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ABSTRACT 

Land-atmosphere interactions encompass complex surface processes that exchange energy 

and matter between land and the atmosphere, which play important roles in modulating variations 

in climate. Prediction on future climate change calls for more precise prediction models. Improving 

the representation of physical processes of land-atmosphere interactions and the availability of key 

variables for characterizing those processes could help reduce uncertainties in the prediction 

models, and consequently make contribution to extreme weather forecasting and natural disasters 

prevention.  

Terrestrial water storage (TWS, includes surface water, soil moisture, groundwater, snow, 

and ice) constitutes a significant memory component within the climate system. However, in 

Australia, the driest inhabitant continent, there is still a lack of investigation on the long-term TWS 

variation pattern. In addition, soil moisture as the most variable component of TWS has strong 

interactions with vegetation and near-surface temperature, but investigations on those interactions 

have been impeded by the scarcity of soil moisture observations.  

The long-term wetting/drying pattern in Australia was investigated in this thesis by applying 

the Gravity Recovery and Climate Experiment (GRACE) satellite derived TWS anomaly and extended 

datasets. A seesaw pattern of TWS variation between eastern and western Australia was revealed: 

eastern Australia gaining water, while western Australia is losing water, and vice versa. This 

phenomenon is resulted from a combination of effects from large-scale climate mode and dynamic 

vegetation and soil moisture interactions. It highlighted the bidirectional effects between surface 

vegetation and land water conditions, but such knowledge of Australia remained poorly understood. 

Results of this thesis for the first time indicated that non-linear interactions between vegetation and 

TWS occurred in 58% of the area of Australia. Those new findings partly improved our understanding 

of physical processes in Australia’s land-atmosphere interactions. 

On the other hand, this thesis proposes the first use of wavelet decomposed GRACE TWS as 

a proxy of soil moisture to investigate its relationship with air temperature anomaly/hot extremes 

at the global scale. Compared to raw TWS, decomposed TWS showed improved skill in explaining 

temperature variability. It is because that the decomposed components could reflect different roles 

of moisture at different soil depths in the soil moisture-temperature coupling. The wavelet 

decomposed TWS also performed better than other commonly used soil moisture proxies (i.e., 
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precipitation relevant index, products derived from land surface model and microwave remote 

sensing technology). Besides, by using the decomposed TWS to represent local moisture deficit, it 

played a more important role in influencing hot extreme occurrences in regions with a total area 1.6 

times as large as the area strongly influenced by global temperature change during the study period 

1985–2015. The results suggested that local land management is essential for combating hot 

extreme expansion in regions with strong land-atmosphere coupling, and global measures for 

reducing emissions are required in the face of increasing greenhouse gas forcing.  

In summary, this thesis improved the knowledge of land-atmosphere interactions at 

continental and global scales through further investigation on TWS variation pattern and its 

relationships with vegetation and temperature. This thesis also suggested a useful soil moisture 

proxy, i.e., the wavelet decomposed GRACE TWS, that can be applied to examine other processes 

in land-atmosphere interactions and to evaluate the performance of land surface models.   
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1 INTRODUCTION 

1.1 Basics of land-atmosphere interactions Introduction 

Land surface and the atmosphere are coupled through a multitude of physical, chemical, and 

biological interactions and feedbacks that determine the fluxes of energy and mass (e.g., water and 

carbon dioxide (CO2)) between the two systems (Oki, 1999). The land surface is heated by net 

radiation during the daytime, and a small part of the energy is absorbed by the ground while the 

majority is transferred back to the atmosphere as sensible (via conduction and convection) and 

latent heat (associated with evapotranspiration) (Betts and Ball, 1996; Jimenez et al., 2014). These 

processes depend on land surface characteristics, such as reflectivity, emissivity, surface roughness, 

soil type, vegetation cover, and amount and depth of roots, which are affected by land cover change 

resulted from natural processes or human activities (e.g., afforestation, deforestation, and 

urbanization) (Anderson et al., 2011). The moisture exchange between land surface and the 

atmosphere forms an important part of the water cycle on Earth. The water cycle connects the 

Earth's oceans, land, and atmosphere. Water molecules, leave from the Earth’s surface through 

evapotranspiration (ET) to the atmosphere and back through precipitation, some infiltrate below 

the surface contributing to soil moisture and groundwater. Land cover changes play an important 

role in influencing the surface water budget, for example, ET is closely related to changes in 

vegetation cover; and urbanization can affect the precipitation formation process and surface water 

runoff (Daniels et al., 2016; Zhong et al., 2017). CO2 exchange between land and the atmosphere is 

driven by plant photosynthesis and ecosystem respiration. Atmospheric CO2 converts into organic 

compounds by plant photosynthesis providing source for plant growth, and at the same time carbon 

uptake by terrestrial ecosystems play an essential role in atmospheric CO2 budget.  

As shown in Figure 1.1 the land energy and water balances are coupled through 

evapotranspiration, they are also linked with the terrestrial carbon cycle. Plants play very important 

roles in those linkages, because carbon assimilation and evapotranspiration are tightly coupled via 

leaf stomata (Seneviratne and Stöckli, 2008; Lemordant et al., 2016). 
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Figure 1.1 Schematic of land-atmosphere energy, water, and CO2 exchanges 

1.2 Recent advances in land-atmosphere interactions research  

Incorporating physical processes of land-atmosphere interactions into climate projection 

models can advance climate predictability on several time and spatial scales (IPCC, 2019), and 

consequently make contribution to future climate change adaption and mitigation. In the context 

of climate warming, increasingly frequent extreme climate events are of important concern globally 

(e. g., Karoly, 2009; Perkins and Alexander, 2012; Coumou and Rahmstorf, 2012). Natural disasters 

such as droughts, floods, and heatwaves can pose serious threats to environmental and human 

health, which have been suggested to be intensified by anthropogenic greenhouse gas emissions. 

Therefore, improving the knowledge of land-atmosphere interactions and their responses to climate 

change could provide useful information for future sustainable land management (Santanello et al., 

2018; Baker et al., 2021).   

On the one hand, many physical processes of land-atmosphere interactions are increasingly 

being recognized, especially the relationships between soil moisture versus precipitation and 

temperature (e.g., Koster et al., 2004, Seneviratne et al., 2006; Berg et al., 2014), and vegetation 

responses and feedbacks to climate change. For example, Alexander, (2011) revealed the 

mechanism that soil moisture strongly influences the surface energy budget and partitioning 

between latent and sensible heat fluxes (i.e., low soil moisture availability reduces evaporative 

cooling and increases atmospheric heating from sensible heat flux), and then the effects of 

antecedent moisture deficit on hot extremes have been investigated at both global and regional 

scales (e. g., Fischer et al., 2007; Perkins et al., 2015; Herold et al, 2016; Vogel et al., 2017); 
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vegetation as a typical carbon sink and the major conduit for water to return to the atmosphere 

from land, its important role in regulating land water balance and influencing the land-atmosphere 

interactions have been reported (Donohue et al., 2009; Gerten et al., 2004; Heimann and Reichstein, 

2008). With improved understanding for those physical processes, representations of vegetation 

dynamics, stomatal functioning, plant hydraulics and many other processes have been 

incrementally added into land surface models (LSMs) (e.g., Joetzjer et al., 2018; Lawrence et al., 

2019; Kennedy et al., 2019).  

 On the other hand, improved observations and model outputs of key variables made 

considerable contribution to characterizing and quantifying land-atmosphere interactions. Data 

from models of the Coupled Model Intercomparison Project (e.g., CMIP phase 6 (Eyring et al., 2016)) 

for historical and future climate change experiments were used to examine changes in variables, 

fluxes, and metrics relevant to land-atmosphere interactions. By using the model outputs, a much 

broader evaluation became possible than past studies of land-atmosphere interactions (Dirmeyer 

et al., 2013). In addition, advancements in the spatial and temporal coverage and accuracy of 

satellite remote sensing-based estimates of terrestrial and atmospheric variables have been seen in 

the recent two decades (e.g., Owe et al., 2008; Ferguson and Wood, 2011; Susskind et al., 2011; 

Balsamo et al., 2018). Remote sensing observations are particularly useful in examining land-

atmosphere interactions, and such observational evidence can be used to evaluate the performance 

of LSMs (Balsamo et al., 2018). Research advances in land-atmosphere interactions were also profit 

from the use of another newly available observation, i.e., the FLUXNET measurements (Seneviratne 

et al., 2010). FLUXNET is a global network of eddy covariance towers, which generates 

measurements on the exchanges of energy, water vapor, and carbon dioxide between terrestrial 

ecosystems and the atmosphere (Suni et al., 2015). Combining the FLUXNET measurements and the 

broad areal coverage of satellite observations and model outputs improved the availability of key 

variables (e.g., temperature, vegetation, albedo etc.) for characterizing the physical processes of 

land-atmosphere interactions for various ecosystems across a range of bioclimate zones (Jung et al., 

2011; Fernandez-Prieto et al., 2013; Dirmeyer et al., 2018). 

1.3 Challenges in representing and predicting land-atmosphere interactions  

It is undoubted that land-atmosphere interactions provide promising perspectives for future 

research, however, the multivariate and multiscale coupled processes remain incompletely 

understood (Fisher and Koven, 2020; Jimenez et al., 2021). Thus, identifying variation patterns of 
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hydroclimatological variables and exploring the corresponding mechanisms are required to improve 

such knowledge. In addition, the lack of suitable data of key variables of large-scale, such as soil 

moisture and evapotranspiration, for robustly characterizing model performance, is also a challenge 

(Seneviratne et al., 2010; Wulfmeyer et al., 2016).  

Australia is identified as a hot spot of land-atmosphere coupling (Mueller and Seneviratne, 

2012). It is the driest inhabitant continent and frequently affected by natural disasters, such as 

bushfires, cyclones, droughts, and floods. Those natural disasters cause recurring threats to water 

supply, agriculture, and the environment in Australia. Existing studies mainly focused on the causes 

of extreme wet or dry events in specific periods and their impacts on agriculture and ecosystems in 

this region (e.g., Kiem and Verdon-Kidd, 2010; Nicholls, 2011; Van Dijk et al., 2013). However, 

characterization and understanding long-term wetting/drying pattern are still lacking in Australia. 

On the other hand, wet and dry conditions are commonly acknowledged to influence vegetation 

growth as plant growth is dependent on water availability. For example, Yang et al. (2014) and 

Andrew et al. (2017a) examined the impact of terrestrial water storage on vegetation. However, 

vegetation changes also strongly influence terrestrial water condition by regulating 

evapotranspiration (Wei et al., 2018) and altering the terrestrial water cycle (Zeng et al., 2018). 

Ecosystems in Australia have the capacity to persist through extremely dry periods and respond 

favourably during a subsequent wet period (Cleverly et al., 2016). Therefore, it is valuable to 

investigate the interactions between vegetation and terrestrial water condition in Australia, which 

is remained poorly understood. As vegetation and terrestrial water condition play important roles 

in modifying the surface energy and fluxes of moisture and carbon (Pongratz et al., 2006; 

Seneviratne et al., 2010; Humphrey et al., 2021), filling those knowledge gaps could improve our 

understanding for the physical processes of land-atmosphere interaction in Australia. 

The scarcity of soil moisture observations impedes the investigations on large-scale soil 

moisture-climate interactions (Seneviratne et al., 2010). Ground measurements including 

gravimetric measurements and in-situ measurements are cost-intensive and lack large spatial 

coverage (Robock et al., 2000; Robinson et al., 2008). Global coverage is possible in land surface 

modelling with observation-based forcing and remote sensing measurements. However, model 

derived products, such as the Global Land Data Assimilation System dataset (GLDAS, Rodell et al., 

2004) and the Global Soil Wetness Project 2 dataset (GSWP-2, Dirmeyer et al., 2006), are dependent 

on quality of forcing data. Remote sensing measurements, such as the Soil Moisture and Oceanic 

Salinity (SMOS, Kerr et al., 2016), and the Soil Moisture Active and Passive (SMAP, Entekhabi et al., 
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2010), only provide direct sensing of soil moisture in the top 5 cm of the soil column. Several 

applications require knowledge of root zone soil moisture in deeper soil column, which is not 

directly measured by those microwave remote sensing technologies. The availability of a more 

useful soil moisture proxy would help to improve the quantification of its interaction with climate 

variables and could be applied to evaluate the performance of land surface models. 

1.4 GRACE provides new opportunities for examining large-scale land-atmosphere 
interactions  

The twin satellites of the Gravity Recovery and Climate Experiment (GRACE), launched in 

March 2002, were aimed to capture changes of terrestrial and ocean water/ice mass by tracking 

changes of the Earth's gravity. The mission was initially planned for operation for a 5-year period. It 

has been so successful as to have collected more than 15 years of data by its decommissioning in 

June 2017. The Terrestrial Water Storage (TWS) is a mathematical function of the Earth’s gravity 

field, after atmospheric and oceanic effects are accounted for, it represents the sum of soil moisture, 

groundwater, surface water, snow, and ice (Watkins et al., 2015; Wiese et al., 2016). GRACE TWS 

can be used as an indicator for the regional terrestrial water conditions. Efforts have been made to 

reconstruct TWS data beyond the GRACE mission period (e.g., Humphrey et al., 2017; Humphrey 

and Gudmundsson, 2019). These extended TWS data provide opportunities to make up the lack of 

investigation on long-term spatio-temporal patterns of wetting and drying on large scale, and to 

relate the TWS variation pattern to other hydroclimatological variables.  

Given that GRACE TWS represents the changes in total water storage including that of soil 

moisture, Andrew et al. (2017b) suggested a discrete wavelet decomposition method to separate 

the total water storage into different components. It has been demonstrated that the decomposed 

TWS has an improved capacity in capturing the soil moisture and vegetation relationship (Andrew 

et al., 2017a). It is because that those decomposed TWS components of different temporal scales 

can reflect temporal dynamics of moisture at different depths. This is based on the understanding 

that moisture at various soil depths has different response times to the climate system. It is possible 

that moisture storage with response timescales of several months could impact energy balance 

partitioning at the land surface and consequently influence near-surface temperature. Thus, the 

decomposed TWS has potential for examining land-atmosphere interactions such as the coupling 

between soil moisture and air temperature.  
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1.5 Objectives  

The overarching aim of this thesis is to improve our knowledge of physical processes of large-

scale land-atmosphere interactions by investigating the variation patterns of hydroclimatological 

variables and their connections, and to find out useful soil moisture proxy that can be applied for 

examining its relationship with atmospheric variables. The corresponding results are expected to 

advance future climate predictability and to provide useful information for future sustainable land 

management to improve climate change adaption and mitigation. Specifically, the questions this 

thesis aims to address are: 

(1) Is there a predictable large-scale wetting/drying pattern in Australia? Such a pattern, if 

there is, would be useful for forest, agriculture, and water resources management. Recent studies 

have revealed some spatial coherent variation patterns (e.g., Xie et al., 2016; Xie et al., 2019), 

however, how these patterns vary with time is not known. This thesis aims to examine the long-

term spatio-temporal variation pattern of TWS over Australia. 

(2) In what areas strong interactions exist between TWS and vegetation in Australia? Such 

knowledge is required in understanding and simulating terrestrial water and carbon budgets in 

response to climate change. Previous studies have already investigated the impact of terrestrial 

water storage on vegetation in this continent (e.g., Yang et al., 2014; Andrew et al., 2017a), however, 

the role of vegetation in influencing terrestrial water condition remains poorly understood. This 

thesis aims to investigate the interactions between TWS and vegetation over Australia. 

(3) Is GRACE TWS a useful proxy for soil moisture? If yes, it would be expected to make 

contribution in improving the quantification of soil moisture-climate interactions and reducing 

uncertainties of climate projection models. The wavelet decomposed GRACE TWS has been 

successfully applied to reveal the moisture dependence of vegetation cover at different temporal 

resolutions recently (Andrew et al., 2017a). It implies the potential of the decomposed TWS as a soil 

moisture proxy to be used for investigating land-atmosphere interactions. This thesis aims to 

examine the applicability of the decomposed TWS in investigating global soil moisture-air 

temperature coupling. 

(4) Which factor, global temperature change or regional land-atmosphere coupling, is more 

important in influencing hot extremes? Such knowledge could provide useful information for the 

development of adaptation strategies for increasing hot extremes. Effects of global warming and 
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local land-atmosphere coupling on hot extremes have been separately investigated in previous 

studies (e.g., Rahmstorf and Coumou, 2011; Herold et al., 2016; Perkins-Kirkpatrick and Gibson, 

2017), but their relative contribution have not been compared yet. This thesis aims to quantify the 

relative importance of global temperature change and local soil moisture deficit in influencing hot 

extremes.  
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1.6 Thesis structure 

The structure of this thesis is shown as follow:  

Chapter 
Number 

Chapter Title Main Content 

1 Introduction  Background, research gaps, objectives, and 
main structure of this thesis 

2 Seesaw terrestrial wetting and drying 
between eastern and western 
Australia 

Investigating the long-term wetting/drying 
variation pattern of Australia and its 
association with other land surface processes 
and atmospheric variables. 

3 Non-linear interactions between 
vegetation and terrestrial water 
storage in Australia 

Investigating the non-linear interactions 
between vegetation and terrestrial water 
storage in Australia. 

4 Global soil moisture‐air temperature 
coupling based on GRACE‐derived 
terrestrial water storage 

Evaluating the applicability of wavelet 
decomposed GRACE TWS in investigate global 
soil moisture-temperature coupling by 
comparing with other commonly used soil 
moisture proxies. 

5 Spatially differentiated effects of 
local moisture deficit on hot 
extremes in comparison to global 
temperature change 

Comparing the relative importance of global 
temperature change and local land-
atmosphere coupling in influencing the 
occurrence of hot extreme at the global scale. 

6 Conclusions Conclusions and future research interests 

Appendix Further analyses expanded on the 
TWS seesaw phenomenon found in 
Chapter 2.  

An initial analysis on the 2009 Black Saturday 
bushfire occurred in Victoria, Australia 

 

The connections of the four main chapters are demonstrated in Figure 1.2. Firstly, Chapter 

2 reveals the variation pattern of TWS, a key variable in land-atmosphere interactions, at a 

continental scale. The study area Australia is a water-limited region, where surface vegetation 

condition is deeply dependent on land water condition, and on the contrary, surface vegetation 

condition can also modify land water condition. Therefore, Chapter 3 investigates the interactions 

between TWS and vegetation over Australia. Land surface processes are usually closely associated 

with atmospheric variables (e.g., temperature, precipitation, wind), for example, soil moisture 

regulates near surface temperature through influencing evapotranspiration. Then, Chapter 4 applies 
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the wavelet decomposed TWS as a soil moisture proxy to examine the soil moisture-air temperature 

coupling at the global scale. Finally, Chapter 5 compares the relative contribution of local land-

atmosphere interaction and global temperature change in influencing hot extremes. Such results 

would contribute to developing practical advice to mitigating negative impacts of hot extremes on 

the environment and society. 
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Figure 1.2 Connections of four main chapters of this thesis. Chapter 2 investigates the long-term 

TWS variation pattern of Australia, and Chapter 3 investigates the interactions between TWS and 

vegetation in Australia. Then, Chapter 4 uses wavelet decomposed TWS to examine the coupling 

between soil moisture and air temperature at a global scale, and Chapter 5 compares the relative 

importance of global temperature change and local land-atmosphere coupling in influencing the 

occurrence of hot extremes. 



 

11 
 

1.7 Publications    

[1] Ajiao Chen, Huade Guan, Okke Batelaan. Seesaw terrestrial wetting and drying between eastern 
and western Australia. Earth's Future, 9, e2020EF001893. https://doi. Org/10.1029/2020EF001893  

[2] Ajiao Chen, Huade Guan, Okke Batelaan. Nonlinear interactions between vegetation and 
terrestrial water storage in Australia. (Prepared for submission to Journal of Hydrology)  

[3] Ajiao Chen, Huade Guan, Okke Batelaan, Xinping Zhang, Xinguang He. Global soil moisture-air 
temperature coupling based on GRACE-derived terrestrial water storage. Journal of Geophysical 
Research: Atmospheres. 2019, 124. https://doi.org/10.1029/2019JD030324 

[4] Ajiao Chen, Huade Guan, Okke Batelaan. Spatially differentiated effects of local moisture deficit 
on hot extremes in comparison to global temperature change. (Submitted for review in Journal of 
Hydrology)  

1.8 References 

Alan K. Betts and John H. Ball. 1996. The land surface-atmosphere interaction: A review based on 
observational and global modelling perspectives. Journal of Geophysical Research, 101(D3), 
7209–7225. 

Alexander, L. 2011. Climate science: Extreme heat rooted in dry soils. Nature Geoscience., 4 (1), 12–
13.  

Anderson, R.G., Canadell, J.G., Randerson, J.T., Jackson, R.B., Hungate, B.A., Baldocchi, D.D., Ban-
Weiss, G.A., Bonan, G.B., Caldeira, K., Cao, L., Diffenbaugh, N.S., Gurney, K.R., Kueppers, L.M., 
Law, B.E., Luyssaert, S. and O'Halloran, T.L. 2011. Biophysical considerations in forestry for 
climate protection. Frontiers in Ecology and the Environment., 9, 174–182. 

Andrew, R., Guan, H., Batelaan, O. 2017a. Large-scale vegetation responses to terrestrial moisture 
storage changes. Hydrology and Earth System Science., 21, 4469–4478.  

Andrew, R. A., Guan, H., Batelaan, O. 2017b. Estimation of GRACE water storage components by 
temporal decomposition. Journal of Hydrology., 552, 341–350.  

Baker, J. C. A., Castilho de Souza, D., Kubota, P. Y., Buermann, W., Coelho, C. A. S., Andrews, M. B., 
Gloor, M., Garcia-Carreras, L., Figueroa, S. N., & Spracklen, D. V. 2021. An Assessment of Land-
Atmosphere Interactions over South America Using Satellites, Reanalysis, and Two Global 
Climate Models, Journal of Hydrometeorology, 22(4), 905–922. 

Balsamo, G., Agusti-Panareda, A., Albergel, C., Arduini, G., Beljaars, A., Bidlot, J., Blyth, E., et al. 2018. 
Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. 
Remote Sensing. 10, 2038.  

Berg, A., Lintner, B. R., Findell, K. L., Malyshev, S., Loikith, P. C., Gentine, P. 2014. Impact of Soil 
Moisture-Atmosphere Interactions on Surface Temperature Distribution, Journal of Climate, 
27(21), 7976–7993.  

Cleverly, J., Eamus, D., Luo, Q., Restrepo-Coupe, N., Kljun, N., Ma, X., Ewenz, C., Li, L., Yu, Q.H., 
Alfredo, A. 2016. The importance of interacting climate modes on Australia’s contribution to 
global carbon cycle extremes. Scientific Report. 6, 23113.  

Coumou, D. and Rahmstorf, S. 2012. A decade of weather extremes. Nature Climate Change., 2 (7), 
491–496.  

https://doi/
https://doi/


 

12 
 

Daniels, E.E., G. Lenderink, R.W.A. Hutjes, and A.A.M. Holtslag, 2016. Observed urban effects on 
precipitation along the Dutch west coast. International Journal of Climatology., 36, 2111–2119.  

Dirmeyer, P., Gao, X., Zhao, M., Guo, Z., Oki, T., Hanasaki, N. 2006. GSWP-2: multimodel analysis and 
implications for our perception of the land surface. Bulletin of the American Meteorological 
Society., 87,1381–1397.  

Dirmeyer, P. A., Jin, Y., Singh, B., Yan, X. 2013. Trends in Land-Atmosphere Interactions from CMIP5 
Simulations. Journal of Hydrometeorology, 14 (3), 829–849.  

Dirmeyer, P. A., Chen, L., Wu, J., Shin, C.-S., Huang, B., Cash, B. A., et al. 2018. Verification of land-
atmosphere coupling in forecast models, reanalyses and land surface models using flux site 
observations. Journal of Hydrometeorology, 19(2), 351–373.  

Donohue, R., McVicar, T., Roderick, M. 2009. Climate-related trends in Australian vegetation cover 
as inferred from satellite observations, 1981-2006. Global Change Biology., 15, 1025–1039.  

Entekhabi, D., Njoku, E.G., O’Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., Entin, J.K., 
Goodman, S.D., Jackson, T.J., Johnson, J. 2010. The Soil Moisture Active Passive (SMAP) Mission. 
Proc. IEEE. 98, 704–716.  

Ferguson, C. R. and Wood, E. F. 2011. Observed Land–Atmosphere Coupling from Satellite Remote 
Sensing and Reanalysis, Journal of Hydrometeorology, 12(6), 1221–1254.  

Fernández-Prieto, D., Kesselmeier, J., Ellis, M., Marconcini, M., Reissell, A., Suni, T. 2013. Earth 
observation for land-atmosphere interaction science. Biogeosciences. 10. 261–266.  

Fischer, E., Seneviratne, S., Vidale, P., Lüthi, D. and Schär, C. 2007. Soil moisture‐atmosphere 
interactions during the 2003 European summer heatwave. Journal of Climate., 20, 5081–5099.  

Fisher, R. A. and Koven, C. D. 2020. Perspectives on the future of land surface models and the 
challenges of representing complex terrestrial systems. Journal of Advances in Modeling Earth 
Systems, 12, e2018MS001453. 

Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., Sitch, S. 2004. Terrestrial vegetation and water 
balance-hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology., 
286, 249–270.  

Heimann, M. and Reichstein, M. 2008. Terrestrial ecosystem carbon dynamics and climate 
feedbacks. Nature., 451, 289–292. 

Herold, N., Kala, J. and Alexander, L. V. 2016. The influence of soil moisture deficits on Australian 
heatwaves. Environmental Research Letters., 11, 064003.  

Humphrey, V., Gudmundsson, L., Seneviratne, S. I. 2017. A global reconstruction of climate-driven 
subdecadal water storage variability. Geophysical Research Letters, 44, 2300–2309.  

Humphrey, V. and Gudmundsson, L. 2019. GRACE-REC: a reconstruction of climate-driven water 
storage changes over the last century. Earth System Science Data, 11(3), 1153–1170.  

Humphrey, V., Berg, A., Ciais, P., Gentine, P., Jung, M., Reichstein, M., Seneviratne, S. I. and 
Frankenberg, C. 2021. Soil moisture-atmosphere feedback dominates land carbon uptake 
variability. Nature., 592, 65–69.  

IPCC, 2019. Climate Change and Land: an IPCC special report on climate change, desertification, land 
degradation, sustainable land management, food security, and greenhouse gas fluxes in 
terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. 
Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. 



 

13 
 

Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. 
Belkacemi, J. Malley, (eds.)]. In press. 

Jimenez, P. A., de Arellano, J. V.-G., Navarro, J., Gonzalez-Rouco, J. F, 2014. Understanding land-
atmosphere interactions across a range of spatial and temporal scales. Bulletin of the American 
Meteorological Society. 95, ES14–ES17.  

Joetzjer, E., Maignan, F., Chave, J., Goll, D., Poulter, B., Barichivich, J., et al, 2018. Effect of the 
importance of tree demography and flexible root water uptake for modelling the carbon and 
water cycles of Amazonia. Biogeosciences Discussions, 1–33.  

Jung, M., Reichstein, M., Margolis, H.A., Cescatti, A., Richardson, A.D., Arain, M.A., Arneth, A. et al. 
2011. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible 
heat derived from eddy covariance, satellite, and meteorological observations. Journal of 
Geophysical Research. Biogeosciences. 116, G00J07.  

Karoly, D. 2009. The recent bushfires and extreme heatwave in southeast Australia. Bulletin of the 
Australian Meteorological and Oceanographic Society., 22, 10–13.  

Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola da Costa, A. C., Gentine, P, 
2019. Implementing plant hydraulics in the Community Land Model, Version 5. Journal of 
Advances in Modeling Earth Systems, 11, 485–513.  

Kerr, Y.H., Al-Yaari, A., Rodriguez-Fernandez, N., Parrens, M., Molero, B., Leroux, D., Bircher, S., 
Mahmoodi, A., Mialon, A., Richaume, P. 2016. Overview of SMOS performance in terms of 
global soil moisture monitoring after six years in operation. Remote Sensing of Environment. 
180, 40–63.  

Kiem, A. and Verdon-Kidd, D. 2010. Towards understanding hydroclimatic change in Victoria, 
Australia-preliminary insights into the “big dry”. Hydrology and Earth System Science., 14, 433–
445.  

Koster, R.D., Dirmeyer, P.A., Guo, Z.C., Bonan, G., Chan, E., Cox, P., Gordon, C.T., Kanae, S., Kowalczyk, 
E., Lawrence, D., Liu, P., Lu, C.H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., 
Oleson, K., Pitman, A., Sud, Y.C., Taylor, C.M., Verseghy, D., Vasic, R., Xue, Y.K., Yamada, T. 2004. 
Regions of strong coupling between soil moisture and precipitation. Science., 305, 1138–1140.  

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., et al, 2019. The 
Community Land Model Version 5: Description of new features, benchmarking, and impact of 
forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11, 4245–4287.  

Lemordant, L., Gentine, P., Stéfanon, M., Drobinski, P., and Fatichi, S. (2016), Modification of land-
atmosphere interactions by CO2 effects: Implications for summer dryness and heat wave 
amplitude, Geophysical Research Letters., 43, 10,240–10,248. 

Nicholls, N. 2011. What caused the eastern Australia heavy rains and floods of 2010/11? Bulletin of 
the Australian Meteorological and Oceanographic Society., 24, 33–34. 

Oki, T., 1999. The global water cycle. In: Browning K, Gurney R (eds) Global energy and water cycles. 
Cambridge University Press, Cambridge/New York, pp 10–27. 

Owe, M., de Jeu R., Holmes T. 2008: Multisensor historical climatology of satellite-derived global 
land surface moisture. Journal of Geophysical Research. 113.  

Perkins, S. and Alexander, L. 2012. On the measurement of heat waves. Journal of climate., 26, 
4500–4515.  



 

14 
 

Perkins, S., Argüeso, D., White, C. 2015. Relationships between climate variability, soil moisture, and 
Australian heatwaves. Journal of geophysical research-Atmospheres., 120, 8144–814. 

Perkins-Kirkpatrick, S. E. and Gibson, P.B. 2017. Changes in regional heatwave characteristics as a 
function of increasing global temperature. Scientific Report, 7, 12256 (2017).  

Pongratz, J., Bounoua, L., DeFries, R., Morton, D., Anderson, L., Mauser, W., Klink, C. 2006. The 
Impact of Land Cover Change on Surface Energy and Water Balance in Mato Grosso, Brazil. 
Earth Interactions., 10(19). 1–17.  

Rahmstorf, S. and Coumou, D. 2011. Increase of extreme events in a warming world. Proceedings of 
the National Academy of Sciences of the United States of America. 108(44), 17905–17909. 

Robinson, D., Campbell, C., Hopmans, J., Hornbuckle, B., Jones, S., Knight, R., Ogden, F., Selker, J., 
Wendroth, O. 2008. Soil moisture measurements for ecological and hydrological watershed 
scale observatories: a review. Vadose Zone Journal., 7, 358–389. 

Robock, A., Vinnikov, K., Srinivasan, G., Entin, J., Hollinger, S., Speranskaya, N., Liu, S., Namkhai, A. 
2000. The global soil moisture data bank. Bulletin of the Australian Meteorological and 
Oceanographic Society., 81 (6), 1281–1299.  

Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C., Arsenault, K., Cosgrove, B., 
Radakovich, J., Bosilovich, M., Entin, J.,Walker, J., Lohmann, D., Toll, D. 2004. The global land 
data assimilation system. Bulletin of the Australian Meteorological and Oceanographic Society., 
85 (3),381–394.  

Santanello, J., Jr., Dirmeyer, P., Ferguson, C., Findell, K., Tawfik, A., Berg, A., Ek, M., Gentine, P., 
Guillod, B., van Heerwaarden, C., Roundy, J., Wulfmeyer, V. 2018. Land-Atmosphere 
Interactions: The LoCo Perspective, Bulletin of the American Meteorological Society., 99(6), 
1253–1272.  

Seneviratne, S.I., Lüthi, D., Litschi, M., Schär, C., 2006. Land-atmosphere coupling and climate 
change in Europe. Nature 443, 205–209.  

Seneviratne S., Stöckli R. 2008. The Role of Land-Atmosphere Interactions for Climate Variability in 
Europe. In: Brönnimann S., Luterbacher J., Ewen T., Diaz H., Stolarski R., Neu U. (eds) Climate 
Variability and Extremes during the Past 100 Years. Advances in Global Change Research, vol 
33. Springer, Dordrecht.  

Seneviratne, S., Corti, T., Davin, E.., Hirschi, M., Jaeger, E.., Lehner, I., Orlowsky, B. Teuling, A. 2010. 
Investigating soil moisture-climate interactions in a changing climate: A review. Earth Science 
Review., 99, 125–161.  

Suni, T., Guenther, A., Hansson, H.C., Kulmala, M., Andreae, M.O., Arneth, A., Artaxo, P. et al., 2015. 
The significance of land-atmosphere interactions in the Earth system-iLEAPS achievements and 
perspectives. Anthropocene, 12, 69–84,  

Susskind, J.,Blaisdell J. M., Iredell L., Keita F. 2011. Improved temperature sounding and quality 
control methodology using AIRS/AMSU data: The AIRS Science Team Version 5 retrieval 
algorithm. IEEE Transactions on Geoscience and Remote Sensing. 49, 883–907. 

Van Dijk, A.., Beck, H., Crosbie, R., Jeu, R., Liu, Y., Podger, G., Timbal, B. Viney, N. 2013. The 
Millennium Drought in southeast Australia (2001-2009): Natural and human causes and 
implications for water resources, ecosystems, economy, and society. Water Resources 
Research., 49.  



 

15 
 

Vogel, M., Orth, R., Cheruy, F., Hagemann, S., Lorenz, R., Hurk, B., Seneviratne, S. I. 2017. Regional 
amplification of projected changes in extreme temperatures strongly controlled by soil 

moisture‐temperature feedbacks. Geophysical Research Letters., 44, 1511–1519.  

Watkins, M., Wiese, D., Yuan, D., Boening, C. Landerer, F. 2015. Improved methods for observing 
Earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of 
Geophysical Research-Solid Earth., 120, 2648–2671.  

Wei, X., Li, Q., Zhang, M., Giles-Hansen, K., Liu, W., Fan, H., Wang, Y., Zhou, G., Piao, S., Liu, S. 2018. 
Vegetation cover-another dominant factor in determining global water resources in forested 
regions. Global Change Biology., 24, 786–795. 

Wiese, D., Landerer, F. Watkins, M. 2016. Quantifying and reducing leakage errors in the JPL RL05M 
GRACE mascon solution. Water Resources Research., 52, 7490–7502.  

Wulfmeyer, V., and D. Turner, 2016. Land-Atmosphere Feedback Experiment (LAFE) science plan. 
Rep. DOE/SC-ARM-16-038, 34 pp., www.arm.gov/publications/programdocs/doe-sc-arm-16-
038.pdf.  

Xie, Z., Huete, A., Restrepo-Coupe, N., Ma, X., Devadas, R., Caprarelli, G. 2016. Spatial partitioning 
and temporal evolution of Australia's total water storage under extreme hydroclimatic impacts. 
Remote Sensing of Environment, 183, 43–52.  

Xie, Z., Huete, A., Cleverly, J., Phinn, S., McDonald-Madden, E., Cao, Y., Qin, F. 2019. Multi-climate 
mode interactions drive hydrological and vegetation responses to hydroclimatic extremes in 
Australia. Remote Sensing of Environment, 231, 111270. 

Yang, Y., Long, D., Guan, H., Scanlon, B., Simmons, C. Jiang, L., Xu, X. 2014. GRACE satellite observed 
hydrological controls on interannual and seasonal variability in surface greenness over 
mainland Australia. Journal of Geophysical Research-Biogeosciences., 119, 2245–2260.  

Zeng, Z., Piao, S., Li, L.Z., Wang, T., Ciais, P., Lian, X., Yang, Y., Mao, J., Shi, X., Myneni, R. 2018. Impact 
of earth greening on the terrestrial water cycle. Journal of Climate., 31, 2633-26.  

Zhong, S. Qian, Y., Zhao, C., Leung, R., Wang, H., Yang, B., Fan, J., Yan, H., Yang, X., Liu, D, 2017. 

Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze 

River Delta region of China. Atmospheric Chemistry and Physics., 17, 5439–5457.  



 

16 
 

2 SEESAW TERRESTRIAL WETTING AND DRYING BETWEEN EASTERN AND 
WESTERN AUSTRALIA  

2.1 Introduction 

Australia is the driest inhabited continent on Earth and among the areas of the most variable 

rainfall in the world (Nicholls et al., 1997; Dey et al., 2019). Its hydroclimatic variations play an 

important role in the global carbon and water cycles (Ahlström et al., 2015; Xie et al., 2016), 

occurrence of natural hazards (Johnson et al., 2016; Kiem et al., 2016), and agricultural productivity 

(Ma et al., 2015). Droughts occurring in Australia during 2000–2009 were reported to have reduced 

global terrestrial net primary production (Zhao and Running, 2010). Poulter et al. (2014) indicated 

that the global land carbon sink anomaly triggered by the 2010–2011 La Niña event was largely due 

to an enhanced ecosystem productivity across the Southern Hemisphere, particularly in Australia. 

Frequent droughts cause agricultural losses (Heberger, 2012; Van Dijk et al., 2013), contribute to 

bushfires (Sharples et al., 2016) and exacerbate heatwaves (Herold et al., 2016; Perkins-Kirkpatrick 

et al., 2016), and consequently impact the economy and society significantly (Van Dijk et al., 2013). 

This continent is also prone to floods, which lead to serious casualties and economic losses (Johnson 

et al., 2016). Hence, furthering our understanding and monitoring of wet and dry conditions in 

Australia is urgently needed for water, agriculture, and disaster risk management.  

Previous studies mainly focused on the causes of droughts or floods in discrete periods and 

their impacts on ecosystems and society (Kiem and Verdon-Kidd, 2010; Nicholls, 2011; Van Dijk et 

al., 2013; Johnson et al., 2016; Kiem et al., 2016). Hydroclimatic extremes in Australia are usually 

attributed to the combined effect of large-scale climate modes such as El Niño Southern Oscillation 

(ENSO), Indian Ocean Dipole (IOD), and Inter-decadal Pacific Oscillation (IPO) (e.g., Ummenhofer et 

al., 2009; Verdon-Kidd and Kiem, 2009a, 2009b, 2014; King et al., 2020). The indices of these climate 

oscillation systems are reported to have strong correlation with rainfall/streamflow in Australia 

(Kiem et al., 2003; Franks, 2004; Power et al., 2006; Cai et al., 2011). El Niño (La Niña) tends to 

increase the possibility of dry (wet) conditions across many parts of Australia (Nicholls, 1992; Power 

et al., 2006; Risbey et al., 2009). For example, an abnormal wet period in 2010–2011 was reportedly 

driven by one of the strongest La Niña events in the past nine decades (Nicholls, 2011; Trenberth, 

2012; Evans and Boyer-Souchet, 2012; Christidis et al., 2013; King et al., 2013). Xie et al. (2016) 

recently investigated the wet and dry evolution across continental Australia based on Gravity 

Recovery and Climate Experiment (GRACE) terrestrial water storage (TWS) data set (2002–2014). 
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They revealed three geographic zones with distinct TWS responses and attributed them to different 

large-scale teleconnections. If such regional differentiated TWS responses hold over a long period, 

it would provide society useful information for climate-adaptive water resource planning and 

management. In this study, we aim to reveal long-term spatio-temporal patterns of TWS in Australia, 

and to examine how these patterns are associated with climate variability and land surface 

processes. 

2.2 Methodology 

2.2.1 TWS data 

Three TWS datasets are used in this study. The first is the original GRACE TWS data set 

(RL06M.MSCNv01) (Watkins et al., 2015; Wiese et al., 2016) from 2003 to 2016 provided by the 

NASA Jet Propulsion Laboratory (JPL), which are available from https://grace.jpl.nasa.gov/. 

Seventeen months of missing TWS data (June 2003, January 2011, June 2011, May 2012, October 

2012, March 2013, August 2013, September 2013, February 2014, July 2014, December 2014, June 

2015, October 2015, November 2015, April 2016, September 2016, and October 2016) are filled by 

linear interpolation using the months either side (Long et al., 2015; Andrew et al., 2017). In order to 

investigate the wetting and drying cycles over a long period, two reconstructed GRACE TWS datasets 

for 1985–2015 (Humphrey et al., 2017; http://rossa-prod-

ap21.ethz.ch/delivery/DeliveryManagerServlet?dps_pid=IE5766472) and for 1901–2014 

(Humphrey and Gudmundsson, 2019; https://doi.org/10.6084/m9.figshare.7670849) are also 

applied. The TWS data set of 1901–2014 was reconstructed from statistical data-driven models, 

calibrated with observations, which performs well in comparison with state-of-the-art hydrological 

models (Humphrey and Gudmundsson, 2019; Padrón et al., 2020). The seasonality of TWS has been 

removed by subtracting monthly averages, resulting in what is referred to as TWS anomaly in this 

study. All TWS datasets are of 0.5° × 0.5° spatial resolution. 

2.2.2 Vegetation index 

Global Inventory Monitoring and Modeling System (GIMMS) Normalized Difference 

Vegetation Index (NDVI) data set (Tucker et al., 2005; Pinzon and Tucker, 2014) is available from July 

1981 to December 2015, which was downloaded from https://climatedataguide.ucar.edu/climate-

data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms. Moderate 

Resolution Imaging Spectroradiometer (MODIS) NDVI data set (Didan et al., 2015) is available from 

March 2000, which was downloaded from 
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https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_NDVI_M. MODIS NDVI data are of 0.5° × 

0.5° spatial resolution, and the GIMMS NDVI data were remapped from 1/12° × 1/12° to 0.5° × 0.5° 

in this study.  

2.2.3 Model-derived evapotranspiration, soil Moisture, and precipitation data 

GLDAS_NOAH025_M evapotranspiration data (Rodell et al., 2004; Beaudoing and Rodell, 

2015) are of 0.25°×0.25° spatial resolution, which were downloaded from 

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.0/summary?keywords=GLDAS. Soil 

moisture and precipitation data provided by the Australian Water Availability Project (AWAP, 

http://www.csiro.au/awap) (Raupach et al., 2009; Raupach et al., 2018) are of 0.05°×0.05° spatial 

resolution.  

2.2.4 Ocean-atmosphere indices 

Two ocean-atmosphere climate indices, the Southern Oscillation Index (SOI) (Ropelewski 

and Jones, 1987; Allan et al., 1991; Können et al., 1998) available from  

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/SOI/ and the Indian Ocean Dipole Mode 

Index (DMI) (Saji, 2003) available from  

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/ are applied in this study to examine 

the role of ENSO and IOD in Australia’s hydroclimatic variations (Verdon-Kidd and Kiem, 2009a, 

2009b; Kiem and Verdon-Kidd, 2010; Van Dijk et al., 2013;). 

2.2.5 Empirical orthogonal functions (EOFs) 

The EOFs decompose a space-time field into spatial patterns and associated temporal signals. 

For a continuous space-time field X (t, s), t and s denote respectively time and spatial position, the 

decomposition is described as in the study of Hannachi et al. (2007): 

𝑋(𝑡, 𝑠) = ∑ 𝑐𝑘(𝑡)𝑢𝑘(𝑠)
𝐾
𝑘=1                                                     (2-1) 

where K is the number of modes included in the field, using an optimal set of basic functions of 

space uk(s) and expansion functions of time ck(t). For the space-time field of TWS over Australia, the 

EOFs method finds a set of orthogonal spatial patterns (EOFk) along with a set of associated 

uncorrelated time series or principal components (PCk) (i.e., PC1 corresponds to EOF1 and so on). 

This method also provides the explained variance, which indicates how much variability of TWS is 

explained by each decomposed mode (EOFk/PCk). 
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2.2.6 Significance test 

The significance of a linear trend is tested by the modified Mann-Kendall (M-K) test (Hamed 

and Ramachandra Rao, 1998). Analysis of covariance is applied to test the significance of difference 

between two time series. The effective sample size (Bretherton et al., 1999) considering the 

autocorrelation of datasets is applied in statistical significance testing for the correlation coefficient 

between two time series. The 0.05 significance level is adopted in this study. 

2.3 Results and Discussion 

2.3.1 Main spatial patterns of TWS variation in Australia 

The space-time fields of monthly Australia TWS anomaly from three datasets (14-year 

original JPL GRACE TWS and reconstructed GRACE TWS of 31 and 114 years) have been decomposed 

by empirical orthogonal functions (EOFs). We focus on the first two modes since they explain more 

than 50% of the total variance. The three datasets exhibit similar spatial patterns (Figure 2.1). 

Almost all grid cells (more than 90%) show consistent phase in terms of spatial pattern EOF1 (Figures 

2.1 (a), (c), and (e)) indicating that the wet and dry alternation has consistency over the whole 

continent, although the north and east parts have higher variability. This EOF mode explains more 

than 30% of the total TWS variability in Australia. The spatial pattern EOF2 clearly delineates two 

zones, eastern and western Australia, with opposite behaviour (Figures 2.1 (b), (d), and (f)). This 

mode is defined as an east-west opposite pattern, which explains around 20% of the total variation 

of the TWS anomaly in Australia. The dashed line in Figure 2. 1 is drawn based on the average results 

from the three datasets of different year ranges. This line is coincident with the boundary of the 

western plateaus and central plains of the Australian continent. 
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Figure 2.1 Spatial pattern of the first two modes (EOF1 & EOF2) of Australia TWS variation. (a and 

b) 14-year original JPL GRACE TWS (2003–2016), (c and d) 31-year reconstructed GRACE TWS (1985–

2015), (e and f) 114-year reconstructed GRACE TWS (1901–2014). Acronym “ev” stands for 

explained variance. An east-west opposite (EOF2) pattern is observed in all three datasets. 

2.3.2 Four consecutive seesaw wetting and drying phases between eastern and western 
Australia in the past five decades 

The temporal signal of the first decomposed mode (PC1) reflects the wet (positive PC1) and dry 

(negative PC1) conditions in terms of average TWS anomaly over the whole continent. The 

continent-wide wetting and drying are closely related to large-scale ocean-atmosphere dynamics. 

As shown in Figure 2.2, continent-wide wetting episodes represented by positive phases of PC1 

generally correspond to positive phases of SOI (La Niña episodes). We use pairs of dashed lines to 

mark the La Niña induced continent-wide wetting episodes, which are bounded by the time points 
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when average TWS anomaly in Australia starts to increase, triggered by strong La Niña, and when it 

returns to equilibrium. Nine La Niña induced continent-wide wetting episodes are identified during 

1901–2014 (W1: December 1903–January 1905, W2: March 1910–February 1911, W3: November 

1916–November 1918, W4: December 1949–November 1951, W5: February 1956–December 1957, 

W6: July 1973–March 1980, W7: April 1989–September 1989, W8: August 1998–June 2002, W9: 

April 2010–January 2013, see Figure 2.2 (a)). As this 114-year reconstructed GRACE TWS data set is 

the mean of 100 ensemble members, uncertainty in PC1 is quantified by ±1 standard deviation of 

100 PC1 time series derived from the ensemble members (Figure 2.2 (a)). 

 

Figure 2.2 La Niña induced continent-wide wetting episodes identified based on standardized SOI 

and the temporal signal of the first mode (PC1) of Australia TWS variation. (a) PC1 versus SOI during 

1901–2014 (r = 0.18, p < 0.05). The black curve indicates mean PC1 derived from 100 PC1 members 

and the shaded areas represent ±1 standard deviation of 100 PC1 time series derived from the 

ensemble members. A 3-month moving average was applied to SOI for readability (orange curve). 

The periods marked by a pair of dashed lines (W1–W9) denote the La Niña (positive SOI) induced 

continent-wide wetting episodes (positive PC1). (b) PC1 versus SOI during 1985–2015 (r = 0.23, p < 

0.05). The three marked La Niña induced continent-wide wetting episodes respectively correspond 

to W7, W8, and W9 shown in (a).  
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As the eastern and western parts of Australia have opposite phases in EOF2 (Figures 2.1 (b), 

(d), and (f)), they are supposed to behave oppositely in terms of TWS variation. The periods in-

between the La Niña induced continent-wide wetting episodes, show piece-wise linear trends of the 

regional average TWS anomaly in the eastern and western parts of Australia (Figure 2.3 (a)). Four 

consecutive opposite TWS trends between eastern and western Australia are observed during the 

past five decades (1958–2010). In those four consecutive interval periods, changes of regional 

average TWS anomaly between the two parts are significantly different at 0.05 significance level 

(tested by analysis of covariance). This phenomenon is identified as seesaw wetting and drying 

between these two geographical parts of Australia. The seesaw is characterized by eastern Australia 

gaining (losing) water, while the west is losing (gaining) water. It appears that a seesaw is reset by a 

continent-wide wetting episode, leading to a previous gaining (losing)-water side starts to lose (gain) 

water. Another seesaw phenomenon is observed during the 1910s. These five seesaw periods last 

for 11 ± 5 years. Uncertainty in regional average TWS time series is represented by the shaded area 

in Figure 2.3 (a). Uncertainty of the consecutive opposite trends in the last four interval periods is 

quantified in Figure 2.3 (b), the average linear trends of the east and west part derived from 100 

ensemble members are significantly different at 0.05 significance level. 
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Figure 2.3 TWS seesaw between eastern and western Australia. (a) Regional average TWS anomaly 

of eastern and western Australia during 1901–2014 (the boundary of eastern and western parts is 

shown in Figure 2. 1). Blue (red) asterisk (*) indicates the trend of eastern (western) Australia is 

significant at 0.05 significance level, and the black asterisk indicates the changes of regional average 

TWS anomaly between eastern and western Australia are significantly different; (b) slopes of 

regional average TWS anomaly derived from 100 ensemble members in the last four interval periods 

(5–8). Hatched bars indicate uncertainty (±1 standard deviation) in trends. (c) Same as (a) but based 

on TWS data of 1985–2015.  

The input data for reconstructing the 31- and 114-year TWS include precipitation and 

temperature information. Data of those two climate variables are of low quality for most of the 114-

year time series. Therefore, we repeated above analysis with the 31-year reconstructed TWS data 

(1985–2015) for comparison. Three La Niña induced continent-wide wetting episodes (April 1989–

January 1990, August 1998–June 2002, and August 2010–February 2013) are marked in Figure 2.2 

(b), which respectively correspond to W7–W9 shown in Figure 2.2 (a), although minor differences 

exist. The regional average TWS anomaly of the eastern and western parts of Australia from 1985 

to 2015 are plotted in Figure 2.3 (c). Two pairs of opposite trends (all are significant at 0.05 
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significance level) are observed in the interval periods which correspond to the last two seesaws 

shown in Figure 2.3 (a), respectively. 

No seesaw phenomenon is observed if the interval between two La Niña induced continent-

wide wetting episodes is too short (1905–1910) or too long (1918–1949). The length of a continent-

wide wetting episode (reflected in the PC1 response, Figure 2.2) and its occurrence frequency are 

associated with the intensity and duration of the La Niña events, as well as the conjunction effects 

from other oscillations (e.g., IPO and IOD). From 1918 to 1949, only one moderate La Niña occurred 

(1938–1939), but it did not induce continent-wide wetting (Figure 2.2 (a)). This was likely because a 

positive IPO phase dominated during 1922–1944 (Salinger et al., 2001), which suppressed both the 

occurrence and magnitude of a La Niña event (Gershunov and Barnett, 1998; Power et al., 1999; 

Folland et al., 2002; Kiem et al., 2003; Franks, 2004; Kiem and Franks, 2004; Guan et al., 2005; Cai 

and van Rensch, 2012; King et al., 2013). The wetting episode W7 was short (10 months), which was 

likely relevant to the positive IPO phase (1978–1998) (Salinger et al., 2001). Different from the 

situation in the previous positive IPO (1922–1944), the La Niña in W7 was strong enough to lead to 

a continent-wide wetting and reset the seesaw between eastern and western Australia. Here, the 

La Niña coincident with a negative IOD (Figure 2.4) could explain this situation. Negative IOD usually 

enhances the La Niña effect, it can also lead to a wetter than normal condition in western and 

southern Australia (Risbey et al., 2009; Cai et al., 2014). 

 

Figure 2.4 Monthly time series of GRACE TWS PC1, SOI and DMI from 1985 to 1995. 

2.3.3 Independent evidence for TWS seesaw between eastern and western Australia 

A soil moisture data set for 1901–2014 (provided by AWAP) also shows a seesaw pattern 

(Figure 2.5) consistent with that of TWS shown in Figure 2.3 (a). The agreement between the results 
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based on two independent data sources supports the validity of the TWS seesaw between the two 

parts of Australia, because changes in soil moisture are typically the largest component of TWS 

variation (Rodell and Famiglietti, 2001). 

 

Figure 2.5 Regional average soil moisture of eastern and western Australia during 1901–2014, which 

shows a similar seesaw pattern to TWS (changes of regional average soil moisture between eastern 

and western Australia are significantly different in five interval periods: Mar 1911–Oct 1916, Jan 

1958–Jun 1973, Apr 1980–Mar 1989, Oct 1989–Jul 1998 and Aug 2002–Mar 2010. 

In addition, as ecosystems are mostly water limited in Australia, changes of TWS should have 

led to and be reflected in vegetation responses. GIMMS NDVI data set provides an opportunity to 

verify the most recent two TWS seesaw phenomena (February 1990–July 1998 and July 2002–July 

2010, following the intervals identified based on 31-year reconstructed TWS data). Linear NDVI 

trends during those two seesaws at each grid cell are shown in Figures 2.6 (a) and (b) respectively. 

A marked east-west difference in NDVI trends is observed for both periods. During February 1990–

July 1998, NDVI anomaly increases in the western region and decreases in the eastern region of 

Australia (Figure 2.6 (a)), which is consistent with TWS wetting in the west and drying in the east 

(Figure 2.3 (c)). During July 2002–July 2010, NDVI anomaly (Figure 2.6 (b)) also shows consistent 

trends with TWS (Figure 2.3 (c)). Similar to Figure 2.3 (c), we plot the regional average NDVI anomaly 

of eastern and western Australia from 1985 to 2015 in Figure 2.6 (c). During the interval between 

W7 and W8, the regional average NDVI anomaly significantly increases in the west and slightly 

decreases in the east. During the interval between W8 and W9, average NDVI anomaly significantly 

increases in the east and slightly decreases in the west. Changes of regional average NDVI anomaly 

between the two parts are significantly different in both interval periods (Figure 2.6 (c)). These NDVI 
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seesaws, consistent with those of TWS ones, between the western and eastern parts of Australia, 

provide strong support for the seesaw pattern of TWS variation in Australia. 

 

Figure 2.6 Seesaw phenomenon of NDVI during 1985–2015. (a and b) Linear trends (per month) of 

NDVI during two interval periods (February 1990–July 1998 and July 2002–July 2010); (c) same as 

Figure 2.3 (c) but for NDVI anomaly. 

2.3.4 Possible mechanism of the Australia TWS seesaw phenomenon  

For the four consecutive TWS seesaws between eastern and western Australia, the seesaw 

state seems to be reset by a continent-wide wetting episode. In other words, if a region was gaining 

water before the wetting episode, it would be losing water after that. Since TWS is mainly recharged 

by precipitation, we attempted to explain the seesaw phenomenon of TWS by looking into 

precipitation patterns. The regional average precipitation (provided by AWAP) in the eastern and 

western parts of Australia during 1901–2014 is plotted in Figure 2.7 (a). Opposite trends between 

two parts are shown for the last three intervals. After the regional average precipitation time series 

being smoothed, those three pairs of opposite trends are significantly different in each interval 
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(Figure 2.7 (b)). It appears that precipitation alone cannot explain the TWS seesaw because in the 

second (between W2 and W3) and fifth (between W5 and W6) interval periods the seesaw 

phenomenon is only observed in TWS but not in precipitation. 

 

Figure 2.7 (a) Regional average precipitation of eastern and western Australia during 1901–2014, 

opposite trends are observed in the last three interval periods, but no significant difference of 

changes in regional average precipitation anomaly between eastern and western Australia is 

observed in any interval period. (b) same as (a) but for 7-month smoothed precipitation, opposite 

trends in the last three intervals are significantly different. 

Here, we provide one possible mechanism related to dynamic woody vegetation and soil 

moisture interactions, which appears to explain the seesaw resetting pattern (Figure 2.8). For a 

region with an increasing TWS (the lower blue arrow in Figure 2.8) during a seesaw period, 

vegetation cover tends to be well developed prior to a wetting episode. Such an improved 

vegetation cover makes the region to have a larger than normal storm water retention capacity for 

big wetting events, for example, by root enhanced infiltration and organic matter facilitated soil 

hydrophilicity (Lange et al., 2009; Guan et al., 2010; Wang et al., 2013). Following the wetting 
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episode, this increasing vegetation cover tends to demand more root water uptake, which gradually 

depletes soil moisture, and thus TWS (the upper blue arrow in Figure 2.8). This process reverses the 

previous positive TWS trend to a negative one. 

 

Figure 3.8 A schematic showing possible terrestrial water storage and vegetation interactions, 

leading to TWS seesaw and its resetting by big wetting episodes. 

In contrast, for a region with a decreasing TWS (the upper blue arrow in Figure 2.8) during a 

seesaw period, vegetation cover will reduce. Such a surface tends to favour runoff generation and 

soil erosion, leading to a lower storm water retention (Dunjó et al., 2004; Kothyari et al., 2004; 

Mohammad and Adam, 2010). Since Australia is prone to wildfires, the storm water retention can 

be further weakened by fire-induced hydrophobic soils (Mataix-Solera et al., 2011). After the 

wetting episode, the previously reduced vegetation cover demands less soil moisture, leading to a 

gradual increase of TWS (the lower blue arrow in Figure 2.8) during the interval period. 

The above two situations explain the seesaw resetting pattern in which a positive (negative) 

seesaw stage is reset to a negative (positive) one after a short wetting episode. This mechanism 

highlights the important role of vegetation and soil moisture interactions in the observed TWS 

seesaws. The possibility of this vegetation mediation for the seesaw phenomenon is further 

supported by comparing spatial patterns of linear trends of relevant variables. The spatial pattern 

of TWS trends (Figures 2.9 (a) and (b)) matches better with that of NDVI (Figures 2.6 (a) and (b)) 

than that of precipitation (Figures 2.9 (c) and (d)), suggesting that the vegetation mediation effect 

is very likely the primary influence on the TWS seesaw phenomenon. The mechanism of vegetation 
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recovering (degrading) illustrated in Figure 2.8 can be enhanced by in-phase trends of precipitation. 

For example, in the last three interval periods precipitation shows opposite trends between the 

eastern and western parts of Australia, which are consistent with those of TWS. 

 

Figure 2.9 Same as Figure 2.6 (a–b) but for TWS (a–b) and precipitation (c–d) respectively. 

By comparing the 12-month average NDVI anomaly immediately before (Figures 2.10 (a–c) 

and 12-month average TWS anomaly immediately after (Figures 2.10 (d–f) the three La Niña induced 

continent-wide wetting episodes shown in Figure 2.2 (b), we can see that the half of the continent 

(either east or west) with increased vegetation cover (positive NDVI anomaly) prior to a La Niña 

triggered wetting episode, retains larger than normal storm water (positive TWS anomaly) after the 

episode. After a wetting episode, the part dominated by positive NDVI and TWS anomalies 

experiences a decreasing evapotranspiration (ET) (Figures 2.10 (g) and (h)), reflecting a gradually 

decreasing vegetation cover resulting from a depleting TWS. These processes are consistent with 

the trends of NDVI and TWS during the corresponding interval period. In addition, vegetation in the 

region with positive (negative) NDVI anomaly prior to the last La Niña induced continent-wide 

wetting shows a decreasing (increasing) trend during March 2013–December 2018 (Figure 2.11). 

Such results support the mechanism of the TWS seesaw phenomenon for Australia, which we 

explained in Figure 2.8. 
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Figure 2.10 Evidence for the possible mechanism of the TWS seesaw phenomenon. Average 12-

month NDVI anomaly (a–c) immediately before and average 12-month TWS anomaly (d–f) 

immediately after the three continent-wide wetting episodes: April 1989–January 1990, August 

1998–June 2002, and August 2010–February 2013; (g and h) linear trends of evapotranspiration (ET) 

during two interval periods: February 1990–July 1998 and July 2002–July 2010. 
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Figure 2.11 (a–b) Linear trends (per month) of MODIS NDVI during Jul 2002–Jul 2010 and Mar 2013–

Dec 2018; (c) regional average NDVI anomaly of eastern and western Australia during 2001–2018. 

Results from GIMMS (Figure 2.6) and MODIS NDVI datasets are consistent during the overlapped 

interval Jul 2002–Jul 2010. Opposite linear trends between the two parts are also observed during 

Mar 2013–Dec 2018. Changes of regional average MODIS NDVI anomaly between eastern and 

western Australia are significantly different in both interval periods. 

Based on this understanding, we suppose that vegetation dynamic, in response to continent-

wide wetting, plays an important role in the TWS seesaw in Australia. However, the interval period 

should be long enough for woody vegetation to recover in one part while to degrade in the other 

part of Australia, so that TWS seesaw between the two parts could be reset by a La Niña induced 

continent-wide wetting. 

2.3.5 Soil-vegetation-atmosphere transfer of the seesaw phenomenon  

The soil-plant-atmosphere continuum (SPAC) describes the water transfer from soil, root, 

stem, and leaf to the atmosphere. As the results shown above that the seesaw phenomenon are 

observed in TWS and NDVI, the seesaw pattern is expected to be transferred through the SPAC from 
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soil and plant to the atmosphere. Here, the analysis performed on NDVI as shown in Figure 2.6 is 

also applied on land surface temperature (Ts), vapor pressure deficit (VPD), and global primary 

productivity (GPP). Maps of the linear trend of those three variables at each grid cell are shown in 

Figure 2.12, and their regional averages are plotted in Figure 2.13. Seesaw patterns are observed in 

all the three variables as expected. Such results may help to reduce uncertainties in current 

projections of future terrestrial carbon fluxes. 

 

Figure 2.12 Spatial patterns for linear trends of (a–b) land surface temperature (Ts), (c–d) vapor 

pressure deficit (VPD), and (e–f) global primary productivity (GPP) during Feb 1990–Jun 1998 (the 

first column) and May 2002–Aug 2010 (the second column), respectively.  
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Figure 2.13 Plots of regional average (a) Ts, (b) VPD, and (c) GPP for the two intervals. Blue (red) 

asterisk (*) indicates the trend of eastern (western) Australia is significant at 0.05 significance level, 

and the black asterisk indicates the changes of regional average TWS anomaly between eastern and 

western Australia are significantly different. 

2.4 Conclusions 

This study, based on three TWS datasets (14-year original JPL GRACE TWS and 31- and 114-

year reconstructed GRACE TWS), elucidates a new spatio-temporal pattern of wetting-drying over 

Australia. Four consecutive seesaw wetting and drying phases between eastern and western 

Australia are observed in the past five decades, which is characterized by eastern Australia gaining 

water while the western part is losing water, and vice versa. Strong La Niña induced continent-wide 
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wetting, resets this pattern, leaving each seesaw to last for 11 ± 5 years. The TWS seesaw 

phenomenon is substantiated by a similar pattern in NDVI between eastern and western Australia 

during February 1990–July 1998 and July 2002–July 2010. This continental scale TWS seesaw pattern 

seems to be resulting from woody vegetation response to climate variability and its feedback on 

hydrological processes. In addition, similar pattern is also observed in Ts, VPD and GPP, which 

implies the transfer of the seesaw pattern from soil and plant to the atmosphere through the soil-

plant-atmosphere continuum.  

The results of this study contribute to a better understanding of drying and wetting phases 

and hence can stimulate an adaptive forest, water, and disaster risk management in the wake of a 

strong La Niña induced continent-wide wetting in Australia. Our finding suggests that at the end of 

a seesaw drying phase, poor vegetation cover limits the landscape water retention capacity. Hence, 

during a drying phase a reasonable management response might be to increase storm water 

harvesting capacity. At the beginning of a seesaw drying phase, previously increased vegetation 

cover (resulting from a previous seesaw wetting) depletes root zone moisture, leading to landscape 

degradation in the subsequent years. Reducing vegetation cover right after the wetting episode 

might reduce the risk of heatwaves and bushfires in the later dry stage. 
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3 NON-LINEAR INTERACTIONS BETWEEN VEGETATION AND 
TERRESTRIAL WATER STORAGE IN AUSTRALIA 

3.1 Introduction 

Radiation, temperature, and water availability are important drivers for surface vegetation 

conditions. At the global scale, vegetation growth is limited by radiation in rainforests and 

temperature at high northern latitudes (Nemani et al., 2003). Over approximately half of the earth’s 

vegetated surface, vegetation growth is driven by the availability of water (Nemani et al., 2003; 

Seddon et al., 2016). Australia is a water-limited region, where the ecosystems play an important 

role in contributing to the global carbon and water cycles (Poulter et al., 2014; Ahlström et al., 2015; 

Cleverly et al., 2016). Previous studies have investigated how vegetation responds to land water 

conditions in Australia (Yang et al., 2014; Andrew et al., 2017; Xie et al., 2019). However, vegetation 

can also strongly influence terrestrial water storage by regulating evapotranspiration and altering 

the terrestrial water cycle (Wei et al., 2018; Zeng et al., 2018). Therefore, the two-way relationship 

between surface vegetation and land water conditions in Australia remains to be understood.  

Vegetation takes up water from the root zone, and soil moisture is replenished by 

precipitation. Thus, precipitation and soil water content data are commonly used to indicate the 

water condition on which vegetation relies. However, a lack of continuous soil moisture 

observations in both time and space is a major impediment for large-scale investigation of 

vegetation and soil water relationships (Seneviratne et al. 2010). In-situ measurements of soil 

moisture are costly and lack broad spatial coverage (Robock et al., 2000; Robinson et al., 2008). 

Outputs from land surface models, such as the Global Land Data Assimilation System (GLDAS, Rodell 

et al., 2004) and the Global Soil Wetness Project 2 (GSWP-2, Dirmeyer et al., 2006), are dependent 

on the quality of forcing data. Remote sensing soil moisture products, such as the Advanced 

Microwave Scanning Radiometer (AMSR-E), the Soil Moisture and Oceanic Salinity (SMOS), and the 

Soil Moisture Active and Passive (SMAP), only provide direct sensing of soil moisture of the top 5 

cm of the soil column.  

The Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage (TWS) have 

emerged as a useful data source for investigating vegetation-soil moisture relationships. For 

example, Yang et al. (2014) reported that GRACE TWS can be used for assessing hydrological impacts 

on surface vegetation conditions in Australia. For the first time, Xie et al. (2019) investigated the 
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interactions between vegetation greenness and GRACE TWS at the global scale based on a linear 

relationship, which indicated that significant positive TWS-NDVI relationships appear in 

approximately 43.17% of global vegetated areas.   

Since the interactions between vegetation and climate conditions are most likely non-linear 

(Foley et al., 1998; Zeng, 2002), Papagiannopoulou et al. (2017) proposed a non-linear Granger 

causality framework to investigate the climate-vegetation dynamics. The Granger causality test was 

first proposed by the economist Granger (1969) and has been applied to investigate the vegetation-

climate interactions in recent years (e.g., Jiang et al., 2015; Kong et al., 2018; Xie et al., 2019). This 

method assumes that variable x ‘Granger causes’ variable y if the past time series of variable x 

improves predicting the future time series of variable y. Although the Granger causality test does 

not confirm a direct physical mechanism between two variables, it provides implications of possible 

causality links from a statistical perspective. 

Here we present a study on non-linear interactions between land water conditions 

represented by the GRACE TWS and surface vegetation conditions indicated by the normalized 

difference vegetation index (NDVI) in Australia. The objectives of this study are (1) to compare the 

performance of GRACE TWS and precipitation in investigating the relationship between surface 

vegetation and land water conditions, (2) to analyse the bidirectional causality relationships 

between surface vegetation and land water conditions with respect to different vegetation types, 

and (3) to revisit spatial patterns of water limitation on vegetation in comparison to temperature 

and radiation in Australia.   

3.2 Methodology 

3.2.1 Land water condition relevant data 

A 31-year (1985–2015) reconstructed GRACE TWS dataset (Humphrey et al., 2017) provided 

by the Institute for Atmospheric and Climate Science, ETH, available from http://rossa-prod-

ap21.ethz.ch/delivery/DeliveryManagerServlet?dps_pid=IE5766472, is used in this study. The 14-

year (2003–2016) original GRACE TWS dataset (RL06M.MSCNv01) (Watkins et al., 2015; Wiese et al., 

2016) provided by the NASA Jet Propulsion Laboratory (JPL), available from 

https://grace.jpl.nasa.gov/, is also considered for comparison. Monthly precipitation data provided 

by the Global Precipitation Climatology Centre (GPCC, Schneider et al., 2015) available from 

https://www.esrl.noaa.gov/psd/thredds/catalog/Datasets/gpcc/full_v7/catalog.html are used to 

compare with TWS in examining the relationship between vegetation and land water conditions. As 
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the effects of land water condition on vegetation may be relevant to plant available water capacity, 

the 0–1 m plant available water capacity data provided by the Australian Soil Resource Information 

System (ASRIS) are used in this study. The data are available from 

https://www.asris.csiro.au/themes/NationalGrids.html. 

3.2.2 Vegetation relevant data 

We used The Global Inventory Monitoring and Modelling System (GIMMS) Normalized 

Difference Vegetation Index (NDVI) data (Tucker et al., 2005; Pinzon and Tucker, 2014) for the same 

time period as the reconstructed GRACE TWS data (1985–2015), which were downloaded from 

https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-

generation-nasagfsc-gimms. The Moderate-resolution Imaging Spectroradiometer (MODIS) land 

cover classification data are used to identify different vegetation types across Australia, which were 

downloaded from https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MCD12C1_T1. The five types 

include forest, shrubland, savanna, grassland, and agricultural land (Figure 3.1). 

 

Figure 3.1 Land cover classification (MODIS) over Australia. The white area indicates barren land. 

3.2.3 Other climate data 

As temperature and radiation are important drivers for surface vegetation conditions, the 

ERA5 air temperature and net radiation datasets, available from https://cds.climate.copernicus.eu/, 

are also applied in this study. All the datasets are used at a 0.5° × 0.5° spatial resolution. 

3.2.4 Correlation analysis  

The Pearson linear correlation is applied to examine relationships between NDVI versus 

precipitation and TWS. Considering the autocorrelation of datasets, the effective sample size 
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(Bretherton et al., 1999) is used in the statistical significance testing for the correlation coefficient 

between two time series. The 0.05 significance level is adopted in this study.   

3.2.5 Non-linear Granger causality analysis  

The Granger causality method can test possible causal relationships (e.g., forcing and 

feedback) between variations in the vegetation and climate change (Jiang et al., 2015; Kong et al., 

2018). The non-linear Granger causality analysis (Papagiannopoulou et al., 2017) is applied in this 

study to investigate the interaction between vegetation and land water conditions over Australia. 

Variable x Granger causes variable y if the autoregressive forecast of y is improved by considering 

the information about x. A linear vector autoregressive model can be used to derive the predictions 

required to determine Granger causality, which is represented as: 

[
𝑦𝑡
𝑥𝑡
] = [

𝛽01
𝛽02

] + ∑ [
𝛽11𝑝 𝛽12𝑝
𝛽21𝑝 𝛽22𝑝

] [
𝑦𝑡−𝑝
𝑥𝑡−𝑝

]𝑃
𝑝=1 + [

𝜖1
𝜖2
],                                              (3-1) 

where 𝛽𝑖𝑗 are parameters that need to be estimated and 𝜖1 and 𝜖2 are white noise error terms. p is 

the length of the lag-time moving window. If at least one of the parameters 𝛽12𝑝  at any p 

significantly differs from 0, it can be concluded that time series x Granger causes time series y. The 

following two models compare the two situations of including information of both x and y (Eq. (2)) 

versus only considering information about y (Eq. (3)): 

𝑦𝑡 = 𝑦�̂� + 𝜖1 = 𝛽01 + ∑ (𝛽11𝑝𝑦𝑡−𝑝 + 𝛽12𝑝𝑥𝑡−𝑝) + 𝜖1,
𝑝
𝑝=1                                         (3-2) 

𝑦𝑡 = 𝑦�̂� + 𝜖1 = 𝛽01 + ∑ 𝛽11𝑝𝑦𝑡−𝑝 + 𝜖1.
𝑝
𝑝=1                                                   (3-3) 

Here, we replace the traditional autoregressive models (Eq. (2) and (3)) in the Granger-

causality framework with non-linear machine learning models, i.e., the random forest. The Scikit-

learn library is used to implement the random forest regression, with the number of trees equal to 

100 and the maximum number of predictor variables per node equal to the square root of the total 

number of predictor variables. In addition, a regularization parameter is included in the fitting 

process to avoid overfitting in the Granger causality analysis context when the number of 

considered time series increases. More details can be found in Papagiannopoulou et al., (2017). The 

authors proposed a performance measure based on the coefficient of determination (R2) to evaluate 

the forecast. It is defined as: 
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𝑅2(𝑦, �̂�) = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

∑ (𝑦𝑖−�̂�𝑖)
2𝑁

𝑖=𝑝+1

∑ (𝑦𝑖−�̅�)
2𝑁

𝑖=𝑝+1

,                                                    (3-4) 

where �̅� is the mean of y, and �̂� is the predicted time series of y obtained from a given forecasting 

model. p =12 months is adopted in this study as time windows longer than 12 months do not 

improve the predictions (Papagiannopoulou et al., 2017). The quantification of the Granger causality 

is represented by R2, which increases as the performance of the model improves. Positive R2 means 

x Granger causes y and negative R2 means predictions are less representative of the observations 

than the mean of the observations.  

In addition, due to the existence of trends and seasonality in NDVI, precipitation and TWS 

time series, parts of them might be non-stationary and unsuitable for direct application of the 

Granger causality test (Kong et al., 2018). After the trends and seasonality are removed, all the time 

series are tested for stationarity by the augmented Dickey-Fuller (ADF) unit root test. After the 

processing, the non-linear Granger causality test is applied.  

3.3 Results and Discussion 

3.3.1 Linear correlation between NDVI versus precipitation and TWS 

Pearson correlations between the concurrent monthly anomalies of NDVI versus 

precipitation and TWS are shown in Figure 3.2 (a) and Figure 3.2 (b), respectively (‘anomaly’ means 

that the seasonality in the time series of a variable has been removed). Significant TWS-NDVI 

correlation is observed for 86.5% of the grid cells, and most of the correlation coefficients (r) are 

larger than 0.3 (Figure 3.2 (b)). Areas with significant precipitation-NDVI correlation only account 

for 25.6%, and most of the correlation coefficients are smaller than 0.3 (Figure 3. 2 (a)). NDVI in the 

current month is expected to be more likely affected by precipitation in previous months because 

the vegetation in response to water input often occurs with a lag. In addition, individual monthly 

precipitation only represents water conditions in the current month, while TWS can reflect previous 

conditions. Therefore, the cumulated precipitation anomaly is applied to compare with the TWS 

anomaly in the lag correlation analysis on vegetation response to land water conditions (TWS or 

cumulated precipitation precedes NDVI).  
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Figure 4.2 Pearson correlations between the concurrent monthly NDVI and precipitation (a) and 

TWS anomalies (b); lag correlation coefficient map (maximum r) between monthly NDVI and (c) 

cumulated precipitation and (d) TWS anomalies (histograms show the corresponding time lags); lag 

correlation coefficient map (maximum r) with NDVI preceding individual monthly precipitation (e) 

and TWS anomalies (f). Black dots denote significant levels. The white area indicates barren land. 

Grey area in the maps means r < 0. 

The spatial distribution of the maximum positive correlations between NDVI anomaly versus 

cumulated precipitation anomaly and TWS anomaly and their corresponding time lags (1–6 months) 

are demonstrated in Figure 3.2 (c) and (d), respectively. Here time lags of 1–6 months are adopted 

based on previous studies investigating lag correlations between NDVI and precipitation/TWS at 

continental (Yang et al., 2014) and global scales (Xie et al., 2019). As expected, Figure 3.2 (c) 

demonstrates that cumulated precipitation shows stronger effects on surface vegetation conditions 
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than individual monthly precipitation. 51.2% of the grid cells have a significant positive correlation 

between cumulated precipitation and NDVI. Results of lag correlation analysis on TWS and NDVI 

(Figure 3.2 (d)) indicate that the percentage of grid cells with significant positive TWS-NDVI 

correlation (83.5%) is even larger than that of the cumulated precipitation-NDVI relationship. TWS 

also has a relatively higher correlation (r>0.3) with NDVI over a larger area than that for cumulated 

precipitation. The optimal time lag of maximum positive TWS-NDVI and cumulated precipitation-

NDVI correlations are both dominated by 1 month, and the former has a larger percentage of grid 

cells with an optimal time lag of 1 month than that of the latter one. However, cumulated 

precipitation-NDVI correlation accounts for a larger percentage of grid cells with optimal time lags 

of 2–6 months than for TWS-NDVI correlation. Results in Figures 3.2. (a–d) indicate that TWS 

performs better than precipitation in examining the effects of terrestrial water conditions on surface 

vegetation conditions.  

The fact that surface vegetation condition depends on water availability, especially in water-

limited regions, is well-known (Nemani et al., 2003). How land-greenness affects the global water 

cycle and regional terrestrial water balance has also been investigated in recent years (e.g., Feng et 

al., 2016; Koirala et al., 2017; Zeng et al., 2018). For Australia, Chen et al., (2021) revealed a seesaw 

wetting/drying pattern between the eastern and western parts of the continent, which has been 

attributed to bidirectional vegetation and root zone moisture interactions. While it is intuitive that 

soil moisture condition influences surface vegetation condition, it is not as clear how vegetation 

cover may impact the temporal variability of soil moisture. Hence, Figures 3.2 (e) and (f) compare 

the spatial distribution of maximum positive NDVI-precipitation and NDVI-TWS relationships and 

their corresponding time lags (NDVI precedes precipitation/TWS). Only 11.3% of the grid cells show 

significant positive NDVI-precipitation correlation (Figure 3.2 (e)), while the percentage of grid cells 

with significant positive NDVI-TWS correlation is much larger, 88.3% (Figure 3.2 (f)). The optimal 

time lag of maximum positive NDVI-TWS correlation is dominated by 1 month, while NDVI-

precipitation correlation shows different time lags.  

Results of Figure 3.2 indicate that both unidirectional and bidirectional effects occur between 

surface vegetation and land water conditions in Australia. Based on linear correlation analysis, TWS 

performs better than precipitation in representing terrestrial water conditions in interaction with 

surface vegetation conditions. In a global-scale study on the hotspots of interactions between NDVI 

and TWS (Xie et al., 2019), land water condition was identified as the unidirectional cause of NDVI 

for most areas of Australia, but this result was based on a linear relationship. Since the vegetation-
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water relationships are most likely non-linear (Foley et al., 1998; Zeng, 2002), we apply in the next 

section a non-linear Granger causality framework to investigate the unidirectional and bidirectional 

causality relationships between surface vegetation and water conditions in Australia. 

3.3.2 Unidirectional and bidirectional causality relationships between surface vegetation and 
land water conditions with respect to different vegetation types 

Figures 3.3 (a) and (c) respectively show the maps of non-linear Granger cause from 

precipitation and TWS to NDVI anomalies in Australia. Precipitation and TWS Granger cause the 

variability in NDVI of respectively 59.0% and 91.9% of the total number of grid cells. It indicates that 

TWS can better represent the forcing of water conditions on vegetation than precipitation. It may 

be because only part of the total precipitation is consumed by vegetation, and thus precipitation 

only provides indirect information on the plant water conditions (Chen et al., 2013; Yang et al., 2014), 

while the TWS water storage is a more direct indicator of soil moisture available for plant growth 

and thus associated with vegetation variations to a larger degree.  

  

Figure 3.3 Non-linear Granger causality of (a) precipitation on NDVI; (b) NDVI on precipitation; (c) 

TWS on NDVI; (d) NDVI on TWS for 1985–2015.  
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In contrast, Figures 3.3 (b) and (d) respectively demonstrate the maps of non-linear Granger 

cause from NDVI to precipitation and TWS anomalies. Vegetation barely Granger causes 

precipitation (Figure 3.3 (b)), which is not surprising as it is generally understood that  precipitation 

in Australia is driven by large-scale ocean-atmosphere drivers, such as El Niño Southern Oscillation 

(ENSO) (Cai et al., 2011). NDVI Granger causes TWS in 60.8% of the grid cells in Australia (Figure 3.3 

(d)). Vegetation plays an important role in influencing the permeability and water retention capacity 

of the soil, e.g., poor vegetation cover tends to favour runoff generation and soil erosion 

(Mohammad and Adam, 2010). In addition, the Granger cause from TWS to NDVI is mainly observed 

in eastern Australia; it may be partially explained by the relatively larger plant available water 

capacity (Figure 3.4). 

 

 

Figure 5.4 0–1m plant water available capacity (mm) in Australia. Data are provided by Australian 

Soil Resource Information System (ASRIS). 

Results of Figure 3.3 indicate that compared to precipitation, TWS is a better indicator of 

land water condition in examining its non-linear relationship with surface vegetation condition. 

Therefore, further investigation on the interactions between surface vegetation and land water 

conditions with respect to different vegetation types is based on TWS rather than precipitation. 

Besides, as Figures 3.3 (c) and (d) are based on the reconstructed TWS dataset (1985–2015), we also 

repeated for comparison the non-linear Granger causality analysis for the original GRACE TWS data 

from 2003 to 2016. The results are shown in Figure 3.5. Based on the 14-year data, TWS Granger 

causes NDVI in 85.5% of the grid cells, and NDVI Granger causes TWS in 66.0% of the grid cells. The 
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apparent blocky pattern observed in part of Figures 3.3 (c–d) and Figure 3.5 is very likely an imprint 

of the original 3°×3° resolution of the GRACE TWS (Watkins et al., 2015). Thus, the TWS signal of the 

downscaled 0.5°×0.5° grid is dependent on the surrounding grids. The applicability and reliability of 

the original GRACE TWS data will increase with the accumulation of data and improved GRACE 

resolution in the future. 

 

Figure 3.5 Non-linear Granger causality of (a) TWS on NDVI; (b) NDVI on TWS during 2003–2016 

based on JPL GRACE TWS data.  

The unidirectional effect from TWS on NDVI is observed in 33.5% of the grid cells (Figure 3.6 

(a)). The effect of the opposite direction is only observed in 2.5% of the grid cells (Figure 3.6 (b)). 

This is explained by the fact that in most cases where NDVI Granger causes TWS, TWS Granger 

causes NDVI too. Bidirectional causality relationships between TWS and NDVI is therefore observed 

over half (58.4%) of the study area (Figure 3.6 (c)). The proportion of bidirectional causal 

relationships shown here is larger than that detected by linear Granger causality analysis at a global 

scale (Xie et al., 2019).  
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Figure 3.6 Unidirectional and bidirectional causality relationships between TWS and NDVI revealed 

by the Non-linear Granger causality test: (a) TWS unidirectional effects NDVI; (b) NDVI unidirectional 

effects TWS; (c) TWS-NDVI interactions, (d) the corresponding grid proportions for different 

vegetation types. 

Figure 3.6 (d) shows the proportions of the unidirectional and bidirectional relationships 

between TWS and NDVI for different vegetation types. The highest proportion of TWS-NDVI 

interactions is observed in grasslands, followed by shrublands, agricultural lands and savannas, and 

lowest in forests. It seems that the interaction is more likely to be detected in regions covered by 

vegetation with relatively shallower roots. The largest proportion of grid cells without detected 

TWS-NDVI interaction is observed in the forest class. This apparent result may be because Australia 

is prone to bushfires, which could disturb the detection of the causal effect from NDVI to TWS.  

3.3.3 Comparison of the influence of water, temperature, and radiation on surface vegetation 
condition in Australia 

In addition to water availability, temperature and radiation are also important drivers for 

surface vegetation conditions, and those factors are commonly used to investigate the effect of 

climate change on global ecosystems and the corresponding feedbacks. Therefore, we also quantify 

the impacts of temperature and radiation on vegetation by following the non-linear Granger 
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causality framework. Figures 3.7 (a–b) show that air temperature and net radiation respectively 

Granger causes NDVI in 82.8% and 62.4% of the grid cells. By comparing the non-linear Granger 

causality (R2) with TWS, air temperature, and net radiation versus NDVI, 61.6% of the grid cells in 

Australia are dominantly driven by water availability (Figure 3.7 (c)). This confirms that Australia is 

primarily water limited. However, the water-dominant regions are smaller than that reported by 

Nemani et al. (2003), who investigated the dominant climate driver for terrestrial net primary 

production from 1982 to 1999 at the global scale.  
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Figure 3.7 Non-linear Granger causality of (a) temperature on NDVI; and (b) net radiation on NDVI. 

(c) Spatial pattern of the largest non-linear Granger causality among three important climate drivers 

(water, temperature, radiation) for surface vegetation conditions.   

Temperature is identified to be the dominant driver for 19.1% of the grid cells in this study 

(Figure 3.7 (c)). When temperature is a constraint for plant growth, like at high northern latitudes, 

the temperature is too low to sustain a normal level of plant physiological activities. In our study, 

those temperature-dominant regions show extremely high negative temperature-NDVI correlation 

(Figure 3.8 (a)), which more likely means that vegetation greenness is impeded by high temperature 

(Qiu et al., 2019; Yang et al., 2019). High temperature can directly limit plant growth by leading to 
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changes in physiology (Prasad et al., 2017) and metabolic response (Haldimann and Feller, 2004; 

Bheemanahalli et al., 2019). At the same time, high temperature may, in some situations, increase 

evapotranspiration, leading to declining soil moisture. Consequently, this will indirectly limit 

vegetation's photosynthesis and growth rate (Yang et al., 2019). The adverse effects of high 

temperature on surface vegetation conditions in Australia should be taken seriously as the 

occurrence of simultaneous drought and heatwaves are more likely to cause serious damages 

(Mazdiyasni and AghaKouchak 2015).   

 

Figure 3.8 Pearson correlation coefficient (r) between NDVI and (a) 2 m air temperature and (b) net 

radiation in Australia during 1985–2015. 

Radiation dominates NDVI changes in 14.9% of the grid cells, which are mostly located in the 

northwestern part of Australia. Here significant positive correlation between net radiation and NDVI 

are observed (Figure 3.8 (b)). We calculated annual average precipitation/annual average 

evapotranspiration during 1985-2015 for each grid cell to identify energy-limited and water-limited 

regions (Figure 3.9) by following McVicar et al., (2012). Radiation-dominant regions shown in Figure 

3.7 (c) are included in the energy-limited regions shown in Figure 3.9, the spatial distribution of 

those radiation-dominant regions is also generally consistent with a more recent study (Seddon et 

al., 2016) on identifying dominant drivers for vegetation productivity among three climate variables: 

water, temperature, and cloud cover at the global scale. Although water-dominant regions account 

for a larger proportion than temperature-dominant and radiation-dominant regions in Australia 

(Figure 3.7 (c)), water-dominant regions seem to have become smaller in recent years compared to 

that of last century (see Nemani et al., 2003; McVicar et al., 2012). This change may be related to 

the warmer climate in recent years. Possible causes are worthy of further exploration in the future.  
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Figure 3.9 Distribution of energy-limited and water-limited areas identified by annual average 

precipitation (P)/annual average evapotranspiration (ET) during 1985–2015.  

3.4 Conclusions 

In this study, we aimed to investigate the non-linear relationship between surface vegetation 

and land water conditions in Australia and to revisit the spatial patterns of water limitation on 

vegetation in comparison to temperature and radiation. NDVI characterizes surface vegetation 

conditions, and terrestrial water conditions are reflected by precipitation and TWS. The non-linear 

Granger causality analysis is applied to identify the unidirectional and bidirectional causality 

relationships between NDVI versus precipitation and TWS. TWS appears to be a better indicator of 

terrestrial water condition than precipitation in examining its interactions with NDVI. TWS is found 

to be a Granger cause of changes in vegetation for 91.9% of the grid cells, while NDVI Granger causes 

TWS in 60.8% of the grid cells. TWS-NDVI interactions are detected in over half (58.4%) of the 

continent, which tend to occur more in areas with short-rooted plants. Furthermore, by comparing 

the Granger causality of three dominant drivers (i.e., TWS, air temperature, and net radiation) for 

surface vegetation condition, it is confirmed that Australia is mostly water-limited as TWS 

dominantly drives NDVI changes for 61.6% of the grid cells. Temperature- and radiation- dominant 

regions, respectively, accounting for 19.1% and 14.9% of the grid cells, which is larger than reported 

in the past. This possible trend is worthy of further investigation in the future. The interaction 

established herein between TWS and NDVI help to improve our understanding of the continental 

terrestrial water and carbon cycles. 
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4 GLOBAL SOIL MOISTURE-AIR TEMPERATURE COUPLING BASED ON 
GRACE-DERIVED TERRESTRIAL WATER STORAGE  

4.1 Introduction 

Soil moisture impacts the partitioning of available energy between sensible and latent heat 

fluxes and consequently influences temperature of land surface and the lower atmosphere. The 

effect of soil moisture on air temperature is commonly referred to as soil moisture-air temperature 

(θ-Ta) coupling (Seneviratne et al., 2010). Understanding and quantifying the θ-Ta coupling 

contributes to climate research and reduces uncertainties in projections of future climate (Cubasch 

et al., 2001). 

The unprecedented 2003 heat wave event in Europe has drawn extensive attention from 

researchers (e.g., Black and Sutton, 2006; Fischer et al., 2007; Alexander, 2011), and the 

consequently improved understanding of physical processes behind heatwaves further highlights 

the important role of θ-Ta coupling in climate systems. Most previous studies on the θ-Ta coupling 

at both global (see Table 4.1) and regional scales (e.g., Seneviratne et al., 2006; Lorenz et al., 2010; 

Vogel et al., 2016) focused on hot seasons' air temperature or heat wave events. From them, global 

sensitive regions of θ-Ta coupling have been identified, such as the North American Great Plains, 

Australia, and the southern tip of Africa. In addition to those sensitive regions, India shows 

significant correlation between terrestrial water storage and temperature anomaly (Humphrey et 

al., 2016). 

Study  Aim of study Estimation of θ Estimation of Ta Method  

Koster et al., 2006 Thoroughly describe and 
contrast the inherent coupling 
strengths of 12 participating 
models; Provides a full set of 
instructions for performing the 
experiments. 

Model-derived θ 
(GLACE) 

Summer 
temperature 

Multimodel  

Miralles et al., 
2012 

Fill the gap between 
climatological and event 
studies of soil moisture-
temperature coupling. 

Model-derived θ 
(GLEAM) 

Summer 
temperature  

Coupling 
metrics 

Mueller and 
Seneviratne, 2012 

Assess whether the 
relationship between hot days 
and precipitation deficits holds 
at the global scale. 

SPI 

 

Number of hot 
days  

Correlation 
analysis, 
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quantile 
regression 
analysis 

Seneviratne et al., 
2013. 

Firstly present the results of a 
new multimodel experiment 
quantifying the impact of soil 
moisture‐climate coupling in 
CMIP5 simulations. 

Model-derived θ 
(GLACE CMIP5) 

Extreme 
temperature; 
mean 
temperature 

Simulations, 

Linear 
regression 

Hirschi et al., 
2014 

Investigate the relation 
between the number of hot 
days and preceding soil 
moisture deficits. 

RS-based θ 

(ESA CCI), 

Model-derived θ 
(GLDAS), 

In-situ θ;  

Number of hot 
days 

Correlation 
analysis, 

Linear 
regression 

Berg et al., 2014 Perform a complete 
assessment of the impact of 
soil moisture dynamics on the 
distribution of daily surface 
temperature. 

Model-derived θ 
(GLACE CMIP5) 

Summer 
temperature 

Probability 
distribution 
function 

Lorenz et al., 
2015 

Investigate the coupling 
strength of ACCESS1.3b by 
examining different land–
atmosphere coupling 
measures obtained from 
GLACE-1 and GLACE-CMIP5 
experiments. 

Model-derived θ 
(GLACE 1 & 
GLACE CMIP5) 

Mean 
temperature, 
maximum 
temperature, 
minimum 
temperature 

Model 
experiment, 

Correlation 
analysis, 

Quantile 
regression 
analysis 

Schwingshackl et 
al., 2017 

Analyse spatial and temporal 
variations of land-atmosphere 
coupling and its effect on near-
surface air temperature by a 
simple framework for the 
dependence of evaporative 
fraction on soil moisture 

Model-derived 
θ, 

(ERA-
Interim/Land (0-
100 cm)) 

Maximum 
temperature 

Coupling 
analysis 

Gevaert et al., 
2017 

Apply two different metrics of 
soil moisture‐temperature 
coupling to a set of five land 
surface models and compare 
the results to observational 
data. 

Model-derived 
θ, 
(EartH2Observe 
Project) 

Temperature in 
warm season 

Metrics  

This study Assess the skill of GRACE TWS 
in examining global θ-Ta 
coupling 

Decomposed 
GRACE TWS, 

Model-derived θ 
(GLDAS) 

Temperature 
anomaly 

Stepwise 
regression 
analysis, 

Wavelet 
method 
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Table 4.1 A Summary of Studies on Examining θ-Ta Coupling at Global Scale. (GLACE = Global Land-

Atmosphere Coupling Experiment; GRACE = Gravity Recovery and Climate Experiment; TWS = 

terrestrial water storage; GLEAM = Global Land Evaporation Amsterdam Model; CMIP5 = Coupled 

Model Intercomparison Project Phase 5; ESA CCI = European Space Agency Climate Change Initiative; 

GLDAS = Global Land Data Assimilation System.) 

Most previous studies used soil moisture products including observed θ (Durre et al., 2000), 

model-derived θ (e.g., Jaeger and Seneviratne, 2011; Whan et al., 2015), and microwave remote 

sensing surface soil moisture (Hirschi et al., 2014). These soil moisture data sets have drawbacks in 

examining global θ-Ta coupling. The observed θ data sets lack large spatial coverage. In the case of 

modelled soil moisture, temperature is often an input variable in the land surface model that 

produces soil moisture estimation (Rodell et al., 2004). Correlation between this modelled soil 

moisture and air temperature for reflecting θ-Ta coupling is hence not very convincing. Given these 

limitations, precipitation derived indices have been commonly used as a proxy for soil moisture 

deficit (e.g., Hirschi et al., 2011; Mueller and Seneviratne, 2012; Perkins et al., 2015). 

The Gravity Recovery and Climate Experiment-derived terrestrial water storage (GRACE TWS) 

has shown great success in quantifying water/moisture deficit (e.g., Thomas et al., 2014; Getirana, 

2016; Sinha et al., 2017). Yang et al. (2014) suggested that GRACE TWS poses a more direct influence 

on surface greenness and ecosystem performance than precipitation. Andersen et al. (2005) 

reported that the 2003 excess GRACE TWS depletion could be related to the record-breaking heat 

wave that occurred in central Europe. As TWS directly reflects water storage, it seems to hold higher 

skill than precipitation-based indices in examining θ-Ta coupling. However, the potential of GRACE 

TWS for investigating this coupling has not been well explored. This is probably due to the fact that 

GRACE TWS reflects total water storage including ice, snow, surface water, soil moisture, and ground 

water (Ramillien et al., 2008). Hence, a large part of the GRACE TWS is not directly accessible for 

latent heat processes (evaporation and transpiration), which influence land surface energy balance. 

Recently, Andrew et al. (2017a) proposed to partition GRACE TWS into shallow and deep 

components by using a discrete wavelet decomposition. 

Physically, the θ-Ta coupling reflects the effect of soil moisture on land surface energy 

partitioning. As shown in Figure 4.1, significant θ-Ta coupling is hypothesized to be attributed to 

both strong θ-Ts (land surface temperature) coupling and Ts-Ta correlation. In addition to the 

primary control from net radiation, Ts represents a lumped average of soil surface temperature and 

vegetation canopy temperature, which are driven by soil evaporation and plant transpiration, 
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respectively. It has been reported that low soil moisture availability reduces evaporative cooling and 

increases atmospheric heating from sensible heat flux (Seneviratne et al., 2010; Alexander, 2011). 

Besides, in regions with a moisture-limited regime, precipitation influences the θ-Ta coupling 

through replenishing root-zone soil moisture, which impacts land surface temperature and 

consequently air temperature. Meanwhile, precipitation and air temperature can be associated with 

each other via weather systems. Here, we propose the first use of wavelet decomposed GRACE TWS 

to study θ-Ta coupling at global scale. The three main objectives of this study are (1) to identify 

sensitive regions of θ-Ta coupling based on monthly air temperature anomalies at global scale; (2) 

to assess the skill of GRACE TWS data in examining θ-Ta coupling; and (3) to explore favourable 

factors for developing significant θ-Ta coupling. 

 

Figure 4.1 Schematic of soil moisture‐air temperature (θ‐Ta) coupling. Ts is land surface 

temperature, Es is soil evaporation, and Ec is plant transpiration. 

4.2 Methodology 

4.2.1 Data selection and calculation of anomalies  

In this study, the global θ‐Ta coupling is investigated using ERA-Interim 2-mair temperature 

(Ta, Dee et al., 2011) available from http://apps.ecmwf.int/datasets/data/interim-full-

moda/levtype=sfc/, MOD11C3 Version 6 land surface temperature (Ts, Wan et al., 2015) available 

from https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTAD_M, GPCC precipitation (P, 
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Schneider et al., 2015) available from 

https://www.esrl.noaa.gov/psd/thredds/catalog/Datasets/gpcc/full_v7/catalog.html, JPL GRACE 

TWS (Swenson et al., 2006; Swenson. 2012; Landerer and Swenson., 2012) available from 

ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/, ESA CCI remote sensing 

surface soil moisture of top–2 cm (θs, Dorigo et al., 2017; Liu et al., 2012; Gruber et al., 2017) 

available from http://www.esa-soilmoisture-cci.org/node/145, and GLDAS_NOAH model derived 

root-zone soil moisture of 0–100cm (θm, Rodell et al., 2004; Beaudoing and Rodell. 2016) available 

from https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_M_V2.1/summary?keywords=GLDAS. In 

addition, maximum rooting depth data (Fan et al., 2017) are also used in this study for investigating 

favourable factors for developing significant θ-Ta coupling, which were downloaded from 

https://wci.earth2observe.eu/thredds/catalog/usc/root-depth/catalog.html. All data are used at a 

1° × 1° spatial resolution (original spatial resolution of the downloaded maximum rooting depth data 

is 1/120° × 1/120°, which has been averaged over each 1° × 1° grid cell). As the available GRACE TWS 

data are from April 2002 to January 2017, we set the study period as 2003–2016. Seventeen months 

of missing TWS data (June 2003, January 2011, June 2011, May 2012, October 2012, March 2013, 

August 2013, September 2013, February 2014, July 2014, December 2014, June 2015, October 2015, 

November 2015, April 2016, September 2016, and October 2016) are filled with linear interpolation 

using the months either side (Long et al., 2015; Andrew et al., 2017a; Andrew et al., 2017b). The 

temporal anomalies of all monthly variables are calculated and used in the analyses in this study, 

and the seasonal cycle has been removed from all these time series. 

4.2.2 Wavelet decomposition 

GRACE TWS reflects the monthly changes of total water storage, including surface water, soil 

moisture, groundwater, and snow and ice. Andrew et al. (2017a) developed an approach to “split” 

GRACE TWS into shallow and deep subsurface storage components by using a discrete wavelet 

decomposition. Following this approach, GRACE TWS data in this study are decomposed into 

“approximation” and “detail” components by using the “wavdec” function in MATLAB. The Meyer 

wavelet is applied here, because it has a scaling function for the numerical implementation of the 

multi-resolution analysis and can assure the smoothness of the reconstructed signal (Martínez and 

Gilabert, 2009; He and Guan, 2013). The resulting time series are labelled as A1, A2, A3, A4, and D1, 

D2, D3, D4 for approximation and detail components, respectively. The sum of an approximate 

series and corresponding detail components recovers the raw signal (e.g., D1 + D2 + D3 + D4 + A4 = 

raw signal; D1 + D2 + A2 = raw signal). Each decomposed component represents a certain time scale: 
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D1 (2-month scale), D2 (4-month scale), D3 (8-month scale), and A4 and D4 (≥ 16-month scale) (see 

Figure 4.2). The decomposed TWS components reflect dynamics of terrestrial water storage 

components. Deep soil moisture and groundwater, as well as groundwater-connected large lakes 

and snowpack in cold climates, respond more slowly to the climate system and have much longer 

residence time than shallow soil moisture.   

 

Figure 4.2 The structure of a discrete wavelet decomposition (an example from a grid cell in 

Australia (30.5 S, 130.5 E)). 

4.2.3 Statistical analysis and significance test 

Linear correlation is applied to examine relationships between air temperature and any a 

potential influencing (predictor) variable. Stepwise multiple linear regression is applied to 

determine the relative importance of different predictor variables in explaining the dependent 

variable (Draper and Smith, 1998; Clow, 2010), where the bidirectional elimination combining 

forward selection and backward elimination is adopted to determine the final regression model 

(Wang et al., 2016). The statistical significance of the regression model is assessed by an F test. The 

percentage of contribution of the final chosen variables to the change of air temperature can be 

revealed through the coefficient of determination (R2). In addition, the adjusted R2is also applied in 

this study to test whether the correlation between air temperature and terrestrial water storage 

improves by using decomposed TWS signals. The adjusted R2considers and corrects for additional 

degrees of freedom, which are introduced by adding extra variables to a statistical model. 
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The t test statistic is applied in this study to judge the statistical significance of the correlation 

coefficient r between different time series, which is determined by: 

𝑡 =
𝑟

√(1−𝑟2)/(𝑁𝑒𝑓𝑓−2)
,                                                           (4-1) 

where Neff is the effective sample size considering the autocorrelation of the time series. The 

effective sample size Neff is estimated by Bretherton et al., (1999): 

   𝑁𝑒𝑓𝑓 = 𝑁
1−𝑟1𝑟2

1+𝑟1𝑟2
,                                                      (4-2) 

where N is the sample size and r1 and r2 are the 1-month lag autocorrelations of the two involved 

time series. The thresholds for significant p values are adjusted to control the False Discovery Rate, 

which is applied to correct the effects of simultaneous multiple test results. αFDR is the chosen 

control level for the False Discovery Rate. Wilks (2016) suggested that the usual strong spatial 

correlation encountered in gridded atmospheric data could choose αFDR = 2αglobal (αglobal = 0.05, the 

global test level). αFDR = 2αglobal=0.1 is applied in this study. 

4.3 Results and Discussion 

4.3.1 Sensitive regions of θ-Ta coupling based on monthly temperature anomaly 

The correlation coefficients between monthly Ta and P, θs, θm, TWS anomalies are 

compared in Figures 4.3 (a–d). Among all soil moisture proxies, P shows significant negative 

correlation with Ta over the largest land area (37.8% of the grid cells). It is superior to other variables 

in North America and Eurasia (Figure 4.3 (a)). θs exhibits very weak correlation with Ta (Figure 4.3 

(b)) at monthly scale, because the effect of a wetting event on surface 2-cm soil does not last beyond 

a few days, leaving little trace in monthly temperature. θm (Figure 4.3 (c)) and GRACE TWS (Figure 

4.3 (d)) show significant negative correlation with Ta for 28.8% and 20.5% grid cells, respectively. 

The spatial distributions of θ-Ta coupling revealed by θm and TWS roughly match each other. These 

two soil moisture proxies show more significant negative correlation with Ta than P in the southern 

tip of Africa, and the northern area of Australia. In these regions, root-zone soil moisture is likely 

the dominant contributing factor for the θ-Ta coupling rather than precipitation or moisture in the 

surface soil layer.  
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Figure 4.3 Correlation coefficients (r) between Ta and (a) P; (b) θs; (c) θm; and (d) TWS anomalies. 

Dots indicate that the corresponding r has passed the significance test (the threshold for significant 

p values has been adjusted to control the False Discovery Rate following Wilks, 2016). White land 

masses indicate areas where data are not available. 
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Sensitive regions of θ-Ta coupling based on monthly temperature anomaly and GRACE TWS 

identified in this study include the western region of North America, the northern and eastern 

regions of South America, the southern area of Europe, the southern tip of Africa, South Asia, the 

northwestern and central areas of Southeast Asia and north of the Tropic of Capricorn in Australia 

(Figure 4.3 (d)). Although these sensitive regions broadly match with what has been previously 

reported, differences exist among sensitive regions of θ-Ta coupling under average versus extreme 

hot conditions. For example, in the southern area of South America soil moisture interacts more 

intensely with hot extremes (Mueller and Seneviratne, 2012; Hirschi et al., 2014), but in South Asia 

it shows a stronger impact on monthly temperature anomaly (Figure 4.3 (d)). 

Why does significant θ-Ta coupling occur in those sensitive regions shown in Figure 4.3, but 

not elsewhere? Conceptually, land surface temperature bridges the coupling between soil moisture 

and air temperature (Figure 4.1). Examination of θ-Ts and Ts-Ta relationships may tell the story. 

Figure 4.4 shows the correlation between Ts and Ta, θs, θm, and TWS anomalies. Globally, Ts and 

Ta are well correlated, except for some tropical areas (Figure 4.4 (a)). The weak correlation between 

Ts and θs explains the low coupling of surface soil moisture and monthly air temperature (Figure 4.3 

(b)). Ts and TWS correlation spatially matches that of Ts and θm (Figure 4.4 (d) vs. Figure 4.4 (c)). 

Comparing Figures 4.3 and 4.4 we see that the significant θ-Ta coupling only occurs when both θ-Ts 

and Ts-Ta relationships are strong. Given the general strong Ts-Ta correlation globally (Figure 4.4 

(a)), it is clear that the sensitive θ-Ta coupling at the monthly scale is primarily constrained by the 

connection between root zone moisture and land surface temperature. 
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Figure 4.4 As in Figure 4.3 but for correlation coefficients (r) between Ts and (a) Ta; (b) θs; (c) θm; 

and (d) TWS anomalies. 
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4.3.2 Skill of GRACE TWS data in examining θ-Ta coupling 

After being decomposed by wavelet method, the skill of GRACE TWS in examining the 

variability of monthly Ta increased for 89.5% of the grid cells showing significant TWS-Ta correlation 

(Figure 4.3 (d)), which is tested by the adjusted R2. Areas with significant negative r between Ta and 

decomposed TWS components are shown in Figure 4.5. Among all time scales, the identified 

sensitive regions of θ-Ta coupling are mostly consistent with spatial patterns of D4 and A4, which 

implies that the moisture content at deeper soil depths plays an important role in θ-Ta coupling 

through plant transpiration, such as in the tropics where soil moisture contributes more than 

surface water to monthly and seasonal variations of total water storage (Güntner et al., 2007). In 

the central region of Africa and some regions located around China, seasonal variability (D1–D3) 

seems to be more important than interannual variability (D4 and A4). Strong correlation between 

air temperature and lowest frequency of TWS variability also implies the need of future investigation 

on the relationship between groundwater dependent ecosystems and air temperature for further 

information of land surface atmosphere coupling. 
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Figure 4.5 Areas where significant negative r exists between Ta and wavelet decomposition level D1, 

D2, D3, D4, and A4 of TWS. 
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From Figures 4.3 (a) and (d) we can see that P performs better in North America, while TWS 

performs better in Australia and the southern tip of Africa. As these two variables may complement 

each other in explaining the temporal variability of Ta, the total explanatory power of P and TWS is 

worth being investigated. As the explanatory power of raw TWS is underestimated, decomposed 

TWS components are used here to be considered together with P as candidate predictor variables 

in the stepwise regression analysis to identify the dominant explanatory factors for Ta in each grid 

cell. 

Figure 4.6 (a) shows how much variability of Ta can be explained by P, and Figure 4.6 (b) 

exhibits the total contribution of the dominant influencing factors selected among P and 

decomposed TWS, expressed by the R2. The global average R2 of combined P and TWS is more than 

twice that of the individual P, indicating the remarkably improved explanatory power, especially in 

some sensitive regions including the northern and eastern regions of South America, southern tip 

of Africa, South Asia, Southeast Asia, and north of the Tropic of Capricorn in Australia. The 

decomposed TWS variables kept in the final regression model are shown in Figure 4.7 where the 

spatial patterns generally match with that of significant negative correlations between Ta and 

decomposed TWS components shown in Figure 4.5. The explanatory power of selected variables (P, 

raw TWS, decomposed TWS, and the combination of them) over the globe is assessed in Figure 4.8. 

Where the coupling is stronger (as indicated by the increased R2), the role of GRACE TWS and its 

decompositions become more important. For areas with a regression R2larger than 25%, the 

explanatory power follows an order as P < TWS < Decomposed TWS < Combination of P and 

decomposed TWS. The combination of P and decomposed TWS performs better than any separate 

one of them in examining the θ-Ta coupling. 
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Figure 4.6 Percentage of Ta variability (inferred from regression R2) explained (a) by P; and (b) by a 

combination of P and decomposed TWS. 
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Figure 4.7 Areas where decomposed TWS components (D1–A4) are kept in the final regression 

model for explaining Ta variability by combined precipitation and decomposed TWS. 
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Figure 4.8 Explanatory power (represented by regression R2) for Ta variability by using precipitation 

(P), terrestrial water storage (TWS), TWS decomposed signals (Decomposed TWS), and the 

combination of precipitation and decomposed TWS. 

4.3.3 Favourable factors for developing significant monthly θ-Ta coupling 

From the global spatial distribution of maximum rooting depth (Figure 4.9 (a)) we can see 

that almost all identified sensitive regions have a deep‐rooting system. In addition, significant 

areas of D3, D4, and A4 (Figure 4.5), representing larger time scales, generally have deeper rooting 

systems. This is consistent with the notion in Andrew et al. (2017a) that deep soil moisture tends to 

have more contribution from low-frequency components of TWS wavelet decompositions. In 

addition to root-zone soil moisture, a climate with clear dry and wet season alternation may be 

another determining factor for θ-Ta coupling. For example, precipitation in the Indian subcontinent 

(Rana et al., 2015) and water storage in Amazon floodplain (Alsdorf et al., 2000) are revealed to have 

obvious seasonality, where significant θ-Ta coupling occurs (Figure 4.6 (b)). 

The spatial patterns of Figures 4.6 (b) and Figure 4.9 exhibit that most identified sensitive 

regions show relatively deeper rooting system and larger precipitation seasonality index. Such 

relationship is examined again in Figure 4.10, where maximum rooting depth and precipitation 
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seasonality index are categorized by the total explanatory power of P combined with decomposed 

TWS. Both maximum rooting depth and precipitation seasonality index show positive correlation 

with the regression R2. But this relationship does not hold when precipitation seasonality index is 

smaller than 0.2 (likely too wet), or larger than 0.8 (too dry). In these cases, the regression R2 is very 

low. For example, the grid cells with precipitation seasonality index larger than 0.8 mostly 

distributed in the Sahara Desert, where little vegetation occurs (Figure 4.9). Deep-rooting systems 

together with strong precipitation seasonality usually lead to high-regression R2 indicating that both 

of them are favourable for developing significant monthly θ-Ta coupling. 

 

Figure 4.9 Global distributions of (a) maximum rooting depth (Fan et al. 2017); (b) precipitation 

seasonality (calculated based on the equation provided in Dingman, S. L. Physical hydrology-2nd ed, 

2002, 143-145). 
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Figure 4.10 Scatter of maximum rooting depth and precipitation seasonality index categorized by 

regression R2 (shown in Figure 4.6 (b)). The corresponding interval average distribution is shown in 

the upper left. The x axis is the interval average precipitation seasonality index, the y axis and 

colorbar indicate the average maximum rooting depth and average R2 of those grid cells within each 

interval of precipitation seasonality index. 

4.4 Conclusions 

Understanding global θ-Ta coupling is needed to improve the representation of land-

atmosphere interactions in Earth system models. In this study, global θ-Ta coupling is examined 

based on monthly air temperature anomalies and soil moisture proxies (i.e., P, θs, θm, and TWS). 

Compared with precipitation, remote sensing surface soil moisture and land-surface model derived 

soil moisture, GRACE TWS data are shown to be skillful in examining global θ-Ta coupling. After 

wavelet decomposition, the skill of TWS for explaining monthly Ta variability further improves. 

Furthermore, combining decomposed TWS and precipitation data yields higher correlation with air 

temperature than each of the two variables separately, probably because they respectively 

represent the hydrological and meteorological part of land-atmosphere coupling. The θ-Ta coupling 

in the areas with deeper rooting systems, such as the southern tip of Africa and north of the Tropic 

of Capricorn in Australia, are more likely to be revealed by GRACE TWS, where the skill of 
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precipitation is weaker. The identified sensitive areas for θ-Ta coupling are mainly constrained by 

the connection of root zone soil moisture and land surface temperature. It is suggested that the 

areas with both deep-rooting plants and clear dry-wet seasonality are more likely to develop 

significant monthly θ-Ta coupling. 
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5 SPATIALLY DIFFERENTIATED EFFECTS OF LOCAL MOISTURE DEFICIT ON 
HOT EXTREMES IN COMPARISON TO GLOBAL TEMPERATURE CHANGE 

5.1 Introduction 

Hot extremes have become more frequent and intense across most land regions since the 

1950s, which is in direct relation to global warming (IPCC, 2021). Antecedent surface moisture deficit 

exacerbates hot extremes as it can reduce evaporative cooling and increase atmospheric heating 

(Seneviratne, 2010; Alexander, 2011). Previous studies have investigated the effects of increasing 

global temperature (e.g., Rahmstorf and Coumoustudy, 2011; Perkins-Kirkpatrick and Gibson, 2017) 

and local soil moisture deficit (e.g., Herold et al. 2016; Vogel et al. 2017) on hot extremes separately, 

but the relative importance of the two influencing factors on hot extremes has not been compared. 

Such comparison study would contribute to developing practical advice to mitigating the negative 

impacts of hot extremes on the environment and society, given that human activities can modify 

global temperature change by reducing greenhouse gas emissions (the observed global warming is 

considered extremely likely associated with anthropogenic influences, particularly greenhouse gas 

emission (IPCC, 2013)) and address local moisture deficit by adaptive land management.  

The standardised precipitation index (SPI) and modelling soil moisture products are 

commonly used in analysing the relationship between soil moisture and hot extremes in previous 

studies (e.g., Koster et al. 2006; Lorenz et al. 2010; Perkins et al. 2015). Mueller and Seneviratne 

(2012) were the first to assess the relationship between hot extremes and SPI (indicating 

precipitation deficit) at a global scale. Hirschi et al. (2014) used a merged active/passive microwave 

soil moisture product and model-derived soil moisture compared to SPI. They found that modelled 

soil moisture displayed a comparable coupling strength with hot extremes as the SPI-based analysis 

showed. The strength of the relationship appeared to be weaker when remotely sensed surface soil 

moisture was used.  

The Gravity Recovery and Climate Experiment (GRACE) derived terrestrial water storage 

(TWS) provides data on water storage, including groundwater, soil moisture, surface water, snow, 

and ice. A discrete wavelet decomposition method is capable of partitioning the total water storage 

into shallow and deep components (Andrew et al. 2017a). Based on that approach, Andrew et al. 

(2017b) investigated large-scale vegetation responses to monthly moisture storage at different 

frequencies. They reported that grassland-dominated areas are more sensitive to higher 
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frequencies of moisture storage changes while plants with deeper rooting systems (e.g., forests) are 

more sensitive to moisture storage changes of longer time scales. In addition, Chen et al. (2019) 

reported that monthly air temperature anomalies show a stronger relationship with wavelet 

decomposed GRACE TWS than with raw TWS. Here, we compare decomposed GRACE TWS with SPI 

and model-derived soil moisture in examining the relationship between soil moisture and the 

number of hot days in the hottest month (θ-NHD relationship). As Mueller and Seneviratne (2012) 

suggested that NHD, as a percentile-based index, is more comparable than threshold-based indices 

across different climatic regions. 

This study aims 1) to examine the θ-NHD relationship at a global scale using decomposed 

GRACE TWS, and based on the developed methodology; 2) to investigate the relative importance of 

global temperature change and local moisture deficit to the occurrence of hot extremes. 

5.2 Methodology 

5.2.1 NHD calculation and data sources  

The number of hot days is defined as the number of days per specific time interval (e.g., 

month, season, year) with a surface air temperature at 2 m height above the 90th-percentile. In this 

study, the number of hot days in the hottest month (NHD) is examined based on the ECMWF 

reanalysis ERA-Interim daily maximum temperature data (Dee et al., 2011) from 1985 to 2015. A 

time window of five days centred on each day of the 31-year period is considered, so the 90th 

percentile is calculated from 155 daily values (Mueller and Seneviratne, 2012). The hottest month 

is determined for each grid cell based on the monthly average daily maximum temperature for the 

time series 1985–2015. Its geographical distribution is shown in Figure 5.1. Monthly latent heat flux 

and net radiation data used to calculate the evaporative fraction are also from ERA-Interim. 
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Figure 5.1 Geographical distribution of most frequently occurring hottest month for the period 

1985–2015. 

5.2.2 Global-mean temperature data 

Annual global-mean land surface air temperature (Hansen et al., 2010) data are available 

from NASA Goddard Institute for Space Studies (GISS). It represents the global temperature change 

including both variability and trend of global-mean temperature.  

5.2.3 Wavelet decomposed GRACE TWS data 

A reconstructed GRACE TWS dataset (Humphrey et al. 2017) from 1985 to 2015 provided by 

the Institute for Atmospheric and Climate Science, Eidgenössische Technische Hochschule Zurich 

(IAC ETH) is applied in this study. GRACE TWS has been decomposed into “approximate” (A1, A2, A3, 

A4) and “detail” (D1, D2, D3, D4) components by a wavelet method following Andrew et al. (2017a). 

The structure of wavelet decomposition has been shown in Figure 4.2 of Chapter 4, taking a grid cell 

in Australia (30.5 S, 130.5 E) as an example. The sum of a series of approximate and the 

corresponding detail components equals to the raw signal (e.g., raw 

signal=D1+D2+A2=D1+D2+D3+A3). Each decomposition level represents a specific time scale: D1 (2-

month), D2 (4-month), D3 (8-month), and A4 and D4 (≥  16-month). Those decomposed 

components of different temporal scales reflect temporal dynamics of moisture at different depths. 

This is based on the understanding that moisture at various soil depths has different response times 

to the climate system (Andrew et al. 2017a; Chen et al. 2019). Thus, it is possible that moisture 

storage with response timescales of several months could impact energy balance partitioning at the 
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land surface. The original GRACE TWS data from 2003 to 2016 (Watkins et al. 2015; Wiese et al. 

2019) provided by the Jet Propulsion Laboratory (JPL) are also applied in this study. Although the 

data period is too short for reliable statistical analysis, it provides a comparison for the 

reconstructed GRACE TWS. 

5.2.4 Soil moisture proxies 

For relating the occurrence of hot extremes to soil moisture deficit, SPI (calculated from 

GPCC Reanalysis precipitation data, Schneider et al. 2015) and a land surface model derived soil 

moisture product (GLDAS_NOAH10_M.2.1, Rodell et al. 2004; Rui, 2011) are compared with GRACE 

TWS. GLDAS_NOAH θ and GRACE TWS are correlated with NHD in the concurrent month. The 3-

month SPI characterizing precipitation deficits accumulated in the previous two months together 

with the hottest month itself (McKee et al. 1993) is applied, since soil moisture in the hottest month 

includes contributions from infiltration of precipitation in previous months. A 1°×1° spatial 

resolution is adopted for all datasets used in this study. Although the chosen resolution might be 

coarse for resolving detailed patterns of the θ-NHD relationship, it allows to investigate land surface 

and atmosphere coupling at synoptic scale, where water and heat exchanges between large air mass 

and land surface. 

5.2.5 Correlation analysis 

Relationships between NHD and soil moisture are examined by the Pearson linear 

correlation. The t test statistic is used to evaluate the statistical significance of the correlation 

coefficient (r). For testing the linear relationship between time-series grid datasets, erroneous 

rejection of null hypothesis inevitably happens at individual grid cells for several reasons, as 

described in Wilks (2016), leading to the false discovery of significant relationships. To address this 

problem, the threshold for significant p-values (typically 0.05) should be adjusted to control the 

False Discovery Rate (FDR). This adjustment is done based on the distribution of p-values of all grid 

cells and a prescribed parameter αFDR which controls the level of the False Discovery Rate. An αFDR 

of 0.1 (=2αglobal, where αglobal =0.05) should be used for gridded atmospheric data, as it often has 

strong spatial correlation (Wilks, 2016). After this adjustment, the threshold values for testing 

significant linear relationships are 0.0241 for NHD-SPI, 0.0235 for NHD-GLDAS_NOAH θ, 0.0191 for 

NHD-TWS, and 0.0347 for TWS-evaporative fraction (EF). 

5.2.6 Dominance analysis 
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Stepwise multiple linear regression (Draper and Smith, 1998; Clow, 2010) is used to 

determine the significant (5% significance level assessed by an F-test) predictor variable in 

explaining NHD temporal variability for each grid cell. Next, the dominance analysis approach (Azen 

and Budescu, 2003) is applied to compare the relative importance of those selected variables. The 

total variance among a set of predictors can be fully partitioned by dominance analysis even if the 

predictors are correlated (Vize et al. 2019). The collinearity among predictors is addressed by 

examining the unique variance accounted for by the predictor across all possible regression sub-

models involving the predictor. Dominance analysis is completed through an exhaustive set of 

pairwise comparisons among the predictors. The comparisons can be examined by three types of 

dominance: complete dominance, conditional dominance, and general dominance (Nimon and 

Oswald, 2013). To be completely dominant, a predictor must account for a greater amount of 

outcome variance than another predictor for every sub-model comparison. The conditional 

dominance of different predictors is conditional on what sub-model level is being examined. We 

applied the general dominance in this study, which is determined by taking the average amount of 

variance accounted for by a predictor across all sub-models and comparing it to other predictors. 

General dominance weights can be calculated for each predictor in a set and represent the relative 

proportion of R2 attributable to a predictor. 

5.3 Results and Discussion 

5.3.1 Global θ-NHD relationship based on decomposed TWS 

Correlations between NHD versus SPI, GLDAS_NOAH θ, and TWS during 1985–2015 are 

compared in Figure 5.2 (a–c). Similar spatial patterns of global θ-NHD relationship are observed. 

Strong θ-NHD relationships occur in most of the Americas, Europe, Australia, South Africa, East Asia, 

and Southeast Asia, which cover almost all the areas with strong land-atmosphere coupling as 

identified in previous studies (e.g., Koster et al. 2006; Miralles et al. 2012; Schwingshackl et al. 2017; 

Donat et al. 2017, Chen et al. 2019). Significant negative correlations between NHD and SPI are 

observed for 25.5% of the land area, while NHD and GLDAS_NOAH θ are significantly correlated for 

17.3% of the land area. This difference may be due to the fact that SPI, being used as a soil moisture 

proxy, reflects its influence on air temperature by soil-moisture dependent latent heat processes 

(evaporation and transpiration). In addition, it may reflect precipitation and air temperature 

coupling through weather systems (e.g., evaporation of rainwater draws heat out of the near 

surface air). 
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Figure 5.2 Correlations between NHD and (a) SPI; (b) GLDAS_NOAH θ; (c) raw TWS; and (d) the 

maximum r value of NHD versus any of the decomposed TWS components during 1985–2015 (based 

on reconstructed GRACE TWS data). Significant levels are denoted by black dots. No data is available 

for land area marked in white. 

The total area of significant θ-NHD relationship increases, from 21.7% when the total 

terrestrial water storage is used, to 29.9% when the optimal decomposed TWS component at each 

grid cell is correlated to NHD (Figure 5.2 (c–d)). This is likely because that a part of the terrestrial 

water storage is not directly accessible for evapotranspiration. From all soil moisture proxies, the 

decomposed GRACE TWS covers the largest land area with significant negative correlation with NHD 

(Figure 5.2 (a–d)). It should be noted that only one TWS sub-component is used for Figure 5.2 (d) 

(which sub-component is used here can be seen in Figure 5.3). The sum of all decomposed TWS 

components is expected to have higher explanatory power for NHD temporal variability over a larger 

area. 
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Figure 5.3 Correlation between NHD and wavelet decomposed TWS components (D1–D4, A4): (a) 

NHD-D1; (b) NHD-D2; (c) NHD-D3; (d) NHD-D4; (e) NHD-A4. 

Results shown in Figure 5.2 are based on the reconstructed GRACE TWS dataset (1985–2015). 

We did the same analysis for the original GRACE TWS data from 2003 to 2016 for comparison, and 

the results are shown in Figure 5.4. Based on the 14-year data, strong θ-NHD relationships are also 

spatially distributed in most of the Americas, Europe, Australia, South Africa, East Asia, and 

Southeast Asia. In addition, the decomposed TWS (Figure 5.4 (d)) shows a significant correlation 

with NHD over a larger area than SPI (Figure 5.4 (a)) and GLDAS_NOAH θ (Figure 5.4 (b)). Although 

the period of available original GRACE TWS data is relatively short at present, its contribution to this 

and related research will increase with the accumulation of data and improved GRACE resolution in 

the future. 
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Figure 5.4 Correlations between NHD and (a) SPI; (b) GLDAS_NOAH θ; (c raw TWS; and (d) the 

maximum r value of NHD versus any of the decomposed TWS components during 2003–2016 (based 

on JPL GRACE TWS data). No data is available for land area marked in white. 

A significant negative θ-NHD correlation can reflect a causal relationship between hot 

extremes and soil moisture deficit, either way. Since the θ-NHD relationship is examined in the 

hottest month, it is more likely to reflect the feedback of dry (primarily root-zone) soil to the 

atmosphere. On the one hand, high temperature is very likely to reduce transpiration in the hottest 

month due to stomatal responses to high vapour pressure deficit or temperature itself (Whitley et 

al. 2009; Wang et al. 2014; Wang et al. 2020). On the other hand, regions with strong negative θ-

NHD correlation agree well with transitional climate regions (Koster et al. 2004; Seneviratne et al. 

2010) where soil moisture strongly constrains evapotranspiration variability and thus results in 

feedbacks to the atmosphere. In addition, the correlation between TWS and the evaporative 

fraction (latent heat/net radiation) is relatively stronger in regions with significant negative θ-NHD 

correlation, such as parts of the Americas and Asia, South Africa, West Europe, and Australia (Figure 

5.5). This implies that local moisture limitation in those regions results in a higher available energy 

partitioning towards sensible heat flux and consequently increases the occurrence of hot extremes. 

Indeed, it has already been suggested that hot extremes in Europe (Hirschi et al. 2011), Australia 

(Herold et al. 2016), and parts of the Americas and South Africa (Mueller and Seneviratne, 2012) are 
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amplified by moisture deficit. Furthermore, a similar spatial pattern of significant NHD-SPI 

correlation to those between NHD and other soil moisture indicators (Figure 5.2) supports that the 

observed negative NHD correlation reflects soil moisture deficit enhanced occurrence of hot 

extremes. 

 

Figure 5.5 Correlation between TWS and the evaporative fraction (TWS-EF) during 1985–2015. 

Significant levels are denoted by black dots. No data is available for land area marked in white. 

Figure 5.6 shows the explanatory power (reflected by the regression R2) of different soil 

moisture proxies for NHD variability (1985–2015). The result is consistent with what is shown in 

Figure 5.2 that SPI has stronger explanatory power for NHD variability for a larger land area than 

GLDAS_NOAH θ. The decomposed TWS shows the highest R2among all soil moisture proxies. For 

testing the improvement, the adjusted R2is applied, which considers the total number of 

explanatory variables (up to 5 for the decomposed TWS vs. 1 for other proxies) by including a penalty 

for having additional variables in the regression analysis. The decomposed TWS shows a significant 

adjusted R2 for 33.4% of the land area. For 72.0% of this area, the average adjusted R2 increases to 

0.24 compared to the raw TWS average adjusted R2 (0.09). For 28.0% of this area, the raw TWS 

shows a slightly higher average adjusted R2 (0.30) than that of the decomposed TWS (0.24). This 

result sheds light on the potential of decomposed GRACE TWS for hot extreme prediction. 
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Figure 5.6 Histogram of the explanatory power (significant regression R2) on NHD variability by using 

SPI, GLDAS_NOAH θ, raw TWS, and decomposed TWS during 1985–2015. 

Areas having a significant negative correlation between NHD and decomposed TWS 

components during 1985-2015 are shown in Figure 5.7. Compared to D4+A4, D1–D3 shows a higher 

correlation with NHD in parts of Asia and Europe; those regions are reported to have relatively 

shallower plant rooting depth (Fan et al. 2017) where near-surface temperature has relatively 

shorter response time to soil moisture changes than that of regions with deeper plant rooting depth. 

The central part of North America, the northeastern part of South America and the northwestern 

part of Southeast Asia are reported to have deeper plant rooting depths (Fan et al. 2017), where 

interannual variability (D4 and A4) of TWS seems to be more important than its seasonal variability 

(D1–D3) in explaining NHD temporal variability. This implies that plant water uptake from deeper 

soil plays an essential role in θ-NHD coupling. However, D4+A4 also show a stronger correlation than 

D1+D2+D3 with NHD in areas without deep roots, including the northern and southeastern parts of 

South America and parts of Southeast Asia. This is because those regions have shallow groundwater 

table depth (Fan et al. 2013). It implies that in areas where groundwater is shallow, groundwater 

dependent ecosystems may contribute to heat mitigation, which is worthy of future investigation. 
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Figure 5.7 Correlation between NHD versus moisture at shallower soil depth (D1+D2+D3) (a) and 

deeper soil depth (D4+A4) (b) represented by wavelet decomposition levels of TWS (1985–2015). 

5.3.2 Relative importance of global temperature change and local moisture deficit for hot extreme 
occurrence 

The long-term underlying increasing trend in NHD seems to be a consequence of increasing 

global-mean temperature (Figure 5.8). Compared to the relationships between NHD versus different 

soil moisture proxies shown in Figure 5.2, significant correlations are observed in larger areas when 

the trends in NHD and soil moisture proxies have been removed (Figure 5.9). This implies that the 

trend and interannual variability in NHD might be respectively resulting from increasing global-mean 

temperature and natural variability in the climate system, i.e., interannual variability in soil moisture. 

Therefore, this study aims to reveal, which factor, global temperature change or local moisture 

deficit, is more important in influencing hot extreme occurrence during the study period 1985–2015. 

The decomposed TWS is adopted to represent soil moisture in the dominance analysis. The results 

are mapped in Figure 5.10, only the grid cells where the total explanatory power of global-mean 
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temperature and decomposed TWS is over 95% significance level are highlighted in colour. In areas 

with grey coloured grid cells, other factors than global temperature change or local moisture deficit, 

may have a stronger influence on hot extreme occurrence. These factors may include variables such 

as ocean-atmosphere dynamics (e.g., Lorenzo and Mantua, 2016) and land use changes (e.g., Luo 

and Lau, 2017). 

 

Figure 5.8 Standardized anomaly of global average NHD (land regions only) and global-mean 

temperature. The standardized anomalies are calculated with respect to the mean and standard 

deviation derived from the full period 1985–2015. 

  



 

93 
 

 

Figure 5.9 Correlations between detrended NHD and detrended soil moisture proxies: (a) SPI; (b) 

GLDAS_NOAH θ; (c) raw TWS; and (d) wavelet decomposed TWS (the maximum r value of detrended 

NHD versus any of the decomposed TWS components) during 1985–2015. 
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Figure 5.10 Spatial patterns of the total explanatory power of the joint influence of global-mean 

temperature and soil moisture on hot extreme occurrences. Global temperature change is more 

important in influencing the occurrence of hot extremes in areas marked by red cross symbols, while 

local moisture deficit is more important in areas with blue colours. Hot extreme occurrences in the 

grey areas are not significantly associated with either global-mean temperature or soil moisture 

during the study period 1985–2015. 

During 1985–2015, for 23.8% of the land area with significant regression R2, global 

temperature change plays a more important role than local moisture deficit in influencing the 

occurrence of hot extremes. Those areas are more likely located in extreme dry regions (e. g., the 

Sahara), mountain ranges (e. g., the Andes in South America), and plateaus (e. g., the Mongolian 

Plateau and the Tibet Plateau), where interannual variability of root zone moisture is likely small 

due to water deficiency, steep topography, and/or low temperature. In most previously identified 

regions with strong land moisture and air temperature coupling, including the northern areas of 

South America, the southern regions of North America, South Africa, West Europe, parts of East Asia 

and Australia, local moisture deficit shows very strong explanatory power for NHD temporal 

variability. It appears that local moisture deficit plays a more important role than global temperature 

change in influencing the hot extreme occurrences for 38.2% of the land area with significant 

regression R2. Areas, where moisture deficit is more important than global temperature change the 

occurrence of hot extremes, tend to be flat with thick soils, such as the North American Great Plain, 
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the West Siberian plain and the North China Plain. Some areas where moisture deficit shows a more 

important role in hot extreme occurrences including India, Australia, South Africa, and the eastern 

tip of Brazil have one common characteristic: their interannual rainfall variability is high (Fatichi et 

al., 2012). 

5.4 Conclusions 

This study identifies which factor, global temperature change or local moisture deficit, is 

more important in influencing the temporal occurrence of hot extremes at a global scale during 

1985–2015. In parts of the Americas, Africa, and Asia, the occurrence of hot extremes is more 

sensitive to global temperature change than in other areas. Most of those regions are mountain 

ranges (e.g., the Andes), plateaus (e.g., the Brazilian Plateau), and deserts (e.g., Sahara). Local 

moisture deficit plays a more important role in influencing hot extreme occurrences in regions with 

a total area 1.6 times as large as the area strongly influenced by the global temperature change 

during the 31-year period investigated here, which is an important new realisation. These regions, 

i.e., North America, West Europe, Australia, and South Africa are previously identified as having 

strong land-atmosphere coupling, influencing the moisture deficit-hot extreme links. Moisture 

deficit sensitive regions also share some common characteristics, such as relatively flat topographies, 

thick soils, and large inter-annual rainfall variabilities. In those regions, mitigation of some hot 

extremes might be possible by addressing the increasing moisture deficit, e.g., by adaptive land 

management. The noise from natural climate variability is an important factor in influencing the 

occurrence of NHD in larger areas than that of the signal from global-mean temperature within the 

31-year period of the analysis. However, under a continuing increase of greenhouse gas forcing, 

increased temperature warming is expected to result in an increasing trend in the NHD. 

Furthermore, a continuous increase in global-mean temperature can also result in regional 

decreasing trends in soil moisture during the hottest month and consequently exerts indirect effects 

on NHD. Hence, global measures for reducing emissions are essential in combating the current and 

future expansion of hot extremes.  

The dominance analysis approach is applied to quantify the relative importance of global 

temperature change and local moisture deficit to the occurrence of hot extremes during 1985–2015. 

For the first time, the application of decomposed GRACE TWS in estimating the global distribution 

of hot extremes is presented. It shows larger areas with significant θ-NHD relationships, and higher 

regression R2 in examining the occurrence of hot extremes than the other commonly used soil 
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moisture proxies SPI, and a land surface model derived product. It suggests the potential of 

decomposed GRACE TWS as a useful soil moisture proxy in examining moisture-heatwave coupling. 
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6 CONCLUSIONS AND FUTURE RESEARCH INTERESTS 

6.1 Conclusions 

The studies in this thesis aim to improve our understanding of land-atmosphere interactions 

at continental and global scales based on the application of GRACE TWS. The key findings of each 

chapter are as follows: 

(1) Chapter 2 reported a new large-scale terrestrial water storage variation pattern in 

Australia: a seesaw wetting/drying pattern between the eastern and western Australia. This seesaw 

phenomenon is characterized by eastern Australia gaining water, while western Australia is losing 

water, and vice versa. The seesaw pattern is resulted from a combination of effects from large-scale 

climate modes (e.g., La Niña, IOD, IPO) and dynamic vegetation and soil moisture interactions. This 

study improved our understanding of the variation patterns of land surface conditions and their 

responses to climate variability. The newfound seesaw phenomenon could provide society with 

valuable reference for managing forest, water, and disaster risks in Australia.  

(2) Chapter 3 reported that non-linear interaction between vegetation and terrestrial water 

condition was detected in more than half (58.4%) of the total area of Australia. Precipitation can 

indicate the water condition that vegetation relies on, but a comparison study suggested that GRACE 

TWS performed better than precipitation in examining the interactions between surface vegetation 

and land water conditions. The unidirectional and bidirectional causality relationships between 

vegetation (NDVI) and water (precipitation or TWS) were identified by using the non-linear Granger 

causality method. Although the Granger causality test does not confirm a direct physical mechanism 

between two variables, it provides implications of possible causality links from a statistical 

perspective. Temperature showing stronger Granger casual effects than water and energy on 

surface vegetation condition over 19.1% area of Australia was firstly reported here, implying the 

adverse effects of high temperature on vegetation's photosynthesis and growth rate. Results of 

Chapter 3 highlighted the feedback of vegetation on hydrological processes and implied the 

important role of vegetation in terrestrial water and carbon cycles and land-atmosphere 

interactions in the context of climate change. 

(3) Chapter 4 suggested that wavelet decomposed GRACE TWS is applicable as a soil 

moisture proxy in examining soil moisture-air temperature coupling. Among the commonly used 

soil moisture proxies, precipitation performs better than GLDAS modelled soil moisture (0–1m) and 
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microwave remote sensing soil moisture (0–2 cm) in examining their relationships with air 

temperature. Combination of the decomposed TWS and precipitation further improved their 

explanation power for monthly air temperature variability particularly in places where vegetation 

tends to have a deeper rooting system. It is because that TWS can provide information of deeper 

soil moisture. Deeper rooting systems and clear wet and dry season alternation are favourable to 

the development of the soil moisture-air temperature coupling. This study improved our 

understanding of global soil moisture-air temperature coupling and suggested a useful soil moisture 

proxy, i.e., GRACE TWS, which could improve the representation of land-atmosphere interactions in 

Earth system models. 

(4) Chapter 5 compared the relative importance of global temperature change and regional 

land-atmosphere coupling in influencing hot extremes. Results suggested that during the study 

period 1985–2015, local moisture deficit played a more important role in influencing hot extreme 

occurrences in regions with a total area 1.6 times as large as the area strongly influenced by the 

global mean temperature change. Here the local moisture deficit was represented by the wavelet 

decomposed GRACE TWS as it performed better than precipitation-related indices and soil moisture 

products derived from land surface model and microwave remote sensing technology in examining 

the relationship between soil moisture and the occurrences of hot extremes. Results of this study 

have significant implications for the development of adaptation strategies for increasing hot 

extremes. For example, mitigating hot extremes in areas with strong land-atmosphere coupling 

might be possible by improving adaptive land management, while areas that are sensitive to global 

temperature change are more likely to rely on global measures on reducing emissions. 

Overall, the results of this PhD study improved the knowledge of land-atmosphere 

interactions at continental and global scales and suggested a useful soil moisture proxy, i.e., the 

wavelet decomposed GRACE TWS, that can also be applied in other relevant studies. Such 

knowledge might make contribution to reducing uncertainties in future-climate scenarios in the 

context of global climate change.  

Since the satellite observation provided by GRACE are less than 20 years, reconstructed TWS 

data are applied in all the main chapters in this thesis as data of longer length can make the 

statistical analysis more convincing. The quality of reconstructed data is a main concern. However, 

as the GRACE mission continues, longer data sets will become available, and the corresponding 
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outcomes will be more precise. In addition, other ways for applying GRACE data in 

hydroclimatological studies are worthy of exploration. 

6.2 Future research interests 

Several suggestions for future work that expands on the research in this thesis are given 

below: 

(1) Previous studies have already revealed some spatial coherent variation patterns of TWS 

in Australia (e.g., Xie et al., 2016; Xie et al., 2019), but investigations on how those patterns vary 

with time were limited by the scarcity of long-term TWS data. The constructed GRACE TWS data of 

114-year length available recently (Humphrey and Gudmundsson, 2019) provided the opportunity 

to explore a predictable large-scale wetting/drying pattern in Australia. The analysis method in 

Chapter 2 and the reconstructed TWS data could be applied for other continents in the future, based 

on which new predictable large-scale wetting/drying patterns may be found in other regions of the 

world. 

(2) Chapter 3 revisited the spatial patterns of water limitation on vegetation growth in 

comparison to temperature and radiation. The results confirmed that vegetation growth in Australia 

is still mostly water limited. But compared to the results for last century shown in previous studies 

(Nemani et al., 2003; McVicar et al., 2012), temperature- and radiation-dominant regions become 

larger in recent years. This possible trend may be related to the climate warming and the 

corresponding change of vegetation feedback, which is worthy of further investigation in the future. 

(3) Previous study (Andrew et al., 2017) used the wavelet decomposition method to reveal 

the moisture dependence of vegetation at different temporal frequencies, Chapter 4 in this thesis 

investigated the coupling between air temperature and moisture at different soil depths, similar 

studies could be carried out with other water dependent variables, such as terrestrial carbon 

content, in the future.  

(4) Results in Chapter 5 were based on data of 1985–2015, however, under a continuing 

increase of greenhouse gas forcing, the relative importance of global temperature change and local 

land-atmosphere coupling in influencing hot extremes might be very different. Therefore, further 

study based on model outputs of different Representative Concentration Pathway (RCP) in the 

future could provide more reference information for the society to take measures on climate change 

adaptation and mitigation. 
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APPENDIX 

A1 An initial analysis on the 2009 Black Saturday bushfire occurred in Victoria, 
Australia 

According to the possible mechanism of the TWS seesaw pattern described in Chapter 2 that 

strong La Niña puts large amount of water into Australia and can lead to continent-wide wetting 

period. If a region has better than normal vegetation cover (positive NDVI anomaly), it has higher 

water capacity during the La Niña induced wetting periods but has larger water consumption over 

the subsequent relatively dry years. When fire events occur, this region is expected to have higher 

fire risk. Based on this knowledge, woody vegetation coverage immediately after big wet is expected 

to determine fire risk in the subsequent dry years.  

Here the relationship between vegetation cover (leaf area index, LAI) and bushfire risk 

(Flammability index, provided by Australian National University) during a 6-year dry interval (2003–

2008) before the 2009 Black Saturday fire occurred in Victoria, Australia is analysed. The study 

period is set during Jan 2003–Dec 2008 because a moderate La Niña event ended in 2001, and 

MODIS LAI data is available from July 2002, and the Black Saturday fires started on 7 February 2009. 

As shown in Figure A1. 1 the study area is mostly covered by forest. Maps of the linear trends of LAI 

and Flammability during 2003-2008 are compared in Figure A1. 2. LAI trend and Flammability trend 

has significant negative correlation (Figure A1. 3, r=-0.21, p<0.01). This result indicates that 

decreasing woody vegetation cover corresponds to increasing fire risk, which is in line with 

expectation. Next, it will be tested in future’s study that whether a higher LAI immediately after a 

La Niña induced wetting corresponds to a higher flammability immediately before a major bushfire 

event. If yes, this study will contribute to developing proactive woody plant management at an 

optimal time window to reduce bushfire risks, for example, thinning of woody cover immediately 

following the wet year. 
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Figure A1.1 Vegetation types in the 2009 fire zone. (ENF: evergreen needleleaf forests; EBF: 

evergreen broadleaf forests; DNF: deciduous needleleaf forests; DBF: deciduous broadleaf forests; 

MF: mixed forests; CS: closed shrublands). 

 

Figure A1.2 Linear trend of LAI (a) vs. Flammability (b) during Jan 2003–Dec 2008. 
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Figure A1.3 Scatter plot of linear trends of LAI and Flammability during Jan 2003–Dec 2008 

(correlation coefficient r=-0.21, p<0.01). 

 


