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Executive Summary 

Overuse injuries in elite netball have been reported at rates of up to 23.8 per 1000 hours of game 

play (Hume and Steele, 2000), with between 66 to 92% of these occurring at the lower limb 

(Hopper et al., 1995, McManus et al., 2006). Since acceleration and force are linearly dependent, 

this thesis aimed to determine whether a wearable accelerometer at the lower limb could be used 

to determine an objective level of impact dose. If so, and if dose could be quantified in terms of 

risk, the prediction could be used to monitor and prevent overuse injuries. 

There were 16 articles identified as having previously studied the relationship between ground 

reaction force and acceleration. For the 15 locations across the body that these articles used to 

predict impact force, five different kinds of proxy models had been considered: linear, logarithmic, 

Fourier, machine learning, and an unknown application. Variables that were most notably 

identified to affect prediction accuracy were technique, movement, and proxy type. These models 

were reported to have produced several very large (𝑅2 > 0.7) correlations between force and 

acceleration. 

Three of the literature-identified models were validated against a trial dataset collected in a 

previous generation of this project. Linear and logarithmic models were used to predict force 

events from acceleration, and a kind of machine learning was used to predict the entire waveform. 

The models that considered events correlated 14 different triaxial acceleration waveform events 

against 6 different force waveform events. The investigation considered accelerations from the 

thigh, shank, and ankle, with one accelerometer at each position on both legs.  

The strongest correlations were almost perfect (𝑅2 > 0.90) and were between the integration of 

vertical force, which is vertical impulse, and the integration of axial acceleration at the ankle. 

Although the shank and thigh also produced, on average, at least very large correlations, the ankle 

was deemed the optimal position for relating these waveforms. There were no events across the 

linear and logarithmic models that produced correlations that were consistently above 𝑅2 = 0.36 

(moderate). However, the machine learning model predicted the entire waveform with an 

accuracy of 𝑅2 = 0.41, which was considered more favourable than the event-based linear and 

logarithmic models. As such, the investigation did not reproduce the literature-based results. 

If it can be shown in the future that impulse can indeed be used as an indicator of impact dose, 

and if these results can be reproduced, then lower limb acceleration may indeed be used as a 

proxy for monitoring impact dose and in overuse injury management and prevention.   
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Chapter 1. Introduction 

1.1. Introduction 

This chapter frames the thesis by providing a brief understanding the development of overuse 

injuries and by identifying the potential for such injuries to be prevented or monitored through the 

development of a wearable device. The sport of focus within this investigation has been selected as 

netball.  

1.1.1. Injuries 

A primary cause of stress fractures in the lower limb is inadequate adaption to repetitive cyclic 

loading (Brukner and Bennell, 2020). As ground reaction force (GRF) strains the bone, 

microdamage accumulates in weaker regions, with excess strain leading to fatigue reaction and 

failure (Brukner and Bennell, 2020). Investigations have been undertaken to consider the 

contribution of excess fatigue and loading rates to injury development, and to determine how 

these characteristics can be measured with wearable devices in runners (Kiernan et al., 2018) and 

team-sports such as Australian football (AFL) (Colby et al., 2014), soccer (Ehrmann et al., 2016), 

and rugby (Gabbett and Ullah, 2012).  

Studies like these have concluded that variables such as system acceleration, movement velocity, 

and total distance covered during training sessions and gameplay may provide risk indicators for 

overuse injuries and fatigue. The research is particularly relevant to the injury management of 

female netballers. As shown in Figure 1, injury proportion by number of female hospitalisations in 

netball and handball has been found to be the highest of all sports (Schneuer et al., 2018). It has 

been further reported by Netball Australia that “netball is the activity with the second largest adult 

female participation rates (89%), behind Pilates (90%)” (Netball Australia, 2019). 
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Figure 1: Number of hospitalisations of children in Australian sport between 2005-2013 (Schneuer et al., 2018). 

Reprinted with permission under CC BY 4.0. 

Within netball, the incidence of fatigue and overuse related injuries has been reported in elite 

players at 9.08 (Best, 2017) and 23.8 (Hume and Steele, 2000) per 1000 hours of game play, and 

14 per 1000 hours in non-elite players (McManus et al., 2006).0F

1 In one study, the incidence rate of 

injury in elite and non-elite participants over the 5 consecutive years of a 14-week competition 

was 5.4% (Hopper et al., 1995), and in the 1988 Australian Netball Championships, overuse injuries 

were sustained by more than 25% of elite participants (Hopper and Elliott, 1993), where it was 

seen that playing level had little effect on the number of players injured. Interestingly and perhaps 

unsurprisingly, these injuries are not evenly distributed throughout the body.  

In studies that have monitored netball injuries, a proportional 92.6% (Hopper et al., 1995) and 66% 

(McManus et al., 2006) of injuries are reported as having occurred in the lower limb. When Bissell 

and Lorentzos (2018) considered a cohort of 37 players, they found that lower limb injuries were 

prevalent in 75% of players, with an equal prevalence of knee (47.2%) and ankle (47.2%) injuries 

 
1 Consider that in the case of 23.8 injuries per 1000 hours (1 injury per 42 hours), if an elite player is training 
at this higher-risk level for 5 hours per week, this could mean experiencing an injury after just over 8 weeks. 

https://creativecommons.org/licenses/by/4.0/
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across all players. Best (2017) reported that over a third of the total injuries were sustained in the 

ankle, and Hopper et al. (1995) found the proportion to be 84.3%. 

Best (2017) found that injuries were more commonly sustained during competition, with 71.2% of 

all injuries in their study occurring in matches rather than during training. One may consider 

whether all kinds of high intensity training is therefore hazardous, but although Stevenson et al. 

(2000) related higher damage levels with greater exposure periods in training and match time 

combined, McManus et al. (2006) found that training for four or more hours per week was 

actually protective against injury. Indeed, there seems to be a level of training desirable for 

strength-training and protection, yet over which injuries do become prevalent (Gabbett and Ullah, 

2012).  

Hopper et al. (1995), considering competitive matches only, reported that only 5% of injuries 

required medical attention from a health care professional; whereas Stevenson et al. (2000), who 

considered match and training time, reported that 20% of injuries required such attention. Best 

(2017) even found a significant association between match quarter and injury occurrence (𝑝 =

0.019), with peak incidence occurring in the third quarter. As to when incidence increases during a 

season, Best (2017) found that 57.6% of injuries had occurred in the first half of the season, 

whereas over a similar period, Bissell and Lorentzos (2018) observed ankle injury prevalence to 

increase. This may concur with Colby et al. (2014), who found that in elite footballers, three-

weekly cumulative loads were the most indicative of injury risk, rather than a long-term outlook 

on summation. 

These results indicate that injuries are prevalent among elite and non-elite athletes alike, with 

variable incidence rates among both cohorts. Injuries sustained to netball players are found 

primarily located in the lower limb, and commonly located at the ankle. Risk is seen to increase 

within games, seemingly indiscriminately of point throughout the season, with injuries generally 

increasing with greater exposure periods. However, exposure can also contribute towards 

strength building and protective benefits, without necessarily increasing risk, meaning that load 

monitoring may be valuable in both injury prevention and strength-training. 

Although the exact benefit of wearable devices in this area is still being determined, it has been 

observed that “an increase in peak acceleration might indicate higher loading rates, a reduction in 

shock absorption quality and a higher impact on the body” (Reenalda et al., 2016). If this is so, and 

an accurate relationship between acceleration and impact can be defined, then wearable 
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accelerometers could be used as tools to record acceleration, and this acceleration could be used 

as a proxy for impact. Furthermore, if wearable accelerometers can be used to quantify impact 

dose, then they may be beneficial in overuse injury management, by producing consistent, valid, 

and accessible methods of impact dose and injury risk.  

1.1.2. Considering a Device 

Any device that is to be developed for targeting load management and injury prevention in 

netballers must be grounded not only in the physiological relationship between impact force and 

acceleration; and in literature-based design recommendations; but also in an understanding of the 

desires and needs of current athletes. Therefore, an experienced, professional coach of an elite 

netball team in the Netball SA (South Australia) Premier League was initially consulted for insight 

on behalf of current athletes. This discussion, the conclusions of which are given below, included 

two main considerations: injury prevention, and location and attachment.  

Injury Prevention 

It was explained by the coach that as players fatigue, the prevalence of injuries increases due to 

heavier landings and less controlled movements. Inefficient recovery rates tend to bring structures 

to failure, especially when participating in multiple activity sessions per week. As such, an ideal 

device would provide quantitative, objective reasoning for why a player should not persist in 

training when persistence may cause them to develop an injury. It would aid in the prevention of 

future injuries, use previous injury data to indicate risk, and enable players to rate their feelings 

subjectively. This would include promoting efficient recovery from past injuries and high amounts 

of activity, informing the decision to rest and recover rather than persist until injury. This would be 

quantified as a recovery level and would be used to inform safe training intensity and variety.  

The primary desirable within an interface would be an alert system on increases to injury risk. The 

device would indicate whether visual observations by coach and player are consistent with the 

objective data. The interface would be user-friendly and provide only necessary information on 

performance and injury risk, allowing all involved to focus on training, only needing to consider the 

data when risk has developed. Ideally, the device would be used during training and matches.  

Location and Attachment 

The device would be small, developed such that it could be worn according to South Australian 

and Australian Netball regulations. A suitable location such as the ankle would need to be selected 
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such that the device is minimally obstructive, easily accessible, and not hazardous during 

gameplay. As players do not ordinarily wear compression tights, the device could not be placed 

under tights or sleeves worn over the legs. However, if tights were necessary, then although 

players might wear them during training, it is less likely that they would wear them during games; 

although ultimately, the players would wear what is necessary for injury prevention.  

Players tend to wear ankle-length socks, but crew socks may be worn when their ankle is strapped. 

Because injuries are prevalent, most players strap or brace their ankles and knees each game for 

both prevention and treatment, even if they are not currently injured. Players commonly use the 

stirrup and heel-lock techniques for strapping ankles, using under-wraps of rigid Elastoplast. The 

coach explained that similar techniques may be suitable for a new device. Since players do not use 

leggings or straps except at the ankles and knees, a device that requires strapping in an abnormal 

position may not be welcomed, allowed, or used by players. As such, although a device may be 

fitted on mid-shank during trials, it is unlikely that a device placed here would remain when 

competing. Ideally, the device would be placed medial or lateral to the central axis of the leg; 

above the ankle, slightly caudal from the medial malleolus or the lateral malleolus; around the 

sock line, akin to a watch placed on the wrist; this location would likely be acceptable.  

The aesthetics of the device are also important, and a device that is not aesthetically appealing 

would not likely be welcomed, even if it were technically approved. It was also acknowledged that 

the development of a device in this area may require trial and error, testing for device profiles, 

usability, and comfort. 

Summary 

In light of the high prevalence of injuries in elite and non-elite players alike, there remains a need 

for an accessible method of injury management and prevention. The application of a wearable 

accelerometer may provide this. Due to the high rate of lower limb injuries, and with the need for 

a regulation-approved device, a device inferior on the body seems the most suitable, and 

therefore will be the focus of this investigation. In the chapters that follow, a clear objective for 

this investigation will be defined, the literature will be reviewed and synthesised, and conclusions 

will be provided towards the search for an accessible method of lower-limb injury prevention.  
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1.2. Defining the Thesis Objective  

This section states the aim of the thesis and a brief method for undertaking the investigation.  

1.2.1. Aim 

The aim of this research thesis is to establish an answer to the following question: 

Is data collected from wearable accelerometers placed on the lower limb sufficient to model an 

effective and useful relationship between ground reaction force and acceleration that is 

generalisable between different subjects, movements, and external conditions? 

Divided into five primary research areas, this project will aim to: 

1. Determine whether there is a relationship between force and acceleration at the lower 

limb. 

2. Determine whether this relationship can be accurately modelled using data collected from 

wearable accelerometers. 

3. Determine whether this relationship is generalisable between subjects, movements, and 

external conditions. 

4. Determine whether measuring acceleration at the lower limb using wearable 

accelerometers can provide data that is useful for the prevention or monitoring of injuries, 

fatigue, and rehabilitation. 

5. Determine information on the running of a trial such that new data can be collected, and a 

relationship derived, based on the recommendations and performance of these studies.1F

2 

1.2.2. Method 

This investigation will be conducted in three parts, the methods of which will be further explained 

throughout the thesis. 

• Firstly, a systematic review of current literature regarding the topic will be undertaken, and 

information synthesised for conclusions towards the research aims (Chapters 2 - 6). 

• Secondly, an investigation will be undertaken in which previous data will be analysed based 

on insights gained from the literature (Chapter 7). 

• Finally, a discussion will consider and conclude on the results of the literature review and 

investigation (Chapter 8-9).  

 
2 If retrievable, this information will include insight on device development, attachment methods, and data 
analysis. 
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Chapter 2. Literature Review 

2.1. Methods and Search 

This chapter explains the method by which the literature in this thesis was investigated. It explains 

why certain articles have been included and excluded, and it tabulates the articles that qualified as 

primary sources. 

2.1.1. Terms and Protocol 

Articles qualified for this review if they provided an understanding on four key areas: wearable 

devices, the lower limb, acceleration, and force. As such, the following search term was developed 

to retrieve articles inclusive of this information: 

wearable AND (ankle OR shank OR "lower limb") AND acceler* AND force 

This search term was queried in six relevant databases: Medline, Scopus, PubMed, IEEE, ProQuest 

and Science Direct. Script was written in MATLAB to sort between unique titles within the search 

results of each database. Across the six databases, 154 individual titles were retrieved, from which 

99 articles were unique. Each unique title was reviewed based on title, abstract and potential 

relevance to the discussion, and 76 articles were selected for further review. From these 76 

articles, 5 qualified for the review. An additional 11 articles were also included in the review: 5 

were identified within the reference lists of the qualified articles, and 6 were obtained through 

external sources. This process has been illustrated in Figure 2. 
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Figure 2: Article Screening Process. 

2.1.2. Exclusion Criteria 

The following criteria were used during both the screening and the refine process to exclude 

articles as primary sources. Articles were excluded if they: 

• Did not collect acceleration data using an accelerometer. 

o Articles were included if they measured acceleration but did not specify the device 

as an accelerometer, or if the device used was a multifunction device i.e. if a study 

used terms such as inertial measurement unit (IMU). 

• Did not consider the placement of the accelerometer in relation to the lower limb. 

o Articles were included if the accelerometer was not placed on the lower limb, but 

only if they provided insight into the effectiveness of this placement with regards to 

kinematics of the lower limb. 

• Did not use acceleration to predict ground reaction force. 

o Articles were excluded if they used acceleration data to predict power or impulse. 

• Were not articles that included a trial. 
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o Articles were excluded if they were reviews, discussions, trial proposals or device 

introductions. 

• Were not written in English. 

2.1.3. Additional Articles within the Discussion 

During the article selection, although articles were excluded, relevant and valuable information to 

this discussion was noted and included in the synthesis. Of these non-qualifying articles from 

which information was included, they were predominantly obtained though the original database 

search. The synthesis also includes articles identified through the references of these articles and 

from additional external sources.  

2.1.4. Information Collected in the Review 

Information collected on the qualifying articles has been given in Table 1.  

• Articles have been numbered sequentially in Table 1 as [𝑥]; these numbers are referred to 

by infographics within this thesis, and where possible have been hyperlinked accordingly. 

• Device placement sites were arbitrarily classified as either the head, neck, trunk, upper leg, 

or lower leg. Where possible, detailed locations and attachment methods have also been 

included. 

• Articles are classified as having used a kind of inertial measurement unit (IMU). ‘IMU’ has 

been used as a broad term for any device that collected acceleration data from the subject. 

In some cases, gyroscopes, magnetometers, and other sensors were also present within 

the device. 

• Sampling rates and filtering cut-off frequencies have been included where possible. This 

will be discussed in further detail in the synthesis to follow, but it must be noted that filters 

between studies varied in kind and order (i.e. 4th order Butterworth etc.); only the cut-off 

frequencies have been specified within this table. 

• Force Sensor has been used as a generalised term for whichever force sensor was used in 

the investigation. It covers force plate, instrumented treadmill, and pressure-sensing insole. 

• The algorithm models specified do not necessarily explain every process used within each 

study. They have merely been included in an attempt to describe the fundamental 

techniques that were used to model the data within each study.  

• Algorithm classifications have been classified as linear, logarithmic, Fourier, non-linear etc.  

The articles within this table will henceforth be referred to as the qualified articles.
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2.1.5. Qualifying Articles 

Table 1: Articles that qualified for the review. 

AUTHOR, 

DATE 

ACTIVITY, 

PARTICIPANTS 

DEVICE 

PLACEMENT 

TRACKING 

TECHNOLOGIES USED 
SAMPLING RATE, FILTERING CUT-OFF ALGORITHM MODEL CONCLUSIONS 

Thesis Index 

[#] 

 In terms of 

head, trunk, 

lower leg, and 

upper leg; and 

attachment 

method. 

Including: 

- Axes Collected 

- Dynamic Range 

- Commercial Device 

Accelerometer Force 

Sensor 

Motion 

Capture 

Unless otherwise stated, methods 

determine force from acceleration, 

with variables: 

𝐹 = 𝑓𝑜𝑟𝑐𝑒 (𝑁) 

𝑚 = 𝑤ℎ𝑜𝑙𝑒 𝑏𝑜𝑑𝑦 𝑚𝑎𝑠𝑠 (𝑘𝑔) 

𝑎 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑠−2) 

𝑡 = 𝑡𝑖𝑚𝑒 (𝑠) 

 

Callaghan 

et al. (2018) 

 

[1] 

Cricket (Pace  

Bowling) 

n = 11 

 

 

Trunk:  

Dorsal 

between 

scapulae 

 

Double sided 

tape, 

additional 

strapping tape 

 

Lower Leg: 

Left tibia, 

proximal to 

knee 

 

Manufacturer-

supplied click-

in body strap 

Wearable IMU 

- Triaxial 

- ±16g 

- MTw, XSENS 

Technology 

 

Force Plate 

Sampling 

75 Hz 

 

Filtering 

Lower Cut-

Off: 

10 Hz 

 

Higher Cut-

Off: 

120 Hz 

Sampling 

975 Hz 

- Linear, Correlation 

𝑭 =  𝑚 × 𝒂  

 

Further performed one-dimensional 

statistical parametric mapping of 

force and acceleration patterns. 

Both the vertical peak force and 

the vertical impulse as calculated 

from tibia IMU was significantly 

different (𝑝 < 0.05) from the 

force plate criterion measure: 

vertical peak force = 2228.43 ± 

837.99 N (force plate) vs. 

4295.66 ± 1393.41 N (tibia IMU). 

There was a significant 

correlation (𝑝 < 0.01) between 

vertical peak (𝑟 = 0.832) and 

impulse (𝑟 = 0.865) and force 

plate criterion measures. 

Although the absolute and 

relative reliability of these IMU 

measurements may be beneficial 

for load monitoring, the 

segmental acceleration of cricket 

pace bowlers did not represent 

whole body acceleration 

appropriately. 

Charry et 

al. (2013) 

 

[2] 

Running 

n = 3 

 

 

Lower Leg: 

Left and right 

shank, 

midpoint of 

tibia medial 

Wearable IMU 

- Triaxial 

- ±24g 

- ViPerform: 

accelerometer 

Sampling 

100 Hz (x-axis) 

20 Hz (y-axis) 

20 Hz (z-axis) 

 

Sampling 

300 Hz 

- 

 

Linear-Logarithmic, Correlation 

 

𝑮𝑹𝑭 = 𝑎 ∗ log2(𝒂𝒄𝒄 + 1) + 𝑐  

where: 

𝑎(𝑚) = 4.66 ∗ 𝑚 − 76.6  

GRF estimation quality 

quantified using RMSE. 

Logarithmic correlation between 

heel strike acceleration and peak 

vertical GRF was greater than 
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malleolus and 

knee medial 

joint line 

 

Adhesive 

sticker 

 

 

LSM303DLHC from 

ST 

Microelectronics – 

c.f. Penghai et al. 

(2014) 

 

Force Plate 

 

𝑐(𝑚) = 24.98 ∗ 𝑚 − 566.83  

 

𝑎𝑐𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑣𝑒𝑛𝑡  

𝑡𝑖𝑏𝑖𝑎𝑙 𝑎𝑥𝑖𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛  

 

Coefficients in equations a(m) and 

c(m) were calculated empirically 

based on the mass of the three 

subjects.  

 

linear correlation (𝑅2 =

0.95 𝑣𝑠. 0.81); correlation 

differences were similar in initial 

peak acceleration, maximum 

peak acceleration and peak-to-

peak acceleration events. 

Highest correlation for all 

subjects between GRF and the 

logarithmic acceleration function 

occurred at the maximum 

acceleration peak. Including 

body mass in algorithm reduced 

error by 30%. Different runners 

at similar running speeds had 

varied results. ViPerform, which 

uses a single 3D accelerometer, 

was concluded as viable for force 

estimations outside the lab.  

Davis et al. 

(2018) 

 

[3] 

Running 

n = 169 

Lower Leg: 

Left distal 

medial tibia 

- 

Wearable IMU 

- Triaxial 

 

Instrumented 

Treadmill 

 

- - 

 

- 

 

Correlation 

Load rates and accelerations over 8 

consecutive steps were averaged and 

then correlated. 

All correlations were significant, 

except resultant tibial 

acceleration with vertical 

instantaneous load rate in fore-

foot strike. All correlations were 

between 0.37 to 0.82. Peak 

vertical tibial acceleration was 

correlated for all strike patterns 

(𝑟 = 0.72, 𝑝 < 0.001). It was 

concluded that vertical tibial 

acceleration may be the best 

surrogate for the load rate of 

running impact.  

Elvin et al. 

(2007) 

 

[4] 

Jumping 

n = 6 

Lower Leg: 

Left and right 

shank, fibula 

(over fibular 

head) 

 

Sleeve over 

knee: 

Wearable IMU 

- Uniaxial 

- ±70g 

- ADXL78, Analog 

Devices Inc. 

 

Force Plate 

 

Sampling 

1000 Hz 

Sampling 

1000 Hz 

 

- 

 

Correlation 

Acceleration jump data from both 

legs were averaged and interpolated 

for a single record.  

 

The algebraic mean of the TAA was 

related to the single GRF output of 

the force plate. 

Across subjects, average 𝑟2 for 

Peak vertical GRF and Peak TAA 

was strong and significant (𝑟2 =

0.812, 𝑝 ≤ 0.01); likewise 

between jump height (force) and 

jump height (acceleration) (𝑟2 =

0.879, 𝑝 ≤ 0.01). Jump height 

did not correlate with peak 
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Drytex Knee 

Support 

 

Coefficients of determination (𝑟2) 

calculated by standard linear least 

square correlation for: 

1. Peak impact vertical GRF vs. 

peak impact tibial axial 

acceleration 

2. Jump height (force) vs. jump 

height (acceleration). 

3. Peak impact force vs. jump 

height (force) 

4. Peak impact acceleration vs. 

jump height (acceleration) 

 

Jump Height calculations: 

𝐻 = 𝑔𝑡2/8  

Where 𝑡 = total flight time:  

- In (force) calculation, 𝑡 = the 

time between when GRF = 0 

(i.e. when the body is not 

touching the plate). 

- In (acceleration) calculation, 

𝑡 = the time between when 

𝑎 = −𝑔. 

impact force (𝑟2 = 0.127) or 

peak impact acceleration (𝑟2 =

0.119). Errors may be present 

due to tibia-impact line angle. 

The dynamics of skin motion 

with sleeve slipping were 

discounted due to intra-

participant consistency. When 

the force along the X and Y axes 

are ignored, a maximum 20% 

error is observed in the tibial axis 

GRF.  

Guo et al. 

(2017) 

 

[5] 

Walking 

n = 9 

Trunk: 

L5 vertebra 

- 

 

Neck 

C7 vertebra 

- 

 

Head 

Forehead 

- 

 

Wearable IMUs 

- Triaxial 

- ±6g 

- Opal™, APDM Inc. 

 

Pressure-Sensing 

Insoles 

Sampling 

128 Hz 

Sampling 

128 Hz 

 

- Non-Linear Model 

64-term Non-linear AutoRegressive 

Moving Average with eXogenous 

input (NARMAX) model obtained to 

predict vertical GRF of right and left 

feet: 

 

𝒗𝑮𝑹𝑭

= ∑𝜃𝑖𝜙𝑖(�⃗⃗� 𝒔𝒆𝒏𝒔𝒐𝒓(𝒌), �⃗⃗� 𝒔𝒆𝒏𝒔𝒐𝒓(𝒌

𝑛

𝑖

− 𝟏),… , �⃗⃗� 𝒔𝒆𝒏𝒔𝒐𝒓(𝒌 − 𝑳)) 

This considers: 

- Gravity 

- Time-varying accelerations 

- Time-varying orientations 

Mean error from L5 position for 

outdoor controlled walking was 

3.8%, with cross correlation 

coefficient of 𝜌=0.993 (p<0.01). 

Mean error from L5 position for 

outdoor free walking was 5.0% 

with cross correlation coefficient 

𝜌=0.990 (p<0.01).  

Model prediction errors were 

minimum in the L5 model 

compared to C7 and forehead. 

C7 model had the smallest inter-

subject variability and a more 

stable performance than the 

other proxy models. However, 

the performance of the proxy 
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- Associated time delays 

- Decomposition of left and 

right components of gait 

signal 

The data based on individual sensors 

using an iterative orthogonal 

forward regression algorithm. It 

models both feet vertical GRF 

separately from the single 

accelerometer, based on its 

membership in the gait cycle.  

models was similar in all 

locations.   

Havens et 

al. (2018) 

 

[6] 

Running 

n = 14 

Upper Leg: 

Left and right 

thigh, between 

lateral 

epicondyle and 

greater 

trochanter 

 

Lower Leg: 

Left and right 

shank, 

between 

lateral 

malleolus and 

lateral 

epicondyle of 

femur 

 

Both:  

Nylon elastic 

band wraps; 

under semi 

rigid plastic 

plates; under 

elastic straps 

under duct 

tape. 

Wearable IMU 

- Triaxial 

- Opal™, APDM Inc. 

 

Force Plates 

 

Motion Capture 

Sampling 

128 Hz 

 

Filtering 

Higher Cut-

Off: 

12 Hz 

Sampling 

1360 Hz 

Sampling 

340 Hz 

 

Correlation  

Stepwise regressions calculated for 

between-limb accelerations in the 

shank and thigh between loading 

and power. 

 

Between limb differences in 

surgical vs non-surgical limbs 

indicated that greater 

differences in thigh axial 

acceleration was related to 

greater differences in GRF and 

knee power absorption. Axial 

acceleration predicted knee 

power absorption and deficits in 

surgical limbs were observed. 

Thigh acceleration correlated 

more strongly with GRF than 

tibial acceleration. Relationships 

were not identified between 

knee mechanics and shank 

acceleration. Shank acceleration 

may not be as useful as thigh 

acceleration for knee joint 

power, but each may provide 

information on knee loading 

deficits.  
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Hennig and 

Lafortune 

(1991) 

 

[7] 

Running 

n = 6 

Lower Leg: 

Tibia, lateral 

condyle, 3cm 

below proximal 

articular 

surface 

 

Bone-mounted 

Steinmann 

traction pins 

Bone-Mounted IMU 

- Triaxial 

- Entran EGA3-25D 

 

Force Plates 

Sampling 

>250 Hz 

 

Filtering 

Higher Cut-

Off: 

60 Hz 

Sampling 

1000 Hz 

 

- Linear 

Correlation and regression 

calculations. 

For: 

𝑃𝑃𝐴 = Peak Positive Acceleration 

𝐹𝑅𝑃1 = (Peak Vertical Force)/(Time 

to first Peak Vertical Force) 

𝑃𝐻𝐹 = Peak Horizontal Breaking 

Force 

𝑏𝑤 = Bodyweight 

 

𝑃𝑃𝐴(𝑔) = 𝑎 + 𝑏 ∗ 𝐹𝑅𝑃1(𝑏𝑤/𝑠) −

𝑐 ∗ 𝑃𝐻𝐹1(𝑏𝑤)  

 

Measured Results: R = 0.94, R2 =

0.88  

𝑎 = 0.65, 𝑏 = 0.105, 𝑐 = 2.83  

 

Mean Results: R = 0.99, R2 = 0.99  

𝑎 = 0.99, 𝑏 = 0.114, 𝑐 = 3.73  

 

 

The rate of loading (time 

development of force) has a 

closer relationship to tibial peak 

accelerations (𝑟 = 0.87) than 

vertical force peaks (𝑟 = 0.76). 

Peak tibial accelerations may be 

sufficient for determining GRF 

data. It was suggested that the 

mechanics of absorbing impact 

may differ between individuals, 

affecting the generalisability of 

any particular result prediction. 

Peak horizontal GRF and loading 

rate under multiple regression 

could provide a valid estimate of 

peak tibial acceleration (𝑟2 =

0.99). 

Lafortune 

et al. (1995) 

 

[8] 

Running 

n = 5 

Lower Leg: 

Right tibia, 

lateral condyle, 

3cm below 

proximal 

articular 

surface 

 

Bone-mounted 

Steinmann 

traction pins 

Bone-Mounted IMU 

- Triaxial 

- Entran EGA3-25D 

 

Force Plates 

Sampling 

1000 Hz 

 

Filtering 

Higher Cut-

Off: 100 Hz 

Sampling 

1000 Hz 

- Fourier Analysis 

Fast Fourier Transform (FFT) 

coefficients found for individual 

results of 4/5 tests, with transfer 

functions of acceleration (A) to force 

(F): 

𝐺(𝜔) =
𝐴(𝜔)

𝐹(𝜔)
 

Individual TAA patterns identified 

from multiplication of 5th trial F 

coefficients with 𝐺(𝜔).  

 

Frequency domain TAA converted to 

time domain via inverse FFT. 

 

Correlations used to determine 

temporal shift, mean square 

differences, and peak amplitude.  

Goodness of fit between 

measured and predicted TAAs 

were increased by increasing the 

number of terms in the 

individual transfer functions. The 

best predication was given by 

terms 0-4 of 𝐺(𝜔), with a 5-term 

model producing a mean signed 

deviation (MSD) of 0.107 to 

0.109. Individual subtleties were 

contributed to by frequencies 

above 32 Hz and by tuning lower 

frequency terms. It was 

suggested that relative to lower 

frequencies, those between 

62.5-100 Hz may be damped by 

the foot-shank complex, leading 

to missing features in the 



15 
 

 

4/5 participant results combined for 

a generic transfer function by which 

5th participant results then 

calculated; process repeated for 

each participant.  

 

Finally, a general 𝐺(𝜔) calculated 

from all results. Term coefficients 

within study. 

 

individual functions. However, 

these functions lacked bias and 

as such should be externally 

generalisable under similar 

conditions. 

Meyer et al. 

(2015) 

 

[9] 

Various Tasks 

n = 13 

 

Walking, 

jogging, 

running, 

landings, jump 

rope, dancing. 

Upper Leg: 

Right hip 

- 

 

Wearable IMU 

- Triaxial 

- ±6g 

- ActiGraph GT3X, 

ActiGraph; (ACT) 

 

- Triaxial 

- ±8g 

- GeneActive, 

ActiveInsights; 

(GEN) 

 

Force Plates 

Sampling 

100 Hz 

Sampling 

2400 Hz 

- Linear 

Vertical GRFs calculated with:  

𝑭 =  𝑚 × 𝒂 

 

Acceleration datasets between IMUs 

were synchronised by matching to 

the point of highest cross-

correlation. 

 

Minimum acceleration values were 

averaged per step and per trial  

 

Observed the differences in 

regression analyses between sex, 

age, weight, height, and leg length.  

 

Considered differences when values 

which peaked the dynamic range 

were included or excluded.  

 

Considered only values with little 

variance. 

 

 

“Data from ACT and GEN 

correlated with GRF (r = 0.90 and 

0.89, respectively) and between 

each other (r = 0.98).” GRF 

increased significantly from 

walking to jogging to running 

(Pearson correlation <0.001) and 

landing tasks (10-30cm) also 

produced significantly higher 

GRF than in walking, jogging, and 

running tasks (P<0.014). Rope 

skipping GRF corresponded to 

GRF from 10cm landing tasks. 

Both accelerometers significantly 

and systematically 

overestimated GRF from their 

acceleration values. Systematic 

bias of ACT was 0.46g and GEN 

1.39g. Measurement bias was 

found to increase with higher 

loadings.  

Penghai et 

al. (2014) 

 

[10] 

Jumping 

- 

Trunk: 

Posterior, 

centre of waist 

- 

 

Wearable IMU 

- Triaxial 

- ±6g 

- LIS3LV02DL 

STMicroelectronics 

Sampling 

640 Hz 

(down 

sampled to 

400 Hz) 

- - Linear 

Gyroscope angular output used to 

determine rate of change, which is 

used to determine acceleration in the 

vertical axis.  

As measured by Myotest, the 

results between the IMU and the 

HUR force platform were weakly 

correlated.  
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Force Plate  

 

Filtering 

Higher Cut-

Off: 

30 Hz 

Total Valid Acceleration: 

𝒂𝒗𝒂𝒍𝒊𝒅 = 𝑎𝑥 cos(𝜃1) cos(𝜃2) +

𝑎𝑦 sin(𝜃1) + 𝑎𝑧 sin(𝜃2)  

 

Maximum Jumping Force: 

𝑱𝑭𝑴𝑨𝑿 = 𝑚 ∙ 𝑀𝐴𝑋〈𝐴𝑡〉  

 

Maximum Explosive Jump Power: 

𝐸𝑃𝑀𝐴𝑋 = 𝑚 ∙ 𝑀𝐴𝑋 〈𝑎𝑡  ∙

(∫ 𝑎𝑡𝑑𝑡
𝑡

𝑡−𝑡0
+ 𝑉𝑡−𝑡0)〉  

 
Maximum Height: 

𝐻𝑀𝐴𝑋 = 𝑡0 ∙ 𝑀𝐴𝑋 〈∑ 𝑉𝑡

𝑡

0
〉  

 
FIR low-pass filter cut-off was further 

applied at 30 Hz. 

 

Numerical correlations were not 

given.  

Pieper et al. 

(2020) 

 

[11] 

Walking 

n = 12 

Lower Leg: 

Left and right 

Anterior tibia, 

50% of shank 

length.  

- 

Wearable IMUs 

- Triaxial 

- Delsys TRIGNOTM 

 

Instrumented 

Treadmill  

 

Motion Capture 

Sampling 

1000 Hz 

 

- 

 

 

Filtering 

Higher 

Cut-Off: 

20 Hz 

 

 

 

Sampling 

100 Hz  

 

Filtering 

Higher 

Cut-Off: 

6 Hz 

 

Linear 

Correlations between peak shank 

acceleration (g) and peak anterior 

GRF (N) in normal gait and in gait 

inhibited by a leg brace. 

 

𝑦 = Peak Anterior GRF (N) 

𝑥 = Peak Shank Acceleration (g) 

 

For un-braced leg: 

𝑅𝑖𝑔ℎ𝑡: 𝑦 = 241.7𝑥 + 6.9  

𝑅2 = 0.77, 𝑃 < 0.001 

𝐿𝑒𝑓𝑡: 𝑦 = 224.7𝑥 + 15.7  

𝑅2 = 0.71, 𝑃 < 0.001 

 

For braced leg: 

Right: 𝑦 = 173.4𝑥 + 4.8 

𝑅2 = 0.31, 𝑃 = 0.06 

 

Changes modulated by GRF and 

power output correlated with 

proportional changes in 

acceleration immediately 

following push-off. Inducing an 

impairment via a right knee 

brace caused a systematic and 

significant reduction in limb 

propulsion. Braced leg peak 

shank acceleration did not 

correlate with peak anterior GRF 

(𝑅2 = 0.31, 𝑝 = 0.061). Peak 

shank acceleration had a 

consistent temporal delay 

following toe-off. A unilateral 

leg-brace impairment does not 

replicate neuromuscular 

limitations present following 

stroke. However, these results 

may be beneficial for measuring 

trailing-limb propulsion. 
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Raper et al. 

(2018) 

 

[12] 

Running 

n = 10 

Lower Leg: 

Medial border 

of tibia 2F

3 

Wearable IMUs 

- Triaxial 

- ViPerform v5 

 

Force Plates 

Sampling 

100 Hz (x-axis) 

20 Hz (y-axis) 

20 Hz (z-axis) 

 

Sampling 

1000 Hz 

 

Filtering 

Higher 

Cut-Off: 

100 Hz 

 

 

Sampling 

200 Hz 

- 

Analysis performed with 

manufacturer program Running 

Analysis. Program algorithm strategy 

method not given. 

On testing the absolute reliability 

of ViPerform, the device was not 

found to calculate GRF similarly 

to a force plate measurement. 

ViPerform was found to have an 

accuracy of 83.96%. However, it 

had an intra-class correlation 

coefficient of 0.877 (95% 

confidence interval 0.825-0.915) 

and as such was deemed 

excellent. It was concluded that 

the ViPerform calculates GRF 

consistently but is not accurate 

to reference Force Plates. As 

such it may be useful as an 

arbitrary load unit. The varying 

sampling rates may cause the 

ViPerform to be subject to 

aliasing. Group data is unlikely to 

assist measurement, and 

individual baseline measures will 

be required in future studies. 

Simons and 

Bradshaw 

(2016)  

 

 

[13] 

Hopping-

Jumping-

Landing Tasks 

n = 12 

Trunk: 

Upper back, 

over second 

thoracic 

vertebra 

 

Tight-fitting 

crop top 

 

Trunk: 

Lower back, 

midpoint of 

superior iliac 

spines of pelvis 

 

Wearable IMUs 

- Triaxial 

- Minimaxx S4 GPS-

uni 

 

Force Plates 

 

Sampling 

100 Hz 

 

 

Filtering 

Higher Cut-

Off: 

8, 15, 20, 50 

Hz 

Sampling 

500 Hz, 

1000 Hz 

 

Filtering 

Higher 

Cut-Off: 

100 Hz 

- Correlation 

Peak resultant acceleration, peak 

vertical GRF, peak resultant GRF 

correlated.  

 

PRA from the three trials of each 

task were averaged. GRF was 

normalised by body weight.  

 

 

Significant differences were not 

found in peak resultant 

accelerations (PRA) between 

drop heights of 57.5 cm and 77.5 

cm in upper or lower back 

placement. The strongest GRF-

PRA correlation for the hopping 

task was found with a 15 Hz cut-

off at the lower back, and 8 Hz at 

the upper back, both producing 

Spearman’s rank correlation 

coefficients (𝑟𝑠) of 𝑟𝑠 = 0.860. 

Significant correlations were only 

found in the lower back when 

recorded from 37.5 cm. The 

 
3 Mounting setup given according to Liikavainio et al. (2007). 



18 
 

Double-sided 

tape Fixomull 

stretch tape, 

tight-fitting 

leggings, or 

compression 

pants 

significance of correlations 

differed according to the cut-off 

filters applied. Continuous 

hopping acceleration (filtered at 

20 Hz) had a correlation with 

GRF of 𝑟𝑠 = 0.825. Overall, PRA 

was considered a good estimate 

of impact loading, especially 

when recorded at the upper back 

and filtered at 20 Hz. PRA was 

able to accurately discriminate 

between landing heights.  

Tan et al. 

(2020) 

 

[14] 

Running 

n = 15 

Trunk: 

Upper Back, T5 

vertebra 

 

Trunk: 

Pelvis, mid-

point between 

left and right 

anterior 

superior iliac 

spine 

 

Upper Leg: 

Left thigh, mid-

point between 

left anterior 

superior 

iliac spine and 

left femur 

medial 

epicondyle 

 

Lower Leg: 

Left shank, one 

third point 

between left 

femur medial 

epicondyle and 

Wearable IMUs 

- Triaxial 

- MTi-300, Xsens 

Technologies 

 

Instrumented 

Treadmill  

 

Motion Capture 

Sampling 

200 Hz 

 

Filtering 

Higher Cut-

Off: 

75 Hz 

Sampling 

1000 Hz 

 

Filtering 

Higher 

Cut-Off: 

50 Hz 

- 

 

 

Filtering 

Higher 

Cut-Off: 

12 Hz 

Convolutional Neural Network 

(CNN) 

- Foot contacts detection 

algorithm segmented data into 

discrete steps 

- Gait cycle input to the CNN 

model 

- Acceleration-XYZ 

- Gyroscope-XYZ 

- Convolution operations 

performed on data window and 

kernels 

- Pooling operations extracted 

the maximum values 

- Features fed into a fully 

connected network, with: 

- Two additional auxiliary 

inputs 

(swing phase duration and 

stride duration) 

- Three hidden dense layers 

(activation function was a 

rectified linear unit 

function) 

- One output layer 

(activation function was an 

identify function) 

Correlations were strong 

between running conditions, 

speeds, footwear, strike patterns 

and step rates (𝜌 ≥ 0.88). From 

single sensors, correlations 

between input and output 

(VALR) were: Shank: 𝜌 = 0.94; 

Foot: 𝜌 = 0.91; Pelvis: 𝜌 = 0.76; 

Trunk: 𝜌 = 0.69; Thigh: 𝜌 =

0.65. Although insignificant, 

there was an increase in 

correlation as data from multiple 

sensors was integrated (1 

sensor: 𝜌 = 0.94(0.03); 5 

sensors: 𝜌 = 0.96 (0.02)). The 

shank was therefore deemed the 

optimum location for impact 

loading. It was said that the foot 

is also an especially good 

location since many commercial 

devices already attach to the 

foot. A larger and more general 

population will enable a more 

accurate vertical average loading 

rate estimation model. 
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left tibia apex 

of medial 

malleolus near 

proximal end 

of tibia 

 

Lower Leg: 

Left foot, left 

second 

metatarsal 

 

All IMUs 

attached with 

straps around 

the body 

segment 

- Output variable: vertical 

average loading rate (of the 

resultant GRF waveform) 

Tran et al. 

(2012) 

 

[15] 

Landing-

Jumping 

n = 10 

Neck: 

At the base of 

the neck. 

 

Manufacturer-

provided 

harness  

Wearable IMU  

- Triaxial 

- SPI Pro 

 

Force Plate 

Sampling 

100 Hz 

 

Filtering 

Higher Cut-

Off: 

20 Hz 

Sampling 

100 Hz 

- Correlation 

Vertical GRF values adjusted by body 

weight and compared to filtered 

accelerations (raw and smoothed).  

 

Bodyweight adjusted c.f. (Simons 

and Bradshaw, 2016) i.e. they 

normalised the GRF rather than 

multiplying acceleration by mass. 

 

  

On comparing the commercial 

device to the vertical GRF values 

measured by the force plates, all 

bodyweight adjusted peak 

accelerations were significantly 

higher than the vertical GRF 

between landing tasks. (𝑝 <

0.05). However, moderate 

correlations of 𝑟 = 0.45 to 

0.70 (𝑝 < 0.05) were found 

between these variables. 

Smoothing this data led to 

reduced variations in the data, 

(within 10.9-22.2%). Since the 

level of acceptability was 

deemed 20%, this device was 

considered able to quantify 

impacts consistently, though not 

from raw data.  

Wundersitz 

et al. (2013) 

 

[16] 

Running 

n = 17 

Trunk: 

Centre of the 

upper back, 

approximately 

above second 

Wearable IMU 

- Triaxial 

- ±8g 

- SPI Pro 

 

Sampling 

100 Hz 

 

Filtering 

Sampling 

100 Hz 

- Linear, Correlation 

𝑭 =  𝑚 × 𝒂  

There were weak to moderate 

correlations (−0.26 < 𝑟 < 0.33) 

across all cranial-caudal force 

tasks. There was a strong 

correlation for 0° change of 
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thoracic 

vertebra. 

 

Placed within a 

mini-backpack, 

within the 

manufacturer-

supplied 

harness. 

 

Force Plate 

 

Motion Capture 

Lower Cut-

Off: 

Higher Cut-

Off: 

10, 15, 20, 25 

Hz 

direction (𝑟 = 0.76) and 45° 

(𝑟 = 0.67). However, raw 

accelerometer data significantly 

overestimated resultant GRF at 

the force plates (p < 0.01). 

Measurement errors increased 

with degree of change of 

direction. However, smoothing 

data at 10 Hz was found to 

positively influence the results of 

the movements performed. 

There was an indication that 

smoothed data may provide 

acceptable agreement for force 

prediction. Deviation of the IMU 

from the vertical axis was a 

major influence on the errors in 

these results. Absolute errors for 

single measurements were 

between 12-24%. 
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Chapter 3. Modelling Activity Characteristics  

Research Aim #1 

Determine whether there is a relationship between force and acceleration at the 

lower limb. 

3.1. Recording at the Lower Limb  

The qualified articles have examined the relationship between acceleration and ground reaction 

force across several body segments during movement. If the ideals proposed in Chapter 1 are to be 

verified, it must be determined whether this relationship can be modelled by data recorded at the 

lower limb. As such, this chapter will consider three implications made in the literature regarding 

placement at the lower limb: the locational accuracy of devices placed there, the attenuation and 

distribution of impact forces throughout the body during movement, and relevant rules and 

legislation for device placement as defined by Netball Australia and other sports.  

3.1.1. Location 

Research on wearable sensor systems may be divided into the recognition of daily activities and 

the accurate measurement of human motion data (Abdelhady et al., 2019). Within these research 

areas, there is a clear market opportunity for low-cost devices that are able to measure the 

plantar and ground reaction forces of gait analysis at a high quality (Abdelhady et al., 2019). The 

design of such wearable systems would allow users to analyse gait and movement kinetics, 

without needing access to a laboratory (Jacobs and Ferris, 2015). Fulfilling this requires designing 

these devices accurately both according to the location from which data is recorded and the 

accuracy of captured metrics provided by each device. 

Location Possibilities 

Obtaining consistent accuracy has been a major hurdle in studies that have researched the 

development of accurate wearable technologies, often due to the variance in results between 

participants and locations (Elvin et al., 2007). To compensate for this, location protocols and 

recommendations have been widely researched. Studies have considered acceleration in various 

applications and locations, with many specifically considering its relationship to impact. 

Accelerometers have been trialled on the feet (Takeda et al., 2009); the tibia (Tenforde et al., 



22 
 

2020); the hip (Meyer et al., 2015); the lower back (Penghai et al., 2014) and upper back 

(Wundersitz et al., 2013); the neck (Tran et al., 2012); the forehead (Guo et al., 2017); and even in 

a plastic mouth piece (Lewis et al., 2001). This wide distribution provides the grounds for this 

discussion on the benefits and difficulties of location. The placements considered in the qualified 

articles have been illustrated in Figure 3. 

 

Figure 3: The location of the IMU placements in the qualified articles. 

Of the 15 different locations shown in Figure 3, there were 19 IMU placements on the lower half 

of the body (the lower and upper leg), with 15 specifically on a lower leg. Often in the literature, 

the lower leg was selected because of the findings of previous studies, or because of placement 

assumptions. For example, Charry et al. (2013) selected the medial tibia on the recommendation 

of Liikavainio et al. (2007), who had reported it an accurate site for recording acceleration. Elvin et 

al. (2007) chose the fibular head since the prominent structure enabled placement repeatability 

due to the obvious identification of the palpation; and because it was deemed low risk for injury 
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from falls; and because they had seen it done before (Puyau et al., 2002). Not aware of conclusive 

evidence for optimal placement, Simons and Bradshaw (2016) assumed that assessing impact 

loading during jumping and landing tasks would be best represented by the lower back, since this 

is at the centre of mass. Since the literature review targeted the lower limb, it is unsurprising that 

most of the IMUs were located here. However, the variance does provide insight into the effects 

on accuracy between locations.  

Rouhani et al. (2014) have demonstrated that forces and torques vary significantly across the 

lower leg, depending on if measured at the shank, hindfoot, forefoot, or toes; and that moments, 

powers, and forces differ in shape and magnitude between planes. This immediately indicates that 

three-dimensional effects of segment position and rotation may prove helpful in model 

development.3F

4 These effects are objectively seen between placement sites when considering 

location-based correlations. Tan et al. (2020), who tested sensor locations on the body at the 

trunk, pelvis, thigh, shank, and foot, found that the correlation differed between locations, and 

was the highest for a single sensor when located on the shank, producing load rate correlation 

coefficients of 𝜌 = 0.94. However, although this may seem optimal for modelling impact due to 

the high correlation, the shank has been shown to record lower acceleration magnitudes than at 

the foot (Takeda et al., 2009).  

Waveform Differences 

After performing a frequency decomposition on the acceleration signals at the abdomen, both 

thighs, shanks and feet during walking, Takeda et al. (2009) observed that the signal was greatest 

in magnitude at the feet, attenuating as it moved away from the point of impact. For example, as 

shown in Figure 4, they found that there were high frequency, high magnitudes components 

unique only to the foot.  

 
4 The contribution of planes and axes of motion will be discussed further in Chapter 3.2.4. 
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Figure 4: The sum of the primary, secondary, and tertiary acceleration frequency components (bold) of the raw signals 

of the (A) foot and (B) shank (Takeda et al., 2009). Reprinted with permission from Elsevier. 

Since Tan et al. (2020) found that the shank was optimal for modelling load rates, but it is here 

seen that the force magnitude attenuates away from the source of impact, force modelling may 

depend not primarily upon the acceleration magnitude, but on the force-acceleration waveform 

similarity.  

And yet, even with the confidence of such studies that consider the shank an optimal 

representation of ground reaction forces, location may not be the most crucial factor when 

determining model efficacy. Guo et al. (2017) performed a study in which none of the locations 

tested for IMU location were on the lower limb, and this was the study that produced the highest 

correlation accuracy of the qualified articles, with a maximum cross correlation coefficient of 𝜌 =

0.993. Nevertheless, this does not invalidate the conclusions of other studies that have considered 

the practical application of lower limb acceleration, since Guo et al. (2017) was one of only two 

qualified articles to use a machine learning algorithm.4F

5 Nevertheless, location clearly still affects 

the relationship. To understand this, the effects of force attenuation and distribution throughout 

the body must be considered. 

3.1.2. Attenuation 

Attenuation is particularly important for modelling a relationship in the field of elite sport, since as 

athletes improve in managing their shock attenuation, the effectiveness of using peak resultant 

acceleration as a proxy for GRF can also increase (Simons and Bradshaw, 2016). Simons and 

Bradshaw (2016) determined that the relationship between GRF and torso accelerations is likely to 

be related, but not equal, since the impact force attenuates away from the feet up the trunk. For 

example, statistically significant differences (𝑝 < 0.01) have been observed between the trunk 

and tibia force and impulse measurements (Callaghan et al., 2018). 

 
5 Different model types will be discussed in Chapter 3.2.1, Linear Models. 

A B 
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Vertical Attenuation  

When Meyer et al. (2015) placed accelerometers on the hips of children, the acceleration-

predicted force both systematically and significantly overestimated GRF, with measurement bias 

increasing with higher loadings; yet despite this, the accelerometers were deemed reasonably 

accurate for measuring the impact loading of bone. However, after considering the upper back, 

Wundersitz et al. (2013) asserted that “accelerometers worn on the upper body… should not be 

used as an absolute measure of a single foot-strike impact force as they cannot provide acceptable 

levels of accuracy.”  

Higher up again, Tran et al. (2012) found that the smoothed data of a commercial IMU at the base 

of the neck was able to estimate vertical GRF consistently from the bodyweight-adjusted 

acceleration vectors to within 22%, producing correlations of 𝑟 = 0.45 to 0.70; correlations which 

could be classified as moderate to very high (Hopkins, 2006).5F

6 These results demonstrate that 

although body placement clearly affects impact prediction accuracy, a limited relationship remains 

even after being attenuated through the entire body.  

Expecting an attenuation of force throughout the body, Tran et al. (2012) counterintuitively found 

that the vertical GRF as calculated from the neck was actually higher than the force-plate 

measured vertical GRF. It was suggested that “there may be dissociation in the theoretically linear 

relationship between forces and accelerations experienced by the body during impacts, as a result 

of the segmental nature of human movement” (Tran et al., 2012). If so, then compensating for this 

disruption in the transmission of segmental forces would also become a necessary consideration 

in force modelling. It has been suggested that in the case that higher-than-expected forces are 

measured from more cranial locations, the errors are largely due to device vibration and can be 

eliminated by smoothing the data (Wundersitz et al., 2013).6F

7 

Segmental Attenuation 

Pressing deeper into the issue of a segmented approach to kinetics, it is found that forces are even 

experienced differently within different body segments. Rouhani et al. (2014) investigated force 

approximations with the knowledge that “shear GRF components are distributed among foot 

segments in proportion to their vertical GRF.” 7F

8 They found that between the toes, forefoot, 

 
6 Correlation classifications will be discussed in Chapter 4. 
7 Noise and filtering will be discussed in Chapter 4. 
8 This was determined based on research from Scott and Winter (1993) and MacWilliams et al. (2003). 
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hindfoot, and shank, results differed between both participants and segments (Rouhani et al., 

2014).  

It has also been found that “rotation of the support upper leg… reduces the vertical acceleration of 

the hip joint relative to that of the knee joint” (Bobbert et al., 1992). These findings hold a key 

implication for the placement of IMUs. If GRF is distributed over each segment, then the reaction 

force as measured on, for example, the ankle, may give neither the entire force as measured at 

the foot, nor at the shank, but only a portion or combination of the forces between the two. As 

such, recording acceleration and approximating impact at specific places on the body will require 

solving for both inter-segment and intra-segment differences.  

A major cause of the attenuation and measurement error within and between body segments may 

be the presence of subcutaneous fat. To counteract this, Zhang et al. (2008) chose to attach their 

devices to the forehead and the distal anteromedial surface of the tibia, for there is minimal 

subcutaneous tissue at these locations. 8F

9 Similarly, Marin et al. (2020) intentionally did not place 

the accelerometer at the waist because it would be subject to soft tissue artefact from the 

wobbling of fat.  

Aware of the limitations of recording over soft tissue, Hennig and Lafortune (1991) surgically 

mounted their accelerometers directly to the bone of their participants, completely removing soft 

tissue movement artefact; they had previously found that axial acceleration peaks were twice as 

high when measured from a skin-mounted sensor than when directly measured from the bone 

(Hennig and Lafortune, 1988). Herein lies a difficulty for the modern designer: in order to 

accurately predict force from acceleration, an accurate model must account for the elimination of 

movement artefact either in the mechanical design or in the post processing of the raw 

acceleration data. However, eliminating movement artefact will not solve every problem: despite 

removing all movement artefact by mounting to the bone, Hennig and Lafortune (1991) did not 

observe a perfect correlation between acceleration and GRF. Clearly, the mounting method is not 

the only indicator of a successful relationship.  

If the rate of attenuation could be mapped, then perhaps the load at different parts of the body 

could be determined, but before this can happen, a consistently accurate model at a single 

location must be identified. Nevertheless, any device must be located where the device can be 

 
9 However, this study considered the relationship between acceleration and power; not force. 
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attached securely to an inferior location where subcutaneous tissue is minimised, such as on the 

ankle and anteromedial surface of the tibia (Simons and Bradshaw, 2016).  

3.1.3. Rules and Legislation 

A final but important consideration regarding this initial discussion on the placement of the device 

regards gaining legislative approval from the sporting organisations in which a device may be used. 

In a previous study with the same netball team introduced in Chapter 1, the placement of an IMU 

on the ankle, in a structured non-match environment, was welcomed, and as such may be feasible 

(Corbo, 2018). The International Netball Federation (2020) specifies in their Rules of Netball that 

during a match, players must wear a registered playing uniform with suitable footwear (5.1.1 (i) a), 

and that “players may not wear anything that could endanger themselves or other players” (5.1.1 

(iv)). Explicit prohibitions within this criterion include any adornment or jewellery, except a tape-

covered wedding ring (5.1.1 (iv) a), or a tape-covered medical alert bracelet (5.1.1 (iv) b).  

Similarly, the International Basketball Federation (2020) (FIBA) specifies in the official basketball 

rulebook that “players shall not wear equipment (objects) that may cause injury to other players,” 

explicitly prohibiting a variety of soft and hard guards, anything which could cut or cause 

abrasions, and jewellery (Rule 3, article 4.4.2). Since ankle braces are permitted, it may be that an 

unobtrusive device could be permissibly developed for this location; however, so as not to be 

classified as jewellery, it would require further confirmation; as qualified later in the FIBA 

rulebook, “any other equipment not specifically mentioned… must be approved by the FIBA 

Technical Commission” (Rule 3, article 4.4.5).  

Regarding prohibited objects, similar rules apply for volleyball (Fédération Internationale de 

Volleyball, 2016) (Article 4.5), Australian football (AFL) (Australian Football League, 2019) (Article 

9.2) and rugby (World Rugby, 2019) (Regulation 12). Under these rules, it is reasonable to expect 

that a safe and unobtrusive wearable device above the ankle may not be prohibited. Clearly, 

before the official use and advertising of any device, these governing bodies should be consulted 

for confirmation and approval. 

3.2. Algorithms 

Although several methods exist for collecting data and modelling the relationship between 

acceleration and GRF, it has been shown that the development of a generalisable algorithm is not 

straightforward. This section will discuss some of these methods and algorithms more broadly. This 
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holds relevance to understanding whether acceleration is only valid as an indicative proxy, or 

whether a definite relationship is possible.  

3.2.1. Linear Models 

The literature seems to be divided on the effectiveness of different linear and non-linear 

algorithms, and on using plain correlations or more complicated models, when consider a 

multivariate of input data. When considering the published, peer-reviewed research on the topic 

over the past 30 years, there has recently been a spike in interest, with more than half of the 

identified qualifiable articles being published within the last 5 years, as shown in Figure 5. Over 

this period, new strategies for modelling the relationship have also been introduced. These 

strategies have progressed from linear correlations to advanced machine learning and artificial 

intelligence models. Now more than ever, there is a call to develop algorithms which utilise the 

improved techniques incorporated in machine learning strategies, and provide an understanding 

on the relationship development in light of the multivariate of available data (Mahdavian et al., 

2019). The relationships identified in these articles will now be discussed. 

 

Figure 5: The publishing of the qualified articles and their algorithm models. 

Linearity 

The aforementioned results have challenged the theory of linearity between acceleration and 

force within the human body, with difficulties pertaining to attenuation, tissue composition and 

location-based acceleration waveform differences. However, even the fundamental waveforms of 
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force and acceleration during gait are not the same, as illustrated by waveforms in Figure 6 from 

Hennig and Lafortune (1991).9F

10 It is important to state that although the natural assumption may 

be to take Newton’s Second Law of Motion, 𝐹𝑜𝑟𝑐𝑒 = 𝑚𝑎𝑠𝑠 × 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛, and relate force to 

acceleration by a simple product with mass, there are several other factors that must be 

considered.   

 

Figure 6: (A) Vertical GRF and (B) tibial axial acceleration, during the stance phase of a cyclic running activity at 4.5  

ms-1 (Hennig and Lafortune, 1991). Reprinted with permission from Human Kinetics, Inc. via Copyright Clearance 

Centre Inc. 

For example, a lack of linearity was observed several times throughout the literature, with 

Callaghan et al. (2018) finding that peak vertical GRF was significantly different from tibial 

acceleration (𝑝 < 0.05), with mean differences of over 2000 N. After using a higher-order cross-

correlation non-linear model with pressure-sensing insoles, Guo et al. (2017) concluded that “a 

linear model is not sufficient to describe the relationships between [acceleration and vertical GRF].”  

This may be due to the fact that the timing of the peak force and acceleration events is different, 

and not necessarily consistent. Bobbert et al. (1992) found that the peak vertical force component 

occurred at 25 ms after touchdown, and decreased to a local minimum at 40 ms before then 

increasing again i.e. Figure 6 (A), and Hennig and Lafortune (1991) observed peak positive 

acceleration to occur approximately 5 ms prior to the first peak vertical force (𝑝 < 0.01).  

Now, this is not to say that there is no valid linear relationship between acceleration and force; 

just that this relationship may not always appear to be present. In fact, as shown in Table 2, the 

correlations reported by the studies who explicitly used a linear model could be considered large, 

and at best, almost perfect: the minimum correlation with a linear model was from Wundersitz et 

al. (2013) at 𝑟 = 0.67; the highest from Meyer et al. (2015) was 𝑟 = 0.90. Direct correlations 

between acceleration and force were less close: the minimum correlation with a correlation-only 

 
10 Also see Chapter 3.1.1, Location. 

A B 
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model is from Davis et al. (2018) with 𝑟 = 0.37; the highest is from Simons and Bradshaw (2016) 

with 𝑟 = 0.86 (very large).  

Table 2: The best correlations obtained within studies that used linear models to relate acceleration with GRF. 

Study Relationship Best Correlations Attained 
[9] Meyer et al. (2015)  Linear 0.89 to 0.90  
[1] Callaghan et al. (2018)  Linear 0.832  
[7] Hennig and Lafortune (1991)  Linear 0.76  

[16] Wundersitz et al. (2013) Linear 0.67 to 0.76 
[11] Pieper et al. (2020) Linear 0.71  
[10]  Penghai et al. (2014) Linear Not given 

[13] Simons and Bradshaw (2016) Correlation-Only 0.86  
[3] Davis et al. (2018)/Tenforde et al. (2020) Correlation-Only 0.37 to 0.82  
[4] Elvin et al. (2007) Correlation-Only 0.812  

[15] Tran et al. (2012) Correlation-Only 0.45 to 0.7 
[6] Havens et al. (2018) Correlation-Only Not given 

This may support the notion that mass is a contributing factor, since the linear correlations (from 

participant-specific, mass-adjusted models) were higher than the correlations of data which had 

not been modified by mass. Across these studies, if it is a correct conjecture to suggest that the 

proportionality between force and mass (following Newton’s Second Law) is responsible for the 

greater range of correlations, 10F

11 then it may be true that the participants involved within these 

studies also had a wider variance of mass between them. 

Further considering linearity, in a study on vertical jumping, Elvin et al. (2007) produced a strong 

and significant linear correlation between peak vertical GRF and peak tibial axial acceleration 

(TAA) (𝑟2 = 0.812, 𝑝 ≤ 0.01), showing that there is still value in pursuing linearity as a factor. On 

using imperfect linearity to understand waveform characteristics, Lafortune et al. (1995) 

concluded from Pradko et al. (1967) that “some deviation from linearity [in the GRF-TAA 

relationship] should not cause loss of essential characteristics,” and Raper et al. (2018) has also 

concluded on the value of imperfect relationships: despite the values predicted by Running 

Analysis being consistently above the actual force, the intra-class consistency deemed the model 

valuable as a relative indicator. 11F

12 As such, although no single linear approximation has perfectly 

reconciled the differences between acceleration and GRF, there may still be certain characteristics 

 
11 The correlation range width for linear relationships is 0.90 − 0.67 = 0.23; for correlation-only it is 
0.86 − 0.37 = 0.49. 
12 Running analysis was the manufacturer-supplied application used for predicting GRF from the 
acceleration data of the device. 
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which can contribute to the development of an efficacious model. However, in the case that a 

direct linear relationship cannot be established, two things must be considered: non-linear 

models, and the variables used to predict them. 

3.2.2. Non-Linear Models 

Logarithmic Predictions 

Another strategy used in the literature was a logarithmic approximation. In a simple variation on 

the classic linear approach, Charry et al. (2013) estimated the relationship by logarithmically 

modelling the vertical GRF using mass and acceleration: 

𝐺𝑅𝐹 = 𝑎(𝑚𝑎𝑠𝑠) + 𝑏(𝑚𝑎𝑠𝑠) × log2(𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1) 

They found that the logarithmic approach produced a much better approximation of GRF from 

tibial axial acceleration than their linear model, with correlation coefficients of 𝑅2 = 0.95 

(logarithmic) against 𝑅2 = 0.81 (linear). Concluding on their results, shown in Figure 7, they 

observed “a non-linear nature of the tibial accelerations amplitudes at different running velocities” 

(Charry et al., 2013).  

 

Figure 7: Prediction of GRF using tibial acceleration for three subjects on the left and right shank (Charry et al., 2013). 

Reprinted with permission from IEEE © 2013 IEEE. 

Fourier 

The models proposed have not been limited to the time-domain. For example, rather than 

assuming that the relationship can be modelled linearly by time, Lafortune et al. (1995) performed 

a Fast Fourier Transform on their acceleration data, establishing a Fourier series transfer function 

by relating acceleration and force in the frequency domain. And, as opposed to each of the other 
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qualified articles that developed a relationship based on acceleration, they developed this 

relationship by using GRF as the independent variable from which they calculated acceleration.  

Their five-term model in the frequency domain produced a high accuracy relationship with a mean 

signed deviation of 𝑀𝑆𝐷 = 0.107 𝑁. However, their general transfer functions for all participants 

lacked the ability to predict underlying mechanisms, explaining impact transmissibility, leading to 

larger time shifts and mean square differences compared to individual subject-specific functions 

(Lafortune et al., 1995). They had previously found that acceleration patterns were highly 

reproducible between steps, meaning that the cyclic activities were well suited for analysis in the 

frequency domain (Lafortune, 1991).  

Previous studies have considered the frequency contribution of similar waveforms, where there is 

a close resemblance between the acceleration and the modulated cyclic waveform built from 

primary frequencies. 12F

13 However, the difficulty with using frequency-based models is that although 

approximations can be made, they cannot approximate non-cyclic movement patterns, since by 

their very nature, cyclic functions require patterns; not movements that lack rhythm. For example, 

the division of frequencies whilst running will differ from the (relatively) chaotic movements 

within a court-based game entailing steps, pivots, stops and jumps in random succession.  

Udofa et al. (2016) predicted force from optical motion capture acceleration with sinusoidal 

functions. However, they suggested that the bell curve of their waveform may have contributed to 

prediction overshoot. They suggested that although half-sine waves are more often used in 

biomechanical literature than bell curve functions, half-sine waves introduce systematic errors on 

“the leading and trailing edges of the waveform” (Udofa et al., 2016); and this may prove 

problematic if considered in the future. 

However, consider the scenario that a series of random movements patterns were distinguished 

from one another. Perhaps, these movements could be individually modelled by using a series of 

pattern recognition algorithms. In effect, this would be producing a function set that describes a 

range of potential movements, where the sequence of movements would be described as a 

discontinuous function. This could even be extended between algorithms: a portion of the signal 

could be described linearly, a portion logarithmically etc. If this were possible, a device would 

need to determine the current gait event, then select the correct algorithm, and then perform the 

corresponding prediction. A rule-based matrix of selection data could be developed, where 

 
13 See Figure 4. 
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variables within the gait cycle are identified such that the movement and associated model are 

also identified, and from there the appropriate model selected.  

If different movements were considered within a signal, then in effect, the kind of algorithm that is 

being considered is actually neither a linear nor frequency modulated signal, but now a kind of 

timeseries or pattern recognition model, such as those used in machine learning and artificial 

intelligence. Fuzzy logic may be one method of applying this. 

Fuzzy Logic 

The use of a fuzzy similarity algorithm would allow the comparison of a reference rule-base 

dataset with data obtained during an investigation (Alaqtash et al., 2010). Acceleration and force 

data obtained from gait stages would enable identification of the optimal procedure for analysing 

the data, including the order that algorithms are applied and the kind of algorithms that are used.  

Alaqtash et al. (2011) used fuzzy relational matrices to determine the level of similarities between 

variables identified within any given gait phase by identifying the mean and standard deviations of 

rule-based matrix results for all subjects, and the grades of similarity to each phase within the gait 

cycle. Their matrices provided information on the segment accelerations and their respective 

similarities.13F

14 Alaqtash et al. (2011) explains the benefits of this method in five points, explaining 

that fuzzy logic is effective for: 

(1) “reducing the massive data extracted from gait kinetics and kinematics in 3D,  

(2) [being] easy to interpret and understand,  

(3) offering insight into non-linear relationships among gait variables,  

(4) providing quantitative comparison, [and] 

(5) [having] less complexity and fast processing time, and therefore, offering a possibility for 

real time applications.” 

Using fuzzy logic in an impact prediction algorithm would enable comparing between gait events, 

the revelation of model efficacy, and the opportunity to define results based on the relative 

goodness of fit to one another. However, as effective as this may be, such a separation of model 

 
14 This study did not qualify for the review since it did not predict force from acceleration; it used the forces 
and accelerations of healthy subjects to determine gait differences in patients impaired by multiple 
sclerosis. 
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shapes may be unnecessary if a time-series neural network is selected since these patterns would 

be internally recognised whilst generating the algorithm. 

3.2.3. Machine Learning Models 

There are several strategies that utilise machine learning strategies, such as neural networks, 

random forest models, and support vector machines. Two of the qualified articles used machine 

learning neural network algorithms, with Guo et al. (2017) using a non-linear autoregressive 

timeseries algorithm and Tan et al. (2020) using a convolutional neural network. Both studies 

reported almost perfect correlations. Both also tested the sensor position in their algorithm 

correlations, reporting similar values for results from all positions. This may indicate that the 

algorithm used has a greater influence on the correlation than the placement does, it and goes to 

show the power of machine learning. However, Guo et al. (2017) reported that using a non-linear 

dynamic method of statistical analysis had its own difficulties, with the neural networks becoming 

difficult to visualise and analyse.  

Neural Networks 

Convolutional neural networks were used effectively by Tan et al. (2020), with the mean of every 

correlation above 𝜌 = 0.9. They considered four key areas: activity type (speed), subject clothing 

(footwear), movement technique (strike pattern) and time movement sustained (step rate); areas 

that will be further considered later in this discussion. 14F

15 Tan et al. (2020) did not determine their 

correlations with a direct GRF analysis, but rather determined a vertical average loading rate for 

their participants from peak tibial acceleration.15F

16 In their results, the linearly predicted peak 

acceleration correlation coefficient (𝜌 = 0.51 to 0.75) was much smaller than every correlation 

coefficient generated with the neural network (𝜌 = 0.88 to 0.95).  

These lower linear correlations are much closer to the correlations reported by Pieper et al. (2020) 

(𝑟 = 0.71 to 0.77), Tran et al. (2012) (𝑟 = 0.45 to 0.70), and Wundersitz et al. (2013) (𝑟 = 0.67 to 

0.76), affirming the difficulties associated with linearity and demonstrating the effective use of 

machine learning algorithms. 

One reason that neural networks are beneficial for limiting errors is because of their ability to cope 

with minor placement deviation (Tan et al., 2020). The placements were chosen by Tan et al. 

(2020) after considering 120 combinations of location and device number for optimal data 

 
15 Chapter 5, Applying the Relationship. 
16 Vertical average loading rate is further considered in Chapter 3.2.4, Algorithm Variables. 
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analysis, determining the 31 best configurations by the smallest normalised root mean square 

error of each combination. This method, and the kind of CNN model that they used, meant that 

“no sensor placement calibration was required for the experimental setup, which could potentially 

increase the academic and clinical use of the CNN model” (Tan et al., 2020). However, this kind of 

analysis is not yet confirmed as generalisable, with Tan et al. (2020) concluding that a need 

remains for wider participant ranges in algorithm development and Guo et al. (2017) 

acknowledging that future research must include more random activities of daily living, rather 

than single cyclic walking patterns. Guo et al. (2017) likewise recommended that wider age groups 

and participants be selected, including those with pathological gaits, rather than only young, 

healthy volunteers. 

Tan et al. (2020) also commented that further analysis could be warranted to determine whether 

using multiple segments could provide significant information on additional loading impact 

variables, because their results had showed statistically insignificant differences between using 

one or more devices.  

Machine Learning Model Differences 

When Mahdavian et al. (2019) compared random forest, neural network and support vector 

machine models to predict force and torque from motion capture data, they found that the entire 

force and torque waveform could be predicted over the gait cycle, albeit there being no single 

machine learning model that out-performed every other model in each axis prediction.16F

17  

Marin et al. (2020) performed a comparative analysis, this time considering attachment sites for 

effect differences on the ability of different devices to distinguish between low to high intensity 

exercise, and of the devices to assess those differences in light of the metrics and the metabolic 

equivalence of each task. It used five different algorithms as suggested by other studies for 

transforming the raw data and relating the results to one another, demonstrating the value of 

comparing such models with their varied results. These results clearly show that whether 

modelling with a single, suitable relationship, or with separate relationships, when researching, 

several different algorithms should be considered.  

 
17 They found that the random forest model performed best In 𝐹𝑥, 𝐹𝑦, 𝑀𝑦 and 𝑀𝑧 (𝑅 =

0.89; 0.93; 0.95; 0.89) and that the neural network performed best in 𝐹𝑧 and 𝑀𝑥 (𝑅 =  0.97; 0.91). 
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3.2.4. Algorithm Variables 

Just as there are several methods for data collection, so there are several variables that contribute 

to its determination. The variables that were raised in the qualified articles have been summarised 

below in Table 3. This section will consider the contribution and effects of each of these variables 

to an effective algorithm. There have been several major determinants proposed for modelling 

force and acceleration. Three of these are suggested by Takeda et al. (2009): translational 

acceleration (from movement), gravitational acceleration (from gravity), and the noise collected 

by each device.17F

18  

Table 3: Variables used in the qualified articles for modelling the force-acceleration relationship. 

 Variables 

Dependent  Force Studies Acceleration Studies 

Independent  Acceleration (time) All Vertical force [7] 

Mass (either 
normalised by mass, 
or acceleration 
multiplied by mass) 

[1],[2],[9],[10],[13],[15],[16] Mass [7] 

Gravity [4],[5] Horizontal breaking 
force 

[7] 

Gyroscopic data 
(segment orientation) 

[10],[14] Time to force event [7] 

Jump height [4]  

Flight time [4] 

Frequency 
components 

[6] 

Gait components (Left 
vs. Right 
decomposition)  

[5] 

Gait phases: swing 
phase duration and 
stride duration 

[14] 

Mass 

The force exerted on the body due to gravitational acceleration, affected by mass, is a preliminary 

factor that must be considered, especially since it has been shown that relationships differ 

between body segments.18F

19 In fact, considering mass within these relationships is imperative, since 

during running, an average error reduction of 30% has been observed in multi-subject calculations 

after its inclusion (Charry et al., 2013). Clark et al. (2017) has shown that the separation of body 

mass into two regions may contribute to establishing a relationship among runners. These results 

 
18 The effects of noise are covered in Chapter 4.1. 
19 Chapter 3.1.1, Location. 
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have been further verified by Udofa et al. (2016) who expanded the testing to predict peak impact 

forces across different speeds, with different products of body weight. They considered that 𝑚1 =

0.08𝑚𝑏 represented the stance foot and shank and that 𝑚2 = 0.92𝑚𝑏 represented the remaining 

mass, and found that this mass division produced higher correlations than mass divisions of 

𝑚1: 𝑚2  =  1.5-98.5% and 16-84%.19F

20  

It is important that these locations are specified within discussions on causal relationships, 

especially when considering the trajectory of these segments as measured from different 

positions. When both legs are involved in a combined GRF reading, it may also be necessary to 

consider how results relate to the algebraic mean of the tibial axial acceleration of each leg, or a 

breakdown of this depending on technique (Elvin et al., 2007).  

Acceleration 

It is maintained that gravitational acceleration is a uniaxial acceleration on a body, most freely 

measured when the body is stationary. Gravitational acceleration was considered by Takeda et al. 

(2009) as the gait pattern which presented the lowest amount of positional error, compared to 

other decomposition patterns of a full gait analysis. However, when considering gravitational and 

translational acceleration together, the effects of translational acceleration, combined with 

gravity, ultimately yield a triaxial acceleration vector under which the body is influenced. 

Therefore, models may need to account for the acceleration experienced in each of the three axes 

and consider the benefits of using singular or resultant axes.  

The contribution of body segment angle to the overall trajectory must also be considered, since 

“centrifugal forces due to angular motion of the tibia have a major influence on the magnitude and 

shape of tibial acceleration signals” (Hennig and Lafortune, 1991); and this is further supported by 

the findings of Havens et al. (2018), wherein the “linear acceleration detected at the thigh and 

shank was not only a result of the shock from the body colliding with the ground but [also] the 

rotation of the segments.” As such, translational resultant acceleration is identified as a key 

variable for consideration, especially in light of how uniaxial accelerometers can be a limitation 

 
20 When compared against measured waveforms for foot strikes, the 8-92% model (𝑅2 = 0.95 ±  0.04) 
predicted measured waveforms better than the 1.5-98.5% (𝑅2 = 0.83 ±  0.16) and 16-84% (𝑅2 = 0.74 ±
 0.21) models. Although these correlations between force and acceleration were made with data from 
motion capture devices, the case for mass division still stands, since these results are using translational 
acceleration characteristics alone. 
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(Elvin et al., 2007) and that “tri-axial resultant data are likely more valid than uniaxial data for 

measuring impact forces” (Wundersitz et al., 2013). 

However, that triaxial acceleration is preferred or even necessary is not to say that resultant 

triaxial data must be used; rather, when single or global axes are selected as axes of reference, 

results can still be promising. For example, although Meyer et al. (2015) found that their algorithm 

had systematically overestimated the GRF, they still observed correlation of up to 𝑟 = 0.90 by only 

considering data in the vertical axis. However, they did say that for more variable daily living 

activities, using only vertical rather than resultant data “may not be adequate” (Meyer et al., 

2015). Hennig and Lafortune (1991) actually reported the highest correlation between force and 

acceleration when considering horizontal breaking force in their calculation. Furthermore, 

Macadam et al. (2017) relayed how Mero (1988) found significant correlations between velocity 

and horizontal force, and velocity and vertical forces, in block start sprints; also that acceleration 

correlated with propulsive impulse (𝑟 = −0.66).20F

21 

Calculating Acceleration 

When using resultant acceleration throughout the review, the common method used among studies 

for determining resultant acceleration, such as in Simons and Bradshaw (2016), was: 

𝑎 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 

If determining global vertical acceleration, one method is to use the angular rate of gyroscopic axis 

data to determine valid accelerations during movement. With the 𝑥-axis aligned with the spine, 

angular changes in coronal and sagittal body movements were calculated by Penghai et al. (2014); 

and since the only movements were vertical jumps, transverse (𝑧-𝑦 plane) rotational data was 

excluded and in this plane considered “substantially constant.” As such, the angular rate of the 𝑥-𝑧 

plane (sagittal) was 𝜃1, the 𝑦-𝑥 axis was 𝜃1, and the valid vertical acceleration was given by: 

𝑎𝑣𝑎𝑙𝑖𝑑 = 𝑎𝑥 cos 𝜃1 cos 𝜃2 + 𝑎𝑦 sin 𝜃1 + 𝑎𝑧 sin 𝜃2 

This equation determined the vector along a single axis independent from any device (the global 

vertical), and as such, although only a single axis was considered, a triaxial accelerometer was 

required. If choosing a particular axis to monitor data in without this calculation, an important 

 
21 Macadam et al. (2017) also relayed that similar findings in both track and field, and team sport athletes, 
had been found by Hunter et al. (2005). 
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factor is maintaining device alignment, since deviation from each axis causes deviation in results if 

not properly reconciled (Rouhani et al., 2014). This highlights the need for either repeatable 

placement position, or the need for a generalisable function that, after an initial calibration, uses 

triaxial vectors from any position.  

It is interesting that despite 15 of 16 studies using triaxial IMUs to record acceleration data, as 

shown in Figure 8, many of these only considered acceleration in a single axis: either in the vertical 

axis, which was then related to the vertical GRF, or along the tibial axis, rather than a resultant 

magnitude.21F

22 In a study on change-of-direction movements, Wundersitz et al. (2013) observed 

that the cranial-caudal axis had poor agreement with the global vertical axis, since the cranial-

caudal axis would become misaligned during motion. When comparing the results between axial 

measurements in different angle change-of-direction movements, they found that the maximum 

uniaxial correlations were 𝑟 = 0.39, and the maximum triaxial correlations were 𝑟 = 0.76 

(Wundersitz et al., 2013). They also acknowledged that a limitation of locating an IMU on the 

upper body is that it must be able to compensate for postural movements due to the deviation 

from posture from the true vertical axis.  

 

Figure 8: Portion of studies that used triaxial vs. uniaxial devices. 

Force 

A second set of three factors that may contribute to the model have been suggested by Hunter et 

al. (2005). It may be noted that these are similar to those aforementioned from Takeda et al. 

(2009), with the difference being in what may be perceived as the mass adjusted effects of 

 
22 Chapter 2.1.5, Qualifying Articles. 
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acceleration; they are: GRF (relative to the translational acceleration), gravitational force (relative 

to the gravitational acceleration), and wind resistance. 22F

23 Force will here be considered.23F

24 

The gold standard measurement for impact load is ground reaction force, which is often measured 

by triaxial force plates (Simons and Bradshaw, 2016). Just as with acceleration, different force axes 

may be of interest, depending on which exact force-acceleration model is being considered. It has 

been found that “shank orientation and resultant GRF vector are similar at heel strike” (Lafortune 

et al., 1995), and that acknowledging the effects of orientation is particularly important, since 

“ignoring the 𝐹𝑥 and 𝐹𝑦 components [of the 3D tibial accelerations] causes a maximum error of 

20% in the tibial axis GRF” (Elvin et al., 2007). As was mentioned above, Wundersitz et al. (2013) 

attributed errors to a misalignment of the crania-caudal axis to the global vertical axis of the force 

plate. Strictly speaking, Callaghan et al. (2018) has defined vertical peak force as the “maximum 

force or force signature measured in the vertical direction,” and the braking peak force as the 

“maximum force or force signature measured in the posterior direction.” 

These components can be further mapped on body segments. Similar to how the global vertical 

acceleration was calculated from the triaxial gyroscopic output, an axial force can be calculated by 

decomposing the triaxial force plate components. The following formula is one method that was 

used in the qualifying articles to determine the GRF component along the tibial axis from the 

reaction force vector (Elvin et al., 2007, Zatsiorsky and Zaciorskij, 2002): 

𝐹𝑇𝐴 = 𝐹𝑥(sin𝛼 cos 𝛽) + 𝐹𝑧(sin 𝛼 sin 𝛽 sin 𝛾 + cos α cos 𝛾) + 𝐹𝑦(sin 𝛼 sin 𝛽 cos 𝛾 − cos 𝛼 sin 𝛾) 

𝐹𝑇𝐴  =  𝐺𝑅𝐹 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑎𝑙𝑜𝑛𝑔 𝑡𝑖𝑏𝑖𝑎 𝑎𝑥𝑖𝑠 

𝐹𝑧  =  𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐺𝑅𝐹; 𝐹𝑥  =  𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝐺𝑅𝐹; 𝐹𝑦  =  𝑚𝑒𝑑𝑖𝑎𝑙 𝐺𝑅𝐹 

𝛼 =  ∠𝑡𝑖𝑏𝑖𝑎 𝑡𝑜 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 (𝑠𝑎𝑔𝑖𝑡𝑡𝑎𝑙);  𝛾 =  ∠𝑡𝑖𝑏𝑖𝑎 𝑡𝑜 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 (𝑓𝑟𝑜𝑛𝑡𝑎𝑙);  𝛽 =  ∠𝑡𝑖𝑏𝑖𝑎 𝑡𝑜 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 (ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙) 

If angles are not correctly accounted for, then the directional forces may not be correctly 

considered. Arami et al. (2014) found that IMU-based estimates of knee flexion angles lacked the 

precision to monitor knee kinematics, but that precision could be improved with anisotropic 

 
23 Of course, Hunter’s wind resistance is not directly related to Takeda’s third variable of noise, but it is 
interesting in that both definitions contain a third, external variable such as this. The distinction may have 
been because Hunter et al. (2005) considered acceleration in sprinting and Takeda et al. (2009) in walking. 
24 Wind resistance is an external factor which is only experienced in some circumstances; therefore, it is 
necessary to understand and confirm the presence of a general relationship in a contained environment 
before accounting from random variables such as wind. Such external conditions will be further considered 
in Chapter 5.2.2, Differences by External Condition. 
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magnetoresistive sensors in a fusion framework. Since “the angle of the tibia relative to the 

ground at initial contact is dependent on hip and knee angles during this phase of gait, and is 

thought to vary between an angle of 20◦ and 40◦ depending on speed” (Raper et al., 2018), these 

considerations must be made when comparing IMU data to force plate data, rectifying the 

directions of measurement when relevant. Indeed, the appropriation of this research into 

predictive models may provide crucial information to the development of high loading forces, with 

Tran et al. (2012) relaying from Lafortune et al. (1996) that “in response to more severe running 

impacts, knee contact angle…” has been found to increase, so as to “…improve shock attenuation 

through the lower limb.”  

Waveform Features  

Most studies that considered a relationship between acceleration and GRF only compared peak 

accelerations, but this may not necessarily be the most effective method of understanding impact. 

A few studies, like Lafortune et al. (1995), Guo et al. (2017), and Callaghan et al. (2018), 

considered modelling the entire waveform, but because of the variability of non-cyclic 

movements, it may not be possible to make a simple relationship that describes every 

waveform. 24F

25 This has implications for the way that the sampled datapoints are inserted into any 

chosen model, since “if a model takes each sample independently as the input, it will not be able to 

extract non-linear relationships between different samples, and it will be more sensitive to the 

noise of each sample” (Tan et al., 2020). However, as has been shown, when considering a 

timeseries of points, rather than a point-to-point analysis, algorithms are indeed able to determine 

the entire waveform.25F

26  

As such, any relationship must first consider the kind of feature that it aiming to predict – peak, or 

entire waveform – since this will affect the kinds of variables chosen to be input into the data. It 

may even be that there are other specific variables that can be taken from the acceleration or 

force waveform which can contribute to the effective design of a model relating acceleration and 

GRF. The following tables (Table 4 and Table 5) expand on the variables that constituted 

‘acceleration’ and ‘force’ in Table 3 by showing what previous studies have used for modelling a 

 
25 Chapter 3.2.1, Exploring Non-Linearity. 
26 Chapter 3.2.1, Machine Learning Algorithms. 
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relationship between acceleration and force. Several of these variables will be validated later in 

this investigation.26F

27 

Table 4: Variables taken from the force waveform to use in modelling the acceleration-force relationship. 

Force Waveform 

Variables  Studies 

Vertical GRF [13] Simons and Bradshaw (2016) 

Resultant GRF [13] Simons and Bradshaw (2016) 

Vertical average load rate (VALR) [3] Davis et al. (2018) 

Vertical instantaneous load rate (VILR) [3] Davis et al. (2018) 

Resultant instantaneous load rates (RILR) [3] Davis et al. (2018) 

First peak vertical force (PVF1) [7] Hennig and Lafortune (1991) 

Time to first vertical force peak (TPVF1) [7] Hennig and Lafortune (1991) 

Force rate to first peak force (PVF1/TPVF1) [7] Hennig and Lafortune (1991) 

Second peak vertical force (PVF2) [7] Hennig and Lafortune (1991) 

Peak horizontal braking force [7] Hennig and Lafortune (1991) 

Time to peak horizontal braking force (TPVF2) [7] Hennig and Lafortune (1991) 

Jump height27F

28 [4] Elvin et al. (2007) 

Table 5: Variables taken from the acceleration waveform to use in modelling the acceleration-force relationship. 

Acceleration Waveform 

Variables  Studies 

Peak vertical accelerations (VTA) [3] Davis et al. (2018) 

Resultant tibial accelerations (RTA) [3] Davis et al. (2018) 

TAA heel-strike [2] Charry et al. (2013) 

TAA initial peak acceleration [2] Charry et al. (2013) 

TAA Peak-to-peak [2] Charry et al. (2013) 

Time to peak axial acceleration [7] Hennig and Lafortune (1991) 

Jump height28F

29 [4] Elvin et al. (2007) 

Table 6: Additional variables considered in the qualifying articles. 

Variables  Studies 

Force: Horizontal impulse Hunter et al. (2005) 

Force: Vertical impulse Hunter et al. (2005) 

Acceleration: Power [10] Penghai et al. (2014) 

 
27 The studies cited here are not exhaustive of where these variables have been used; some variables were 
investigated in several of the qualified articles. As such, these are only example studies of where these 
variables have been used. This list is not exhaustive of the features of the respective waveforms, but only 
indicates that these variables were investigated in these studies. 
28 In this study, jump height was estimated from both force and acceleration. If there was a relationship 
between force and the estimated height, and acceleration and the estimated height, then this could have 
provided evidence for a strong relationship between force and acceleration via this estimated height 
calculation. Alas, the correlations between force and height, and acceleration and height, were found to be 
weak. 
29 See note 28. 



43 
 

Time-Dependence 

There are other factors that can be considered, especially if kinematics of jumping movements or 

time-series patterns for the development of algorithms is desired (Elvin et al., 2007, Guo et al., 

2017). VALR has been defined as “the average slope between 20% and 80% of the most linear part 

of the [force] curve in the region between foot strike and the [point of interest],” with the point of 

interest defined as “the point just prior to the slope reducing by 15𝐵𝑊/𝑠” (Futrell et al., 2020). 

They further defined VILR to be “the peak slope within the region between 20% and 100% of the 

[force] curve between foot strike and [the] POI.” These are further illustrated in Figure 9. 

 

Figure 9: Calculating load rates in the vicinity of the first local maximum (Futrell et al., 2020). Reprinted with 
permission under CC BY-NC-ND 4.0. 

VALR was used by Tan et al. (2020) to obtain a correlation of 𝑟 = 0.94 with GRF, following this 

result with the conclusion that “it is possible to train a more general and accurate VALR estimation 

model using a larger data set consisting of a broader population.” When Davis et al. (2018) 

calculated the difference between load rate indicators, they found that vertical tibial acceleration 

had a stronger correlation with VALR, VILR and RILR than resultant tibial acceleration, and found 

that correlations were similar between these load rates. So too, when Hennig and Lafortune 

(1991) explored the potential contributors to force, they concluded that the rate of loading (that 

is, the time development of force), has a closer relationship to tibial peak acceleration (𝑟 = 0.87) 

than the peak of the vertical force (𝑟 = 0.76).  

It has even been shown that force can be determined based on the timing and motion of gait 

events, without using wearable accelerometers to calculate the acceleration, with Clark et al. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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(2017) determining that the vertical GRF-time waveform pattern could be explained by contact 

time, aerial time, and acceleration. In a similar way, Udofa et al. (2016) has suggested that contact 

time, aerial time, and lower limb acceleration are determinable by wearable accelerometers using 

specific models. Within the acceleration curve, “the derivative of the acceleration, or jerk, appears 

to provide consistent characteristics for touchdown and toe-off that would allow for the detection 

of contact and aerial times via signal processing” (Udofa et al., 2016).  

Another method for determining flight time was used by Elvin et al. (2007), who counted the time 

after the accelerometer reads −𝑔, which is when only gravitational acceleration is being 

considered, and finishes when the sensor is just greater than −𝑔 (Elvin et al., 2007). Flight time 

has also been suggested as a variable which can be used for determining jump height, finding that 

jump height as calculated from flight time gave better concurrent validity and repeatability than 

when calculated from maximal vertical velocity (Rantalainen et al., 2018). However, jump height 

was considered as a variable for relating to acceleration and force, but with only minor 

correlations by Elvin et al. (2007), and not deemed a valid estimate for drawing these variables 

together.  

If there are relationships between the derivates of any of these curves, then the original values 

could be determined by integrating the derivatives. Or, rather than differentiation, in the case that 

there is a relationship between the integration of the force and acceleration curves, then vice-

versa. This would become a relationship between acceleration and energy; the integration of force 

gives impulse, which demonstrates the change in momentum of an object. Callaghan et al. (2018) 

has defined vertical impulse as “the area under the vertical force or force signature-time curve,” 

and braking impulse as “the area under the anterior/posterior force or force signature-time curve,” 

and Hunter et al. (2005) has demonstrated this by calculating the horizontal and vertical impulse, 

which could be written as: 29F

30 

𝐼𝐻 = ∫ 𝐺𝑅𝐹𝐻

𝑡2

𝑡1

 

𝐼𝑉 = ∫ 𝐺𝑅𝐹𝑉

𝑡2

𝑡1

− ∫ 𝐺𝑅𝐹𝐵𝑜𝑑𝑦𝑤𝑒𝑖𝑔ℎ𝑡

𝑡2

𝑡1

 

 
30 These formulae were not explicitly stated within the study; they have been written as interpreted from 
the study methods. 
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Power 

It may be that power could be used within the impact dose relationship, since the joint power 

curve, when integrated, gives energy absorption (Zhang et al., 2008); this may contribute to an 

understanding of fatigue.30F

31 A transfer function between power and acceleration could be 

determined by finding the shock reduction from a power spectral density function (Zhang et al., 

2008). The relationship between acceleration and power is not linear, so Jiang et al. (2019) used 

random forest machine learning algorithm to attain power from acceleration, finding that the 

model was almost perfect. 31F

32 However, it was suggested that there is large variability of power 

generated between individuals under the same testing conditions (Jiang et al., 2019). If not using a 

machine learning algorithm, maximum explosive jumping power could be calculated as given by 

Penghai et al. (2014): 

𝐸𝑃𝑀𝐴𝑋 = 𝑚 ∙ 𝑀𝐴𝑋 〈𝑎𝑡  ∙ (∫ 𝑎𝑡𝑑𝑡
𝑡

𝑡−𝑡0

+ 𝑉𝑡−𝑡0)〉 

Rantalainen et al. (2018) has stated that “jump height and power are closely related,” and they 

found that jump power, as estimated from a wearable accelerometer with the centre of mass 

known, provided similar results to the force plate. However, in an earlier article, Winter (2005) has 

emphasised that “efforts to explain jumping in the context of power are at best misguided and a 

distraction and at worst a misrepresentation of the mechanical constructs involved.” In light of 

these different conclusions on power, for the sake of investigating the primary model 

contributors, the investigation will not proceed in this area of analysis.  

 
31 This is a conjecture. Fatigue will be considered further in Chapter 5.2.1, Pathophysiological Application of 
Predictive Models. 
32 Results had an intra-subject accuracy of 𝑅 = 0.98. The obtained random forest model underestimated 
ankle joint power peak amplitude, though peak power occurrence was correctly detected with negligible 
delay in intra and inter subject testing. 
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Chapter 4. Collecting, Refining and Classifying Data 

Research Aim #2 

Determine whether this relationship can be accurately modelled using data collected 

from wearable accelerometers. 

4.1. Collecting Reliable Data  

Prior to the implementation of any of the aforementioned algorithms, strategies for data 

collection and refinement must be established. These involve selecting devices for data capture, 

determining attachment methods, and configuring the dynamic range and sampling rate of each 

device. As specified in the introduction, a wearable accelerometer will be considered sufficient if it 

is able to produce a relationship between acceleration and force without requiring information 

from other devices. Following data collection, the recorded data must be refined to remove noise 

and device inaccuracies. As such, this section will also consider the filtering of data and error 

reduction, and an objective scale of result classification. As specified in the introduction, a 

wearable accelerometer will be considered effective if it produces a relationship with an 

acceptable amount of error. 

4.1.1. Wearable Devices 

The case for collecting data using wearable devices lies in the conclusion that collecting kinematics 

from wearable devices provide the highest practicality for data retrieval of GRF measurements, as 

opposed to laboratory-based force-plates (Mundt et al., 2020). Wireless and lightweight sensors 

are ideal for field measurements (Elvin et al., 2007), and enable athletic loading to be measured 

over long distance training environments with real-time visualisation (Abdelhady et al., 2019, 

Raper et al., 2018). However, their reduced accuracy means that development must be directed 

towards long-term reliability (Shahabpoor and Pavic, 2017), with the crucial need for consistent 

accuracy. It has been suggested that accuracy can be increased with multiple devices, where data 

is combined to estimate lower-limb kinematics (Jiang et al., 2019); however, it has also been 

suggested that more data complicates the analysis (Guo et al., 2017). These kinds of issues, 

including device attachment methods, will be discussed here. A summary of the devices that were 

used in the qualified articles is shown in Table 7. 
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Table 7: Technologies utilised by the qualified articles. 

Variable Technologies  Number of Studies Studies 

Acceleration Wearable IMU 13 [1],[2],[3],[4],[5],[6],[9],[10],[11],[12],[13],[15],[16] 

Bone-Mounted IMU 2 [7],[8] 

Force Force Plate 12 [1],[2],[4],[6],[7],[8],[9],[10],[12],[13],[15],[16] 

Instrumented Treadmill 2 [3],[11] 

Pressure-Sensing Insole 1 [5] 

Movement Motion Capture 4 [6],[11],[12],[16] 

Using Multiple Sensors 

Studies that compared single devices to multiple devices will first be considered. In a study that 

measured kinematics from six devices on a single participant, and compared the differences 

between combinations, Zeca et al. (2018) found that the best estimation for centre of pressure 

could be obtained when the model incorporated measurement data from six devices with a 

prediction error of 2.5% (anterior-posterior) and 7.1% (medial-lateral). From the left ankle alone, it 

was 2.7% and 7.6% respectively.32F

33 These results would indicate that when considering centre of 

pressure, a single device may be sufficient, since the improvement was only slight, and this is more 

practically accessible outside of a laboratory. Furthermore, depending on the accuracy required, 

the improvement may not even be substantial enough to justify using more than a single device. 

This seems consistent with the force-acceleration results obtained by Tan et al. (2020): after 

considering 31 placement combinations of five IMUs, the correlation from multiple sites was 𝜌 =

0.96, and the single-device lower-shank measurement was 𝜌 = 0.94; this improvement was not 

statistically different (Tan et al., 2020).  

After determining that angular velocities did not majorly improve force prediction accuracy, Guo 

et al. (2017) explained that “using less information will reduce the complicity of the model and 

increase the model’s robustness” (Guo et al., 2017). However, they did agree that angular 

velocities are important for predicting centre of pressure, showing that sensors must be carefully 

chosen for the desired information. “Effective technological solutions should be well-matched to 

the clinical need at hand but no more sophisticated and complex than needed to promote 

widespread adoption and feasibility” (Pieper et al., 2020). Further examples that have validated 

single-device performance in force estimation outside of laboratory-based environments include 

Charry et al. (2013) with ViPerform, and Guo et al. (2017) with Opal. However, when Meyer et al. 

(2015) compared the ActiGraph GT3X and GeneActive devices, they found that both devices 

 
33 Errors from the left ankle were lower than the right ankle and fifth lumbar vertebra. 
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significantly and systematically overestimated GRF when their raw data was linearly 

approximated, as shown in Figure 10.  

 

Figure 10: GRF and vertical peak accelerations using commercial accelerometers, in 𝜇 ± 𝜎 (Meyer et al., 2015). 

Reprinted with permission from Taylor & Francis. 

Whichever devices are chosen, advances in technology for basing training regimes and data 

applications must be evaluated for device reliability. In contrast to the conclusion from Charry et 

al. (2013), Raper et al. (2018) reported that the ViPerform did not perform accurately to its 

claim. 33F

34 If a decision is ever made for custom development, the product limitations must be clear 

and accurate, lest they be disproved, especially when offered for injury management (Raper et al., 

2018).  

In custom designs, the kinds of sensors imbedded within any device should be chosen carefully. 

These designs could also consider including additional sensors, since gyroscopes and 

magnetometers have been found to “reduce orientation, offset, and integration errors of the lower 

limb vertical acceleration parameters” (Udofa et al., 2016). However, devices ought not include 

unnecessary hardware, and the hardware included should be chosen intentionally. 34F

35 Although not 

covered here, methods have been proposed for developing wearable devices and ground reaction 

force sensors, and should be investigated prior to their deployment (Clark et al., 2017). Several 

 
34 These statistics are further discussed in Chapter 4.2.3, Classifying Statistics. 
35 For example, the inclusion of force-sensitive resistors may lead to noisy and inaccurate data (Mahdavian 
et al., 2019). 
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important aspects of device design were raised within the literature. Some of these, including 

attachment method, dynamic ranges, and sampling rates, will now be considered.  

Attachment Method 

Wearable device attachment methods are broad and ingenious, but should never be chosen 

arbitrarily, since inadequate securing of devices is a primary source of error due to vibrations and 

unrelated accelerations (Udofa et al., 2016). As explained in Chapter 3, errors may be present in 

the data due to higher levels of subcutaneous fat causing movement artefact in the accelerometer 

and must be limited. The kinds of attachment methods that were specified in the literature have 

been summarised in Table 8, with colours identifying similar methods. 

Table 8: Attachment locations used in the qualified articles. 

[#] Location  Attachment Method  
[1] Trunk Double sided tape, additional strapping tape.   

Lower Leg Manufacturer-supplied click-in body strap.  
[2] Lower Leg Adhesive sticker.  
[3] Lower Leg -  
[4] Lower Leg Sleeve over knee; Drytex Knee Support.   
[5] Trunk -  

Neck - 

Head - 
[6] Upper 

Leg 

Nylon elastic band wraps under semi rigid plastic plates under elastic straps under duct 

tape. 

  

Lower Leg Nylon elastic band wraps under semi rigid plastic plates under elastic straps under duct 

tape. 

  

[7] Lower Leg Bone-mounted Steinmann traction pins.   
[8] Lower Leg Bone-mounted Steinmann traction pins.  
[9] Upper 

Leg 

-  

[10] Trunk - 
[11] Lower Leg - 
[12] Lower Leg - 
[13] Trunk Tight-fitting crop top.  

Trunk Double-sided tape Fixomull stretch tape, tight-fitting leggings, or compression pants.   
[14] Trunk Straps around the body segment.   

Upper 

Leg 

Straps around the body segment.  

Lower Leg Straps around the body segment.  
[15] Neck Manufacturer-provided harness.  
[16] Trunk Placed within a mini-backpack, within the manufacturer-supplied harness.  

The primary aim in attachment design must be to reduce movement artefact whilst retaining a 

secure and comfortable fit, and the inclusion of orientation data from different sensors requires 

that they be correctly aligned with the physiological axis that they claim to represent. The extreme 
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in the removal of movement artefact, which is by the time-consuming process of surgically 

mounting accelerometers to the bone, as done by Hennig and Lafortune (1991) and Lafortune et 

al. (1995), is clearly not viable as a generalised solution, meaning that some compromise must be 

identified between compensating for residual movement and minimising it.  

To this end, many solutions have been attempted: Reenalda et al. (2016) used double sided 

adhesive skin tape and foot clips laced onto the shoes; Zhang et al. (2008) used Velcro straps; 

Simons and Bradshaw (2016) used tight clothing such as crop tops, leggings and compression 

pants. Sleeves have also been suggested as beneficial, with the participants of one study reporting 

not having felt the sensor nodes on the sleeve (Elvin et al., 2007). None of these solutions were 

reported as having caused many problems for the users or within the data, and yet most studies 

did not provide comment on the magnitude of any slipping or movement artefact which may have 

been produced. Elvin et al. (2007) justified not visiting this problem by assuming that any slipping 

present was at least consistent for individuals, though perhaps different between individuals. 

Rather than attaching the device onto a person, studies have also designed shoes within in-built 

force sensors; however, insoles can be inconvenient, costly and uncomfortable for daily living, and 

can be easily damaged with long-term pressure (Abdelhady et al., 2019).35F

36  

As mentioned, if developed for a particular sport, its design must accord with game regulations.  

Designs must be comfortable and welcomed by players, and must consider aesthetics, ease-of-

use, durability, and safety. In light of the present discussion, it seems that minimising movement 

artefact from the device, whilst still retaining user comfort, is the most pressing design problem. 

Although power will not be discussed further within this report, wireless design also necessarily 

entails the inclusion of a power source, and as such this must be appropriately designed for 

(Corbo, 2018, Talukder, 2020). Memory requirements could be overcome by using devices that 

transmit data from the device immediately following capture: studies capturing force and limb 

movement have previously used transmission frequencies ranging from 5 to 750 Hz (Abdelhady et 

al., 2019).  

 

 
36 However, research has been undertaken to use pressure insoles for monitoring instability (Noshadi et al., 
2013) and postural identification (Sazonov et al., 2011), with varied results. 
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4.1.2. Technological Specifications 

Dynamic Ranges 

When considering the specifications of the accelerometer to use within any design, an important 

consideration is the dynamic range of the device. Given as a product of gravitational acceleration 

(𝑔), this is the sensitivity range through which the accelerometer can record acceleration without 

peaking. The accelerometers used by Meyer et al. (2015) did not have suitable dynamic ranges, 

with values peaking at 6 g and 8 g and invalidating portions of their data. Clearly, dynamic ranges 

must be carefully chosen. Clark et al. (2014) has recorded that when running at 3.5 to 10.5 ms-1, 

lower limb velocity at touchdown is ordinarily between 0.8 to 3.1 ms-1, and the time for that 

velocity to reduce to 0 ms-1 is ordinarily 0.070 to 0.025 s. Udofa et al. (2016) identified from this 

that the accelerometer range during such movements is 1.2 to 12.7 g, concluding that 

accelerometers with a dynamic range of ± 16 g are therefore suitable for measurement. However, 

the quality of the chosen sensor is also a factor, even if the device has a high dynamic range: when 

using a uniaxial accelerometer with a dynamic range of ± 70 g, Elvin et al. (2007) found that the 

range response was only linear up to ± 50 g. The dynamic ranges of the devices used in the 

qualified articles are shown in Table 9. 

Table 9: Dynamic ranges of the devices used in the qualified articles. 

Study Dynamic Range (g) Axes 

[1] Callaghan et al. (2018) ± 16 Triaxial 

[2] Charry et al. (2013) ± 24 Triaxial 

[4] Elvin et al. (2007) ± 70 Uniaxial 

[5] Penghai et al. (2014) ± 6 Triaxial 

[9] Meyer et al. (2015) ± 6, 8  Triaxial 

[10] Guo et al. (2017) ± 6 Triaxial 

[16] Wundersitz et al. (2013) ± 8 Triaxial 

Sampling Rates 

In addition to determining an appropriate dynamic range, sampling rates must also be chosen 

carefully. The rate must be sufficiently high so as not to cause aliasing, but not so high that device 

storage capacity becomes insufficient and the battery is drained (Raper et al., 2018). Adequate 

sampling rates for force may be considered in light of how “maximum impact forces occur typically 

within a 20-ms time window” (Elvin et al., 2007). This would imply that that, for example, 100 Hz is 

likely insufficient, since it would only capture two frames per peak; and unless the peak occurred 

at the precise time of sampling, the peak is unlikely to be recorded: 
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Sampling rate = 100 𝐻𝑧 =
100 𝑓𝑟𝑎𝑚𝑒𝑠

1000 𝑚𝑠
=

2 𝑓𝑟𝑎𝑚𝑒𝑠

20 𝑚𝑠
 

It has further been stated that even 240 Hz (< 5 frames/event), which is the common camera 

frame rate used in biomechanical testing, would miss important features of the impact curve (Elvin 

et al., 2007). Acting on this, Elvin et al. (2007) sampled at 1000 Hz. To minimise required storage 

and battery life, and since they only required primary gait events, rather than entire waveforms, 

they only stored the maximum and minimum values within each 60 ms time window. However, 

contrary to this, Guo et al. (2017) sampled their force values at 128 Hz, justifying this in that since 

they had identified that their targeted frequencies were below 10 Hz, “a sample frequency greater 

than 64 Hz was deemed high enough to characterise the main frequency spectral.” This is not 

consistent with Elvin et al. (2007), since 10 Hz would indicate a peak within 100 ms; however, Guo 

et al. (2017) did not indicate what the main frequency was that they were considering, and as such 

this may not be the same peak that was identified by Elvin et al. (2007).  

Considering the acceleration sampling rates, the sufficiency of 100 Hz to capture data at faster 

running speeds has been deemed inconclusive, with further research required (Charry et al., 

2013). Meyer et al. (2015) had stated that the sampling rate must be at least double the speed of 

the fastest movement, and their work could be considered as the desired further research, for 

they also sampled acceleration at 100 Hz, and with correlations of 𝑟 = 0.89 to 0.90, concluded 

100 Hz to be reasonably accurate for determining GRF. This more recently obtained accuracy 

could indicate that there were errors elsewhere in the study from Charry et al. (2013), but if not, 

then the fact that a 100 Hz filter has been found inconsistent in its ability to measure acceleration 

should indicate that a higher rate is necessary.  

Furthermore, it should be noted that high correlations do not necessarily mean that complete 

events were indeed captured, but only that the data which was obtained from these sampling 

rates correlated well. As mentioned from previous studies, to identify the required frequencies, 

those targeted could be identified with a power-frequency analysis and isolated from this. If this 

strategy is taken, it must be noted that “to properly eliminate effects of noise without aliasing, the 

sampling rate must be above twice the highest significant noise frequency” (Antonsson and Mann, 

1985). If lower sampling rates must be used, then resampling data from lower frequencies is also 

an option (Zhang et al., 2008). A summary of the sampling rates used in the qualified articles is 

shown in Figure 11. 
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Figure 11: The sampling rates used across the qualified articles. 

A final note on the topic of sampling rates is that when sampling with multiple instruments, data 

must be synchronised so that time-equivalent samples are correctly compared. There are several 

methods by which this can be achieved. Penghai et al. (2014) used an additional processor to 

synchronise the accelerometer and the gyroscope, timestamping their data before saving. Elvin et 

al. (2007) connected their devices to an external device that transmitted an electronic pulse and 

was disconnected prior to completing their trial. In post-processing, Meyer et al. (2015) found the 

highest cross-correlation coefficient for the primary acceleration events of two accelerometers 

and used this frame as a reference point from which to analyse.  

4.1.3. Data Refinement 

Filtering 

Applying appropriate sampling rates is particularly important when facing the risk that analysis 

may depend on characteristics that are masked within noise. However, the presence of noise and 

targeted frequencies may not necessarily be consistent between studies, and as such the 
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recommended filters may not be directly transferable. Although these rates may be different 

between studies and applications, understanding the spectrums and filters used in other studies 

may indicate areas of the spectrum for further consideration in future design planning, and as 

such their methods shall be considered. Within this, one must consider that whilst the eliminating 

noise is important, there may be particular frequencies that are helpful for modelling the 

respective parameters. 36F

37 Different kinds of movements and landings contain different frequency 

makeups: “the appropriate cut-off frequency depends on the frequency content of the signal, 

which in turn depends on the type of task performed” (Simons and Bradshaw, 2016). As shown 

earlier, primary frequencies within the signal may be sufficient to model the waveform of a 

runner. 

Using a frequency histogram, Penghai et al. (2014) determined that in their jumping trial, targeted 

frequencies at the trunk were between 0 to 30 Hz, and they as such used a lowpass filter at 30 Hz. 

Zhang et al. (2008) observed that in drop landings, within the 100 ms after initial foot contact, the 

first and second peak power of tibial accelerations was between 21 to 50 Hz. In a running trial, 

Lafortune et al. (1995) found that frequencies in the lower leg were greater than 30 Hz. In an 

earlier study, Hennig and Lafortune (1991) observed that “a power spectrum analysis of the force 

and acceleration signals revealed that more than 99% of the signal's power was below 60 Hz,” 

leading them to use a 60 Hz lowpass filter. They later found that 98% of this content was below 

100 Hz (Lafortune et al., 1995). However, contrary to this, Antonsson and Mann (1985) found that 

in walking, 99% was contained under 15 Hz. These results clearly differ between activities and 

locations, but it seems that there is a consistent gait signal content below 100 Hz.  

Correlation strength has been found to differ between use of different filters. When comparing 

locations across the back, Simons and Bradshaw (2016) found that a 20 Hz filter on the upper back 

produced the overall best correlations between PRA and GRF. Wundersitz et al. (2013) found that 

for the most appropriate indirect measure of peak GRF, 8 to 10 Hz was best for walking and 

running tasks, suggesting that resultant acceleration data be smoothed with a 10 Hz filter.37F

38 In a 

later study, they again found that these filters significantly reduced errors between raw and actual 

acceleration data (Wundersitz et al., 2015). Rantalainen et al. (2018) also considered the effects of 

filtering acceleration data from the upper back, with low-pass cut-offs between 6 Hz to 20 Hz. 

 
37 Chapter 3.1, Recording at the Lower Limb. 
38 It is important to note that this was a smoothing of the resultant acceleration data; not the uniaxial data. 
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However, they found that filtering had very limited effect on acceleration error and chose to 

therefore apply no filter.  

Error Reduction 

Another consideration for force recording is that a recording threshold may need to be 

determined, above which the input data is deemed valid. Jiang et al. (2019) considered the gait 

cycle to have started when force was above 0 N; Hennig and Lafortune (1991) considered foot 

contact as above 5 N; Guo et al. (2017) above 10 N; Pieper et al. (2020) above 20 N. Havens et al. 

(2018) considered peak vertical GRF to occur at the first peak following 30 N of contact. The 

inclusion of these thresholds can reduce errors: Udofa et al. (2016) attributed their over-

prediction of force to having not incorporated a 40 N contact-identification threshold. They further 

showed how this can impact impulse predictions, saying that the “inclusion of the threshold setting 

at the beginning and end points of the impulse curve function with preservation of the 

mathematical area under the curve would lower the peak value.” They said that ultimately, the 

main error was more likely due to the lack of a threshold than the shape of their sine function.  

Accelerometers, gyroscopes and magnetometers can provide information on orientation for gait 

analysis in space without motion capture systems (Mundt et al., 2020). However, this is not 

without limitation, since accelerometers and gyroscopes are susceptible to drift and noise that can 

cause error accumulation in multi-step analyses; this is also a problem when testing over long 

periods (Tao et al., 2007). Magnetometers “…are highly susceptible to local disturbances in the 

magnetic field” (Mundt et al., 2020). Systematic biases have been found in commercial 

accelerometers of between 0.46 g and 1.39 g, with biases increasing with higher loadings (Meyer 

et al., 2015). The sensitivity of accelerometers to linear accelerations, and the drift and inclination 

direction of gyroscopes, have been raised as concerns in sensor design (Abdelhady et al., 2019). It 

has been suggested that accelerometer bias may corrected by establishing a regression model 

(Meyer et al., 2015). Gyroscope drift may be correctable by resetting the system after each gait 

cycle and by highpass filtering (Tong and Granat, 1999). Takeda et al. (2009) applied a highpass 

filter to the raw angular velocity data to remove noise prior to integrating their data for 

determining joint angles, minimising drift error from raw integration. 

4.1.4. Result Validation 

Whether or not these relationships can be determined consistently, validity must be determined 

objectively. As such, the performance of these algorithms and which methods should be chosen 
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for data analysis must be set. This review does not aim to address methods for statistical analysis 

in sports medicine and exercise science,39 but it will consider some noteworthy tools used in 

previous studies. Studies have used tools such as direct correlations, Bland-Altman plots (Raper et 

al., 2018) and one-dimensional statistical parametric mapping (Callaghan et al., 2018) to compare 

acceleration and force data.  

Methods of comparative analysis include determining the closeness of a prediction model by 

testing it with the data of a participant from whom the model was not trained. When Lafortune et 

al. (1995) tested their Fourier waveform models, they developed individual-participant models 

and multiple-participant models, testing these against the participant(s) who had not been 

included. They found that where the individualised algorithms produced mean standard deviations 

of 𝑀𝑆𝐷 = 0.11 to 1.10 across the five participants, the generalised algorithm, which was 

developed from four and tested against the fifth, led to larger deviations of 𝑀𝑆𝐷 = 0.26 to 1.26. 

Tan et al. (2020) similarly developed a 14-participant model, testing against the 15th participant.  

Guo et al. (2017), rather than dividing their data by participants, halved the data of all participants 

and tested their model with the remaining 50% of the dataset. Both Tan et al. (2020) and Guo et 

al. (2017) obtained almost perfect results (𝑟 > 0.90) with their machine-learning-based models, 

showing that a generalised algorithm could be successfully implemented. In a slightly different 

context,40 Mahdavian et al. (2019) considered several different machine learning strategies where, 

along with speed and angular velocities, they included the weight and height of 108 participants as 

inputs to train the algorithm. When testing against two participants, their results demonstrated 

strong correlations (𝑅 = 0.89 to 0.97) in the forces and moments of all three axes. 

When considering acceptable rates of accuracy, Tran et al. (2012) set the limit of acceptability to 

20%, justifying this by explaining that “though it is acknowledged that CV values above 10% are 

rejected in other fields of research, it has been proposed that this analytical goal is often selected 

as an arbitrary limit for acceptable variability.” Raper et al. (2018) used a relative measure to 

determine the validity of ViPerform, stating that a single calculated stride value would be deemed 

invalid “if its value was outside a 20% range of the preceding and following strides,” having 

calculated this by “dividing the number of error-free [strides]… by the number of overall strides.” 

 
39 This information can be reviewed in Hopkins et al. (2009) and Bernards et al. (2017). 
40 Mahdavian et al. (2019) did not primarily investigate acceleration in their models, but also included 
walking speed and several angular features; the article was excluded because this project primarily 
investigated the feasibility of acceleration alone. 
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They found that the device attained an overall accuracy of 83.6% and therefore concluded that the 

device did not accurately measure GRF. However, they also concluded that the device could still be 

used as a reliable measurement system for a relative, comparative load measurement. Jiang et al. 

(2019), who when estimating ankle power was able to attain an inter-subject regression accuracy 

of NRMSE of 2.37%, which was consistent with the results of Wouda et al. (2018), deemed this an 

acceptable and good result. 

Classification 

Hopkins (2006) has provided a scale for the classification of correlation coefficients, which has 

been further used in other studies such as Callaghan et al. (2018) and Simons and Bradshaw 

(2016). When the latter used it, they explained that “correlations classified as ‘very high’ or 

‘almost perfect’ would indicate that [peak resultant acceleration] provides a good estimate of 

impact loading.” These categories from Hopkins (2006) are what have been, and will continue to 

be, assigned to results presented within this thesis, and they have been given in Table 10. This 

evaluation scheme has been chosen following its use in these previous studies, and its relevance 

to this field of research: for which the scale was intended and designed (Hopkins, 2006). 

Table 10: Classification of correlation coefficients in sport-biomechanics as according to Hopkins (2006). Reprinted with 

permission from William Hopkins. 

Correlation Coefficient Descriptor 

0.0-0.1 Trivial, very small, insubstantial, tiny, practically zero 

0.1-0.3 Small, low, minor 

0.3-0.5 Moderate, medium 

0.5-0.7 Large, high, major 

0.7-0.9 Very large, very high, huge 

0.9-1.0 Nearly, practically, or almost: perfect, distinct, infinite 

Informed by this scale, the highest correlations presented within each of the qualified articles is 

presented in Table 11. These represent what the final results were, following the refining of their 

algorithms and the analysing of their data with the methods originally described in Table 1 on the 

qualified articles. Of the qualified articles that reported correlations, four reported correlations 

above 0.9, which as seen, can be deemed almost perfect, with all remaining articles producing a 

very large relationship. It must be noted that the correlations among the qualified articles were 

not determined using identical methods (i.e. some used direct regression coefficients; others 

Pearson correlation coefficients etc.), and as such these correlations should only be taken 

indicatively regarding inter-study differences.  
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Table 11: The best correlations between acceleration and GRF as presented within each of the qualified articles. 

Classification  Study  Best Correlation Classification Study  Best Correlation 

Almost Perfect [5] 0.993 Very Good [12] 0.877 

  [2] 0.95   [13] 0.86 

  [14] 0.94   [1] 0.832 

  [9] 0.9   [3] 0.82* 

 

  [4] 0.812 

 [7] 0.76 

 [16] 0.76* 

 [11] 0.71 

Not Reported [6], [8], [10]   [15] 0.7* 

*this article also presented only moderate correlations 
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Chapter 5. Applying the Relationship 

Research Aim #3 

Determine whether this relationship is generalisable between subjects, 

movements, and external conditions.  

Research Aim #4 

Determine whether measuring acceleration at the lower limb using wearable 

accelerometers can provide data that is useful for the prevention or monitoring 

of injuries, fatigue, and rehabilitation. 

5.1. Difficulties in Model Generalisation 

In the previous chapters, it has been shown that an identifiable relationship between acceleration 

exists within the body, and it can be determined at the lower leg. However, these models clearly 

differ between the kind of movements that are trialled. As such, in this section, the effects of 

movement and technique will be considered. Following this, effects on the relationship of several 

inter-personal differences will be considered, including physical ability, movement, and external 

conditions. 

5.1.1. Activity Differences 

There were a variety of activities for which the trials in the qualified articles were conducted. 

These have been presented according to activity type in Figure 12, with activities being grouped 

based on similar movements. If a wholistic, efficacious model is to be developed for a generalised 

population, the effects of different movements on these models must be understood and, if 

necessary, changes implemented into the algorithms accordingly. 
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Figure 12: Sports used in the qualified articles. Activities have been grouped according to similarity.41 

When considering these activities in light of the correlation results that have been presented, the 

highest three correlations (0.94 to 0.99) were produced in trials where participants had either 

walked or ran. However, to immediately say therefore that these activities are the best for 

determining any relationship may not be accurate, since the fourth highest correlation (0.9) was 

produced in the only study that pooled results from a variety of activities (Meyer et al., 2015). In 

fact, whereas the highest result was observed in a study that considered walking (Guo et al., 

2017), the second lowest of the results came from the other study that considered walking (0.7) 

(Pieper et al., 2020). In light of the previous discussion, perhaps the kind of modelling used was 

the primary reason these studies produced different results. For example, Guo et al. (2017) 

considered machine learning, whereas Pieper et al. (2020) considered direct linear correlations.  

However, studies which have focussed on walking alone have been critiqued in the literature, with 

the claim that “investigating only walking leads to overestimation of sensor accuracy due to the 

fact that the passive dynamics of walking lead to stereotypical patterns that are easier to predict” 

(Jacobs and Ferris, 2015). As such, the present accuracy of these studies should not be considered 

as generalisable for all activities. Every article that considered jumping produced correlations of 

less than 0.9, which may indicate that the ground reaction force waveform during jumping is less 

conformed to a single pattern; or at least not as easily predicted from. Nevertheless, even these 

correlations would still be classified as very large, and as such should not be disregarded; for, 

 
41 Although pace bowling could be considered running, due to the unique nature of the plantar action of 
the foot and the rotation of the trunk during a delivery (Callaghan et al., 2018), the running-movement 
from Article [1] has been kept separate. 
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besides modelling algorithms, there may be physiological factors which are much more indicative 

of any such relationship. The differences present between individuals in movement performance 

will be further considered in the following section. 

Trial Design 

The importance, and also a clear a limitation, of cyclic-only studies is seen in that “studies on 

wearable sensors that only investigate overground and treadmill walking do not deal with the 

amount of variability that happens in daily life” (Jacobs and Ferris, 2015). Having noticed this, 

Meyer et al. (2015) attempted to develop a force prediction model from the accelerations of 

various activities, including one step each from each trial of six different kinds of activities. Despite 

their accelerometers holding systematic bias, they obtained linear correlations of 0.90. The trials 

included within this study are shown in Figure 13. This would confirm the conclusion that the 

investigation of non-stereotypical tasks can lead to more accurate assessments with these kinds of 

technologies. Jacobs and Ferris (2015) have further explained that “not including swing phase data 

in estimation also reduces variability in the data set because it assumes that non-linear transition 

between stance and swing is predicted perfectly despite sensor noise.” 

 

Figure 13: The activities trialled within the study from Meyer et al. (2015). Reprinted with Permission from Taylor & 

Francis. 

Netball 

Within this discussion on the movement-based effects of force modelling, as has been mentioned, 

the end purpose of any device must be considered within the trials for which it is designed. The 

context of this thesis is an investigation into the movements within the team sport netball, and as 

such the eminent movements performed by players during a netball match should be of primary 

concern within the future development of this project. Netball Australia (2016) has explained the 
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key skills and movements involved in the footwork of players during a game. Summarised below, 

these movements include stance, coordination, footwork, and balance: 

- The two-foot landing controls the hip and knee, where during landing, the knee and toes 

are kept aligned, and the knee is kept slightly bent. Younger players may step forward with 

one point to maintain balance when lacking core strength required to maintain the stance. 

- The one-foot landing depends on the player’s leading direction: leading in the right results 

in the player landing on their right foot; leading to the left results in landing on the left. 

Players keep their body weight over the outside foot, with shoulders evenly distributed 

over the foot; the second foot is planted quickly following this. The player must bend at the 

hips, knees, and ankles to cushion their landing. 

- Take-off involves starting with smaller steps and strides, quickly moving to larger steps. 

When leading to the right foot, a player should take off with the right foot; when leading to 

the left, they take off with the left foot. 

- The two-foot jump involves bending slightly at the hips, knees, and ankles with the weight 

of the player distributed over knees and toes. The player steps into take-off with the left-

right or right-left step pattern and uses both arms to reach and extend upwards. Players 

land on both feet and cushion their landing by bending at the knees, hips, and ankles. 

Younger players may be instructed to keep their feet shoulder width apart. 

- The one-foot leap involves players, when running at an angle to the thrower, bend at the 

hips, knees, and ankles, and run with their weight forward over the toes, pushing off from 

the take-off foot. The player lands on their outside foot, cushioning by bending at the hips, 

knees, and ankles. 

- A pivot (outside turn) continues natural body movement after a player has received the 

ball at full stretch, pivoting on the landing foot. Their weight is brought over the landing 

foot before turning on the ball of the foot and pushing off with the other foot. 

Several of these movements are further specified within 9.6 Footwork of the netball rule book 

(International Netball Federation, 2020). 

5.1.2. Personal Factors 

Technique 

Factoring intra-personal characteristics into this study on kinetics, it has been identified that “the 

ability to accelerate can be effected by an individual’s sprinting technique, force production 
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capability, and the ability to apply that force in the horizontal direction” (Macadam et al., 2017). In 

light of such ability-effected differences, it is expected that understanding these differences in 

technique would be a primary concern in the development of any kinetically driven model. 

However, apart from foot-strike patterns, which will be considered below, none of the qualified 

articles specifically targeted understanding the differences of technique when developing the 

force-acceleration relationship. Trial inclusion criteria within the studies included being elite or 

sub-elite triathletes (Raper et al., 2018),42 adults with regular participation in competitive sport 

(Wundersitz et al., 2013),43 and moderately active children (Meyer et al., 2015).44 All studies 

excluded people with recent injuries, except Havens et al. (2018), who recruited only participants 

that had undergone ACL reconstructive surgery within six months prior to the trial. Since results 

from elite participants may not necessarily be true also for amateur participants, this may be an 

important research area in future study.  

Davis et al. (2018) studied the differences between strike patterns across 169 participants. They 

found that vertical average loading rate had larger correlations with vertical tibial acceleration in 

runners with front-foot-strike (FFS) (𝑟 = 0.82) than rear-foot-strike (RFS) (𝑟 = 0.66). Summarising 

several sources in the literature, Futrell et al. (2020) found that “the load rates associated with a 

habitual FFS pattern are approximately 35%–45% lower than that of a habitual RFS pattern. 

Transition to an FFS pattern has been associated with a 35%–65% reduction in vertical load rates.” 

Following up on this, they furthermore found that this transition reduces load rates more than 

altering the cadence of a runner (Futrell et al., 2020). Although cadence does not typically change 

foot strike technique (Futrell et al., 2020), research has shown that when running, increasing 

cadence by 8.6% can reduce average vertical load rates by 18.6% (Willy et al., 2016). 

In addition to technique, natural movement can also cause errors, with high trunk rotation of the 

accelerometer during the moment of recording being found to skew results (Callaghan et al., 

2018). Wundersitz et al. (2013) has also observed that during running, as the severity of the 

change of direction increases, the correlation between the acceleration and GRF decreases: their 

prediction variance from change-of-direction tasks (24%) was double that of straight line running 

(12%). This may have been in part due to the presence of a technology bias, since Meyer et al. 

(2015) had found that measurement bias was found to increase with higher loadings; that is, with 

 
42 Elite and sub-elite was defined as anyone “who trains regularly with a coach and has a specific 
training/competition aim” (Raper et al., 2018). 
43 Defined as one or more events per week. 
44 Defined as less than three hours of weekly exercise outside regular school activities. 



64 
 

higher loadings, the degree of overestimation of the accelerometers against the force plate 

increased. These errors and movement-varying measurements surely present a case for the 

inclusion of multiple movements within any trial development, since any device developed must 

be equipped to compensate for the wide range of movements that can be expected in any 

situation. 

Impairment 

However, physical differences between participants are not only limited to the size, mass, or 

strength of a person, but also extends to their physical ability; technique is influenced not only by 

skill and prior training, but also by impairment. In a comparison of healthy patients with those 

impaired by multiple-sclerosis, Alaqtash et al. (2011) established a reference rule-base from 

unimpaired subjects, from which to compare the gait force and acceleration to those with MS.45 

The fuzzy-algorithm comparison identified distinctions in gait waveforms between patient sets. 

For example, the contact force of MS patients was flat with a single peak, with patients having a 

significantly longer stance phase.  

There was only a moderate similarity within the loading response gait phase between patient sets, 

with force similarities of 0.634 (Y-axis) and 0.659 (Z-axis). Grades of similarity between swing 

phases were particularly low, with an average phase similarity of 0.179 (initial swing), 0.008 (mid-

swing), and 0.289 (terminal swing). These differences were attributed to the abnormal muscle 

activities within the tibialis anterior, quadriceps and gluteus medius of MS patients, further 

observing that “the acceleration curves of the thigh and the hip… [demonstrated low] accelerations 

for MS compared to healthy subjects throughout most of the gait phases” (Alaqtash et al., 2011). 

There was a sharp increased acceleration at the initial contact phase of the MS gait cycle, and 

insufficient foot clearance during initial swing phase, which will further complicate distinctions in 

identifying waveform events and in using these to predict force based on a generalised model. 

5.1.3. External Factors 

Footwear and Landing Surfaces 

Within the development of these algorithms and testing procedures, one must consider not only 

inter- and intra-personal differences, but also where each activity has been conducted. For 

example, with regards to outdoor sprinting, wind resistance is a crucial factor to consider, 

 
45 Alaqtash et al. (2011) did not predict force from acceleration, but only compared the gait parameters 
between impaired and unimpaired subjects. 
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especially with such conditions being conducive to fatigue (Hunter et al., 2005). These fatigue-

induced effects on running mechanics must be measured in external settings, rather than only the 

laboratory, since “in order to get insight into the specific challenges runners face outside the 

laboratory in real world, measurements need to be performed outside the laboratory in a setting 

as specific as possible” (Reenalda et al., 2016). Although external tests may not be possible in 

initial development stages when force plate-based validation is necessary, this kind of trial may be 

completed by using pressure insoles.  

Rouhani et al. (2014) was able to use pressure insoles for estimating gait dynamics by first 

calibrating their pressure insoles with laboratory force plates, and then developing a pressure 

distribution map based on those initial measurements. This calibrated insole pressure map was 

used to estimate force and torque outside the laboratory, obtaining a coefficient of multiple 

correlations above 0.90. If high accuracy can be obtained consistently, then technology such as 

this could be used to validate external accelerometer-based force predictions. 

Incorporating the differences of external factors into the development of a prediction model may 

also be important for its reproducibility since landing surfaces and shoe stiffnesses have been 

found to influence landing impact dynamics. When comparing the effect of shoe compliancy on 

impact kinetics, Bruce et al. (2019) found that greater shoe compliance resulted in lower peak 

resultant tibial acceleration (𝑝 = 0.005), but that peak vertical GRF was not different between 

landing surfaces and shoe types (𝑝 ≥  0.056). However, when considering soft and stiff landing 

surfaces, Devita and Skelly (1992) obtained the results in Figure 14. They found that although the 

temporal features of the waveform were similar between surfaces, landing on a stiff surface had a 

23% larger impulse than on a soft surface.  
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Figure 14: Comparison of ground reaction force between soft and stiff surfaces (Devita and Skelly, 1992). Reprinted 

with permission from Wolters Kluwer Health, Inc. 

Tan et al. (2020) considered different kinds of footwear, foot strike patterns, step rate, and 

running speeds, and they found that their convolutional neural network did not generate 

significantly different results.46 They did find that wearing minimalistic footwear had a higher 

correlation coefficient (0.95) than standard footwear (0.88), which may indicate that standard 

footwear absorbed more of the force upon impact. Furthermore, peak positive acceleration has 

been reported to reduce by between 11-20% between different shoes (Crowell and Davis, 2011). 

Future studies may benefit from including information on shoe compliance when predicting 

impact. However, it has been said recently that evidence for the effect of landing surfaces and 

shoe stiffness on jump landing dynamics remains limited (Bruce et al., 2019), and as such, this may 

require further investigation. 

5.2. Injuries 

In the research aims, it was stated that a wearable accelerometer will be considered useful if it is 

able to provide information that can be used in the prevention or monitoring of injuries, fatigue, 

and rehabilitation. This section will, broadly speaking, seek to establish how some of the 

information within this thesis may contribute to an understanding of injury prevention and 

management in sport, and the immediate applications of the methods and results that have been 

presented within the literature. 

 
46 The results from Tan et al. (2020) can be seen in Chapter 3.2.3, Table 3. Study details: footwear: standard 
running shoes (Revolution 4, Nike) and minimalist shoes (V-RUN, Vibram Corp); foot strike patterns: FFS, 
MFS and RFS; step rate: baseline rate, 90% and 110%; running speed: 2.4𝑚𝑠−1 and 2.8𝑚𝑠−1. 
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5.2.1. Pathophysiological Application of Predictive Models 

Having discussed some of the main factors implicating the generalisation of these relationships, 

this discussion will finally consider some practical applications for these models. Although the 

relationships between physical loading and bone health have previously been scarce (Meyer et al., 

2015), primary considerations for future development must include factors which inform 

disposition to injury, ways they can be reduced after proper analysis, and how this information can 

be applied to effective management and prevention of athletic overuse injuries. Clearly, this is a 

bigger field than can be comprehensively covered within one section of this thesis, and as such 

this section will aim to provide an introductory understanding to these concepts.  

This investigation regarding netball becomes particularly urgent when considering the high rates 

of female participation with regards to the fact that “females are exposed to greater knee 

abduction moments than males” (Dan et al., 2019). But of course, impact is not only necessary for 

monitoring in netball. For example, the high injury rates in gymnastics have been thought to be 

associated with the accumulation of impact loads (Simons and Bradshaw, 2016). Nor is it limited to 

modelling according to gender; though the differences in body structure do result in different 

impact dynamics (Dan et al., 2019).  

Since wearable accelerometers can providing information on dose-response patterns regarding 

the bone health of both adults and children (Meyer et al., 2015), there is a broad population who 

will benefit from accurate developments following this investigation. And, further demonstrating 

the wide applicability of wearable device driven research, it has even been reported that “a 

decrease in ankle and knee power...,” which may be determinable from wearable accelerometers, 

“results in shorter step length in the elderly;” and that ankle joint power can be used to 

characterise gait deficits and develop protocols for rehabilitating walking ability (Jiang et al., 2019).  

However, a primary concern is that current technologies available for assessing gait pathologies 

are not widely accessible. For example, instrumented treadmills and motion capture technologies, 

though extremely useful for performing gold-standard research on pathologies and patient 

monitoring, are often inaccessible to the general population due to their high expense. The 

development of wearable sensors make these tracking abilities much more accessible (Pieper et 

al., 2020). Uses of wearable IMUs include detecting gait phases, monitoring activities of daily living 

and representing and classifying gait data (Alaqtash et al., 2011).  
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IMUs can be used to differentiate between walking, running, and jumping locomotion, and to 

distinguish between different intensities (Lee et al., 2015). Meyer et al. (2015) has commented 

that “accelerometers are perfectly suited to measure impact loading of bone,” and Pieper et al. 

(2020) has stated that when using shank acceleration to study the effects of knee bracing and its 

significance for aiding in the rehabilitation of those with trailing limb propulsion, “shank 

acceleration may effectively distinguish intrasubject variations over time, for example due to 

functional decline or clinical rehabilitation.” Indeed, using low cost, simple sensors may allow the 

identification of abnormal gait patterns such that falls can be prevented in the older population, 

prolonging the time with which they can retain independent mobility (Mundt et al., 2020).  

Load Accumulation 

Using wearable devices to predict impact dose will enable an objective quantification of loading, 

rather than relying on subjective ratings of perceived exertion. The effects of ACL reconstruction, 

which alter a client’s lower extremity mechanics, are seen weeks and years after surgery (Havens 

et al., 2018), which makes long-term, subjective assessments consistent. This objective rate is 

what is of primary interest in this study, since “the aetiology of overuse injuries appears to be 

related to both the impact and peak forces the limbs experience during each loading cycle” (Udofa 

et al., 2016). Accelerometers have previously been used in representing player load by measuring 

accumulated impact forces over time (Wundersitz et al., 2013). Alternatively, Tan et al. (2020) 

considered the possibility for loading rate to contribute to these models. They concluded that 

machine-learning-based vertical average loading rate “could enable runners to more accurately 

assess impact loading rates and potentially provide insights into running-related injury risk and 

prevention” (Tan et al., 2020). 

Clearly, the development of any objective analysis for injury risk will require a consistently 

accurate risk function that uses kinetics to predict overuse injury. Bailey et al. (2018), who 

considered the modelling of risk in light of the shorter duration high impact loading from military 

injuries, developed an injury risk function based on the results of axial loading to post-mortem 

human legs. In their conclusions, they estimated that there was “50% risk of injury for a leg 

exposed to 13 Ns of impulse at peak force and 8.07 kN of force for force durations less than and 

greater than half the natural period of the leg, respectively” (Bailey et al., 2018).  

Similar to how Bailey et al. (2018) quantified risk in terms of impulse, Winter (2005) has explained 

that “integration of the force–time history [i.e. impulse] can be used to provide a velocity–time 
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profile of the body’s center of mass and so provide a basis for calculations of the products of force 

and velocity.” Taking this backwards, if integration of the acceleration waveform could be used to 

estimate impulse (the integration of the force waveform), then perhaps a risk factor could be 

given based on integration of acceleration alone, without needing to focus on event-to-event 

predictive force modelling. If developed for the purpose of predicting overuse injury risk, these 

functions will enable a translation of repetitive axial loading into a demonstration of injury 

prediction.  

The kind of short term risk analysis that Bailey et al. (2018) has presented may even be indicative 

of the short-term, high impacts experienced during athletic sports. However, further research into 

objective quantities of player load must first be made more widely accessible, since when lacking 

this, previous research has turned to acceleration-based arbitrary loading units to measure player 

load (Bailey et al., 2017),47 which do not necessarily translate into known quantities. 

This understanding of player loading may not be limited only to injury prediction and prevention 

but may also extend to using this technology for protective purposes (Gabbett and Ullah, 2012). 

Indeed, “although excessive training loads may increase intrinsic injury risk, insufficient loads may 

achieve the same outcome, with a certain level of load (in-between an underload and overload) 

likely to be protective for injury” (Colby et al., 2014). Providing players with a minimum loading 

dose is even necessary for bone and musculoskeletal tissue health, but must be carefully 

administered, lest higher loads lead to overuse injuries (Udofa et al., 2016).  

This research is particularly important when considering team sports, where this training “reflects 

a balance between the minimum training load required to elicit an improvement in fitness and the 

maximum training load tolerable before sustaining marked increases in injury rates” (Gabbett and 

Ullah, 2012). Although more could be said on the benefits of protective loading levels, the 

discussion will now briefly turn to three other pathophysiological benefits that impact modelling 

from wearable device-collected kinematics may provide: landing, fatigue, and limb propulsion.  

Landing and Fatigue 

Although Elvin et al. (2007) found that jump height did not correlate with peak acceleration or 

peak force, their initial proposition that jump height may be “an important predictor of ground 

reaction force and overuse knee injury,” is yet to be disproved. However, if this is so, then the 

 
47 Bailey et al. (2017) is not the same author as Bailey et al. (2018). 
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variables must be related. The idea of impact dose for injury prevention and shock attenuation 

without considering ground reaction forces may not be suitable, since this study seems to suggest 

that shock reduction does not significantly improve with elevated mechanical demands (Zhang et 

al., 2008). In fact, landing height has been found to have no significant effect on acceleration 

during impact (Zhang et al., 2008), which may justify the earlier proposition that jumping events 

are more difficult to estimate force from acceleration than running events are.48 More recently, 

Gokeler et al. (2017) has demonstrated how accelerometers can be used as rehabilitative 

assessments before returning to activities post ACL reconstruction by assessing jump height and 

power. 

Coventry et al. (2006) found that following a jumping protocol, their ten participants were 

fatigued, but without significant shock attenuation throughout their body, and Simons and 

Bradshaw (2016) summarised these effects by explaining that fatigue results in increased GRF 

without substantially changing the acceleration. This complicates the acceleration-force 

relationship by implicitly affirming that there are other factors that can lead to increased forces. 

However, Reenalda et al. (2016) has reported that fatigue can increase peak acceleration, and that 

“an increase in peak acceleration might indicate higher loading rates, a reduction in shock 

absorption quality and a higher impact on the body.” They further explained that changes in 

running technique over long periods of physical activity may not necessarily be due to fatigue, but 

may rather be due to the body adapting its technique to cope with the high impact stresses on the 

body (Reenalda et al., 2016).  

This is consistent with Coventry et al. (2006), who has also explained that the body can maintain 

shock absorption over longer periods of physical exercise by altering its kinematics. This research 

seems to indicate that although force, acceleration, and fatigue are interrelated, fatigue may not 

be the best indicator of risk, since bodily changes in response to fatigue are apparently not 

consistent. However, in netball matches, Best (2017) found a significant association between 

match quarter and injury occurrence (𝑝 = 0.019), with peak incidence occurring in the third 

quarter, where it is expected that fatigue would be intensifying. This seems to be a necessary area 

of future research. 

 

 
48 Chapter 5.1.1, Differences by Movement. 
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Limb Propulsion 

This relationship could also be used for monitoring and predicting the pathologies of trailing limb 

propulsion. Pieper et al. (2020) tracked the propulsive force output of healthy participants before 

and after inhibiting their movement with a leg brace by diminishing the right limb propulsion of 

their participants by simulating a leg impairment similar to that following stroke. Although they 

found that the unilateral leg-brace impairment did not replicate the neuromuscular limitations 

present following stroke, they found that the knee brace caused a systematic and significant 

reduction in limb propulsion: they observed a reduction of the very large correlations in the 

uninhibited leg (𝑅2 = 0.77) to very small correlations in the inhibited leg (𝑅2 = 0.31). This 

research indicates that propulsive inhibitions could be detectable through accurate gait propulsion 

and loading predictions. Such propulsive distinctions have also been trialled by Browne and Franz 

(2019), who found that one could monitor the modulation of trailing limb propulsion by tracking 

the angular velocities about the ankle.  

The technology could be used to monitor technique, looking in advance for signs of oncoming 

injury. Lee et al. (2015) has found that acceleration and angular velocity can contribute to 

distinguishing between intensity levels, and in particular that angular velocity “can be used to 

distinguish between locomotion modes at the same intensity level.” Although angular velocity is 

not dependent on force, this does demonstrate that wearable accelerometers are able to provide 

information on gait characteristics for the purpose of pathological monitoring. More directly, Dan 

et al. (2019) has proposed that using acceleration-predicted ground reaction force, can indeed 

enable devices to screen for asymmetrical gait differences between individuals. Of course, 

propulsive behaviours are only one aspect of understanding technique modulation post-injury, but 

it can be seen that there is potential for broad application of this kind of technology by monitoring 

parameters associated with gait impairments.  
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Chapter 6. Future Research Areas 

As recommended within the literature . 

Research Aim #5 

Determine information on the running of a trial such that new data can be 

collected, and a relationship derived, based on the recommendations and 

performance of these studies.  

6.1. Research Implications  

Having presented the previous works within the literature, a summary of the future research areas 

that were recommended in the qualified articles will be given. These recommendations will be used 

to design a validation trial, wherein the literature-based conclusions and the data of a previous 

trial will be revaluated in light of the strategies discussed. The summaries within this chapter are 

only the primary areas for future research that were raised in the qualified articles and are not 

exhaustive for areas of literature-warranted future research. It may be noted that some of the 

raised research areas have already been briefly covered within the review; these are included for 

the purpose of relaying the primary areas that were raised within the articles as future needs. 

6.1.1. Recommendations 

Future research should determine optimal placement sites for wearable accelerometers, 

accounting for the reasons of each and considering strengths of using information from multiple 

locations (Havens et al., 2018, Pieper et al., 2020, Tan et al., 2020, Tran et al., 2012, Wundersitz et 

al., 2013). It should aim to understand the degree to which movement artefact and soft tissue 

attenuation at each position affect results (Callaghan et al., 2018, Havens et al., 2018). Attachment 

methods should be designed for securing against this movement artefact between people, limiting 

device vibration and movement (Tran et al., 2012, Wundersitz et al., 2013). Interpersonal 

differences in landing and movement technique should be accounted for, especially with regards 

to how technique may change over time (Simons and Bradshaw, 2016). This may involve further 

understanding the contribution of joint angles to peak forces, accelerations, and impact 

attenuation (Elvin et al., 2007, Simons and Bradshaw, 2016, Tran et al., 2012).  

Signals may need to be corrected for gravity and the effects of contact angle when calculating the 

vertical force componentry (Hennig and Lafortune, 1991). Naturally, this may contribute towards 
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the need for modelling the shock attenuation of lower limb kinematics and how it affects force 

and power (Lafortune et al., 1995). This may involve including considerations for landing surfaces 

(Simons and Bradshaw, 2016) and footwear (Tan et al., 2020). 

Further research is required to confirm logarithmic force-acceleration model correlations (Charry 

et al., 2013). All models should be validated for accurate prediction and for activities of daily living, 

particularly those which have been designed with machine learning (Guo et al., 2017, Lafortune et 

al., 1995). Force approximation models should be mapped to specific gait events, and specifically 

should determine whether the maximum projection of the relationship occurs at mid-stance, 

when the leg is geometrically perpendicular to the ground (Charry et al., 2013). The development 

of these models that relate GRF with PRA should include factoring in the effects of body weight, 

and may mean developing personalised algorithms (Raper et al., 2018, Simons and Bradshaw, 

2016).  

This research will need to confirm whether vertical tibial acceleration is indeed the best surrogate 

for load rate in runners (Davis et al., 2018), and contribute to further understanding the value of 

segment acceleration in the athletic movements of a wider variety of sports, including for pace 

bowling performance (Callaghan et al., 2018, Elvin et al., 2007) and for machine learning 

developments (Tan et al., 2020). Running load impairment predictors should be identified for 

application with knee joint injuries and in rehabilitation protocols like ACL reconstruction (Elvin et 

al., 2007, Havens et al., 2018). These predictors should consider a method of determining lower 

extremity loads in pre- and post-intervention programs (Raper et al., 2018). Especially regarding 

monitoring to pre-injury load levels, consideration should be made for whether prediction models 

can be used as relative measurements of load (Raper et al., 2018).  

Future research may include the development of technology that identifies gait events outside of 

the laboratory (Pieper et al., 2020), with models that simultaneously estimate average, 

instantaneous and peak impact load rates (Tan et al., 2020). This software should be further 

applied to wider sporting applications and for regular consumer activities, with provisions for 

determining leap ability and explosive power (Penghai et al., 2014). The necessity for device 

calibration must be established, and additional technologies such as motion capture analysis 

should be used for measuring and validating predicted kinematics (Callaghan et al., 2018, 

Wundersitz et al., 2013). Devices should be made so as not to interfere with body movement 

(Hennig and Lafortune, 1991). 
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Future device development should use triaxial accelerometers as opposed to a single axial so that 

multiaxial correlations can be made (Elvin et al., 2007). Dynamic ranges should be selected such 

that gravitational accelerations during movement do not extend the limitations of the device 

(Meyer et al., 2015). Methods for synchronising motion capture data with device sensors may 

need to be considered if additional validation technologies will be considered (Havens et al., 

2018). Frequency analysis should be performed by spectral and wavelet analysis so that high 

frequency signal components can be detected and accounted for, especially with regards to 

eliminating noise whist retaining signals and in frequency-dependent waveform prediction models 

(Lafortune et al., 1995, Wundersitz et al., 2013).  

These acceleration frequency components should also be considered for how they differ between 

locations like the upper back (Simons and Bradshaw, 2016). Low frequency studies should also be 

performed: it needs to be determined whether acceleration cut off frequencies between 20 to 50 

Hz are more effective than at 20 Hz (Simons and Bradshaw, 2016). Furthermore, the conclusion 

needs to be validated that peak resultant acceleration filtering which maximises correlations is 

more important than identifying direct force-acceleration agreements (Simons and Bradshaw, 

2016). It must also be determined whether a regression model can negate internal device biases 

(Meyer et al., 2015), and validation is required for any device that claims to make accurate 

predictions (Raper et al., 2018).  

Finally, regarding trial design for the testing of these models, future trials should include a wider 

variety of sport-related movements than only jumping and landing, including testing for several 

running speed variations and their validity during change of direction tasks (Charry et al., 2013, 

Raper et al., 2018, Tran et al., 2012). Trials should be designed for more participants (Charry et al., 

2013, Tan et al., 2020), and the results of previous trials should be extrapolated to larger 

populations with elite athletes (Elvin et al., 2007). Trials that have developed models for 

participants with previous impairments should be tested for generalisability to non-injured 

populations (Havens et al., 2018). Trials should also consider varied age groups and participants 

with pathological gaits, rather than only young, healthy volunteers (Guo et al., 2017, Pieper et al., 

2020). Trials should make considerations for broader populations and with equal gender 

distributions (Meyer et al., 2015). The clinical utilisation of devices like ViPerform should be 

designed to measure average movements across multiple strides, rather than calculating points 

for individual strides to obtain higher accuracy (Raper et al., 2018).  
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6.1.2. Investigation Proposal 

Since there remains a need for determining these acceleration-force relationships, it is more 

expedient to re-evaluate data from two years ago in light of the presented algorithms, rather than 

designing a new investigation. The investigation to follow will investigate several of the areas 

recommended above, and it will primarily focus on considering device location. It will consider 

acceleration proxies for peak forces, load rates, and impulse, simultaneously estimating these 

variables. Relevant frequencies will be determined based on a power analysis, and noise will be 

eliminated where possible. The effect of using different filters on correlation accuracy will also be 

considered. It will consider linear, logarithmic, and machine learning proxy models. It will consider 

body weight and personalised algorithms, and model generalisation between participants. A 

comprehensive method will be presented in Chapter 7. 
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Chapter 7. Investigation 

7.1. Investigation Outline 

Corbo (2018) began this project by undertaking a preliminary trial to consider the initial validity of 

the acceleration-force relationship. Participants performed repetitions of up to nine different 

activities to simulate the kinds of movements experienced in a netball match. The highest 

correlations obtained using linear correlations were 𝑅2 = 0.64, between the integration of vertical 

force and axial acceleration (Corbo, 2018). In this chapter, the data that was collected in this trial 

will be re-evaluated in light of the findings gained from the literature to determine whether higher 

correlations can be obtained.  

7.1.1. Background 

In the previous study, four participants were instructed to complete nine sets of activities akin to 

the movements performed in netball. The instructions that were given to participants have been 

summarised in Table 12. In total, there were 111 individual movements completed by the four 

participants, but participants did not necessarily complete the same number of repetitions of each 

movement. In some movements, both legs of a participant may have been in contact with the 

force plates, so where possible, data from both legs was recorded. Across both legs across the 111 

trials, there were 135 valid recordings. 

Table 12: Instructions given to participants for completion within the study. 

Activity Instruction 

Walk From a start line, walk towards and over the force plates. 

Jog From a start line, run with mild effort over the force plates. 

Run From a start line, run with medium effort over the force plates. 

Sprint From a start line, run with maximal effort over the force plates. 

Cut Sprint towards the force plates. Strike a plate with the dominant foot, then change 

running direction 45°, following through on the contralateral foot. 

Step-Down Passively step down from a platform of 𝑥 mm height. 

Jump Begin by standing with both feet on a single force plate. Using a bilateral arm swing, jump 

from a standing position with maximum effort. 

Run-On Receive a thrown ball whilst running towards the force plates. Jump into the catch, landing 

with the contralateral leg on a force plate. Continue running past the force plates. 

Two-Foot 

Land 

Sprint towards the force plates. Jump off of one foot and land on two feet, landing with at 

least one foot on the force plates. 

A trial was deemed valid if an entire foot landed within a force plate. The trials had been 

previously visually sighted on VICON to confirm to confirm validity. If a foot landed across multiple 

force plates, the total movement kinetic was derived by summing the output of each relevant 
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plate. To confirm this validity, trials were further sighted by comparing the acceleration and force 

waveform: trials were valid if the recorded movement was distinguishable from times of non-

contact. Trials were considered invalid if they did not contain a complete waveform, or where 

there was no clear distinguishable movement. All trials that were marked invalid were excluded 

from this analysis. Valid trials are summarised in Table 13.  

Table 13: Valid trials, according to movement type, participant, foot, and force plate. 

 

Participant 1 Participant 2 Participant 3 Participant 4 

𝑚1 = 63.2291 𝑘𝑔 𝑚2 = 72.6537 𝑘𝑔 𝑚3 = 73.9738 𝑘𝑔 𝑚4 = 82.0994 𝑘𝑔 

Female Male Female Male 

Movement Foot Force Plate Foot Force Plate Foot Force Plate Foot Force Plate 

Walk 

R 4 R 3 R 3 L 1 

L 1 R 3 L, R 2, 3 L 1 

    R 3 R 4     

Jog 

L 2 R 3 & 4 R 4 R 1 & 2 

L, R 2, 3 R 3 L 1 & 2 L 1 

L 1 & 2 R 3 L 2 L 1 & 2 

Run 

L 2 L 1 & 2 L 1 L 1 & 2 

L 2 L 2 L 1 L 1 & 2 

    L 2     L 1 & 2 

Sprint 

L 2 L 1 & 2 L 1 & 2 L 2 

L 2 L 1 & 2 L 1 & 2 L 2 

    L 1 & 2 L 1 L 2 

Cut 

R 3 R 3 R 3 L 2 

R 3 R 3 R 3 L 2 

R 3 & 4 R 3 R 3     

440mm 
Step-Down 

R, L 2, 1     R 3     

R, L 2, 1    R 3    

R, L 2, 1    R 3    

450mm 
Step-Down 

         R 3 

         R 3 

         R 3 

460mm 
Step-Down 

   L 3       

   L 3       

   L 3       

600mm 
Step-Down 

         R 3 

         R 3 

         R 3 

660mm 
Step-Down 

R, L 2, 1 L 3       

R, L 2, 1 L 3       

R, L 2, 1 L 3         

Jump 

L, R 1, 2 L, R 1, 2 L, R 1, 2 R 4 

L, R 1, 2 L 1 & 3 L, R 1, 2 R 4 

    L, R 1, 2 L, R 1, 2 R 4 

Run-On 

R 4 & 3 L 2 R 4 L, R 2, 3 

R 4 L 2 R 4 L, R 2, 3 

      R 4 L, R 2, 3 
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        R 4     

Two-Foot Land 

L, R 1 & 2, 4 R 3 & 4 L, R 1 & 2, 3 & 4 L 1 

R, L 4, 2 & 1 R 4 R 3 L 1 

R, L 4, 2 & 1 L, R 1 & 2, 4 R 4 L 1 

    L, R 2, 4 R 3 & 4     

Data Capture 

In the trial, four AMTI OR6-7 Multi Component force plates measuring 464 mm (width) by 508 mm 

(length) were sampled at 2000 Hz, with axis orientations as illustrated in Figure 15. These were 

used in conjunction with VICON motion capture markers. The arrangement of the force plates and 

their utilisation with VICON in determining the validity of trials is shown below in Figure 15.  

 

Figure 15: Force plate and motion capture utilisation. 

Six TRIGNOTM Wireless System PM-W01 EMG devices were utilised, inside each of which was an 

integrated triaxial accelerometer. These sensors were attached to the anterior medial thigh, the 

anterior medial shank, and the ankle lateral malleolus.49 The accelerometers had a software-

selectable dynamic range of ± 1.5 g, ± 4 g, ± 6 g, and ± 9 g. The device in this investigation recorded 

with a dynamic range of ± 9 g. The device had a DC bandwidth of 50 ± 5 Hz, 20 dB/sec, and a 

sampling rate of 148.1 Hz. The six devices, and their attachment positions and axis orientations, 

are shown in Figure 16. 

 
49 Participant 1 had an additional four sensors placed on the medial ankle and heel of each leg. However, 
for consistency with the other participants, these have been excluded from further analysis. 
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Figure 16: The location and orientation of the six trial devices. 

Due to their contralateral placement, the Y- and Z-axis of the devices at the ankle are in opposite 

directions. To rectify this, a global Y- and Z-axis was defined according to the depiction in Figure 

16.  

- the positive Z-axis of the right ankle accorded with the global positive Y-axis, and negative Y 

with the global positive Z 

- the negative Z-axis of the left ankle accorded with the global positive Y-axis, and the 

positive Y-axis with the global positive Z-axis.  

All future references to ankle device axes regard the global axes. The positive X-axis of every 

device shared the same positive global axis and needed no rectification. Within this thesis, axial 

acceleration refers to the acceleration measured along the X-axis of each device. 

7.1.2. Investigation Method  

This investigation will aim to further explore the research aims in light of the reviewed literature. 

As the available data did not include pathophysiological information on the participants, Research 

Aim 4 (useful for injury prevention and monitoring) is untestable within this data analysis, and so 

will remain literature based. So also, Research Aim 3.C (generalisable according to external 

conditions), is untestable within this dataset since the trial was performed within a single, 

contained environment. Research Aim 5 (information on trial design) is only literature based. As 

such, this analysis will investigate Research Aims 1-3, which are on the sufficiency of data from a 

wearable device to model a subject- and movement-generalised relationship. The analysis will be 

Y 

X 

Z 
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undertaken in two phases, both of which have been designed with these aims in mind. The 

analysis was completed in MATLAB R2020a. 

Phase 1: Linear Modelling 

Event-to-event correlations will be conducted between the waveforms of each trial, across all 

locations and participants.  

Before modelling these relationships, noise filters will be applied to the raw kinematic data. 

Models will consider both direct linear correlations and mass-scaled linear correlations. Following 

this, a 20 Hz filter will furthermore be applied over the acceleration data, in accordance with the 

literature-based recommendations,50 to determine the influence of frequency on the acquired 

waveforms. Following this, cohort-developed correlations will be validated with a leave-one-out 

cross-validation experiment. In this, the acceleration data of three participants will be used to 

develop a model that is used to predict the force of the fourth participant; and vice versa, for each 

participant. 

Phase 2: Non-Linear Modelling 

Following the linear modelling of Phase 1, the data will be re-evaluated according to a logarithmic 

approach presented in the literature. Rather than determining a new model, the literature model 

will be validated with the data of each participant. The correlation coefficients (𝑅2) and the root 

mean squared errors (𝑅𝑀𝑆𝐸) of the logarithmic results will be compared to the linear results of 

Phase 1.  

Finally, a non-linear timeseries machine learning model will be developed for the prediction of the 

entire force waveform based on the input acceleration data. The model will be trained with the 

data of three participants and validated with the data of the fourth; this will be completed for 

each leave-one-out participant combination. The results of the machine learning model will be 

compared with the results of the preceding logarithmic and linear investigation. 

  

 
50 Chapter 6, Future Research Areas. 



81 
 

Excluded Models 

In addition to the above non-linear models, the literature also presented both a machine learning 

event-to-event model and a Fast Fourier Transform waveform model. These have been excluded 

from the investigation for the following reasons.  

Event-to-Event Modelling: Machine Learning  

- It was reasoned that event-to-event based machine learning was not necessary, so long as 

the entire force waveform could be predicted. If the entire waveform can be predicted, then 

any event within the waveform can simply be extracted from the prediction, making 

individual predictions unnecessary. 

Waveform Modelling: Fourier Transforms 

- Since Fourier prediction depends heavily upon waveform characteristics in the frequency 

domain, extended prediction requires cyclic activity, which was not available for this 

investigation.51 Similar activities could be stitched together, but this would not enable a 

validation of the literature-presented algorithm; it would only approximate the data; and 

would not represent truly cyclic behaviour.  

- Furthermore, this prediction method was only used by one study; and this study sought to 

obtain acceleration from force; not force from acceleration. Although this could be 

explored here, it is divergent from the primary aim of this investigation, and therefore will 

not be pursued. 

7.1.3. Hypothesis 

The following hypotheses are based on the research aims, informed by the literature, and with 

regards to both Phase 1 and Phase 2. It is hypothesised that: 

1. There is a very large relationship (R2 = 0.7 to 0.9) between force and acceleration at the 

lower limb, with the shank being optimal for developing this model.52 

2. The shank is the most effective position for modelling this relationship. 

 
51 Of course, single activities can be effectively analysed and reconstructed via a Fast Fourier Transform, but 
the model for a single activity will certainly not be globally applicable; and even the variability between 
similar movements is significant enough to produce errors. 
52 This hypothesised statistic: a) is consistent with the most common correlations seen in the literature, and 
b) will be testing for one class higher than the previous findings of Corbo (2018) (who found 𝑅2 = 0.64). It 
effectively states that that old data, with newer models, can obtain higher results. 
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3. Generalised models are the most effective when they incorporate subject-specific 

characteristics. 

4. The correlations after filtering the data with a 20 Hz filter will be higher than when the data 

is only filtered for noise.53 

5. Logarithmic modelling predicts force more accurately than linear modelling.  

6. Machine learning modelling predicts force more accurately than logarithmic and linear 

modelling. 

7.2. Data Preparation 

Prior to the analysis, two preliminary procedures had to occur. A filter had to be designed for both 

the force and acceleration data to remove noise from each raw dataset. Following this, the 

waveform events that were to be compared had to be extracted from each trial.  

7.2.1. Raw Data Filtering 

The first kind of raw filtering that was introduced was 40 N force threshold, which was applied 

over the entire force dataset to eliminate the presence of raw fluctuation in the force plates, as 

shown in Figure 17. Although this fluctuation was generally around 20 N, there were times that the 

fluctuation oscillated to 35 N, and as such the 40 N threshold was selected. 

 

Figure 17: Force plate noise fluctuation (N). 

Although a single filter may have been sufficient to remove the above noise, the introduction of a 

low magnitude force threshold was consistent with several articles in the literature,54 and it was 

also used to define the start and end time of any particular activity; it was considered that an 

activity had occurred when the force spiked above 40 N.  

 
53 This is based on the findings of Simons and Bradshaw (2016) (Chapter 4.1.3 and 6.1.1). 
54 Chapter 4.1.3, Data Refinement. 
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Following the introduction of this threshold, it was necessary that additional filters be designed for 

the force and acceleration data to smooth the remaining noise. The force plates were observed to 

carry minor noise and since the accelerometers had been linearly up-sampled to 2000 Hz from 

148.1 Hz, they were rugged signals (Figure 18).55  

 

Figure 18: Raw resultant force and axial acceleration data of Participant 2. Local maximums indicate the presence of 

noise. 

Force Filter Design 

In determining an appropriate filter design, it was considered that, as per the Nyquist sampling 

criterion, the highest frequency obtainable in the data without aliasing would be half its sampling 

rate. Even though acceleration was up-sampled to it, the datasets of both force and acceleration 

were recorded at 2000 Hz, meaning that this frequency is 1000 Hz.  

𝑓𝑁𝑄 =
𝑓𝑠
2

=
2000 𝐻𝑧

2
= 1000 𝐻𝑧 

As such, it is immediately known that the desired frequencies are all under 1000 Hz. The power 

spectra for both signals up to this frequency is shown in Figure 19.  

 
55 This filter investigation considers resultant force and axial acceleration, for these were two of the 
predominant signals investigated in the literature. Although the signal of each axis may be susceptible to 
different amounts of noise due to directional motion artefact, it will be assumed following this investigation 
that the filters designed are applicable to all three axes, and as such, that it is not necessary to determine 
further axis-specific filters. 
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Figure 19: Raw data power spectra of (A) resultant force and (B) axial acceleration. 

As seen, the primary frequencies for both signals are within the first 100 Hz, with a power range of 

over 50 dB. As such, it may be reasonable to immediately design a lowpass filter to accommodate 

this range alone. However, before accomplishing this, it is helpful to confirm the location of the 

noise that was present in Figure 18. In the force data, there were approximately 8.5 high 

frequency oscillations within 𝑡 = 0.05 to 𝑡 = 0.8 seconds, suggesting an oscillation frequency of 

286𝐻𝑧. This is shown in Figure 20. 

Oscillation interval: Δ ≈
0.03𝑠

8.5
= 0.0035𝑠 

Oscillation frequency: 𝑓0 =
1

Δ
=

1

0.0035𝑠
= 286𝐻𝑧 

 

Figure 20: An analysis of noise in the raw resultant force data of a trial from Participant 2. 

On inspection of the power spectrum in Figure 19, this high-frequency, high-power component is 

clearly identified to occur at either 276.7 Hz or 295.0 Hz (Figure 21). Likely, both have contributed 

A B Force Acceleration 
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to the observed noise, and as such, any lowpass filter with a sharp attenuation at a pole before 

this would adequately remove both frequencies. However, when considering the maximum power 

in the spectrum, it is identified that all frequencies greater that approximately 90 Hz are at least 70 

dB less than the frequency of maximum power in this signal. As such, the cut-off frequency was 

selected to be 100 Hz, which was consistent with Raper et al. (2018) and Simons and Bradshaw 

(2016).56 

 

Figure 21: Scaled-up power spectrum of Force M. 

Acceleration Filter Design 

However, it would not be effective to apply this same filter over the acceleration data. Since the 

sampling rate of the accelerometer was originally 148.1 Hz, the original minimum frequency for a 

non-aliasing signal would have been 74.05 Hz: 

𝑓𝑁𝑄 =
𝑓𝑠
2

=
148.1 𝐻𝑧

2
= 74.05 𝐻𝑧 

Although 74.05 Hz could be taken as a much better indicator for an appropriate pole location, 

even this may not be suitable, for the bandwidth of the device was 50 ± 5 Hz.57 On closer 

inspection of the acceleration power spectrum, it is observed that all frequencies above 52 Hz 

attenuate to P ≪ -19.25 dB; with the final primary frequency occurring at approximately 44 Hz 

(Figure 22). In light of this, the acceleration cut-off frequency was selected at 50 Hz, 

acknowledging that a gradual roll-off will allow the frequencies on the upper limit of the device 

bandwidth to still be effectual within the analysis. 

 
56 Chapter 2.1.5, Qualifying Articles. 
57 Chapter 7.1.1, Background. 
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Figure 22: Scaled-up power spectrum of Acceleration X. 

Filter Application 

Filters were designed with poles at the selected locations. So as not to modulate frequencies 

below the cut-off (apart from minor attenuation), a Butterworth filter was selected as opposed to 

a Chebyshev or elliptical design; and it chosen over a Bessel filter for its sharper roll-off. A 4th order 

filter was chosen; though, similar orders may have also been suitable. The filtered spectra are 

shown in Figure 23. As seen, the undesired frequencies have been significantly attenuated.  

 

Figure 23: Power spectra pre- and post-filtering of (A) resultant force and (B) axial acceleration. 

The result of this application is shown in Figure 24, where each signal has been appropriately 

smoothed, without having lost its main signal characteristics. The absolute peak reduction of each 

Force Acceleration A B 
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curve here was −0.09% for force58 and +0.21% for acceleration.59  The assumption was made 

that the noise present within the resultant force and axial acceleration signals were consistent in 

each axis of both variables, and as such these filters were applied over the entire dataset: a 100 Hz 

filter was applied to each force axis, and a 50 Hz filter was applied to each acceleration axis.60  

 

Figure 24: Force and acceleration before and after filtering (scaled). 

7.2.2. Variable Isolation 

The events that were selected for identification are shown in Figure 25. These events were 

selected for analysis primarily based on the findings of the literature; and the analysis was further 

extended to consider the peak events in the data of all three acceleration axes. In addition to 

these events, the integrals of the resultant and vertical force and acceleration waveforms were 

also calculated. These are shown in Figure 26.  

 
58 Peak |Force| Reduction =

1769.4𝑁−1770.9𝑁

1770.9𝑁
× 100 = −0.09% (i.e. before filtering = 1770.9𝑁; after 

filtering = 1769.4𝑁). 
59 Peak |Acc X| Reduction =

 6.9711𝑔−6.9567𝑔

6.9567𝑔
× 100 = +0.21% (i.e. before filtering = −6.9567𝑔; after 

filtering = −6.9711𝑔). 
60 It is not expected that the difference in peak magnitude here will be equivalent between every trial, nor 
at every point within the signal. However, it is assumed that this calculation is an acceptable and indicative 
error for the variables which will be investigated, and as such that these filters may be appropriated to the 
entire dataset. 
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Figure 25: The force and acceleration events identified for analysis. 

 

Figure 26: The integrals (the area under the curves) of resultant and vertical (A) force and (B) acceleration. 

The force and acceleration variables identified in these figures are further defined in 

Table 14 and Table 15. 

 

 

 

 

A B 
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Table 14: Force variables and events considered in this investigation. 

Force Variables and Events 

Variable/Event Explanation 

𝑭𝑴  Resultant Force  

- i.e. Magnitude 

- 𝐹𝑀 = √𝐹𝑋
2 + 𝐹𝑌

2 + 𝐹𝑍
2 

𝑭𝑿, 𝑭𝒀, 𝑭𝒁 

 

Uniaxial force plate data 

- 𝐹𝑍 is equivalent to vertical ground reaction force (vGRF) 

MMAX Peak Resultant Force 

ZMIN Peak Vertical Force 

- Since 𝐹𝑍 is directed towards the ground, this is always negative 

𝑭𝒁 Loading Zone Vertical Force Loading Zone 

- The zone between 20-80% of the first 𝐹𝑍 local maximum 

- Specified as above 100 N to account for initial non-event oscillation. 

𝒅𝑭𝒁/𝒅𝒕  Vertical Force Loading Rate 

- Derivative of 𝐹𝑍 

VALR Vertical Average Loading Rate 

- The average slope of the 𝐹𝑍 Loading Zone. 

VILR Vertical Instantaneous Loading Rate 

- The peak slope of the 𝐹𝑍 Loading Zone. 

MINTEG, ZINTEG The integrals of the resultant and vertical waveforms. 

Table 15: Acceleration variables and events considered in this investigation. 

Acceleration Variables and Events 

Variable/Event Explanation 

𝑨𝑴  Resultant Acceleration  

- i.e. Magnitude 

- 𝐴𝑀 = √𝐴𝑋
2 + 𝐴𝑌

2 + 𝐴𝑍
2  

𝑨𝑿, 𝑨𝒀, 𝑨𝒁 

 

Uniaxial acceleration data 

- 𝐴𝑋 is equivalent to axial acceleration 

MMAX Peak Resultant Acceleration 

- The global maximum of 𝐴𝑀 

XMIN Peak Axial Acceleration 

- The global minimum of 𝐴𝑋  

- Since the first peak is at heel-strike, 𝐴𝑋 is directed towards the ground 

and this is always negative 

YMAX, ZMAX Global maximum 𝐴𝑌, 𝐴𝑍 

XMAX The maximum value within the 100 ms after XMIN. 

MMIN, YMIN, ZMIN The minimum value within the 100 ms after MMAX, YMAX, ZMAX. 

MINTEG, XINTEG The integrals of the resultant and vertical waveforms. 

MHEIGHT, XHEIGHT 

YHEIGHT, ZHEIGHT 

Not shown in figure. 

The peak-to-peak height of the maximum and minimum waveform events. 

- 𝐻𝑀 = 𝑎𝑏𝑠(MMAX − MMIN) etc. 
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7.3. Phase 1: Linear Modelling 

An event-to-event investigation was performed with the aim of identifying whether accurate linear 

relationships can be defined between acceleration and force events, and whether these 

relationships are transferable between participants. The predictive power of linear models is 

considered, and a baseline for the comparison of future non-linear models is established. 

7.3.1. Event-to-Event Correlations 

Event Outputs 

All identified force and acceleration events for each participant at each position, and for the entire 

cohort at each position, were linearly correlated in MATLAB R2020a. The correlations were colour 

graded according to the scale shown in Figure 27, with red indicating a trivial correlation and 

green indicating an almost perfect correlation.  

 

Figure 27: Colour grading of correlations. 

The shank events from all trials completed by Participant 2 are shown in Table 16, where the cells 

that contained trivial or low correlations (𝑅2 < 0.3) have been cleared. 61 Every correlation for this 

participant, and for every other participant, at every location, is given in Appendix A, completely 

summarising the results of the event-to-event based correlation investigation.  

Table 16: Event-to-Event correlations for Participant 2 at the shank, 𝑅2 > 0.3. 

Force Acceleration 

P2Shank MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG   0.9060       0.9351                 

MMAX 0.3794  0.3906  0.3957  0.3455 0.3252      0.3339 

VALR 0.6079 0.3324 0.5813  0.3758  0.3646     0.6185 0.5460 0.4508 

VILR 0.6258 0.3877 0.5423  0.4023  0.3645 0.3084    0.5158 0.4820 0.3367 

ZINTEG  0.9029    0.9345          

ZMIN 0.3569   0.3623   0.3840   0.3332 0.3193           0.3115 

On initial inspection, it may be concluded that except for the integrals, there are no waveform 

events that produce very large or almost perfect correlations. The highest correlations produced 

 
61 The printing of Table 17 for initial consideration was chosen in this way: the primary interest of this thesis 
is the shank, so the shank was selected; and a random number between 1 and 4 was generated in MATLAB 
using randi(4); Participant 2 was selected. This table is used as a starting point for the discussion and 
display of relative results.  
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are large and were obtained from the correlations of peak resultant and Z-Axis acceleration 

(MMAX, MHEIGHT, ZMAX, ZHEIGHT) with vertical average and instantaneous load rate (VILR and VALR). 

Participant 2 produced no correlations that were higher than moderate between peak force and 

peak acceleration, along any axis; and especially in the Y-axis, for which there were no correlations 

above 𝑅2 = 0.3. If this table were taken as globally conclusive, the conclusion could be made that 

peak events do not correlate well. But these results are not consistent between participants. 

Whereas Participant 2 had a shank correlation between vertical instantaneous loading rate (VILR) 

and resultant maximum-minimum peak height (MHEIGHT) of 𝑅2 = 0.63, Participant 1 had 𝑅2 =

0.44 and Participant 4 had 𝑅2 = 0.09. Perhaps this implies that Participant 2 was an outlier; but 

perhaps not. The overall participant event variance, and similarities, would seem to indicate that 

these results are not due to Participant 2 being an outlier. For example, whereas Participant 2 

produced a moderate shank correlation of 𝑅2 = 0.39 between resultant acceleration (MMAX) and 

resultant force (MMAX), Participant 4 had 𝑅2 = 0.65 and Participants 1 and 3 both had 𝑅2 < 0.18 

(Figure 28). In this event, Participant 2 was closer to the mean than the boundary. 

 

Figure 28: Correlations between resultant force and resultant acceleration at the shank. 

Although weak, relationships do seem present between the waveform events. At the thigh, the 

resultant force and resultant acceleration (MMAX-MMAX) correlations (Figure 29) were 𝑅2 = 0.40, 

0.25, 0.64, and 0.74 for Participants 1-4 respectively. Yet, despite the correlation of Participant 3 

being large, and of Participant 4 being very large, when the cohort data were combined, the 

correlation was only 𝑅2 = 0.43, indicating an overall moderate relationship. However, the subject-

specific effects of mass are yet to be considered; and will be, after the higher integral correlations 

are considered.  
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Figure 29: Correlations between resultant force and resultant acceleration at the thigh. 

The previous results have shown substantial variability between the event correlation results for 

individual participants. In fact, there were only four events that produced at least moderate 

correlations (𝑅2 > 0.3) for all four participants. These somewhat higher correlations occurred at 

the shank only and were between peak resultant and vertical force (MMAX, ZMIN) and peak axial 

acceleration (XMAX, XHEIGHT). This may seem to indicate that the shank is the best location for 

predicting peak force from acceleration. However, even these correlations had much variability: 

for each of these four correlations, the minimums were between 𝑅2 = 0.33 to 0.35 and the 

maximums between 𝑅2 = 0.72 to 0.79. In other words, no events had a correlation of 𝑅2 > 0.36 

for every participant. 

If these events were the only available data from which to predict impact dose, then these results 

would suggest that they are inadequate for long term, inter-participant reliability. To be valid for 

extended use, these predicted impact levels would need to be at a much high accuracy and in the 

order of at least 80%.62 This would necessitate the obtaining of at least very large correlations in 

every person.  

Integration  

As briefly mentioned above, the correlation between force and acceleration waveform integration 

was almost perfect for Participant 2 at the shank. The correlation of the axial acceleration (XINTEG) 

and vertical force (ZINTEG) integral was 𝑅2 = 0.93, which is almost perfect, as illustrated in Figure 

 
62 Chapter 4.1.4, Result Validation. 
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30. This high correlation was consistent with the correlations from Participant 1 (𝑅2 = 0.90) and 

Participant 4 (𝑅2 = 0.95) which were also almost perfect, but far greater than Participant 1 (𝑅2 =

0.50) which was only moderate.  

 

Figure 30: Integration of the vertical force and axial acceleration waveforms. 

In fact, every integration correlation across participants and locations was at least moderate, with 

most correlations very large to almost perfect, as shown in Table 17. And on further consideration, 

it is seen that the moderate correlation of Participant 1 was in fact a clear outlier. 

Table 17: Correlations between the integration of force and acceleration. 

 

Integration:  
Force-Acceleration 

 Thigh Shank Ankle 

𝑹𝟐 Vertical-Axial* Resultant-Resultant** Vertical-Axial Resultant-Resultant Vertical-Axial Resultant-Resultant 

P1 0.88 0.84 0.50 0.86 0.76 0.88 

P2 0.92 0.91 0.93 0.91 0.97 0.94 

P3 0.93 0.83 0.90 0.91 0.98 0.98 

P4 0.92 0.79 0.95 0.92 0.91 0.90 

Mean 0.91 0.85 0.82 0.90 0.91 0.92 

Cohort 0.78 0.83 0.89 0.90 0.95 0.93 

*Vertical Force (ZINTEG) - Axial Acceleration (XINTEG) 
**Force Magnitude (MINTEG) - Acceleration Magnitude (MINTEG) 

Concluding on the participant means in Table 17, the optimal location for predicting the force 

integral is the ankle, which produces a mean resultant and axial correlation almost equivalent to, 

or greater than, the thigh and the shank (𝑝 < 0.05).63 Considering the entire cohort, the ankle is 

also more effective than the thigh and shank (𝑝 < 0.03).  

 
63 Almost equivalent was defined as a difference of not more than 𝑅2 = 0.01. 
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However, when comparing the vertical-axial participant correlations at the thigh (𝑅2 = 0.88 to 

0.93) with the same cohort correlation (𝑅2 = 0.78), it is peculiar that the cohort regression value 

was so low. To understand this, the effects of participant mass must be understood.  

Further two-tailed paired-sample t-Tests were performed for calculating the statistical difference 

between the original cohort and mass-scaled correlation differences.64 It was hypothesised for 

each test that the means of the samples were the same (i.e. 𝐻0  =  0). The results show that 

scaling by mass increases the cohort regression at every location for each integration correlation 

between force (ZINTEG, MINTEG) and acceleration (XINTEG, MINTEG): 

- The difference was statistically significant (𝑝 = 0.0027, 𝑀𝐷𝑅2
= 0.02), so it was 

statistically likely that mass had increased the regression coefficient.65 

- The smallest increase was between resultant force and acceleration, where mass increased 

the regression coefficient from 𝑅2 = 0.90 to 0.90 (the increase was 𝑅2 = 0.0031). 

The effect of mass-scaling in the cohort regression is also shown above in the extension of Table 

17 below, where the inclusion of mass increases every cohort correlation; and is further illustrated 

in Figure 31.  

Table 18: Extension of Table 17, showing the cohort mass-induced correlation differences. 

 Thigh Shank Ankle 

𝑹𝟐 Vertical-Axial Resultant-Resultant Vertical-Axial Resultant-Resultant Vertical-Axial Resultant-Resultant 

Cohort 0.78 0.83 0.89 0.90 0.95 0.93 

Cohort: 

mass- 

scaled 

0.83 0.85 0.90 0.90 0.96 0.95 

 
64 All tests were calculated using the Microsoft Excel t-Test: Paired Two Sample for Means (two-tailed). 
65 Average unscaled: 𝜇𝑅2 = 0.88; average mean-scaled: 𝜇𝑅2

𝑚𝑎𝑠𝑠
= 0.90; mean difference 𝑀𝐷𝑅2 = 0.02. 



95 
 

 

Figure 31: Mass-scaled integral correlations. 
(A) Vertical force (ZINTEG) and axial acceleration (XINTEGMASS). 

(B) Resultant force (MINTEG) and resultant acceleration (MINTEGMASS). 

The prediction model for the integral of vertical force (ZINTEG) from mass-scaled axial acceleration 

(XINTEGMASS) at the ankle can then be given as: 

𝐹ZINTEG = 5367.3 + 0.13039 × 𝐴XINTEGMASS 

This model returns a correlation accuracy of 𝑅2 = 0.96 and a root mean squared error of 𝑅𝑀𝑆𝐸 =

3.01 × 104 𝑁. 𝑠. Equivalently, this model can furthermore be expressed in terms of vertical 

impulse: 

𝐼𝑉⃗⃗  ⃗ = 5367.3 + 0.13039 × ∫𝐴𝑋
⃗⃗⃗⃗  ⃗ 𝑑𝑡 × 𝑚𝑎𝑠𝑠 

Cohort Mass-Scaled Event Correlations 

In light of the favourable effect of mass-scaling that has been observed, event correlations were 

also revisited with the inclusion of mass-scaling. Following an analysis of the cohort regression 

results in Appendix A, the following event-to-event cohort-combined conclusions were made: 

- Scaling by mass increased the cohort regression at every location between both peak 

resultant and vertical force (MMAX, ZMIN) and every peak acceleration (MMAX, XMAX, YMAX, 

ZMAX) (𝑝 < 0.0001).66  

o Initial range: 0.10 < 𝑅2 < 0.54 

 
66 Average unscaled: 𝜇 = 0.32; average mean-scaled: 𝜇𝑚𝑎𝑠𝑠 = 0.39; mean difference 𝑀𝐷𝑅2 = 0.07. 

A B 
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o Mass-scaled range: 0.15 < 𝑅2 < 0.59 

- Scaling by mass increased the cohort regression at every location between both vertical 

loading rates (VALR, VILR) and every peak acceleration (MMAX, XMAX, YMAX, ZMAX) (𝑝 =

0.0105).67 

o Initial range: 0.05 < 𝑅2 < 0.35 

o Mass-scaled range: 0.07 < 𝑅2 < 0.35 

The increase in correlations of peak resultant force (MMAX) and peak resultant acceleration (MMAX) 

after scaling by mass (MMAXMASS) are shown in Figure 32, where it is observed that the cohort 

correlations were highest at the thigh; then the shank; then the ankle. 

 

Figure 32: Correlation differences after scaling by mass for resultant force (MMAX) and resultant acceleration (MMAX).  
(A) Direct correlations. (B) Mass-scaled correlations. 

As shown above, the highest cohort correlation obtained at the thigh, which was between peak 

resultant force (MMAX) and mass-scaled peak resultant acceleration (MMAXMASS), was 𝑅2 =

0.5769. Interestingly, between vertical force (ZMIN) and the same mass-scaled peak resultant 

acceleration (MMAXMASS), the correlation was 𝑅2 = 0.5694, which is only a difference of -1.3%.68 

The same resultant-resultant correlations from the shank and ankle were 𝑅2 = 0.45 and 0.27 

respectively.  

The highest correlation obtained at the ankle, which was between peak resultant force (MMAX) 

and mass-scaled peak Y-axis acceleration (YMAXMASS), was 𝑅2 = 0.5364. Between vertical force 

(ZMIN) and the same mass-scaled peak Y-axis acceleration (YMAXMASS), it was 𝑅2 = 0.5318 

 
67 Average unscaled: 𝜇 = 0.19; average mean-scaled: 𝜇𝑚𝑎𝑠𝑠 = 0.20; mean difference 𝑀𝐷𝑅2 = 0.01. 
68 Percent Decrease =

0.5694−0.5769

0.5769
× 100 = −1.300%. 

A B 
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(−0.86%).69 The same resultant-Y-axis correlations from the thigh and shank were 𝑅2 = 0.52 and 

0.38 respectively. 

The highest correlation obtained at the shank, which was between peak resultant force (MMAX) 

and mass-scaled peak axial acceleration (XMAXMASS), was 𝑅2 = 0.5927. Between vertical force 

(ZMIN) and the same mass-scaled peak axial acceleration (XMAXMASS) correlation of 𝑅2 = 0.5924 

(−0.05%).70 The same resultant-axial correlations as obtained at the thigh and ankle were 𝑅2 =

0.29 and 0.25 respectively.  

In each case, the vertical correlation was within 2% of the resultant correlation: 

0.98 × 𝑅𝐹𝑀

2 < 𝑅𝐹𝑉

2 < 1.02 × 𝑅𝐹𝑀

2  

Although these results were all only large (0.5 < 𝑅2 < 0.7), the proximity of these resultant and 

vertical force correlations do indicate that the resultant magnitude of each waveform for both 

acceleration and force in the recorded activities is primarily dependent on the magnitude of the 

vertical force axis. In light of the previous investigation, where direct linear correlations have been 

considered for individuals and for the entire cohort, the investigation will now turn to consider 

whether these correlations can be improved with the application of a 20 Hz lowpass filter. 

7.3.2. Filter-Induced Differences 

Overview 

This investigation must determine whether filtering the data using a lower cut-off frequency 

prepares the acceleration data for predictive analysis more effectively than the previous 50 Hz 

filter. Following the recommendations given by Simons and Bradshaw (2016), a 20 Hz filter will be 

applied to the acceleration data, and if there are major differences between the results, may 

inform this investigation of the location of the primary frequencies which contribute to the 

efficacy of a predictive model.  

To best understand the effect of a different filter, the entire correlation set will be compared. 

However, it would be quite arduous to repeat the previous investigation and comment on the 

change of every possible variable for both filters and with different models; for even at this stage, 

 
69 Percent Decrease =

0.5318−0.5364

0.5364
× 100 = −0.8576%. 

70 Percent Decrease =
0.5924−0.5927

0.5927
× 100 = −0.0506%. 



98 
 

many correlations have not been considered.71 The decision was therefore made to perform a cell-

to-cell t-test for each correlation in the tables of Appendix A, with the aim of determining whether 

the 20 Hz filtered correlation results were statistically different to the 50 Hz filter. If the 20 Hz filter 

were found to produce statistically different results, the 20 Hz filtered data would be retained in 

the following investigation; if the results were not statistically different, only the 50 Hz filtered 

data would be retained. 

Applying the 20 Hz Filter 

Identical in all other regards to the previous filter of 50 Hz, a new 4th order Butterworth lowpass 

filter with its poles at 20 Hz was designed and applied to the acceleration data. The effect that this 

has to the waveform is shown in Figure 33, where the normal, 50 Hz filtered, and 20 Hz filtered 

waveforms are compared for a trial of Participant 1. The change in the absolute maximum of this 

waveform (i.e. the negative peak) due to the 50 Hz filter was +0.07%, and for the 20 Hz filter was  

-18.3%. 

 

Figure 33: Comparison of raw, 50 Hz filtered, and 20 Hz filtered acceleration data. 

 
71 It would be quite impractical to comment on every correlation present in the tables of Appendix 2. So far, 
the investigation has attempted to summarise and explain the most informative and insightful correlations 
for the purpose of this investigation, but the summary which has been provided is by no means exhaustive 
of the potential meaning which could be wrought through a more extensive consideration of the entire 
correlation set. For what is possible, these considerations will be explained in more detail in the later 
discussion (Chapter 7.5), but this will be predominantly based on the information which has been explicitly 
mentioned in this investigation. 
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The same tables as in Appendix A were generated for the 20 Hz filtered data. A two-tailed paired t-

test was performed for each set within the generated correlations: the 50 Hz filtered correlations 

from Participant 1 at the thigh were compared the 20 Hz filtered correlations from Participant 1 at 

the thigh; etc. for each participant, location and cohort correlation. It was hypothesised for each 

test that the mean difference was equal (i.e. 𝐻0  =  0). The results are shown below in Table 19. 

Table 19: Comparison of correlation coefficients between 20 and 50 Hz filtered data. Green indicates a stronger 

correlation. 

Persons 

 P1Thigh P2Thigh P3Thigh P4Thigh 

50 Hz Mean (𝑹𝟐) 0.2095 0.2191 0.2665 0.3497 

20 Hz Mean (𝑹𝟐) 0.1542 0.1825 0.1881 0.2352 

𝒑-𝒗𝒂𝒍𝒖𝒆 0.0002 0.0035 < 0.0001 < 0.0001 

 

 P1Shank P2Shank P3Shank P4Shank 

50 Hz Mean (𝑹𝟐) 0.2001 0.2640 0.2104 0.3435 

20 Hz Mean (𝑹𝟐) 0.1591 0.2082 0.1768 0.2454 

𝒑-𝒗𝒂𝒍𝒖𝒆 0.0040 < 0.0001 0.0528 < 0.0001 

 

 P1Ankle P2Ankle P3Ankle P4Ankle 

50 Hz Mean (𝑹𝟐) 0.1941 0.2191 0.1965 0.2266 

20 Hz Mean (𝑹𝟐) 0.1390 0.1699 0.1648 0.1903 

𝒑-𝒗𝒂𝒍𝒖𝒆 0.0001 0.0001 0.0362 0.0252 

 

Cohort 

 Thigh Shank Ankle 
  
  
  
  

50 Hz Mean (𝑹𝟐) 0.1985 0.2270 0.1768 

20 Hz Mean (𝑹𝟐) 0.1463 0.1774 0.1506 

𝒑-𝒗𝒂𝒍𝒖𝒆 < 0.0001 < 0.0001 0.0113 

The null hypothesis was rejected in almost every test: the difference between the means of the 50 

Hz- and 20 Hz filtered data is statistically significant. The one exception to this was for Participant 

3 at the shank, where 𝑝 > 0.05 and the null hypothesis was not rejected. However, this seemed to 

be an anomaly: aside from this one situation, the mean of the 50 Hz filtered data was greater than 

the 20 Hz filtered data on every occasion. The statistical significance was in favour of the 50 Hz 

filtered data, for on average, the 20 Hz filter actually reduced the correlations.  

In the previous section, a consideration was made as to what correlations produced at least 

moderate locations for all four participants. It was found that apart from the integral correlations, 

this only occurred for the shank correlations between peak resultant and vertical force (MMAX, 
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ZMIN) and peak axial acceleration (XMAX, XHEIGHT). The same consideration was made to 

understand the reduced 20 Hz filtered data correlations, and it was found that none of these 

events achieved correlations of greater than 𝑅2 = 0.3 for all four participants.  

However, there was one event correlation that produced at least moderate correlations for all four 

participants in the 20 Hz filtered data. This was between peak resultant force (MMAX) and peak 

resultant acceleration (MMAX) at the thigh, where the correlations were 𝑅2 = 0.42, 0.31, 0.47, 

and 0.75 for each participant, respectively. These same resultant-resultant correlations in the 50 

Hz filtered data were: 𝑅2 = 0.40, 0.25, 0.64, and 0.74 respectively. Several observations may be 

made on this: 

- Although the 20 Hz filter reduced most correlations, it did increase others, such that the 20 

Hz filtered thigh data correlated higher for this event than the 50 Hz filtered data. 

- The 20 Hz filter increased the location correlation consistency of single events at the thigh, 

since values which were not consistently predictable at the shank between participants 

were more consistently predictable at the thigh. 

- Although the 20 Hz filter increased this correlation in comparison with the 50 Hz data and 

shank correlations, the increase was not uniform across the correlations. The 20 Hz filtered 

data for this event at this location was only higher for Participants 1, 2, and 4; for 

Participant 3, the 50 Hz filtered data was still higher.  

Similar to the 50 Hz filter, the 20 Hz filter obtained moderate to almost perfect integral 

correlations of 𝑅2 = 0.47 to 0.98 (the 50 Hz filter had obtained 𝑅2 = 0.50 to 0.98). There were 

no other events for which the 20 Hz filtered data obtained at least moderate correlations for more 

than three participants. In light of all of these results, it was concluded that the 20 Hz filter does 

not produce stronger correlations than the 50 Hz filter, and that the 50 Hz filter was overall more 

effective. 

Having determined that applying a 20 Hz filter does not, on average, increase the mean of the 

event correlations, it was decided that all future analysis would continue using the 50 Hz filtered 

dataset. The final validation method for determining the predictive power of these linear models 

would be to determine the inter-participant predictive accuracy of the linear models with a leave-

one-out cross-validation study. However, since the previous results have shown that in general, 

the events of this dataset do not have greater than large correlations, it was determined that a 

cross-validation study would not add value to this investigation; for worse correlations would not 
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be practically useful, and higher correlations would be due to chance. Therefore, it was decided 

that the only waveform characteristics that would be considered in the cross-validation study 

were the 50 Hz filtered data integral correlations.  

7.3.3. Leave-One-Out Cross-Validation for Linear Integration 

Overview 

The leave-out-out cross-validation will entail the development of a model based on the 50 Hz 

filtered data of three participants, and then validating the model against the fourth participant. 

This will provide an understanding into generalisable physiological waveform events, where if a 

model were consistently accurate for a general population, the models can be assumed as 

physiologically representative of a general population.72 Indeed, if there are not characteristic 

relationships that are true for every participant, then it is expected that a cross-validation model 

would enable the identification of this.  

Method 

This process will be completed four times per model, with a different participant left out each 

time. This was chosen because if the conclusions of a single model were generalised over the 

entire population, then they may misrepresent the actual resolving power of the model, since the 

results generated may have only worked for that combination of training data. This would also 

provide an understanding of how training sets can influence the results. This method necessarily 

involves each model being trained without the data of the person on whom the model will be 

validated, increasing the validity of the trained model. If the validation person’s data was included 

in the training model, as it effectively was in the previous cohort correlations, then it is expected 

that these results of an applied model would be high, since the model would have originally been 

trained with the data of the validation participant, nullifying its predictive argument. 

The method that will be used to perform this cross validation is illustrated in Figure 34. The 

predicted values obtained from the model will be compared with the actual measured values. 

 
72 Assuming that the four participants represent the general population. 
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Figure 34: Flow-structure for the cross-validation protocol. 

This method will be used to determine the ability of the model to predict the activity force 

integral, or impulse. Specifically, the variables that will be modelled and predicted are: 

- Integration of resultant force with mass-scaled resultant acceleration (MINTEG-MINTEGMASS). 

- Integration of vertical force with mass-scaled axial acceleration (ZINTEG-XINTEGMASS). 

Because the correlations between uniaxial and resultant events are so similar,73 it is assumed that 

these correlations will be similar again to the resultant-axial and vertical-resultant correlations; 

and as such these will not also be tested. 

Results 

The data of Participants 1 to 3 were taken, from which a generalised linear model was developed. 

The correlations are shown in Figure 35.  

 

Figure 35: Developing a global model for the integration of force (impulse) from the data of Participants 1 to 3. 

 
73 Chapter 7.3.1, Event-to-Event Correlations. 
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The global model that was developed from this regression is given directly and in terms of vertical 

impulse: 

𝐹ZINTEG = −54790.5388 + 7.3916 × 𝐴XINTEGMASS 

𝐼𝑉⃗⃗  ⃗ = −54790.5388 + 7.3916 × ∫𝐴𝑋
⃗⃗⃗⃗  ⃗ 𝑑𝑡 × 𝑚𝑎𝑠𝑠 

This model was applied to the data of Participant 4, where Figure 36 shows the actual and 

predicted values for the integration of vertical force, and the correlation accuracy of the actual 

and predicted force. 

 

Figure 36: Predicting the vertical force integral.  

(A) Predicting the force integration of Participant 4 from the developed model.  

(B) The correlation between predicted vs. actual force integration values for Participant 4. 

As seen, the predicted model produced a correlation coefficient of 𝑅2 = 0.9147. When the 

acceleration integral was originally correlated with the force integral at the ankle of Participant 4, 

the correlation was also 𝑅2 = 0.9147. However, this should not be surprising, since all that has 

occurred within this cross-validation is a shifting and scaling of the original acceleration values. As 

such, a much better indicator of the effectiveness of this cross-validation method is to consider 

the root mean squared error of the predicted data. These results for all participants and locations 

are given in Table 20, with the cell that corresponds to the preceding analysis highlighted in blue in 

the lower right corner.  

To clarify, the errors given below are not direct equivalent comparisons because: 

A B 
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- the original RMSE pertains to the correlation between the original FZINTEG and AXINTEGMASS, 

whose magnitudes were in the order of 106 and 105, and therefore had an RMSE in the 

order of 105. 

- the predicted RMSE pertains to the correlation between the original FZINTEG and the 

predicted FZINTEG, whose magnitudes were both in the order of 106, and therefore had an 

RMSE in the order of 106. 

As such, it is expected that the RMSE for the predicted force will be an order higher than the RMSE 

of the original prediction; and as such, these results should be taken as relative indicators of 

accuracy. Considering the results below, it can be seen that for every situation, the predicted 

RMSE is between 4.4 to 13.6 times the size of the original error, as expected. It is therefore 

reasonable to conclude that the cross-validation models have predicted force from acceleration to 

a similar degree of accuracy as the original cohort correlations. 

Table 20: Results of the linear Leave-One-Out investigation. 

Comparison of Original vs. Predicted Force Integration 

Left-Out 
Participant 

Location 

𝑹𝑴𝑺𝑬 (𝑵. 𝒔 × 𝟏𝟎𝟑) 3.s.f. 

Resultant-Resultant Vertical-Axial 

Original Predicted Original Predicted 

Participant 1 Thigh 17.5 235 37.6 211 

Shank 36.3 292 26.5 156 

Ankle 25.9 191 29.8 141 

Participant 2 Thigh 21.2 250 64.2 356 

Shank 35.3 273 57.5 325 

Ankle 31.3 233 70.8 356 

Participant 3 Thigh 30.6 373 102 540 

Shank 60.3 490 77.6 461 

Ankle 26.8 194 47.1 209 

Participant 4 Thigh 20.8 283 75.2 430 

Shank 27.3 226 47.7 289 

Ankle 33.4 247 56.5 267 

Having considered the resolving power of linear models to relate the waveform characteristics of 

acceleration and force, the investigation will now turn to consider non-linear prediction models: 

namely, logarithmic and machine learning. This second phase will closely follow the methods as 

presented in the present phase.  

7.4. Phase 2: Non-Linear Modelling 

The aim of Phase 2 is to determine whether the mass-scaled, 50 Hz filtered data is better 

approximated by the previous linear, or by a logarithmic, correlation. The literature-identified 
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strategies for relating acceleration to force are logarithmic event-based modelling and machine 

learning waveform modelling. These algorithms have been suggested for comparison according to 

the literature models that produced three of the highest qualifications.74 Since there were no linear 

event-to-event correlations in Phase 1 that for all participants produced correlations of 𝑅2 > 0.6, 

Phase 2 will specifically target those events that produced moderate to large correlations in Phase 

1, to see if these correlations can be improved by non-linear models. 

7.4.1. Logarithmic Event Modelling  

Overview 

This section on logarithmic models will follow the method presented in a previous study by Charry 

et al. (2013), who used the axial acceleration (XMIN, XMAX, XHEIGHT) of the shank to logarithmically 

approximate peak vertical force (ZMIN).75 The initial model used by Charry et al. (2013) was:76 

𝐹𝑉 = log2(𝐴𝑋 + 1) 

However, they had then linearly generalised the formula according to participant mass: 

𝐹𝑉(𝑚, 𝐴𝑋) = 𝑎(𝑚) + 𝑏(𝑚) × 𝑙𝑜𝑔2(𝐴𝑋 + 1) 

In this formula, since log(𝐴𝑋) cannot be resolved with a real answer for 𝐴𝑋 ≤ 0, Charry et al. 

(2013) included the shifting constant 𝑐 = 1 to account for any negative acceleration values. 

However, although this was sufficient to correct their data, this did not account for any future 

generalisation of this formula. Indeed, in the participant data of the present investigation, there 

were values less than -1, which would have failed the model. To rectify this in the present 

investigation, the entire dataset was linearly shifted according to the magnitude of the minimum 

value in the dataset, normalising the trials such that the minimum value of each dataset was 1: 

  𝐹𝑉(𝑚, 𝐴𝑋) = 𝑎(𝑚) + 𝑏(𝑚) × 𝑙𝑜𝑔2(𝐴𝑋 + 𝑎𝑏𝑠(𝑚𝑖𝑛(𝐴𝑋)) + 1) 

Results 

Ordinarily, as was shown for the waveforms in the previous section, the direction of the vertical 

force vectors is negative. However, it seemed more intuitive to present the logarithmic results in 

terms of positive numbers, and as such, for this section on logarithms, the negative values for 

 
74 See Chapter 4.2.3, Table 11. 
75 Chapter 3.2.2, Non-Linear Models. 
76 The notation used by Charry et al. (2013) has been changed here to reflect the common notation within 
this thesis. 
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vertical force (FZMIN) and axial acceleration (AXMIN) will be given as rectified displays. As this is only 

a linear scaling of the output, there is no change in correlation. As a reference example, the linear 

fit between vertical force (FZMIN) (which has been rectified) and axial acceleration (AXMAX) (which 

did not need rectification) for Participant 1 is illustrated Figure 37. 

 

Figure 37: Rectifying negative vertical force (ZMIN). (B) Original fit. (A) Rectified fit. 

The effective equation that describes the rectified logarithmic fit in Figure 37 is: 

𝐹𝑉 = 591.8 + 384.3 × log2(𝐴𝑋 + 𝑎𝑏𝑠(min(𝐴𝑋)) + 1) 

This logarithmic fit of peak vertical force (ZMIN) can be also compared linearly with the actual peak 

vertical force (ZMIN), as illustrated in Figure 38. 

A 

B 

Rectified 

Original 
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Figure 38: Logarithmic prediction of force (ZMIN) from acceleration (XMAX) against the actual value. 

Comparing this relationship for each of the four participants, the logarithmic fit is found to have an 

inconsistent effect, producing higher correlations for Participants 1 and 3; but lower for 2 and 4. 

This data is summarised in Table 21. 

 

Figure 39: Comparison of linear and logarithmic correlations between vertical force (ZMIN) and axial acceleration 
(XMAX). 

 (A) Participant 1. (B) Participant 2. (C) Participant 3. (D) Participant 4. 

B 

D 

A 

C 



108 
 

Table 21: Logarithmic models and respective correlations. 

Individual Logarithmic Approximation Coefficients 

 𝒂  𝒃  𝑹𝟐 (Linear Fit) 𝑹𝟐 (Logarithmic Fit) 

Participant 1 591.8 384.3 0.4956 0.4615 

Participant 2 1196 301.0 0.3332 0.2972 

Participant 3 733.1 461.4 0.4838 0.5624 

Participant 4 -115.7 859.3 0.7865 0.5876 

To demonstrate the application of this data to a general relationship, following the method of 

Charry et al. (2013), let the coefficients 𝑎 and 𝑏 be assumed as linearly dependent on the mass of 

each participant. Then, they can be plotted, and a linear relationship derived between them. 

Applying the leave-one-out method, this has been calculated and illustrated for Participants 1, 2, 

and 3 in Figure 40, in preparation for validating the model on Participant 4.77 

 

Figure 40: Using linear approximations to obtain coefficients for the global logarithmic model. (A) a(m). (B) b(m). 

These mass-derived coefficients may then be used to complete the logarithmic model: 

𝐹𝑉(𝑚, 𝐴𝑋) = 𝑎(𝑚) + 𝑏(𝑚) × 𝑙𝑜𝑔2(𝐴𝑋 + 𝑎𝑏𝑠(𝑚𝑖𝑛(𝐴𝑋)) + 1) 

𝑎(𝑚) = −1401.7495 + 32.0516 × 𝑚𝑎𝑠𝑠 

𝑏(𝑚) = 295.6782 + 1.2375 × 𝑚𝑎𝑠𝑠 

 
77 This method has clearly not obtained an accurate linear relationship between mass and the relative 

coefficients, but it will be used to remain consistent with the method presented by Charry et al. (2013). In 

light of these results, it is probably a reasonable assumption to say that these correlation coefficients are 

not linearly related by mass. As it is, Charry et al. (2013) did not provide a correlation coefficient for this 

part of their study, so the results of the coefficient linear fit cannot be directly compared.  

A B 
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This model was applied to Participant 4 and the results are shown in Figure 39. Naturally, the new 

logarithmic model will have the same correlation coefficient (𝑅2) and 𝑅𝑀𝑆𝐸 as the original log 

model, since they are only a scaling and shifting of the original data values: 

 

Figure 41: Comparison of the linear and logarithmic models for vertical-axial shank prediction. 

Modelling for All Participants and Locations 

The analysis was extended to the thigh and ankle, where in each case, one participant was left out 

of development and used to test the model. The results of this extension are shown below in Table 

22. 𝑅𝑀𝑆𝐸 cells are shaded green if they were lower (better) and red if higher (worse), where a 

lower 𝑅𝑀𝑆𝐸 corresponds to a higher 𝑅2 value. The corresponding results of Participants 1-3 have 

been included in Appendix B.  

Table 22: Logarithmically modelling the vertical force and axial acceleration of Participant 4 at each location. 

Results of Logarithmic Modelling 

Participant Location 
Correlation 𝑹𝟐 𝑹𝑴𝑺𝑬 (𝑵) 

Force Acceleration Linear Log Linear Log 

4 

Thigh 

ZMIN XMAX 0.17 0.12 879.9 903.7 

ZMIN XMIN 0.52 0.43 672.5 726.6 

ZMIN XHEIGHT 0.36 0.31 774.7 804.9 

Shank 

ZMIN XMAX 0.79 0.59 445.5 619.3 

ZMIN XMIN 0.47 0.44 699.0 722.8 

ZMIN XHEIGHT 0.73 0.62 504.6 593.9 

Ankle 

ZMIN XMAX 0.17 0.22 884.6 857.2 

ZMIN XMIN 0.02 0.04 957.2 947.4 

ZMIN XHEIGHT 0.12 0.16 908.5 889.7 

Although the correlation was higher in each ankle correlation, this was not indicative of the entire 

dataset (c.f. Appendix B). To confirm this, a two-tailed paired t-test was performed on the 
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correlation coefficients of the linear set and the logarithmic set.78 It was found that the logarithmic 

model correlation coefficients were overall not statistically different to the linear results (𝑝 =

0.39).  

Cohort Prediction 

However, where this has the greatest effect difference is when considering the combined cohort 

correlation. In this case, although each participant will have been scaled and shifted linearly (and 

so the intra-participant RMSE will not have changed), precisely because each data set has been 

scaled differently, the cohort will have an overall different correlation.  

In addition to performing this scaling of the function, the input to the function was changed from 

being only peak axial acceleration (MMAX) to being mass-scaled peak axial acceleration 

(MMAXMASS). To illustrate this, consider that if the above method is repeated for the entire cohort; 

and Participants 1-3 are used to train the model; and where the data of every participant has been 

individually scaled by their respective mass, then the model coefficients describing the 

relationship between peak vertical force (ZMIN) and peak axial acceleration (XMAX), according to 

𝐹𝑉(𝑚, 𝐴𝑋), are below. The graph generated by this is shown in Figure 42. 

𝑎(𝑚) = 4677.9 − 76.7872 × 𝑚 

𝑏(𝑚) = −1513.0 + 31.0445 × 𝑚 

 

Figure 42: Cohort correlation of peak vertical force (MMAX) with peak axial acceleration (XMAX).  
(A) Comparison of correlations. (B) Cohort 𝐹𝑉(𝑚, 𝐴𝑋) predicted fit against the actual force. 

 
78 The level of significance was set at 𝑝 = 0.05. Results: 𝜇𝐿𝑖𝑛𝑒𝑎𝑟 = 0.32, 𝜇𝐿𝑜𝑔 = 0.32, 𝑝 = 0.3943. The null 

hypothesis was not rejected: the correlations between the linear and logarithmic models were not 
statistically different. 

A B 
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Although this model for these events produced a correlation of 𝑅2 = 0.24 and an 𝑅𝑀𝑆𝐸 = 619, 

and although there seems to be quite a large overestimation, what can be observed is that this fit 

is actually closer to the linear fit than the original logarithmic fit was. The regression equation that 

produced this correlation, shown in Figure 42 (B) was: 

𝑦 = 858.43 + 0.18932 × 𝐹𝑉(𝑚, 𝐴𝑋) 

This relationship may be visualised more clearly if the above prediction is scaled according to this 

linear fit; the result of this is shown in Figure 43. 

 

Figure 43: Adjusted predicted cohort fit. 

Accounting for both 𝑦 and 𝐹𝑉(𝑚, 𝐴𝑋), the final equation form is written as: 

 

The results of the remaining locations and events for Participant 4 are shown in Table 23. The 

results of the model that was generated in Figure 42 and Figure 43 may be read in the top line of 

this table. Because it was found in Phase 1 that mass increased linear model accuracy, only the 

mass-scaled events were correlated here; except for the peak height (XHEIGHT), as this was not 

𝑎(𝑚) 𝑏(𝑚) 

𝑦 = 𝑎 + 𝑏 × ((𝑐 + 𝑑 × 𝑚) + (𝑒 + 𝑓 × 𝑚) × log2(𝐴𝑋 + 𝑎𝑏𝑠(min 𝐴𝑋) + 1)) 

𝐹𝑉(𝑚, 𝐴𝑋) 



112 
 

considered with respect to mass in the analysis.79 The cohort results of all four participants have 

been included in Appendix B. 

Table 23: Logarithmically modelling the vertical force and axial acceleration of the entire cohort at each location. 

Results of Logarithmic Modelling 

Participant Location 
Correlation 𝑹𝟐 𝑹𝑴𝑺𝑬 (𝑵) 

Force Acceleration Linear Log Adjusted Log Linear Log Adjusted Log 

 
4 

Thigh 

ZMIN XMAXMASS 0.29 0.16 0.24 601 650 619 

ZMIN XMINMASS 0.42 0.36 0.23 541 567 623 

ZMIN XHEIGHT 0.32 0.29 0.41 584 600 546 

Shank 

ZMIN XMAXMASS 0.59 0.39 0.44 449 552 528 

ZMIN XMINMASS 0.30 0.27 0.21 589 602 627 

ZMIN XHEIGHT 0.50 0.41 0.52 498 539 489 

Ankle 

ZMIN XMAXMASS 0.26 0.16 0.26 611 647 611 

ZMIN XMINMASS 0.16 0.17 0.19 651 646 636 

ZMIN XHEIGHT 0.19 0.20 0.31 637 635 589 

The results lean in favour of the linear models: the linear model correlation coefficients were 

statistically different to the original logarithmic results (𝑝 < 0.0001) and the adjusted logarithmic 

results (𝑝 = 0.035), with the linear models higher in both cases (𝑀𝐷𝑅2  = 0.07 and 0.05).80 The 

adjusted logarithmic model was not statistically different to the original logarithmic model (𝑝 =

0.27), but it was on average higher (𝑀𝐷𝑅2  = 0.02). Based on these results, there is not sufficient 

evidence to affirm that the vertical force waveform is better approximated logarithmically than 

linearly, and as such, the results of Charry et al. (2013) were not reproduced. The final part of 

Phase 2 will now consider a machine learning model to see if this can possibly lift these lower 

correlations.  

7.4.2. Machine Learning Waveform Modelling 

Overview 

The purpose of using machine learning within this investigation was to consider the effectiveness 

of an advanced non-linear timeseries algorithm to predict an output force from an input 

acceleration series. These predictions were made in MATLAB, using the Deep Learning Toolbox. 

This toolbox was chosen rather than manual design because the aim of this investigation was to 

evaluate machine learning as a whole; not to determine whether a new kind of machine learning 

 
79 But for the record, the mean of the mass-scaled logarithmic models (𝜇 = 0.27) was also higher than the 
un-scaled event data (𝜇 = 0.25). 
80 Two-tailed paired t-test; level of significance: 𝑝 = 0.05. Results: 𝜇𝐿𝑖𝑛𝑒𝑎𝑟 = 0.34, 𝜇𝐿𝑜𝑔 = 0.27, 𝑀𝐷 =

0.07, 𝑝 = 0.016. Null hypothesis rejected: statistically different, linear models higher. 
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algorithm could be manually developed. Within this section, triaxial acceleration data will be used 

to predict both vertical force (𝐹𝑍) and resultant force (𝐹𝑀). 

Model Types 

Since the peak events in the force and acceleration waveform do not occur simultaneously,81 then 

if there is a relationship between them, it is probably time-dependent, based on the kinematics 

preceding the peak. The Deep Learning Toolbox contains three types of predictive functions for 

neural network timeseries modelling (MathWorks, 2020):  

1) Non-linear auto-regressive with external exogenous input: 

▪ Both the input 𝑥 and the output 𝑦 are fed as inputs into the transfer function. 

y(t)  =  f(y(t –  1), . . . ,  y(t –  d),  x(t –  1), . . . , (t –  d)) 

2) Non-linear autoregressive: 

▪ Only the output 𝑦 is fed as an input into the transfer function. 

𝑦(𝑡)  =  𝑓(𝑦(𝑡 –  1), . . . ,  𝑦(𝑡 –  𝑑)) 

3) Non-linear input-output: 

▪ Only the input 𝑥 is fed as an input into the transfer function. 

𝑦(𝑡)  =  𝑓(𝑥(𝑡 –  1), . . . , 𝑥(𝑡 –  𝑑)) 

Model 1 would be useful for predicting the future values of stock or financial systems, and Model 

2 for the control of various mechanical systems. However, since in a practical application of a 

wearable device the actual force values will not be known and cannot be verified (without an 

accompanying device), neither Models 1 nor 2 can be used for this investigation. Model 3, which 

considers only the previous values of the input, is appropriate for the prediction of unknown force 

values. 

As previously, this model will be trained on three participants, and then tested against the fourth 

participant. Note that whereas the previous sections had considered event-to-event correlations, 

and as such only a single event per movement and waveform was considered, this section is 

considering the entire waveform, and so will also display these similarities in terms of the full 

 
81 See Chapter 3.2.4, Algorithm Variables. 
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waveform, rather than only in terms of point-to-point correlations. Prediction models for both 

vertical and resultant force will be generated. 

Data Preparation 

All trial data at the shank was concatenated in the following way. 

Let the concatenated axial acceleration data of Participant 1, for all trials, be written as: 

𝐴𝑋𝑃1
= [

𝐴𝑋𝑇𝑟𝑖𝑎𝑙 1

⋮
𝐴𝑋𝑇𝑟𝑖𝑎𝑙 𝑛

] 

Then for the triaxial data of each training participant, the model input can be written as: 

Shank Input = [[

𝐴𝑋𝑃1

𝐴𝑋𝑃2

𝐴𝑋𝑃3

] [

𝐴𝑌𝑃1

𝐴𝑌𝑃2

𝐴𝑌𝑃3

] [

𝐴𝑍𝑃1

𝐴𝑍𝑃2

𝐴𝑍𝑃3

]] 

The vertical force data of the test participant was similarly concatenated into an output array: 

Shank Output = [

𝐹𝑍𝑃1

𝐹𝑍𝑃2

𝐹𝑍𝑃3

] 

Data was divided randomly into a 70% training set (205,056 timesteps), a 15% validation set 

(43,941 timesteps), and a 15% testing set (43,941 timesteps). The Levenberg-Marquardt training 

algorithm was chosen over a Bayesian Regularisation or a Scaled Conjugate Gradient because it 

typically requires less time than the others, though it uses more memory (MathWorks, 2020).  

Non-Linear Input-Output Waveform Modelling 

A non-linear input-output model was trained on the shank data. The network in Figure 44 was 

designed for this purpose. Consistent with the default given within the toolbox, it was designed 

with 10 hidden neurons and 2 delays. 

 

Figure 44: Non-linear input-output network design. 



115 
 

The response of the network is shown in Figure 45, where it is seen that a substantial amount of 

error was observed. 

 

Figure 45: Non-linear network training. Vertical axes: force (N). Horizontal axes: time in samples, where 1 sample 

equals 0.5ms. 

Considering this waveform prediction sample-by-sample, the equivalent correlations for the 

training, validation and testing datasets are shown in Figure 46. 



116 
 

 

Figure 46: Correlation of input and output samples following the waveform prediction. 

The model produced a validation dataset 𝑅𝑀𝑆𝐸 = 217.6 𝑁, 𝑅2 = 0.41. When applied to 

Participant 4, the model produced a validation dataset 𝑅𝑀𝑆𝐸 = 324.3 𝑁, 𝑅2 = 0.36. In each 

case, the correlation and the RMSE of the test participant performed slightly poorer than the 

training results: 𝑀𝐷𝑅2 = −0.08, 𝑀𝐷𝑅𝑀𝑆𝐸 = +28 𝑁. The method was applied also to the other 

participant combinations, and the results are shown in Table 24. 

Table 24: Correlation and RMSE results of non-linear input-output waveform modelling. 

Non-Linear Input-Output Waveform Modelling 

Training Participants Timesteps 𝑹𝟐 𝑹𝑴𝑺𝑬 (𝑵) Test Participant 𝑹𝟐 𝑹𝑴𝑺𝑬 (𝑵) 

1,2,3 292,938 0.41 218 4 0.36 324 

1,2,4 253,409 0.45 237 3 0.38 228 

1,3,4 242,983 0.41 247 2 0.37 222 

2,3,4 291,471 0.48 230 1 0.31 270 

Average - 0.44 233 - 0.36 261 

Furthermore, it may be noticed that the model that was tested on Participant 4 produced an RMSE 

of 324 N. The original linear model for Participant 4 (non-prediction; direct correlation) for vertical 

peak force (MMAX) and axial peak acceleration (XMAX) had an RMSE of 446 N. The machine learning 
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prediction model for the entire waveform has produced a correlation with less error than the 

initial Participant 4 linear correlation of the single event. 

Including Mass  

Following this, the same investigation was performed where mass was included as an input into 

the model, where mass is an array of the same size as each acceleration input, with every value in 

the array equivalent to the particular participant mass: 

𝑚𝑃1 = [
𝑚
⋮
𝑚

] 

Input = [[

𝐴𝑋𝑃1

𝐴𝑋𝑃2

𝐴𝑋𝑃3

] [

𝐴𝑌𝑃1

𝐴𝑌𝑃2

𝐴𝑌𝑃3

] [

𝐴𝑍𝑃1

𝐴𝑍𝑃2

𝐴𝑍𝑃3

] [

𝑚𝑃1

𝑚𝑃2

𝑚𝑃3

]] 

The results of including as an input in the model is shown below in Table 25. 

Table 25: Correlation and RMSE results of non-linear input-output waveform modelling, where mass has been included 

as an input. 

Non-Linear Input-Output Waveform Modelling 

Training Participants Timesteps 𝑹𝟐 𝑹𝑴𝑺𝑬 (𝑵) Test Participant 𝑹𝟐 𝑹𝑴𝑺𝑬 (𝑵) 

1,2,3 292,938 0.46 230 4 0.21 588 

1,2,4 253,409 0.46 230 3 0.36 241 

1,3,4 242,983 0.46 238 2 0.37 221 

2,3,4 291,471 0.48 226 1 0.27 508 

Average - 0.47 231 - 0.30 390 

The inclusion of mass has not made a substantial difference to the accuracy of the model. The 

average correlation coefficient of the training data has slightly increased (𝑀𝐷𝑅2 = +0.03), but the 

average test data correlation coefficient reduced (𝑀𝐷𝑅2 = −0.06). In contrast to the clear 

increase that mass produced in the linear models, this is surprising. However, since mass was 

constant for each third of the training data, it likely did not provide value to the timeseries model, 

for the model would have expected a series of fluctuating, interdependent points; not a static 

value.  

Resultant Force 

The same method as above was repeated for determining resultant force, rather than for vertical 

force. The results are shown in Table 26 and Table 27. The differences between the results of the 
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resultant force and vertical force data were not significant (𝑝𝑅2 = 0.40, 𝑝𝑅𝑀𝑆𝐸 = 0.60). Based on 

these results, it can be concluded that the non-linear input-output model has used triaxial 

acceleration data and predicted resultant force at least as well as it predicted vertical force, but 

there was not a significant difference in the predictive power of the model between these 

variables.  

Table 26: Correlation and RMSE results of non-linear input-output waveform modelling. 

Non-Linear Input-Output Waveform Modelling 

Training Participants Timesteps 𝑹𝟐 𝑹𝑴𝑺𝑬 (𝑵) Test Participant 𝑹𝟐 𝑹𝑴𝑺𝑬 (𝑵) 

1,2,3 292,938 0.45 218 4 0.35 333 

1,2,4 253,409 0.42 248 3 0.41 230 

1,3,4 242,983 0.42 247 2 0.40 222 

2,3,4 291,471 0.49 232 1 0.34 272 

Average - 0.45 236 - 0.38 264 

Table 27: Correlation and RMSE results of non-linear input-output waveform modelling, where mass has been included 

as an input. 

Non-Linear Input-Output Waveform Modelling 

Training Participants Timesteps 𝑹𝟐 𝑹𝑴𝑺𝑬 (𝑵) Test Participant 𝑹𝟐 𝑹𝑴𝑺𝑬 (𝑵) 

1,2,3 292,938 0.48 208 4 0.31 420 

1,2,4 253,409 0.45 244 3 0.29 314 

1,3,4 242,983 0.49 237 2 0.38 227 

2,3,4 291,471 0.49 233 1 0.21 470 

Average - 0.48 231 - 0.30 358 

Although the correlations of these machine learning models were nearly always only moderate, 

they were still higher, on average, than the event-to-event correlation results of Phase 1: for 

whereas only four correlations in Phase 1 had consistently measured above 𝑅2 = 0.3 in every 

person, the machine learning algorithms have here predicted the entire waveform at an accuracy 

above this.82  

Having considered the resolving power of linear, logarithmic, and non-linear timeseries machine 

learning models, a more comprehensive discussion will now ensue, to tie together both the 

literature and the results of this investigation. 

 

  

 
82 The correlations in Phase 1 that consistently produced 𝑅2 > 0.3 were for the shank between peak 
resultant and vertical force (MMAX, ZMIN), and peak axial acceleration (XMAX, XHEIGHT). 
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Chapter 8. Discussion 

8.1. Investigation Discussion 

The preceding investigation was undertaken to assess and validate the performance of several 

acceleration-force models as presented within the literature. This section will summarise the 

results of this investigation and use them to conclude on the investigation hypotheses. It will 

provide a discussion on the challenges and limitations that were present in the investigation. 

Finally, it will offer a selection of recommendations for future research in these areas and suggest a 

strategy for this to proceed. 

8.1.2. Synopsis 

Having extracted 14 events from each acceleration waveform, and six events from each force 

waveform, the acceleration and force data from 111 activities of four participants were linearly 

correlated. 

Phase 1 

The only variables that had very large to almost perfect correlations for all participants and 

locations were the integral correlations between resultant and vertical force (MINTEG, ZINTEG), and 

resultant and axial acceleration (MINTEG, XINTEG). The exception to this was the result of Participant 

1 at the shank, who obtained 𝑅2 = 0.50 between vertical force and axial acceleration; but this 

was a clear outlier, with all other participant and location correlations above 𝑅2 = 0.76. These 

integral correlations were the strongest at the ankle (𝑝 < 0.05), but in general were at least very 

large at all locations. When each integral and waveform event was scaled according to participant 

mass, the entire cohort correlations always increased (𝑝 = 0.0027). The highest mass-scaled 

cohort integration correlation was between vertical force (ZINTEG) from mass-scaled axial 

acceleration (XINTEGMASS) at the ankle. In terms of vertical impulse (𝐼𝑉 = 𝐹ZINTEG), this model was 

expressed as: 

𝐼𝑉⃗⃗  ⃗ = 5367.3 + 0.13039 × ∫𝐴𝑋
⃗⃗⃗⃗  ⃗ 𝑑𝑡 × 𝑚𝑎𝑠𝑠 

Although individual participants would at times show other strong event correlations, they were 

generally not consistent between participants, with the strongest correlations of one participant 

often being substantially higher than the others. The only four events that were at least moderate 

(𝑅2 > 0.3) for all four participants occurred at the shank only and were between peak resultant 
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and vertical force (MMAX, ZMIN) and peak axial acceleration (XMAX, XHEIGHT). However, the 

variability even between these was still significant (𝑅2 = 0.33 to 0.79), and there were no events 

that had a correlation of 𝑅2 > 0.36 for every participant. These inter-participant differences often 

reduced the entire cohort correlations, making them a better indicator of the weak strength of the 

generalised physiological relationship. Scaling the cohort-combined events by mass increased the 

cohort correlation at every location, between both peak resultant and vertical force (MMAX, ZMIN) 

and every peak acceleration (MMAX, XMAX, YMAX, ZMAX) (𝑝 < 0.0001).  

• The highest cohort event correlation coefficient of the investigation was obtained at the 

shank, between peak resultant force (MMAX) and mass-scaled peak axial acceleration 

(XMAXMASS) (𝑅2 = 0.59).  

• The highest cohort event correlation at the thigh was between peak resultant force (MMAX) 

and mass-scaled peak resultant acceleration (MMAXMASS) (𝑅2 = 0.58). 

• The highest cohort event correlation at the ankle was between peak resultant force (MMAX) 

and mass-scaled peak Y-Axis acceleration (YMAXMASS) (𝑅2 = 0.54). 

The respective acceleration components were different between locations, which may indicate 

that device location changes the variable that must necessarily be used as the primary indicator in 

the model. If so, then these reflect the research of Takeda et al. (2009), who observed that 

different locations contain different waveform components; and these components may be more 

or less helpful depending on the location that they are observed. That these maximum events 

were all quite similar may indicate that resultant force can similarly be predicted from any of these 

three locations on the leg, but that the shank is slightly favourable for the prediction of these 

events. 

In each of the three maximum correlations, the relevant force event was the triaxial resultant 

force. This may indicate that resultant force should be the target variable in future studies for the 

correlation of acceleration with force. However, in each case, the vertical correlations between 

the same variables were within 2% of the resultant correlations. This indicated that the resultant 

magnitude of each waveform for both acceleration and force in the recorded activities was 

primarily dependent on the magnitude of the vertical force axis. 

The primary frequencies for force were under 100 Hz, and the primary frequencies for 

acceleration were under 50 Hz; and these were the filters that had been initially designed for each 

dataset, and for which the above results were obtained. Following the application of a 20 Hz filter 
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to the acceleration data, the event correlations did not on average increase; but rather decreased 

the correlations (𝑝 > 0.05). However, there was one event that improved when compared to the 

50 Hz filter: this was between peak resultant force (MMAX) and peak resultant acceleration (MMAX) 

at the thigh (0.31 < 𝑅2 < 0.75); the same correlations in the 50 Hz data at the shank and ankle 

had at least one participant with a correlation coefficient of 𝑅2 < 0.3. Similar to the 

aforementioned integral correlation results, the 20 Hz filter also obtained moderate to almost 

perfect integral correlations of 𝑅2 = 0.47 to 0.98. It was concluded in light of these that the 20 Hz 

filter does not produce stronger correlations than the 50 Hz filter, and that the 50 Hz filter was 

overall more effective. 

To validate the high integral correlations of the 50 Hz experiment, a leave-one-out cross-validation 

study was performed, wherein the data of three participants was used to develop a model that 

was tested on the fourth participant. As the properties of the regression coefficient meant that 

the applied linear models would not change the correlation of the acceleration values after 

applying the new linear model, only the RMSE of the predicted force values was considered. 

Although the results of the RMSE were one order of magnitude out, this was considered to not be 

inaccurate since the comparison was considering actual force (106) against predicted force (106) 

rather than actual force (106) against mass-scaled acceleration (105). As such, the linear integral 

force-acceleration models were not considered to be substantially different when predicted by a 

generalised model. 

Phase 2 

Logarithmic models were applied to the same 50 Hz filtered shank data of peak vertical force 

(ZMIN) with axial acceleration (XMIN, XMAX, XHEIGHT) data to validate the study results of Charry et 

al. (2013). The generated models were dependent on participant mass and were of the form: 

  𝐹𝑉(𝑚, 𝐴𝑋) = 𝑎(𝑚) + 𝑏(𝑚) × 𝑙𝑜𝑔2(𝐴𝑋 + 𝑎𝑏𝑠(𝑚𝑖𝑛(𝐴𝑋)) + 1) 

The formulas of the coefficients 𝑎(𝑚) and 𝑏(𝑚) were generated by the results of three 

participants, and the overall model was tested on the fourth. Overall, the logarithmic model 

correlation coefficients were not statistically different to the linear results (𝑝 = 0.39). The method 

was extended to the cohort correlations, where the same process was repeated, and in addition to 

this, a second logarithmic equation was defined: 

 
𝑦 = 𝑎 + 𝑏 × ((𝑐 + 𝑑 × 𝑚) + (𝑒 + 𝑓 × 𝑚) × log2(𝐴𝑋 + 𝑎𝑏𝑠(min 𝐴𝑋) + 1)) 
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Neither of these cohort-applied logarithmic models increased the event correlations; however, the 

mean of the adjusted logarithmic equation did produce slightly higher correlations than the 

original logarithmic equation. The previous linear model correlation coefficients were statistically 

different to both the original logarithmic results (𝑝 < 0.0001) and the adjusted logarithmic results 

(𝑝 = 0.035), with the linear models higher in both cases (𝑀𝐷𝑅2  = 0.07 and 0.05). As such, the 

results of Charry et al. (2013) were not reproduced, and it was concluded that vertical force is not 

better approximated logarithmically than linearly. 

Following the logarithmic investigation, a non-linear input-output timeseries machine learning 

model was designed and applied to the data. Using triaxial acceleration as the input variable (𝑥) 

and vertical force as the desired output (𝑦), the model designed was of the form: 

𝑦(𝑡)  =  𝑓(𝑥(𝑡 –  1), . . . , 𝑥(𝑡 –  𝑑)) 

Three participants were used to train each model, with the fourth used to test it. The average 

training correlation coefficient was 𝑅2 = 0.44, and the average test coefficient was 𝑅2 = 0.36. 

Considering that these results were predicting the entire waveform, rather than only events, this 

was considered to be a better result than the linear approximations, which had produced only four 

events that between participants had 𝑅2 > 0.3.  

This process was then repeated using mass as a fourth input alongside the triaxial acceleration 

data. Although the average training correlation coefficient slightly increased (𝑀𝐷𝑅2 = +0.03), the 

average test data correlation coefficient reduced (𝑀𝐷𝑅2 = −0.06). It was concluded that 

including participant mass did not substantially improve the model accuracy, but that since mass is 

not technically a timeseries input, the limited change in accuracy was not unusual.  

This machine learning process was finally repeated with resultant force as the desired output 

rather than vertical force. The resultant and vertical force prediction correlations were not 

statistically different (𝑝𝑅2 = 0.40, 𝑝𝑅𝑀𝑆𝐸 = 0.60). 

8.1.2. Conclusions 

Linear Modelling  

Regarding waveform events, the correlation variance does not provide confidence for the future 

use of these variables. Despite there being more moderate to very large correlations at the shank, 

the correlations of FMMAX and FZMIN with AXHEIGHT and AXMAX were not consistently high, and as 

such should not be used as accurate estimations. However, since there were more consistent 
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event correlations on the shank that correlated at least moderately, and since the ankle was found 

to overall produce the best integral correlations, there seems to be evidence supporting the 

notion that the lower limb is optimal for predicting force from acceleration.  

Although the vertical and resultant force correlations were often almost equal, the acceleration 

variables that produced these similar correlations were not similar between locations. Rather, 

different acceleration axes were found to be more or less correlated. The literature had 

recommended that triaxial accelerometers be used (Elvin et al., 2007), and the evidence seems to 

suggest that triaxial devices are indeed necessary to determine strong correlations. However, Elvin 

et al. (2007) was the only study that actually used uniaxial accelerometers, so in light of these 

results their recommendation towards triaxial devices is justified. 

That the vertical average and instantaneous loading rates did not correlate well was surprising in 

light of the large correlations produced by Davis et al. (2018). However, they had used a sample 

size of 𝑛 = 169, where each participant ran for eight steps (in total, 1,325 events); whereas the 

present investigation had only a sample size of 𝑛 = 4 with a combined 135 events from different 

activities. In light of this, there was highly likely not substantial evidence to reject the conclusions 

of Davis et al. (2018) based on the results of the present investigation. 

Despite the waveform events generally not correlating consistently, the acceleration integral did 

consistently and strongly correlate with the force integral. The prediction of integrals may 

therefore bode well for the future of impact dose prediction; and especially when linearly scaled 

according to participant mass. That this was high also seems to align with the literature, for as 

Hunter et al. (2005) explains, “when horizontal, braking, propulsive, and vertical impulses [i.e. 

force integration] are expressed relative to body mass, they reflect the change in velocity [i.e. 

acceleration] of the center of mass… during the respective periods and in the respective directions.” 

In this case, the ankle is the optimum position to place this to detect the highest acceleration 

forces, since this is going to be the closest to the foot accelerations which were highest as 

measured within this study. These positive results at the ankle are promising in the case of an 

eventual device implementation, especially considering the preference of athletes to use this 

lower location.83 However, expanded research will be required to determine the repeatability of 

these results with a larger sample size. These differences between location hold further relevance 

in understanding future implementation, especially regarding the position on each segment. When 

 
83 Chapter 1.1.2, Considering a Device. 
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the device was placed on the ankle (near the distal tibia), versus on the shank (the medial tibia), 

the results were different, and when applied in real life, the location will most certainly vary in 

these small ways between participants. 

When compared to the results that were originally obtained by Corbo (2018), it is found that the 

results are substantially and surprisingly different. The highest correlation obtained by Corbo 

(2018) was R2 = 0.64, which was also between the integration of vertical force and axial 

acceleration at the ankle. With the correlations of the present investigation being approximately 

𝑅2 = 0.3 higher for this same variable, it is likely that the analysis method used between the 

original evaluation and the present re-evaluation was different. In the study by Corbo (2018), force 

threshold, noise filtering and an activity start time had not been included; and in the present 

investigation, the events selected for analysis had been re-evaluated for validity, with several 

events used in the previous analysis discarded, and some retained that may not have been used 

previously; so there were several differences in analysis that may have contributed to this. As the 

exact method of analysis that was used by Corbo (2018) was not known, understanding the cause 

of the correlation differences may not be possible. 

Filtering 

In the present investigation, although the thigh generally did not produce stronger correlations 

than the shank or ankle, this is not to say that the thigh is sub-optimal in all circumstances. After 

the 20 Hz filter had been applied, there was one particular thigh event correlation that increased 

for every participant beyond what the 50 Hz filtered shank and ankle correlation for that event 

had produced. There may therefore be particular waveform characteristics of the thigh that are 

better for predicting different events, especially if the particular frequencies of that event are 

isolated; and vice versa for the shank and ankle. This may confirm the notion that a single location 

is not necessarily the best for predicting every feature, but that different locations are more 

helpful for predicting different waveform features. This would be consistent with the earlier 

discussion which showed that different waveform features are present at different locations 

(Takeda et al., 2009). Generally speaking, across all locations, the events that included frequencies 

between 0 to 50 Hz predicted force more accurately than when only the 0 to 20 Hz waveform 

content had been considered. 

In the literature, it had been recommended that lowpass filters with poles between 20 to 50 Hz be 

further considered when predicting force from acceleration (Simons and Bradshaw, 2016). In the 
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present investigation, both of these filters were used: 50 Hz was experimentally chosen, and 20 Hz 

was chosen following this recommendation from Simons and Bradshaw (2016). However, no 

significant positive difference in the analysis was found, meaning that either the results of Simons 

and Bradshaw (2016) were not generalisable to the kind of investigation that was here performed; 

of that its application in the present investigation was errant because of systematic problems in 

the dataset.  

In light of these results, the conclusion from Simons and Bradshaw (2016) that resultant 

acceleration filtering is more important that peak force-acceleration agreements does not seem to 

hold true, for it was found that the filter did not make a significant differences, which was more in 

line with the results of Rantalainen et al. (2018), who had also found no major differences. From 

the present investigation, it would sooner be concluded that identifying force-acceleration 

agreement is more important than understanding which filter to use. However, it is expected that 

these two procedures are not mutually exclusive of each other: understanding the frequency 

components of the acceleration data may be totally necessary for determine which events are the 

events that cause an agreement; and therefore, although the application of these filters is 

important, they may be secondary to understanding which events are the desired events for 

correlation. These results also seem to justify the recommendation by the literature that higher 

frequencies be further considered in future studies (Lafortune et al., 1995, Wundersitz et al., 

2013). 

To be sure, filters must be chosen carefully, based on the targeted frequency content of each 

activity and the elimination of noise. The optimal filter will inform not only which physiological 

events correlate the strongest, but also of the frequency content of those events. However, this all 

assumes that impact dose is optimally predicted by event-to-event correlations, and as such is not 

necessarily exhaustive of the use or validity of the noise-eliminated raw data for the purpose of 

predicting impact dose. 

Logarithmic Modelling 

The logarithmic modelling in the present investigation was based closely upon the work of Charry 

et al. (2013), but did not replicate their results for the conditions that were specified. Whereas 

Charry et al. (2013) had produced very large to almost perfect correlations, this investigation at 

most only produced large correlations; and this was fairly uncommon. Charry et al. (2013) had 

three participants, so the differences were not likely due to sample size. It is expected that the 
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differences primarily arose due to the activity variations that were involved in the present 

investigation, for Charry et al. (2013) only had their participants run.  

Charry et al. (2013) had only recorded their acceleration data at 100 Hz, but without their data, it 

is not possible to determine whether this caused significant differences in the recording ability of 

their device when compared to the 148.1 Hz of the present investigation. These relatively lower 

sampling rates may have missed the sharper accelerations during breaking or pushing off in the 

change of direction tasks. Without a second reference point for validating the acceleration in 

addition to the accelerometers, it is not possible to determine this. Although it is not expected 

that the recorded acceleration in the present investigation peaked during these sharp activities, 

the higher dynamic range of ± 24 g that Charry et al. (2013) used may have provided an advantage.  

Regarding the actual logarithmic model, the present investigation linearly shifted the acceleration 

data according to the magnitude of the minimum axial acceleration data of each event set; 

whereas Charry et al. (2013) had simply shifted their dataset by +1. This will have slightly changed 

the correlation coefficient due to the properties of logarithmically scaling, but it is not expected 

that this was the primary cause of why the correlation difference between studies was in excess of 

𝑅2 = 0.3.84 Rather, it is expected that the primary cause of the reduced correlations was due to 

the activity type and the shape of the model. Between linear and logarithmic modelling, for a 

sample set characterised by that within this investigation, linear modelling is superior. 

Machine Learning Modelling  

The non-linear input-output timeseries neural network did not approximate force higher than 

moderately, and as such cannot be concluded as a reliable method for predicting force from 

acceleration. However, the fact that it produced an overall correlation coefficient of 𝑅2 > 0.3, 

indicates that on average it has performed more favourably than the linear correlations, since the 

linear models only had several events that correlated above this for every participant. However, 

the events that did correlate linearly, for the entire cohort, correlated more strongly than the 

machine learning model. 

The results of the machine learning algorithms in this section cannot be directly compared with 

the machine learning studies in the literature review because the neural network training models 

were different between these. This indicates the different predictive abilities of different models 

 
84 Maximum logarithmic correlations: Charry et al. (2013): 𝑅2 = 0.95; this investigation: 𝑅2 = 0.59. 
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for different purposes, as was explained in the investigation. However, it might actually be 

possible that the method used by Guo et al. (2017) would not be applicable for a wearable device, 

because it seems that their training algorithm incorporated known force values, using a model 

similar to what was proposed as for a stock market. The results of an individual in any 

commercialised device would never be confirmed though an accurate validation of true force. It is 

uncertain whether the method used by Guo et al. (2017) is implementable for this kind of 

approximation. However, in the long term, a model which, based on the known force values of a 

large training set during manufacturing may become generalisable to an unknown future user, if 

subject specific characteristic can be understood and implemented within this algorithm such that 

it in effect becomes an input-output, rather than a model relying on known force data. 

The weak resolving power of the neural network may further indicate that the acceleration data 

lacked key information that contributes to the prediction of force. Perhaps this could be resolved 

in a future machine learning model by including information from a gyroscope or magnetometer. 

Any future model will also need to consider that whilst a real-time output is ideal, a complicated 

machine learning algorithm may be limited in its application due to its power requirements and 

the time that may be necessary to evaluate the model. As Pieper et al. (2020) has said, “the tuning 

required from such methodology introduces distinct challenges which may limit the ease of 

translation.”85 

Mass 

In every model, except the machine learning timeseries model, the inclusion of mass increased the 

cohort and predictive model correlations, demonstrating the importance of the subject-specific 

relationship. If these relationships and methods are to be generalised, it may be helpful to 

establish the kind of participants for whom they may apply. It could be proposed that the results 

of Participant 3 may provide insight into the relevance of these results to the general netball 

population, for this participant was female and was closest to the mean weight of netballers; and 

Participant 3 was representative of the mean mass of the trial participants: 

i. The mean mass of elite female netballers has been reported as 73.42 ± 6.95 kg 

(Simpson et al., 2019). The mass of Participant 3 was 73.97 kg (+0.75% elite mean 

mass). 

 
85 This was stated in conclusion to their study on random forest networks. 
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ii. The mean mass of all four participants was 72.99 kg. Participant 3 was +1.35% of this 

mean participant mass. Participant 2 (male, 72.65 kg) was also closer to mean 

participant mass (-0.46% mean). 

However, it must be considered that the training set was not entirely representative of elite 

netballers, since it included two non-elite males. As such, although Participant 3 may be the 

closest in mass, since the model was not developed from a representative population, these 

results may not be generalisable. But then again, because the results did include non-

representative participants, they may actually inform a more generalised model, since there is no 

certainty as to the end user; only generalised estimates can be used for this. Alas, these 

conclusions are still limited, for the sample size and inclusion is not likely sufficient to describe the 

general population of elite netballers.  

Challenges in Analysis 

There were many system variables that could not be isolated or controlled within the 

investigation, and the influence of which therefore could not be knowingly accounted for. For 

example, it is expected that a major contributor to the inter-participant correlation differences 

were different landing techniques. If a generalisable model for all subjects was to be developed, it 

would need to incorporate the differences that are present in groups, including for amateur 

athletes with inconsistent techniques and for those with physical limitations due to impairment. 

Perhaps there is a generalised population dataset on which a model could be trained, such that 

these predictive algorithms are more representative of a future user. As mentioned, the variety of 

movements that were recorded in this investigation made it difficult to directly answer or validate 

the movements of each other study. But this is not to say that a variety of movements cannot 

produce strong correlations, because Meyer et al. (2015) had obtained very large correlations 

using a similar variety of movements with 13 participants with devices placed on the hip. Due to 

the number of different variables present between each study and movement, it is difficult to 

isolate the precise cause of these differences. 

Although the variance between activities may have been a contributing factor to the wide range of 

correlations, understanding that the similarities between different movements in the future may 

make multi-activity studies easier to compare and apply to other sports. Callaghan et al. (2018) 

had recommended that an understanding of segment kinematics be provided regarding pace 

bowling performance. Although pace bowling performance was clearly not considered in the 
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present investigation, the two-foot land and the cut may have been similar in that both 

movements involve a sharp movement deceleration (the landing of both feet and the change of 

direction) which are similar to the sharp planting of the single foot during a delivery. So, although 

bowling was not specifically considered, such movements may contribute understanding to similar 

activities and therefore be generalisable between different sports.  

A summary of factors that have been raised within this report, by which the relationship is 

affected, and between which a relationship may be modelled, are shown in Figure 47. These 

factors are not necessarily mutually exclusive of one another, and it is likely that there are more 

factors that were not considered in this investigation that have not been included in this summary.  

 

Figure 47: Factors that contribute to model predictions, ascertained from the literature. 

8.1.3. Limitations 

The limitations of the investigation will now be considered. These have been outlined in five main 

areas: study design, physiology, hardware, analysis, and research. 

Study Design 

The investigation had a limited sample size of 𝑛 = 4, wherein the participants had masses of 

between 63.2 to 82.0 kg (range: 18.9 kg, +29.8%). It is expected that a more normalised 

distribution of sample points provided by a larger cohort size would have provided more insight 

into the physiological accuracy of the presented models. Although the inclusion of mass was found 

to positively increase the cohort correlations, precisely how, why, and in what capacity this occurs 

was not studied, for the investigation primarily focused on the efficacy of different predictive 

models. However, this may be simply due to the kinematics of movement being consistent with 

Newton’s Second Law of Motion, 𝐹 = 𝑚 × 𝑎. 
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As the available patient data did not include information on their physical health before or after 

the trial, the consideration of kinematics in relation to injuries could not be determined. As such, 

these results cannot be generalised to a population with physiological impairments. Although 

noise-attenuating filters were applied to the acceleration data, the study was not able to 

determine and account for the effects of soft tissue attenuation between participants and 

locations that may have been present within the selected frequency range.  

The study was confined to a laboratory environment, and so cannot be generalised to external 

environments or for environments with wind resistance or uneven terrain. The physical 

characteristics of the footwear of each participant was not available, so differences between 

participants due to this were considered as unknown systematic errors and were not accounted 

for.  

Physiology 

The participants were not elite athletes and did not necessarily have the same level of fitness, and 

as such the results cannot be generalised directly to elite athletes. Furthermore, since the study 

did not consider how leg dominance affects technique, but only generalised these results by 

position, and the results may have been skewed due to the inclusion of unequal leg support during 

landing. The two contralateral devices therefore provided insight into combined, position-based 

predictions, but not into the kinematics of a single location. This decision had been originally made 

to increase the sample size by pooling the event data from both legs, but rather than increasing 

the distribution due to the greater amount of data, this may have actually limited the results by 

masking any potential side-specific correlations. If leg dominance had further been incorporated 

into this, and if the dominant leg was the leg that carried the most impact during these 

movements (as it may have done during the change-of-direction movements), then the leg-

specific dominant-side data may have produced more consistent and comparable relationships. 

In addition to not considering single placements, the investigation also did not consider multiple 

locations. As only the ankle, shank, and thigh were individually investigated, the literature-based 

results pertaining to the other locations could not be validated, and as such although the lower leg 

was here identified as optimal, this is not globally conclusive regarding all potential locations. This 

is particularly so for the logarithmic and machine learning estimations, which were only calculated 

on the shank.  
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Within the qualified articles, several had recorded cyclic activities; but the present investigation 

only considered single movements. Therefore, these cyclic-movement studies cannot be validated 

according to the generated results. However, these studies lack the generalisability to a wide 

range of movements, and their results must be applied accordingly. Although the movements that 

were compared included a range of speed variations and models, the exact contribution of the 

different events remains unknown. Although the waveforms of each event were visually sighted 

during the analysis, the shape of each waveform was not formally analysed, so the exact means 

behind the conjecture that different events have largely contributed to the variance in results is 

yet to be proven for this dataset. It had been suggested in the literature that the average of 

several events from multiple strides be used to predict calculations, rather than only correlating 

the events of individual strides (Raper et al., 2018). As this was not considered in the study, the 

benefits of using this method could not be evaluated; and considering the variability of the data, 

this method may have been quite helpful. Alas, only a selection of variables and analysis methods 

could be chosen for consideration. 

Hardware 

There were also several technological limitations present. As the study did not have access to 

gyroscopic output, joint and contact angles could not be considered; meaning that angular 

acceleration could not be considered. Global vertical acceleration was not correlated with vertical 

force, which may have produced different correlations according to the linear 𝐹 = 𝑚 × 𝑎 model. 

Although it did not seem that acceleration had peaked, since the literature said that accelerations 

can be up to 12 g, the 9 g accelerometers used may not have correctly captured the kinematics of 

every activity.  

However, if the high magnitude accelerations were also generated at high frequencies, then the 

devices may have missed them anyway, because the sampling rate of the accelerometer was quite 

low (148.1 Hz). The available data was therefore jagged, and the analysis had to be completed 

based on the approximated waveform via a filter. It is impossible to know whether the events that 

were analysed were true representations of the physiological magnitudes. To get a more accurate 

representation and prediction, a higher sampling rate may be necessary.  

This study did not consider the presence of internal device bias. This was predominantly due to 

only having access to the trial data, rather than being able to test the measurement ability of the 

devices and calibrate them prior to the data analysis. Several of the original devices that were 
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used by Corbo (2018) had been replaced due to failure, and for the ones that remained, the bias 

present would not have been accurate to the state of the device during the original recording. It 

had to be assumed that the device specifications given in the original device documentation and in 

the previous study were indeed representative of the true original device performance.  

Analysis 

The analysis was limited in that it did not assess every potential acceleration or force event and 

did not exhaust the list of potential models by which these events may be related. Fourier and 

event-based machine learning were two models that were presented in the literate but were not 

validated. The conclusion must not be made that waveforms do not correlate, but only that the 

strategies that were used here to model these events were not effective for producing strong 

correlations.  

It was assumed that the filters that were applied were acceptable for both datasets, with the 

original filters being applied only to remove non-physiological noise. However, the design of the 

filter was based on the results of a single trial and may not have been indicative of the primary 

frequencies of every waveform. Although 50 Hz had been recommended in the literature as a filter 

to consider, there may have been high power frequencies that were filtered out, significantly and 

unfavourably reducing the respective waveforms; but confirming this would require further 

investigation.  

After the 20 Hz filter was later applied on the data, and poor results obtained, 20 Hz filtered data 

was put aside, assumed to not produce stronger correlations than the 50 Hz filtered dataset. Since 

the effectiveness of this filter for non-linear modelling was not validated, the conclusion that the 

20 Hz filter resulted in weaker correlations than the 50 Hz filter is limited to prediction via the 

linear models demonstrated. 

Several conclusions were made based on the statistical significance generated by t-tests. Although 

these do not seem inappropriate considering the context, it is acknowledged that other kinds of 

statistical analysis could have been used to demonstrate the strength of correlations in additional 

ways. It is also assumed that even though several of the t-tests used in this investigation did not 

have more than eight samples per group, their conclusions need not be rejected simply because 

they are small (Bland and Altman, 2009).  
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Research 

A significant assumption was made in the literature review regarding the comparison of 

correlation coefficients. As not every study reported the method by which they produced their 

correlations, and not every correlation presented their results in terms of the same correlation 

coefficient, there was no way to directly compare each result with certainty of correlation 

equivalence. As such, it was assumed that the available correlations could be taken as indications 

of the results of each study, and the correlation coefficients of the studies were therefore 

compared indiscriminately of their correlation terms. Although this was avoided where at all 

possible, this may have meant that several of the correlations that were compared in the 

literature review were not equivalent. If there were any occasions that this was the case, it is 

acknowledged that the conclusions drawn may be invalid. Therefore, unless explicitly clear, the 

presented results must be held with this caveat. 

Finally, the limited number of articles that were retrieved from within this search (16), as 

compared to the total number of articles reviewed (99), may indicate that the original search term 

presented was inadequate to retrieve relevant articles comprehensively. As such, additional 

qualifiable articles likely exist, but were not included within this study. For example, it was later 

identified that the study written by Davis et al. (2018) was more comprehensively reported in 

Tenforde et al. (2020), but this was only identified towards the end of this investigation and so was 

not included.  

In the search exclusion criteria, articles were only included if they had explicitly targeted ground 

reaction force, because it had been assumed that peak force was the most appropriate factor to 

model. As such, studies that had considered power and impulse had been excluded. In light of the 

results of the investigation, which found that impulse was actually the highest correlating variable, 

there were very likely studies that were excluded which may have held more relevance than was 

first thought. It is acknowledged that existing articles that were not included in this study may 

include information that supersedes the results and conclusions presented within this thesis and 

maintained that the conclusions drawn here were made in response to investigation and the 

articles that were originally identified. 
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8.1.4. Hypothesis Conclusion 

In the Investigation Outline (Chapter 7.1), six hypotheses were made regarding the development 

of an acceleration-force relationship. Based on the results of the investigation, each of these will 

now be concisely concluded on as either supported or rejected, followed by a brief explanation.  

1. There is a very large relationship (𝐑𝟐 = 𝟎. 𝟕 to 𝟎. 𝟗) between force and acceleration at 

the lower limb, with the shank being optimal for developing this model. 

Supported 

With the exception of a single outlier (𝑅2 = 0.5), the participant correlations between the 

integrals of force (resultant and vertical) and acceleration (resultant and axial) at every location 

were very large to almost perfect (𝑅2 = 0.76 to 0.98). However, there were no waveform events 

that correlated consistently above 𝑅2 = 0.36 for all participants, and in this regard the hypothesis 

is rejected. 

2. The shank is the most effective position for modelling this relationship. 

Rejected 

The strongest correlations were measured between the integrals of force and acceleration at the 

ankle (𝑝 < 0.05). However, participant and cohort correlation were also at least very large 

between the integral of resultant force and acceleration at the shank (𝑅2 = 0.86), so although the 

shank was not the most effective, it was yet highly effective. 

3. Generalised models are the most effective when they incorporate subject-specific 

characteristics. 

Supported 

On average, the inclusion of mass increased the cohort regression value between the integral of 

force and acceleration by 𝑅2 = 0.02 (𝑝 = 0.0027). Scaling by mass also increased the cohort 

regression values of every peak force and acceleration event (𝑝 = 0.0001).  

4. The correlations after filtering the data with a 20 Hz filter will be higher than when the 

data is only filtered for noise. 

Rejected 
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For every participant and cohort correlation set, except for Participant 3 at the shank, the 

correlations between the 50 Hz and the 20 Hz filtered data models were statistically significant 

(𝑝 < 0.05), and in every instance the mean correlation of the 50 Hz models was greater. 

5. Logarithmic modelling predicts force more accurately than linear modelling.  

Rejected 

The linear model correlation coefficients were statistically different to all logarithmic models 

results (𝑝 < 0.05), with the linear models higher in both cases (𝑀𝐷𝑅2 > 0.05). 

6. Machine learning modelling predicts force more accurately than logarithmic and linear 

modelling. 

Supported 

Although the correlations of the machine learning models were nearly always only moderate, with 

an entire waveform predictive ability of up to 𝑅2 = 0.41, they were on average higher than the 

linear and logarithmic event-to-event correlation results. 

8.2. Future Research 

Finally, having considered the conclusions of the investigation, this section outlines areas of 

research that are yet to be explored. It is followed by a very brief recommendation for the 

continuance of this project.  

8.2.1. Future Research Areas 

The following list of research areas have been collated to summarise the areas that have been put 

forward in this thesis as necessary objectives towards further research in this field. These 

recommendations include research that may inform the prediction of impact risk from impulse, 

and also regard how waveform event correlations may be further considered and improved upon. 

Injuries 

• Determine whether the established relationship between the force and acceleration 

waveform integrals can be used as an indicator for impact dose and used to quantify injury 

risk.  

• Determine whether other waveform event correlations can be improved for this end and 

determine what locations are optimal for recording these values.  
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• Determine precisely how this information relates to injuries and identify an objective count 

of impact dose.  

• Determine how fatigue affects technique and prediction model accuracy. 

• Determine how post-injury recovery will affect the performance of a prediction model, and 

in what capacity a predictive model may be used to assess and aid rehabilitation programs 

such as following ACL reconstruction. 

• In Figure 48, an arbitrary risk measurement assessment has been generated to 

demonstrate the application of this future research. In this, the peak forces from each 

activity of each individual have been given. This arbitrary indication has been designed with 

the assumption that level of risk may depend on the ability of a person to adapt their 

technique to deal with landing force, and therefore that the risk level at the same forces 

may differ between people. 

 

Figure 48: Conceptualising the long-term goal of this research - a risk scale generated 
for resultant peak force. 

Activities and Technique 

• Determine how specific activity types contribute towards model kinetics. 

• Consider whether a model that identifies movement and uses an algorithm to predict the 

force based on the identified movement can make an effective prediction model design. 
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• Determine how differences in landing technique change prediction accuracy and how the 

models should adapt to a change in technique over time. 

• Determine the primary factors that contribute to inter-participant correlation variability. 

• Determine how participant athletic ability affects model accuracy across age, gender, skill, 

and impairment.  

• Determine whether leg dominance is an indicator of model performance; and whether the 

kinematics of one leg can predict the kinematics of the other leg; and whether leg-specific 

performance is important for model accuracy. 

• Determine whether the effects of footwear and terrain (e.g. timber vs. concrete) must be 

factored into the model, or whether the effects of these are negligent.  

• Determine whether the kind of knee and ankle stabilisation braces as frequently worn by 

netball players86 diminishes propulsive power and will inhibit the accuracy of a predicted 

model. 

Data Analysis 

• Determine activity frequency components such that an appropriate sampling frequency 

can be selected.  

• Determine exactly what portion of the frequency spectrum pertain to the events that 

correlate and design filters accordingly. 

• Determine whether acceleration in the global vertical axis or in the transverse plane (as 

relative to the axial axis) are beneficial for load prediction. 

• Determine whether different and applicable machine learning models are more effective at 

modelling force with acceleration than the non-linear input-output timeseries neural 

network that was used in this investigation.  

o Consider single event prediction rather waveform prediction.  

o Perhaps consider sinusoidal or polynomial approximation models.  

• Consider revisiting linear and logarithmic correlations following a large, uniform, single-

activity cohort study. 

 

 

 
86 Chapter 1.1.2, Considering a Device. 
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Study Design 

• Determine whether it is necessary to first validate a prediction model for a single kind of 

movement, rather than a range of different movements. This may eliminate the variability 

of results as obtained in the preceding investigation.  

o Perhaps consider undertaking a cyclic activity study. 

• Eventually, design a study that collects data from a comprehensive list of activities, such 

that the force prediction of any activity that may be monitored with the device can be 

validated. 

• Determine inter-session location repeatability and effect (i.e. whether minimal placement 

changes dramatically negatively affect model prediction accuracy). 

• Determined how the presence of movement artefact and soft tissue attenuation can be 

detected, perhaps through a calibration routine with a motion capture system. Use this 

information to determine an optimal method for securing the device to remove such noise. 

• Determine an effective method of device attachment such that movement artefact is 

minimised. 

o Perhaps undertake a study in which several people are given different kinds of 

devices, collecting information on overall device preference, comfortability, and 

intrusive features. 

8.2.1. Recommended Priority 

In light of all that has been considered, the following steps are a recommended as a way forward: 

1. Determine whether and in what way impulse can be used as a measure of impact dose, 

and how this can contribute to injury prevention and a measure of participant risk.  

2. Identify or design a wearable accelerometer that has minimum movement artefact when 

attached.  

3. Conduct a trial with a large sample size in an attempt to reproduce the high integration 

correlation results and prove the relevance of the prediction for overuse injury risk. 
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Chapter 9. Thesis Conclusion 

9.1. Conclusion 

Having reviewed the literature and undertaken an investigation into the characteristics of the 

force-acceleration relationship, the preceding research will now be concluded on.  

9.1.1. Conclusion 

The aim of this investigation was to determine whether there is a relationship between force and 

acceleration at the lower limb that can be accurately modelled using data from wearable 

accelerometers; and whether this relationship can be generalised across subjects, movements, 

and external conditions such that it is useful for injury management and prevention.  

This research has demonstrated that there is a relationship between ground reaction force and 

acceleration at the lower limb. But, as seen in both the literature and in the investigation, this 

relationship is highly dependent on activity, technique, model, and data preparation, and it may 

be observed to produce inconsistent results. The results of the validation investigation were not 

consistent with the literature-based correlations, but this was likely due to variance in study 

design, cohort size, and activities undertaken in the trial.  

The strongest relationship identified was between the integration of force, which is impulse, and 

acceleration. This was consistently very large to almost perfect across participants, and the highest 

linear correlation was obtained at the ankle. Although the shank and thigh also produced, on 

average, at least very large impulse correlations, the ankle lateral malleolus was generally higher 

and was deemed optimal. The strongest correlation at the ankle was between vertical force and 

axial acceleration. The variability of results may indicate that although a relationship is present, it 

may not be immediately generalisable between subjects, movements, and external conditions. 

The small cohort used in the present investigation did not produce consistently high event-based 

correlations. Although the linear and logarithmic models were at times able to predict accurately 

between events, the results between participants were not consistent. The best indicator of 

event-based relationships was the global cohort averages. These indicated that the force 

magnitude increases with acceleration magnitude, but that there are many challenges that must 

be yet overcome before the accuracy of these inter-person results will be consistent. As the 

machine learning model that was applied did not predict the force waveform above a moderate 

accuracy, it was deemed more accurate than the linear and logarithmic event modelling. With the 

qualification that there were no correlations that consistently measured above moderate in all 
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models (except for integration at the ankle), the medial shank was determined to be the most 

accurate location from which to predict force waveform events. 

The study has demonstrated both from the literature and from the investigation that an accurate 

relationship between force and acceleration can be modelled using wearable accelerometers. 

However, the accuracy variance between literature studies and this investigation demonstrated 

that there are factors deeper than surface acceleration that contribute to an accurate model of 

force. The generalised relationships produced a similar degree of accuracy as the subject-specific 

models, but the variability between studies indicates that further research is necessary to confirm 

the global validity of these models.  

The investigation was unable to contribute to an understanding of injury prediction and objective 

impact dose, but based on the literature, there does seem to be clinical relevance for the 

prediction of force from acceleration. Future research must now consider precisely how these 

objective kinematic quantities can be used to define an objective and accurate assessment of risk 

level between individuals. Future studies should consider larger cohorts and determine whether 

the results of this investigation can be reproduced. If an objective measure of injury risk can be 

established, and be objectively quantified in terms of these results, then the strong relationships 

that have been observed may become a broadly used level of preventative and rehabilitative 

study.  

The sooner that these safe dosage levels can be quantified, the sooner that this technology can be 

applied in aiding chronic pain and reducing the risk of overuse injury for elite and non-elite 

athletes, and in both rehabilitation and physiological monitoring.  
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Appendices... 

Appendix A. Linear Correlations 

The following tables provide the results of the event-to-event linear correlation experiment using 

the 50 Hz filtered data. 

Table 28: Individual participant thigh correlations. 

Force Acceleration 

P1Thigh MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG 0.2366 0.8429 0.1684 0.0255 0.0011 0.8747 0.0491 0.0431 0.0624 0.0312 0.0690 0.0218 0.1210 0.0159 
MMAX 0.3782 0.0342 0.3984 0.0300 0.3309 0.0213 0.2219 0.2198 0.3545 0.3195 0.2138 0.6012 0.3993 0.4806 
VALR 0.0746 0.0054 0.1201 0.0885 0.3685 0.0392 0.4168 0.0991 0.1443 0.2103 0.0338 0.2694 0.1434 0.2647 
VILR 0.0836 0.0040 0.1334 0.0962 0.3657 0.0378 0.3922 0.1116 0.1486 0.2176 0.0344 0.2882 0.1667 0.2634 
ZINTEG 0.2297 0.8388 0.1621 0.0266 0.0025 0.8781 0.0560 0.0385 0.0531 0.0242 0.0628 0.0186 0.1191 0.0205 
ZMIN 0.3691 0.0297 0.3952 0.0352 0.3312 0.0178 0.2156 0.2279 0.3288 0.2915 0.2028 0.5827 0.3915 0.4603                
P2Thigh MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG 0.1505 0.9146 0.2034 0.1018 0.1961 0.9215 0.1646 0.1672 0.0948 0.0112 0.1490 0.0888 0.1716 0.0105 
MMAX 0.2241 0.1305 0.2520 0.0547 0.2817 0.0869 0.2381 0.2382 0.1204 0.1184 0.0520 0.1816 0.0592 0.2911 
VALR 0.2078 0.3251 0.2882 0.1577 0.4446 0.2321 0.4463 0.3067 0.2477 0.1761 0.1561 0.2775 0.2016 0.2503 
VILR 0.2232 0.3813 0.2909 0.1273 0.4305 0.3429 0.4052 0.3218 0.1924 0.1030 0.1546 0.2488 0.1994 0.2022 
ZINTEG 0.1466 0.9126 0.1992 0.1016 0.1914 0.9196 0.1608 0.1629 0.0928 0.0109 0.1459 0.0846 0.1659 0.0094 
ZMIN 0.2035 0.1282 0.2290 0.0499 0.2498 0.0871 0.2082 0.2145 0.1103 0.1158 0.0433 0.1486 0.0416 0.2562                
P3Thigh MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG 0.0655 0.8347 0.1318 0.1553 0.3202 0.9319 0.3781 0.1646 0.0669 0.1005 0.0119 0.1107 0.0880 0.1024 
MMAX 0.5220 0.1359 0.6396 0.1108 0.5290 0.1861 0.3335 0.5820 0.3702 0.3573 0.2097 0.4565 0.3192 0.4718 
VALR 0.3425 0.0082 0.3609 0.0115 0.3032 0.0142 0.1984 0.3229 0.2723 0.1994 0.2326 0.2232 0.1113 0.2927 
VILR 0.2799 0.0031 0.2861 0.0047 0.2092 0.0007 0.1242 0.2419 0.2207 0.1466 0.2117 0.1704 0.0758 0.2387 
ZINTEG 0.0669 0.8340 0.1340 0.1563 0.3228 0.9319 0.3798 0.1669 0.0688 0.1027 0.0127 0.1119 0.0890 0.1036 
ZMIN 0.5161 0.1351 0.6283 0.1038 0.5221 0.1835 0.3281 0.5759 0.3498 0.3392 0.1965 0.4526 0.3131 0.4717                
P4Thigh MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG 0.4178 0.7939 0.4483 0.0001 0.2459 0.9152 0.1662 0.2671 0.4882 0.4630 0.3520 0.3985 0.4122 0.2584 
MMAX 0.6787 0.6321 0.7420 0.0002 0.3451 0.3337 0.1595 0.5096 0.6609 0.6740 0.4127 0.7801 0.7491 0.5738 
VALR 0.1041 0.0320 0.1970 0.1304 0.0354 0.0000 0.0042 0.0935 0.1172 0.1128 0.0821 0.2593 0.1790 0.2952 
VILR 0.1400 0.0477 0.2371 0.1062 0.0419 0.0015 0.0045 0.1129 0.1495 0.1561 0.0887 0.2956 0.2142 0.3187 
ZINTEG 0.4176 0.7954 0.4474 0.0001 0.2471 0.9166 0.1677 0.2673 0.4880 0.4616 0.3534 0.3959 0.4095 0.2568 
ZMIN 0.6800 0.6434 0.7444 0.0002 0.3568 0.3450 0.1703 0.5153 0.6675 0.6717 0.4285 0.7754 0.7418 0.5737 

Table 29: Individual participant shank correlations. 

Force Acceleration 

P1Shank MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG 0.0049 0.8579 0.0033 0.0046 0.0069 0.4961 0.0035 0.0061 0.0711 0.0066 0.1705 0.0476 0.0106 0.1374 
MMAX 0.1738 0.0459 0.1753 0.0126 0.3549 0.0836 0.4957 0.0067 0.3257 0.4546 0.0487 0.3123 0.2821 0.2706 
VALR 0.4260 0.0016 0.4909 0.2256 0.3040 0.0869 0.2451 0.1171 0.2061 0.4191 0.0008 0.4031 0.3748 0.3330 
VILR 0.4367 0.0011 0.4971 0.2040 0.3009 0.0783 0.2366 0.1231 0.2171 0.4208 0.0025 0.4081 0.3859 0.3273 
ZINTEG 0.0028 0.8541 0.0015 0.0060 0.0060 0.5028 0.0033 0.0047 0.0660 0.0043 0.1720 0.0399 0.0076 0.1228 
ZMIN 0.1611 0.0375 0.1614 0.0097 0.3492 0.0862 0.4903 0.0061 0.3033 0.4303 0.0424 0.2887 0.2645 0.2444 

                 

P2Shank MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG 0.2386 0.9060 0.1359 0.2813 0.2270 0.9351 0.2549 0.1066 0.0009 0.0091 0.0182 0.1247 0.1340 0.0594 
MMAX 0.3794 0.1361 0.3906 0.0021 0.3957 0.0705 0.3455 0.3252 0.1574 0.0633 0.1186 0.2645 0.1608 0.3339 
VALR 0.6079 0.3324 0.5813 0.0285 0.3758 0.2162 0.3646 0.2508 0.1167 0.1357 0.0229 0.6185 0.5460 0.4508 
VILR 0.6258 0.3877 0.5423 0.1001 0.4023 0.2841 0.3645 0.3084 0.1059 0.0767 0.0462 0.5158 0.4820 0.3367 
ZINTEG 0.2345 0.9029 0.1321 0.2850 0.2254 0.9345 0.2535 0.1052 0.0006 0.0107 0.0184 0.1206 0.1296 0.0574 
ZMIN 0.3569 0.1314 0.3623 0.0037 0.3840 0.0705 0.3332 0.3193 0.1433 0.0466 0.1238 0.2385 0.1407 0.3115 

                 

P3Shank MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG 0.0841 0.9137 0.0516 0.0349 0.0888 0.9030 0.2074 0.0599 0.0319 0.0039 0.0821 0.1056 0.1819 0.0015 
MMAX 0.0593 0.1600 0.1289 0.2087 0.5335 0.2113 0.4671 0.1416 0.1493 0.2171 0.0047 0.0978 0.0373 0.1396 
VALR 0.3275 0.0078 0.4567 0.2124 0.5410 0.0254 0.3629 0.3277 0.3631 0.3855 0.0800 0.1931 0.1595 0.1067 
VILR 0.3720 0.0031 0.4943 0.1838 0.5001 0.0002 0.3187 0.3405 0.3905 0.3847 0.1107 0.2214 0.2051 0.0966 
ZINTEG 0.0825 0.9133 0.0502 0.0356 0.0893 0.9030 0.2069 0.0583 0.0303 0.0033 0.0813 0.1026 0.1780 0.0012 
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ZMIN 0.0555 0.1570 0.1210 0.1965 0.5402 0.2071 0.4838 0.1304 0.1326 0.1916 0.0045 0.0834 0.0290 0.1280 

                 

P4Shank MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG 0.5524 0.9203 0.5330 0.0036 0.4054 0.9478 0.3619 0.3810 0.3856 0.5117 0.0631 0.5586 0.5713 0.2284 
MMAX 0.5594 0.4863 0.6452 0.0499 0.7230 0.3404 0.7896 0.4641 0.2916 0.4753 0.0115 0.4915 0.4683 0.2639 
VALR 0.0679 0.0386 0.1553 0.3037 0.1074 0.0002 0.1111 0.0773 0.2447 0.1645 0.2219 0.1066 0.0563 0.2077 
VILR 0.0894 0.0498 0.1736 0.2358 0.1328 0.0023 0.1425 0.0885 0.2631 0.2015 0.1952 0.1376 0.0807 0.2295 
ZINTEG 0.5505 0.9200 0.5316 0.0034 0.4053 0.9487 0.3610 0.3822 0.3796 0.5071 0.0602 0.5549 0.5676 0.2268 
ZMIN 0.5635 0.4963 0.6510 0.0516 0.7261 0.3510 0.7865 0.4746 0.2833 0.4691 0.0094 0.4919 0.4674 0.2666 

Table 30: Individual participant ankle correlations. 

Force Acceleration 

P1Ankle MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG 0.0717 0.8783 0.0894 0.0398 0.0106 0.7569 0.0042 0.0766 0.0987 0.1338 0.0142 0.1299 0.1154 0.0667 
MMAX 0.2790 0.0238 0.3430 0.1400 0.4231 0.0233 0.5435 0.1135 0.3199 0.2887 0.1941 0.4247 0.4400 0.1169 
VALR 0.1967 0.0140 0.1576 0.0210 0.4066 0.0767 0.4599 0.1484 0.0493 0.0478 0.0251 0.1786 0.1124 0.2146 
VILR 0.2103 0.0125 0.1714 0.0178 0.4128 0.0715 0.4581 0.1569 0.0521 0.0514 0.0255 0.1834 0.1168 0.2161 
ZINTEG 0.0707 0.8708 0.0883 0.0397 0.0089 0.7591 0.0051 0.0725 0.0936 0.1305 0.0114 0.1192 0.1081 0.0571 
ZMIN 0.2572 0.0164 0.3205 0.1425 0.4015 0.0286 0.5381 0.0956 0.2942 0.2708 0.1706 0.3852 0.4071 0.0958 

                 

P2Ankle MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG 0.2283 0.9387 0.2017 0.0066 0.2419 0.9650 0.1817 0.2300 0.1225 0.2090 0.0175 0.2349 0.2016 0.1306 
MMAX 0.3270 0.1020 0.3083 0.0019 0.2930 0.0866 0.2397 0.2540 0.2746 0.3826 0.0784 0.2704 0.2179 0.1878 
VALR 0.3611 0.1721 0.3652 0.0444 0.5071 0.1586 0.5868 0.2726 0.3980 0.6176 0.0817 0.2519 0.1175 0.5576 
VILR 0.4140 0.2681 0.4092 0.0278 0.5351 0.2573 0.5659 0.3323 0.3045 0.5305 0.0397 0.3440 0.2103 0.4840 
ZINTEG 0.2256 0.9391 0.1986 0.0077 0.2369 0.9662 0.1760 0.2277 0.1185 0.2034 0.0165 0.2345 0.2021 0.1283 
ZMIN 0.3217 0.1038 0.3002 0.0004 0.2728 0.0895 0.2125 0.2496 0.2468 0.3451 0.0697 0.2768 0.2259 0.1842 

                 

P3Ankle MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG 0.3507 0.9778 0.2818 0.1144 0.0211 0.9844 0.0310 0.0053 0.1760 0.4843 0.0616 0.0000 0.0607 0.0987 
MMAX 0.0309 0.1805 0.0485 0.0012 0.1505 0.2366 0.0812 0.1942 0.0133 0.0009 0.0277 0.1787 0.2100 0.0083 
VALR 0.2697 0.0073 0.3027 0.0133 0.3159 0.0234 0.2243 0.3114 0.1118 0.1427 0.0036 0.2025 0.4729 0.0242 
VILR 0.3705 0.0018 0.4243 0.0148 0.3555 0.0003 0.2594 0.3395 0.1765 0.2427 0.0024 0.1627 0.4892 0.0598 
ZINTEG 0.3471 0.9773 0.2798 0.1120 0.0208 0.9843 0.0306 0.0052 0.1736 0.4812 0.0625 0.0001 0.0587 0.1014 
ZMIN 0.0250 0.1823 0.0453 0.0038 0.1514 0.2372 0.0807 0.1974 0.0095 0.0003 0.0232 0.1517 0.1952 0.0035 

                 

P4Ankle MHEIGHT MINTEG MMAX MMIN XHEIGHT XINTEG XMAX XMIN YHEIGHT YMAX YMIN ZHEIGHT ZMAX ZMIN 

MINTEG 0.1981 0.8952 0.1874 0.0090 0.0090 0.9143 0.0436 0.0134 0.3860 0.2168 0.4118 0.6660 0.6208 0.3133 
MMAX 0.2007 0.1852 0.2981 0.0147 0.1112 0.1266 0.1542 0.0215 0.2947 0.2297 0.2147 0.5177 0.5724 0.1078 
VALR 0.0309 0.0200 0.1220 0.0981 0.2034 0.0013 0.2365 0.0734 0.0023 0.0126 0.0028 0.1024 0.1026 0.0359 
VILR 0.0475 0.0209 0.1426 0.0779 0.1888 0.0009 0.2301 0.0591 0.0140 0.0378 0.0004 0.1229 0.1219 0.0450 
ZINTEG 0.1953 0.8931 0.1853 0.0086 0.0090 0.9147 0.0438 0.0135 0.3821 0.2124 0.4117 0.6621 0.6178 0.3100 
ZMIN 0.1988 0.1930 0.2985 0.0160 0.1153 0.1358 0.1618 0.0212 0.2908 0.2195 0.2214 0.5191 0.5743 0.1077 

Table 31: All Participants combined at each location: Part 1. 

Force Acceleration 

Thigh MHEIGHT MINTEG MINTEGMASS MMAX MMAXMASS MMIN XHEIGHT XINTEG XINTEGMASS XMAX XMAXMASS 

MINTEG 0.0237 0.8272 0.8487 0.0173 0.0309 0.0039 0.0000 0.7759 0.8339 0.0003 0.0000 
MMAX 0.3907 0.0336 0.0586 0.4273 0.5769 0.0242 0.3282 0.0001 0.0014 0.2590 0.2871 
VALR 0.0960 0.0524 0.0622 0.1442 0.1772 0.0714 0.2012 0.0040 0.0073 0.1805 0.1687 
VILR 0.0975 0.0949 0.1089 0.1399 0.1776 0.0575 0.1763 0.0226 0.0310 0.1536 0.1450 
ZINTEG 0.0226 0.8255 0.8473 0.0163 0.0298 0.0041 0.0000 0.7757 0.8338 0.0005 0.0000 
ZMIN 0.3839 0.0335 0.0586 0.4204 0.5694 0.0242 0.3246 0.0000 0.0016 0.2564 0.2852 

                        

Shank MHEIGHT MINTEG MINTEGMASS MMAX MMAXMASS MMIN XHEIGHT XINTEG XINTEGMASS XMAX XMAXMASS 

MINTEG 0.1390 0.9010 0.9041 0.1106 0.1288 0.0230 0.0248 0.8880 0.8993 0.0059 0.0094 
MMAX 0.2597 0.0261 0.0461 0.3428 0.4536 0.0978 0.5000 0.0013 0.0057 0.5392 0.5927 
VALR 0.2668 0.0556 0.0632 0.3478 0.3488 0.0915 0.2390 0.0148 0.0172 0.2139 0.2112 
VILR 0.2839 0.0975 0.1077 0.3460 0.3529 0.0539 0.2362 0.0441 0.0482 0.2052 0.2056 
ZINTEG 0.1359 0.8999 0.9033 0.1077 0.1262 0.0234 0.0242 0.8884 0.8997 0.0057 0.0092 
ZMIN 0.2543 0.0265 0.0469 0.3350 0.4465 0.0944 0.4992 0.0017 0.0064 0.5386 0.5924 

                        

Ankle MHEIGHT MINTEG MINTEGMASS MMAX MMAXMASS MMIN XHEIGHT XINTEG XINTEGMASS XMAX XMAXMASS 

MINTEG 0.2097 0.9317 0.9463 0.1786 0.2070 0.0186 0.0327 0.9464 0.9602 0.0340 0.0367 
MMAX 0.1185 0.0045 0.0118 0.1567 0.2664 0.0160 0.1888 0.0001 0.0007 0.2295 0.2549 
VALR 0.1910 0.0369 0.0432 0.2405 0.2821 0.0156 0.2871 0.0150 0.0181 0.3009 0.2898 
VILR 0.2297 0.0807 0.0899 0.2780 0.3272 0.0113 0.2830 0.0478 0.0531 0.2908 0.2820 
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ZINTEG 0.2071 0.9304 0.9452 0.1765 0.2051 0.0183 0.0318 0.9467 0.9606 0.0332 0.0360 
ZMIN 0.1126 0.0046 0.0121 0.1520 0.2612 0.0182 0.1854 0.0001 0.0009 0.2273 0.2533 

Table 32: All Participants combined at each location: Part 2. 

Force Acceleration 

Thigh XMIN XMINMASS YHEIGHT YMAX YMAXMASS YMIN ZHEIGHT ZMAX ZMAXMASS ZMIN  

MINTEG 0.0011 0.0082 0.0426 0.0145 0.0201 0.0672 0.0084 0.0152 0.0261 0.0012  
MMAX 0.2584 0.4241 0.4551 0.4736 0.5156 0.2176 0.4864 0.2963 0.4131 0.4929  
VALR 0.1348 0.1809 0.1575 0.1292 0.1269 0.1110 0.1788 0.0815 0.1056 0.2264  
VILR 0.1228 0.1727 0.1529 0.1182 0.1198 0.1167 0.1702 0.0802 0.1072 0.2106  
ZINTEG 0.0008 0.0075 0.0409 0.0137 0.0193 0.0652 0.0076 0.0142 0.0249 0.0009  
ZMIN 0.2553 0.4203 0.4452 0.4628 0.5057 0.2133 0.4717 0.2847 0.3996 0.4819  

                       

Shank XMIN XMINMASS YHEIGHT YMAX YMAXMASS YMIN ZHEIGHT ZMAX ZMAXMASS ZMIN  

MINTEG 0.0632 0.0914 0.0650 0.0428 0.0531 0.0401 0.1373 0.1529 0.1654 0.0533  
MMAX 0.1565 0.2992 0.2426 0.3210 0.3760 0.0329 0.3258 0.2561 0.3012 0.2835  
VALR 0.1285 0.1669 0.2019 0.2506 0.2506 0.0345 0.3062 0.2409 0.2347 0.2661  
VILR 0.1364 0.1807 0.2129 0.2348 0.2392 0.0515 0.3035 0.2491 0.2456 0.2441  
ZINTEG 0.0620 0.0903 0.0626 0.0406 0.0508 0.0394 0.1335 0.1492 0.1619 0.0512  
ZMIN 0.1560 0.2994 0.2295 0.3034 0.3584 0.0313 0.3137 0.2464 0.2917 0.2731  

                       

Ankle XMIN XMINMASS YHEIGHT YMAX YMAXMASS YMIN ZHEIGHT ZMAX ZMAXMASS ZMIN  

MINTEG 0.0162 0.0284 0.1297 0.2028 0.2444 0.0085 0.1139 0.1433 0.1579 0.0045  
MMAX 0.0657 0.1521 0.1252 0.0815 0.1377 0.1017 0.3337 0.3472 0.4167 0.0665  
VALR 0.1403 0.1846 0.0891 0.1204 0.1516 0.0131 0.1304 0.1129 0.1248 0.0575  
VILR 0.1438 0.1928 0.0929 0.1407 0.1798 0.0075 0.1564 0.1499 0.1641 0.0466  
ZINTEG 0.0157 0.0279 0.1271 0.1997 0.2411 0.0080 0.1109 0.1411 0.1558 0.0038  
ZMIN 0.0631 0.1489 0.1168 0.0741 0.1282 0.0981 0.3244 0.3419 0.4123 0.0600  
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Appendix B. Logarithmic Correlations 

Logarithmically modelling the vertical force and axial acceleration of all participants and for the 

cohort from the generalised models. 

Table 33: Participant-modelled logarithmic results. 

Results of Logarithmic Modelling 

Participant Location 
Correlation 𝑹𝟐 𝑹𝑴𝑺𝑬 (𝑵) 

Force Acceleration Linear Log Linear Log 

P4 

Thigh 

ZMIN XMAX 0.17 0.12 879.9 903.7 

ZMIN XMIN 0.52 0.43 672.5 726.6 

ZMIN XHEIGHT 0.36 0.31 774.7 804.9 

Shank 

ZMIN XMAX 0.79 0.59 445.5 619.3 

ZMIN XMIN 0.47 0.44 699.0 722.8 

ZMIN XHEIGHT 0.73 0.62 504.6 593.9 

Ankle 

ZMIN XMAX 0.17 0.22 884.6 857.2 

ZMIN XMIN 0.02 0.04 957.2 947.4 

ZMIN XHEIGHT 0.12 0.16 908.5 889.7 

P3 

Thigh 

ZMIN XMAX 0.33 0.40 500.6 471.6 

ZMIN XMIN 0.58 0.57 397.7 400.2 

ZMIN XHEIGHT 0.52 0.55 422.2 411.2 

Shank 

ZMIN XMAX 0.48 0.56 431.6 397.3 

ZMIN XMIN 0.13 0.14 560.2 556.1 

ZMIN XHEIGHT 0.54 0.52 407.3 416.9 

Ankle 

ZMIN XMAX 0.09 0.08 582.5 585.2 

ZMIN XMIN 0.21 0.23 540.6 535.0 

ZMIN XHEIGHT 0.16 0.20 557.5 545.2 

P2 

Thigh 

ZMIN XMAX 0.21 0.15 463.4 479.1 

ZMIN XMIN 0.21 0.23 461.6 455.6 

ZMIN XHEIGHT 0.25 0.25 451.0 449.7 

Shank 

ZMIN XMAX 0.33 0.30 415.4 426.5 

ZMIN XMIN 0.32 0.33 419.7 415.9 

ZMIN XHEIGHT 0.38 0.38 399.3 401.0 

Ankle 

ZMIN XMAX 0.21 0.19 451.4 458.4 

ZMIN XMIN 0.25 0.27 440.7 434.2 

ZMIN XHEIGHT 0.27 0.29 433.8 430.1 

P1 

Thigh 

ZMIN XMAX 0.22 0.24 449.0 443.1 

ZMIN XMIN 0.23 0.23 445.5 446.3 

ZMIN XHEIGHT 0.33 0.33 414.6 415.3 

Shank 

ZMIN XMAX 0.49 0.52 356.2 345.7 

ZMIN XMIN 0.01 0.02 497.3 492.7 

ZMIN XHEIGHT 0.35 0.30 402.4 417.4 

Ankle 

ZMIN XMAX 0.54 0.55 341.3 337.4 

ZMIN XMIN 0.11 0.12 476.1 471.8 

ZMIN XHEIGHT 0.42 0.36 384.9 402.5 
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Table 34: Cohort-modelled logarithmic results. 

Results of Logarithmic Cohort Modelling 

Participant Location 

Correlation R^2 RMSE (N) 

Force Acceleration Linear Log 
Adjusted 

Log 
Linear Log 

Adjusted 
Log 

1 

Thigh 

ZMIN XMAXMASS 0.29 0.16 0.12 601 650 665 

ZMIN XMINMASS 0.42 0.36 0.01 541 567 708 

ZMIN XHEIGHT 0.32 0.29 0.40 584 600 551 

Shank 

ZMIN XMAXMASS 0.59 0.39 0.29 449 552 593 

ZMIN XMINMASS 0.30 0.27 0.00 589 602 702 

ZMIN XHEIGHT 0.50 0.41 0.42 498 539 537 

Ankle 

ZMIN XMAXMASS 0.26 0.16 0.13 611 647 662 

ZMIN XMINMASS 0.16 0.17 0.00 651 646 707 

ZMIN XHEIGHT 0.19 0.20 0.31 637 635 589 

2 

Thigh 

ZMIN XMAXMASS 0.29 0.16 0.19 601 650 638 

ZMIN XMINMASS 0.42 0.36 0.41 541 567 546 

ZMIN XHEIGHT 0.32 0.29 0.41 584 600 543 

Shank 

ZMIN XMAXMASS 0.59 0.39 0.40 449 552 544 

ZMIN XMINMASS 0.30 0.27 0.28 589 602 598 

ZMIN XHEIGHT 0.50 0.41 0.47 498 539 513 

Ankle 

ZMIN XMAXMASS 0.26 0.16 0.20 611 647 634 

ZMIN XMINMASS 0.16 0.17 0.25 651 646 611 

ZMIN XHEIGHT 0.19 0.20 0.32 637 635 586 

3 

Thigh 

ZMIN XMAXMASS 0.29 0.16 0.19 601 650 640 

ZMIN XMINMASS 0.42 0.36 0.41 541 567 544 

ZMIN XHEIGHT 0.32 0.29 0.41 584 600 546 

Shank 

ZMIN XMAXMASS 0.59 0.39 0.40 449 552 546 

ZMIN XMINMASS 0.30 0.27 0.28 589 602 597 

ZMIN XHEIGHT 0.50 0.41 0.49 498 539 505 

Ankle 

ZMIN XMAXMASS 0.26 0.16 0.19 611 647 636 

ZMIN XMINMASS 0.16 0.17 0.25 651 646 611 

ZMIN XHEIGHT 0.19 0.20 0.31 637 635 587 

4 

Thigh 

ZMIN XMAXMASS 0.29 0.16 0.24 601 650 619 

ZMIN XMINMASS 0.42 0.36 0.23 541 567 623 

ZMIN XHEIGHT 0.32 0.29 0.41 584 600 546 

Shank 

ZMIN XMAXMASS 0.59 0.39 0.44 449 552 528 

ZMIN XMINMASS 0.30 0.27 0.21 589 602 627 

ZMIN XHEIGHT 0.50 0.41 0.52 498 539 489 

Ankle 

ZMIN XMAXMASS 0.26 0.16 0.26 611 647 611 

ZMIN XMINMASS 0.16 0.17 0.19 651 646 636 

ZMIN XHEIGHT 0.19 0.20 0.31 637 635 589 

 


