

Game design tools: can they
improve game design practice?

by

Katharine Neil

Thesis
Submitted to Flinders University

for the degree of

Doctor of Philosophy

Department of Screen and Media
Faculty of Education, Humanities and Law

September 2017

Cotutelle institution:

Ecole Doctorale Informatique, Télécommunications et Electronique
Groupe ILJ - Equipe MIM - Laboratoire CEDRIC

Conservatoire National des Arts et Métiers

i

ACKNOWLEDGEMENTS

First, I would like to thank my supervisors Professor Stephane Natkin, Dr Melanie Swalwell and Dr

Denise De Vries for their guidance and support, as well as their patience in the face of the

linguistic, geographical and administrative challenges posed by my cotutelle candidature.

In addition, I am grateful for the comraderie of the students and staff of the ILJ team at the Cnam,

who have been very welcoming to me and always forthcoming with stimulating discussions and

advice.

I am grateful to my friends Marion Tillous and Xavier Brisbois for correcting my terrible French,

and to Christian McCrea for taking the time to read and give me feedback on my work.

Finally, I would like to thank the creators of game design tools (particularly those of you who

patiently responded to my questions, including Joris Dormans, Mark Nelson, Adam Smith and

Antonios Liapis). I will not have understood your tools as well as you do yourselves, and despite

my best efforts I can't guarantee that I've done your work justice. But please know that I believe in

you and what you’re doing. You are the bold ones, taking on one of the most difficult and

important, yet little known and frequently misunderstood, challenges in games research. Game

designers need you, whether they know it yet or not.

ii

TABLE OF CONTENTS

Acknowledgements ... i

Table of contents ... ii

List of figures ... iii

List of tables .. vi

Abstract ... viii

1. Introduction .. 1

2. The process and activities of game design ... 5

3. Game design as a design practice ... 26

4. Game design tools .. 51

5. Research questions and method .. 83

6. Overview of case studies .. 103

7. Observation & analysis part 1: The form of representation .. 120

8. Observation & analysis part 2: The act of representing ... 144

9. Observation and analysis part 3: Integrating game design tools into practice 180

10. Progressimo: A progression design tool ... 204

11. Conclusion ... 219

Bibliography ... 224

Ludography .. 238

Appendix .. 239

iii

LIST OF FIGURES

Figure 1: Newkirk's design process model showing a gradual shift from analysis to synthesis

(Dubberly 2004) ... 31

Figure 2: Design morphology showing alternating periods of convergence and divergence, within a

broader trend towards convergence (Dubberly 2004) .. 31

Figure 3: Flow diagram showing relationships between analysis, synthesis, and divergence and

convergence (Dubberly 2004) .. 34

Figure 4: An example diagram built by Koster using his own notation ... 61

Figure 5: A sub-system of a game modelled in Petri nets by Araújo and Roque (2009) 63

Figure 6: Bura’s diagram of the card game Blackjack using his own diagramming method (Bura

2006) .. 63

Figure 7: BIPED tool (A.M. Smith, M.J. Nelson, & M. Mateas, 2010) .. 65

Figure 8: A Machinations diagram showing the trade and travel system from the game Elite. 66

Figure 9: Tanagra a “reactive level editor”. ... 67

Figure 10: The Sentient Sketchbook ... 68

Figure 11: A Ludoscope mission diagram ... 69

Figure 12: Annotated screenshot of Articy:Draft .. 71

Figure 13: The progression plan component of Refraction's tool’s progression planning interface 73

Figure 14: A screenshot from The Casimir Effect .. 106

Figure 15: A screenshot from South Sea Trouble .. 111

Figure 16: Screenshot from Loot the Room using placeholder art.. 114

Figure 17: Screenshot of Ultraworm .. 116

Figure 18: Fragment from the narrative plan for The Particle Who Knew Too Much, using

Articy:Draft ... 122

Figure 19: Machinations diagram modelling relatively high level, abstract elements as resources

 .. 124

Figure 20: A Machinations diagram containing so much detail that readability becomes an issue

 .. 130

Figure 21: Model of Ultraworm made in Machinations for the purpose of game balancing 131

Figure 22: A Machinations model of Ultraworm at a higher abstraction level than in Figure 21. .. 132

Figure 23: Refraction’s tool's components enable design moves at a range abstraction levels 133

iv

Figure 24: Loot the Room design workflow ... 134

Figure 25: Nesting in Articy:Draft .. 137

Figure 26: A Machinations diagram of a game mode for South Sea Trouble 143

Figure 27: Rapid sketch of the same game mode on screen showing a sequence of game actions

 .. 143

Figure 28: Machinations diagram showing the system model above and the dynamics of the

simulation in a chart below .. 151

Figure 29: A screenwriter viewing his notes laid out on a table (Kadoudi 2014) 158

Figure 30: Loosely associated quest ideas in progress .. 159

Figure 31: Excerpt from a diagram of the narrative structure of The Casimir Effect made in

Microsoft Visio ... 163

Figure 32: Excerpt from a work-in-progress narrative diagram made in Microsoft Excel 165

Figure 33: The Casimir Effect design workflow .. 183

Figure 34: South Sea Trouble design workflow .. 184

Figure 35: Ultraworm design workflow ... 185

Figure 36: The Particle Who Knew Too Much design workflow .. 186

Figure 37: Excerpt from skill chain for The Casimir Effect, modelled in Microsoft Visio................. 191

Figure 38: A selection from a collection of 74 level design patterns for The Casimir Effect. 193

Figure 39: An example of Articy:Draft's scripting function. Image taken from Articy:Draft

documentation ... 197

Figure 40: Refraction’s tool’s system model (Butler et al. 2013) .. 208

Figure 41: Progressimo’s system model .. 209

Figure 42: Part of the progression design rules editor in matrix view. Rules are for South Sea

Trouble. .. 210

Figure 43: The progression design rules editor in graph view. Rules are for South Sea Trouble 211

Figure 44: Moment elements list ... 241

Figure 45: Example of a progression plan graph ... 242

Figure 46: Mission graph with unlocking connections .. 243

Figure 47: Two missions that use both unlocking and prerequisite (thick lines) connections 244

Figure 48: Two missions (from The Particle Who Knew Too Much) within an open world structure

 .. 245

Figure 49: Part of the progression plan for South Sea Trouble ... 246

v

Figure 50: Paths to selected level. One path is highlighted. .. 249

Figure 51: The Notes tab .. 251

Figure 52: Progression state information in explore mode for The Casimir Effect 253

Figure 53: Filtered notebook component .. 256

vi

LIST OF TABLES

Table 1: Comparison of design activities and tasks in game design tools ... 82

vii

I certify that this thesis does not incorporate without acknowledgment any material previously

submitted for a degree or diploma in any university; and that to the best of my knowledge and

belief it does not contain any material previously published or written by another person except

where due reference is made in the text.

viii

ABSTRACT

This thesis contributes practice-led evaluation research to the question of whether game design

tools can effectively support and expand game design practice. It offers insights that can be used

to inform future game design tool development.

Game designers, unlike most other design practitioners, typically do not use design tools in their

work. While conceptual models and software tools have been developed to address this, we lack

discussion and critique of how tools work in practice.

Taking the point of view of a practitioner, this study of game design tools is based on longitudinal,

practice-led evaluation research conducted as a participant-observer, applying game design tools

to 5 contrasting game design case studies.

Design tools support game design practice. In Chapter 2 I set out what that practice is today,

reviewing the game design process and design activities, and giving particular attention to

contemporary trends and directions.

Chapter 3 situates game design within the broader context of Design Studies. After reviewing

relevant ideas from this literature, I conclude that game design is best characterised as a crafts-

based design discipline, and that adoption of design support would mean a shift towards “self-

conscious” design. I argue that, within this context, the adoption of tools into current practice

would represent a significant and disruptive change to current practice. I then trace the history of

development of game design tools within the game design and research communities.

Chapter 4 offers a more precise definition of game design tools and presents a comparative review

of the tools within this scope.

In Chapter 5 I argue for the need to bring practice-led evaluation research to this question. Here I

set out my research goals and questions, before specifying the particular tools I practiced with for

this study. I discuss methods used in relevant research fields and outlines the method used for this

project.

Chapter 6 introduces the game projects I used as case studies and describes how I worked with

each. Chapters 7 and 8 present observations and analyses of my experiences using a selection of

ix

tools that vary in their approaches. These include (though not exclusively): Articy:Draft (Nevigo

GMBH 2011), Machinations (Dormans 2009), Ludoscope (Dormans and Leijnen 2013), and

“progression planning” (Butler et al. 2013). Evaluation themes and criteria are drawn from the

Design Support and Creativity Support Tool literature. Chapter 9 refocuses attention on the

practicalities, addressing the question of how game design tools integrate into the wider context

of practice.

In Chapter 10 I present and discuss my experiences with my own game design tool, which I

prototyped in order to evaluate and extend one of the tool approaches under study. I explain my

tool design choices, some of which reflect the knowledge I have acquired through the course of

this study.

Chapter 11 summarises my conclusions in relation to how design tools might best support game

designers, and offers ideas for further practice-led evaluation research related to this question.

Keywords:

game design, design tools, practice-led, videogames, evaluation research

1

1. INTRODUCTION

The art form of the video game has a very idiosyncratic reliance on the process and practice of its

designers; they work with creative and computational problems that form a web of deep

complexity. This is both a blessing and a curse to game designers: the real-time algorithmic and

interactive dynamics of play are often too complex to be modelled or evaluated successfully on

paper, or even in the mind of a designer. While designers in other creative fields – with their

graphical notation systems (music), story-boarding (film), sketching and modelling (architecture) –

have meaningful ways with which to abstract, externalise, analyse and evaluate their ideas before

taking them into production, game designers currently do not. Game designers, unlike most other

design practitioners, typically do not use tools to design.

Dating back more than a decade, key game industry figures and academic researchers have

sporadically but consistently identified our lack of design tools as both a problem and an

opportunity. They have argued that formal, abstract tools for designing gameplay (be they

conceptual models or software) must be developed if the craft of video game design is to attain

desired levels of sophistication and creative expression.

Towards this goal, theoretical work has been undertaken to formalise and abstract game design

techniques into formal models, to create taxonomies and to develop graphical notation systems

(Björk and Holopainen 2005; Koster 2005; Araújo and Roque 2009; Natkin and Vega 2004; Bura

2006; Sicart 2008; Reyno and Cubel 2009; Cook 2007). More recently there have been a few

attempts by researchers to concretise some of these ideas into software tools (Dormans 2009; A.

M. Smith, Nelson, and Mateas 2010; Karakaya et al. 2009).

The practitioner community, however, remains sceptical and has largely ignored this work, leaving

the question of whether design tools can meaningfully support and expand the practice of game

design unanswered. Even within the research community there has been relatively little discussion

or comparative critique of a kind that can inform future advances in this emerging field.

To enable any such a discussion we need practical evaluation of proposed design support

approaches that goes beyond simple research validation. This doctoral research project aims to

contribute evaluation research towards this end. Taking the point of view of a practitioner, this

2

study of game design tools is based on longitudinal, practice-led evaluation research conducted as

a participant-observer, applying game design tools to longitudinal game design case studies.

I have looked specifically at videogame design, though many of the tools for videogame design

would be useful to tabletop or pen-and-paper games as well. In addition, due to the scope of this

work as a doctoral research project, my case study projects have had a design and development

team of one person (with one exception, where I collaborate with a visual artist on game narrative

for one of the case studies). As such, I have had to infer what design experiences with tools might

be like within larger design teams and more typical development contexts. To imagine this I have

drawn on my background as a game designer, programmer and sound designer within the game

industry in Australia and France, ongoing freelance work in small-team based mobile game

development, and participation in industry workshops and conferences. My perspective is also

coloured, as the reader may notice in the way I approach design tools, by an earlier background in

musical composition, the path to my doctoral studies being via an undergraduate education within

the discipline of Music.

Game design is many things to many people, depending on their viewpoint and agenda. I have met

people in the arts and entertainment world who are most comfortable understanding game

designers as creatives who write stories that happen to be interactive and require computers. I

have also met people with a technical background who imagine game designers as user

experience designers who write technical specifications for the development of software, the

function of which happens to be to entertain the users. Neither of these perspectives is strictly

untrue - they simply demonstrate how widely variable our range of disciplinary understandings

can be.

To analyse my experiences with these tools and my case studies, therefore, I look to a range of

research disciplines. First, the work that has been done directly on the topic of game design tools

within the disciplines of Game Studies and Computer Science and Human Computer Interaction. In

particular, however, I draw upon knowledge from domains where the discussion on tools and their

relationship to design practice is more advanced: Design Studies, Design Support Tool and

Creativity Support Tool research. In order to understand some of the domain-specific design

challenges faced by game designers, I also consider aspects of game design culture and practice, as

well as contextual factors such as game industry trends that influence game design today.

3

I have sought to address the following research questions:

1. Can game design tools improve game design practice?

2. Can game design tools expand the scope of game design outcomes?

3. How do design tools change or impact the game design process?

More generally, I hoped to discover knowledge that could contribute to future game design tool

development research.

1.1. Structure of this thesis

Design tools support game design practice. In Chapter 2 I set out what that practice is today,

reviewing the game design process and design activities, and giving particular attention to

contemporary trends and directions.

In Chapter 3 I look more broadly at design practice. For this I draw theories from Design Research

– a domain that some games researchers have identified as a promising potential framework for

understanding game design experiences. Following a brief introduction to Design Research, I

present some of its concepts and discuss their relevance to game design process. Domain-specific

differences and challenges are also covered. From within this context I conclude that game design

is best characterised as a crafts-based, vernacular design discipline, and that adoption of design

support means a shift towards “self-conscious” design.

Chapter 4 traces the history of the calls for and the development of game design tools, a research

domain within both academia and industry that aims to give game design the support it needs to

allow it to develop into a mature design practice.

Chapter 5 offers a definition of game design tools that I use for the purpose of this study, then a

review and comparison of the tools the research community and industry have produced that fall

within this scope.

In Chapter 6 I argue for the need bring practice-led evaluation research to this question. Here I set

out my research goals and questions, before specifying the particular tools I practiced with for this

study.

4

Chapter 7 discusses methods used in relevant research fields and outlines the method used for

this project. As a participant-observer/“reflective practitioner” conducting practice-led research, I

describe how I apply an understanding of the design process to observe and analyse my

experiences with the game design tools under study.

Chapter 8 introduces the game projects I used as case studies and describes how I worked with

each.

Chapters 9, 10, and 11 elaborate my observations along with analyses. This content is structured

around and framed by evaluation themes and criteria drawn from the Design Support and

Creativity Support Tool literature. While Chapters 9 and 10 focus on the tools themselves and the

act of using them, Chapter 11 widens the focus to using the tools in the context of practice.

In Chapter 12 I present and discuss my experiences with my own game design tool, which I

prototyped in order to evaluate and extend one of the tool approaches under study. I explain my

tool design choices, some of which reflect the knowledge I have acquired through the course of

this study.

Chapter 13 concludes this thesis with a summary of findings and some potential directions for

future work.

5

2. THE PROCESS AND ACTIVITIES OF GAME DESIGN

2.1. Overview

Design tools support game design practice. In this chapter I review what that practice is today.

First, I give an overview of the literature on game design activities and process - of which there is

surprisingly little. I then review game design tasks - highlighting the rise in importance of

progression design, followed by a review of game design process and design activities. I give

particular attention to contemporary trends and directions, which include data-driven design and

"game jam culture”.

2.2. A paucity of literature

Any analysis of the effect using design tools has on game design process requires a reference

point: an understanding of current game design process. Here we come upon a problem, however.

As I will argue in later chapters, one of the reasons for the lack of progress in tackling the question

of design support in the game design community is the lack of formalisation: designers have not

yet codified their practices.

One might expect, however, a systematic study of game design practice to have been carried out,

if not within the industry, at least within the academic sphere. Such material could provide a

useful reference and starting point for my study. This is largely not the case, however. Kuittinen

and Holopainen, who analysed six game design books to see how the literature in our domain

corresponds to the theories of the general design research, found that even the most popular

texts ostensibly written to teach game design (e.g. (Fullerton 2008; Salen and Zimmerman 2005))

stop short of describing the game design activity itself, focusing instead on game analysis

(Kuittinen and Holopainen 2009). Holopainen and Nummenmaa add that game design as a design

activity is treated by the literature as ‘monolithic’, a mysterious ‘black box’ (Holopainen,

Nummenmaa, and Kuittinen 2010). Where design activity is implied, it is brainstorming:

There is a tendency towards equalling solution generation to brainstorming game ideas, which are
then gradually revised into game designs through an iterative process (Fullerton 2008; Rouse and
Ogden 2005; Salen and Zimmerman 2005; Schell 2008). This view is somewhat problematic
because it hides the intricacies of solution generation under the heading of brainstorming thus
making it harder to understand and talk about the mechanisms behind it. It also suggests that

6

solutions are only created at the initial stages of the process thus further blurring the idea that
design takes place throughout the whole development cycle (Kuittinen and Holopainen 2009).

And according to Järvinen (Järvinen 2008, 48):

…in my experience most of the literature functions at its best on an inspirational level (e.g. Koster
2005), or is strongly design-orientated (Salen & Zimmerman 2004; Fullerton et al. 2004). These
are important contributions as such, but they rely quite a lot on the reader’s personal ability and
experience to find practices and methods to transform the inspiration into concrete results.

Indeed, the games research community has paid little attention to game design process (perhaps

the exception being study of the process of making serious games). Sociologist Jennifer Whitson

points to the lack of developer-centric research in general within Game Studies, and attributes this

to issues of access, the game industry being, until recently at least, a notoriously insular

community with developers typically being legally bound by non-disclosure agreements. I suspect

it is also a disciplinary issue: the fact that Game Studies is situated mainly around disciplines that

focus on, and have the developed tools to analyse, audience and technology (Literature, Media

Studies, Computer Science, Human Computer Interaction (HCI), etc.), rather than design practice

and practitioners. The exception is the growing research focus on design practice being initiated

by Artificial Intelligence (AI) researchers who are working in the areas of game design support,

procedural content generation and automated design (often within the field of Computational

Creativity). It has been predominantly these kinds of researchers – ones whose job it is to create

solutions – who have expressed an interest in breaking the ‘black box’ of game design down into

definable processes and activities that can be formalised, and, in the cases of procedural content

generation and automated design, for example, reproduced1.

Some of these researchers have found it useful to look to Design Studies for guidance and I have

done this also in the chapter that follows. In this chapter, however, I have been compelled to

supplement academic research with industry publications, as well as knowledge I have gleaned as

an industry participant.

1 This scenario - where computer scientists find themselves tasked with trying to make up for a lack of foundational

design research, and end up providing some of the groundwork of design theory themselves - is not unprecedented.

Design research itself has historically been instigated by interdisciplinary researchers with a background in artificial

intelligence (Herbert Simon, for example).

7

2.3. Game design tasks today

Here I look at what game design is today, from the point of view of the tasks of game design.

The term 'game design' is generally understood to mean the crafting of the core player experience

('gameplay' or 'rules'), rather than the visual, narrative or software components of a game. A

person employed in the role of game designer is responsible for the design of a game artefact as

opposed to its construction. While some designers may have production tasks, where they are

responsible for producing or editing game data (often mission editing or statistics for game

balancing), the primary role of a game designer is that of conception and communication

throughout the course of the project. They are responsible for generating, developing and

problem-solving “gameplay” – i.e. the player experience.

In the 1990s and 2000s, as team sizes increased and games became bigger productions, design

roles were split into specialisations: Game design and level or mission design. Narrative design and

technical design too, in larger teams. Typically, in large scale game development today, game

design roles are broken down into specialist roles. The main specialisations are game design, level

design and narrative design/writing. They vary according to genre, but these roles are typical in

AAA2 games.

“Game design”, if used to designate a sub-category of game design (as distinct from the sub-

category “level design”, explained below), typically means performing design tasks concerned with

the mechanics, rules or system elements of the game, and how the player interacts with that

system (what Chris Crawford described as the game’s “verbs” (Crawford 2003, 166)). A game

designer is usually involved in the tasks of ideation and concept development in the early stages of

design. Later tasks involve designing the “rules” and broad system aspects of the game: objectives,

dynamics of the game etc. system for a first-person shooter, or figure out jump heights and special

2 In this thesis I am using a definition where AAA signifies medium to large scale, multi-million dollar budgeted game
productions, as distinct from “indie”, “social” (i.e. Facebook), and mobile games.

8

attacks for a platformer. “Technical” or “systems” design is a specialisation within the game design

role, tasked with the design of game sub-systems and game economy3.

Level design takes those elements and creates content for the player to experience over time –

within a space (i.e. game level) or within a narrative comprising missions, for example. While game

design is conventionally the systems-oriented, number-crunching task; level designers, though also

responsible for balancing player skill and difficulty in their work, conventionally more concerned

with world and story and moment-to-moment gameplay, and less number crunching.

Among the game writer roles, the narrative designer designs the narrative for the game, in

collaboration with the design team. Level/mission designers may write mission dialogue

themselves, or this may be assigned to writers.

These roles are often broken down even further in large studios. For example, a designer might be

responsible for spawn-point placements within the levels – and that remains their sole design task

until they are promoted to a different game design job. There are also exceptions to the practice

of assigning specific design roles: for example, Valve’s “Cabal” system specifically does not

separate out design from production roles (Birdwell 2006), and small independent development

teams often see artists and programmers performing design tasks.

2.3.1. New design tasks emerge

The tasks of game design within the industry are changing. Independent game development has

allowed game design to explore new directions, from which new genre currents have emerged.

These include design for procedurally generated gameplay, sandbox games experiences (e.g.

Minecraft), and “not games” (games without defined objectives, e.g. Dear Esther). However, as I

describe below, arguably the most significant changes to the practice of a game designer have

come along with new platforms and business models.

3 According to Rollings and Adams: “An economy is a system in which resources move around, either physically from
place to place, or conceptually from owner to owner. […] Most games contain an economy of some sort. Even a first
person shooter has a simple economy: Ammunition is obtained by finding it or taking it from dead opponents, and it is
consumed by firing your weapons” (Rollings and Adams 2003, 234)

9

2.3.1.1. The rise and dominance of progression design

Jesper Juul has given us a handy distinction between “games of emergence” and “games of

progression”:

The history of computer games can be seen as the product of two basic game structures, that of
emergence (a number of simple rules combining to form interesting variation) and that of
progression (separate challenges presented serially). Emergence is the primordial game structure,
where a game is specified as a small number of rules that combine and yield large numbers of
game variations, which the players then design strategies for dealing with. This is found in card
and board games and in most action and all strategy games. Emergence games tend to be
replayable and tend to foster tournaments and strategy guides. Progression is the historically
newer structure that entered the computer game through the adventure genre. In progression
games, the player has to perform a predefined set of actions in order to complete the game (Juul
2002).

Juul tells us that all pre-electronic games are games of emergence; simple rules leading to complex

gameplay, while progression-based games are “historically new”.

I would argue that in the domain of contemporary digital games, especially in the AAA space,

games with strong progression structures dominate. While the rise of more experimental

independent productions has offered a wider range of game genres, this structure is still dominant

in that space as well. This is reflected in the breakdown of roles in larger design teams, where

there are often many level designers compared to the number of game designers.

The nature of game progression has been changing, however. So too have the kinds of design

tasks designers find themselves having to perform. Significant changes to the nature of design

work over the last decade reflect the rapid ascendance of new game genres, platforms and

business models.

One of the most disruptive trends to affect game design practice has been the rise of the games-

as-service model. Games-as-service, now the dominant model worldwide for mobile games and

moving into the core games space (LeJacq 2012) arose initially in East Asia, where freemium

payment models emerged (for both casual and core games) largely in response to piracy. Key to

this model is long term retention of players, as games-as-service is typically monetized using a

“freemium” payment model: players pay progressively via micro-transactions as they play rather

than as an up-front purchase.

Game design for the games-as-service paradigm has brought some interesting challenges to the

distinction between games of emergence and progression. While Juul argues that most games

10

contain combine elements of both emergence and progression, games-as-service has provided a

new incentives to find ways of introducing and superimposing progression structures upon game

genres that are, in terms of their core gameplay, games of emergence. Candy Crush, for example,

offers quick, match-3 gameplay, but it is the player’s long-term relationship with the game –

broadly speaking, their progression – that is key to the game’s success. Sandbox style

management simulation games such as Rollercoaster Tycoon are now played within the context of

heavily engineered progression re-emerging as games like Farmville; puzzle games are now

predominantly packaged as levels with elements progressively introduced.

In many such games the progression is heavily engineered. Progression can, in a sense, become

the core gameplay mechanic itself, where the player’s decision-making and meaningful play is

wholly contained within the game’s progression design. For example, the moment-to-moment

activity may be as simple as clicking or tapping a button (as satirised by Ian Bogost’s Facebook

game Cow Clicker) while the interest and strategy of the game is that of returning to the game

repeatedly and strategically to engage with the game’s progression elements. A game’s

progression can become so complex over such a long period that the progression itself (the

acquisition of skills and powers and items) can have emergent properties of its own4.

Even the conventional “premium”5 console and PC game experience has been influenced: meta-

game elements in the form of points and badges are now awarded for all console games. Even

large-scale productions have begun adopting this trend to some extent, as AAA games begin to

adopt the free-to-play business model (notably PC games such as DOTA2)).

Hence progression design is increasingly an important and complex design task. Later in this

chapter I cover how this challenge is being met by the game industry in terms of changes to game

design practice.

4 Pokémon games are a good example of this.
5 A “premium” pricing model has the player purchasing the game outright i.e. as opposed to “freemium” (or “free-to-
play”) model where the game is monetized via in-game advertising or purchases.

11

2.4. Game design process today

There is little in the literature to guide us on what the game design process actually is, as part of,

but distinct from, the game development process.

According to Kuittinen and Holopainen’s 2009 survey of the game design literature almost all texts

describe how game design is split into different stages or phases. All models described are

variations on a theme: design, test, and analyse – and one is linear while the other is iterative.

One set of literature uses what Kuittinen et al describe as a “stage model” where the design

passes linearly from one stage to the next e.g. initial idea, concepting, designing, prototyping,

implementing, playtesting (Kuittinen and Holopainen 2009). Others advocate a model within

which design emerges through rapid evolution and iteration of concrete prototypes ranging from

simple paper ones to complex, and almost finished, software implementations (Kuittinen and

Holopainen 2009). This iterative model is newer and widely considered a “best practice” ideal –

though not always possible within business constraints and large scale productions.

The game design process is often [15, 8] described as proceeding in an iterative spiral where the
basic activities of the designers keep repeating until a satisfactory solution is reached. Another
popular way [1, 8, 2, 13] of describing the process is to view it in terms of succeeding stages,
usually described as concept design, pre-production, production, and post- production. Whereas
these models can be used to describe the process itself, they appear to be hardly descriptive of
design as an activity (Holopainen, Nummenmaa, and Kuittinen 2010).

Kuittinen and Holopainen note that this design process model contains, somewhat recursively,

“design” – which is not broken down into different types of actions and activities so as to enable

us to analyse or discuss what the designer actually does when they develop a concept into a

design, or how they set about modifying their design after duly playtesting a prototype that has

been built for this purpose (Kuittinen and Holopainen 2009).

I would argue that this reluctance or inability to describe design is symptomatic of the fact that

game design has been, to date, very much dependent on and somewhat dominated by, game

production: game production is now, more than ever, treated as a game design activity. Over the

course of this chapter I will show how and why.

12

2.5. Game design activities

2.5.1. Conventional design activities

The description below reflects design as it is conducted in the context of a conventional game

development cycle within medium to large development teams. Even development that has

adopted some “agile”-inspired6 iterative processes (for example sprints, documentation using user

stories, etc.) often still broadly follows these conventions.

Typically (i.e. in a standard commercial game development context) game designers perform

design tasks using a combination of natural-language-based documentation followed by (or

concurrent with) prototyping a playable version of selected elements of their design.

Documentation is considered to be a game designer's primary task and manifestation of anything

that could be called a design “method”7. Until recently, it has been the convention to author a

game design document (a 'GDD') which can run to hundreds of pages in length. These large

documents, which were often demanded by game publishers, are difficult to maintain and read

and have a tendency to quickly become out of date. Indeed, modern game design books de-

emphasise the role of GDDs (Schell 2008, 54:54; Fullerton 2008, 446). A more modern approach is

to produce short, disposable design documents that target specific areas of the design, written as

and when they are needed, to be replaced rather than necessarily updated. Documentation is

created using word processing, spreadsheet and data flow (e.g. Microsoft Visio) software

packages. Diagramming is most often used to map out certain details about user interfaces,

narrative flow, maps, screen wireframes and statistics. While there are no standard models or

visual vocabulary to express core gameplay concepts, individual designers sometimes create their

own ways of diagramming or sketching their ideas visually 'on the fly' (Salen and Zimmerman

2003), often improvising different ways to express their ideas for different projects.

Predominantly, however, the game mechanics, (the 'rules') are expressed in natural language.

6 Agile development. See (Beck et al. 2001)
7 Possibly the earliest attempt to define a game design method is the game design document (Kreimeier 2003).

13

Following documentation, a software prototype of the design is usually created by production

staff (programmers, artists) under the direction of designers, who as designers typically lack the

production skills required to effectively produce the prototype themselves.

Prototyping is considered a critical game design tool, in that it makes up for the perceived

weaknesses of game design documentation. Producing a playable version of the design – a

prototype – is considered to be the only reliable means of evaluating and describing the emergent

behaviour of produced game designs. Koster observes that “building a game off of a game design

document is like trying to film a movie off of the director's commentary”; Salen and Zimmerman

assert that important questions such as “is the game accomplishing its design goals?” and “are

[players] having fun?” can never be answered through conception and design alone - they can only

be answered by play (Salen and Zimmerman 2003).

When creating a prototype, designers must decide which aspects of the design they want to test.

Usually this is a core game mechanic, but it could also include any game mechanics that are novel.

In this way, the prototype is targeted; it is not simply a smaller, rougher version of the game.

Several prototypes may be produced, each dedicated to evaluating different ideas. Designers are

usually not the only clients of the prototypes; the evaluation of key art and technical challenges of

the game could be included in the same prototype.

Designers aim to learn from the prototype and integrate their conclusions into the design. Within

a conventional game development process (now falling out of favour), the prototype is “thrown

away” after preproduction and the game is built from scratch, the designers being unable to

playtest a version of the game again until “alpha” – i.e. towards the end of development. Iterative

project management styles, facilitated by advances in game development technology, have more

recently afforded designers the ability to playtest throughout the project.

Organised user testing, often conducted by specialists in user research, can provide playtesting

feedback to designers that serve as a resource to support design thinking. Even quality assurance

testers - whose function is primarily to find bugs – can provide designers with useful data.

Designers can provide quality assurance testers specific test cases, e.g. “how many hours does it

take to complete every mission in the game”, or “can every boss fight be won using this character

class”.

14

The gaming public has also been used as a playtesting resource by designers. Public and private

beta testing for some core game genres – particularly Massively Multiplayer Online games – has

been practised for many years. Where the game is played online, it has been possible to gather

data about the player experience via the internet. Offline games have relied on cooperation of the

player to go online to send these data to the developer in the form of written feedback or log files.

2.5.2. Modern directions in design activities

2.5.2.1. Design by making

More recently, prototyping has become accessible to designers. A designer-accessible prototyping

method that has been made possible (within the independent and amateur sectors of the game

industry in particular) is the use of simplified production tools, some of which have removed the

need for the user to know any form of programming to create a simple game.

This has meant prototyping has become a mainstay of design practice. It has also spawned a

phenomenon within the culture of game design known as the “game jam”, where designers

rapidly design and produce a game or game prototype within the space of a day or two.

Another prototyping – or perhaps better called “simulating” - method is paper and physical

prototyping, inspired by the methods of board game designers. It usually involves using cheap

materials like cardboard and plastic tokens as abstract representations of game elements to play

out a 'real-world' prototype of the game where humans perform the role of the computer as well

as the players. This 'analogue' style prototyping is encouraged as best practise by the major game

design texts (Fullerton 2008; Salen and Zimmerman 2003). Publisher and developer Electronic Arts

gives its internal designers workshops on physical prototyping methods (Fullerton, 2008: 20).

2.5.2.2. Design “house style”

Some studios have developed their own particular design conventions and practices. It is difficult

to find material on these, or to know how much exists, as internal processes are rarely shared

openly. That said, designers frequently switch between projects and employers, and based on my

personal associations with designers working around the industry, it is hard to get the impression

that any major studios are hiding secret practices that are significantly different or much more

elaborate than others.

15

We do know, however, that Ubisoft, for example, call aspects of their design practice "Rational

Design". According to an intern who wrote about the methods he was taught at Ubisoft, Rational

Design is “a tool for facilitating solid learning and difficulty curves and even helps us to inject a lot

of variety into the game experience” (McEntee 2012). Within the context of progression design it

appears to be the measuring and distribution of gameplay elements in terms of difficulty and

variety. Design thinking is supported with simple tables and charts, for which the data are derived

from playtesting and is extended by deductive reasoning and simple calculations.

In addition, over the years designers and teams have occasionally shared their own design

methods in trade magazines (Game Developer magazine and on its associated website

Gamasutra). Level design approaches, diagramming methods and the use of Microsoft Excel to

calculate game balancing data are popular themes.

2.5.3. Testing

Though testing has always been part of the game development, in recent years testing has

become more extensively and intensively applied to the design process.

2.5.3.1. Automated testing

As described above, designers receive input from teams of quality assurance testers. Real players

(the designer, the team, the Quality Assurance department – and depending on the nature of the

project, public beta testers) play a version of the game feeding that back into the game design in

the form of written reports. With the games as service model (mentioned above), where games

last weeks and months, internal playtesting is harder. As discussed above, progression design has

become technically challenging. Conventionally, progression design has been tested by quality

assurance testers. But this is no longer enough.

Automated quality assurance testing is now used to supplement manual, human methods.

Automated testing has become common practice in the software industry and has now become

adopted in game development. As well as verifying gameplay logic (for example: (Marlin 2011)), it

can be used to produce gameplay traces that can answer simple range-based questions a designer

could have that could be scripted. Rather than using deductive logic, an automated testing script

can, by simple brute force, “play” the game many times over to verify game data. An automated

testing script for a free-to-play game, for instance, might check for changes in the game’s “pinch

point” (the point at which the player runs out of game currency and will need to make a purchase

16

with real money in order to continue playing) after each change the designer makes to the game

data. I have created such a script.

Automated testing, however, has difficulty testing the player experience. The creation of

automated players is in fact a current research challenge (Nelson 2011). A script can exhaustively

play a game but it cannot make gameplay choices as a player. This is a gap that can be filled by

player metrics, which I discuss below.

2.5.3.2. Players as testers

Above I mentioned that in the games-as-service model an evolving relationship between the

player and the game over time is a designed element of the gameplay itself. Typically, Games-as

Service design process is very similar to the “lean start-up” method (Ries 2011). A Minimal Viable

Product (MVP) (i.e. a deliberately small version that is not the final product), a term borrowed

from the software development industry, is built expressly for design and testing purposes. The

MVP is “soft-launched” in a single market (i.e. in one country) – it is not a product launch so much

as a public beta test. Over a period of weeks, player metrics are gathered in real-time, analysed by

game designers and specialist analysts, and used to inform modifications to the game’s design. If

a certain part of the game is little used by players, for example, the designers may conclude that

this part is not successful and it may be cut; if players fail too many times at a task that task may

be simplified. A/B testing – borrowed from Interaction Design – is also used, both for balancing

gameplay and making decisions about the visual and interactive elements of the game. Once the

game has attained certain behavioural goals, visible in the metrics (typically relating to player

retention and monetization behaviour), the game design is considered strong enough to launch

globally – this time as a product. While the game is live in the global market, small design changes

are made and new content is added, but it is in the soft-launch phase that major design changes to

the “core game loops” are meant to take place.

In this way design thinking is supplemented by the capture and analysis of player data, which are

relied upon to iteratively reshape a game’s design, particularly its progression. These new game

design activities involving the preparation for, the gathering of and the analysis of player metrics –

often called “data-driven design” – have become dominant in the activities of game design in this

new section of the industry. Design roles dedicated to this are becoming more prevalent.

17

This is leading a shift in game design practice more broadly. As the games-as-service monetization

model gains traction in core games, working with player metrics data is becoming a common part

of the design process for more and more genres of games, on a variety of platforms (Whitson

2012, 310). Another contributing factor to the increasingly widespread use of player metrics is that

it is now technically more achievable. Of course, as mentioned above, gathering of player metrics

using public and private beta testing has been used for some game genres for many years –

notably for online games. Now many more game genres require “always-online” play, and even

single-player PC games are often played “online” – the default mode of Steam, the dominant PC

gaming platform, is online. Development support for the gathering of player metrics is now far

simpler as well, with the relatively recent availability of tools built into popular game engines that

plug into online analytics services, many of which are game-specific. Unity (Unity Technologies

2005) plugs into GameAnalytics (GameAnalytics 2010), for example, while GameMaker: Studio

(Yoyo Games 1999) partners with Flurry Analytics (Flurry 2005).

Another contemporary trend that also harnesses player data is the practice of “open alpha”. This

is popular in indie game development. Access to the alpha requires payment from players, and its

function is primarily that of fundraising for further development on the game, and community

building ahead of the game’s official launch. An open alpha also provides feedback to designers.

The design success of Minecraft, which ran arguably the most famous open alpha, is widely

attributed to the long period of tweaking to the design based on feedback from the community

during its open alpha.

In this way, testing has been extended and formalised into a powerful design tool, as part of the

iterate-and-test formula now generally accepted as best practice in game design. In fact we can

see that, generally speaking, the emerging trends in game design activities, from game jams to

data-driven design, fit into and reinforce an iterate-and-test design narrative.

2.5.4. The influence of the software and internet industries on game design

This iterate-and-test method within game development did not emerge in isolation; it came, in

large part, from trends in the software development industry – specifically iterative development

models. This is not unusual – game development has long been influenced by the software

development industry. The first practitioners of videogame design were programmers (Crawford

2003, 114), and a game’s technical qualities continue to be (though arguably less than they were)

18

an important factor in a game’s commercial success. In terms of power within development

studios and salary, engineers still retain a lot of power in relation to designers. It could be argued

that this is necessary, the technical difficulty of game development is still significant, as is the pace

of technological change. This dominance, however, could explain why game developers have been

influenced by the software industry more so than design disciplines in other entertainment

industries in terms of design practice. As I will argue further on, we can see this influence

continuing and intensifying through into the new trends in game design practice that are emerging

today.

The “stage model” for game design described by Kuittinen and Holopainen (Kuittinen and

Holopainen 2009) makes sense when seen alongside a conventional game production process – it

is effectively the result of game production forcing its context and constraints onto game design.

Here, game designers are obliged to fit their work into a sequence that includes high concept

development, pre-production, and production (alpha, beta, completion), where playtesting and

major design changes are only possible months into the process, shortly after the “alpha”

milestone is met. The game’s publisher would demand that the full design be documented and

approved before production would commence.

As Waterfall-style production processes (Benington 1956) fell out of favour in the wider software

industry, game developers had similar critiques of its use in game development (see for example:

(McGuire 2006; Cook 2006)). It was a process in which engineering, production and business

priorities tended to dominate - often at the expense of design concerns (designers having to wait

months until they can playtest a first version of their design, for example). Inspired by the wider

software development industry’s move towards agile-inspired production methods, thinking on

game development production processes shifted accordingly. I personally recall how in 2005 I was

told by a very influential game design figure that the best game design advice he could give was to

read The Agile Manifesto, because “everybody” in game design (note this was design, not

development) was talking about it and how it might improve game design process. In other words,

designers hoped that iterative development methods could not only solve the industry’s

19

production issues8 but also empower game designers (again, see (McGuire 2006; Cook 2006)) The

second – iterative – model of design process derived by Kuittinen and Holopainen from the game

design literature reflects this new game production model – i.e. game design within a

development culture where “iterative development” is now considered best practice.

Using the old production model, game design was very much at the mercy of production. Iterative

development has given game designers more control, but it is control afforded not by more

powerful design methods or tools, but by having more control over production. In the new model,

production now serves design to a greater extent: prototyping and other forms of production are

formalised as explicit steps of the design process; testing for the sake of design is formalised and

extended (to online player metrics). Here again, in player metrics we see the influence of current

trends – and the technologies – of the software development industry and its almost ideological

belief in the power of data analytics.

Indeed, key elements of the modern game design toolset (even some of the modern language of

game design - the phrase “fail early”, being a notable example) that support and reinforces this

“iterate-and-test” method, could be in large part attributed to the influence of the software

development industry. 9

Of course, aside from the conscious adoption of modern production approaches, other factors

have played a part. Advances in technology have made it significantly faster and easier to

prototype games than it was a decade ago. Business factors have also influenced these design

trends. For example, the gathering and analysis of player metrics is now becoming necessary for

business reasons. This is in large part due to changes to the publisher-developer relationship

within game industry business models: publishers and investors who would previously have

offered production funding on the strength of a pitch and due diligence now are increasingly

demanding that some form of the game be already produced and proved in the market (for

8 In 2004 the International Game Developers’ Association blamed poor project management as one of the principle
factors contributing to a workplace culture of long hours, job instability, scheduling blow-outs and a 95% marketplace
failure rate (IGDA 2004).
9 It is worth nothing that, in addition, board game and table top game designers have been using iterative methods for

years – another reason for videogame designers to be comfortable with a prototype-and-test method.

20

example, interest generated in the game via a crowd-funding campaign, player metrics from a

soft-launch, or release on a single platform) before they will publish or invest. This is now common

in mobile game publishers and there are signs of established AAA publishers following this trend10 .

In this way, large sections of the game business are adopting a model strikingly similar to that of

start-up business culture practices of Silicon Valley – where, not so coincidentally, perhaps, the

industry’s main conference, the Game Developers’ Conference is held annually.

Games’ relationship with the wider software development industry is important to note, as its

effects flow through into game design and into the day-to-day work of practitioners. Game design

is being shaped by not just the technology and platforms it uses to bring games to life; it is shaped

by the design practices of and the business landscape backgrounding that technology.

2.5.5. The pros and cons of iterate-and-test game design

Here I discuss the effects of these methods on design practice. In particular, do these new

methods solve the gap in the design tool chain?

2.5.5.1. Design-by-making

There are undoubted benefits to designers being able to represent their designs as playable

prototypes rather than in a document – it is a superior means of communicating and exploring

their ideas. Unlike the blank page that a text document offers, however, there are fundamental,

unavoidable limitations in what can be explored and expressed using production tools for the sake

of design.

First, attempting to design sophisticated experiences by prototyping can unwittingly privilege

design elements that can feasibly be implemented within the prototyping environment. This

limitation could be partially attributed to the limits of the designer’s own technical skill; or, more

fundamentally, due to the limits imposed by the tool. This is inevitable: tools that allow designers

to create rapid prototypes do this by severely simplifying, constraining and restricting the

possibility space available to the designer in order to do this. This is a serious problem, given that

10 See, for example, Square Enix’s “Square Enix Collective” (http://collective.square-enix.com/)

21

design tool researchers believe that tools strongly affect a designer’s thought processes (Resnick,

Myers, and Nakakoji 2005).

Secondly, the production goals of production tools are in direct conflict with the maintenance of

the kind of unresolved ambiguities in the design situation considered effective in a design tool11.

Production favours a direct path towards a goal, whereas design favours the exploration of a

problem space. Lawson noted that for architects, production tools (in this case, 3D CAD systems)

that were effective in helping architects compose solutions were found to be obstructive in terms

of creative exploration (Lawson 2006).

Tellingly, improved production tools and the ease of producing a playable experience have not

necessarily reduced design and development time for all genres of games. While a game can be

produced over a weekend, the design work involved in the development of even relatively small

games has not necessarily been reduced. It would be hard to claim that the major improvements

in the design-by-making toolset have solved the wicked problem of game design.

2.5.5.2. Paper prototyping

While production tools are certainly more accessible than they used to be, they do require an

investment in terms of technical skill; and, as noted above, they constrain the exploration of the

designer. A paper prototype is, in one sense, an effort to participate in the prototype-and-test

cycle without those constraints. It has its own drawbacks, however. Even the strongest advocates

of physical prototyping advise that paper prototyping is only suitable for certain styles of games.

Tyler Sigman, a designer who has made extensive use of paper prototyping in his work, observes:

Although there are some terrific reasons to make an analog prototype of a digital game, there are
also some inherent limitations to such a process. The first, and biggest, is that there are some
games for which analog prototyping just doesn't make sense. Case in point, games where a real-
time action component is the sole mechanic (Sigman 2005).

In a sense, one could see designers’ use of production tools for design purposes, and the cheap,

primitive nature of paper prototyping represent a kind of "making do" - a collection of survival

strategies that designers have evolved, adapting to and around the constraints and needs of

production, in the absence of investment in dedicated design technologies.

11 Attributes of design tools are discussed in detail in Chapter 8

22

2.5.5.3. Data-driven design: “a gut-wrenching change”

With data analysis as part of a game designer’s toolkit, how successful is the application of big

data techniques to game design? Will big data supersede our need for design tools? If the most

sophisticated tools available to designers are statistics and deriving things from data, what is the

impact on design thinking?

Whitson, using a method comprising interviews with game developers and embedded

ethnographies at small game development studios, discovered problematic aspects in data-driven

game design.

I have argued above that the adoption of data-driven design can be seen as part of a continuation

of the game industry’s tendency to take its cues on development methods from the wider

software development industry. As for more specific motivations for its use in games, Whitson

finds that data-driven design is motivated by the need to minimise market risk:

Metrics reduce the risk of game development. As argued by Justin Johnson, "In years gone by it
could be pretty hit-and-miss, and you'd have designers that just went on gut instinct. The good
ones got it right; but they didn't get it right all of the time - but now you can concentrate on
looking at what all of your players want, and work towards providing it for them" (Elliott 2011b).
Accordingly, rather than relying on developer insight into player behaviour, metrics are advanced
as more reliable replacements for traditional modes of developer intuition (Whitson 2012, 300).

Secondly, metrics serve as a relatively cheap and easy alternative to time-consuming playtesting

methods. In this, use of player metrics has been hugely successful. Here designer Laralyn

McWilliams describes the benefits of using player metrics in her work on Free Realms:

Metrics gave me information, but they also let players talk to me directly and honestly. This
wasn't the "guess, ship, and pray" design process of console games. I wasn't making decisions in a
void anymore. With a combination of understanding the game, tracking changes, watching
metrics, and listening to players, we made significant improvements to the player experience
(McWilliams 2013).

There are, however, many designers who are critical of the industry’s use of data-driven design

(including McWilliams). First, some consider it to have a negative and narrowing impact on design

thinking; second, it disempowers designers rather than empowers them; it discourages risk-taking

and stifles innovation; it entrenches an iterative process of evaluation that discourages innovation.

I would add that, most crucially, it is limited as design support due to its reliance on production.

Like conventional user testing, the gathering of player metrics requires the production of a game

to test. Just as conventional development saw costs and schedules spiral, production costs and

23

development time to launch an MVP suitable for gathering metrics are rapidly rising, as intense

market competition raises quality expectations among players.

Both critics and advocates of data-driven design warn that these techniques should not be used as

a substitute for design thinking, as their utility is strictly limited. Player metrics provide

information, but analysis of that information is up to the designer. Metrics can tell the designer

what their players are doing but not why; it can highlight problems but give little insight into their

causes (Sinclair 2013; Fahey 2013).

Critics of data-driven design express the concern that in practice these techniques are in fact

substituting for design thinking. An overreliance on analytics sees design thinking put in

competition with, and subordinated to, decision-making based on player metrics. This results in

games as "mathematically tailored experiences, targeting the lowest common denominator"

(Bruno 2010 in Whitson, 2012:304) Whitson warns of the danger of advocates of analytics putting

“too much faith in the numbers” to guide their design decisions. Whitson has observed of

developers that:

…once developers get in a metrics-driven mindset, one where minor changes are made with clear
evidence to say what was right or wrong, they are limited from considering other ways of
thinking. They stop considering whether the game's secret sauce is its sense of humor, the real-
world experience shared by players enjoying the game with one another. It's difficult, if not
impossible, to hold both of those mindsets at the same time (Sinclair 2013).

Whitson argues that not only can the use of metrics supplant design thinking, it can change it in

negative ways. While metrics are excellent for optimising games, says Whitson, they “by their

nature, stifle innovation”. Metrics are fundamentally retrospective: they indicate what mechanics

are currently popular, and can refine and perfect existing mechanics, but in doing so they

contribute to repetitive and self-referential game design. Further, from a statistical point of view, a

method of iterative adjustments, adaptions and improvements in fact acts against the chance of

great design successes:

One problem with this is that it drives success to the local maxima, the highest peak in the
immediate vicinity. If there is a larger peak that can be reached, but only by going through a
valley, reliance on metrics will keep games from reaching it (Sinclair 2013).

While testing would, on the face of it, seem to be a very good tool, too much testing can be the

enemy of creativity. Whitson references Greenberg and Buxton’s thoughts on how in HCI, early

and frequent usability evaluation encourages developers to solve problems through iterative

24

refinement. This, they say, leads to “local hill climbing” (minute improvements along similar lines

until an optimum state is found) at the expense of considering and developing much better ideas

that lie further afield (Greenberg and Buxton 2008 in Whitson 2012). In this way, data-driven

design serves to further entrench the risk-averse nature of the game industry.

Whitson argues that many developers, including those who use it, have these and similar

misgivings about data-driven design. Such fears may seem exaggerated and paranoid, as one

might assume that avoiding any overreliance on analytics is a straightforward case of designers

using their own discretion to use player metrics wisely and appropriately. This assumption,

however, overlooks the context of the power relations in the game industry that make it difficult

for game designers themselves to direct their own practice.

There is a fear within the design community that methods based on player metrics which

effectively means a loss of design control, where design thinking is replaced by a kind of design

that becomes crowdsourced and “consumer-driven”. Andrew Wilson, vice-president of EA Sports

(i.e. speaking from a relatively powerful, establishment position within the game industry),

describes the adoption of data-driven design as a “gut-wrenching change”, where design power “is

no longer about” the opinion of the game designer or producer now that:

…we [EA Sports] are a consumer-driven development organization who are constantly changing
based on real-time feedback on an hourly basis from the people who play our games (Wilson as
cited by Brown, 2011)

Drawing on his experience designing in the games-as-service domain, Greg Costikyan is more

explicit in describing this shift in power, with his bald assertion that games that rely on metrics

“give suits the whip hand” – in other words, metrics wrest power away from designers and

towards publishers (Whitson 2012, 303). While analytics data are ostensibly supposed to aid

designers in their work, they can easily be taken out of context by publishers to be used against

them in disputes over creative decisions. Notes Whitson, “numbers are convincing, whichever

person in a design argument has the numbers is likely to win”. She argues that this allows abuse,

in that there is a power imbalance in terms of who is interpreting the data, and how these data

influence the decision-making process of the interpreter (Whitson 2012, 303). Whitson goes so far

as to claim that data-driven design is serving to reduce the industry’s reliance on creative

professionals, thus allowing publishers much more influence over design (Whitson 2012, 304). The

result: “many designers are effectively designed-out of game design” (Whitson 2012, 309). Their

25

creative autonomy “eliminated”, designers “effectively have robot overlords in the form of

metrics” (Sinclair 2013).

As previously discussed, the question of creative control is important; it has long been an

important theme in industry debates. As I have argued, an explicit desire for more creative control

fuelled the rise of independent development; it also saw designers embrace iterative, agile

development inspired methods, push for “designer-friendly” production tools and try to exert

more control over a production process that they perceived as not serving the needs of design. If

player metrics can be used as a means of reducing the creative control of designers then this new

innovation of player metrics may not be bringing designers closer to this goal of creative

empowerment.

The forces that impact creative control in the game industry – the business aspects - are relevant,

but are not within the scope of this thesis. There is, however, another factor that is leaving

designers at the mercy of metrics: the lack of any other meaningful design support. Yet this is not

something that has been raised in the debates. NYU Game Center director Frank Lantz, in a piece

critical of data-driven design, advocates in counterposition to this trend that designers instead

embrace “divine inspiration”(Lantz 2015). As a design technique, however, inspiration alone

cannot address the increasingly demanding challenges of game design practice. If the rise of data-

driven design tells us anything it is that design support is wanted and needed. Player metrics are

filling a design support vacuum: as Justin Johnson describes above, metrics were adopted as an

improvement on the “hit and miss” approach of “gut instinct”. While we have no other support for

design thinking it is no surprise to see our practice become heavily reliant on big data and its

heuristic, user research-based, brute force approach. Instead of countering the push towards data-

driven with a high culture-style mystification of the design process we can do the opposite: we can

demystify and codify game design, championing the kind of design thinking that affords designers

useful tools and techniques – ones powerful enough to reduce our reliance on passive, testing-

driven methods that are in turn reliant on production and the participation of thousands of test

subjects.

26

3. GAME DESIGN AS A DESIGN PRACTICE

3.1. Overview

This chapter has two purposes. The first is to review some concepts from Design Studies that can

provide a language and toolset to be used later to frame the discussion of my practical work

presented in the chapters that follow.

The second is to use these notions to understand the state of game design practice, as described

in the previous chapter, from the point of view of how game design tools fit in in relation to that

practice. From this I conclude that contemporary trends in game design have served to entrench

game design as a crafts-based design culture, masking the limitations of game design

understanding and delaying a shift towards "self-conscious" design in game design practice.

The final part of this chapter describes the context and the history of calls for and the

development of game design tools, which emerged into a research domain within both academia

and industry.

3.2. Why design studies?

As mentioned in the previous chapter, it has predominantly been Artificial Intelligence (AI)

researchers in games who have found themselves enquiring into game design practice. Finding a

lack of domain-specific literature on the process and activities of game design they have tended to

look to Design Studies. There has in fact long been a link between the computational research

community and Design Research. AI was one of the research areas of Herbert Simon, one of the

early pioneers of Design Research. Design research in the 1960s and 70s was in part inspired by

developments in AI and the cognitive sciences, where the endeavour to build intelligent computer

systems focussed on the ability of such a system to solve ill-structured problems within an open

context – which is somewhat comparable to designing (Dorst 2003). The field of Computational

Creativity maintains a strong connection with Design Research.

Researchers in design support and automation are not the only ones to look to design research for

answers, however. Holopainen et al have also looked to Design Research, and found it helpful for

27

analysing practice-based game design research. Design Research models have been advocated and

applied by Holopainen, Kuittinen and Nummenmaa (Holopainen, Nummenmaa, and Kuittinen

2010)(Kuittinen and Holopainen 2009) to the analysis of game design process based on data

gathered from participant observer practice-based research. They have published a first attempt

at using design research models to analyse game design, where they study the process of

designing a pervasive mobile phone game (Holopainen, Nummenmaa, and Kuittinen 2010). They

report that the design research models allowed them to reveal, capture and analyse nuances of

the activities, design situations, and design choices within the game design process studied that

may otherwise have escaped them. Importantly, they report that models borrowed from Design

Research delivered them more insights into their game design experiments than the game design

literature itself (Holopainen, Nummenmaa, and Kuittinen 2010).

While the components of the game design activity have only relatively recently begun to receive

attention from researchers, there is a wealth of material in other disciplines that can allow us to

study game design as a design activity. As Hewett notes:

Even though creative products can show substantial differences across several domains of human
endeavour, there are reasons to believe that there are key conditions and processes that are not
domain specific and that are associated with successful creative work regardless of the domain in
which that activity takes place.(Hewett 2005)

Where Holopainen et al have begun to apply design research concepts to the analysis of game

design scenarios, for my project I draw upon them for models to inform my evaluation criteria and

analysis. I look at current game design practice through this lens in order to provide a kind of

benchmark for comparison, and to develop an understanding of how design tools could, and even

should, change this practice.

3.3. The character of design

Early design theorist Herbert Simon defined the act of design as the changing of an existing

situation into a preferred one (Simon, 1969: 111). Within the context of interaction design,

Löwgren and Stolterman add that to design is to create something new (Löwgren & Stolterman,

2004: 9), and according to Schön, a designer “makes things” – those things often being

representations, plans, programs or an image to be constructed by other people (Winograd 1996).

28

While the above definitions of design seem fairly broad, the defining characteristic of design seems

to be as much about what it is not as what it is: design problems, solutions and methods differ

from those of the scientific method.

The definition of design as making something new means that while scientific inquiry seeks to

describe what things are and how things work, design fields (engineering, architecture, social

service fields) are concerned with what should be. According to Banathy, the salient intellectual

process of science - a “conclusion-oriented” mode of inquiry - is analysis, its guiding orientation

being reductionism. By contrast, the intellectual process of design – which uses a “decision-

oriented” mode of inquiry - is synthesis, with an orientation towards expansionism (Banathy,

1993).

The goal of creating something new, of creating change, shapes the nature of design problems.

Löwgren and Stolterman point out that while the designer's current understanding of a design

situation (the current state of a design at a point in time12) is commonly referred to as the

"problem", and her ideas on how to proceed are called "solutions", these are not problems in a

mathematical or logical sense: there are no “correct answers” to a design problem and the

understanding of the problem itself grows and changes during the design process. (Löwgren and

Stolterman 2004).

This evolutionary process is unpredictable. According to Schön, unpredictability is a central

attribute of design – not necessarily a defining one, but it is important. The unpredictability of

design means that there is no direct path between the designer’s intention and the outcome

(Winograd 1996).

When surveying design process models, Lawson argues that process where stages of analysis

(understanding the problem) and synthesis (generating solutions to the problem) are separate is

12 According to Schön, a design situation includes many elements: materials, a sense of purposes and constraints as

the designer sees them, and the designer’s sense of the people who will eventually use the artefact resulting from the

design process (Winograd 1996)

http://link.springer.com/search?facet-creator=%22Bela+H.+Banathy%22

29

more of a scientific approach, whereas for designers, based on his study of architecture and

science students, analysis is more integrated with synthesis. In Lawson’s words:

The behaviour of the architect and scientist groups seems sensible when related to the
educational style of their respective courses. The architects are taught through a series of design
studies and receive criticism about the solution they come up with rather than the method. They
are not asked to understand problems or analyse situations. As in the real professional world the
solution is everything and the process is not examined! By comparison scientists are taught
theoretically. They are taught that science proceeds through a method which is made explicit and
which can be replicated by others (Lawson 2006, 3rd revise:43)

3.4. Design morphologies

Design researchers have tried to describe the shape of the design process (the “morphology of

design” (Asimov 1965)) by breaking it down into the types of design activity that the designer

engages in, and when.

3.4.1. Two models

There have been numerous design process models proposed by design researchers, which I will

survey below. Historically, however, there have been two major schools of thought of design

research thinking in terms of how the design process should be described: the rational model and

the action-centric model.

The first paradigm, the “rational” model, was the first model proposed. Introduced by Herbert

Simon and Allen Newell in the 1970s (Simon and Newell 1972), this is a problem-solving approach

that views design as a rational search process: the designer defines a “problem space” which they

survey in search of a design solution. Where the problem space is too large, ill-structured and ill-

defined to be described, the designer is faced with what Simon calls an “ill-structured problem”.

For ill-structured problems, the search process is to be applied to only part of the problem space,

known as an “immediate problem space”. The rational model outlines a sequence of stages that

make up the design process, starting from pre-preproduction and continuing through into post-

production and redesign.

The second paradigm, the constructionist “action-centric” model, emerged in reaction to this

problem-solving approach. Later, Donald Schön, critiquing the rational model of mainstream

design methodology (Schön 1983, cited in Dorst 2003), challenged its assumption that there is a

definable design problem to start with. Simon’s science of design could only be applied to well-

30

formed problems that had already been extracted from situations of design practice – i.e. they

required design activity in order to form them. Schön criticised the lack of attention paid to the

structure of design problems and its failure to link process to the problem in a concrete design

situation – and that this “action-oriented” knowledge (“knowing-in-action”) cannot be described

within the paradigm of technical rationality. Schön admits, however, that this knowledge is hard to

describe and define, and is often implicit knowledge acquired through professional practice (Dorst

2003).

3.4.2. The difficulty of describing design process

The modern consensus, therefore, tends to regard the design process as very non-linear and a

good deal harder to describe and define than first thought. The problem/solution paradigm is,

modern researchers suggest, an oversimplification of the design process. Nigel Lawson, in his book

How Designers’ Think, suggests that attempts to provide design process models that map how a

designer’s attention moves between design activities reveal that there is in fact no firm route

through the design process. He likens the designer’s route to a “chaotic party game where the

players dash from one room of the house to another simply in order to discover where they must

go next” (Lawson 2006). Schön similarly observes this lack of linearity, and attributes the lack of

direct path between the designer’s intention and the outcome the fact that unpredictability itself

is a central attribute of design. According to Löwgren and Stolterman, the unpredictability and

uncertainty of design work renders every design process unique (Löwgren and Stolterman 2004: 9-

10). The designer will “just have to put it (a design process) together yourself”, according to

Lawson, as a designer knowing that design is an iterative cycle of linked activities (namely analysis,

synthesis and evaluation) is of little help to them in terms of guidance for how to design (Lawson

2006, 3rd revise:40).

Even the distinctions made between the activities within the process are in dispute. Central to

modern thinking about design, according to Lawson, is that problems and solutions emerge

together, rather than one following logically upon the other (Lawson 2006, 3rd revise:118). He

points to evidence from a study where the process of inexperienced, student architects was

compared to that of experienced practitioners: while design students may follow a more rigid

process this is not the case for experienced designers, who tend to use a strategy of analysis

through synthesis. Designers learn about the problem through attempts to create solutions, rather

31

than through deliberate and separate study of the problem itself (Lawson 2006, 3rd revise:44).

This is because, according to Lawson, in design it is difficult to know what problems are relevant

and what information will be useful until a solution is attempted (Lawson 2006, 3rd revise:56).

Others agree: Koberg and Bagnall suggest that both analysis and synthesis continue throughout a

project (Koberg and Bagnall 1972 cited in Dubberly 2004); Rittel and Webber (Rittel and Webber

1973 cited in Dubberly 2004), agree, saying that the information needed to understand the

problem actually depends on one’s idea for solving it. In this way, the activity of synthesis provides

a tool for the activity of analysis: the process of attempting to solve the larger problem (synthesis)

provides a means for discovering and examining the constituent problems (analysis).

Lawson even goes so far as to suggest that rather than seeing a problem and a solution as

separate entities, they are better seen as two aspects of a description of the design situation

(Lawson 2006, 3rd revise:296). Dorst and Cross confirm this, saying that a design solution is often a

design problem until the design task is considered finished.

In the majority of practical design situations, by the time you have produced this and found out
that and made a synthesis, you realise you have forgotten to analyse something else here, and
you have to go round the cycle and produce a modified synthesis, and so on. (Dorst and Cross
2001)

While the process may be blurry, it seems possible to define an overall shape or direction. Lawson

describes how both problem and solution become clearer as the process goes on; Newkirk

suggests that designers may begin by focusing on analysis (the problem) and gradually shift their

focus to synthesis (the solution) as illustrated in Figure (Newkirk 1981 in Dubberly 2004).

Figure (text/chart/diagram etc) has been removed due to copyright restrictions.

Figure 1: Newkirk's design process model showing a gradual shift from analysis to synthesis (Dubberly

2004)

Figure has been removed due to copyright restrictions.

Figure 2: Design morphology showing alternating periods of convergence and divergence, within a

broader trend towards convergence (Dubberly 2004)

According to Nigel Cross, the overall process of design is convergent (solving), but it contains

periods of deliberate divergence (exploring the problem) (Cross, 2000). This model is illustrated in

Figure 2.

32

3.5. Design activities and materials

This study is less concerned, however, with the chronological structure of the design process than

with the activities contained therein, towards understanding how tools can support these

activities. Even though the boundaries between design activities may be ill-defined, their

descriptions provide a vocabulary with which to analyse the design experience and its artefacts.

That said, as we have seen above, design activities themselves may be hard to define, and it can

be difficult to determine whether one activity is happening as distinct from another. Where

distinctions are made, they can be controversial (e.g. between analysis and synthesis). Parts of the

process happen simultaneously and are integrated, such that differentiating between design

activities and the transitions from one activity to another pose a challenge. The activities are not,

as explained earlier, separate stages in a linear process.

Below I have described elements of design activities, not from the point of view of process models,

but extracted from the models and grouped according to activities. As well as surveying the design

activities themselves I cover how researchers have conceptualised the materials of design (the

reification of design thinking external to the designer), and how these materials are

produced/externalised.

Below I introduce some concepts drawn from Design Studies in order to lay a foundation of

underlying assumptions and terminology that I use when reflecting on practice in later chapters.

3.5.1. Design materials

3.5.1.1. Externalisation

Schön describes the act of design as the designer having “a conversation” with the materials of

design (Schön 1983 in Lawson 2006). Design materials are the reification of the designer’s

thinking, that exist external to the designer. They represent the elements of a design situation that

has been externalised from the designer’s head – e.g. onto paper. Lawson calls this ‘design

drawing’, where a drawing is not done to communicate with others but rather as part of the

design process itself (Lawson 2006, 3rd revise:26). Externalising design ideas helps to lessen

cognitive load (Fischer 2004). More importantly, however, by externalising the ideas the designer

does not simply empty out the mind but actively reconstructs the ideas, forming new associations.

As Schön notes, “it is rare that the designer has the design all in her head in advance, and then

33

merely translates it.” (Winograd 1996) In a conversation with these externalised ideas, the

practitioner acts to shape the design situation by creating or modifying the materials. In return the

situation “talks back” to the designer, revealing implicit, tacit, and emergent dimensions of design

tasks that designers may not have considered. The designer listens and reflects on this “back talk”

(Bruner 1996 in Fischer 2004). Schön describes the process as “seeing-drawing-seeing”: the

designer draws, and sees (and judges) what they have drawn, thereby informing further designing

(Schön 1992).

Lawson characterises this externalisation as a design activity he calls “representing”. A

representation can be, for example, “a scribble or a functional software prototype or thinking out

loud”. He notes that the designer is almost always working with multiple representations – they

serve as representations of possible design choices, and in this way make possible design choices

concrete.

3.5.1.2. Löwgren and Stoltermans’ three levels of abstraction

Löwgren and Stolterman, in their work on interaction design for information technology,

distinguish three abstraction layers that describe the implicit and explicit ways design thinking is

formulated at the early state of design work. According to Lawson, “representing” can be on any

of Löwgren and Stolterman’s abstraction levels. They are: the vision, the operative image and the

specification.

The vision can serve as a guiding, organising principle for the whole design process. It emerges

(through an intuitive, rather than an analytical process) when the designer is confronted with the

initial design situation. The vision can take many forms: from vague and implicit ideas to rough

sketches and ad hoc verbalizations. Similar to Lawson’s concept of representing multiple possible

design choices, these ideas are often contradictory and chaotic, allowing the designer to be able

to assess the design situation from several points of view (Kuittinen and Holopainen 2009).

The operative image, as a first externalisation of the vision, serves as a tool for making the vision

and the design situation more concrete. It allows a more detailed and thorough evaluation of the

design situation by allowing the designer to visualise, simulate and manipulate it (Löwgren &

Stolterman, 2004: 20).

34

The specification describes how to construct the final artefact. Even at this stage, however, the

design work is not finished as during the construction process new kinds of design situations

emerge; there is no clear division between design and construction stages. A sufficiently detailed

operative image can act as the specification.

All three abstraction layers form a constant, dynamic, dialectical process in which the designer

moves back and forth between the layers during the design activity. The vision, which shapes the

operative image and the specification is in turn shaped by them, typically becoming modified or

even replaced during the later stages of the design process (Kuittinen and Holopainen 2009).

3.5.2. Analysis, synthesis and evaluation

According to Lawson, the concepts of analysis, synthesis and evaluation (also called appraisal)

occur frequently in the literature on design methodology (Lawson 2006, 3rd revise:37). Lawson

states that design consists of these three activities, linked in an iterative cycle.

3.5.2.1. The problem

Analysis is the ordering and structuring of the problem. Christopher Alexander described analysis

as breaking (“decomposing”) a problem into pieces (Alexander, 1962 cited in Dubberly, 2004). It

involves the exploration of relationships, looking for patterns in the information available, and the

identification and classification of objectives (Lawson 2006, 3rd revise:37). In terms of the

convergence and divergence process model described above it is the activity of analysis that

creates divergence. Cross describes divergence as a widening of the search (of the solution

possibility space), and to seek new ideas and starting points (Cross 2008). This decomposition-

recombination process is illustrated in Figure 3.

Figure has been removed due to copyright restrictions.

Figure 3: Flow diagram showing relationships between analysis, synthesis, and divergence and

convergence (Dubberly 2004)

Lawson, building on Schön’s work, describes a group of activities that he calls “formulating” the

design situation, by which the designer identifies the relevant elements in the situation when

observing and assessing it. He makes a distinction between two types of formulating: “identifying”

and “framing” (taken from (Schön 1983)).

35

In “identifying”, the designer identifies the elements within the design situation to be able to

understand their qualities and how they relate to each other. While doing this they are making

judgements on the composition of the elements. Based on experience and their domain-specific

knowledge, the designer recognises patterns and understands future possibilities of the situation.

The representation (recalling Lawson’s “representing” from above) is the medium through which

the designer does the identification.

In “framing”, the designer prepares the design situation for making a design move (explained

below), by structuring or framing the situation as problems that the designer can attempt to solve.

Framing serves as a useful tool for controlling the complexity of the design situation by allowing

the designer to focus on a select number of issues while temporarily suspending others (Kuittinen

and Holopainen 2009).

3.5.2.2. The solution

Synthesis is the generation of solutions. It is characterised by an attempt to move forward and

create a response to the problem (Lawson 2006, 3rd revise:37). The designer recombines the

decomposed design situation. They reorder the pieces based on dependencies, solving each sub-

piece, finally knitting all the pieces back together (Dubberly 2004). In the divergence-convergence

paradigm, it is synthesis that creates convergence.

As discussed previously, synthesis is not dependent on analysis: researchers have observed that

experienced designers do not typically wait for analysis of the problem before attempting a

solution; they often develop early solutions to a design problem before understanding it.

3.5.2.2.1. Moving

When a designer alters a design situation they are “moving” – making a “design move” (Lawson

2006, 3rd revise:295). Moving comprises activities towards creating whole or partial solutions.

Design moves can be “interpretive” or “lateral”: that is, they can be based on reflection on the

current (implicit and explicit) representations of the design situation, or they can be entirely novel

or derived from existing ideas (Kuittinen and Holopainen 2009). Alternatively, design moves are

“developmental”: an idea is developed further and clarified, usually with some kind of

representation. According to Schön, any design move has side effects, in the form of unintended

and unexpected results; it is not possible to make a move that only has the consequences that the

designer intends (Winograd 1996).

36

3.5.2.2.2. Creative leaps

A design move can sometimes take the form of a surprise, according to Schön, as the designer

makes exploratory moves that allow them to see the design situation in a new way. This is

commonly known as a “creative leap” (Archer 1965; Cross 1997) or what cognitive psychology

would call a moment of “critical insight” (Chiang and Wang 2005) – a novel or creative solution

that suddenly emerges while working on the design situation. A creative leap may follow a period

of “design bottleneck”: intense but vain efforts towards solving particular design problems. The

designer, once having reached the limit of knowledge and heuristic reasoning, looks beyond

rational thinking toward inspiration to resolve the bottleneck (Chiang and Wang 2005).

3.5.2.3. Designer evaluates their solution

“Appraisal” or “evaluation” involves the critical evaluation of suggested solutions against the

objectives identified in the analysis phase (Lawson 2006, 3rd revise:37). According to Lawson,

evaluation occurs throughout the design process – mostly intuitively concerning particular

elements of the design, but also as judgements of the overall design situation. Evaluations can be

subjective evaluations (“does this feel right”) or objective evaluations that can take the form of

mental simulations or user testing, for example (Kuittinen and Holopainen 2009).

Iterative cycles of evaluation seem to be a feature of the design process in many disciplines. Here

in an interview about software design Schön describes how a designer asks herself evaluative

questions after each design move she makes:

As you work a problem, you are continually in the process of developing a path into it, forming
new appreciations and understandings as you make new moves. The designer evaluates a move
by asking a variety of questions, such as "Are the consequences desirable?" "Does the current
state of the design conform to implications set up by earlier moves?" "What new problems or
potentials have been created?" (Winograd 1996)

3.5.3. Meta-activities: reflecting on the design process itself

Above I have described design activities where the designer is engaged directly in the business of

design. There are also activities we could call “meta-activities” – where the designer reflects on

their design activities as part of the design process, or externally to the design process itself. These

activities are also considered an important part of the design process.

Donald Schön has contributed the most well-known work in this area. He describes three ways in

which a designer reflects on their own design thinking.

37

The first is “reflection in action”, where the designer finds herself thinking about what she is doing

in the midst of performing an action, in such a way as to influence further doing. Schön gives the

example of jazz musicians improvising together, listening to each other and responding by thinking

and evolving during the performance. “Reflection in action” is closely tied to the experience of

surprise: when performance leads to surprise – be it pleasant or unpleasant - the designer may

respond by reflection in action: i.e. thinking about what she is doing while doing it (Winograd

1996).

“Reflection on action” occurs when the designer stops to think and monitor their own process. The

designer pauses to think back over what she has done in a project, “exploring the understanding

that she has brought to the handling of the task” (Winograd 1996). Lawson describes reflecting on

action as the designer taking a step back to look at their design process, asking themselves

questions such as “are the relevant issues taken care of?”, “which activities (formulating, moving

etc.), if any, have been neglected?”, and “am I doing this the right way?” (Kuittinen and

Holopainen 2009). This kind of reflecting is important because it is the tool the designer uses to

direct their path through their own design process, designing which activity to undertake and

when. Asking the right question at the right time is an important design skill, according to Lawson.

“Reflection on practice” has the designer pulling back even further to reflect on their own practice

more generally, based on repetitive experiences of designing. For example, says Schön, the

designer may become aware of having fallen into an unfortunate pattern of design, such as “falling

in love with the initial design idea”, or “trying to build the diagram”.

3.6. Games as crafts-based design

Drawing on definitions from design research, here I argue that game design is currently a craft-

based design practice, and that the widespread adoption of design tools would represent a shift

towards conscious design. I point out that this shift has not occurred, and offer an explanation as

to why.

38

3.6.1. Unselfconscious and self-conscious design

In comparing traditional building design to modern architecture in his 1964 book Notes on the

Synthesis of Form, Christopher Alexander makes a distinction between two kinds of design

cultures: “unselfconscious design” and “self-conscious design”13(Alexander 1964).

“Unselfconscious design” concerns the use of traditional building methods, in which the designer

works directly on the form (i.e. the building) unselfconsciously, through a complex two-directional

interaction between the context and the form, in the world itself (Alexander, 1964: 77). The design

rules and solutions are largely unwritten and evolve very slowly. They are learnt informally; the

same form is made over and over again with no need to question why, and designers need only

learn one pattern.

In self-conscious design, the design decisions are made separate to making. Form is shaped “by a

conceptual picture of the context which the designer has learned and invented, on the one hand,

and ideas and diagrams and drawings which stand for forms, on the other” (Alexander, 1964: 77).

This is necessitated by the fact that in the modern context, new purposes and requirements

frequently arise that require the development or modification of old patterns. In order that these

innovations can be made, ideas about how and why things get their shape must be introduced.

Lawson describes what Alexander called “unselfconscious design” as “vernacular”, or craft-based

design. It is a design culture that demonstrates, according to Lawson, a “curious combination of

constructional skill and theoretical ignorance”. Vernacular design is practiced by artisans and

craftspeople, for whom design traditions and conventions stand in place of design theory. They

know that a specific design element is good, but they do not understand why. Without an

understanding of underlying design principles, modifications to, or removal of, a design element

can be risky. Lawson uses the example of the oddly shaped yet highly efficient design of the shape

of a cart wheel, the engineering rationale for which (if it was ever understood) had long since been

forgotten by the wheelwrights who fashioned them. He describes how George Sturt, when

13 Alexander gives these definitions as part of an argument he makes about how architects could avoid modern

American architecture’s failure to successfully adapt to its context by learning from the adaptive process of

unselfconscious design. For this he proposes a method he calls “mediated design” (Alexander, 1964:36).

39

studying the wheel’s properties were surprised to discover, that the shape – hitherto believed to

be a design choice born of fashions or aesthetic taste - was in fact a structural element that helps a

cart balance (Sturt 1923). A lack of awareness of the reason for the wheel’s design posed no

problems for the exercise of craft for generations of wheelwrights. It would have, however, posed

a problem for any attempt to innovate on that design.

3.6.2. Design drawing

A key factor in self-conscious design is the separation of design from making. In such a scenario,

production materials no longer serve as the materials of design; the designer must purposefully

create design materials – a representation of the design situation – external to the designed

product itself. Lawson, in describing the emergence of self-conscious design in architecture,

described how separation between design and making “urgently required” new ways of being able

to model the final design, as well as support a rapid rate of change and innovation (Lawson 2006,

3rd revise:27).

These ways are known as design drawing:

In a most felicitous phrase Donald Schön (1983) has described the designer as 'having a
conversation with the drawing'. So central is the role of the drawing in this design process that
Jones (1970) describes the whole process as 'design by drawing' (Lawson 2006, 3rd revise:26).

Design drawing is performed by the designer not for the sake of communicating with others, but

rather as part of the thinking process of design itself. The design thinking becomes situated in the

‘drawing’ (a representation of the design situation – not necessarily ‘drawing’ in the literal sense),

rather than the designed product. In this way, design drawing separates out design thinking from

making, and in this way it is central to the self-conscious design process.

Design drawing is a powerful tool. It encourages experimentation, liberating the designer’s

creative imagination in a “revolutionary” way. This, according to Lawson, renders design a process

almost unrecognisable to the vernacular craftsman. In effect, the designer is afforded a greater

“perceptual span” that enables them to make more fundamental changes and innovations within

one design than would be possible in the vernacular practice.

In terms of process, design drawing is iterative; the designer can continue the process of drawing

and redrawing until all the problems the designer can see are resolved. This confers great

manipulative freedom; parts of the proposed solution can be adjusted and the implications

40

immediately investigated without incurring the time and cost of constructing the final product.

The iterative process of drawing allows designers to adapt to new design requirements as a result

of changes in context – for example changes in technology that impact on design.

Design drawing can, however, be limited. In the context of architecture, while a drawing offers a

reasonably reliable model of appearance it cannot necessarily model the performance or function

of a structure. One might argue, however, that this could be a limitation of the design

drawing/modelling tool (pen-and-paper drawing, for instance), rather than of the design drawing

process itself (Lawson 2006, 3rd revise:27).

3.6.3. Game design is crafts-based design

Arguably, game designers engage in something similar to what Lawson describes as a “vernacular”

or craft-based design process, or what Alexander might call “unselfconscious design”. Game

design best practice orthodoxy emphasises design-by-making; using artisanal, traditional

knowledge, game designers are urged to prototype, they test, they make adjustments and test

again.

Using Alexander’s definitions, game designer Ben Cousins argued in a short blog post in 2004 that

many game designers are still operating under an unselfconscious system of design.

Many game developers show a similar inflexibility in process, and it leads to the same potential
for danger. The ‘high priests’ and ‘elders’ observe the development process, and ensure the ritual
takes place as they have always done it. Any deviation from the tradition is met by scorn, and
most of the time the games produced show a marked similarity to previous products which have
used that traditional process. Academic, scientific and analytical techniques are not allowed, as
they could call into question the origins of the ritual – the search for true knowledge is withheld
and the high priests and elders maintain power (Cousins 2004a).

This echoes Lawson’s characterisation of crafts-based design as a “curious combination of

constructional skill and theoretical ignorance”. Similarly, Sicart observes, in reference to design

documentation practices, that:

most of [the game design literature that advises best-practice methods for documentation] is
based on tradition or a set of common practices more than on a research-based approach to the
formal elements of games (Sicart 2008).

The fact that, as noted above, “design” has featured in the standard game design literature as a

step in a model of the design process itself suggests that the game design community struggles to

41

even distinguish game design from the game development process as a whole. In this way, design

does not consciously exist independent of making.

3.6.3.1. Craft-based design in games discourages risk-taking

As stated previously, a vernacular design process, in its reliance on design conventions rather than

design knowledge, has been observed to be the enemy of innovation. In relation to game design,

Cousins argues that such a practice can be “damaging to the future of those designers who use it”.

Especially relevant to the domain of game design is one of the key challenges that self-conscious

design addresses: technological change. Cousins, writing at the time as a vocal advocate for the

formalisation and encoding of design knowledge, argues that we must move towards self-

conscious design in order that game design meet the needs of shifting markets and advances in

technologies:

It is only by the rejection of this unselfconscious process, the constant evaluation and re-
evaluation of techniques, the application of academic and scientific measurement and technique
that any designer (be it a house builder, telecommunications designer or videogame developer)
can make sure they don’t become as much a historical footnote as the straw house builders of
Polynesia (Cousins 2004a).

Cousins’ observation should be seen in historical context: a time just prior to the rise of

independent game development, when many in the industry were frustrated with the

conservatism and lack of design innovation within their practice and sought to pinpoint causes and

devise solutions. Published on the internet in 2000, The Scratchware Manifesto exemplifies this

mood (Anonymous 2015). Written by a group of anonymous game designers, it declared that the

“machinery of gaming has run amok”, describing the elements of both the business and the

practice of game development that conspired against creative freedom and risk-taking. Warren

Spector, an industry-leading game producer at the time, received cheers and applause from fellow

developers for declaring, at a conference in 2003, that “the publishers have to die, or we are all

doomed” (Costikyan 2005). These feelings were widespread; sociologist Jennifer Whitson’s 2012

study of game developers describes long-standing “alienation and disenchantment faced by many

game developers”, where creators are at the mercy of corporate interests (Whitson 2012, 156).

In terms of Cousins’ analysis of the creativity problem, the warning he raises about the dangers

that await those striving to innovate within the “design by convention” style domain of game

design appear to chime with the lessons of Lawson’s cartwheel example, referenced above. While

a game designer may know that certain elements make for a good design, like the wheelwright,

42

they may lack understanding as to why. Game design innovation is either restricted to small,

iterative adaptions (of the kind we tend to see in AAA games), or experimental, trial-and-error

based production of small-scale games and prototypes (of the kind we see produced in the

independent game development scene or at game jams).

3.6.4. The need for self-conscious design delayed by “brute-forcing” crafts-based design

The response to this states of affairs has not, as Cousins’ hoped, been towards self-conscious

design i.e. design drawing, supported by design tools. Cousins’ 2004 vision of self-conscious game

design practice has not been realised. No language of game design, nor any of the proposed

versions of Doug Church’s “formal, abstract design tools” (as discussed in Chapter 2) has been

systematically integrated into mainstream game design practice. While particular studios may

have their internal design languages and methods, they are not methods that are disseminated

widely and they not do serve as a baseline or shared understanding within a larger design culture.

Game design position descriptions attest to this: mastery of anything that could be considered

“design drawing” is not a requirement listed among “required skills” for game design job

candidates; rather, desired skills often include design-related production skills and, increasingly,

“data-driven” design techniques i.e. the use of player metrics.

If anything, the reverse has occurred. Crafts-based design has become firmly entrenched. In the

previous chapter we saw how, for example, data-driven design has formalised and – in some

sectors of the industry – more or less enforced the crafts-based design method of iterative

adjustments, adaptions and improvements.

3.6.4.1. Brute force compensating for inefficiency

But what of the inefficiencies of crafts-based design that result in a slow pace of design evolution,

as highlighted by Alexander? In fact, recent changes in the game industry have meant that this is

far less of a problem. These changes have allowed the industry to largely compensate for this

inefficiency with what software engineers would call a “brute force” approach. The changes

include significant changes in: 1) quality and cost of technology; 2) the number of games releases;

and 3) the contribution of free and cheap design labour.

Firstly, since 2004 the technology supporting a trial-and-error style, crafts-based design process

has significantly improved – the result being that in terms of labour and tools it costs less and

43

takes less time to both build games and test them. These changes are described in the previous

chapter.

Secondly, there has been a significant increase in the volume and frequency of games being

prototyped, produced and brought to market. We have only to compare the rate and volume of

game releases before and after the launch of the Apple iPhone, for example. This is combined with

the unprecedented scale of playtesting being carried out via online analytics. Data-driven design in

games could be thought of as crafts-based design on a massive scale – as if thousands of

wheelwrights were producing and testing millions of wheels.

Thirdly, just as pyramids can be built with inefficient engineering if you own enough slaves, game

design progress and evolution can advance by the sheer number of designers working on design

innovation, at no cost to the industry. In the previous chapter I described how changes to industry

business models have given rise to changes in game design practice. Industry changes are again

relevant here: they have meant that much of the risk burden of design innovation – and any costs

and inefficiencies thereof - have been transferred away from publishers and investors, onto the

shoulders of self-funded independent developers, as well as game design students and

researchers (whose numbers have ballooned over the last decade). The price of design failure and

experimentation is still very high, as it was in 2004, but it is my observation that now a significant

part of the cost has been offloaded onto new entrants into the game industry: the games

education sector, hobbyists, small developers, and the rise of a predominantly young, flexible,

cheap or even self-funded labour force now offered to creative industries known as the “creative

precariat” 14.

In this way, a remarkable increase in game design and production activity over the last ten years

has, to a large extent, been able to serve as a substitute for deeper design understanding. Low

design productivity is not a problem if the cost of design labour and technology is low. A decade of

changes to the technology and industry context of game design have, at least temporarily, delayed

or masked the need for a shift towards self-conscious design.

14 Freelance, contract, self-employed, and intermittent workers in the arts, the media, and cultural industries (de
Peuter 2014).

44

3.6.4.2. A cost to creativity

While inefficiency may not be such an issue, creativity arguably is. We have seen, in the previous

chapter, how iterate-and-test style methods, while on the one hand offering designers more

access to production to serve as the materials of design, could be considered more risk-averse

than before. Risk averse because, like crafts-based design, it preferences piecemeal design moves,

thus undermining, as we saw Whitson point out, the design mechanics of innovation and discovery

– which is one of the major freedoms that self-conscious design aims to afford. The constant

testing regime has the designer effectively surveilled, aware that any experimental design moves

may have consequences external to design thinking.

For example, one of the software development industry’s favourite aphorisms – now popular in all

sectors of the game industry – is “fail early”. In other words: build, test and, if necessary reject

ideas or solve problems early. It is tempting to adopt this philosophy as a way of speeding up our

slow, resource-intense crafts-based process. And yet, ambiguities and problems in the design

situation (the importance of which I discuss in Chapter 10) are not necessarily failures, and are not

always best resolved early in the design process.

The logic of data-driven design within the games-as-service sector in particular exerts pressure on

a designer to think differently: rather than a designer making design moves within a consequence-

free, safe space, in the context of private conversation with the materials, they are akin to a

scientist whose actions must be motivated by empirical evidence and meticulously planned– all

the while being conscious of the fact that even the smallest move may be subject to close analysis

(A/B testing is used extensively in the games-as-service industry, for example).

3.7. How to achieve self-conscious game design?

Within the context of game design practice described above, which elements could benefit from

design support? Arguably a key weakness in game design practice is representation of the design

situation.

Game design literature largely emphasises the notion that one of the important characteristics

and difficulties designing games, as interactive media, is that it is a “second order” problem where

designers can manipulate the results of their work only indirectly (K Salen & Zimmerman, 2003:

168). This means the results of their designs, short of making the game itself, are hard to

45

represent adequately. This is a problem, because representation of the design situation is required

for both analysis and synthesis related activities.

Kuittinen and Holopainen confirm that game design practice is weak in terms of representation

(Kuittinen and Holopainen 2009). Indeed, they find the lack of discussions of representation in the

game design literature “perplexing”, given how important representing is to game design. In view

of the second order problem of game design, they argue, design activities associated with

formulating (in Lawson’s model) and with the forming of an operative image (in Löwgren and

Stolterman’s model) are crucial for game design. These activities are reliant on representation,

and yet although skills associated with these activities seem to be emphasised by the literature,

the discussion of representing is “very limited”; the consensus seems to be that designers should

work mostly with two forms of representation: text and prototyping. The problems posed by

prototyping being the only reliable form of representation have been discussed in the previous

chapter.

We have seen that for self-conscious design to be enabled, we must enable the decoupling of

design and making. For this to occur, designers must be able to represent the design situation

without relying on making to do this. To echo Lawson’s comment about the necessary emergence

of self-conscious design in architecture, the separation between design and making “urgently

requires” new ways of being able to model the final design.

As we have seen above, ways of modelling the design - new forms of representation - are offered

by design drawing. It is design drawing that enables design thinking to take place around the

representation of the design situation rather than in the designed product itself. Successful design

drawing in games would allow the designer to formulate and manipulate at least some aspects of

the design situation of the game without having to produce it. If tools could enable successful

design drawing, therefore, they could be the key factor that facilitates self-conscious design in

games.

Game design tools have the potential to take and have taken a variety of different forms:

intelligent solutions that play the role of expert or colleague, pattern libraries that suggest

solutions, card games that help brainstorm game ideas, and automated design that generates

solutions. We can, of course, survey game designers for a wish-list of design support utility

functions, and we can test the value proposition of tools in terms of their specific functions and

46

objectives against outcomes, and evaluate their applicability towards specific tasks. But there is a

bigger picture to consider. While it is useful to look at individual elements and contributions,

however, we should keep sight of a larger goal and consider how each piece of work fits into that

goal’s narrative. If our goal is to enable self-conscious design in games then we are framing our

evaluation within a narrative of how each tool, like pieces of a puzzle, fits into the narrative of

design drawing.

3.8. The development of game design tools

It has not gone unnoticed by researchers and designers that game design process remains

relatively underdeveloped compared to the sophistication of video game designs being produced

today. As Stefan Grünvogel puts it:

Game design as a craft has created a vast diversity of methodologies to balance interaction, game
mechanics and audio-visual presentation for different game genres and players. But there are
only very few attempts to support this process by using formal methods (Grünvogel 2005).

Game developers themselves have made similar observations:

Compared with the vast body of operational knowledge found in the world of filmmaking, the
game design community is just beginning to articulate the concepts and techniques specific to our
medium in order to establish methods of game design (Kreimeier 2003).

Academic and industry discourse has developed to highlight this absence in the field of game

design, and specifically the lack of concrete and conceptual tools for game designers. Researchers

and designers have noted that we lack game design support in the form of computer-aided design

(as opposed to production) software, and formal or semi-formal design models and concepts (as

distinct from heuristic approaches) that can support game design tasks. Nelson and Mateas

observe that game designers “have no tools for reasoning about and visualizing systems of game

mechanics” (Nelson and Mateas 2009). Agustin et al claim that this lack of methods and tools to

help game designers support the 'ideational' stage of game creation has contributed to a lack of

innovation in commercial game design. This lack of creative risk-taking can be linked to the cost of

creative mistakes (in terms of time and resources) in a craft that relies on production to support

design. Even “rapid” game prototyping can require not insignificant time and resources as well as

production expertise.

47

3.9. Explaining the lack of progress towards design tools in game design

The game industry has no shortage of software-based tools. The video game industry has been

described as “a production oriented industry” where the majority of the technology has focused

on production tools.” (Agustin et al. 2007). Game artists, game programmers, level designers,

quality assurance testers and project managers all use specific software – sometimes developed

‘in-house’ for the purposes of a single game project – tailored for doing their job. In an industry

that has a strong tradition of developing bespoke tools, one has to wonder why software tools to

support game design tasks are not built and widely used.

Seeking an explanation for this leads one to deeper problems within the field of game design.

Game designers are not yet applying even purely conceptual “on paper” design tools or graphical

notation systems to their design work. These conceptual tools and systems, evolved and

confirmed in practice, would form the basis for any computer-aided design support software. (If

architects, for example, had not yet devised a way to draft on paper then there would be little

point in developing CAD technologies.) Given this poor state of disciplinary evolution, it is no

surprise that the primary tool of a game designer is commonly a word processor. Outside of

playable contexts (a prototype, for example), the only means we have of modelling and

communicating gameplay concepts has been natural language; we do not yet have a shared and

commonly understood framework for designing games with anything other than words.

For certain elements of a game – narrative, character design, high-level concepts, for example –

descriptive prose and illustrations (storyboarding, for instance) may be serviceable. For a key

component of a game design, however, it is not. Defining this key component requires breaking

down games themselves into their component parts. Salen and Zimmerman offer three sets of

schema that can be used to frame games: rules, play and culture. Rules are the formal elements;

“the inner, essential structures that constitute the real world objects known as games (K Salen and

Zimmerman 2003: 80). Of all possible schema, the formal, systemic, structural aspects of a game

design are arguably the least well served by natural language. This is problematic given that these

are the aspects leading theorists consider the defining characteristics that set video games apart

from other media. “A game is a system … defined by rules...” (K Salen and Zimmerman 2003: 80).

48

As Game Studies has developed an orientation to games as systems, it has begun to notice that

the lack of a formal means of communicating the mechanics of these systems hinders both game

analysis and design:

Ludology, the study of games in general and videogames in particular, has pointed out the need
to create models in order to explain the mechanics of games. This lack of a notation to precisely
define games and game mechanics has been a traditional game design problem (Reyno and Cubel
2009).

Even the language designers use has been criticised for not being as formal, standardised and

precise as it could be. In 1999 designer Doug Church complained that we lack even a common

vocabulary of terms to describe game concepts (Church 1999). He added that this is a serious

problem if we want to pass down and build upon knowledge from generation to generation of

game designers, a lack of a common design vocabulary being “the primary inhibitor of design

evolution”. Educator Tracy Fullerton, in her game design textbook Game Design Workshop, also

complained of this some years later, calling the lack of a single vocabulary “one of the largest

problems facing the game industry today” (Fullerton 2008: 40).

But even the design concepts and techniques that would form the building blocks of any such

language are still in the process of being formalised, standardised and shared. Game design has for

a long time been a kind of “dark art”. Designer Dan Cook goes as far as to label past game design

achievements as “accidental successes”. He writes: “We currently build games through habit,

guesswork and slavish devotion to pre-existing form.” (Cook, 2007) A 2003 article by Kreimeier

surveying the state of the art of game design method criticised game design texts of the time.

These, it was argued, were so informal as to warrant being called “a kind of 'Discourse by

Anecdote'”, in which “game design experience is presented as a narrative, e.g., as a series of

anecdotes and invented dialogs, sometimes as recommendations derived from interviews, or

simply as annotated transcript” (Kreimeier, 2003).

Raph Koster is another designer who has argued for formalisation. In an influential presentation

at the Game Developers' Conference (the industry's principal conference for developers) in 2005

entitled “A Grammar of Gameplay” (Koster 2005), Koster highlighted the imprecision of natural

language as a tool for designing gameplay and urged designers to develop a graphical notation

system for game design. Two years later he repeated this call in an interview, saying “we want it,

because god damn do design documents suck as a means of communicating game design”

(Sheffield, 2007).

49

Designer Ben Cousins complained in 2004 that compared to other design disciplines, game

designers lack formal training in their craft:

…the only difference here between other media and games is that every moviemaker, songwriter,
painter and novelist is acutely aware, and often trained in, the application of the appropriate
primary units. Game designers have not yet moved into that phase (Cousins 2004b).

Given this lack of expressing design ideas with any level of formality or abstraction, the goal of

developing a software tool for game design seems akin to that of developing music notation tools

for composers who cannot read music.

3.10. Formalisation towards models and tools

Over the last ten to fifteen years the “discourse by anecdote” has begun to be replaced by some

attempts towards comprehensively defining, analysing and describing these technical game design

concepts that we lack. Researchers and designers have also attempted more experimental work in

the form of proposals for formalised, and sometimes visual methods of modelling and describing

gameplay. Some have been explicitly conceived to be used as conceptual tools for game design.

From Doug Church’s ‘Formal Abstract Design Tools’ (1999) to Björk and Holopainen’s ‘Game
Design Patterns’ (2004) we have a wealth of frameworks that seek to develop a unified discourse
among designers, to promote clarity, better game design, and a clearer procedural structure for
designers in the creation of their games(Bojin 2010).

These frameworks range from “semi-formal approaches” (Grünvogel, 2005) or “textual

interpretations of game design practices” (Koster, 2005) to proposals for graphical modelling

systems. Approaches developed by researchers include Patterns in Game Design

(Björk&Holopainen, 2005), Järvinen’s “library of game mechanics” (Järvinen 2008), Hunicke,

Leblanc, and Zubek's “Mechanics, Dynamics, Aesthetics” framework (Hunicke, Leblanc, and Zubek

2004). Even Sicart suggests that his definition of game mechanics – summarised as “methods

invoked by agents, designed for interaction with the game state” - be used practically “as a formal

tool for describing and modifying mechanics in a coherent and comprehensive way” (Sicart 2008).

3.11. Conclusion

Design studies offers insight into current game design practice, and allows us to compare game

design against design practice more widely. We can see that in the domain of games, where design

50

by making is considered best practice, design is, arguably, an “unselfconscious” or crafts-based

practice.

In games we lack the means to separate design from making. For this, a designer needs to be able

to represent the design situation so that design thinking can occur in the representation instead of

where it is mainly occurring now – in a playable version of the game. To represent the design

situation separate from making, a designer uses “design drawing”.

In game design we lack forms of representation, as well as design drawing tools with which to

create them. This lack is probably in large part attributable to the nature of games themselves:

games are difficult to represent - game design being a “second order problem” where the designer

only indirectly affects the outcome of their design.

To satisfy this need to separate design from making, attempts to create game design tools have

been made, many of which I have reviewed here. Design tools for games propose to offer game

designers a means of design drawing: representing and allowing manipulation of the design

situation. If we see game design tools in this light – i.e. as design drawing for games that could

enable game design practice to move from crafts-based into self-conscious design - we can see the

significance of the work on game design tools, as well as the qualitative nature of the change that

the adoption of such tools into practice would engender.

51

4. GAME DESIGN TOOLS

4.1. Summary

In this chapter I give a more developed definition of game design tools, before reviewing the tools

the research community and industry has produced that fall within this scope. I then compare and

discuss the tools in relation to the types of design activities they support.

4.2. A definition of game design tools

For the purposes of my research I define a “game design tool” as:

A software-based or conceptual tool, the primary function of which is to support game designers

in design thinking.

Below I break down each element of this definition and describe it in detail.

4.3. A design tool

A design tool is a structured form of support that is intended to aid the design process. Most

importantly, it allows a designer to engage in some of the vital activities of the design process that

aid design thinking.

In this definition of design tool I am not including tools that are dependent on the production of a

version of the game. While the gathering and analysis of metrics (i.e. the materials of data-driven

design) and automated testing support design, they are dependent upon production as part of an

iterate-and-test design approach.

The definition of “tools” in the discussion around game design tools varies widely: from “tool” in a

rather broad sense to software tools. In Doug Church’s 1999 article “Formal Abstract Design

Tools”, for example, he proposed the need for “tools” as a “shared language” of design concepts

derived from previous game designs that designers could use to apply to their own design

problems (Church 1999). Since then, the solutions proposed by practitioners and researchers have

been quiet diverse: including, for example, taxonomies of design concepts, diagramming methods

and artificial intelligence based semi-automated design support software.

52

4.3.1. Design tool metaphors

Design support researchers have identified the fact that the addition of computation to a tool can

challenge our notion of what a tool is. Game design tool designers have also looked at this

question. They enlist metaphors to frame discussions of the roles computational design support

might perform, and what the place of technology is in the design relationship or conversation.

Lubart, in relation to design support in creative domains, uses the metaphor of the tool

performing the role of “nanny”. The nanny helps plan and takes care of tasks in order to “free up

users’ minds”. The “coach” proposes information about existing techniques, provides “diagnosis-

assistance modules” and guides the designer towards new ideas. The “colleague” role contributes

new ideas as part of a dialogue with the designer, suggesting novel, unconventional ideas that the

designer has not thought of. Computers are especially suited to this, suggests Lubart, because they

are better at implementing random searches than humans (Lubart 2005).

Gillian Smith et al., in discussing game design tools, introduces “collaborator” – a refinement of

this “colleague” concept. She suggests we might aim to create game design tools that raise the

role to become more of an equal partner, able to bring the designer’s conversation with the

materials to life as an active participant, debating and even requesting changes to decisions made

by the designer – as a human collaborator would (G. Smith, Whitehead, and Mateas 2011a).

Towards a better understanding of the role or roles procedural content generation (PCG) can play

in games and game design, Khaled, Nelson and Barr have proposed metaphors: “tool”, “material”,

“designer”, and “expert”, which they describe as a set of lenses through which to view PCG in its

varying contexts. “Designers” are PCG algorithms, encoded with expertise in aspects of game

design, are tasked with solving game design problems and conducting design tasks with little or no

intervention from a designer. “Experts” supply external expertise to be taken into account by a

human game designer. “Tools” are devices or instruments manipulated for the purpose of

achieving specific design goals, enhancing and extending the designer’s abilities. “Materials” are

procedurally generated substances that can be reshaped by the designer and deployed in the

game. To generate them the designer articulates a set of property constraints that describe a class

of potential materials that are desirable (Khaled, Nelson, and Barr 2013).

Within Khaled et al’s framework, I am covering technology that serves as tools – not so much

experts or designers – including tools that allow me to create materials.

53

To make sense of these metaphors, we could see them in the context of an evolving

understanding of Computer-Aided Design (CAD) over several decades, which has been used as a

starting point for developers of game design tools. Nelson et al traced the history of CAD tools in

architecture and design for the purpose of understanding how we should build such tools for

game design.

Early work in CAD tools, which date back to 1956, saw CAD as having a dual role: offering a front

end for graphical modelling, and a backend that performed automated reasoning for the role of

advisor – i.e. enhancing the back talk of a situation, illuminating constraints and implications. The

second wave of CAD tools focused on the importance of knowledge in specific design domains.

Developments in the 1980s brought knowledge-based AI systems, which enabled tools to offer

back talk based on domain-specific knowledge. Then domain-oriented design environments

(DODEs) extended the idea of domain-specific knowledge to include not only factual knowledge

but also design knowledge - i.e. best practices and common solutions. They critique designs,

provide design suggestions and reasons for them. This shifted the computer’s role in the design

conversation from providing back talk to actively participating in the design activity (Nelson and

Mateas 2009).

Overlooking any subtleties for the sake of simplicity we could see at least 3 broad types of roles,

rising gradually in importance and status. First, the “designer’s slave” “nanny” “assistant” type

functions, where the tool is commanded to use its computational power to help increase

efficiency and relieve cognitive load, help with planning and organisation tasks. Then, the

“advisor” role, where the tool helps give the designer insight into their design, providing

information it has deduced based on the content of the design situation, thereby enhance the

back talk of the design situation. The “coach” “colleague” and “expert” even have ideas of their

own, bringing in knowledge from outside of the design situation to shed light on what the designer

has made, and even offering new ideas and suggestions for improvements. Completes this ascent

from slave to peer, the “collaborator” has the power to make design moves of its very own.

Finally, the computer as “designer” becomes the dominant collaborator in the working

relationship, with the capacity to design games all by itself.

4.4. Including conceptual tools

As well as software tools, I am including conceptual tools in this study.

54

In Chapter 4 I argued that the lack of software or more sophisticated tools for game design can in

large part be attributed to a lack of visual notation upon which to base such tools. Unlike more

developed domains such as music, which can base their digital tools on existing formal systems

and visual notation, games do not yet have an accepted standard for a shared visual language. The

success of the formalisation of game concepts into visual terms is therefore key to the success of

the tool that uses it. Furthermore, according to the scope of the definition of ‘tool’ for this study, a

visual language is a form of tool; some of the tools looked at in this study are a more or less visual

languages or tools for authoring language. Dormans’ Machinations was originally created as a

diagramming language, for example (J Dormans, 2012: 201)

A conceptual tool for my purposes is fairly broad. It is any form of structured, semi-formal method

or model – a model being a language or framework that allows the designer to define relationships

between concepts – that can be used as part of a game design toolset across multiple (but not all)

games and game genres.

Distinguishing which aspects of the conceptual work on game analysis and design could be

considered “design tools” - in the sense they are concepts practically and reasonably directly

applicable to design – is not straightforward. To make such a distinction for the purposes of my

research I have enlisted a schema from Design Science Research: constructs, models, methods and

instantiations. Constructs form the vocabulary of a domain; a model is a set of propositions or

statements expressing relationships among constructs; a method is a set of steps or guidelines

used to perform a task; and an instantiation is an artefact that has been realised using constructs,

models and methods (March & Smith, 1995). The frameworks in this area of game design research

contain elements of constructs, models and methods to varying degrees. I have chosen to focus on

models – i.e. tools that give game designers a way to create and describe relationships between

elements (i.e. “constructs”) of their design, rather than heuristic, ‘how to’ or ‘rules of thumb’ style

methods for game design.

Much of the work on constructs and methods is still useful to have in view, however. As game

design lacks standardisation in core concepts and vocabulary, the constructs used tend to differ

between models, and for that reason it has been useful to include work on constructs in my

purview also. Methods are less relevant, but they do represent the current state of the art,

dominating game design literature; thus they provide a certain degree of context for this work and

are referenced where appropriate.

55

According to Salen and Zimmerman a “game design model” is a kind of systemic thinking

generalised to cover many or all games. It provides a vocabulary and a set of concepts for thinking

about games and for solving problems as they emerge in the design process (Salen and

Zimmerman 2003). Somewhat contradictorily, and possibly due to the fact that they found it

difficult to find many examples from real-life practice that fit this definition to serve as case

studies, they broaden the definition to include models that designers have devised specifically for

one game they worked on.

Each case study analyses a game by describing the rule-structures unique to the game, creating a
formal model specific to the individual game at hand (Katie Salen and Zimmerman 2005:55).

By this definition then certainly, most expert game designers could probably be said to use semi-

formal approaches to a greater or lesser extent. For me, however, this rather undermines one of

Church’s key goals: tools that can be shared across many games, designers and, to some extent,

game genres. Likewise, my definition is narrowed to looking specifically at conceptual tools that

attempt this challenge.

4.5. Design support as primary function

I am including only those tools that have supporting design thinking as their primary goal and

function. In Chapter 9, I break down this goal into more specific functions, attributes and criteria

for game design tools that I use to analyse and evaluated my experiences with the tools under

study.

Tools where the focus is primarily on production are outside this scope. This includes the designer-

friendly game development tools such as Game Maker or level editing tools that are sometimes

used by designers as for design thinking purposes. As I have suggested in previous chapters, the

absence of tools created specifically for game design is arguably one reason designers lean heavily

on production tools for design, using them – even if imperfectly - in exploratory, sketch-like ways.

There is also another way in which production tools can serve as design tools: in the sense that

production itself can be a design activity, powering design-by-making within crafts-based practice

– which, as argued in the previous chapter, dominates contemporary game design. This context is

important, as my approach with this project is very much about taking current practice as the

starting point, and taking steps toward conscious design from that point. I am not looking at

design tools from the point of view of their suitability for immediately replacing design-by-making

56

so much as whether they might meaningfully add to the game design toolset. So while production

tools are not specifically addressed in my research, I have continued to use conventional design-

by-making methods where appropriate, alongside my work with the design tools. This is explained

further in the following chapters.

4.5.1. Simulation as a “sketch” rather than a prototype

Though superficially similar in some cases, we can distinguish modelling game designs in design

tools from prototyping.

Some of the game design tools under study offer a visual representation of the player experience

– in effect, allowing the designer to see the dynamics of the mechanics they are drawing. In the

design research literature, creating a graphical representation of a design situation is sometimes

described as “sketching”. Accordingly, Nelson, Smith and Mateas have used the term “game

sketching” in reference to their design tool work, for example.

Though Manker and Avola observe that the game prototype is often used as a sketching tool in

game design (Manker 2011a) the term “game sketching” allows us to distinguish the activity from

prototyping. Manker notes the useful distinction made between prototyping and sketching in the

field of User Experience or Interaction Design (Manker 2011b). Where prototypes are used to

evaluate a design, often called an “experience prototype”, “the audience of a prototype is

supposed to be actively participating when using it” (Buchenau et al, 2000, cited by Manker,

2011). Applying this to games, we could say that when a designer interacts with the prototype

they assume the role of, and imagine themselves as, a player. A response from a designer that

Manker interviewed seems to align with this idea, in saying that a prototype allows one to “feel”

the game. In the case of a sketch, by contrast, the designer is not so much aesthetically and

emotionally engaged so much as engaged in design thinking; the simulation in a sketch serves as a

representation of the design situation, allowing the designer to “see” the logic of their design, and

offering the back talk necessary to a design conversation. Simulation and interactivity here could

be thought of as extension of visualisation, a product of design drawing that enables the designer

to “see” and evaluate the logic of their design – as a designer sees it (this is idea is discussed

further in Chapter 10).

In addition, the speed of sketching as compared with prototyping is important. A sketch is made

rapidly, so as to quickly express an idea, or serve as a contribution to a design conversation – with

57

other members of a team (Agustin et al. 2007), but also, presumably, to enable a Schön-style

conversation between the designer and the sketch itself. If we recall Schön’s seeing-drawing-

seeing loop (see Chapter 3), we can understand how important the speed element of a sketch is.

Nummenmaa, Kuittinen, and Holopainen discuss the benefits of a simulation created in a game

design tool, which they define as similar to yet distinct from prototyping. Unlike game prototypes,

simulations can reveal problems and opportunities over whole game, rather than just the

immediate and short term dynamics that a prototype models. In other words, simulation allows a

designer to view system behaviour at a higher, “big picture” level than a prototype would

comfortably allow (Nummenmaa, Kuittinen, and Holopainen 2009).

4.6. Supporting a game designer

Word processors, spreadsheet software (e.g. Microsoft Excel) and flowcharting tools (e.g.

Microsoft Visio), paper, whiteboards – these are tools that can be and are used by game designers

to help them communicate and conceive their designs. But they are not tools specifically

developed for the purpose of game design and hence are not being evaluated in this study.

4.6.1. Tools that blur the role between designer and tool

I am covering designer-centric procedural content generation tools, or “mixed initiative design”

(described below). What I am not including are PCG technologies that require implementation by

programmers within a playable game – i.e. design-by-making – for design thinking to occur. I am

also excluding automated design tools where the focus is to enable design by non-designer – i.e.

what Khaled et al describe with their metaphor “designer”. Tools such as Game-o-matic (Treanor

et al. 2012), for example, do not fall under my purview.

I am also compelled to exclude very specific or future design tasks (e.g. the possibility of design

tools for character AI (Hecker et al. 2009)). These directions will be interesting to explore in future

work, but at present there are no tools accessible to me of this type.

With the fast moving evolution of game design in mind, however, it is useful to acknowledge that

the design definitions I am using are imperfect, in that they adhere fairly closely to conventional

understandings of what a design tool is. This is because those definitions may be changing, and

ultimately be changed by game design itself. The impact that these new technologies, in terms of

58

both tools and materials, could have may force us to expand or revise our understandings about

what design tools are, or even what it means to design.

4.7. Tools within this scope

Here I review formal game design tools and models developed over the last fifteen years. It

comprises both conceptual and concrete tools.

Categorising tools by their design support approaches is not straightforward, as often more than

one approach can be seen in the same tool. For example, the BIPED/Ludocore system uses both

resource flow and system modelling, and the BIPED front end offers diagramming.

4.7.1. Models

4.7.1.1. Taxonomies

One category of work towards formalisation to aid design has involved defining the elements of

game design into taxonomies and schemas. When Doug Church proposed the idea of “formal

abstract design tools” he gave examples that loosely resembled Alexandrian patterns used in

software development. By “tools” Church means conceptual tools: design concepts that can be

applied over and over again to similar design problems in different games. Since Church's article,

there have been several attempts to come up with ways to create schemas and taxonomies of this

kind that are formal, but still described in natural language. They have been described as “semi-

formal approaches” (Grünvogel 2005) and “textual interpretations of game design practices”

(Koster 2005).

One is Bjork and Holopainen’s framework for and collection of Patterns in Game Design (Björk and

Holopainen 2005). When surveying the domain, Salen and Zimmerman found this work to be “the

best example we have found of Church's formal abstract design tools" (Katie Salen and

Zimmerman 2005:55). The game design patterns are inspired by Alexandrian patterns, and follow

a similar format. Each pattern defines a game mechanic, and most importantly, which game design

problems it can solve and how it can work in combination with other game patterns or mechanics.

Another taxonomy, devised by Järvinen (Järvinen 2008) comprises formal definitions of game

elements and a “library of game mechanics”. Järvinen describes his library, however, as “analysis-

oriented – with design consequences if one so desires”. Initiated at the Game Developers’

59

Conference in 2001 by designer Noah Falstein, The 400 Project is a set of methods for game

design, styled as “rules of thumb”. Falstein and Barwood describe it as “an attempt to write up

400 rules of game design that can be used by designers to make better games” (Falstein and

Barwood 2006).

4.7.1.2. Unit-based models

The game design community has developed a discourse around unit-based models and notation

systems. Several designers have proposed devising a 'grammar', the building blocks of which are

to be found by analytically breaking down games to their core units at the lowest level of

structural granularity; in other words, “any single conscious interaction that cannot be further

subdivided” (Cousins 2004b). These core elements are moment-to-moment player decisions or

actions, which have been described by various theorists using metaphors that reference linguistics

and chemistry: “verbs”(Crawford 2002); “ludemes”; “atoms” (Cousins); and “choice molecules”,

with the last of these defined by Salen and Zimmerman as “action > outcome unit” which is “at the

heart of interactive meaning”, and from out of which larger interactive structures are built” (K

Salen & Zimmerman, 2003: 63).

Cousins, the game designer who coined the term “game atoms”, compares game atoms to similar

concepts of “primary elements” in other art forms, for example, notes in a piece of music, shots of

a film, and brushstrokes of a painting. He claimed that “every artistic, emotional, great feeling

moment you have ever had playing video games was made up of primary elements, whether the

designer acknowledged and specifically designed them or not” (Cousins 2004b).

These notions of granularity support a reductionist, hierarchic, layered approach to analysing or

constructing a design. Cousins describes the role of the concept as focusing the designer's

attention on the lowest layers of their game so that they can decide which kind of feedback is

appropriate to give at a given structural layer (Cousins 2004b). Similarly, Bojin argues that as units

of analysis, game atoms “promote the critical examination of the design of a game from the player

experience down--drilling into the specifics of what contributes to those experiences” (Bojin

2010). Designer Tynan Sylvester believes that game atoms can help a designer imagine the

playable outcome of their design, arguing that it is essential that one must fully understand the

smaller elements that make up the system and how they interact before one can fully predict the

overlying system (Sylvester 2005).

60

Designer Raph Koster extends this to relationships between the atoms or elements. To him the

atomic model “allows us to examine logical links and feedback loops clearly” (Koster 2005).

4.7.1.3. Resource flow

The resource flow model is based on the theory that game systems can be expressed as

economies, and core game mechanics can be reduced to the flow of resources. A resource is

anything that can be “created, moved, stored, earned, exchanged, or destroyed” (Rollings and

Adams 2003). Interestingly, this is the only conceptual model that has been reified in the form of a

software-based tool (Machinations (Dormans 2009)).

4.7.2. Brainstorming aids

A number of researchers have produced sets of cards to be used for teaching and brainstorming

game design or specialist areas of game design. In some cases they are intended to serve as a

learning tool or aid for non-expert practitioners (e.g. (Alves 2013)), or for professional as well as

academic purposes (e.g. (Järvinen 2005)). Typically, the decks typically contain game elements

(e.g. (Järvinen 2005; “GAME SEEDS” 2015)) or patterns (e.g. (Wetzel 2014; Alves 2013)) and are

accompanied by a set of rules that structure and constrain the learning or brainstorming within

the context of group play.

4.7.3. Diagramming

Both practitioners and researchers have proposed the development of a diagramming language as

a tool for game design and analysis. Towards this goal, some attempts have been made to develop

notation and graphical modelling systems. As mentioned previously, diagrams are already

commonly used in game design documentation to describe certain elements of their design. There

is no standard model for this, however. Further, Araújo and Roque observe that the diagramming

currently used by designers, commonly to describe high-level game logic, typically fails to describe

a game's underlying system, and “prevents designers from using these diagrams in a more

effective way, such as for finding balancing issues or problems within the game's flow” (Araújo and

Roque 2009).

4.7.3.1. Koster’s game atom-based notation system

Koster proposes that game atoms could form the basis for the development of a notation system

for game design. Such a notation method, he argues, could help designers more easily detect

61

design flaws like degenerate strategies - in the way that a composer can look at their manuscript

and quickly spot parallel fifths; and emergent behaviours. Advocating the use of graphical

notation, he argues that “iconic descriptions would force us to examine the actual space” (abstract

space, we should assume) of our designs (Koster 2005). Towards this end, Koster uses his atomic

model as the basis for a diagramming language. An example of this can be seen in Figure 4, a

diagram of the game Checkers (Draughts) made by Koster using his notation system.

Figure 4: An example diagram built by Koster using his own notation

4.7.3.2. Diagramming with non-domain-specific models

This work has drawn on existing paradigms such as UML (Sicart 2008) and Petri nets (Araújo and

Roque 2009) (Natkin and Vega 2004) (Bura 2006).

4.7.3.2.1. UML-inspired models (UML)

UML (Unified Modelling Language) is a modelling language used by software engineers to model

their software designs. Sicart proposes that designers could model game mechanics using the

modelling language UML, using his formal, object-oriented-programing-inspired definition of game

mechanics as “methods invoked by agents, designed for interaction with the game state”. Other

62

researchers have proposed UML-inspired modelling for game design purposes too, such as Taylor,

Gresty and Baskett with “game-flow diagrams” (Taylor, Gresty, and Baskett 2006).

The examples often given to demonstrate these diagramming approaches are very much about

modelling game flow or player decision paths – similar to business process modelling - rather than

the core mechanics of the game system itself as a complex system. This raises the question of how

useful this kind of diagramming could be to a designer who wants to model the core game

mechanics. In the case of “game-flow diagrams”, the researchers have explicitly acknowledged

that their model is limited to the design of scripted story-driven gameplay rather than games with

systems that generate less predictable gameplay dynamics. Unfortunately, in practical terms

designers need little help outside their traditional toolset to design such story-driven games.

4.7.3.2.2. Petri nets

A Petri net is a mathematical modelling language for the description of distributed

systems. Diagramming using Petri nets has been proposed as a game design concepting method

(Araújo and Roque 2009) (Natkin and Vega 2004). This has been described as a combined formal

and graphical approach (Grünvogel 2005).

Figure 5 shows a an example diagram made by Araújo & Roque the design of a pit stop tyre-

changing sub-system in a car racing game. As they describe it:

…we have a situation where a F1 car is making a pit stop to change all of its tires. When the Stop
transition fires, the places representing the tires – front and rear, left and right – receive a token.
From that point on, all the tires are changed concurrently. The Go transition can only fire when all
the “Tire changed” places that are connected to it hold a token (logical AND). This means that the
car can only leave the pit when all the tires are in place.

Stéphane Bura proposed a grammar inspired by Koster’s grammar, as well as Petri Nets and his

experience with cybernetics. Figure 6 shows a diagram for the card game Blackjack. He proposes

that abstract elements such as “skill”, “luck” and “risk” could be re-used from one game to

another (Bura 2006).

63

Figure 5: A sub-system of a game modelled in Petri nets by Araújo and Roque (2009)

Figure 6: Bura’s diagram of the card game Blackjack using his own diagramming method (Bura 2006)

64

4.7.4. Game sketching

4.7.4.1. Sketch-It-Up!

Created as part of a post-graduate research project at Carnegie Mellon University, Sketch-It-Up!

(Karakaya et al. 2009) is a set of processes and technologies designed to be used at the ideation

stage of game design. This work builds upon an earlier “game sketching” system developed by

Agustin et al (Agustin, Chuang, Delgado, Ortega, Seaver, and Buchanan 2007a). Sketch-It-Up!

appears targeted towards the design of linear, narrative-based games: it supports the modelling

and rehearsal of game flow at a high level: specifically, the number, order and difficulty of game

interactions and the rewards awarded to the player.

4.7.5. System modelling and automated reasoning

4.7.5.1. BIPED and Ludocore

BIPED is a system that supports the early stages of game design (A. M. Smith, Nelson, and Mateas

2008). It is powered by Ludocore, a “logical game engine” designed to support the modelling of

game systems and simulate their dynamics. Both BIPED and Ludocore evolved from earlier work in

generative and automated design for games, undertaken within the context of artificial

intelligence research. This work has previously been described as a “game design assistant”

(Nelson and Mateas 2008) (M.J. Nelson & M. Mateas, 2008b) and a “game sketching” tool or

language (A. M. Smith, Nelson, and Mateas 2009).

For its game sketching language, BIPED takes its cue from the abstractions used in paper

prototyping: e.g. cards, tokens, and dice. Such interface elements can be seen in the game model

made for BIPED shown in Figure 7. Ludocore performs player modelling and provides designers

with the ability to query potential consequences of rule interactions. In other words, it can provide

a designer with answers that could otherwise only be gleaned by building a version of the game

and using extensive human or automated testing.

65

Figure 7: BIPED tool (A.M. Smith, M.J. Nelson, & M. Mateas, 2010)

4.7.5.2. Machinations

Joris Dormans' tool Machinations affords game designers a means of communicating and

modelling “the structure of game systems and patterns that might be found in these structures”

(Dormans 2009). It extends Adams and Rollings' “resource flow” model (Rollings and Adams 2003)

(see Resource Flow model later in this chapter), implementing it in the form of a Petri-nets-

inspired real-time modelling and simulation environment. Its graphical editor allows a designer to

model their game system and 'run' the simulation in real-time or faster than real time, revealing

emergent dynamics of the system over time. As a tool, it answers LeBlanc's emergent dynamics

and feedback. These dynamics can even be visualised via graphing components. Figure 8 shows a

Machinations diagram that models the travel and trading system in the game Elite. Dormans

describes it:

The player’s location on planet A or planet B activates the converters that implement the trading
mechanisms in the center. A few possible ship upgrades are included on the right (Dormans
2012).

66

Figure 8: A Machinations diagram showing the trade and travel system from the game Elite.

4.7.6. Mixed-initiative level design

Mixed-initiative design is an approach currently favoured by researchers in the domain of

procedural content generation for games. The goal is to improve upon current procedural content

generation techniques that allow little designer control or input. “Mixed” designates the

involvement of both the computer and the designer, the pair entering into a design conversation,

each contributing to the design, with the designer guiding the creation and constraining the design

space (G. Smith, Whitehead, and Mateas 2011a).

4.7.6.1. Tanagra

Tanagra is a mixed-initiative tool for the design of levels for 2D platformers, aimed at reducing

authorial burden in level design while still allowing human designers to exercise their creativity

and aesthetic judgment.

A “reactive level generator” creates multiple levels according to specifications provided by the

designer. The designer can choose from these and also make refinements to the level, including

placing and moving level geometry. AI techniques of reactive planning and numerical constraint

solving ensure that levels are playable (G. Smith, Whitehead, and Mateas 2011b). Figure 9 shows

Tanagra’s editing interface.

67

Figure 9: Tanagra a “reactive level editor”.

4.7.6.2. The Sentient Sketchbook

The Sentient Sketchbook (Liapis, Yannakakis, and Togelius 2013) provides support for level design

in the design of strategy games. Specifically, it enables the designer to ensure the playability of the

spatial design of the map (level), and aims to reduce the effort involved in producing a detailed

map.

The designer is afforded an interface that allows the designer to create abstract, low-resolution

“sketch” of a map containing player bases (starting positions), obstacles and resource locations. It

automatically evaluates the map and displays information on how the map aligns with playability

constraints – in particular, how equitable access is to resources between opponents – and

calculates and displays navigable paths. In addition, Like Tanagra, The Sentient Sketchbook aims to

approximate the role of a design “colleague” it uses generative algorithms to add details and

suggest novel alternative designs. These are updated in real time and use the designer’s current

working map as a starting point. The algorithms attempt add details that create an organic looking

map, while retaining the fundamental gameplay properties of the map. Figure 10 shows the

interface for The Sentient Sketchbook. The designer edits their strategy game map on the left. The

maps on the right are suggested map layouts made by the tool.

68

Figure 10: The Sentient Sketchbook

4.7.6.3. Ludoscope

Ludoscope is used for progression design: the structure of missions (e.g. tasks and events) and the

structure of the “space” - meaning, in a fairly broad sense, the space or world in which the player

navigates within the game.

Dormans’ provides a solution to the question of control and communication between designer and

content generation system in the use of use of formal grammars and rewrite rules - concepts from

mathematics. Rewrite rules are used by the designer as a means of specifying and shaping

constraints used to generate content.

The development of Ludoscope is ongoing, but its current approach is moving towards Dormans’

finding a solution to one of the difficult problems of game design: translating the different

materials a game design into different forms: for example, how do we design the space for a

mission, how do we create a mission from a given set of rules and mechanics, and vice versa.

According to Dormans, we can view transitions between these forms and states as model

transformations (Dormans 2012). Figure 11 shows a simple mission diagram modelled in

Ludoscope.

69

Figure 11: A Ludoscope mission diagram

4.7.7. Progression units, rules and structures

The unit-based approach describe above has also been applied to the problem of describing game

progression. For example, progression can be viewed as the acquisition of discrete skills, as in Dan

Cook’s “skill atoms” (Cook 2007), while some have sought to measure and quantify difficulty

(McMillan 2013). Other types of units used represent goal completion (Rollings and Adams 2003)

or narrative events. Unit type seems to vary as a function of not only design philosophy but game

genre, some units being more useful for some games than others. For instance, mission goals for a

side-scrolling platformer may be relatively simple and therefore straightforward to arrange, while

skill and difficulty measures are challenging, whereas an adventure game may contain few

gameplay concepts but contain a complex goal structure.

Diagramming methods have been devised to express progression in the form of rules and

relationships governing the organization of these units. For example, a “tech tree” can be

diagrammed for a strategy game, a “skill chain” serves as a tool for organising skill atoms, and

units in the form of skill-based challenges are often organized by mapping them to desired

difficulty curves (Aponte, Levieux, and Natkin 2011).

Similar concerns in terms of flow, difficulty and variety must be balanced at the macro level as

well. This is the task of progression design: the design of how levels or missions fit together to

70

create the game’s overall player progression. This structure – or “plan” – is often sketched out in a

design document or on a whiteboard before levels are produced (Butler et al. 2013).

4.7.7.1. Skill atoms, skill chains

Designer Dan Cook extends the game atoms idea towards modelling the elements of a game

system from the point of view of the player's experience, arguing that “to accurately describe

games, we need a working psychological model of the player”. A skill atom “describes how the

player gains a new skill” (Cook 2007); i.e. skill atoms describe the skills a player must progressively

learn in order to master the game.

These skills are essentially a different way of describing game mechanics; a skill atom in a game

design is any unique action or combination of actions that the player must use to perform a given

game mechanic. Pressing the “x” button to jump between platforms would count as a skill atom,

for example (the game mechanic might be “platforming”). Järvinen's definitions of “game

mechanics” (as player-driven operations to influence game states) versus “procedures” (as

system-driven operations that respond to player operations) could be useful here (Järvinen 2008,

72). Using his definition we could say that while “game atoms” could be used to describe any

game system element (“procedure”), “skill atoms” specifically engage with game mechanics.

Using diagramming, Cook suggests linking these atoms into “skill chains”, tree structures that

represent the order and context in which learning moments for new skills occur. Cook's intent is

that such a method will help elucidate to the designer the player's core gameplay experience; that

it will “help raise the level of intent and predictability in modern game design” (Cook 2007).

The goal of a skill chain is to address the task of breaking down what skills the player needs to

progressively learn so they can play the game, and to decide on the order in which these skills

need to be acquired. Cook suggests, and implies in the example skill chain he gives, using a skill

chain for the player’s first experiences with the game: the first minutes of gameplay in which the

designer treats the game like sort of disguised tutorial, in which the player learns essential and

basic skills such as, in the case of a classic side-scrolling platformer, for example, how to run,

shoot, jump, and double jump.

71

4.7.7.2. Mission/Space

Progression structures can sometimes map to a player’s spatial progress through a game world

(e.g. a side scrolling platformer where the player is always moving forward), but where this is not

or only partially the case making a distinction becomes useful. For this purpose Dormans proposes

a graph-based framework (“Mission/Space”) for diagramming both the environmental space and

the abstract mission space in a way that allows a designer to more clearly see the relationship

between the two structures, thus aiding progression design (Dormans 2010).

4.7.7.3. Articy:Draft

Figure 12: Annotated screenshot of Articy:Draft

Articy:Draft (Nevigo GMBH 2011) is a commercial tool that supports design for narrative-driven or

narrative-heavy games – for example role-playing games or adventure games. A flow diagram-

style interface enables the design of game design elements that have branching, graph-based

structures, such as branching dialogue or quests (missions). It also offers form-like graphical

interfaces for the editing and organisation of design data associated with game entities such as

non-player characters, items and locations. In addition, it provides an editor for creating level

layouts which enable the designer to perform design-specific level editing tasks such as the

placement of entities, trigger points, defining zones, and so forth. All data may be exported to be

72

loaded and used in the game itself (i.e. as game assets). Figure 12 shows a screenshot annotated

by the Articy:Draft’s developers to draw attention to some of the tool’s features.

4.7.7.4. Progression planning

Butler et al have devised an approach for adding computational support to the task of progression

design. This approach was implemented concretely within the context of their work on the level

design tool for the research game Refraction. The approach is inspired by the “atomic” approach

described above: the designer defines units of progression, a set of rules governing how they are

introduced and used in the game (“progression constraints”), and a progression plan (an example

of which can be seen in Figure 13) based on these rules. The plan (which can be generated by the

tool based on the progression constraints – i.e. treated as an automated planning problem)

consists of a sequence of stages (levels) of the game, each stage of the plan consisting of

progression units. In this way the approach not only offers the designer a tool in which to author

the progression itself, but also invites the designer to externalize and impose their design logic by

inviting them to define rules about the progression itself.

As Refraction is a puzzle game, progression units take the form of puzzle concepts (labelled “game

concepts”). Butler et al have integrated these progression constraints and the progression plan

components into the game’s level editor (a production tool used for authoring or procedurally

generating actual gameplay). Their goal in doing this is to support rapid iteration of a complete

design process from planning through to playtesting and allow for the automatic detection of

problems occasioned by edits to levels.

73

Figure 13: The progression plan component of Refraction's tool’s progression planning interface

4.8. Supported design activities

Above I loosely classified the tools based on their methods or approaches to design problem. Here

I compare the tools through the lens of design activities. Whereas above the focus was on the

various approaches to the problem of design support and their technologies and implementation,

here I am more taking a designer’s point of view, looking at the design activities afforded by the

tools.

4.8.1. Computer-aided design activities

We could say that computation in game design tools provides support in two main ways: 1) by

facilitating design moves; 2) by predicting and describing game dynamics.

4.8.1.1. Facilitating design moves

First, and fundamentally, the software offers an enhanced interface for representing the design

situation and viewing it.

The software facilitates the making of design moves made directly but indirectly (mixed initiative

design tools like Ludoscope, and The Sentient Sketchbook transform the designer’s high level

design moves into concrete gameplay, for example).

74

This can include constraining and informing design moves that the player makes, based on rules

they have defined either directly or indirectly (in the case of Refraction, progression rules are

computationally derived from rules specified by the designer).

4.8.1.2. Predicting and describing game dynamics

Second, computation can predict and describing game dynamics. In other words, to address the

“second order” problem of game design (which, as we recall from in Chapter 3, is the fact that the

design of a game only indirectly affects the player’s experience of it) in response to the hope,

expressed by many, that this can help us avoid some common design pitfalls (Hunicke, Leblanc,

and Zubek 2004).

The greater challenge is in predicting and describing game dynamics. This is because gameplay – in

other words, the behaviour, or dynamics, of a game – is produced by combining ingredients: a

game and a player. As we know, prototyping a game and playing it (and by extension, analysis of

player metrics) is currently the gold standard (arguably, the only standard) for predicting and

describing game dynamics. By designing a game in a tool, the tool has access to the first

ingredient: a model of a game. For the second ingredient, however, the tool needs an alternative

to a human player.

One solution, as Nelson argues, is that AI techniques afford strategies for extracting information

about the dynamics of a game from the game artefact itself. Instead of plotting the experience of

individual players, the tool takes the point of view of all possible player decisions, finding the

thresholds of what is possible in the game, what is impossible, what is necessary in order for given

play outcomes or scenarios to be occur, and so on (Nelson 2011). Smith, for example, talks about

his tool Ludocore as a system that “imagines gameplay”. It offers a representation of the game

that includes this imagined gameplay – in the form of a “vast space of potential low-level action

sequences possible in a game that satisfies arbitrary logical constraints”.

Another solution is to simulate the game using the designer’s model of the game as specifications,

and then either 1) have the design interact with the game simulation (e.g. Machinations); or 2)

simulate a player to interact with it i.e. as a kind of automated playtest (Ludocore). To simulate a

player, the tool needs a player model – this is described further on in this chapter.

75

4.8.2. Two forms of representation: model and dynamics

Stepping back to consider all game design tools, whether or not they offer computational support,

I want to now reconsider the distinction I made above through another lens: the representation of

the design situation. Through this lens one could describe game design tools as supporting two

forms or “orders” of representation:

1) A representation of the game artefact (the game mechanics or progression structure, for

example). This is the model of the game, created via the design activity of “representing” – i.e.

directly by the designer.

2) An additional form of representation is offered by game design tools that offer computational

support for describing dynamics. One might say that the tool is, in design terminology, doing some

“representing” of its own. To do this it takes the designer’s representation – their model – as

formal specifications, and adds to it the second ingredient of the “player” (in the form of a

procedural playtest, AI algorithms, or the designer’s interaction with the simulation).

The goal of this second representation (the dynamics) is to bridge the gap between the rules of

play (the model) and the play experience. In a sense the tool is bringing the “second order” design

problem into lower-order view for the designer. This representation or view might be a real-time

simulation or it could be in some more arcane form. For example, in Ludocore this representation

would be viewed through the lens of symbolic gameplay traces that respond to queries from the

designer.

It is in this way – the two forms of representation - that the natural comparison between

computer-aided design tools for game design with computer aided design tools for architecture

and visual design begins to fail us. Conventional architecture, for instance, does not have a

“second order” problem to solve. Computational support offers game designers more than just a

way to create static models – like architectural CAD software; it also offers the opportunity to

simulate system dynamics from those models. For comparison we can instead look to other kinds

of system designers who use design tools: software engineers and computer scientists15.

15 It is important to remember though that game designers, as distinct from game programmers do not design any
form of software system – they design game systems. i.e. in the sense that Chess, for instance, is a system.

76

Like several of the game design tools reviewed earlier in this chapter, some modelling languages

for software design use graphical notation to describe the structure and behaviour of systems.

UML is the well-known example of one such language. As we can see earlier in this chapter, both

UML and Petri-nets, a mathematical modelling language, have inspired several proposed game

design modelling languages.

A key difference between languages is in whether they are formal, semi-formal or informal.

Informal (e.g. natural language) and semi-formal (e.g. graphical) notation does not have its syntax

nor its semantics completely defined. As such, its models can be ambiguous. Whereas, formal

notation is unambiguous with completely defined syntax, and hence free of ambiguity. This means

that models built with formal specification languages can be read and understood by computers,

allowing them to infer useful information, and serve as specifications for performing analysis and

verification of a design, as well as creating simulations.

The disadvantage of formal specifications, however, is that these languages are more difficult to

learn and harder to understand by humans. Models represented using semi-formal specification

languages, therefore, are ideal for the purpose of being read and analysed by the designer – the

designer understand the model of the system, in its static form. Formal specifications, on the other

hand, because they can be read and analysed by a computer, allow the designer to understand the

dynamics of the system they have designed as mediated by the computer.

We can see this same difference in game design tools: between some of the diagramming

methods that stand alone, and those that are supported with computational features that offer

insight into game dynamics. The pen-and-paper game diagramming languages that do not provide

computational features provide one kind of representation: the model itself. Hence they are (or at

least, they probably should be, for design purposes) semi-formal, focussing on being read and

understood exclusively by a human designer. Machinations, on the other hand, must use a formal

notation language (Machinations’ language is inspired by Petri-nets, a formal specification

language) because it provides, in effect, not one but two forms of representation of the design

situation: i.e. the model and the dynamics. The first, the model of the mechanics, should ideally be

as readable and useful to the designer as possible but, most importantly, it must be understood by

a computer, in order that it can provide the second kind of representation: i.e. the dynamics.

77

4.8.3. Player modelling

A player model is an abstracted description of a player or a player’s behaviour in a game (Dormans

and Bakkes 2011). Player models are used in adaptive gameplay (where the game adapts to

individual players’ play styles), but are also used game design support.

As well as contributing to the task of simulating gameplay (as discussed above) by affording

“procedural playtesting” (Holmgard et al. 2014), it offers designers a way to understand how that

gameplay would vary as a function of different play styles. Nelson et al., when interviewing

designers about what they might like from a design tool report interest in being able to model

human play styles:

One large category of design questions they had was what gameplay would be like for different
types of players; for example, how would the player fare who always picks up the strongest armor
and weapons they can find, uses health potions, and does nothing else? (Nelson and Mateas
2009)

Ludocore provides an interface that enables the designer to create player models. Machinations

does this with its “Artificial Player” node type – simulates interacting with the diagram in

accordance with scripted logic written by the designer. It controls interactive nodes in the

diagram16.

4.8.4. Producing and transforming design materials

Referencing HCI research, Khaled et al suggest the applicability to game design tools of a St

Armant and Horton’s distinction between “effective tools” and “instruments” (Khaled, Nelson, and

Barr 2013). While tools St Armant and Horton class as “instruments” afford the designer

information about their design, “effective tools” produce a persistent effect. “Effective tools”, in

other words, are tools that produce and transform design materials (St Amant & Horton, 2002).

For example, Gillian Smith’s mixed-media level design tool Tanagra can be used as both an

“effective tool”, allowing users to edit a game level, and as an “instrument”, providing visual

feedback if the user makes a change that leads to an unplayable level (Khaled, Nelson, and Barr

2013).

16 See http://www.jorisdormans.nl/machinations/wiki/index.php?title=Artificial_Player

78

With tools that feature procedural content generation, the production of design materials comes

to the fore. These tools (for which Khaled et al use the metaphor “materials”):

…[afford] choice and abundance to the designer. The designer’s task then can shift towards
choosing, selecting and tweaking materials, rather than developing them manually in their
entirety (Khaled, Nelson, and Barr 2013)

But a persistent change to the design materials could take the form of any persistent change to

the design situation, for example modelling a system (Machinations, Ludocore), generating or

adjusting game content based on constraints expressed by the designer (Tanagra, Ludoscope), or

even transforming the constraints themselves (progression planning).

4.8.5. Explicit computer-aided back talk

As previously discussed, the discovery and diagnosis of design problems is a function that

designers have expressed particular interest in, in terms of what they would like from a game

design tool. This raises the question of how a tool helps a designer discover design problems.

To find problems, a designer can read and analyse a representation of the design situation. One of

the essential characteristics of design problems, however, is that they are often not apparent and

must be found (Lawson 2006, 3rd revise:56). In this context, asking a computer to find problems

on the designer’s behalf is useful. It is considered that computational media in particular can help

designers to identify breakdowns that they may not be aware of (Fischer 2004).

Koster, for example, suggests the idea of tools allowing us to detect degenerate strategies 17 in a

game design (Koster 2005). Cook talks about the need for us to develop a model of game

mechanics that is “testable”. When interviewed, designers told Nelson and Mateas that they

would be interested in a tool that they could use to answer questions about their designs:

Do all objects (units, buildings, etc.) play a useful role? Given the interactions between the game
subsystems (economy, base defense, etc.), do the gameplay dynamics avoid overly convergent,
dominant strategies (Nelson and Mateas 2009)?

As discussed above, Ludocore provides a query interface: it allows the designer to ask specific

questions, and get specific answers.

17 Degenerate strategies are strategies players can use to exploit defects in the game system to play in ways the
designer does not intend.

79

Another way to detect problems in a design that researchers have used or proposed using is

automated testing based on approaches used in software engineering. Araujo and Roque, for

example, propose that design tools that provide verification, validation could help find balancing

issues or problems within the game's flow (Araújo and Roque 2009). In software engineering,

validation and verification are tests performed to see whether the software specification captures

the client’s needs and whether the software meets the specification.

Another idea borrowed from software engineering is regression testing. This is a kind of testing

specifically performed after changes to the system are made, in order to detect new bugs

(“regressions”) arising from these changes. Nelson suggests a form of regression testing could be

used in game design tools:

If design goals identified in the exploratory phase are noted, then during the testing phase, a
series of regression tests can be run to make sure the design goals haven’t been broken by recent
changes, much as in software engineering regression tests check to see if previous bugs were
reopened by new modifications (Nelson and Mateas 2009).

Tanagra performs this function (albeit for a level design rather than a game system model) – as

noted above, it provides visual feedback to alert the designer if they make a change that leads to

an unplayable level.

Finally, though not strictly finding problems, the constraining of design moves and/or the

automatic adjustment and refinement of them by the tool as or just after they are made helps

ensure that (some kinds of) design problems do not occur in the first place. This seems to be a

traditional Computer-Aided Design approach. One of the key features of SketchPad (Sutherland

1964), a very early computer-aided design tool, was enabling the designer to constrain geometric

properties such as line length and angle size. Checking design moves against constraints features

in Tanagra and Refraction’s tool.

4.8.6. Evaluation using interactive simulation

In current game design practice, the dominant evaluation activity is play-testing. This fuels a need

to start prototyping and producing as soon as possible. Playtesting, however, is resource-hungry:

not only does it require building a playable game prototype, it can be very time consuming; some

questions about our designs may only be answered through data collected from hundreds of play

sessions.

80

Therefore this is a desired role of game design tools – that we can evaluate designs that are now

commonly only testable via playable prototypes.

Above I described how computer-aided game design tools offer simulation as a means of

extending the representation of the design situation. Such tools can be interactive, offering the

designer the ability to interact with the simulation, in a manner similar to “playing” the game.

Notably, Machinations and BIPED have this functionality.

4.8.7. Communication features

The separation of production from design requires that communication become one of the key

tasks of a designer. As Lawson notes:

If the designer is no longer a craftsman actually making the object, then he or she must instead
communicate instructions to those who will make it (Lawson 2006)

On AAA development teams, communication of design specifications to the team has long been a

major part of the designer’s role. Communicating specifications to programmers and artists is

important. While current practice in this area could no doubt be improved upon, I have not

experienced this to be a major challenge in the past on conventional projects, using existing

communication methods (technical documentation, verbal discussions, flow charts, etc.), nor have

I seen it expressed as a difficult problem that designers want resolved in order to improve design

outcomes.

While game programmers frequently themselves have to “fill in the gaps” for where detail in game

design communication is missing, I would argue that this is not a communication problem. Instead

– based on my experience on both sides of the programming team/design team communication

loop - I attribute it to the lack of design tools; i.e. the design thinking itself has not taken place,

therefore the design situation lacks detail. Instead, it is the game programmers who have the

game in which to model and test details of design that are difficult to model and evaluate without

computational support (AI for non-player characters, for example), and so the programmer might

be effectively taking something of a design role – i.e. they are “designing-by-making”.

Being able to codify design knowledge in order to communicate with other designers, however,

has been identified as a problem for designers. Church characterises our lack of a means to

communicate our ideas effectively between designers based on a “common design vocabulary” as

“the primary inhibitor of design evolution”. Understanding, he says, requires that designers be

81

able to communicate precisely and effectively with one another (Church 1999). This kind of

communication is very different to implementation specifications, however; as the information is

not designed to be used to produce a game from the design but rather to afford understanding of

the design, the language of design does not need to be in a form or level of abstraction that is

directly transformed into gameplay. Indeed, design knowledge can take a form that is even slightly

philosophical (take Jesse Schell’s The Art of Game Design (Schell 2008), or Steve Swink’s Game Feel

(Swink 2009), for example – both books written to communicate design knowledge from designer

to designers).

While this is a valuable question, working as the sole designer on my case studies I am not able to

evaluate this attribute of designer-to-designer communication in practice, and so I will not be

addressing it in this study. My focus is rather on tools that can support design thinking - the

“communication” that occurs within the design conversation with the materials.

4.8.8. Comparing the tools

Table 1 below summarises a comparison of game design tools in relation to the design activities

they support, as discussed above. In addition, using a domain-specific lens, it indicates the types of

design tasks they ostensibly support. By tasks I mean not so much the type of design activities

performed as the parts of the game design situation being worked on. These were discussed in

Chapter 2, where I described contemporary game design roles and their associated tasks: concept

development (ideation), progression design, gameplay authoring (level/mission design), system

design and balancing.

82

Table 1: Comparison of design activities and tasks in game design tools

 Design activities Game design tasks

G
en

er
at

in
g

 m
at

er
ia

ls

(g
am

e
co

n
te

n
t)

P
ro

d
u

ci
n

g
o

r

tr
an

sf
o

rm
in

g
m

at
er

ia
ls

(p
er

si
st

en
t

ch
an

ge
)

In
fo

rm
at

io
n

-g
iv

in
g

C
o

n
st

ra
in

ts
 c

h
ec

ki
n

g
o

r

va
lid

at
io

n

Ex
p

lic
it

 b
ac

k
ta

lk

Si
m

u
la

ti
o

n

In
te

ra
ct

iv
e

 s
im

u
la

ti
o

n

C
o

m
m

u
n

ic
at

io
n

Ex
p

lo
ra

ti
o

n
 f

o
cu

s

C
o

n
ce

p
t

d
ev

el
o

p
m

en
t

(i
d

e
at

io
n

)

P
ro

gr
es

si
o

n
 d

e
si

gn

Le
ve

l/
m

is
si

o
n

 d
e

si
gn

Sy
st

em
 d

e
si

gn
 a

n
d

b
al

an
ci

n
g

Machinations x x x x x x x x x

Progression planning

(within Refraction editing

tool)

 x x x x x

Sentient Sketchbook x x x

Ludoscope x x x x

Game design patterns x x

Skill chains x x

Tanagra x x x

Sketch-it-up! x x x

Ludocore + BIPED x x x x x

Articy:Draft x x x x x

83

5. RESEARCH QUESTIONS AND METHOD

5.1. Overview

This chapter outlines the motivation for this project and the contribution it makes to the field of

research on tools for game design. It presents my research questions and lists the tools included in

this study, as well as the research method used and the thinking behind it.

5.2. The need for evaluation

The involvement of respected practising game designers in this push towards developing models

and formal approaches to game design suggests that designers themselves would, in theory, find

such approaches useful to support their practice. But this should not be automatically assumed. It

is important to recognise who these game designers are and who they represent: an elite minority

of the game design community who meet and discuss their ideas regularly at events such as the

industry's international Game Developers Conference (GDC) but also at exclusive invitation-only

events such as “Project Horseshoe”, an annual gathering of game designers dedicated to solving

current problems in game design. Just as 'best practice' methods like paper prototyping may

appear frequently in game design textbooks but far less frequently in the workplace, the design

ideas and methods described by an elite minority of game designers should not be taken as

representative of the typical methods used by the average professional game designer.

It is hard to measure the influence of frameworks suggested by these game designers and

researchers upon practising game designers. Certainly in my own experience, while I have spoken

to some designers who are aware of these theories I am not aware of any of my peers who use

them in their practice. Even Koster admits that he “can't yet picture designing a game” with his

own notation system (Koster and Ebrary 2005). The exception is perhaps the Mechanics, Dynamics

Aesthetics (MDA) theory of game design, which forms the basis of the Game Design Workshop at

the annual Game Developers’ Conference in San Francisco. But no formal methods based on this

analytical framework have been published to date, nor any accounts of designers using the MDA

framework in their practice.

If techniques proposed by these vanguard designers – such as Raph Koster with his “game

grammar” and Dan Cook with “skill atoms”- are not filtering through into common design practice,

84

we have also to consider why. One explanation could be that the ideas of the elite are more

advanced than those of the majority, but we must also consider other reasons. It may be, for

example, that the experimental, risk-taking concept work of creative directors like Koster calls for

quite different design methods to the everyday craft work undertaken by a typical game designer.

In 2008, Project Horseshoe published a report in which they appeared to consider this possibility,

worrying over questions such as “are skill atoms a pragmatic tool for working designers?” and

expressing a concern that although “in recent years a new set of tools for building games has

emerged”, they still remain hobbled by the problem that “most descriptions are highly theoretical

and only considered useful to pointy headed academics or their mad inventors”(Blinn et al. 2008).

Dormans, while observing that none of the attempts to introduce formal models for game design

has been so successful that they have become an industry or academic standard, attributes this to

the fact that they “tend either to be too mathematical for the diverse population of game

designers and scholars, or were not explored or presented with enough detail”. He adds that, most

importantly, they require designers to make an investment by learning a new paradigm – an

investment unlikely to be made unless there is an “obvious return” in the form of a better, more

efficient design process (Dormans 2009). This sentiment resonates with me as a practitioner. As a

game designer, my first instinct is to ask: will design support tools and methods aid our design

work? If so, which tools work best for which of my design tasks? From a practitioner’s perspective,

evidence of how these theorised tools and methods fare when applied to real game design

problems is crucial.

Some argue that the design models proposed are as yet too underdeveloped to be used by

designers. Designer Stephane Bura, who proposes a solution to what he describes as the “game

diagramming problem”, qualifies his contribution as an early attempt that needs further work

before it can be of practical use. “Barring [additional work],” says Bura, “this grammar will remain

a simple descriptive tool instead of an analytical or even a design tool” (Bura 2006).

A similar observation could be made about tools developed in a research context. Some of these

tools, though they have been built and tested, are early stage work and not intended to be for

general consumption. Their role is to inform the development of future tools that might be

created to be used in the field. Adam Smith explains that such tools were created to function as

“computational caricatures”, exaggerating and oversimplifying their features in order to make

their technical claims about the potential role of AI in the game design process clear and easily

85

recognisable. He argues that systems like Tanagra and his own Ludocore are not intended to be

used as is, in the field, but instead have been built to offer “a tangible, interactive demonstration

of a potential future for level design tools and a validation of the software architecture that made

it possible”.

So do we know yet whether there is an “obvious return” on investment to be had from integrating

design tools into a game designer’s practice? In general terms: no, not really. At least one

influential designer has expressed doubts as to the potential usefulness of formalisation and

abstraction for game design (Schell, 2008: 145), and thus far we can furnish little evidence to

counter such scepticism. To date we have little data upon which to base any such assertion, let

alone if any one approach to this problem is more fruitful, in practice, than any other. In all, we

have little upon which to base real insight into these tools from a practitioner’s point of view, let

alone enough empirical support to help resolve the question of whether formalising the game

design process with tools and formal models really would aid or improve game design practice.

This is because we lack sufficient data of the kind that practitioners typically find most meaningful:

published accounts and analyses of designers' experiences. Game designers – if they are using

these tools – are not conducting their own evaluation research; which, in the case of the game

design community, means post-mortems shared via conferences or trade journals. Researchers,

on their side, have not yet conducted any deep and thorough-going evaluation research of

experimental design techniques and tools. Dormans has said in relation to his Machinations design

tool that “it remains to be determined how easy it is for designers” (Dormans 2011). And while the

developers of Sketch-It-Up!, a tool developed until 2009 at Carnegie Mellon University,

workshopped their tool with children, there is no discussion of how the tool fares in the

professional design contexts it was built to support (Karakaya et al. 2009).

The result of this is that, despite the fact that research in the area of game design support has

been emerging for several years, to date there has been relatively little discussion or comparative

critique of this work. Even at a purely theoretical level, the field lacks work that provides

comprehensive comparative analysis that is based on real practice. Such comparative analysis

would be useful: while all these proposed design support solutions tend to share core

foundational elements, their approaches and results differ. But this absence of analysis is not

surprising – indeed, it would be hard to develop an honest critique of game design tools in the

86

absence of practice-led research. Without being able to learn lessons from previous work it is hard

to justify taking new directions with new work.

Then again, viewed within the context of academic research, this situation may not seem unusual.

In Computer Science research and its related disciplines we prefer projects that develop novel

technology and advanced techniques. Evaluation in this context has a support role; its purpose is

to legitimate and validate this activity. As such, evaluation in Computer Science and related fields

is typically not a research contribution – it validates research contributions. The kind of

information we need about practice is not this kind of research validation - a kind of prompt,

efficient, anaesthetized outpatient medical procedure. Rather, the introduction of tools into a

crafts-based design practice calls for an evaluation process more akin to an emergency room

organ transplant: traumatic, messy, long and difficult.

5.3. This contribution

We need evaluation of this work that goes beyond simple research validation. Accordingly, this

project aims to contribute to our understanding of the work on this question from the perspective

of design practice.

This project aims to contribute knowledge that can help inform future advances in this emerging

field of game design support. Taking the form of a designerly line of enquiry into this question, it

comprises a longitudinal, practice-led evaluation research conducted as a participant-observer,

applying game design tools to longitudinal game design case studies in order to generate

observations that can feed back into further development in this area. My observations, analysed

through the lens of what we know about design support, have revealed where some problems and

potential of a tool-supported game design practice might lie.

As a secondary goal for this project, this work aims to offer material that can contribute towards

filling the literature gap vis-à-vis work on game design as a design activity and a practice. As noted

above, there is a scarcity of published material in this area. As a research community it is too easy

to find ourselves bedazzled by the ever-changing technical challenges and new possibilities for

game design, while forgetting that we still know relatively little about game design itself.

87

5.3.1. Research questions

Designer and developer Chris Hecker once observed that the transfer of ideas between academic

games research and professional development is rare. It is surprisingly hard to develop a new idea

that can demonstrably and meaningfully improve game development practice in the field. He

counselled researchers (those who aim to propose ideas that can be used in practice) to keep their

offerings unambitious and simple. “All we want is two sticks and a rock” (Hecker 2011). There,

Hecker was speaking about technology for game production. Researchers who develop tools and

technology for game design face an even harder challenge. They are not just proposing the

addition of this new modelling language, or that new interface – they are proposing serious

disruption to the status quo. As I argue in this thesis, game design is currently still a crafts-based

practice; as such, design tools pose an aggressive, paradigmatic challenge to our current approach

to game design at a very basic level, in that they propose a means of separating design thinking

from making. In turn, this may even represent a challenge to the identity of game designers

themselves, in terms of the way they see themselves and what they do.

Other researchers, by creating game design tools have proposed a future for game design; my

focus is on thinking about what the first step towards such a future might be. This wide gap

between the advanced, sophisticated design technologies being explored in academic research

and the (often, quite literally) paper technology of real-world game design practice must colour

the nature and approach of any evaluation of design tools. It is a context in which the success of a

very first step – however minor or primitive – would be significant. In essence, to borrow Hecker’s

metaphor, it means asking: where are the two sticks and a rock that game designers might one

day use to light the first fire?

With this general approach in mind, I had three main research questions to direct my enquiry.

Firstly, can game design tools improve game design practice? One theme expressed by advocates

for game design tools concerns improving the quality and efficiency of the game design process.

Tools might give designers the kind of insight into the emergent properties of their game

mechanics (Koster 2005; Leblanc 2005) and lessen reliance on the relatively costly process of

prototyping them; tools might help designers better articulate and communicate their ideas, with

their colleagues, but also with each other, allowing design knowledge to be effectively codified

and shared (Church 1999).

88

Secondly, can game design tools expand the scope of game design outcomes? In other words, can

game design tools enlarge the possibility space of game design? Another theme expressed by tool

advocates is concerned with advancing, or expanding the nature of game outcomes. Designers

(Church 1999; Cousins 2004b; Cook 2007) have articulated a sense that a lack of design tools is

holding us back from pushing creative boundaries and moving design forward. One of Dormans’

stated aims for his tool work, for example, is to provide a way of reconciling the design of game

mechanics with the design of game progression.

Thirdly, how do design tools change or impact the game design process? Several design tool

researchers have observed that the use of design tools strongly affect designers’ courses of actions

and thought processes (Resnick, Myers, and Nakakoji 2005). This is perhaps the most interesting

question, given the radical nature of introducing formalisation to a relatively informal design

practice.

Finally, I hoped to discover knowledge that could contribute to future game design tool

development research – by revealing some of the problems, successes, and possibilities of game

design tools based on my experiences.

5.4. Tools used in this study

As discussed previously, the game design literature reveals that “brainstorming solutions to

problems” is already the go-to design tool (Kuittinen and Holopainen 2009) in the absence of

other tools to support design thinking. While this activity could perhaps benefit from support, I did

not have the sense that reaffirming the worth (or not) of card-based brainstorming aids would be

a useful contribution towards the work in this field. A strength of tools of this kind is that, given

their focus on the ideation stage of game design, they are comparatively straightforward to

evaluate; indeed, typically the card designers have been able to test their card systems quite

extensively and show that they can be useful. It would be surprising though if they were not, as

other design fields have already confirmed the worth of card decks for brainstorming and creative

brainstorming; as such, while modular concepts and pattern languages for game design are

relevant, tools in the form of sets of cards are not especially pertinent to the problem of tools

specifically for game design.

89

Aside from this, my selection criteria were rather pragmatic, in that I tried to include every game

design tool available to me. This was due to the fact that there have been, to date, relatively few

attempts at creating game design tools. My choice of tools to use in this study was a function of

practical constraints symptomatic of how early and how fringe work in this research domain is.

Some tools are simply unavailable - Sketch-It-Up! (Karakaya et al. 2009), for example. Where

software tools have been created they are often not advanced enough in the work to create a tool

that can be used by a third party; rather, they are research projects rather than tools designed for

wider use. They have been designed for and validated within the context of a specific game and

development context created by the researchers themselves. This is the case, for example, with

Refraction’s tool and BIPED/Ludocore. Where they can be used by a third party, they have been

created primarily for the purpose of validating the research and can only feasibly be used on the

game that was used as a case study. Despite my attempt to be inclusive as possible, therefore,

practical constraints have meant my selection could not be said to be an ideally representative

sample.

System modelling

• Machinations (Dormans 2009)

Narrative design

• Articy:Draft (Nevigo GMBH 2011)

Mixed-initiative design

• Ludoscope (Dormans 2012)

• The Sentient Sketchbook (Liapis, Yannakakis, and Togelius 2013)

Progression design

• Skill chains (Cook 2007)

• Progression planning (in Refraction’s tool) (Butler et al. 2013)

90

5.5. Contributing a designerly line of evidence

What is the correct method for evaluating game design tools? It is here, where research into the

design of games is poorly served by its disciplinary context.

Unlike some of its counterparts, such as Music, Art, Film and Theatre, research into game design

and development practice does not yet have a home of its own. Despite over a decade of “Games

Studies”, games research still bears the legacy and methods of the Humanities and Computing

disciplines it emerged from. While player experience research dominates the Humanities-led

Game Studies, much of the practical work relating to the design and production of games

themselves tends to find a home within the technical disciplines of Computer Science and HCI.

Hence topics that, in parallel subdomains (e.g. Computer Music) might be considered to be art or

design research topics, are contextualised within science and approached using the methods of

scientific research. This despite the fact that, given what we know from at the other creative

disciplines within academia, it seems probable that game design research could benefit from a

wider range of methods of inquiry – particularly designerly methods.

The literature on the evaluation of design tools, particularly design tools for the creative

disciplines, is not extensive. The material I use here for guidance on evaluation methods has

largely come from Creativity Support Tool evaluation within HCI research, Art and Design, and

Design Studies.

The Creativity Support literature suggests that there is no one correct method. Not only is there a

variety of valid methods available for approaching this question, but a diverse methods of enquiry

should be used in order to produce “converging lines of evidence”. Terry, Mynatt, Nakakoji &

Yamamoto point to the importance of employing mixed methods for evaluation, arguing that a

“richer suite of evaluation instruments” is necessary for the study of tools (Terry, Mynatt, Nakakoji

& Yamamoto 2004). This is echoed by participants of the National Science Foundation Workshop

on Creativity Support Tools, who shared the view that multiple evaluation methods are required

for assessing the different aspects of creative work and that a “FAMILY [their emphasis] of

evaluation techniques which must be brought to bear in order to CONVERGE on the key issues

involved” (Ben Shneiderman et al. 2005).

One reason given to have multiple evaluation methods for design is to compensate for the fact

that any design process evaluation method is considered to be inherently flawed. Indeed, Lawson

91

asserts that “any one experiment on the nature of the design process is likely to be flawed in some

way” (Lawson 2006, 3rd revise:41). Owing to these common inherent flaws, any single research

methodology may be “inappropriate as a single tool for a thorough, meaningful interpretation of a

result” (Ben Shneiderman et al. 2005).

Similar sentiments regarding method have been expressed in the literature on Art and Design

research methods. In their Guide to Research Process in Art and Design, Gray and Malins suggest

an ‘artistic methodology’ for research in art and design that cautions the creative researcher

against being excessively narrow or rigorous in their choice or application of creative method:

Characteristics of ‘artistic’ methodology are a pluralist approach and the use of a multi-method
technique, tailored to the individual project. Methodology should be responsive, driven by the
requirements of practice and the creative dynamic of the art/design work. It is essentially
qualitative, naturalistic and reflective. […] It also demonstrates a willingness to examine other
fields and make sensible connections. It requires an outward-looking attitude and an awareness
of other research cultures and paradigms. (Gray and Malins 2004)

5.6. A method for studying design tools

Here I describe an evaluation method appropriate to this work. As a practitioner-researcher

studying tools for design, a designerly form of enquiry seemed appropriate. It is not the best or

the only possible method but it is one that suited the parameters of my project and areas of

expertise. My goal was not to provide definitive answers but to complement other studies,

offering a single piece of the puzzle, or a single line among “converging lines of evidence”.

To summarise my method: my inquiry is practice-led, using a method of participant observation as

a reflective practitioner. I used a range of design tools within the context of design work on a

group of longitudinal game design case studies. I also used conventional design workflows and

tools (prototyping, documenting, etc.) where they seemed most appropriate, adapting them

where necessary.

The case studies provided a meaningful context within which to apply game design models and

tools to 'real-world' design problems, from which I was able to develop a practical understanding

of what it is (or might be) to design games with design tools. I used a design diary to record my

thoughts and experiences, which formed the basis of my observations (presented in Chapter 7).

The observations of my experiences with the tools were analysed (Chapter 8) using knowledge

derived and adapted from design support and creativity tool literature.

92

5.6.1. Evaluation, not validation

Evaluation is considered an important part of the research process in Computer Science and HCI.

At a panel session on evaluation at the Procedural Content Generation Workshop at Foundations

of Digital Games in 2013, panellists expressed the view that insufficient evaluation was being

carried out in the field. It was suggested that insufficient time and resources were being allocated

by researchers to this task for the evaluation of their own work, and that it was hard for reviewers

to assess the quality of conference submissions on work that did not show adequate evidence of

validation of a high standard. This feeling is not uncommon. A lack of evaluation has been the

subject of debate within the HCI domain. Ellis and Dix, based on their analysis of 170 Infovis

papers, highlighted insufficient evaluation (by researchers of their own work) overall, as well as

what they considered to be limitations and serious problems (e.g. studies with foregone

conclusions, wrong sort of experiment, fishing for results) (Bertini and Plaisant 2006).

The prevailing expectation here is that evaluation is the responsibility of the researchers who

created the tool or technology to be evaluated. Indeed, evaluation conducted by researchers in

this domain is typically for the specific purpose of validating their research contribution (or else

face the prospect of being unable to publish). While this form of evaluation is expedient in

pragmatic terms, its narrowness of scope is not necessarily fit for purpose in terms of answering

deeper research questions.

Some are even of the opinion that having researchers evaluate their own work has detrimental

effects on the quality of research. Lieberman, addressing his fellow HCI research peers, calls the

scientific integrity of this convention into question. He asks us to consider that medical

researchers, for example, “would be horrified at the idea of someone who developed a technique

being the one to evaluate it”, as studies by people originally involved with whatever is under study

have experimentally been shown to be biased (Lieberman 2006). Meanwhile, in the Creativity Tool

Support domain, Shneiderman and Plaisant discuss what it means when the motivation for tool

evaluation is driven by the researcher’s own need to validate their research contribution. They

claim that the evaluation aims become narrow, the researcher’s overarching goal being to refine

their tool and claim enough success to warrant academic recognition (towards the publication of a

paper, for example) or further commercial development. This narrows the focus to the goal of

demonstrating the “goodness” of a proposed technique, creating a tension between that and any

reporting about its potential or observed limitations (Bertini and Plaisant 2006).

93

It could be useful, therefore, to see evaluation for the purposes of validating a research

contribution (and within the context of that research contribution) – i.e. validation – as its own

particular and necessarily narrow type of evaluation. In contrast to the needs of validation, my

research inquiry required a broad and open approach, conducive to discovery. At the very least, a

contrasting method can offer a different direction or line of enquiry to contribute to converging

lines of evidence.

Evaluation oriented towards discovery runs counter to some conventional HCI evaluation

approaches, where evaluation is limited to and biased towards criteria and effects that can be

measured and quantified within the researchers’ methodological constraints (Lieberman 2006).

The problem with this is, according to Schneiderman and Seo, that knowing what all the

evaluation criteria or research questions should be may not even be possible before the

experiment evaluation of design tools. Some questions are “discovered” during the course of

evaluation, making the process “somewhat exploratory and time-consuming” (Seo and

Shneiderman 2006). Shneiderman and Plaisant recommend the researcher evaluating creativity

support tools remains flexible; that they be open to adapting the goals and the process used

during the evaluation study itself (B Shneiderman and Plaisant 2006).

Even specific evaluation goals – for example, goals based on the stated goals of the tools

themselves, may be too limiting. This thinking can also be seen in some design research methods

used in the social sciences. ‘Goal-free evaluation’ (Scriven), is an approach that relies heavily on

description and direct experience (Patton 1987: 36). It is premised on the idea an evaluation

should examine value by investigating what it is actually doing rather than what it is trying or

claiming to do.

As my investigation is into relatively uncharted territory, the adoption of an open, exploratory

approach seems all the more relevant. Concretely, I might find that a tool I thought (and the tool

developer thought) would be useful for a particular design task for a particular game genre is

proving to be ineffective, but I might discover that using it a different way, and with the ‘wrong’

set of criteria and expectations, proves fruitful.

5.6.2. Reflective practitioner as participant-observer

In evaluation research there are two main methodological approaches: the hypothetical-deductive

model used in science; and “naturalistic enquiry”, a qualitative approach that relies upon the

94

interpretative skills of the observer (Somekh and Lewin 2005) . Longitudinal participant

observation is becoming increasingly popular as a research method in creativity support tool

evaluation, according to Sneiderman and Plaisant, who observe a trend away from usability

studies and controlled experiments. (B Shneiderman and Plaisant 2006). Similar trends have been

noted in Art and Design, where there has been a shift from “what could be seen as ‘positivist’

methodologies to more naturalistic and ‘artistic/designerly’ forms of inquiry" (Gray and Malins

2004).

The concept of the participant observer was first developed by anthropologists and was later

adopted by Design Studies, where participant observation is considered to be an uncommon, yet

valid, research method (Blessing and Chakrabarti 2009: 247) . There are different levels of

participation. HCI researchers, for example, sometimes work as advisors or collaborators with

users.

In Art and Design, the participation is commonly “complete participation”, in that the designer is

the researcher. “Practice-based” methods of enquiry emerged in the field of creative arts and

design in the United Kingdom in the late 1970s (Gray and Malins 2004). This method has the artist

or designer using practice as a vehicle for inquiry, generating knowledge through reflecting on

their own practice. The researcher acts as what Donald Schön describes as a “reflective

practitioner”, developing thoughts about practice through engaging in practice.

These “research through design” methods have begun to appear in games research. Holopainen,

Nummenmaa and Kuittinen, for example, used participant-observer design research methods to

gather data on their design process for an experimental pervasive mobile phone game, in order to

discover which core mechanics would work best in this game genre (Holopainen, Nummenmaa,

and Kuittinen 2010).

Accordingly, the 2015 game studies textbook “Game Research Methods: An Overview” reflects

this emerging trend, featuring a section of practice-based research in game studies, featuring a

section entitled “Development for Research” (Lankoski, Bjork et al 2005). By this they do not mean

games developed for the purpose of data-collection, or as test beds, as it is widely used for in HCI

and Computer Science based game research (in fact it is rare these days to see games research

using standard HCI and Computer Science methods that does not create a game or game

prototype for the purposes of lab-based experiments or other form of validation). What is meant

95

here is the developing of games for observing aspects of the game development process and its

outcomes.

The research projects discussed, however, have goals that can be even more narrowly defined

than this, however: their research goal is to make some form of design contribution. As such, by

“Development for Research” they mean, specifically, “practice-based” research. Although the

terms “practice-based” and “practice-led” are sometimes used interchangeably in discussions of

Art and Design research, they are not the same. While in practice-based (or “design-based”)

research the creative artefact(s) produced form the basis of the researcher’s contribution to

knowledge, practice-led research seeks to contribute new understanding about the practice itself

(Candy 2006) . My goal - a more interdisciplinary attempt to study tools in relation to the design

process – makes my process “practice-led”. This type of design-led research – and even specifically

the evaluation of new tools and techniques – also has precedent as a method used in Art and

Design. Malins in “Research procedures/methodology for artists & designers” and Bunnell in

“Appropriate Research Methodologies” point to such research projects – ones in which

practitioner-researchers have evaluated practice using, and integration of, new technology (Bunell

1998). Malins gives an example of a practitioner-researcher who evaluated kiln design through the

creation of ceramics (Malins 1993); describing practice-based method as “naturalistic enquiry”,

Bunnell gives an example of a designer who evaluated computer-aided design using her own

creative works as case studies.

The obvious disadvantage of the participant observer method is its inherent subjectivity. When

the observer participates, they lose the advantage of distance and the objectivity that

accompanies it. The participant-observer sacrifices distance in order to gain the benefits afforded

by close observation.

Close observation is considered to be a key advantage of the participant-observer method. This is

because external observation of design from a third party perspective (i.e. not as a first party,

participant-observer) is difficult and poses its own set of risks to the integrity of the study. First,

there is the problem of gathering data from designers. Lawson warns that conducting empirical

work on the design process is notoriously difficult because the design process takes place inside

our heads. Moreover, designers are not used to making this thought process explicit (Lawson

2006, 3rd revise:41).

96

Then there is the problem of the quality of that data. Designers, as compared with other

practitioners, are notoriously unreliable test subjects when it comes to expressing their knowledge

and methods. Schön warns:

Designers know more than they can say, tend to give inaccurate descriptions of what they know,
and can best (or only) gain access to their knowing-in-action [design knowledge] by putting
themselves into the mode of doing (Schön 1992).

Describing elements of design process in a domain that still lacks formal concepts and vocabulary

also contributes to the burden of difficulty and responsibility placed on the designer participating

in evaluation research.

Another advantage conferred by the participant-observer approach is that it accommodates some

of the practical issues of evaluating design tools. Any evaluation of design tools is dependent on

the designer’s knowledge, motivation and exploratory thinking. This means that, effectively, the

designer is obliged to participate to at least some degree in the process as a researcher him- or

herself. This is because, firstly, designing with unpolished, untested tools requires effort and a

good deal of additional decision-making and commitment. Resnick et al. warn that users may have

to “invest substantial effort” over long periods of time (Resnick, Myers, and Nakakoji 2005).

Secondly, creative thinking is required: for example, working out what a tool could be useful for

and how it could be integrated into a workflow for a given game project. As described above, tools

that raise the design “ceiling”, opening up new design possibilities that were not feasible without

the use of the tool, could even require from the designer the creation of entirely new types of

design tasks.

A participant-observer approach also helps avoid another problem third party researchers face:

the misinterpretation and overlooking of important design events. Design discoveries occur rarely,

making it virtually impossible for someone to be observing when a discovery occurs (B

Shneiderman and Plaisant 2006).

Finally, any act of observation itself disrupts normal practice. This is minimised if the designer, as

the observer, can regulate and control the disruption themselves.

The closeness and blurred boundaries of the participant observer method, therefore, can be

considered its strength. The participant can be an informed observer, armed not just with

97

experience but with the analytical tools and vocabulary with which to identify, extract and frame

elements of their design experiences relevant to the research.

5.6.3. A comparative study

Calling comparison “the main intellectual tool of analysis”, Gray and Malins remark that it helps

the researcher to form categories, establish boundaries, find inconsistencies, discover patterns

and connections, and paint the larger picture beyond the specific detail (Gray and Malins 2004).

Where game design tools have received evaluation, it has been primarily with the goal of

validating a research contribution. No comparative studies have been published; in fact, in the

presentation of game design tool work it is rare to find even any mention of other game design

tool research.

My research goals, by contrast, required a broad and comparative approach as opposed to a

piecemeal study of each tool in isolation. To this end I evaluated several design support tools and

models that vary in approach. I compare not just my experience with the various tools, but also my

work without the tools during the study and prior to it within my professional practice.

5.6.4. Multiple case studies

My practical work has comprised the use of tools as applied to several game design case studies

that range across a variety of game genres. This is largely motivated by the fact that game design

problems vary across game genres and types. Furthermore, some of the tools under study are

anticipated by their creators to be useful as applied to particular design tasks, game mechanics or

game genres. My aim was to maximise the breadth and diversity of design contexts in order to

maximise the potential for exploration and comparison.

5.6.5. In the field

Hewitt advises that creativity support tools be evaluated in the field, with users using them to do

their real work, in real time, over an extended period of time (Hewitt 2005). This recognises the

“situated nature” of most work activity, with participants carrying out their own work instead of a

set of tasks supplied by researchers (B Shneiderman and Plaisant 2006).

Lawson contrasts studying design in experimental conditions with “normal” conditions. Asking

designers to design under experimental conditions allows researchers to observe the process

98

closely and gain accurate results – but the design process is unnatural. Meanwhile studying design

in normal conditions is also flawed because it sacrifices accuracy. Researchers are reliant on the

memory and the descriptions of designers, who are liable to unwittingly misreport their process

(Lawson 2006, 3rd revise:45). This problem is somewhat mitigated using a participant-observer

method, as described above.

5.6.5.1. Balancing research needs with design needs

It is important that both research method and design method work together in a complementary,

harmonious way. Good science means not allowing the act of data collection to affect the data in

such a way that it is rendered useless. Ideally, observation should not impact the process being

observed.

In the case of a study of design where tools are the focus, the needs of the experiment are in

danger of coming into conflict with the needs of the design itself – i.e. a scenario where the

designer tailors the designed artefact to the strengths and weakness of the tools, and is effectively

“used” by their tools. Such an imbalance between designer and tool is considered bad practice in

design. While a designer is always forced to constrain and adapt their design based on factors

external to that design (time, resources, client requirements, technology), it is commonly regarded

as bad practice to allow their design to be led by the needs, bias, strengths and weaknesses of

their tools. Doing so often leads to bad design outcomes, such as design clichés, and work that

bears a recognisable “watermark” of the tool that was used18. A good designer is expected to

select and adapt their tools based on the needs of their design, not the other way around.

In a research context, therefore, avoiding the subordination of one’s own design vision to the

vision of the designer of the tool is all the more important when the aim is to simulate real-world

design practice. Shneiderman and Plaisant advise that the evaluation of tools should not be

forced, and that users should be encouraged to use the best possible tool for the (design) task, in

order to “avoid a situation where users try to please the researcher by using the new tool while

another classic one would have been more appropriate” (B Shneiderman and Plaisant 2006). They

18 In the game industry, this phenomenon (which used to be commonly seen in game art portfolios of recent
graduates), was known as “the rotating cube above a shiny black and white tiled floor” (something that is produced by
a 3D modelling tool that does what the tool is best at: i.e. maximally impressive with the least possible effort or skill to
produce). There are also running jokes like this in other creative industries, especially ones that use computer-aided
design (electronic music being another good example).

99

further observe that even specifying tasks is at odds with the goals of supporting innovation or

discovery (B Shneiderman and Plaisant 2006).

With this in mind, I made a conscious effort designing from the point of view of the needs of game

design, rather than the point of view of the specificities of what the tools claim to or can offer a

game designer. In general, the researcher (me) has been careful not to interfere too much with

the work of the designer (also me). Only then can the researcher part of me hope to allay

suspicions that the designer part of me is not merely telling her what she wants to hear

However, remembering Lawson’s warning that any study of design thinking is necessarily flawed in

some way, we may have to accept that conditions for the observation of design thinking can never

be perfect, and the data can never be wholly free from influence from the research experiment

itself. Even the designer’s assessment of what is the best tool for the task, however, is not free

from contextual influence. The choice could be influenced by the psychological effect of

“familiarity bias” – i.e. a bias against the unfamiliar tool. One cannot control for the “newness” of

new tools, when comparing a new tool with an older one. Added to this is the likelihood that, as

compared with new tools the designer is less proficient using, familiar tools and methods are, in

context, almost always going to be the best possible tools for that task for that designer, in that

moment. So one could argue that the designer be prepared to sacrifice their short term design

needs in order to invest in using the newer, temporarily inferior tool, where they feel they can

anticipate some future design payoff. These and similar decisions and interpretations rely heavily

on the design judgement of the designer, the designer needing to be self-reflective enough to be

conscious of the biases and feelings that drive their tool usage decisions. In this way, the designer

is having to “reflect-on-action” not just as a designer but to some extent as a researcher as well;

the research is reliant on the judgement and prerogative of the designer. Observation and design,

in this sense, overlap and become hard to draw a clean distinction between. In this respect, the

benefits of the participant observer method become clear.

5.6.6. Longitudinal case studies

I used longitudinal case studies; that is, I ran my game design projects over months and years in

order to study the tools. This gave me the opportunity to study the tools at various stages of

design.

100

Longitudinal case studies are used in creativity support tool research as an alternative to

controlled studies:

It is still an open question how to measure the extent to which a tool fosters creative thinking.
While the rigor of controlled studies makes them the traditional method of scientific research,
longitudinal studies with active users for weeks or months seem a valid method to gain deep
insights about what is helpful (and why) to creative individuals ((Seo 2005) cited by
(Resnick, Myers, and Nakakoji 2005))

With the evaluation of design tools, the designer is not merely compelled to learn how to use an

unfamiliar interface of perform an already familiar task or process (as is common in HCI research)

but to learn and reframe their design thinking within the new formal constraints of a process that

may be wholly unfamiliar to them. The designer must integrate the tool into an existing workflow,

or to make any necessary modifications to that workflow. It may be necessary that the designer

devise and modify design processes in order to prepare design materials for use in the tools.

Specifically, I have found that using a tool requires preparatory design work, and that design

outputs from the tool may have an indirect impact on the design activities that are undertaken

after and alongside the actual use of the tool. Finally, the designer may find themselves having to

devise entirely new design tasks by virtue of the tool opening up new design possibilities.

This starting point is even further back with game design tools as compared with tools for design

disciplines that already use design support. By asking a game designer to use a game design tool,

we are asking them for the first time in their practice to reframe and somewhat formalise their

design thinking within the constraints of design process that includes the use of design support; in

effect, to transform their practice from a vernacular, craft-based design practice to one of self-

conscious design.

This all takes time. A longitudinal study addresses this, allowing time for the impact on design

practice (“strategy changes” (Shneiderman and Plaisant 2006)) to develop and become apparent.

5.6.7. Data collection and observation

The data for this study were collected in the form a design diary, forming the basis for observation

in the form of narration and discussion. This method for recording and analysing design practice

has been found to be useful in in Art and Design research and by game designers themselves.

Data collection in the form of a design diary (as used by Holopainen, Numennmaa and Kuittinen,

for example (Holopainen, Nummenmaa, and Kuittinen 2010)) is a popular data collection tool for

101

the study of the design process. Gray and Malins advise the designer, as participant observer, to

analyse as they observe. They suggest that it is helpful to track this reflection in a journal alongside

the data, as part of an iterative process where both data gathering and analysis serve to inform

and drive each other (Gray and Malins 2004). Shneiderman and Plaisant also suggest the

journaling of not just difficulties and successes but also insights (B Shneiderman and Plaisant

2006).

We should also note that game designers themselves have developed their own methods for

collating and presenting observations of practice. While it is frequently observed by academic

researchers that game design is a relatively young design discipline, video game design as a

practice and community is larger and more mature than academic game research19. As such, their

methods might have something useful to contribute to ours.

The most widely used method for the evaluation of game development and game development

process is a method borrowed from the software industry: the “post mortem”. A post mortem is a

narrative in the form of a presentation or an article that describes the design and development

process for a game, accompanied with analysis and evaluation. When conducted internally, its

purpose it primarily for the developers to reflect upon their work and analyse their successes and

mistakes in order to learn from them. It is also proved a popular method for sharing and

disseminating design knowledge for the benefit of peers and newcomers – long before games

education began to become formalized.

There are a few things we can note about game development post mortems. They are subjective.

They are rich in context, emphasizing the specificity of the conditions under which development

took place. They often include details such as personnel issues and changes, the past experience of

the team, scheduling details, market conditions and requirements, marketing-related events, and

so on and so forth. This could be seen as an acknowledgement of how the conditions and

constraints of design are important because they are particular to each project, and their impact

19 While Chris Crawford published The Art of Computer Game Design in 1984, for example, the first comparable
academic contributions on the subject of game design only began to appear two decades later (Salen and
Zimmerman’s Rules of Play was published in late 2003); the Computer Game Developers Conference began in 1996,
while the first Digital Games Research Association conference took place in 2001 – described as “year one of
computer game studies” (Aarseth 2001).

102

on the development process creates differences that make them highly relevant factors. In order

words, they are contextual details that readers feel they need in order to make sense of the data.

In this work my observations are, by necessity, mostly focused and on point. I have, however, born

this in mind: that contextual information is sometimes relevant and important.

5.7. Conclusion

In this chapter I identified the need to contribute evaluation work that goes beyond simple

research validation: we need third-party, comparative, practice-led evaluation of the work to date

on game design tools in order to help move this research field forward. After establishing that

there is no one correct method for the evaluation of design tools, but instead a variety of methods

that can create “converging lines of evidence”, I proposed a designerly form of enquiry based on

longitudinal case studies.

103

6. OVERVIEW OF CASE STUDIES

6.1. Overview

Several games were designed and built for the purpose of evaluating how game design tools

operate on realistic design problems. In later chapters I narrate and analyse my experiences with

design support while creating these games. This chapter provides context for this: it gives brief

descriptions of the final design for each project. I also summarise the design process for each, the

elements of which are narrated briefly here but described and explained in more detail in later

sections where I discuss in more detail my experience with the various tools.

6.2. Introduction

In the previous chapter I explained why I have chosen to prioritise the needs of design rather than

adapting it to suit the particular features, strengths and weaknesses of the tools for the sake of

observation. The advantage of this is that it better simulates real-world practice, and minimises

the effects of observation on the process being observed.

The downside of this, however, is that being led by the design rather than the needs of tool

evaluation is very inefficient. Indeed, staying true to this method in this project has meant carrying

out a comparatively large amount of design (and production work in order to enable different

stages of design) for which the tools under study proved not to be applicable at all. Where the

tools were of no use, work was completed using conventional methods: using a combination of

documentation, sketching, prototyping and (briefly) paper prototyping.

Though this consumed a great deal of time and did not generate any direct experience with the

tools, it did contribute in a least two ways: 1) providing material for making comparisons between

tools and the use of conventional methods after having become familiar with those tools (for

example, I was able to compare my experience and relative success using a tool versus

conventional methods on the same design task for a single game, and also between the use of a

tool on one game versus the use of a conventional method on a different game); and 2) affording

me the opportunity to see the interesting impact having been exposed to these tools has had on

my design practice even when I am not using tools.

104

I did, however, make a conscious effort – up to a point – to maximise my exposure to tools in a

general sense. First, I made a conscious decision to attempt, in most cases, games that feature

design tasks that have been highlighted by the research community or designers (including the

creators of the tools under study) as candidates for design support. One of the major hopes

expressed by the game design tool advocates, moreover, is that tools could expand the creative

horizons for game designers (“raise the ceiling” is the metaphor used in creativity support

literature), enabling them to undertake more ambitious and complex design tasks that result in

more sophisticated, interesting games. Second, I attempted to maximise the variety of design

tasks I would be undertaking by aiming for variety in the game genres and styles I worked on.

At the risk of stating the obvious, however, this well-intentioned planning concerned matching

game projects that had not yet been designed, with tools I had never used. Thus, even for projects

for which the design was not particularly experimental in nature, predicting which tools would be

applicable was only correct some of the time. In some cases, even a minor mismatch between tool

and task blocked me and forced me to almost immediately abandon using a tool for a task.

Following the needs of the design of the game wherever they lead meant that some features of

the tools were left virtually unexplored (or at least not used practically). The un- and

underexplored tool features could perhaps be usefully applied to the design needs of other games,

or they may be features that I can imagine would have been useful applied to design tasks I have

undertaken in the past; I am simply unable to say. Mismatches between my games’ design needs

and what the tools were offering could prove frustrating and unsatisfying at times, but while I was

sometimes tempted to tweak an element of my design to be a better match, or go in a certain

design direction to better exploit the seemingly exciting design directions offered by a tool, I did

my best to stop myself from doing so. Fortunately, however, the design sometimes led me in

directions that generated new tasks for which a previously non-applicable tool became useful.

In addition to the non-tool-supported design work on the five projects described below, I also

worked on game ideas that did not bear fruit – in the sense that they did not prove “fun” and

successfully pass much beyond the ideation and prototyping phase of design.

Early on in this work I spent a good deal of time on a language-based real-time puzzle-comedy

game about speech-making. As the central idea was comedy-related, the “fun” of this game relied

heavily on content, and so prototyping the gameplay was essential. My hope was that after

coming up with core gameplay that worked, I could then employ design tools to help balance the

105

game. Unfortunately, however, even after taking the design in a number of different directions

and building several prototypes, I failed to find a core mechanic that was enjoyable enough to

build a game around. I now wonder if this was because I, like many others, was still under the

influence of the prevailing “fail early”/”make a toy, then make game out of it”/game jam-style

faith in starting prototyping before I had fully thought through my design.

Another dead end was a project motivated by the desire to create a persistent, economy-based

two-player multiplayer game that would be a good candidate for game system modelling.

Persistent games have long-term emergent properties that are difficult to model without

computational support. As for the project described above, I made the mistake of prototyping too

ambitiously, and after a great deal of time spent creating a server-side running online multiplayer

game prototype I found the moment-to-moment gameplay to be unsatisfying and was forced to

rethink the concept, leading to the initial idea for South Sea Trouble, described below.

Other abandoned work includes design directions for five projects that I pursued for a time until I

decided for either design or production reasons to halt work on them – the “RTS lite” and

multiplayer modes for the game South Sea Trouble, for example. Some of these directions

involved the use of tools, and this work will be mentioned where useful.

It should be noted that, with the exception of The Casimir Effect (for which I collaborated with

artist Dimitri Lecoussis, who also co-designed the game’s narrative) the production assets for the

case studies used low quality “placeholder” art. Though not ideal, visual production quality was

not the priority or focus of this project.

106

6.3. The Casimir Effect

Figure 14: A screenshot from The Casimir Effect

6.3.1. Design overview

The Casimir Effect (shown in Figure 14) is a top-down shooter with an original combat mechanic

and puzzle elements. All combat is ranged, with a single weapon and projectile type. While

conventional shooter combat is possible, the player is afforded the possibility of enhanced,

indirect combat via the use of “materials” – cubes positioned in the environment that amplify the

projectile’s damage, alter its trajectory, and allows the player to store up and time

multidirectional, simultaneous attacks.

The game’s level structure comprises a sequence of six major sections that are divided into 10-15

small levels linked in a branching structure. Progression is based on completion of these levels and

sections as well as resource harvesting, which allows the player to replay and unlock branches

(using a resource-based lock-and-key mechanism) towards previously inaccessible levels in

sections they have already played.

The narrative is adaptive, evolving as a function of the unlock state of level branches.

107

6.3.2. Design tasks and challenges

The Casimir Effect, as an action game and a game of progression, requires the creation of a

significant amount of game content in which the player is able to acquire and master skills. The

design of this content – known as “level design” by practitioners and “progression design” by

some researchers – is a key design task. A large number of combat scenarios and puzzles must

both be conceived and arranged within the level structure.

Like other games of this type, The Casimir Effect does not typically feature complex emergent

dynamics. The branching structure, however, and especially the replay and unlocking scheme

described above, tied as it is to a resource-harvesting-based game economy, renders the

progression design a complex task.

Designing content for the adaptive narrative is also a challenge that extends beyond the usual

narrative design scope of an action game.

6.3.3. Overview of the design process

First, I ideated the basic combat mechanic of using the above-described “materials” to suspend,

reorient and amplify projectiles. To aid this I drew literal (i.e. simplified versions of what would be

displayed on-screen) diagrams describing the moment-to-moment gameplay of this mechanic. I

then prototyped and playtested it, and also variations of it in order to explore how much gameplay

content could be extracted from this single idea. Once satisfied with this, I prototyped a sample

level, which I recruited friends to playtest. Upon receiving positive feedback I then decided to go

ahead with designing a game based around this combat mechanic.

Prototyping continued alongside my design work with tools. The prototype allowed me to refine

the pacing, action and interaction aspects of the core combat mechanic.

I used a tablet and a stylus (i.e. pen and paper) to make literal sketches of puzzles and devise new

gameplay elements.

Meanwhile, I attempted to devise a lock-and-key level structure using Dormans’ Mission/Space

conceptual framework and his associated tool Ludoscope’s procedural content generation

features. As the design changed and the unlocking scheme became linked to a resource-

harvesting-based economy, however, I switched to trying to model this economy in Machinations,

108

before finally realising that the task required a means of integrating these resources with my level

structure in some way. Sometime later, Butler’s work on “progression planning” (Butler et al.

2013) was published and this ultimately became an approach I adopted for my larger scale

progression design tasks.

I later began to use Ludoscope and its iterative model transformation approach at a lower level of

granularity: to generate level content. The effect of this and my work creating a skill chain (Cook

2007) imposed a formal framework on my pen-and-paper sketching design activity in order to

generate material for use with these techniques: I created a large collection of simple and

“compound” (literal) puzzle patterns. These I later linked back into my larger scale progression

planning and used as a basis for creating content generation rules for Ludoscope.

To design the game’s narrative I initially used Microsoft Visio (non-domain specific flow-charting

software) to diagram and visualise its adaptive, multi-state structure, with a view to using this

layout and visual language to create and edit the story itself. I then briefly attempted to use

Articy:Draft for this task, but quickly failed to achieve a better result. Eventually (and ironically) it

was a much simpler representation in Microsoft Excel that proved the most effective for

developing and communicating the complexities of the story.

6.4. The Particle Who Knew Too Much

6.4.1. Design overview

The Particle Who Knew Too Much is an adventure game designed within a hybrid text/graphical

adventure game system I devised for a previous game, Alone in the Park (2011). In this system,

conventional point-and-click gameplay is replaced with a combined conversation and inventory

system (similar to the “memory” system in Touch Detective) while the game’s action is

represented by text that outputs in real-time in response to player action within a 2D map-based

game world.

As I had previously devised the main gameplay system, most of the work in designing The Particle

Who Knew Too Much involved creating a new narrative and new quests within the constraints of

this form, with its set of existing game mechanics. I did make one addition to the system, however:

the introduction of an in-game currency, to help manage game progression and allow a richer

palette for the creation of multi-solution quests - gameplay more often seen in open-world action

109

RPGs than adventure games. In Alone in the Park, quests had one solution20 and were, for the most

part, self-contained. Yet even simple, slightly non-linear quests with few interdependencies gave

rise to a wide scope of (sometimes unanticipated) game states, difficult to understand without the

use of diagrams, and requiring a not insignificant amount of design management of the game’s

possibility space. For this project I wished to see whether design support could help me manage

an even wider possibility space, and facilitate the design management of an even greater

possibility space arising from multi-solution, interconnected quests.

6.4.2. Design tasks and challenges

Adventure games are games of progression, but this progression is typically somewhat non-linear.

Much like “open world” action games or RPGs, an adventure game has a partially open-world

format where the player can move at will between several locations, working on several quests in

parallel, the tasks for which do not necessarily need to be completed in a set order. Therefore,

while the gameplay is simple and does not give rise to complex emergent dynamics, it is the game

state in terms of game progression that is hard to predict. In terms of progression, this means a

larger (hence a more complex) possibility space for the designer to manage as compared with

linear game genres, such as a puzzle game with a sequence of levels to complete, or an action-

adventure game like Tomb Raider.

The addition of a currency system offers the designer the ability to abstract and universalise logical

dependencies so as to offer flexibility and manageability for gating game content (see Chapter 15

for a definition of gameplay gating) for the sake of game progression. A currency system requires

modelling, however.

A multi-solution, interconnected quest game structure that uses currency gates is a complex

logical network that poses a challenge to document and think through.

Management of game progression and game state does not resolve narrative interdependencies

in the game’s fiction. The player’s “knowledge” state must be logical also, requiring careful

planning of the narrative design.

20 This is typical of nearly all adventure games; in fact, being “blocked” by puzzle “unfair” bottlenecks is a common
complaint among adventure gamers. Arguably, it is even partially to blame for the demise of the adventure game as a
genre in the late 1990s.

110

6.4.3. Design process

As the core gameplay had already been designed in the previous game, the design of this game

began with the development of narrative ideas.

The tools used to document these were Evernote (Evernote Corporation 2008) (virtual notebook

software), Articy:Draft and Microsoft Visio.

I also used Articy:Draft for content production tasks, combining my “thinking” workbench design

activities with content production (the reasons for which will be discussed in later sections). I was

able to do this with a few modifications:

My previous game supported a data-driven production approach, in which I used a graphical XML

editor to edit quest and narrative data in the form of XML files, which were then loaded and

interpreted by the game executable. Therefore to create a new game it is primarily a case of

creating a new set of data.

I used Articy:Draft to create my game’s data types, create data with them and export narrative

and gameplay data, and wrote an importer to use these data in my game. Additionally, I extracted

some of the remaining hardcoded game logic from my code and translated it into additional data

types so that essentially all narrative/gameplay content for my game could be produced using this

tool.

In the way described above, I used Articy:Draft as a documentation, visualisation and game asset

production and editing tool. In terms of the relationships between the quest and narrative data,

however, I applied computation support in the form of my progression design tool (which is

described and discussed in Chapter 12) in order to deal with the progression design challenges

described above.

111

6.5. South Sea Trouble

Figure 15: A screenshot from South Sea Trouble

6.5.1. Design overview

South Sea Trouble (shown in Figure 15) is a casual, twitch-based, strategy-oriented puzzle game in

which the player coordinates a small fleet of boats of varying speeds and sizes to pick up and

deliver passengers from islands to a destination within a time limit. Though the game is real-time,

a mechanic I am calling “command-queuing” allows play that creates an experience very similar to

plan-and-execute gameplay.

The player progressively unlocks a loosely branching sequence of levels, where a level is a screen-

sized map containing a unique arrangement of islands, reefs and boats. The level sequence is

loosely branching, ensuring that not all levels must be completed for the player to progress. Each

level is introduced by a brief narrative that offers a fictional premise for undertaking the level.

These stories tie into an overarching game narrative.

As the player’s skill improves, the player is encouraged to go back and replay levels with the aim of

completing them more quickly to achieve higher scores. Replay is also encouraged by a system of

collectibles: time saved on collecting passengers can be used to pick up collectible items. These

items form sets and are displayed on separate pages in the game’s front end.

112

6.5.2. Design tasks and challenges

Level design – the contents and spatial layout of levels – is a large task for this game.

Progression design was required to create a path for skill acquisition, increasing challenge and

complexity. As is typical of a level-based puzzle game, the game’s full repertoire of actions and

puzzle-solving techniques must be progressively introduced to the player at an appropriate pace.

Narrative design tasks comprise the design of the main narrative, the level narratives (some of

which may not be seen by the player as the level may be optional), and player and non-player

character management.

Though no longer part of the current design, the design of a game economy was required for the

resource harvesting and building mechanics (“RTS lite”) of an additional game mode.

Also no longer in the design was a multiplayer mode that required further level design work with

an additional challenge: balancing the spatial positioning of island and passenger placements on

the map for two players.

As a twitch-based puzzler with extremely repetitive interactions, the design and polishing of the

game’s interface and control scheme is core to the design work of a game of this genre.

Balancing elements of the core gameplay – balancing speeds, boat capacities, timing, and entity

sizes – was required.

6.5.3. Design process

From an initial idea I prototyped and modified several iterations of the core gameplay.

Complementing this process I devised and calculated modifications and improvements relating to

spatial and timing factors (boat capacity, speed, distances) using pen-and-paper sketching.

Alongside the main game mode I prototyped additional modes based on the same core gameplay

but offered different objectives and additional mechanics. For some of these I used Machinations

to think and “play” through the system mechanics of these ideas before prototyping them. I found

that while often seeming successful in the tool, they were unsatisfying to play when prototyped.

Even where prototypes showed promise, I decided that they strayed too much from the “plan-

and-execute” pace and gameplay style of the main game mode (which had resonated well with

113

playtesters), and that there were many possibilities for more subtle variations on this game mode.

One of the modes prototyped, however, I felt was too successful to abandon and this I took out of

South Sea Trouble to work on as a game in its own right (see Ultraworm below).

The abandoned modes included a multiplayer mode. This mode was partially motivated by the

idea of being able to make use of Sentient Sketchbook. After having created a turn-based paper

prototype of this mode, I created a local multiplayer prototype of this mode. I then realised that I

would require online multiplayer support (a feature that my game engine did not at that time

offer) to feasibly have enough opportunity to playtest and iterate on the prototype. I did build

levels based on designs I made using Sentient Sketchbook, but as the multiplayer gameplay itself

needed design work it was hard to know how successful they were. Not being able to customise

Sentient Sketchbook was also a blocker. Finally, I came to realise that perhaps a more promising

direction for multiplayer would be a collaborative mode – a style of multiplayer gameplay that

Sentient Sketchbook was not designed to support. The substantial production work required to

create a multiplayer mode seemed to offer little research pay-off and so I decided to suspend

work on multiplayer mode. Unfortunately, this meant that beyond what I have recounted here,

my limited experience with the tool has not given rise to observations to include in the

observation and analysis sections of this thesis. However, even this minimal experience has no

doubt contributed to my practical understanding of mixed-initiative design process.

Once the game design had become near final I began to use my progression tool to map out levels

and order the introduction of skills, techniques, game mode variations and entity types.

Meanwhile, for planning the game narrative and documenting and managing my narrative ideas I

used Articy:Draft.

114

6.6. Loot the Room

Figure 16: Screenshot from Loot the Room using placeholder art

6.6.1. Design overview

Loot the Room (shown in Figure 16) is a casual puzzle-strategy game. Aesthetically, the game could

be described as a casual, sped-up dungeon crawler. The player directs a team of characters (Viking

looters) through a maze-like dungeon-style space (a monastery) to loot rooms for treasure. Rooms

are different sizes, and their sizes correspond to the number of looters that are required to be in

the room at the same time in order for the room to be looted (i.e. 1-looter rooms, 2-looter room,

etc.) A looter will always attempt to loot an unlooted room that they pass on their way through

the maze. The player repeatedly sends characters through the dungeon on different paths,

attempting to coordinate the characters’ looting efforts, while accessing pickups and

circumventing obstacles. The player controls the game very simply by tracing a given route for a

given character through the maze.

Like South Sea Trouble, the game comprises a loosely branching sequence of levels, a level being a

dungeon. The player must loot as much gold currency as they can from a dungeon within a time

limit. To advance, they must achieve a set amount of gold for that level.

Between levels the player is given the opportunity to improve their team’s looting capabilities by

spending their currency: to hire new looters, upgrade characters and buy special items. There are

115

three classes (with upgrades this creates 10 subclasses) of looter characters, which vary in their

attributes of speed, loot-carrying capacity, strength and magic (similar to RPG character classes).

Before each level starts, the player has the opportunity to study the level layout and contents, and

select the right balance of team members to deploy. In this way, this meta-game economy adds a

strategic dimension to the moment-to-moment spatial puzzling.

6.6.2. Design tasks and challenges

Level design - designing the layout and content of each level - is a major design task for this game.

As for South Sea Trouble the progression design for this game required creating a path for skill

acquisition, increasing challenge and complexity. In addition to the level structure, however,

progression also occurs within the evolution of the player state: the player’s resource allocation

choices vis-a-vis spending currency to build their team and advance through character upgrades. A

variation in player state impacts the difficulty of a level – some choices could even have the effect

of blocking progress, for example. This renders the task of designing the game’s progression a

multidimensional challenge.

The game economy itself – rewards, prices, currency distribution between levels, etc. – must also

be designed.

6.6.3. Design process

Initially I conceived of and refined the core looter coordinating idea on paper through sketching

out the moment-to-moment gameplay. I then began prototyping, iterating through various maze

sizes, speeds, number of characters, gameplay tweaks and so forth until I settled upon a format

that was solid enough to lock down. I had also begun to sketch design patterns/level design

building blocks that could offer the kinds of puzzles and challenges to be solved by the use of

these coordination and repeated looting gameplay mechanics.

I created and iteratively edited some level designs using Ludoscope’s procedural content

generation system.

Machinations was used to model the team upgrading and currency based aspects of the

progression, and generate a variety of possible scenarios for player state evolution. This data was

116

then input into my progression design tool as player state estimates to map against level

progression.

6.7. Ultraworm

Figure 17: Screenshot of Ultraworm

6.7.1. Design overview

Ultraworm (shown in Figure 17) is a casual real-time puzzle game where the player manages a

fleet of vehicles to collect and deliver different coloured resources to their similarly coloured

destinations. Resources spawn randomly at unoccupied locations at a slowly increasing rate.

Clearing a spawn point of its resource and delivering it to its destination earns the player a point,

the objective being to score as many points as possible before the game ends. This occurs when

there are no occupied spawn points left for a new resource to spawn. Using the lens of Patterns in

Game Design (Björk and Holopainen 2005), Ultraworm is an “unwinnable game”, where difficulty

within a single level increases continuously until such time as the player makes a mistake and

“loses”, at which time the level ends.

This core gameplay and scoring is enlivened with the addition of disruptive mechanics that

periodically inject high-risk, high-reward limited-time objectives. These mainly appear in the form

of pickups (Match-3 style bombs, speed-boosts, and coins) as well as bonus conditions (e.g. for a

few seconds blue resource deliveries receive a bonus).

117

Ultraworm contains mechanics that consider the player’s experience with the game over time –

known as the “games-as-service” model, common to popular mobile/tablet games. One of the

aims of games-as-service – especially for highly replayable games of this kind - is to encourage

repeated play and daily play sessions. To achieve this, an in-game currency is usually used:

progression is treated as an abstract resource which can be awarded external to in-game play.

Like a conventional console or PC game, Ultraworm consists of a sequence of levels, which

introduce both these core and additional game mechanics progressively. This progression

sequence (in the form of new game levels), however, is unlocked almost wholly via the use of

currency (this differs from the use of currency in the other games described above, in which in-

game currency, where it is featured, is only a partial and indirect contributor towards unlocking

progress). Currency is earned by the player in three ways: 1) by receiving currency rewards for

attainment above a certain score when playing or replaying an unlocked level (up to a daily

maximum reward); 2) by harvesting coins during play in the form of limited-time pickups; 3) by

receiving a once-per-day coin bonus for simply launching the game.

Another typical design goal of contemporary mobile games is social play. As well as keeping track

of personal high scores, each level of Ultraworm level is associated with a leaderboard.

6.7.2. Design tasks and challenges

One task is creating the progression sequence. This means balancing the introduction and the

parameters of the core mechanics (star spawning frequency, ship speed, number of ships,

capacity, resource spawn points) and the disruptive periodic mechanics (described above) for their

influence on level difficulty, level completion time, scoring and currency accumulation.

Scoring is especially important in a game of this type. Achievement and skill needs to map to

scoring outcomes in a logical and fair, yet dynamic and exciting way. This is achieved by finding the

right balance between pure skill and grind versus random and disruptive elements.

The currency reward system and how much each component of it delivers over days and weeks

needs to be modelled in relation to an optimal number of replays and daily returns, as well as how

smoothly and at what average rate (and range of variation thereof) it allows the player to

progress.

118

6.7.3. Design process

Initially, Ultraworm was prototyped as a potential new mode for South Sea Trouble. From

playtesting I could see though that it was a very different kind of game experience and could be

taken in its own direction to become a standalone twitch-based puzzle game. I continued to

experiment with and refine interaction and pacing within the context of the prototype.

The progression design depended heavily on balancing difficulty between levels, while making

sure that the shape of the dynamics over time within each level is still interesting. For this I

modelled the mechanics as accurately I could in Machinations in order to figure out the balancing

data for each level. I then recorded the data for each level in my progression design tool. As

Ultraworm contains a small number of levels in a linear sequence I used progression planning

mostly as just an organisational aid, as far as this difficulty balancing data was concerned. I used

the “exploration mode” of my progression design tool to rehearse level replays in relation to:

accumulating currency rewards and gameplay gating, scoring, and overall play time.

6.8. Conclusion

The five case studies included in this project showed predominantly mission and level design

needs, as well as some system design and some narrative design requirements. The nature of

these needs differed according to the case studies’ various game genres.

My methodological decision to be led by the somewhat unpredictable needs of the design rather

than let the needs of tool evaluation steer the design process rendered tool selection itself a

process of discovery, organically revealing the kinds of tasks that a given tool may be useful for.

Some design tasks were more common than others, with the result being that some tools were

used more than others. For example, I found myself finding a use for Progression Planning for

nearly all the games despite the variety of genre; meanwhile, owing to the fact that The Sentient

Sketchbook targets a very specific task for a particular feature in a particular genre of game, I was

unable, in the end, to explore it in any depth. As most game genres have some form of narrative

elements, I was able to Articy:Draft for most of the case studies. My case studies did not require as

much system design as that of some of the more system-oriented game genres – e.g. simulation,

strategy and many board game genres. This meant that, even though I had some system design

119

tasks for which I used Machinations, I was unable to explore it in as much depth as if I had

concentrated on those genres.

120

7. OBSERVATION & ANALYSIS PART 1: THE FORM OF

REPRESENTATION

7.1. Overview

This is the first of three chapters in which I analyse and discuss some of my experiences working

with game design tools. The discussion is framed around themes and evaluation criteria identified

by the design tool and creativity support tool literature, and draws upon my observations of my

experiences using game design tools. In these chapters I have found it useful to occasionally draw

comparisons with design tools and practice in electronic music and audio, as this is the other

design domain that I have most experience practising in.

At the end of Chapter 3 I argued that the key weakness in game design practice is our inability to

represent the design situation. Accordingly, the question of how useful a representation for

design thinking game design tools provide becomes central to my evaluation.

One of the key functions of a design tool is to allow the designer to create an external

representation of the design situation. In this chapter I look at the form that representation takes.

In this chapter I offer five observations selected from my experiences. These describe: visual

representations of a game design situation using Articy:Draft; shifting focus within the

representation from mechanics to dynamics in Machinations; working on several layers

concurrently thanks to PCG; nesting to facilitate working a high level in Articy:Draft; filling the gaps

in tool representation with documentation, sketches and prototypes.

7.2. Visual cognition of game design problems

As discussed in Chapter 2, in game design today, natural language, along with prototyping, is the

primary vehicle used for representing the design situation. Many advocates of game design tools

have pointed to the limits of natural language for describing the system mechanics of gameplay,

and have proposed that we find a means of representing the design situation visually.

This sentiment seems to be confirmed by the apparent preferences of practitioners. In his

interviews with game designers, Hagen recorded game designers’ dissatisfaction with text-based

121

documentation and an increasing preference to express designs in visual form, including diagrams,

posters, reference images, mood boards, animations and concept art (Hagen 2011). This is,

according to Hagen, partly because of the constraints of the rapid iteration cycles of modern game

development, but also because of an explicitly stated preference for visual over textual

communication of design ideas. These visual means allow a design to be more effectively

communicated to the development team than with a written document, but we could infer also

that a kind of conversation with these materials must also be in operation.

Based on discussions with four game designers on the subject of what designers might want from

the tool that researchers were building, Nelson and Mateas describe how two of the designers

interviewed expressed interest in a tool for automated reasoning, while the other two were

mostly interested in the idea of representational functionality a tool could provide: in the case of

Nelson’s tool, the ability to visually represent game mechanics – in other words, “design drawing”

(as discussed in Chapter 3). One of these designers articulated his desire for a graphical design

language featuring sets of built-in vocabulary for common design domains, and both were

interested in their tool’s formal, abstract model of game mechanics as a useful representation for

reflecting on their designs (Nelson and Mateas 2009).

Expressing game design visually, however, is a greater – or at least a different – challenge as

compared with doing the same for a visual design discipline such as architecture. Representing a

game design visually requires us to create a graphical representation of non-visual problems.

While this may pose a challenge, if we are to believe the Design Studies literature, this would not

only be feasible but would be of benefit to game designers. Many studies have emphasized the

importance of drawing and visual thinking in design (Do and Gross 1996), and design researchers

have emphasised the benefits of visual cognition in design even for fields where design outputs

are not visual. According to Goldschmidt, “imagery” as part of visual cognition can be amplified by

the activity of sketching. In other words, creating externalized representations that take graphical

form can enhance visual thinking as a mechanism useful for design (Goldschmidt 1994).

7.2.1. Observation 1: Visual representations of a game design situation

Certainly in the case of many elements of games – dialogue trees, branching narratives, non-

sequential game mission structures, for example – graphical, spatial representations have

advantages. Often the information about the relationship between one idea and another is as

122

important as the idea itself. Space helps visualise a whole layer of relationships among the

elements within the design situation that would otherwise be hidden within the linear confines of

a text document. As noted in Chapter 2, game designers already create visual materials

(flowcharts, posters, diagrams) to take advantage of this. Game narrative and quest structure is

often externalised by game designers in the form of flow charts (using Microsoft Visio, commonly).

Articy:Draft, in offering visualisation and organisation for primarily narrative and mission design

materials, has used this as a starting point, using flow diagramming as primary interface of their

tool. I found its visualisation to be successful: I could quickly visually “parse” my narrative flow.

For example, I was able to successfully map out my branching game narrative for my adventure

game The Particle Who Knew Too Much as well as for the more-or-less linear South Sea Trouble

(see Figure 18).

Articy:Draft has created a domain-specific environment. Visual aids are offered, in the form of

customisable colours and icons. I found these aids useful for visually parsing my structures, and for

maintaining an informal but consistently applied visual “language” for my entity types. My entity

types frequently evolved or changed over the course of the design, so it was useful to be able to

use the loose framing afforded by very simple and easy to modify visual elements like colour. A

designer could do this in a generic tool (e.g. Microsoft Visio) but Articy:Draft, as a domain-specific

tool, has relieved some of the design thinking involved in doing so by having devised a set of

visualisation solutions.

Figure 18: Fragment from the narrative plan for The Particle Who Knew Too Much, using Articy:Draft

123

7.3. Language of abstraction

When writing a description of a game and building a prototype for that game, the designer makes

choices: which elements to describe and to which level of detail, which aspects to include in the

prototype. There are no difficult decisions to be made about the representation of these

elements, however: a game experience, though it can be simple and cut down, is not abstracted –

its point is to emulate a real, playable experience. One could say it is a “direct” representation of

the playable experience; it is not an experience mediated by an abstract language that the user

has to interpret.

A language or tool for the graphical representation of non-visual ideas, however, requires

additional choices to be made. First, these are made by the tool designer: choices about the form

and level or levels of abstraction, which and how much content to be included in the language.

Then there are choices about the representation that are made by the designer using the tool.

Unlike prototyping, a tool adds an extra layer of thinking and decision-making to the act of

representing for the game designer.

For example, Machinations treats game systems as the flow and processing of resources. The

designer must decide what elements of their design could be translated into resources. For some

elements, such as money, the relationship between the element and its abstraction as a resource

is obvious and direct. But representing more abstract concepts, such as game state or player

progression, relies on the discretion of the game designer to devise the most useful

representation. These representations may be less direct and more abstract, in terms of the

relationship between the elements and their form of representation within the model, than that

of a game element that more closely resembles a resource in the game (e.g. money, fuel, ammo).

Figure 19, for example, shows a diagram with relatively indirect and abstracted relationships

between their representations in the model and in the actual game. The diagram models the time

spent away from work on the main quest to complete side quests versus the speed gain on

completing the main quest due to increased player skill, items, and so forth. Game elements such

as quest completion progress and difficulty are represented as resources.

124

The game design tools in my purview abstract the same or similar content in different ways. They

represent different, but often overlapping, subsets of the design situation. For example,

Refraction's progression planning tool focuses on concepts and player familiarity and skill with

concepts, while progression design with Machinations focuses on resources being available to

unlock progression stages. In Refraction’s tool, and in Cook’s skill chains, game elements are

enumerated but not quantified, while Machinations favours representing game elements as

quantities of a limited range of resource types.

In this way, we could say that a design tool represents a filtered view of the design situation. The

language of abstraction is like a filter design, with some parts of the signal coming through clearly

and strongly (a small degree of abstraction), their importance even amplified. Other parts of the

signal are rendered with a larger degree of abstraction and are consequently less clear and direct,

or even filtered out entirely.

Figure 19: Machinations diagram modelling relatively high level, abstract elements as resources

This matters for the goal of enhancing the designer’s understanding of design problems using

visual cognition. If the representation of a part of the design situation is too abstract, the benefits

of visualisation break down. I have found at times that, for whatever reason (language literacy,

failures on my part in terms of finding the best means of representing within the language), there

125

is too much of an imaginative leap to be made and too much to hold in short-term memory and

this has a significant effect, reducing the value of the representation.

One of the founding goals in game design tool development is Doug Church’s idea of a “shared

language” for game design, with all the benefits that could bring. A shared language does not

come without a cost, however.

There is always a cost-benefit trade-off between generic and specific languages, as researchers

working with Domain-Specific Languages will attest. The question we have to ask is whether, in an

attempt to create a universally-useful shared language, a model created by such a language is no

longer useful as a representation of the design situation.

First, because of the form of representation: being generic may necessitate a high degree of

indirectness in the abstraction from the concrete. Second, because the level of abstraction: being

generic may necessitate working at such a low level of abstraction that the designer is compelled

to build large, elaborate diagrams every time they want to make a design move. (See, for example,

the level of detail in the diagram shown further in this chapter in Figure 20.)

Below I discuss this latter attribute of the form of representation: the level of abstraction.

7.4. Level of abstraction

A tool and its language invites the designer to express the design situation at a specific level (or

range of levels) of abstraction21. Indeed, one of the benefits of representing a game design

21 “Abstraction level” could be taken two ways. First, from the point of view of player experience:

similar to the concept of “abstraction layer” in computing, the position of the element on a

continuum from game system design (low level) to elements that have a more immediate and

direct relationship with the player experience e.g. enemy spawn-point placements (high level).

Second, from the point of view of design (similar to Lowgren and Stolterman’s abstraction layers):

the level of detail or granularity included in the representation of the design situation, from the

126

situation outside of the context of production is gaining control over the level of abstraction of the

representation. Nummenmaa et al point out that one of the powerful attributes of game design

tools is that they can allow us to be able to gain a “broader view” of the game (Nummenmaa,

Kuittinen, and Holopainen 2009). This is something a game prototype – which is typically a

“vertical slice” of gameplay – cannot show us. We might call the level of detail – high or low – at

which a game design tool allows us to view a design situation a “horizontal slice”. Even a complete

game does not allow us to “zoom out” from the level of moment-to-moment gameplay to see the

global shape of a game over time like an abstract representation of it potentially can.

This ability to see the shape of longer term dynamics is important for games that feature

emergent dynamics and indeed, it is Dormans’ hope that his tool will equip designers to tackle the

difficult design challenges that games as complex systems present. Prototyping is not well adapted

for evaluating the design of these kinds of games. The prototyping of such a game - where

progression relies more on the emergent dynamics of the game system than the design of a

sequence of game missions or levels - could not be a “vertical slice”, because gameplay cannot be

produced without implementing more or less the entire game system.

Using the metaphor I proposed earlier (the tool as a kind of filter, in that it offers only a filtered,

partial view of the design space) we could say that in addition to the form of abstraction, another

attribute of the “filter” of the design space is the level of abstraction that it represents.

One layer of abstraction that these tools cannot easily represent is the highest one: “game feel”,

for example i.e. the fun of interaction and sensory experience (though to a limited extent they can

let us “play” their simulations; this is discussed in Chapter 9). Machinations it is more difficult to

see the content and shape of the game at a high level of abstraction in the way that, for example,

Refraction’s tool’s progression design approach affords. If, depending on the nature of the game

finer details (low level) up to broader shapes of the game (high level). Here, because I am talking in

very general terms in which the distinction is not important, the dimension of abstraction I am

referring to simply varies according to context.

127

concept, the content within a design situation that holds the key to fun is obscured from view, the

designer may fail to see it.

Thus a tool cannot necessarily provide support at the level of abstraction that suits a particular

game. In particular, this poses a problem for the notion of game sketching. Sketching, as we may

recall from Chapter 4, is a rapid process that facilitates exploration – ideally the designer should be

able to explore the design space in search of the core of a good (fun) idea around which to design

a game. If parts of the design space are excluded from this exploration, some potentially good

ideas could be missed.

7.4.1. Navigating abstraction hierarchies

Lawson says that that while in theory it may seem logical that a designer proceeds from high-level

outlines to specific details of a design, evidence from studying how designers work reveals the

reality to be far messier and non-linear. In architecture, detailing is sometimes done at the

beginning in order to inform the shape of the overall design (Lawson 2006, 3rd revise:39). The

order in which a designer works on various levels of abstraction not only varies between designers

but also from project to project:

What might seem a fundamental early decision on one project may seem a matter of detail which
could be left to the end on another (Ben Shneiderman et al. 2005).

This is born out in game design, where a game system can be built around a single mechanic (e.g. a

game like Portal) that is the game’s “hook” (Hagen 2011). Dormans echoes this, saying that in

practice there are many different ways of designing games. Here he talks specifically about a

choice of starting point for design.

Some designers might start with a premise, design rules to go with it and then proceed to levels
and detailed stories. Others might start with a map that constrains the design of game mechanics.
Even within the process of designing a game, steps to create particular parts of the game might
differ. A tutorial level requires that the game mechanics are clear and finished, but other level
content might be dictated by a storyline rather than game options. (J Dormans 2012: 163)

These choices about which are to be considered fundamental design decisions made early on in

the project are not solely down to the personal design style of the designer. Very often they relate

to the nature of the game, and where the key element, or “fun”, or “hook”, is situated. As

discussed in Chapter 2, this can vary greatly between games. The fun of the game experience

128

could be situated at any abstraction level or levels. It could be in, for example, the pleasure of

simple “twitch” interactions – the fun of timing jumps in a platformer, or targeting in a shooter, or

the simulated stroking of an animal, or it could be the fun of collecting and managing resources

towards a longer term goal. The former kind of fun would be located at what Ben Cousins might

call the level of basic atoms of moment-to-moment gameplay (Cousins 2004b); while the latter is

fun that would need to be modelled at a high level of abstraction.

The fact that the location or locations of what the designer regards as the core fun – and thereby

often the design starting point or starting points – in a game concept can vary creates a dilemma

that we see in game prototyping. A game prototype could feature a rough, but mostly functional

version of gameplay, featuring rough “placeholder” art, but if the game idea is very much tied to

the “look and feel” of the game, this may not do the idea justice. For many games the interest of

the player is held by the sensory experience; indeed, too much attention-drawing by the

mechanics of the game could distract the player’s attention from the finer, more aesthetic details.

I have heard Costikyan’s piece “I Have No Words But I Must Design” referenced by those wishing

to warn their fellow game designers that they should not (at least not systematically)

underestimate the aesthetics as they can change the player experience at a surprisingly

fundamental level (Costikyan 2002). It is for this reason that prototypes are often accompanied

with concept art in order to achieve a more complete representation of the design situation.

In this context, where game designers might see a set of dynamics or aesthetics as the key concept

and starting point for their game design, it is no surprise that they might want to work backwards

from these dynamics to the system mechanics.

…designers were particularly interested in “backwards” reasoning from outcomes to mechanics
changes, e.g. what the smallest or largest value for a particular quantity (health, sword strength,
etc.) should be to still achieve a desired outcome (Nelson and Mateas 2009).

We can take from this that tools that allow the designer to approach their design problem from

different angles and starting points, at their choice of abstraction level, etc. can help

accommodate the specific needs of a given project, or the personal design style of the designer.

This is enabled by affording the designer a degree of freedom to move from activity to activity,

and abstraction level to abstraction level within the design space, at the designer’s discretion.

129

We often do not enjoy this freedom in current practice, particularly within large scale productions.

After a pre-production stage during which prototyping occurs, we are often unable to freely make

these decisions about starting points for design. Navigating freely through the abstraction

hierarchy from detail (low level design moves) to broad brush strokes (high level design moves)

would be too costly. Design details are typically fleshed out after major design decisions are made,

and those details are not typically permitted to lead to major design changes, as major changes

can flow through to and invalidate other details. For example, in level design, mission and

environment design details follow big brush-stroke design moves (in level design this is often

called “greyboxing”). Progression design comes first – which determines which subset of gameplay

is allowed to be used in a given level - then low-level details. This one-way dependency

relationship between the larger shapes in gameplay and the details seems unavoidable.

As far as my experience went, I found it difficult to get my starting point for a new game concept

within tools; trying to ideate new ideas by modelling ideas in an abstract language did not prove

effective for me. I had more success translating concrete gameplay into abstract systems in order

to trouble-shoot problems and balance systems in gameplay that I had already begun to design.

This is no doubt in part because I do not yet possess sufficient literacy to imagine gameplay from

abstract patterns and recognise what is “fun” purely within that abstraction.

7.4.1.1. Observation 2: Shifting focus within the representation

One of the drawbacks of representing at a low level of abstraction that, (as alluded to above in

relation to the goal of a share language), is that it can demand a higher level of detail to represent

a given element of a design situation than would a higher level of abstraction. At high levels of

detail the readability of the visualisation can break down, with larger patterns and shapes crowded

out by details - a sort of “can’t see the forest for the trees” effect. Figure 20 shows an example of

this in a Machinations diagram I made for a mode in South Sea Trouble.

Of course, as I discussed in Chapter 5, this is the problem of formal models – for the sake of

computation, the model typically subordinates readability for accuracy.

130

Figure 20: A Machinations diagram containing so much detail that readability becomes an issue

A tool like Machinations, I have argued, could be thought to offer two forms of representation of

the game design situation: model and dynamics. Viewed in this way, the way we might decide that

the representation depends on their relative importance to the designer, as a function of context –

which may well shift according to current design tasks or design progress. In other words, our

design conversation may primarily be with materials that are the output of a simulation, and it is

the simulation that we want talking back to us.

This scenario can easily be imagined at the end of a project, where design work can involve

balancing and fine-tuning the data used by game mechanics rather than the mechanics

themselves. At the game balancing stage, reading and analysing the second form of representation

– the dynamics – is the priority. For the balancing task, accuracy and detail in the model is

important. As a consequence, it is potentially baroquely detailed and unreadable. However, the

designer may have less need of the first representation – the model of the mechanics – and

131

indeed may be treating modelling it as little more than a specification exercise where the model is

already understood, and design moves are mostly minor tweaks to values in the model.

I used Machinations for this purpose to generate balancing data for Ultraworm. My attention was

on the numerical data we input into the diagram and the peaks and valleys of the dynamics being

rendered (i.e. using Machinations’ charting feature) on a chart similar to the one shown at the

bottom of Figure 21.

1. Figure 21: Model of Ultraworm made in Machinations for the purpose of game balancing

Another way to deal with readability in the representation is to make sure that the designer is

afforded control over the level of detail and abstraction themselves. One of the great benefits of

Machinations’ generic language is that it proves very flexible in terms of representing the design

132

situation at different abstraction levels. This flexibility helps solve the problem of readability as

well, as a game can be modelled at a high level, then a number of diagrams can be produced that

each detail subsystems of that design. Or within a single diagram, the designer can model the

larger game system at a high level, then choose to “zoom in” on one particular subsystem and add

low level detail to it. In addition, operating at different abstraction levels is useful to design

thinking in and of itself. It affords the designer the ability to explore a design problem by working

through the same problem at different levels of design detail, going deeper or higher to find the

right level or levels at which they have the best view on the problem. Figure 22 shows how this

can be done in Machinations: it shows a models of the same system modelled in Figure 21 but at a

higher level of abstraction.

Figure 22: A Machinations model of Ultraworm at a higher abstraction level than in Figure 21.

7.4.1.2. Observation 3: Working on several layers concurrently thanks to PCG

These are abstraction levels within the narrow scope of game system mechanics, however. The

problem described earlier in this section – the seemingly inevitable inflexibility in current practice

where interdependencies prevent us from navigating abstraction levels freely – remain. With

133

Ludoscope and Refraction’s tool, however, I saw how mixed initiative design can offer a powerful

way to break this one-directional dependency relationship between abstraction layers. This is

thanks to procedural content generation (PCG). PCG encourages the designer to design content in

the form of rules or patterns, rather than as specific instances. By decoupling much of the work on

low-level details from the use of those details in the game, major changes to the progression – as

well as changes to the details themselves – can be made without as much of the detailed work

being lost. In addition, having the high-level changes automatically flow through into the detailing

in the levels allows the designer to quickly see what the effects of any major changes will be.

Refraction’s tool – with its high level progression design tool integrated with its level editor –

serves as an example of how this can work. As Figure 23 shows, Refraction’s tool allows editing at

multiple levels of abstraction – from the very high level of progression design to the low level of

level editing. The abstractions exist concurrently, affording the designer freedom to make design

moves throughout the design space at these different abstraction levels. When the designer

makes a change in one component the tool automatically updates the other components.

Figure 23: Refraction’s tool's components enable design moves at a range abstraction levels

I took advantage of this approach for two projects: The Casimir Effect and Loot the Room. Using

my tool based on Refraction’s progression planning concept (see Chapter 10) to edit my game’s

level structure and progression rules, I generated level “recipe” scripts containing rules to direct

the content generation for my levels using Ludoscope. This enabled me freedom to work in many

areas of the design space concurrently, refining details and even some core mechanics, while also

working on the “broader view” of game progression and level structures. While a final manual

pass on each level was required, this felt like a small price to pay, as even a complete redesign at

134

the end would seem trivial compared to the laborious maintenance task of keeping the level

content in sync with each change.

Figure 24 shows the different tool processes I used for Loot the Room, and how they fed back into

each other. I was more or less able to work on all of these areas, or levels of abstraction,

concurrently.

Figure 24: Loot the Room design workflow

It is interesting to note that Dormans, creator of both Machinations and Ludoscope, in his personal

practice prefers to work from layer to layer of abstraction as a stage-based process:

I have chosen to focus on a particular order of design steps and transformations that in my
experience is a sensible way of designing games. In this case, I propose that mechanics are
designed before levels and when creating levels, missions are created before spaces.

135

Yet it is his tool Ludoscope that afforded me the freedom to take a rather more anarchic route

through the hierarchy of the design space.

In addition to its content generation feature, Ludoscope is interesting in how it allows the designer

flexibility in both the form and the level of abstraction via calculating model transformations. This

approach allows a designer to work at the level of the concrete, while having the power to analyse

their work and also manipulate it at a more abstract level, and vice versa.

7.4.1.3. High level sketching thanks to modularity

PCG is not the only way to be able to achieve rapid feedback – in other words, achieve a sketching-

like process – for high-level design moves.

To allow designers to somewhat break out of this one-directional approach of level design

described above, Bethesda Game Studios (the makers of the Elder Scrolls series of open-world

RPGs) have devised a modular system for level building. It allows designers to work at a high level,

using modular pre-designed chunks of level created by the team’s artists. A new idea is not simply

conceived as an individual element – it can be designed and added to the game globally in the

form of a building block within a library.

This is similar to the modular approach used in architecture in the form of tools known as domain-

oriented design environments. These offer built-in solutions that are commonly used and

meaningful for a given design domain (Nelson and Mateas 2009). Nelson suggests that this

approach could be useful in game design tools, enabling the designer to sketch at a high level of

abstraction:

…the direction proposed by domain-oriented design environments and especially metadesign [10]
mapped well to some of the design issues we encountered. Game-design vocabulary is a mixture
of existing terms inherited from previous games (e.g. RTS-design vocabulary) and novel ideas.
Thus designers may want the ability to design higher-level abstractions than the state and state-
evolution rules at which our tool (and actual game implementations) currently works, and to
import existing representations where they exist. For example, our second case study would have
found it useful to have his thinking prompted by a toolbox of off-the-shelf RTS design vocabulary
(Nelson and Mateas 2009).

Applying the notion of domain-specificity at the level of game genres could also address the

problem mentioned earlier related to the downside of having a shared language for games. This is,

136

to recapitulate, that in an attempt to create a universally-useful shared language for game, we risk

reducing and complicating game elements so far away from their concrete form that the

representation of the design situation is no longer useful. A vocabulary that contains domain-

specific (in this case, genre-specific) building blocks could reintroduce elegance to such a shared

language, hiding away the clutter of labour-intensive repetitive details to facilitate sketch-like

design thinking at a high level of abstraction.

7.4.1.4. Observation 4: Nesting to facilitate work at a high level

An alternate approach to this problem is nesting. Nesting also can help the designer navigate the

abstraction hierarchy and address the visualisation issues of high-detail representations is nesting.

Articy:Draft’s data flow view allows graph hierarchies, or “nested” graph structures: graph nodes

can themselves contain sub-graphs, the nodes of which can in turn contain sub-graphs, and so on.

Nesting is useful because it “clears the desk” for working at different levels of the hierarchy. On

the down-side, however: 1) it creates hard, unambiguous hierarchies, as opposed to “soft”,

ambiguous relationships described above; 2) while hiding content “clears the desk” it also lessens

the ease of retrieval and visual parsing; 3) the resulting hierarchy is not visualised as a whole in

this format. This last negative is somewhat mitigated, however, by the alternative visualisation

Articy:Draft provides in the form of a directory view window adjacent to the main window.

Figure 25 shows excerpts from two screenshots from an Articy:Draft project. The first shows a

graph node; the second show the nested contents of the same graph node after the user has

opened it.

137

Figure 25: Nesting in Articy:Draft

7.5. A more comprehensive representation?

Above I have discussed the importance of “game feel” and the difficulty of representing such high-

level, aesthetic elements in a tool that endeavours to afford the designer the benefits of

abstraction. This is an important problem, given that, as also previously discussed, such elements

do not merely constitute a superficial layer of a design but can be fundamental to a game’s design

(user interaction and movement in virtual space in real-time action games being good examples).

In Chapter 4, I explained how a tool that represents game dynamics requires that the

representation of the model be formal and, depending on the fidelity required from the

representation of the dynamics, more or less comprehensive. But if all relevant elements cannot

be represented in the model then both representations - i.e. the model and the dynamics are

necessarily incomplete. Again, we return to the notion of a game design tool as a filter.

This is not necessarily a problem, however.

Schell comments that designers “seldom need to formally document the entire set of foundational

rules (the underlying formal structure of the game) in a completely abstract way”(Schell 2008). We

might conclude that they do not seek to represent a complete model of their game’s structure in

an abstract form because they lack adequate means with which to do so (hence the need for

formal abstract design tools). Equally, however, it could it be that many elements of their games’

structure do not need to be expressed beyond natural language for a designer to work on them.

138

There are often aspects of the mental image of the design situation in a game designer’s mind that

are not usefully externalised to a form any more formal than a text-based description. I have

found that modelling some elements of a given game’s design situation serves little purpose. This

is not the same for all games; as we have seen, the location within the design space of important

or challenging parts of a design can vary between games, and it can be hard to determine in

advance.

This phenomenon of incomplete representation is not unique to game design. The more of the

design situation represented, the more a designer might have to sacrifice the focus and control

that a narrower view might afford them. It could also add to the labour required from the designer

to use the tool, to the detriment of design thinking (discussed in Chapter 8). Do we even want to

see all of the elements of the design situation all of the time? As discussed in Chapter 3, a designer

feels a desire to control the complexity of a design situation in order to achieve focus. They do

this, according to Schön and Lawson, by “identifying” a subset of important elements to be solved

then “framing” – structuring the design situation accordingly. In this sense, the reduced, filtered

representation a tool can enable could be a positive thing, as long as the designer has some

control over that framing.

Finally, the goal of trying to achieve a comprehensive representation of the design situation may

be impossible. In part, this could be because of the limits of externalisation and representation.

Schön believes that many of the relevant variables of a design situation cannot be represented in a

model (Winograd 1996). Schell comments that complete notation of games “might not even be

possible” (Schell, 2008: 175). Perhaps, therefore, some elements of the game design situation will

have to remain in the designer’s mind or, at best, in natural-language based documentation until

they are built into a playable version of the design (i.e. a prototype or the game itself).

7.6. Design thinking adaption for tool representation

If we accept the idea that game design tools cannot be objective, neutral partners within a design

relationship – that they introduce a new dimension of subjectivity into game design thinking, as

well as a new layer of choices for the designer to make – the question then becomes one of what

this means for the game designer.

139

To recapitulate: I have argued that while prototyping affords direct representation of the design

situation, a design tool acts as a kind of filter through which the design situation is filtered. I have

explained how the filter design of a tool is, essentially, a function of the choices the tool designer

makes – choices about how the game design situation is represented, in terms of the form of

abstraction (e.g. resources in Machinations), which kind of details are important (i.e. identification

and framing), and the level(s) of abstraction.

Granted, many of these effects are not new to game designers; conventional methods of

representing have this problem to some extent. The vertical slice-style prototype is biased too, in

that it filters out the fun that may existing at a high level (“big picture”) of abstraction. Such a

prototype of a free-to-play game – e.g. Cow Clicker, for example, where a typical gameplay session

involves clicking an image of a cow and the interest is rather in the long term progression and

social aspects of the game – would have this problem. Conversely, written “high concept” design

pitches tend to privilege game designs with exciting-sounding high-level concepts – a novel

scenario or an innovative or unusual game mechanic – over game designs that have their USPs

(Unique Selling Points) in small refinements to an established game genre.

The addition of tools into the design process, however, increases the complexity of this

phenomenon: by offering more options, more choices to make. Tools impose a not insignificant

additional layer of design thinking to the game design activity. The type of design thinking required

contains some degree of Schön’s reflection on action: thinking that not only in making some of

these choices, but also recognising the particularities of the filter being used – essentially, a biased

one – through which they are representing and viewing the design situation. Finally, as mentioned

above in terms of representing in an abstract form, the quality of some of the choices made are

coloured by the level of game systems literacy of the designer. While tools give us something, they

also take.

Tool bias is, of course, not unique to game design tools. The model’s filtering effect – conferring

importance to some elements while excluding others – inevitably has an influence on the design

thinking of the designer using the model. Some solutions are easier to generate with a given tool

than others, as the design of a tool can privilege certain approaches and outcomes. Hence the

common phenomenon of a “house style” being imparted onto the products designed using a given

140

tool. This problem is often seen in creative production tools, from graphic design to music

software.

This additional design thinking, the reflection on action required of a designer using tools, is not

unusual in other creative domains either. Modern composers and sound designers typically have

not a single tool but a suite of software tools that they can call upon depending on the task, and

their desired result. This is despite the fact that most modern audio software is feature rich,

offering the designer the possibility of performing, at least in theory, all composition or sound

design tasks. This benefits amateurs, who will often stick to using one tool. Expert practitioners,

however, typically have a range of tools in their toolset, in order to have a richer palette of

creative possibilities. They use their knowledge of the possibility space of each tool in their

toolset, with all its limitations and biases, to select a tool that they feel suits given design context.

How much should this additional burden of design thinking matter for us in game design? While

the problem of the filter is not unique to our domain, we might say that it is particularly relevant

to game design tools. First, there is the comparatively large scope of the design space in game

design, in part due to the large range of platforms through which games are mediated, from a

playground to a deck of cards, a phone or a Virtual Reality headset; from single-player to massively

multiplayer. Second, game design, typically a set of “second-order” non-visual problems, is a

domain in which any representation of a game design situation, no matter how complete, is

already a mediated and indirect representation of the game as a played experience.

If, as Schön says, unpredictability is a central attribute of design, game design is surely one of the

design domains that could claim to be the best exemplar of that attribute. Our difficulty in

“seeing” (i.e. within the “seeing-moving-seeing”) impacts not only on our ability to confidently

make design movies (reflect in action). I found that it even flows into decision-making about

design tasks and tools (reflecting on action). It was often the case that I had to begin representing

and solving the problem (analysis through synthesis) with a tool before I realised which form it

would be most usefully dealt with in. This may be unsurprising, given that software developers,

who also have trouble “seeing” in the face of so-called “wicked” problems (and for this reason

often use iterative, analysis-through-synthesis methods) are prone to realising they have chosen

the wrong tool or library for the job only once they have started it.

141

Why is this important? Because not understanding this can feel like failure – either on the

designer’s part, or on the part of the tool. To some extent, in my case, the tool’s limitations and

my personal limitations were no doubt to blame. And yet failure to represent a design problem

within a tool, and failure to know whether the tool can usefully represent the problem anyway,

are to some degree an unavoidable part of design. The fact that these repeated failures and the

evidence of struggle is laid bare, in graphical form for the designer to see – instead of lying

dormant within design documentation, hiding behind text – can be dispiriting.

It could be helpful, therefore, to liken the use of these tools to being fitted for glasses by an

optometrist. While the optometrist can roughly estimate your prescription based on an eye test,

the final test is a process of trial and error, in which the optometrist asks you to look through a

series of lenses to find the one through which you can see most clearly. This trial and error process

does not mean that the optometrist is bad at their job – it just means that some parts of the

process are irresolvable problems that necessitate trial and error.

7.6.1. Observation 5: Documentation, sketches and prototypes to fill gaps in the representation

One of the benefits of creating an external representation of the design situation is that it can

provide the designer with a structure within which to add any new ideas for additions and changes

to the design. It can be a place for organising and ordering stray ideas.

However, as mentioned above, many of the relevant variables of a design situation cannot be

represented in a model (Winograd 1996). Specifically, there will be ideas that cannot be usefully

represented using the tool’s given model. Having a place to store ideas that do not find a place

within the representation is valuable (Hewett 2005). I found that being able to add annotations to

Machinations diagrams for this purpose was useful. Some degree of natural-language-based game

design documentation external to the tool seems unavoidable as well. For this I used text-based

notes that I stored within a database. This was not always an ideal solution for my purposes, as it

is a less than optimal means of organising volatile design ideas, for reasons already discussed.

Later, I switched to using mind maps to store the same kinds of information but in a more visually

scannable format. I also found some success in using Articy:Draft to store some of the more high

level ideas (this is discussed in the following chapter).

142

Look and feel is something I also found myself at times needing to represent in a conventional

way. In one instance I needed to imagine the moment-to-moment interactivity of one mechanic I

was modelling in Machinations. I had previously the experience of modelling mechanics that

seemed very good when I considered them in Machinations but turned out to be rather boring

and repetitive to play at the level of interactivity within the game’s environment and user

interface. As discussed above, with my focus on the system modelling I found that I had a

tendency to overlook other elements, feeling a bias towards the interest in the system dynamics I

was modelling. This made me feel as if I was getting lost in the abstraction.

Filling this designer imagination gap with prototyping would be expensive, significantly slowing

down the game sketching activity. A method I found that worked to address these limitations was

to engage in a parallel process of rapid pen-and-paper sketching of mock-ups/wireframes,

complementing the Machinations diagrams with my own diagrams showing gameplay interaction.

These helped me imagine how my Machinations model might translate into moment-to-moment

gameplay, by allowing me to think through the sequence and choices of actions the player would

make as well as the movements of game elements within the visual game environment. Figure 26

and Figure 27 show an example of this. The former is an interactive Machinations diagram of a

game mode; the latter is a rapid sketch of how that game mode might play out on screen.

So, just as prototypes are often complemented with other materials such as concept art and

documentation, we might need to take the same complementary approach to the use of design

tools. First, to capture parts and details that cannot be usefully modelled. Second, to compensate

for the abstraction of the design situation that tools necessitate. While abstraction is useful and

necessary, it could have the effect of unbalancing our view away from look-and-feel dimensions of

the design situation – dimensions that are not merely aesthetic but are to some degree

interconnected with other elements in the design space.

143

Figure 26: A Machinations diagram of a game mode for South Sea Trouble

Figure 27: Rapid sketch of the same game mode on screen showing a sequence of game actions

144

8. OBSERVATION & ANALYSIS PART 2: THE ACT OF REPRESENTING

This chapter looks at the act of representing a design situation and making design moves with

game design tools. I then go on to discuss the costs and conditions of representing and the

designer’s agency to make design moves. Finally, this chapter addresses the act of using the

representation, to identify problems and possibilities.

In this chapter I offer three observations: how virtual space helped me organise ideas, the

usefulness of an annotation layer, and how I found myself deploying content that was

procedurally generated.

8.1. Tool labour

One of the practical considerations for using a tool is whether the benefits outweigh the costs in

terms of investment required from the designer by the tool. This investment can be in the form of

time (the “extensity of labour” 22 expended, as a political economist might call it) or mental effort

(the intensity of the labour: “cognitive resources applied or allocated to a given design problem

solving methods as compared with others” (Ben Shneiderman et al. 2005)). In this study, I am

comparing the costs and benefits of using tools for game design versus current, unsupported

game design practice.

This section looks at the costs of these tools: the investment in terms of both types labour

invested in the tool. Specifically, I look at the investment in terms of quality (intensity) of labour

(i.e. cognitive resources, skill) and the quantity (extensity) of labour. This labour comes in the form

of the investment required to learn the tool, as well as the ongoing investment in using it.

It is important to note, however, that depending on the aim of a design tool, its goal may not be to

increase the ease and efficiency of design tasks, but instead to afford the designer more creative

possibilities. This attribute is known as a “high ceiling” and is discussed further on in this chapter.

22The amount of labor of unvarying intensity that a worker expends in the production process over a given time.

145

8.1.1. Accessibility threshold

A tool requires a certain degree of up-front investment from the user in the form of time and

effort to acquire the skills necessary to use it effectively. In the literature, this is called a tool’s

“threshold” of accessibility – a low threshold requiring relatively less time and effort to learn (and

remember what has been learnt) than a high threshold (Hewett et al. 2005). Depending on the

tool, this investment can vary, with a low investment being more desirable.

As I have discussed in Chapter 6, an understandable reluctance to invest time into learning a tool

that confers unproven benefits has been hypothesised as a barrier to game design tool adoption

(Dormans 2009). Compounding this, as I argued in Chapter 3, is that taking a first step to switch

from craft-based methods to a supported method (i.e. incorporating design tools into practice)

represents a significant adjustment in and of itself, regardless of how accessible the game design

tool or model may be. And finally, the lack of a shared language for game design or accepted and

taught conceptual models, obliges researchers who create computational forms of design support

(i.e. software) to not only develop a tool but also to develop a new model or language that their

system can be based on. This problem facing a tool design researcher extends to the learning

demands on the users of such software-based design support tools: they must learn and adjust to

both a new system and a new language.

In this study, I have experienced this designer’s pain of adjustment first hand. My perception is

that it has taken me a significant period of time to let go of old, ingrained practices (the instinct to

launch into prototyping and documentation, for instance), to learn to externalise my ideas in more

abstract ways, and finally, to feel confidence in new, unfamiliar processes. Added to this was the

more pragmatic task of learning the tools themselves. As anticipated, my learning experience was

impacted by the production state of the tools, which ranged from experimental work still under

development (e.g. Ludoscope) to fully-fledged, well-documented products (e.g. Articy:Draft,

Machinations).

Unsurprisingly, it was the tools that were more ambitious in offering a larger possibility space – in

the form of a rich set of concepts, complexity and functionality – that required more investment to

fully exploit. Dormans concedes that Machinations is a big learn (Dormans 2012). Based on my

experience with Machinations, this is less due to the demands of learning the feature set of the

146

tool and more because of the game system knowledge required in combination with the need to

be able to understand and express this knowledge via Dormans’ graphical language. These factors

are discussed further on.

In general I did not feel, however, that any of the tools were needlessly complex to learn or had

too high a threshold, in relation to what they offered. Indeed, some of the skills and concepts one

needs to learn feel valuable to know as a game designer in general. That said, my expectations are

coloured by a background in formal music composition, where the threshold for learning tools and

languages is relatively high.

In addition to the time and effort required to learn how to use the tool, there is the ongoing

investment required to use the tool.

8.1.2. Quality of labour

One dimension of the investment that a tool requires from a designer is effort. The amount of

cognitive resources demanded by a tool is considered important; when these resources are

expended on using the tool, less remain for use towards the design activity itself:

When people are stressed or concentrating too much effort on how to use the tools themselves,
then they will have less cognitive resources left over for use on finding creative solutions to their
tasks. (Resnick, Myers, and Nakakoji 2005)

The amount of cognitive resources required can be described as “cognitive load”. A concept used

in the field of cognitive psychology, cognitive load refers to the degree of mental effort being used

in the working memory. Experiencing heavy cognitive load is undesirable for a user, as it is thought

to interfere with the cognitive task at hand and make a user more prone to error (Sweller, van

Merrienboer, and Paas 1998).

8.1.2.1. The gap between the abstract and the concrete

Aside from superficial usability issues, a key demand on the user from a game design tool is the

effort and skill required to bridge the gap from the form that the representation of the design

situation takes (an abstract graphical language, for example) and the resulting gameplay.

https://en.wikipedia.org/wiki/Cognitive_psychology
https://en.wikipedia.org/wiki/Working_memory

147

As discussed in the previous chapter, a shared language requires the abstraction of concrete

concepts in order that they be universalised. This requires something of the designer: each design

move involves an act of imagination. That is, the designer must translate a concrete rule or

mechanic into an appropriate abstract counterpart using the tool’s language (in the case of

Machinations, a resource flow-based framework). Then, the designer needs to successfully use

their imagination to translate the dynamics that result back into concrete gameplay.

In a medium known for its wide diversity of forms, could a shared language for game design

require a level of universalisation and abstraction that renders the relationship between concrete

problems and their abstract models too remote and strained? Conceivably, the danger is that this

constant translation in the designer’s mind from the concrete to the abstract and back again is

cognitively over-taxing.

In a discussion of the goal to create formal models for game design, Salen and Zimmerman allude

to this tension between abstract and concrete thinking:

A major challenge in creating a game design model is to conceptualize games on an abstract level,
while also providing more specific rubrics for solving concrete game design problems (Katie Salen
and Zimmerman 2005: 54)

I noticed that the mental effort required of me does indeed vary based on how much I need to fill

the gap between the abstract and the concrete using my imagination. I found it to be variable,

even within the same tool. In Machinations, for example, the further the mechanics of the game

idea I am modelling are from resembling the resource flow metaphor Machinations uses, the more

effort (as well as skill) is required of me to translate the concept back and forth in my head

between the abstract and the concrete. For example, a god game involving resource harvesting

and trade would correspond strongly, while a twitch-based action game would correspond much

less.

I also noticed this variable gap when I built playable prototypes of what I designed, to playtest the

results of my designs. The interactive simulation that Machinations offers – i.e. the way it allows

you to, in a sense, “play” the model you have built – more or less resembled its playable prototype

form as a function of how strong the game concept corresponded with the resource flow

148

metaphor. The less correspondence there was, the less – or at least different - insight I managed

to derive about what the playable experience of the game might be.

8.1.2.2. The requirement of design literacy

The designer’s literacy with a tool is not simply the ability to fluently read the language of a tool

like Machinations itself. It is not even being able to mentally translate, element by element, how a

model translates into concrete gameplay. More fundamentally, it is a case of being literate in the

patterns that can be formed, and how those abstractions translate into the gameplay. A musical

composer, for example, does not calculate in their mind the results of every interval between

individual tones; they see them in their mind’s eye in groups that form patterns, which may in turn

form components of larger patterns. Literacy is about seeing patterns in the larger shapes that

units form, and then associating certain patterns with gameplay outcomes they translate to.

This is catered for by Dormans, who has made resources available in the form of a book (Game

Mechanics: Advanced Game Design (Adams and Dormans 2012)) and a wiki23. The material not

only guides the reader on how to use Machinations, but teaches them some of the game systems

literacy required to use it.

8.1.2.3. The challenge of the second order problem

Are there hard limits to this literacy? How readable can a game design model be in view of the fact

that game design, unlike comparable design domains, is a “second order problem” in which

designers are designing systems, rather than the results of those systems? In a way though, a kind

of system thinking arguably operates in the minds of other designers too.

Again, I use the highly formalised domain of music to illustrate this. While music is typically

composed directly, thereby not requiring composers to imagine music as dynamics resulting from

a set of rules they are designing, understanding music as a system (the tonal system of Western

music, for example) allows them to recognise, in a very abstract way i.e. not even imagining the

resulting music itself, the aesthetic results of a system choice. To give a very basic example of this:

a composer knows, for instance, that a melody comprised of tones that conform to a minor scale

23 See http://www.jorisdormans.nl/machinations/wiki/index.php

149

(which is essentially a rule-set) has a certain aesthetic character, without having to imagine the

melody itself. It is this kind of knowledge that can be applied to the design of music as an

interactive experience – i.e. a second order problem, like a game. Indeed, it is this system

understanding of music that enables composers to create algorithmic music (a famous historical

example of which is Mozart’s “Dice Music”24). This kind of musical systems literacy is typically

acquired after many years of study, however. If game designers were trained to a similar level of

literacy in game systems, the question would be whether the second-order nature of game design

presents a hard barrier behind which some aspects are simply unknowable, or whether, like

Western classical music, it is a very high bar but one that is surmountable with a combination of

extensive training and support systems.

8.1.2.4. A path to systems literacy through reading dynamics

Dormans tells us that in its initial iteration, Machinations, like the diagramming systems proposed

by LeBlanc and Koster, was a graphical notation language. The fact we can now use it to create a

simulation and visualise the dynamics produced by our model gives us a kind of path to literacy in

the notation system.

I have noted previously that game design is not yet a “conscious design” discipline. As such, game

designers are not educated as part of a design tradition. Reading mechanics, isolated from the

dynamics they produce, is not the way we tend to work. As craft-based designers our

understanding of mechanics is very mediated; we associate certain mechanics with desired

dynamics less through deduction and abstract knowledge and more by way of experience, rules of

thumb and analysis of existing games. What dynamics will be produced by new, original mechanics

is something we find out using trial and error in the form of prototyping. This is a very long process

by which to learn the connections between game mechanics and the played experience.

Machinations, in visualising these dynamics for us, brings the second-order problem of game

design into first-order scope. In so doing it creates a bridge to literacy: it inserts a visualisation of

dynamics between mechanics and the played experience. It provides a bridge in the sense that,

24 See http://www.amaranthpublishing.com/MozartDiceGame.htm

150

while we may initially struggle to read mechanics and recognise “fun” patterns, we are more able

to read and recognise patterns in dynamics. While we may not be yet comfortable with reading

the language of mechanics and imagining how they translate into a game experience, we are now

learning how to interpret abstract dynamics into game experience. We know dynamics can be

read and used by game designers (for example, in charts similar to the one in Error! Reference s

ource not found.), as data-driven design approaches are training us to read representations game

dynamics data gathered from analytics and user testing.

Therefore, perhaps the most “readable” aspect of the model for the uninitiated is Machinations’

charting feature. As part of the simulation, Machinations also allows the user to “tap” the game

state at any point in the model to be plotted in real time on a chart. Designers will be familiar with

this in the form of analytics and gameplay traces. It allows one to track “results”. Figure 28 gives

an example of this: a diagram with a chart at the bottom, showing the results of multiple runs of

the simulation. This charting feature is useful if the designer has a desired result in mind, based on

game state variables that the player might themselves use to gauge the state of play. For example,

these could be resources like money or hit points, variance in which can indicate how dynamic

(and thereby exciting) is the competition between the player and the system or competing

player(s); the point at which a long term strategy overtakes a short term one; how long resources

will last before they run out; comparing the results of strategies to detect a dominant strategy.

151

Figure 28: Machinations diagram showing the system model above and the dynamics of the simulation in

a chart below

As for the readability of system models, the use of the machinations itself – the experience of

comparing the playable prototype (or existing game) with its system model – can create the

literacy required to make the tool useful. Composers, for example, read orchestral scores while

listening to recordings, to see what orchestration techniques and instrumental combinations (akin

to mechanics) produce certain sound colours (dynamics and aesthetics).

8.1.2.5. Comparison as an analysis tool helps compensate for lack of literacy

I mentioned above how one path to literacy is the analysis of existing games. While I often

struggled to analyse my Machinations designs in isolation, I gained insight from modelling existing,

152

similar games and comparing them with models of my own design. This kind of comparison is

something I am familiar with from conventional game design practice. Not only is describing our

designs with reference to existing games a device commonly used in the absence of a standard

game design vocabulary (Björk and Holopainen 2005), playtesting and analysing games to see how

they solved a design problem similar to the one we are working on is a common design activity.

For example, in a mode I was designing for South Sea Trouble I was having trouble finding a way to

incentivise the player to make sure all passengers were collected leaving none on screen. I was

curious to see how Diner Dash – a very successful time-management game – did this. While I had a

general idea of how Diner Dash worked based on having played it, modelling it in Machinations

allowed me to identify two key mechanisms that nudged the player into doing what I needed my

hypothetical player of my game mode to do.

8.1.3. Quantity of labour

Another dimension of the labour required from the designer is the quantity of labour in the form

of time required: the amount of work required to produce results; the time it takes to make a

design move. Measures and metrics suggested for the evaluation of creativity support tools

typically include measuring time expended to devise design solutions (Hewett et al. 2005).

One of the key differences between “sketching” (i.e. design drawing using a tool) and prototyping

is that sketching is, ideally, much quicker. Being able to make design moves at a speed that keeps

pace with the speed of design thinking gives sketching a significant advantage for exploration of

the design space. Specifically, a tool can enhance the sketching experience by offering quick

results from hasty, only partially completed design work (“allow a partial effort to get a partial

result quickly” (Resnick, Myers, and Nakakoji 2005)). This allowance for a partial, rather than a

comprehensive, input of information has a meaningful impact on the design process.

In Chapter 2 I noted how in recent years the production of large, comprehensive game design

documents has fallen out of favour. Their size (often hundreds of pages) made them not only time-

consuming to write but also rendered information retrieval more time-consuming. One of the key

problems was maintaining the document; as the design of a game rapidly evolves, keeping a large,

153

detailed document up-to-date can be so time-consuming and error-prone as to be counter-

productive.

A tool that requires the user to input a large amount of information in order to get a result

imposes upon the designer in a similar way. The “hunger” of the tool – the sheer quantity of time

and information the tool demands from the designer – has an impact on not just representing the

design situation (inputting/ building a lot of information) but also the design activities related to

analysis (exploration of a large amount of information) and synthesis (making changes within a

large information space). In this way, tool labour translates into the speed of the design process

itself. Researchers have called this “viscosity” (Resnick, Myers, and Nakakoji 2005). A design

support system with low viscosity, for example, allows the designer to make design moves -

changes to the design situation – easily. Ideally, therefore, a tool aims to minimise the quantity of

tool labour requirements on the user.

As we saw in the discussion of design process models in the previous chapters, not only is frequent

iteration favoured in contemporary game design, it is a common feature of the design process in

all domains; most design processes contain feedback loops (Dubberly 2004). The designer is

constantly looping through the activities of analysis, synthesis and evaluation, each design

potentially serving “as a springboard to a new round [i.e. iteration] of problem-solving” (Schön in

(Winograd 1996)). The designer therefore benefits from being able to “see” the results of design

moves easily and quickly, in order for this “seeing-moving-seeing” loop (Schön) of design to be as

unobstructed as possible. Particularly in the earlier stages of design, the design situation is very

volatile.

In the previous chapter I discussed how the cost of a comprehensive representation, or of working

at a low abstraction level (requiring a high degree of detail to represent a design situation) can be

an increase in the design labour required by the tool, and thus its viscosity. I also talked about my

experience of how PCG enabled me to sketch ideas at a high level of abstraction – effectively

lowering the viscosity of the design process.

154

8.2. Fostering the conditions for creative work

Jesse Schell, in his book The Art of Game Design (2008), highlights the importance of the

psychological dimension of game design. A game designer is, in a way, collaborating with an

unconscious version of themselves – one that is unpredictable, and easily frightened and must be

treated with respect and delicacy. This emotional and personal dimension of any creative work is

well known. It may be no surprise then that, particularly at a moment in history when game design

as a creative practice is only just beginning to receive the cultural recognition it is due, the idea of

adding computation and formalisation into the design process could be met with antipathy. With

the game design community already feeling somewhat brutalised by the rise of data driven design,

we see signs of designers railing against the idea of any kind of formalisation undermining the

new, elevated status of game design as an art form in which we tell ourselves that great works of

game design are the product of “divine inspiration”25.

This idea that a designer in a creative domain must be careful not to “frighten the muse” extends

to the tools that support creative tasks. In the domain of Creativity Support Tools, it is thought

that “certain necessary conditions” must exist for support for creative work to be effective.

Hewett talks about a tool providing at least necessary if not sufficient conditions for good creative

work, based on what we know from psychology research. At minimum, a tool should avoid

creating conditions for a designer that are known to “disrupt or to work against creativity”

(Hewett 2005). Ideally, a creativity support tool should be “pleasurable and fun to use” (Resnick,

Myers, and Nakakoji 2005).

The fact that tools for game design have not attracted interest by the game design community

except on its margins might not be because the technology we have is not yet sophisticated or

powerful enough; it could be that it is not yet simple26 and gentle enough. Perhaps a more

important assessment of a design tool is not the amount and quality of support it offers so much

25 See Frank Lantz’s essay “Against Design” for a recent example of this (Lantz 2015)
26Here we might recall how, as referenced in Chapter 6, Chris Hecker exhorted researchers to produce technology for
developers that was as simple as “two sticks and a rock” (Hecker 2011)

155

as how well it manages to minimise any harmful side effects on the design process as a cost of that

support.

8.2.1. The confidence conferred by constraints

While tools may have the potential to be brutal and demanding, one of the effects I experienced

was the benefit that tools give in creating a safe space for creative exploration.

In Chapter 3 I gave an overview of the way design tools aid the designer in externalising their ideas

by transferring the design situation in their heads into an external representation (“materials of

design”). I explained how externalisation, in and of itself, is thought to have benefits to the

designer: offloading the design situation frees up more space in the mind for design thinking.

Writing game design documentation does this. Documentation is passive, however; once you have

unburdened yourself of an idea on one page, the word processor will not actively remind you of

what you have previously said that may be relevant to what you are writing on the following page.

By contrast, mixed-initiative game design tools that offer the ability to check design moves against

specified constraints, do take an active role in reminding the designer of previous design moves,

helping the designer stay true to their design goals. Refraction’s tool’s progression planning

system of constraints does this, for example. By inputting progression rules one by one into the

tool and assigning game concepts to levels, the designer is constraining the design space to a safe,

secure space in which they are free to make design moves without fear. In a sense, this safe space

has a function similar to Huizinga’s “magic circle” (Huizinga, 1950: 10): the designer is inputting

design rules to define the boundaries within which they, as a designer, feel free and confident to

play. Creativity, like play, tends to thrive within known constraints.

Even simple computational support and visualisation can have a significant effect on the pace of

design and the sense of confidence to make design moves. I found Refraction’s tool’s method of

constraint setting a very successful way to relieve the stress and cognitive burden of having to

remember and adhere to my own, often extensive and interconnected sets of design rules that I

would otherwise have had to halt work to reference from documentation and take time to

calculate their relevance to individual design moves.

156

Added to this is the fear and worry a designer has that they have forgotten something, now buried

in a document; or made a mistake somewhere. While we may feel nervous at the idea of letting

computers anywhere near our creativity or getting in the way of our “divine inspiration” (to quote

Lantz again) (ref), we do generally trust them for predictability, memory and basic computation.

Recalling the design tool metaphors discussed in Chapter 5, the effect of externalising and

representing material – even design rules – is like training up the nanny or collaborator I know I

will come to need; when I am creating progression planning rules, for example, as if I were being

the nanny or collaborator of my future self.

8.2.2. Ambiguity and imperfection

On the flip side of the security and freedom that constraints can confer, is the phenomenon of too

much constraint. In a design tool, tolerance for ambiguity, inconsistency and incompleteness

within a representation of a design situation is considered important.

Externalising the design situation compels a designer to articulate and concretise thoughts into a

representation of their design ideas. Thoughts that were unformed must take some kind of shape

in order to be represented, and they must be slotted in somehow into an existing structure. A tool

treads a delicate line: while compelling the designer to formalise their thoughts it still needs to

accommodate thoughts that might need to remain half-formed, or might contradict other design

elements.

This is because design moves are exploratory – i.e. they are moves made by the designer for the

purpose of “seeing”. It is this very incompleteness, half-formedness and mess – the “ambiguity”

that Lawson and others say is an essential creative thinking aid for the designer – that should be

supported by a design tool. We do not want to be brutalised or bullied by tools; conversely, we do

want to feel that they are robust enough to handle our imperfect, risky design moves. In other

words, we do not want to feel paralysed by the uncomfortable possibility that if we make the

“wrong” move we might make a “mistake” that breaks our design.

In providing the benefits of formalisation to the design process this structure and constraint is in

tension with this requirement of tolerance for “ambiguity” in the representation. Does the rigidity

of the visual language that we have reduced from the vague fluidity of natural language tolerate

157

this vital state of ambiguity that is core to the “sketching” process? Lawson refers to evidence

showing how architects found they were unable to produce the same range of creative results

with architectural CAD tools as compared to what they were able to do with pen-and-paper; he

attributes this to CAD tools’ intolerance for ambiguity.

Concretely, a tool can tolerate ambiguity by supporting the designer to maintain parallel or

alternative solutions (Resnick, Myers, and Nakakoji 2005). Refraction’s tool achieves this by

tolerating dissonance between the design rules that the designer sets for themselves and any

design moves they make that break any of these rules. The tool informs the designer of the

inconsistency but it does not constrain the designer from making the move and leaving the

inconsistency in place. A kind of dissonance can be maintained, where design rules can sit

alongside content that contradicts one or more rules. This contradiction can be resolved either in

favour of the rule (the content changes) or the content (the rule eventually changes).

8.2.2.1. Observation 6: Tolerating design mess using virtual space

An incomplete design is a state of flux. It is not only the ideas themselves that are half-formed:

connections between the ideas and their place within the design situation are not yet fixed. While

still in this unresolved state, the designer must not only be able to externalise, but store, organise

and retrieve their ideas. The affordance of logical and easily accessible places to externalise and

store design ideas – especially incomplete, ambiguous ideas - that can be easily found later is

extremely useful. Conventional documentation does not serve this purpose well. I found

Articy:Draft to be a useful alternative.

Aside from plain documentation, a designer has other options for taking note of and storing their

ideas, however. A conventional designer’s notebook is an improvement on a monolithic

document. Adding computational support, note-taking tools like Evernote use a tagging system to

ease navigation and information retrieval. The content is still more or less obscured, however, and

connections between these ideas (in note form) cannot be visualised, nor can they be presented

together, for example, the way a writer organises scenes or fragments of a story as notes (on

recipe cards, conventionally) that they can arrange on a surface like a table or a whiteboard in

order to gain a holistic view. Figure 29 shows a screenwriter engaged in this kind of activity.

158

Figure has been removed due to copyright restrictions.

Figure 29: A screenwriter viewing his notes laid out on a table (Kadoudi 2014)

Virtual space – taking advantage of visual cognition, like a “memory palace” - is a powerful way of

organising even intangible and abstract information for easier retrieval. Scrivener (Literature and

Latte 2007), a tool currently popular with writers, uses analogues of direct manipulation of ideas in

space by the designer. However, while Scrivener’s corkboard offers the user a two dimensional

space, the arrangement of cards is constrained to grid-based sequential format where ideas can

only be reshuffled rather than placed and arranged freely in space. This sequential form is natural

for linear media, but it is not suitable for games.

By contrast, Articy:Draft’s “open” geography of the spaces (shown in Figure 30) allowed me to

make loose connections and groupings with high visibility. The virtual space afforded me the

ability to pool ideas belonging to the same category. For example, I had a “board” (a screen) for

my adventure game quests. A 2D space, as opposed to a directory structure, allowed me to make

loose groupings, sub-groupings and “implied” connections and associations before deciding

whether to make firm links between or categorisations of my ideas. Another way I was able to

make connections that were loose and incomplete was using their flow fragment’s entity

referencing feature. Using this I was able to make loose associations between narrative ideas and

quest ideas.

159

Figure 30: Loosely associated quest ideas in progress

8.2.2.2. Observation 7: Including an annotation layer

Hewett suggests that creativity support tools can provide “the electronic equivalent of sticky

notes”, in order to satisfy “the need to capture fragments of thoughts, ideas and relationships

with minimal disruption of an ongoing activity” (Hewett 2005).

Unsurprisingly therefore, I have found that being able to annotate a diagram with text is useful.

First, it helps with the readability of the representation. Annotation can also help with work in

progress, reminding the designer of what is still to be done. Finally, as I have previously discussed,

there are often aspects of the design situation that cannot be usefully modelled in a tool.

I made extensive use of such annotation (or text label) features in Machinations and in

Articy:Draft. In Ludoscope it was not possible to annotate models (as models can be transformed

into other forms, I can understand why), but I felt as if I would have liked to, in order to help close

the abstract-to-concrete imagination gap while thinking through the structure of missions. While it

is true that one thinks through these structures in a mostly abstract way at the stage of building

mission graphs, concrete ideas (e.g. for using the abstractions) are frequently mixed in with these

160

thoughts. The concrete ideas can help form anchors for imagining how the structures one is

building might work. For this reason, these concrete thoughts are not usefully abstracted and

included in the model; they are best added to an annotation layer above it.

These annotations could also be in the form of images. Images are sometimes particularly good for

expressing very vague, as-yet unarticulated or half-formed, ideas. In most game studios you will

see images used for design purposes – in the form of concept art, reference images or diagrams –

pinned to walls or to whiteboards along with text. While I found Articy:Draft’s workbench-style

interface useful to do this with free-floating text-boxes and diagram elements, I would have liked

to be able to pin images in the same way.

8.2.3. Freedom to move and explore

When we consider a tool in terms of the functionality it provides, it is tempting to frame our

understanding of design activities as design tasks and how it helps us perform them. But this

understanding of design as a set of problem-solving activities is rejected by some, particularly in

creativity research. Instead of performing specific tasks, they believe, the primary activity of a

creativity support tool should be “exploration”, where the tools “define a space to explore, not a

collection of specific activities” (Resnick, Myers, and Nakakoji 2005). Game designers interviewed

by Nelson and Mateas somewhat echoed this view: they were keen to know, particularly for the

earlier stages of the design, how a tool could help them “explore a design space” (Nelson and

Mateas 2009).

In addition, it is important that designers are afforded some flexibility in the manner in which they

explore and make design moves. In contrast to scientific problems, design problems have no

“correct” paths to a solution. Lawson tells us that design problems (unlike scientific problems) are

interpreted subjectively, and design inevitably involves subjective judgements (Lawson 2006, 3rd

revise:124). Lawson uses the term “guiding principles” to describe the personal set of beliefs

about design and design practice that drive variations in these judgements (Lawson 2006, 3rd

revise:159). A tool that supports many different types of design styles is considered advantageous

in a creativity support tool (Resnick, Myers, and Nakakoji 2005). As Nelson and Mateas point out,

this applies to game design; design styles often strongly influenced by a game designer’s personal

design practices. Design tools, they say, should cater for this subjectivity and variation in personal

161

style (Nelson and Mateas 2009). There number of ways a tool can do this and I discuss these

below.

One way a tool can support personal design style, as well as facilitate the exploration of the design

space, is to maximise the number of possible paths that can be taken through the design space.

Researchers suggest that a tool “support many paths” through a problem i.e. maximise the variety

of ways the tool can be used to explore a problem and make design moves.

Secondly, the tool can offer the designer multiple ways to perform the same task or express the

same idea. (Resnick, Myers, and Nakakoji 2005). This variety of means could also conceivably be

achieved by the designer having access to not one but a set of tools that each facilitate different

problem viewing and solving approaches. As I have discussed previously, any given tool will, to

some extent, favour certain design approaches over others.

Thirdly, as well as offering multiple ways to represent the design situation and perform design

moves, a tool can offer multiple ways to visualise the representation, giving different views on the

same material. Many of these features were discussed in Chapter 7. For example, one way of

gaining a different perspective is to view the data at different abstraction levels. As discussed,

Refraction’s tool offers this as a core part of its premise. Ludoscope, with its model

transformation-based framework does something similar.

Finally, flexibility can be offered by affording the designer control over the framing of the design

situation. Being able to “zoom in” on some parts of the design while hiding others aids focus.

Articy:Draft achieves this via its nesting feature, which allows the designer to nest sub-diagrams

within diagram nodes. Machinations does not yet have this feature, which conceivably could be a

useful way of dealing with some of the more elaborate diagramming that users may find

themselves engaging in (perhaps especially for certain tasks like game balancing, as discussed

previously). Music and audio-based software that use a patcher-based signal-processing interface

(similar to Machinations’ resource flow approach), for example, make great use of nesting to aid

readability and debugging (e.g. Pure Data (Puckette 1997)).

162

8.2.4. Diversity of solutions within wide walls

Another dimension to the freedom to explore and support personal design styles is the flex giving

the tool “wide walls”, where the tool offers a large, open possibility space (supports a “wide range

of explorations”) instead of locking the designer into presets and predefined components.

A large possibility space allows a wide range of outcomes driven by personal styles. In the context

of evaluating creativity support tools, Resnick, Myers and Nakakoji consider the diversity of

solutions produced when using the tool as a measure of its success: “If the creations are all similar

to one another, we feel that something has gone wrong” (Resnick, Myers, and Nakakoji 2005).

8.2.4.1. Observation 8: Domain-specificity and experimental design

The design for The Casimir Effect features a somewhat adaptive narrative. Game narrative, as I

indicated in the description of the design challenges for The Casimir Effect, is rarely adaptive.

Modelling the structure in Articy:Draft, therefore, was effectively an exercise in seeing whether

Articy:Draft could support the visualisation of a game narrative with an atypical structure.

163

Figure 31: Excerpt from a diagram of the narrative structure of The Casimir Effect made in Microsoft Visio

164

At first, I attempted to model the structure in Microsoft Visio. Visio affords a high degree of

flexibility in terms of the kinds of the customisability of the appearance of nodes and node text,

graph edges and the ability to add visual cues such as borders around groups of nodes and free-

floating text and images. I produced a diagram with two views of the structure. This can be seen in

Figure 31. On the left are four level (space) layouts showing target locations (apartments in a

building). If the player clears a certain path (marked with an orange arrow) between the target

locations a “connection” is made between the apartments which affects the narrative events that

occur in the connected apartments.

I considered that this diagram was not clear enough. I showed it to my collaborator and he found

it hard to understand how the structure worked based on the diagram. I wanted to resolve this by

better visualising the dependencies and their relationship to the different room states. In addition,

by using the diagram for design thinking, I wanted to be able to work out the spatial connections

needed between the different levels.

I then attempted to model the structure in Articy:Draft but quickly gave up. In Articy:Draft I found

I had only two ways to view the relationships in my diagram – with graph edges or by opening up

individual nodes to view their properties. I needed to view dependencies in a cleaner way than the

tangled mess of graph edges I had created, and I wanted to be able to add large, highly visible

labels that would provide a mid-level layer of visualisation to help me interpret my diagram.

My collaborator and I, when we next needed to communicate the actual content, found ourselves

using a very simple lay-out in a spreadsheet program (Figure 32). This perhaps did not show the

nature of the structure (which I had, by now, communicated to my collaborator verbally) but it

was enough of a visualisation of the structure to think through and iterate over the narrative

content.

165

Figure 32: Excerpt from a work-in-progress narrative diagram made in Microsoft Excel

166

8.2.4.2. The downside of wide walls: not enough domain-specificity, too much labour

The limits and constraints that I have just described encountering point to a perennial design tool

problem: the inevitable compromise that has to be made somewhere in between design support

and design freedom.

In Chapter 7 I raised some potential disadvantages associated with achieving the goal for a “shared

language” – a game design support generic enough for general game design use. As compared

with a narrower, more genre-specific tool or language, representing the game design situation is

more complex and labour intensive, as such a language would be composed of elements that

would need to be at a more primitive, lower abstraction level than domain-specific elements. I

suggested that, given how widely variable games can be, the lowest common denominator may be

too low to be useful – at least not useful for all games. Further, I described how my experience

with these tools has led me to think that no one game design tool will be comprehensive enough –

or indeed should be comprehensive enough – to be all things to all game design problems.

On the other hand, generic tools offer a large possibility space (i.e. “wide walls”). More domain-

specific tools sacrifice this, to a greater or lesser extent. In the previous chapter I raised the fact

that a design tool inevitably bears the characteristic of inherent “bias” that to some degree steers

the designer towards (and even locks them into) particular kinds of solutions. It is probably safe to

say that the more domain-specific the tool, the more this effect is intensified.

My difficulty in attempting an experimental narrative format in Articy:Draft illustrates this. It is

very much a domain-specific diagramming environment; that is, it privileges the support of

modelling structures typically seen in games (RPGs, adventure games, etc.). In doing so, it narrows

down and restricts the possibility space of a more open diagramming environment (such as Visio,

or, at the extreme end of freedom, pen and paper) to a subset of game-typical affordances. In this

way, the possibility space begins to become a collection of building blocks and templates – with all

the benefits that confers. One of the trade-offs, however, is the freedom lost by this restriction.

As with domain-specific tools in other design domains, this trade-off and tension seem difficult to

avoid. Domain-specific plugins and extensions to a generic system are one solution. Another is to

accept the trade-off and consider whether a good balance has been achieved between freedom

167

and domain-specific support. Certainly, as far as I can see, Articy:Draft seems to cater to the needs

of narrative for most common game genres.

8.2.5. High ceilings

A tool with a “high ceiling” enables a designer to create “sophisticated, complete solutions”

(Resnick, Myers, and Nakakoji 2005). This is one of the primary goals of game design tools. Tool

designer Dormans, for example, hopes that:

Using the right tools designers can shape emergent mechanics to produce progressive
experiences, and by having a clear perspective on a game’s internal economy and mechanics
designers can structure levels that go beyond a structured learning curve. (J Dormans, 2012: 159-
160)

The importance of raising the ceiling of game design is also the desire of many working in the area

of procedural content generation (PCG).

Procedural content generation for game design could have any of the following goals: creating a

higher ceiling for design – i.e. to help game designers create better (higher quality, more

sophisticated, more creative or related metrics) games; to help game designers create games

more efficiently (i.e. expend less time and fewer resources to make existing games); to assist

novice designers to perform game design tasks that they would otherwise need training to

undertake. This final goal represents a scenario that is outside the scope of this study.

The goal of the higher ceiling seems to be the one favoured by the research community. At a panel

session entitled “PCG Evaluation and Validation”27 at the fourth Workshop on Procedural Content

Generation (PCG 2013), participants expressed the view that the primary aim for PCG should not

be merely to enable game developers to produce game content at a faster rate, or with less skill

and effort. Rather, the goal more valued among PCG researchers was to expand the creative

possibilities for game developers and for the games they are able to produce. While the discussion

was about content-generation technology rather than design support, this value system applies to

tools as well.

27 See http://pcg.fdg2013.org/program.html

168

In our cost-benefit analysis of game design tools we should consider that even if a design tool

increases the labour involved in a problem-solving task rather than reducing it, this may be

balanced against the benefits of the heightened ceiling the tool affords.

That said, the two goals – of labour saving and increased possibilities – are not unrelated. As we

have seen, reducing some of the burden - both quantitatively and qualitatively - on designers can

help towards creating conditions for the extension of design possibilities and serve as a powerful

aid to creativity. The designer, afforded more mental space and a sense of safety, is better

equipped to take advantage of whatever higher ceiling a tool may offer.

In the previous chapter I described how procedural content generation (powered by Ludoscope)

reduced the viscosity of my design process to enable faster design moves at a high level of

abstraction.

I sense that there is a limit to this high ceiling though: when the tool is making decisions and

suggestions that are too advanced for the designer to understand. If the designer does not quite

understand the cause-and-effect of their design moves, then this reduces design moves to little

more than an exercise in trial-and-error. Using a tool that is more advanced than one’s capabilities

can be counterproductive. One can see this happen in other design domains when novices use

tools designed for experts. Even experts have their limits, however.

Ironically, I began to experience this after I added a feature to my own tool (described in Chapter

10). It was my own algorithm and in theory, I knew exactly what each component of it did. As a user

of the tool, in the moment of making design moves, however, it was too complex to grasp, despite

visualisation refinements to make it clearer. I eventually removed this feature and replaced it with

a less sophisticated but much simpler alternative that returned some of the thinking/computation

task to the designer, allowing the designer to undertake the task in an inferior, human way, at their

own pace. As a user, I found the design experience significantly better.

169

8.3. Using the representation

We know that analysis and synthesis – in some form or another – are the key activities of the

design process. To understand how a tool supports these activities it is useful to understand the

process within which they occur.

As we recall, this process has been described by Schön as a “conversation with the materials” (of

design). The “materials of design” designates the material form of the representation of the design

situation. A good representation of the design situation provides good “back talk”, uncovering

implicit, tacit, and emergent dimensions of design tasks that designers may not have considered

without the aid of representation (Fischer 2004). The designer hopes that the materials will “talk”

to them after each design move, revealing new knowledge about the design, identifying both 1)

problems and 2) new possibilities.

This back talk occurs because a design situation is by nature highly interconnected; it is hard to

isolate and disentangle a single design problem from others within the design space. Lawson

frames the design process itself as a complex system, in so far as when one makes a move within a

system, the consequences of that move are beyond those that were anticipated. In other words,

every design move a designer makes has “side effects”. To highlight the complex web of

dependences contained within design problems, Lawson likens designing to devising a crossword:

if one changes the letters of one word, several other words will need altering, which in turn

necessitates even further changes (Lawson 2006, 3rd revise:60). Schön explains how these

changes are necessary: when design moves are performed in order to solve current problems,

these moves typically give rise to unanticipated further problems to be solved in another area of

the design space (Winograd 1996). More broadly, making design moves tends to reveal new

information about the design – both problems and possibilities - provoking further design moves.

Game designers are familiar with the practice of eliciting back talk to reveal problems: i.e. of how

externalising the design situation helps “beat the bushes”28, flushing out problems that are not yet

perceived. Problems can become apparent in the course of writing design documentation, for

example. Finding problems is also one of the major functions of prototyping, of course; one of the

28 “Beating the bushes” is a metaphor that evokes the act of beating bushes to scare birds into the open to be shot by
a hunter for sport.

170

goals of prototyping is to reveal technical and design problems that, once identified, can be

scheduled and budgeted for within the development cycle. Nelson et al. call this “testing-type

prototyping” (Nelson and Mateas 2009), where the designer is testing the rigour of their concept,

hoping to reveal any problems that may lie hidden in their design.

Nelson also identifies another, more open-ended and exploratory style of prototyping

(“exploratory prototyping”) where the designer hopes to discover “what is interesting in the

design space”. In other words, the designer is hoping to identify new possibilities – the

identification of new possibilities and solutions being another kind of back talk. This can occur

because representing – i.e. actively reconstructing what is in the mind - should, according to

Fischer, allow us to form new associations between concepts (Fischer 2004). These solution side

effects of design activities have been called “creative leaps” - novel or creative solution candidates

that emerge unexpectedly while working on the design situation (Cross 2006). Another term used

to describe these is “serendipitous solutions” (Hewett et al. 2005).

We can expect, therefore, that while working with a game design tool a similar problem and

possibility identification process would occur. Problems, not yet apparent, will arise while

representing and making design moves within the tool. In addition, new ideas may arise in a

disorderly, unpredictable and even inconvenient fashion. As side effects to the immediate design

task being worked on, some of these solutions may not relevant to the task at hand but rather to a

different part of the design situation.

8.3.1. Observation 9: Solutions generated via procedural content generation

The act of representing my designs using tools did seem to help me identify new design

possibilities and instigate serendipitous solutions. Using Ludoscope, a tool that uses procedural

content generation, however, this effect was amplified. This seems logical, given that the function

of this technology is to generate content and to combine content in new ways. In addition,

serendipity seems natural emerging from a process fuelled by randomness and recombination.

These were not “creative leaps” in a cognitive sense, and they still required me as a designer to

identify them, but they were connections made not by me, but by the tool.

I even found that the solutions I generated did not always come at the right place and the right

time. In other words, the “ideas”, while coming from an automated process, not a human

designer, did not always come about within a suitable context within the design situation. Just as

171

ideas for one part of the design can emerge serendipitously from the subconscious workings of a

designer’s brain while that designer is working on another part, it seems that a tool can also

produce good solutions at inopportune times. In other words, we might say these are side effects,

produced not by conventional design thinking, but instead something we might call “tool

thinking”.

But why should this occur? We might expect these connections to be somewhat predictable,

insofar as design moves made within such tools are “made to order” – i.e. design moves made by a

tool are only “exploratory” within predefined limits, their execution conforming to design rules

and constraints specified by the designer. To understand the unpredictably we may have to recall

what Lawson said about unpredictability: that it is in part due to the fact that design problems are

often not understood until after solutions have been attempted. In this sense, the commands

given to a design tool by a designer inevitably contain “errors”; the serendipitous solutions are

artefacts of these errors.

I began to notice that I was using three different strategies for dealing with “good” solutions that I

generated procedurally. This meant three different outcomes for content. In the first scenario, I

used the content for the purpose (outcome) for which it was generated. The other two scenarios

involved repurposing the content for something else. I describe all three below:

1) The solution generated is suitable for use in the part of the design for which it was generated.

It is directly incorporated into the design situation as level or mission content (for example). In

other words, it is used in a single place, as a unique instance.

2) The solution may or may not be suitable for the use for which it was generated. Either way, it

is a “serendipitous solution”, in that it seems like a good candidate for becoming the basis of a

new design rule, pattern or constraint; as such it is “reinvested” into the rule set driving the

content generation. For example, when I was playtesting something I had generated in

Ludoscope, occasionally I noticed that the tool had combined one of my level design rules to

create combat or puzzle scenarios that I felt were novel and valuable (in the sense that they

were “more than the sum of their parts”). Hence I considered them “serendipitous solutions”

and created new patterns from them that I could apply more generally.

172

3) The solution is good, but it is not working well in the context for which it was generated. I

store it somewhere to be used later in another part of the design situation.

Scenario 3 requires a way of storing ideas to be retrieved at an appropriate time in the future. This

suggests a role for tools. The challenge is how to store the solutions in such a way so as they are

easy to retrieve - or, ideally, proposed to the designer – when the designer has need of them.

Earlier in this chapter I touched upon the challenges of the storage and retrieval of text-based

design ideas. For game content ideas in any form – images of level ideas generated via procedural

content generation processes, for example – we have this same challenge of storage, organisation

and retrieval. Unlike in the scenario in which side effect solutions are produced by conventional

design thinking, however, we have a ‘secret weapon’ for this that we can use, afforded us by the

kind of design formalisation encouraged by certain tools – the content generation rules of

Ludoscope, and the progression design rules of Refraction, for example. It is that these rules can

be repurposed as a framework for organising and retrieving ideas. In Chapter 10 I describe how, in

response to this phenomenon of side effects I built and integrated a storage and retrieval solution

into my workflow.

8.3.2. Finding problems

In Chapter 4 I made a distinction between the tools in this study relating to their representation of

the design situation: tools that provide a means of representing the design situation and other

tools which, in addition to this, provide computational support that transforms the representation

in such a way as to reveal new information. Here I consider what this difference has meant in

practice.

We know that in other design domains, simple representation (i.e. without computational

support) can reveal problems. This is because, as I have discussed above, problems can be

revealed as side effects of design moves. More fundamentally, we know that, in other domains at

least, simple pen-and-paper sketching of design problems can allow us to “see” the problems

(recalling Schön’s “seeing-moving-seeing” loop model of the design process). This is supported by

the notion that visual cognition is thought to aid understanding of non-visual design problems

(also discussed previously).

173

In Chapter 4 I reviewed some of the attempts at creating diagramming languages based, at least in

part, on this assumption. Koster, for example, suggests that just by looking at a diagram we might

be able to determine whether it is too hard to learn (Koster 2005). That is, it is hoped that a game

designer could extrapolate concrete notions about the player experience from a system diagram.

The hope is that we can imagine the behaviours that emerge from complex systems without

computational support. While this has proved effective in other design domains, is this possible in

game design? Alternatively, does the “second order” nature of design problems that sets our

domain apart from others mean that diagramming alone is largely inadequate for “seeing”?

One point to make on the positive side is that not all parts of a game design situation are complex

systems. Unsurprisingly, I found that I was able to read progression design and narrative structures

quite effectively using simple graphical representations. For these kinds of views into the design

situation of a game, where we are diagramming the higher level, non-emergent structures of a

game, perhaps very simple visualisation is enough – as it often is within diagrams, flow-charts, and

spreadsheets created and used in current practice. However, this tells us nothing new.

Views into a situation that have us looking into the workings of a game system, however, are

where the “second order” problem lies. Earlier in this chapter, I described the high level of literacy

and interpretive considerations required to “read” a game system diagram that simulates game

dynamics. I argued that Machinations, by adding simulation to its diagramming language, offers a

path toward literacy, without which a designer would have no option but to acquire a knowledge

of system patterns and their effects via a highly viscous (slow and cumbersome) cycle of

diagramming and prototyping. I tend to think, therefore, that while interpreting a static game

system diagram may be possible, it is not ideal – at least not yet. Interpreting system diagrams sets

a very high literacy bar; as such it does not seem like the best first step for a culture of design that

does not yet enjoy the formal literacy of a conscious design practice.

Yet it is not inconceivable that one day this kind of literacy might be achieved. Composers often

use an instrument (often a keyboard instrument) as a simulation tool to help them hear the results

of their design moves. This simulation is not strictly necessary, however. Musicians with many

years of formal training in the Western musical tradition have the ability to imagine melodies,

harmonies, sound colours and how these elements combine (an orchestral score has around thirty

different instrumental parts, for example), based on a notated score alone. To an amateur

musician this can seem like an almost implausible feat of imagination.

174

Similar feats of imagination may well be possible for game designers of the future. On the other

hand, due to the nature of games as complex systems, game designers may never be able to attain

such high levels of insight afforded by skill and literacy alone. Realistically, however, the question

of whether purely static system diagrams are useful or not is mostly redundant. Unlike for the kind

of composers I have described, the tools of our apprenticeship are computers. It is probably safe

to say, therefore, that whether or not game designers will need computational support to

understand their system diagrams, they will use it if it is available.

8.3.2.1. Simulation and other forms of computational support

Simulation, like the game it simulates, allows the designer to view some of the emergent qualities

of their design. In Chapter 5 I characterised this as a kind of additional form of representation of

the design situation (dynamics) for the designer to view. A simulation of the game, unlike the

game itself, can afford the designer a view of the shapes that might emerge from these dynamics

over a long time frame – to recall Nummenmaa description (Nummenmaa, Kuittinen, and

Holopainen 2009), it gives us a “broader view”. We may also recall, however, the way in which

there exists a tension between the needs of building a useful simulation (completeness, detail and

accuracy) and key aspects of the design activity (need for low viscosity, readability, tolerance for

ambiguity).

To some extent, as I have discussed, this balance can be regulated by the designer as a function of

the task at hand: while performing game balancing, for example, one might preference the needs

of simulation and use a high level of detail and accuracy. For the design tasks that are not

concerned with tweaking details of an already designed system, however, the cost of building and

maintaining an accurate simulation feels too high. Until the design is finished, we know that,

whatever our intentions may be, we cannot be sure that we will not have to make significant

changes to the broader structure of our model based on discoveries we make while refining

details. As Löwgren and Stolterman told us (recalling Chapter 3), a designer cannot be relied upon

to solely focus on this specification layer of detail until the design is finished, as they naturally find

themselves moving back and forth the between abstraction layers. We might recall how even in

outmoded, linear “stage-based” AAA development contexts, the designer was permitted (in

theory, at least) at the “alpha” stage (the first point at which the game was produced to the point

where it was fully playable) to make major changes to the design.

175

This prompts me to consider whether we are better served by transferring our more precise

(verification style) design questions - and thereby our need for accuracy and completeness - to

other kinds of tools, or even other kinds of gameplay representation. By other kinds of tools, I

mean tools operate at a late stage: design-related production tools, like automated testing tools

that use the game code itself to produce an accurate simulation. By other inputs I mean data

produced via playtesting data that can substitute or simulate some of the dynamics that are not

being produced by an incomplete model. I discuss this in Chapter 11, where I argue that when we

consider features for a tool to support design thinking, we should consider whether these design

needs are better serviced by other kinds of tools within the game production workflow.

A limitation with simulation in a tool is that the necessary level of accuracy may not be feasible,

depending on the system being designed. In Chapter 9 I talked about how a tool has a certain bias,

how tools must necessarily reduce and abstract gameplay concepts down, and how this

indirectness between the concrete and the abstract can vary as a function of how much a given

game design resembles the style of abstraction.

It would seem to make sense, therefore, that if the goal of accuracy of simulation is

counterproductive to the conditions of design and that a high degree of accuracy is unattainable

anyway, we should content ourselves with representations that prioritise simplicity, even if this

means compromising accuracy:

Simplicity of the simulation system is important not only in terms of the effort required to build
and maintain it, but seems to also be linked with better design outcomes (M. C. Yang in
Nummenmaa et al)

But what if there were a way to enhance the accuracy of the simulation, while still maintaining

simplicity in the representation?

In cases where we cannot, or we are unwilling to model some details we could, theoretically, use

data to stand in and complete the simulation. In other words, use data to simulate the dynamics of

the incomplete parts of the model. Supplementary dynamics would be read in as serial data. This

approach of blending data derived from playtesting with modelling echoes methods used in so-

called “Rational Design” (described in Chapter 2), where a technique of deriving game progression

data by extrapolating from and interpolating between playtesting data is used.

176

This is not possible in Machinations, but I developed a habit of doing a very basic version of this. In

Machinations I could abstract most elements of my designs to its resource-flow based model.

There were sometimes, however, when I found elements that could not model to a high degree of

accuracy. I got around this by using averages and estimates that I derived from playtesting and

representing these in the form of a simple “source” node generating tokens at an average rate. It

was, in effect, a simulation of what was already happening in my game, built so that I could

imagine design changes.

Hypothetically, this average value could be replaced by a more accurate simulation in the manner

proposed above: for example, instead of using constant values I could stream in a sequence of

values (for example, read in via a variant of the source node type) that I could either prepare

manually or mine from a playtest of my current game build.

8.3.3. Testing versus evaluation

In Chapter 5 I described software engineering style testing functions proposed for game design

tools. None of the tools I practised with for this study contained such features. However, my

general experiences with the tools made me think about evaluation type design activities work

within game design tools.

It may be useful to make the distinction between testing as a design thinking activity, and

verification-style testing that seeks to reveal specific (i.e. not systemic) problems in the design

materials produced. Recall from my presentation of Design Studies concepts in Chapter 3 that

evaluation is not a distinct stage in the design process, but rather part of an iterative design

thinking loop, along with, and feeding back into, synthesis and analysis. We might consider leaving

the notion of “validation and verification” out of design tools, and instead think more in terms of

the design activity of “evaluation”.

If we think to the design activities that currently stand in for game design tools – i.e. prototyping

and playtesting, we can see this difference. The way game designers currently evaluate their

designs is to playtest them:

Is the game accomplishing its design goals?.... Are [players] having fun?... These questions can
never be answered by writing a design document or crafting a set of game rules and materials.
They can only be answered by way of play.(Salen and Zimmerman 2003)

177

While both playtesting and quality assurance testing (which includes finding not just technical

bugs, but design bugs) involve playing the game, they performed for different reasons and at

different design stages. Playtesting a game is an evaluation activity that looks for broad, even

emotional judgements that expand beyond testing for errors in design logic or answering

specifically articulated questions. Indeed, being made aware of trivial design errors and

inconsistencies in a prototype can even be distracting and counter-productive. A designer is

instead looking for answers to questions that are often very subtle, complex and hard to express –

possibly even questions that they do not realise they are asking.

A design researcher might tell us this inexpressible quality of reflects the complex, wordless nature

of “seeing” in a “seeing-moving-seeing” loop. In game design tools, the ideal might be to offer a

designer a way to “see” in order to facilitate an evaluation type of design activity which harnessing

the designer’s human powers of subtlety and complexity.

8.3.4. Limits of interaction with simulation as a representation of play

One possible solution is to simulate playtesting. Machinations (and before it, tools such as BIPED)

allows the designer to interact with the simulation. This allows the tool to represent the dynamics

of the game.

A comparison with “play” however, is limited; as a representation of player experience, the

success of interactive simulation is variable. Above I raised the issue of the variable degree of

indirectness of the resemblance between concrete gameplay and its abstraction representation.

This also affects the designer’s “play”-like interaction with the simulation: As the relationship

between the representation and the concrete becomes strained, “playing” the model would

logically offer a less useful idea of the player experience.

In addition, we might recall this notion of the tool as a kind of filter, and that some elements of the

design situation are filtered out of the representation. As discussed above, with my focus on the

system modelling I found that I had a tendency to overlook other elements, feeling a bias towards

the interest in the system dynamics I was modelling.

Finally, my experience seemed to bear out this difference between play and interactive simulation.

In the previous chapter I described how I found that the difference between the experience of

interacting with a system in the tool and my experience of playtesting the same system within a

178

prototype meant that in some instances I failed to identify key problems in the experience. If we

recall, this meant I sometimes had “false positives”; sometimes modelling mechanics that seemed

compelling when I considered them in Machinations but, as I discovered when building

prototypes, turned out to be rather boring and repetitive to play within the interactivity context of

the game’s environment and user interface – to an extent where I found myself compensating for

this by sketching out the interactions on paper.

This “faux fun” seems to be one unfortunate side effect of the ability to interact with the

simulation. Ironically, this interaction can be fun in and of itself – its own kind of fun. Fun at the

layer of system interaction could be a good indicator that the game itself, at the layer of player

interaction, is fun – but not necessarily. Here the designer risks building a “mirage” of fun – fun

that is real only in the representation, not real in the gameplay they are modelling.

Another worry is that in some cases, fun is counterproductive; when the designer attempts to

make their design fun to “play” in the tool, they could risk ruining the fun in the game. This could

be because, as I have previously explained, too much focus demanded from one aspect of a game

(e.g. the mechanics) can crowd out or distract from the fun in another part of the game (e.g.

exploration or interaction with the game world).

For example, when using Machinations I became aware of my tendency to favour the modelling of

gameplay that was “fun” to play in Machinations, and to disfavour gameplay that was not. This is

similar to the “tool bias” effect. In fact, I began to worry that I was becoming biased towards

designing things that actually resemble Machinations itself – i.e. sources, drains and tokens.

An awareness of this effect, in combination with (and no doubt also related to) my level of literacy,

affected my confidence in my own ability to create new game concepts from scratch within

Machinations. I began not to trust what felt “fun” in Machinations alone, in the abstract, without

the idea originating from somewhere else, and in a fairly concrete (i.e. as opposed to abstract)

form.

8.3.5. “Active evaluation”

Given these qualities and limitations of interacting with a simulation it may be best not to imagine

this interaction as a simulation of or validation of the experience. Instead of thinking of this

activity as simulated “playing” we might think of it more as “exploring”, a form of active

179

evaluation. That is, we conceive of this interaction within the framework of a conventional design

activity.

We are familiar with the role of exploration in synthesis and analysis, in the sense of exploring the

design space by making design moves. This is a different kind of exploration: exploration as an

evaluation activity. As evaluation it is essentially still a “seeing” design activity. That is to say, the

designer interacts with the simulation primarily as a designer, not so much imagining themselves as

a player. In this sense, rather than a simulation of “playing”, it is an unpacking the design situation

step by step to reveal and explore its temporal and emergent dimensions. We can still use this

interaction to imagine the player experience, but this requires us to compensate for limitations and

inadequacies with our imaginations; interpretation and extrapolation is required. This insight into

the player experience is still mediated.

180

9. OBSERVATION AND ANALYSIS PART 3: INTEGRATING GAME

DESIGN TOOLS INTO PRACTICE

9.1. Overview

In this chapter I discuss the practice context for game design tools, and look at design tools from

the point of view of how they integrate into existing and future game design practice.

First, I consider such tools from the point of view of existing processes and relationships in both

game design and production. I then go on to discuss how game design tools work together. Finally,

I look at the relationship between the tools and designer.

I describe two observations: describing my experience designing progression for The Casimir

Effect, and how I managed the needs of both design thinking and asset production for The Particle

Who Knew Too Much using Articy:Draft.

9.2. Introduction

One of the evaluation criteria discussed by design support researchers is the question of how a

tool complements others in the designer’s family of tools and techniques (Hewett et al. 2005).

Echoing this for game design support, Khaled, Nelson and Barr say we should aim to develop

design tools that can be integrated within a game designer’s practice. If new approaches to design

cannot be appropriated and integrated within existing contexts, they argue, uptake will be low and

the tools will remain relegated to research contexts (Khaled, Nelson, and Barr 2013).

As discussed in Chapter 2, design work is performed during the whole project’s development

cycle, from concept development to a game’s release (and, within the context of the games-as-

service model, beyond). The work for designers ramps up and down at certain points, but

continuing throughout. This may be in part due to our crafts-based design process, and may

change if we move towards a conscious design process where design is somewhat decoupled from

production. However, this is the current context that tools must work within. Game designers are

engaged in a range of processes that include prototyping, documentation, design-related

production tasks (level editing, for example), automated testing, playtesting, and analytics. Here I

181

draw some of these other processes into the discussion, to understand how tools might integrate

and be reconciled with current design practice.

One caveat to make is that as I have been using these tools as a solo developer some of this is

necessarily speculation; I am compelled to extrapolate from my experiences as a solo developer

and connect them to my past and current experiences designing within small to large

development teams.

9.3. Designing during production

Production needs are highly visible, and by virtue of this, relatively easy to argue for. They are

relatively easy to discover, quantify, articulate and document. Moreover, production progress,

though not always linear, can be demonstrated. Producers and technical teams are accustomed to

building in-house support technology for content creators that has a direct, easily understood and

perceptible impact on getting a game produced. In my experience, requests for additions to

production tools that would have a more indirect impact on production progress (e.g. an

improvement that would help artists locate assets in a database more easily) can tend to be

deprioritised and sidelined. This is understandable within an environment of constant pressure to

show stakeholders concrete, usually audio-visual, evidence of progress. In this way production

exudes an aura of pragmatic worthiness, if not shades of moral authority.

By contrast, design needs, as we have seen, are much less visible and hard to explain. In addition,

demonstrating design progress, especially progress that is either not playable or does not visibly

span many pages of documentation, can be hard.

In the design camp, our defensive strategy in the face of production can be to envelope the design

activity in an aura of mysticism (recalling Lantz’s use of the phrase “divine inspiration”). In this

constructed narrative, designers are cast as valuable, irreplaceable artists or auteurs, with game

design a mysterious, almost unknowable process driven by “talent”, “x factors” and “inspiration”.

But design thinking, while difficult to articulate, is not unknowable. We should be able to advocate

for design thinking needs on the same pragmatic basis as for production needs.

The other defensive strategy casts game designers as crafts-people. This narrative, which I have

described in earlier chapters, sees designers gaining more control by engaging in production

themselves as modern artisans, by taking up the tools of production (sometimes literally paper

182

craft materials) and becoming strong advocates of iterative development – essentially an attempt

to reimagine the engineering practice of game development as 21st century craft.

In such a context, design thinking, which is neither mystical nor artisanal, is a “hard sell”. This is

the background that we need to keep in mind when making decisions about how design tools

integrate into practice. As we are not as accustomed to thinking about the impact of our

development decisions on design thinking as we might be, we need to take a vigilant, proactive

approach, opening our practices and assumptions to be challenged or even compromised in favour

of the needs of design thinking and their agents in the forms of design tools and methods. Some

ideas for this are suggested in this chapter.

9.4. Workflows

Here I describe my design workflows. They were not planned – I let them evolve organically. As

with many projects, they reflect a set of influences and circumstances including the nature of the

game, the production constraints, the guiding principles of me, the designer (recalling Lawson),

the scale of the projects, and so forth. While they may not be representative of other peoples’

workflows, they are representative in the sense that they indicate how workflow configurations

and combinations can vary. I refer to some of these diagrams within the course of discussion.

183

Figure 33: The Casimir Effect design workflow

184

Figure 34: South Sea Trouble design workflow

185

Figure 35: Ultraworm design workflow

186

Figure 36: The Particle Who Knew Too Much design workflow

187

9.5. A path from prototype to game (mechanics to progression) using tools

While prototyping should not be, as it is currently, more or less our only means of externalising

the design situation, it remains an important tool within a game design toolset that probably

cannot be replaced. As I have previously described, certain aspects of a game design situation –

particularly “look and feel” – are not well served by abstract models. Vertical slice style prototypes

using production tools are more suited for representing these aspects. Adam Smith suggests, for

example, that his system BIPED "would be used after initial playtesting with a physical prototype

(which gives the designer experience with the game’s foundation using soft, negotiable rules)” (A.

M. Smith, Nelson, and Mateas 2008).

For these reasons, perhaps, rapid prototyping is sometime also a good early step for generating

new concepts when it comes to particular kinds of game ideas. My new ideas often come in the

form of imagining concrete gameplay in my mind. While I have often brought these ideas directly

into the design tools without prototyping, at other times I have found it useful to ideate, create

and test new gameplay using prototyping. This is partly due to the fact that, as discussed

previously, I have often found it difficult to ideate new gameplay ideas, and have confidence in

those ideas, using tools. In addition, it is easy to generate and stumble upon new ideas in the

messy realm of the concrete.

After prototyping ideas, I have then brought them into design tools to organise and understand

them. For example, with The Casimir Effect, I used prototyping to feed ideas into skill chains and

progression planning.

The design activities of prototyping and progression planning, in particular, feel very natural

alongside each other.

First, prototyping provides a content pipeline of concrete gameplay from which to derive ideas: a

small vertical slice of gameplay is a rich source of ideas from which to extrapolate patterns and

grander structures, or new directions. A fitting metaphor might be one of panning for gold in a

stream.

188

Second, progression planning frames an explorative prototyping process with larger goals. The

designer is encouraged to analyse the slice of gameplay they have created, and formalise it and

find a home for it within the broader context of the design situation as a whole. The designer asks:

does this piece of gameplay represent something new (as compared to what is already in the

design situation)? If so, give it a name and a place within the design situation (and within a tool, or

a notebook), and relate it to other elements. Is it a variant? Finally, have I learnt something new

about the design situation from this?

Hence, a process is created: new knowledge revealed by prototyping is fed into the more abstract

representation of the design in a tool. It is a process that provides a kind of pathway from

prototype to game. In this way, tools can provide or suggest a means and a process for turning a

successful gameplay prototype into a game.

9.6. Observation 10: From prototype to progression design via formalisation

As previously discussed, one of the tasks of a designer is to translate game design – the system

and rules of the game – into level (i.e. progression) design. Here I describe my experience of how

tools took me on the path from prototype to game, in the case of my project The Casimir Effect.

The Casimir Effect began as an idea for an original game mechanic that I diagrammed on paper. As

it is a timing-based action mechanic, I built a small prototype to playtest it. Once I had confirmed

that the idea was fun, I wanted to see whether I could generate enough gameplay out of this core

mechanic to base a game around it. With this in mind, I extended the prototype, creating several

combat and puzzle scenarios, and found that this was indeed possible.

9.6.1. Modularising gameplay into gameplay units

With the intention of showing it to other people to get their feedback on it, I then structured my

prototype into the form of a gameplay sequence/linear level that in effect was a short tutorial. I

did this in order that my playtesters could quickly learn the gameplay. In addition, I knew that I

would be making a skill chain and would eventually be breaking down gameplay into units to be

rearranged into a progression plan (i.e. using Butler et al’s progression planning approach).

Hence, I spit my ideas into individually playable design patterns in the form of “micro-levels” –

each demonstrating a unique unit of gameplay: an entity, action or puzzle type – which I could

189

easily order and re-sequence at will. Doing this required me to come up with a unique name for

each micro-level. This was useful; having to distinguish, articulate and distil the character of each

gameplay unit rendered my design materials clearer to me.

For this I felt no need of any formal process or tool. Later, as the gameplay grew, this linear

sequence became unwieldy.

9.6.2. Skill chain diagramming on the path to progression

I reflected that, as Koster argues in his book A Theory of Fun for Game Design (Koster and Ebrary

2005), an entire game could be viewed as a process of skill acquisition and mastery. As an action

game with puzzle elements, The Casimir Effect is very much a game of skill. I therefore decided to

use the process of devising a skill chain as a first step in the game’s progression design, shaping

the game using this lens of skill acquisition.

In Chapter 5, I mention Cook’s example of the skills acquired in the first several minutes of playing

a classic side-scrolling platformer. In some modern side-scrolling platformers, however, the game

may continue to introduce new enemy types, new weapons and special powers over the course of

the game. One could imagine, therefore, that for certain genres, the skill chain concept could be

usefully applied beyond the initial tutorial phase to help drive progression design for the entire

game. Indeed, Cook proposes that “by linking more and more atoms in, you build a network that

describes the entire game” (Cook 2007). This seemed applicable to action and puzzle genres, for

example, where increasing gameplay complexity can be core to the game’s progression - instead

of, say, exploration or narrative. In a skill-based game, new gameplay generally means new skills

the player must learn. The Casimir Effect fits into such a genre: a skill-based action game where

progression is based on the addition of increasingly more advanced gameplay, based on the

introduction of new variations to and combinations of a small set of game mechanics.

9.6.2.1. What is a ‘skill’?

Through the process of creating a skill chain, I discovered that for this game it was unhelpful to

make a distinction between the player’s acquisition of a literal “skill” and the introduction of any

other new type of game content. Modelling the skills separate from this other kind of content did

not make sense. In The Casimir Effect, the player must discover, for example, that a particular

combination of materials can be used as a weapon (specifically, a “bomb”). Acquiring the ability to

use a bomb is a matter of being taught what this combination of materials looks like, and using a

190

set of action-based skills to then set up and trigger the bomb. In this way, the “skill” of using a

bomb is effectively a composite of both knowledge and skill. In other words, it makes sense to

treat “skill atoms” as a very broad concept that more or less means “types of gameplay”. Indeed,

Cook’s skill chain concept was one of the inspirations for Butler’s progression planning concept –

in which Butler’s term for types of gameplay is “game concepts”. The experience made me think it

useful that we think of gameplay units in very generic terms. I took this approach when designing

my implementation of progression planning (described in Chapter 12).

9.6.2.2. Side effects

I repurposed my micro-levels as “skill atoms” and put them together into a skill chain diagram

using Microsoft Visio. In doing this, I found I was also generating new content: in trying to build a

comprehensive skill chain I occasionally discovered new skill atoms or combinations thereof that

were not yet represented by micro-levels and found myself creating new micro-levels from them.

In other words, analysing and formalising my materials had side effects in the form of generating

new ideas.

9.6.2.3. Readability issues

From a starting point of a completely unstructured pool of gameplay atoms/micro-levels it was

useful to begin to see the game take on some kind of shape in the form of this tree-like skill chain

structure. As the design advanced I found that learning to play my game would require a great

deal of skill acquisition and my skill chain became very large.

At this point I began to discover the negative side of using the lens of the skill chain to give shape

to my entire game. At a certain point, from the point of view of a thinking tool, the visualisation

benefits of seeing the “shape” of the content breaks down; the details visually converging into

something shapeless and unreadable. It was an improvement on my unstructured pool of micro-

levels, certainly, but the size and complexity of the structure rendered its use as a reference model

to check design moves against unwieldy. From this one can see why Butler et al might have chosen

to devise a grid-based solution to this in the form of Refraction’s tool’s constraints editor (see

Figure 13 in Chapter 4).

191

Figure 37: Excerpt from skill chain for The Casimir Effect, modelled in Microsoft Visio

192

9.6.2.4. What comes after a skill chain?

Aside from the difficulty of extracting useful information from the tree due to readability issues,

there was the fact that a tree is far from a progression sequence. While the skill chain tells us the

rules of progression, it is hard to imagine how one goes about extrapolating a sequence from a

fairly complex hierarchical graph. Again, Butler et al provide a solution to this with their

progression plan editor, essentially extending the skill chain concept. My experience with skill

chains confirmed the value of Butler’s additions. For my other case studies, therefore, I did not

diagram skill chains but took them straight into progression planning.

9.6.3. From skill atoms to generic units

While I was prototyping micro-levels to progressively introduce gameplay I was also coming up

with micro-levels that were interesting, but did not represent the introduction of new skills or

concepts to the player and so were redundant to the immediate needs of my prototype’s

progression sequence or my skill chain. I stored these separately, knowing that I might need them

later for other tools. Figure 38 shows 5 of the 72 patterns I created and stored. Some were

conceived of on paper and hand drawn; others were prototyped and screen captured. They are

level design patterns: level design fragments that represent a particular configuration of one or

more “skill atoms”/“types of gameplay” or what Butler would call “game concepts”. In the centre

of the top row is a pattern called “Timed door blocking trigger”, for example. It contains several

concepts, including door triggers, self-closing doors, and shooting a switch.

After a time, these design patterns, which began as the side effects of my process, began to drive

it. When I looked at the micro-levels I had built to introduce skill atoms/game concepts, I came to

see them merely as design patterns that introduce and demonstrate a given game concept. As

new game concepts are necessarily experienced by the player in the context of old ones that they

already know, I realised that deciding what an introductory pattern is was useless. This is because

until my progression had been planned and designed, I would have had no way of knowing what

old concepts the new concepts would be backgrounded by in the pattern.

Later, I moved the patterns into my progression design tool, where I was able to use my

progression plan to give me the answers to exactly these questions. The patterns also came to

form the basis of procedural content generation rules I created in Ludoscope – rules filtered

193

according to progression, using my progression design tool. In Figure 33 one can see these

workflow relationships. This is further discussed in Chapter 12.

Figure 38: A selection from a collection of 74 level design patterns for The Casimir Effect.

9.7. Tools require preparatory work on design materials

Notice how, in my work on The Casimir Effect, I began to prepare my materials for use in tools

(splitting my ideas into design patterns, for example) before I actually started using tools. I have

observed that using tools affects design activities not solely during their use, but also before and

after. These extraneous tasks of preparatory work pose challenges of their own, in addition to the

challenges posed by actual use of the tool.

In my case – as is likely to be the case generally, as tools tend to formalise the design situation –

preparatory design work was unpacking, restructuring/formalising and customising my design

materials into a form suitable for use in the tools (at first, skill chains, but later progression

planning and Ludoscope).

194

Tools require that implicit ideas be made explicit. They may require us to prepare design materials

that exist in prototypes, on paper, or may yet only exist in the designer’s head. They may be ideas

that, in a conventional game development context, may only ever be expressed in shorthand in a

document (their interpretation relying on implicit and shared understandings of a game genre),

before being implemented by a programmer in the game.

9.8. Connection between the design materials and the design product

The fact that the game design activity continues during production poses the question of where

the design “lives” once production has started. Once a game is in production, pre-production

documentation is now out-of-date, and it is likely that single-use documents are now being

produced to flesh out details of specific parts of the design (as discussed in Chapter 2). In other

words, there is likely to be no longer any single, coherent, up-to-date representation of the design

situation. Therefore, as game production progresses, the game itself - though still incomplete -

increasingly takes on the primary role of representing the design situation. Design activities and

design thinking increasingly centre on the production materials as design materials.

This suits our current crafts-based design method. But the implicit goal of game design tools is to

decouple design and production, allowing us to perform our design thinking using our own

materials of design that exist separate to the built artefact.

I am not sure whether maintaining a parallel model of the design alongside production is useful, or

potentially counter-productive (with the problems of maintenance, duplication and

synchronisation, etc.) as it used to be during the era of large game design documents. One

approach might be to consider materials generated in game design tools in the same way single-

use game design documents are created – i.e. one-off representations of a part of the design

situation, created for short-term use. Design materials for this purpose could be extracted from

the in-production game to be manipulated for design thinking. Above I described something

similar in extracting materials from prototyping to be understood in design tools, and in Chapter 9

I have described how I did this for game balancing in Ultraworm.

Another perspective is to assume that maintaining these design materials is useful, the benefits

outweighing the costs. Arguably, the cost-benefit imbalance of maintaining documents is not

entirely comparable: documentation, because its primary purpose (once written) is

195

communication, gives less value to a designer in return for the designer keeping it up-to-date. A

“living” model or set of models of the design, by contrast, worked on every day, gives something

back, retaining an ongoing use value. It is still useful partly due to the fact that, while the game

may be now playable, it is still not primarily a design tool. For this reason, the models within

design tools could be maintained as a test bed environment, for modelling and testing changes to

the current design, before being signed off to go into the game.

I suspect that some aspects of the design situation – narrative and mission structures, for example

– may be well served by maintaining their definitive, reference version of the design within tools.

This is because these representations do not just serve for design thinking, but also design

planning (Refraction’s progression planning being a good example of this). In this way, the design

materials do not merely exist in parallel to production - they help drive and shape the project

itself. Game design documentation conventionally performs this role to some extent,

communicating implementation specifications to the rest of the team. But tools could potentially

do a better job of this, driving the development process, providing a framework and a driver for

design tasks performed during production, and maintaining a clear view of the “big picture” of the

game. Again, we might recall how tools have this key advantage – a holistic view of the design

situation - over an as-yet incomplete game. I have had some success taking this approach with

Articy:Draft and with my own implementation of progression planning (discussed in Chapter 10),

using my design representations to drive design subtasks and to some extent drive production.

9.8.1. Producing game assets with design tools

One way to maintain a connection between design materials for thinking and production is to use

the same materials for both. In other words, export game assets from a design tool.

“Assets” is the name given to describe game content (art, audio, text, design data, and so forth)

that is not built into the game executable, but is instead loaded as data files. Some of these data

files will contain very large lists (and lists within lists) of value pairs that are used to initialise values

used in the game (similar to a config or ini file). This can be numerical data: weapon reload times,

jump heights etc. It can be data that defines relationships between entities (what inventory items

a character might own, for example). Some of this design data might contain executable mission

logic. The trend is towards putting more and more of the design of the game into data rather than

196

code – again, towards unravelling game designers’ dependence on programmers and production

concerns.

Arguably, the idea of maintaining synchronicity between the design materials (within a design

tool, for example) and the product, as described above, means creating a kind of dependency

between them. From this point of view, concretising this connection by having the design

materials directly exported to be used as game assets would seem to be a natural thing to do.

One of the benefits of this is reducing the delay between making a design move and seeing the

results in-game. As we know, some aspects of the design situation cannot be represented by

design tools – game feel, for example – and for these, designers may want to playtest quickly to

get feedback on those aspects.

Here I am thinking of design materials that concern data – the design data described above –

rather than game systems. This data is usually produced with the help of tools anyway, but they

are production tools. I am asking the question of whether these design game assets should be

directly exported from design tools – i.e. the tools that designers would use to engage in design

thinking.

There are a few issues with doing this, however. First, there is a workflow conflict to resolve: the

designer would have to be assured that this link between the design and the assets did not make

the designer afraid to change things for fear of breaking things in production.

Second, as we know, design materials and working with those design materials have certain

particularities. Attempts to balance the exploratory and messy needs of design with the

production needs of production, is a problem faced with ‘accessible’ game production tools. As

discussed in Chapter (?), these needs can be irreconcilable. Ideally we would want to avoid turning

design tools into production tools, intruding upon the design process by introducing potentially

burdensome (quantity of labour) and intolerant production needs that have a negative effect on

the design process. Some ideas for avoiding this are presented below.

Potentially, it could be a case of, as I have argued earlier in this chapter, needing to confront some

of the received wisdom about game development and actively choosing to prioritise design

thinking. In other words, we turn need to turn some of the current hierarchies on their head:

unlike the production tools designers repurpose for design thinking, we frame our thinking about a

197

tool for a designer as a design tool that can also be used to produce assets, rather than a

production tool that also facilitates design exploration.

9.8.1.1. Observation 11: Balancing design thinking with asset production

I noticed that I was able to somewhat take this approach in Articy:Draft for The Particle Who Knew

Too Much. Articy:Draft is proposed as both a game design and a game production tool; the tool

can be used for design thinking for narrative and mission structure, and it can also export these

designs as data to be used in the game. I am exporting assets only for this, my adventure game

project – for the other projects Articy:Draft remains purely a design thinking and planning tool. In

this way, Articy:Draft serves me as a design tool, from which I am able to produce assets.

While my design materials are large and in a constant state of flux, I am able to export a small

subset of them as a clean data set and get them into my game without having to reproduce them

separately. To do this I had to make a number of decisions where I had the option of either

prioritising the needs of design thinking or those of asset production.

Figure 39: An example of Articy:Draft's scripting function. Image taken from Articy:Draft documentation

Articy:Draft offers the designer the possibility of scripting game logic using their proprietary

scripting language, and attaching these scripts to connections that have been authored within

dataflow diagrams. This allows the designer to maintain, modify and check against the game state

as it relates to game flow.

198

I was reluctant to use this feature for my game state logic. This feature would be fine for

producing my game assets, but from the point of view of engaging with them as design materials

for the purpose of design thinking, I felt that the cause and effect of state changes was not

sufficiently clear in script form.

I wanted to find a way to use the graphical devices offered Articy:Draft to show them in a way that

allowed me to visually parse my design more easily.

So when faced with the option of using scripting within Articy:Draft, which, from a production

point of view seems like a good idea, I rejected it when I considered it from the point of view of its

potential impact on my design thinking. Putting relationships into scripts would hide them from

view, somewhat undermining the clarity of the graph-based visualisation. I instead spent time to

devise an alternate, more readable graphical solution that I was able to use within Articy:Draft.

I did not want such a solution to limit my design outcomes, however. I approached the production

of design data as if I were “coding” in a declarative, rather than an imperative (i.e. Articy:Draft’s

scripting) language. Happily, I found that all my conditional and decision logic could in fact be

expressed by simply creating GUI-based data fields to which I could assign visual elements, and in

this way handle possible game state changes and conditions for my game events. I encountered a

minor stumbling block: Articy:Draft does not offer the possibility of adding text-based or numerical

properties to instances of data types. At first, this seemed as if it would be a serious problem, as I

found myself forced to express quantitative elements, such as currency, as multiple instances of

discrete units: e.g. a quest reward might be 5 units of 10 gold. While undoubtedly an inelegant and

even counter-intuitive method as compared with adding the attribute “50” to a “currency” data

type, it had the benefit of being highly readable. Much like coloured monopoly money set on the

table before a player, it is quickly visually parsed as compared with a total noted on a pad of

paper.

As a result of this highly graphical, “declarative” approach, my logic became highly visual and

readable. It meant that I was able to quickly compare the form and content of quests against each

other.

This data was interpreted by logic that I had authored exclusively on the game executable side,

source code. The ease with which one is able to separate data and logic in this way is not

199

surprising, as creating content for most games of progression is about injecting different narrative

content into repeatable modules of game logic and combinations thereof.

9.8.2. Prioritising design thinking in dual-use tools

At the beginning of this chapter, I argued that the less visible and sometimes fragile needs of

design thinking need to be championed within a context dominated by production needs. When

making decisions that relate to both production and design it is tempting to prioritise practical,

expedient solutions – i.e. production solutions. We should be conscious of this tendency and make

proactive choices in our workflows and tools to prioritise design thinking.

This also applies to the decision-making of designers themselves. The decisions I needed to make

in relation to producing assets in Articy:Draft demonstrate that the factors discussed above are

relevant to a designer’s choices too – not just choices made by the creator of the design tool. I

have found that a designer must sometimes make conscious decisions to prioritise their design

needs. In other words, prioritising one’s own design needs requires some reflecting-on-action.

In Articy:Draft I had to be vigilant in order to impose this balance that preferences design needs,

making conscious decisions to build materials in such a way as to facilitate the needs of design

thinking, and prevent myself going down the seductive route of prioritising production.

Specifically, I made a series of decisions to prioritise the visibility of my design materials, keeping

relationships between elements clear. While I could have used Articy:Draft’s scripting system for

my purposes, I considered the cost to my design thinking, and managed to devise a way of

avoiding it.

9.8.2.1. Scripts as design materials

Do we use scripting in cases where it is unnecessary? Had I not had the needs of the design

process in my mind for this project, I would have probably scripted these state changes. I, like

other developers, when designing a workflow, naturally gravitate to offering designers (in this

case, myself) a “simple scripting language” for the authoring of game logic. It is, for production

purposes at least, the simplest, most straightforward solution – i.e. for authoring and debugging.

The back-and-forth and up-and-down-the-abstraction-hierarchy of a design conversation is not

authoring and debugging, however.

200

The question of whether or not to use scripting is a good example of how design thinking needs

are left out of the conversation. In the context of using simple game production tools for

exploratory design thinking, the arguments I have heard about scripting concern the question of

skill: where graphical interfaces are proposed for designers as an alternative to script-based

interfaces, it is often on the strength of how to accommodate designers who lack programming

skills. Aside from this need for the low viscosity of rapid, easy prototyping, design thinking needs

are not explicitly considered. For a designer who happens also to be a programmer, scripting is

often the most rapid, low viscosity option. From a production point of view, I personally far prefer

scripting methods over graphical interfaces.

If these are materials I plan to use for design thinking, however, my preference changes. The far

more important question from this perspective is whether, to the extent that a designer is using

scripts as design materials, graphical representation may be more useful for a design conversation

and facilitating the seeing-moving-seeing loop of design.

9.8.2.2. Observation 12: Accommodating messy data

The heart of the problem is that we need design materials to be different from production-ready

assets. Game assets must be lean and efficient. Design materials, on the other hand, must be

allowed to be in a state of flux and ambiguity in order to facilitate design thinking.

My adventure game design materials were no exception to this. When using Articy:Draft for this

project one of my goals was to see if I could create this connection between the design materials

and the game without compromising the fragile mess of my design thinking. This was largely

achieved though treating the production assets as a subset of the design materials. This allowed

me to pass quickly between my design materials and my game, seeing the results of design moves

within minutes of making them.

This is not a new idea; Microsoft Excel is sometimes used by game designers in a similar way,

where macros are written to export data from a subset of cells, leaving the designer free to write

notes or do working calculations in others.

Filtering in this way within Articy:Draft would, ideally, be done by placing finished assets into a

place in the tool to mark them as game ready – much as one would do using a folder on a desktop.

Articy:Draft does not currently offer the possibility of tagging certain groupings for export; all data

201

is exported. I was therefore compelled to use the less efficient method of filtering the data at the

point of import, with a view to optimising the data at a later stage.

9.9. Game design tools do not have to do everything

If we step back to view design tools within the wider context of production we realise that game

design tools do not have to do everything. Bearing in mind Hecker’s exhortation for researchers to

give developers “just two sticks and a rock” that can fit into an already complex tool chain, game

design tools that perform a narrow, single task may well be useful.

In Chapter 10 I made a comparison between the design activity of evaluation and verification and

validation style activities. I described in Chapter 9 how the task of game balancing, as a kind of

verification of the design in its attention to detail and the type of questions it attempts to answer,

can have different needs from a tool. Here I add to this argument from the pragmatic point of view

of design and production workflow.

Evaluation on the one hand, and verification or game balancing on the other could be seen as

being on a priority continuum that shifts from one to the other over the course of the project. By

the time you are wanting to verify and validate, you are no longer revealing design problems that

will require major design changes; you are revealing errors that one might see as “design bugs”.

By the time we reach this latter stage, the project may well be well into production. This means we

are likely to have the option of using the game. The upside of this is that the best simulation of the

game can be the game itself. Automated testing is now commonly used to test design logic and

data. Having built and used automated testing scripts I have seen how useful they can be for

design - particularly for games-as-service projects that need to verify design data that is constantly

being changed (i.e. similar to regression testing).

Game balancing is, generally, all about data. In a way, the difference between these two design

activities or stages – i.e. design thinking and design testing/game balancing - mirrors the practical

division we already make in implementation between hard-coded game system logic, and design

data that is loaded as game assets. The hypothetical verification-type questions I gave above, for

example, would usually be in data.

202

9.10. Single framework vs multiple tools

There are experiences I have had that seem to add weight to the idea of using a single framework.

I have discussed how in game development we are already very aware of the dangers and the

work involved in maintaining representations of the design situation and keeping them in sync

with each other. There is also the added burden of learning more than one tool or language.

Finally, I have raised the point that this requires from the designer skill and discretion to be able to

make choices about the use of tools, and also to be prepared to explore in order to inform those

choices (because they sometimes cannot be made in advance).

Other experiences I have had, however, make me tend towards another view. First, I have

discussed how different tools give a different, filtered view of the design situation. I have also

noted how tools attaining a comprehensive representation may be unfeasible. Crucially, a one-

size-fits-all solution may be difficult due to the fact that, the form games take can be so varied,

spanning a variety of rapidly evolving platforms and media. Finally, in this chapter I have discussed

how design needs and tasks change over the course of a project.

Along the way I have also hinted at the logical conclusion of this: that, like designers in other

disciplines, a game designer might ideally use a set of game design tools rather than a single tool. I

am not alone in this thinking: Reyno and Cubel seem to suggest that a single form of

representation may not be enough, saying “many theories and notations have unsuccessfully tried

to capture the essence of gameplay in a single representation or diagram” (Reyno and Cubel

2009). I have to allow for the possibility, however, that this project – where I have used a toolset,

rather than a single tool - has biased me towards favouring the toolset approach.

9.11. Tools to learn and grow with

As I have described in this chapter, working with procedural content generation – even thinking

about working with it – fed into and informed my approach to progression and level design. It is

inevitable that a tool, to some extent, imposes a process, and even a set of values, on a designer.

Tools force one to think through a design “their” way. I have previously talked about this in terms

of the negative effect of “tool bias”. But there are positives too, in having a framework – however

biased – imposed on a raw, informal style. I have used tools – but in some sense, tools have also

used me.

203

This effect seems to linger, even after the work is done. Even if I never use these tools again, my

experiences with them will continue to shape my approach to game design. I feel that I have learnt

quite a lot about design from these tools, and been forced to think about my design ideas in new

ways and from new angles.

Yet some of these tools take time and effort to master (Machinations and Ludoscope in particular),

and I am not yet fully proficient with them. I do not see this as a problem, however, but rather as

an opportunity. To expect game design tools to be easily mastered is, by association, based on an

assumption that game design itself should be easy to master. It is an expectation that, ultimately,

does game designers no favours.

Much earlier, I discussed how accessibility (a “low threshold”) is seen as a virtue in some game

production tools. I have discussed this in the context of the goal of empowering designers –

accessibility is seen to enable designers to prototype and built their ideas without the need for

programmers. This accessibility narrative expands beyond this though – i.e. beyond empowering

game designers and towards empowering people who are not yet game designers but want to be.

In her book Rise of the Videogame Zinesters, Anna Anthropy famously declared that the tools of

game creation should be democratised because “everyone should be making games” (Anthropy

2012). Twine (Kilmas 2009), essentially a tool for creating interactive fiction at its core, is perhaps

the ultimate in accessible game development tools, and has been particularly championed as a

tool that provides an accessible, low barrier to entry for socially oppressed groups to access game

development culture (Hudson 2014; Freeman 2015). Educators are now creating programs for

children to learn to make games in schools (Koebler 2011). The idea is partly that by involving

more people in the creation of games, we will produce better, more diverse and interesting

games.

Accessibility is a good thing, but is only part of the equation. Great works of film, literature and

visual art, for example, are not achieved because tools and techniques are easy to learn, and

thousands of people can use them. They are the product, usually, of a minority of those people who

have had the opportunity to not only learn, but master and deepen their craft – a process that takes

many years. Tools should not just allow us to begin such a process towards mastery, they should

help enable it.

204

10. PROGRESSIMO: A PROGRESSION DESIGN TOOL

10.1. Overview

In this chapter I explain how I built a progression design tool that builds upon Butler et al’s

“progression planning” tool concept and approach. My goal was to see whether the approach

could be useful when applied to more demanding and more varied progression design problems

than those posed by Refraction, a linear puzzle game. My method for this was to adapt and extend

Butler et al’s progression planning concept to support progression design for my game case

studies.

For a functional overview of the tool see the Appendix. Below I describe my tool and how it builds

upon, modifies and extends the model used by Refraction’s progression planning tool.

10.2. Goals

In Chapter 2 I discussed the increasing importance and complexity of game progression design.

The design of game progression – the player’s journey through a game – is a core design task,

applicable to nearly all contemporary videogame genres. It is a good candidate for design support,

as the design of progression structures – which can be large scale and sophisticated – can present

a complex, data-heavy task. Yet no computational support is available to designers.

In an attempt to fulfil this need for tools to support progression design thinking, Butler, Smith, Liu

& Popovic have proposed a general architecture for “progression planning” tools which they have

implemented within their level authoring tool for their educational game Refraction (Butler et al.

2013). As a demonstration of this concept, the Refraction’s tool ably hints at its potential. Butler et

al expect that progression planning tools could become more or less essential for very large,

complex progressions where manual exploration becomes intractable. However, its strength as an

approach to these challenging progression design problems remains largely untested. Refraction is

a game that, given its genre and scope, arguably does not need the support of its progression

planning tool to be designed. As Butler et al acknowledge, Refraction game’s genre and scope as a

puzzle game with modest progression design needs limits its applicability to other games. Butler et

205

al have suggested their progression planning approach could be used for other games, and I

sought to test this notion.

I had two goals for this work. The first was to evaluate and explore how Refraction’s progression

tool approach can be applied to the progression design challenges of games other than Refraction

– particularly its universality in terms of servicing the needs of games of contrasting genres. The

second, which foreshadows the first, is to discover and reveal the ways in which Butler et al’s

approach requires adapting or extending in order to apply it. This chapter focuses on the results of

this second objective.

10.3. Method

It was not practical to use the Refraction progression planning tool itself as a starting point for my

work, as it is integrated with the game’s level editor and generation system. As I have explained,

some of the tools I may have wanted to evaluate were unavailable or not practically applicable to

my specific projects – hence I did not include them in this project. I considered that compared to

the other tools in this category, however, Butler’s progression planning is not difficult to

implement. Moreover, by building my own version, I would have the ability to adapt it in order to

make sure I could evaluate it from the point of view of all five case studies. I decided, therefore, to

build my own progression planning tool based on Refraction’s approach.

Refraction’s tool’s progression planning was designed with a concrete game design problem in

mind. I took a similar approach, in that I also designed my tool with concrete problems in view, my

goal being to create a tool that could service the specific progression design needs of several of my

game design case studies.

These needs were used to drive an iterative approach to designing and producing the tool: I began

to design with the tool as soon as I had a working version of it running, and from then on made

additions and modifications to it based on the needs of my case studies as they revealed

themselves.

10.4. Progression design needs of the case studies

In Chapter 8 I described the progression design needs and challenges associated with each of my

game design case studies. Usefully, these genres vary quite markedly in the nature of their

206

progression. Servicing these contrasting design needs helps enforce a degree of universality in my

tool design. My small set of games cannot be representative of all game genres, however, and like

Refraction’s system, the design of my tool was inevitably driven by the needs of specific games

rather than the needs of all possible games. That said, my set of progression planning

requirements go beyond the scope of those needed by Refraction.

For example, designing progression for The Particle Who Knew Too Much, requires:

• Managing the awarding of game inventory and currency, and using these variables to

manage game progress and constrain design moves.

• Understanding how much or how little money a player would have at a certain point in the

game, and setting the price of any purchases the player needs to make accordingly.

• Managing the order in which the player receives narrative knowledge within an open-

world structure.

• Managing the gating and unlocking of new areas and missions.

Ultraworm has similar needs to those of Refraction: how to gradually introduce elements and

combinations of elements in a linear fashion while managing difficulty.

The Casimir Effect requires a way to manage replayability. Within the game’s branching spatial

structure, I need the tool to show me where I need to add a temporary obstacle to gate an area in

cases where the content in the area will be too difficult for the player at a given stage.

For South Sea Trouble, which has a semi-open mission structure I need to create a progression

plan that allows the player to progress through the game without having completed every mission,

while making sure that they have acquired all the skill level and knowledge they need to play

missions that become unlocked.

In addition to my case studies, I was interested to see whether the tool could help with some of

the design needs of freemium games built for the games-as-service model. Having designed for a

freemium game using this model, I knew that a designer needs to, for example, ensure that

207

sufficient content is unlocked and available to the player at any given time, and be able to

determine where the game’s “pinch point”29 might lie.

10.5. Approach

I have taken a “first, do no harm” approach that informed my design choices in adapting the tool.

As I have explained above, there exists a wide gulf between the primitive document-editing and

non-standardised diagramming practices that game designers typically use and the advanced

solutions proposed by the research community. While mixed-initiative game design research is

exploring the potential of computers to participate in design thinking and serve not merely as

“tool” but as collaborator or expert (Khaled, Nelson, and Barr 2013; G. Smith, Whitehead, and

Mateas 2011b), practitioners still do their design thinking unsupported by tools. It is

understandable that some of the solutions built are far ahead of current practice. In Chapter 5 I

mentioned Smith’s characterisation of the goals of this kind of research: the technology

researchers like him have built is exaggerated in its futuristic and explorative nature for the

purpose of demonstration; it is not built to be ready for immediate use in the field.

In keeping with my research goals my goal for this tool was quite different: rather than bold and

exaggerated, I felt the need to make tool design decisions that rather erred on the side of small

and tentative, imagined as the first steps a game designer might take with using a design tool for

the first time.

One of the things that struck me about the progression planning in Refraction’s tool is its

simplicity. With a “first, do no harm” philosophy in mind, it is the “low-tech” elements of

Refraction’s progression planning tools - its simple constraints editing and visualisations – that

seem powerful. Moreover, the concept of progression planning essentially formalises what many

designers are more or less already doing, offering a domain-specific alternative to tasks that are

typically performed using spread sheet software. As such it is a good candidate for this first small

step in the direction of computer-aided design.

29 A freemium game’s pinch point is the point at which the player runs out of in-game currency and is compelled to
decide whether to spend real currency to purchase more.

208

Indeed, game progression design does not need to be complicated. One way of thinking about

progression design is as a difficult, yet unsophisticated data wrangling problem. In contrast with

game progression, game systems may contain just a few simple rules, where the difficulty for a

designer is in how to model and predict the emergent dynamics arising from those rules.

Progression design, on the other hand, is usually more a matter of managing relationships

between large amounts of data. In this context, the all-important “conversation with the materials

of design” could be advanced even by simple tools that successfully help a designer enter,

organize and visualize progression design data. And in some cases, this is what I have chosen to

do: to simply visualize the data and allow the designer to conduct their own analysis and “policing”

of design moves (as done with pen and paper) rather than add computational support.

Below I describe some of the features of Progressimo, and how they build upon Butler et al’s

progression planning concept. I focus here on key contributions. For a systematic description of

the Progressimo and how it works, see the Appendix.

10.6. System model

As shown in Figure 40, the system built by Butler et al. comprises three component parts that

allow the designer to edit their design from a high level of abstraction to concrete level designs:

constraints, progression plan and the playable levels themselves. Butler et al. have used the term

“constraints” to cover any type of design consideration – rules governing the concentration and

ordering of game concepts, in the case of their implementation – that the designer wants to

define and use to inform their progression plan.

Figure 40: Refraction’s tool’s system model (Butler et al. 2013)

209

Figure 41: Progressimo’s system model

Progressimo’s system, taking after Refraction’s tool, comprises constraints, plan and idea

repository components (see Figure 41). Like Refraction’s tool, it invites the designer to define

progression elements (Butler et al use the term “game concepts”) and the relationships between

them (“progression design rules”, i.e. constraints) by editing them within a matrix/grid editor (see

Figure 42), and uses this data to automatically derive and display further relationships. As the

designer assigns progression elements to the plan for each “moment” (in Refraction these are

game stages) in the progression plan component of the tool, the designer is guided based on the

progression design rules. These lists of elements can then be used as a kind of “shopping list”

when the designer goes to create the level.

10.7. Removal of level editing and procedural content generation

One of the most significant differences in my system, designed as it is to service a wide range of

game genres, is that it does not include integrated level editor or procedural content generation

system. Refraction’s system uses its constraints calculations to drive generative features and

analyse design moves, generating the progression plan and, optionally, the levels themselves.

10.8. Integrated visualisation

Refraction’s tool provides charts that allow the designer to see the rate at which new progression

elements (game concepts) are introduced and the number of concepts used in each stage. I may

add something similar in the future, as my analysis needs change towards the end of my projects

(in my case a chart would be generated for each possible path though the progression structure).

Up until now, however, this information did not feel like a priority for my progression design

needs. These charts are particularly relevant to progression elements that focus on knowledge or

210

skill acquisition. While, for example, progression in The Casimir Effect is very much driven by skill

acquisition, the time necessary to acquire the skills varies. Therefore, even if I introduced them in

an even-paced way, from game level to game level, thus producing a smooth curve on a chart, it

would not be a useful representation of the actual experience of skill acquisition unless I factor

this data (i.e. time to master) in.

Due largely to the branching progression structures I found myself building, I chose to visualise the

distribution and location of progression elements across the game within the progression plan (a

graph) itself (see Moment highlighting in the Appendix).

10.9. Multiple views

Figure 42: Part of the progression design rules editor in matrix view. Rules are for South Sea Trouble.

211

Figure 43: The progression design rules editor in graph view. Rules are for South Sea Trouble

Dan Cook’s Skill Chain diagramming method, one of the inspirations for Refraction’s progression

constraints component, is in graph form. While Butler et al.’s choice to present this in a matrix

form instead provides a clean, easy way to edit and visualize relationships between game

elements, I have chosen to also offer a graph-based view so that the designer has the option of

visualising dependencies as chains for design that are useful to read or edit in graph form. As

Hewett tells us, offering multiple alternative representations into the design situation can be

valuable (Hewett 2005).

Figure 43 shows the graph editor, which allows editing of prerequisite relationships in graph form.

As in matrix view, graph edges are automatically added when constraints are transitively inferred

by the tool. The designer can swap between both editors, which automatically update with any

data changes.

10.10. Generic units

As outlined in Chapter 4, there have been efforts among game designers and within the research

community towards the quantification of gameplay into units (“ludemes”, “skill atoms”, “verbs”,

etc.). The units bear similarities but they differ, filtered by the game design model they belong to.

Accordingly, I have used the term “progression elements”, to mean anything that the designer

212

chooses to use to structure their progression around. The designer can use multiple kinds of

progression elements in the same project if they want to. Unlike in Refraction’s tool, these

elements can be assigned to moments as quantities (numerical variables). (See Progression

elements in the Appendix.)

Progressimo’s unit of gameplay as defined within the progression plan is also generic: a

“moment”. In The Particle Who Knew Too Much a moment is a narrative event, for example,

whereas a moment in Loot the Room is a dungeon level. (See Moments in the Appendix.)

10.11. Progression plan structure

The progression plan editor in Refraction’s tool (see Figure 13) accommodates a linear progression

plan in the form of a table showing the elements contained in each stage of the plan’s sequence.

This suits a linear game like Refraction, but my case studies have non-linear progression

structures. While Refraction’s tool’s progression plan editor serves as an important bridge

between its constraint editor and its level editor, once constraints have been defined by the

designer the progression plan for a game with a linear structure like Refraction could conceivably

be created and analysed fairly easily by hand by the designer without computational support. By

contrast, the ongoing task of ensuring that game elements present within a complex non-linear

progression structure satisfy their progression constraints is intractable task for a designer to

perform reliably on paper.

In order to accommodate the multi-pathed and open world structures of my games, I added a

graphed-based progression structure editor and analyser. I use a graph traversal algorithm in

order to apply constraints to non-linear level progressions. (See Progression plan in the Appendix.)

10.12. Progression state

State changes in Refraction’s tool comprised the addition of concepts to the player’s accumulated

knowledge. Progressimo, calculates a “progression state” for a moment. This state is calculated

based that moment’s and the preceding moments’ progression element data (numerical variables,

which can be negative). (See Progression state information in the Appendix.)

213

10.13. Gating gameplay

 “Gameplay gating”30 is a concept familiar to game designers. Defining and managing gameplay

gates (based on XP or currency, for example) is a common progression design task, and it fits

naturally into the progression planning concept. Progressimo offers the ability to define gameplay

gates. These are expressed in the form of progression elements.

10.14. Design gating

Refraction’s progression planning uses progression design rules (constraints) to guide or constrain

design moves. I have chosen to call these constraints “design gates”, evoking the “gating” concept

in game design. While “gameplay gating” is a well-known concept, my term “design gates”

describes the effect of progression design rules on design moves. Gameplay gates are

implemented in and imposed on the player by the game, during gameplay; design gates are

defined only within the tool by the designer, to be imposed on the designer by the tool.

Having design gates and gameplay gates allows them to be considered together. It is useful to

know whether or not the progression elements demanded by a gameplay gate are accessible to

the player at the time at which they encounter the gate. Depending on the style of game the

designer may use design gates to guide them on what they will need to impose on the player as a

“hard” (i.e. a gameplay) gate.

10.15. Active evaluation

In Chapter 8 I discussed the function some tools provide of interactive simulation: the ability to

interact with a simulation of the game system based on the model created in the tool. I suggested

30 A “gameplay gate” restricts access to a part of the game until the player achieves something. For example, the game

might “gate” a mission (leave it unlocked) or an area (physically gate it with an obstacle) until a certain progression

state is achieved. E.g. the player needs XP Level 5 for the mission to unlock, or needs to have performed a certain task

(e.g. killed a boss enemy) for the area to become available.

214

that instead of seeing this as a simulation of the player experience we could think of it as a kind of

“active evaluation”.

Here I have added a similar functionality – not to a simulation of a game system that reveal

emergent dynamics – but to this model of game progression. This was instigated by a need to

better understand the progression structure for The Casimir Effect – this was particularly

important given its complicated unlocking structure. In “explore mode” the designer can simulate

the completion of moments (game levels or missions) step by step. The designer “executes” the

progression by clicking on accessible (unblocked) moments, step by step, in sequence. At each

step where multiple moments are accessible, the designer makes a choice as to which moment to

play. Access to moments are constrained by connections and gates. The graph is updated at each

step with highlighting to show which moments are unlocked. Potential progression problems are

also highlighted. (See Explore mode in the Appendix.)

Instead of error-checking, the designer is getting a general sense of whether their progression

logic is working, not whether their design is free from errors.

I initially implemented an automated solution where this exploration was executed and problems

discovered by the tool itself, in a single execution, using an exhaustive search algorithm. As

previously discussed, I found the resulting experience for me, the designer, unsatisfactory. I found

that with many possible paths through a structure, understanding and reading the results

produced was time-consuming and difficult to read and understand. I felt out of control, that the

tool’s own “design thinking” and the explicit back talk it produced was too opaque and too fast for

me to keep up with.

In fact, Smith notes the limitations and difficulties of raising the level of sophistication in

automated analysis of models from the designer’s point of view. Smith’s Ludocore, is, of course, a

very different proposition in terms of sophistication: its AI-driven automated analysis system

factors in emergent dynamics of the game system itself into game progression, whereas I simply

use estimates to stand in place of any game dynamics. (For example, for each level of The Casimir

Effect I am estimating the amount of ammo used, based on playtesting. This is discussed in

Chapter 12.) It does, however, cater for similar questions:

The system’s “gameplay trace inference” affordance allows a designer to ask for a symbolic
gameplay trace, from the vast space of potential low-level action sequences possible in a game,
that satisfies arbitrary logical constraints. In this representation, questions such as “is the game

215

winnable?”, “how would someone get from here to there without using this special item”, and
even “how should I connect the various regions in my level design such that the player cannot
escape without encountering all of my content?” all reduce to a common representation.

As Smith explains, however, this does require a lot of the designer.

This capability, of course, is conditioned on the “designer” being an experienced logic
programmer, the rules of the game being primarily symbolic as opposed to numerical, the
requested properties of gameplay being expressible in a subset of first-order logic, and having to
wait unreasonable lengths of time for the results of certain kinds of queries. It is on top of this
admittedly shaky foundation that Ludocore makes its statements about AI in the game design
process: deeply modeling videogames requires capturing not just the game’s rules, but also the
configuration of the game’s world, a body of assumptions about the kinds of players who might
play the game, yet another body of assumptions about the situation in play that currently
interests the designer, and, on top of that, the ability to reason through all of this to generate
concrete gameplay traces which tell the designer something that was out of range of their human
inferential ability. In other words: deep computational modeling of gameplay is hard, but possible.

Smith, like other game design tool researchers, created Ludocore to show what is possible.

Progressimo’s explore mode – very primitive by comparison – sacrifices depth and sophistication

for direct designer control as a form of “active evaluation”. It is an interactive mode that allows

the designer to explore potential implications and some of the very basic emergent properties of

their design at their own pace. Taken in the context of my very humble goal – i.e. to provide a way

of understanding design outcomes that is superior to calculating them in a spreadsheet – I am

pleased with the outcome.

As to depth and sophistication, I take the pragmatic point of view that I expressed in the previous

chapter: in many cases, some of the more precise, specific design questions that would require

automated analysis might be best left to automated testing, using the game code itself to provide

answers based on its own simulations. My feeling is that if my design question or test scenario is

too complex and unseeable to answer via my explore mode it may be more of a verification and

validation type of question (e.g. “are there any places where the player will get stuck”, “is it

possible to complete the game with this specific combination of skills and inventory”) to be

resolved later as game balancing and design refinement or bug-resolution tasks. In other words,

they are likely to be the kinds of design questions that I would ordinarily want to check at a later

stage in the design and development process, by which time automated testing could provide a

more accurate answer.

Another advantage of an explorative, “hands-on” approach to querying the design materials is that

the designer can define for themselves the nature of the issues they are hoping to reveal –– and

216

this set of requirements can change fluidly and intuitively in the designer’s own mind, rather than

input as questions to the tool. The designer is effectively devising and carrying out their own “test

cases”. A single exploration constitutes a test case – the parameters of which are chosen by the

designer directly by choosing moments to “execute”. The designer can even revise and

reformulate their test case or question while they are asking it.

This makes a difference to the viscosity of design thinking. Say, for example, we have a question

such as “what is the number of missions the player will typically have available at any given time,

using a ‘completionist’31 play style” and imagine asking it of my abandoned exhaustive search-

based method: in the time taken for the designer to think through and input their query and run

the simulation, and read the results, they might have intuitively (i.e. not even, perhaps, fully

consciously) already have asked and answered this question themselves via “active evaluation”.

10.16. Storage and retrieval powered by progression design rules

I have described how for The Casimir Effect I built up a collection of level design patterns, and

initially stored these in a notebook using Evernote. Once I had begun to design the game’s

progression, working out which progression elements (in the case of The Casimir Effect: game

verbs, puzzle types, entity types) would be included in each level, it became obvious that sifting

through my notebook looking for patterns to use when building my levels would be difficult and

time-consuming.

The Notebook component (the idea repository component in Figure 41) provides a way of storing

such ideas in a way where they are easy to find again at the right moment, thanks to a tagging and

filtering system. The notes (which are images) can be tagged with the progression elements that

they contain, enabling the tool to filter these down to display a subset of notes containing only the

progression elements contained in the selected level. In this way, the notebook component also

addresses another universal design phenomenon - the intimidating “blank page” - by providing

existing design materials as a starting point.

31 A “completionist” is a player who tends to aim for 100% completion of all game content (e.g. collect all items,
unlock all skills, etc.).

217

While a progression planning tool can suggest and help structure a logical and orderly design

workflow, design researchers have shown that it is, in reality, impossible to wedge the complex

reality of real-life design process into a linear workflow. Designers find themselves generating the

right ideas at the wrong moments (which could be called “side effects”, discussed in Chapter 3);

while working on a given level of the game, designers can often find themselves generating or

discovering design solutions that, while inappropriate for that level, might be a good candidate for

inclusion in another part of the game at some point in the future. These might be level design

fragments, work-in-progress levels that do not yet have a home within the progression plan itself.

The conventional way for a designer to deal with inopportune but good ideas is to note down

them down before returning to the task at hand. Creativity support tool researchers propose that

design tools improve upon this, and “provide the creator with a kind of virtual notepad” to record

and store ideas “as they come to mind”(Lubart 2005). I have attempted to do this with

Progressimo’s Notebook component. The designer should feel unrestricted to generate ideas that

do not quite “fit” yet, without an unconscious feeling instilled by the formalisation of the

representation that this work is “off-task”, or likely to be lost or wasted. As well as tolerating the

all-important unfinished-ness and ambiguity in the design situation by accommodating, the

Notebook feature serves to legitimise the anarchy of the process in that it grants the designer

built-in “permission” to work outside the bounds of the formal constraints of the progression plan.

10.17. Integration within the design workflow

For The Casimir Effect, I am using progression data created in Progressimo to inform a rule-set for

procedural content generation in another tool: Ludoscope. To generate a game level, I use the

relevant moment’s list of both explicitly defined and inherited progression elements to filter a

master list of rules I have devised to create game levels (this relationship can be seen in the

workflow diagram in Figure 33). This is similar to how Refraction’s progression planning

component integrates with its level generation system, except instead of having two components

within the same tool, the data is passed between my progression planning tool and Ludoscope via

an exporter I wrote for this purpose.

As well as using data produced by the tool, I am feeding data into it. I have been using information

about game progression that I have derived from playtesting to estimate changes to the

progression state for a given level. This is similar to the way I have used, on occasion, estimates

218

derived from playtesting in my Machinations models. Here again, data generated from playtests

can stand in for (i.e. simulate) dynamics that are not being generated by the model, in the case

where the model is incomplete. For example, for The Casimir Effect I need to estimate the

minimum and maximum amount of surplus ammunition the player can accumulate over the

course of the game, and to help with this I have been feeding averages of playtesting results (i.e.

how much ammo the player typically has left at the end of a given level) into my progression plan

as data for these kinds of calculations.

A more detailed and systematic breakdown of how Progressimo functions can be found in the

Appendix.

10.18. Next steps

So far, by building Progressimo around the needs of my case studies, I have found it to be useful.

In other words, I have found the core idea of progression planning together with my adaption and

extensions, has offered meaningful support for the progression design of varied genres as

represented by my five case studies. There are still some features I would like to add to explore

the possibilities for interoperability – specifically the importing of playtesting data and the

exporting of progression-related design data for use as game assets. Beyond this, a logical next

step in this work is to see if a generic approach could be developed further to support a wider

range of designers and their designs. It would make sense for a similarly iterative development

process to be used for this, involving designers as beta testers to inform further development.

219

11. CONCLUSION

The adoption of game design tools, I have argued, would represent a significant evolution in

current practice, from a crafts-based practice to a self-conscious design. With this project I add to

the field of work on game design tools by contributing evaluation research from a practitioner

perspective. This work was framed by the following research questions:

1. Can game design tools improve game design practice?

2. Can game design tools expand the scope of game design outcomes?

3. How do design tools change or impact the game design process?

More generally, I hoped to discover knowledge that could contribute to future game design tool

development research.

To answer these questions, I took the point of view of a practitioner, undertaking practice-led

evaluation research. Using a method of participant-observer/“reflective practitioner”, I applied

game design tools to longitudinal game design case studies. Having recorded and reflected upon

my design work with a range of game design tools, I drew from this material twelve selected

observations that touched on various aspects of my experience with them. I analysed and framed

these observations with a discussion of evaluation themes I developed drawing on game design

research literature, Design Studies and Creativity Support Tool research.

11.1. Summary and significance of observations

Based on my experiences, I came to a number of conclusions about game design practice with

tools.

Using game design tools can be challenging. I developed the view the game designers need to

develop better formal understanding of game systems in order to understand their

representations in tools. It is useful for tools themselves to offer paths or bridges to formal literacy

within the tool. The simulation of gameplay dynamics, for example, seems to offer a good entry

point. Tools that build upon semi-formal existing design practices – such as flow-charting – also

provide a way in.

220

By challenging a designer, and providing the designer a way of meeting the new challenges tools

present, tools can have a positive effect on practice. From notions of game design – subjective as

they may be – codified into these tools, I felt that I gained new knowledge about potential game

design processes and game design process in general. Being compelled to externalise and

formalise my thinking impacted my design thinking not only when I was using tools, but this

influence extended to my design thinking and activities even when not using tools, permanently

changing the way I approach design. This makes me think that tools offer the possibility of framing

a journey towards deepening knowledge over the long term.

In addition, using tools seemed to afford me new design freedoms and confidence. I found that by

defining my own design rules I could make design moves more securely, and experience greater

freedom to explore owing to the fact that I could leave it to a tool to remind me of my boundaries.

Procedural content generation in particular afforded me freedom to work at different levels of

abstraction concurrently.

Game production organises design materials; having game design support for organising and

structuring my design materials, however, meant that I could safely create more design materials

without needing the context of production. Perhaps one of the most powerful aids to me has been

simple visualisation – visualisations of the design situation are a major step up from current

practice. Tools help provide structure for process as well: I discovered how a tool can provide a

workflow to help concepts along a path towards final concrete gameplay.

Within this context of added structure and security, computational support had the effect of

expanding the scope of game design outcomes, allowing for more complexity in my progression

logic and game systems designs.

This security and confidence afforded is not total, however. I discovered that I needed to exercise

critical judgement in relation to the representation of my designs as viewed through the filter of a

tool, as I found that a tool does not give a designer a full or even necessarily a true account of the

“fun” of their design. A designer must develop literacy not just to use tools but also to use them

wisely.

Indeed, these tools require that the designer take a reflective point of view not only in relation to

their design activities but also their use of the tools: a designer should be mindful so as not to let

221

themselves become distracted or drawn into “busy” work that feeds the tool rather than the

needs of the design.

So while tools may offer benefits, they can require additional effort from the designer. This

involves not only effort required by the tools in terms of learning and usage, but also preparatory

work on the design materials prior to use, i.e. so they can be represented and manipulated in the

tools.

I have addressed some aspects of how design tools might be integrated into existing design and

development workflows, noting that game design tools do not have to do everything for a

designer, as a designer has a range of production-reliant tools – including prototyping, player

metrics, automated testing – that may be more suitable for performing certain kinds of design

tasks. I have argued that, similarly, no single design tool need cater for all design thinking needs. A

toolset, rather than a single design tool, may be the ideal.

I found that tools can replace some, but not all, roles that prototyping currently serve in game

design practice. In addition, prototyping and design tools can complement each other: ideas

generated from prototyping can be channelled into tools and playtesting data can be input into

tools to inform and complete design models.

It is helpful for a tool to enable the designer to participate in design thinking processes at “human

speed” – I found that when a tool is “cleverer” than the designer it can, in some contexts, be

counter-productive. I have proposed that we focus on evaluation and analysis when supporting

design thinking, and perhaps leave validation and verification type tasks to other kinds of tools.

By building my own tool (Progressimo) I found that it is possible to apply and adapt Butler’s

progression planning approach to other game genres, by using my case studies and their concrete

progression planning challenges to discipline and inform this process. I developed some ideas for

extending the concept, which I incorporated into my tool.

As a solo researcher, there have necessarily been limitations on what I have been able to achieve

in this project. Time spent on game production tasks came at the expense of game design activity,

and meant that I was not able to make as much progress with my case studies as I would have

liked. More progress would have given me the opportunity to test tasks that arise more towards

the end of the development cycle such as game balancing. Ideally, I would have undertaken this

222

research as a designer with a production team. This would have lessened the load in terms of non-

design development (i.e. labour that had to be performed but did not contribute to research) and

would have also been more representative of a team experience.

11.2. Future research directions

I was not able to represent all game design tools and approaches in this study. This was in part due

to the limited time and scope of the project, but also due to the nature of game design tool

research itself: often a software tool is not intended or designed for use outside of the specific

research validation scenario for which it is built. One of the tools – The Sentient Sketchbook, an

extremely useful looking tool that I hope to use in some form in a future project – I attempted to

use but it became clear that there was a mismatch between specific features of the tool and the

feature of the case study I had intended to use it for. While this is completely understandable from

the point of view of a researcher’s immediate research goals, it would be beneficial if we could as

a field encourage and find ways to enable researchers to facilitate third party practice-led

evaluation of their work. At the very least, this could enable researchers developing new work in

this area to better review previous work.

There is still much scope for dedicated practice-led evaluation research in this area. Even at a

personal level, I am yet to master these tools, and they have only just begun to change the way I

design. In view of this, it is my intention to spend more time with them exploring their possibilities

and observing how my design practice develops.

Having found Butler’s progression planning concept as well as my own adaptions and additions

useful for my case studies, an obvious next step is to engage in practice-led evaluation involving

other designers and their games, and perhaps further adapting the tool to accommodate some of

the range of progression design problems that they encounter.

In the course of this project I have become interested by the idea of exploring potential

relationships between production-dependent design tools and methods – e.g. playtesting

prototypes and player metrics – and design thinking tools. There is a range of design data currently

being used within the context of analytics tools, in the service of data-driven design. A question for

future research is whether such data might be used in the context of game design tools, in the

223

service of self-conscious game design practice? In short, what if, via design thinking tools, data

science could be brought somehow more under the control of designers?

Right now many game designers are suspicious and even feel threatened by the use of technology

in design, as it is sometimes used against them, or even to replace them. The problem of how a

tool-supported design practice can be adopted by a significant section of the game design

community (and from there, give rise to a practitioner discourse) remains a significant challenge

and one worthy of further enquiry.

224

BIBLIOGRAPHY

Adams, Ernest, and Joris Dormans. 2012. Game Mechanics: Advanced Game Design.

http://books.google.com/books?hl=en&lr=&id=_Azio0txIdAC&oi=fnd&pg=PR7&dq=Game+M

echanics:+Advanced+Game+Design&ots=RmlGUK8-YI&sig=4AKaB1nSZyLH0xzkrHxgKklcu6o.

Agustin, Michael, Gina Chuang, Albith Delgado, Anthony Ortega, Josh Seaver, and John W.

Buchanan. 2007. “Game Sketching.” Proceedings of the 2nd International Conference on

Digital Interactive Media in Entertainment and Arts - DIMEA ’07. New York, New York, USA:

ACM Press, 36. doi:10.1145/1306813.1306829.

http://portal.acm.org/citation.cfm?doid=1306813.1306829.

Alexander, Christopher. 1964. Notes on the Synthesis of Form. Harvard University Press.

http://books.google.com/books?id=Kh3T3XFUfPQC.

Alves, Valter. 2013. “Design Patterns in Games : The Case for Sound Design.” In Second Workshop

on Design Patterns in Games.

Amant, Robert St., and Thomas E. Horton. 2002. “Characterizing Tool Use in an Interactive

Drawing Environment.” … of the 2nd International Symposium on Smart …. ACM, 86–93.

doi:10.1145/569005.569018.

http://portal.acm.org/citation.cfm?id=569018\nhttp://dl.acm.org/citation.cfm?id=569018.

Anonymous. 2015. “The Scratchware Manifesto.” Accessed May 28.

http://www.homeoftheunderdogs.net/scratch.php.

Anthropy, Anna. 2012. Rise of the Videogame Zinesters. Seven Stories Press.

Aponte, M.V., Guillaume Levieux, and Stephane Natkin. 2011. “Measuring the Level of Difficulty in

Single Player Video Games.” Entertainment Computing. Elsevier.

http://www.sciencedirect.com/science/article/pii/S1875952111000231.

Araújo, Manuel, and Roque. 2009. “Modeling Games with Petri Nets.” In Breaking New Ground

Innovation in Games Play Practice and Theory Proceedings of the 2009 Digital Games

225

Research Association Conference, edited by Barry Atkins, Helen Kennedy, and Tanya

Krzywinska. Brunel University. http://www.digra.org/dl/display_html?chid=09287.37256.pdf.

Archer, L. B. 1965. Systematic Method for Designers. Council of Industrial Design.

Asimov, Morris. 1965. Introduction to Design.

Beck, Kent, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Martin

Fowler, James Grenning, et al. 2001. “Manifesto for Agile Software Development.” The Agile

Alliance. URL: http://agilemanifesto.org/. http://agilemanifesto.org/.

Benington, Herbert D. 1956. “Production of Large Computer Programs.” In ONR Symp. Advanced

Program Methods for Digital Computers, 15–27. doi:10.1109/MAHC.1983.10102.

Bertini, Enrico, and Catherine Plaisant. 2006. “Report on BELIV ’ 06 Workshop Beyond Time and

Errors : Novel evaLuation Methods for Information Visualization.” In , 1–5.

Birdwell, Ken. 2006. “The Cabal: Valve’s Design Process for Creating Half-Life.” In The Game Design

Reader: A Rules of Play Anthology.

Björk, Staffan, and Jussi Holopainen. 2005. Patterns in Game Design. 1st ed. Hingham Mass.:

Cengage Learning.

Blinn, Scott, Stephane Bura, Nicholas Fortugno, Scott Brodie, Daniel Cook, and Victor Jimenez.

2008. “Group Report: Multiplayer Game Atoms.” The Third Annual Game Design Think Tank

Project Horseshoe 2008. The Avallone Media Group.

http://www.projecthorseshoe.com/ph08/ph08r5.htm.

Bojin, Nis. 2010. “Ludemes and the Linguistic Turn.” Language, 25–32.

Bura, Stephane. 2006. “Game Diagrams.” http://users.skynet.be/bura/diagrams/.

Butler, Eric, Adam M. Smith, Yun-en Liu, and Z Popovic. 2013. “A Mixed-Initiative Tool for

Designing Level Progressions in Games.” In ACM Symposium on User Interface Software and

Technology. http://dl.acm.org/citation.cfm?id=2502011.

226

Chiang, Y. C., and M. H. Wang. 2005. “The Capture of Design Eureka.” In International Workshop

on Studying Designers ’05.

Church, D. 1999. “Formal Abstract Design Tools.” Game Developer 3: 28.

http://www1.cs.columbia.edu/~cs4995/files/Doug_Church_FADT.pdf.

Cook, Dan. 2006. “Lost Garden: Persistent Myths about Game Design.”

http://www.lostgarden.com/2006/10/persistent-myths-about-game-design.html.

———. 2007. “Gamasutra - Features - The Chemistry Of Game Design.” Gamasutra.

http://www.gamasutra.com/view/feature/1524/the_chemistry_of_game_design.php.

Costikyan, Greg. 2002. “I Have No Words but I Must Design: Toward a Critical Vocabulary for

Games.” Computer Games and Digital Cultures Conference, 9–33.

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:I+Have+No+Words+&+I+M

ust+Design+:+Toward+a+Critical+Vocabulary+for+Games#0\nhttp://andrey.savelyev.2009.ho

mepage.auditory.ru/2006/Ivan.Ignatyev/DiGRA/I Have No Words %26 I Must Design_Toward

a.

———. 2005. “Death to the Games Industry: Long Live Games.” The Escapist.

http://www.escapistmagazine.com/articles/view/video-games/issues/issue_8/50-Death-to-

the-Games-Industry-Part-I.

Cousins, Ben. 2004a. “SELFCONSCIOUS AND UNSELFCONSCIOUS CULTURES.” Weapons of Mass

Disruption. https://benjaminjcousins.wordpress.com/2014/04/01/selfconscious-and-

unselfconscious-cultures/.

———. 2004b. “Elementary Game Design.” Develop Magazine, October, 51–54.

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Elementary+Game+Design

#4.

Crawford, Chris. 2002. The Art of Interactive Design. A Euphonious and Illuminine Building

Successful Software. Vol. 25. No Starch Press, Inc.

———. 2003. “Chris Crawford on Game Design.” Computer. doi:10.1093/carcin/bgs054.

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-

227

20&path=ASIN/0881341177\nhttp://books.google.nl/books?id=_0BQFquvAC8C\nhttp://

www.vancouver.wsu.edu/fac/peabody/game-book/Coverpage.html.

Cross, Nigel. 1997. “Creativity in Design: Analizing and Modeling the Creative Leap.” Leonardo 30

(4): 311–17. doi:10.2307/1576478.

———. 2006. Designerly Ways of Knowing. Designerly Ways of Knowing. Springer London.

———. 2008. Engineering Design Methods: Strategies for Product Design. Design. John Wiley &

Sons Inc. http://www.amazon.de/dp/0470519266.

De Peuter, Grieg. 2014. “Beyond the Model Worker: Surveying a Creative Precariat.” Culture

Unbound: Journal of Current Cultural Research 6: 263–84. doi:10.3384/cu.2000.1525.146263.

http://www.cultureunbound.ep.liu.se/v6/a15/.

Do, Ellen Yi-Luen, and Mark D Gross. 1996. “Drawing as a Means to Design Reasoning.” Artificial

Intelligence in Design ‘96 Workshop on Visual Representation, Reasoning and Interaction in

Design, Palo Alto, CA., no. June: 1–11. papers2://publication/uuid/02F84179-3333-494B-

8588-D4621BCB4CAD.

Dormans, Joris. 2009. “Machinations: Elemental Feedback Structures for Game Design.” In

Proceedings of the GAMEON-NA Conference, 20:33–40.

http://journals.hil.unb.ca/index.php/GC/article/viewArticle/3787.

———. 2010. “Adventures in Level Design: Generating Missions and Spaces for Action Adventure

Games.” In Foundations of Digital Games Conference 2010.

http://www.jorisdormans.nl/pdf/dormans2010_AdventuresInLevelDesign.pdf.

———. 2011. “Simulating Mechanics to Study Emergence in Games.” Artificial Intelligence, 2–7.

———. 2012. “Engineering Emergence: Applied Theory for Game Design.” Engineering of Complex.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1690358.

Dormans, Joris, and Sander Bakkes. 2011. “Generating Missions and Spaces for Adaptable Play

Experiences” 3 (3): 216–28.

228

Dormans, Joris, and Stefan Leijnen. 2013. “Combinatorial and Exploratory Creativity in Procedural

Content Generation.” Paper Presented at the PCG Workshop at the FDG Conference.

http://www.jorisdormans.nl/article.php?ref=creativity.

Dorst, Kees. 2003. “The Problem of Design Problems.” Design 4 (Cross): 135–47.

doi:10.1504/JDR.2004.009841.

http://research.it.uts.edu.au/creative/design/papers/23DorstDTRS6.pdf.

Dorst, Kees, and Nigel Cross. 2001. “Creativity in the Design Process: Co-Evolution of Problem-

Solution.” Design Studies 22 (5): 425–37.

Dubberly, Hugh. 2004. How Do You Design? A Compendium of Models.

Evernote Corporation. 2008. “Evernote.”

Fahey, Rob. 2013. “In Defence of Data-Driven Design.” Gamesindustry.biz.

http://www.gamesindustry.biz/articles/2013-11-15-in-defence-of-data-driven-design.

Falstein, Noah, and Hal Barwood. 2006. “The 400 Project.”

http://www.theinspiracy.com/400_project.htm.

Fischer, Gerhard. 2004. “Reflective Practitioners and Unselfconscious Cultures of Design

Department of Computer Science , 430 UCB,” 1–4.

Flurry. 2005. “Flurry Analytics.”

Freeman, Will. 2015. “Twine Lets You Pen Your Own Adventure and Share It across the Net |

Technology | The Guardian.” The Observer, July 10.

http://www.theguardian.com/technology/2015/jul/10/twine-interactive-stories-games.

Fullerton, Tracy. 2008. Game Design Workshop: A Playcentric Approach to Creating Innovative

Games. Elsevier Morgan Kaufmann.

“GAME SEEDS.” 2015. 2010. Accessed June 27. http://www.gameseeds.net/.

GameAnalytics. 2010. “GameAnalytics.” http://www.gameanalytics.com/.

229

Goldschmidt, Gabriela. 1994. “On Visual Design Thinking: The Vis Kids of Architecture.” Design

Studies, no. 1966: 158–74.

http://www.sciencedirect.com/science/article/pii/0142694X94900221.

Greenberg, Saul, and Bill Buxton. 2008. “Usability Evaluation Considered Harmful (some of the

Time).” Proceeding of the Twentysixth Annual CHI Conference on Human Factors in

Computing Systems CHI 08, 111. doi:10.1145/1357054.1357074.

http://portal.acm.org/citation.cfm?doid=1357054.1357074.

Grünvogel, Stefan M. 2005. “Formal Models and Game Design.” Game Studies 5 (1). Citeseer: 1–9.

http://www.gamestudies.org/0501/gruenvogel/.

Hagen, Ulf. 2011. “Designing for Player Experience: How Professional Game Developers

Communicate Design Visions.” Journal of Gaming & Virtual Worlds.

http://www.ingentaconnect.com/content/intellect/jgvw/2011/00000003/00000003/art0000

6.

Hecker, Chris. 2011. “A Game Developer’s Wish List for Researchers - Chris Hecker's Website.”

http://chrishecker.com/A_Game_Developer’s_Wish_List_for_Researchers.

Hecker, Chris, Damián Isla, Borut Pfeifer, Steve Rabin, and Stuart Reynolds. 2009. “The Photoshop

of AI: Debating the Structure vs Style Decomposition of Game AI.” In Game Developers’

Conference AI Summit. http://www.gdcvault.com/play/1249/(307)-The-Photoshop-of-AI.

Hewett, Tom T. 2005. “Informing the Design of Computer-Based Environments to Support

Creativity.” International Journal of Human-Computer Studies 63: 383–409.

doi:10.1016/j.ijhcs.2005.04.004.

http://www.sciencedirect.com/science/article/pii/S1071581905000431.

Hewett, Tom T., Mary Czerwinski, Michael Terry, Jay Nunamaker, Linda Candy, and Bill Kules.

2005. “Creativity Support Tool Evaluation Methods and Metrics.” Creativity 72. Duke

University Press: 10–24. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.8123.

230

Holmgard, Christoffer, Antonios Liapis, Julian Togelius, and Georgios N. Yannakakis. 2014.

“Personas versus Clones for Player Decision Modeling.” In 13th International Conference, ICEC

2014.

Holopainen, Jussi, T Nummenmaa, and Jussi Kuittinen. 2010. “Modelling Experimental Game

Design.” Nordic DIGRA 2010. http://www.digra.org/dl/db/10343.48507.pdf.

Hudson, Laura. 2014. “Twine, the Video-Game Technology for All - The New York Times.” The New

York Times Magazine, November. http://www.nytimes.com/2014/11/23/magazine/twine-

the-video-game-technology-for-all.html?_r=0.

Huizinga, Johann. 1950. Homo Ludens: A Study of the Play - Element in Culture. A Study of the

Element of Play in Culture. Routledge. doi:10.1177/0907568202009004005.

Hunicke, Robin, Marc Leblanc, and Robert Zubek. 2004. “MDA: A Formal Approach to Game Design

and Game Research.” Discovery 83 (3). AAAI Press: 04–04. doi:10.1.1.79.4561.

http://www.aaai.org/Papers/Workshops/2004/WS-04-04/WS04-04-001.pdf.

IGDA. 2004. “Quality of Life in the Game Industry: Challenges and Best Practices.” April.

http://legacy.igda.org/sites/default/files/IGDA_QualityOfLife_WhitePaper.pdf.

Järvinen, Aki. 2005. “Theory as Game: Designing the Game Game.” Changing Views Worlds in Play

Proceedings of the 2005 Digital Games Research Association Conference, 10.

http://www.digra.org/dl/db/06276.43287.pdf.

———. 2008. “Games Without Frontiers: Theories and Methods for Game Studies and Design.”

Presented as PhD Thesis in University of Tampere, 7.

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Games+without+Frontiers:

+Theories+and+Methods+for+Game+Studies+and+Design#0.

Juul, Jesper. 2002. “The Open and the Closed: Games of Emergence and Games of Progression.” In

Computer Games and Digital Cultures Conference Proceedings, edited by Frans Mäyrä, 323–

29. Tampere University Press.

http://www.digra.org/dl/db/05164.10096.pdf\nhttp://www.jesperjuul.net/text/openandthe

closed.html.

231

Kadoudi, Omar. 2014. “The Creative Process of an Oscar-Winning Screenwriter.” Gizmodo.

http://sploid.gizmodo.com/the-insane-creative-process-of-an-oscar-winning-screenw-

1601624702.

Karakaya, Bulut, C. Garcia, Daniel Rodriguez, M. Nityanandam, N. Labeikovsky, and T. Al Tamimi.

2009. “Sketch-It-Up! Demo.” Entertainment Computing–ICEC 2009. Springer, 313–14.

Khaled, Rilla, Mark J. Nelson, and Pippin Barr. 2013. “Design Metaphors for Procedural Content

Generation in Games.” Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems - CHI ’13. New York, New York, USA: ACM Press, 1509.

doi:10.1145/2470654.2466201. http://dl.acm.org/citation.cfm?doid=2470654.2466201.

Kilmas, Chris. 2009. “Twine.”

Koebler, Jason. 2011. “Game Design Engages Students in STEM - US News.” US News, July 25.

http://www.usnews.com/education/blogs/high-school-notes/2011/07/25/game-design-

engages-students-in-stem.

Koster, Raph. 2005. “A Grammar of Gameplay Game Atoms : Can Games Be Diagrammed ?” In

Game Developers’ Conference.

Koster, Raph, and Inc Ebrary. 2005. A Theory of Fun for Game Design. Paraglyph press.

http://www.books4bestseller.com/theory-of-fun-for-game-design.pdf.

Kreimeier, Bernd. 2003. “Game Design Methods: A 2003 Survey.” Gamasutra.

http://www.gamasutra.com/view/feature/2892/game_design_methods_a_2003_survey.php

#1.

Kuittinen, Jussi, and Jussi Holopainen. 2009. “Some Notes on the Nature of Game Design.” … in

Games, Play, …. http://www.sosuaarhus-international.com/dokumenter/Game

literatur/Nature of Game Design.pdf.

Lantz, Frank. 2015. “Against Design.” http://gamedesignadvance.com/?p=2930.

232

Lawson, Bryan. 2006. How Designers Think: The Design Process Demystified. LONDON

ARCHITECTURAL PRESS. Vol. 3rd revise. Elsevier. doi:10.1007/s11060-008-9735-x.

http://books.google.com/books?id=lPvqZJNAdG8C&pgis=1.

Leblanc, Marc. 2005. “Tools for Creating Dramatic Game Dynamics.” In The Game Design Reader A

Rules of Play Anthology, edited by K Salen and E Zimmerman. The MIT Press.

LeJacq, Yannick. 2012. “Something For Nothing: How The Videogame Industry Is Adapting To A

‘Freemium’ World.” International Business Times, September.

Liapis, Antonios, Georgios N. Yannakakis, and Julian Togelius. 2013. “Sentient Sketchbook:

Computer-Aided Game Level Authoring.” … on Foundations of Digital Games.

http://www.itu.dk/people/anli/mixedinitiative/sentient_sketchbook.pdf.

Literature and Latte. 2007. “Scrivener.”

Löwgren, Jonas, and Erik Stolterman. 2004. Thoughtful Interaction Design: A Design Perspective on

Information Technology. Booksgooglecom.

http://www.loc.gov/catdir/toc/fy052/2004049891.html.

Lubart, Todd. 2005. “How Can Computers Be Partners in the Creative Process: Classification and

Commentary on the Special Issue.” International Journal of Human Computer Studies 63 (4-5

SPEC. ISS.): 365–69. doi:10.1016/j.ijhcs.2005.04.002.

Manker, Jon. 2011a. “Game Prototyping – Experiencing and Negotiating an Idea.” Design.

———. 2011b. “Game Prototyping - The Negotiation of an Idea.” In Proceedings of DiGRA 2011

Conference: Think Design Play, 4:1–16.

Marlin, Cyril. 2011. “Automated Testing: Building A Flexible Game Solver.” Gamasutra, October.

http://www.gamasutra.com/view/feature/134893/automated_testing_building_a_.php.

McEntee, Chris. 2012. “Rational Design :The Core of Rayman Origins.” Gamasutra.

http://gamasutra.com/view/feature/167214/rational_design_the_core_of_.php.

233

McGuire, Rory. 2006. “Paper Burns: Game Design With Agile Methodologies,” June.

http://www.gamasutra.com/view/feature/131151/paper_burns_game_design_with_.php.

McMillan, Luke. 2013. “The Rational Design Handbook: An Intro to RLD.” Gamasutra.

http://www.gamasutra.com/blogs/LukeMcMillan/20130806/197147/The_Rational_Design_H

andbook_An_Intro_to_RLD.php.

McWilliams, Laralyn. 2013. “The Metrics Aren’t the Message.” Gamasutra.

http://www.gamasutra.com/view/feature/188197/the_metrics_arent_the_message.php.

Natkin, S, and L Vega. 2004. “A Petri Net Model for Computer Games Analysis.” International

Journal of Intelligent Games Simulation 3 (1): 37–44.

Nelson, Mark J. 2011. “Game Metrics without Players: Strategies for Understanding Game

Artifacts.” In Artificial Intelligence in the Game Design Process - Papers from the 2011 AIIDE

Workshop, 14–18. http://www.scopus.com/inward/record.url?eid=2-s2.0-

84862684087&partnerID=40&md5=e71a4c9276adc25e668359a9beab5b18.

Nelson, Mark J., and Michael Mateas. 2008. “An Interactive Game-Design Assistant.” In

Proceedings of the 13th International Conference on Intelligent User Interfaces, 90–98. ACM.

———. 2009. “A Requirements Analysis for Videogame Design Support Tools.” In Proceedings of

the 4th International Conference on Foundations of Digital Games, 137–44. ACM.

http://portal.acm.org/citation.cfm?id=1536543.

Nevigo GMBH. 2011. “Articy:draft.” http://www.nevigo.com/index.php?id=13.

Nummenmaa, Timo, Jussi Kuittinen, and Jussi Holopainen. 2009. “Simulation as a Game Design

Tool.” Proceedings of the International Conference on Advances in Computer Enterntainment

Technology - ACE ’09. New York, New York, USA: ACM Press, 232.

doi:10.1145/1690388.1690427. http://portal.acm.org/citation.cfm?doid=1690388.1690427.

Puckette, Miller. 1997. “Pure Data : Another Integrated Computer Music Environment.”

Proceedings, Second Intercollege Computer Music Concerts, no. FEBRUARY 1970: 37–41.

234

Resnick, M, B Myers, and K Nakakoji. 2005. “Design Principles for Tools to Support Creative

Thinking.” http://repository.cmu.edu/cgi/viewcontent.cgi?article=1822&context=isr.

Reyno, Emanuel Montero, and José Á Carsí Cubel. 2009. “A Platform-Independent Model for

Videogame Gameplay Specification.” Edited by Atkins Barry, Kennedy Helen, and Krzywinska

Tanya. Breaking New Ground Innovation in Games Play Practice and Theory Proceedings of

the 2009 Digital Games Research Association Conference. Brunel University.

http://www.digra.org/dl/display_html?chid=09287.28003.pdf.

Ries, Eric. 2011. The Lean Startup. Working Paper. doi:23. http://lean.st/.

Rollings, Andrew, and Ernest Adams. 2003. Andrew Rollings and Ernest Adams on Game Design.

New Riders Games.

Rouse, Richard, and Steve Ogden. 2005. Game Design : Theory & Practice. Design. Wordware Pub.

Salen, Katie, and Eric Zimmerman. 2003. Rules of Play: Game Design Fundamentals. MIT Press. MIT

Press. http://www.amazon.com/Rules-Play-Game-Design-Fundamentals/dp/0262240459.

———. 2005. The Game Design Reader: A Rules of Play Anthology. Edited by Katie Salen and Eric

Zimmerman. Review Literature And Arts Of The Americas. The MIT Press.

http://www.amazon.com/dp/0262195364.

Schell, J. 2008. The Art of Game Design: A Book of Lenses. Annals of Physics. Vol. 54. Morgan

Kaufmann. Morgan Kaufmann.

Schön, Donald A. 1983. The Reflective Practitioner. Pediatrics. Vol. 116. Basic Books.

doi:10.1542/peds.2005-0209. http://www.ncbi.nlm.nih.gov/pubmed/18796084.

———. 1992. “Designing as Reflective Conversation with the Materials of a Design Situation.”

Knowledge-Based Systems 3 (3).

http://www.sciencedirect.com/science/article/pii/095070519290020G.

Shneiderman, B, and C Plaisant. 2006. “Strategies for Evaluating Information Visualization Tools:

Multi-Dimensional in-Depth Long-Term Case Studies.” In 2006 AVI Workshop on BEyond Time

235

and Errors: Novel Evaluation Methods for Information Visualization.

http://dl.acm.org/citation.cfm?id=1168158.

Shneiderman, Ben, Gerhard Fischer, Mary Czerwinski, and Brad Myers. 2005. “NSF Workshop

Report on Creativity Support Tools.” In .

Sicart, Miguel. 2008. “Defining Game Mechanics.” Game Studies 8 (2): 1–18.

http://gamestudies.org/0802/articles/sicart.

Sigman, Tyler. 2005. “The Siren Song of the Paper Cutter: Tips and Tricks from the Trenches of

Paper Prototyping.” Gamasutra.

http://www.gamasutra.com/view/feature/2403/the_siren_song_of_the_paper_.php.

Simon, Herbert A. 1969. The Sciences of the Artificial. Cambridge, MA. Vol. 1. MIT Press.

doi:10.1016/S0898-1221(97)82941-0.

Simon, Herbert A., and Allen Newell. 1972. Human Problem Solving. Prentice-Hall.

Sinclair, Brendan. 2013. “Devs Can’t ‘Create Magic’ with a Spreadsheet in Front of Them.”

Gamesindustry.biz. http://www.gamesindustry.biz/articles/2013-11-11-devs-cant-create-

magic-with-a-spreadsheet-in-front-of-them.

Smith, Adam M., Mark J. Nelson, and M. Mateas. 2009. “Computational Support for Play Testing

Game Sketches.” In Proceedings of the 5th Artificial Intelligence and Interactive Digital

Entertainment Conference (AIIDE).

http://www.aaai.org/ocs/index.php/AIIDE/AIIDE09/paper/viewFile/690/1061.

Smith, Adam M., Mark J. Nelson, and Michael Mateas. 2008. “Prototyping Games with BIPED.”

Artificial Intelligence, no. 2007: 193–94.

———. 2010. “LUDOCORE: A Logical Game Engine for Modeling Videogames.” In Computational

Intelligence and Games (CIG), 2010 IEEE Symposium on, 91–98. IEEE.

doi:10.1109/ITW.2010.5593368.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5593368.

236

Smith, Gillian, J Whitehead, and M Mateas. 2011a. “Computers as Design Collaborators:

Interacting with Mixed-Initiative Tools.” Proceedings of the Workshop on Semi-Automated ….

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Computers+as+Design+Coll

aborators+:+Interacting+with+Mixed+-+Initiative+Tools#0.

Smith, Gillian, Jim Whitehead, and Michael Mateas. 2011b. “Tanagra: Reactive Planning and

Constraint Solving for Mixed-Initiative Level Design.” IEEE Transactions on Computational

Intelligence and AI in Games 3 (3): 201–15. doi:10.1109/TCIAIG.2011.2159716.

Sturt, George. 1923. The Wheelwright’s Shop. Cambridge University Press.

Sutherland, I. E. 1964. “Sketchpad a Man-Machine Graphical Communication System.” Simulation

2 (5): R – 3 – R – 20. doi:10.1177/003754976400200514.

Sweller, John, Jeroen J G van Merrienboer, and Fred G W C Paas. 1998. “Cognitive Architecture

and Instructional Design.” Educational Psychology Review 10 (3): 251–96.

doi:10.1023/A:1022193728205.

Swink, Steve. 2009. Game Feel. Game Feel. Elsevier. doi:10.1016/B978-0-12-374328-2.00019-6.

http://www.sciencedirect.com/science/article/pii/B9780123743282000196.

Sylvester, Tynan. 2005. “Decision-Based Gameplay Design.” Gamasutra.

http://www.gamasutra.com/view/feature/2264/decisionbased_gameplay_design.php.

Taylor, M J, D Gresty, and M Baskett. 2006. “Computer Game-Flow Design.” Computers in

Entertainment 4 (1). Association for Computing Machinery: 5. doi:10.1145/1111293.1111300.

http://portal.acm.org/citation.cfm?doid=1111293.1111300.

Treanor, Mike, Bryan Blackford, Michael Mateas, and Ian Bogost. 2012. “Game-O-Matic:

Generating Videogames That Represent Ideas.” In Proceedings of the Third Workshop on

Procedural Content Generation in Games.

http://dl.acm.org/citation.cfm?id=2538537\nhttp://games.soe.ucsc.edu/sites/default/files/G

ame-O-Matic (PCG2012).pdf.

Unity Technologies. 2005. “Unity.”

237

Wetzel, Richard. 2014. “Introducing Pattern Cards for Mixed Reality Game Design.” Third

Workshop on Design Patterns in Games.

Whitson, Jennifer R. 2012. Game Design by Numbers: Instrumental Play and the Quantitative Shift

in the Digital Game Industry.

http://www.academia.edu/download/30941397/game_design_by_numbers-whitson-

chapter1.pdf.

Winograd, Terry. 1996. Bringing Design to Software. Edited by Terry Winograd. Journal of the

American Society for Information Science. Vol. 48. ACM Press Books. ACM Press.

doi:10.1002/(SICI)1097-4571(199712)48:12<1149::AID-ASI10>3.0.CO;2-0.

http://hci.stanford.edu/publications/bds/.

Yoyo Games. 1999. “GameMaker: Studio.”

238

LUDOGRAPHY

Alone in the Park (2011, PC, iPad). Katharine Neil.

Candy Crush Saga (2012, Facebook, PC, mobile). King.

Cow Clicker (2010, Facebook). Ian Bogost.

Dota 2 (2013, PC). Valve Corporation.

Dear Esther (2012, PC). The Chinese Room.

Diner Dash (2004, PC, console, mobile). Gamelab.

Elder Scrolls (series of games). Besthesda Softworks.

FarmVille (2009, Facebook). Zynga.

Free Realms (2009, PlayStation 3, PC). Sony Online Entertainment San Diego.

Minecraft (2009, PC, others). Mojang.

Pokémon (1995-, GBA, DS). The Pokémon Company.

Portal (2007, PC, console). Valve Corporation.

Rollercoaster Tycoon (1999, PC). Chris Sawyer Productions.

Tomb Raider (1996, PC, console). Core Design.

Touch Detective (2006, DS). Beeworks.

239

APPENDIX

Progressimo description

Overview

Progressimo is a tool I developed. It is a progression design or planning (Butler et al. 2013) tool – a

tool for planning the experience of player over the course of the game.

The designer builds a progression structure by creating moments and creating connections

between those moments. The designer can constrain (lock or unlock) player progress via these

connections, and also by gating access to moments (using gates) based on their content.

The content of moments comprises changes to the player’s progression state. The progression

state contains variable data that represents player progress, called progression elements.

The designer can verify and guide their design moves by creating progression design rules

(constraints). These rules govern the use of progression elements within moments relative to

progression state.

Progression units

Progression elements

Progression elements are any type of game content where the order in which that content is

experienced over the course of the game matters. This can be, for example, skills that the player

must learn, narrative knowledge that the player acquires, experience points or inventory acquired.

There are two main types of progression state elements. I have divided them into two types here

not because they function differently in my tool, but to better explain how elements typically used

in game design fit in to the concept of progression state elements and how this might affect the

way they are treated by the designer within the tool. I have called these types “knowledge

elements” and “game state variables”.

Knowledge type elements can include skills or concepts that are introduced to the player (e.g.

game mechanics, puzzle types, enemy types), access to areas of the game world that the player

240

has unlocked, and narrative developments. Knowledge elements are typically qualitative rather

than quantitative in character, they will not be removed from the game state once added (i.e. they

cannot be unlearned), and they feature in only part, not all, of the game.

Game state variables that are relevant to progression are usually expressed quantitatively and

feature throughout the game. Common examples would be XP and currency.

Moments

Moments represent chunks of gameplay experienced over time by the player. As far as the tool is

concerned, the function of a moment is to update game progress. It serves as a container for the

introduction of, or quantitative changes to, progression state elements. Moments can be used to

represent, for example, levels, tasks, missions or parts thereof.

Moments are unique (i.e. they are not modules that can be instanced). The designer can set

moments to be either replayable or not replayable.

Moment elements

To define the content of a moment, the designer selects progression state elements from the

progression state elements list and adds them to the moment elements list (see below).

The tool currently uses font styles to show whether progression state elements on the list are

unlocked for use (i.e. satisfy progression rules – see below). A regular font style denotes that all

paths to the selected moment contain the prerequisites for that element; italicisation means that

one or more, but not all paths to the selected moment contain the prerequisites; a greyed out

style indicates that it is not possible for the player to have encountered the prerequisites for that

element before playing the selected moment.

As Figure 44 shows, the designer can choose to include a progression element in a moment to

signify its introduction or inclusion of as a knowledge element (e.g. “Stealth kill”) or as a variable,

specifying the number of instances of the element gained by completion of the moment (e.g. +3

rounds of ammunition, +10 XP). Negative quantities can also be used – for example, to specify the

use of inventory items or currency that are used during the moment (e.g. a mission may cost -5

gold).

241

While the content of a moment is used by the tool for its own calculations, the designer may also

want to use this list as a kind of “to do” or shopping list while working on the corresponding

moment in a mission or level. Such a list features in Refraction’s tool’s level editor component.

Figure 44: Moment elements list

Progression rules

Progression rules guide the designer vis-à-vis the order in which new game content (called

“progression state elements” in the tool) may be introduced to the player over time. They are in

the form of prerequisites, where one element is defined as a pre-requisite (or co-requisite) of

another element.

Progression rules editor

Progression rules are defined in the progression rules editor. The progression rules editor allows

the designer to create game elements and create progression rules by designating elements as

prerequisites and co-requisites (logical disjunction (“or”) relationships) of other elements. The

editor offers two different interfaces for editing the rules.

Figure 42 shows the matrix editor. This editor is functionally similar to constraints editor

component of Refraction’s tool. The designer checks a cell on the grid to specify that an element in

a column is a prerequisite of an element in a row. The tool automatically infers transitive

prerequisites and visualizes these relationships in the matrix. Inferring these transitive

relationships is a non-trivial calculation for a designer to perform manually. Dark blue cells indicate

an explicit prerequisite, specified by the designer, while light blue cells indicate inferred ones.

The editor also displays co-requisite relationships (which do not feature in Refraction’s tool). These

are indicated by aqua coloured cells. Currently these must be specified using the graph interface

of the progression rules editor, shown in Figure 43.

242

Progression plan

The progression plan is where a game’s progression structure is mapped out. To allow for the

modelling of non-linear progression structures (such as the example shown in Figure 23),

Progressimo has a graph-based editor. The designer creates a new moment by creating a graph

node.

Figure 45: Example of a progression plan graph

Connections

Connections are one-directional graph edges that connect the moment nodes. They serve as a way

to funnel and constrain progress. Access in the game from one node to another requires a

connection.

For example, a completed stage in a mission unlocks the next mission stage, or completing a room

or level allows the player to move to the next room or level. If the moment is set to replayable, it

is assumed that the player may return and replay the content of the moment. If the open-world

structure checkbox is selected (see below), moments that have no incoming connections can be

accessed at any time (assuming that gameplay gate rules are satisfied).

There are two types of connections: unlocking connections and prerequisite connections.

Unlocking connections

The most typical connection is an unlocking connection. This connection denotes that the

preceding moment has provided a sufficient condition to unlock the targeted moment. This means

that if a moment has two preceding moments, completion of either of those moments will unlock

the targeted moment.

243

Figure 46 shows a level structure that contains unlocking connections. In this example, playing

through a warehouse area (defined in the form of a Moment) unlocks access to both the street

and sewers locations. The docks location can be accessed via either the street or the sewers.

Figure 46: Mission graph with unlocking connections

Prerequisite connections

A prerequisite connection denotes that the previous moment must be completed in order to

unlock the connected moment. This is useful when a set of mission tasks can be completed in any

order. Prerequisite connections are visualised using edges with thicker line widths.

244

Figure 47: Two missions that use both unlocking and prerequisite (thick lines) connections

Figure 45 shows prerequisite connections. In the top mission, the player must collect both an

apple and an orange before they can make a fruit salad. In the bottom mission, the player can

either buy a dress or a suit to attend the ball, but shoes are compulsory.

Open-world structure checkbox

For open-world style games, or games where gameplay gates (see below) are the dominant device

used for enforcing a progression structure (freemium games, for example, make heavy use of time

and resource gates), the designer can check the open-world inheritance checkbox. This tells the

tool that access from the end node of one connected group of moments to the start node of

another group does not require a connection. In other words, a moment that has no incoming

connections is accessible at any time (but may be gated).

245

Figure 48: Two missions (from The Particle Who Knew Too Much) within an open world structure

246

Figure 49: Part of the progression plan for South Sea Trouble

247

Moment properties tab

When a moment node is selected its properties can be selected on the left hand side of the

interface. These include a list of the progression elements that the moment contains, and a list of

gameplay gates. Both these lists are editable. In addition, a list of all possible paths to the selected

node is displayed, as well as the potential game state (in terms of progression elements) at the

point that moment is reached.

Progression elements list

Alongside the graph interface a list of all game elements is displayed. The elements in the list are

displayed differently according to their eligibility for use in the currently selected moment: eligible,

ineligible and potentially eligible. Eligibility is based on the progression rules defined using the

progression rules editor, and calculated using a graph traversal algorithm (my progression plan

analyser) to determine whether a given element satisfies the rules applicable in the context of that

moment. For example, if the rules stipulate that green ammo should not be included in the game

before yellow ammo has been discovered, and no paths leading to the selected level contain

yellow ammo, the “green ammo” element will be displayed as “ineligible”. Conversely, if all paths

leading to the level contain a yellow ammo element, the element will be marked “eligible”.

The inclusion of a “potentially eligible” type is due to the non-linear progression structure. It

services the case where one or more, but not all, paths leading to the level satisfy the rules

associated with the listed element. Being “potentially eligible” may render the element

appropriate or inappropriate for inclusion in the selected level, depending on the nature of the

game or the element itself. The designer is left free to make an informed decision as to whether

they wish to include the element.

Moment elements list

The moment elements list is the content of a moment, and represents the changes to the

progression state as a result of the moment being played. Any element from the progression

elements list may be added to the selected moment’s progression elements list. The designer may

then choose to give the element a numeric value, which can be negative (e.g. Gold -5).

248

Gameplay gates

A gameplay gate is imposed on the player during the game. The game state must meet the

conditions of a moment’s gates in order to either to begin or complete a moment.

Paths to selected moment list

The paths to selected moment list indicates all possible paths to the selected level. The total

number of possible paths is displayed above the list. Selecting a path highlights all the moments

along that path in the graph view. In Figure 50, the paths to selected level list can be seen on the

bottom left. One of the paths is selected. The moments along the path are highlighted in the

progression plan.

249

Figure 50: Paths to selected level. One path is highlighted.

250

Replayable moments

A checkbox allows the player to define whether the moment is replayable or not.

Potential progression state

This potential progression state list is shown at the bottom of the moment properties tab in Figure

50. A designer may wish to know which game elements the player has experienced or has

potentially experienced by the time they reach the selected moment, based on the content of the

moments that may or must be completed prior to it. The tool allows the designer to see this either

for all possible paths to the level, or for a single path that they select in the paths to selected

moment list. For example, based on all possible paths, the designer might see that the player has

encountered a minimum 4 ammo pickups but potentially a maximum of 16. For a single path the

minimum and maximum are identical.

If the open-world structure checkbox is checked, the potential state also takes into account the

possibility that some or all of the moments unconnected to the selected moment could have been

played.

Design notes tab

The design notes tab can be used by the designer to keep track of their design progress on a given

moment. This is shown in Figure 51.

Design completion status

When the design notes tab is in view, the completion status on each moment is visualised in the

progression plan graph. The outlines of nodes have a darker shade of grey according to their

moment’s design completion status.

This feature can be used to denote the state of design and/or production work on the moment

within a game editor or level editing tool. This allows the graph view to be used as a kind of work

plan, where the designer can quickly see which moments need to be worked on.

Notes

I include a field where the designer can write notes about the selected level. This could be brief

text-based description of their intentions for the level, a “to do” list or issues to be resolved.

251

Figure 51: The Notes tab

Explore mode tab

Switching to the explore mode tab activates exploration mode (see below).

Graph element visualisation

Refraction’s tool includes a visualiser that plots the density and frequency of elements in the

progression plan, in order to regulate progression considerations such as game pacing. In line with

my approach, Progressimo computes this for the purpose of visualisation only: it highlights all

nodes of the progression graph that contain a selected game element, thus affording the designer

a two-dimensional overview of where instances of a given element are used in the game.

252

Highlighting a path (by selecting a path in the paths to selected moment list) allows the designer to

see the number of instances of a selected element encountered between two points in the

progression structure. The ability to visualise this in the form of a chart like Refraction’s tool could

be a feature added to this tool.

Exploration mode

When exploration mode is active, the designer can “play” the progression by clicking on accessible

(unlocked) moments, step by step, in sequence. At each step where multiple moments are

accessible, the designer makes a choice as to which moment to play. Access to moments is

constrained by connections and gameplay gates. Figure 52 shows the interface in explore mode

with the progression plan on the right and the progression state information on the left.

Moment highlighting

Clicking on a moment in the progression plan “plays” the moment. Only unblocked moments can

be played. When a moment is played the theoretical game state is updated using the progression

elements contained in the moment (defined in the moment’s elements list).

Once played, the moment’s colour changes to beige – unless the moment is replayable, in which

case the colour changes to blue. A moment that is unlocked and has never been played is coloured

green.

Connected moments are then unlocked and highlighted green, as long gating conditions and

progression rules satisfied. If the open-world structure checkbox is checked, all start nodes of

connected moment groups that satisfy rules and conditions are also available.

Moments that are inaccessible via connections or blocked by gates remain white. If the designer

clicks on a blocked moment they can view information on why that moment is currently blocked.

Moments that are accessible to the player (i.e. not blocked by gates and accessible via

connections) but are blocked by design gates (i.e. their accessibility breaks progression rules) are

highlighted in pink. This is a warning to the designer that they might want to make this moment

inaccessible using connections or gates.

253

Figure 52: Progression state information in explore mode for The Casimir Effect

254

Progression state information

Progression state information is displayed in the explore mode tab.

Progression state

The progression state is a list of progression elements as variables. It is a simulation of what the

game state might be at that point of the game, based on the sequence of moments that the

designer has played to get to that point. Each time a moment is “played”, the progression state is

updated using that moment’s elements list.

For example, a state that lists “Gold: 35” indicates that 35 gold would be in the player’s inventory,

based on their accumulation and expenditure of gold up until and including that moment. For

knowledge type progression elements this can indicate how many times the player would have

encountered that element. “Swimming: 5” could indicate that the player has had to swim in five

moments so far.

Blockers

A moment being blocked means that game progression is not sufficiently advanced for the player

to play the moment yet. In order words, the state does not contain the required progression

elements in sufficient quantities to meet the conditions and rules that apply to that moment. As a

consequence, the player is not able to play the blocked moment.

When the player selects a blocked moment they can view information on what is blocking

progress to this element. There are three types of blockers: gameplay gates (as described above),

progress blockers and design gates.

Gameplay gates

The gameplay gates list shows any gates for which the gating condition has not been satisfied.

Gates that have been satisfied are not displayed.

Progress blockers

A progress blocker indicates that the progression state currently does not contain sufficient

quantities of a progression element to meet the requirements of moment. Such requirements are

expressed as negative progression element variables in the moment’s elements list.

255

For example, a moment can result in an expenditure of a progression element – currency, for

example. If an insufficient quantity of the progression state element – e.g. currency – is not

present in the game state when that moment is reached during explore Mode, the tool effectively

gates progress to this moment. Any such element will be displayed in the progress blockers list.

In this way, a progress blocker functions as a kind of implicit gameplay gating. As such it can serve

as an alternative way to define a gate.

Design gates

Unlike gameplay gates, which gate access for the player to moments at run-time within the game,

design gates enforce the progression rules on the designer at design time, within the tool.

Filtered notebook component

The notebook component allows the designer to add screenshots of a level design idea, which

could take the form of a design pattern or even a finished level. The designer then tags the idea

with one or more of the game elements it includes. When the designer comes to start work on a

new game level they can use the view only templates usable in selected level checkbox to filter

the notebook by the level’s game elements list, to display all ideas that contain only the game

elements relevant to that level.

256

Figure 53: Filtered notebook component

