Metal Ion Activated Anion Sensors

A Thesis Presented for the Degree of

Doctor of Philosophy

By

Adam John Bradbury BSc. (Hons)

at

Flinders University

School of Chemistry, Physics and Earth Sciences

Faculty of Science and Engineering

October 2007

Flinders University Adelaide • Australia

Table of Contents

Abstra	ict		i
Declaration			ii
Ackno	Acknowledgements		
Abbre	viations		iv
Summ	nary of	molecular receptors described in this thesis	1
Summ	nary of	guest anions utilised in this work	2
Chapt	ter 1	Introduction	3
1.1.	Molec	ular recognition	4
1.2.	Cavity	shaped receptors	8
	1.2.1.	Cyclodextrins.	8
	1.2.2.	Calixarenes.	11
1.3.	The in	portance of anion recognition	16
1.4.	Effects	s of metal ion binding on anion receptors	19
1.5.	Tetraa	za macrocycles and their use in anion binding	22
1.6.	Signalling molecular recognition		32
1.7.	Tetraa	za macrocycles with attached fluorophores	43
	1.7.1.	Mixed pendant arm macrocyclic ligands.	47
1.8.	Guest	molecules effecting the PeT mechanism	48
1.9.	Aims a	and significance of the project	50
Chapt	ter 2	Synthesis	51
2.1.	The de	evelopment of fluorescent pendant-armed cyclen-based	50
2.2.	receptor ligands Synthesis of the fluorescent pendant arm		52 53
2.3.	Synthesis of protected cyclen and attachment of the non- fluorescent pendant arms		54
2.4.	Synthe	esis of the fluorescent ligands	61
	2.4.1.	Synthesis of the ligands 146 and 170.	61
	2.4.2.	Synthesis of antac-12, 131.	62
	2.4.3.	Synthesis of the <i>N</i> -alkylated fluorescent ligands 171-173 .	64

2.5.	Synthesis of metal(II) complexes 65		65
2.6.	Isolati	on of host-guest inclusion complexes	67
Chap	ter 3	Initial investigation of binding constants for host-guest interactions	69
3.1.	The m	easurement of host-guest binding constants using ¹ H NMR	70
3.2.	Strateg	gy for obtaining binding constant values	72
3.3.	An overview of titrations of anionic guest with receptors		73
3.4. Binding constants of anionic guests with receptors		ng constants of anionic guests with receptors	76
	3.4.1.	Selection of potential guest species.	76
	3.4.2.	Titrations of anionic guests with non-fluorescent receptors having functionalised phenoxy derived cavities.	80
	3.4.3.	Binding constants of anionic guests with fluorescent receptors	80
	3.4.4.	Binding constants of anionic guests with fluorescent receptors having functionalised phenoxy derived cavities.	83
2.5	3.4.5.	Titrations of anionic guests with receptors having a fluorophore-substituted containing arm.	84
3.3.	Conch	uding remarks	89
S.S. Chap	ter 4	Preliminary photophysical measurements for fluorescent molecular sensors	89 90
5.5.Chap4.1.	ter 4	Preliminary photophysical measurements for fluorescent molecular sensors	99 90 91
5.5.Chap4.1.4.2.	ter 4 Backg Effect ligand	Preliminary photophysical measurements for fluorescent molecular sensors ground of pH on the photophysical properties of the receptor s	90 91 91
5.5.Chap4.1.4.2.	ter 4 Backg Effect ligand 4.2.1.	Preliminary photophysical measurements for fluorescent molecular sensors ground of pH on the photophysical properties of the receptor s Effect of pH on the absorption spectrum of receptor ligand	90 91 91 s.93
5.5.Chap4.1.4.2.	ter 4 Backg Effect ligand 4.2.1. 4.2.2.	Preliminary photophysical measurements for fluorescent molecular sensors ground of pH on the photophysical properties of the receptor s Effect of pH on the absorption spectrum of receptor ligand Effect of pH on the fluorescence spectra of receptor ligand	90 91 91 s.93 s.94
 5.5. Chap 4.1. 4.2. 4.3. 	ter 4 Backg Effect ligand 4.2.1. 4.2.2. Metal	Preliminary photophysical measurements for fluorescent molecular sensors ground of pH on the photophysical properties of the receptor s Effect of pH on the absorption spectrum of receptor ligand Effect of pH on the fluorescence spectra of receptor ligand ion activated molecular sensors	90 91 91 s.93 s.94 104
 5.5. Chap 4.1. 4.2. 4.3. 	ter 4 Backg Effect ligand 4.2.1. 4.2.2. Metal 4.3.1.	Preliminary photophysical measurements for fluorescent molecular sensors ground of pH on the photophysical properties of the receptor s Effect of pH on the absorption spectrum of receptor ligand Effect of pH on the fluorescence spectra of receptor ligand ion activated molecular sensors The effect of metal ion complexation on fluorescence.	90 91 91 s.93 s.94 104 105
 5.5. Chap 4.1. 4.2. 4.3. Chap 	ter 4 Backg Effect ligand 4.2.1. 4.2.2. Metal 4.3.1. ter 5	Preliminary photophysical measurements for fluorescent molecular sensors round of pH on the photophysical properties of the receptor s Effect of pH on the absorption spectrum of receptor ligand Effect of pH on the fluorescence spectra of receptor ligand ion activated molecular sensors The effect of metal ion complexation on fluorescence. Photophysical measurements for fluorescent anion sensors and the binding constants for the host-guest interactions	 90 91 91 93 s.93 s.94 104 105 113
 5.5. Chap 4.1. 4.2. 4.3. Chap 5.1. 	ter 4 Backg Effect ligand 4.2.1. 4.2.2. Metal 4.3.1. ter 5 Summ studies	Preliminary photophysical measurements for fluorescent molecular sensors ground of pH on the photophysical properties of the receptor s Effect of pH on the absorption spectrum of receptor ligand Effect of pH on the fluorescence spectra of receptor ligand ion activated molecular sensors The effect of metal ion complexation on fluorescence. Photophysical measurements for fluorescent anion sensors and the binding constants for the host-guest interactions and the binding studies using ¹ H NMR	 90 91 91 91 s.93 s.94 104 105 113 114
 5.5. Chap 4.1. 4.2. 4.3. Chap 5.1. 5.2. 	ter 4 Backg Effect ligand 4.2.1. 4.2.2. Metal 4.3.1. ter 5 Summ studies Guest	Preliminary photophysical measurements for fluorescent molecular sensors ground of pH on the photophysical properties of the receptor s Effect of pH on the absorption spectrum of receptor ligand Effect of pH on the fluorescence spectra of receptor ligand ion activated molecular sensors The effect of metal ion complexation on fluorescence. Photophysical measurements for fluorescent anion sensors and the binding constants for the host-guest interactions nary of the findings from the preliminary fluorescence s and the host-guest binding studies using ¹ H NMR inclusion within metal ion activated molecular sensors	 90 91 91 91 s.93 s.94 104 105 113 114 115

5.4.	UV-visible absorption titration studies for guest inclusion with fluorescent receptors 4-7119		119
5.5.	Strategy for obtaining binding constants determined from spectrophotometric measurements		122
5.6.	Bindin	g constants determined from absorption measurements	122
	5.6.1.	Binding constants for anionic guests with the fluorescent receptor having four hydrogen bond donor groups at the base of the cavity, 4 .	122
	5.6.2.	Binding constants for anionic guests with fluorescent receptor 5 , having a methylated phenoxy derived cavity and four hydrogen bond donor groups at the base of the cavity.	126
	5.6.3.	Binding constants for anionic guests with the fluorescent receptor 6 , having three hydrogen bond donor groups at the base of the cavity.	127
	5.6.4.	Binding constants for anionic guests with fluorescent receptor 7, having a methylated phenoxy derived cavity and three hydrogen bond donor groups at the base of the cavity.	129
5.7.	Fluores	scence titration studies for guest inclusion with fluorescent	
	recepto	ors 4-7	130
5.8.	Bindin	g constants determined from fluorescence measurements	132
	5.8.1.	Binding constants of anionic guests with fluorescent receptor 4 , having four hydrogen bond donor groups at the base of the cavity.	134
	5.8.2.	Binding constants of anionic guests with fluorescent receptor 5 , having a methylated phenoxy derived cavity and four hydrogen bond donor groups at the base of the cavity.	145
	5.8.3.	Binding constants for anionic guests with the fluorescent receptor 6 , having three hydrogen bond donor groups at the base of the cavity due to the presence of an extra pendant arm.	147
	5.8.4.	Binding constants for anionic guests with fluorescent receptor 7, having a methylated phenoxy derived cavity and three hydrogen bond donor groups at the base of the cavity due to the presence of an extra pendant arm.	148
5.9.	Fluores recepto	scence changes upon guest inclusion with fluorescent ors 4-7	149
	5.9.1.	Fluorescence changes in 4 upon guest inclusion.	150
	5.9.2.	Fluorescence changes upon guest inclusion within 5.	156

		5.9.3.	Fluorescence changes upon guest inclusion within 6 and 7.	158
	5.10.	Conclu	uding remarks	162
	Chapt	ter 6	Experimental	164
	6.1.	Genera	al experimental	165
	6.2.	Physic	cal methods	165
6.3. Host-guest binding constant determination by ¹ H N		guest binding constant determination by ¹ H NMR	166	
	6.4.	Ultraviolet-visible spectroscopy		167
		6.4.1.	pH titrations.	168
		6.4.2.	Metal complexation absorption studies.	168
		6.4.3.	Host-guest binding constant determination from UV-visibl spectroscopy.	e 169
	6.5.	Fluore	escence spectroscopy	170
		6.5.1.	pH titrations.	171
		6.5.2.	Metal complexation fluorescence studies.	172
		6.5.3.	Host-guest binding constant determination from fluorescence spectroscopy.	172
	6.6.	Deterr	ninations of relative quantum yields	173
	6.7.	Synthesis of compounds		175
		6.7.1.	Synthesis of pendant arms.	175
		6.7.2.	Protection and deprotection steps.	178
		6.7.3.	Synthesis of ligands.	192
		6.7.4.	Synthesis of receptor complexes.	214
		6.7.5.	Isolation of inclusion complexes.	222
	Apper	ndix A		225
		A.1.	Outline of theory used in the determination of binding constants using ¹ H NMR titration experiments	225
		A.2.	Outline of theory used in the determination of binding constants using fluorescence titration experiments	227
		A.3.	Outline of theory used in the determination of binding constants using absorbance titration experiments	231

Abstract

A series of new, octadentate, fluorescent, macrocyclic ligands have been prepared with a view to using them to study aromatic anion sequestration. The eightcoordinate Cd(II) complexes of the ligands have been shown capable of acting as receptors for a range of aromatic oxoanions. This has been demonstrated by perturbation of both ¹H NMR chemical shift values and the anthracene derived fluorescence emission intensity as the potential guest anion and the host are combined. Non-linear least squares regression analysis of the resulting titration curves leads to the determination of binding constants in 20% aqueous 1,4-dioxane which lie in the range $10^{2.3}$ M⁻¹ (benzoate) to $10^{7.5}$ M⁻¹ (2,6-dihydroxybenzoate). By reference to the X-ray determined structures of related, but non-fluorescent inclusion complexes, the primary anion retention force is known to arise from hydrogen bonding between the anion and four convergent hydroxy groups that exist at the base of a cavity that develops in the complexes as their aromatic groups juxtapose upon coordination. This work reveals significant stability enhancement when hydroxy groups are positioned on the anion at points where O-H... π hydrogen bonding to the aromatic rings that constitute the walls of the cavity becomes geometrically possible.

Declaration

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

A3 Bradling

A. J. Bradbury 2007

Acknowledgements

Firstly, I would like to thank my supervisor, Professor Kevin P. Wainwright for all the help and support he has given me throughout these studies, and most of all for his patience. I would also like to thank Professor S. F. Lincoln of the University of Adelaide for many of the same reasons. I would also like to thank Dr Martin Johnson for his help and also his wealth of information regarding the NMR. I would also like to thank Professor Sadegh Salehzadeh for his modeling work. My thanks also go out to everyone who I ever shared room 337 with, for all the discussions that we held about our work, and the help and support everyone has provided, so many thanks go out to Rebecca Campbell, Akhmad Damsyik, Professor Hassan Keypour, Hamid Khanmohammadi, Melissa Latter, Tim Robinson, Jozef Hodyl, Yakub, Professor Xu Xingyou, La Ode Kadidae and Rachel King. My family and friends I would like to thank for putting up with me these past few years, for both the times when I was there, and those times when I wasn't. Finally my love and thanks go out to my wife Barbara, without whom I would not have been able to survive this PhD, who has been so very patient and encouraging throughout the years.

Thank you.

Abbreviations

AcOH	acetic acid
Å	Ångstrom (10 ⁻¹⁰ m)
antac-12	<i>N</i> -(2-(-9-anthracenylmethyl)aminoethyl) -1,4,7,10- tetraazacyclododecane
bp	boiling point
Bn	benzyl
Bu	butyl
CBn	benzyloxycarbonyl
cyclen	1,4,7,10-tetraazacyclododecane
δ	chemical shift
d	doublet
DMF	N,N-dimethylformamide
DMSO	dimethyl sulphoxide
eT	Electron transfer
ET	Energy transfer
EtOH	ethanol
3	molar extinction coefficient or molar absorptivity
ε'	molar fluorescence
Ι	ionic strength
IR	infra red
J	coupling constant
Κ	apparent stability constant
L	unspecified ligand
υ_{max}	maximum infrared absorbance (cm ⁻¹)
λ_{ex}	fluorescence excitation wavelength (nm)
λ_{max}	maximum wavelength
m	multiplet
M^{2+}	unspecified divalent metal ion
Me	methyl
MeCN	acetonitrile
MHz	megahertz (10^6 s^{-1})
mp	melting point
NMR	Nuclear magnetic resonance (spectroscopy)

PeT	Photoinduced electron transfer
p <i>K</i> _a	-log10[<i>K</i> a]
q	quartet
RT	room temperature
S	singlet
SD	standard deviation
t	triplet
tert-	tertiary
TLC	Thin layer chromatography
UV-vis	Ultraviolet-visible (spectroscopy)