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Abstract 

Valid property transaction data in Indonesia is scarce because parties involved in a property 

transaction often report a false, lower transaction price to reduce their transaction tax 

liability. This has meant that in every mass valuation project administered by the National 

Land Agency of Indonesia (BPN RI), the sample size has never been sufficient to allow the 

currently employed Zonation Method to provide a complete prediction of land values across 

a city. A new mass valuation method that is fit for purpose when applied to a BPN RI-dataset 

is required. An extensive literature review was conducted to compare mass valuation 

techniques used worldwide, and Geographically Weighted Regression (GWR) was identified 

as the best potential candidate to replace the Zonation Method.  

The performance of GWR modelling was tested on a typical BPN RI-dataset from the city of 

Bekasi in western Java. A road network dataset was required to generate data for ten of the 

12 parameters listed in the current Mass Valuation Standards of BPN RI. A road network 

dataset had to be derived from the Land Parcel Map of Bekasi for this research because 

existing road networks from other sources had severe mismatches with the Land Parcel 

Map. Deriving a road network dataset from the Land Parcel Map was very time consuming 

because of the huge number of drawing errors in the Land Parcel Map that had to be 

corrected. 

In the Bekasi case study, the GWR model had a mean absolute percentage error (MAPE) of 

19.40 per cent, which was lower than the currently employed Zonation Method with a MAPE 

value of 10.80 per cent. Nevertheless, the GWR model solved the main problem of the 

Zonation Method; i.e. its inability to provide verifiable predictions for zones with fewer than 

three samples. Moreover, the MAPE value of 19.40 from the GWR model was well below the 

cut-off value of 30 per cent accuracy currently used by BPN RI.  

The performance of the GWR model at non-sampled locations was estimated by out-of-

sample estimation using Monte Carlo Cross Validation. The distribution of average 

percentage residuals from out-of-sample estimation resembles the distribution of percentage 

residuals from the in-sample GWR model. The correlation coefficient of the two distributions 

was 0.987. These two facts indicate that the GWR model does not have an issue of 

overfitting, and therefore it is very likely to maintain its prediction accuracy when predicting 

the non-sampled locations.  

The main issue discovered when applying the GWR model was that a small proportion (7.51 

per cent) of predictions at sampled locations had residuals greater than 50 per cent of the 
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actual value. In the absence of overfitting, a similar proportion of predictions at the non-

sampled locations are also likely to be inaccurate. Value zones were employed to detect 

potentially inaccurate predictions because predicted land prices in one value zone can be 

expected to be similar to one another. Local Moran’s I test and the coefficient of variation 

were employed to detect anomalous individual predictions in each value zone. 

The problem of a lack of valid transaction data for mass appraisal modeling, while a big 

issue in Indonesia, is also a major problem in many other countries in the world. The 

approach taken in this study can potentially be adapted and amended in many other 

countries. The method is useful to provide accurate predictions at non-sampled areas. The 

key issue in applying the approach is the need for an accurate digital road network map.  
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1. INTRODUCTION 

1.1. Introduction 

Indonesia is the largest country in Southeast Asia. Heryani and Grant (2004) estimated that 

the country has around 80 million land parcels within it. The National Land Agency of 

Indonesia (BPN RI) started land valuation in 2006, and the mass valuation approach has 

been the most feasible option to have all land properly valued in as timely a manner as 

possible. Property sales data is the main input for mass valuation work but collecting valid 

property sales data in Indonesia is more difficult than in many other countries (see Tamtomo 

et al., 2008). Parties involved in a transaction tend to report much lower transaction prices in 

order to lessen the transaction tax.  

Because solving the issue of false declaration of transactions will require changes in policy 

and regulations to be adopted at different levels of administration within Indonesia, this study 

focuses on improving the mass valuation method. A method which is able to work well with a 

limited number of samples must be chosen from among the methods being used worldwide. 

Adjustments must also be arranged to suit the circumstances of Indonesian cities.  

 

1.2. Land valuation in Indonesia 

Land valuation was introduced in Indonesia for taxation purposes during the Dutch colonial 

era. Booth (1974) showed that land parcels were classified on the basis ofthe irrigation 

system they were part of, slope inclination, soil type, ease of cultivation, and the relative 

location of the village in the kawedanan (sub-district). Next, the average rice yield of each 

class of land was calculated in order to formulate the landrente (land tax) per hectare for 

each class. In 1923 and 1928, verponding (the first individual property taxes) were 

introduced; these were created primarily for urban areas (see Kelly, 2003). Booth (1974) 

also noted that in 1965, 20 years after Indonesian independence, the income approach was 

maintained for land valuation in rural areas.  

Kelly (2004)observed a substantial shift in valuation methodology after the enactment of the 

Land and Building Tax Law in 1986:  

The mass appraisal process for land is based on a ‘similar land value zone’ 

approach, where land is divided up into various zones – each with an average sales 

price per-squared metre as determined by the tax department. All land parcels 

located within that zone are valued by multiplying the land area by the average per 
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unit price. The buildings are valued based on a cost approach using cost tables 

determined by the tax department. The total property value is the summation of the 

land and building values(Kelly, 2004, pp. 119-120). 

Since then, the value of land or buildings released by the Directorate of Property Taxation 

has been officially called the ‘sales value of tax object’ (Nilai Jual Obyek Pajak – NJOP). 

Lewis (2003) estimated that the coverage of the taxation-intended value (NJOP) had been 

extended to 85.6 per cent of all land parcels in urban areas and 66.0 per cent of those in 

rural areas. Due to its wide availability, the NJOP has been the most widely used reference 

for land value. Beside its main use for taxation purposes, NJOP has also been used as a 

reference for land values for other purposes, e.g., land acquisition planning, development 

planning, tariffs of services related to land ownership, and asset declaration. Yet Lewis 

(2003) also highlighted clearly that there is some evidence to suggest that on average, 

government appraisals of taxable property make up only approximately 60 per cent of real 

market values. Though widely available, NJOP does not represent the market values of land 

parcels in Indonesia.  

 

1.3. On the need for reliable reference to land value 

A market-based valuation that generates a reliable reference to land value is urgently 

required for development planning and taxation in Indonesia. In principle, market-based 

valuation is about mapping market values. This fair value will be useful to all aspects of 

society in support of sustainable development as a reference for the land market, land asset 

management, land taxes and fees, land policy making and other decisions related to land 

(see Tamtomo et al., 2008). For example, in a study of infrastructure development in the 

USA, Delluchi and Murphy (2005) indicate that the availability of a reference to land value is 

a crucial issue when examining the feasibility of public projects. Indonesian Law No. 2 Year 

2012 on Land Acquisition for Development in the Public Interest1 obliges the land acquisition 

committee of an infrastructure development project to estimate land value as part of any 

feasibility study. The ‘undervalued’ NJOP has been used for land acquisition budgeting in 

Indonesia for decades, and its use is the main reason behind disputes about compensation. 

In the absence of reliable reference to land value, the National Land Agency of Indonesia 

(BPN RI) started land valuation based on market values in 2006 (see Tamtomo et al., 2008). 

                                                 
1Undang‐UndangNomor  2  TentangPengadaan  Tanah  Bagi  Pembangunan 

UntukKepentinganUmum(Republic of Indonesia, 2012).  
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1.4. False transaction price reporting: the cause and the impact 

A major problem in meeting the standards in the current mass valuation practice adopted by 

BPN RI is the scarcity of valid property sales data. The parties involved in a property 

transaction tend to give false statements about the transaction price to lessen the 

transaction tax. In 1997, the Indonesian government enacted a Land and Building 

Acquisition Tax (Law No. 21/97). This law levies a tax of five per cent applied to the 

‘acquisition value’ of the property minus a deduction of up to 60 million IDR, and the latter 

threshold is determined by the regional government (see Kelly, 2003). 

A value close to the NJOP, which is usually much lower than the actual transaction price, is 

normally declared in the sale deed.2 In a normal circumstance, everyone is very likely to 

report false transaction price. Despite that, there is yet no report or study that presents the 

number or percentage of the false reporting on transaction prices in Indonesia.    

This common practice of tax avoidance involves the property seller, the buyer, and the 

notary. Using NJOP as the basis of price reporting has become an ‘acceptable’ illegal act. In 

the context of mass valuation, it means that the property sales compilation at a local land 

office cannot be used for mass valuation because it contains false prices. Therefore field 

survey is required to collect actual sales data. 

Advertisements are useful initial data sources in property sales surveys. They show the 

properties for sale, and there is usually some part of the data required for valuation. 

Unfortunately, well-displayed advertisements on websites generally contain only properties 

being sold through top-branded property brokers and therefore they cover only a small 

portion of properties for sale in many areas. Information from private sellers has been the 

main source of sales data for mass valuation practices in many cities in Indonesia. Private 

sellers normally place sale signs at the front of properties for sale, as shown in Figure 1.1. 

In most rural areas, many people consider that it is showy to put a sale sign on a property for 

sale.3 Sellers prefer to inform staff at the village office about a property for sale. That means 

that potential buyers often have to ask for assistance from the village office when they want 

to buy a property. In these cases, the asking price and the final transaction price is only 

known to the parties directly involved in the transaction. It is a non-transparent land market. 

                                                 
2Part of this information comes from the author’s experience as a staff of Directorate of Land Valuation in 

BPN RI. 

3  Part  of  this  information  comes  from  the  author’s  experience  as  a  surveyor  in  a  number  of mass 

valuation projects administered by BPN RI. 
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The above circumstances make data collection difficult and time consuming. Because the 

actual sales price is considered confidential, surveyors often have to act in the guise of 

potential buyers or a property sales agent. Tamtomo and colleagues (2008) suggest that 

collecting market valuation data is more difficult in Indonesia than in many other 

countries.Because collecting valid data is very difficult, data scarcity has been the biggest 

issue for mass valuation practice in Indonesia. 

 

Figure 1.1 Typical private seller’s sale sign 

Source: Mass Valuation Project of Bekasi City in 2012 

 

 

Note: 

 ‘DIJUAL’ means FOR SALE. 

 ‘T.P’ stands for ‘Tanpa Perantara’ which means ‘no middleman’. Private sellers prefer direct 

contact with potential buyers. Phone numbers are written on the sign. 

 ‘SHM’ stands for ‘Sertipikat Hak Milik’ (freehold title issued by Local Land Office). 

 ‘20x55’ is the size of the land parcel in square metre. 

 The price is sometimes stated but it is not common to do so. 

 081397439989 is the phone number of the private seller. 
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During the process of property sales data collection, surveyors have to do a door-knocking 

survey. Next, an interview has to be conducted in a particular manner to get sensible 

responses. Surveyors for a mass valuation project in a city or district are usually from the 

local Land Office. Surveyors from the Regional Land Office and surveyors from the 

headquarters of BPN RI (Land Valuation Directorate) also join the surveys in cities and 

districts. The official data from the Ministry of Home Affairs4 shows that there are 93 cities 

and 415 districts in Indonesia. For each city or district, survey for mass valuation is 

conducted every year because land value change rapidly in a developing country like 

Indonesia. Due to the limited number of surveyors at the Regional Land Offices and Land 

Valuation Directorate, surveyors from these offices can only take part in a limited number of 

surveys in a number of cities or districts each year. The author of this thesis is a surveyor 

from the Directorate of Land Valuation of BPN RI.  

 

1.5. Current mass valuation technique in BPN RI: Zonation Method 

The Zonation Method adopted from the Directorate General for Property Taxation of 

Indonesia has been employed in BPN RI. Neighbouring land parcels in an area with a 

dominant or homogeneous land coverage and land use are assumed to have relatively 

similar land values. These land parcels are used to define a closed polygon called a land 

value zone. 

Property or land sales data are collected by means of stratified sampling. Stratified sampling 

is a sampling method in which a population is divided into mutually exclusive groups (called 

strata), and then simple random or systematic samples are selected from each of these 

strata (Hibberts et al., 2012). In the case of Indonesia, the strata are the polygons of land 

value zones. 

A value zone must have at least three samples (land parcels with known values) so that an 

average land value and its standard deviation can be calculated. The average land value will 

be taken as the land value for the zone if the coefficient of variation of sampled land values 

is lower than 30 per cent. The details about the Zonation Method are compiled in the Internal 

Standards for Land Valuation in BPN RI5. A brief description of the processes in general is 

shown in Figure 1.2. 

                                                 
4Pembentukan  Daerah‐Daerah Otonom  Di  Indonesia  Sampai  Dengan  2014,  Kementrian  Dalam Negeri 

Republik Indonesia (2014). 

5Standar Operasional Prosedur Internal Survei Potensi Tanah, BPN RI(2013). 
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Providing at least three samples of valid data for each zone has always been the key issue. 

In every mass valuation project conducted by BPN RI, sample data shortage has always 

been the biggest issue. The data from the 2012 Mass Valuation Project of Bekasi City has 

been selected in this research to give an example of the data shortage issue. The number of 

samples per land value zone (Table 1.1) is typical of other towns and cities surveyed by BPN 

RI. 

Table 1.1 Breakdown of value zones based on the number of samples 

Number of samples  Number of value zones Percentage breakdown 

≥ 3  50  5.1 

1 or 2  390 39.8 

0 540 55.1 

Total 980 100.0  

 

1. A zone with three or more samples 

 

 

A value zone is expected to have at least 

three sales data. If the coefficient of 

variation is < 30 per cent, the value for the 

zone will be calculated as the average 

value of all the samples. 

2. A zone with less than three samples 

 

 

If a value zone has less than three 

samples, the value for the zone will not be 

calculated. There will be no value 

assigned for the zone. 

Figure 1.2 Description of the Zonation Method currently employed for mass valuation 

in BPN RI 

Source: Internal Standards for Land Valuation in BPN RI 
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It should be clear from this brief introduction that the Zonation Method, the mass valuation 

method currently employed by BPN RI, does not work well given the circumstances in 

Indonesia.  

 

 

1.6. Research objective and questions 

As aforementioned, the major problem for accurate mass valuation practice in Indonesia is 

the scarcity of valid sales data. This study has been formulated to investigate effective 

measures in dealing with the data scarcity problem, with the main emphasis being placed on 

investigating geospatial modelling of existing data sets. This is because solving the issue of 

false declaration of transactions will require changes in policy and regulation to be adopted 

at different levels of administration within Indonesia. 

The main objective of this study is to improve current mass valuation practice given existing 

data scarcity issue. This study will evaluate the most suitable geospatial modelling technique 

to be applied to the existing dataset (with the limited number of samples) and compare it with 

the current practice. A method that is able to work with a limited amount of data will be 

chosen among the popular mass valuation techniques being used worldwide. Next, 

adjustments will be incorporated into the chosen technique in order to suit the local 

characteristics of Indonesian cities. 

Bekasi City is located in West Java Province, and it is a typical of most Indonesian cities in 

which road networks and arrangements of land parcels vary significantly among 

neighbourhoods. The 2012 Bekasi City dataset has the best distribution of sample data 

among all mass valuation projects administered by BPN RI, so this dataset is used for this 

study to give optimum exploration of the selected mass valuation technique.   

The research questions related to this objective are: 

1. To convert an existing BPN RI-dataset from Bekasi, Indonesia into a format that can 

be used in geospatial modelling of land transaction values. 

2. To identify how the geospatial technique that has been used for mass valuation in 

other administrations performs when applied to the Bekasi dataset and compare the 

result with the result from the Zonation Method currently employed by BPN RI. 

3. To identify what adjustments and recommendations can be made for better mass 

valuation practice by BPN RI in urban areas. 
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1.7. Thesis structure 

Following this Introduction chapter, Chapter 2 reviews the existing mass valuation 

techniques used worldwide. The mechanisms, the advantages, and the disadvantages of 

each technique will be outlined.  

Chapter 3 focuses on data preparation. The basic data for Bekasi that were available at the 

start of the research were property sales data and a land parcel map. The properties of 

these data and issues they pose for mass valuation will be discussed. The chapter will detail 

how road network dataset was derived from the land parcel map, and how a travel time map 

was derived from the road network dataset. This chapter focuses on Research Question 1. 

Chapter 4 examines the properties of the dataset after the data preparation procedures were 

carried out in Chapter 3. Specifically, the focus is on correlations between variables, 

assessments of multicollinearity and spatial autocorrelation, and variable transformations. 

The goal of the research in this chapter is to optimise the performance of the prediction 

model using the Bekasi dataset. This chapter focuses on Research Question 1. 

Chapter 5 discusses the prediction performance of the Geographically Weighted Regression 

(GWR) technique using the Bekasi dataset. The performance of the GWR model is 

compared with the Zonation Method currently employed by BPN RI. The main issue inherent 

in the GWR model is the extremely large prediction residuals at several locations. This 

chapter focuses on Research Questions2 and 3. 

Chapter 6 contains explanations on how the issue of extremely large prediction residuals at 

several locations are tackled by controlling the input for the model. Samples are controlled 

using value zones. The basic idea is that land parcels in one value zone tend to have similar 

values. However, the analyses reveal that GWR in the unit of value zones does not solve the 

issue of extremely large prediction residuals at several locations. This chapter focuses on 

part of Research Questions 2 and 3. 

Chapter 7 will explain an alternative approach to tackle the issue of extremely large 

prediction residuals at several locations when using the GWR model. Instead of controlling 

the input for the model (as conducted in Chapter 6), measures will be employed to control 

the prediction output of the model. The input data is taken as it is but then outliers will be 

detected from the prediction output. This chapter focuses on Research Question 3. 

Chapter 8 is a discussion chapter in which the results from analyses in Chapters 4, 5, 6, and 

7 will be discussed in relation to the research objective and research questions. These 
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results will also be compared with the results from other similar researches. This chapter 

focuses on Research Questions 2 and 3. 

Chapter 9 contains conclusions from the research undertaken in the study, and makes 

recommendations for a better mass valuation practice in Indonesia. This chapter focuses on 

Research Question 3. 

 

1.8. Researcher’s positionality 

The author was an analyst in the Directorate of Land Valuation of BPN RI before undertaking 

this research and has returned to that position after undertaking this doctoral research in 

Australia. The author started to work at the Directorate of Land Valuation of BPN RI in 2010, 

and have been involved in a number of mass valuation projects administered by BPN RI 

since then. The author took part in the 2012 Bekasi City Mass Valuation Project as the 

Survey Coordinator, and used the dataset from the 2012 Bekasi project for this study. The 

application of Geographically Weighted Regression (GWR) model on the 2012 Bekasi 

dataset is the main part of this PhD research.  
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2. STATE OF KNOWLEDGE 

2.1. Introduction 

In property valuation, the term ‘mass valuation’ is used inter-changeably with ‘mass 

appraisal’; the latter term seems to be more popular amongst practitioners. Eckert (1990, 

cited in McCluskey et al., 1997) defined mass appraisal as the systematic appraisal of 

groups of properties on a given date using standardised procedures and statistical testing. 

The goal is to value a great number of properties within a minimal time and financial budget 

allocations. The mass appraisal guidance from IAAO(2014)stated that mass appraisal 

(valuation) is required when many properties need to be valued economically and en masse 

for a purpose, such as annual property taxation.  

The output of mass valuation works is widely used as the reference to property values for 

taxation purposes. In order to provide reliable reference for taxation, a mass valuation work 

must result in accurate predictions on property values. For this goal, researches to develop 

mass valuation techniques have been conducted worldwide. A number of mass valuation 

techniques will be compared in this chapter to see the advantages and disadvantages of 

each technique. 

 

2.2. Mass valuation for taxation purposes 

Indeed, mass valuation has been used predominantly for taxation and fee levy purposes. 

The idea is to tax each property based on its value. This value-based taxation system is well 

known asad valorem, i.e., based on the estimated value of a real property which includes 

land and buildings either together or separately (see Portnov et al., 2001). Horne and 

Felsenstein (2010) observed that property value is the basis for taxation in Brazil, Canada, 

Denmark, Great Britain, The Netherlands, The Philippines, and most states in the USA. 

Similar practices are found in other countries. The capital value of property is used for 

taxation in NSW (Australia), and land taxes are based on the assessed unimproved land 

value in Taipei (Taiwan) (see Chan and Chen, 2010). The valuation standards from IVSC 

(2011)stated that the capital value of property is generally associated with market value, i.e., 

the estimated amount for which an asset or liability should be exchanged on the valuation 

date between a willing buyer and a willing seller in an arm’s length transaction, after proper 

marketing and where the parties reach an agreement.  
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Although it is widely used, property value is not the only base for taxation. Countries with 

active and well-monitored rental markets are able to use the annual value of property to 

determine the tax rate. For example, property tax is calculated on the annual value of the 

property in Singapore; while in Hong Kong, property tax is based on the net assessable 

value of rental income (see Hui et al., 2004).  

 

2.3. Mass valuation techniques 

Moore (2009)has traced the inception of the mass valuation concept: 

Zangerle’s book on appraising, published in 1924, established a standard mass 

appraisal methodology that would be used for the rest of the twentieth century. This 

book introduced the concept of building quality classifications and included 

construction specifications for each classification, along with square foot unit rates 

for each classification.(Moore, 2009, p. 27) 

Various techniques have been developed since then, each of which has tried to represent 

the property market value in a better way.Kauko and d’Amato (2008)classified mass 

appraisal techniques being used worldwide (Table 2.1). 

Table 2.1 Classification of mass appraisal techniques 

Approaches Method Examples 

Orthodox approaches 

(based on multiple 

regression) 

Cokriging  Chica-Olmo (2007) 

 Chica-Olmo and  

 colleagues (2013) 

Spatial Expansion Model (SEM) 

 

 Geoghegan and 

colleagues (1997) 

 Bitter and colleagues 

(2007) 

Hierarchical Trend Modelling (HTM) 

 

 Francke and Vos (2004). 

 Francke (2008) 

Logistic Regression  Bolen and colleagues 

(1999) 
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In between orthodoxy and 

heresy  

(based on flexible 

regression) 

Generalized Additive Model (GAM)  Pace (1998) 

 Paceand colleagues 

(2002) 

Piecewise Parabolic Multiple 

Regression Analysis (PPMRA) 

 Colwell (1998) 

 Colwell and Munneke 

(2003) 

Geographically Weighted 

Regression (GWR) 

 Fotheringham and 

colleagues (1997) 

 Bidanset and Lombard 

(2014) 

Heresy approaches  

(based on model-free 

estimation) 

(Artificial) Neural Networks (ANN) 

 

 

 

 McCluskey and colleagues 

(2012a) 

 Yacim and colleagues 

(2016) 

Genetic Algorithms (GA) 

 

 Balmann and Happe 

(2000) 

 Jirong and colleagues 

(2011) 

Rule-Based Expert Systems 

 

 Nawawi and colleagues 

(1997) 

 Kilpatrick (2011) 

Case-Based Reasoning (CBR) 

 

 Gonzalez and Laureano-

Ortiz (1992) 

 O’Roartyand 

colleagues(1997) 

Fuzzy Logic 

 

 Bagnoli and Smith (1998) 

 Pagourtzi and colleagues 

(2003) 

Rough Set Theory (RST)  d’Amato (2002) 

 d’Amato (2007) 

Source: Compiled from Kauko and d’Amato (2008) and literature review 

 

2.3.1. Multiple regression methods 

Multiple regression analysis (MRA) examines the relationships between one continuous 

variable of interest (the dependent or criterion variable) and one or more independent 

(predictor) variables (Miller, 2013). Some of the geospatial methods that have employed this 
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approach are Cokriging, the Spatial Expansion Model, Hierarchical Trend Modelling, and 

Logistic Regression. These are discussed below. 

Chica-Olmo (2007) suggested Cokriging could be used when house price and the predictor 

variables have not been sampled in the same housing area – acondition known as 

heterotopic data. This is a common situation in mass valuation practices worldwide, 

including in Granada (Spain) where the study was undertaken. First, the location price is 

estimated using Kriging which calculates the weighted average of neighbouring values (see 

Şen, 2009). Then the Cokriging method adds the effects of the predictor variables at each 

location. Chica-Olmo and colleagues(2013) employed Cokriging to develop a multi-

equational model in which one equation explains the price of housing in terms of its 

explanatory variables and the other equation explains the quality of the zone by employing 

regional variables, e.g. air quality and environmental quality.  

The Spatial Expansion Model (SEM) allows the contribution of a housing characteristic to a 

property’s value to change over space, e.g., the value of open (green) space might be higher 

in urban areas, where open spaces are scarce relative to rural areas (see Geoghegan et al., 

1997). Bitter and colleagues (2007) let sevenhousing-attribute variables interact with nine 

absolute-location variables (derived from the third degree polynomial expansion of the x, y 

coordinates of a property). Sixty three new independent variables emanated from this 

analysis. They were added to the seven original variables for housing characteristic, and the 

nine variables for location, thereby allowing 79 variables to be included in the model. This 

research was undertaken in Tucson, Arizona. The prediction was most accurate in the area 

immediately surrounding central Tucson, where housing tends to be less dense and less 

heterogeneous. 

Hierarchical trend modeling (HTM) is a time-series approach(see Francke and Vos, 2004). 

Francke (2008) stated that the Kalman filter has the ability to produce recursive predictions 

of the next period’s observations based on information up until the present and to provide 

optimal revision of the trend as time proceeds. Beside this temporal aspect, Francke (2008) 

explained how the spatial aspect can also be analysed in the model: 

In the HTM, the spatial dependence is modeled on a cluster level basis and by 

specific locational characteristics. Every cluster has an individual price trend. 

Within clusters, the price levels may vary over different neighborhoods. The price 

levels are modelled as random effects within a cluster. (Francke, 2008, p. 166) 

Logistic Regression was utilised by Bolen and colleagues (1999)to analyse the spatial 

distribution of the increase in land value by examining seven variables which were presumed 
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to affect land value. The aim was to determine whether the conditions that establish land 

values are also valid for estimating increases in land values, and to establish the probability 

of increases in land values related to certain characteristics. 

 

2.3.2. Flexible regression methods 

Beside the group of MRA-based approaches outlined above, Kauko and d’Amato 

(2008)identified a group of techniques (Table 2.1) that have an intermediate position 

between orthodoxy and heresy.They are based on ‘flexible regression’ which develops 

flexible functions to fit various situations. The key techniques in this group are Generalized 

Additive Models (GAM), Piecewise Parabolic Multiple Regression Analysis (PPMRA), and 

Geographically Weighted Regression (GWR).  

A Generalized Additive Model (GAM) estimates the dependent variable as the sum of 

functions of the independent variables (see Pace, 1998). Each function of the independent 

variables (i.e., the regressors) is a non-parametric estimation. The functional forms of the 

independent variables determine the predictive accuracy of the model (Pace et al., 2002). 

Pace (1998) applied GAM to a set of 442 houses with transactions in Memphis, Tennessee. 

The samples were divided into sets of modelling data and validation data, and 500 iterations 

were run on these data. Compared with the global model, GAM reduced the median 

absolute prediction error by about oneper cent in absolute terms, i.e. about USD1,000 on a 

house with a USD100,000 transaction price. 

In Piecewise Parabolic Multiple Regression Analysis (PPMRA), land is divided into sections. 

The spatial location and the value of each observation are represented by the four corner 

vertices of each section (the barycentric coordinates). The value at each barycentric 

coordinate is weighted on the basis of how close it is to the observations or sales data. The 

barycentric coordinates are then used as the independent variables(see Colwell, 

1998).Colwell and Munneke (2003) applied PPMRA to densely distributed vacant lands 

sales data in Chicago and suggested that this semiparametric approach was able 

torepresent very complex price functions. As a result, the model was capableof capturing 

undulations in the price surface.Kauko and d’Amato (2008)highlighted the need for large 

numbers of observationsin order to achieve such flexibility in the price surface output. Dense 

property sales data for mass appraisal work is not always available. Kauko and d’Amato 

(2008) also noted that the lines between the vertices in piecewise regression are straight 

lines, so the curve is not differentiable. This makes the model becomes not very flexible.  
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Brunsdon and colleagues (1996) introduced Geographically Weighted Regression (GWR). 

GWR allows the coefficients in the model to change at specific locations (calibration points) 

to comply with local variations within an area of interest. The locations of calibration points 

are set to give a good representation of spatial variation. Observations are weighted based 

on their closeness to the calibration points, and GWR provides options on the weighting 

function. GWR also provides options on bandwidth method to allow alteration of the number 

of observations involved in a calibration. Bidanset and Lombard (2014) examined how 

changes in weighting function and bandwidth method in order to suit the circumstances of 

the data, can improve the accuracy of GWR prediction.  

The attractiveness of GWR is that a unique calibration exists for every calibration point in the 

study area, thus there is a separate regression model at each observation point. 

Fotheringham and colleagues (1997) noted that global models, by their very nature, are 

likely to be misspecifications of reality, and that GWR can help to identify the nature of the 

misspecification by an examination of the spatial pattern of the local parameter estimates. 

Furthermore, they suggested GWR as a means of incorporating 'unmeasured' effects (e.g., 

individuals' attitudes or tastes). Although such a factor is not included in the global model, it 

can be incorporated in the local regression. The effect of the ‘unmeasured’ factor will also 

contribute to shaping the model. 

 

2.3.3. Model-free estimation methods 

The third group of methods specified by Kauko and d’Amato (2008)is labeled ‘heretic’ 

(Table2.1) because the ‘model-free estimation‘ approach contrasts with the dominant 

framework of multiple regression analysis. Defining a formal mathematical relationship 

between the dependent and independent variables is not required in this approach. Among 

the methods included are Rule-Based Expert Systems, (Artificial) Neural Networks (ANN), 

Genetic Algorithms, Case-Based Reasoning, Fuzzy Logic, and Rough Set Theory. 

The Self-Organizing Map (SOM) and the Multi-Layer Perceptron (MLP) are ANN-based 

methods that have been used for mass appraisal. White (1989) described the emphasis of 

the ANN being on learning procedures used to train the Artificial Neural Networks. The 

addition of more samples keeps the learning procedure active by forming new empirical 

knowledge. So, the summary of the object being learned is formed iteratively based on the 

sample itself. ANN provides flexibility in modelling values because it incorporates 

nonlinearities, and it also provides simplicity because little effort is required in pre-processing 

data (see McCluskey et al., 2012a). White (1989) explained that empirical knowledge is 

encoded and converted into the weights of a suitable neural network as some function of the 
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sequence, thus the resulting network weights are a (vector-valued) statistic. Yacim and 

colleagues (2016) combined the Cuckoo Search (CS) algorithm with Levenberg-Marquardt 

(LM) and back propagation (BP) algorithms to reduce the issue of prediction inconsistency. 

This combination reduces iteration time and results in very high prediction accuracy.  

Although ANN-based methods are able to give accurate predictions, Kauko and d’Amato 

(2008) consider this approach to be a ‘black box’ approach because there is no clear 

functional relationship between the input and output values. McCluskey and colleagues 

(2012a) align with this view in noting that, from an industry perspective, having a transparent 

and ultimately a defensible model is a prerequisite. 

In Genetic Algorithms (GA), a sample is accepted to be as an individual (human being) and 

can be represented by a set of parameters. The potential solution of a problem is presumed 

to be an individual with a certain structure of parameters. These parameters are regarded in 

the same way as genes in a chromosome. The genes of the ‘parents’ (i.e., the original 

samples) are mixed and recombined for the production of offspring in the next generation. A 

‘better’ chromosome (i.e., fitter for the expected solution) will create a larger number of 

offspring, and thus has a higher chance of surviving in the subsequent generation. The 

‘breeding’ and ‘natural selection’ cycle is repeated until a desired termination criterion is 

reached (see Man et al., 1996). Jirong and colleagues (2011) developed a hybrid of the 

Genetic Algorithm (GA) and support vector machine (SVM) for housing price forecasting in 

China, with the non-parametric kernel function employed in the SVM. The mean absolute 

percentage error (MAPE) is 1.94 per cent, and this result indicates that the prediction 

accuracy is very high.  

Balmann and Happe (2000) noted that genetic algorithm-based techniques are appealing as 

they may not be constrained by statistical techniques related to potentially poor-fit models. 

However, Kauko and d’Amato (2008) underline the factthat GAs are only as good as their 

data inputs; and like the ANN-based techniques, issues around transparency and capability 

may be problems.  

A Rule-Based Expert System contains information obtained from a human expert, and 

represents that information in the form of rules. The rules are formulated, and then used to 

perform operations on data to make inferences in order to reach an appropriate conclusion 

(see Liao, 2005). Nawawi and colleagues (1997), cited in McCluskey et al. 

(2012b),developed an expert system for mass appraisal in Malaysia, and they argued that 

the greatest feature of the Rule-Based Expert Systems is their ability to encapsulate rules of 

thumb or heuristics and generalities. Kilpatrick (2011) utilised this approach for mass 
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appraisal in Plaquemines Parish, Louisiana and Lomax Township, Illinois where the number 

of property sales data were not sufficient for regression modeling. Transactions over several 

years were collected and verified. Appraisal expertise was then applied to the data in order 

to find common themes in the valuation of properties in a particular area. Adjustment factors 

were developed to formulate the prediction model for property values in the area. In short, 

the model was developed based on the data itself along with expert judgment. 

McCluskey and colleagues (2012b) noted two major problems with the Rule-Based Expert 

Systems. First, this technique does not inherently learn but merely mirrors the actions of an 

expert when it should be able to deduce a solution since the problem to be addressed 

already contains information within the parameters of the elicited knowledge. Second, the 

behaviour of large rule-based systems can be difficult to predict because interactions 

between rules are not obvious. 

Case-Based Reasoning (CBR) resembles more closely the psychological processes humans 

follow when trying to apply their knowledge to similar problems they handled in the past to 

address a current situation. In its application to mass valuation, descriptions of previously 

sold properties are stored in a case library. Adjustments are then applied to a property being 

valued based on the most similar cases (see Gonzalez and Laureano-Ortiz, 1992). O’Roarty 

and colleagues (1997) built a Case-Based Reasoning model for retail rent determination in 

Belfast, Northern Ireland, and they concluded that CBR is an effective technique to 

determine retail rents. CBR can be adjusted over time to incorporate new considerations, 

thus offering a level of flexibility. Indexing methods can also be used to score the similarities 

among comparable properties, so it also offers objectivity in selecting and weighting the 

comparable data. Though CBR provides objective and explainable processes and results, 

the method requires considerable data volumes (see McCluskey and Anand, 1999).  

Fuzzy Logic enables gradual transition in the degree of membership of an element to a 

group. In the case of mass valuation, an element is sales data, whilst a group is a 

characteristic of the property as a variable for valuation. Logical and consistent rules are 

established for each variable, e.g., if the distance from principal destinations is near, then the 

rating number is low. Each variable and rule-based rating on the variable is converted into 

quantified fuzzy sets to develop the membership function (see Bagnoli and Smith, 1998). 

Pagourtzi and colleagues (2003) stated that one of the most important advantages of fuzzy 

modelling is the hierarchical ranking of the objects (e.g., buildings, lots), thus it is not an 

inclusion-exclusion list. Similarly, Kilpatrick (2011) considered that the concepts of Fuzzy 

Sets and Fuzzy Logic are the best ways to inform computers to select not just comparables 

which are exact matches but instead comparables which are close matches because finding 
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exact comparables is impossible in real estate. A sample would be the closest comparable if 

it had the same degree of membership with the property to value, for each valuation 

variable.  

Rough Set Theory (RST) uses the assumption that objects can be ‘seen’ only through the 

information available about them. Objects (decision attributes) characterised by the same 

information (condition attributes) are indiscernible (similar) in the view of available 

information about them. Although those objects are not exactly the same, they appear to be 

the same. To deal with imprecision, RST makes use of sets – lower and upper 

approximations. Lower approximation consists of all objects which definitely belong to a 

concept, and upper approximation consists of all objects which possibly belong to the 

concept. Rules developed from lower approximation of the concept are certainly valid, whilst 

rules induced from the upper approximation are only possibly valid (see Pawlak, 1997). 

d’Amato (2002) ‘approximated’ property price (a decisional attribute) by using two conditional 

attributes: internal area and parking area availability. A decisional table was created to 

define the causal relationship between the price and the attribute through ‘if….then’ rules. A 

‘strong’ relationship will derive lower approximations, whilst a ‘weak’ relationship will derive 

upper approximations. As a result, deterministic rules show how internal area and parking 

determine the property price. d’Amato (2007, cited in d’Amato, 2008) developed an 

application of RST integrated with the valued tolerance relation, and this means an 

integration between rough sets and fuzzy sets. This application is able to result in a crisp 

value on the estimated price, while the original RST application requires the estimated price 

to be a class instead of a crisp value.  

 

2.4. Model choice 

Kauko and d’Amato (2008) revealed intheir reviewof mass appraisal methods, that the 

criteria used by appraisers for selecting the mass valuation method are partly based on 

methodological considerations and partly on institutional considerations. Adequate and 

appropriate methods are required to provide accuracy in mass valuation. On the other hand, 

the suitability of the method for the institutional context of use is equally important. 

Kryvobokov (2004) concluded that the “…usual; western valuation methods could not be 

applied in the Ukraine as the land market was immature”, i.e., the number of land sales was 

at that time insignificant and most sales involved state land being sold for the first time to 

private owners after the end of Soviet control. Just like in the Ukraine, a feasibility issue on 

using the most commonly employed mass valuation methods also prevails in Indonesia. The 

land market is not transparent (see Tamtomo et al., 2008) and much agricultural land is 
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being incorporated into highly commercialised urban property markets for the first time 

because of the recent, rapid urbanisation and urban expansion. 

Among the techniques discussed earlier in this chapter, only a few techniques have recently 

been employed for mass valuation research. It is very difficult to find up-to-date research on 

mass appraisal utilising the Hierarchical Trend Modelling (HTM), Logistic Regression, 

Generalized Additive Model (GAM), or Piecewise Parabolic Multiple Regression Analysis 

(PPMRA). Literature searches indicate that ANN-based techniques and GWR dominate 

most recent mass appraisal research.  

ANN-based techniques offer high prediction accuracy but the processes and the results from 

these model-free estimation techniques are not easily explainable. This creates issues, 

particularly in the area of tariffs and taxes. It is a big concern in these areas to have reliable 

explanation on how the amounts of tariffs and taxes are determined. Moreover, model-free 

estimation techniques appear to require more data than regression-based techniques 

because inferences are made from the data themselves. 

Contrary to model-free methods, all variables are well explained in orthodox techniques and 

can be understood by a wide cross section of people. However, these techniques only take 

into account the predefined information. Only the factors that are well measured are taken as 

variables in the model. There is the potential for missing important factors because they are 

not measured. This can be the main reason why Cokriging and Spatial Expansion Method 

(SEM) have recently been less popular than ANN or GWR. Kestens et al. (2006) and Bitter 

et al. (2007) compared the performance between GWR and SEM, and both studies came up 

with a similar conclusion saying that GWR has a better prediction accuracy.  

In the area of mass appraisal, GWR is the most popular among the flexible regression 

techniques. The GWR approach has assumed greater prominence for price estimation 

because it isolates and combines spatial dependency and heterogeneity, accounting for 

locational or adjacency effects and market segmentation (McCluskey et al., 2013).Beside the 

prediction performance, GWR is suitable for mass appraisal of values because the 

processes and results are explainable and understandable. In addition to the above reasons, 

the availability of GWR software within software packages such as ARCGIS adds a further 

reason to choose GWR. In particular, the section I manage at BPN RI has made significant 

investments in ARCGIS in terms of software and staff training. The decision to choose GWR 

for this current research project is backed up with solid reasons.  
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2.5. Geographically Weighted Regression (GWR) 

Regression analysis is used to model the relationship between a dependent variable and its 

explanatory variables. Ordinary Least Squares (OLS) is a basic form of the regression 

model.  

࢟ ൌ ࢇ  ∑ ሺ࢞ࢇ  ɛሻ

ୀ                 (Equation 2.1) 

where ݕ is the ith observation of the dependent variable, ݔ is the ith observation of the kth 

independent variable, the ɛs are independent normally distributed error terms with zero 

means, and each ܽ must be determined from a sample of n observations.  

Only one regression equation is generated in OLS because the relationships are assumed to 

be more or less the same everywhere within the study area. Each parameter estimate 

describes the ‘average’ relationship between the dependent variable and each of the 

explanatory variables. In certain cases, the relationship between a dependent variable and a 

particular explanatory variable may differ significantly across space. Fotheringham and 

colleagues (2002) took an example of local variations in the relationship between a 

dependent variable and an explanatory variable from housing markets in England. They 

observed that in rural parts of England, old houses have higher prices than newer houses 

because they might have character and appeal, while in cities, older houses have 

considerably lower prices than newer houses because many of those houses were built to 

low standards for workers at the middle of the nineteenth century. Imposing an ‘average’ 

relationship between house price and age of the house would simply ignore the significant 

local variation and result in an inaccurate model. 

In order to generate an accurate model, variations in the relationships between a dependent 

variable and its explanatory variables should be taken into account. Geographically 

Weighted Regression (GWR) extends the traditional regression framework of Equation (2.1) 

by allowing the parameter estimates to vary by location(see Brunsdon et al., 1996). The 

regression equation then becomes:  

࢟ ൌ ࢇ  ∑ ሺ࢞ࢇ  ɛሻ

ୀ            (Equation 2.2) 

The local regressions can take place at sampled locations or at predefined locations. 

Charlton and colleagues (2006)suggested that the intersections of a grid over the study area 

can be used in analysis with a very large volume of data. This option can reduce computing 

time and can be beneficial with the mapping of the results. For a local regression at location 
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i, a search window is used to capture the required samples. All the samples located within 

the search window are identified and then specified as the subset of data for location i. The 

search window keeps moving through the study area and stops on each sampled or 

predefined location. The size of the search window determines the number of samples 

involved in each local regression.  

2.5.1.  Search window 

The size of the search window can be determined in advance or optimised using the data. 

The predetermined search window can be specified using the expected number of samples 

or the maximum search distance. If the predetermined search window is specified using the 

expected number of samples, the search window captures a constant number of samples at 

each local regression. If the predetermined search window is specified using the maximum 

search distance, the search window imposes a constant maximum search distance at each 

local regression. 

The optimisation search window determines a specific number of samples to allow optimal 

fitting for the model. The bandwidth size of a kernel function acts as the maximum search 

window. The bandwidth size changes across space to capture the appropriate number of 

samples, and the changes of bandwidth size alter the shape of the kernel weighting function. 

So, modifying bandwidth size is a key action to reach the optimal fit of each local model. 

Farber and Paez (2007) confirmed that model estimation is sensitive to bandwidth selection 

both in terms of goodness-of-fit and coefficient estimation. Each sample involved in a certain 

local estimation is weighted using the kernel function. Modifying the bandwidth will reshape 

the kernel function, and reshaping the kernel function will adjust the weighting scheme. As a 

result, the parameter estimates in the local model will change.  

In conclusion, modifying the bandwidth size will alter the weighting scheme and may change 

the number of samples involved in a local model. A particular bandwidth, that captures a 

specific number of samples and shapes a specific weighting scheme, will result in an optimal 

fit for the local model. This bandwidth is the optimal bandwidth for a particular local model. 

The most commonly used bandwidth optimisation techniques for GWR are the Cross 

Validation (CV) and the Corrected Akaike Information Criterion (AICc) methods. 
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2.5.2. Cross Validation Method 

The Cross Validation (CV) method selects the bandwidth with the lowest CV score as the 

optimal bandwidth. Páez et al. (2011) described the cross-validation score as the sum of 

squared differences between the observed value of y at i, and the value predicted by a 

model estimated using kernel bandwidth ݄ after removing observation i from the sample.  

CV method for GWR utilises the Leave-One-Out Cross Validation (LOOCV) technique. For a 

group of n observations, one data point is put aside as the test set and the rest of the data is 

used as training set. The process is repeated until each observation data has its turn to 

become a test set, so there will be n test sets and n training sets. One model is established 

using each training set, and the model is used to calculate the predicted value of the test set. 

The predicted value is compared to the observed value to measure the residual.  

In GWR, the size of training set for each observation is determined by the bandwidth. A pilot 

bandwidth ݄ is set for a local estimation, and a group of n samples are identified. For local 

estimation at location i, several steps are undertaken: 

a. Observation i is taken out of the group, and the model is fitted using the rest of the 

samples in the group. 

b. The value at location i is predicted using the fitted model. 

c. The cross validation score (squared error) on bandwidth ݄ is calculated at location i 

as follows: 

ሻࢎሺࡿࢂ ൌ ࢟ 	െ ŷ	ஷ	ሺࢎሻ
          (Equation 2.3) 

d. The total CV score for bandwidth ݄ is the sum of the local CV scores: 

ሻࢎሺࡿࢂ ൌ ∑ ሻࢎሺࡿࢂ

ୀ               (Equation 2.4) 

The above procedures yield the total CV score for all local estimations within a specified pilot 

bandwidth ݄ (CVS (݄)). Multiple values of bandwidth are used to run procedures a, b, c, and 

d. The bandwidth that comes up with the lowest total CV score is the optimal bandwidth. 

2.5.3. Corrected Akaike Information Criterion (AICc) 

The Akaike Information Criterion (AIC) was designed to select the best fit model for a given 

set of data by letting the number of parameter estimates vary among models. Hurvich and 

colleagues (1998) proposed the Corrected Akaike Information Criterion (AICc), which is, in 

effect, AIC with a greater penalty for extra parameters. The formula is as follows: 
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܋۷۱ۯ ൌ ෝሻ࣌ሺ	ࢍ    ሺାሻ

ିି
                    (Equation 2.5) 

where:ߪොଶ  is the estimated variance of error 

 p   is the number of parameters  

 n   is the number of observations 

The preferred model is the one with the minimum AIC score. AICc rewards goodness-of-fit 

because a smaller estimated error variance encourages a smaller AICc score. On the other 

hand, the AICc score will increase if the number of estimated parameters increases. This is 

done to avoid selecting a model that has too many parameters which leads to overfitting. 

The number of parameters can be calculated by making use of tr(S), which is the trace of the 

matrix S. The hat matrix (S) complies with Equation 2.6: 

ෝ࢟ ൌ  (Equation 2.6)                                      ࢟ࡿ

where: ŷ is the matrix of predicted (fitted) values  

y is the matrix of observed values 

The trace of matrix S (tr(S)) is the sum of the values in the leading diagonal of the hat matrix. 

In a global model, the number of parameters is indicated by tr(S), while in GWR, the 

effective number of parameters is estimated using the expression 2tr(S)-tr(STS) (see 

Charlton and Fotheringham, 2009). 

For local estimation at location i, several steps are undertaken: 

a. Develop a local model at each location i for a pilot bandwidth	݄ 

b. Calculate squared errors for all local models on bandwidth	݄ 

ሻࢎሺࡱࡿ ൌ ࢟ 	െ ŷ		ሺࢎሻ
                         (Equation 2.7) 

c. Calculate the variance of residuals for all local models on bandwidth	݄ 

ሻࢎෝሺ࣌ ൌ
∑ ሺࡱࡿሺࢎሻ	ିࡱࡿതതതതሺࢎሻሻ

స


                     (Equation 2.8) 

d. AICc function is applied to multiple values of bandwidth, and the bandwidth with the 

lowest AICc score will be the optimal bandwidth. 
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2.5.4. Weighting schemes 

The weighting procedures in GWR comply with the first law of geography, i.e., everything is 

related to everything else, but near things are more related than distant things (Tobler, 

1970). The weight of an observation decreases by the distance from the regression location. 

Páez and Wheeler (2009) observed that most applications of GWR have favoured 

continuous functions that produce monotonically decreasing weights, such as the negative 

exponential:  

࢝ ൌ ܘܠ܍ ൬െ
ࢊ


ࢎ
൰                       (Equation 2.9) 

or the bi-square kernel: 

࢝ ൌ 	 ൬ െ	
ࢊ


ࢎ
൰


                       (Equation 2.10) 

where: wij is the weight assigned to observation j; 

 dij is the distance between observation j to regression location i; and 

	݄  is the bandwidth 

A description of the weighting scheme using a negative exponential function that shapes a 

Gaussian kernel is shown in Figure 2.1. 

 

Figure 2.1 Weighting scheme at local regression 

Source:Fotheringham et al. (2002) 
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Charlton and Fotheringham (2009)suggested that in terms of influencing the fit of the model, 

the choice of a bandwidth is more important than the type of the kernel. In ArcGIS 

implementation, Gaussian kernel type is used for the fixed radius kernel and bi-square 

kernel type is used for the adaptive kernel. 

2.5.5. Weighted Local Regression 

Charlton and Fotheringham (2009) specified the equation for a typical GWR version of the 

OLS regression model as follows: 

ሻ࢛ሺ࢟ ൌ ሻ࢛ሺࢼ	 	ࢼሺ࢛ሻ࢞ 		ࢼሺ࢛ሻ࢞  ⋯  (Equation 2.11)  ࢞ሻ࢛ሺࢼ

where: ݑ represents the location of local regression; 

i  represents the ith observation within a subset of n samples involved; 

 ;ሻ are parameter estimates at location uݑሺߚ, .…… ,ሻݑଶሺߚ ,ሻݑଵሺߚ ,ሻݑሺߚ

 m are the independent variable; andݔ,.……,3ݔ ,2ݔ,1ݔ

 .is the dependent variable	ݕ

The estimator will be: 

ሻ࢛ሺࢼ ൌ 	 ሺࢃࢀࢄሺ࢛ሻࢄሻିࢃࢀࢄሺ࢛ሻࢅ																																																							(Equation 2.12) 

Basically, this estimator is similar to the Weighted Least Squares (WLS) global model. The 

weight component distinguishes GWR from WLS. The weight is calculated using a kernel 

function, and it applies to a specific location only (see Charlton and Fotheringham, 2009). 

The X, Y, and W matrices are required for parameter estimation. For m independent 

variables and n observations involved in a local regression at location u, the X matrix will be: 

 

  m1ݔ …… 31ݔ 21ݔ 11ݔ 

  m2ݔ …… 32ݔ 22ݔ 12ݔ 

  m3ݔ …… 33ݔ 23ݔ 13ݔ 

 …… …… …… …… ……  

  mnݔ …… 3nݔ 2nݔ 1nݔ 
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The Y matrix contains the dependent variable, and for n observations the matrix will be: 

  1ݕ 

  2ݕ 

  3ݕ 

 ……  

  nݕ 

 

For n observations involved at location u, the W(u) matrix will be an n x n matrix containing 

the weights in the leading diagonal and 0 in the off-diagonal elements: 

  0 0 …… 0 (u)1ݓ 

  0 …… 0 (u)2ݓ 0 

  0 …… (u)3ݓ 0 0 

 …… …… …… …… ……  

  n(u)ݓ …… 0 0 0 

 

 

In regression calculation, the weighting matrix is the key feature that differs GWR from OLS. 

A unique weighting matrix is formed at each local regression of GWR. For instance, distance 

to tollgate can be assigned as variable number 1. w1 in inner city area,  is very likely to be 

much bigger than w1 in the countryside because distance to tollgate in inner city area is 

significantly more influential than in the countryside. 
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2.6. Summary 

A mass valuation technique is employed to value a huge number of properties in a city or 

district using a minimum allocation of budget and time. The output of mass valuation works 

are predominantly used for taxes and tariffs purposes. In an ad valorem (value-based) 

taxation system, the amounts of taxes and tariffs related to a property are determined based 

on its value. Accurate predicted values of properties are required to ensure a proper value-

based taxation system.  

In order to come up with accurate predictions, various mass valuation techniques have been 

developed worldwide. Mass valuation techniques can be categorised into three groups, i.e. 

regression-based techniques, flexible regression techniques, and model-free estimation 

techniques. The flexible regression approach is the most favourable because it provides an 

examination of the relationship between price and the explanatory variables but then it 

develops flexible functions to fit various situations. Among the techniques in the flexible 

regression group, GWR has been the most popular. Another important consideration to 

choose GWR is that GWR software is available within the ARCGIS software package. BPN 

RI has made significant investments in ARCGIS in terms of software and staff training. 

Unfortunately, the GWR model cannot be run on the Bekasi dataset right away because the 

dataset is not prepared for a regression-based analysis. The currently employed Zonation 

Method only uses variable price in the analysis, while GWR also takes into account the 

explanatory variables for land price. The data related to the explanatory variables are only 

recorded at the sampled locations. For the non-sampled locations, most of the data related 

to explanatory variables must be derived through spatial analyses.  

Data preparation is undertaken to get all the data related to all of the explanatory variables 

become available at each parcel in the study area. Preparing the Bekasi dataset for 

regression-based analysis is found to be a substantial work. The basic data from Bekasi are 

the property sales data and the land parcel map. There are a huge number of trivial issues 

within these data, and they make data preparation very time consuming. The processes, the 

issues, and the results of data preparation are discussed in the next chapter (Chapter 

Three).  
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3. DATA PREPARATION 

3.1. Introduction 

The overall methodological approach undertaken in this study is described in figure 3.1. 
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Figure 3.1. Overall methodological approach 
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The main datasets required for the application of GWR to mass valuation in Bekasi are 

property sales data, Land Parcel Map, and road network data. The property sales data 

contains the sales price and information related to the property. In this research, each 

individual sales data information will be matched with the corresponding parcel in the Land 

Parcel Map because the analysis will be run in the unit of land parcel. The data on variables 

related to information on property is obtained from the sales data compilation, while the data 

on variables related to accessibility (travel distance and travel time to amenities) will be 

determined using the road network data.  

As discussed in Section 2.6, the GWR model cannot be run on the Bekasi dataset right away 

because the datasets are not prepared for a regression-based analysis. Adaptations are 

applied to the datasets. During the process of data adaptations, errors have been found in 

the datasets. Fixing the errors therefore becomes a dominant part of data preparation 

process and is outlined in this chapter.  

 

3.2. Samples from Bekasi 

As identified in Section 1.2, collecting property sales data is usually very challenging in every 

mass valuation project in Indonesia. Due to this reason, field surveys normally produce 

sparse data distribution. Distribution of samples in the 2012 Bekasi dataset is the best 

amongst all of the mass valuation projects administered by BPN RI.6 This is the main reason 

behind the decision to use Bekasi as the study area in this research. In addition to that, the 

author of this research thesis was the survey coordinator in the 2012 Bekasi Mass Valuation 

Project.  

The main information extracted from property sales data is the land value per square metre. 

The value of a building or a structure on a land parcel is estimated with the help from local 

contractors. This estimated building value is deduced from the transaction price to extract 

only the land value. Distribution of samples and intervals of observed land values are 

displayed in Figure 3.1.Samples of medium to high land values are mostly located around 

the city centre, while most of the samples of low valued lands are located in the south-east 

corner of the city. Though located in the outskirts, some samples in the west have medium to 

high land values. The closeness of this part of Bekasi to Jakarta (the capital city) (Figures 

3.2, 3.3) is presumed to be the main reason behind this. 

                                                 
6  Part  of  this  information  comes  from  the  author’s  experience  as  a  surveyor  in  a  number  of mass 

valuation projects administered by BPN RI. 
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Figure 3.4 Sample distribution of 2012 Bekasi Dataset7 

 

Figure 3.3 shows that Bekasi City is located in the south eastern fringes of Jakarta. Although 

Bekasi was once a city in its own right, Jakarta has grown towards it. A 2014 survey by 

BPS(2015) reported that 460,069 of Bekasi’s 2.3 million residents (19.8 per cent) are 

commuters, of which 78.2 percent travel to Jakarta for either work or education. The survey 

conducted by BPS (2015) also reported that just over half of the commuters, 55.0 per cent, 

have to travel between one to two hours to their workplaces or education establishments, 

and 13.3 per cent travel for more than two hours.  

East Jakarta is the part of the Jakarta metropolitan area adjacent to Bekasi (Figure 3.3). The 

Land Offices’ Land Value Maps for 2012 show that, on average, land parcels in East Jakarta 

were worth almost twice as much as the land parcels in Bekasi (Table 3.1). Property prices 

are normally in line with land prices. Assuming this is the case in Bekasi, the property price 

difference between East Jakarta and Bekasi is likely to be the main reason for people who 

work in Jakarta to buy houses in Bekasi.  

                                                 
7The  intervals of  land value are rounded, and there  is no sample that has a  land value exactly the same 

with any of the break values 
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Figure 3.5 Location of Bekasi City 

Source: BIG (2013) 

Table 3.1 Land price comparison between Bekasi and East Jakarta in 2012 

 Lowest land price in 2012 (IDR) Highest land price in 2012(IDR) 

Bekasi  299,000 6,338,000 

East Jakarta 535,000  12,282,000 

Price difference (IDR) 236,000 5,994,400 

Price difference ( per cent) 78.9 93.8 

Note: The price is per square metre and IDR is Indonesian Rupiah 

Source: Land Office of Bekasi (2012c) and Land Office of Jakarta Selatan (2012) 

3.3. Land Parcel Map 

An excerpt from the digital Land Parcel Map of Bekasi is displayed in Figure 3.4. The map 

has been maintained in the local Land Office. The main feature is the polygon of registered 

parcels but the map also has important real world features like roads, railways, village 

boundaries, etc.  
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Figure 3.6 Excerpt from Land Parcel Map of Bekasi 

Source: Land Office of Bekasi (2012a) 

 

The map has been prepared mainly for land titling work and not for spatial analysis. The 

many issues encountered in using this map in this research are outlined below. For example, 

a land parcel is not represented as a polygon feature type but as a polyline. What makes it 

worse is that there is no link between the polyline feature and the attribute data of the 

corresponding land parcel represented by the polyline. The parcel number, which is one of 

the attribute data of a land parcel, has been created in an annotation layer with no link to the 

corresponding feature data. Other issues arise not only from the parcel layer but also from 

other layers. In short, the digital map is more like a precise drawing than a database. For this 

study, data conversions and data matching tasks were carried out to prepare the data for 

spatial analysis.  

Note: ‘Tanah Pengairan’ is irrigation interspace 

         ‘Sarana Parkir’ is parking area 

         ‘Tanah Jasa Marga’ is land owned by ‘Jasa Marga’, a government-owned toll road operator 

         ‘Jalan Tol Jakarta-Cikampek’ is a Toll Road connecting Jakarta and Cikampek 

         ‘00000’is the land parcel identification number 
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In most Indonesian cities, the Land Office’s Land Parcel Map is not reliable for spatial 

analysis because of the lack of coverage. In addition to the coverage issue, the Land Parcel 

Map of Bekasi also has content issues (Figure 3.5). 

 

The Land Parcel Map only contains the 

land parcels registered at the local Land 

Office. Therefore, not all of the land 

parcels located in the area of interest can 

be involved in analysis because some of 

them do not exist in the map. The exact 

number of parcels in Bekasi cannot be 

determined using this map either. 

 

Thousands of drawing errors were 

detected in the Land Parcel Map of 

Bekasi, mostly dangling and overlapping 

lines. These errors have not been 

considered as serious issues because 

the map was not prepared for spatial 

analysis. For this study, the polygons of 

blocks must be completed to create gaps 

between blocks. The gaps between 

‘blocks’ are then used to create road 

segments. 

 

Misplacement of features also occurs in 

the Land Parcel Map of Bekasi. The 

image shows some cases of 

misplacements in which several land 

parcels are placed over a toll road. The 

toll road is a new one and, apparently, 

the misplaced land parcels were 

expropriated for the toll road project. In 

this case, these parcels are going to be 

deleted. 

Figure 3.7 Issues in Land Parcel Map 

Source: Land Office of Bekasi (2012a) 
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3.4. The road network 

In addition to providing road class and road width data for each land parcel, road network 

data is also used as the basis for calculating travel distance and travel time from each land 

parcel to each of the amenities listed in the form for data collection. For this research, road 

network datasets were obtained from OpenStreetMap online map and from Indonesian 

Geospatial Information Agency (BIG). In the latter case, the road network is one of the layers 

in Topographic Map. Mismatches were found when each of the road network datasets was 

overlain on the Land Parcel Map. Figure 3.6 shows the mismatches between road network 

data from OpenStreetMap online map and the road edges from the local Land Office’s Land 

Parcel Map. 

 

Figure 3.8 Mismatches between OpenStreetMap and Land Parcel Map 

Sources: OpenStreetMap (2015) and Land Office of Bekasi (2012a) 

To measure the displacements from the road network layer of OpenStreetMap, centrelines 

have been created from the road edges layer in the Land Parcel Map (Figure 3.7). In Figure 

3.7, the shift between A and A’ is significantly different from the shift between B and B’, in the 

X and Y axes. This indicates that one measure of translation and rotation will not be able to 

match the road network layer of OpenStreetMap to the Land Parcel Map. A huge number of 

spatial adjustments will therefore be required to adjust the road network layer from 

OpenStreetMap to fit it to the Land Parcel Map. 
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Figure 3.9 Dimension of mismatches between OpenStreetMap and 

Land Parcel Map 

Sources: OpenStreetMap (2015) and Land Office of Bekasi (2012a) 

Mismatches were also clearly identified (Figure 3.8) when the road network layer from the 

BIG Topographic Map was overlain on the road edges layer from the local Land Office’s 

Land Parcel Map. 

 

Figure 3.10 Mismatches between Topographic Map and Land Parcel Map 

Sources: BIG (2013) and Land Office of Bekasi (2012a) 
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The mismatches differ across the entire area, and a single transformation formula cannot be 

used to fit the datasets to one another. Without considerable amounts of manual processing, 

which was not feasible in this project, nor would it be within BPN, it is obvious that the road 

network datasets obtained from OpenStreetMap or BIG cannot be used in this project. 

Therefore, the road network data was developed by making use of the Land Parcel Map.  

Derivation of road network data from the cadastral map was also conducted by previous 

researchers. Haunert and Sester (2008) applied the method of collapsing an area into a 

straight skeleton to derive the centerlines of the road network from a cadastral map in 

Hildesheim, Germany, and most junctions (89.8 per cent) were appropriately remodelled in 

this work. Similar work was done by  Zhang et al. (2010) in Barcelona, Spain, and 97 per 

cent of road segment reconstructions were reasonable. These previous works give more 

confidence to derive road network data from the Land Parcel Map in Bekasi, and the 

processes are shown in Figure 3.9. 

 

The green polylines are the boundaries 

between land parcels, while the red 

polylines are the outmost borders of 

blocks which become the edges of road 

segments.  

 

The polylines of parcels and polylines of 

road edges within one block are converted 

into polygons and dissolved into one block 

polygon. The results are block polygons 

(in blue). The idea is to capture the gaps 

between blocks. In the real world, these 

gaps are road segments (in white). 
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Centrelines are then derived from the gaps 

between the blocks. The width of each 

road segment is determined by measuring 

the distance from the centreline to the 

road edges. Because each centreline 

divides each gap into identical halves, the 

measured distance is half of the road 

segment’s width.  

Figure 3.11 Developing road network layer from Land Parcel Map 

Sources: Land Office of Bekasi (2012a) and data analysis 

 

Deriving the road network data using the above processes should have been completed in a 

relatively short time. However, the processes outlined above cannot always be 

accomplished without adaptations. Figure 3.10 shows one of the cases when adaptation is 

required. 

 

 

Both land parcel layer and the road 

edges layer can be used to capture 

the gaps between blocks. In this area, 

road edges are the preferred choice 

as the number of registered land 

parcels is very low. Unfortunately, 

road edges are not delineated in 

several blocks. At these blocks, the 

absence between block features will 

result in no road segments being 

created. Taking the data as it is 

means missing a number of actually 

existing road segments. 
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The road network data will not 

represent the real world situation if a 

number of existing road segments are 

disregarded. On-screen digitation is 

required to delineate the road edges 

for these blocks. The extra polylines 

of road edges help to capture more 

gaps between blocks. With more 

gaps being captured, more road 

segments can be created.  

Figure 3.12 Delineation of missing road edge features 

Sources: Land Office of Bekasi (2012a)and data analysis  

 

Beside the issue of missing road edge features, the issue of drawing errors and 

misplacements described in Figure 3.5 must also be addressed. Dangles, overlaps, and 

misplacements will cause errors in the process of generating road network dataset. 

 

3.5. Travel distance 

The distances from a property to amenities are key variables in determining land values. 

Euclidian distance is the simplest measure of distance because it is measured along a 

straight line connecting the objects. A straight segment in a rectangular x and y Cartesian 

coordinate system is used to represent the Euclidian distance between two points in a plane 

(see Li and Klette, 2011). Another common distance measure is the Manhattan distance. It is 

the sum of the straight line distances parallel to the x-axis and the straight line distances 

parallel to the y-axis (see Chan, 2005).  

In this study, neither the Euclidian nor the Manhattan distance was employed to measure 

travel distance from a property to amenities. Euclidian distance neglects the reality that 

people travel through the road network. Manhattan distance cannot be used either because 

it is not quite appropriate at certain situations, as shown in Figure 3.11. 
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Between the two parcels 

(blue polygons), 

Euclidian distance: 

156.39 metres 

Manhattan distance:  

151.57 + 45.47 = 197.04 

metres 

 

Between the two parcels 

(blue polygons), the shortest 

route can be travelled along 

the road network = 1,420.33 

metres 

 

 

Figure 3.13 Comparing Euclidian, Manhattan, and Route distances 

Sources: Land Office of Bekasi (2012a)and data analysis 

 

Route distance is a more realistic measure as in cities, people travel through the road 

network which is often defined by irregularly shaped segments. Using route distance can 

result in considerably different distances to amenities compared with using Euclidian or 

Manhattan distance. The above case (Figure 3.11) shows that route distance can be over 

seven times larger than the Euclidian distance or Manhattan distance. This means that using 

the Euclidian or Manhattan distance may lead to a huge inaccuracy. 

With around 200,000 road segments in the study area, multiple possible routes are available 

when travelling between locations. An optimum route can be computed for this research 

using the route analysis tool. It can be the shortest route, fastest route or other type of 
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optimum route which is set according to a specified optimisation option. A cost (impedance) 

must be set for a route, and this cost will be minimised in the process of selecting the 

optimum route. Setting distance as the cost will result in the shortest route being the 

optimum route, because the distance will be minimised during route selection. Travel time is 

also a common cost in route optimisation. Minimising travel time will give the quickest route 

as the optimum route. 

Route analysis is based on Dijkstra's algorithm. This algorithm uses the nodes in the 

network dataset as the unit of analysis. The basic idea is to run an iterative process to find 

the shortest path from one node to the rest of the nodes in the network. From a starting 

point, the algorithm looks for a neighbouring node with the shortest distance (v). Then, it 

examines each neighbour (w) of v that satisfies the following constraint: 

ሻ࢝ሺࢊ 		 ሻ࢜ሺ	ࢊ		 		࢝࢜ࢉ                                (Equation 3.1) 

where: cvw is the distance between nodes v and w. 

Whenever the constraint is not satisfied, the shortest path to w is improved using the new 

known value d.v/Ccvw. This is repeated until each node has been marked as completed, 

after which the algorithm returns the vector of shortest paths (see Oliveira and Pardalos, 

2011). 

A worked example of shortest path optimisation is explained in Figure 3.12. 

 

 

The shortest paths to all nodes in the network 

from node 1 are to be determined.  

 

A cost of 0 is assigned to node 1, and ∞ is 

assigned to other nodes. 
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Node 1 (the starting point) is marked as 

visited. The costs to visit the directly 

connected neighbours (nodes 2, 3, and 4) 

are calculated. In this example, the costs are 

3, 4, and 2 respectively. Node 4 has the 

lowest cost among the unvisited nodes, so 

node 4 will be visited. 

 

From node 1, node 4 is visited and marked. 

Then the total costs from node 1 via node 4 

to visit the connected neighbours (nodes 5 

and 6) are calculated. The total costs are 3 

and 6 respectively. Nodes 2 and 5 have the 

lowest costs among the remaining unvisited 

nodes. Node 2 will be visited first as it is 

directly connected to node 1.  

 

From node 1, node 2 is visited and marked. 

The total costs from node 1 via node 2, to the 

connected neighbours (nodes 3 and 5) are 

calculated. The total costs are 7 and 5 

respectively. Previously the costs for nodes 3 

and 5 were 4 and 3 respectively. The 

previous costs are lower, so they are retained 

as the minimum costs. Node 5 has the lowest 

cost among the unvisited nodes, so node 5 

will be the next to visit. 

 

From node 1, node 5 is visited via node 4 

and marked. The total costs from node 1 to 

visit the unmarked neighbours (node 3 and 6) 

are calculated. The total costs are 9 and 5 

respectively. Previously the costs at node 3 

and 6 are 4 and 6 respectively. The old 

cost at node 3 is lower, so it will be kept as 

the minimum cost. The cost at node 6 is 

updated because the new cost is lower. 
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Node 3 has the lowest cost among the 

unvisited nodes, so node 3 will be the next to 

visit. Node 3 will be directly visited from node 

1, and node 3 will be marked as visited as 

well. 

 

Node 6 will be marked as visited because all 

the other nodes were already marked. The 

most recent cost calculation will be saved as 

the cost to determine the optimum route. The 

most optimum routes to visit each node from 

node 1 are: 

Node 2: 1 – 2 

Node 3: 1 – 3 

Node 4: 1 – 4 

Node 5: 1 – 4 – 5 

Node 6: 1 – 4 – 5 – 6 

Figure 3.14 Worked example of shortest path optimisation 

Source: Summarised from Prasad (2015) 

In order to run route analysis, the road network feature must be converted into a network 

dataset which contains road segments and nodes (endpoints of road segments). Turns, 

impedances, restrictions, stops, driving directions, and other traffic data can be accounted 

for in a network dataset. An issue with using distance as the measure of accessibility is that 

it does not account for the contribution of road classification. Driving between two locations 

through two routes with different road classes may result in significantly different travel times 

between the two routes. Therefore, travel time is a more objective measure of the 

accessibility of a property to amenities and services, than travel distance. In addition to that, 

the Internal Standards for Land Valuation in BPN RI8 actually advises the use of travel time 

as a measure of accessibility.  

                                                 
8Standar Operasional Prosedur Internal Survei Potensi Tanah, BPN RI(2013). 
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The shortest route analysis uses distance as the travel cost, while the quickest route 

analysis uses travel time as the travel cost. An actual example is given to compare the 

optimum routes for both costs (Figure 3.13).  

 

A network analysis was run 

to determine the optimum 

route from a land parcel to 

the business centre. The 

shortest travel distance 

was resolved because 

distance was set as the 

cost for the route.  

 

For the same set of origin 

and destination, the 

optimum route differed 

significantly when travel 

time was set as the cost for 

the route. The optimum 

route was the one with 

minimum travel time. 

Figure 3.15 Comparing routes from travel distance optimisation and travel time 

optimisation 

Source: Data analysis 

 

3.6. Travel time 

In this study, travel time was set as the travel time using a motor vehicle. Predominantly, 

people travel to amenities using motor vehicles. There are amenities located within walking 

distance from a number of houses. There are also amenities which can be reached faster by 

train, from a number of houses. The most dominant travelling method, using a motor vehicle, 

was selected here to measure travel time to amenities. 
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3.6.1. Travel times in busy and quiet times 

In Indonesian cities, travel time varies significantly between busy and quiet traffic conditions. 

In order to represent the nature of the traffic flow and congestion effects, travel time was 

analysed for busy and quiet times. Traffic is at its busiest when students travel to schools 

and workers travel to their workplaces. The common school hours in Bekasi are generally 

from 7 am to 1 pm, while work hours are normally from 8 am to 5 pm. Due to the movement 

of people associated with work and education, the busiest time in the morning is between 

6.30 to 7.30 am. The traffic is less busy when people are at school and at their workplaces, 

this is between 9 am to 1 pm, however the traffic is sometimes busier during the lunch break. 

So, between 9 am and 12 pm is the time when the traffic is less busy. Most roads are 

relatively quiet between 11 pm to 4 am but this period is not the usual time for most people 

to travel. The quiet period should therefore be picked out from the common travel period 

which should be in line with the school or work hours.  

 

3.6.2. Average travel speed by road class 

Figure 3.14 shows the route normally taken by the residents from a sampled location 

number 730 to get to the nearest arterial road. They travel along a primary collector road (in 

yellow, orange dashed route) to get to the nearest arterial road (in red).  

 

Figure 3.16 Example of measuring travel speed on a road class 

Source: Data analysis 
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The amount of time to travel along the orange dashed route at busy or quiet time was 

obtained at the interview by the BPN RI field team (as it was for all other properties 

sampled), while the travel distance was acquired from the road network dataset. The speed 

that the resident drives along the primary collector was obtained from the distance/time ratio 

for both busy and quiet times. 

The above procedure was repeated for 49 other locations to obtain the average travel speed 

along primary collector roads. Boxplot filtering was applied to determine the outliers among 

the samples, so that they can be excluded from the next calculations. 

Average travel speeds were also calculated for the other road classes, i.e. local, secondary 

collector, secondary artery, primary artery, and toll road. The results are listed in Table 3.2. 

Table 3.2  Average travel speed on each road class 

Road class Average travel speed – busy time 

(km per hour) 

Average travel speed – quiet time 

(km per hour) 

Local 7.52 13.26 

Secondary collector 8.78 14.22 

Primary collector 7.64 16.29 

Secondary artery 7.39 23.86 

Primary artery 9.92 26.75 

Toll road 36.92 80.00 

Source: Data Analysis 

The average travel speed at quiet time increases by the road class. This is rational because 

a road segment of higher class is expected to allow higher travel speed than a road segment 

of lower class. Nevertheless, this logic does not apply for average travel speed at busy time. 

There is not much difference among average travel speed on local, primary collector, and 

secondary artery road classes. A road segment of higher class does not allow significantly 

higher travel speed than a road segment of lower class. The severity of traffic congestion 

across the city is very likely to be the main reason behind this.  

A route may pass through various road classes, as exemplified in Figure 3.15.  
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Figure 3.17 Example of a route passing through multiple road classes 

Source: Data analysis 

From point 1 (purple dot), one travels to point 2 (light blue dot) through the fastest route (red 

line) which includes local road (black line), secondary collector road (green line), and primary 

collector road (yellow line). Each road class allows people to travel at a different speed. The 

proportion of each road class in the total travel distance differs from the proportion of each 

road class in the total travel time (Figure 3.16). 

 

Figure 3.18 Example of proportion on travel time and travel distance of a route passing 

through multiple road classes 
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3.6.3. Assigning travel times to amenities for each land parcels 

In the Land Valuation Directorate’s survey form, travel times to amenities are divided into 

within five, 15, and 30 minutes and over 30 minutes intervals. The measures of accessibility 

for those intervals are defined as very good, good, moderate, and poor. Figure 3.17 shows 

the areas within five, 15, 30, and over 30 minutes of travel times to the business centre of 

Bekasi in busy times. 

 

 

Figure 3.19 Intervals of travel time to business centrein busy time 

Source: Data analysis 

A property located within the ‘15 minutes’ zone is considered to have good accessibility to 

the business centre. This can be contrasted to the travel time to/from the business centre in 

quiet time (Figure 3.18). It is clear that the zones of travel time differ significantly between 

busy and quiet times. 
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Figure 3.20 Intervals of travel time to business centrein quiet time 

Source: Data analysis 

Travel times were determined for all other amenities, i.e. tollgate, marketplace, hospital, 

school, and CBD at busy and quiet times. Maps of these travel times were created. Making 

use of the travel time intervals to create zones of travel time is practical, and it enables basic 

patterns to be visualised. However, intervals generalise travel time values because they 

disregard the unique travel time from each parcel to a certain amenity. For example, two 

parcels with six and 14 minutes travel times from the business centre, would both fall into the 

‘within 15 minutes’ zone of travel time.  

Therefore, instead of utilising zones of travel time, travel times to amenities were individually 

estimated for each land parcel along an optimum route. For any random land parcel, the 

minimum travel time to the nearest tollgate, nearest marketplace, nearest hospital, nearest 

school, and CBD can be retrieved at both busy and quiet times. One of the travel time maps, 

travel time to the business centre in the busy time, is shown in Figure 3.19.  
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Figure 3.21 Travel times to business centrein busy time 

 

 

3.7. Summary 

The main datasets required for the application of GWR to mass valuation in Bekasi are 

property sales data, the Land Parcel Map, and the road network data. Severe mismatches 

were found when the Land Parcel Map was overlaid with road network datasets (from 

OpenStreetMap and BIG). Because of this reason, the road network data was derived from 

the Land Parcel Map by converting the gaps between blocks into road segments. A huge 

number of adaptations were applied during the process of creating road network data from 

the Land Parcel Map. The effort was worth doing because the road network data was utilised 

to derive data related to travel distances and travel times to amenities.  

The travel distances and travel times from a property to amenities are key variables in 

determining land values. An issue with using travel distance as the measure of accessibility 

is that it does not account for the contribution of road classification. Two road segments of 

different road classes most likely allow different travel speeds when people travel through 

each of them. Travel time is considered to be a more objective measure of the accessibility 

of a property to amenities and services, than travel distance. This is in line with the guidance 

in the Internal Standards for Land Valuation in BPN RI. 
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In the Internal Standards for Land Valuation in BPN RI, travel times to amenities are divided 

into within five, 15, and 30 minutes and over 30 minutes intervals. The measures of 

accessibility for those intervals are defined as very good, good, moderate, and poor. An 

immediate concern is that these intervals generalise travel time values because they 

disregard the unique travel time from each parcel to a certain amenity. Discretion is used for 

this study. Instead of using intervals of travel times to amenities, the GWR model uses 

unique travel time from a land parcel to each of the amenities.  

Before the GWR model was applied to the reconstructed dataset, the dataset had to be put 

through examination processes to have a clearer picture of the relationships between land 

price and each of the predictor variables. The most statically significant variables, 

multicollinearity, and spatial autocorrelation were identified during the data examination 

processes. These processes are discussed in the next chapter (Chapter Four). 
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4. DATA EXAMINATION 

4.1. Introduction 

In this chapter, the data related to the variables listed in the survey forms for Bekasi are 

examined to understand the relationship between land price and each of the explanatory 

variables. Only variables which are statistically significant to shape price are going to be 

used to form the prediction model. Multicollinearity among variables is also examined to 

detect any dependency among variables.  

The selected explanatory variables are first used to form the OLS prediction model. The 

level of spatial autocorrelation is tested from the output of the OLS model. If the OLS model 

has a significant issue with spatial autocorrelation, the same set of explanatory variables will 

be used to form a GWR model. 

 

4.2. Variables 

In the prediction model, land price becomes the dependent variable and the qualities of the 

land parcel become the explanatory variables. There are 12 characteristics listed in the 

survey form that can be used as explanatory variables. Some of the original variables in the 

survey form are modified here in order to mimic the real world processes. Travel distances to 

amenities were modified into travel times to amenities. Travel distance regards similar 

contributions of each road segment in relation to ease of travelling to amenities, while travel 

time allows the unique contribution of each road class to be included. Aside from travel time 

to amenities, the data related to other variables remain the same as they are in the survey 

form. The explanatory variables to be examined here are as follows: 

o Parcel size: the size of the land parcel in square metres 

o Zoning: the most dominant type of land use in the zone in which a land parcel is located. 

The classes are: 

 class 1: agricultural area 

 class 2: irregular residential area 

The sizes and shapes of land parcels vary significantly. Most road segments are in 

irregular patterns. Road width varies significantly among road segments.  

 class 3: regular residential area 

Road segments are mostly in regular patterns and land parcels are mostly in regular 

shapes. 
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 class 4: residential complex 

A well planned residential area usually developed by property developer. Road 

segments, land parcels, facilities, and utilities are normally well arranged throughout 

the complex.  

 class 5: commercial area  

o Road class: 

 class 1: lane 

 class 2: local 

 class 3: secondary collector 

 class 4: primary collector 

 class 5: secondary artery 

 class 6: primary artery 

o Road width, in metres 

o Travel times to nearest tollgate, major road(s), business centre, marketplace, school, and 

health facility, in minute. 

The data related to each variable from all samples were examined. The statistics of data 

related to variables from the parcel’s features are summarised in Table 4.1, and the statistics 

of data related to travel times to amenities are summarised in Table 4.2. 

Table 4.1 Statistics of variables from parcel's features 

Features of land 

parcel 
Mean Median Std. Dev. Min Max Unit 

Parcel size 418.10 189.50 951.40 35.25 14,787.96 Square metre 

Zone 3.38 4 1.02 1 5 Class 

Road width 4.81 4.28 2.17 1.50 15.85 Metre 

Road Class 2.34 2 0.88 1 6 Class 

Price per m2 1,916,551 1,809,370 969,970 298,775 6,755,373 IDR 

 

 

Moderate variations are found on data related to variable zoning, road width, road class, and 

price, while a very large variation is found on data related to variable parcel size.  
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Table 4.2 Statistics of travel times to amenities this format is better 

Travel time to amenities Mean Median Std. Dev. Min Max Unit 

Tollgate busy time 21.61 20.10 10.13 0.50 53.52 Minute 

Tollgate quiet time 10.36 9.40 4.66 0.28 23.43 Minute 

Primary Arterial Road busy time 13.35 10.85 10.21 0.11 48.49 Minute 

Primary Arterial Road quiet time 6.75 5.88 4.76 0.04 24.10 Minute 

Secondary Arterial Road busy time 18.89 19.26 10.44 0.02 41.31 Minute 

Secondary Arterial Road quiet time 9.00 9.42 4.64 0.01 19.52 Minute 

Primary Collector Road busy time 6.10 5.00 5.04 0.00 27.27 Minute 

Primary Collector Road quiet time 3.21 2.79 2.52 0.00 14.82 Minute 

Business Centre busy time 30.78 31.16 12.95 2.13 68.17 Minute 

Business Centre quiet time 14.17 14.30 6.16 1.21 34.04 Minute 

Marketplace busy time 16.47 15.65 7.80 0.53 43.60 Minute 

Marketplace quiet time 8.21 7.86 3.89 0.29 21.83 Minute 

Hospital busy time 14.27 12.37 8.71 0.51 38.74 Minute 

Hospital quiet time 7.07 6.49 4.05 0.29 20.08 Minute 

School busy time 3.32 5.50 1.38 0.22 7.49 Minute 

School quiet time 1.79 2.97 0.72 0.09 2.97 Minute 

 

 

Moderately low values are found on data related to travel time to nearest primary collector 

road and low values are found on data related to travel time to nearest school because there 

are so many of these two amenities. With a large number of primary collector road segments 

and schools distributed across Bekasi, these two amenities can be quickly reached. 

Nevertheless, moderate variations are found on most of the data related to all variable travel 

times to amenities.  
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4.3. Correlation 

Variables were paired with one another, and scatter plots of all paired variables were 

produced to indicate the correlation between variables (Figure 4.1). 

 

Figure 4.1 Scatter plots of all pairs of variables 

 

The scatter plots indicate that travel times at busy times and quiet times to each amenity 

have positive linear relationships. If the travel time at the busy time from the business centre 

to parcel A is half of the travel time to parcel B, the travel time at quiet time to parcel A will 

be more or less half of the travel time to parcel B. In short, the busy time and quiet time 

schemes tend to tell the same story.  
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Using both, travel time at busy time and travel time at quiet time, will cause redundancy. A 

decision therefore had to be made as to whether to use travel time at busy time or travel 

time at quiet time. Travel time at busy time was considered to be more important than the 

travel time at quiet time because obviously the busy time is the time when most people need 

to travel to schools and workplaces. The travel times to amenities at quiet times were put 

aside, and only travel times at busy times were used for the next analyses. The relationships 

between land parcel price and each of the explanatory variables were extracted and are 

presented in Figure 4.2. 

 

      

parcel size road width road class zoning tollgate primary artery 

      

secondary 

artery 

primary 

collector 

business 

centre 

marketplace hospital school 

Figure 4.2 Scatter plots between price and each explanatory variable 

 

Apparently, the parcel size does not have a significant relationship with price. Road width 

seems to have a linear relationship with price. Price tends to increase when the road class 

and zoning class increase. There is no noticeable pattern on the relationship between price 

and travel times to amenities. A more detailed examination of the relationships between 

price and each of the explanatory variables is discussed in Section 4.6. 

In order to give an explicit measure on the level of association between price and each of the 

explanatory variables, a quantitative correlation analysis was also undertaken. A suitable 

correlation calculation method had to be selected based on the nature of the data. 

Spearman’s correlation (non-parametric correlation) was chosen to suit the data in this 

study. The non-parametric correlation index does not try to calculate the population 

correlation, so it is suitable to measure the association between continuous and ordinal 
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types of data (see Chen and Popovich, 2002). Parcel size, road width, and travel times to 

amenities are continuous variables, while road class and zoning are ordinal variables. The 

non-parametric correlation index does not require assumptions on the data either, and 

bivariate normal distribution is one of the assumptions which is not required in this 

correlation index (see Chen and Popovich, 2002). Figure 4.3 shows that samples are likely 

to be normally distributed only in variable business centre and variable marketplace. 

Samples are likely to be not normally distributed in variable road width, variable tollgate, 

variable hospital, and variable school. Samples are obviously not normally distributed in 

variable parcel size, variable road class, variable zoning, variable primary artery, variable 

secondary artery, and variable primary collector. 

    

parcel size road width road class zoning tollgate primary artery 

      

    

secondary 

artery 

primary 

collector 

business 

centre 

marketplace hospital school 

Figure 4.3 Histograms of sample distribution for each explanatory variable 

 

In order to present a more explicit measure on normality, numerical tests of normality were 

undertaken. The hypothesis that the samples are normally distributed was rejected when the 

significance value (Sig.) was below 0.05 (Table 4.3).  
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Table 4.3 Summary of numerical test of normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Parcel size .354 706 .000 .313 706 .000 

Road width .114 706 .000 .854 706 .000 

Road class – number  .412 706 .000 .641 706 .000 

Zoning – number .313 706 .000 .819 706 .000 

Tollgate – busy time .071 706 .000 .969 706 .000 

Primary artery – busy time .124 706 .000 .900 706 .000 

Secondary artery – busy time .053 706 .000 .973 706 .000 

Primary collector – busy time .133 706 .000 .869 706 .000 

Business centre – busy time .031 706 .164 .993 706 .001 

Marketplace – busy time .049 706 .000 .981 706 .000 

Hospital – busy time .089 706 .000 .941 706 .000 

School – busy time .078 706 .000 .955 706 .000 

a. Lilliefors Significance Correction 

In the Shapiro-Wilk test, all of the variables had significance values below 0.05. In the 

Kolmogorov-Smirnov test, only the variable travel time to business centre at busy time, had 

a significance value higher than 0.05. For travel time to the business centre, the hypothesis 

was accepted in the Kolmogorov-Smirnov test but rejected in the Shapiro-Wilk test. These 

figures confirmed that data on most of variables were not normally distributed. This condition 

gave another reason to use the Spearman’s rho correlation coefficient. 

An assumption of Spearman’s rho is that pairs of variables are monotonically related(see 

Caruso and Cliff, 1997). To judge whether this was the case in this research, lines were 

fitted on the scatter plots to judge whether or not the explanatory variables were 

monotonically related with price. The graphs are presented in Appendix A. All the fitted lines 

were increasing or decreasing in one way, so all the independent variables were considered 

to be monotonically related with price. This type of relationship meets the condition to use 

the Spearman’s rho correlation coefficient.  

The correlation coefficients are displayed in Appendix B. Among all the explanatory 

variables, road width and zoning type were the most significantly correlated with price. The 
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correlation coefficient of 0.710 indicates that land parcels located on wider roads are very 

likely to have higher prices than the ones whose accesses are along narrower roads. 

Correlation coefficient of 0.663 indicates that land parcels located in commercial areas 

generally have the highest average land prices, followed by those located in a residential 

complex. Price tends to decrease in line with the decrease on zoning class. 

Road class and the travel time to nearest tollgate were shown to be moderately correlated to 

land value with correlation coefficients of 0.393 and -2.680 respectively. There is a moderate 

probability that a land parcel located on a road of higher class has a greater chance to have 

higher price than the ones on lower road class. The negative relationship between land 

value and travel time to the nearest tollgate indicates that land value decreases as travel 

time to the nearest tollgate increases. Other explanatory variables were only weakly 

correlated with land value.  

 

 

4.4. Multicollinearity 

There is a potential to generate collinearity among independent variables with high 

correlation coefficients. Collinearity exists when there are approximately linear dependence 

relations among independent variables, sosome variables can be nearly linear combinations 

of other variables (see Bingham and Fry, 2010). 

Each explanatory variable has a different measure of contribution in predicting the value of a 

dependent variable. The contribution of each explanatory variable is represented by the 

variable’s coefficient in the prediction model. Collinearity impairs the estimation of the 

coefficients of the explanatory variables. If there is redundancy between two explanatory 

variables, the coefficients on the explanatory variables will not represent the actual 

contributions to shape the dependent variable.  

Before the data was run using GWR, it was first run using the Ordinary Least Squares (OLS) 

regression model. The idea is to find out how well the data fits a global model and to detect 

the existence of multicollinearity among explanatory variables and spatial autocorrelation in 

the residuals. The result from OLS regression includes the collinearity statistics, i.e. Variance 

Inflation Factor (VIF) and Tolerance (Table 4.4). 
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Table 4.4 Collinearity statistics of explanatory variables 

Variable Tolerance VIF 

Parcel size .913 1.096 

Road width .246 4.070 

Road class – number .322 3.108 

Zoning – number .541 1.850 

Tollgate – busy time .362 2.764 

Primary artery – busy time .269 3.721 

Secondary artery – busy time .214 4.668 

Primary collector – busy time .627 1.596 

Business centre – busy time .272 3.681 

Market place – busy time .495 2.018 

Hospital – busy time .263 3.803 

School – busy time .771 1.297 

Dependent Variable: value per sqm 

The tolerance is the percentage of the variance in an explanatory variable that cannot be 

explained by the other explanatory variables. A lower tolerance value indicates a higher 

multicollinearity. For a variable with low tolerance, a cross check to the correlation 

coefficients to other variables is required. When a variable has a very low tolerance value 

and at the same time has a very high correlation coefficient with another variable, the 

explanatory variable should be put aside in the next analysis. However, there is no general 

cut-off value for tolerance and VIF. The diagnostic report from the ArcGIS software package 

suggests that VIF values larger than 7.5 are the ones that indicate redundancy among 

explanatory variables. Referring to this diagnostic report, none of the explanatory variables 

listed in Table 4.4 should be put aside in the next analyses.  

4.5. Spatial autocorrelation 

Spatial autocorrelation is the correlation among values of a single variable defined by the 

proximity of those values in geographic space. Positive spatial autocorrelation exists when 

high values tend to be located near high values, medium values near medium values, and 

low values near low values, while negative spatial autocorrelation shows that high values 

tend to be located near low values (see Griffith, 2003).  
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Examining the residuals of a global regression model is a common practice to observe the 

existence of spatial autocorrelation. Griffith (2009) suggested that spatial autocorrelation can 

be used as a diagnostic tool for a regression model to detect: 

 ‘missing variable’ 

A factor that actually has a significant contribution to determine the dependent variable is 

not involved in the regression model as an explanatory variable. The spatial distribution of 

this missing variable will contribute to shape the spatial distribution of the prediction 

residual. 

 model misspecification 

The relationship specified in the model does not represent the actual relationship 

between an explanatory variable and the dependent variable. Specifying the linear 

relationship on a nonlinear relationship is a common example of model misspecification.  

 redundant information 

This situation exists when the spatial arrangement of the dependent variable allows the 

value at a given location to be predicted quite accurately from the values at nearby 

locations. Griffith (2009) explained the ‘redundant information’ issue using the example 

from house pricing. Building an expensive house near an inexpensive house in a 

neighbourhood tends to reduce the value of the expensive house while increasing the 

value of the inexpensive house. Beside the building qualities, all other information are 

quite the same for both houses. This information duplication emerges from locational 

closeness. In turn, this situation allows inference of nearby values once the value for a 

given location is known. 

 failure to capture spatial processes mechanism 

Fotheringham (2009) explained how spatial autocorrelation is caused by applying a global 

model to a spatially varying process. If spatial autocorrelation is caused by spatial non-

stationary, calibration of local regression will remove the spatial autocorrelation problem. 

 areal unit problem 

The standard eight-by-eight checkerboard is a common example to explain the areal unit 

problem. A completely negative spatial autocorrelation is shown by the distribution of the 

red and the black squares on a checkerboard. If the squares are aggregated into bigger 

squares made of four original squares, there will be bigger squares with dark red colour. 

The spatial autocorrelation will be positive.  

Besides mapping the residuals, a spatial autocorrelation test can also be run on the 

residuals to examine the level of spatial autocorrelation. Moran’s I test was run on the 

residuals from the OLS model, and the result is shown in Table 4.5.  
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 Table 4.5 OLS model’s Moran’s I test report 

 

 

 

 

 

 

 

Moran’s Index values fall between -1 and +1. Moran’s Index of +0.25 indicates that there is a 

moderate level of positive spatial autocorrelation in the model. Residuals of high values are 

moderately clustered, and so are residuals of low values. 

The null hypothesis in the test is that the distribution of residual results from random 

processes. A very low p-value is associated with a very high z-score (positive or negative), 

and these are found in the tails of a normal distribution. The combination of the extremely 

low p-value and the high z-score rejects the null hypothesis. There is a very low likelihood 

that any clustering or dispersion pattern could be the result of random process. The spatial 

autocorrelation issue does exist in the model.  

Each of the factors causing spatial autocorrelation may contribute differently to the moderate 

positive spatial autocorrelation. Out of the five factors causing spatial autocorrelation, 

tackling ‘spatial process mechanism’ can be the most feasible action. To some extent, the 

spatial autocorrelation issue in the Bekasi dataset can be contributed by the spatially varying 

processes. This kind of process can be modelled using GWR. Tackling this issue is 

expected to reduce the level of spatial autocorrelation by a significant extent. 

 

4.6. Variable transformation 

As noted in Section 4.5, model misspecification has the potential to cause spatial 

autocorrelation. Griffith (2009) observed that specifying linear relationship on nonlinear 

relationship is a common example of model misspecification. OLS and GWR assume linear 

relationship between the dependent variable and each of the independent variables. In 

Item Value 

Moran's Index      0.251577  

Expected Index    -0.001418 

Variance                0.000562  

Z-score                 10.675667 

P-value                   0.000000  
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reality, this relationship is not always linear. Transforming an independent variable is 

sometimes required to improve the linearity of the correlation between the dependent 

variable and the independent variable. 

The SPSS software package provides 11 options of transformation models. For each 

relationship between an independent variable and the dependent variable, the R-square 

value is used to indicate the linearity of relationship between land value and an explanatory 

variable. The highest R-square value indicates the most linear relationship between land 

value and explanatory variables. The names and formulas of the transformation models are 

shown in Table 4.6.  

 

Table 4.6 Variable transformation models 

Transformation model Equation 

Linear ܻ ൌ ܾ0  ሺܾ1 ∗  ሻݐ

Logarithmic ܻ ൌ ܾ0  ሺܾ1 ∗ lnሺݐሻሻ 

Inverse ܻ ൌ ܾ0  ሺܾ1/	ݐሻ 

Quadratic ܻ ൌ ܾ0  ሺܾ1 ∗ ሻݐ  ሺܾ2 ∗  ଶሻݐ

Cubic ܻ ൌ ܾ0  ሺܾ1 ∗ ሻݐ  ሺܾ2 ∗ ଶሻݐ 	ሺܾ3 ∗  ଷሻݐ

Compound ܻ ൌ ܾ0 ∗ ሺܾ1௧ሻ 

Power ܻ ൌ ܾ0 ∗ ሺݐଵሻ 

S-curve ܻ ൌ ݁ሺାቀ
್భ

ቁሻ 

Growth ܻ ൌ ݁ሺାሺଵ	∗	௧ሻሻ 

Exponential ܻ ൌ 	ܾ ∗ 	݁ሺଵ∗௧ሻ 

Logistic 
ܻ ൌ 1/ሺ1/ݑ	  ሺܾ0 ∗ ሺܾ1௧),  

whereݑis the upper boundary value 

Source: IBM Corp. (2015) 

The quadratic model adds ܾ2 in the transformation formula, while the Cubic model adds ܾ2 

andܾ3. Adding these extra parameter estimates decreases parsimony in the regression 

equation. Next, using Power, Compound, S, Growth, Exponential, and Logistic models could 

probably complicate the relationship between land value and each explanatory variable. The 
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formulas for these transformation models even include exponential functions involving the 

parameter estimates. The excessive bending may fit the data well but it may impose an 

equation on the natural variation in the data. Out of the 11 transformation models (Table 

4.6), only linear, logarithmic, and inverse transformation models were employed for the test. 

The summary of curve estimations for all explanatory variables in relation to price is 

displayed in Table 4.7. 

Table 4.7 Summary of curve estimations 

Explanatory variables 

R-square value 

Linear Logarithmic Inverse 

Parcel size 0.002 0.005 0.007 

Road width 0.542 0.507 0.367 

Road class – number  0.297 0.257 0.186 

Zoning – number  0.403 0.379 0.336 

Tollgate  0.084 0.053 0.002 

Primary artery  0.033 0.043 0.024 

Secondary artery  0.000 0.001 0.000 

Primary collector  0.000 0.000 0.001 

Business centre 0.037 0.035 0.022 

Marketplace 
0.000  

(sig =0.991) 

0.000 

(sig=0.589) 

0.000  

(sig=0.777) 

Hospital  0.008 0.002 0.000 

School 0.010 0.010 0.012 

The new Bekasi dataset therefore contains original survey data and transformed data. For 

explanatory variables whose relationships with land value were kept linear, the data were 

kept as they were. For explanatory variables whose relationships with land value were 

transformed using logarithmic or inverse model, the data were transformed using the 

corresponding transformation model.  
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4.7. Prediction model 

The Bekasi dataset was first examined using the OLS model, and the diagnostic report is 

given in Table 4.8. 

Table 4.8 OLS diagnostic report 

Number of Observations: 706 Akaike's Information Criterion (AICc) [d]: 20775.722305 

Multiple R-squared: 0.639791 Adjusted R-squared: 0.633553 

Joint F-Statistic [e]: 102.573501 Prob (>F), (12,693) degrees of freedom: 0.000000* 

Joint Wald Statistic [e]: 1020.551054 
Prob (>chi-squared), (12) degrees of freedom: 

0.000000* 

Koenker (BP) Statistic [f]: 55.490287 
Prob (>chi-squared), (12) degrees of freedom: 

0.000000* 

Jarque-Bera Statistic [g]: 805.957589 
Prob (>chi-squared), (2) degrees of freedom: 

0.000000* 

 

The points to be discussed further are: 

 The Koenker (BP) Statistic is statistically significant (p<0.01), and it indicates that the 

relationships between price and the explanatory variables are not consistent. The 

prediction accuracy tends to vary significantly among different locations.  

 The Jarque-Bera Statistic is statistically significant (p<0.01), and it explains that the 

residuals are not normally distributed.  

 The Joint Wald Statistic is statistically significant (p<0.01). It is a sign that the explanatory 

variables in the model are effective and that the model is statistically significant.  

Although the explanatory variables are effective overall in the OLS model, not all of the 12 

variables are statistically significant (Table 4.9).  
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Table 4.4 Summary of OLS variables 

Explanatory variables Robust probability Coefficient 

1/ Parcel size 0.736390 -2294449.50 

Road width *0.000000 268153.43 

Road class 0.118443 -71859.84 

Zoning *0.000000 273909.23 

Tollgate *0.000000 -20539.84 

Ln Primary artery 0.695113 12179.47 

Ln Secondary artery 0.886986 4299.91 

1/ Primary collector 0.156733 -767.98 

Business centre 0.331173 2306.96 

Ln Marketplace 0.114985 68145.95 

Hospital 0.775157 -1166.18 

1/ School 0.598277 -36391.26 

 * explanatory variable is statistically significant 

Because the Koenker (BP) Statistic is statistically significant, the robust probability value was 

used to assess the statistical significance of each explanatory variable. When the robust 

probability is very small, the chance of the coefficient being zero is also small. 

The above result indicates that only three out of 12 explanatory variables are effective for 

prediction. In order to come up with solid inference on variable selection, backward 

elimination technique, which is one of the approaches used in stepwise regression, was 

undertaken. In backward elimination, the first model uses all of the available variables. The 

variable with the smallest F-statistics will be removed from the model if the F-statistics is less 

than the F-out threshold. The procedure was continued until the smallest F-statistics was 

bigger than F-out or all of the variables were eliminated (see Bingham and Fry, 2010). 

Eight explanatory variables were eliminated and four variables were kept in the final model. 

The R-squared values of the original model with 12 variables (step 1) and the model with 

four chosen variables (step 9) are 0.640 and 0.637 respectively. The standard errors of the 

estimate model in step 1 and step 9 are 587,586.03 and 586,582.68 respectively. Eliminating 

eight variables did not increase the overall performance of the model, as a whole, 

significantly. However, the effect of multicollinearity was significantly reduced as indicated by 

the lower VIF values in step 9 (Table 4.10). 
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Table 4.5 Collinearity statistic from backward elimination regression 

Variables 
VIF 

Step 1 Step 9 

1/ Parcel size 1.165  

Road width 4.141 1.629 

Road class – number  3.095  

Zoning – number  1.929 1.607 

Tollgate 2.359 1.027 

Ln Primary artery 1.947  

Ln Secondary artery 1.909  

1/ Primary collector 1.019  

Business centre 2.016  

Ln Marketplace 1.334 1.015 

Hospital 2.450  

1/ School 1.050  

 

The OLS results suggest that there are only three statistically significant explanatory 

variables, i.e. road width, zoning, and travel time to nearest tollgate. The backward 

elimination regression result suggests that beside the abovementioned three significant 

variables, travel time to nearest marketplace is also an important explanatory variable.  

In order to decide whether to use three or four explanatory variables, the level of spatial 

autocorrelation was then examined. First, an OLS model was built using three explanatory 

variables and then another OLS model was built using four explanatory variables. The 

Moran’s I test was applied on the residuals from both models, and the results are given in 

Table 4.11.  
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Table 4.6 OLS models’ Moran’s I test summary 

 

 

 

 

 

 

 

 

 

The combinations of very low p-values and moderately high z-scores (Table 4.11) indicate 

that the clustering patterns on residuals are less likely to be resulted by random process. 

Both models have an issue of spatial autocorrelation. Because the OLS model cannot be 

used for prediction, the same dataset was run using the GWR model.  

The robust probability values from the OLS model and the backward elimination stepwise 

regression come up with different suggestions whether to use three or four explanatory 

variables. Next, the results from Moran’s I tests indicate that OLS models using three and 

four explanatory variables have a quite similar level of spatial autocorrelation. Those results 

still raise questions of whether to use the set of three or the set of four explanatory variables 

in the GWR model. Instead of keeping on analysing this issue, both sets of explanatory 

variables were then run in the GWR model.  

 

4.8. Summary 

OLS and GWR assume a linear relationship between land price and each of the predictor 

variables. The curve estimations on the data reveal that land price is more likely to have 

linear relationships with only six out of the 12 listed variables, i.e. road width, road class, 

zoning, travel time to nearest tollgate, travel time to business centre, and travel times to 

nearest hospital. Data related to other explanatory variables must be transformed to improve 

the linearity to price.  

 
OLS model with 

three explanatory variables 

OLS model with 

four explanatory variables 

Moran's Index       0.297553 0.286344 

Expected Index    -0.001418 -0.001418 

Variance                0.000561 0.000561 

Z-score                 12.621235 12.145635 

P-value                   0.000000 0.000000 
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Being put through the backward elimination regression, none of the explanatory variables 

indicates a significant issue of multicollinearity as represented by the low VIF values. 

However, this analysis suggested that only the variables road width, zoning, tollgate, and 

marketplace are significant for the model. This conclusion is slightly different from the 

conclusion of the OLS model which suggested only the variables road width, zoning, and 

tollgate are significant for the model. 

In order to decide whether to use three or four explanatory variables, an OLS model was 

formed using three explanatory variables and another OLS model was formed using four 

explanatory variables. Moran’s I test was run on the output of each model, and the results 

indicate that both models have a significant issue of spatial autocorrelation at a quite similar 

level. With no significant difference on the level of spatial autocorrelation, the decision 

whether to use three or four explanatory variables cannot be made yet. Both sets of 

explanatory variables are therefore used in the next analysis.  

When an OLS model has a significant issue of spatial autocorrelation, the set of variables 

forming the OLS model are potential candidates to form a GWR model. As discussed in 

Section 4.5, the failure to capture the spatial process mechanism is one of the factors that 

causes spatial autocorrelation. GWR, with the arrangements of the weighting scheme and 

local regressions, has the capability to capture local variations of the data. Therefore, GWR 

model is expected to come up with a very low spatial autocorrelation level when using the 

set of explanatory variables previously used in the OLS model. The performance of the 

GWR model using the abovementioned sets of explanatory variables will be the main part of 

the discussion in the next chapter (Chapter Five). 
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5. GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) 

MODELLING WITH INDIVIDUAL LOCATIONS 

5.1. Introduction 

Geographically Weighted Regression (GWR) has never been applied for mass valuation 

practice in The National Land Agency of Indonesia (BPN RI). As explained in Section 1.5, 

the mass valuation method currently employed by BPN RI is the Zonation Method.The 

Zonation Method has always had issues with data shortages because it requires a 

considerably largevolume of data. Despite the fact that the large data requirement is rarely 

met, it yields relatively accurate predictions. GWR is expected to overcome the data 

shortage issue and at the same time to deliver accurate predictions. 

Mass appraisal on the Bekasi dataset using the Zonation Method was undertaken within the 

Land Valuation Directorate of BPN RI in 2012. The result is presented at the beginning of 

this chapter so that it can be used as a benchmark to assess the performance of the GWR 

model developed in this study. Comparison between the results from the Zonation Method 

and the GWR model is expected to give an objective assessment on the advantages and 

disadvantages of each method because both methods are applied to the same dataset.  

5.2. Results from applying the Zonation method 

A small portion of the study areawasselected to describe the calculations run using the 

ZonationMethod. Figure 5. 1 shows that zone 460 has only one sample (sample number 

660), while zone 686 has four samples (sample numbers 115, 116, 117, and 118).  

 

 

Figure 5.1 Value zone and sample 
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The value of a zone is the average value of samples located within it.  

ഥ࢞ ൌ 	 

∑ ࢞

ୀ                                                            (Equation 5.1) 

Where: ݊ is the number of samples in a zone 

ݔ  is the observed value of sample i 

The coefficient of variation is calculated for each zone for quality assessment. 

࢜ࢉ 			ൌ 		
ට 
		ష

∑ ሺି࢞	࢞ഥሻ

స



ഥ࢞
                                   (Equation 5.2) 

A valid zone must contain at least three samples. Therefore zone 460 is regarded as a non-

valid zone, whilst zone 686 is valid. Average value and coefficient of variation of samples are 

only calculated for a valid zone. If the coefficient of variation is less than 30 per cent, the 

average value is taken as the zone value. The prediction residual is calculated by comparing 

the observed value and the predicted value. In this case, the observed value is the sample 

value and the predicted value is the zone value.  

ࢿ ൌ 		 ഥ࢞ 	െ  (Equation 5.3)࢞

As a measure of accuracy, the percentage residual can be a more objective measure than 

the actual prediction residual. The percentage residual gives a relative measure of a 

prediction residual compared with the corresponding observation value. From the zones and 

samples in Figure 5.1, prediction residuals and percentage residuals were calculated as 

shown in Table 5.1. 

Table 5.1 Calculation of prediction residual for Zonation Method applied to zones 460 and 

686 

Zone 

number 

Zone value 

 ොݔ

Sample 

number 

Sample value 

ݔ  
Prediction 

residual 

ݔ െ	ݔො 

Percentage residual 

௫ି	௫ො

௫
x  100 per cent 

460 N/A 660 1.167.000 N/A N/A 

686 1.907.000 

115 1.878.000 -29.000 -1.5 

116 1.795.000 -112.000 -6.2 

117 1.706.000 -201.000 -11.8 

118 2.249.000 342.000 15.2 
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In the Bekasi dataset, only 209 out of 706 samples are located within valid zones (i.e., a 

zone containing at least three samples). Prediction residuals can be calculated for these 209 

samples, which account for 29.6 per cent of all samples. The magnitudes of the percentage 

residuals for these 209 sampled locations are shown in Figure 5.2. 

 

Figure 5.2 Distribution of percentage residuals for the 209 samples in 50 valid zones using 

the Zonation Method 

The mean absolute percentage error (MAPE) is 10.8 per cent. There are only three sampled 

locations which come up with percentage residuals larger than 50 per cent, i.e. location 

numbers 2, 102, and 171. A large negative percentage residual indicates that an observation 

is significantly smaller than the average value of all observations within the corresponding 

zone. Locations 2, 102, and 171 are most likely to be undervalued.  

 

5.3. Results from applying the GWR model to individual locations 

The performance of the GWR model using individual samples from the Bekasi dataset was 

assessed using in-sample estimation and out-of-sample estimation. In the first assessment, 

GWR analysis was run using the whole dataset. All samples were used for developing the 

model, and then all samples were again used as the validation locations. Therefore, 

prediction residuals were computed using the internal data (in-sample estimation).In the 

second assessment, the 706 sample dataset were split into two subsets, i.e.,training and 

validation subsets. The training dataset was used to develop the model, and the second as 
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an independent validation dataset which was to obtain a more objective assessment on the 

prediction accuracy through out-of-sample estimation.  

5.3.1. In-sample estimation of the GWR model with individual locations 

GWR was run using all of the 706 samples. The adaptive kernel was chosen because the 

samples are not regularly distributed. Both bandwidth optimisation methods, CV and AICc, 

were tested to find out whether or not there wasa significant difference in prediction accuracy 

in relation to bandwidth method. GWR was run using three explanatory variables and four 

explanatory variables, and the diagnostic reportsarepresented in Table 5.2. 

Table 5.2 Diagnostic report of GWR model using individual samples 

a.  GWR with three explanatory variables 

and  AICc bandwidth method 

Neighbours  67 

ResidualSquares 111,955,400,000,000 

EffectiveNumber 125.20 

Sigma  439,044.02 

AICc 20,435.63 

R-squared 0.83 

R- squared Adjusted  0.80 
 

b. GWR with three explanatory variables 

and CV bandwidth method 

Neighbours  73 

ResidualSquares 115,607,500,000,000 

EffectiveNumber 115.62 

Sigma  442,512.74 

AICc 20,438.52 

R- squared 0.83 

R- square Adjusted  0.80 
 

c.  GWR with four explanatory variables  

and AICc bandwidth method 

Neighbours  210 

ResidualSquares 157,883,300,000,000 

EffectiveNumber 48.96 

Sigma  490,198.14 

AICc 20,535.36 

R- squared 0.76 

R- squared Adjusted  0.74 
 

d.GWR with four explanatory variables and 

CV bandwidth method 

Neighbours  209 

ResidualSquares 157,659,100,000,000 

EffectiveNumber 49.08 

Sigma  490,267.01 

AICc 20,506.61 

R- squared 0.76 

R- squared Adjusted  0.75 
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The diagnostic reports (Table 5.2) revealed that there is not much difference between the 

results from AICc and CV bandwidth methods in the Bekasi dataset. Since this dataset 

represents the common circumstances of mass valuation datasets from Indonesia, it 

appears that choosing the bandwidth method should not be a crucial issue in mass valuation 

work elsewhere in Indonesia. Only the results from analysis using the AICc bandwidth 

method are discussed from this point onward.  

Compared with the GWR model using four explanatory variables, the GWR model using 

three explanatory variables has a higher R-squared value and lower total squared residuals. 

In general, this model performs better than the one using four explanatory variables. Though 

with this indication, each model will be tested against Moran’s I test to examine the level of 

spatial autocorrelation. The results from this test are shown in Table 5.3.  

Table 5.3 Summary of Moran's I test for GWR model using individual samples 

a. GWR with three explanatory variables 
and AICc bandwidth method 

 

Item Value 

Moran's Index      0.030555 

Expected Index -0.001418 

Variance                0.000562  

Z-score 1.349163 

P-value                   0.177285 

b. GWR with four explanatory variables 
and AICc bandwidth method 

 

Item Value 

Moran's Index 0.135886 

Expected Index -0.001418 

Variance                0.000560 

Z-score 5.800581 

P-value                   0.000000 

 

The Moran’s Index ranges from -1 to 1. In the GWR model using three explanatory variables, 

there is a very low index for clustering; 0.030555. The combination of a low p-value 

(0.177285) and a low z-score (1.349163) suggests that the low clustering pattern could be 

random. In short, spatial autocorrelation is not an issue in this model. In the GWR model 

using four explanatory variables, the Moran’s Index is also low (0.135886) but the 

combination of very low p-value (0.00000) and moderately high z-score (5.800581) suggests 

that the moderately low clustering pattern is most likely not a random process. Although 

moderately low, spatial autocorrelation is an issue in the GWR model using four explanatory 

variables. Moran’s I results provide a statistical basis to choose the GWR model using three 
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explanatory variables over the four-variable model. Only the result from the GWR model 

using three explanatory variables are discussed from this point onward. 

As discussed in Section 4.6, the dataset is first run using the OLS model. When using the 

GWR model, the issue of ‘model misspecification’ is tackled. OLS imposes a linear 

relationship between the dependent variable and each explanatory variable, while GWR 

models the non-linear function between the dependent variable and each explanatory 

variable by weighted regression which gives a unique weight to each sample based on the 

proximity to the local regression point (see Brunsdon et al., 1996). GWR also tackles the 

issue of ‘failure to capture spatially varying processes’ from the OLS model by the 

arrangement of weighting scheme and local regression (see Páez and Wheeler, 2009). The 

Moran’s Index is 0.297553 in the OLS model and is 0.030555 in GWR model, so the GWR 

model reduced the Moran’s Index by 89.73 per cent.  This very significant change indicates 

that ‘model misspecification’ and ‘failure to capture spatially varying processes’ are key 

factors causing spatial autocorrelation in the OLS model. Two out of the five factors behind 

spatial autocorrelation issue which were listed in Section 4.4 have been addressed. The 

Moran’s Iindex of 0.030555in the GWR the model is very likely to be a combination of the 

three other factors, i.e. redundant information, areal unit problem, and missing variables.  

Recalling the example from house prices in Section 4.5, the nature of land value distribution 

tends to exhibit redundant information. Houses located in a certain neighbourhood share 

common neighbourhood characteristics, and sometimes have common house 

characteristics. Moreover, they normally have quite similar land values. In neighbourhoods 

like this, redundant information is inevitable. Like the factor of redundant information, the 

factor of areal unit problem is not tackled in this study. Prediction is undertaken in the unit of 

individual land parcels, and the land parcels have various shapes and sizes. In addition to 

that, sampled land parcels are not located in a regular pattern. The last factor behind the 

spatial autocorrelation issue which is not yet addressed is the factor of ‘missing variables’. 

The explanatory variables involved in the GWR model are extracted from the Bekasi dataset, 

and they are based on the Internal Standards for Land Valuation within BPN RI. It is actually 

possible to introduce new explanatory variables for the prediction model but it is out of the 

focus area of this study. Moreover, Moran’s Index of 0.030555 indicates a very weak 

clustering pattern among prediction residuals. Disregarding the factor of redundant 

information, areal unit problem, and ‘missing variables’ does not cause significant spatial 

autocorrelation issue. 
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The map of standardised residuals confirms the results from local Moran’s I test, as shown in 

Figure 5.3. There is no significant pattern of clustering or dispersion among the standardised 

residual. 

 

Figure 5.3Standardised residual of GWR model using individual samples 

There is no clear pattern of clustering or dispersion of the standardised residual in Figure 

5.3. The distribution of under-predicted and over-predicted locations appears to be quite 

random. Therefore, no further examination is required on the distribution of residuals. Having 

examined the issue of spatial autocorrelation, the following discussion concerns local R-

squared values. 

The diagnostic report of the GWR model (Table 5.2) gives a global R-squared value for the 

model as a whole, while the goodness-of-fit for each local model is indicated by a local R-

squared value. Local R-squared values range from 0.19 to 0.92, with an average value of 

0.67: 13.9 per cent of all local regressions have local R-squared values lower than 0.5. 

Attention was paid to locations with very low local R-squared values when examining 

prediction accuracy and precision. The highest local R-squared values are found in the 

south-west and the east central parts of Bekasi (Figure 5.4). In these areas, high variances 

in land value can be predicted using the three explanatory variables, indicating land values 

are strongly associated with road width, zoning, and travel time to the nearest tollgate. 
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Figure 5.4 Local R-squared value of GWR model using individual samples 

Locations with the lowest local R-squared values are found in the mid-west and north-east. 

Here, road width, zoning, and travel time to the nearest tollgate (as a set of explanatory 

variables) are not quite as effective for land value prediction as in the south-west and east 

central parts of the city. Other variables influence land values in these locations. Having 

considered the issues of spatial autocorrelation and the spatial distribution of R-squared 

values, the next discussion focusses on the spatial variation of parameter estimates. 

Parameter estimatesare actually the main output of a GWR model. The distribution of 

coefficients for all explanatory variables is plotted in Figures 5.5, 5.9, and 5.12. In the case of 

variable road width, the lowest coefficients were for locations in the central east and in the 

north-east. Low coefficients for variable road width were also found in most of the east of the 

city. These areas are the farthest from Jakarta, which is located immediately to the west, and 

where many residents commute to by car. Bekasi has grown as an expansion of 

development from Jakarta. Because northern and eastern Bekasi are the farthest parts of 

the city from Jakarta, they are the latest to be exposed to the gradual expansion of the 

capital city. These areas are covered by relatively new residential complexes built from the 

1990s until recently, on areas that were farmland and small villages. The sampled locations 

reveal that the coefficient of variation of road width in residential complexes is 25.38 per 

cent. Variation of road width in the residential complexes is lower than in other zoning types, 

so road width has least significance in this type of zoning. This can be one of the most 
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reasonable explanations on the low parameter estimates in relation to road width in these 

areas. 

 

Figure 5.5 Coefficient estimate for variable road width in GWR model using individual 

samples 

The largest positive coefficients for variable road width are found in the central south of 

Bekasi City. Interestingly, some of the locations with the largest positive coefficients are in 

residential complexes. This is in contrast to the earlier argument saying that road width has 

its least significance in residential complexes. This arises because many of these residential 

complexes are surrounded by irregular residential areas. Therefore, the argument derived 

for the new residential complexes in the north and east does not apply in the central south 

because road widths vary more significantly within irregular residential areas as indicated by 

the coefficient of variation of 33.29 per cent. Consequently, in these irregular residential 

areas, road width has a higher chance to influence land values. The irregular residential 

areas have a dominant contribution in determining local relationships between road width 

and land value in these areas.  

GWR computes a coefficient’s standard error at every location for each explanatory variable. 

The standard error of a coefficient can be used as a measure of precision of parameter 

estimate. A small standard error indicates high precision of parameter estimation in a local 

regression, while a large standard error indicates low precision. Thirty four locations in the 

central south and the middle west have the largest coefficient’s standard errors in relation to 
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road width as a predictor variable (Figure 5.6). Although with large coefficient standard 

errors at a number of locations, predictions at all locations are considered reliable. A 

measure and a cut-off value to judge whether or not prediction at one location is reliable, is 

provided within the GWR package in ArcGIS. A location with a condition number larger than 

30 is considered to have unreliable prediction. None of these locations had condition 

numbers greater than 30. 

 

Figure 5.6Coefficient’s standard error for variable road width in GWR model using 

individual samples 

In GWR model, a local linear regression is run at each location. An output of a linear 

regression normally contains a t-statistic and a p-value to diagnose the significance level of 

each explanatory variable. However, the GWR package in ArcGIS does not report these 

diagnostic measures. Charlton and Fotheringham (2009) suggested that the p-value as a 

measure of significance of parameter estimate in a global model is not appropriate to be 

used in GWR, and they considered thatthe Benjamini-Hochberg False Discovery Rate (FDR) 

is a more appropriate approach, but it has not been incorporated in the GWR model. 

But as there is no measure of significance for parameter estimates available in the GWR 

model, assessment of the significance of parameter estimates was not undertaken in this 

work. Nevertheless, assessment of the precision levels of parameter estimates was 

performed by computing local t-statistic values. The t-statistic simply compares the actual 
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value of a coefficient to its standard error. Both inputs, coefficient and the coefficient’s 

standard error are provided in the output table of the GWR model. 

The local t-statistic value helps to indicate the level of reliability of a parameter estimate. On 

the one hand a small coefficient’s standard error for a large coefficient results in a large t 

value, which indicates high confidence in the parameter estimate. On the other hand, a large 

coefficient’s standard error for a small coefficient results in a low t, indicating low confidence 

on the estimate of the parameter. 

For variable road width, 653 of 706 (92.49 per cent) locations have t-statistic values larger 

than two which means that most locations have actual coefficient values over two times the 

corresponding coefficient’s standard errors (Figure 5.7). Therefore, most locations have 

reliable coefficients for road width. This inference from the GWR model is in line with the 

results from the initial data examination using the OLS model and backward elimination 

stepwise regression which gave a high t-value for road width.  

 

Figure 5.7 T-statistic value for variable road width in GWR model using individual samples 

Locations with the smallest t values (positive or negative) are in the central west, as 

indicated by the red dots in Figure 5.7. In these locations, coefficients for variable road width 

are the least reliable because the coefficient’s standard errors are more than twice the 

corresponding actual coefficient values. Figure 5.8 shows examples of these locations. 
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Figure 5.8 Locations with very low t values for variable road width in the GWR model 

using individual samples 

In this study, the term sqm value is used to represent the land price per square metre. 

Locations 164, 166, and 167 have quite similar observed sqm values (2,664,686, 2,445,312, 

and 2,535,879 respectively). They are located in a residential complex, so they also have the 

same value for variable zoning. As they are located close to one another, they also have 

similar ravel times to nearest tollgate – another explanatory variable. The travel times are 

19.31, 18.93, and 19.37 minutes respectively. For variable road width, they have a 

moderately low variation. The road widths are 6.73, 7.21, and 7.32 metres respectively. It is 

surprising then that location 164 has a road width coefficient of 15.192 which is remarkably 

different from locations 166 and 167 which have road width coefficients of -18.628 and -

19.021 respectively. This is because GWR allows variation in the dataset to emerge with 

very different coefficients for neighbouring locations whose values related to explanatory and 

dependent variables are similar.  

As explained earlier in this section, 67 of 706 total samples are involved in each local 

regression. The 67 samples used in the local regression at location 164 have resulted in a 

different inference from the 67 samples involved at either locations 166 or 167, although 

most of the samples involved in local regression at location 164 are the same as those 

involved in local regressions at locations 166 or 167. The weighting scheme at each local 

regression assigns different weights to each mutually used samples, and the variation of 

weights must be the main reason behind these large differences of local regression results. 

Locations 165 and 169 (Figure 5.8) are another pair of samples that show this kind of 

difference. 
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With similar observed sqm values and explanatory variables, locations 164, 166, and 167 

would be expected to have similar predicted sqm values as well. However, the coefficients 

related to road width for those locations do not contribute in the same way to the prediction 

of land values. The wider road width at location 164 leads to a higher land value because the 

coefficient on variable road width is positive. In contrast, the wider road widths lead to lower 

land values at locations 166 and 167 because the coefficients on variable road width are 

negative. The situation at locations 166 and 167 is unusual. This will be examined further 

during the evaluation of prediction accuracy. 

Local variations are also found in the parameter estimates for variable zoning (Figure 5.9). 

Zoning makes its highest contribution in determining land value in the city centre and its 

immediate vicinity. If two land parcels have similar road widths and travel time to the nearest 

tollgate, any difference in prices in the area will be mainly related to the zoning class. The 

lowest parameter estimates are found in the central-west, the part of Bekasi that is closest to 

Jakarta. The variation of zoning class does not cause significant variation of predicted land 

prices in this area.  

 

Figure 5.9 Coefficient estimate for variable zoning in the GWR model using individual 

samples 

It was noted earlier that condition numbers are lower than 30 for all locations, and they do 

not exhibit local collinearity. However, significant differences in standard errors can be seen 
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in Figure 5.10. Locations in the central-north and the north have the highest standard errors 

in relation to zoning class, indicating zoning is least reliable at those locations. 

 

Figure 5.10 Coefficient’s standard error for variable zoning in the GWR model using 

individual samples 

 

Figure 5.11 T-statistic value for variable zoning in the GWR model using individual 

samples 
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The t-statistic value shows different locations of low reliability of parameter estimation 

(Figure 5.11) compared with the map of standard error (Figure 5.10). The lesson learned 

from analysing road width is that t-statistic values are more meaningful than the standard 

errors. Locations with moderately high and high t-values form a dominant portion of the area 

studied (Figure 5.11). This confirms the result of the initial data examination using the OLS 

model and the backward elimination stepwise regression which indicated zoning as the 

second-most influential variable after road width. 

The travel distance to the nearest tollgate (‘tollgate’ from this point onwards) displays 

interesting statistical behaviour. Out of 706 locations, 490 locations come up with negative 

coefficients which supports the idea that a shorter travel time to the nearest tollgate 

increases land value. However, 290 locations have positive coefficients (Figure 5.12). The 

importance of travel time to the nearest tollgate does vary by location, and the variation in 

variable tollgate is greater than either road width or zoning.  

 

Figure 5.12Coefficient estimate for variable tollgate in GWR model using individual 

samples 

Locations in the central-west have the highest positive coefficients, and this indicates that a 

shorter travel time to the nearest tollgate decreases land value. This inference is 

counterintuitive to the relationship between travel time and land value derived in the global 
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OLS model and the backward elimination stepwise regression, i.e., that shorter travel time to 

the nearest tollgate increases land value. Therefore the locations with high positive 

coefficients were checked, see the examples in Figure 5.13. 

 

Figure 5.13 Locations with the highest positive coefficients for variable tollgate in GWR 

model using individual samples 

Figure 5.13 shows that most of the locations with large positive coefficients are located 

within large residential complexes with very easy access to a toll road. It is clear that shorter 

travel time to the nearest tollgate is not an important matter in these areas, although 

proximity to the centre of the residential complex seems to increase land value at these 

locations. This could be an ‘unmeasured’ effect which is not taken into account in the model 

but is captured by GWR.  

Locations with the largest standard errors forthe tollgate are in the central-west and the 

middle-west (Figure 5.14) and compared to the range of coefficient values, the range of 

standard errors is moderately high.A more objective comparison by location is given in the 

map of t values (Figure 5.15). The number of locations with small t values for the tollgate is 

quite high, and the locations are well distributed across the study area. The variable tollgate 

is quite different from variables road width and zoning, in which only few locations have low t 

values and these locations are somewhat clustered.  
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Figure 5.14 Coefficient standard error for variable tollgate in GWR model using individual 

samples 

 

Figure 5.15 T-statistic value for variable tollgate in GWR model using individual samples 

There is no clear pattern in the distribution of t values for variable tollgate (Figure 5.15). The 

level of reliability of the coefficient appears to vary randomly across Bekasi. This suggests 
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that assessments of the coefficient’s reliability to decide which locations to discard from the 

model in order to improve prediction accuracy, need to be made at individual locations.  

At the end of this section, prediction accuracy will be checked for locations with very low t 

values for one explanatory variable, two explanatory variables, or all three of the explanatory 

variables, with the goal of finding out whether or not the low precision in parameter 

estimation also results in low prediction accuracy. In order to makethese assessments by 

location, the magnitude of prediction residual at each location was calculated. The prediction 

residuals atall of thesampled locations aredisplayed in Figure 5.16.  

 

Figure 5.16 Plot of prediction residual in GWR model using individual samples 

The five locations with the largest prediction residuals respectively are locations 196, 254, 

276, 582, and 593, all prediction residuals at these five locations are positive. Comparison of 

the observed values and residuals for these locations shows that location 196 has the 

largest residual (2,847,766), which is 42.16 per cent of the observed value. Location 254 has 

the fourth largest residual (1,381,410), but it is 46.98 per cent of the observed value.  

The observed land values are the benchmarks against which the residuals need to be 

measured. That means each residual needs to be measured against a different benchmark, 

and these benchmarks will vary considerably. Because of this, it is evident that the residual 

value is not the most appropriate measure to assess prediction accuracy in this study. 

Therefore, an approach was adopted which compares each residual with its own observed 

value as this will be more objective. The values in Figure 5.17 revealed that distribution of 

percentage residuals is quite different from the distribution of residuals in Figure 5.16. Some 

locations have extremely largepercentage residuals. Locations 126, 133, 180, 263, 306, and 
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694 have percentage residuals of 152.49, 108.70, 122.00, 119.70, 106.99, and 130.81 

respectively. In order to investigate this issue, distribution of standardised residuals was 

analysed (Figure 5.18).  

 

Figure 5.17Plot of percentage residual in GWR model using individual samples 

 

Figure 5.18 Plot of standardised residual in GWR model using individual samples 

Standardised residual is a comparison between the prediction residual and the standard 

error of the local model at the same location. The standardised residual graph (Figure 5.18) 

looks quite similar to the residual graph (Figure 5.16) because the variation of standard 

errors among local models is relatively low. This can be explained by the coefficient of 

variation of standard errors among local models which is only 7.90 per cent. With nearly 
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homogenous standard errors at all local models, the distribution of residuals becomes a 

dominating factor in shaping the distribution of standardised residuals. 

The output table of the GWR model contains local R-squared values and standard errors 

which can be used to assess the goodness-of-fit of the local models. The local R-squared 

value provides a measure on how well the local model fits the data involved in a local 

regression, while the standard error provides a measure on precision of prediction at a 

location when predicted using the local model. There is no performance indicator that can be 

used to explain the extremely low prediction accuracy at several locations. Therefore, 

parameter estimates at each prediction location were examined to find out whether or not 

low prediction accuracy is related to low precision of parameter estimation in the local model. 

This examination was made with reference to t values (Table 5.4) as they indicate the 

reliability of the coefficients at each location. 

Table 5.4 T-statistic values at locations with the largest percentage residuals in GWR 

model using individual samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location 

number 

Percentage 

residual (%) 
Variable T value 

126 -152.49 

road width  2.16 

zoning 2.26 

tollgate -0.30 

694 -130.81 

road width  1.94 

zoning 3.71 

tollgate 0.34 

180 -122.00 

road width  5.55 

zoning 1.30 

tollgate -0.52 

263 -119.70 

road width  1.32 

zoning 2.91 

tollgate 1.39 

133 -108.70 

road width  2.81 

zoning 4.32 

tollgate -0.85 

306 -106.99 

road width  10.22 

zoning 2.03 

tollgate -1.92 
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A t value close to zero means the coefficient’s standard error compared is remarkably larger 

than the actual coefficient value, so reliability is low. At the six locations with the largest 

percentage residuals, variable tollgate has small t values, but road width and zoning have 

moderate to large t values. Therefore, in these six cases, large residuals are not always a 

product of low reliability of coefficients. In other words, low prediction accuracy is not always 

related to low precision of parameter estimates.The next question is to what extent does this 

inference apply to all the sampled locations in Bekasi? To answer this, the scatter plots 

between percentage residuals and the t-statistic values at all sampled locations are 

examined for each explanatory variable (Figure 5.19).  
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Figure 5.19 Scatterplots of T-statistic value and percentage residual in GWR model using 

individual samples 

The graphs in Figure 5.19 show that there are no clear relationships between t values and 

prediction residuals for any of the three explanatory variables. This supports the earlier 

inference that low prediction accuracy isnot always related to low precision of the parameter 

estimates. A much broader inference from Figure 5.19 is that prediction accuracy is not 

related to the precision of parameter estimates at all. 

In order to investigate this new inference, associations between percentage residuals and t 

values were examined for each explanatory variable. The correlation coefficients between 

percentage residuals and the t values for road width, zoning, and tollgate (0.067, 0.018 and -

0.047 respectively) were very low. These results lend weight to the inference that prediction 

accuracy is not related to the precision of the parameter estimates for any of the explanatory 

variables.  

As there were no measures from the GWR output table that could be used to explain the 

extremely large prediction residuals, locations with these types of residuals were examined 

individually. Location 133 exemplifies this. It is located between 132 and 137 along a local 

street (Figure 5.20). The road width varies along this street and at the locations 132, 133 and 

137 the widths are 2.29 m, 4.50 m, and 3.67 m respectively. 
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Figure 5.20 Example of a location (location 133) with a high prediction residual examined 

individually 

In Indonesian cities generally, land along wider roads has higher value than land along 

narrower roads; and most of the coefficients for road width in the GWR local regressions 

confirm that road width usually has a positive relationship with land value as displayed in 

Figure 5.5 earlier in this section. Using this logic, location 133 should have the highest land 

value of the three samples and 132 the lowest. However, the observed data shows that 133 

has the lowest land value, in fact it is 28 and 40 per cent lower than that at 132 and 137 

respectively (Table 5.5). 

Table 5.5 Predicted and observed land values for locations 132, 133 and 137 

 

 

 

 

Although the observed data at location 133 goes against the predominant relationship, the 

GWR model maintains this relationship as most of the samples show a strong positive 

relationship between road width and land value. Therefore, location 133 with its large 

prediction residual is an outlier whose land value is influenced by unknown factors. 

Sample 

number 

Observed value 

(in IDR) 

GWR Model  

Prediction residual  

(%) 

Predicted value 

(in IDR) 

133      452,589 -108.70 944,569 

132 602,192 11.57 532,510 

137 679,253 -18.37 804,064 
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Like location 133, a number of other locations have large residuals. Six out of 706 locations 

come up with percentage residuals larger than 100 per cent, and 47 locations come up with 

percentage residuals between 50 to 100 per cent. Despite the issue of very large percentage 

residuals at a number of locations, the model performs moderately well as a whole with a 

mean absolute percentage error (MAPE) of 19.40 per cent which is classed as moderately 

good. MAPE is a measure of average prediction accuracy. 

ࡱࡼࡹ ൌ	 

∑ ቚିࡻ	ࡼ

ࡻ
ቚ

ୀ                       (Equation 5.4) 

Where:  ݊ is the number of observations 

 ܱ is the observed value at location i 

  ܲis the predicted value at location i 

A cut-off value is required to assess each prediction location, and the cut-off value of 30 per 

cent was adopted from the Zonation Method which is currently employed in BPN RI. The 

GWR model, as a whole, is quite reliable for mass valuation when the cut-off value of 30 per 

cent is used. It is true that the MAPE value of 19.40 per cent is much lower than 30 per cent 

but there are a number of locations with percentage residual significantly larger than 30 per 

cent. At individual locations, 137 out of 706 locations (19.41 per cent) do not comply with this 

cut-off value.  

The above results indicate that the in-sample GWR model, as a whole, has moderately good 

prediction accuracy and prediction precision. Hastie et al. (2009) described an in-sample 

model as a training set model which may overfit the training data in order to minimise the 

training error, and the optimally minimised training error is not a good estimate of the 

expected actual prediction error. In the case of the in-sample GWR model explained above, 

the model was built using all the sampled locations. During the process of minimising the 

error, the model was optimally fitted to all these sampled locations. Being only optimally 

fitted to a set of sampled locations, as indicated by the minimum training error, the model’s 

prediction ability maybe overrated in the way Hastie et al. (2009) explained. Therefore, a 

GWR model with an out-of-sample validation was also undertaken on the data. 

 



 

93 

 

5.3.2. Out-of-sample estimation of GWR model with individual locations 

There are a number of out-of-sample validation techniques. K-Fold Cross Validation, Monte-

Carlo Cross Validation, and Bootstrap are well-known, and all of these techniques share a 

common basic procedure, i.e., the dataset is resampled to create a training subset and 

validation subset (see Anguita et al., 2012). The training subset is used to build the model, 

while the other subset is used to validate the predictions. 

In a K-Fold Cross Validation (K-Fold CV), all samples are divided into K equally sized 

subsets. First, subset 1 is used as the validation subset and all other subsets are used as a 

training subset. Next, subset 2 is used as the validation subset and all other subsets are 

used as the training subset. This process is continued until subset K is used as the 

validation, and this gives K iterations of the validation process(see Hastie et al., 2009).  

Monte-Carlo Cross Validation (MCCV) is also known as the Repeated Random Sub-

sampling Validation or the Repeated Hold-out Method. The concept was introduced by 

Burman (1989), and was originally called Repeated Learning-Testing Method. In this 

approach, the original dataset is split into training and validation subsets multiple times. 

Each time, samples for the training subset and samples for the validation subset are 

randomly selected. The number of samples in the training subset is the same for each 

iteration, as is the size of the validation subset. The number of possible iterations is 

calculated as follows. 

                               Number of iterations =   
!

!࢜	࢞!࢚
                        (Equation 5.5) 

Where:  ݊! is the number of total samples-factorial 

 is the number of training samples-factorial!ݐ 

 is the number of validation samples-factorial!ݒ 

As a result of random selection, a sample can be used in a number of training or validation 

subsets. Conversely, it is possible that a sample never joins even one training subset or 

validation subset if the number of iterations undertaken is less than the maximum possible 

iterations.  

Efron (1979) introduced the Bootstrap method, in which a sample is randomly picked up 

from the original dataset to form a bootstrap dataset but then that sample is returned to the 

original dataset allowing it to be selected again. Bootstrap method performs a resampling 

with the replacement that allows a sample to be picked multiple times in a bootstrap dataset 
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and there is no limit on the number of possible bootstrap datasets. When the performance of 

a certain model is to be examined, the model is fitted to the bootstrap datasets and these 

bootstrap datasets are used as the training datasets. The bootstrap models are then utilised 

to predict the original dataset, which acts as the validation dataset.  

The bootstrap datasets and the validation dataset have samples in common, and the overlap 

results in good predictions but may overestimate the prediction ability of the model. The 

.632+Bootstrap method is designed to overcome this overfitting problem (see Hastie et al., 

2009). The idea is similar to the Leave-One-Out Cross Validation (LOOCV). For each 

location, only predictions from bootstrap datasets not containing the sample at that particular 

location are taken into account. 

Expected to solve the overfitting issue while maintaining low bias, the .632+Bootstrap 

method has a larger bias problem than the Cross Validation (CV) methods (Kim, 2009), 

which have lower bias but higher variance than .632+Bootstrap. Consequently, there is a 

trade-off between bias and variance in selecting the method to use. Putting aside the trade-

off between bias and variance, CV methods are preferable to Bootstrap method for this work 

because CV methods completely separate the samples in the training and validation 

subsets. By doing so, CV methods are expected to give a more objective assessment of the 

model’s performance. The next step is to choose between K-Fold CV and MCCV. 

Molinaro et al. (2005) found that MCCV has a slightly lower bias than K-Fold CV. MCCVs 

have heavy computation loads, though this is not as big an issue as it used to be, given 

increases in computing power. There are at least two more reasons to choose MCCV over 

K-Fold CV. First, a much larger number of iterations can be run with MCCV. Second, 

samples are randomly split into training and validation subsets in MCCV, whereas in K-Fold 

CV the samples are split into K groups manually. Added to which, with a large number of 

iterations in MCCV a large number of variations can be captured. This is an advantage over 

K-Fold CV in which each sample stays in the same group in all iterations, so there is less 

freedom to combine samples to form the training and validation subsets. When all these 

factors were taken into account MCCV was chosen for this research. 

There is no exact prescribed ratio between the numbers of samples in training or validation 

subsets in MCCV. It was decided to use 80 per cent of the samples (565) to build the model, 

and 20 per cent (141) for validation in each iteration. The number of iterations that can be 

run is determined by the number of combinations that can be made from the samples. When 

selecting 565 training samples out of 706 in total, the number of combinations is: 
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706!
565! !141	ݔ

 

The number of possible combinations cannot be calculated for this work because it is 

extremely large, and it is far greater than normal software packages can calculate. 

Therefore, an arbitrary decision was made to run 1,000 iterations of the GWR model which is 

built using the 565 training samples and 141 locations of validation data (Figure 5.21). All 

1,000 iterations were successful. It is possible to obtain multiple predictions to compare 

against one observation value at a location given the number of iterations (Figure 5.22).  

 

Figure 5.19 Distribution of training and validation samples for the first iteration of MCCV 

on GWR prediction using individual samples 
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Figure 5.20 The number of predictions that were validated for each location in MCCV on 

GWR prediction using individual samples 

The lowest frequency of validation at a location is 164 times and the highest is 237. On 

average, a location is predicted 200 times using 200 different GWR models with randomly 

selected inputs. Although the sample selection for training and validation subsets is 

designed to be random, samples (sampled locations) have relatively equal chances to be 

validated. Multiple predictions at each location were compared to the observed value at the 

location, so there are multiple prediction residuals at each location. From these multiple 

prediction residuals, an average prediction residual was calculated to provide the average 

prediction accuracy at each location. An immediate concern is that positive and negative 

residuals at one location counteract each other. In order to have a clearer picture of the 

distribution of residuals, the range and the average of percentage residuals at each location 

are displayed at the same time (Figure 5.23). 
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Figure 5.21 Range and average of percentage residual in MCCV on GWR prediction using 

individual samples, plotted in increasing value of the average residual 

For each location, the average percentage residual represents the prediction accuracy and 

the range of percentage residuals represents the prediction precision. It is hoped a location 

will have an average percentage residual close to zero and a small range, and these can 

only be achieved when the around 200 predictions are close to the observed value at the 

corresponding location. But a significant number of locations do not meet the ideal 

expectation, as revealed by Figure 5.23. There is no clear pattern in the relationship 

between the average percentage residual and the range of percentage residual. Among 

locations with the largest ranges of percentage residuals, those with the largest negative or 

positive average percentage residuals and the one with average percentage residual closest 

to zero, were selected to be discussed. Among locations with the smallest ranges of 

percentage residuals, the ones with largest negative or positive average percentage 

residuals and the one with average percentage residual closest to zero were also selected to 

be discussed (Figure 5.24). 
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Figure 5.24 Ranges and average percentage residual at selected locations in MCCV on 

GWR prediction using individual samples 

Locations 87,196, and 462 have small ranges of percentage residuals. Out of these three 

locations, only 462 has a high prediction accuracy. It was validated 193 times, and all 

residuals were close to zero. The prediction model works well for this location. In contrast, 

the predicted values were always larger than the observed value at location 87; whereas at 

196 they were always under predicted. Both locations have high prediction precision, like 

462, but the prediction accuracies are quite low. The average percentage residuals are -

62.55 and 49.30 for locations 87 and 196 respectively.  

Locations 196 have around 200 predictions which are similar to one another, so this location 

has high prediction precision. However, all of the predictions are quite different from the 

observed value. This raises questions about the quality of the observed data, and Location 

196 is discussed further (Figure 5.25). 
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Figure 5.22 An example of a location (location 196) with a large average and a small range 

of percentage residuals 

The locations in Figure 5.25 are within a residential complex, so the value for variable zoning 

is the same for all five locations. In addition, travel times to the nearest tollgate are quite 

similar. The map shows that the five samples are located on road segments of various 

widths and, in fact, this is the only variablewith any meaningful variation. 

Location 196 is located on a wider road segment compared with other locations, and the 

observed land value is also higher. However, even though land value and road width are 

positively correlated in the model, the observed value for location 196 is far greater than the 

model predicts. The highest predicted value from 204 validations was 3,625,000 IDR; which 

is around half of the observed value of 6,755,000 IDR. There are several possible reasons 

for this large difference. First, the recorded observed value can actually be higher than the 

market value. In which case, 196 can be considered as a positive outlier. Another possibility 

is that there are ‘unmeasured variables’ that are contributing significantly to price variations 

in this location. In fact 196 is located on a boulevard in the residential complex, on the corner 

of a block and across the main park. These factors may have a significant contribution in 

shaping land price in this residential complex but they were not incorporated in the prediction 

model. Because of these possibilities, a further examination including a field check may be 

required to sort out cases like this in mass valuation practice by BPN in the future. 
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A quite different situation is found at locations 123, 589, and 694 where prediction residuals 

are 101.81 per cent of the observed value (location 123), 117.41 per cent (location 589) and 

144.25 per cent (location 694). In fact location 694 has the largest range of percentage 

residuals of all locations. Besides the issue of a large range of prediction residuals, locations 

589 and 694 also have large average prediction residuals; 589 is under predicted by 109.84 

per cent value while 694 is over predicted by 198.59 per cent. With extremely low prediction 

accuracies and extremely large ranges of prediction residual, it can be inferred that the 

prediction model does not work well for these locations. However, even though 123 has a 

large range of residuals, the average residual at location 123 is only -8.90 per cent of the 

observed value. A closer look at location 123 is therefore warranted. 

Figure 5.26 shows that many predictions are quite accurate. Recalling the cut-off value to 

assess accuracy in the in-sample GWR estimation, 186 out of 202 (92.1 per cent) 

predictions have prediction residuals between -30 to +30 per cent of the observed value, so 

these predictions are considered valid. Concluding that the prediction model performs poorly 

at location 123 by the large range of percentage residuals alone, will disregard the above 

fact. Though with a large range of percentage residuals, a very dominant portion of all 

predictions are considered valid. 

 

Figure 5.23 Distribution of percentage residuals at an example of location (location 123) 

with a small average percentage residual and a large range of percentage residuals 

Careful examination is required when using the range of percentage residuals to assess the 

variability of residuals at any location. The standard deviation of the percentage residual is a 

better option to use in these examinations. The standard deviation of the residual for location 

123 is 15.18 per cent of the observed value, which is far below the cut-off value of 30 per 
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cent adopted from BPN standards. The magnitudes of the standard deviations of percentage 

residuals at all locations are illustrated in Figure 5.27.  

 

Figure 5.24 Plot of standard deviation of percentage residuals in MCCV on GWR 

prediction using individual samples 

The above graph clearly shows that all 706 locations have standard deviations less than the 

30 per cent cut-off value. Hence all locations are considered to have reliable prediction 

precision, and assessment of prediction performance can be based on prediction accuracy. 

The prediction model was considered to work well at locations with average percentage 

residuals between -30 to +30 per cent of the observed value. If the distribution of absolute 

average percentage residuals is displayed (Figure 5.28), instead of the distribution of 

average percentage residuals, locations with extremely large average residuals are more 

readily apparent. 
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Figure 5.25 Plot of absolute average percentage residuals in MCCV on GWR prediction 

using individual samples 

Given the distribution in Figure 5.28 the prediction model is considered to work well at 530 

locations (75.07 per cent out of all locations), i.e., locations with absolute average 

percentage residuals smaller than 30 per cent of the corresponding observed values. With 

nearly a quarter of all locations having accuracy issues, it can be said that the prediction 

model does not work really well on the Bekasi dataset. 

The main lesson learned from the above analysis of location 196, is that a location with a 

large average percentage residual (low accuracy) and small standard deviation of 

percentage residual (high precision) must also be carefully examined. Out of 175 locations 

with average percentage residuals larger than 30 per cent, 74 have standard deviations of 

residuals smaller than five per cent of the observed values and 70 locations have standard 

deviations between five to ten per cent of the observed values. Hence a high proportion of 

locations with low prediction accuracy require further examination to find out whether there 

are significant effects of ‘unmeasured variables’ in the predictions or whether the 

observations are inaccurate. 
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5.4. Summary 

5.4.1. Prediction accuracy 

The mean absolute percentage error (MAPE) value is used to indicate the prediction 

accuracy of a method as a whole. With in-sample validation of the GWR model,the MAPE 

was 19.40 per cent. This is moderately larger than the MAPE from the Zonation Method 

currently employed by BPN, which when applied to this dataset is 10.8 per cent. Therefore, 

although the GWR model solves the main problem of the Zonation Method, i.e. non-

verifiable prediction for zones with fewer than three samples, the Zonation Method 

outperforms the GWR model in terms of accuracy for the Bekasi dataset. 

The cut-off value of 30 per cent, which is currently used for mass valuation in BPN, was 

adopted to assess prediction performance at individual locations from the GWR model. Just 

over 80 per cent (569 of 706) of locations were less than the cut-off value in terms of the 

absolute percentage residuals from the in-sample GWR model. A slightly smaller number of 

locations, 530, had absolute average percentage residuals less than 30 per cent when using 

GWR with out-of-sample estimation. When 1,000 iterations of GWR model were run using 

MCCV, the average results were quite similar with the results from the original GWR model 

(Figure 5.29).  

 

Figure 5.26Average percentage residuals from out-of-sample estimation and percentage 

residual from in-sample estimation, plotted in increasing value of the in-sample residual 
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The correlation coefficient between out-of-sample average percentage residuals and in-

sample percentage residuals was 0.987. This high correlation coefficient indicates that the 

GWR prediction model does not have a significant issue of overfitting; an issue that arises 

when a model overfits the sampled locations to minimise the training error. The objective of 

conducting an out-of-sample estimation was to explore the prediction performance of the 

prediction model when applied to non-sampled locations. With no significant overfitting in the 

GWR prediction model, the prediction accuracy at the non-sampled locations was expected 

to be similar with the prediction accuracy at the sampled locations.  

 

5.4.2. Prediction precision 

Prediction precision was only examined for the out-of-sample estimation as there are 

multiple predictions for each location. The range of percentage residuals gives a clear 

picture of the extent of percentage residuals at each location, and in turn indicates the level 

of prediction’s uncertainty at a specific location. However, it tends to give a pessimistic 

assessment on precision because it focuses on the highest and lowest values. In fact, there 

are normally only a small number of predictions that are close to the ones with the highest or 

lowest percentage residuals. With a huge number of iterations at each location, percentage 

residuals tend to be normally distributed. The number of predictions with percentage 

residuals close to the average percentage residual are normally much higher than the ones 

where percentage residuals deviate far from the average percentage residual. Standard 

deviation is considered to be a more appropriate measure of prediction precision at each 

location in this study. 

All locations had standard deviations of percentage residuals lower than the cut-off value of 

30 per cent. Of the 706 locations, 482 (68.27 per cent) had standard deviations of 

percentage residuals lower than five per cent of the corresponding observed values. 

Approximately a quarter of locations, 178, had standard deviations of percentage residuals 

between five to ten per cent of the corresponding observed values. These proportions 

indicated that the GWR prediction model is quite likely to be able to maintain consistent 

predictions at non-sampled locations. 

 

5.4.3. Extremely large residual at several locations 

In the in-sample validation analysis using the GWR prediction model, several locations were 

detected with extremely large percentage residuals. These locations contribute significantly 
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to reducing the overall accuracy of the model as whole. Five per cent of samples with the 

largest absolute percentage residuals contribute 20.69 per cent of the total absolute 

percentage residual. This is the main issue with the GWR prediction model.  

An extremely large percentage residual at one location is very likely to be caused by 

anomalous observation at that location. The sales price of a sampled land parcel can be 

significantly lower or higher than the market price for various reasons. When compared to 

the predicted price, this anomalous observed price will result in a large percentage residual. 

Deleting the sample at a location with large percentage residual is an easy way to solve the 

problem. However, this should be done very carefully with solid reasoning.  

A lesson learned from the Zonation Method is that neighbouring land parcels in one value 

zone tend to have similar prices, so the observed prices at the sampled locations in one 

zone are expected to be similar. An anomalous observation can cause a high variation of 

price among observations in a zone. The coefficient of variation on price among samples in 

a zone can be a sensible measure to use to detect anomalous observations. A zone with 

large variation on observed price is considered to be less reliable than a zone with small 

variation on observed price.  

An immediate concern is that the coefficient of variation is not a proper measure in a zone 

containing only one or two samples. In a zone containing only one or two samples, it is 

difficult to detect the anomalous sample. For this reason, observations in a zone containing 

at least three samples with low variation on price are considered to be more reliable than 

observations in a zone containing only one or two samples. The number of samplesin a zone 

can be used as a measure of reliability among zones. A zone containing a large number of 

samples is considered to be more reliable than a zone containing a small number of 

samples.  

The value zones can be employed to control the observation data effectively, so the GWR 

model will be run using value zones. In order to minimise the effect of undetected anomalous 

observations in the GWR model, a weighting scheme will be applied on zones based on the 

number of samples. If anomalous observations from zones containing one or two samples 

are not detected and therefore are involved in the model, their contributions to shape the 

model will be less than the normal observations. The GWR model using value zones is 

expected to overcome the issue of extremely large percentage residuals at several locations. 

The processes and results will be thoroughly examined in the next chapter (Chapter Six). 
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6. GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) 

MODELLING WITH VALUE ZONES 

6.1. Introduction 

As discussed in Section 5.4, the main issue with the Geographically Weighted Regression 

(GWR) model using individual locations is the extremely large residuals at a number of 

locations. This issue is going to be addressed by controlling the input data using value 

zones. The feature to be used for GWR analysis is the valid value zone. In the Standard 

Operating Procedure within the Land Valuation Directorate of the National Land Agency of 

Indonesia (BPN RI), avalid land value zone must contain at least threesales data records. 

Hundreds of valid value zones are required because GWR works well for a dataset of 

several hundred features. The distribution of value zones for the Bekasi dataset is shown in 

Figure 6.1 and the composition of zones based on the number of samples is shown in Table 

6.1. 

 

Figure 6.1 Distribution of value zones in Bekasi with the number of samples in each zone 

Source:Land Office of Bekasi (2012b) 
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Table 6.1 Composition of value zones in Bekasi based on the number of samples 

Number of samples  
Number of value 

zones 

Percentage 

breakdown 

≥ 3  50  5.1 

2  110 11.2 

1 280 28.6 

0 540 55.1 

Total 980 100.0 

Source: Land Office of Bekasi (2012b) 

Unfortunately, the number of valid value zones in the Bekasi dataset is too small to run with 

GWR. Referring to the operational procedure of BPN, only 50 zones can be analysed 

further. An exception is made in this PhD study, and use is made of zones containing two 

samples where the difference between the sqm values of the two samples in such zones 

should be lower than 30 per cent of the average value of both samples. This increases the 

number of zones that can be run with the GWR model to 160. Another exception is made 

also to make use of the value zones containing only one sample. The objective is simply to 

enlarge the number of input featuresas the GWR model works best with hundreds of 

features, and this exception increases the valid value zone to 440. 

Weighting among zones 

A zone containing at least three samples has a higher reliability level than a zone containing 

only one sample. The number of samples in a zone determines the level of importance of 

each zone: those with more samples contribute more significantly to shaping the model 

compared with zones with fewer samples. For this reason, the number of samples is set as 

the weight for each zone. 

Explanatory variables 

The set of explanatory variables for the GWR model using value zones is different from that 

in Chapter 5. Road width, road class, and parcel size are not used in this GWR model 

because a value zone normally has a number of land parcels with various road widths, road 

classes, and parcel sizes. Travel times to major roads are also set aside because some 

zones even have segments of major roads located within them. The explanatory variables 

used are zoning type and travel times to amenities. All the variables related to travel times to 
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amenities listed in the data collection survey form are put into the statistical test to find out 

which are statistically significant for the model and do not cause multicollinearity. 

Location 

A value zone consists of a number of individual land parcels, but one location is required to 

represent the cluster of parcels. The centroid of each zone is used for simplicity and 

consistency, however, some centroids fall outside the zones. For these cases, the ArcGIS 

facility to determine the most representative point within the polygon is used. These central 

locations are used as starting points to calculate travel times to amenities. 

 

6.2. Data examination 

The input data was examined to identify statistically significant explanatory variables, and to 

address the potential issues of multicollinearity and spatial autocorrelation. Before 

undertaking the processes of data examination, the linearity between price and each 

explanatory variable was assessed.   

6.2.1. Variable transformation 

The dataset was first examined using a global Ordinary Least Square(OLS) model. The OLS 

model assumes linear relationships between the dependent variable and each of the 

independent variables. Transforming the independent variables is sometimes required to 

improve the linearity of the relationship. Each explanatory variable was paired with the 

dependent variable and tested against a number of transformation models. For each 

relationship between an independent and dependent variable, the highest R-squared value 

was used to indicate the most linear relationship between land value and each explanatory 

variable.  

As discussed in Chapter 4, Power, Compound, S, Growth, Exponential, and Logistic 

transformation models could probably complicate the relationship between land value and 

the explanatory variables. Only linear, logarithmic, and inverse transformation models were 

used for the linearity estimation test. The results of the transformation models are given in 

Table 6.2, with the models selected in bold. 
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Table 6.2R-squared values for each transformation model 

Explanatory variables 

 

R-squared values for each transformation model 

Linear Logarithmic Inverse 

Zoning number 0.649 0.531 0.322 

Tollgate  0.075 0.063 0.029 

Business centre  0.037 0.050 0.061 

Marketplace  0.001 0.003 0.002 

Hospital  0.018 0.016 0.012 

School  0.000 0.001 0.002 

Source: Data analysis 

 

6.2.2. Prediction Model 

An OLS model was first run on the data, and the diagnostic report is presented in Table 6.3. 

Table 6.3 OLS diagnostic summary 

Number of Observations: 440 Akaike's Information Criterion (AICc) [d]: 12836.743004 

Multiple R-squared: 0.683568 Adjusted R-squared: 0.679183 

Joint F-Statistic [e]: 155.896750 Prob (>F), (12,693) degrees of freedom: 0.000000* 

Joint Wald Statistic [e]: 599.741703 
Prob (>chi-squared), (12) degrees of freedom: 

0.000000* 

Koenker (BP) Statistic [f]: 54.017445 
Prob (>chi-squared), (12) degrees of freedom: 

0.000000* 

Jarque-Bera Statistic [g]: 81.032578 
Prob (>chi-squared), (2) degrees of freedom: 

0.000000* 

Although all explanatory variables were effective in the OLS model, not all are statistically 

significant. Table 6.4 shows that zoning type, travel time to nearest tollgate, inverse travel 

time to business centre, and travel time to nearest hospital are significant. From this point 

onward, the short forms used for these variables are zoning, tollgate, business centre (CBD), 

and hospital.  
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Table 6.4 Summary of OLS model variables 

Explanatory variable Robust probability Coefficient  

Zoning nr *0.000000 221311.68 

Tollgate  *0.008275 -7302.74 

1/ Business centre  *0.032026 927362.69 

Ln marketplace  0.387001 -32295.03 

Hospital  *0.004328 9626.49 

1/ School  0.384332 -19385.38 

 * explanatory variable is statistically significant at 99 per cent confidence level 

 

6.2.3. Multicollinearity 

It is very important to ensure that there is no significant dependency among explanatory 

variables. Collinearity exists when there are nearly linear dependence relations among 

independent variables, sosome variables can be nearly linear combinations of other 

variables (see Bingham and Fry, 2010). In order to come up with solid inferences about the 

explanatory variables to be selected for the prediction model, a backward elimination 

regression was also run on the data (Table 6.5). 

Table 6.5 Summary of collinearity statistics from backward elimination regression 

 

 

 

 

 

 

The results from the backward elimination regression (Table 6.5) confirm the results from the 

OLS model. The school and marketplace variables were not statistically significant. All of the 

variables have low Variance Inflation Factor (VIF) values in the original model, so the original 

model had a relatively low level of multicollinearity among variables. Therefore, although not 

Variable 
Variance Inflation Factor (VIF) 

Step 1 Step 2 Step 3 

Zoning number 1.051 1.051 1.050 

Tollgate  1.358 1.357 1.357 

1/ Business centre  1.127 1.127 1.119 

Ln marketplace  1.058 1.057  

Hospital  1.372 1.368 1.317 

1/ School  1.008   
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statistically significant, variables school and marketplace would not harm the original model 

in terms of multicollinearity. Eliminating these variables does not change the VIF values of 

the remaining variables significantly. The decision whether or not to eliminate variables 

school and marketplace will be made after analysing the results from spatial autocorrelation 

test. 

 

6.2.4. Spatial autocorrelation 

Griffith (2009) suggested that the existence of spatial autocorrelation can be used as an 

indication of the existence of other issues in the model; issues of missing variables, model 

misspecification, redundant information, failure to capture spatial processes, and areal unit 

problem. The level of spatial autocorrelation in the model must be assessed to give an 

indication of the intensity of the above issues. Moran’s I test was applied to the residuals 

from the OLS model to examine the level of spatial autocorrelation in the prediction model, 

and the results are given in Table 6.6. 

The combinations of very low p-values and moderately high z-scores indicate that the 

clustering patterns on residuals are less likely to result from random processes. Although the 

issue of spatial autocorrelation from the OLS model is at a very low level, it should not be 

ignored. A lesson learned from the GWR modelling with individual locations outlined in 

Chapter 5, was the inability of the OLS model to capture the spatially varying mechanism 

which is a significant factor causing spatial autocorrelation. A GWR model with a spatial 

weighting scheme and arrangement of local regressions is a potentially effective method to 

capture a spatially varying mechanism, and in turn will be able to reduce or even remove the 

effect of spatial autocorrelation.  

Table 6.6 Moran's I test reports on the OLS models 

 

 

 

 

 

 

 

The 

 
OLS with  

six explanatory variables 

OLS with  

four explanatory variables 

Moran's Index:       0.085586 0.087188 

Expected Index:    -0.002278 -0.002278 

Variance:                0.000683 0.000683 

Z-score:                 3.361349 3.422737 

P-value:                   0.000776 0.000620 
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examination of multicollinearity in Section 6.2.3 reveals that both OLS models, using six and 

four explanatory variables, have similar levels of multicollinearity. The level of spatial 

autocorrelation is also quite similar for both sets of explanatory variables. The OLS model 

and backward elimination regression indicate that only four explanatory variables are 

statistically significant, so a prediction model using four explanatory variables was run in the 

GWR model.  

 

6.3. In-sample estimation of GWR model with value zones 

The adaptive kernel is utilised in the GWR model because the zones are not located in a 

regular pattern. The GWR analysis in Chapter 5 revealed that there was not much difference 

between the results from the Corrected Akaike Information Criterion (AICc) and Cross 

Validation (CV) bandwidth methods. Hence only one method, the AICc bandwidth method, is 

discussed in this chapter. The diagnostic report from the GWR model is provided in Table 

6.7. 

Table 6.7 Diagnostic report from GWR model using value zones 

Neighbours  170 

ResidualSquares  146,561,400,000,000 

EffectiveNumber  34.82 

Sigma  601,431.62 

AICc 12,982.54 

R-squared 0.76 

R-squared Adjusted  0.74 

 

One hundred and seventy out of 440 (38.64per cent) of the total features are involved in 

each local regression. As discussed in Chapter 2, the optimum number of neighbours yields 

the lowest sum of residual squares. This number gives the highest prediction accuracy of the 

model as a whole. However, having more than one third of the total number of features 

involved in each local regression may reduce the ability of local models to capture local 

variations. 

The results from the GWR model were also tested for spatial autocorrelation (Table 6.8). 
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Table 6.8Moran's I test report for GWR model using value zones 

 

 

 

 

 

 

The very low positive Moran’s I index signifies that there is a very low level of clustering of 

residuals. The combination of the low p-value and the low z-score indicates that the very low 

clustering pattern is not very different from that of random processes. GWR removes the 

issue of spatial autocorrelation which exists in the OLS model. GWR models the non-linear 

function between dependent variable and each explanatory variable by weighted regression 

which gives a unique weight to each sample based on the proximity to the local regression 

point (see Brunsdon et al., 1996). By doing so, GWR tackles the issue of ‘model 

misspecification’ in the OLS model which imposes a linear relationship between dependent 

variable and each explanatory variable. 

A map of standardised residual was created (Figure 6.2) which confirms the result from the 

Moran’s I test. There is no significant pattern of clustering or dispersion among standardised 

residuals. 

Item Value 

Moran's Index 0.031151 

Expected Index -0.002278 

Variance 0.000684 

Z-score 1.278355 

P-value 0.201124 
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Figure 6.2 Spatial distribution of standardised residuals from GWR model using value 

zones 

The distribution of colours representing intervals of standardised residual over the study area 

in Figure 6.2 looks random. Under-predicted zones or over-predicted zones do not show a 

clear pattern of clustering or dispersion. The results from global Moran’s I test, and the 

distribution of standardised residuals indicate that spatial autocorrelation is not an issue in 

the model. The next discussion will be on the spatial distribution of local R-squared values. 

The spatial distribution of localR-squared values was examined (Figure 6.3). The highest 

local R-squared values are found in mid-south and the north-east of Bekasi, while the lowest 

are found in the mid-north. Despite the distinct spatial distribution, the range of variation is 

moderately low. 86.6 per cent of local R-squared values are between 0.6 and 0.8. Overall, 

this set of explanatory variables is quite effective for prediction.  
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Figure 6.3 Spatial distribution of localR-squared values from GWR model using value 

zones 

Parameter estimates are the main output of a GWR model. In this section maps of each 

explanatory variable are discussed. The map of local coefficients for variable zoning is 

presented in Figure 6.4. 

 

Figure 6.4 Spatial distribution of coefficient estimates for variable zoning in GWR model 

using value zones 
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All zones have positive coefficients for variable zoning, meaning that zoning has a positive 

correlation with land value over the whole study area. The largest positive correlations are 

found in the south-west, so variable zoning pays its greatest contribution to shape land price 

in this area. The lowest correlations are found in the mid-north and south-east. The mid-

north is predominantly residential complexes, while the south-east corner is mostly industrial 

precincts. With a dominant zoning type at each area, variable zoning pays its least 

contribution to shape land price in each of these areas. 

A lesson learnt from GWR in Chapter Five was that the GWR package in ArcGIS does not 

report the p-value to indicate the significance of each explanatory variable at each location. 

Charlton and Fotheringham (2009) suggested that using the p-value as a measure of 

significance of the parameter estimate is not appropriate in GWR. Rather the Benjamini-

Hochberg False Discovery Rate (FDR) is considered a more appropriate approach; but it 

has not yet been incorporated within the GWR model. With no measure of the significance of 

parameter estimates available in the GWR model, assessment of a parameter estimate’s 

significance level cannot be undertaken.  

Instead, assessments are made on the precision levels of parameter estimates by 

computing local t values. The t-statistic value simply compares the actual value of a 

coefficient to its standard error. Both inputs, coefficient and coefficient’s standard error, are 

provided in the output table of a GWR model. The local t value helps to indicate the level of 

reliability of a parameter estimate. A small standard error for a large coefficient, results in a 

large t value, which gives high confidence in the parameter estimation. In all of the zones, 

the standard errors are relatively small compared with the actual coefficients of zoning. As 

the result, t values are large (Figure 6.5); and the confidence in using zoning as an 

explanatory variable is high for all zones. 
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Figure 6.5 Spatial distribution of t values for variable zoning in GWR model using value 

zones 

All zones support the inference that the zoning class is an important explanatory variable for 

land value, as indicated by large t values for variable zoning across the study area. This 

inference from the GWR model is in line with the results from the initial data examination 

using the OLS model and backward elimination stepwise regression. 

Travel time to nearest tollgate is expected to have a negative correlation with land value. 

Variable tollgate had the strongest negative correlation to land value for zones located in the 

central west (Figure 6.6). In these zones, shorter travel time to nearest tollgate is a 

significant factor in increasing land value. In part this is because traffic jams in the city centre 

of Bekasi can be very bad during busy times, so travelling on toll roads which have less 

traffic is much preferable to using non-toll roads. However, some zones in the north-east and 

in the mid-south have positive correlations (Figure 6.6). In these zones, shorter travel time to 

nearest tollgate does not make a positive contribution to increased land value. Zones in 

north-east Bekasi have a primary arterial road (Juanda Road) as the main access to Jakarta, 

and this may be preferable to commuters than the toll road.  
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Figure 6.6 Spatial distribution of coefficient estimates for variable tollgate in GWR model 

using value zones 

Zones located in the north-east have the largest positive coefficients and largest positive t-

values (Figure 6.7). This adds confidence to the earlier inference that shorter travel time to 

the nearest tollgate does not lead to increased land values in this area.  

 

Figure 6.7 Spatial distribution of t value for variable tollgate in GWR model using value 

zones 
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Another inference is also supported in the west-centre, where several zones with the largest 

negative coefficients came up with the largest t-statistic values as well. This also adds 

confidence to the inference saying that shorter travel time to nearest tollgate can increase 

land values in this area. 

Data examination in Section 6.2.2 showed that travel time to nearest hospital has a positive 

coefficient (9626.49). This means that a shorter travel time to the nearest hospital does not 

increase the land value. The GWR model reveals that this inference from the global OLS 

model does not apply for the whole study area. Coefficients for variable hospital from the 

GWR model (Figure 6.8) vary significantly across the study area. Around one third of all 

zones came up with negative coefficients, while around two third of all zones came up with 

positive coefficients.  

 

 

Figure 6.8Spatial distribution of coefficient estimates for variable hospital in GWR model 

using value zones 

The range ofcoefficient’s standard errors in relation to variable hospital is nearly half of the 

range of actual coefficient values. Coefficient’s standard errors range from 5,661 to 9,830, 

while the actual coefficients range from -12,800 to 21,004. The resulting t values range from 

-1.74 to 2.80 (Figure 6.9), indicating that no zones have high confidence in terms of the 
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coefficients for variable hospital. Zones with the least reliability on hospital coefficients are in 

the north, central-south, and the mid-east where the standard errors are more than twice the 

corresponding actual coefficients (the t statistic values are between -0.5 and 0.5). 

 

Figure 6.9Spatial distribution of t values for variable hospital in GWR model using value 

zones 

 

Travel time to the CBD of Bekasi has the strongest positive correlations with land value for 

zones in the south-east of the city (Figure 3.10). In this area, the shorter travel time to CBD 

does not increase land value as the area is mostly industrial precincts. An immediate 

assumption is that there are relatively few personal movements to and from the CBD. 

The area in the mid-west has the largest negative parameter estimates (between -792,497 

and -532,292), which means shorter travel time to CBD pays its highest contribution to 

increase land value in this area. This area used to be the business centre until the 1990s 

before the current CBD was established. The commercial precincts in this area still exist but 

they are not growing as fast as those in the current CBD. Connection between the 

commercial precincts in this area to those in the CBD may contribute to the high importance 

of travel time to the CBD. 
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Figure 6.10Spatial distribution of coefficient estimates for variable CBD in GWR model 

using value zones 

 

An interesting result is found in the case of travel time to CBD. Positive t-statistic values are 

mostly found in the east (Figure 6.11), and the t value tends to increase by the distance from 

CBD.  The coefficient map (Figure 6.10) suggests that shorter travel time to CBD does not 

increase land value for zones in the east.  

 

 

Figure 6.11Spatial distribution of t values for variable CBD in GWR model using value 

zones 
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The t-statistic map indicates that the farther from CBD, the more confidence is found on this 

inference. In the west, zones with moderate to large negative t values are surrounded by 

zones with small t values. The coefficient map suggests that the shorter travel time to the 

CBD increases land value in western zones. However, the confidence in parameter 

estimates in the west is generally lower than in the east. 

The spatial distribution of t value for each of the explanatory variables indicates that the level 

of reliability of coefficient varies across space. The GWR allows coefficients to vary by 

location, which enables assessment of a coefficient’s reliability to be made by location. This 

can help to decide which sampled locations should be set aside from the model in order to 

improve the prediction accuracy. Prediction accuracy was checked at locations with very low 

t values to find out whether or not the low precision of parameter estimation is related to low 

accuracy of prediction. To do this, the prediction residual at each location was calculated. 

Residuals were measured by comparing the predicted value of a zone to the average value 

of observed samples in the zone. The distribution of residuals is plotted in Figure 6.12. An 

immediate concern is that the average observed values vary significantly among value 

zones, so residuals are measured using various references. Instead of comparing residuals 

among zones, it wasmore objective to compare each residual to its own observed value. 

This comparison results in a percentage residual. The distribution of percentage residuals for 

allvalue zones is plotted in Figure 6.13.  

 

Figure 6.12 Plot of prediction residual in GWR model using value zones 
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Figure 6.13 Plot of percentage residual in GWR model using value zones 

 

The mean absolute percentage error (MAPE) is 23.33 per cent, and the standard deviation 

of percentage error is 31.82 per cent. As a whole, the model meets the standards used 

within the Land Valuation Directorate in BPN. Almost three-quarters (74.09 per cent) of all 

the zones have percentage residuals lower than 30 per cent. Hence, nearly a quarter of the 

zones are considered inaccurate and require further investigation. 

The graph of percentage residuals (Figure 6.14) looks very different from that of residuals 

(Figure 6.12). The percentage residual graph gives a more objective assessment of the 

prediction accuracy because for each zone, the residual was compared to its observed 

value. From the graph of percentage residuals, it can be seen that the percentage residuals 

at five zones are over 100 per cent.  

The distribution of standardised residuals (Figure 6.14) is displayed in order to examine the 

interaction between standardised residual and percentage residual at each prediction 

location.  
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Figure 6.14 Plot of standardised residual in GWR model using value zones 

 

The distribution of standardised residual is quite different from the distribution of percentage 

residual. The five zones with the largest percentage residuals have relatively small 

standardised residuals. Therefore, the standardised residuals cannot be used to explain the 

extremely large percentage residuals in some zones.  

The reliability of each local model can be measured by its R-squaredvalue and standard 

error. However, both measures cannot be used as indicators on predictive performance of 

the local model: R-squared provides a measure of how well the local model fits the data 

involved in a local regression, while the standard error provides a measure of precision of 

the data involved in a local regression when a local model is applied.  

Therefore, none of the measures contained in the GWR model output table can be used to 

explain extremely low prediction accuracy in several zones. The set of parameter estimates 

at each prediction zone was examined next. The level of reliability of a coefficient in each 

zone is indicated by the t value. Examination ofzones with extremely low prediction accuracy 

was undertaken by examining the t values, to find out whether low prediction accuracy is 

related to the low precision of parameter estimation inthe local model. 
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Table 6.9 T-statistic values at locations with the largest percentage residuals in GWR 

model using value zones 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.9 shows that very small t values exist for variable tollgate atzones 88, 95 and 305 (-

0.38, 0.01, and -0.24 respectively), while moderately small values are at zone 153 and 434 

(1.30 and -1.20). Variable zoning always has large t values, while variable hospital and 

business centre have moderately small to moderately large t values in the five zones with 

the largest residuals. There is no convincing pattern in the relationships between the 

percentage residual and t values in these zones with the largest percentage residuals: it can 

be argued that in the case of GWR modelling with zones, low prediction accuracy is not 

always related with low precision on parameter estimation. An immediate question is 

Value 

zone 

Percentage 

residual  
Variable T-statistic 

95 -197.56 

zoning 14.68 

tollgate 0.01 

hospital 0.97 

business 0.87 

305 -170.20 

zoning 16.68 

tollgate -0.24 

hospital 1.99 

business 1.22 

88 -158.24 

zoning 15.21 

tollgate -0.38 

hospital 1.01 

business 0.45 

153 -114.87 

zoning 15.08 

tollgate 1.30 

hospital -1.08 

business 4.44 

434 -110.30 

zoning 13.08 

tollgate -1.20 

hospital 1.17 

business 3.62 
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whether or not this inference also applies for all zones in the Bekasi dataset. A scatter plot of 

percentage residual and t value for each explanatory variableis provided to answer this 

question (Figure 6.15).  

There is no clear pattern that explains the relationships between the prediction residual and t 

values for each variable (Figure 6.15). This result provides the foundation to infer that 

prediction accuracy is not related tothe precision of the parameter estimates. 
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Figure 6.15Scatterplots of T statistic value and percentage residual in GWR model using 

value zones 

A more convincing conclusion can be drawn if the associations between percentage 

residuals and t valuesfor each explanatory variable is examined at all local regression. The 

correlation coefficient between percentage residuals and t value of variables zoning, tollgate, 

hospital, and CBD are 0.018, -0.029, -0.060and -0.042 respectively. These very low 

correlation coefficients confirm that prediction accuracy is not related to the precision of 

parameter estimation of any of the explanatory variables. 

Recalling the zones with large percentage residuals (Figure 6.13), there is no measure from 

the GWR output table that can be used to explain their very low prediction accuracy. The 

data at the five locations with largest percentage residuals were checked (Table 6.9), and 

zone 153 was chosen to give the simplest explanation of the extremely large percentage 
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residual. Zone 153 is a residential complex. The average observed land values and 

predicted land values from the neighbouring nearest residential complexes are shown in 

Figure 6.16. 

 

a. Observed values 

 

b. Predicted values 

Figure 6.16Observed and predicted land values for zone 153 and zones with the same 

zoning type in its vicinity 

 

Zones with the same zoning type are expected to have similar average land values, but 

Figure 6.16 shows that zone 153 has a considerably lower average observed land value 

compared with nearby zones (577,458). This raises questions about the quality of 

observation data in zone 153. Zone 153 only has one sample within it, sample number 473. 

There is a chance that the observed sales price of sample 473 is underrated or overrated but 

unfortunately there is no other sample within the zone to be compared with sample 473.  

Although zone 153 is observed to have considerably lower observed land value compared to 

other zones that share similar characteristics, the predicted value of zone 153 is quite similar 

to the zones of similar characteristics. The GWR model applies the predominant relationship 

between explanatory variables and land value for zone 153. The result is thatzone 153 has a 

considerably large prediction residual (-114.87 per cent). 

The GWR using value zones has the same issue with GWR using individual locations. 

Several locations had prediction residuals over 100 per cent (Section 5.3). Using the cut-off 

value of 30 per cent, as previously used to assess the result from the previous GWR model, 

114 of 440 zones (25.91 per cent) are considered invalid. Despite the serious accuracy 

issues in around a quarter of all zones, the MAPE of 23.33 per cent is still below the cut-off 

value.  
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In the in-sample GWR model, the model was built using only the sampled zones. During the 

process of minimising the error, the model was optimally fitted to these particular zones. 

Being only optimally fitted to a set of sampled locations, the prediction model has the 

potential to overrate its prediction performance (see Hastie et al., 2009). For a convincing 

assessment on prediction performance, out-of-sample estimation of GWR model with value 

zones was also run. 

 

6.4. Out-of-sample estimation of GWR model with value zones 

A GWR model with out-of-sample estimation was run to give a more objective assessment of 

prediction ability, and as before the Monte-Carlo Cross Validation (MCCV) was chosen 

because it was expected to give objective validation as it completely separates the data for 

training and validation subsets in each iteration. The concept was introduced by Burman 

(1989), and was originally called Repeated Learning-Testing Method because the dataset 

was split into training and validation subsets multiple times. Each time, samples for the 

training subset and validation subsets were randomly selected. The same number of 

samples in the training subset was maintained in each iteration, the number of possible 

iterations is calculated as follows. 

                               Number of iterations =   
!

!࢜	࢞!࢚
                          (Equation 6.1) 

Where:  ݊! is the number of total samples-factorial 

 is the number of training samples-factorial!ݐ 

 is the number of validation samples-factorial!ݒ 

There are 440 zones containing at least one sample: 352 zones (80 per cent) were used as 

a training dataset and 88 zones (20 per cent) as a validation dataset. The number of 

iterations is determined by the number of combinations that can be made from the number of 

samples in the training subset and the number of samples in the validation subset. The 

number of iteration is calculated as follows.  

440!
352! !88	ݔ
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The number of possible iterations is extremely large, so it cannot be calculated using normal 

calculation software. As in the case of GWR for individual locations, 1,000 iterations were 

run. In each iteration, out-of-sample predictions were made on 88 validation zones. The 

predicted land values were compared with the observed land values at the corresponding 

zones.  

The numberof predictions at each zone validated using the corresponding observation at the 

zone, ranges from 163 to 237 (Figure 6.17); the average frequency is 200.  

 

Figure 6.17The number of predictions that were validated for each zone in MCCV on GWR 

prediction using value zones 

 

The multiple predictions made at each zone were compared with the observed value for the 

zone. An average percentage residual was calculated for each zone to assess the average 

prediction accuracy. As discussed in Chapter 5, a positive residual and a negative residual in 

a zone may counteract each other. In addition to the distribution of average percentage 

residuals, the distribution of the range of percentage residuals was calculated. Both are 

shown in Figure 6.18.  
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Figure 6.18Range and average of percentage residual in MCCV on GWR prediction using 

value zones, plotted in increasing value of the average residual 

There are a significant number of zones with extremely large average percentage residuals 

and large ranges of percentage residuals. Prediction from GWR applied to zones has the 

same issue as with individual samples. For a more thorough assessment, the distribution of 

standard deviations was also examined (Figure 6.19) as it is a more appropriate measure of 

prediction precision than the range of residuals.  

 

 

Figure 6.19Plot of standard deviation of percentage residuals in MCCV on GWR prediction 

using value zones 
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In the out-of-sample estimation of GWR with value zones, nearly all zones have standard 

deviations of the percentage residuals less than 30 per cent. Figure 6.19 shows one zone 

(zone 224) with an extremely large standard deviation of the percentage residual. All of the 

percentage residuals at zone 224 are plotted in Figure 6.20. 

 

 

Figure 6.20 Distribution of percentage residuals at an example of zone (zone 224) 

The percentage residuals of all predictions for zone 224 are not normally distributed. Over 

three quartersof the predications, 147 of 193, have percentage residuals between -127 and -

156 per cent of the observed value. Forty six (23.83 per cent) predictions have percentage 

residuals ranging from -98 to 199 per cent of the observed value, making a long tail to the 

distribution. This situation raises questions about the model’s efficacy and data quality.  

 

6.5. Summary 

6.5.1. Prediction accuracy 

In the in-sample estimation of the GWR model, the MAPE and the standard deviation of 

percentage residuals were 24.86 per cent and 33.70 per cent respectively. These can be 

compared with the MAPE and standard deviation of percentage residuals from standard 

BPN Zonation Method, which are 10.8 per cent and 15.9 per cent respectively. The GWR 

applied to value zones is less reliable than the BPN Zonation Method in terms of accuracy. 

However, the prediction model, as a whole, performs moderately well in terms of accuracy; 
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and importantly the prediction model has resolved the issue which the existing Zonation 

Method cannot cope with. The GWR model using value zones is able to provide verifiable 

predictions at every value zone in the study area while the Zonation Method can only provide 

verifiable predictions in zones where an adequate number of samples exists. 

At the individual zone level, 326 out of 440 (74.09 per cent) zones are considered accurate 

as the prediction residuals are lower than 30 per cent of the corresponding observed values. 

The result from the out-of-sample estimation is similar; 317 out of 440 (72.05 per cent) zones 

have average percentage residuals lower than 30 per cent of the corresponding observed 

values. The distributions of residuals from both approaches are compared in Figure 6.21. 

 

 

Figure 6.21Average residuals from out-of-sample estimation and residuals from in-sample 

estimation using value zone data 

The distribution of average percentage residuals in the out-of-sample estimation looks 

similar with the distribution of percentage residuals in the in-sample estimation. This 

indicates that the prediction accuracy of the model when used to predict non-sampled 

locations, on average, is quite similar to the prediction accuracy of the model when used to 

predict sampled locations. The correlation coefficient between the percentage residuals from 

the in-sample and out-of-sample estimations of 0.996 validates this inference. The very high 

correlation coefficient also indicates that the GWR prediction model using value zones does 

not have a significant overfitting issue. With no significant overfitting, the GWR prediction 



 

134 

 

gives good estimates of the actual prediction accuracy per zone. The prediction accuracy at 

the non-sampled locations should be similar to the prediction accuracy at the sampled 

zones.    

6.5.2. Dealing with predictions with extremely large percentage residuals 

The GWR model using value zones was designed to solve the main issue of the GWR 

model using individual samples, i.e. large percentage residuals at a number of locations. 

Anomalous observations are detected by assessing the variation of observed prices among 

samples in each value zone. Next, a weighting scheme was also applied in each zone so 

that zones with more samples can contribute more to shape local regressions: the model 

was then expected to come up with no predictions with extremely large percentage 

residuals. Unfortunately, the result reveals that there are a number of zones with extremely 

large percentage residuals. This approach therefore fails the task. 

Two limitations are most likely to be the main reasons behind this failure. First, there are only 

around ten per cent of the zones used in the model have three or more samples. Although 

each zone is given weight based on the number of samples, this small number of ‘valid’ 

zones raises question about the reliance of the data. Second, the use of zones centroids 

could also contribute for inaccuracy as the geographical shapes of zones vary considerably 

from a very compact geometry to elongated linear. Centroids from elongated zones could 

significantly affect the distance variables used in the model.      

The biggest challenge of applying the GWR model using the Bekasi dataset remains the 

same – how to deal with the extremely largepercentage residuals at a number of predictions. 

Controlling the input for the model (by running the model using value zones) did not solve 

the problem. An alternative approach to undertake is to control the output of the prediction 

model. Measures to control the output of GWR prediction model will be discussed in the next 

chapter (Chapter Seven) where all of the predictions, especially the ones with extremely 

large percentage residuals, will be carefully examined.  
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7. VERIFYING PREDICTIONS 

7.1. Introduction 

This chapter will discuss the measures adopted to verify the predictions of the GWR model. 

Checking the predictions of the model becomes a very important task because the results 

from GWR models outlined in Chapter Five and Chapter Six reveal that the GWR models 

have the same major issue, i.e. extremely large residuals at a number of locations or zones. 

The potentially inaccurate predictions at several locations requires further examination. 

Before the examination, these anomalous predictions must be detected. Detection of 

potentially inaccurate predictions at the sampled locations can be done using the prediction 

residuals. This is possible because each prediction has the corresponding observation as a 

reference point to calculate the prediction residual.  

At the non-sampled locations, another measure must be arranged to detect potentially 

inaccurate predictions because no observations are available as references to calculate the 

prediction residuals. Value zone is again employed for this task. The idea is that 

neighbouring land parcels in a value zone tend to have similar prices. Following this logic, 

predicted prices of neighbouring land parcels in a value zone should also be similar to one 

another. Discussion on employing value zone to control predictions at the non-sampled 

locations is the main functionof this chapter. 

 

7.2. Why value zone is useful to verify predictions 

For non-sampled locations, detection of potentially inaccurate predictions is done by 

comparing each prediction to its neighbouring predictions. A rational measure in selecting 

comparable neighbours that is applicable for each location across the study area is 

required.Making use of value zones may be feasible in this regard, as the most comparable 

locations for a target location are those located in the same value zone. This is based on the 

premise that neighbouring land parcels in a value zone share common characteristics. An 

excerpt from the Bekasi dataset highlights this (Figure 7.1). 
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Figure 7.1 A cross section through Value Zones 22, 641, and 941 in South-central Bekasi 

Source: Land Office of Bekasi (2012b) 

It is clear from Figure 7.1 that the spatialcharacteristics of zone 661 (a residential complex) 

are quite different from zones 22 (a residential area with irregular land parcels) and 941 (a 

buffer zone of primary arterial road). The zoning type actually acts as a label that represents 

the characteristics of a zone. A residential complex like zone 661 is usually a very exclusive 

residential area with a ‘one-gate system’ to limit access. In such complexes, land parcels 

and other features are well arranged and road segments are wide enough for two-way traffic.  

Although the zoning type represents the characteristics of the zone, it does not represent the 

dynamics within the zone. In residential complexes, for instance, high-priced land parcels will 

have some particular qualities such as being located near a park. Private sellers and brokers 

take this factor into account when determining the sale prices. So while proximity to the park 

contributes to the price, it is not listed currently on the BPN data collection form and 

therefore is not used in prediction. Proximity to the park is an example of an ‘unmeasured 

variable’. A crucial point is that this particular ‘unmeasured variable’ only exists in a 

residential complex type of zoning. In Figure 7.1, only land parcels in zone 661 are affected 

by the proximity to the park. The distance to the park (in the bottom left of the image) is not 

important in shaping prices of land parcels in zone 22 because the residents in zone 22 do 

not have access to the park located in zone 661.  
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An irregular residential area, e.g., zone 22, is defined as having land parcels that are not 

regularly arranged and road segments that are not regular either. The road widths in zone 22 

are much smaller than in zone 661 (Figure 7.1). Many segments are so narrow that only 

small motorbikes can pass through them, and in busy times traveling through these narrow 

lanes is challenging. For parcels located on these narrow lanes in areas like zone 22, a land 

parcel with a short distance to the nearest wider street is preferable and has a higher value. 

The BPN survey form acquires information on the distances to the nearest collector road and 

the nearest arterial road. However, these variables were removed from the prediction model 

because the OLS model and Backward Elimination Stepwise Regression determined these 

variables were not statistically significant within the whole dataset. Therefore, distance to 

collector and arterial roads are ‘unmeasured variables’ in zones like 22. In residential 

complexes, these variables do not come into play in determining prices.  

A buffer zone of primary arterial road, e.g., zone 941, consists of land parcels (e.g., shops 

and commercial precincts) located on the primary arterial road. For these parcels, the length 

of frontage to the road is crucial, the longer the frontage the higher the value. However, the 

ratio between the frontage and the length of a parcel is not taken into account in the 

prediction model and is an ‘unmeasured variable’ in buffer zones along streets with 

commercial premises. 

By running local regressions and applying a weighting scheme, GWR tries to capture local 

variations, and in doing so, GWR also tries to incorporate the ‘unmeasured variables’ (see 

Fotheringham et al., 1997). But there is no measure of how well the effects of ‘unmeasured 

variables’ are incorporated into GWR models, so it is difficult to infer whether or not the 

effects are optimally represented in the prediction. Although the effects of ‘unmeasured 

variables’ are not well measured, they can be expected to be similar for neighbouring 

locations in a value zone. This is because neighbouring locations in a value zone are 

affected by the same set of ‘unmeasured variables’, and the closeness of locations in a zone 

increases the probability of similar effects. Hence, for example, a predicted value in zone 

661 can be compared with other predictions in zone 661, but cannot be compared with 

predictions in zones 22 and 941 because of the different effects from ‘unmeasured variables’ 

influencing those zones. 

It can be concluded that land parcels in a value zone not only have similar data related to the 

listed explanatory variables (road width, zoning, and travel time to nearest tollgate) but also 

have similar effects of ‘unmeasured variables’. Following this logic, predictions in one value 

zone are expected to be similar to another. This is a solid justification for using neighbouring 

predictions in one value zone as the most suitable comparable locations for each prediction. 
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The next task is to identify the most effective measure to detect anomalous predictions 

among all predictions in one value zone. 

7.3. Detecting anomalous predictions in a value zone 

Predictions in one value zone are expected to be similar to one another, so predictions are 

expected to form a homogenous pattern in each value zone. A prediction that stands out 

among all other predictions in a value zone is a potential candidate to be an anomalous 

prediction. Analysing the spatial patterns of predicted prices in a zone can be an effective 

measure to detect anomalous predictions. 

7.3.1. Spatial patterns among predictions in one value zone 

Zones 22, 661 and 941, which were compared in Section 7.2 are again used to explain this. 

As shownin Figure 7.1 from west to east the three zones are a residential complex, an 

irregular residential area, and the buffer zone of a primary arterial road. Predicted price 

distribution (Figure 7.2) confirms the idea that the predicted price of a land parcel tends to be 

much similar to neighbouring predictions in one zone than to neighbouring predictions from 

other zones.  

 

Figure 7.2 Predicted land values in an extract of zones 22, 641, and 941 
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Modification of the price intervals can be useful in analysing the patterns of predicted prices. 

However, visual analysis of the price patterns may lead to inconsistent assessment. The 

Local Moran’s I test can be employed to detect outliers among predictions in each zone. This 

test uses the procedures of local indicators of spatial association (LISA) developed by 

Anselin (1995). The Local Moran’s Index was calculated at each parcel based prediction, 

using Equation 7.1.  

	ࡵ ൌ 	
ഥ࢞ି࢞

ࡿ
 ∑ ࢞ሺ	,࢝ െ ഥሻ࢞

ஷ,ୀ (Equation 7.1) 

Where: ݔ is prediction at parcel i 

  is the average value of neighbouring predictionsݔ̅

,ݓ is the spatial weight between parcel i and parcel j 

ܵ
ଶ

is the variance of neighbouring predictions of parcel i, which is calculated as 

follow. 

ࡿ
 ൌ 	

∑ ൫ି࢞	࢞ഥ൯
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ି
(Equation 7.2) 

A significant positive index means that a number of parcels form a clustering pattern 

because they have similar values which are significantly higher or lower compared with other 

parcels surrounding them. A significant negative index means that a parcel of a low 

prediction value has neighbours of high prediction values or a high prediction value has 

neighbours of low prediction values.  

Detection of anomalous predictions using Local Moran’s I test was run on predictions for 

each value zone. In a value zone, adjacent land parcels are not expected to have extremely 

different values. The idea is that the value of one land parcel should be more similar to its 

nearest neighbours than to parcels farther away in the same zone. If a prediction is 

significantly higher or lower than the surrounding predictions, the predicted value will be 

considered an anomalous prediction. 

Zone 209 (Figure 7.3) is an example of a zone in which the Local Moran’s I test is an 

effective tool to detect anomalous predictions.  
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Figure 7.3Predicted land values in zone 209 

Zone 209 is a small residential complex of 95 land parcels. Predictions at Locations 21436 

and 21480 are much higher than adjacent predictions. The predicted values are IDR 

2,869,000 (21480) and IDR 1,894,000 (21514). The prediction for Parcel 21480 is 51.48 per 

cent higher than adjacent parcel 21514; while 21436 is 52.12 per cent higher than 21488. 

Predictions at locations 21480 and 21436 are very likely to be outliers. Manual detection 

using symbology schemes is practical and convenient (see Figure 7.3). However, 

determination of whether a prediction is an outlier must be supported by robust examination. 

Local Moran’s I test was applied on all 95 predictions in the zone. At each target prediction, 

all of the 94 neighbouring parcels in zone 209 were involved in the test. The contribution of 

each neighbour in determining the Local Moran’s Index at any target prediction was 

specified by using the contiguity weighting scheme. This scheme was chosen because 

parcels in each block are adjacent to one another, they have similar sizes and are regularly 

arranged. 

A worked example is provided for the prediction at parcel number 21436. The contiguous 

parcels are 21480, 21433, 21488, and 21514 (Figure 7.3). The predicted value at Location 

ݔ) 21436  ) is IDR 2,872,000, and the predicted values at the neighbouring (ݔ) Locations 
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21480, 21433, 21488, and 21514 are IDR 2,869,000; 1,884,000; 1,888,000; and 1,894,000 

respectively. The average prediction value in zone 209 was calculated from all 95 locations, 

while the variance of prediction at parcel number 21436 was calculated using all 94 

neighbours. The average value and the variance of neighbours for Location 21436 are IDR 

1,975,700 and 15,699,373,760 respectively. Next, the weights for neighbouring parcels 

 were set. There are 90 parcels in zone 209 not contiguous to 21436, so deviations (,ݓ)

from the average prediction value for these parcels were given weights of 0. A weighting of 

1.0 was given to the contiguous parcels, i.e., 21480, 21443, 21488, and 21514. Each weight 

was then standardised by dividing it by the sum of contiguity weights at the target parcel. 

The difference between the average prediction and each adjacent prediction was then 

calculated. Each difference was given the standardised weight, so there will be weighted 

difference at each contiguous neighbour. The weighted differences from all four neighbours 

were then summed (Table 7.1). 

 

Table 7.1Calculation of weighted differences from the average prediction for contiguous 

neighbours of the target prediction 

Step 

1 
target 

parcel 

weight for contiguous neighbour 
Sum 

21480 21443 21488 21514 

21436 
 ଶଵସଷ,ଶଵହଵସ 4ݓ ଶଵସଷ,ଶଵସ଼଼ݓ ଶଵସଷ,ଶଵସସଷݓ ଶଵସଷ,ଶଵସ଼ݓ

(1) (1) (1) (1) 

step 

2 
target 

parcel 

standardized weight for contiguous neighbour 
Sum 

21480 21443 21488 21514 

21436 
 ଶଵସଷ,ଶଵହଵସ 1ݓ ଶଵସଷ,ଶଵସ଼଼ݓ ଶଵସଷ,ଶଵସସଷݓ ଶଵସଷ,ଶଵସ଼ݓ

(1/4) (1/4) (1/4) (1/4) 

step 

3 
target 

parcel 

weighted difference from average prediction value for contiguous neighbour  
Sum 

21480 21443 21488 21514 

21436 

1
4
∗ ሺݔଶଵସ଼ െ  ሻݔ̅

1
4
∗ ሺݔଶଵସସଷ െ  ሻݔ̅

1
4
∗ ሺݔଶଵସ଼଼ െ  ሻݔ̅

1
4
∗ ሺݔଶଵହଵସ െ  ሻݔ̅

157,938 

(223,249) (-22,860) (-21,940) (-20,511) 

The average prediction in zone 209 (̅ݔ), the variance of all 94 neighbouring predictions from 

parcel 21436 ( ܵ
ଶ), and sum of weighted differences from the average prediction of the four 



 

142 

 

contiguous neighbours (∑ ݔሺ	,ݓ െ ሻݔ̅
ୀଵ,ஷ ) were already calculated. The Local Moran’s 

Index for prediction at parcel 21436 was calculated using Equation 7.1, and the result was 

5.85.  

Fiaschi et al. (2015) used a Local Directional Moran Scatter Plot (LDMS) to explain the 

dispersion and clustering issues among data. A similar tool is utilised for this study (Figure 

7.4). 

 

Figure 7.4Local Directional Moran Scatter Plot for zone 209 

The x axis, d Xi is the difference between prediction at location i and the average prediction 

from all predictions. The y axis, lag-d Xi is the difference between the weighted average of 

predictions contiguous to location i and the average prediction from all predictions in the 

zone. In Figure 7.4 quadrant 1, a prediction and the weighted average of predictions 

contiguous with it are both larger than the average prediction in the zone. Quadrant 3 

includes prediction and its contiguous neighbours that are significantly smaller than the 

average prediction in the zone. In quadrant 2, a prediction is smaller than the average 

prediction in the zone but the weighted average of predictions contiguous to it is larger than 

the average prediction in the zone. In quadrant 4, a prediction is larger than the average 

prediction in the zone but the weighted average of predictions contiguous to it is smaller than 
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the average prediction in the zone. In quadrants 2 and 4, a prediction tends to become an 

outlier when there is a large contrast between the prediction and its contiguous neighbours. 

Predictions 21443, 21488, and 21514 are very likely to be outliers and the large negative 

Local Moran’s indexes confirm this. Interestingly, the above scatter diagram (Figure 7.4) 

shows that these predictions are within 1.04 to 1.05 per cent of the average prediction. 

Prediction 21514 has the largest negative Local Moran’s index, so it is discussed further. 

Prediction 21514 only has three contiguous neighbours, i.e. prediction 21488, 21436, and 

21480. While prediction 21488 is very close to the average prediction, predictions 21436 and 

21480 are 45.37 per cent and 45.20 per cent larger. These extremely large neighbours are 

the dominant cause for the contrast between prediction 21514 and its contiguous 

neighbours. The extremely large predictions at 21436 and 21480 overwhelm the influence of 

the other contiguous neighbours when calculating Local Moran’s indexes at parcels 21488 

and 21433 resulting in them being detected as outliers even though they are similar to the 

average prediction for the zone.  

Beside causing other ‘average predictions’ detected to be outliers, the large predictions at 

parcels 21436 and 21480 also form a cluster of large predictions and are behind the 

dispersion and clustering issues in zone 209. Dispersion patterns at locations 21443, 21488, 

and 21514 are marked by Local Moran’s indexes of -0.90, -1.47, and -1.93 respectively, 

while clustering patterns at locations 21436 and 21480 are marked by Local Moran’s indexes 

of 5.85 and 8.95 respectively. Putting aside those five locations with dispersion and 

clustering patterns, the other 90 locations in zone 209 have Local Moran’s indexes between 

-0.19 and 0.54. 

The finding from zone 209 suggests that not only the predictions forming dispersion (outlier) 

patterns require examination. In this zone, predictions which form a cluster of high 

predictions were the ones causing the dispersion pattern at other predictions. For this 

reason, the predictions forming clustering pattern were examined further. Data related to the 

explanatory variables and parameter estimates at locations 21436 and 21480 were 

evaluated. 

Variation in road width is most likely to be the main reason behind the significantly high 

predictions at locations 21436 and 21480. Both parcels are located on a 7.84 metre wide 

road segment, while the average width of all other road segments in the zone is only 3.57 

metres. There is no variation in zoning and only very small variation in travel time to the 

nearest tollgate. In order to come up with solid conclusion, variation of model parameters is 

also examined (Figure 7.5). 
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Figure 7.5Parameter estimates in zone 209 

At parcel number 21480 and 21436, the parameters on variables road width, zoning and 

tollgate do not stand out. At location 21480, for instance, the parameters are 223,078, 

387,996, and -143 respectively which are in all cases close to the medians of their ranges. 

Therefore, the model parameters at these locations do not seem to have a significant 

contribution to the high predictions, making it clear that the significant difference in road 

width is the main cause for the significantly higher predictions. However, the price 

differences of 51.48 per cent and 52.12 per cent between these parcels and their adjacent 

neighbours in a small residential complex like zone 209 is not normal, as prices of land 

parcels in residential complexes are usually very similar. The two most reasonable 

possibilities are the following. First, the width of the road segment adjacent to 21480 and 

21436 may be wrong due to errors introduced during the process of delineating blocks. 

Inaccurate gaps between blocks create inaccurate road segment widths. Second, the road 

width is accurate but the actual prices may be only slightly or moderately higher than their 

neighbours. A field check would be the best solution to examine these two potential sources 

of error.  
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Zone 209 is an example in which analysing the spatial pattern of predictions is quite effective 

for detecting anomalous predictions. There are cases in which the spatial pattern does not 

indicate an anomaly among predictions but the variation among predictions in a value zone 

is quite high. The coefficient of variation among predicted prices in one value zone can also 

be employed to detect anomalous predictions. 

7.3.2. Coefficient of variation among predictions in one value zone 

There are zones, like 448, in which no prediction appears markedly different from its 

neighbours but the overall variation among predictions is quite large. Zone 448 is covered by 

agricultural land parcels, with 33 of these being registered (Figure 7.6). The coefficient of 

variation amongst predictions is 35.12 per cent, and this moderately large variation is clearly 

shown in the map of the zone. Variation in road width is again most likely to be the main 

reason for this variation.  

 

 

Figure 7.6Predicted land values in zone 448 

Spearman’s rank correlation was run between predictions and each of the explanatory 

variables to understand how prices change with each data input, except zoning as there was 

no variation. The correlation coefficients for price for road width and travel time to nearest 
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tollgate are 0.975 and -0.484 respectively. Road width data is highly correlated with price, 

which the inference that it is the dominant factor shaping price in this zone. The value 

predictions in zone 448 occur in three price bands. Land parcels with values between IDR 

1,000,000 and 1,500,000 are located on road segments wider than four metres; those 

between IDR 800,000 and 1,000,000 are located on road segments of three to four metre 

wide; while those less than IDR 800,000 are located on lanes less than three metres wide.  

Although it can be well explained by the input data, the moderately large prediction variation 

in zone 448 should be considered as a warning that predictions in the zone may require 

further examination. Comparing the predictions (Figure 7.7) with observed actual prices is an 

effective examination procedure. It is an advantage to have one sampled location located in 

zone 448.  

 

 

Figure 7.7 Sampled location in zone 448 

The observed price at location number 282 is IDR 1,087,000, while the predicted price at the 

same location (parcel number 74170) is IDR 910,000. The predicted price is smaller than the 

observed price by 16.26 per cent. Recalling the cut-off value of 30 per cent, this residual is 

moderate and still acceptable. It is always useful to have observation data in a zone with 

largevariation of prediction like zone 448. Predictions in the zone are considered to be less 

reliable, and the observation is used to ensure that the predictions are not too inaccurate. 
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7.4. Summary 

7.4.1. Verifying predictions using spatial pattern of predictions in one zone 

Analysing the spatial pattern of predictions is an effective measure to detect anomalous 

prediction, and it becomes more important when the coefficient of variation among 

predictions is low. Zone 209 is a good example of this situation. With a low coefficient of 

variation (7.87 per cent), predictions within zone 209 are expected to be similar to one 

another. However, significant clustering and dispersion patterns were found when the Local 

Moran’s I test was run on each prediction. 

Two predictions deviate significantly from the average prediction value, while 93 other 

predictions in zone 209 are quite similar to one another. Although the anomalous predictions 

deviate considerably from the average value, the small number of anomalous predictions 

only results in a small variation among predictions. In this kind of situation, the coefficient of 

variation does not indicate a serious issue of anomaly among predictions but the spatial 

pattern of predictions does.  

 

7.4.2. Verifying predictions using the coefficient of variation among predictions in 
one zone 

The coefficient of variation is an effective tool to verify predictions which differ gradually 

across space in a value zone. Zone 448 is a good representation of this type of situation. 

The Local Moran’s I test does not detect any anomaly in the spatial pattern of predictions 

because predictions change gradually across space.  

Although there is no anomalous prediction detected in zone 448, the variation among 

predictions is moderately high(35.11 per cent). It is true that this significant variation can be 

explained by the significant variation in data related to variable road width, but the high 

variation should be taken as an indication of potentially inaccurate predictions. Whether or 

not the variation in data related to variable road width should cause such high variation on 

land values of neighbouring agricultural lands, should be verified through a field check. 
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8. DISCUSSION 

8.1. Introduction 

The Zonation Method, the mass valuation technique currently employed in BPN RI, requires 

at least three samples of valid data for each value zone. Unfortunately, every mass valuation 

project administered by BPN RI has failed to provide a sufficient number of samples to 

comply with this standard. Valid property sales data are scarce because the parties involved 

in a property transaction tend to give false statements about the transaction price to lessen 

the transaction tax. 

A mass valuation method that uses a limited amount of data is required for mass valuation in 

Indonesia. The analysis of existing methods (Chapter Two) identified Geographically 

Weighted Regression (GWR) as the method with the most potential to replace the Zonation 

Method. GWR was applied to an existing dataset from the 2012 Bekasi City Mass Valuation 

Project, even though it had a limited number of samples. This dataset was chosen for this 

research because the sampling densityin this dataset is the highest amongst all datasets 

from all of the mass valuation projects administered by BPN RI. Moreover, the samples are 

evenly distributed in the Bekasi dataset.  

GWR was run using in-sample and out-of-sample estimation approaches. The out-of-sample 

approach was run using the Monte Carlo Cross Validation method (Section 5.3.2). The key 

finding of this study is that the results from both approaches show a very strong association 

(Section 5.4.1). This strong association indicates that the GWR prediction model does not 

have overfitting issues, which in turn means that the prediction accuracy at the non-sampled 

locations is expected to be similar to the prediction accuracy at the sampled locations. 

However, when the GWR model is applied to the sampled locations, a number of predictions 

are potentially inaccurate because they come up with very large percentage residuals 

(Section 5.3.1). Given the strong association between the in-sample and out-of-sample 

estimations in the GWR model, the issue of potentially inaccurate prediction is very likely to 

also occur at non-sampled locations. For the non-sampled locations, detection of potentially 

inaccurate predictions was conducted per value zone because predictions in one value zone 

were expected to be similar to one another (Section 7.2). In each value zone, the coefficient 

of variation was effective in indicating extremely high variation among predictions and the 

Local Moran’s I test was also found to be effective in detecting anomalous predictions. 

These measures worked well to verify GWR predictions in Bekasi, and they should also work 
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well to verify mass valuation predictions in other administrations where land parcels can be 

aggregated into value zones. 

 

8.2. Discussion on the results 

8.2.1. Developing a dataset for geospatial modelling from the BPN RI dataset 

A key finding from this research is that existing BPN RI-datasetsare not produced in a format 

that is suitable for use in geospatial modelling of land transaction values in the context of 

mass valuation. While they are suitable for use with BPN RI’s Zonation Method (Section 

1.5), significant amounts of research effort were required to convert the dataset from Bekasi 

into a format suitable for GWR modelling (Chapters Three and Four).  

The data collection forms used by BPN RI for mass valuation work record 12 variables. Ten 

of the 12 variables are related to road class, road width, and travel times to amenities. After 

the location related to property sales data is defined in the Land Parcel Map, a road network 

dataset is required to provide data related to these ten explanatory variables for that sample. 

The road network dataset was derived from the Land Parcel Map because the road network 

data from other sources (OpenStreetMap and the Topographic Map of Indonesia) had 

severe mismatches with the Land Parcel Map (Section 3.4). Similar work deriving road 

network data from a cadastral map was conducted by Haunert and Sester (2008) in 

Hildesheim, Germany. The main issue in the work was to reconstruct the junctions correctly. 

Nonetheless, 89.80 per cent of all junctions were appropriately represented. In research 

conducted by Zhang et al. (2010) in Barcelona, Spain, the authors also found reconstructing 

unique intersections was the main issue but overall, 97.00 per cent of reconstructions were 

reasonable. For this current research project, the percentage of well reconstructed 

intersections was not calculated because the exact representation of road segments at 

intersections was not a crucial requirement. A more important matter was to ensure that all 

road segments were connected to one another to allow the proper calculation of travel 

distances, and the topological validation was successful, to ensure that all road segments 

were appropriately connected. 

From the road network dataset, travel distances from each parcel to amenities were 

calculated. Unfortunately, travel distance is not an effective measure of accessibility because 

it regards similar contribution of each road class in relation to ease of travelling to amenities. 

In order to allow a unique contribution of each road class, travel distances to amenities are 

transformed into travel times to amenities (Section 3.6). This is actually in line with the 
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guidelines in the Internal Standards for Land Valuation in BPN RI9 which advise the use of 

travel time as a measure of accessibility. Optimisation of travel time in this work is a basic 

application of the Djikstra’s algorithm on Shortest Path Optimisation, so the optimisation is 

rather standard compared with advanced optimisations in other works. For instance, Sun et 

al. (2014) modelled the driver’s route choice and used road usage as the weight for route 

optimisation in Shenzhen, China. They found that incorporating the modelled driver’s 

preference resulted in a high match between the predicted optimum route and the actual 

travel route usually chosen by drivers. Yiannakoulias et al. (2013) incorporated turn penalties 

and traffic congestion to optimise travel time in Edmonton, Canada. The results revealed that 

travel times when turn penalties and traffic congestion were incorporated in the estimation 

were generally over twice the free-flow travel times. It is true that incorporating the driver’s 

preference, turn penalties, and the traffic congestion can result in a more realistic travel time 

optimisation but calculating this comes with significant technical challenges. Yiannakoulias et 

al. (2013) highlighted that the schemes of free-flow travel time and congested travel time 

ended up telling the same story; the areas of low or high accessibility were likely to remain in 

the same classes for both schemes. This lends weight to the decision to apply the basic 

route optimisation algorithm to calculate travel times to amenities in this study.   

In terms of travel times from each land parcel to amenities, the research revealed that only 

travel time to the nearest tollgate is statistically significant with coefficient correlation to price 

of -2.680. However, this association with price is moderately lower than those of road width, 

zoning type and road classwhich have correlation coefficients with price of 0.710, 0.663 and 

0.393 respectively. Although road class has a statistically significant association with price, 

the Backward Elimination Regression and OLS models show that it is not statistically 

significant within the model. With only road width, zoning type, and travel time to nearest 

tollgate as the explanatory variables in the model, the prediction model is free from spatial 

autocorrelation issue. The absence of spatial autocorrelation indicates that the model does 

not have issues of ‘missing variables’, model misspecification, redundant information, failure 

to capture the spatial process mechanism, and areal unit problem(see Griffith, 2009). Two of 

the five causes of spatial autocorrelation were tackled in this study. The first issue causing 

spatial autocorrelation addressed was model misspecification. Griffith (2009) observed that 

specifying linear relationship for non-linear relationship is a common example of model 

misspecification. OLS and GWR assume linear relationships between the dependent 

variable and each explanatory variable. Therefore, instead of imposing linear relationships in 

the OLS or GWR models, the explanatory variables are transformed in order to improve the 

                                                 
9Standar Operasional Prosedur Internal Survei Potensi Tanah, BPN RI(2013). 
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linearity of the price variables (Section 4.6). The second issue causing spatial 

autocorrelation tackled in this study was the failure to capture spatial process mechanisms. 

A spatial process mechanism is very likely to cause local variations, and applying a global 

model to a spatially varying process causes spatial autocorrelation, therefore calibration of 

local regressions will remove spatial autocorrelation caused by the failure to capture spatially 

varying process (see Fotheringham, 2009).      

While road width, zoning type, and travel time to the nearest tollgate were found to be the 

most effective predictors of land price in Bekasi, this does not mean that they would be the 

most important explanatory variables in other administrations. Road width, zoning type, and 

travel time to nearest tollgate (as part of the 12 variables listed in the data collection forms of 

BPN RI) are predetermined by appraisers within BPN RI. The appraisers in other 

administrations may predetermine different sets of explanatory variables for mass valuation. 

Next, the uniqueness of a dataset from an administration gives a unique relationship 

between price and each explanatory variable. If a set of explanatory variables are applied to 

two datasets from different administrations, the relationships between price and each of the 

explanatory variables will vary between the two administrations. For example, in Bekasi 

where only 11.42 per cent of commuters travel by public transport, the travel time to nearest 

station is not an important variable but travel time to nearest tollgate is. A contrasting 

situation is found in Tokyo, where 48 per cent of workers commute by public transport, and 

accessibility to the nearest station is an important variable for mass valuation but travel time 

to nearest tollgate is not. Nevertheless, both mass valuations in Tokyo (see Shimizu and 

Nishimura, 2007) and in Bekasi agree that road width is an important predictor for land price. 

It is difficult to find mass valuation works that use variable zoning as an explanatory variable 

but in mass valuation research in Madrid (see Morillo et al., 2017), zoning was considered to 

be an important predictor of price because a value zone indicates housing-parameters 

(typology, age, surface area, price per square metre, etc.) for houses within it. For similar 

reasons, land zoning was used in Bekasi.  

To sum up, modifying the original Bekasi dataset into a format that is compatible with 

geospatial modelling was a huge task, and this applies to other Indonesian cities as they all 

have mass valuation datasetssimilar to the Bekasi dataset. Developing a road network 

dataset from the Land Parcel Map was the main part of data preparation, but it was valuable 

because the data for ten of the 12 explanatory variables were provided from the road 

network dataset. Data examination (Chapter Four) concluded that only three of the 12 

explanatory variables were statistically significant in Bekasi but results may vary in other 

cities. 
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8.2.2. Geospatial modelling of the Bekasi dataset 

The second research question focuses on how the application of a geospatial technique that 

has been used for mass valuation in other administrations performs with the Bekasi dataset. 

The first step in answering this question was to select the geospatial technique that is the 

most fit for purpose when applied to the Bekasi dataset. First, the selected technique must 

be applicable in the circumstances of the Bekasi dataset and the results must be 

understandable. Next, the selected technique must also be able to provide accurate 

predictions for all the land parcels in Bekasi.  

An extensive literature review was conducted to identify quantitative methods that have been 

used worldwide for mass valuation. Only a few of the techniques discussed in Chapter Two 

have been employed in mass valuation since 2010. It was very difficult to find mass 

valuation work using Hierarchical Trend Modelling (HTM), Logistic Regression, Generalized 

Additive Modelling (GAM), Piecewise Parabolic Multiple Regression Analysis (PPMRA), 

Spatial Expansion Model (SEM), or Case-Based Reasoning (CBR) since 2010. There have 

been only a few researcherswho have usedCokriging, Rule-Based Expert System, and 

Genetic Algorithms (GA) in mass valuation since 2010. The analysis of research literature 

shows that artificial neural network-based (ANN-based) techniques and Geographically 

Weighted Regression dominate most recent mass appraisal research.  

ANN techniques can provide high prediction accuracies but the processes and the results 

are not easy to explain, and this is why Kauko and d’Amato (2008) refer the nature of ANN 

as a ‘black box’. This is a big issue because the output of the mass valuation work is 

predominantly used for taxation purposes, and mass valuation in BPN RI is no different. 

Having a clear explanation on how the amounts of tariffs and taxes are determined is a big 

concern in this area. Moreover, model-free estimation techniques like ANN-based 

techniques appear to require more data than regression-based techniques because 

inferences are made from the data themselves (see Lin and Mohan, 2011; Nguyen and 

Cripps, 2001; Peterson and Flanagan, 2009). With the very limited amount of data in the 

Bekasi dataset, ANN-based techniques are very likely to give unreliable predictions. 

GWR has been widely used in the area of mass appraisal, because it isolates and combines 

spatial dependency and heterogeneity, accounting for locational or adjacency effects and 

market segmentation (McCluskey et al., 2013). Because of the ability to capture spatial 

heterogeneity which in turn results in accurate predictions, GWR is also widely used in other 

fields. Wang et al. (2012) mapped the distribution of soil organic matter in Longyan, China 

using GWR and Regression Kriging (RK). For both methods, the root-mean-square error 

(RMSE) values are 2.748 and 7.576 respectively, while the adjusted R-square values are 
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0.909 and 0.699 respectively. These results indicate that GWR not only comes up with more 

accurate predictions than RK but it also fits the data better than RK. Liu et al. (2017) 

employed GWR, Ordinary Kriging, Inverse Distance Weighted Interpolation, Multiple Linear 

Regression Model, and the Linear Mixed-Effect Model to map the spatial distribution of soil 

organic carbon density (SOCD) in Jinjing Town, China. The standardised mean square error 

(SMSE) values are 3.92, 4.22, 14.91, 14.82, and 9.12 respectively, while the R values are 

0.66, 0.57, 0.58, 0.56, and 0.64 respectively. These results suggest that GWR generated 

more accurate spatial distribution of SOCD than the other techniques.  

In the field of mass valuation, GWR also shows its superiority. McCluskey et al. (2013) 

applied a number of techniques (Multiple Regression Model – MRM, Artificial Neural 

Network – ANN, Spatial Simultaneous Autoregressive – SAR, and GWR) for mass appraisal 

in Northern Ireland, UK. GWR came up with the highest prediction accuracy as indicated by 

the lowest mean absolute percentage error (MAPE) value; 10.40 per cent, while MRM, ANN, 

andSAR came up with MAPE values of 12.27, 11.97, and 13.69 per cent respectively. 

Chrostek and Kopczewska (2014) compared the performances of a number of techniques 

(Ordinary Least Squares – OLS, Spatial Expansion Model – SEM, Spatial Lag, Spatial Error 

Model, and GWR) in mass appraisal work in Wroclaw, Poland. GWR was also the most 

accurate technique with the MAPE value of 12.96 per cent, while OLS, SEM, Spatial Error 

Model, and the Spatial Lag Model came up with MAPE values of 13.405, 36.476, 13.186, 

and 14.191 per cent respectively The prediction accuracy of the GWR model for mass 

valuation using the Bekasi dataset is also measured using MAPE value, and the MAPE 

value of 19.40 per cent suggests that the GWR model is moderately accurate. Compared 

with the research conducted by McCluskey et al. (2013) and Chrostek and Kopczewska 

(2014), the prediction accuracy of the GWR model using the Bekasi dataset is moderately 

lower. The quality of the Bekasi dataset is probably lower than the datasets from the other 

two pieces of research, or the set of explanatory variables used in Bekasi is probably less 

effective.  

The mean absolute percentage error (MAPE) value is again used to compare the prediction 

accuracy of the proposed GWR method with the Zonation Method currently employed in 

BPN RI. The Zonation Method came up with MAPE values of 10.8 per cent. In terms of 

prediction accuracy, the Zonation Method outperforms the GWR model. Nevertheless, the 

GWR model is a potential candidate to replace the Zonation Method because the GWR 

model solves the main problem of theZonation Method, i.e. non-verifiable prediction for 

zones with fewer than three samples. It is true that the GWR model offers lower accuracy 
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than the Zonation Method but the MAPE value of 19.40 per cent is way below the cut-off 

value of 30 per cent currently used in BPN RI. 

The main issue with the GWR model using the Bekasi dataset is that there are a number of 

locations with extremely large prediction residuals. Six locations have percentage residuals 

larger than 100 per cent, and ten locations have percentage residuals between 75 to 100 per 

cent. In order to address the issue of extremely large residuals at a number of locations, 

GWR was run using value zones. The idea is to control the input data for the model by 

detecting potentially inaccurate observations. A lesson learned from the Zonation Method is 

that neighbouring land parcels in one value zone tend to have similar prices, so the 

observed prices at the sampled locations in one zone are expected to be similar. Controlling 

the observation data (input data for the model) is expected to remove or reduce the 

extremely large residuals at a number of locations. Unfortunately, this new approach fails the 

task as GWR using value zones also comes up with large residuals at a number of zones. 

The prediction accuracy of the GWR model using value zones is lower than the GWR model 

using individual locations, as indicated by the MAPE value of 24.86 per cent. Compared with 

the cut-off value of 30 per cent currently used in BPN RI, the prediction accuracies of the 

GWR model using individual locations and the GWR model using value zones are actually 

moderately good. 

There is a possibility of the performance of a model being overestimated when run in an in-

sample validation. Excessive bending to minimise the training error at the sampled locations 

can cause an issue of overfitting for the model. When validated using the sampled locations 

(which were previously used to shape the model), the model shows optimum performance. A 

model with an overfitting issue will potentially show a quite different performance when 

validated using non-sampled locations. In order to obtain a good estimate on the model’s 

performance at the non-sampled locations, out-of-sample validation was run using the Monte 

Carlo Cross Validation (MCCV) technique.  

When 1,000 iterations of the GWR model are run using MCCV, the distribution of average 

percentage residuals resembles the distribution of percentage residuals from the in-sample 

GWR model. The correlation coefficient between out-of-sample average percentage 

residuals and in-sample percentage residuals is surprisingly high; 0.987. This indicates that 

the GWR prediction model does not have an issue of overfitting. With no issue of overfitting 

in the GWR prediction model, the prediction accuracy at the non-sampled locations is 

expected to be similar with the prediction accuracy at the sampled locations. In other 

research, GWR was also revealed not to have the issue of overfitting, and therefore resulted 

in accurate out-of-sample predictions. Páez et al. (2008) compared the performance of 
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moving window techniques (Moving Window Regression – MWR, Moving Window Kriging – 

MWK, and GWR), and found out that GWR and MWR resulted in more accurate out-of-

sample predictions than MWK.Helbich and Griffith (2016)ran out-of-sample estimations to 

examine the performance of a number of prediction models (Spatial Expansion Method – 

SEM, Moving Window Regression – MWR, Genetic Algorithm-Based Eigenvector Spatial 

Filtering – ESF, and GWR) using Leave-One-Out Cross Validation (LOOCV) and Hold-Out 

(Monte Carlo Cross Validation – MCCV) methods. The results from 100 iterations suggest 

that the SEM, MWR, and GWR do not have an overfitting issue, while ESF does.  

 

8.2.3. Verifying predictions at non sampled locations 

If the GWR model using individual locations is to be employed in BPN RI, adjustments must 

be organised to cope with the main issue of the model, i.e. the few large residuals. Measures 

to verify predictions need to be specified to detect the potentially inaccurate predictions, and 

these measures must suit the circumstances of Bekasi as well as other Indonesian cities. In 

Indonesia, one neighbourhood can have significantly different characteristics from its 

surrounding neighbourhoods. For instance, a residential complex is usually a well-looked-

after neighbourhood with well-arranged land parcels and road segments, while an irregular 

residential area is usually a modest neighbourhood in which land parcels and road segments 

are not regularly arranged. This situation allows delineation of neighbourhoods to split land 

parcels in a city or district into a number of neighbourhoods. Land parcels in one 

neighbourhood tend to have similar qualities, and in turn tend to have similar value. For this 

reason, the polygons of neighbourhood have been called polygons of value zones. 

Delineation of value zones is undertaken by mass valuation analyst at each local Land Office 

in Indonesia.   

Delineation of value zones for mass appraisal is also conducted in other administrations. 

Value zone is utilised to aggregate the similarities among neighbouring properties in urban 

areas in the Ukraine because the available number of land sales data is inadequate to work 

with the mass appraisal techniques commonly employed worldwide (see Kryvobokov, 2004). 

In Madrid, Spain, Morillo et al. (2017) proposed the use of value zones to represent housing-

parameters (typology, age, surface area, price per square metre, etc.) for houses within 

each zone. 

Value zones can be employed to verify predictions of the GWR model for two main reasons. 

First, the GWR model uses explanatory variables (road width, zoning, and tollgate) for 

prediction. Land parcels in one value zone share similar values related to these explanatory 
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variables. Second, by running local regressions and applying a weighting scheme, GWR 

tries to capture local variations, and in doing so, GWR also tries to incorporate the 

‘unmeasured variables’ (see Fotheringham et al., 1997). Being located close to one another 

in one neighbourhood of distinguishable characteristics, land parcels in one value zone are 

expected to receive similar effects of ‘unmeasured variables’. For these two reasons, 

predictions in one value zone are expected to be similar to one another. In order to judge 

whether or not one prediction is potentially inaccurate, that particular prediction must be 

compared with the other predictions in the zone where it is located.  

Analysing the spatial pattern of predictions in each value zone can be an effective measure 

to detect anomalous predictions. The Local Moran’s I test was run per value zone, so all 

predictions in one value zone are involved in each test. Because predictions in one value 

zone are expected to be similar to one another, each value zone is expected to have a 

homogenous pattern. An anomalous prediction, which is extremely larger or smaller than its 

nearest neighbours, will stand out among other predictions in a zone. There are cases in 

which predictions differ gradually across space in a value zone, so the result from the Local 

Moran’s I test does not detect any anomaly on the spatial pattern. Coefficient of variation 

(COV) can be an additional tool to verify predictions in zones with this kind of situation. A 

high variation of predictions in one value zone should be taken as an indication for careful 

use of the predictions in the zone because predictions in one value zone are expected to be 

similar to one another. Kim and Kim (2016) demonstrated that COV is an effective tool to 

assess the horizontal equity of predictions of spatial statistic models. Examples in Chapter 

Seven also show that the use of Local Moran’s Index and COV to verify predictions in one 

value zone is effective to detect anomalies or outliers in the zone.  

 

 

8.3. Summary 

Road width, zoning, and travel time to nearest tollgate were found to be the most effective 

explanatory variables in a GWR model for land price prediction in Bekasi. When using these 

three variables, the GWR model does not display multicollinearity or spatial autocorrelation, 

neither does it have an overfitting issue, so the prediction accuracy at non-sampled locations 

is expected to be similar to the prediction accuracy at the sampled locations.  

In terms of accuracy, the GWR model is not as good as the currently employed Zonation 

Method. Nevertheless, it is a suitable candidate to replace the Zonation Method because the 
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GWR model solves the main problem of the Zonation Method, i.e. that of non-verifiable 

predictions for zones with fewer than three samples; and the average residual of the GWR 

model is well below the cut-off value of 30 per cent currently used in BPN. 

The main issue in applying the GWR model is the large residuals that are generated at a 

number of locations. Controlling the inputs to the model GWR using value zones did not 

solve this problem. A more feasible measure was to control the output of the model, i.e., the 

predictions. Land parcels in a single value zone have similar data related to explanatory 

variables, and they are very likely to receive similar effects from ‘unmeasured variables’. 

Therefore, predictions in one value zone are expected to be similar to one another. 

Analysing spatial patterns among predictions in one zone was found to be an effective 

measure to detect potentially inaccurate predictions. Because Bekasi is typical of Indonesian 

cities, the prediction model and the verification measures specified in this study should be 

able to be applied to most other Indonesian cities. 
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9. CONCLUSIONS AND RECOMMENDATIONS 

9.1. Introduction 

The main objective of this study was to improve current mass valuation practicesin the 

National Land Agency of Indonesia (BPN RI) given the existing data scarcity issue 

introduced in this thesis (Section 1.6). The Zonation Method which is currently employed for 

mass valuation in BPN RI, gives accurate predictions but only for zones where there are at 

least three samples available. Collection of actual price of land transfer data has been a 

longstanding issue in mass valuation practice in Indonesia, and because of the gaps in this 

information, mass valuation as practised at present in Indonesian cites has never been 

successful in providing a complete prediction of land values for an entire city. As stated in 

Chapter One, a new method is required to resolve this situation. Moreover, whatever method 

is chosen must be able to utilise the limited number of samples available in any particular 

city.  

Among the methods that have been developed worldwide for mass valuation, GWR has 

been employed frequently because of its ability to capture local variations. In order for the 

Bekasi dataset to be run using GWR, the dataset required a significant number of 

adaptations. It is argued that these and similar adaptations would be required for any dataset 

from an Indonesian city. Statistical examination of the data revealed that only road width, 

zoning type, and travel time to the nearest tollgate were statistically effective explanatory 

variables. The prediction performance of the GWR model using these three variables is 

reasonable, as indicated by the mean absolute percentage error (MAPE) of 19.40 per cent. 

In order to estimate the prediction performance at the non-sampled locations, an out-of-

sample estimation was run using repeated random sub-sampling validation (Monte Carlo 

Cross Validation – MCCV). The results from GWR modelling using all the sampled locations 

and the out-of-sample estimations are very similar, as indicated by the correlation coefficient 

of 0.987. This means that there is a high probability that the accuracy of the GWR model 

when used to predict the non-sampled locations will be similar to the accuracy of the model 

when used to predict the sampled locations. 

The main issue that was discovered after running the GWR model using individual locations 

and the GWR model using value zones was large prediction residuals at a number of 

locations. For the GWR model using individual locations, six of the 706 locations had 

percentage residuals greater than 100 per cent and ten locations had percentage residuals 

between 75 to 100 per cent. Recalling the very high correlation coefficient between the 

results from the GWR model and the MCCV on GWR model, potentially inaccurate 
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predictions are likely to be found at the non-sampled locations. In order to detect potentially 

inaccurate predictions at the non-sampled locations, all predictions were verified within the 

context of the value zone that the predictions occurred in. To do that, the spatial patterns 

and the coefficients of variation of predictions in each value zone were examined so that 

anomalous predictions could be identified. In this case, an anomalous prediction is a 

prediction which is much larger or smaller (defined in terms of percentage difference) than its 

nearest neighbours in a value zone. Predictions in one value zone are expected to be similar 

to one another, so these predictions are expected to have small coefficients of variation. A 

large coefficient of variation and the existence of anomalies among predictions in one value 

zone were taken as an indication of the existence of potentially inaccurate predictions in the 

zone.  

 

9.2. Meeting the objectives and answering the research questions 

In the process of meeting the main objective of the study (Section 9.1), the research 

questions listed in Section 1.6. were answered. These are summarised individually below. 

9.2.1. Research question 1: Converting an existing BPN RI-dataset into a format that 
can be used in geospatial modelling of land transaction values 

The dataset for Bekasi comprised original property sales data, a land parcel map, and 

zoning data. These data were obtained from the local (Bekasi) Land Office. The Land Parcel 

Map was used to derive a road network dataset. Deriving this road network dataset from the 

Land Parcel Map was very time consuming because of the large number of corrections that 

were required. This effort was essential because the road network dataset, in turn, allowed 

data related to road classes, road widths and travel times to amenities to be extracted: 

without this step, the modelling could not have taken place. 

The data extracted from the road network dataset generated data for ten of the 12 variables 

listed in the mass valuation standards of BPN RI. Developing a road network dataset is, 

therefore, a major requirement in terms of person effort in order to run geospatial modelling 

for mass valuation in Indonesian cities. This element of the research project is reported in 

Chapters Three and Four. 
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9.2.2. Research question 2: Evaluating the performance of the selected model to 
predict land values in Bekasi, Indonesia 

The mean absolute percentage error (MAPE) was used as a measure of prediction 

performance for the GWR model. The GWR models using individual locations and value 

zones came up with MAPE values of 19.40 per cent and 24.86 per cent respectively, 

indicating that GWR modelling using individual locations is a better candidate than GWR 

using value zones to replace the Zonation Method. Although the GWR model using 

individual locations has lower prediction accuracy than the Zonation Method, which has 

MAPE value of 10.80 per cent, the GWR model solves the main problem of theZonation 

Method, i.e. non-verifiable prediction for zones with fewer than three samples.    

The main issue of GWR model using individual locations is that a number of locations had 

considerably large prediction residuals. Six locations have percentage residuals larger than 

100 per cent, and ten locations have percentage residuals between 75 to 100 per cent. 

Adopting the cut-off value of 30 per cent from BPN RI, 137 of 706 predictions at the sampled 

locations (19.41 per cent) do not comply with this cut-off value. 

In order to estimate the prediction performance at the non-sampled locations, out-of-sample 

prediction was conducted. One thousand iterations of the GWR model using the Monte Carlo 

Cross Validation revealed that at each location, the average percentage residual from out-of-

sample prediction was not statistically different from the percentage residual from the in-

sample GWR model. The coefficient correlation between the average percentage residuals 

from the out-of-sample and in-sample analyses was 0.987. This very high correlation 

indicates that the performance of the GWR model when predicting the non-sampled 

locations had a high probability of being similar to the performance of the GWR model when 

predicting the sampled locations. As a consequence, predictions at non-sampled locations 

can be expected to have low to medium MAPE and very large residuals in a small number of 

locations. This element of the research project is reported on in Chapters Five and Six.  

 

9.2.3. Research question 3: Identifying adjustments to improve BPN’s mass valuation 
practices for Indonesian urban areas 

If the GWR model using individual locations is to be employed in BPN RI, the issue of large 

residuals must be addressed. The first step to deal with potentially inaccurate predictions is 

to identify them. At the sampled locations, potentially inaccurate predictions can be detected 

using the prediction residuals. Effective measures must also be employed to detect 

potentially inaccurate predictionsfor non-sampled locations. 
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Value zones were utilised to verify predictions because predictions in one value zone are 

expected to be similar to one another. In order to judge whether or not one prediction is 

potentially inaccurate, that particular prediction must be compared with the nearest 

predictions in the value zone in which it is located. Examination of the spatial patterns and 

the coefficients of variationof the predictions in a single value zone, were found to be 

effective in detecting potentially inaccurate predictions. This element of the research project 

is reported on in Chapter Seven. 

 

9.3. Recommendations 

9.3.1. Recommendations for BPN RI 

The biggest challenge in applying a regression-based prediction model for mass valuation 

using the Bekasi dataset was in deriving the road network dataset from the Land Parcel 

Map. As discussed in Section 3.4, there were a large number of drawing errors in the Land 

Parcel Map. Batch fixing of these errors was not appropriate because each error was found 

to be unique. A series of recommendations emanate from this issue.  

(1) In the current practice of maintaining and updating digital land parcel maps within BPN 

RI, changes to these maps are saved after editing even though there can be drawing 

errors in the maps. The Bekasi dataset is a clear example of a map in which errors have 

been ignored and, therefore, errors have accumulated as more drawing and editing is 

done and saved. This is a bad practice in terms of spatial data management and in 

terms of costs in ultimately producing accurate land parcel maps, whether they are used 

in GWR modelling or not. This would need to be addressed and replaced by a system 

that requires the drawing errors to be corrected before the map is updated and further 

drawing can occur. This mechanism will ensure that a drafter cannot ignore drawing 

errors and also prevent errors from accumulating, so the data will always be accurate 

and ready-to-use. 

(2) Road network layers should be included in land parcel maps. A key lesson learnt from 

this study is that a ‘corrected’ land parcel map still has the potential to cause errors 

when deriving a road network dataset. For instance, a complicated intersection in a land 

parcel map can cause an unresolved intersection in a road network dataset. Presenting 

the road network layer in such a map would allow early detection of errors in the road 

network dataset. 
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The result of this study could be the best case scenario in a national context because of the 

extensive work to fix errors in the datasets. This raises questions on the viability of applying 

the GWR approach presented in this thesis in Indonesia. Fixing the geometrical errors in 

order to create a reliable road network dataset is not practical with current condition of Land 

Parcel Map at local Land Offices. A more feasible option is to use Euclidean distance rather 

than road network distance for variable distance to amenities. The Euclidian distance does 

not mimic the real world process as good as the road network distance does, which in turn 

may reduce prediction accuracy, but using Euclidian distance will greatly save time and 

effort in data preparation. It is a trade off between quality and cost.      

There are also significant issues in current mass valuation practices in Indonesia that are out 

of the scope of this research. Potential solutions to these issues were not incorporated in the 

objectives of this thesis due to the time that would have been involved in researching them. 

Nevertheless, it is important that these are addressed in trying to achieve better mass 

valuation practice in Indonesia. By far, the most important of these issues is the scarcity of 

valid data. 

While it has been shown that a GWR model is able to provide accurate predictions in a scare 

data environment, a larger number of records is always beneficial for any prediction model. 

Property sales data are compiled by each local Land Office, but the parties involved in 

transactions often tend to under report the actual transaction price in order to reduce their 

transaction tax burden, which currently is set at five per cent of the sale price for each party 

(see Tamtomo et al., 2008).  

An effective mechanism is required to encourage the parties involved in property 

transactions to state the actual sales price on the sale deed orin the sale contract. If the 

sales prices stated in the sales deeds reflected the real situation, the property sales records 

compiled in the local land office will be ready-to-use for mass valuation analysis. 

When the author started this research project, the author had hoped to be able to research 

this issue as well. But after discussions with supervisor and other academics from the 

Mathematical Sciences, Psychology and Policy Studies units at Flinders University it 

became clear than none of the conceptual and methodological frameworks from these 

disciplines could be applied within the time frame of a doctoral study in addition to the spatial 

modelling reported in this thesis. Moreover, none of the academics in these units felt that 

inputs from their disciplines would resolve the false transaction reporting issue in a timely 

fashion, arguing that fundamental social, fiscal and legal changes are required in Indonesia 

to overcome this problem. 
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9.3.2. Recommendations for future studies 

In addition to the explanatory variables listed in this study, there may be other variables that 

contribute significantly to shaping land prices in particular cities or urban districts in 

Indonesia. In Jakarta, for instance, whether or not a property is located in a flood-prone area 

is a crucial factor in determining transaction price. In instances like that, vulnerability to 

flooding should be added to the list of explanatory variables, either by gathering data from 

property owners on how often they have been flooded, or incorporating flood vulnerability 

maps in spatial modelling. Exposure to other natural hazards that occur frequently in the 

country, e.g., earthquakes, volcanic activity and landslides, could be dealt with in a similar 

manner. Martı´nez-Cuevas et al. (2017) determined the vulnerability scores related to 

earthquakes for buildings in Lorca, Spain, and recommended adaptations to the urban 

zoning regulations to reduce the vulnerability of buildings in these high-risk zones. In the 

context of mass valuation, a vulnerability score of each property to the particular hazard is 

an important explanatory variable in predicting property prices in cities. Therefore, I argue 

that a key task of future studies is to examine the most appropriate ways to incorporate 

hazard vulnerability as an explanatory variable in prediction modelling. This would best be 

accomplished through a series of Masters or PhD thesis in Indonesia or overseas. 
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11. APPENDICES 

 

Appendix A: Correlation coefficients between variables 

 

 

parcel 

size 

sqm 

value 

per 

sqm 

road 

width 

road 

class 

nr 

zonin

g nr 

tollgat

e  

primary 

artery  

Secondary 

artery 

primary 

collecto

r  

busines

s centre  

Market-

place  
hospital  

schoo

l 

parcel size 

sqm 
1.000 -.115** -.037 .102** -.299** -.089* .061 -.035 -.018 .038 .049 .014 .139** 

value 

per sqm 
-.115** 1.000 .710** .393** .663** -.268** -.194** -.003 .024 -.176** .020 .122** -.096* 

road 

width 
-.037 .710** 1.000 .610** .651** -.069 -.198** .038 -.099** -.184** -.044 .030 -.128** 

road 

class nr 
.102** .393** .610** 1.000 .344** -.094* -.209** .090* -.222** -.116** -.125** .046 -.026 

zoning nr -.299** .663** .651** .344** 1.000 -.041 -.161** .047 -.089* -.143** -.071 .041 -.178** 

              

tollgate -.089* -.268** -.069 -.094* -.041 1.000 .324** .065 .008 .342** -.078* -.448** -.009 

primary 

artery 
.061 -.194** -.198** -.209** -.161** .324** 1.000 .082* .082* .617** .378** .055 .146** 

secondary 

artery 
-.035 -.003 .038 .090* .047 .065 .082* 1.000 -.272** .392** .309** .595** .201** 

primary 

collector 
-.018 .024 -.099** -.222** -.089* .008 .082* -.272** 1.000 .028 .179** -.078* .131** 

business 

centre 
.038 -.176** -.184** -.116** -.143** .342** .617** .392** .028 1.000 .119** .238** .288* 

market 

place 
.049 .020 -.044 -.125** -.071 -.078* .378** .309** .179** .119** 1.000 .209** .029 

hospital .014 .122** .030 .046 .041 -.448** .055 .595** -.078* .238** .209** 1.000 .257** 

school .139** -.096* -.128** -.026 -.178** -.009 .146** .201** .131** .288** .029 .257** 1.000 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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Appendix B: Lines fitted on the scatter plots between price and each explanatory 

variable  
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Appendix C: Survey Form  
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