
1 𝜑2

1 𝜑3
1][

𝑢1
𝑢2
𝑢3
] (3.13) 

Similar to (3.10), the two first-order differential equations for the (3.11) and (3.12) can be 

shown as: 

 [
�̇�3
�̇�4
] = [

0 1

−𝑤22 −2Ϛ2𝑤2] [
𝑥3
𝑥4
] + [

0 0 0
𝜑1
2 𝜑2

2 𝜑3
2] [

𝑢1
𝑢2
𝑢3
]                 (3.14) 

 [
�̇�5
�̇�6
] = [

0 1

−𝑤32 −2Ϛ3𝑤3] [
𝑥5
𝑥6
] + [

0 0 0
𝜑1
3 𝜑2

3 𝜑3
3] [

𝑢1
𝑢2
𝑢3
] (3.15) 

Together the (3.8) and (3.13) – (3.15), the final SSR of the plant system can be written as: 

�̇� = 𝐀𝑿 + 𝐁𝑼 

 𝒀 = 𝐂𝑿 (3.16) 

where  

𝑿 =

[
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]
 
 
 
 
 

      𝒀 = [

𝑦1
𝑦2
𝑦3
]   
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𝐀 =

[
 
 
 
 
 
 
0 1 0 0 0 0

−𝜔1
2

−2Ϛ1𝜔1 0 0 0 0
0 0 0 1 0 0

0 0 −𝜔2
2

−2Ϛ2𝜔2 0 0
0 0 0 0 0 1

0 0 0 0 −𝜔3
2

−2Ϛ3𝜔3]
 
 
 
 
 
 

 

𝐁 =

[
 
 
 
 
 
0 0 0
𝜑1
1 𝜑2

1 𝜑3
1

0 0 0
𝜑1
2 𝜑2

2 𝜑3
2

0 0 0
𝜑1
3 𝜑2

3 𝜑3
3]
 
 
 
 
 

   

𝐂 = [

𝜑1
1 0 𝜑1

2 0 𝜑1
3 0

𝜑2
1 0 𝜑2

2 0 𝜑2
3 0

𝜑3
1 0 𝜑3

2 0 𝜑3
3 0

] 

𝑦𝑖  is output in the time domain. 

The parameters in SSR are displayed in Table 3-2 which are selected or calculated as previously 

demonstrated from Table 3-1.  

 

Table 3-2 - Parameters of Plant System 

Mode 1 Mode 2 Mode 3 

Ϛ1 0.0234 Ϛ2 0.0163 Ϛ3 0.0225 

𝜔1 135.8844 𝜔2 174.3444 𝜔3 211.1709 

𝜑1
1 0.1815 𝜑1

2 0.1125 𝜑1
3 0.0751 

𝜑2
1 0.0962 𝜑2

2 0.1020 𝜑2
3 0.2270 

𝜑3
1 0.0939 𝜑3

2 0.0838 𝜑3
3 0.1243 

 

3.3 Second-order Differential Model Derivation 

To following work considering, a Second-order Differential Model also needs in this thesis. 

Based on (3.8) and (3.10) - (3.12), the plant system can be written as: 

�̈� + 𝐃�̇� + 𝛀𝜼 = 𝝍𝑻𝑼 

 𝒀 = 𝝍𝜼 (3.17) 
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where  

𝜼 = [

𝜂1
𝜂2
𝜂3

]       𝒀 = [

𝑦1
𝑦2
𝑦3
]     𝑼 = [

𝑢1
𝑢2
𝑢3
]  

𝐃 = [

2𝜁1𝜔1 0 0

0 2𝜁2𝜔2 0

0 0 2𝜁3𝜔3
] 

𝛀 = [

(𝜔1)
2

0 0

0 (𝜔2)
2

0

0 0 (𝜔3)
2

] 

𝝍 = [

𝜑1 
1 𝜑1 

2 𝜑1 
3

𝜑2 
1 𝜑2 

2 𝜑2 
3

𝜑3 
1 𝜑3 

2 𝜑3 
3

] 

 

All the parameters can be found in Table 3-2.
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Chapter 4: Online Adaptive Controller Design  

In this chapter, two adaptive control algorithms based on the technique of PPF are proposed in 

Section 4.1 and 4.2 respectively. Using these two proposed methods, a Real-Time Adaptive 

Control Scheme (RTACS) module is proposed for the real-time adaptive control for the given 

plate-structure. 

4.1 IMPPF Design 

IMPPF was first presented by Poh and Baz [28] in 1990.  It absorbs the benefits of IMSC to 

PPF controller, so it overcomes the disadvantage that PPF cannot control each mode separately.  

However, the work of Poh and Baz was stopped at SISO system control and it realised the 

multi-mode control by controlling different mode by time-sharing method. This section extends 

the algorithm from SISO system to the given MIMO multi-mode plate system in mathematic 

theory derivation. 

4.1.1 IMPPF Concept 

The mathematical model of original IMPPF can be expressed as [28]: 

 {
�̈�𝑘 +𝜔𝑘

2
𝑦𝑘 = 𝑓𝑘 = 𝛾𝑘𝜔𝑘

2
(𝑢𝑘 +𝑢𝑅

𝑘)
  

𝜏𝑘 �̇�𝑘+𝑢𝑘 = 𝑦𝑘
 (4.1) 

where,  𝜔𝑘  means the natural frequency. There are two parameters need to be designed which 

are a control gain (𝛾𝑘) and a time constant (𝜏𝑘). 𝑢𝑅
𝑘  and 𝑦𝑘 are the input and output of the 

system respectively. 𝑢𝑘 can be seen as control input of the system. The index 𝑘 means the 𝑘𝑡ℎ 

mode of the system. 

According to (4.1), the block diagram of the IMPPF for a SISO system can be displayed as 

Figure 4-1. 
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Figure 4-1 - Block Diagram of the Original IMPPF for a SISO System 

The whole controller can be divided into three blocks: plant system, controller gain and first-

order filter. It assumes the plant system is an undamped system, and sets the location of sensor 

and actuator by reduced mode shape matrices, so the plant system is no damping ratio and 

mode shape terms.  

The flowchart of the parameters design can be demonstrated as Figure 4-2. 

  

Figure 4-2 - Flowchart of IMPPF Algorithm 

Based on Figure 4-3, the parameters design can be explained in mathematic theory in 4.2.2, 

4.2.3 and 4.2.4.  
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4.1.2 Conventional IMPPF Controller 

According to Figure 4-2, the closed-loop transfer function (C.L.T.F.) can be represented as: 

 
𝑦𝑘

𝑢𝑅
𝑘 =

𝛾𝑘𝜔𝑘
2
(𝜏𝑘𝑠+1)

𝜏𝑘𝑠3+𝑠2+𝜏𝑘𝜔𝑘
2
𝑠+(1−𝛾𝑘)𝜔𝑘

2 (4.2) 

a) Stability Range 

The closed-loop character equation (C.L.C.E.) is the denominator of (4.2), which is displayed 

as: 

 𝐶.𝐿. 𝐶.𝐸. = 𝜏𝑘𝑠3+ 𝑠2 + 𝜏𝑘𝜔𝑘
2
𝑠 + (1 − 𝛾𝑘)𝜔𝑘

2
 (4.3) 

Apply Routh-Hurwitz’s stability criterion to find the stability range of both parameters as Table 

4-1 shows.  

Table 4-1 - Routh-Hurwitz’s Stability Criterion for IMPPF 

𝑠3 𝜏𝑘 𝜏𝑘𝜔𝑘
2
 

𝑠2 1 (1 − 𝛾𝑘)𝜔𝑘
2
 

𝑠1 𝜏𝑘𝜔𝑘
2
− 𝜏𝑘(1 − 𝛾𝑘)𝜔𝑘

2
 0 

𝑠0 (1 − 𝛾𝑘)𝜔𝑘
2
 0 

 

According to the theory of Routh-Hurwitz’s stability criterion, the stable system needs the 

second column of the Table 4-1 do not change the sign [29]. Because in the second row, 1 is a 

positive number, hence, (4.4) should be met.  

 {

𝜏𝑘 > 0

𝜏𝑘𝜔𝑘
2
− 𝜏𝑘(1− 𝛾𝑘)𝜔𝑘

2
> 0

(1− 𝛾𝑘)𝜔𝑘
2
> 0

 (4.4) 

From (4.4), the stability ranges of 𝜏𝑘 and 𝛾𝑘 can be found, the ranges are presented as (4.5). 

 { 𝜏𝑘 > 0
0 < 𝛾𝑘 < 1

 (4.5) 

b) Fix 𝛾𝑘 
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The value of 𝛾𝑘 can be fixed into 0.5 by setting steady-state error (𝑒𝑠𝑠) to be zero. Based on 

(4.1). The steady-state error is measured in the time goes to infinity. To eliminate the 𝑒𝑠𝑠 

requires the �̇�𝑘(𝑡 = ∞) = 0 and ÿ𝑘(𝑡 = ∞) = 0. Hence, the (4.1) can be rewritten as: 

 
𝜔𝑘

2
𝑦𝑘(𝑡=∞)=𝛾𝑘𝜔𝑘

2
(𝑢𝑘(𝑡=∞)+𝑢𝑅

𝑘 )
  

𝑢𝑘(𝑡=∞)=𝑦𝑘(𝑡=∞)
 (4.6) 

Substitute 𝑢𝑘 to 𝑦𝑘 to eliminate the control input, the (4.7) can be found. 

 𝜔𝑘
2
𝑦𝑘(𝑡 = ∞) = 𝛾𝑘𝜔𝑘

2
(𝑦𝑘(𝑡 = ∞)+ 𝑢𝑅

𝑘) (4.7) 

If 𝑦𝑘(𝑡 = ∞) = 𝑢𝑅
𝑘 , then 𝑒𝑠𝑠 = 0, hence, the 𝛾𝑘 = 0.5. In addition, the value 0.5 is just in the 

range of 0 < 𝛾𝑘 < 1. Hence, for the same system, no matter how the system changed, the 𝛾𝑘 

is fixed into 0.5. 

c) Find 𝜏𝑘 

The suitable value of 𝜏𝑘 can be determined by dividing the numerator and denominator of (4.2) 

by 𝜏𝜔3, the result can be written as: 

 
𝑦𝑘

𝑢𝑅
𝑘 =

𝛾𝑘(𝑠 ̅+𝛼𝑘)

𝑠3̅+𝛼𝑘𝑠 ̅2+𝑠+̅(1−𝛾𝑘)𝛼𝑘
 (4.8) 

where 𝑠̅ =
𝑠

𝜔𝑘
 𝛼𝑘 =

1

𝜏𝑘𝜔𝑘
 

Now, there is only one unknown parameter 𝛼 in C.L.C.E. Therefore, the root locus about 𝛼 can 

be drawn in Figure 4-3. 
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Figure 4-3 - Root Locus about 𝛼𝑘 

The poles and zeros are further away from the imaginary axis, the system would be more stable. 

From the gridline of Figure 4-3, the system becomes more stable when the closed-loop damping 

ratio become larger. Hence, the suitable value of 𝜏𝑘can be found when the damping ratio 

becomes the largest value. The relationship between the 𝛼𝑘 and closed-loop damping ratio can 

be seen as Figure 4-4. 
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Figure 4-4 - Closed-loop Damping Ratio vs 𝛼𝑘 

According to Figure 4-4, the maximum of closed-loop damping ratio is 0.207 where the 𝛼𝑘 

becomes 1.18. Hence, (4.9) is expressed the value of 𝜏𝑘. 

 𝜏𝑘 =
1

1.18𝜔𝑘
 (4.9) 

4.1.3 IMPPF for SISO Plate System 

The plant system in original IMPPF controller is not same to the plate system listed as (3.2), 

hence, to extend this method to the plate system, the analysis of IMPPF control in SISO plate 

system need to be discussed.  

Adding the damping ratio (𝜁𝑘) and mode shape (𝜑𝑘) to the plant system to Figure 4-1, the 

C.L.T.F. can be represented as: 

 
𝑦𝑘

𝑢𝑅
𝑘 =

𝛾𝑘𝜔𝑘
2
𝜑𝑘(𝜏𝑘𝑠+1)

𝜏𝑘𝑠3+(2𝜏𝑘𝜁𝑘𝜔𝑘+1)𝑠2+(𝜏𝑘𝜔𝑘
2
+2𝜁𝑘𝜔𝑘)𝑠+(1−𝛾𝑘𝜑𝑘)𝜔𝑘

2 (4.10) 

a) Stability Range 

The C.L.C.E. is the denominator of (4.10), which is displayed as: 

 𝐶.𝐿. 𝐶.𝐸. = 𝜏𝑘𝑠3+ (2𝜏𝑘𝜁𝑘𝜔𝑘 + 1)𝑠2 + (𝜏𝑘𝜔𝑘
2
+ 2𝜁𝑘𝜔𝑘)𝑠 + (1 − 𝛾𝑘𝜑𝑘)𝜔𝑘

2
 (4.11) 
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Assume that  

𝐶. 𝐿. 𝐶. 𝐸.= 𝑎3𝑠
3 +𝑎2𝑠

2+ 𝑎1𝑠 + 𝑎0 

Apply Routh-Hurwitz’s stability criterion to find the stability range of both parameters as Table 

4-1 shows.  

Table 4-2 - Routh-Hurwitz’s Stability Criterion for a Second-order System 

𝑠3 𝑎3 𝑎1 

𝑠2 𝑎2 𝑎0 

𝑠1 
1

𝑎2
(𝑎1𝑎2 −𝑎0𝑎3)   0 

𝑠0 𝑎0 0 

 

Therefore, the (4.12) should be meet.  

 {

𝑎3 > 0
𝑎2 > 0
𝑎0 > 0

𝑎1𝑎2 > 𝑎0𝑎3

 (4.12) 

Substitute the parameters in (4.11) into (4.12) and reviewing the parameters in plant system are 

all positive values as shown in Table 3-1, the stability ranges of 𝜏𝑘 and 𝛾𝑘 can be found which 

are presented as: 

 {
𝜏𝑘 > 0

−
4𝜁𝑘

2

𝜑𝑘
−

2𝜁𝑘

𝜑𝑘𝜔𝑘
< 𝛾𝑘 <

1

φk

 (4.13) 

b) Fix 𝛾𝑘 

Similar to section 4.1.2. Based on (4.10), the condition to eliminate the 𝑒𝑠𝑠 in s-domain is that 

𝑠 = 0, 𝑢𝑅
𝑘 = 𝑦𝑘. (4.10) can be rewritten as: 

 1 =
𝛾𝑘𝜑𝑘

1−𝛾𝑘𝜑𝑘
 (4.14) 

Hence,  

 𝛾𝑘 =
1

2𝜑𝑘
 (4.15) 
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In addition, the value also can meet the stability request in (4.13), because the values of 𝜑𝑘 in 

plate structure are positive and less than one, 𝜁𝑘 and 𝜔𝑘are also positive. 

c) Find 𝜏𝑘 

Substitute (4.15) into (4.10), the C.L.T.F. can be rewritten as: 

 
𝑦𝑘

𝑢𝑅
𝑘 =

0.5𝜔𝑘
2
(𝜏𝑘𝑠+1)

𝜏𝑘𝑠3+(2𝜏𝑘𝜁𝑘𝜔𝑘+1)𝑠2+(𝜏𝑘𝜔𝑘
2
+2𝜁𝑘𝜔𝑘)𝑠+0.5𝜔𝑘

2 (4.16) 

The parameters in (4.16) are all known, except 𝜏𝑘, therefore, a root locus about 𝜏𝑘 can be 

plotted.  

For example, considering the first mode of 𝐺11 , the parameters are listed in the first row of 

Table 3-1 and the root locus can be seen as Figure 4-5. 

 

Figure 4-5 - Root Locus about 𝜏11
1  

The poles and zeros are further away from the imaginary axis, the system would be more stable. 

From the gridline of Figure 4-5, the system becomes more stable when the closed-loop damping 

ratio become larger. Hence, the suitable value of 𝜏𝑘can be found when the closed-loop damping 
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ratio becomes the largest value. The relationship between the 𝜏𝑘 and closed-loop damping ratio 

can be seen as Figure 4-6. 

 

 

Figure 4-6 - Closed-loop Damping Ratio vs 𝜏11
1  

According to Figure 4-6, the maximum of closed-loop damping ratio is 0.2272 where the 𝜏11
1  

becomes 0.006.  

Figure 4-7 shows the block diagram of IMPPF control SISO plate system.  

 

Figure 4-7 - Block Diagram of the IMPPF for a SISO Plate System 
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The plant system in Figure 4-7 can be seen as any standard second-order plant system. In the 

plate system, the 𝜑𝑘  and 𝜁𝑘  is the mode shape and damping ratio of the 𝑘𝑡ℎ  mode. Other 

parameters are the same as explained in Figure 4-1.  

Since vibration cancellations are considered in this thesis, the system input can be assumed as 

zero. The 𝑢𝑅
𝑘  in Figure 4-5 should be zero. Hence, the block of control gain (𝛾𝑘𝜔𝑘

2
) can be 

moved alongside the first-order filter block, and can provide the same control effect as Figure 

4-7. Then the block diagram shows as Figure 4-8. 

 

Figure 4-8 - Block Diagram for IMPPF Vibration Cancellation in SISO 

The disturbance is caused by the environment the plant system located at. It is added into the 

plant system to cause the vibration. The 𝑦𝑘 is the 𝑘𝑡ℎ mode output of the system. The 𝑢𝑘 is the 

𝑘𝑡ℎ mode control input of the system.  

4.1.4 IMPPF for MIMO Plate System 

According to (4.16), the value of 𝜏𝑘 is independent of the mode shape. Therefore, using the 

parameters of the simplified mathematical plant model in Table 3-2, there are three values for 

𝜏𝑘 . However, the 𝛾𝑘  still has nine values due to the nine different damping ratios. For 

simplified expressing, the maximum value of mode shapes for one mode can be extracted. Then 

the MIMO block diagram can be assumed as Figure 4-9. 
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Figure 4-9 - Block Diagram of the IMPPF for the MIMO Plate System 

a) Stability Range 

The stability range of MIMO plate system can be found by applying Lyapunov function which 

requests matrix expressions for the compensated system. Therefore, this section provides the 

details on how to derive the matrix expressions of the closed-loop system and how to apply the 

Lyapunov function in the compensated system.  

Based on Figure 4-9, mathematical expression can be represented in (4.17). 

 𝑈1 =
𝛾1𝜔1

2

𝜏1𝑠+1  
(𝑌1 +𝑌2+𝑌3)+

𝛾2𝜔2
2

𝜏2𝑠+1  
(𝑌1+ 𝑌2+ 𝑌3) +

𝛾3𝜔3
2

𝜏3𝑠+1  
(𝑌1 +𝑌2+𝑌3) (4.17) 

where, 𝑈𝑖  and 𝑌𝑖 (𝑖 = 1,2,3) are the control input and system output in s-domain.  
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Assume 𝜌1 , 𝜌2, 𝜌3 as: 

 𝜌1 =
𝛾1𝜔1

𝜏1𝑠+1  
(𝑌1+ 𝑌2+ 𝑌3) (4.18) 

 𝜌2 =
𝛾2𝜔2

𝜏2𝑠+1  
(𝑌1 +𝑌2+𝑌3)  

 𝜌3 =
𝛾3𝜔3

𝜏3𝑠+1  
(𝑌1 +𝑌2+𝑌3)  

Apply the inverse Laplace transform function into (4.18), (4.19) can be obtained.  

 𝜏1�̇�1 +𝜌1 = 𝛾
1[𝜔1 𝜔1 𝜔1] [

𝑦1
𝑦2
𝑦3
] (4.19) 

𝜏2�̇�2+ 𝜌2 = 𝛾
2[𝜔2 𝜔2 𝜔2] [

𝑦1
𝑦2
𝑦3
] 

𝜏3�̇�3+ 𝜌3 = 𝛾
3[𝜔3 𝜔3 𝜔3] [

𝑦1
𝑦2
𝑦3
] 

where, 𝑦𝑖  (𝑖 = 1,2,3) is the system output in time-domain. 

Then (4.17) can be rewritten as (4.20) in time-domain. 

 𝑢1 = 𝜔1𝜌1 + 𝜔
2𝜌2 +𝜔

3𝜌3 (4.20) 

Due to 𝑈1 = 𝑈2 = 𝑈3, the matrix expressions in time domain can be shown as: 

 [

𝑢1
𝑢2
𝑢3
] = [

𝜔1 𝜔2 𝜔3

𝜔1 𝜔2 𝜔3

𝜔1 𝜔2 𝜔3
] [

𝜌1
𝜌2
𝜌3
]     (4.21) 

where, 𝑢𝑖 (𝑖 = 1,2,3) is the control input in time-domain. 

Based on (4.19) and (4.21), the controller mathematical model can be expressed as: 

 {
𝝉�̇� + 𝝆 = 𝜸𝑾𝑻𝒀

𝑼 =𝑾𝝆
 (4.22) 

where,  

𝒀 = [

𝑦1
𝑦2
𝑦3
]       𝑼 = [

𝑢1
𝑢2
𝑢3
]         𝛕 = [

𝜏1 0 0
0 𝜏2 0
0 0 𝜏3

]       𝛒 = [

𝜌1
𝜌2
𝜌3
]     
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 𝛄 = [

𝛾1 𝛾1 𝛾1

𝛾2 𝛾2 𝛾2

𝛾3 𝛾3 𝛾3
]    𝑾 = [

𝜔1 𝜔2 𝜔3

𝜔1 𝜔2 𝜔3

𝜔1 𝜔2 𝜔3
] 

Recall the Second-order Differential Model of the plant system is displayed as (3.16) in section 

3.3. 

 {
�̈� + 𝐃�̇� +𝛀𝜼 = 𝝍𝑻𝑼

𝒀 = 𝝍𝜼
 (3.16) 

Eliminate the 𝒀 and 𝑼 in (4.22) and (3.16). the closed-loop model can be displayed as: 

 {
�̈� +𝑫�̇� + 𝜴𝜼 = 𝝍𝑻𝑾𝝆

𝝉�̇�+ 𝝆 = 𝜸𝑾𝑻𝝍𝜼
 (4.23) 

Let 𝝆 = 𝜸𝑻𝐏 to ensure the 𝑲  term in (4.25) to be a symmetric matrix. The (4.23) can be 

rewritten as: 

 {
�̈� +𝐃�̇� +𝛀𝜼 = 𝝍𝑻𝑾𝜸𝑻𝐏

𝛕𝜸𝑻�̇� + 𝜸𝑻𝐏 = 𝛄𝐖𝐓𝝍𝜼
 (4.24) 

Transfer the (4.24) in matrix expressions, the compensated matrix expressions can be given in 

(4.25). 

 𝑴�̈�+ 𝑪�̇� + 𝑲𝒒 = 𝟎 (4.25) 

where,  

𝒒 = [
𝜼
𝑷
]         𝑴 = [

𝑰 𝟎
𝟎 𝟎

]         𝑪 = [
𝑫 𝟎
𝟎 𝝉𝜸𝑻

]       𝑲 = [
𝛀 −𝝍𝑻𝑾𝜸𝑻

−𝜸𝐖𝐓𝝍 𝜸𝑻
] 

According to Lyapunov Stability Theory [30], the compensated system is stable if and only if: 

𝑽(𝒒) =
1

2
(�̇�𝑻𝑴�̇�+ 𝒒𝑻𝑲𝒒)> 0 

 �̇�(𝒒) = �̇�𝑻(𝑴�̈�+ 𝑲𝒒) = −�̇�𝑻𝑪�̇� < 0 (4.26) 

Based on analysis of the MIMO IMPPF control system, the matrix 𝑴 is positive semi-definite , 

𝑪 is positive definite. Hence, if 𝑲 is positive, the system is stable.  

Since the stability of the MIMO system is only related to the matrix 𝑲 , the matrix 𝑲  is 

independent to matrix 𝝉. Hence, the stability range of the MIMO system is only about the value 

of 𝛾𝑘(𝑘 = 1,2,3).  
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The range cannot be calculated in several certain inequalities remain unchanged, because of 

the enormous computation load. However, if there are the fixed values for 𝛾𝑘, the stability of 

the system can be checked by substitute the values into the matrix 𝑲, and to calculate whether 

the eigenvalues of matrix 𝑲 are all positive.  

b) Find parameters 

In MIMO plate system, the method to find the values of 𝜏𝑘 and 𝛾𝑘 can use the same method in 

4.2.3. However, because the calculation of 𝛾𝑘 is based on the steady-state error to be zero, the 

requirement is not so strict that the steady-state error must be eliminated, the small steady-state 

error is allowed. Hence, the 𝛾𝑘 can be tuned to an acceptable value if it is not in or on the edge 

of the stability range.  

4.2 MPPF Design 

MPPF was first proposed by Nima Mahmoodi et al. by adding a first-order filter to the structure 

of conventional PPF and successfully implemented the MPPF on a beam-structure in 

2010[17]. The output signal of a conventional PPF is positively fed to a second-order controller 

structure with a large damping. The large damping can provide sufficient suppression effects 

on the transient vibrations. However, the large damping in the compensator will lead to a 

decrease of the damping frequency of the compensator [17]. This will create the difference 

between the damping frequency of the compensator and the natural frequency of the structure, 

which would otherwise be equal to each other in an ideal case. Consequently, a steady-state 

error of the system output will be generated. Using MPPF, the damping ratio of the 

conventional PPF compensator can be reduced. The steady state error of the compensated 

system in MPPF can be reduced close to zero. The detailed derivation of the MPPF will be 

given in this section and extended the algorithm from SISO system to the given MIMO plate-

structure for controlling multi-modes. 

4.2.1 MPPF Concept 

The mathematical model of the MPPF can be expressed as [17]: 

 {

�̈�𝑘 +2𝜁𝑘𝜔𝑘 �̇�𝑘 +𝜔𝑘
2
𝑦𝑘 = 𝜑𝑘(𝑔𝑘𝛼𝑘+ ℎ𝑘𝛽𝑘 +𝑑)

�̈�𝑘+ 2𝜁𝑘𝜔𝑘 �̇�𝑘+ 𝜔𝑘
2
𝛼𝑘= 𝜔𝑘

2
𝑦𝑘

�̇�𝑘+𝜔𝑘𝛽𝑘 = 𝜔𝑘𝑦𝑘  

 (4.27) 
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where, the 𝜔𝑘  represents the natural frequency of plant system at the 𝑘𝑡ℎ mode. There are two 

positive gains need to be designed which are 𝑔𝑘  and ℎ𝑘. 𝑢𝑘 and 𝑦𝑘 are the control input and 

output of the system respectively. The d is a disturbance of the system. The index 𝑘 means the 

𝑘𝑡ℎ mode of the system.  

According to (4.27), the block diagram of the MPPF for a SISO system can be displayed as 

Figure 4-10. 

 

Figure 4-10 - Block Diagram of the MPPF for a SISO System 

The MPPF consists of a second-order filter which is used to provide equivalent damping 𝜁𝑘 

with plant system to suppresses transient vibration, and a first-order filter to reduce the system 

damping. The plant system is a standard second-order system. The frequency parameters of the 

first-order filter and second-order filter are all equal to the natural frequencies of the plant 

system. 

The flowchart of the parameters design can be demonstrated as Figure 4-11. 
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Figure 4-11 - Flowchart of MPPF Algorithm 

Based on Figure 4-11, the gains stability range can be explained in mathematic theory in 4.3.2, 

and 4.3.3.  

For two gains optimization of MPPF, the Genetic Algorithm (GA) is used to solve the 

minimum criterion of the H∞ norm of the closed-loop system, and the optimal parameters of 

the controller are obtained [2]. 

4.2.2 MPPF for SISO Plate System 

Based on Figure 4-10 and (4.27), setting the 𝛼𝑘 and 𝛽𝑘 as: 

{
𝛼𝑘 = 𝑔𝑘

−
1

2𝜑𝑘
−
1

2𝜔𝑘𝑖𝑘

𝛽𝑘 = ℎ𝑘
−
1

2𝜑𝑘
−
1

2𝜔𝑘
1

2𝑗𝑘
 (4.28) 

Substitute (4.28) into (4.27), 4.27 can be rewritten as: 

 

{
 
 

 
 �̈�𝑘+ 2𝜁𝑘𝜔𝑘 �̇�𝑘+ 𝜔𝑘

2
𝑦𝑘 − 𝑔𝑘

1

2𝜑𝑘
1

2𝜔𝑘𝑖𝑘−ℎ𝑘
1

2𝜑𝑘
1

2𝜔𝑘
1

2𝑗𝑘− 𝜑𝑘𝑑 = 0

𝑖�̈�+ 2𝜁𝑘𝜔𝑘𝑖�̇�− 𝜔𝑘𝑔𝑘
1

2𝜑𝑘
1

2𝑦𝑘+ 𝜔𝑘
2
𝑖𝑘 = 0

𝑗�̇� − ℎ𝑘
1

2𝜑𝑘
1

2𝜔𝑘
1

2𝑦𝑘+𝜔𝑘𝑗𝑘 = 0 

 (4.29) 

(4.29) can be simplified into matrix expressions as: 

 𝑵�̈� + 𝑬�̇�+ 𝑮𝒑+ 𝑯 = 𝟎 (4.30) 
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where,  

𝒑 = [

𝑦
𝑖
𝑗
]         𝑵 = [

1 0 0
0 1 0
0 0 0

]         𝑬 = [
2𝜁𝑘𝜔𝑘 0 0

0 2𝜁𝑘𝜔𝑘 0
0 0 1

]       

 𝑮 =

[
 
 
 
 𝜔𝑘

2
−𝑔𝑘

1
2𝜑𝑘

1
2𝜔𝑘 −ℎ𝑘

1
2𝜑𝑘

1
2𝜔𝑘

1
2

−𝜔𝑘𝑔𝑘
1
2𝜑𝑘

1
2 𝜔𝑘

2
0

−ℎ𝑘
1
2𝜑𝑘

1
2𝜔𝑘

1
2 0 𝜔𝑘 ]

 
 
 
 

         𝑯 = [
0 0 −𝜑𝑘𝑑
0 0 0
0 0 0

] 

Since the value of −𝜑𝑘𝑑 is small, for simplicity, the influence from disturbance is ignored, and 

(4.30) is displayed as (4.31). 

 𝑵�̈� + 𝑬�̇�+ 𝑮𝒑 = 𝟎 (4.31) 

According to Lyapunov Stability Theory [30], the compensated system is stable if and only if: 

𝑽(𝒑) =
1

2
(�̇�𝑻𝑵�̇�+ 𝒑𝑻𝑮𝒑) > 0 

 �̇�(𝒑) = �̇�𝑻(𝑵�̈� +𝑮𝒑) = −�̇�𝑻𝑬�̇� < 0 (4.32) 

Based on analysis of the MIMO IMPPF control system, the matrix 𝑵 is positive semi-definite, 

𝑬  is positive definite. Hence, if 𝑮 is positive definite, the system is stable. The conditions 

required for the positive definite can be written as (4.33), due to Silvester’s criterion [31], 

𝜔𝑘
2
> 0 

𝒅𝒆𝒕 |
𝜔𝑘

2
−𝑔𝑘

1
2𝜑𝑘

1
2𝜔𝑘

−𝜔𝑘𝑔𝑘
1
2𝜑𝑘

1
2 𝜔𝑘

2
| > 0 

 𝒅𝒆𝒕 |
|

𝜔𝑘
2

−𝑔𝑘
1

2𝜑𝑘
1

2𝜔𝑘 −ℎ𝑘
1

2𝜑𝑘
1

2𝜔𝑘
1

2

−𝜔𝑘𝑔𝑘
1

2𝜑𝑘
1

2 𝜔𝑘
2

0

−ℎ𝑘
1

2𝜑𝑘
1

2𝜔𝑘
1

2 0 𝜔𝑘

|
| > 0 (4.33) 

Solve (4.33) provides the result as: 

 𝑔 + ℎ <
𝜔𝑘

2

𝜑𝑘
 (4.34) 
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4.2.3 MPPF for MIMO Plate System 

The stability range of MIMO plate system can be found by applying Lyapunov function which 

requests matrix expressions for the closed-loop system. Therefore, in this section, it explains 

the detail that how to derive the matrix expressions of the closed-loop system and how to apply 

the Lyapunov function in the compensated system.  

Assume the MPPF compensated MIMO plate system is displayed as Figure 4-12 

 

Figure 4-12 - Block Diagram of the MPPF for the MIMO Plate System 

Based on Figure 4-12, mathematical expression can be represented in (4.35). 

𝑈1 = 𝑈2 = 𝑈3 
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 𝑈1 = (𝑔
1 ω1

2

𝑠2+2Ϛ1ω1𝑠+ω1
2 + ℎ1

ω1

𝑠+ω1
) (𝑌1+ 𝑌2+𝑌3)+ (𝑔

2 ω2
2

𝑠2+2Ϛ2ω2𝑠+ω2
2 + ℎ2

ω2

𝑠+ω2
) (𝑌1+

𝑌2+𝑌3)+ (𝑔
3 ω3

2

𝑠2+2Ϛ3ω3𝑠+ω3
2 +ℎ3

ω3

𝑠+ω3
)(𝑌1+ 𝑌2+𝑌3) (4.35) 

where, 𝑈𝑖  and 𝑌𝑖 (𝑖 = 1,2,3) are the control input and system output in s-domain.  

Define 𝜈1, 𝜈2, 𝜈3 in (4.36):   

 𝜈1 = 𝑔
1 ω1

𝑠2+2Ϛ1ω1𝑠+ω1
2 (𝑌1 +𝑌2+𝑌3)+ ℎ

1 1

𝑠+ω1
(𝑌1+𝑌2+ 𝑌3) (4.36) 

 𝜈2 = 𝑔2
ω2

𝑠2+2Ϛ2ω2𝑠+ω2
2 (𝑌1+ 𝑌2 +𝑌3) + ℎ

2 1

𝑠+ω2
(𝑌1+𝑌2+ 𝑌3)  

 𝜈3 = 𝑔3
ω3

𝑠2+2Ϛ3ω3𝑠+ω3
2 (𝑌1+ 𝑌2 +𝑌3) + ℎ

3 1

𝑠+ω3
(𝑌1+𝑌2+ 𝑌3) 

Then (4.35) can be rewritten as (4.37) in time-domain. 

 𝑢1 = 𝜔1𝜈1+ 𝜔
2𝜈2+ 𝜔

3𝜈3 (4.37) 

𝑢2 = 𝜔1𝜈1 +𝜔
2𝜈2 +𝜔

3𝜈3 

𝑢3 = 𝜔1𝜈1 +𝜔
2𝜈2 +𝜔

3𝜈3 

where, 𝑢𝑖 (𝑖 = 1,2,3) is the control input in time-domain. 

The matrix expressions of (4.37) can be written as: 

 𝑼 =𝑾𝝂 (4.38) 

where, 

𝑼 = [

𝑢1
𝑢2
𝑢3
]        𝑾 = [

𝜔1 𝜔2 𝜔3

𝜔1 𝜔2 𝜔3

𝜔1 𝜔2 𝜔3
]         𝝂 = [

𝜈1
𝜈2
𝜈3
]     

Set 𝜈𝑖 to be the sum of 𝜆𝑖 and 𝛿𝑖  (𝑖 = 1,2,3) as: 

 𝜈1 = 𝜆1 +𝛿1 = 𝑔
1 ω1

𝑠2+2Ϛ1ω1𝑠+ω1
2 (𝑌1+ 𝑌2 +𝑌3) + ℎ

1 1

𝑠+ω1
(𝑌1 +𝑌2+𝑌3) (4.39) 

 𝜈2 = 𝜆2 +𝛿2 = 𝑔
2 ω2

𝑠2+2Ϛ2ω2𝑠+ω2
2 (𝑌1 +𝑌2+𝑌3)+ ℎ

2 1

𝑠+ω2
(𝑌1+ 𝑌2+ 𝑌3)  

 𝜈3 = 𝜆3 +𝛿3 = 𝑔
3 ω3

𝑠2+2Ϛ3ω3𝑠+ω3
2 (𝑌1 +𝑌2+𝑌3)+ ℎ

3 1

𝑠+ω3
(𝑌1+ 𝑌2+ 𝑌3)  
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Apply the inverse Laplace transform function into 𝜆𝑖 and 𝛿𝑖  , (4.40) can be obtained.  

 {
�̈�1+2Ϛ

1ω1�̇�1 +ω
12𝜆1 = 𝑔1𝜔1(𝑦1 + 𝑦2 +𝑦3)

�̇�1 +𝜔
1𝛿1 = ℎ

1(𝑦1 + 𝑦2 +𝑦3)
 (4.40) 

{
�̈�2+2Ϛ

2ω2�̇�2+ ω
22𝜆2 = 𝑔2𝜔2(𝑦1 +𝑦2 + 𝑦3)

�̇�2 +𝜔
2𝛿2 = ℎ

2(𝑦1 +𝑦2 + 𝑦3)
 

{
�̈�3+2Ϛ

3ω3�̇�3+ ω
32𝜆3 = 𝑔3𝜔3(𝑦1 +𝑦2 + 𝑦3)

�̇�3 +𝜔
3𝛿3 = ℎ

3(𝑦1 +𝑦2 + 𝑦3)
 

where, 𝑦𝑖  (𝑖 = 1,2,3) is the system output in time-domain. 

The matrix expressions of (4.40) can be written as: 

 {
�̈� + 𝑫�̇� +𝜴𝝀 = 𝒈𝑾𝒀

�̇� +𝜴
𝟏

𝟐𝜹 = 𝒉𝒀
 (4.41) 

where,  

𝒀 = [

𝑦1
𝑦2
𝑦3
]    𝛌 = [

𝜆1
𝜆2
𝜆3

]        𝜹 = [

𝛿1
𝛿2
𝛿3

]      

𝒈 = [

𝑔1 𝑔1 𝑔1

𝑔2 𝑔2 𝑔2

𝑔3 𝑔3 𝑔3
]    𝒉 = [

ℎ1 ℎ2 ℎ3

ℎ1 ℎ2 ℎ3

ℎ1 ℎ2 ℎ3
]   𝑾 = [

𝜔1 𝜔2 𝜔3

𝜔1 𝜔2 𝜔3

𝜔1 𝜔2 𝜔3
]  

𝐃 = [

2𝜁1𝜔1 0 0

0 2𝜁2𝜔2 0

0 0 2𝜁3𝜔3
]      𝛀 = [

(𝜔1)
2

0 0

0 (𝜔2)
2

0

0 0 (𝜔3)
2

] 

Since, 𝜈𝑖 is the sum of 𝜆𝑖 and 𝛿𝑖, the term 𝝂 in (4.38) can be eliminate by substituting 𝝀 and 𝜹 

into the (4.38), then (4.42) is given. 

 𝑼 =  𝑾𝝀+ 𝑾𝜹 (4.42) 

Based on (4.41) and (4.42), the controller can be represented as: 

 {

�̈� +𝑫�̇�+ 𝜴𝝀 = 𝒈𝑾𝒀

�̇� + 𝜴
𝟏

𝟐𝜹 = 𝒉𝒀
𝑼 =  𝑾𝝀 +𝑾𝜹

 (4.43) 
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Recall the Second-order Differential Model of the plant system is displayed as (3.16) in section 

3.3. 

 {
�̈� + 𝐃�̇� +𝛀𝜼 = 𝝍𝑻𝑼

𝒀 = 𝝍𝜼
 (3.16) 

Eliminate the 𝑼 and 𝒀 in (3.16) and (4.43). the closed-loop model can be displayed as: 

 {

�̈� + 𝑫�̇� + 𝜴𝜼 = 𝝍𝑻𝑾(𝝀+ 𝜹)

�̈� + 𝑫�̇� +𝜴𝝀 = 𝒈𝑾𝝍𝜼

�̇� +𝜴
𝟏

𝟐𝜹 = 𝒉𝝍𝜼

 (4.44) 

Transfer the (4.44) in matrix expressions, the compensated matrix expressions can be given in 

(4.45). 

 [
𝑰 𝟎 𝟎
𝟎 𝑰 𝟎
𝟎 𝟎 𝟎

] [

�̈�

�̈�

�̈�

] + [
𝑫 𝟎 𝟎
𝟎 𝑫 𝟎
𝟎 𝟎 𝑰

] [

�̇�

�̇�

�̇�

] + [

𝜴 −𝝍𝑻𝑾 −𝝍𝑻𝑾
−𝒈𝑾𝝍 𝜴 𝟎

−𝒉𝝍 𝟎 𝜴
𝟏

𝟐

][
𝜼

𝝀
𝜹
] = 𝟎 (4.45) 

Let 𝝀 = 𝒈
𝟏

𝟐𝚲 and 𝜹 = 𝒉
𝟏

𝟐𝑾−
𝟏

𝟐𝚫 to ensure the 𝑲 term in (4.47) to be symmetric matrix. The 

(4.44) can be rewritten as: 

 

{
 
 

 
 �̈� +𝑫�̇� +𝜴𝜼 = 𝝍𝑻𝑾𝒈

𝟏

𝟐𝚲+𝝍𝑻𝑾
𝟏

𝟐𝒉
𝟏

𝟐𝚫 

�̈� + 𝑫�̇� + 𝜴𝚲 = 𝒈
𝑻

𝟐𝑾𝑻𝝍𝜼

�̇� + 𝜴
𝟏

𝟐𝚫 = 𝒉
𝑻

𝟐  𝑾
𝑻

𝟐𝝍𝜼

 (4.46) 

Transfer the (4.46) in matrix expressions, the compensated matrix expressions can be given in 

(4.47). 

 𝑴�̈�+ 𝑪�̇� + 𝑲𝒒 = 𝟎 (4.47) 

where,  

𝒒 = [
𝜼
𝚲
𝚫
]         𝑴 = [

𝑰 𝟎 𝟎
𝟎 𝑰 𝟎
𝟎 𝟎 𝟎

]         𝑪 = [
𝑫 𝟎 𝟎
𝟎 𝑫 𝟎
𝟎 𝟎 𝑰

]        

𝑲 =

[
 
 
 
 𝜴 −𝝍𝑻𝑾𝒈

𝟏
𝟐 −𝝍𝑻𝑾

𝟏
𝟐𝒉

𝟏
𝟐

−𝒈
𝑻
𝟐𝑾𝑻𝝍 𝜴 𝟎

−𝒉
𝑻
𝟐  𝑾

𝑻
𝟐𝝍 𝟎 𝜴

𝟏
𝟐 ]
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According to Lyapunov Stability Theory [30], the compensated system is stable if and only if: 

𝑽(𝒒) =
1

2
(�̇�𝑻𝑴�̇�+ 𝒒𝑻𝑲𝒒)> 0 

 �̇�(𝒒) = �̇�𝑻(𝑴�̈�+ 𝑲𝒒) = −�̇�𝑻𝑪�̇� < 0 (4.48) 

Based on analysis of the MIMO IMPPF control system, the matrix 𝑴 is positive semi-definite, 

𝑪 is positive definite. Hence, if 𝑲 is positive, the system is stable.  

The range cannot be calculated in several certain inequalities, because of the enormous 

computation load. However, if there are the values of 𝑔 and ℎ, the stability of the system can 

be checked by substitute the values into the matrix 𝑲, and calculate whether the eigenvalues of 

matrix 𝑲 are all positive.  

4.3 RTACS Design 

After the IMPPF and MPPF control methodologies are developed above, a RTACS is finally 

proposed to realize the online adaptive control of the given MIMO plate-structure. 

The RTACS is mainly constructed by three parts: Plant, Frequency Estimator and Controller 

as shown in Figure 4-13.  

 

Figure 4-13 – Block Diagram of RTACS 

The Frequency Estimator as shown in the red box in Figure 4-13 is used to online identify the 

natural frequencies of the modes by FFT method within the frequency range of concern (20Hz 

to 40 Hz). The identifying work is completed by FFT and required frequency range can be 

obtained by Filter. A Buffer like arrangement is constructed to store the current estimated 

frequencies which will be compared online continuously with the latest estimated frequencies. 
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If their differences are within a small threshold value, the stored frequencies will remain 

unchanged, until a noticeable difference is witnessed. 

The estimated frequencies are sending to a Switch, that determines the flow of the new 

parameters to which controller. The other Switch will be used to determine which controller is 

going to be connected to form the closed-loop system. If the frequencies in the Buffer remain 

unchanged, MPPF will be used to form the closed-loop system as its damping performance is 

better compared to IMPPF. Once the frequencies in the Buffer are changed, the corresponding 

new frequencies will be sent to IMPPF to calculate a new IMPPF online to replace the previous 

MPPF. In the meantime, the MPPF controller parameters will be optimized online and will 

replace the IMPPF once the parameters are obtained. 
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Chapter 5: Simulation 

Numerical simulation is conducted in this chapter to verify the effectiveness of the proposed 

IMPPF, MPPF and RTACS via MATLAB Simulink©. System parameters obtained in Chapter 

3 and compensator parameters designed in Chapter 4 are utilized to build the simulation model 

in Simulink©. Simulation results are then generated both in frequency-domain and time-domain 

to validate the effectiveness of the proposed control algorithms.  

5.1 Simulation Study of IMPPF 

In this section, the IMPPF control effects are demonstrated by discussing the results of the 

IMPPF designed for a SISO system by time-domain results and bode plots and for the plate  

MIMO system by time-domain results, respectively. The MIMO system bode plots analysis is 

demonstrated at Figure 5.19 at Section 5.3 in yellow curve.  

5.1.1 IMPPF for SISO System 

Using the compensator parameters (time constant 𝜏 and control gain 𝛾) obtained following the 

procedures detailed in Section 4.1.3, each transfer function of plate system 𝐺𝑖𝑗 (where 𝑖 = 𝑗)  

in (3.1) is regarded as three SISO systems, detailed data can be found in Table 5-1. 

Table 5-1 - Parameters of IMPPF for SISO Plate System 

 Mode No. 𝑘 𝜏 𝛾 

𝐺11 

1 0.006 15.1699 

2 0.005 39.5232 

3 0.004 88.6745 

𝐺22 

1 0.006 53.9831 

2 0.005 48.0465 

3 0.004 9.7035 

𝐺33 

1 0.006 56.6747 

2 0.005 71.2435 

3 0.004 32.3373 

 

It is noted that, even though the calculation of time constant 𝜏 is related to both the damping 

ratio and natural frequency of the plant system, but its value is a constant value corresponding 

to different modes. This method can be easily implemented online by only computing the value 

of 𝛾 with low computation load. 
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𝐺11  will be selected in this thesis to demonstrate the control performance of the IMPPF for a 

SISO plate system. The closed-loop system is constructed in MATLAB Simulink© as shown 

in Fig. 5-1. 

 

Figure 5-1 – IMPPF SISO System Construction in Simulink© 

Based on (3.3), the 𝐺11  can be written as the sum of 3 second-order functions, each function is 

built based on one mode.  In Figure 5-1, the three functions are represented by 3 blocks which 

are called ‘G11 1st mode’, ‘G11 2nd mode’ and ‘G11 3rd mode’. The parameters’ values of these 

three functions can be found in the first three rows of Table 3-1. The whole IMPPF controller 

can be divided into 3 parallel semi-controllers which are presented as 3 first-order filters and 3 

control gains. Each semi-controller is used to control each mode separately. To clearly express 

the purpose, the 3 paralleled semi-controllers are called first mode controller, second mode 

controller and third mode controller. The values of 𝛾𝑘 and 𝜏𝑘 can be found from the first three 

rows of Table 5-1.  

first mode controller 

second mode controller 

third mode controller 
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To observe the differences between the compensated system and uncompensated system, the 

‘Scope’ block ‘y’ can display two systems in the time domain (Figure 5-2 is an example), one 

for uncompensated system and another for the compensated system.  

 

Figure 5-2 – IMPPF SISO System in Time Domain  

(blue – uncompensated system, orange – compensated system) 

Figure 5-2 shows the separated first mode controller compensation effects for the 𝐺11 . The first 

mode controller is separated by disconnecting the second and third mode controllers in Figure 

5-1. The compensated system can decrease the amplitude of uncompensated 𝐺11  by about 30 

times. The unit of the horizontal axis is second (s) and the unit of the vertical axis is 

meter/meter.  

Because only less information can be provided from the time domain plots, for further 

exploring the IMPPF control influences, the bode plots are introduced to see each mode 

attenuations. The results of IMPPF control effects in SISO system can be displayed by four 

plots. The effectiveness of separated first, second and third mode controller for 𝐺11  is observed 

in Figure 5-3, 5-5 and 5-6 respectively, and then see the total three modes controllers’ 

effectiveness for 𝐺11  in Figure 5-7. 
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Figure 5-3 - Bode Plot for IMPPF First Mode Controller 

From Figure 5-3, the first mode can be decayed up to 23dB. In addition, although the first mode 

controller is designed only to control the first mode, it also has good attenuation effects for 

second and third modes. The reason can be found from the Figure 5-4 which is presented the 

bode plots of a conventional IMPPF and PPF designed for same plant system. Both IMPPF and 

PPF are low-pass filters.  However, the slope of IMPPF in stopband is about 20dB/dec, while 

slope of PPF is about 40dB/dec, so IMPPF has a more significant vibration reduction on high-

frequency mode. 
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Figure 5-4 - Bode Plot for conventional IMPPF and PPF 

 

Figure 5-5 - Bode Plot for IMPPF Second Mode Controller 
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According to Figure 5-5, the second mode can be reduced by 23dB. The attenuation of the 

second mode is greater than Figure 5-3. However, the natural frequency of the first mode is 

less than the second mode, but the second mode controller also has good control performance 

for the first mode. The attenuation of the first mode controlled by second mode controller even 

is greater than first mode controller. This result is contrary to the common sense of low-pass 

filter. The reason for this phenomenon is that the second mode controller provides a lower gain 

than the first mode controller.  

 

Figure 5-6 - Bode Plot for IMPPF Third Mode Controller 

Based on Figure 5-6, the third mode can be shrunk by 25dB. The attenuation of the third mode 

is greater than 5-3 and 5-5. The third mode controller has better control performance on the 

first two modes. The attenuations of first two modes controlled by the third mode controller 

are greater than the previous two semi-controllers, because the third mode controller provides 

a lower gain than the former two separated controllers.  
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Figure 5-7 - Bode Plot for IMPPF Controller in SISO System 

In Figure 5-7, the IMPPF controller has a significant effect on the control of the three modes. 

The first, second, and third modes are attenuated by 49dB, 36dB, and 27dB, respectively. The 

effect is better than three separated semi-controllers control systems. This plot fully 

demonstrates the effectiveness of IMPPF in the SISO system. 

5.1.2 IMPPF for MIMO System 

Since from SISO to MIMO system, the stability range of the parameters will be relativity 

narrowed. Substituting the data in Table 5-1 into the (4.26), it leads to the instability of the 

MIMO system. Thus, the control effect has to be sacrificed in order to achieve the stability of 

the close-loop system. It is assumed that the plate system is an undamped system to design the 

IMPPF controller, then the design process will be consistent with Section 4.1.2, where the 

parameter 𝛾𝑘 is fixed at 0.5. Substituting 𝛾𝑘 with 0.5 in (4.26), the result shows that the MIMO 

system is stable. As discussed in Section 4.1.4 for (4.26), the parameter 𝜏𝑘 is independent of 

MIMO system stability, therefore, the same method can be used to obtain the value of 𝜏𝑘. The 

process is presented in Section 4.1.2. At this time, the time constant 𝜏𝑘 =
1

1.18𝜔𝑘
. The value is 

indicated in Table 5-2. 
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Table 5-2 - Parameters of IMPPF for MIMO Plate System 

Mode No. 𝑘 𝛾𝑘 𝜏𝑘(× 10−3) 

1 0.5 6.2366 

2 0.5 4.8608 

3 0.5 4.01314 

 

According to the block diagram 4-9, the system can be constructed as Figure 5-8 in Simulink© .  

 

Figure 5-8 - IMPPF MIMO System Construction in Simulink© 

In Figure 5-8, the plant system is presented by SSR. The construction of the SSR and the 

parameter values can be obtained by deriving (3.16) and Table 3-2, respectively. The IMPPF 

can be divided into 3 semi-controllers, which are designed for each mode. As mentioned above, 

the control gain for different modes is a fixed value of 0.5, while the time constant values are 

built according to the frequency of the different modes. 

To observe the differences between the compensated system and uncompensated system, the 

‘Scope’ block ‘y1’, ‘y2’ and ‘y3’ can display two systems in the time domain.  

y1 
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y2 

 

y3 

 

Figure 5-9 - IMPPF MIMO System in Time Domain 

(blue – uncompensated system, orange – compensated system) 

Figure 5-9 shows the IMPPF compensation effects for the MIMO plate system. The 

compensated system can shrink the amplitude of the uncompensated system by about 5 times 

for y1 and y3 and 6 times for y2. The result is not as good as the SISO system. The reason for 

the poor performance is that in the design process of the controller, to ensure the stability of 

the system, the system is roughly assumed to be an undamped system, but the generated 

controller actually controls a damped system.  

The bode plots analysis for IMPPF is shown in Section 5.3 which also displays the comparison 

between IMPPF and MPPF control effects.  

5.2 Simulation Study of MPPF  

In this section, the MPPF control effects are demonstrated by discussing the results of the 

MPPF for a SISO system in time domain and bode plots, and for the plate MIMO system in 

time domain. The MIMO system bode plots analysis is demonstrated at Figure 5.19 at Section 

5.3 in purple curve.  

5.2.1 MPPF for SISO System 

Based on the derived SISO stability (4.34), the sum of the two gains 𝑔𝑘  and ℎ𝑘 of MPPF must 

be less than 
𝜔𝑘

2

𝜑𝑘
. In the SISO system exploration, both 𝑔𝑘  and ℎ𝑘 are selected to be 

0.25𝜔𝑘
2

𝜑𝑘
. 

This value is chosen to make the value of the parameters close to the intermediate of the 

stability range and to make the system more stable. The values of both gains can be indicated 

in Table 5-3.  
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Table 5-3 - Parameters of MPPF for SISO Plate System 

 Mode No. 𝑘 𝑔𝑘  (× 105) ℎ𝑘(× 105) 

𝐺11 

1 1.4179 1.4179 

2 5.9990 5.9990 

3 19.820 19.820 

𝐺22 

1 4.9900 4.9900 

2 7.3349 7.3349 

3 2.1560 2.1560 

𝐺33 

1 5.0185 5.0185 

2 10.845 10.845 

3 7.2751 7.2751 

 

The 𝐺11  is an example of the plant system to show the control effects of the MPPF in SISO 

system. The system construction in Simulink© can be shown as Figure 5-10. The construction 

of 𝐺11  is explained in Section 5.1.1. 
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Figure 5-10 - MPPF SISO System Construction in Simulink© 

In Figure 5-10, the whole MPPF controller also can be divided into 3 parallel semi-controllers, 

with each semi-controller consisting of 1 second-order filter (with 1 controller gain) and 1 first 

order filter (with 1 controller gain). Each semi-controller is used to control each mode 

separately. To clearly express purpose, the 3 parallel semi-controllers are called first mode 

controller, second mode controller and third mode controller. To observe the differences 

between the compensated system and uncompensated system, the ‘Scope’ block ‘y’ can display 

two systems in the time domain as Figure 5-11. 
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Figure 5-11 - MPPF SISO System in Time Domain  

(blue – uncompensated system, orange – compensated system) 

Figure 5-11 shows the control performance of the separated first mode controller for the 𝐺11 . 

The compensated system can reduce the amplitude of uncompensated 𝐺11  by about 30 times.  

The effectiveness of separated first, second and third mode controller for 𝐺11  are shown in 

Figure 5-12, 5-14 and 5-15, respectively, and then the total three semi-controllers’ performance 

for 𝐺11  is displayed in Figure 5-16. 
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Figure 5-12 - Bode Plot for MPPF First Mode Controller 

From Figure 5-12, the first mode can be decayed up to 29dB. That shows the performance of 

MPPF is better than the IMPPF. Besides, the MPPF first mode controller is the same as IMPPF, 

also can reduce the vibration of second and third modes. The reason is displayed in Figure 5-

13 which is same as analysis for Figure 5-4.  
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Figure 5-13 - Bode Plot for conventional MPPF and PPF 

 

Figure 5-14 - Bode Plot for MPPF Second Mode Controller 
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According to Figure 5-14, the second mode can be shrunk by about 30dB. The attenuation of 

the second mode is greater than Figure 5-12 and also greater than the IMPPF attenuation effect 

in Figure 5-5. Similar to Figure 5-5, since the gain provided by the second mode controller is 

lower than that of the first mode controller, the semi-controller provides a better control effect 

on first mode than that of Figure 5-12. 

 

Figure 5-15 - Bode Plot for MPPF Third Mode Controller 

Based on Figure 5-15, the third mode can be attenuate by 31dB. The attenuation effect of the 

third mode is greater than 5-12 and 5-14. The third mode controller has better control 

performance on the first two modes. The attenuations of the first two modes controlled by this 

semi-controller is greater than previous two semi-controllers. That because the third mode 

controller provides a lower gain than previous two semi-controllers.  
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Figure 5-16 - Bode Plot for MPPF Controller in SISO System 

In Figure 5-16, the MPPF controller has a significant effect on the control of the three modes. 

The first, second, and third modes are attenuated by 56dB, 43dB, and 33dB, respectively. The 

effect is better than three separated semi-controllers control systems and also better than the 

performance of IMPPF. Figure 5-16 fully demonstrates the effectiveness of MPPF in the SISO 

system. 

5.2.2 MPPF for MIMO System 

Since from SISO to MIMO system, the stability range of the gains will be narrowed. 

Substituting the 𝑔 and ℎ  by 
0.25𝜔𝑘

2

𝜑𝑘
 into the (4.48), it leads to the instability of the MIMO 

system. Thus, the GA and H∞ are used to calculate the optimal values of both gains. The values 

are displayed in Table 5-4. 
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Table 5-4 - Parameters of MPPF for MIMO Plate System 

Mode No. 𝑘 𝑔𝑘  ℎ𝑘 

1 5476.8 5205.9 

2 9061.2 1000 

3 13284 13373 

 

According to the block diagram 4-12, the system can be constructed as Figure 5-17 in 

Simulink©. 

 

Figure 5-17 - MPPF MIMO System Construction in Simulink© 

In Figure 5-17, the plant system is presented by SSR. The construction of the SSR and the 

parameter values can be obtained by deriving (3.16) and Table 3-2, respectively. The MPPF 

can be divided into 3 semi-controllers, which are designed for each mode.  

To observe the differences between the compensated system and uncompensated system, the 

‘Scope’ block y1, y2 and y3 can display two systems in the time domain.  
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y1 

 

 

y2 

 

y3 

 

Figure 5-18 - IMPPF MIMO System in Time Domain 

(blue – uncompensated system, orange – compensated system) 

Figure 5-18 shows the MPPF compensation effects for the MIMO plate system. The 

compensated system can reduce the amplitude of the uncompensated system by about 8 times 

for y1 and y3 and 15 times for y2. The result is not good as the SISO system. The reason for 

the poor performance is that the GA method uses the random values to check whether the H∞ 

can meet the condition, once the condition is met, it will stop and assign the values to gains. 

For online design considering, GA can reduce the calculation time, but it cannot give accurate 

optimized values. However, the performance is better than IMPPF control effect in Figure 5-

9.   

The bode plots analysis for MPPF is also shown in Section 5.3.  

5.3 PPF, IMPPF and MPPF Simulation Results Comparison  

By analyzing the IMPPP and MPPF in the MIMO plate system in the time domain, it can be 

found that the MPPF has better control effect on the vibration than the IMPPP. To verify 
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whether the RTACS hypothesis is feasible in the MIMO plate system, the comparison of the 

control performance among the IMPPF, MPPF and the conventional PPF is needed. The control 

performance of PPF, IMPPF and MPPF are shown in red, yellow and purple curve respectively 

in Figure 5-19 for three outputs when applying same disturbance to the system. The parameters 

of IMPPF are shown in Table 5-2 and MPPF’s gains are indicated in Table 5-4.  

   

Figure 5-19 - Bode Plots Comparison 

It is noted in Figure 5-19 that all three controllers have good control performance over the plate 

system. Both MPPF and IMPPF are better than traditional PPF control, and MPPF has better 

control effects. The control performance in numerical values is shown in Table 5-5. 

Table 5-5 - Vibration Control Effects Comparison 

(dB) Y1 Y2 Y3 

Mode No. PPF IMPPF MPPF PPF IMPPF MPPF PPF IMPPF MPPF 

1 5 12 18 6 13 20 4 13 19 

2 4 10 16 3 9 13 3 8 14 

3 3 9 14 3 10 14 2 9 13 

Table 5-5 shows the attenuation effects of the three controllers. PPF, IMPPP and MPPF can 

reduce the vibration up to 6dB, 13dB and 20dB, respectively.  
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Figure 5-20 - Time Domain Comparison 

(blue – uncompensated system, orange – compensated system) 

Figure 5-20 compares the performance of three controllers in the time domain. The system is 

initially controlled by the PPF, converted to IMPPP at 5 s, and switched to MPPF at 10 s. The 

results agree with frequency domain analysis. 

Therefore, according to the results, as proposed by Section 4.3, ARTCS can abandon PPF and 

only include MPPF and IMPPP. 

To further explore whether the ARTCS assumption is correct, it also needs to compare the 

control effects of IMPPF and MPPF before and after the system changes. Because, if the control 

effect of MPPF with the previous parameter is better than the IMPPF with updated the 

parameter, then the entire ARTCS can be controlled only by MPPF, although it updates the 

parameter slowly, the effect is the best.  
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Figure 5-21 - IMPPF vs MPPF at System Change 

(blue – IMPPF, orange – MPPF) 

As shown in Figure 5-21, before the system changes at 5s, IMPPF performance is worse than 

MPPF, but after the system changes, IMPPP can quickly update parameters, thus maintaining 

a relatively good control effect. At the same time, although MPPF can use the previous 

parameters to control the plate system, the control effect is significantly worse than IMPPP. 

Therefore, the RTACS can be implemented on the plate system. This scheme combines the 

advantages that IMPPF can quickly update parameters online and MPPF can provide sufficient 

damping effect so that it can respond quickly to dynamic systems and maintain relatively good 

attenuations. 

5.4 Simulation of RTACS  

According to block diagram 4-13 proposed in Section 4.3, Figure 5-22 can be constructed in 

Simulink© to simulate implement RTACS in MIMO plate system. The FFT Estimator, the 

parameter calculation process of MPPF and IMPPF, and the assignment of new parameters will 

be implemented by a main programming file in MATLAB. The file also simultaneous ly 

controls the start and stop of this Simulink©. The switch in Figure 5-22 is implemented by a 

MATLAB function that controls which controller should be applied at a time. 
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Figure 5-22 – RTACS Construction in Simulink© 

The results of the simulation system in the time domain are shown in Figure 5-23. In the initial 

state, the system is controlled by MPPF. The plant system changes are introduced at 𝑡1, the 

IMPPF that quickly updates the parameters replaces the MPPF control plate system 

immediately, then when the MPPF parameters are ready at 𝑡2, it is transferred to the MPPF 

control system. The scheme can reduce the amplitude of the original vibration of the system by 

at least 50%. 

 

Figure 5-23 – RTACS in Time Domain 
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Chapter 6: Experiment Result 

This chapter uses dSPACE to transmit the constructed compensator in Chapter 5 to the actual 

physical plate system to control its vibration, and observe the effect of the controller through 

ModalVIEW.  

6.1 Laboratory System 

The experiment system setup and block diagram are shown in Figure 6-1 and 6-2, respectively. 

The signal generator generates a 150mV sinusoidal sweep signal (10Hz ~ 60Hz, 10s per period) 

to T4. This signal acts as a disturbance to vibrate the initially stationary top plate. Then the 

noise signal is transmitted to the sensors T1, T2, and T3 through the base plate as input signals 

𝑢𝑗 (j = 1, 2, 3). In the same position of the three sensors, there are three accelerometers for 

measuring the three output signals 𝑦𝑖  (i = 1, 2, 3). These three output signals are recorded by 

the NI DAQ and sent to dSPACE, which processes the signals and return the controlled signal 

to the three actuators located at T1, T2 and T3 to cancel or reduce the vibration of the top plate. 

The system changes are represented by the top plate load objects. 
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Figure 6-1 - Experiment System Setup 

 

Figure 6-2 - Block Diagram of Experiment System 



Chapter 6: Experiment Result 

70 
 

6.2 PPF, IMPPF and MPPF Experiment Results Comparison 

To verify whether the IMPPF and MPPF designed according to a simplified plant model can 

be effective in the real model, this section experiment is implemented with an unloaded top 

plate. The unload top plate is regarded as a static system.  Figure 6-3 indicates the bode plots 

of three outputs. The vertical axis is presented the amplitude corresponding to the displacement. 
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Figure 6-3 - IMPPF, MPPF and PPF Control Effect in Real Model Comparison 
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According to Figure 6-3, the result can be listed as Table 6-1.  

Table 6-1 - Laboratory Vibration Control Effects Comparison 

(dB) Y1 Y2 Y3 

Mode No. PPF IMPPF MPPF PPF IMPPF MPPF PPF IMPPF MPPF 

1 12 17 20 9 14 14 13 16 16 

2 7 8 8 9 9 9 11 10 10 

3 7 10 12 7 10 14 7 9 10 

 

The result shows that the PPF can suppress the vibration from 6dB to 13dB. This achieved 

attenuation is relatively less than the attenuation of 20dB achieved by Zhang and He [1]. This 

is because the D term is ignored in this study when the PPF controller is constructed via SSR. 

The MPPF can reduce the vibration from 7dB to 20dB. Although an attenuation of 37dB is 

achieved in Nima Mahmoodi et al.’s experiment [17], their cantilever beam system is only a 

SISO system. The plate structure, however, in the thesis is a MIMO system where the omitted 

D term includes cross-couplings between all inputs. This may affect the attenuation result. 

The difference in control effects of the three compensators is only 0dB ~ 8dB. The result does 

not coincide with the result of simulation. That may be because of three reasons: 

1. In simulation, the D term of SSR is ignored when the simplified plant system model 

was built. The D term refers to the higher frequencies’ effects. Different controllers 

may have different sensitivities to the effects.  

2. The input signal has to enlarge by 10 times to excite the normal performance of the 

controller in the whole experimental process, the signal is amplified and then shrunk 

after passing through the controller. Therefore, uncontrollable factors are added to the 

system, and some unwanted noises will be introduced to deviate the experimental 

results. 

3. The three modes of the plate system are not well apart from each other, so the mode 

may affect each other in the experiment. The influence may deviate the result.  

However, it can still be seen that MPPF can provide the best control effect, and IMPPF and 

MPPF are better than PPF. The control performance of IMPPF and MPPF can reach up to 17dB 

and 20dB, respectively. Therefore, RTACS can still be applied to the real plate system, but the 
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result of switching between controllers is not obvious. However, for some systems that require 

high precision, controllers switching is still necessary.  

6.3 Experiment of RTACS 

The results of the real plate system in the time domain are shown in Figure 6-4. However, it 

does not allow MATLAB to be directly assigned new parameter to dSPACE, so the time before 

and after the change is divided into two experiments. For the clear expression of the result, the 

two experiments are integrated into one figure.  

 

Figure 6-4 - RTACS Performance in Time Domain 

In the initial state, the system is controlled by MPPF. The plant system is loaded a 700g object 

at 5s, the IMPPF that quickly updates the parameters replaces the MPPF control plate system 

immediately, then when the MPPF parameters are ready at 10s, the switch turns back to the 

MPPF system.  

The unit of the horizontal axis is second (s) and the unit of the vertical axis is volt/volt. The 

voltage corresponds to the acceleration. It is not converted to displacement because the 

frequency is required to displacement conversion formula, and the frequency value at each time 

cannot be obtained in the time domain.  

Figure 6-4 displays the RTACS can effectively reduce the vibration about 30%~50% and the 

result agrees to the simulation results in Section 5.4. 
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Chapter 7: Conclusion 

7.1 Project Conclusion 

In this thesis, a simplified transfer function representation of the MIMO plate system is built 

via taking the first three most significant modes. Then, based on the transfer function 

representation, a State-Space Representation and a Second-order Differential Model are 

derived. Both representations are built on a matrix basis. This makes this method easy to extend 

into any system with more outputs, inputs and more modes.  

The IMPPF and MPPF control algorithms are proposed in theoretical analysis. For IMPPF, it 

consists of a first-order filter and a control gain. The control gain can be obtained by eliminating 

the steady-state error of the closed-loop system. The time constant 𝜏𝑘 of the first-order filter 

can be solved through the analysis of root locus: the optimization formula of 𝜏𝑘 can be obtained 

when the damping ratio of compensated closed-loop system reaches its maximum value (Figure 

4-4). Although the process is complicated, all the work can be done offline. Only the final 

formula for 𝜏𝑘 in (4.9) for the time constant is applied to the online controller. Therefore, it can 

response the dynamic system quickly. However, in order to stabilize the system, IMPPF design 

in the MIMO system has to assume that the MIMO system is undamped, that results in worse 

damping effect. In MPPF, since it consists of a conventional PPF and a first-order filter, it not 

only maintains the PPF control effect, but also reduces the steady-state error, thus it can provide 

a relatively good control effect. The two gains can be optimized by the GA and H∞ norm 

methods, which result in longer parameter acquisition times. 

The theories of two controllers are verified by simulation in MATLAB Simulink©. The 

vibration attenuation effects of the IMPPF and MPPF can reach up to 13dB and 20dB , 

respectively. Both perform better than 6dB provided by PPF. According to these results, and 

the control effect analysis of IMPPF and MPPF after system changing, this thesis makes a 

reasonable RTACS design. The effectiveness of the RTACS is verified by MATLAB 

Simulink©, the results shows that the vibration is reduced by at least 50%. 

Finally, IMPPF and MPPF, which are designed according to the simplified system, are applied 

to the actual system. IMPPP and MPPF still have good control effects, and the attenuation 

effects can reach up to 16dB and 18dB, respectively. These effects are still better than PPF. 
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Based on the success of the previous experiments, the RTACS is also implemented in a real 

system, and the damping effect of RTACS can at least reach up to 30%.  

It is concluded that the RTACS is effective in vibration cancellation of the MIMO plate system. 

7.2 Recommendations 

The control effect difference between IMPPF and MPPF in Chapter 6 is small. Therefore, it is 

recommended to use IMPPF as the controller in general devices, which can quickly detect and 

respond to changes in the system. However, for instruments that are sensitive to vibration and 

require high accuracy, it is recommended to use the RTACS to control the whole system.  

Due to time and equipment limitations, current RTACS cannot simultaneously calculate MPPF 

parameters while monitoring whether the system changes again. If there are two CPUs, running 

monitoring and calculation parameters separately, this problem may be solved in future work. 
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Appendix A: MATLAB Code 

The MATLAB codes for each section are kept within the Advanced Control Research Group, 

Flinders University. The MATLAB codes can be provided upon request. 
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