Use of microcosm and in-situ studies for the estimation of exposure risk from recreational coastal waters and sediments

Duncan L. Craig

B. App. Sci. (Environmental Health); B. Sc. (Hons)

August 2005

Department of Environmental Health, Faculty of Health Sciences, Flinders University

TABLE OF CONTENTS

CHAPTER	R 1: GENERAL INTRODUCTION	1
11	INTRODUCTION	2
1.1	Potential exposure to human pathogens in recreational coastal waters	<u>2</u> 2
Epide	emiological studies	
1.1.2	Quantitative microbial risk assessment (QMRA)	7
1.1.3	Recreational water guidelines	11
1.1.4	Use of indicator organisms to estimate risk of infection	12
1.1.5	Determining microbial viability	15
1.1.6	Molecular techniques for the enumeration of indicator organisms	21
1.1.7	Use of microcosms for survival studies	24
1.1.8	Survival of microorganisms in aquatic environments	26
1.1.9	Viable but non-culturable states	31
1.1.10	RESEARCH OBJECTIVES	30 39
CHAPTER	R 2: GENERAL METHODOLOGY	41
2.1	INTRODUCTION	
2.2	MATERIALS AND METHODS	42
2.2.1	Sampling sites	42
2.2.2	Sample collection	42
2.2.3	Sediment characterisation	43
2.2.4	Preparation of sediment samples for enumeration of microorganisms	49
2.2.5	Dry weight determination	49
2.2.6	Enumeration of microorganisms	49
2.2.7	Determination of decay rate constants	51
2.2.8	Meteorological data	32 5 2
CHAPTER	R 3: DIRECT COUNTING TECHNIQUES FOR THE ENUMERATION	N OF
	UR ORGANISMS	53 - 1
3.1		54
3.2	MATERIALS AND METHODS	55
3.2.1	Staining of E. coli cells	33 55
3.2.2	Siuning of E. con cens	55 56
3.2.5	Flow Cylometry	50 56
33	RESULTS	50 58
3.3.1	Viability determination using propidium iodide	58
3.3.2	Detection of E. coli using FITC conjugated monoclonal antibodies	59
3.4	DISCUSSION	67
CHAPTER FROM SE	R 4: TECHNIQUES FOR THE SEPARATION OF MICROORGANISM	4S 71
I'NUWI SE		/ 1
4.1	INTRODUCTION	72
4.2	MATERIALS AND METHODS	73
4.2.1	Sample collection	73 73
4.2.2	Separation techniques	נ / לי
4.2.3	DESLITS	75 75
н.у ДЗІ	Sediment characterisation	73 75
432	Separation of microorganisms from sediment particles	7 J 78
4.4	DISCUSSION	81
CHAPTER	R 5: DETERMINATION OF THE MICROBIAL QUALITY OF WATE	R
AND SEDI	IVIENT QUALITY AT COASTAL KEUKEATIONAL SITES	83
5.1	INTRODUCTION	84

5.2	MATERIALS AND METHDOS	
5.2.1	Sample collection	85
5.2.2	Faecal coliform enumeration	
5.2.3	Meteorological data	
5.2.4	Statistical analysis	
5.3	RESULTS	
5.4	DISCUSSION	98

CHAPTER 6: DETERMINING DECAY RATES OF FAECAL INDICATOR AND PATHOGENIC MICROORGANISMS USING LABORATORY-BASED MICROCOSMS 101

INTRODUC	ΓΙΟΝ	
6.1 ME	THODOLOGY	
6.1.1	Microcosm design	
6.1.2	Preparation of faecal indicator and pathogenic microorganisms	
6.1.3	Determination of microorganism decay	
6.1.4	Resuspension	
6.1.5	Sampling of biofilm	
6.1.6	Modelling of observed decay rate data	
6.1.7	Statistical analysis	
6.2 RES	ULTS	
6.2.1	Effect of temperature on microbial survival in water and sediment	
6.2.2	Resuspension studies	129
6.3 DIS	CUSSION	

7.1	INTRODUCTION	
7.2	MATERIALS AND METHODS	
7.2.1	In-situ sediment and water samples	
7.2.2	Laboratory-based microcosm experiment	
7.2.3	Statistical analysis	
7.3	RESULTS	
7.3.1	In-situ measurements	
7.3.2	2 Laboratory-based microcosm study	
7.4	DISCUSSION	

8 1	INTRODUCTION	161
8.2	MATERIALS AND METHODS	
8.2.1	Exposure assessment	
8.2.2	Dose-response relationships	
8.2.3	Uncertainty parameters	
8.2.4	Recreational water quality scenarios	
8.2.5	Probability of infection from multiple exposure	
8.3	RESULTS.	
8.4	DISCUSSION	
СНАРТЕН	R 9: GENERAL DISCUSSION	

APPENDIX 1	
APPENDIX 2	
APPENDIX 3	
APPENDIX 4	
APPENDIX 5	
APPENDIX 6	
APPENDIX 7	
REFERENCES	

LIST OF FIGURES

Figure 1.1 probability 1994)	Relationship between exposure to faecal streptococci (CFU/100mL) and the (p) of developing gastroenteritis (Wyer <i>et al.</i> 1999 – adapted from Kay <i>et al.</i> 6
Figure 1.2 Figure 2.1	Summary of risk assessment paradigm (EnHealth Council, 2002)10 Location of sampling sites on the Adelaide metropolitan coastline, South
Australia (*	[*] site for meteorological data)
Figure 2.2	Column used for sampling intact sediment cores
Figure 3.1	Histogram of fluorescent intensities measured at 580nm for samples stained
with 30µL	propidium iodide containing a) PBS only, b) 10 ⁴ non-viable <i>E. coli</i> cells, c) 10 ⁴
viable E. co	<i>bli</i> 60
Figure 3.2	Histogram of fluorescent intensities measured at 580nm (to detect PI
fluorescenc	(e) for samples containing 10^4 non-viable E <i>coli</i> stained with a) 20 µL b) 30 µL
c) 40 µL ar	d d = 50 ul PL solution
Figure 3.3	Histogram of fluorescent intensities measured at 580nm (to detect PI
fluorocoon	instogram of indofescent intensities included at 500mm (to detect in p) for complex containing approximately a) 10^4 non visible <i>E</i> acti colle + D b)
10^4 cells w	ithout PI added, c) 10^3 cells + PI, d) 10^2 cells + PI, e) 10 cells +PI and f) no cells
(0.2 μm m	(1 + 1) = (1 +
Figure 3.4	Histogram of fluorescent intensities measured at 530nm (to detect FIIC
fluorescenc	ce) for samples containing 10^4 E. coli stained with a) 10μ L antibody, b) 25μ L
antibody, c) 50µL antibody and d) PBS only + 50µL antibody65
Figure 3.5	Histogram of fluorescent intensities measured at 530nm for samples containing
$10^4 E. coli$	stained with 50µL antibody washed a) once, b) twice, c) three times in PBS prior
to analysis.	66
Figure 4.1	Comparison of separation techniques (mean \pm standard deviation) for the
enumeratio	n of bacteria from coastal sediment. Sampling sites are ordered (from left to
right) from	greatest to least sand content $(n=3)$ 79
Figure 4.2	Recovery efficiencies using the sonication bath for 10 minutes. Sediment from
the original	sonication treatment was resuspended and treatment was repeated $(n=3)$
Figure 5 1	Concentration of faecal coliforms (mean + standard deviation) in overlying
water and s	rediment from Henley Beach South $(n=3)$ Line represents NHMRC guideline for
faecal colif	For concentration in recreational coastal water of < 150 cfu 100 ml ⁻¹
Figure 5.2	Concentration of forceal coliforms (mean + standard deviation) in overlying
rigure 5.2	Concentration of factor contorning (mean \pm standard deviation) in overlying radiment from Onkeneringe Diver (n=2). Line represents NHMPC guideling for
water and s	sectiment nom Onkaparinga Kiver ($n=3$). Line represents NHIVIKC guidenne for
Taecal colli	orm concentration in recreational coastal water of < 150 cfu 100 ml
Figure 5.3	Concentration of faecal coliforms (mean \pm standard deviation) in overlying
water and s	sediment from West Lakes (n=3). Line represents NHMRC guideline for faecal
coliform co	ncentration in recreational coastal water of < 150 cfu 100 ml ⁻¹ 91
Figure 5.4	Concentration of faecal coliforms (mean ± standard deviation) in overlying
water and a	sediment from Pt Adelaide (n=3). Line represents NHMRC guideline for faecal
coliform co	procentration in recreational coastal water of < 150 cfu 100 ml ⁻¹
Figure 5.5	Correlation between faecal coliform concentration in Henley Beach sediment
and rainfall	l in the previous 2 d (y = $0.268x + 1.881$; n = 21; r ² = 0.93 ; P < 0.001)
Figure 5.6	Correlation between faecal coliform concentration in Onkaparinga sediment and
rainfall in t	he previous 7 d (y = $0.045x + 2.510$; n = 20; r ² = 0.58 ; P < 0.001)
Figure 5.7	Correlation between faecal coliform concentration in West Lakes sediment and
rainfall in t	he previous 7 d ($y = 0.033x + 3.244$; $n = 25$; $r^2 = 0.27$; $P < 0.05$)
Figure 5.8	Correlation between faecal coliform concentration in West Lakes sediment and
rainfall in t	he previous 7 d ($y = 0.033x + 3.244$; $n = 25$; $r^2 = 0.27$; $P < 0.01$)
Figure 5.9	Correlation between faecal coliform concentration in Pt Adelaide sediment and
rainfall in f	he previous 7 d ($y = 0.023x + 4.041 \cdot n = 30 \cdot r^2 = 0.13 \cdot P = 0.05$) 07
Figure 6 1	Example of exponential decay plot used to calculate decay rates (decay of
colinhage i	n overlying water in microcosm containing Henley Reach sediment: $r^2 = 0.00$
compliage	111 $1 = 0.76$
	111

Figure 6.2	Survival of E. coli incubated at 10 °C (a), 20 °C (b), and 30 °C (c) in sediment
(—) and w	ater () from Henley Beach (■), Onkaparinga (×), Pt. Adelaide (•) and column
containing Figure 6.3	water only (▲)
(c) in sedin	nent (—) and water () from Henley Beach (\blacksquare) Onkanaringa (x) Pt Adelaide
(•) and colu	$(-), \text{ ontaining water only } (\mathbf{A})$
Figure 6.4	Survival of coliphage incubated at 10 °C (a), 20 °C (b), and 30 °C (c) in
sediment (-	—) and water () from Henley Beach (\blacksquare), Onkaparinga (×), Pt. Adelaide (•)
and columr Figure 6.5	a containing water only (\blacktriangle)
and water	() from Henley Beach (\blacksquare), Onkaparinga (×), Pt. Adelaide (•) and column
containing Figure 6.6	water only (▲)
water () from Henley Beach (I), Onkaparinga (x), Pt. Adelaide (•) and column
containing Figure 6.7 containing	water only (\blacktriangle)
Figure 6.8	Relationship between decay rate $(k; d^{-1})$ of <i>E. coli</i> in overlying water of column
containing Figure 6 9	Onkaparing a sediment with temperature ($k = -0.042.e^{-3.547}$; $r^2 = 0.995$)
containing	Pt Adelaide sediment with temperature ($k = -0.0275 \cdot e^{0.1444T}$; $r^2 = 0.995$)
Figure 6.10	Relationship between decay rate $(k; d^{-1})$ of E. coli in surface layer of
Onkaparing	ga sediment with temperature $(k = -0.0198 \cdot e^{0.12/41}; r^2 = 0.987)$
Figure 6.11	Relationship between decay rate $(k; d^2)$ of enterococci in the surface layer of apply adjust with temperature $(k = 0.004T \pm 0.040; r^2 = 1.00)$
Figure 6.12	Relationship between decay rate $(k - 0.0041 + 0.040, 1 - 1.00)$
Onkaparing	ga sediment with temperature $(k = -0.0267 \cdot e^{0.0406T}; r^2 = 1.000)$
Figure 6.13	Relationship between decay rate $(k; d^{-1})$ of enterococci in surface layer of Pt
Adelaide se	ediment with temperature ($k = -0.0240.e^{0.04/41}$; r ² = 0.997)126
Figure 6.14	Relationship between decay rate (k; d ⁻) of enterococci in overlying water of upper containing water only with temperature ($k = -0.0190T - 0.1600$; $r^2 = 1.000$)
control con	126
Figure 6.15	Relationship between decay rate $(k; d^{-1})$ of coliphage in overlying water of
column cor 0.9998).	ntaining Henley Beach sediment with temperature ($k = -0.0205T + 0.0133$; $r^2 = 127$
Figure 6.16	Relationship between decay rate (k; d ⁻¹) of colliphage in overlying water of ntaining Onlying addiment with temperature (k = 0.0170T + 0.0067; r^2 =
0.998)	127
Figure 6.17	Relationship between decay rate $(k; d^{-1})$ of coliphage in overlying water of
column con	ntaining Pt Adelaide sediment with temperature ($k = -0.0375 \cdot e^{0.0892T}$; $r^2 = 0.987$).
F ' (10	128 Destidiarias of <i>E</i> = 1 th between Harley Death as dimensional meters involved
rigure 6.18	Partitioning of <i>E. coll</i> between Henley Beach sediment and water incubated ler (a) static and (b) stirred conditions
Figure 6.19	Partitioning of <i>E. coli</i> between Onkaparinga sediment and water incubated at
10°C under	(a) static and (b) stirred conditions
Figure 6.20	Partitioning of enterococci between Onkaparinga sediment and water
incubated a	at 10°C under (a) static and (b) stirred conditions
incubated a	at 10°C under (a) static and (b) stirred conditions
Figure 6.22	Partitioning of enterococci between Henley Beach sediment and water
incubated a	at 30°C under (a) static and (b) stirred conditions
Figure 6.23	Partitioning of enterococci between Onkaparinga sediment and water
incubated a	at 30°C under (a) static and (b) stirred conditions
incubated a	at 30°C under (a) static and (b) stirred conditions
Figure 6.25	Partitioning of coliphage between Onkaparinga sediment and water incubated
at 10°C und	der (a) static and (b) stirred conditions

Figure 7.1	Daily rainfall totals during the sampling period (source: Bureau of Meteorology
– Adelaide	Airport)
Figure 7.2	Temperature (\times) and total dissolved solids (\bullet) of overlying water at Henley
Beach over	sampling period153
Figure 7.3	Concentration of confirmed faecal coliforms in sediment () and water ()
samples tak	ten from Henley Beach (mean ± standard deviation; n=3)
Figure 8.1	Dose-response curve for humans exposed to Salmonella spp. (Fazil and Haas,
1996).	165
Figure 8.2	Dose-response curve for humans exposed to rotavirus (Regli et al., 1991; Ward
<i>et al.</i> , 1986	a)
Figure 8.3	Probability of Salmonella spp. infection following exposure to good (\blacksquare) ,
average (🔺) and poor (•) recreational water qualities
Figure 8.4	Probability of rotavirus infection following exposure to good (\blacksquare) , average (\blacktriangle)
and poor (p)recreational water quality
Figure 8.5	Probability of infection from Salmonella spp. following exposure to poor
recreationa	l water quality with average water temperatures of 20°C (\circ) and 30°C (\Box), with
(closed syn	abols) and without (open symbols) taking into account resuspension of organisms
from the su	rface layer of Pt Adelaide sediment
Figure 8.6	Probability of infection from rotavirus following exposure to poor recreational
water qual	ity with average water temperatures of 20°C (1) and 30°C (0), with (closed
symbols) a	nd without (open symbols) taking into account resuspension of organisms from
the surface	layer of Pt Adelaide sediment. 176
Figure 8.7	Probability of infection from rotavirus following exposure to poor quality
recreationa	l coastal water at 20C taking into account resuspension from either Henley Beach
(■) or Pt A	delaide (•) sediment

LIST OF TABLES

Table 1.1	able 1.1 Outbreaks associated with exposure to fresh and marine recreational water (non-	
treated, natural water bodies) in the USA, 1991-2000 (Lee et al., 2002; Barwick et al., 2000;		
Levy et	<i>al.</i> , 1998; Kramer <i>et al.</i> , 1996; Moore <i>et al.</i> , 1993b)	
Table 1.2	Suitability of recreation grade matrix	
Table 1.3	Spectral properties of common bacterial viability dyes17	
Table 1.4	Oocyst viability determined by inclusion/exclusion of vital dyes (Campbell et	
al., 1992	P). 19	
Table 3.1	Number of non-viable E. coli cells detected by flow cytometry stained with	
propidiu	m iodide (mean \pm SD; n=3)64	
Table 4.1	Particle size analysis. Particles sizes for sand $2 - 0.2$ mm; silt 0.2 mm $- 2$ μ m;	
clay < 2	μm. All results normalised to 100%76	
Table 5.1	Particle size analysis. Particles sizes for sand $2 - 0.2$ mm; silt 0.2 mm $- 2$ μ m;	
clay < 2	μm. All results normalised to 100%	
Table 6.1	Concentration of E. coli in overlying water and biofilm present on column	
surface ($(mean \pm SD; n=3).$ 109	
Table 6.2	Concentration of enterococci in overlying water and biofilm present on column	
surface ($(mean \pm SD; n=3).$	
Table 6.3	Concentration of coliphage in overlying water and biofilm present on column	
surface ($(mean \pm SD; n=3).$ 109	
Table 6.4	Decay rate constants $(k; d^{-1})$ for <i>E. coli</i> in water and sediment; * <i>P</i> <0.05117	
Table 6.5	. Decay rate constants (k; d ⁻¹) for enterococcus in water and sediment; * $P < 0.05$.	
	118	
Table 6.6	Decay rate constants (k; d^{-1}) for coliphage in water and sediment; *P <0.05 119	
Table 6.7	Decay rate constants $(k; d^{-1})$ for S. typhimurium in water and sediment; *P	
< 0.05.	120	
Table 6.8	Decay rate constants $(k; d^{-1})$ for <i>S. derby</i> in water and sediment; * <i>P</i> <0.05121	
Table 7.1	Decay rate constants $(k; d^{-1})$ for <i>E. coli</i> (microcosm) and faecal coliforms (<i>in situ</i>)	
in water	and sediment determined by laboratory-based microcosm experiment and in situ	
measure	ments (* $P \le 0.05$)	
Table 8.1	Summary of input variables and distributions for <i>Salmonella</i> spp. exposure 167	
Table 8.2	Summary of input variables and distributions for rotavirus exposure	
Table 8.3	Lognormal parameters for faecal coliform frequency	

LIST OF PLATES

Plate 2.1	Mouth of Onkaparinga River and Southport Beach	45
Plate 2.2	Onkaparinga River being used for recreation.	45
Plate 2.3	Henley Beach South	46
Plate 2.4	Pt Adelaide River site. Note individual fishing at treated wastewater outle	t46
Plate 2.5	Coring device used to extrude sediment at controlled intervals	
Plate 3.1	Non-viable E. coli cells stained with 30 µL of propidium iodide solution	on (×1000
magn	ification).	61
Plate 4.1	Stratified sediment at Pt Adelaide	77
Plate 4.2	10 g of sediment from each site added to 1 L distilled water and allowe	d to settle
for si	x hours. From left to right, Normanville, Southport, Onkaparinga, Glenelg N	Jorth, Port
Adela	aide and Henley Beach	77
Plate 6.1	Microcosm columns held in constant temperature water bath	
Plate 7.1	Torrens River outlet at time of high flow.	149
Plate 7.2	Close-up of water from the Torrens River outlet	149
Plate 7.3	Debris deposited onto Henley Beach immediately following the high rain	nfall event
show	ing significant amount of horse faeces.	
Plate 7.4	Local council cleaning up debris deposited on the beach from the Torre	ens River.
	150	
Plate 7.5	Horses agisted near Torrens River outlet	151
Plate 7.6	Recreational fishers at Torrens River outlet during time of high flow	151

SUMMARY

The interaction of microorganisms with sediments can enhance their survival by reducing exposure to various stressors and thus marine sediments may act as reservoirs for pathogenic microorganisms. In coastal waters there can be an increased risk of infection to humans due to the possible re-suspension of these microorganisms during recreational activities. This research attempts to more accurately identify environmental exposure in the first stage of a health risk assessment in recreational coastal waters.

Techniques were developed to successfully separate microorganisms from sediment particles. Of the methods investigated, subjecting diluted sediment samples to a sonication bath for 10 minutes was found to be the most efficient separation technique over a range of sediment types. This method was therefore used in the subsequent studies to enumerate organisms from the surface sediment layer, as distinct from the water column.

Faecal coliforms were enumerated by membrane filtration in both water and sediment from three Adelaide metropolitan recreational coastal sites, chosen to represent different physical sediment characteristics, over a 12-month period. All sites investigated met current National Health and Medical Research Council Guidelines for primary contact recreation. Faecal coliform concentrations were generally greater in sediment compared with overlying water for all samples. This was most evident in sediment consisting of greater silt/clay and organic carbon content (with up to 1000 times higher concentrations in the surface sediment layer compared with overlying water). For coastal recreational sites impacted by stormwater or river discharges, high faecal coliform concentrations were found to be associated with rainfall.

A laboratory-based microcosm study utilising intact sediment cores was undertaken to determine the decay rates of faecal indicator organisms (*E. coli*, enterococci and somatic coliphage) and pathogens (*Salmonella derby* and *S.* *typhimurium*) in both overlying water and in various sediment types. For all organisms tested, temperature had an inverse relationship with survival. Greater decay was observed in the overlying water compared to the surface sediment layer. Small particle size and high organic carbon content was found to be more conducive to microbial survival. In general, decay rates of *E. coli* were significantly greater than enterococci and coliphage. Although no significant correlations were observed between decay rates of the pathogens and indicator organisms, decay of *Salmonella* spp. in overlying water more closely resembled that of *E. coli* than that of other indicators.

Using decay rates measured in the microcosm study and available dose-response data, a quantitative microbial risk assessment (QMRA) utilising Monte Carlo simulation was undertaken to estimate the risk of infection to *Salmonella* spp. and rotavirus following exposure to recreational coastal water subject to a range of faecal contamination levels. For modelling purposes, the assumption was made that rotavirus decay was equivalent to coliphage decay. The probability of infection from rotavirus due to exposure to contaminated recreational coastal water was greater than that for *Salmonella* spp. under all scenarios. This increased probability of infection is linked to the high infectivity of rotavirus compared to *Salmonella* spp.

Results of this research highlight the limited effectiveness of using prescribed faecal coliform concentrations in the water column alone to estimate the risk of exposure to pathogenic microorganisms during recreational activity at coastal areas. It demonstrated that coastal sediments act as a reservoir for both indicator and pathogenic organisms released into the coastal environment. This suggests an increased exposure risk if these organisms are resuspended back into the water column during recreational activity. A combined risk-based monitoring program would provide a more robust and reliable estimate of health risk associated with coastal recreational areas.

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma at any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Duncan Craig

ACKNOWEDGEMENTS

This thesis would not have been possible without the help and assistance of the following people:

- *Nancy Cromar*: For your support and guidance from Day 1 ($N_t = 0$) of my PhD adventure.
- *Howard Fallowfield*: What can I say mate....cruel but fair! I really appreciated your dry sense of humour, love of Coopers Pale Ale and your "pearls of wisdom" along the way.
- *Biomedical Engineering, Flinders Medical Centre*: You blokes are legends, especially Laurie and Brian. Despite our whacky ideas, you always came up with (sometimes workable) solutions. I hope you both enjoy a well-earned retirement.
- *Dianne Davos, Salmonella Reference Laboratory, IMVS*: For supplying the S. *derby* culture and general advice.
- The Bureau of Meteorology, Adelaide: For providing meteorological data.
- *The Commonwealth Government*, under the Public Health Education Research Program (Environmental Health Specialty Program) for funding the majority of this research.

And a special thanks to:

All the staff and students at the Department of Environmental Health, especially:

Alana Hanson: You must dread whenever there's a new post-grad student! Without doubt, you play a major role in the success of the Department. You were always there whenever help was needed. *John Edwards* (and to a lesser extent *Richard Bentham...*but I will explain that later), thank you for being there to bounce ideas off and providing general advice. Although coming late in the picture, *Richard....*you are a clown! You certainly made a lasting impression. And last, if not least, thank you to all the admin people, especially *Trish Amee*, for providing support throughout my time at Flinders.

Megge and *Michelle*: There is no doubt we had a great time at Flinders. I don't think Howard and Nancy knew what had hit them when we all joined forces in the lab!

I would especially like to thank all the volunteer staff at the *Flinders Medical Centre Coffee Shop*. Without opening my mouth, you had my mug of coffee and slice of carrot cake at the ready!

And of course, I would like to thank my family *Mum*, *Dad*, *Gav*, *Nath*, *Andrew* and *Leanne* (aka *Nell*) for "keepin' me real" throughout my PhD. The support you all gave has been the essence of my achievement. Thank you.

ABBREVIATIONS

AFR	Accidental faecal release
AFRI	Acute febrile respiratory illness
AGI	Acute gastrointestinal illness
ANOVA	Analysis of variance
APHA	American Public Health Association
CFU	Colony forming units
d	Days
DVC	Direct viable count
FISH	Fluorescent in-situ hybridisation
FITC	Fluorescein isothiocyanate
h	Hours
k	Decay rate
min	Minutes
MPN	Most probable number
N ₀	Initial number of bacteria
Nt	Bacterial survival after time t
NHMRC	National Health and Medical Research Council
NLV	Norwalk-like virus
Р	Significance compared to control
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PI	Propidium iodide
QMRA	Quantitative microbial risk assessment
rev	Revolutions
SD	Standard deviation
S	Seconds
TDS	Total dissolved solids
UV	Ultra violet
VBNC	Viable but not culturable
WHO	World Health Organisation
WWTP	Wastewater treatment plant