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1 Introduction 

Electron-atom collisions are responsible for a wide range of phenomena including 

plasma interactions, processes that occur in gas lasers and also interactions within 

the upper atmosphere, to name but a few. By studying electron-atom collisions we 

can therefore hope to better understand these processes. This introductory chapter is 

intended to review some of the previous experimental and theoretical work which 

were undertaken to achieve that goal. However, as all this work has already been 

reviewed extensively in the literature, only a précis will be given here.  

 

A neutral atom, in the most general sense, consists of a small, heavy nucleus which 

is positively charged and one or more negatively-charged electrons orbiting this 

nucleus. A free electron colliding with this atom will experience a Coulomb force 

due to the atomic electron(s). While the nature of the Coulomb interaction is well 

known, the equations of motion, for even the simplest case of an electron scattering 

from a hydrogen atom, cannot be solved analytically due to the infinite range over 

which the interaction occurs. Thus we can consider electron-atom scattering theory 

to be characterised into two main problems (Burke et. al. 1971): defining the 

wavefunction of the target; and modeling the Coulomb interaction between the 

projectile electron and the target. Early studies of electron-hydrogen collisions, 

many of which have been reviewed by Burke and Smith (1962), provided the initial 

test-bed for theory and experiment. This is due to the fact that, in the case of atomic 

hydrogen, the target wavefunction is known exactly and this enables a clear focus on 

the electron scattering interaction. Despite this obvious theoretical advantage, atomic 

hydrogen has long been an experimentally challenging scattering target due to the 
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necessary dissociation of the hydrogen molecule into its atomic constituents (Dixon 

et. al. 1978). It is not surprising then that this work was soon extended to the more 

experimentally favourable “hydrogen-like” target sodium (Hertel and Stoll, 1974), 

which can be accurately modeled with a single electron orbiting an “inert” Hartree-

Fock core. More recently, it has been shown that Convergent Close Coupling (CCC) 

calculations for electron scattering from sodium (Scholten et. al. 1993, Bray et. al. 

1994), lithium (Karaganov et. al. 1999), potassium (Stockman et. al. 2001) and, to a 

lesser extent, rubidium (Hall et. al. 2004) are very successful in describing these 

respective scattering processes. This observation brings us to the question of 

whether heavier targets can be modeled using a similar approach, or whether 

relativistic effects must be included in an accurate theoretical description. Zeman et. 

al. (1995) have suggested that relativistic effects should be included in both the 

target description and the scattering process in order for the theoretical predictions to 

be correct, however no precise experimental data for such a system was available at 

that time. 

 

The ultimate goal of any scattering experiment, in a general sense, is to determine 

the quantum states and the energy and momentum vectors of the interacting 

particles, before and after the collision (Bederson 1969a). If the energy, momentum 

and the complete set of quantum states is known for all particles, then all of the 

information for the system can be extracted by the experimentalist. However, in 

practice a typical scattering experiment will average over one or more of these 

parameters and some information is thus lost. Therefore, for an experiment to be a 

sensitive test of scattering theory, it is important that it can yield as many unique and 

independent parameters as possible. In order to describe both the magnitude and 
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relative phase of the scattering amplitudes, early experiments (see, for example, 

Eminyan et. al. 1973, Riley et. al. 1985) performed an analysis of the fluorescence 

radiation after the collision, using so-called electron-photon coincidence techniques 

(see also Andersen et. al. 1988). A further improvement came along with the 

development of narrowband tuneable-wavelength lasers that enable the scattering 

target to be prepared in a well defined excited state, from which the electron is 

superelastically scattered (Andersen et. al. 1988). While the amount of information 

extracted is essentially the same as for the early coincidence experiments, the 

superelastic technique resulted in much higher scattering count rates and therefore 

better precision (MacGillivray and Standage, 1991).  

 

Previous inelastic electron scattering experiments with caesium had been limited to 

measurements of integral and total collision cross section data (Chen and Gallagher, 

1978, MacAskill et. al. 2002). While angle-differential cross sections had been 

measured for other alkalis (see, for example, Hertel and Stoll, 1974), this was not the 

case for caesium until recently in the spin-resolved experiments of Baum et. al. 

(2004). Interestingly, the recent absolute total cross section data reported by 

Lukomski et. al. (2005) showed some considerable disagreement between 

experiment and current theoretical calculations at low to intermediate energies. In 

particular, they found significant disagreement at the 10eV electron energy, which is 

the same energy that the preliminary superelastic experiments (Karaganov et. al. 

2001) were performed immediately prior to this study. Those measurements were 

later confirmed during the present project, and the results are presented in chapter 6 

of this thesis. To date, comprehensive and complete sets of experimental data for 

superelastic electron scattering from caesium have not been available. Hence, one of 
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the aims of the work outlined in this thesis is to provide a complete set of spin-

averaged parameters for superelastic electron scattering from the 2/3
26 P  excited 

state of caesium. In doing so the leading modern theories developed and refined in 

recent times can be tested alongside this experimental data. The expectation is that 

the current data will contribute to addressing the questions on the role of relativistic 

effects in electron-atom collisions and, more generally, to be a useful aid in the 

development of the theory. 

 

In addition to the experimental work reported in this thesis, a review of some of the 

common framework employed in any literature is detailed in chapter 2. This chapter 

also contains a brief discussion of the various theoretical approaches to predicting 

the scattering amplitudes for electron-atom collisions. Specifically a relativistic 

distorted wave method, the convergent close-coupling method and the R-matrix 

approach are described. Finally some relevant experimental approaches are 

discussed, with particular focus on the superelastic technique. The current 

experimental apparatus is presented in detail in chapter 3, from the initial design to 

any modifications made to the major components during my experimental studies 

and to some practical notes regarding working with caesium. A new laser frequency 

stabilisation technique has been adopted for the current experimental study, which is 

considered to be a key improvement on previous arrangements. While modification 

of the existing apparatus to produce a beam of caesium atoms was relatively 

straightforward, it was noticed in previous work in the Flinders group that the 

technique for stabilising the laser frequency, by using a split photodiode and the 

Doppler effect, was itself potentially unstable. This was due to the fact that the 

fluorescence intensity from the interaction region depended on the polarisation of 
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the laser, which was changed during the course of an experimental run. The solution 

to this problem was to stabilise the laser frequency before the laser entered the 

interaction region, using a saturated absorption spectroscopy technique. This 

approach was successful in maintaining the laser frequency locked to the desired 

transition frequency to within a few MHz for as long as 20 hours without failure. 

Further detailed discussion of this arrangement can be found in chapter 3. The 

optical pumping method employed to prepare the caesium atoms into a well defined 

excited state for each of the measured parameters is discussed in chapter 4. This 

chapter also includes some successful theoretical models which have been employed 

for other alkali-metal targets and a review of previous relevant studies into optical 

pumping. Experimental procedures employed throughout the present project are 

reported in chapter 5, including details of several significant sources of potential 

systematic error which have been addressed. A complete analysis of the systematic 

and statistical errors relevant to the data of the present experiments is also given 

here. Finally, the technique which was utilised to account for the instrumental 

angular resolution and finite interaction volume effects is discussed in chapter 5. The 

results measured as a part of this study are presented in chapter 6, both in graphical 

form, alongside the predictions of a number of modern theoretical approaches, and 

in numerical form at the end of the chapter. Conclusions from this work are drawn in 

chapter 7. 
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2 Electron-Atom Collisions 

2.0 Introduction 

During an electron-atom collision any of a number of processes can occur. For 

example, if the energy of the incoming electron is high enough, it may lose some of 

its energy during the interaction resulting in a bound electron from the atom being 

ejected and the atom is said to be ionised. In another scenario, the atom may emerge 

from the collision with no excitation and accordingly the scattered electron energy 

remains essentially unchanged. This type of collision is referred to as an elastic 

collision. Another important process, which is the time reversed equivalent of that 

which we are concerned with for the present study, is the inelastic collision. Here the 

incoming electron excites a bound electron of the atom to a higher eigenstate, and 

the scattered electron energy is the difference between its initial energy and the 

energy of excitation for the atomic eigenstate of interest. As an example relevant to 

the experiments reported in this thesis, consider the excitation of the first P-state of 

caesium. Here we have an incoming electron losing some of its energy to the atom, 

with the outer-most electron bound to that atom being excited from its 2/1
26 S  

ground state to the 2/3
26 P  excited state. The excited atom now rapidly undergoes 

spontaneous decay back to its ground state, emitting a photon. The entire process is 

summarised by the following reaction equations: 

)6()455.1()6()( 2/3
2

2/1
2 PCseVEeSCsEe +−→+    

)455.1()6()6( 2/1
2

2/3
2 eVSCsPCs γ+→   (eq. 2.1) 

where E is the incident energy of the electron.  
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Due to its rich hyperfine structure, the S-P transition of caesium involves the 

excitation of many degenerate magnetic sublevels, and it is the relative populations 

of these sublevels that determine the shape of the excited atom and its angular 

momentum. In order to understand the scattering mechanism and describe the 

dynamics of the electron-atom interaction, we must have a unified framework within 

which the shape and angular momentum of the excited atom can be described. This 

chapter therefore aims to briefly outline this framework in the standard approach of 

Andersen et. al. (1988), with particular focus on the specific case of spin-averaged 

inelastic electron scattering from caesium. 

2.1 The Density Matrix 

Following Blum (1981), a coherently excited atom (i.e. an atom which has been 

completely prepared so that it is in a pure state), under certain conditions of 

symmetry, can be represented in quantum mechanics by a wavefunction which is a 

linear superposition of basis states iφ  (Macek and Hertel 1974): 

∑=
i

iia φψ      (eq. 2.2) 

where the sum over i refers to a set of quantum numbers. In practice this complete 

preparation of a system rarely occurs and therefore it cannot be described by a 

single-state vector. Due to this lack of knowledge of the prepared system, the system 

must therefore be described as a mixture of states. Consider a system which has been 

incoherently excited, that is one which is a mixture of independently prepared states 

nψ  (n=1,2,…), with statistical weights nW . Such a system is conveniently 

described, in the iφ  representation, by a density matrix ρ , where: 

∗∑== )()( n
j

n
i

n
njiij aaWφρφρ    (eq. 2.3). 



 16 

This system has certain probabilities, iWWW ,...,, 21 , of being in the pure states 

iφφφ ,...,, 21  (Blum 1981). The matrix elements of ρ  are ∗)()( n
j

n
i aa , and the so-

called scattering amplitudes, ia , contain all of the information on the scattering 

process. Clearly, in order to completely describe the scattering process, all of the 

density matrix elements for the excited state must be determined. The elements can 

be interpreted as follows: each diagonal element gives the population of the 

respective 2/3
26 P  substates. The off-diagonal elements correspond to coherences 

formed between the various substates. 

 

One well-known experimental approach to gaining limited information about the 

collision system is to measure the scattering intensity from the atom, i.e. the 

differential cross section (DCS), as a function of the scattering angle. Each diagonal 

element of the density matrix can be considered as the partial DCS for the 

corresponding magnetic sublevel: 

)(
2

iaiii σρ ==      (eq. 2.4) 

where )(iσ  is the partial DCS for the i th sublevel. Therefore, one can write the total 

DCS for the system as the sum of the diagonal elements of ρ : 

ρσσ Tri
i

==∑ )(     (eq. 2.5). 

and it can be seen that σ  gives some information pertaining to the magnitude of the 

scattering amplitudes, albeit averaged over the magnetic sublevels. The important 

physical information that is not provided by σ  is the phase of the each of the 

scattering amplitudes ia , which is contained in the complex off-diagonal elements of 

the density matrix ρ . It is highly desirable to measure these elements of the density 
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matrix, as they give a complete description of the collision process at a fundamental 

level. This is possible, at least in principle, if an experiment is designed that can 

select each specific excitation separately so that averaging is avoided. Techniques of 

this type are generally referred to as alignment and orientation studies, following the 

early work of Macek and Jaecks (1971), Hertel and Stoll (1974) and the more recent 

reviews of Andersen et. al. (1988, 1995). 

 

In order to describe the alignment and orientation of the P-state, a suitable reference 

frame must first be chosen. The symmetry of the collision system suggests that the 

frame be chosen so that it includes the scattering plane, defined by the incident and 

scattered electron momentum vectors ink
r

 and outk
r

. Three possible choices of 

reference frames are illustrated in figure 2.1. The atomic frame has its xa-axis given 

by the symmetry axis of the P-state charge cloud, which is also a symmetry axis for 

the radiation pattern. The natural and collision frames have their xn and zc coordinate 

axes parallel to the incident electron momentum ink
r

, while the zn and yc axes are 

parallel to the direction of momentum transfer.  

 

Following Blum (1981), we consider the particular case where the spins of both the 

electron and atom are not known either before or after the collision (i.e. the spin 

states are averaged during measurement). The P26  state of caesium can be 

described, in the collision frame, as a mixture of states: 

)11(06 )(
1

)(
0

)(2 −−++= sss
aaP   (eq. 2.6a) 

)11(06 )(
1

)(
0

)(2 −−++= ttt
aaP   (eq. 2.6b) 
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where the superscripts (s) and (t) denote singlet and triplet excitation with 

probabilities of 4/1)( =sW  and 4/3)( =tW  respectively. In this case, the density 

matrix is:  
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and the elements, 
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   (eq. 2.8), 

are an average over the singlet and triplet states. If we can assume reflection 

symmetry of the P-state, the 9 matrix elements reduce to 3 independent parameters, 

with several choices being available for these parameters (Andersen et. al. 1988). 

One such choice is the set of alignment and orientation parameters ⊥L , LP  and γ . In 

the natural frame they are calculated in terms of the density matrix elements as 

follows: 




 ±−=

=

−=

−−

−−

−−⊥

2
arg

2
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11
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1111
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nat

nat
L

natnat

P

L

    (eqs. 2.9). 

These three parameters have the advantage that they enable the post-collisional 

electron charge cloud to be visualised in terms of alignment and orientation (see 

figure 2.2). In this characterisation, ⊥L  describes the angular momentum transferred 
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Figure 2.1: Three possible choices of reference frames for describing the post-
collision P-state. The superscript c denotes the standard collision frame, n denotes 
the natural frame and a denotes the atomic frame. Each frame transforms into the 

other on rotation (figure is from Andersen et. al. 1985). 
 
 

 

Figure 2.2: Parameterisation of the P-state electron charge cloud in the natural 
frame. The P-state is described in terms of the angular momentum transferred 

perpendicular to the scattering plane (⊥L ), the alignment angle (γ ) and the relative 
length ( l ), width (w ) and height (h ) of the electron charge cloud (figure is from 

Andersen et. al. 1988). 
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 perpendicular to the scattering plane, γ  is the alignment angle after collision and 

LP  is the linear polarisation, given by: 

wl

wl
PL +

−=        (eq. 2.10) 

where l  and w  are the length and width of the post-collisional electron charge 

cloud, respectively. Experimental data is usually measured directly in terms of the 

Stokes vector components 1P , 2P  and 3P , a notation which has been borrowed from 

the same terminology used in the description of polarised light (Shurcliff 1966). 

These three parameters can be measured directly and derive from measurements of 

the scattering rate in coincidence with a given polarisation of decay fluorescence:  

)90()0(

)90()0(
1 oo oo

II

II
P

+
−=     (eq. 2.11a) 

)135()45(

)135()45(
2 oo oo

II

II
P

+
−=     (eq. 2.11b) 

)()(

)()(
3 LHCIRHCI

LHCIRHCI
P

+
−=     (eq. 2.11c) 

where )( oθI  denotes the number of coincidence events with the fluorescence 

polarised in the θ  direction, while )(RHCI  and )(LHCI  are the number of events 

for right-hand and left-hand polarised fluorescence, respectively. The Stokes 

parameters can be related to the alignment and orientation parameters by the 

following: 

)arg( 21
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3

PiP

PPP
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L

+=
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−=⊥

γ
     (eq. 2.12). 
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Here iP  refer to the measured Stokes parameters after corrections for hyperfine 

structure effects (MacGillivray and Standage 1991). These corrected Stokes 

parameters are generally known as the reduced Stokes parameters, so as to 

distinguish them from the parameters of equations 2.11. 

2.2 Theoretical Approaches 

The electron-caesium collision problem has received considerable interest for many 

years as a test-bed for describing the interaction between an electron and a heavy 

target atom. It has provided several challenges in approaching a complete theoretical 

description, particularly in the low to intermediate energy regime that is the concern 

of the present experimental study. Early calculations emphasised the importance of 

using a relativistic approach while truncating the full set of target states in order to 

enable numerical solutions (Burke and Mitchell 1974, Walker 1974, Karule 1972). 

While there was no experimental data for electron-caesium scattering at the time, 

these theoretical predictions suggested that relativistic effects were observable. This 

theoretical work, and indeed most current theoretical work, can be grouped into the 

two broad categories of either distorted wave methods or close-coupling methods. 

The distorted wave approach is a first-order (or in some cases higher order) 

improvement on the Born approximation, which assumes that the interaction 

between the electron and the neutral target is weak (Sobel’man 1972). The first 

improvement to the Born approximation, as made by the distorted wave method, is 

to include the distortion of the projectile electron wavefunction due to the target 

atom as a perturbation of the free-particle motion. By contrast, the close-coupling 

approach is a non-perturbative technique whereby the wavefunction for the 

scattering system as a whole is expanded in terms of a complete set of discrete and 
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continuum states. The description of the scattering process in this case depends upon 

the terms that are included in the expansion, so early close-coupling calculations 

were found to best describe low-energy collisions, where the target excitation was 

limited to the first few low-energy states. However if the appropriate terms are used 

in the expansion, particularly given the ever-increasing computing power available, 

the close-coupling approach can be extended to higher-energy collision systems 

(Andersen and Bartschat, 2001). There are two important assumptions that are 

common to each of the theories that will be discussed here. Firstly, the caesium atom 

is considered to consist of a single outer-shell electron orbiting outside an inert core, 

so that none of the 54 core electrons interact directly with the projectile, irrespective 

of the incident energy. Secondly, the scattering process is time-invariant, which 

enables us to treat the superelastic scattering process in much the same way as the 

inelastic process.  

 

The first published results for the angle-dependent Stokes parameters for caesium 

were a relativistic distorted wave (RDW) calculation by Zeman et. al. (1993). The 

RDW method is a relativistic approach, solving the Dirac equation within the jj -

coupling scheme, with the target modeled by a non-local potential (Zeman et. al. 

1994, 1997). As the distorted wave approach assumes the interaction between the 

incident electron and the target is weak, it is perhaps not surprising that these 

calculations for alkali atoms have been found to generally reach better agreement 

with experimental results at forward angles and for higher incident electron energy 

(Karaganov et. al. 2002, Stockman et. al. 1999). Results of several distorted-wave 

calculations for electron-alkali atom collisions are reported in the review of 

Andersen et. al. (1997). 
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The convergent close coupling (CCC) theory, first introduced by Bray and 

Stelbovics (1992), approaches the electron-caesium scattering problem by 

attempting a complete description of the target discrete and continuum states 

through a finite basis set representation in a non-relativistic framework. The CCC 

first defines the target Hamiltonian, which contains terms for the kinetic and 

potential energy of the bound electron. In general, and particularly in the case of 

heavy atoms such as caesium, the term containing the core potential must be 

carefully approximated in treating the interaction between the projectile electron and 

the 54 core electrons as a whole. The CCC employs a Hartree-Fock frozen-core 

potential with the addition of a phenomenological core polarisation (Bray 1994): 

polFC VVV +=1      (eq. 2.13). 

Some examples of the techniques which can be applied to formulate the terms FCV  

and polV  are found in Bray (1994). The total Hamiltonian, H , for the entire 

projectile-target system can now be established by introducing similar terms for the 

projectile electron, along with the potential 01V  describing the projectile-target 

electron interaction: 

01000111

010011

VVVKVVK

VVKVKH
polFCpolFC ++++++=

++++=
  (eq. 2.14),  

where the bound and projectile electrons are distinguished by the subscripts 1 and 0, 

respectively. The time-independent Schrödinger equation for the system is: 

( ) 0=Ψ− HE      (eq. 2.15), 

where E  is the total energy of the system and Ψ  is the total wavefunction 

describing the motion of the projectile electron and the atomic charge cloud. For a 
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complete description of the system, Ψ  should be expanded over the complete set 

of target states. In general, this expansion will be over an infinite number of bound 

and continuum states for an atomic target, which yields an infinite set of coupled-

channel differential equations. In order to manage this problem computationally, the 

CCC expands the total wavefunction onto a finite basis set, whose eigenstates are 

called pseudostates. These pseudostates are chosen so that the entire set of target 

states is represented by a finite set of N square-integrable functions (Bray and 

Stelbovics 1995). Thus the problem is reduced to a finite set of coupled integral 

equations, providing numerical solutions for the scattering amplitudes of the system 

of interest. The numerical solutions are not exact, however they will converge to the 

desired accuracy with increasing basis size N.  

 

The R-matrix approach to the electron-caesium problem is another close-coupling 

technique where relativistic effects can be included through the use of the Dirac 

equation (Burke and Mitchell 1974), or alternatively through the Breit-Pauli 

Hamiltonian (Scott and Burke 1980). These two approaches have been compared by 

Bartschat (1993). The R-matrix treatment divides the scattering problem into two 

well defined regions: the internal region, bound by a sphere of radius large enough 

to include the atomic target states and possible pseudostates of interest in the 

calculation; and the external region outside the sphere where the target potential is 

reduced to a weak long-range multipole potential (Burke and Scott 1996). The 

solution at the boundary between the two regions yields the matrix R, which leads to 

the scattering matrix S, whose elements are the scattering amplitudes for the 

problem. In the recent Breit-Pauli R-matrix with pseudostates (RMPS) method of 

Bartschat and Fang (2000) the target was modeled by a static core potential, along 



 25 

with several additional terms accounting for spin-dependent potentials and 

relativistic corrections. The target structure and coupling between the discrete and 

continuum states was treated through an expansion onto a finite basis of 8 physical 

states and 32 pseudostates. The basis was chosen so that the pseudostate angular 

momenta range from below the ionisation threshold to well into the target 

continuum. 

 

Numerical data for the reduced Stokes parameters for electron-caesium scattering, 

from recent CCC (Bray 2006) and RMPS (Bartschat 2006) calculations, have been 

kindly provided by Prof. Igor Bray and Prof. Klaus Bartschat. They are presented 

along with the experimental results of the current project in chapter 6. 

2.3 Experimental Approaches 

As Bederson (1969a, 1969b) first noted in his article, “The Perfect Scattering 

Experiment”, the goal of such a scattering experiment is to determine all of the 

quantum numbers of the initial and final states of the colliding particles, along with 

the energy and momenta of the incident and scattered electrons. That is, with respect 

to the density matrix formalism, to determine the magnitude and phase of all of the 

scattering amplitudes. For the case of an inelastic collision experiment involving the 

ground state of caesium, this would equate to colliding a spin-polarised electron with 

the spin-polarised ground state Cs atom, and measuring the exact final state of the 

atom through analysis of the decay fluorescence, in coincidence with the detected 

scattered electron. The process can be illustrated by the equation: 

( ) ( ) ( ) ( )βαβα ′+′→+ eCseCs     (eq. 2.16) 
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where α , β , α ′  and β ′  describe the initial and final states of the electron and the 

atom and are known exactly, along with their initial and final momentum vectors. 

Anderson et. al. (1997) have shown that a complete determination of all of the 

parameters in Bederson’s “perfect experiment” is a very complicated matter. 

Nevertheless there is still much to be learnt from spin averaged experiments which 

can measure the phase of the scattering amplitudes, particularly now that there are 

theories that can predict these amplitudes. This was not the case in 1969. 

 

Consider now the time-reverse equivalent of the inelastic scattering experiment of 

equation 2.1:  

)6()455.1()6( 2/3
2

2/1
2 PCseVSCs →+ γ      

)6()()6()455.1( 2/1
2

2/3
2 SCsEePCseVEe +→+−  (eq. 2.17).  

Here the atom is first prepared to the excited state of interest through optical 

pumping in a polarised laser field, before the electron-atom collision. When the 

electron is scattered from the excited atom, it collisionally de-excites the atom, 

gaining energy equal to the energy of excitation. Hence electron-atom collisions of 

this type are generally referred to as being “superelastic”. Advances in tunable 

continuous-wave (CW) lasers, beginning in the 1970’s, and in particular most 

recently with diode lasers, have enabled superelastic studies of a wide range of 

atomic systems, including electron interactions with sodium (Scholten et. al. 1993), 

lithium (Karaganov et. al. 1999), potassium (Stockman et. al. 2001), rubidium (Hall 

et. al. 2004), calcium (Law and Teubner 1995, Murray and Cvejanovic 2003), 

helium (Jacka et. al.), chromium (Hanne et. al. 1993) and barium (Johnson and 

Zetner 2005). 
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The superelastic experiment provides exactly the same information as the inelastic 

coincidence experiment, under the assumption that the scattering mechanism of 

interest is invariant on time reversal (Andersen et. al. 1988). There are, however, 

several technical advantages to the superelastic approach (MacGillivray and 

Standage 1991). One such advantage is that discrimination between the superelastic 

signal and the lower energy elastic background is straightforward, using a retarding 

field-type electron spectrometer. Additionally, as the diameter of the interaction 

region is controlled by the laser beam (see section 3.2.5), it can be easily confined or 

expanded from outside the scattering chamber with the use of standard optical 

instruments and without the need for adjusting the atomic or electron beams. Finally, 

the number of accessible excited states of the atom is reduced to a single photon-

induced transition, controlled by the frequency tuning of the laser, whose energy 

resolution is much better than that which can be achieved with an electron beam. In 

addition to this, the superelastic technique, unlike coincidence scattering, is not a 

time-resolved process and therefore has a much faster data collection rate. All of 

these conditions ultimately lead to the superelastic technique yielding a higher 

scattering signal than the equivalent coincidence measurements, for otherwise equal 

atomic and electron beam parameters, therefore enabling a broader range of energies 

and scattering angles to be studied. 

 

Measurement of the number of superelastic electron scattering events as a function 

of laser polarisation, for a given scattering angle, yields the parameters: 
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where )( oθI  is now the superelastic electron scattering rate for linear laser 

polarisation oθ , while )(RHCI  and )(LHCI  are the rates for the respective right-

handed and left-handed laser polarisations. The parameters iP  do not correspond 

exactly to the components of the Stokes vector (equations 2.11) as optical pumping 

effects must be included (see chapter 4). Specifically, these effects are dealt with by 

the so-called optical pumping coefficients K  and K ′ , where:  
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      (eq. 2.19). 

K  and K ′   thereby enable depolarisation during the optical pumping process to be 

included in the collision characterisation. The reduced Stokes parameters in equation 

2.19 are now identical to those of equation 2.12. 

2.4 Coherence 

Coherence can be characterised by the frame-independent parameter +P , where: 

12
3

2
2

2
1 ≤++=+ PPPP     (eq. 2.20). 
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It is related to the separate singlet and triplet scattering amplitudes by (Andersen et. 

al. 1988): 

( ) 2)(
1

)(
1

)(
1

)(
1

2

4

3
1 stst aaaaP −−

+ +−=    (eq. 2.21). 

For a pure triplet or singlet channel, the P-state is completely spin polarised and 

1=+P . However, if there is no discrimination between the spin-dependent channels 

an incoherent mixture of spin states exists and the parameter +P  will reflect the 

phase relationship between the spin-averaged amplitudes 1a  and 1−a . In general, for 

the spin-averaged experiment, +P  is positive and less than or equal to unity: 

10 ≤≤ +P  (Andersen et. al. 1988).  

 

Even without any knowledge of the individual spin states of the electron or the atom, 

it is possible to gain some information on the role of the spin-dependent processes. 

Consider the coherence parameter with triplet and singlet scattering amplitudes 

converted into direct (D) and exchange (E) scattering amplitudes (Kessler 1985): 

( ) 2

1111

2
31 EDED aaaaP −−

+ −−=     (eq. 2.22) 

Equation 2.22 is only less than unity if the exchange scattering amplitudes, Eia , are 

non-zero. Thus some information about the role of exchange scattering can be 

extracted from the spin-averaged experiment (Teubner and Scholten 1992). 
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3 Apparatus 

3.0 Introduction 

This chapter describes the apparatus employed in the electron-caesium superelastic 

scattering experiments discussed in this thesis. The original apparatus was designed 

by Riley (1984) for the purpose of studying angular correlation functions in sodium. 

Subsequent modifications by Scholten (1989), Law (1995), Karaganov (1997) and 

Stockman (1998), have allowed experiments involving electron scattering from 

optically excited sodium, calcium, lithium and potassium targets, respectively, to be 

investigated. Some additional modifications were made during the course of the 

present study, in order to meet the demands of the electron-caesium scattering 

experiments, and these will be discussed in detail later in this chapter. 

3.1 Scattering Chamber and Experimental Arrangement 

3.1.1 Vacuum System 

The scattering chamber consisted of a large (76cm dia.  x 82cm height) stainless 

steel cylinder mounted on top of 2.5cm thick stainless steel base plate. It was 

pumped by an Edwards Diffstak MK2 Series 160/700P oil diffusion pump, backed 

by an Edwards EDM20 rotary mechanical pump. A refrigerated cold finger (-55oC), 

positioned in the foreline before the rotary pump, prevents oil from the diffusion 

pump, or water vapour from the chamber roughing process, migrating into the 

backing system. A pneumatically actuated butterfly valve was in place between the 

scattering chamber and the diffusion pump. The entire apparatus was positioned on a 

wooden platform, and was opened by raising the bell with three hydraulic lifters 

stationed around the outer perimeter of the chamber. A schematic diagram of some 
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of the major components of the apparatus is shown in figure 3.1. The chamber 

pressure was monitored using a Granville-Phillips Series 274 ionisation gauge, 

while the backing pressure was monitored by a Granville-Phillips Pirani gauge. 

Typical chamber pressures were 1x10-7 Torr, when the caesium oven was cold, and 

2.5x10-7 Torr with the oven at operating temperature. 

3.1.2 Turntables 

The electron gun and analyser could each be independently rotated in the scattering 

plane by twin turntables mounted on a 15mm thick brass platform, which was 

connected directly to the base of the scattering chamber. The turntables were 

positioned so that they were coaxial with the laser beam which was aligned to the 

centre of the chamber (see figure 3.2). Each turntable was constructed from brass 

and moved freely atop a race of phosphor bronze ball bearings. The scattering angle 

could be varied by rotating either turntable manually via helical gears. The angle 

was monitored by a potentiometer on each gear, yielding an estimated uncertainty of 

better than °± 2.0 . 

3.1.3 Electromagnetic Fields and Shielding 

For any electron scattering study it is crucial that the experiments are performed in 

an environment free of unwanted electromagnetic fields. It was therefore essential 

that the apparatus was constructed exclusively from non-magnetic materials. The 

vacuum chamber walls were constructed from 310 stainless steel, which was 

selected due to its low magnetic permeability. The side of the chamber was also 

lined with conetic shielding and an outer mu-metal shield to reduce the presence of 

any ambient magnetic fields. Electrical feedthroughs and cables were all shielded  
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Figure 3.1: A schematic diagram of the vacuum apparatus and some of the major 
components used in the caesium experiments (not to scale). 
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Figure 3.2: Schematic illustration of the experimental layout, as viewed from above 

(not to scale). The laser direction is out of the page. 
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and care was taken to ensure that all metal surfaces were maintained at ground 

potential. Orthogonal pairs of Helmholtz coils, one circular (1.8m diameter) pair and 

one square (2m x 2m) pair, were additionally set in place to further negate the 

vertical and North-South components of the ambient magnetic field respectively.  

These nett field components were measured, using a Schonstead Instrument Co. 

Model DM2220 magnetometer, to be less than 5mG in each case at the interaction 

region. The East-West magnetic field component was found to be negligible. 

3.1.4 Cleaning 

Throughout the experiments the entire vacuum system required regular cleaning due  

to the corrosive and extremely hydrophilic nature of caesium. Any residual traces of 

caesium would tend to combine with water molecules to produce caesium 

hydroxide, an undesirable product due to its dielectric and highly corrosive 

properties. While strategies were in place to minimise the possibility of unwanted 

residual caesium being introduced into the apparatus, it was ever important to 

perform regular and thorough cleaning of the scattering chamber in order to 

maintain good vacuum conditions and to prevent possible electrostatic charging 

effects. These latter effects could, for example, lead to a serious deterioration in the 

performance of the electron gun if left unaddressed.  

3.2 Atomic Beam 

3.2.1 Caesium Beam Source 

Caesium, with 55 electrons, is the 5th alkali metal in the periodic table. Its only 

naturally occurring isotope, 133Cs, is known as the most electronegative stable metal 

and, along with rubidium and potassium, it is highly reactive. It is a soft metal with a 
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shiny, silvery gold colour. Other physical properties of caesium can be found in 

table 3.1.  

 

Safe handling of alkali metals in the laboratory is imperative and in the case of 

caesium it is essential that the metal is not allowed to contact any surface, unless that 

surface has been specifically prepared for the task. Contact with air or water, as well 

as many material surfaces, will lead to rapid oxidation at best and explosive fire at 

 

 
Atomic Number 
 
Atomic Mass 
 
Melting Point (STP) 
 
Boiling Point (STP) 
 
Specific Gravity (20oC) 
 
Effective Atomic Diameter  
(Cs vapour) 
 

 
55 

 
132.91 u 
 
28.40 oC 
 
678.4 oC 
 
1.873 g cm-3 
 
5.4 Å 

 

 
Table 3.1: Some important physical properties of caesium (Weast 1981). 
 

worst. The safe handling of alkali metals, along with some good practical notes for 

caesium-compatible materials at a range of temperatures is documented in Mantell 

(1958). 

 

The relationship between the temperature T, in Kelvin, and the vapour pressure p, in 

torr, of caesium is given by Nesmeyanov (1963): 

T
Tp

4041
log35.10531.11log −−=     (eq. 3.1) 
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The oven used for the caesium experiments was originally designed and built as a 

lithium beam source by Karaganov (1997), and later used as a potassium beam 

source by Stockman (1998). It was not necessary to design another oven for the 

present project because the materials used to construct the oven were compatible for 

use with caesium. 

3.2.2 Oven 

The oven body and top were machined from solid blocks of ingot iron A250, Grade 

T with purity better than 98%. The two pieces of the oven were bolted together with 

a knife edge sealing directly onto a highly polished surface. The oven had 5mm 

thick walls and an interior volume of 50cm3. A removable nozzle assembly allowed 

for different types of apertures to be used and also for the oven to be reloaded 

through the 1cm diameter orifice without unnecessary disassembly. Both the oven 

and the nozzle were independently heated by THERMOCOAX two-core heating 

elements (type 2NcNc Ac20) wound around the oven body and nozzle assemblies. 

Employing this type of heating element ensured stable heating without magnetic 

induction. A schematic diagram of the present oven is shown in figure 3.3. 

Approximately 2.6W (0.2A) was required to maintain the body at about 120oC. The 

nozzle was kept at a temperature ~40oC higher than the body to prevent caesium 

from being deposited within the nozzle and clogging it. The oven and nozzle 

temperatures were monitored independently with two chromel-alumel 

thermocouples. 

 

A number of heat shields were deployed around the oven and nozzle to reduce the 

amount of heat radiating into the chamber. Stainless steel foil (0.05mm thick) and  
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copper foil (0.1mm thick) shields surrounded both the body and nozzle. An 

aluminium box also enclosed the oven to protect the surrounding apparatus 

components in case of a leak, and to minimise the presence of any residual caesium 

vapour in the chamber. 

3.2.3 Nozzle 

The removable nozzle, having similar chemical requirements as the oven body itself, 

was also constructed of ingot iron A250, Grade T. The orifice measured 1.5mm x 

10mm and housed a multi-channel array constructed of a single piece of corrugated 

tantalum foil. Early experiments were performed with the nozzle channels formed 

from titanium foil, but after several hours of exposure to hot caesium the titanium 

became brittle and failed to maintain its initial shape. However, tantalum foil had 

superior malleable properties and was compatible with caesium vapour and so the 

array was remade from tantalum. 

 

The flow of caesium vapour through an aperture divided into a number of channel 

arrays was modeled following the approach of Lucas(1973). Given the vapour 

pressure of caesium from equation 3.1 and the geometry of the aperture, practically 

important parameters could then be extracted in order to investigate a range of 

suitable temperatures within which the beam source should be maintained. Figure 

3.4 illustrates the temperature dependence of these parameters for the nozzles tested 

for use in the caesium superelastic experiments. When attempting to produce a high-

intensity and well-collimated atomic beam it is advantageous to divide the output 

aperture into a series of small diameter apertures in order to improve the density of 

the beam at lower operating temperature and to also achieve a lower angular  
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Figure 3.4: Practically important parameters of the caesium oven and the atomic 
beam as a function of the oven temperature for two different types of nozzle. 

 

divergence in the atomic beam. Lucas (1973) has discussed the use of a focusing 

array, which reduces the angular width of the beam while increasing the beam 

density. A severe limitation exists, however, in the case of alkali metals such as 

caesium in that the hot metal vapour would tend to clog a focusing multichannel  

array. The same restriction was found to exist for a non-focusing multichannel array, 

where the diameter, and therefore the total number of channels for a given aperture, 

was limited by how rapidly caesium and caesium compounds were deposited within 

the nozzle. A compromise was therefore sought for the project and it was found that 

by limiting the multichannel array to 8 channels of 1.5mm diameter and ensuring 

that the entire nozzle was always hotter than the caesium reservoir the effective 

running time of the oven was approximately 100 hours. Experimental observations 
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confirmed that the modeled data of figure 3.4 were accurate. Therefore the running 

temperature of the oven was typically maintained at 118oC, in order to achieve 

optimal atomic densities and a beam of low angular divergence, while maintaining a 

reasonable caesium consumption rate of around 10-2 g/hour. 

3.2.4 Collimator and Atomic Beam Dump 

As shown in the results of figure 3.4, the calculated angular width of the atomic 

beam as it emerges from the nozzle is still relatively large, so it was necessary to use 

a collimator to restrict the beam to a narrow divergence. This was important as it 

was found that optimal optical pumping and therefore the maximum excited state 

population of the caesium atoms required the production of a well collimated atomic 

beam.  

 

Doppler broadening of the transition frequency within the atomic beam depends 

strongly on the angular divergence of the beam. The following description follows 

the analysis of Karaganov (1997). Any velocity component of the caesium beam in 

the direction of laser propagation results in a shift of the effective transition 

frequency due to the Doppler effect (Gerritsen and Nienhuis, 1975) (see figure 3.5): 

2
sin)

2
sin1(

0
00

θ
λ

νθνν atomatom
shifted c

vv ±=±=    (eq. 3.2) 

where shiftedν  is the Doppler shifted frequency, 0ν  is the Doppler free frequency, 

atomv  is the velocity of the atomic beam, c  is the speed of light and θ  defines the 

divergence of the atomic beam. The Doppler spread in the effective transition 

frequency should be smaller than the natural line width MHznat 2.5
2

1 ==∆
πτ

ν ,  
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Figure 3.5: The influence of the angular divergence of the atomic beam on the 
effective transition frequency of the caesium atoms due to the Doppler effect. 

 

 

Figure 3.6: Caesium fluorescence signal (upper trace) as a function of laser 
detuning, showing a saturated linewidth of 40MHz for the atomic beam produced 

under typical operating conditions. Horizontal scale is 75MHz/division, as 
measured using the separation of hyperfine structure resonances, deduced from the 

saturated absorption spectrum (lower trace) using a caesium vapour cell. 
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where ns7.30=τ  (Hansen, 1984) is the lifetime of the 6P3/2 excited state in 

caesium. This condition maximises the number of atoms undergoing optical 

pumping. In practice, the high power of the laser results in a power broadened or 

saturated linewidth which is much wider (see figure 3.6). Thus it is desirable to  

constrain the atomic beam so that its Doppler width is narrower than the saturated 

linewidth: 

saturateddoppler νθ
λ

ν ∆≤=∆
2

sin2
0

atomv
   (eq. 3.3) 

It was found that an atomic beam angular width of better than 7.8o was required for a 

saturated linewidth of MHzsaturated 40=∆ν  (full width at half maximum), laser 

wavelength nm346.8520 =λ  and mean atomic velocity 1250 −= msatomv  for an 

oven temperature of 120oC.The atomic beam collimator shown in figure 3.7 was 

constructed from stainless steel with a 3.0mm x 5.0mm aperture at the output end. 

Angular divergence of the atomic beam was reduced to 2.1o, corresponding to a 

Doppler spread of 10.6MHz, which was well within the experimental requirements. 

The temperature of the collimator body was maintained at around -8oC by a water-

cooled Peltier element, in order to ensure that excess caesium vapour was condensed 

inside the collimator and not introduced to the surrounding apparatus. It was also 

essential to protect surfaces of the apparatus from contact with the atomic beam after 

it passed through the interaction region (see section 3.2.5). Any brass or stainless 

steel surfaces which were exposed to caesium vapour tended to swiftly form an 

oxide coating which could potentially become electrically charged during the 

experiment. An atom trap (see figure 3.2) was therefore designed in order to prevent 

the surfaces of the electron gun and electron analyzer from becoming contaminated  
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Figure 3.7: A schematic illustration of the atomic beam collimator used in the 
present experiments (not to scale), viewed in the scattering plane. Also illustrated is 
the atomic beam intersection with the laser (the interaction region). All lengths are 

in mm. 
 

with caesium, particularly when they were positioned in or near the atomic beam 

path. The present trap essentially consisted of a 30mm x 15mm copper plate 

supported by a copper arm and positioned directly opposite the collimator output. 

The entire assembly was cooled by the same Peltier element employed for cooling 

the collimator. 

3.2.5 The Interaction Region 

Due to the three-beam nature of the superelastic electron scattering experiments, it 

was essential to have a clearly defined target scattering region. This volume, which 

shall be referred to as the interaction region, was defined as the intersection of 

overlap between the atomic beam and the laser beam (see figures 3.2 and 3.5). It was 

therefore possible to control not only the volume, but also the exact position of the 

interaction region by simply controlling the diameter and position of the laser beam. 

Typically, the interaction region was confined to a volume of 35mm3, by restricting 

the laser beam diameter to 3mm for a nominal caesium atomic beam divergence of 

2.9o. 
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3.2.6 Operation 

Special techniques have been developed for the safe handling and preparation of 

caesium for study in the laboratory (see, for example Brotherton et. al. (1962), 

Mantell (1958) and Perel’man (1965)). The procedures employed in the present 

experiments were developed from earlier work with alkali metals at Flinders 

(Karaganov et. al. 1999) along with the handling methods of Brotherton et. al. 

(1962).  

 

Caesium ingot was supplied for the present project in conveniently-sized 1g 

ampoules surrounded by fire-retardant packing in a steel canister. It was necessary, 

when loading caesium into the oven, to hold both the oven and all the handling tools 

under an argon environment. This was required in order to prevent caesium from 

oxidising before the oven was placed inside the scattering chamber and evacuated. 

Working within the argon filled dry box, the metal was warmed to approximately 

35oC (see table 3.1) so that the entire contents of an ampoule could be readily 

transferred, by teat pipette, through the nozzle aperture and into the oven reservoir. 

With the nozzle replaced, the oven was then sealed and carefully transferred from 

the dry box and secured inside the scattering chamber. An argon injection line inside 

the scattering chamber to the atomic beam collimator ensured that the reservoir was 

held under inert conditions until the chamber could be evacuated. 

 

A typical reservoir temperature of 118oC resulted in a partial pressure of 3.5x10-3 

torr (Nesmeyanov, 1963) and an atomic density of ~3x109 atoms/cm3 (see figure 

3.4) at the interaction region. This temperature was maintained for each 

experimental run. It was found that lower oven temperatures would result in a 
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reduced superelastic count rate due to lower target density, while higher 

temperatures would consume the small sample of caesium too rapidly. Under 

optimal conditions, 1g of caesium would last for up to 100 hours of operation, which 

was one of two limitations to the duration of an experimental run. The other 

limitation was, in spite of our precautions, the tendency for the nozzle to become 

clogged with caesium, thus reducing its performance, after repeated heating and 

cooling of the oven and many hours of operation. A summary of the practically 

important characteristics of the atomic beam apparatus is presented in table 3.2. 
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atomic beam 
 
mean velocity of atoms 
 
density of atoms at the interaction region 
 
beam divergence (FWHM) 
 
Distance from the collimator to the 
interaction region 
 

 
 
250 m.s-1 

 
3 x 109 – 5 x 109 atoms.cm-3 

 
2.9o 
 
35 mm 
 

caesium oven 
 
oven material 
 
capacity 
 
operating temperature 
 
approximate running time 
 

 
 
ingot iron A250 grade T 
 
50 cm3 

 
120 oC 
 
over 100 hours 
 

removable nozzle 
 
nozzle materials 
 
aperture diameter 
 
aperture length 
 
operating temperature 
 

 
 

ingot iron A250 grade T, tantalum foil 
 
1.5 mm 
 
10 mm 
 
160 oC 

 
collimator  
 
length 
 
aperture 
 
operating temperature 
 

 
 
125 mm 
 
2.5 mm x 5.0 mm 
 
-8 oC 
 

 
Table 3.2: Atomic beam parameters of practical importance. 
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3.3 Electron Gun and Spectrometer 

3.3.1 Electron Gun 

An electron gun, originally built by Scholten (1989) for superelastic scattering 

experiments with sodium, was successfully used throughout the caesium superelastic 

experiments. Prior to its implementation in the current project, it was modified by 

Karaganov (1997) for superelastic scattering from lithium and later used by 

Stockman (1998) for studies on potassium. The current version of the gun is shown 

in figure 3.8. 

 

The electron gun was constructed as a series of electrostatic lenses from the data of 

Harting and Read (1976). The lenses were fabricated as discs from 0.15mm thick 

molybdenum shim, with each element separated by 1mm thick rings of macor 

(machinable ceramic) and 310 stainless steel tube. The apertures, spacers and 

deflector assemblies were stacked between four macor supporting rods and pulled 

together with two retaining rods. A Pierce stage extracted electrons from the 

indirectly heated cathode and lens L1 focused them into a beam and onto the 

collimating apertures A1 and A2. Two sets of four-plate deflectors (D1 and D2) 

were employed to guide the electron beam through the gun. Voltages on the final 

lens system L2 and final deflector D3 were adjusted to further collimate and direct 

the beam onto the interaction region. Zero beam angle at the interaction region was 

an important criterion that was maintained throughout the present experiments, with 

the aid of a pair of Faraday cups, as described in section 3.3.2. 
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Figure 3.8: Schematic diagram of the electron gun (1:1 scale). 
 

The electron source consisted of an indirectly heated barium oxide cathode 

(Centronix, Model 1/2 C60-490 6.3 600-E-D-100). The cathode voltage was applied 

directly to the molybdenum cap on which the oxide was coated. This type of cathode 

has an operating temperature of less then 1000oC, which corresponds to a minimal 

electron thermal energy spread eVEthermal 3.0≈∆  (Simpson 1967). However, a 

problem became apparent when it was discovered that a contact potential exists 

between the cap and the oxide coating, causing a shift between the applied voltage 

and the electron beam energy. This problem, along with the calibration technique 

that was employed to overcome it, is discussed further in section 3.3.5. 

3.3.2 Electron Beam Characteristics 

A pair of concentric Faraday cups was in place to monitor the electron beam current 

and profile. The cups were constructed of brass, with each rim machined to a knife 

edge and the entire cup assembly surrounded by a copper shield. The surface of each 

cup was coated with a graphite coating to facilitate the rapid removal of any build-

up of electrostatic charge. The Faraday cup assembly was mounted on an aluminium 
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stand which could be positioned at a convenient location within the scattering 

chamber, usually at a reasonable distance from the interaction region. 

 

Both the diameter and angular divergence of the electron beam could be determined 

by observing the inner cup current as the beam was scanned across it. The beam was 

scanned either by rotating the gun turntable or alternatively by adjusting the 

potential across two of the deflector plates on the final deflector D3. Given the inner 

Faraday cup diameter of 4mm the angular resolution of our divergence 

measurements was approximately 1o. Typically, the beam diameter was 4mm and 

the angular divergence ranged from 4.5o at 7eV to 2.5o at 15eV, which ensured that 

the beam was larger than the interaction region. Electron beam currents were around 

Aµ1.0  at 7eV and Aµ3.0 at 15eV. Once a stable beam was produced at a given 

energy, the electron gun was usually left running for many hours of operation and it 

was generally found that stability improved further with running time. While each 

cathode normally had a lifetime of well over 100 hours of operation, they were 

rendered inoperative after exposure to atmosphere once activated. Hence it was 

standard practice to dismantle and clean the gun after each experimental run and to 

replace the cathode. 

3.3.3 Scattered Electron Energy Analyser 

The superelastic electron scattering project required a method of not only detecting 

superelastically scattered electrons, but also discriminating them from the lower 

energy elastic and inelastic scattered electrons. The retarding field analyser (RFA) 

originally designed by Scholten (1989) was found to be well suited for this task. 
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Figure 3.9: Schematic diagram of the present retarding field electron analyser (1:1 
scale). 

 

An RFA consists of an electrostatic lens which essentially focuses an image of the 

interaction region onto a detector, while rejecting electrons below a well- defined 

threshold energy. The RFA which was used throughout the present experiments is 

shown in figure 3.9. This RFA’s full acceptance angle, θ , was measured to be about 

21o, which was adequate for the current experimental geometry. It is noted that, 

since the RFA is designed to reject elastically scattered electrons, the only 

requirement with respect to the acceptance angle was that it was wide enough to 

view the entire interaction region.  

 

The retarding voltage placed on each lens element was adjusted in order to achieve 

maximum energy resolution. In practice this was accomplished by repeatedly 

scanning the analyser reference voltage across the elastic threshold and observing 

the elastic cutoff curve measured by the detector. The voltage applied to each 

aperture A1, A2, A3 and to the front of the channel electron multiplier (Vcone) was 

optimised in order to produce a cutoff curve closely resembling a step-function. The 
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energy resolution of the analyser could then be determined by differentiating the 

cutoff curve and measuring the full width at half maximum (FWHM) of the resulting 

peak. A typical elastic cutoff curve and the corresponding electron energy 

distribution are shown in figure 3.10. In addition, typical analyser optimised 

potentials are shown in table 3.3. A channel electron multiplier (CEM, Mullard 

B318BL) was used to detect electrons above a nominated energy, which was set 

using the retarding voltages of the electrostatic lens. 

3.3.4 Data Acquisition 

Pulses produced from the electron analyser were amplified by an ORTEC 113 

preamplifier and ORTEC 460 delay line amplifier. It was necessary to discriminate 

the pulses from low level background noise and this was accomplished using a 

single channel analyser (ORTEC 551). Finally, each pulse was counted and recorded 

via a multifunction I/O board (National Instruments PCI-6024E) mounted in a PC 

using National Instruments LabVIEW software, developed as part of this project. A 

schematic diagram of the electron scattering data acquisition apparatus is shown in 

figure 3.11. 

3.3.5 Electron Beam Energy Calibration 

The electron beam energy was selected by applying a voltage directly to the cathode 

cap. Since electrons were emitted from the surface of an oxide coating on the cap, it 

was soon realised that the beam energy would depend not only on the cathode 

voltage, but also on the contact potential between the oxide and the cap. The contact 

potential itself varied from between one to two volts and generally depended on the 

operating temperature of the cathode, and therefore the heating filament current, as 
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Figure 3.10: Typical elastic electron cutoff curve, o, and its corresponding electron 
energy distribution (differentiated cutoff curve), • , for a nominal 5.5eV electron 

energy. 
 
 
 
 

incident electron 
energy 

Vcone (V) A1 (V) A2 (V) A3 (V) 

5.5eV -1 x x + 1.0 x + 3.5 

8.5eV -1 x x + 0.8 x + 5.0 

13.5eV -1 x x + 0.4 x + 8.0 

 
Table 3.3: Typical optimised analyser potentials (in Volts) for various electron 

energies. ‘x’ denotes the RFA reference potential. 
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Figure 3.11: Schematic of the electron scattering data acquisition system. 
 

well as the history of the cathode itself. A calibration procedure was therefore 

employed to compare the apparent beam energy with a known feature in order to 

determine the oxide cathode contact potential at any time during an experiment. The 

so-called b-feature in the excitation function of metastable neon (Buckman et al. 

1983), at 16.91eV, was used as the standard for each energy calibration of the 

electron beam. A nozzle situated near the chamber wall produced a beam of neon 

atoms directed at the electron analyser, which was set to completely reject electrons 

and instead detect only metastable neon atoms. The electron energy was scanned 

using the electron gun programmable power supply in order to measure the 

excitation rate of metastable neon atoms in the neon beam as a function of electron 

energy. This procedure was independent of electron gun position and, due to the 

compatibility of neon with caesium, could be conveniently performed at any time 
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during a superelastic scattering experiment. The uncertainty in the energy calibration 

procedure was estimated to be typically 06.0± eV. The equivalent Stokes 

parameters were observed to be highly sensitive to electron energy (see chapter 6) 

and hence it was particularly important that the beam energy was known and fixed 

throughout a series of measurements. Typically the electron beam energy was 

calibrated before, after and at various stages throughout an experimental run in order 

to eliminate any possibility of drift in electron energy. In most circumstances the 

cathode contact potential was found to be constant, indicating that the electron beam 

energy was stable for many hours of operation, provided that a constant cathode 

heating current was maintained. A summary of the main operational characteristics 

for the electron gun and electron analyser is given in table 3.4. 
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electron gun 
 
extraction type 
 
cathode type 
 
cathode operating temperature 
 
thermal energy spread 
 

 
 
 
Pierce stage 
 
barium oxide, indirectly heated 
 
1000 oC 
 
0.3 eV 
 
 

 
electron analyser 
 
type 
 
detector 
 
 

 
 
 
focusing, retarding field analyser 
 
channel electron multiplier 

 

 
typical electron beam parameters 
 
typical beam current at 10eV 
 
typical beam divergence at 10eV 
(FWHM) 
 
 

 
 
 
200 nA 
 
3.0o 
 

 
Table 3.4: Electron beam source and detector parameters. 
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3.4 Laser System and Optics 

3.4.1 Diode Laser Source 

It is crucial to have a frequency stabilised source of laser radiation so that an atomic 

target can be prepared in a well defined excited state for the whole period of an 

experiment. In the case of the caesium project it was also desirable to have a 

continuous-wave, narrow bandwidth, frequency tunable laser which was able to 

operate reliably at 852.346nm. A tunable single frequency extended cavity diode 

laser (TuiOptics DL100) successfully met these requirements and was used 

throughout the project. The system consisted chiefly of an extended cavity laser 

diode in a Littrow grating arrangement (see Demtroder 1996), that was driven by a 

regulated DC power supply (TuiOptics DCC100) and temperature stabilised by a 

thermoelectric element (TuiOptics DTC100). A piezoelectric element attached to the 

Littrow grating was driven by a separate supply (TuiOptics SC100), which was 

interfaced to the DCC100 supply via the DL100 backplane bus. Thus by controlling 

the angle of the grating with respect to the diode end facet, while simultaneously 

tuning the diode driving current, the laser could be frequency tuned and modulated 

with minimal mode-hopping. 

3.4.2 Frequency Stabilisation 

A feedback signal was required to lock the laser frequency to the desired transition 

in caesium. While the hyperfine energy level splitting in the 2/3
26 P  excited state is a 

few hundred Megahertz, the Doppler broadening due to the velocity distribution of 

atoms at normal room temperature is much wider, resulting in the excited state 

hyperfine structure being unresolved. Therefore a technique employing Doppler-free 
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spectroscopy was required in order to provide a frequency dependent feedback 

signal which was sensitive enough to maintain the laser frequency at a specific 

hyperfine transition. The technique commonly known as saturated absorption 

spectroscopy was chosen for this task.  

 

The detailed principles behind saturated absorption spectroscopy have been reported 

elsewhere (see for example Demtroder 1996) and therefore the following description 

of the technique will be limited to a practical perspective. A small portion of the 

plane-polarised laser beam is directed at beam splitter S1 (see figure 3.12) toward 

the saturated absorption apparatus. Weak reference and probe beams, originating 

from S2 and S3 respectively, are then separated from the pump beam and propagate 

through the caesium vapour cell. The pump beam is directed through the vapour cell 

such that both pump and probe beams overlap spatially, but propagate in opposite 

directions. If the laser frequency, 0ω , corresponds to a resonance transition of 

caesium then those atoms in the path of the pump beam will be pumped into the 

upper level of that transition, leaving a smaller population of atoms residing in the 

lower level. It is important to note that the caesium vapour atoms have a range of 

velocities given by their Maxwell-Boltzmann velocity distribution, and any atom 

with velocity zv  in the direction of propagation (defined as the z-direction) will be 

pumped due to the Doppler-shifted laser frequency in the frame of the moving atom:  

zkv±=′ 0ωω      (eq. 3.4). 

When the much weaker probe beam is directed along the same path, but in the 

opposite direction to the pump beam, it will detect a decrease, or saturation, in 

absorption only for the group of atoms with velocity component 0=zv . Thus, by 

 



 58 

 

Figure 3.12: Schematic diagram of the frequency stabilisation experimental setup. 
 

measuring the probe beam intensity while scanning the laser frequency, one can 

detect a sharp resonance due to an atomic transition, while excluding all atoms that 

are not moving in the plane perpendicular to the pump and probe laser propagation. 

When the full Doppler spectrum of the reference beam is subtracted from the probe 

beam signal something closely resembling a Doppler-free absorption spectrum is 

revealed (see figure 3.13). By monitoring the saturated absorption signal on a digital 

oscilloscope, the laser frequency could be tuned to the desired peak. However, as 

mentioned earlier, an active feedback system was required in order to ensure long 

term frequency stability. Accordingly the saturated absorption signal was fed to the 

laser lock-in (TuiOptics LIR100), which mediated the outputs of the current and 

scan controllers of the laser, correcting both for any long term frequency drift and 

vibrations. Typically, within stable laboratory conditions, the laser frequency could 

be held precisely to the desired transition for as long as 48 hours. 
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Figure 3.13: Saturated absorption spectrum for the caesium D2 transition. The 
Doppler-free spectrum (lower trace) is obtained from the subtraction of the 

measured reference beam intensity (upper trace) from the probe intensity (middle 
trace). Note that not all peaks correspond to a transition; so called cross-over peaks 

(Demtroder 1996) occur between every pair of resonance peaks. 
 

3.4.3 Polarising Optics 

The superelastic experiment required a polarimeter which was capable of accurately 

producing linearly polarised light at any angle or circularly polarised light of either 

helicity, without addition or removal of any optical components. This would ensure 

that a complete set of equivalent Stokes parameters could be measured in a single 

experimental run. Such a polariser was first reported by Karaganov et. al. (1996) and 

this same polarimeter was employed for the present caesium superelastic scattering 

experiments. It consists of two identical zero-order quarter wave plates (Melles 

Griot 02WRQ007) mounted in rotating stages, run by two stepper motors (SLO-

SYN M061) which are driven by computer control. This arrangement enabled 

changes in the polarisation axis to within °± 3.0 , while maintaining the same 

alignment and intensity of the laser beam. The arrangement, along with the relevant 
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configurations for each of six polarisation states, is illustrated in figure 3.14. The 

polarisation of a beam of light can be conveniently described by four independent 

parameters, as first established by Stokes (1852): 
















=

3

2

1

0

S

S

S

S

S       (eq. 3.5) 

Each of the parameters nS  can be determined from simple measurements (Shurcliff 

1966): 
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    (eqs. 3.6),  

where )(φI  represents the intensity of the component of light with electric field 

vector oriented at oφ  for linearly polarised light or left handed or right handed 

orientation in the case of circularly polarised light (denoted LHC or RHC 

respectively). Within this treatment it becomes clear that 0S  characterises the total 

radiation intensity, while 1S  and 2S  characterise the degree of linear polarisation of 

the beam. Similarly 3S  indicates the degree of circular polarisation. In the case of 

monochromatic light, only three of the four parameters are independent. By making 

use of the formula: 
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the degree of linear polarisation can be determined by, 
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laser 

polarisation 1α  2α  

RHC 

LHC 

0o 

45o 

90o 

135o 

0o 

0o 

45o 

45o 

45o 

45o 

45o 

-45o 

-45o 

0o 

45o 

90o 

 

Figure 3.14: Polarimeter consisting of two quarter wave plates. Six different 
polarisation states can be achieved by selecting the orientation of each plate, as 
shown in the table. The laser beam is initially linearly polarised, oriented at 0o. 

 

and the degree of circular polarisation by, 

0

3

S

S
Scircular =        (eq. 3.9). 

Thus the degree of polarisation can be determined by simple measurements using a 

polariser and power meter at any point along the beam path. 

 

It was found that imperfect laser polarisation resulted in inaccurate experimental 

results for the caesium superelastic scattering experiments. While setting up an 

experiment, the final polarisation state of the laser beam was measured for each 

configuration of the optical components. Typical measured values for the linear and 

circular polarisation components were 0.9995 and 0.9993 respectively. As an 

example, for the case of linear polarisation, this indicates an undesired circular 

component of 032.0999501 2 =.- . Further investigations attributed the polarisation 

errors to a combination of three sources: the birefringence of the vacuum windows, 
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the tolerance of the two quarter-wave plates of 250/λ±  (Melles Griot 

specification) and the tolerance of the rotating stages ( o3.0± ). The influence of 

these uncertainties on the experimental results is discussed in chapter 5. 

3.4.4 Fluorescence Detection 

A photodiode detector was installed on a side window of the scattering chamber, 

parallel to the laser beam axis and in the scattering plane, so that the optical 

pumping performance of the laser system and the atomic beam could be determined. 

A photographic zoom lens (Tokina ATX-828(SD) focal length: 80-200mm) was 

employed in front of the detector to magnify the image of the interaction region. An 

analysing polariser (Newport 05P109AR) placed after the lens enabled polarisation 

analysis of the fluorescence radiation. 

3.4.5 Additional Optical Components and Instrumentation 

Some additional optical components were employed along the path of the laser 

beam, in order to improve experiment operational conditions. These included a 

Glan-Taylor polariser immediately before the polarimeter, which effectively 

removed any elliptical component of the beam due to reflections from the mirrors. A 

circular iris aperture was also employed in order to ensure a symmetrical beam 

profile. Since the interaction region was defined as the intersection of the atomic 

beam and the laser, this variable-diameter aperture also enabled the volume of the 

interaction region to be controlled. 

 

Other essential instruments which were required throughout the experiments 

included a wavemeter (Burleigh WA20), capable of measuring wavelengths to an 

accuracy of 001.0± nm. A spectrum analyser (TechOptics SA2) was also useful for 
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viewing the laser mode structure. A variable attenuator/beamsplitter (Newport 

50G02) and a set of neutral density filters (Oriel) were further used in order to 

control the laser intensity. A summary of the current laser system parameters is 

provided in table 3.5. 
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laser diode 
 
model 
 
threshold current 
 
typical operating current 
 
mode-hop-free scanning range 
 
Littrow grating 
 
 

 
 
SDL5411-G1 
 
15 mA 
 
94 mA 
 
10 GHz @ 84 mA, 20.7 oC 
 
1800 lines/mm 
 
 

frequency control 
 
feedback system 
 
 
lock-in 
 

 
 

saturated absorption spectroscopy arrangement 
 
 
TuiOptics LIR100 
 
 

polarimeter 
 
quarter-wave plates 
 
 
Stepper motor/rotation stage 

 
 

Melles Griot 02WRQ007,  
λ± /250 retardation tolerance 

 
SLO-SYN M06, 0.2 degree/step 
 
 

typical laser beam parameters 
 
output power 
 
operating wavelength 
 
beam diameter  

 
 
64 mW 
 
852.346 nm 
 
3 mm (Gaussian profile) 
 
 

 

Table 3.5: Summary of the laser system parameters. 
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4 Optical Pumping 

4.0 Introduction 

Caesium has a single naturally occurring isotope, 133Cs, which has a nuclear spin 

angular momentum of 2/7=I , while the valence electron has a total angular 

momentum of 2/1=J  and 2/3=J  for the 1/2
2 S6  and 2/3P62  states, respectively. 

The interaction between the nuclear spin and the electron angular momentum 

produces a hyperfine structure which is illustrated in figure 4.1. Each energy level 

within the hyperfine structure is labeled by the quantum number 4,3=F  and 

5,4,3,2=F  for the 1/2
2 S6  and 2/3P6 2  levels, respectively, and each hyperfine 

energy level is further divided into 12 +F  degenerate sublevels. The convention of 

representing the ground state quantum numbers with an over-bar (eg. F ) will be 

used throughout this chapter to distinguish the lower and upper level quantum 

numbers. 

 

Optical pumping is a well established technique whereby an atomic target can be 

prepared in a well defined quantum state through repeated excitation and 

spontaneous decay using polarised light. Experiments as early as the 1950s (see, for 

example, Franzen and Emslie, 1957) demonstrated this highly effective method for 

atomic orientation with the alkalis. Since such early work, progress and refinement 

in spectroscopic techniques along with better coherent sources of light have enabled 

optical pumping to become one of the most powerful tools in the superelastic 

experiment.  
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4.1 Preparation of the Caesium Target 

In general, the superelastic experiment requires a stable two-state atomic target. 

Absorption of resonant radiation tuned to the 5646 23
2

21
2 =→= FPF S //  

transition by the ground state caesium atoms results in a fraction of their total 

population being excited to the upper state. In the present superelastic experiments, 

the diode laser system is frequency-locked to this transition (as illustrated in figure 

4.1). Provided the frequency of this transition is well-resolved with respect to the 

surrounding hyperfine structure, light-induced electron excitation occurs only within 

these two energy levels. The excitation process itself is governed by the following 

selection rules under the dipole approximation (Sobel’man 1972): 

1±=∆L          

1,0 ±=∆  F , 0=∆ FM ,  when 0≠FM    

1±=∆F , 0=∆ FM ,  when 0=FM         (eqs. 4.1) 

for transitions induced by linearly polarised light and, 

1±=∆L          

1,0 ±=∆  F          

1±=∆ FM                (eqs. 4.2) 

for transitions induced by circularly polarised light. During the subsequent 

spontaneous decay the emitted light can have any polarisation, so that the selection 

rules are relaxed: 

1±=∆L          

1,0 ±=∆  F          

1,0 ±=∆  M F              (eqs. 4.3). 

The approximate time taken for a single atom within the atomic beam to traverse the 
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Figure 4.1: Energy level diagram for the 62S1/2 and 62P3/2 states of caesium, 
including hyperfine level splitting (in MHz, not to scale) and magnetic sublevels 
(represented by boxes labeled by quantum number MF). Numerical data is due to 

Gerginov et. al. (2004). 
 

laser field is st µ12=  (from the data of tables 3.2 and 3.5), while the lifetime of the 

P-state is ns7.30=τ  (Hansen 1984). Thus many cycles of excitation and decay will 

occur within the atom’s transit time through the interaction region. Some examples 

of these allowed transitions are illustrated for the caesium states of interest in figure 

4.2.  An immediate observation that one can draw from this picture is that, after 

several cycles of excitation and decay when optically pumped with right-handed (or 

left-handed) circularly polarised light, the target will tend to occupy only the highest 

sublevels, 5,54,4 ==↔== FF MFMF  ( 5,54,4 −==↔−== FF MFMF ). 

The sublevel distribution for the case of optical pumping with linearly polarised 

light is not as obvious, but it is clear that the 5=FM  and 5−=FM  sublevels are 
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Figure 4.2: Examples of some allowed transitions between the 62S1/2 F=4 and 62P3/2 
F=5 sublevels in caesium, as induced by (a) linearly polarised and (b) right-hand 
circularly polarised light. The subsequent decay transitions are also shown. Each 

magnetic sublevel is labeled in boxes by magnetic quantum number MF. 
 

not accessible in this case and the 0=FM  sublevel will be favoured with a higher  

probability. Provided that the laser is tuned to the 5646 23
2

21
2 =→= FPF S //  

transition and the saturated linewidth is much narrower than the adjacent hyperfine 

splitting of the 23
26 /P  state, the F=4 and F=5 levels of the upper state are well-

resolved. Consequently the 36 21
2 =F S /  level of the ground state is effectively 

removed from the optical pumping process and hyperfine depopulation trapping, 

which has been known to introduce considerable complications in studies of the 

lighter alkalis (for example, see Karaganov et. al. 1999 and Stockman et. al. 1998), 

cannot take place. Given the relatively wide separation of the upper state hyperfine 

structure in this study ( MHz251  separation for the 546 23
2 == , F FP /  hyperfine 

levels, see figure 4.2), it was expected that this condition could be achieved for the 
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typical saturated linewidth of MHzsaturated 40=∆ν  after power- and Doppler- 

broadening (section 3.2.4).  This expectation was confirmed experimentally, by 

monitoring the decay fluorescence intensity and polarisation as a function of atomic 

beam density. From the data of figure 4.3, the variation in the degree of fluorescence 

polarisation was found to be negligible for atomic densities of up to 1010 atoms/cm3. 

4.2 Theoretical Models of the Laser-Atom Interaction 

The first quantum electrodynamic (QED) description of the interaction between light 

and a two-level atom was by Ackerhalt and Eberly (1974). They extended Lorentz’s 

ideas on classical radiation damping, solving Maxwell’s equations for the classical 

electromagnetic field along with the Heisenberg equation for a fictitious two level 

atom and a zero-spin one-electron atom, predicting radiative corrections to the 

lifetimes, line shapes, exponential decay and Lamb shifts. McClelland and Kelly 

(1985) took a more direct approach for the sodium atom, solving the optical Bloch 

equations for the elements of the density matrix. They reduced the number of 

coupled differential equations from 400, for the 20-state sodium problem, to 38 by 

making several approximations. The sodium optical pumping problem has since 

been solved using a full QED model by Farrell et. al. (1988). They later formulated 

this work in terms of experimental observables (Farrell et. al. 1991) and for the 

general case of elliptically polarised light (Varcoe et. al. 1999). It was shown that 

the optical pumping coefficients K  and K ′  could be measured directly in a 

superelastic electron scattering arrangement, in terms of the polarisation of the decay 

fluorescence, by:  

LPK =       (eq. 4.4a) 

CPK =′       (eq. 4.4b), 
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Figure 4.3: Decay fluorescence polarisation measured over a wide range of caesium 
oven temperatures, illustrating the stability of the optical pumping parameters for 

the atomic densities required for the present project. Atomic densities at the 
interaction region range from approximately 9102×  to -3cm10101×  across the 

entire indicated temperature scale (see also figure 3.4). 
 

where LP  is the linear polarisation of the decay fluorescence measured in the 

scattering plane, normal to the scattered electron direction, and CP  is the degree of 

circular polarisation measured normal to the scattering plane. 

4.3 Optical Pumping Coefficients 

In a superelastic electron scattering experiment the scattering rate is measured as a 

function of the laser polarisation, which in turn determines the quantum state of the 

target atoms. Unfortunately, in practice it is not possible to prepare perfectly 

polarised laser light and in general the polarisation must be considered to have some 



 71 

degree of ellipticity. Thus the relative hyperfine sub-level populations for the target 

will reflect the specific conditions of the experiment. In correcting the equivalent 

Stokes parameters so that they allow for these optical pumping conditions, the 

optical pumping coefficients K  and K ′  can be employed, where: 

33
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=
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      (eq. 2.19). 

Here iP  are the Stokes parameters measured directly from the scattering rates 

(equation 2.18) and iP  are the so-called reduced Stokes parameters (see also chapter 

2). The optical pumping coefficients incorporate all aspects of the target state 

relevant to the collision dynamics and can take on values between 0 and 1, where 1 

indicates complete pumping into the excited hyperfine state. They have been 

calculated for other alkalis (e.g. Farrell et. al. 1991, Hall et. al. 1996) and can be 

measured directly from the polarisation of the decay fluorescence. Throughout the 

present project, the optical pumping coefficients have been measured directly using 

the method of Scholten et. al. (1993): namely, a telephoto lens was installed outside 

the chamber in order to magnify an image of the interaction region, viewed within 

the scattering plane through a vacuum window which was perpendicular to the 

superelastic scattered electron momentum (chapter 3). This image was passed 

through a linear polariser, aligned either parallel (||) or perpendicular (⊥ ) to the 

scattering plane, onto a photodiode detector, whose signal (F ) was amplified and 

recorded. The measured line polarisation: 
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yields information on a wide range of experimental parameters, including laser 

polarisation, intensity, frequency detuning and linewidth, the atomic beam density 

and divergence, and the laser-atom interaction times. The circular pumping 

coefficient, CP , is the degree of circular polarisation of the target’s decay 

fluorescence measured normal to the scattering plane, on the axis of the pump laser. 

Such measurements have been performed experimentally (for example see Scholten 

et. al. (1993) and Hanne et. al. (1993)), however the associated uncertainty in the 

measured data is usually large. In the past, it has been shown that CP  is practically 

independent of experimental conditions with the exception of very weak laser 

intensities (Farrell et. al. 1991). Within the present project, various attempts to 

deliberately misalign and shield the fluorescence detector from the laser did not 

result in CP  being significantly less than unity. Consider the allowed values of 3P , 

combined with eq. 2.6: 

13
3 −≤

′
=

K

P
P      (eq. 4.3), 

and the data of figure 6.3 and table 6.3, which gives a maximum measured value of 

0190.09016.03 ±−=P , at 60o scattering angle and 15eV superelastic energy. 

Additionally, the measured values of 3P  at 10eV superelastic energy, from figure 6.1 

and table 6.1, yield: 

2189.00415.13
3 ±≤

′
=

K

P
P    (eq. 4.3). 

This implies that 2189.00415.1 ±≥′K  and 0190.09016.0 ±≥′K  for these two 

energies, which in turn indicates that the coefficient CP  is indeed very close to unity. 
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Thus, throughout the superelastic scattering experiments reported in this thesis it is 

assumed that 1=CP , and therefore 1=′K . 



 74 

5 The Caesium Electron Scattering Experiments 

5.0 Introduction 

This chapter discusses the method by which the spin-averaged Stokes parameters for 

caesium were measured using the superelastic electron scattering technique. The 

experimental geometries are described and the measurement and analysis procedure 

is outlined. Finally the inherent statistical and systematic uncertainties are 

considered, with particular focus on their influence and limitations on the measured 

data. 

5.1 Experimental Geometry 

The reduced Stokes parameters 1P , 2P  and 3P  were measured in a series of 

superelastic electron scattering experiments performed at a number of different 

electron energies and over a wide range of scattering angles. The geometry for the 

experiments was chosen so that all of the Stokes parameters could be determined 

without changing the path of the laser beam. The incident laser beam was normal to 

the scattering plane, which was defined by the electron gun and detector axes. The 

electron gun and detector were each mounted on separate independent rotating 

turntables which were coaxial with the laser beam (see figures 3.1, 3.2). An optical 

guide above the top window of the scattering chamber allowed the laser alignment to 

be checked when necessary without opening the chamber. The electron gun and 

spectrometer were aligned by using a removable guide to position each respective 

aperture at corresponding radial and vertical positions with respect to the chamber 

axis and the turntables. This alignment, essentially defining the scattering plane, was 

checked each time the apparatus was prepared for an experimental run. The 
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alignment procedure resulted in the laser being normal to the scattering plane, within 

an estimated uncertainty of o5.0± . This uncertainty was assumed to be negligible, 

particularly following a full treatment to correct for the effects of the finite angular 

resolution and interaction volume of the experiment (see section 5.4.2). 

 

The experimental geometry shown in figures 5.1 and 5.2 enabled the electron 

detector to be fixed at up to four different positions: o0 , o45 , o90  and o135 . This not 

only allowed for a wide range of scattering angles to be accessed, but also permitted 

the experimental results to be examined for consistency and reproducibility. 

Separate measurements for positive and negative scattering angles, or for the same 

scattering angle with different analyser position, could be compared in order to 

determine the influence of external static fields or irregularities in the laser 

polarisation. 

5.2 Experimental Procedure 

The reproducibility of the experimental data depended strongly on the energy of the 

electron beam (see figure 5.3) and the correct polarisation of the laser radiation. The 

electron beam energy was thus calibrated before and after each experimental run 

using the procedure described in section 3.3.5, to ensure that the electron gun final 

cathode potential was set to within 1.0± eV of the intended incident electron energy. 

The degree of laser polarisation for each polarimeter arrangement (see figure 3.14) 

was measured above the upper window of the scattering chamber, before each 

experiment, using an analyser and photodiode detector. The primary purpose of this 

routine check was to ensure that the performance of the polarimeter did not become  

 



 76 

 

Figure 5.1: Experimental geometry (not to scale). 
 
 

 

Figure 5.2: Electron gun and analyser angular positions (not to scale). 
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Figure 5.3: CCC calculations (Bray, 2006) for the reduced Stokes parameter 3P  as 

a function of scattering angle for superelastic electron energies of 7eV, 10eV and 
15eV. Features of particular interest are the zero crossing point and each extrema, 

all of which are strongly dependent on the electron energy. 
 

influenced by minor drifts in laboratory temperature, and also to correct for any 

casual misalignment. Typical polarisation data from these measurements was 

provided in chapter 3. 

 

The Stokes parameters were measured in the same run for each individual scattering 

angle. The scattering angle was set manually by rotating the electron gun turntable, 

while the data acquisition, laser beam shutter and polarimeter were computer-

controlled. The decay fluorescence line polarisation ( LP ), indicating the degree of 

orientation of the caesium target due to optical pumping, was recorded for o0=φ  
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linear polarisation before and after each set of measurements. This procedure was 

then repeated for each scattering angle. 

 

A typical single-angle experiment consisted of measuring the superelastic electron 

scattering rate over 10 seconds for seven intervals: six corresponding to each of the 

laser polarisation states and a final interval which was an elastic-only background 

count with the laser field removed by the beam shutter. The measured superelastic 

signal, I, was the difference between the total measured count rate, S, and the 

background count rate with the laser off, B: 

BSI −=      (eq. 5.1). 

This process was repeated for a number of cycles dictated by the magnitude of the 

superelastic scattering rate and background count rate. Typical signal to background 

ratios ranged from 20:1 to around 3:1, depending on electron energy and scattering 

angle. As an example, a typical run could be for 10 cycles and each of the final 

number of superelastic counts over the entire 10 cycles, for a given laser 

polarisation, is substituted into the formula of eq. 2.18 in order to obtain the 

appropriate Stokes parameters 1P , 2P  and 3P . Total data acquisition times for a 

single angular set of measurements ranged from 20 minutes to 9 hours. Therefore 

this approach of measuring the entire set of polarisation-dependent scattering rates at 

short intervals in repetition was crucial in order to obtain the complete set of Stokes 

parameters in the same run, without the influence of any time-dependent drift in the 

experimental conditions. 

 

After collecting scattering data in the form of the Stokes parameters 1P , 2P  and 3P , 
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corrections were made for the optical pumping conditions through the parameters K  

and K ′  (see section 4.3), yielding the reduced Stokes parameters 1P , 2P  and 3P : 

)()(

)()(1

)135()45(

)135()45(1

)90()0(

)90()0(1

3

2

1

LHCIRHCI

LHCIRHCI

K
P

II

II

K
P

II

II

K
P

+
−

′
=

+
−=

+
−= oo oo oo oo

   (eq. 5.2). 

Usually several measurements were performed for any particular scattering angle, 

using rotated and/or reflected geometries to determine the possible influence of 

static charge build-up on the interior chamber surfaces and, in particular, to check 

for the influence of the unavoidable ellipticity of the laser polarisation (see section 

5.4.3). 

 

The final step in the experimental determination of the reduced Stokes parameters 

was to combine the separate measurements, with rotated and reflected scattering 

geometries, at each angle using the weighted mean formula of Taylor (1982): 
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     (eq. 5.3), 

where P  is the weighted mean of each of the n individual measured values nP , 

weighted by the factor 2)( −= nn Pw δ , where )( nPδ  is the relative uncertainty for that 

measurement. This formula enables a mean value to be extracted from all of the 

available data, weighted accordingly so that the final data takes into account the 

uncertainty of each of the individual measurements. 



 80 

5.3 Statistical Uncertainties 

In any experiment, a counting measurement is subject to some statistical uncertainty. 

If the events that are being counted are independent of the number of events 

occurring immediately beforehand, and do not occur simultaneously, then the 

process can be accurately modeled by Poisson statistics (Snyder 1975). Following 

Barford (1967), the number of events governed by Poisson statistics, when counted 

repeatedly over the equal time intervals, will yield a number of counts that varies by 

no more than N , where N is the mean number of events that can occur within that 

interval. The statistical error in a count of N events within some time interval is 

therefore given by: 

NN =δ      (eq. 5.4) 

and consequently the relative statistical error is: 

NN

N 1=δ
     (eq. 5.5). 

This result reveals that the relative error in any counting measurement decreases 

with the number of counts. For the case of the superelastic experiment, the relative 

statistical error decreases with increasing scattered electron count rate and 

acquisition duration. From equations 5.1 and 5.2, it is clear that each of the Stokes 

parameters depend on both the superelastic signal and the background signal, each 

measured at separate time intervals. A full treatment of the propagation of errors in 

this case is given in the Appendix, leading to the statistical uncertainty for each of 

the Stokes parameters as functions of the measured observables: 

( ) ( ) 





++++
+

= KPBSIBSI
II

K
K

P δδ 19090
2
000

2
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900
21 )(

41
 (eq. 5.6) 
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454545

2
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  (eq. 5.7) 

( ) ( )LHCLHCRHCRHCRHCLHC
LHCRHC

BSIBSI
II

P +++
+

= 22
3 )(

4δ  (eq. 5.8). 

Finally, the statistical uncertainty in the coherence parameter can be represented in 

terms of the parameters 1P , 2P  and 3P , and their corresponding uncertainties: 

( )332211

1
PPPPPP

P
P δδδδ ++= +

+     (eq. 5.9). 

5.4 Systematic Uncertainties 

5.4.1 Scattering Angle 

The scattering angle was defined throughout the experiments as the angle between 

the scattered electron trajectory and the incident electron beam. It is the independent 

variable in the present study, therefore it is crucial that this angle is measured 

carefully and correctly. Standard procedures were employed to align the electron 

gun and analyser turntables by optical and mechanical means, however this 

approach was not satisfactory to determine the true zero scattering angle. This 

follows as the electron trajectories may each depend on localised magnetic and 

electrostatic fields which must be investigated with each experimental run. Initial 

measurements for small positive and negative scattering angles enabled the 1P  

maximum at °= 0θ  to be used as a calibration feature. Additionally, the symmetry 

in each of the Stokes parameters could be employed at larger scattering angles to 

check for any possible offset in the scattering angle. Finally, the rotated scattering 

geometries discussed in section 5.1 enabled another check for alignment and 

consistency in the scattering angle measurements. Throughout the present study, the 
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total systematic uncertainty in the scattering angle measurements was found to be 

less than °± 2.0 . 

5.4.2 Angular Resolution 

An ideal electron scattering experiment consists of an electron analyser with energy 

and angular resolutions which are very small, and a target which can be regarded as 

a point-like scattering centre. In a real experiment, however, one cannot assume the 

angular resolution to be negligible and therefore the angular-dependent parameter 

should be treated as an average over a finite range of scattering angles. This finite 

angular range is determined chiefly by the angular field of view of the electron 

spectrometer, the angular divergence of the electron beam and the volume of the 

scattering target. One aim of the caesium superelastic experiments was to reduce this 

angular range to a minimum, within practical limits, and also to accurately measure 

this total angular resolution quantitatively, at each electron energy, for subsequent 

data analysis. 

 

Theoretical calculations are generally performed for the ideal conditions: the target 

interaction volume is considered to be a single point and the angular resolution is 

negligible. There have been several studies on the influence of the angular resolution 

and finite scattering volume on angular dependent parameters, most notably by 

Mitroy et. al. (1987), Zetner et. al. (1990) and Becker et. al. (1992). Zetner et. al. 

(1990) explored the effects of a finite scattering volume on superelastic electron 

scattering experiments with barium, in an approach which included a treatment for 

both the unresolved in-plane scattering angles and the out-of-plane effects due to the 

finite scattering volume. They observed that the influence of the finite scattering 

volume on the electron scattering experiment was most pronounced at small 



 83 

scattering angles, confirming the earlier observations of Register et. al. (1983). The 

experimentalist can attempt to predict the influence of the scattering geometry by the 

use of a convolution transform, which folds the theoretical scattering parameter with 

the differential cross section and a function that reflects the angular uncertainties 

particular to the apparatus. Consider a scattering parameter P , ideally being a 

function of scattering angle θ , measured by an electron scattering experiment. In 

practice, instead of being able to measure ( )θP  directly, we measure P  which is 

the parameter P , weighted by the differential cross section σ  and averaged over the 

range of uncertainty of the scattering angle, both in and out of the scattering plane. 

This uncertainty in scattering angle is determined by both the experimental 

arrangement and the characteristics of the instruments themselves. The convolution 

formula of Mitroy et. al. (1987) can be used to represent the output of such a 

measurement: 

( )
H

HP

II

II
P

∗
∗=

+
−

=
σ
σ

αα
αα

)()(

)()(

21

21    (eq. 5.10),  

where σ  represents the differential cross section and H  represents the uncertainty 

in scattering angle due to all experimental and instrumental conditions. In many 

cases, particularly in the superelastic experiment (see for example Sang et. al. 1994, 

Stockman et. al. 1999 and Karaganov et. al. 1999), the interaction region can be 

contained to a small volume and thus the out-of-plane scattering can be considered 

to be much less significant than the in-plane effects. In this case, H  can be 

substituted by the instrument function, ( )θh , of the apparatus. This reduces the 

convolution formula to (Mitroy et. al. 1987): 

( ) ( ) ( ) ( )
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P   (eq. 5.11). 
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When solving equation 5.11 numerically, the limits of integration in the above 

formula can be truncated to a range which sufficiently represents the width of the 

instrument function: 

( )
( ) ( ) ( )

( ) ( )∫
∫

+

−

+

−

−

−
= δθθ

δθθ

δθθ

δθθ

φσφθφ

φσφφθφ
θ

hd

Phd
P    (eq. 5.12). 

The instrument function is itself a convolution of a number of angular dependent 3-

dimensional functions that characterise the experimental geometry. Specifically for 

the case of the present superelastic experiments, the instrument function is: 

( ) .... volscattanalyserelbeamel hhhh ∗∗=θ    (eq. 5.13), 

where each of the functions on the right-hand side of eq. 5.13 represent the angular 

characteristics of the apparatus (see figure 5.4). beamelh .  is a function characterising 

the electron beam angular divergence, weighted by the spatial intensity profile, 

analyserelh .  is a function characterising the angular resolution of the electron analyser, 

weighted by the spatial response, and ..volscatth  characterises the spatial distribution of 

the excited caesium atoms. In practice, each of these functions cannot be known 

exactly, but must be approximated in some way. Conventionally, these functions can 

be accurately modeled by Gaussian functions, in which case the FWHM of the total 

instrument function can be derived from eq. 5.13, for the present experiments: 

2
..

2
.

2
. volscattanalyserelbeamelall αααα ∆+∆+∆=∆   (eq. 5.14) 

from the respective FWHM of each individual Gaussian function. The divergence of 

the electron beam, beamel.α∆ , was estimated by direct measurement throughout the 

superelastic experiments, whereas the angular resolution of the electron analyser, 

analyserel.α∆ ,  and the scattering volume, ..volscattα∆ , were estimated from the 
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Figure 5.4: The electron beam divergence, electron analyser angular resolution and 
the angular uncertainty due to the finite scattering volume, all of particular interest 
when determining the instrument function of the apparatus (diagram not to scale). 

 

experimental conditions and geometry (see chapter 3 and section 5.1). Typical 

values of allα∆  were found to be: oooo 8.6)6.2()4.4()5.4( 222 =++≈∆ allα    (eq. 5.15) 

for 5.5eV incident electron energy, and oooo 7.5)6.2()4.4()5.2( 222 =++≈∆ allα    (eq. 5.16) 

for 13.5eV incident electron energy. 
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The results reported in chapter 6 of this thesis are compared with relevant theoretical 

predictions which have been folded numerically using the convolution formula of 

eq. 5.12 in each case. The integration was performed numerically using a modified 

Simpson method, and the appropriate Gaussian instrument function of FWHM due 

to eq. 5.14. For illustration, a typical plot of the reduced Stokes parameter 2P , 

calculated using the CCC theory of Bray (2006), before and after folding is 

displayed in figure 5.5. 

5.4.3 Laser Polarisation 

Even with the angular resolution and extinction limitations of the polarising optics 

carefully considered and minimised (see section 3.4), an additional small elliptical 

element was introduced with the laser beam passing through the glass window of the 

scattering chamber. While the chamber windows were initially isotropic, they were 

inevitably subjected to strain when the scattering chamber was evacuated. This 

strain resulted in the windows being slightly birefringent when the experiment was 

under operating conditions (Born and Wolf 1980). It was difficult to measure the 

extent of this effect directly, due to the fact that the analysing photodetector was by 

necessity located outside the chamber, which introduced a second window in the 

beam path. Scholten et. al. (1999) investigated the influence of imperfect laser 

polarisation on the scattering density matrix and the reduced Stokes parameters. It 

was shown that some generalised reduced Stokes parameters, iP ′ , measured with 

imperfect laser polarisation, can be represented by the equations: 

313

212111
1 1 P

PP
P

κ
κκ

+
+

=′     (eq. 5.17a) 
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Figure 5.5: Convergent Close Coupling calculation (Bray 2006) of the reduced 
Stokes parameter 2P  (dashed line), alongside the same calculation folded (solid 

line) with the differential cross section and a Gaussian instrumental function of o8.6  
(FWHM). The superelastic electron energy is 7eV. 
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=′     (eq. 5.17b) 
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PP
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+
+

=′     (eq. 5.17c), 

where the coefficients 13,12κ  are the effect of 2P  and 3P  influencing the 1P′  

measurements, 23,21κ  are the effect of 1P  and 3P  influencing the 2P′  measurements, 

and similarly 32,31κ  are the effect of 1P  and 2P  influencing the 3P ′  measurements. 

For small imperfections in polarisation, we can expect all of the coefficients to be 

small, except for 33,22,11κ , which will be close unity. For practical applications, it 

was found that for small polarisation ellipticity, the circular polarisation contribution 
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to 1P  and 2P  due to 3P  could be determined by measuring 1P  on both sides of zero 

scattering angle (i.e. for both positive and negative angles). For all of the 

measurements reported here this contribution was found to be small when compared 

with the statistical uncertainty, even for angles where 3P  was large and therefore the 

circular polarisation contribution was at a maximum. This process was, however, an 

essential check to ensure that the polarisation ellipticity was reduced to the 

experimental limit. It is also worth noting that the contributions due to 1P  and 2P  on 

3P  were found to be negligible by the equivalent process, so it was assumed that 

similarly the contributions due to 1P  and 2P  on each other were also negligible. 

Some characteristic 1P  values from measurements either side of zero scattering 

angle are shown in figure 5.6. In practice, the final value of 1P  was taken as the 

average of the positive and negative angle values for each scattering angle θ , using 

the procedure outlined in section 5.2. 

5.4.4 Electron Energy 

The energy of the incident electron beam was maintained by a potential on the oxide 

cathode of the electron gun. This was provided by a 0.01V-precision programmable 

power supply, as described in section 3.3.1. Due to the variable contact potential of 

the  BaO cathode (see section 3.3.5), the beam energy was calibrated against the b-

feature in the excitation function of metastable neon at regular intervals. This 

procedure was undertaken both before and after each experimental run in order to 

maintain the desired incident electron energy. The thermal energy spread in the 

incident electron beam was approximately 0.3eV (Simpson 1967), while the 
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Figure 5.6:  Comparison between measured values of 1P  with positive and negative 

angle geometries, for scattering angles near o50 , where 3P  (and therefore its 

contribution to 1P  due to any small  elliptical component to the laser polarisation) is 
large. The superelastic electron energy is 7eV. 

 

estimated uncertainty in the beam energy, due to the energy calibration method, was 

a much smaller 06.0± eV. Therefore the total error in the electron energy, due to 

each contributing factor, was estimated to be less than 3.0± eV. 

5.5 Summary of Experimental Uncertainties 

The total uncertainty in each of the reduced Stokes parameters measured by the 

superelastic electron scattering technique reported here consists of a significant 

statistical error, determined directly during data acquisition and analysis of each set 

of measured data, and a systematic error which is thought to have a much less 

significant influence on the final results. For example, the influence on the 
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experimentally determined reduced Stokes parameters, due to the uncertainty in 

electron energy, depends strongly on the scattering angle and in general cannot be 

known exactly. However, the maximum uncertainty was estimated to be 

054.03 ≤∆P  (see figure 5.3) and less than this value for 1P∆  and 2P∆ , which 

generally each have a somewhat smaller dependence on electron energy. The 

influence of the uncertainty in laser polarisation on the final data has been 

eliminated where possible, by the averaging technique described in sections 5.4.3 

and 5.2 and elsewhere can be assumed to be small. It is worth noting that this 

assumption is particularly valid for the parameter 3P , which has a much lower 

sensitivity to laser polarisation ellipticity. Combined with its lower sensitivity to 

angular resolution effects due to its smooth structure, particularly at small scattering 

angles compared to 1P  and 2P , 3P  is perhaps the most favourable parameter to 

measure from an experimentalists point of view. Due to the difficulty in accurately 

reporting systematic uncertainties which have such strong and varied dependence on 

the scattering angle, a great effort has been made to reduce these systematic effects 

and, once these were minimal, to include only the statistical uncertainties in the final 

results. This is the case for all of the experimental results reported in chapter 6. The 

uncertainty in scattering angle is estimated to be known to better than °± 2.0  in all 

cases, and has not been included in the plotted results in the interests of clarity for 

the reader. 
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6 Experimental Results and Discussions 

6.0 Introduction 

In this chapter the current experimental results are presented for a complete set of 

spin-averaged Stokes parameters and the coherence parameter +P , for the 2/3
26 P  

state in caesium, after electron impact de-excitation for superelastic energies of 7eV 

and 15eV. Additionally, the spin-averaged Stokes parameter 3P  is presented for the 

10eV superelastic energy and compared with the results of a previous experimental 

study. The data presented in each case span a range of scattering angles from 5 

degrees to 135 degrees. For each energy, the experimental data are compared with 

the predictions of a CCC theory and an RMPS theory, which were described 

previously in chapter 2. Predictions from an RDW theory, kindly provided by Prof. 

Bob McEachran, are also presented for the 10eV superelastic electron energy. The 

data from both the CCC and RMPS theories are unpublished and have been 

generously supplied by Prof. Igor Bray and Prof. Klaus Bartschat. 

6.1 Results 

The experimentally determined spin-averaged Stokes parameters and the coherence 

parameter +P , for electron-caesium superelastic scattering, are presented in figures 

6.1 to 6.3 and also in numerical form (tables 6.1 to 6.3) at the end of the chapter. The 

error bars represent plus and minus one standard deviation, calculated using the 

procedure outlined in chapter 5. The theoretical data presented in figures 6.1-6.3 are 

folded with the relevant differential cross-section, as calculated by the respective 

theories, and the instrumental function reflecting the experimental angular resolution 

at the relevant energy, as described in chapter 5. It should be noted that, in general, 
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for the reduced Stokes parameters the folding procedure has negligible influence for 

all but the very forward angles, where the differential cross section is largest. The 

coherence parameter is predicted by theory (Bray 2006, Bartschat 2006) to be close 

to unity 1≈+P , for all scattering angles, if finite experimental angular resolution 

effects are neglected. It is important to note here that the inclusion of finite angular 

resolution produces some structure in the coherence parameter. This structure should 

not be misinterpreted as being due to exchange scattering effects (see section 2.4). 

The data contained in the reduced Stokes parameters can also be reinterpreted in 

terms of the alignment and orientation parameters through equations 2.12, whereby 

the parameters 1P  and 2P  contain the information on the linear polarisation, LP , and 

the alignment angle, γ , of the P-state electron charge cloud and 3P  is related 

directly to the angular momentum transfer perpendicular to the scattering plane, ⊥L : 

3PL −=⊥      eq. 6.1. 

10eV / 8.5eV 

A series of preliminary superelastic electron scattering experiments were performed 

at 10eV superelastic electron energy (8.5eV incident electron energy) by Karaganov 

et. al., prior to the current work reported here. This early study, while originally 

planned to be a preliminary survey, was found to be completely reproducible. The 

present results that confirm the earlier values of the reduced Stokes parameter 3P , 

are displayed in figure 6.1 and table 6.1. Note that the complete set of spin-averaged 

reduced Stokes parameters for the preliminary survey, at 10eV electron scattering 

from caesium can be found in Karaganov et. al. (2002). In this case, each of the 

RDW (McEachran 2001), RMPS (Bartschat 2001) and CCC (Bray 2001) theories 
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Figure 6.1: Present reduced Stokes parameter 3P  , measured using the superelastic 

technique ( o ), alongside the earlier experimental data of Karaganov et. al. (2001) 
(∆ ). Also shown is an RMPS calculation of Bartschat (2001) ( ), a CCC 

calculation of Bray (2001) ( ) and a RDW calculation of McEachran et. al.(2001) 
( ). The scattered and incident electron energies are 10 eV and 8.5 eV, 

respectively. 
 

accurately predict the scattering parameter for forward angles ( °≤ 30θ ), however 

the CCC is clearly superior at describing the behaviour for °≤≤° 10050 θ . For 

scattering angles greater than °100 , both the CCC and the RMPS provide an 

adequate description of the scattering process. 

7eV / 5.5eV 

The current experimental results for 7eV superelastic electron energy are shown in 

figure 6.2 and table 6.2. In their graphical form, they are compared with a 24-state 

RMPS calculation from Bartschat (2006) and a fully-converged CCC calculation 

from Bray (2006). The data span a wide range of scattering angles from 10 degrees 

through to 135 degrees. For the reduced Stokes parameters 1P  and 2P , there is a 
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suggestion of some significant disagreement between the experimental results and 

the predictions of both theories, particularly at intermediate angles around 40 

degrees and for backward scattering angles in the case of 2P . The apparent failure of 

the CCC, to accurately describe each of the minima in 2P  at 40 degrees and 110 

degrees, is likely to be due to an incomplete description of the target core potential 

(Bray 2006). In contrast, the parameter 3P  shows a quite remarkable level of 

agreement with both the RMPS and the CCC theories. The experimental data in this 

case can be perceived to marginally favour the CCC, with the exception of the zero 

crossing point at approximately 87 degrees, where the RMPS predictions are in 

closer accord with the measured data. There also appears to be a minimal 

disagreement between experiment and both theoretical calculations in the coherence 

parameter, although it is barely significant to within the experimental uncertainties. 

15eV / 13.5eV 

The results from the experimental study at 15eV superelastic electron energy are 

summarised in figure 6.3 and table 6.3. In this case, the lower magnitude of the 

differential cross section at backward angles limited the angular range to forward 

and intermediate angle scattering: °≤≤° 905 θ . Once again, the predictions of fully-

converged CCC (Bray 2005) and 24-state RMPS (Bartschat 2005) calculations are 

compared with the experimental results in figure 6.3. The agreement between the 

CCC calculation and the experimental data is excellent for each of the reduced 

Stokes parameters and the coherence parameter. Unfortunately the experimental 

results did not reach beyond the 90 degree scattering angle, where the only 

observable difference in structure exists between the RMPS and CCC theories for 

the parameter 2P . The plot of 1P  confirms that the RMPS calculation has perhaps 
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not achieved complete convergence with a 24-state computation, while the CCC has 

accurately predicted the shallow minimum at 70 degrees. The experimentally 

determined 3P  parameter is found to be in almost perfect agreement with the CCC 

calculation across the entire angular range. 
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Scattering 
Angle 

(degrees) 
3P  3Pδ  

10 -0.1775 0.0127 

15 -0.2883 0.0183 

20 -0.4719 0.0479 

25 -0.6530 0.0686 

30 -0.8861 0.1285 

35 -0.7709 0.0624 

40 -0.9268 0.0764 

45 -0.8621 0.0946 

50 -0.6679 0.0803 

55 -0.4769 0.0869 

60 -0.4912 0.0760 

65 -0.2733 0.0626 

70 -0.2623 0.1119 

75 -0.0219 0.1075 

80 -0.0400 0.1371 

85 0.3220 0.1097 

90 0.2658 0.1618 

95 0.4426 0.1841 

100 0.7808 0.1926 

105 0.7071 0.1379 

110 0.8462 0.1926 

115 1.0128 0.1764 

120 0.7500 0.1747 

125 1.0415 0.2189 

130 0.8846 0.2420 

135 0.6692 0.2221 

 

Table 6.1: Present reduced Stokes parameter 3P  and its experimental uncertainty, 

as measured using the superelastic technique. The scattered and incident electron 
energies are 10 eV and 8.5 eV, respectively. 
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Scattering 
Angle 

(degrees) 
1P  1Pδ  

2P  2Pδ  3P  3Pδ  +P  
+Pδ  

10 -0.0612 0.0687 -0.7548 0.0721 -0.2045 0.0188 0.7845 0.0797 

15 -0.7114 0.0468 -0.4607 0.0470 -0.2538 0.0127 0.8847 0.0658 

20 -0.8765 0.0679 -0.1060 0.0667 -0.3423 0.0175 0.9469 0.0767 

25 -0.8306 0.0728 0.1926 0.0751 -0.4780 0.0183 0.9775 0.0856 

30 -0.6472 0.0744 0.4047 0.0749 -0.6949 0.0151 1.0323 0.0862 

35 -0.2697 0.0452 0.3583 0.0456 -0.7770 0.0111 0.8971 0.0414 

40 -0.0293 0.0499 0.2237 0.0493 -0.8500 0.0107 0.8794 0.0246 

45 0.0322 0.0559 -0.0253 0.0558 -0.8685 0.0097 0.8695 0.0134 

50 0.1949 0.0583 0.2617 0.0590 -0.8453 0.0107 0.9061 0.0396 

55 0.2421 0.0573 0.3688 0.0585 -0.8770 0.0110 0.9817 0.0460 

60 0.4611 0.0638 0.2569 0.0635 -0.8159 0.0138 0.9717 0.0586 

65 0.4687 0.0627 0.2789 0.0645 -0.7957 0.0143 0.9647 0.0609 

70 0.5296 0.0663 0.2867 0.0690 -0.6998 0.0159 0.9233 0.0715 

75 0.6345 0.0603 0.2896 0.0626 -0.6522 0.0148 0.9549 0.0691 

80 0.5370 0.0515 0.7580 0.0517 -0.4268 0.0142 1.0223 0.0713 

85 0.5879 0.0684 0.7242 0.0700 -0.2210 0.0202 0.9586 0.0995 

90 0.3512 0.0621 0.7455 0.0603 0.1291 0.0191 0.8341 0.0830 

95 0.4383 0.0942 0.8485 0.0878 0.3209 0.0279 1.0075 0.1238 

100 0.4576 0.1081 0.3265 0.1005 0.5707 0.0360 0.8011 0.1283 

105 0.5661 0.2069 0.2266 0.1945 0.6467 0.0734 0.8889 0.2348 

110 0.5717 0.1310 0.1380 0.1212 0.7135 0.0450 0.9246 0.1338 

115 0.3889 0.1300 0.3127 0.1259 0.5991 0.0424 0.7797 0.1479 

120 0.5494 0.1111 0.5019 0.1135 0.4858 0.0389 0.8887 0.1540 

125 0.4279 0.1525 0.2658 0.1498 0.3019 0.0490 0.5873 0.2041 

130 -0.1953 0.1389 0.0916 0.1359 0.4368 0.0471 0.4872 0.1235 

135 -0.4847 0.1245 -0.2077 0.1117 0.6045 0.0407 0.8022 0.1348 

 
Table 6.2: Present reduced Stokes parameters 1P  , 2P  , 3P ,  the coherence 

parameter +P  and their corresponding experimental uncertainties, as measured 
using the superelastic technique. The scattered and incident electron energies are 7 

eV and 5.5 eV, respectively. 
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Scattering 
Angle 

(degrees) 
1P  1Pδ  

2P  2Pδ  3P  3Pδ  +P  
+Pδ  

5 -0.3811 0.0442 -0.8315 0.0452 -0.0505 0.0123 0.9161 0.1198 

10 -0.9779 0.0227 -0.3096 0.0222 -0.0381 0.0058 1.0264 0.0580 

15 -0.8684 0.0242 0.2991 0.0242 -0.0826 0.0068 0.9222 0.0618 

20 -0.5281 0.0563 0.6598 0.0555 -0.1524 0.0153 0.8588 0.1410 

25 0.2014 0.0789 0.8225 0.0774 -0.3466 0.0219 0.9150 0.1851 

30 0.7835 0.0745 0.1686 0.0739 -0.3966 0.0217 0.8942 0.1730 

35 0.8296 0.0772 -0.2607 0.0761 -0.3759 0.0257 0.9473 0.1833 

40 0.6281 0.0895 -0.3068 0.0879 -0.3113 0.0289 0.7652 0.2111 

45 0.5076 0.0948 -0.6022 0.0911 -0.3314 0.0295 0.8545 0.2209 

50 0.2946 0.0882 -0.7159 0.0907 -0.4422 0.0297 0.8916 0.2047 

55 0.4344 0.1650 -0.7014 0.1705 -0.6856 0.0503 1.0727 0.3433 

60 0.2367 0.0701 -0.2684 0.0701 -0.9016 0.0190 0.9700 0.0803 

65 0.0838 0.0640 -0.1076 0.0640 -0.7834 0.0211 0.7952 0.0602 

70 -0.0653 0.0787 0.7918 0.0792 -0.1554 0.0238 0.8096 0.1997 

75 0.1330 0.0949 0.7322 0.0978 0.6420 0.0260 0.9828 0.1946 

80 0.0479 0.1110 -0.0306 0.1287 0.7123 0.0449 0.7146 0.1173 

85 0.4061 0.0716 0.3725 0.0710 0.8557 0.0222 1.0178 0.1100 

90 0.7387 0.0881 0.4324 0.0835 0.7234 0.0233 1.1207 0.1746 

 

Table 6.3: Present reduced Stokes parameters 1P  , 2P  , 3P , the coherence 

parameter +P  and their corresponding experimental uncertainties, as measured 
using the superelastic technique. The scattered and incident electron energies are 15 

eV and 13.5 eV, respectively. 
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7 Conclusions 

The work presented in this thesis details the first superelastic electron scattering 

experiments with caesium. Four spin-averaged parameters have been determined in 

order to describe the electron-caesium collision process. Specifically, the complete 

set of spin-averaged reduced Stokes parameters (1P , 2P  and 3P ) and the coherence 

parameter ( +P ) have been measured for superelastic electron energies of 7eV and 

15eV, for a wide range of scattering angles, and compared with the predictions of 

two of the most sophisticated theories that are currently available, namely the 

Convergent Close Coupling theory (Bray  and Stelbovics 1992, Bray 2006) and the 

R-matrix with pseudostates theory (Bartschat and Fang 2000, Bartschat 2006). 

Additionally, the reduced Stokes parameter 3P  is reported for 10eV superelastic 

electron energy, confirming preliminary results due to Karaganov et. al. (2002). The 

CCC predictions of Bray (2001, 2005, 2006) are in very good quantitative 

agreement across the entire range of electron energies and scattering angles, while 

the RMPS predictions of Bartschat (2001, 2005, 2006) generally compare 

favourably, but fail in determining the complete structure of the reduced Stokes 

parameters. In most cases this lack of definitive agreement is probably due to its 

higher demand for computational resources leading to slower, and in some cases 

incomplete, convergence. 

 

This experimental study on caesium is the fifth in a series of superelastic electron 

scattering experiments conducted at Flinders University. The previous experimental 

studies have included sodium (Scholten 1989), calcium (Law 1994), lithium 

(Karaganov 1997) and potassium (Stockman 2000). The present work thus 
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concludes a set of superelastic electron scattering experiments spanning most of the 

alkali-metal group. Note that the missing element, rubidium, has been studied at 

Griffith University by Hall et. al. (2004). These elements are of particular interest as 

scattering targets because they consist of a single outer-shell electron orbiting an 

“inert” core, thereby simplifying the theoretical treatment to that of a hydrogen-like 

target. This therefore allows a deeper understanding of the scattering process to be 

achieved, without complications due to interactions between many electrons within a 

target. One of the primary motivations for undertaking the present project is that 

caesium, being the heaviest of the alkalis, is considered to be useful in determining 

the role of relativistic effects in electron-atom collisions. The non-relativistic CCC 

theory had previously been found to yield very accurate predictions for the other 

alkali targets for a wide range of energies (Scholten 1993, Karaganov 1997, 

Stockman 2000, Hall 2004), but this was not expected to persist for caesium. 

However, during the course of this project, it has been found that the CCC theory 

can in fact well describe the behaviour of the reduced Stokes parameters for caesium 

over a wide range of scattering angles at low to intermediate energies. Hence it is 

clear that any relativistic effects in electron caesium scattering must be very small, 

for the kinematical regime investigated in this thesis. Consequently, a study of these 

relativistic effects will require spin-polarised electron and caesium beams. 
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Appendix 

Formulae for the reduced Stokes parameters and the propagation of 

errors. 

The data collected throughout the superelastic experiments are derived from the 

measured electron count rates at the chosen scattering angle and laser polarisation. 

The statistical uncertainty associated with such a counting measurement N  is equal 

to one standard deviation (see section 5.3): 

NN =δ      (eq. A1) 

Specifically, each of the Stokes parameters 1P , 2P  and 3P  and the reduced Stokes 

parameters 1P , 2P  and 3P , for a given scattering angle, are derived from the 

measured quantities B  (the electron count rate with the no laser excitation) and S  

(the electron count rate with the atomic target pumped). The measured quantities can 

be labelled with the subscripts 0S , 90S , 45S , 135S , LHCS , RHCS  to denote the count 

rate for each of the relevant laser polarisations employed to achieve a full set of 

reduced Stokes parameters. 

 

Following Taylor (1982), the propagation of errors can be written: 

∑=
i

i
i

x
x

F
F δ

δ
δδ     (eq. A2) 

and 

2

∑ 





=
i

i
i

x
x

F
F δ

δ
δδ     (eq. A3),  
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where F  is a function of the measured quantities ix , with measurement errors ixδ . 

Equation A3 is only applicable for quantities ix  which are statistically independent, 

otherwise equation A2 should be used. 

 

In chapter 2, the reduced Stokes parameters were defined (see eqs. 2.18 and 2.19): 

LHCRHC
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II

II
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II

II
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P

+
−

′
=

+
−=

+
−=

1

1

1

3

13545

13545
2

900

900
1

    (eq. A4) 

where the subscript denotes the polarisation of the laser and K  and K ′  are optical 

pumping parameters. The electron scattering count rate I  is found from the 

measured superelastic signal S  minus the background B . Thus the propagation of 

errors for 1P , using eq. A2, is: 

( )KPPK
K

P δδδ 1121

1 +=     (eq. A5),  

where the Stokes parameter, in terms of the experimentally measured quantities, is: 

( ) ( )
( ) ( )909000

909000
1 BSBS

BSBS
P

−+−
−−−

=     (eq. A6) 

and has a statistical uncertainty (from eq. A3): 
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=δ     (eq. A7),  

and therefore following eq. A5,  
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41
 (eq. A8). 

Similarly for 2P  and 3P : 
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 (eq. A12). 

Thus the statistical uncertainty in each of the reduced Stokes parameters depends on 

the count rate of the measured superelastic and background signals and on the 

optical pumping parameters. Note that the contribution by Kδ  or K ′δ  to the error 

should be considered a systematic rather than statistical uncertainty. In the case of 

the present study, it was assumed that K ′  and K ′δ  were unity and zero, 

respectively. In this case the error in 3P  is: 

( ) ( )LHCLHCRHCRHCRHCLHC
LHCRHC

BSIBSI
II

P +++
+

= 22
3 )(

4δ  (eq. A13). 

The coherence parameter, +P , was defined in section 2.4: 

2
3

2
2

2
1 PPPP ++=+     (eq. A14). 

The statistical uncertainty in the coherence parameter depends on each of the 

parameters 1P , 2P  and 3P , and their corresponding uncertainties, which should not 

be considered as statistically independent. Therefore, from eq. A2, the statistical 

uncertainty in the coherence parameter is: 

( )332211

1
PPPPPP

P
P δδδδ ++= +

+    (eq. A15). 
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