Part 11

Theory and implementation

143



144

Foreword to Part 11

Part II deals with the development and fundamental formulation of the theory
of Process Physics, which represents a new paradigm — a self-referential and self-
organizing bootstrap model that provides an alternative to the standard model of

physics. This part is organized as follows:

e Chapter 6 documents the theoretical and computational methods that pro-
vided the basis and founding insights for later progress. The work there should

be regarded as a ‘prototheory’.

e Chapter 7 is a report that documents the theoretical and computational meth-
ods that provide the functional underpinning for Process Physics, from which

principles all subsequent work in Process Physics derives.

e Chapter 8 outlines and sketches the further developments that extend the
foundations of Process Physics beyond its formative base, illustrating the func-

tionality of the paradigm and its potential as a viable successor theory.



Chapter 6

Towards a new model: Heraclitean

quantum systems

The cosmic order has been made by no god or man,
but has always been and always will be:

fire ever living, forever breaking out here and dying out there.

— Heraclitus

6.1 Introduction

In the standard model, one first constructs a classical spacetime. Next, various classi-
cal fields are attached to this geometrical structure. As a third stage, the matter fields
are quantized. Eventually, with some hindsight, one might even seek to recover the
classical behaviour of large quantum systems via some ‘classicalization’ argument or
procedure. This multi-tiered approach reveals an incomplete separation of the histor-
ical (and necessarily contrived) development of the standard model, from a cohesive

and comprehensive theoretical foundation. One would prefer to see, in a mature
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theory, that the classical features of an objective reality emerge naturally from an
abstract scheme that is itself devoid of classical structures and which is parsimonious
in its assumptions and axioms.

The term, Heraclitean quantum systems (HQS), named for Heraclitus of Ephesus
(540-480 BC), was coined and introduced in [343] as a basic model — a starting point,
or precursor theory — that is constructed by first abandoning those features that one
hopes will be emergent. A HQS is free of classical structures or concepts in its axioms.
Observing that bosons are always composites of fermions, and that quark/antiquark
pairs (i.e. fermions) obeying the Pauli Exclusion Principle (PEP) combine to form
mesons, spacetime and all bosons are discarded in the assumption that these are low
energy phenomena, leaving only fermions and the PEP. A HQS is a model that is

1

constructed using a Grassmann algebraic system”, which has algebraic fermion-like

elements and anti-commutative rules that can be considered to play the réle of an

abstract form of the PEP.

6.2 Grassmann algebra and a correlation function
Let Gy be a Grassmanian algebra with N anti-commuting generators, my so that

{mi,m;} =mim;j+m;m; =0 V 4,j=1,...,N (6.2.1)
and so (m;)2 = 0. The 2V polynomials:

Lmy,...,my, (mimse), (mims),...,(my_1my),..., (mime...my)

1Such algebras are used to very good effect in modelling the fermionic sector of the standard
model. In such applications, however, multi-component local ‘algebraic fields’ are constructed and
attached to some pre-specified spacetime manifold.
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form a basis for Gy.

Similarly, a Grassmann algebra G, with 2V elements,
ml, ml,m2m2, . ,mNmN

(eventually with N — o0), may be defined, where 7; and m; are completely indepen-
dent (i.e. no relation between them is to be implied) and each pair of N generators

anti-commutes with itself, so:
{mi,mj} = 0, {mi,mj} =0. (622)

There is no distinction to be made between m; and m; until some form for the ‘action’,
Suos[m, m] is specified. A ‘correlation’ function constructed using this Grassmann
algebra is given by

Gl =G [mm; ... e Swaslmml] (6.2.3)

where the symbol G is used in the sense of Grassmann ‘integration’ over m, m ‘fields’:
G = / DDy .. (6.2.4)

where [ DX is used equivalently to [ [] dX;.
i=1
This ‘G-process’ is a purely algebraic device [344]. Specifically, the integral-like

operation is defined by

/dmz EO,
/mi dm; =1, (6.2.5)

{mi,dmj}z{dmi,mj}EO V t,5€l,...N
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from which it follows that

/mimj dm;dm; = — /mi (/ m; dmj> dm; (i # 5) (6.2.6)
:_/midmi = -1

/mimj dmz =—my /mz dmz = —my

/mi dm]dmz = — /mz dmzdm] = —/dmj =0

and, in particular,

(6.2.7)

/mkl . .mkN dmkN - dmkl :8k1...k1v

(6.2.8)
[ m dm - dmg = 5 € fo

ki -k
where €y, .k, is the antisymmetric tensor. It should be noted that in (6.2.8) only the
N*-order contribution to f(m) survives the integration over the Grassmann genera-
tors.

Such primitive ‘correlations’ as (6.2.3) are necessarily naive, being beneath any di-
rect observation; they are not expected, in themselves, to have any phenomenological

significance. A more general expression is given by
G[F] = G|F[m, m] e~ S#aeslmm] (6.2.9)

where F' is some function of all the elements. To define the integration process,
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expand the ‘integrand’ as a polynomial:
F[m, m]e_SHQS[m’m] =1+ Z CimMy; + + +» + Cp M Mg+ - - MM Mo... My, (6210)

writing the product of the highest order terms in some (arbitrary) standard order.
By definition, and in a manner that will be demonstrated in what follows, only the

coefficient of the ‘last’ term in the expansion survives the G-process, so that:
G|F[m, m] e Suasmml] = ¢/ (6.2.11)

Consider now the particular HQS defined by the quartic action

N
SHQS [miy mj] = Z m;m;m;m; (6.2.12)
>3

(Henceforth, quotation marks are dropped from familiar terms borrowed for this
exercise. The terminology adopted is used in an analogous sense rather than a literal

one.) The exponential term in Gf}’_‘_‘_‘ is replaced by the series expansion:

_ sz 83
—S[m;,m;] 1 _ z _ = .
e D=l-85+ -5+ (6.2.13)

Clearly, the first term in the expansion contains no 7, m pairs. The second term, S,

is a sum of terms each containing two m, m pairs
Shas [T, my;] = Memy My + MgmMyms + -+ -+ + Mym My my
+ M3maMams + MaMaMoMyg + + - + MyMaMaMmy
(6.2.14)

+MNMN_ 1N 1N
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The third term, S?, must be a sum of terms each containing four 7, m pairs of the

form:
TV T005 700 T TN 51 T 1T

with >4, 4 >4 i#4d, j#5,i#§,j#7

(these conditions resulting as a consequence of the Grassmann algebra since any term
with degeneracy in the indices is identically zero by definition). The nth term in the
expansion is thus a sum consisting of terms each with 2(N — 1) m, m pairs.

For a given number N of 7, m pairs there will be some number & such that S* is
a sum of terms each with exactly N distinct m, m pairs if V is an even integer, or
N — 1 pairs if N is an odd integer. Then S**! = 0 for all [ since these higher order
terms are necessarily degenerate.

In fact, it will be seen that:
N N even
k= Npax = { > (6.2.15)

To establish a numerical value for the non-zero components in these sums each
‘string’ of 77, m pairs must be placed into some (arbitrary) standard order by pair-wise
interchange of the m’s. For each such exchange, the ‘value’ of the string is multiplied
by a factor of (—1) so that an even number of interchanges to achieve the standard
order results in an overall factor of (+1), while an odd number of interchanges results
in an overall factor of (—1); i.e. each string may be characterised by a signature of

+1. If the standard order is chosen to be

so that MMMy, (’L > j) — MMmm; — Mm;m;m; = signature = +1, and

similarly for each group of four ms, it is immediately obvious that all strings may be
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rearranged thus with no change of signature:
T T T T M (Z >4, i > j’)
— mjmimjmimj:mifmj:mif = signature =41
A further four interchanges collects the barred and unbarred ms giving:
mjmimj:mi:mjmimj:mi:

with no net change of signature. It remains now to order the indices within the barred
and unbarred groups but notice that the indices are now arranged the same way for
the ms and the ms — any further rearrangement necessarily requires an even number
of interchanges and so the signature for any non-zero string must be (+1) for this
choice of standard order. In fact, it is clear that this result must hold for any choice
of standard order if we start with an action S of the form given.

Evaluation of S™ may now proceed, recognizing it to be equal to the number of
non-degenerate terms in the sum. For n = 1, this is just the number of ways of
choosing two distinct indices from the N available i.e. the binomial coefficient ,,Cs.
For n = 2, two more (different) indices are required — there are (y_9Cy ways of
choosing these and so the total number of non-degenerate terms in the sum is the
product yCy.(nv—2)Co. In general, write:

n—1
St = H (v—2iyC2, N < {

=0

(6.2.16)

The condition on n is required otherwise the binomial coefficient is undefined for
(N — 2i) < 2; this provides the k& = nmax noted previously.

These results need to be incorporated in the overall calculation of the correlation
function (6.2.3)

Gy = Glmym; ... e Suastmm]
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Notice that for N even, S* with k = ny.x uses all N indices, leaving none for the
leading m;m; term(s) whereas for N odd, S* uses N — 1 indices. Thus, for N even
the highest order term in the expansion is given by S*~!, leaving two indices free —
this demands that the leading term in G take the form m;m;m;m; to ensure that
each index is used and symmetry is maintained in 7m pairs. On the other hand,
for N odd the highest order term in the expansion leaves just one index free and the
leading term in G has the form m;m;, with ¢ = j. Hence one is obliged to consider
at least two distinct classes of solution for G for this particular choice of the action,
S[mi, m;]: those with N even and those with N odd.

Extending the Grassmann algebra to include sources I;, l;, a generating functional

is introduced

Z [1,1] = G [exp(—Suqs [M, m] — Im — ml|

exp (— Z MM m; — Z (Limi + m@)] (6.2.17)

>3 i

=g

=1+LG; + ZZGZ -+ Giﬂilj + -

No notion of locality is permissible, so all elements are in ‘interaction’. The apparent
dominance of local interactions must be emergent. The action has a large invariance
group: m — Um,m — mU 1. To establish the methodology to be employed next,
bosonization of the generating functional (6.2.17), it is first pertinent to reflect on

what has been learned elsewhere.
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6.3 Action sequencing

Quantum field theory achieves extraordinary accuracy in its predictions but the most
fundamental model is that of Quantum Chromodynamics (QCD), which provides an
example of the emergence of a complex effective theory. In QCD, the functional
integral calculus (FIC) is employed to take advantage of the functional integral for-
mulation of quantum field theories. Insights gained from the derivation [345, 346]
of emergent hadronic phenomena for the quark-gluon system, in which the notion of
induced action sequencing is highlighted as an essential aspect, provide a convenient
introduction to the ideas to be developed here.

To illustrate the concept of action sequencing, observe the (inexact) derivation of
the low-energy, or hadronic, form of QCD, beginning with the approximation of QCD
by the Global Colour Model (GCM) [345, 346, viz:

01]0), = / DGDgDA exp (—Saon [4,7, 4)) (6.3.1)
~ /Dq DgDA exp (—Seem [4,T,q])  (Global Colour Model)  (6.3.2)
- / DBDD DD* exp (—Suneen [B, D, D)) (bilocal fields)  (6.3.3)

:/DW...DNDN...exp(—Shadmnic [7,....,N,N,...]) (local fields) (6.3.4)

Each change of functional integration field variables (mandated by the dynamics)

generates a new effective action for those field variables, so that:
SQCD [A7 q: Q] — SGCM [A7 q: Q] — S bilocal[B7 D7 D*] — Shadronic[ﬂ—7 = 7N7 N7 - ] (635)

A vital intermediate step is to determine the minimum of the action in (6.3.3):

6Sbilocal [By D7 D*]

= =0, ... (6.3.6)
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has a solution with B # 0, giving rise to the condensate effect in §g whereby the
induced effective action has a non-trivial minimum away from the B = 0 perturbative
point. This is seen to be one of the most important dynamical effects in QCD in terms
of comprehending the nature of hadrons and is similar to effects observed in supercon-
ductivity. If hadrons are considered as deviations in the structure of the condensate
then the lowest mass hadrons correspond to those deviations that occur in the flattest
directions of the effective action for bilocal fields in (6.3.3) (see [345] — [351]). These
correspond to the Nambu-Goldstone (NG) pion modes, U(z) = exp(iv27%(z)F*)
with NG boson fields 7(z) forming homogeneous Riemann coordinates for the con-
densate manifold. The internal structure of pions is deeply related to the structure
of the condensate and so the near-degeneracy of the condensate equations (6.3.6)
determines the long-range behaviour of the nuclear force.

Let B(z,y) be a solution of (6.3.6), then

Tr+y

B(z,y) = B(z,y) + ) _ ¢a ( 5 ) I(z —y), (6.3.7)

provides the idea of a deviation from the condensate. Here, the z — y dependence
of B(z,y) is expanded into a complete (and, in principal, arbitrary) set of func-
tions, I'*(w), with ¢,(z) as expansion coefficients. The integration variables may be
changed from the B(z,y) to the ¢,(z). In the GCM, the I'*(w) are chosen so as
to diagonalize the second-order terms that arise when the bilocal effective action in
(6.3.3) is expanded about B(z,y). Consequently, the I'*(w) are found to be solutions
of Beth-Salpeter equations, describing the internal structure of gq core states. The
‘centre-of-mass’ motion of these mesonic bound states is described by the ¢,(z) fields,

such as are found to occur in (6.3.4).
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6.4 Bosonization

Returning to (6.2.17), to consider a bosonization along the lines of the GCM bosoniza-

tion in QCD, look again at the generating functional:

Z [1,1] = G [exp(—Suqs [M, m] — Im — ml]

e [exp (— > mamgmymi =Y (fims + mﬂ'))]

i>7 i

(6.4.1)

This use of the Grassmann algebra provides an analogue of the PEP by excluding
m, m combinations with repeated indices — the condition ¢ > j in the first sum avoids
both double counting and the redundant zero-value terms that would otherwise occur
when ¢ = j. It is found, however, that this fermionic structure is difficult to work
with, thus the need to perform a ‘bosonization’. First, it is shown that Z can be put

in the form
Z[Ll=¢6 [/DBeXp (—=SBmm [B,m,m] — Im —ml) |,

where SBmm = % Z BijBZ'j - Z Bij (mim]’ - mjmi) , (642)
i,J i,J
with Bij = _Bji7 BZZ = 0, and Bij real.
This is checked by performing the Grassmann integrations; for convenience of nota-

tion, define

B2 = ZBZ]BZ_7 and ¥ = \Ilij = (mimj - mjmi) , with \Ilij = _\Ilji (643)

Y]
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and drop the summation signs and indices, e.g. Im = Zzimi etc, then write Z in

)

(6.4.2) in the form
Z [l = / Dm Dmexp (—im — ml) / DBexp (—3B° + BY) (6.4.4)

and perform the integration over B. To do this, complete the square

1B? _ BV =

L
2 2

(B® — 2BY)
O (6.4.5)

— 2 2
and make a change of variables to Y;; = (B — ¥). Because the U;; are even-order
Grassmann elements, they are mutually commuting and behave like real and complex
numbers (often called c-numbers) so the usual change of variable rules still apply.

Therefore
/DBeXp (-3B>+BY) — /DYexp (—3Y?% — 0%). (6.4.6)

1
Now, formally, [ DY e"2Y is a Gaussian integral and thus equal to a constant and

SO
/DYexp (_%y2 _ %\1,2) — O e
7 ﬁ, l] o /Dml?mexp (_%\1,2 Im— ml)

= /DmDm exp (—3 (Mym; — mm;)° — Im — ml)
(6.4.7)

Expanding:

1 mr rz7} 2 —_— 1 _. ._. . _. ._. .+ — _. ._. + — _. ._. .
5 (Mymy —mym;)” = 5 (Mymymym; + Mymmym,; — mymgimym; — mmmym;)

(6.4.8)
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— the first two terms on the RHS are identically zero (Grassmann property) and the
Grassmann algebra provides that m;m;m;m; = (—1)*m;m;m;m;. Thus

Z [11] « / Dm Dm, e~ ™mimmi—im-—ml (6.4.9)
which demonstrates the equivalence of (6.2.17 (6.4.1)) and (6.4.4). Returning to the

latter to expand in ¥ and explicitly perform the G process via the m, m integration:,

Z [m,m] = // DB DmDmexp [—3B* + mBm — Im — mil]

(6.4.10)
/DB e 2P / DiDm ¢ Bm—(Im+m)
Completing the square
mBm — (Im+ml) = (m—1B™")B(m—B™"l) —IB™'l (6.4.11)
and changing variables, M = m — B!, to eliminate the linear term then
mBm — (Im+ml) = MBM — [ B~'l. (6.4.12)
This change of Grassmann variables thus permits that
/ Dii Dy e~ "Bt (Imtml) / DM DM e~ MBMHBTH (6.4.13)

A+B _ LA

Now, the matrix exponential e = e“eP only if A and B commute, so consider

the commutator
[-MBM, 1B~'1] = (-MBM) (1B~'1) - (1B~'1) (-MBM)
= (MBM) (IB~"l) - (IB~"l) (MBM) (6.4.14)
=MMIl-1IMM.
Rearranging the second term by the usual pair-wise interchange of Grassmann ele-
ments provides the required commutation relation

[-MBM, [B™'l) =MMIl— (-1)' MMl
(6.4.15)
=0
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SO
I = / DM DM e~ MBM ol(B™)1
(6.4.16)
‘1”/ DM DM e MBM,

But [ DM e MPM = det B and det B = exp [TrLn(B)] for any non-singular matrix

B. Therefore, (6.2.17) can finally be written in the form

—> B} +Tiln(B) +1B'1|. (6.4.17)

1>7

l l /DBexp

The Grassmann algebraic aspects are now contained in TrLn and the [[ algebra.
Notably, Z is independent of 77, m terms and thus is non-fermionic (except for the
source terms) — that is, the generating function has been ‘bosonized’. (Note that
the ‘m-squared’ form was used in (6.2.17) because only this form may be exactly
bosonized. This arises because multi-dimensional Gaussian integrals can be evaluated
exactly. Also, note that the ‘+’ sign for the trace-log term arises from the properties
of the 77, ms that were chosen so as to emulate the PEP). The algebraic G process has
been given a representation that involves the sum over all possible B configurations.
This is the Heraclitean ‘flux’, which is an axiomatic aspect of HQS. What is sought is
the emergence of stability and ‘things’ — or, as Wheeler calls it, “It from Bit”[242, 172].

The expression for Z in (6.4.17) is exactly equivalent to (6.2.17) — however, it has
the advantage of not being algebraic and one could imagine estimating (6.4.17) by
appropriate approximations.

Taking the action in the form obtained in (6.4.17) and dropping the source terms

gives the effective or induced action

=> B} - TrLn(B), (6.4.18)

>3
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where the label ‘C’ given to the action identifies it with the notion of a ‘condensate’
or ‘ground-state’ of the HQS. Here, ‘B’ is the analog of bilocal fields in QCD. The
advantage of the bosonization technique is that it renders the system more tractable
and better prepared for the very effective analytical methods practiced in QCD (par-
ticularly the GCM). Also, present day modelling has indicated the extraordinary
success of mean field or smoothing approximations and it would be expected that
these should be accessible via the bosonization — although it should be noted (as
again illustrated by the GCM) that bosonization does not preclude the emergence of
complex fermionic components.

The bosonization technique continues by finding and then analyzing the minimum
of the induced action to identify the most significant part of the B integrations. To

solve
0S¢ [B]
0B

=0, (6.4.19)

let B = B + b, where b is a small perturbation of the ‘ground’ state B such that
bij = _bji7 bu =0 (antisymmetric) (6420)

then, for all small b,

S[B+b] - S[B] =Y (Bij+b;)? - Tln(B+b) - > B, + TrLn(B)

i>j >3
= Z(E?J + 2_ijbij + b?]) — ZE?J — TI‘LH(E -+ b) -+ TI‘LH(E)
i>j i>7

(6.4.21)

i>J
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Now,

1

TrLn(B + b) — TrLn(B) = TrLn [E(I +B b)] — TrLn(B)

= TrLn(B) + TrLn(I + B~ b) — TrLn(B)
(6.4.22)

=Trln(I+ B b)

=Tr(B~'b) + O,
using the facts that In(1 +y) =y, y < 1 and B b < I, I = N x N identity

matrix. Substituting the results from (6.4.22) in (6.4) and dropping O(b?) terms

(which is acceptable since b is small), at a minimum the following relation holds for

all bi]’
Z 2§ngz_7 = TI‘(E_1 b)
i>7
——1
= By bu (6.4.23)
ki
>3

Comparing the coefficients of b;; thus provides the ‘vacuum’ equation

-1

-1

(6.4.24)

|
o]

ie. B
which is analogous to the Gap Equation of superconductivity BCS theory and also

to chiral symmetry-breaking in QCD. Multiplying both sides by B
= B-B=-I. (6.4.25)

One is prompted to ask what form B must take to satisfy this relation. Notice that

the 2 x 2 identity matrix and the 2 x 2 Pauli matrices o,, 0y, 0, have the property
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02=1 (i=u1,y,2) and so does 7 - ¢ (7 is a unit 4-vector and o = [0,,0y,0,, I)),
thus

(it - 0)? = —1. (6.4.26)

But o, is antisymmetric, which motivates one solution for B — the block-diagonal

matrix of the form

B= . (0 1) (6.4.27)
~1 0

for even-order ¢, j. The general solution obtains by performing a similarity transfor-
mation on B so that B = RByR™", where R is an arbitrary real orthogonal matrix and
By is the block diagonal matrix given in (6.4.27). Clearly, this is highly degenerate
(dominating the B-fluctuations) and contains none of the structure that is indicative
of the usual meaning of the term, ‘condensate’. The R-transformation ‘switches’ ele-
ment pairings and the non-zero elements of each 2 x 2 block on the diagonal may be

regarded in the sense of Cooper pairs, for example By, couples by, b, etc.

6.5 Condensate excitations
Consider the ‘nihilo — nihilo amplitude’
N |NYy=Z[0] = /DB e~ 5clBl (6.5.1)

and deviations from B,

Bij = Eoij + Z (Zsa]_—‘?j. (652)
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in which the I'* form an arbitrary complete set. The problem is to find a set that
facilitates access to emergent phenomena (again, following the example of the GCM).

As a first choice, set a to be a serial index a = (IJ) and let

(6.5.3)

o T4 =1, ifI=diand J =
Y 0 otherwise

These I'j; form a complete set for the expansion (6.5.2), with expansion coefficients

¢q- Then, changing variables of integration from B to ¢
NIN) = / D ¢~ 5ol Bo+oT] (6.5.4)

which, in essence, is equivalent to the defining B;; integrations (the Jacobian is a
constant and can be ignored). It is usual, when considering degenerate condensates, to
make the superselection assumption that it is legitimate to work in the neighbourhood
of one condensate point. Choosing B, and expanding S¢ in powers of ¢, gives

Sc[Bo+¢-T] =Sc[01+ > $abeKas+ > duPrbeKare + - (6.5.5)
ab

abc

These variables of integration affect only small numbers of m, m pairings. They are
too primitive to be able to reveal any complex emergent behaviour. Nevertheless,
they may be partly analysed by diagonalising the quadratic term in (6.5.5) and thus
choosing new variables of integration so that

SC[O]_E <I>a<1>a)\a—z <I>a<1>b<I>cK’ +oe

NN = /D@ e @ e e (6.5.6)

This change of variables is equivalent to a new choice for the I';. Approximately
one half of the eigenvalues )\, have value zero: these correspond to the ‘massless’ NG
modes, i.e. deviations in the tangent plane to the condensate manifold. The remain-
ing A\, are all non-zero and equal: these ‘massive’ modes correspond to deviations

perpendicular to the condensate manifold (figure 6.1 illustrates the idea).
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massive
modes

Figure 6.1: Condensate deviations

showing ‘massless’ modes in the direction of the tangent plane and ‘massive’ modes
perpendicular to the manifold.

In QCD the analogue of the ®, modes are gg meson core-state modes, and the
diagonalisation procedure is there the Bethe-Salpeter equation. Because of the pecu-
liarities of QCD the hadrons contain either two constituent quarks (mesons) or three
constituent quarks (baryons) together with secondary mesonic dressings of these core
states. In HQS, however, multi-constituent modes are needed, since it is only with
these that one might hope to find evidence of classical structures — and for that
purpose the preceding two choices of integration variables are not helpful.

Consider now a third choice of integration variables, amounting to another selec-

tion for the complete set of I'* so that

N |N) = / DG e Sc[Bo+CT] (6.5.7)
where
+1, with probability p or
[ ={I*:T{=-T% =< -1, with probability lp or } (6.5.8)
0 otherwise

and G = {G,} is used as the new variable of integration. Each such I'* corresponds
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to some random multi-element excitation of the condensate. With the extreme choice
p = 0 only one trivial I'* is formed. On the other hand, if p = 1 the I'* are formed
with all oft-diagonal entries being +1 or —1. However if p < 1 then the I'* have
sparse non-zero entries, and approximate a complete set.

It turns out that this choice of the I' set describes multi-element deviations from
the condensate and has intrinsic characteristics that prompt a natural geometric

interpretation.

6.6 Random graphs

Among the Pythagoreans the monad was the first thing that came into existence.
The concept was fundamental to Pythagorean cosmology. Within certain variations
of Gnosticism, the monad was the higher being which created lesser gods, or elements.
In the metaphysics of Gottfried Leibniz, the monad was an indivisible, impenetrable
unit of substance viewed as the basic constituent element of physical reality. Leibniz’s
theory does not posit physical space; rather, physical objects are constructs of the
‘collective experiences’ of monads. Leibniz was a leading advocate of the relational
mode of thinking, both in response to and in contrast with Newton’s absolute space
and time.

Finding no more appropriate terminology than this, the word ‘monad’ is adopted
here with much the same sense as that given above but with some important qualifi-

cations:

e a monad is not a geometrical object; in particular, it is not a mathematical

point — it is not a zero-dimensional object embedded in a given background
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geometric structure

e monads are purely conceptual entities having no objective existence, they are

not ‘things’
e a monad is just a member of a countable and abstract set

There is no sense in which monads may be better defined at this stage. While
it may be convenient to share Leibniz’s notion of monads as the basic constituent of
physical reality this, if taken literally, would be a fundamental misconception. Monads
acquire their meaning not by objective definition but by their functional relationship
in the larger scheme, as will be seen.

Suppose that there exists a very large (possibly infinite) number, M, of monads.
Further suppose that each monad ‘experiences’, to varying degree, the presence or
existence of every other monad and that these ‘experiences’ may be represented by
pair-wise link variables, m;;, of corresponding magnitude with the following proper-

ties:

e magnitudes follow a Gaussian distribution (following the example of SQM,
which employs Gaussian white noise — see §2.3.2 on page 60. Gaussian white
noise is also used to model thermal noise and is the simplest idealization of noise

[258])
e antisymmetry, so that m;; = —my;
e self-interaction is excluded, so that m;; = 0.

There is no background geometry, nor any topology. Nevertheless, a straight-

forward way to introduce and define a natural measure of ‘distance’ between points is
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to establish an adjacency relationship between the monads, specified for all possible
pairs because the absence of background or embedding geometry means that the adja-
cency (or otherwise) of a given pair of monads is independent of the adjacency of any
other pair. This obtains by identifying the property of adjacency with the ‘strongest’
links — those with the greatest absolute value. Next, coarse-grain or partition the link
variables such that monads in any given pair are adjacent with probability p and not
adjacent with probability ¢ = 1 — p, with the requirement that p < 1.

The described relationships are readily identified with the I'* matrices, to each
of which may be associated a random graph: let the indices ¢ and j in I'}; label the
vertices (synonymously, ‘points’ or ‘nodes’) of a graph in which two vertices ¢ and j
are connected by an edge (synonymously, ‘link’ or ‘bond’) — i.e. they are adjacent —

if |T%| = 1.

6.6.1 Graph Theoretic definitions

Since its inception, the language of graph theory has been clouded by uncertain or
ambiguous terminology. The following definitions? are considered to be consistent
with the terminology and conventions of modern graph theory and are presented here

to aid clarity in the arguments that follow.

Definition 6.6.1. (order): The number of vertices of a graph is its order, usually

written as |G|.

Remark 6.6.1.1. Graphs are finite or infinite according to their order.

2The definitions obtain, largely but not entirely, from the Wikipedia Glossary of graph theory on
the World Wide Web at http://en.wikipedia.org/wiki/Glossary.of_graph_theory
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Definition 6.6.2. (degree): The degree or valency d (v) of a vertex v is the number

of edges at v.

Definition 6.6.3. (adjacency): Two vertices u and v are considered adjacent if an

edge exists between them. Adjacency is denoted by u | v.

Definition 6.6.4. (nearest neighbours): Mutually adjacent nodes are known, syn-

onymously, as nearest neighbours.

Remark 6.6.4.1. According to the usage here (but not generally so) the number of

nearest neighbours of v is equal to the degree of v.

Remark 6.6.4.2. The terms next-nearest neighbour and so forth carry the obvious and

intuitive interpretation.

Definition 6.6.5. (neighbourhood): The set of neighbors, called an (open) neigh-
borhood Ng(v) for a vertex v in a graph G, consists of all vertices adjacent to v but
not including v. When v 1s also included, it 1s called a closed neighborhood, denoted
by Ngl[v]. When stated without any qualification, a neighborhood is assumed to be

open.

Definition 6.6.6. (adjacency matrix): The adjacency matrix of a directed or
undirected graph with n vertices is the n X n matriz whose entry in row i and column

j gives the number of edges from the i™ to the j™ verter.

Remark 6.6.6.1. An adjacency matriz is known, synonymously, as a connectivity ma-

triz.

Remark 6.6.6.2. Unless specified otherwise, adjacency matriz means the modified ad-

jacency matriz.
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Definition 6.6.7. (modified adjacency matrix): The modified adjacency matrix

1s generated by replacing all entries greater than 1 in the adjacency matriz by 1.

Definition 6.6.8. (connectivity): If it is possible to establish a path from any vertex
to any other vertex of a graph, the graph is said to be connected; otherwise, the graph
is disconnected. A graph is totally disconnected if there is no path connecting any

pair of vertices.

Definition 6.6.9. (path): a path in a graph is a sequence of vertices such that from
each vertex in the sequence there is an edge to the successor vertexr. (Equivalently, o
path is a sequence of vertices such that each vertex in the sequence is adjacent to both

its predecessor and successor vertices.)

Definition 6.6.10. (simple path): A path is called a simple path if none of the

vertices in the path are repeated.

Definition 6.6.11. (cycle): a cycle of n vertices is assumed to be a simple cycle, or
a simple circuit in the modern sense, meaning every vertex is incident to exactly two

edges.

Remark 6.6.11.1. Traditionally, a cycle of a graph consisted of a sequence of suc-
cessively incident edges and their end-vertices, where the terminating vertices are
identical. In modern literature, that definition usually refers to what is known as a

circuit, or closed walk.

Definition 6.6.12. (unit distance): If two nodes are nearest neighbours then they

are separated by a unit distance of 1 unit of length.

Definition 6.6.13. (distance): The distance dg(u,v) between two (not necessarily

distinct) vertices u and v in a graph G is the length of a shortest path between them.
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Remark 6.6.13.1. This distance has metric properties since
d(u,u) =0,
d(u,v) = d(v,u) (6.6.1)
d(u, w) < d(u,v) + d(v, w)

(the subscript G is usually dropped when there is no danger of confusion). When u

and v are unreachable from each other, their distance is defined to be infinity oc.

Definition 6.6.14. (subgraph): A subgraph of a graph G is a graph whose vertex

and edge sets are subsets of those of G.
Definition 6.6.15. (forest): A forest is an acyclic graph.

Definition 6.6.16. (tree): A tree is a graph in which any two vertices are connected
by exactly one path. That is, a tree T is minimally connected, so that T — e 1is

disconnected for every edge e in T (i.e. T — e is a forest).

Remark 6.6.16.1. A connected graph with n vertices is a tree if and only if it has

n — 1 edges.
Remark 6.6.16.2. The vertices of a tree can always be enumerated, say as vq,...,v,
so that every v; with ¢ > 2, has a unique neighbour in {vy,...,v;_1}.

Remark 6.6.16.3. Given N different vertices, there are NV~2 different ways to connect

them to make a tree.

Definition 6.6.17. (root node): A root node r of a tree graph T is a vertex chosen

s0 as to be regarded as the origin of any partial ordering on the set of vertices V (T).

Remark 6.6.17.1. r is the least element in such a partial order.
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Definition 6.6.18. (leaf node): A leaf node is any vertex of degree 1.

Remark 6.6.18.1. Every non-trivial tree has at least two leaves — for instance, the ends
of a longest path. If a leaf is removed, what remains is still a tree whereas removing

a vertex of degree d (v) > 1 results in a forest.

Remark 6.6.18.2. Where a root vertex r has been chosen, thus imposing a partial

ordering, every leaf x # r of T is a maximal element of that order.

Definition 6.6.19. (spanning tree): A spanning tree of a graph G is a tree that

contains every vertex of G and whose edges are edges of G.

Definition 6.6.20. (minimum spanning tree): A minimum spanning tree spans

the graph and is a minimum — the total weight of all the edges is as low as possible.

Remark 6.6.20.1. If all paths are weighted equally (e.g. as in HQS) then the distance
between any two vertices is the shortest possible distance between those points.

Returning to the I'* matrices, it follows from the above that each is a modified
adjacency matrix of some random graph, G®. Moreover, in general each graph is
disconnected, being partitioned into a number of mutually disconnected components,
or subgraphs — that is, there is a path of finite length between any two given ver-
tices in the same component, while no such path exists between vertices in different
components.

For graphs such as these, with probability of adjacency p < 1, Nagels [352]
has considered the probability distribution of the distances between the vertices of
connected subgraphs, first observing that although the assignment of adjacencies
takes place independently for each possible pair of monads, the distances between

monads are no longer independent; for instance, if 7 is adjacent to both j and k then
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d(j, k) = 1 with probability p if j and k are nearest neighbours otherwise d(j, k) = 2
since 7 and k£ must, in that case, be next-nearest neighbours with the shortest path

between them obtaining via 4.

6.6.2 Review of Nagels

Nagels’ [352] findings are central to the present argument, thus it is both relevant
and informative to review and validate the key results, beginning with Eq.(5) in
[352]. First, while it is assumed that the total number of monads is very large, the
number of monads in any connected subgraph is certainly finite. The entire set M
is thus partitioned into finite subsets of mutually disconnected components, each
having N;,7 — oo monads, which are at least simply connected — that is, each NN;
may be described by a non-directed random graph where the monads are represented
as vertices and the adjacency relations between these vertices, on a pairwise basis,
provide edges of the graph. The minimal such graphs must then have N; — 1 edges
i.e. they are tree-graphs. Select one of these components, with N = N; > 1, and
choose, arbitrarily, one vertex to be the origin - a point of reference for the whole
graph — and examine how the distribution of vertices appears with respect to that
chosen origin, viz

Let Dy, be the number of vertices at a distance k from the origin then, as figure 6.2
on the next page illustrates, Dy = 1 is the origin, D; is the number of adjacent vertices
or nearest neighbours to the origin, and D, is the number of next nearest neighbours
and so on.

Since N is finite, there is a maximum distance L on the graph and Dy is the

number of vertices at this maximum distance from the origin. Clearly, then, there is
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¢ Dy=1
D =2
Dy=4
Ds=1

Figure 6.2: Example of a tree graph
(N =8, L = 3) with distance distributions from *" node.

the constraint that

XL: Dy = N, (6.6.2)

k=0

and also
Dy=1
D,>0, 0<k<L . (6.6.3)
D,=0, k>1L

No vertex may be more than a distance N — 1 from the origin since L = N — 1
provides the simplest connected graph, a chain with D, =1V {k:0<k < L}.

To calculate the probability {Dy: 0 < k < N, Z]zcv:—(} Dy =N}

1. the probability for the number D; of nearest neighbours (i.e. those vertices
at unit distance from the origin) is pP', which may be written as (1 — ¢)P' =

(1-— q(?o)Dl, since Dy = 1;

2. the probability for the next nearest neighbours, D,, is obtained by considering

that any vertex at this level is

(a) adjacent to at least one point at unit distance from the origin;
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(b) not adjacent to the origin itself.

Condition (b) is easily obtained since it occurs with probability ¢ = 1 — p so

there is a factor of g2 for this.

Condition (a) may be obtained by first considering the counter argument i.e.
that the vertex is not adjacent to any of the D;. This has probability ¢”*. Thus
the probability that it is adjacent to at least one of the D; is just 1 — ¢”*. So

there is an overall factor of (1 — ¢)™* for this condition.

Hence, the probability of obtaining Ds is the product of these two factors

prob (Dy) = (1 — qDl)D2 qP?; (6.6.4)

. the probability for D3, those vertices at distance £ = 3 from the origin, is
similarly defined by the requirements that a vertex in Dj is

(a) adjacent to least one vertex in Dy;

(b) not adjacent to any vertex in Dj;

(c) not adjacent to the origin.

Condition (a) is argued precisely as the corresponding condition in item 2 above,
i.e. it provides a factor (1 — ¢P2)"°.

Condition (b) is expressed as ¢P!, thus providing the factor (¢P1)"°.
Condition (c) is satisfied simply by the factor ¢P3, which may be written as

(qDO)D3 since Dy = 1. Hence the probability of obtaining Dj is

(1=4")" (™)™ (™)™ = (¢®*™)” (1-¢")"; (6.6.5)
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4. for vertices at a distance ¢ + 1 from the origin, mathematical induction on the

previous results gives
i— D; .
prob (Diy1) = (q2j=%> Dj) 71— gP) P (6.6.6)

So, the probability P on the whole graph (ie for a specified shape) is the prob-

ability of obtaining a particular set (Dy, Dy, -+, Dy) which is
D L im1 Dit1 Dist
P=p” I (¢==2) " (1-¢7)"" (6.6.7)
i=1

Finally, note that vertices may be permuted between the sets of vertices at different
distances. That is, the same magnitudes for each Dy, could be obtained by many other
possible configurations which result from a relabelling of the graph. First, there are
(N — 1)! ways of relabelling the graph once the choice of origin has been fixed so
there are (N — 1)! ways of obtaining the same P, where the depth structure given
by (D1, Da, ---, Dr) is identical. Second, the number of instances of a particular
shape irrespective of labelling (beyond the choice of origin) is given by the product
D\'Dy! --- Dyl
Hence there are Dl!g%)!w ways of obtaining a graph (from a fixed origin) with

a particular depth structure and therefore, the probability for a specified shape with

N given and the origin arbitrarily chosen, that is, the probability distribution, is

L-1

N —-1)! i D; '
P= D1'§)2| ...) o 11 (a=62) 7 (1= 7). (6.6.8)
T ' i=1

Now,

(qu;}) Dj)DHl (1 _ qu')DiJrl — (qu;}) Dy _ ququ;B DJ)DHI
(6.6.9)

) ) D;
(qz;;t D; _ qEﬁ-:o Dj) i )
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So, finally, the expression for P is written as

by L 1 i- i D;
P=(N-1) 11)) 25 (q2j=%Dj _ q2j=éDj) , (6.6.10)
I i U

thus Nagels’ equation (5) is derived and validated as required.

Expanding (6.6.10) in powers of p, the first two terms are

L D, L
p={ p"H(N-1) <z:1 o ) {1 + 3P [; D (6.6.11)

L
+3"D;D; y — N* + N] + O(p2)} : L>1

\ i=1
and for fixed N with p < 1, the ‘shape’ of the graph (i.e. in terms of its depth
structure, specified by the distribution of the D;s) may be determined by considering

only the leading term of (6.6.11) so that

D; "
Pi=]] : (6.6.12)

Although it is convenient to continue the use of the label ‘P’ in the sense of a prob-
ability, the quantity P; should not be mistaken for a probability measure in a literal
sense — rather, it is a counting measure on a tree graph, being the relative frequency
of a particular shape. The same result may be obtained more directly by considering
the point of view of one monad, call it monad %, which is connected to a number of
other monads with p < 1. The connections are represented graphically and because
these links are very improbable the most likely form is that of a tree graph, which,
though rare, is much more likely than a similar graph with cycles. (Moreover, even
in the case where cycles are present, the depth structure of a graph is identical to the

depth structure of a minimum spanning tree over that graph.)
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The number of different possible linkage patterns between adjacent ‘levels’ £ and
k+1is D,?"“ and so there are DP>DPs ... DP* instances of a specific linkage pattern
for the whole graph, which is not the same thing as the ‘shape’ of the graph — from
the point of view of the root node, shapes are unique but linkage patterns are not —
there are fewer shapes than linkage patterns, as the simple case shown in figure 6.3

demonstrates.

N
N
N\

L=3 {Dy}={1,1,1,1}

(1-6) Dy_Pr =1
N N N " oL
\/ \ Z D(D,N)=6x1/1=6
L=2 ({Dy)}={1,21}
7 \ 8 / 9 4_ (7-12) l_llk)k—le:2
T]Dx! =

D(D,N) =6 x 2/2 =6

N\ L=2: {Dk}:él,l,Q}

[ (13-15) [[Dgp_1"* =1
N 1Dt =
D(D,N)=6x1/2=3

NN
N

N
/

1

A

AN
14 15 o —— L=1: {Dy}={1,3}
\/ / (16) Hlk)k_le =1
[1D:! =
. /\ D(D,N)=6x1/6=1

Figure 6.3: All possible tree-graph shapes for N =4
showing the distinction between linkage pattern and the shape {Dj}. Counting the
shapes proceeds according to equation 6.6.15.

Now consider the number of different N-node trees, with the same distance dis-

tribution {Dy}, to which ¢ can belong. Given M monads from which to choose 4,

M-1

w_1) ways to obtain the other (N — 1) monads in the connected subgraph

there are (
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that comprises the tree and (N — 1)! ways of permuting or re-labelling them, giving

a factor® of
(M — 1) (N —1)!

V=D = oD = v~ 9)
(6.6.13)
(M-
(M -N-=2)V

Thus, counting different linkage patterns, together with permutations of the monads

provides
(M —1)! DP>DPs ... DP,

N(Dr,., D, N) = (M — N —2)! D,!D,!...Dy!

(6.6.14)

D
(M N — 2'H kl

where the product term is identical to P; in (6.6.12).
In fact, if the subgraph status is disregarded and the tree-graph considered in its

own right, then

Ni(D, N) —1)! H D" (6.6.15)

exactly counts the number of occurrences of any given shape {D;} in the set of N2V
possible tree graphs with N vertices.

The most probable ‘shape’ is determined by maximizing P by varying the D;s
subject to the conditions imposed by (6.6.2) and (6.6.3).

It is convenient to work with In P instead of P itself. Using the Lagrange multi-

plier method, let

=InP+p (i D; — N) (6.6.16)

1=0

3In the case of a Grassmann algebra Gony with M = 2N elements, the pre-factor becomes
(2M - 1)/(2M — N)L.
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where P is given by 6.6.10). Setting 9F/0Dy = 0, consider
OF 0 8 L
—=—1 — D;—N]|, 6.6.17
oD, ~ o, " ) G, (“ (Z )) (6:617)
and observe:
1. trivially, the second term on the RHS gives u only;

2. expanding the first term on the RHS gives:

aka (In P) = aka {ln(N — )! = 1In(Dy! Dy!---Dg!) + Dylnp
(6.6.18)
L—1
i (R |3
i=1

Now, working through the terms on the right of the above equation...

(a)

Expanding, gives

a%k {m(DY) + 1 (DY + -+ I (DY + -+ +In (D) |

of which, only the k™ term survives differentiation, viz

0
__In (D!
()Dkl ( k.),

which is the digamma function, ¢(2+1) =I'"(2+1) /I'(2+1) (so allowing

Dy, to take non-integer values, which is an acceptable approximation if Dy,



179

is large) thus this term may be written simply as

a%k [—In(Dy! Dyl -+ DpY)] = — 9(Dy, + 1) ;

) 0, ifk#1
— (D1Inp) =
oD, (P11 {lnp, ifk=1

(d) -
In {H (qzj;%) Dj)DH_l (1 _ qu)Di+1}

=1
L -1 N
=1In H (q2j=o Dj) +1n H (1 _ qu) i)

i=1 i=1

i. Re-writing the first term gives the expression
-1 -
>~ Diy In(g==0s),
i=1
which is to be differentiated with respect to Dy. Expanding:

0
37 [D21n qDO 4+ Ds3ln qD°+D1 + -4+ Diln qDo-I-"--I-Dk—z
k

+Dk+1 In qD0+~..—|—Dk—1 + Dk+2 In qD0+'~'+Dk + Dk+3ln qD0+"'+Dk+1

4 o4 Dyln gPotHDet ot Dioz ]

For k # L, terms with coefficient D;, 7 < k, all vanish under differen-

tiation as does the term with coefficient Dy, . This leaves
(Do + Dy + -+ Dy_2) Inqg+(Dgy2a + --- + Dg) Ing

L
= ZDi In g — (Dg_1 + Dy + Dyy1)Ing, (k#L).

=0
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When k = L, differentiation does not yield the coeflicient Dy, seen
in the above. However, by definition Dy, is identically zero, so the
term may be retained without loss of generality. Also, Zfzo D; =N,

since this is the constraint condition. Thus

0 Lt i-1 Dit1
- | | >i—oDj — _
) In (iZI (q ) =NlIngq (Dk_l + Dy + Dk+1) In g.

Similarly, re-writing the second term gives

In (Iﬁ(l—q ’+l) ZDZHln (1-¢"™).

i=1

Again, this is to be differentiated Wlth respect to Dy so, as before,

expand thus:

iy
aDk

+ Dy 1n (1—qD’“‘1) + Dy In (1—qu) 4.

Dy 1n (1—qD1) + Dsln (1—qD2) 4.

+ Dy In (1 — qDL—l)] .
Here, in general only two terms survive the differentiation and so
0
In (1-¢™1)+D 1 — "
n (1=¢77) + Dingp-In (1-¢7)

=In (1 —¢") — D,mD_T
When k£ = 1 the first term on the right does not present; however,
recall that in that instance the Inp term survives (see 2c). Since
p =1—g and by definition Dy = 1, we can write Inp =In (1 — ¢™°) =
In (1 — gP*-1), which compensates for the otherwise excluded term. At
the other extreme, when k£ = L, the second term on the right vanishes
(D41 = 0.) Again, however, for clarity in the final expression the

term may be retained without loss of generality.
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The components of equation 6.6.17 are reassembled to show that

oF
3D, In (1— QD’H) —(Dg +1) = (Dy—1+ Dy + Diy1) In g
k
Dk In
—Dk+1?l_quq+NIHCI+M = 0,

which is further simplified to

oF
—— =1In (1 — qD’“—l) —p(Dy, +1) — (Dg—1+ Dr)In g
0Dy,
Dy,
_<Dk+1+Dk+1 D>IHQ+NIHQ+N-
1—qg"“k

The fourth term on the right is factored and simplified, i.e.

¢Pr ¢Pr
(Dk—l—l + Dk+1m) Ing = Dgy (1 +t1o qu> In ¢

In ¢
k+11 _ qu7

and thus finally to arrive at

oF
D, In (1—¢”1) —¢p(Dg +1) = (Dg1 + D) In g
¢ (6.6.19)
In ¢
—Dk+1m+N1n g+up = 0,

which is Nagels’ equation 9 from [352], now verified.
Continuing the assumptions p < 1, D > 1, with the further stipulation that the
product pDj may be neglected without loss of generality, (6.6.19) may be expanded

and approximated to give the most probable D, distribution in the recursion relation

D
Dyy1 = Dyln (D £

— ) + Dy(1 — 7). (6.6.20)

For comparison, consider maximizing 6.6.15 in like manner. Again, using the

convenience of the logarithmic form and employing the Lagrange multiplier method,
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let

=In N +p (i D; — N) (6.6.21)

=0

and let OF'/0D;, = 0. Now,

OF’ 0
3D: = 3D; (In M) +3—Dk< (ZD N)) (6.6.22)

As before, the second term on the RHS yields x4 only. Expanding the first term gives:

0 0 5 L
an - 1)! - . . N
aDk (ln Nl) aDk In [(N 1) ] + aDk Z(DZ In Dz—l ln(DZ))
= 35, (D#In Di-1 + Diy In Dy — In(Di1) (6.6.23)
_ Dyt 0
=In Dk—l + _Dk a—_Dk ln(Dk )

Using Stirling’s Approximation, n! =~ v/2mwn(n/e)" for sufficiently large n, the third

term on the RHS provides

0 0 1 0 0 0
e ln(Dk ) —_— ln(\/_) 4+ —— ln Dk 4+ — (Dk ln Dk) —_ —Dk

dDy, dDy, 20Dy dDy, dDy,
1
—  4+InDy+1-1 6.6.24
=5p, T Det (6.6.24)
1
=InDj+ —
nEE T 9D,
Thus 6.6.22 becomes
OF" D 1
=InDy  + = Dy ——+pu=0
dD;, Dy, 2D,
(6.6.25)
= Dii1 - —1 = In D -
D. 2Dy Di.) H

so arriving at the recursion relation (note the similarity with equation 6.6.20):

D
Dk—l—l = Dkln (D b

1
) — uDy, + = (6.6.26)
k—1

2
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Using, instead, that 8/0Dy In(Dy!) is the digamma function, would have led to the

1

3D, with negligible effect on the result — the difference being

approximation In Dy —
only the sign on the last term above.
Neither 6.6.20 nor 6.6.26 yield a direct analytic solution but Nagels used pertur-

bative methods for 6.6.20 to find the approximate solution (equation 30 in [352]):

2N | . 5 (7k 1/m\ . (27k . [ 27k
Dk o~ T [Sln (f) — g (z) Sin (T) - Insin (T)] . (6627)

More particularly, finding N in terms of L gives ([352], equation 43)

L*InL [ ., (7k 1w 2rk 2rk
~ in? (78} — 2 (D sin ( Z25) L tnsin { 278 . 6.2
Dy, 52 [sm (L) 3 (L) s1n< T ) lnsm( 7 )] (6.6.28)

Here, the leading term dominates (unless k/L is smaller than In(L)/L) so that

k
Dy, o sin® (%) . (6.6.29)
with constant of proportionality such that
InL
N~ L (;—ﬂ> . (6.6.30)

6.7 From monads to gebits

The remarkable property revealed by the analysis of the most probable distribution
in (6.6.28) is the appearance of the sin? term, indicating that the tree-graph is em-
beddable in a 3-dimensional hypersphere, S3. Most importantly, monad i ‘sees’ its
surroundings as being 3-dimensional, since Dy, ~ k? for small 7k/L. Taken together
with (6.6.30), this shows that the resulting emergent structure closely resembles a

three-dimensional closed space of positive curvature.
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Each random subgraph corresponds to a partitioning of I', so that for the inte-
gration variables G, each subscript labels, in the most probable case, a relational
structure specified by a I'* possessing intrinsic geometrical properties that character-
ize a three-dimensional closed space. If the exponent in (6.5.7) is expanded in powers

of G,, computing the trace summations leaves an induced effective action for the G,
<N|N>= /DGe—S[G] (6.7.1)

corresponding to a quantum ‘field’ theory of interacting 3-spaces. While this is anal-
ogous to some programs that are being currently pursued in quantizing general rela-
tivity, it would be naive to presume that these 3-spaces might be identified directly
with the spatial section of a ‘universe’ — of themselves, the I'® structures lack suf-
ficient richness, moreover, they are disjoint. In addition, the most likely distance

distribution {D;}, though possessing the sin®

signature, gives the subgraphs only
weak embeddability in S3. Strong embeddability, attainable only with the existence
of extra cross-linking connections (equivalently, the presence of cycles in the random
graphs), is required for the emergence of a ‘true’ 3-space and one might expect to see
some further condensation processes for these ‘core’ 3-space states leading to a fractal
or foamy spatial structure. Yet these rudimentary structures are at least indicative

of an incipient 3-geometry corresponding to our customary notions of physical space.

For this reason, these 3-spaces are named gebits (geometrical bits) [342].

6.8 Numerical studies of small-p random graphs

The foregoing analytic results, while robust, were subject to further scrutiny via var-

ious numerical investigations, which employed the Mathematica technical computing
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software.

6.8.1 Relative frequency distribution of shape lengths L

For a random tree with N vertices, there are NV =2 possible graphs partitioned into
2N-2 ‘shapes’. In principle, it is straightforward to explicitly list each possible distri-
bution of nodes over all possible lengths of the graph (which range from 1 to N —1) -
the list is simply an enumeration of the permutations of unrestricted partitions of the
integer N. In practice, for even small N the task soon becomes prohibitive to carry
out explicitly. Figure 6.4 on the current page illustrates the results for N = 24, which
involved listing and inspecting 4,194,304 { Dy} distributions. As may be expected, the
distribution is highly symmetric and favours the median and near-median lengths.
In fact, the ‘difficulty’ of the task is illusory — for N even, these L-values are

simply the binomial probability density function for N — 2.
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Figure 6.4: Probability distribution for graph length L
over all possible {Dy} shapes with N = 24
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6.8.2 Numerical maximization of the pdf

To verify the analytic solution and find the most likely connection pattern, the
probability distribution function (pdf) P[D, L, N] from equation 6.6.10 was numer-
ically maximized with respect to L and {Dy} for fixed N = 5000 and p such that
log,o(p) = —6. The resulting { Dy} are plotted against the depth & in figure 6.5(a) on
page 187, which shows the data are fitted very closely by the approximate analytic
form Dy oc sin?(nk/L) with L = kyay. Similarly, Ni(D, N) - the tree-graph result
of equation 6.6.15 — was numerically maximized, with the consequent {Dy} likewise
displayed in figure 6.5(b). These numeric results confirm the analytic findings that
the most likely sub-graph to which a monad can belong has a distance distribution

{Dy} that is characteristic of the hypersphere S5.

6.8.3 Gebit dimensionality as a function of link probability p

Figure 6.6 on page 188 shows the relationship between the intrinsic gebit dimension-
ality, d, and the link probability for a range of log;,p with N = 5000. In particular,
note that d = 3 for all ‘small’ p but as p rises to approach and then exceed N~!, so
d increases sharply, making the graphs no longer embeddable in S3. This threshold
effect is an excellent illustration of the graph theoretic results that are described later
in §6.9 on page 201.

The goodness of fit to the sin? form demonstrated by figure 6.5 establishes the
relationship between {Dy}, N and L inherent in the probability distribution function
P and echoed in the simpler form of N for tree-graphs. Since this derived primarily
from the requirement that p < 1 and held the consequence of the trigonometric

form for the solution of the optimal Dy values, it prompts an investigation of the
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Figure 6.5: Maximized shape distributions
Points show {Dy} values against depth k. The curve f(k, L) o sin?(nk/L) is fitted
to the plotted points in each case. 6.5(a) is the more general case from equation
6.6.10 with N = 5000 and log,y(p) = —6, while 6.5(b) is the tree-graph result of
equation 6.6.15 with N = 5000 and p = 0.015.

consequences to the HQS system of changes in p, in a sense coming full circle.

6.8.4 Examination of P, w.r.t. the sin?! form of {D;}

Equation 6.6.10 provides the means for computing the (relative) probability for a

specified shape {Dy}, while equation 6.6.28 shows that the most likely class of graph

d-1

has the form sin®" ", with d = 3 representing the dimension of the space described by

that form. However, the behaviour of (6.6.10) is far from obvious. Solving (6.6.30)

for L gives
3/ 12N 72

L~
InN

(6.8.1)
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Figure 6.6: Gebit dimension versus link probability
Dimensionality d of gebits as a function of the link probability p, demonstrating a
threshold effect (see §6.9 on page 201).
so that the choice of N = 1000 yields L ~ 26 as the length of the most likely shape.
Taking {d : 2 < d < 6} and {L : 15 < L < 35}, successive sets of {Dy} were
computed explicitly using a variation of (6.6.28), i.e.

Dy = %)(?) [sind—l (%) — Min {% (%) sin (#) Insin (#) 0}]

2

and the results passed to (6.6.10) to find the probability of each Dy. The use of
the Euler gamma function, I'(z) is necessary to accommodate the consequences of
variations in d, keeping the sum of the Dys sufficiently close to N. The results are
shown in figure 6.7 on the next page, illustrating very clearly the dominance of d ~ 3
as the dimensional measure of the HQS gebits, as well as the equally strong indicator
for the depth structure, or shape, evidenced by the L-dependency. Notice, too, that
the maximum in L is in very good agreement with the theoretical value for the length

of the most likely shape.
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Figure 6.7: Probability distribution for { Dy} as a function of d and L.

A particularly interesting feature, however, is the ‘fuzziness‘ in the dimension
— while the graph peaks around d = 3, clearly the favoured geometry is not single-
valued, strongly suggesting that while the gebits have embeddability in a 3-dimensional

hypersphere, S, they are not necessarily rigidly constrained to that form.

6.8.5 ‘Embeddability’

The issue of intrinsic dimensionality and what has been referred to as ‘embeddability’
is a fundamental issue for HQS theory and of vital importance to the increasingly
sophisticated developments yet to be discussed. In general topology, an embedding
is a homeomorphism of a space onto its image. That is to say, it can be thought
of as an inclusion map on a space X that is considered as a subspace of Y, such
that the topology on X is the same as the subspace topology it has in Y. Strictly,

this is an extraneous notion in the current argument since it is only the emergence
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of intrinsic dimensionality that matters here. For instance, a physical collection of
linked point-like objects, the representation of which is a tree-graph, is planar because
the structure is a subspace of the Euclidean 2-space. However, this is an extrinsic
measure; intrinsically, the graph has its own measure, by virtue of the graph theoretic
definitions given in §6.6.1, according to which the structure might be anything but
planar. Nonetheless, the concept of embedding is a convenient and useful means
of discussing and investigating intrinsic dimensionality since the identification of a
homeomorphism appeals to intuition: the robustness of an emergent form may be
gauged by the extent to which one is able to map points in the first object that are
‘close together’ to points in the second object that are close together and, similarly,
points in the first object that are not close together to points in the second object

that are not close together.

Trees and ‘augmented’ trees — weak versus strong embedding

The results thus far demonstrate the sin? form as the graph shape with the highest
probability, signifying S® as the most likely geometry ‘seen’ by an arbitrarily cho-
sen monad. However, this view corresponds only to weak embeddability for gebits
generally, for two principle reasons.

Firstly, while it is true that the sin? form has the highest probability of any
particular form, it is nonetheless a minority case — there are (2V=2—1) other available
shapes which, taken collectively, provide many more opportunities for the occurrence
of a graph shape that does not have the sin? form.

Secondly, the close agreement between the results of maximizing P[D, L, N] and

M D, N] affirms the dominance of tree sub-graphs over sub-graphs with cycles and
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these must necessarily be only weakly embeddable since strong embeddability re-
quires that every (or almost every) node in a graph, when taken as the root node,
should yield a {Dy} distribution consistent with that obtained from its neighbours
when they, in turn, are considered as the root — that is, the graph should be highly
symmetric. Consider, for instance, the symmetry of graphs representing the Platonic
solids, regular lattices on open spaces, or uniform tessellations. A uniform tessellation
is a tiling of a d-dimensional space, or a (hyper)surface, such that all its vertices are
identical, i.e., there is the same combination and arrangement of faces at each vertex.
Mathematically, a tiling of a topological space S consists of a collection B of open

subsets of S, such that

e the shapes in B do not overlap (i.e., are mutually disjoint, having no point in

common)
e they ‘cover’ S (the closure of their union is equal to S).

Each node of such graphs is of the same degree and is indistinguishable from every
other node in the same graph. Clearly, tree graphs may vary widely in the symmetries
they possess; just as clearly, they can never have the very high symmetry exhibited
by Platonic solids and uniform tessellations. Consequently, inspecting the depth
structure (that is, the nearest-neighbour counts and distances)? of an arbitrary tree-
graph from the point of view of each node must yield multiple { Dy} distributions, any
one of which might legitimately be described as the shape of the graph. Figure 6.8
illustrates the situation in the simple case with N = 9. Each of the figures describes
the same graph yet the depth structure is markedly different according to the choice

of the root node.

4 The depth structure is obtained through inspection of successive matrix powers of the graph’s
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(a) The most probable (b) The configuration according (c) Likewise with node 3
configuration to node 9 as the root node

Figure 6.8: Root-node dependent tree shapes
Nodes are enumerated and Dy, values are shown on the right of each example.

While the disparity of these node-dependent views is quite extreme for small
graphs, numerical studies of larger graphs indicate that this problem tends to diminish
somewhat with larger NV due to the effect of the binomial probability density function
on the graph length demonstrated in §6.8.1 on page 185. Since the median length
dominates, there are vastly more shapes that are, on average, closer in form to the
sin? distribution. Although very many nodes in even a large graph will fail in this
measure, averaging all N of the { Dy} sets provides consistent results that tend (albeit,
loosely) towards the desired form. Figure 6.9 on the next page shows a typical case for

a single small random graph with N = 200 nodes. However, 6.9(a) demonstrates that

adjacency matrix, viz: if A = {a;;}nxn is the adjacency matrix of a graph G, vertex ¢ in G has di,;
ktP-nearest neighbours where dp,; is the sum of unit-valued elements in the it" row (excluding the
it" element) of the k*® matrix power of A4, i.e.

0 otherwise

n . k _
dii =Y zijy @y = { b (), =1
j=1

J#i
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for pure tree graphs, the disparate views continue to be problematic. The asymmetry
in the plot arises because all tree-graph shapes must have at least nearest neighbours
to the root node (so contributing to Dy, for smaller k-values) whereas only the longest

shapes provide D;, contributions for the larger k-values.
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(a) Case: tree graph (b) Case: augmented tree structure

with p = N~12 ~ 0.0017

Figure 6.9: Average {Dy} taken over all nodes of a single graph
N = 200. The theoretical graph length is L = 16, using (6.8.1). 6.9(a) shows the
original tree graph, containing no cycles. In 6.9(b), augmentation introduced 32
extra edges. The fitted curve is f(k, L) o sin®(7wk/L) (in red).

Fortunately, the more general case afforded by P[D, L, N| provides for the exis-
tence of cycles in the graph as p rises above the minimal level required to generate
large tree graphs. A complete graph with n vertices has %n(n— 1) edges. A tree graph
with n vertices has (n — 1) edges. The difference between these is 3n(n—1) — (n—1)
= 2(n® — 3n + 2) ~ in? for large n. The probability of having an edge between any
two vertices is p < 1 so for a random connected graph with n vertices (and at least

n — 1 edges) one would expect to find some zpn?® ‘extra’ edges (i.e. the addition of
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which generates cycles in the graph).

Figure 6.9(b) on the preceding page shows the consequence of augmenting the
original tree by introducing additional random links. The regular fit of the curve
f(k, L) o sin®(wk/L) (in red) clearly demonstrates the isotropy in the {Dj} distri-
bution that results from the introduction of cycles in the graph. In this particular
case, the parameter o = 3.8 is considerably higher than the desired value of 2 for
strong embeddability in S3. Moreover, while the graph length (L = kpyax) is in good
agreement with theory (L = 16 for N = 200, using equation 6.8.1), the maximum
Dy, is too high — setting kK = L/2 in equation 6.6.27 gives Dpy,x = 2N/L = 25 (using
instead 6.6.28 would give Dy, = L?InL/27% = 36 but this latter form is derived in
the limit N — oo and thus is considered unsuitable for small N). However, these
factors will be seen to be artefacts of the simple averaging technique used, the choice
of p-value for the augmentation procedure, and that the data obtain from a single
sample.

The regularizing effect of the relatively sparse augmentation is not accidental. The
procedure was repeated over a sample of one hundred random graphs with the same
parameters as before. The very consistent results are shown in figure 6.10, where
the parameter o has dropped to a = 3.4, indicating that the higher value is indeed
artefactual, although the peak Dy remains high.

To obtain the ‘collective view’ from many nodes and over many graphs as shown
in figures 6.9 and 6.10, the respective {Dy}s were obtained by simple averaging —
inspecting each graph from each node in turn taken as the root node to obtain the
depth structure according to the method described in the footnote on page 191. The

Dy, values were then summed for each £ and the results divided by the sample size.
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Figure 6.10: Simple average {Dy} taken over all nodes of 100 graphs
As in figure 6.9, N = 200, p = N—'2 and the fitted curve in (b) is f(k, L) with «
here having the value 3.4
The ensuing ‘averaged’ {Dy} is, however, distorted by the variation in graph lengths
that arise as a consequence of the different views. A more sophisticated approach is
to normalize both the vertex counts and the graph lengths and construct a histogram

by sorting the data into bins. Finally, the data are re-scaled according to the average

graph length and average maxima.

| Statistic Trees | Augmented trees |
Mean 55.222 23.858
Median 55 24
Mode 58 23
Standard deviation | 8.10754 2.10492
Mean deviation 6.59224 1.66252

Table 6.1: Descriptive statistics of graph length distributions
for N = 500, with p = N~'* for the augmentation. See also figure 6.11.
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Figure 6.11: Histogram: distribution of graph lengths
for N =500, p = N~ for the augmentation.

Table 6.1 on the preceding page contains descriptive statistic measures of the graph
length distributions and these are further illustrated by the histograms in figure 6.11,
which report the distribution of graph lengths for the simple tree graph case and then
the augmented trees (respectively, 6.11(a) and 6.11(b)). The greater variability in the
tree graph structures is evident from the range of lengths whereas the augmented tree
lengths have relatively little spread and are grouped close to the theoretical value.

The results appear in figure 6.12 on the next page for a trial over 200 samples with
N =200 (6.12(a) and 6.12(b)) and N = 500 (6.12(c) and 6.12(d)). Also, the value p
for the probability of extra links was optimized with respect to both the respective
averaged graph lengths and maximum Dj;, values.

Notice there that both L and the peak Dj are in excellent agreement with the
theoretical values (respectively, L = 16, Dy, = 24 for N = 200 and L = 21,
Dpax = 47 for N = 500) and, most notably, the fitted curves now have o = 2. The

greatest significance of these results, however, is the extent to which augmentation
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(b) Case: augmented tree structures

(d) Case: augmented tree structures

Figure 6.12: Average {D;} taken over all nodes of 200 graphs

(a) and (b) have N = 200 as before while (c) and (d) have N = 500. The augmenta-
tion was done with p = N~ and the fitted curves in (b) and (d) are f(k, L) now

with o = 2 in each instance.
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Figure 6.13: Mean Dy, values with error bars

showing the + mean (i.e. absolute) deviation. As before, N = 500, p = N~ for

the augmentation.
leads all nodes to ‘agree’ on the intrinsic geometry, which turns out to be the $3
form as predicted, demonstrating how the weak embeddability of tree graphs turns to
strong embeddability with the appearance of a relatively small number of cycles. The
sensitivity to the augmentation density via the p-value further suggests a threshold
effect consistent with random graph theory (see §6.9 on page 201).

Figure 6.13 shows the mean Dy, values obtained from the same sample with error
bars indicating the mean deviation (otherwise known as the absolute deviation defined
by L3 |z; — 2|) in each Dy. While the deviations are relatively large in both the
tree and the augmented cases, they appear less variable in the latter. If very strong
embeddability was to be a desirable property, one might be disappointed to not
observe smaller variation; however, for present purposes the contrary observation is a
nice result — gebits have strong but ‘fuzzy’ embeddability in S, which will be shown

to have profound consequences.
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6.9 Notes from random graph theory

If V is a fixed set of n elements, V = {0,...,n—1}, a common aim in graph theory is
to turn the set G of all graphs on V into a probability space G (n, p) and then question
the probability that a graph G € G has some particular property P. Frequently, the
value of p is related to the cardinality n of V, perhaps to the extent that p = p (n)
for a function n — p(n) or merely the stipulation (such as in HPS, say) that p < 1
while N > 1. In standard probabilistic language, any set of graphs on V is called an
event in G (n,p). The probability measure P is the product measure of all measures
P,, the probability of elementary events on every potential edge e € [V]2. P is
uniquely determined by the value of p and by the provable assertion that events
A, are independent. In discrete mathematics, the existence of an object having a
desired property may be proved by defining a probability space on a larger, non-
empty class of objects and then showing the positive probability that an element of
this space possesses the property desired. This is known as the probabilistic method,
a classic example of which is Erdds’s theorem on large girth and chromatic number.
The ‘objects’ of the probability space may be partitions, mappings, embeddings —
literally, objects of any kind. It is a well known result of random graph theory that
all statements about graphs expressed by quantifying over vertices only, as distinct
from sequences or sets of vertices, are consequences of asserting the existence of some
graph property P; ; for suitable ¢, and that any such statement is almost certainly
true or almost certainly false. Moreover, counter-intuitively, most such results share
the common feature that the outcome is independent of the value of p — that is, if
almost every graph in G(n, 0.5) possesses the property then the same tends to be true

for almost every graph in G(n,0.001).
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Diestel[353] has pointed out this often-encountered insensitivity to changes of p.
It is a property of ‘almost all (random) graphs®’: for most characteristics, the critical
order of magnitude in p that determines the appearance or otherwise of the behaviour
is typically a function of the number of nodes, n, that tends to zero as n — oo. If p
is allowed to change with n then for p with order of magnitude under 1/n? a random
graph G is, with near certainty, totally disconnected — it has no links at all. As p is
raised, the graph begins to gain structure so that from around p = n~%2 components
likely exist, having at least two vertices, which become trees as p increases further.

The first cycles are seen to appear for p ~ n=!

, shortly after which the first crossing
chords begin to make the sub-graph(s) non-planar so that they can no longer be
embedded in a 2-dimensional space (this, of course, provides the theoretical basis for
the behaviour exhibited in figure 6.6).

Bollobds[355] discusses the emergence of the ‘Giant Component’. Using the def-
initions that a component is small if it has fewer than in?/3 vertices and large if

it has at least n%? vertices, Bollob4s presents and proves the theorem ([355] p142,

Theorem 6.8):

A.e. graph process G = (Gt)év is such that for every t > t; = [n/2

+2(logn)'/?n*3] the graph G; has a unique component of order at least

n?/3 and the other components have at most n?//2 vertices each.’

Aldous and Pittel [356] obtained a consistent result when they considered emer-

gence of the giant component in a non-uniform randomly evolving graph process,

5In random graph theory it is recognized that although a system for generating random graphs
may appear as though it could deliver many potentially different graphs, this is not the case. Thus
it is common to talk about the random graph. That almost every two infinite graph random are
isomorphic is a theorem that was first proved in Paul Erd6s and Alféd Rényi [354].

6¢A.e’ is a graph-theoretic abbreviation meaning ‘almost every’.
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with vertices immigrating at rate n and each possible edge appearing at rate 1/n
and found that the detailed picture of emergence of giant components with O(n?/3)
vertices is the same as in the Erdos - Rényi graph process with the number of vertices
fixed at n at the start.

As Diestel puts it, this one component outgrows the others “until it devours them
around p = (logn)n~!, making the graph connected.” ([353] p.241.) In graph theoretic
parlance, the analogy is drawn with evolutionary processes in biology: the properties
shared by almost all graphs are considered to be typical, in some sense, of the ‘species’.
As in nature, random graphs evolve in a manner suggestive of punctuated equilibrium
whereby link probabilities exhibit criticality, marking thresholds that separate almost
every graph in possession of some property from almost every graph that is so lacking.
Real functions ¢t = t(n) # 0, called threshold functions are defined for a graph property
P. All non-trivial graph properties that increase — for example, connectedness — have
been shown to have corresponding threshold functions and they are only ever unique
up to a multiplicative constant.

The HQS modelling and arguments thus far presented have displayed various
facets of, and are entirely compatible with, these features of random graph theory.

This will become a recurring theme.

6.10 Concluding remarks for HQS

The concept of a HQS was arrived at by deconstructing the functional integral for-
mulation of quantum field theories, retaining only those aspects that were considered

so fundamental as to be intrinsic to the formalism, in the sense of being deeper than
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any possible emergent features. Recalling equation 6.7.1 (page 184),
<N|N>= /DGe—S[G],

being the induced effective action corresponding to a quantum ‘field’ theory of in-
teracting 3-spaces, the ensuing interpretation in terms of random graph theory has
demonstrated the existence of emergent geometrical structures, the gebits, providing
intrinsic S® characteristics as the most probable form and hence, consistent with the
principle of threshold functions, the dominant mode of behaviour.

The next problem for the HQS approach is to demonstrate a natural classical
sequencing — whether a HQS can induce the basic phenomenon of time, or at least
some notion of what this might mean at such a fundamental level.

Introduce a complete set of functions {f,(G)} for which
5(G* =G =[G fa(GY) (6.10.1)
where the superscript on G* labels copies of {G,}. Then, with S™[G] = 15(G],

<N|N > =/DG2/DG16—$S[G2]6(G — G?)e 210
:Z/DG21-6_3(2)[G2]fa*(G2)/DGlfa(Gl)e_S(2)[Gl] -1, (6.10.2)

/ DG f,(G")e 576" . 1

1

The C? can be thought of as a transition amplitude, where the ‘1’ represents the

beginning of the ‘universe’, i.e. with all G equally likely. Continue inserting complete
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sets

cP =3 / DG fo(GYe 51 £3(GY) / DG f5(G?)e~ 516" .1
B

cP =3 Alc (6.10.3)
B

A = [ per@)e (0

More insertions give

CP =" APAY o™ (6.10.4)
By

which has the form of an all-inclusive quantum-like multiple sequencing, with the
appearance of ‘initial’ and ‘final’ states. Figure 6.14 illustrates the idea and the
construction is analogous to the form of quantum mechanical sums over intermediate

states.

possible
paths b/n a,b

Figure 6.14: Quantum-like multiple sequencing
illustrating ‘initial’ and ‘final’ states with some (arbitrary) number of ‘intermediate
states’ between them.

But the time phenomenon is about restricted or classical sequencing, with only
some residual quantum phenomena. A unique sequencing could correspond to a

history of space, defining a space-time block.
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A possible macroscopic unique sequencing or history is a partition of < A | N >
such that different histories, by definition, have negligible interference. They are
decoherent. They are classical. Hence it must be necessary to look for a particular
choice of complete set {f,(G)} for which some of the members generate decoherent
and robust histories of any emergent self-synthesizing spatial networks that appear.
This has some resemblance to the consistent histories approach to standard quantum
theory by Griffiths [357], Omnes [358] and Gell-Mann and Hartle [359].

There is a limit to the usefulness of these complete set insertions — the action
S™) increasingly flattens, so that fluctuations or deviations from the condensate be-
come more extreme, suggesting that any time-like sequencing description has limited
relevance at very short time intervals.

At that level of the HQS, it is unreasonable to expect anything other than the
usual historical modelling of time along with its deficiencies. The difficulty arises
because the deconstruction began with ensembled quantum field theory but it is not
possible to recover individuality and actuality from ensembles — a simple fact that has
been problematic for quantum theory since its inception. To go beyond this limitation
requires that the deconstruction be carried one stage further, incorporating a scheme
that both motivates and accommodates changes in the values of the network variables

that define the gebit connectivity via the graph links.



Chapter 7

Heraclitean process systems

Change s not merely necessary to life - IT IS LIFE.

— Alvin TofHler

7.1 Introduction

In this chapter, the ideas put forward in describing a HQS are extended by further
abstraction and by the introduction of an explicit mechanism to infuse vitae essentia
into the model. Metaphorically, a HQS provides the ‘building blocks’ from which
a nascent universe is realized. The term ‘Heraclitean process system’ (HPS) was
introduced in [360] to distinguish these further developments from the precursor HQS
theory.

Each gebit in a HQS is represented by a tree graph, which is itself an N-vertex
subgraph of the greater system — a sparse random graph over M monads defined
by the I' of equation 6.5.8 on page 163, being the multi-element deviations from the

condensate. In terms of the whole graph, since M — oo the set of monads has

205
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cardinality tending to N,. Because gebits are subsets of M and because they are the
most likely form of connected sub-components, it follows that one might expect to
find a countable set of gebit trees also with cardinality tending to N,. As large as
that set might be, however, it may be regarded for all practical purposes and without
loss of generality as being finite since, by induction, the mechanism to be described
always may be readily extended to accommodate one more gebit.

In the sense that a HQS was concerned with trees, a HPS is concerned, in the
first instance, with a forest comprising all of the monads in M that are components
of gebits. The network of connections amongst these monads is described by an
adjacency matrix B and since any labels attached to the monads are arbitrary, the
disconnected gebit components g1, go, . .., g, may be arranged by a similarity trans-

formation into block diagonal form within B:

0 1
a=1|-10 - 0o 0 --- 0
B = 0 g2 0 - 0 (7.1.1)
0 0 gs 0
: 0
I 0 0 0 0 gy

With this forest as a starting point and exploiting the fact that functional inte-
grals can be thought of as arising as ensemble averages of Wiener processes (normally
associated with Brownian-type motions in which random processes are used in mod-

elling many-body dynamical systems), HPS theory proceeds from the realization that
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the precursor HQS theory failed, ultimately, because it could not produce the phe-
nomenon of time. Although there were suggestions that some notion of temporal
behaviour could be recovered, by inference, from evidence of a unique sequencing cor-
responding to a history of space, this falls far short of recovering time itself. One does
not catch a rabbit by spotting its tracks. The reason for the failure of the HQS model
lies in its assumption that time is an emergent phenomenon — in §6.1 on page 145,
spacetime was explicitly discarded. This was a mistake because there is nothing that
is ltke time with which to model time, and the downfall of HQS theory in this re-
gard turns out to be the logical consequence of proceeding from a false assumption,
in a sense providing a ‘proof’ by contradiction that time must be considered truly

fundamental.

7.2 HPS theory

7.2.1 Recursion, stochasticity, and process

HPS theory progressed from HQS theory by recognizing the iterative character neces-
sary to model the universe as a self-organizing and self-referential information system
(see §5.2 on page 135). Hence, an iterative process is introduced by way of the

recursion relation or mapping
B;j = By —a(B+ B Y +wy, 4,7=1,2,..,2N; N — oo, (7.2.1)

which henceforth often will be referred to as the ‘isterator’, for obvious reasons. For
reasons that are not yet obvious, the second term in the iterator will be referred to

as the ‘binder’.
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As with HQS, the B;; are link variables for relational information shared by two
monads ¢ and j, the B;; are real-valued and anti-commuting, so that B;; = —Bj; with
B;; = 0 to preclude self-information. The anticommuting w;; = —wj;, also such that
w;; = 0, are independent random variables for each 45 pair and provide the noise of
self-referencing, hence, the term ‘self-referential noise’ (SRN) described in Part I (in
particular, §4.5.2 on page 132). The non-critical parameter «« moderates the extent

to which the mapping is influenced by the non-linear second term.

7.2.2 HPS as a Wiener process

Equation 7.2.1 has the form of a Wiener process' and, as with HQS in §6.1, it arose
from considerations founded in the GCM of QCD (see [345] — [350] for reviews). In
the GCM, the bilocal-field correlators for meson and baryon correlations are given by

the generating functional

200 = / DB exp (—S[B]—i— / dz* d'y BY(z, y) J”(x,y)), (7.2.9)

where z,y € E*, the 4-dimensional Euclidean spacetime being chosen because the
use of the Euclidean metric is known to select the vacuum state of the quantum
field theory and hadronic correlators are required for vacuum-vacuum transitions.
Analytic continuation of z* — iz, then allows for the Minkowski correlators to be
obtained. Integrating out the gluon variables and changing integration variables to

go from Grassmannian functional integrations over quarks to bilocal-field functional

LA Wiener process, so named in honour of Norbert Wiener, is a continuous-time stochastic process
W(t) for t > 0 with W(0) = 0 characterized by the following two conditions: (i) the increment
W(t) — W(s) is Gaussian with mean 0 and variance (¢ — s) for any 0 < s < t, and (ii) increments
for nonoverlapping time intervals (say, W (t) — W(s) and W (u) — W(v)) are independent. Brownian
motion (i.e., random walk with random step sizes) is the most common example of a Wiener process.



209

integrations leads, approximately, to equation 7.2.2, where the #-index labels genera-
tors of spin, colour and flavour. The form of (7.2.2) is effective for extracting hadronic
phenomena because the vacuum state of QCD is analogous to a BCS-like supercon-
ductive state, with the ¢qg Cooper pairs being described by such non-zero Ea(:v, y) as

are determined by the Euler-Lagrange equations of the action,

5S[B]

0518 0. (7.2.3)
sB° (:E7 y) B (z,y)

This is a non-linear equation for those non-zero bilocal-fields about which the induced
effective action for hadronic fields is to be expanded and the BCS-state/constituent-

quark effect is revealed by its non-zero solutions.

7.2.3 A stochastic quantization (Parisi-Wu) approach

An alternative to the approach taken in [345] — [350], where (7.2.2) is evaluated ap-
proximately as a functional integral, is to utilize the Parisi-Wu stochastic quantization

procedure [91], which involves the Langevin iterative map

BY(z,y) = B’(z,y) — (ng(i[f,]y) + w’(z,y). (7.2.4)

Here, the w?(z,y) are Gaussian random variables with means, u’ = 0 (Gaussian
to again follow the examples of SQM - see §2.3.2 on page 60, and quantum fluc-
tuations in stochastic gravity — see §2.4.3 on page 82. This is also the simplest
idealization of noise, and the only form compatible with the fluctuation dissipa-
tion theorem [217]). This map reaches statistical equilibrium after many iterations
and, with analytic continuation back to the Minkowski metric, statistical averaging

< BY(z,y)B?%(u,v) ... > allows the hadronic correlators to be obtained: particularly,
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if one writes B?(z,y) = ¢ (554) I’ (z — y, Z¥) then ¢(z) is a meson field and I'(z, X)
is the meson form factor.

The presence of the stochastic term provides the ergodic behaviour that permits
the full structure of S[B] to be explored during the iterations (equivalent to inte-
grating over all values of the BY(z,y) in (7.2.2)). The complex quantum phenomena,
involving bound states of constituent quarks embedded in a BCS conducting state
are represented by the correlators, < B%(z,y)B®(u,v)... >, with the E* Euclidean
spacetime playing a passive and completely classical background role.

The correspondence between this schemata and the iterative map introduced in

(7.2.1) is apparent, and thus the rationale of making that choice for HPS:
e equation 7.2.4 reveals quantum behaviour;

e equation 7.2.1, the iterator, obtains from (7.2.4) by the elimination of the E!
background (no such prior structure is permitted in a pregeometric theory),

removal of indices so that B%(z,y) — Bj;, and retention of a simple form for

YL

S|[B], namely
S[B] =) _ B}, — TrLn(B). (7.2.5)

i>j

Does the discretized Langevin equation, (7.2.1), continue to exhibit quantum be-
haviour? More particularly, does it exhibit quantum behaviour while yet retaining,
reinforcing, and even exploiting, the dominant-mode behaviour of the HQS gebits —
emergent geometrical structure with intrinsic S® characteristics to serve as an arena

for such quantum behaviour?



211

7.2.4 The iterator and ensemble averaging

Starting the iterator with B;; ~ 0 represents an initial absence of information or or-
der. If « is taken to zero, the non-linear second term is eliminated and the mapping
produces only independent and trivial random walks for each B;;. At any iteration,
one might examine the B-matrix by coarse-graining in the manner of HQS and per-
forming a similarity transformation to obtain a ‘snapshot’ forest graph but, although
successive iterations might display structure, of sorts, they could not be expected
to exhibit any sense of continuity or order. However, as will be demonstrated, the
second term introduces a linking of information (hence the term binder), by virtue
of its global nature via the matrix inverse, B~!, and this, in conjunction with the
noise term, leads to the emergence of self-organization and the mapping models a
non-local stochastic information system with intrinsic spatial and time-like behaviour
while also exhibiting residual non-local and random processes characteristic of quan-
tum effects. Although any specific history of such a noisy iterative process is unique
to each realization of the mapping, averages over an ensemble of possible histories
can be determined and these have the form of functional integrals. The concept of an

ensemble average for any function f of B at iteration ¢ =1,2,3, ... is expressed by
< f[B] >c= /DBf[B] o.[B], (7.2.6)

where ®.[B] is the ensemble distribution. The Fokker-Planck equation obtains by the

usual construction for Weiner processes:

venlBl =051~ Yon (g (B4 57, 018]) - jplnl). (20

In the quasi-stationary regime, it is found that

&[B] ~ exp(—S[B]), (7.2.8)
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with the action

=> B} —TiLn(B), (7.2.9)

i>7
and then the ensemble average is

7 [ P8 1B expl-s1B), (7.2.10)

with Z such that averages are normalized correctly. The ensemble information is
sensitive to changes in Bj; and that sensitivity is probed by the (ij)™ element of the

matrix inverse (providing the connection between (7.2.1) and (7.2.9))

0 TrLn(B)

B™) j= =

(7.2.11)

where the information is in the eigenvalues A\[B]. A further transformation

< f[B] > —/DmDmDBf[ exp( ZB +ZBU mm; — m]mz)>

i>j irj
- f /Dm Dm exp ( Zm mTm; + ZJ“ mim; — m]mz))
i>j irj
(7.2.12)
expresses the ensemble average in terms of Grassmannian fermionic elements in a

manner akin to that of HQS theory in §6.1, illustrating that HPS theory both extends

and generalizes its predecessor.

7.3 Computational investigations of the iterator

Computational and numerical investigations of the iterator were undertaken with the
aim of identifying and exploring explicitly the behaviour of the mapping and the
dynamical features it brings to the HPS model. To investigate the general behaviour

and characteristics, the following methodology was employed:
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. define the B-matrix at start-up by initializing an n X n matrix such that all
entries are zero except for a ‘seed’ comprising a small antisymmetrized gebit

submatrix, which is a randomly generated tree graph adjacency matrix.

. define the SRN matrix at start-up by initializing a w,x, matrix such that its
upper-triangular entries are drawn randomly from a specified distribution and

its lower-triangular entries have the corresponding anti-symmetric values.

. specify a value for the parameter o and a cut-off for the coarse-graining thresh-
old to discriminate ‘large’ links. Initially, these are rather arbitrary choices to
elicit behaviours that are indicative of generic properties and to provide a basis

for making subsequent and better informed choices for these parameters.

. begin iteration. At each step, regenerate the SRN matrix with new random
values, update the B-matrix, construct a binary-valued matrix B’ by passing
B through a step function via the coarse-graining threshold, generate a plot to
display the state of the network, and record successive values of the:

e determinant of B

o ‘action’ defined by S[B] = 3 B}; 4 det(B),

i>j

absolute values of the complex-valued:

e principal (i.e. maximum) eigenvalue of B

e minimum eigenvalue of B
and also record:

e the number of components (sub-graphs) in B’
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e the size of the largest component of B’ and its component vertices

5. after some number of iterations, switch off the noise term and continue, for
some further number of iterations, to observe the state of the network in like

manner.

6. terminate the iterative procedure and generate plots of the collected data.

7.3.1 Properties of the iterator
General behaviour and characteristics — Case 1

Because of the intense computational overhead required to conduct these investiga-
tions over a reasonable number of iterations, the matrix size was kept small — 120
nodes — following the hypothesis that significant features of the dynamics should not
be substantially dependent on scale and thus should be observable even in a model
of very modest size. The ‘seed’ component was a tree over the first six vertices. The
SRN component was drawn from a standard normal (i.e. Gaussian) distribution with
¢ = 0and o = 0.1, the binder parameter is o = 0.005, and the coarse-graining cut-off
was set to 58% of the maximum B;; at each iteration.

Figures 7.1 and 7.2 report the first fifty iterations comprising the start-up phase for
the network during a representative trial of one thousand iterations. Notice first that
the least eigenvalue fluctuates close to zero, showing the general stochastic influence
of the SRN term. Meanwhile the principal eigenvalue rises steadily as the determinant
(represented as In det(B)) exhibits power-law growth. Similarly, the action essentially
follows the determinant.

Examination of figure 7.2 shows that there is a rapid rise in the number of vertices
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Figure 7.1: Iterator start-up (i) for n = 120

showing the behaviour of the determinant, action, and eigenvalues over the first fifty
iterations.
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connected by edges whose values lie above the large-link threshold; simultaneously, the
number of components drops as connected sub-graphs form and shortly thereafter a
large component emerges spontaneously and begins to assert itself, quickly becoming

a giant component that dominates the graph by spanning almost all nodes.
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t t

10 20 30 40 50 10 20 30 40 50
(a) Number of nodes with ‘strong’ links (b) Number of components
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(c) Size of largest component

Figure 7.2: Iterator start-up (ii)
demonstrating the rapid appearance of a giant component in B’ that dominates the
graph by spanning most, if not all, vertices.
Figure 7.3 shows circle-embedding representations of B’ during the initial part of
the start-up phase. At ¢t = 1, the graph appears empty because the seed component

nodes are adjacent in this representation and no SRN component exceeds threshold.

At t = 4 the first new edges appear above threshold, one of which survives the next



217

10000000y
.4"1-;»'} 12,
4

(g)t=10 (h) t =15

Figure 7.3: Circular embedding representations of B’ after coarse-graining
showing the development of connected sub-graphs and rapid emergence of the giant
component during the ‘start-up’ phase. Vertices are arranged sequentially on the
circumference of a circle; ‘large’ links — edges with values above the coarse-graining
threshold — are shown as chords.
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iteration — a connection that persists as yet more edges exceed the threshold, giving
rise to connected sub-graphs. Not all edges in these new components show such
persistence but many do, and the sub-graphs in turn link up to provide the rapid
emergence of the giant component showing in figure 7.3(h) at ¢ = 15.

It should be noted, however, that the very rapid growth displayed in this example
is somewhat exaggerated by the constraints of the restricted modelling procedure: to
elicit the appearance of these behaviours within a relatively small number of itera-
tions, the model is ‘over-heated’ to some extent by the choices made for o and o,
the former being less and the latter more than one might prefer, though not in the
extreme. When taken with the small number of nodes, this leads to the model (like
many toy models) being quite volatile and more reactive to fluctuations from stochas-
tic effects than one would expect to occur on any realistic scale. The consequences of
these limitations are revealed by the next sequence of iterations.

Figure 7.4 follows the time evolution of the network from 50 < ¢ < 250, show-
ing the number of components (figure 7.4(a)), the size of the largest component
(7.4(b)), the number of vertices with edges above threshold (7.4(c)), and the min-
imum eigenvalue (7.4(d)). Notice that the number of vertices with strong links is
high throughout this period — an indication of ‘overheating’. The giant component
undergoes catastrophic breakdown several times during the first 30 (or so) of these
subsequent iterations, becoming re-established by ¢ = 90 and remaining quite stable
for many iterations thereafter.

During these events, the minimum eigenvalue fluctuations are consistent with the
values seen during start-up, the determinant (figure 7.4(e)) and maximum eigenvalue

(7.4(f)) follow the same rising trends as before and, apart from the high number of
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Figure 7.4: ‘Punctuated equilibrium’ or ‘avalanches’ in the iterator

showing catastrophic breakdown of the giant component in B’ followed by recovery
and relatively long-lived stability.
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vertices with links above threshold, there is nothing to indicate the cause of the be-
haviour. There are, however, two ways in which this can occur and, in each case,
the extreme nature of the breakdown is an artefact of the model’s limitations. The
first reason is that here, with a relatively small graph, just a few critical links drop-
ping below the threshold can be sufficient to disconnect the giant component, causing
it to fracture into many parts. One would expect a much larger system to exhibit
considerably greater resilience by virtue of its greater capacity to share responsibility
for structural integrity; moreover, as the size of the system is increased it becomes
increasingly improbable (though not impossible, of course) that the stochastic term
will produce simultaneous extreme values sufficient to catastrophically undermine the
entire network. The second and most probable reason is the means by which ‘large’
links are identified. The rare appearance of relatively large values is an important
aspect of the model, since this corresponds to having the link probability, p, small —
the requirement established in §6.1. Yet, in prescribing a threshold to (artificially)
partition the network so as to segregate these large links in order that their relation-
ships may be studied, either a bias is necessarily introduced — yielding the breakdown
behaviour — or the full characteristics and consequences of the large link relationships
are lost. In this and subsequent investigations, the threshold was chosen simply as
a proportion of the maximum value occurring in the matrix at each iteration. This
has the result of introducing a bias such that, if a new extremum is substantially
greater than its predecessor and also substantially greater than next-largest entries,
the new threshold value fails to recapture some, many, most, or even all of the former
large-link nodes, bringing about an element of decay and occasional catastrophe to

connected components.
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Figure 7.5: Relationship between Byax and graph components

with maximum values of B on the horizontal axis and on the vertical axis: (a)

numbers of links above threshold; and (b) log of largest component sizes.
Figure 7.5 shows how the number of links above threshold and the number of vertices
in the largest component respond to increasing maxima in B. The bias may be
reduced, even eliminated, by adopting some other scheme for identifying large links,
such as setting the threshold relative to the median value rather than the maximum;
using a moving average of maxima; selecting the k-largest links without regard to
their specific values; or taking a sub-maximal cut whenever the maximum is extreme
(in a sense, leaving such extreme maxima as members of a higher-order subset much
as weaker links might themselves be partitioned further into lower-order subsets). The
latter option is appealing because it is suggestive of fractal structure while retaining
the notion of the importance of rare large-valued B;;. However, for simplicity (and
keeping in mind that this issue resides with the model rather than the theory), it was
considered sufficient to proceed as before and leave these remarks as a caveat.

The next 250 iterations demonstrate similar behaviour — relatively long periods
of stability in the giant component punctuated by erratic periods peppered with

catastrophic events, illustrated by figure 7.6. Here, in particular, the determinant
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and principal eigenvalue have flattened out, indicating that the network has reached

a plateau far from the equilibrium of its initial condensate state.

100

80

60

40

20

300 350 400 450 500

(a) Number of components

WWWW

120

100

80

60

40

20

300 350 400 450 500

(b) Size of largest component

20

MWW

200

150 15

100 10

300 350 400 450 500 t

300 350 400 450 500

(c) In (det(B)) (d) max |eigval (B)|

Figure 7.6: Longer-term iterator behaviour far from equilibrium

showing ongoing ‘punctuated equilibrium’. The determinant and principal eigenval-

ues are relatively flat.

From ¢ = 500, the SRN term is switched off and the network allowed to ‘cool’. Fig-
ure 7.7 on the following page shows the value of the determinant declining smoothly
while the principal eigenvalue drops and the least eigenvalue rises as the absolute val-
ues of all eigenvalues tend to asymptotic convergence at unity (figure 7.8 on page 224).
Meanwhile, the graph remains essentially frozen with the link structure that it pos-

sessed when the stochastic input ceased — that is, the relative magnitudes of the edge
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variables are maintained while their actual values drop towards zero as the network

returns to the condensate.
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Figure 7.7: Iterator behaviour sans SRN

showing the system ‘cooling’ as it returns to the condensate. The giant component

remains essentially static.

From its initial emergence during the start-up phase through to ¢ = 500 when

the SRN term was shut off, the giant component involved every node in the graph.

This is shown in figure 7.9. Vertex 28 spent the least number (353) of iterations as a

member, while vertex 108 had the highest occupancy rate of 469 per 500 iterations.

Across all vertices, the mean occupancy time was 424.4 iterations with a standard

deviation of 25.6. During the cooling-off phase from 500 < ¢ < 1000, only six vertices
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Figure 7.8: Iterator eigenvalues after cooling

spent less than the full period as members of the giant component and these were

taken up as the link magnitudes merged into the condensate.
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Figure 7.9: Occupancy rates for nodes in the giant component

Using Mathematica’s DiscreteMath'Combinatorica package, analysis of the B'-
graph at £ = 500 revealed that it consists of one disconnected node together with the
giant component containing 119 vertices connected by 222 edges. Within the graph
there are 22 cycles ranging in length from 3 to 14 links (z = 7, 0 = 3.2). The graph
depth structure was investigated from the point of view of all nodes to obtain the pair-

wise shortest paths between them. The resulting path lengths were counted and the
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counts averaged over the 120 vertices, thus giving an averaged set { Dy} corresponding
to those employed in the previous HQS scheme. Those results were then analyzed us-
ing the NonLinearFit algorithm in Mathematica’s Statistics’NonlinearFit package

to obtain the best fit to the parameterized model

f(z) = Asin®(az + b) (7.3.1)

m

where a =~ T, with L determined by twice the difference between the maximum path

length k.« and k corresponding to D,,.., and b a phase factor. The resulting best fit
is shown in figure 7.10 where the returned parameter values of A = 37.42, a = 0.47,

and b = —0.144 give L = k. ~ 7 and D4, ~ 37.
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Figure 7.10: Case 1: Nonlinear best fit of B’ at ¢ = 500.

The Dpax and L values do not agree well with the theoretical Dy,x = 17 and
L = 14 required for consistency with S* embedding but they are, however, consistent
with the excessive edge count. Taken together with the evidence of catastrophic
disruptions noted previously, this offers support to the earlier argument that the

model is indeed ‘over-heated’.
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General behaviour and characteristics — Case 2

If the conjecture is correct that the extreme breakdown of the giant component is
an artefact (at least in part) of the model’s limitations, a larger construction might
be expected to exhibit less extreme behaviour. The procedure is computationally
intensive and computer run-times increase exponentially with the size of the model;
nonetheless, increasing n from 120 to 250 provides some evidence to affirm the conjec-
ture. Figure 7.11 on the following page shows the results over 400 iterations. Initially,
after seeding the graph with a 24-node tree, preliminary ‘runs’ established that set-
ting the binder amplitude parameter to o = 0.01 and ¢ = 1/0.008 allowed the model
to achieve equilibrium quickly (while the values of these parameters are non-critical,
the competing roles of their respective terms in the iterator mean that their relative
magnitudes establish the ‘thermal limit’ for equilibrium away from the condensate),
substantially reducing the computation time at start-up. The coarse-graining thresh-
old was set at 58% of By.x, as before.

Figure 7.11(a) shows the determinant flattening out within the first 100 iterations,
while 7.11(b) shows the giant component appearing within the first 30 iterations. In
figure 7.11(c), the number of vertices with edges above threshold is consistently high
following the formation of the giant component but more variable than previously.
Figure 7.11(d) indicates that although there are intermittent failures of the giant
component, these tend to be less frequent and (mostly) not as extreme as before.

While not conclusive, this result does indicate that the conjecture is not unfounded.
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Figure 7.11: Longer-term iterator behaviour far from equilibrium
showing ongoing ‘punctuated equilibrium’. The determinant and principal eigenval-
ues are relatively flat.
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General behaviour and characteristics — Case 3

Aside from the threshold issues noted earlier (page 220), the matter of determining
an appropriate threshold value for the coarse-graining is problematic in itself. If the
threshold is too high the resulting graph will contain insufficient edges, relative to
the number of nodes, to exhibit significant structure formation. On the other hand, a
threshold that is too low will yield a graph that is too dense in its edge count, contrary
to the original requirement that the link probability be small. Again, the need to set
a threshold resides with the model, not with the theory, and is necessitated by the
limitations of the modelling procedure. If n is sufficiently large, the threshold can
be arbitrarily high (short of totally inhibiting links between monads) since connected
components must arise eventually and at some stage thereafter these too will become
linked. For the purposes of toy modelling, though, pragmatic considerations take
precedence and demand a practical solution. The 58% cut-off used in the previous
examples was chosen empirically from a number of trials as a first approximation.
In this next example, a model with n = 200 was run at the 58% threshold until
formation of the giant component, whereupon the cut-off was varied dynamically so
as to keep the difference between n and the number of edges within 12% of n. The
mapping approaches its equilibrium plateau in figures 7.12(a)—(c) on page 232, while
(e) shows the onset of ‘tuning’ at ¢ = 22, with the consequent effects on B’ appearing
in the numbers of components (d) and number of nodes with ‘strong’ links (f).
Figure 7.13 on page 233 shows the next 200 iterations, i.e. 50 < ¢t < 250, with
the cut-off threshold set at 59.9%. Here, the giant component dominates, yet only
occasionally does it include all 200 vertices. As before, the behaviour is punctuated

by intermittent collapses, though only one, beginning at ¢ ~ 150, might be considered
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catastrophic. During this phase, the network continued to settle towards the equilib-
rium plateau, but now at a slower rate, as indicated by figures (a) - (c). At t = 250,
investigation of the large-link structure provided the results summarized in figure 7.14
on page 234. The giant component comprises a little over three-quarters of the avail-
able vertices with connectivity some 16% higher than that of a tree-graph, leading
to the presence of eight cycles — so this sub-graph has the characteristics of the aug-
mented trees introduced in §6.1. The nonlinear best fit to f(z) = A sin®(ax +b) shows
excellent agreement with the predicted S? signature, though with some asymmetry in
the tails because the the depth structure was obtained using only a simple averaging
procedure akin to that first employed for HQS rather than the more sophisticated
normalization approach (see page 194).

Continuing the same ‘run’ for a further 200 iterations, 250 < ¢ < 450 provided
the results shown in figure 7.15 on page 235 and the large-link analysis conducted at
t = 450 is summarized in figure 7.16 on page 236. Figures 7.15(a) - (c) show that
the equilibrium plateau has almost been attained since, on average, the respective
quantities increase only slightly, while (d) and (e) display a good degree of stabil-
ity in the giant component. There is a major, yet non-catastrophic, collapse event
occurring at ¢ ~ 360 but with almost immediate recovery attempts punctuated by
lesser collapses suggesting the presence within the network of competing factors. The
large-link analysis procedure is computationally too intensive to be conducted at ev-
ery iteration but one likely, albeit speculative, hypothesis is that these may have
been associated with a secondary large component or that critical links were being
only weakly restored. The nonlinear best fit analysis (figure 7.16) gives quite good

agreement with theory, although the D, distribution is pinched and D,,,x = 32 much
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greater than the theoretical value of 24 due to the greater connectivity (20% more
than a tree-graph).

Results for 450 < ¢ < 650 are presented in figure 7.17 on page 237. The network
is well settled and now very close to equilibrium (the continuing slight rise in the
principal eigenvalue shown in (c) indicates that ‘heating’ is still occurring but the
very small slope of the graph shows that this is very gentle). The behaviour of the
giant component and the number of components displays the same characteristics as
the previous set of results except that, on average, the size of the largest component is
slightly less than before. This is because the cut-off threshold here was raised slightly
to 61.9 to compensate for the graph not yet having reached the equilibrium plateau.
Figure 7.18 on page 238 displays the results for the nonlinear best fit, which is in
excellent agreement with the predicted behaviour (note Dy, = 25 and L = 16 with
the respective theoretical values of 24 and 15) and the connectivity is 17% higher
than that of a tree-graph with the same number of vertices.

Further iterations over 650 < ¢ < 850 are reported in figure 7.19 on page 239.
The behaviour of the principal eigenvalue (figure 7.19(c)) through these iterations
demonstrates that the equilibrium plateau has been attained, while figure 7.19(e)
shows that the giant component is very robust, with no catastrophic events, yet still
punctuated with episodic small collapses. The nonlinear best fit (figure 7.20 on page
240) is in excellent agreement with the HPS theory, with relative connectivity ~15%.

Finally for this example, figure 7.21 on page 241 shows the behaviour over 850 <
t < 1050. The determinant and principal eigenvalue have average slope ~ 0 and
Biax fluctuates moderately about a constant value. The giant component suffers

several collapses, two of which are quite long-lived with onset at £ ~ 865 and ¢ ~ 975,
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respectively, and, metaphorically, it is tempting to regard the behaviour as analogous
to that of convection cells in boiling water. Figure 7.22 on page 242 shows the strong-
link analysis, with relative connectivity ~11%, again providing a nonlinear best fit

that is in sound agreement with the theory.

General behaviour and characteristics — Case 4

Figures 7.23, 7.24, 7.25, and 7.26 on the following pages show the results for a model
with 500 nodes, taken over 800 iterations from start-up. The behaviour of the deter-
minant, By,,x, principal eigenvalue, number of components, and number of vertices in
the largest component are entirely consistent with prior results. Here, the ‘seed’ tree
comprised 50 nodes (figure 7.23(h)) but this immediately decayed prior to the appear-
ance of the giant component at ¢ ~ 50, which persisted for the next 500 iterations
before suffering its first catastrophic breakdown.

The large-link analyses at £ = 400 and ¢ = 800 were undertaken with cut-off values
of 61.656% and 61.76% respectively, consistent with previous values, suggesting that
the threshold (and thus the link probability, p) may be independent of n. Again,
the nonlinear best fit results are in sound agreement with theory and the relative
connectivity of the giant component at the iteration steps shown in figures 7.24 and
7.26 is approximately 13% and 11% respectively.

In this trial, the role of the binder was subjected to closer scrutiny by record-
ing at each iteration the determinant, maximum value, and principal eigenvalue of
the matrix inverse, B~' (shown in parts (b), (d) and (f) of figures 7.23 and 7.25).
The feature of particular interest is the sporadic appearance of very large values in

Bl and the corresponding principal eigenvalue, behaviour that is highly significant,
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Figure 7.13: Iterator sample run: n = 200, 50 < ¢ < 250
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{BestFitParaneters;>{anp—»24.2648, Aa - 0. 215604, Bb —» -0. 0337642}, ParaneterCl Tabl e »

Esti mate Asynptotic SE
anp 24. 2648 0. 622408
Aa 0. 215604 0. 00527087
Bb -0.0337642 0. 0452985
Esti mat edVari ance —» 1. 66231,
DF
Model 3
ANOVATabl e -~ Error 13
Uncorrected Tot al 16
Corrected Tot al 15
1.
AsynptoticCorrel ati onMatrix — | 0.464156
-0.422175

Max Intrinsic
Max Paraneter -Effects
95.

Fi t CurvatureTabl e »
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Figure 7.14: Case 3: Nonlinear best fit on B’ at ¢ = 250 with cut-off fixed at 59.9%.
Mathematica output for the non-linear best fit algorithm on the giant com-
ponent, which consists of 155 nodes, 179 edges, and 8 cycles with lengths

{4,5,5,9,11,12,13,16}.

Points are the respective Dy counts fitted to f(z) =

Asin?(azx + b), from equation 7.3.1, with A = 24.3, a = 0.2, and b = —0.03. Par-
ticularly, compare Dy = 26 and L = 16 with the theoretical values of 24 and 15,

respectively.
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Figure 7.15: Iterator sample run: n = 200, 250 < t < 450
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{Best Fi t Paraneters —» {anp -» 28. 1304, Aa -» 0.219602, Bb - 0. 119993},

Esti mate Asynptotic SE a
anp 28. 1304 1.4399 {25. 0196, 31.2411}
Parameter Gl Tabl e - 0. 219602 0. 00909812 [0.199947, 0.239258} '
Bb 0.119993 0. 0812084 {-0.0554472, 0.295433}
Esti mat edVari ance - 9. 92027,
DF SuntX Sq MeanSq
Mbdel 3 4288. 56 1429. 52
ANOVATabl e — Error 13 128. 963 9. 92027,
Uncorrected Tot al 16 4417.53
Corrected Total 15 2040. 96
1. 0. 340808 -0.313135
AsynptoticCorrel ationMatrix —» | 0.340808 1. -0.874234 |,
-0. 313135 -0.874234 1.
Curvature
. Max Intrinsic 0. 26078
FitCurvatureTabl e - Max Paraneter-Effects 0. 184992 }
95. % Confi dence Regi on 0.541488

2.5 5 7.5 10 12.5 15

Figure 7.16: Case 3: Nonlinear best fit on B’ at t = 450
Here, the giant component has 163 nodes, 195 edges, and 9 cycles with lengths
{3,3,4,5,5,8,12,16,18}. Points are the respective Dj, counts fitted to f(z) =
Asin?(azx + b), as before, with A = 28.1, a = 0.2, and b = 0.1.
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Figure 7.17: Tterator sample run: n = 200, 450 < t < 650
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{Best Fi t Paraneters - {anp -» 23. 0935, Aa - 0.214886, Bb —» 0. 0981401}, ParaneterCl Tabl e >

Esti mate Asynptotic SE
anp 23. 0935 0.761196
Aa 0. 214886 0. 00622133
Bb 0. 0981401 0. 0537138
Esti mat edVari ance - 2. 66879,
DF
Model 3
ANOVATabl e -~ Error 13
Uncorrected Tot al 16
Corrected Tot al 15
1. 0.
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-0.36416 -0

. Max Intrinsic
Fi t Curvat ureTabl e » MBx Par anet er _Ef f ect s

95. % Confi dence Regi on

25¢ b
20¢
15;

10;

a

{21. 449, 24.7379}

{0. 201446, 0.228326} '
{-0.0179015, 0.214182}

Sunr Sq MeanSq

2935. 99 978. 663

34.6943 2.66879,

2970. 68

1227. 62

403851 -0. 36416

1. -0.883333 |,

. 883333 1.
Curvature
0.212589
0.121462 }
0.541488

2.5 5 7.5

Figure 7.18: Case 3: Nonlinear best fit on B’

10 12.5 15

at t = 650 with cut-off fixed at 61.9%.

Now the giant component has 144 nodes, 167 edges, and 7 cycles with lengths
{4,4,7,8,8,18,18}. Again, points are the respective Dy counts fitted to f(z) =

Asin?(az +b) with A =23.0, a = 0.2, and b =

0.1. Compare Dy yx = 25 and L = 16

with the theoretical values of 24 and 15, respectively.
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Figure 7.19: Iterator sample run: n = 200, 650 < t < 850



{Best Fi t Paraneters - {anp -» 24. 4831, Aa - 0.223796, Bb - -0. 00424321},
Par anet er Cl Tabl e -

Esti mate Asynptotic SE
anp 24. 4831 0. 499717
Aa 0. 223796 0. 00450596
Bb -0.00424321 0. 0359631
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{23. 3943, 25.5719}
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Figure 7.20: Case 3: Nonlinear best fit on B’ at ¢t = 850
Here, the giant component has 152 nodes, 174 edges, and 5 cycles with lengths

{3,9,9,12,13}. Points are the respective Dy, counts fitted to f(z) = Asin®(az + b)
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with A = 24.5, a = 0.2, and b = 0.0. Compare Dy = 25 and L = 16 with the

respective theoretical values of 24 and 15.
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Figure 7.21: Tterator sample run: n = 200, 850 < ¢ < 1050
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{Best Fi t Paraneters - {anp » 22. 7787, Aa » 0. 216273, Bb —» -0. 0143769}, Paraneter Cl Tabl e >

Esti mate Asynptotic SE a
anp 22.7787 0. 531524 {21. 6304, 23.927;
Aa 0. 216273 0.00471472 {0.206087, 0.226459;
Bb -0.0143769 0. 0405584 {-0.101998, 0.0732443)
Esti mat edVari ance —» 1. 22854,
DF Sunf Sq MeanSq
Model 3 2830. 62 943. 541
ANOVATabl e - Error 13 15. 971 1.22854,
Uncorrected Tot al 16 2846. 59
Corrected Total 15 1124. 34
1. 0. 450374 -0.408824
AsynptoticCorrel ationMatrix —» | 0.450374 1. -0.900662 |,
-0.408824 -0.900662 1.
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Figure 7.22: Case 3: Nonlinear best fit on B’ at ¢t = 1050

The giant component now has 149 nodes,

166 edges, and 6 cycles with lengths

{3,8,8,8,20,23}. Points are the respective Dy counts fitted to f(z) = Asin?(az +b)
with A = 22.8, a = 0.2, and b = 0.0. Compare Dy« = 24 and L = 16 with the

respective theoretical values of 24 and 15.
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warranting closer investigation in its own right.

7.3.2 The réle and attributes of the binder
Degeneracy and singular values

If the intermittent large values in B~! are sufficiently large, their product with the
binder strength parameter, «, reinforces otherwise weak links and introduces new
links at many locations across the network. To see how this comes about, consider a
small tree graph such as the 6-vertex example in figure 7.27 on page 248.

Most tree-graph adjacency matrices are singular (their determinant vanishes) and
thus their null space, or kernel is a non-empty set and such is the case with this
example. The adjacency matrix in figure 7.27(a) is identical in rows (and columns)
2, 3 and 5 and has null space vectors {0,—1,0,0,1,0} and {0,—1,1,0,0,0}, where
the non-zero elements identify the nodes associated with the singular values — that is,
vertices 2, 3, and 5 in this example. There are very many ways in which redundant
entries may arise in the adjacency matrices of graphs, rendering them singular, and
for tree graphs (and augmented trees) probably the most common situation is the
one depicted here, where a parent node to leaf nodes has degree greater than two?.

A similar, yet even simpler, example is that of figure 7.28 on page 249. For this
graph, the adjacency matrix (in anti-symmetric form as the generator of the tree)

and its inverse are given by

0 1 0 0 0 -1 5 F
-1 0 1 1 . 1 0 1 1
T = ; =1 B (7.3.2)
0 -1 0 ¢ = 0 0 F
1 1
0 -1 =60 ; 0 3 0

2This is an important point to which further attention will be directed, particularly in §8.6.
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Figure 7.23: Iterator sample run: n = 500, 0 < ¢ < 400
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{Best Fi t Paraneters - {anp » 41. 9425, Aa - 0. 174959, Bb - -0. 0508046}, Paramneter Cl Tabl e >

Esti mate Asynptotic SE a
anp 41. 9425 1. 65465 {38. 4662, 45.4188)
Aa 0. 174959 0. 00567808 {0. 16303, 0.186888} '
Bb -0. 0508046 0. 0670167 {-0.191601, 0.0899923;
Esti mat edVari ance - 16. 197,
DF Sunf Sq MeanSq
Model 3 11941.7 3980. 57
ANOVATabl e - Error 18 291. 545 16. 197 ,
Uncorrected Tot al 21 12233.3
Corrected Total 20 5749. 4
1. 0.357513 -0.330862
AsynptoticCorrel ationMatrix —» | 0.357513 1. -0.892126 |,
-0.330862 -0.892126 1.
Curvature
. Max Intrinsic 0.21883
FitQurvatureTable > b poraneter Ef fect s 0. 0901018
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Figure 7.24: Case 4: Nonlinear best fit on B’ at ¢t = 400
The giant component has 327 nodes, 369 edges, and 7 cycles with lengths
{5,7,11,15,15,42,52}. Points are the respective Dy counts fitted to f(z) =
Asin?(az + b) with A = 41.9, a = 0.2, and b = —0.1. Compare Dy, = 48 and
L = 21 with the respective theoretical values of 47 and 19.
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Figure 7.25: Iterator sample run: n = 500, 400 < t < 800
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{Best Fi t Paraneters - {anp » 43. 0293, Aa » 0. 17067, Bb » -0. 19677}, ParaneterCl Tabl e »
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Figure 7.26: Case 4: Nonlinear best fit on B’ at t = 800

The giant component has 359 nodes, 396

edges, and 10 cycles with lengths

{5,6,7,7,9,11,15,17,24,44}. Points are the respective Dy counts fitted to f(z) =
Asin?(az + b) with A = 43.0, a = 0.2, and b = —0.2. Compare Dy, = 47 and
L = 22 with the respective theoretical values of 47 and 19.
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Figure 7.27: Singular values in tree-graphs
The adjacency matrix (a) is identical in rows/cols 2, 3, & 5 and thus singular
(degenerate). Highlighted vertices in (b) emphasize the redundancy, while the three
‘ranked embedding’ views in (c) further illustrate their equivalence.



249

Figure 7.28: 4-tree graph
In the absence of the red-dashed link, the adjacency matrix of this tree is singular —
highlighted vertices 1, 3, and 4 are identically situated. Introducing the additional
link between nodes 3 and 4 breaks the kernel.
where § gives the strength of the supplementary link. Notice, in particular, the

locations of the inverse & values within 7~-!. The role of the binder in such a situation

would take T — T — (T — T71), giving

01 E :
-1 0 1l -« 1l -«

Thew = (7.3.3)
$ a—1 0 a(%—é)-l—é
_Ta a—1 —a(%—é)—é 0

which places the 1/§ values within the matrix proper. As § — 0, relatively ‘large’
values (moderated by «) appear in the matrix corresponding to new strong links
between the vertices associated with the impending null space, with such values rising
very much faster than any drop in § towards the singular state, as figure 7.29 on the
next page shows, and the non-zero value of the determinant is preserved.

This provides one explanation for the peak values in the inverse maxima and
principal eigenvalue plots on pages 244 and 246 (of course, equivalently, the least
eigenvalue of the matrix proper simultaneously drops toward zero, but that behaviour

is not exhibited so dramatically in plots) — they appear as a direct and immediate
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Figure 7.29: Tinax versus o

From equation 7.3.3, with o = 0.002, the binder term in the HPS iterator equation

reacts strongly to inhibit singular values in the matrix.
consequence of the binder’s reaction to ill-conditioned, degenerate or singular states
that may be occasioned by the stochastic SRN activity. The reason these peak values
appear as spikes, rather than sustained quantities, is two-fold. Firstly, unlike the
adjacency matrices of tree-graphs, or even augmented tree graphs, the HPS B-matrix
as a whole has an extremely large determinant due to the presence of the SRN, which
all but guarantees the freedom of the network from singular conditions, so that the
matrix is well buffered from the effects of degenerate states within the embedded
large-link structures. Secondly, the binder is highly effective in disallowing any ten-
dency towards singular or ill-conditioned configurations — the swift ‘kick’ corrects the
behaviour and eliminates the source of the disturbance, at the same time tending to
strengthen the integrity of the emergent form in the network structure.

To reinforce and affirm the explanation, a small HPS model (n = 80) was allowed
to run through its start-up phase and then the B-matrix values were tracked through

a number of iterations until a short sequence containing a target region free of large
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B! values was observed. The B-matrix at the start of that sequence was captured, as
were the attendant SRN values for the duration of the sequence. A singular state was
induced in one B within the target region by pruning a leaf node and then introducing
a d-value to reconnect that node with the large component so as to control the extent
to which the singular states were restored and thus control the impact on the kernel.
Finally, the sequence was replayed with the modifications in place and for various

values of delta. The results are shown in figures 7.30 to 7.35.
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(c) Bol, (d) max |eigval (B_1)|

Figure 7.30: Original sequence without intervention
Note the interval 75 < t < 95, which is relatively free of large B~! values: this is
the target region for subsequent intervention.
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Figure 7.31: Replayed sequence with intervention: § = 10°® at ¢ = 80
In (a) the determinant shows a small dip (circled), indicating the occurrence of the
intervention, and the spikes in Bl and the principal eigenvalue of B! at ¢ = 81

demonstrate the binder’s reaction.

Note, also, that while the sequence is identical to the original up to ¢ = 80, the
single introduced change to the history alters the ‘timeline’ of the network: the
large spikes in the original sequence in the interval 95 < ¢ < 100 have dropped
markedly, due solely to this one event (the SRN values being identical throughout).

This is reflected, also, in det(B) for ¢ > 80.
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Figure 7.32: Replayed sequence with intervention: § = 10%25 at ¢ = 80
The momentary dip in the determinant, again circled in (a), is more marked than
previously and the induced peaks in (c) and (d) are correspondingly greater, reflect-
ing the smaller §-value. The later (¢t > 90) activity is stronger, also.
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Figure 7.33: Replayed sequence with intervention: § = 1012 at ¢+ = 80
As § is taken smaller, the effects on the network via the reaction of the binder
become increasingly pronounced. A particularly large peak in the B! data is
observed at t ~ 100, showing that events ripple forward in time, interacting with
the SRN with unpredictable consequences and illustrating the extent to which the
time development of the system is influenced by prior phenomenology.



255

5

150 M\/.AV“’\/\- W’V
125 4
100 3

75

2
50
25 1
20 40 60 80 100 20 40 60 80 100
(a) det(B) (b) Bmax

80 1010

70

6 400

50 300

40

30 200

20 100

10

LA
20 40 60 80 100 20 40 60 80 100
(c) Boiy (d) max |eigval (B~1)|

Figure 7.34: Replayed sequence with intervention: 6 = 1 at ¢ = 80
The effect on the determinant is now quite pronounced and the consequent B~!
values are very strong, though the unity value of § is well above that required
to establish a true null space and not yet small enough to provoke maxima in B
greater than extant values, as evidenced by (b) in this and the preceding figures.
This suggests that the matrix is being reinforced via the binder reaction but not to
such extent that the general characteristics of the network are impugned.
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Plotting the principal eigenvalues of the B~! matrix against values of delta (figure
7.35) provides results consistent with those obtained analytically for the 4 x 4 matrix

given in equation 7.3.3 on page 249.

max |ei gval (B1) |
350

300
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200

150

100

50

Figure 7.35: B! sensitivity to é-induced singular states

consistent with the theoretical result shown in figure 7.29 on page 250, actual results

of intervention in B show the sensitivity of B~! in the binder term to values of 4,

the parameter used to induce and control singular states.

However, when comparing this plot with figure 7.29 on page 250, which shows the
effect of changing ¢ on the matrix maxima, the lack of sensitivity in the By, values
to changes in ¢ (illustrated in the preceding figures) seems anomalous. The matter is
resolved by recognizing that the earlier result obtained from a very small matrix and
with no SRN term in the recursion. In the later case, even though the system is still
relatively small, at n = 80 nodes, there is sufficient activity elsewhere in the matrix,
largely unaffected by the induced disturbance from the ¢ influence, which, together
with the presence of SRN, provides a noisy background and competing local maxima
to buffer the system from isolated deviations.

A second explanation for the intermittent peaks in the B~! data is now apparent.
Not only are there immediate responses from the binder to singular or ill-conditioned

states but such reactions, in conjunction with the stochastic values, may have a
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flow-on effect — in a sense propagating along the forward ‘time-line’, as displayed in
figures 7.31 to 7.34 — resulting in the subsequent appearance of further peaks in the
principal eigenvalues and maxima of the matrix inverse which, in turn, may trigger
yet more events. In this manner, then, the binder serves not merely as a regulator
and restorative force in the network but also as an active and creative generator of
phenomena.

Having demonstrated a mechanism, beyond that of the SRN alone, for the gen-
eration of new links in the context of a B-matrix with a solitary large component, it
becomes pertinent to examine how this mechanism responds to the presence of two

or more components of non-trivial size.

The effect of the binder on multiple components and the process of network

construction

As a prelude to investigating how the binder mechanism responds to multiple large
components, a simpler case was first examined: that which obtains from presenting
to the binder a graph comprising a single random tree plus a number of disassoci-
ated nodes. Following the previous discussion, the presence of disassociated nodes is
sufficient, in the absence of a stochastic background, to render the graph singular,
regardless of the condition of the connected component. In view of the binder’s im-
mediate and vigorous reaction to counter singular tendencies, it should be expected
that new edges will be generated in response to the presence of the extra nodes. What
is not clear, from that expectation alone, is whether the binder discriminates to give
preferential treatment to extend the tree size by incorporating the spare nodes (while

leaving that extended component as a tree sub-graph) or whether singular values in
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the tree component take priority. Or, indeed, whether there is any distinction between
the two cases.

The following method was employed:

1. generate a random tree graph and extract its n X n adjacency matrix to use as

a ‘seed’ in a larger matrix

2. construct an empty m X m, (m > n) matrix and ‘plant’ the seed tree within
it; plot the corresponding graph and also compute the kernel of the adjacency

matrix;
3. antisymmetrize the resulting matrix to comply with HPS conditions

4. generate an m x m antisymmetric random matrix (the SRN term) and construct

the matrix sum of the two matrices
5. compute the inverse of the resultant matrix

6. pass the inverse through a threshold filter to generate a sparse m x m adjacency
matrix whose entries are zero except for unit-valued elements corresponding to
elements of the inverse that exceeded the threshold value; record the number of

edges and their associated vertices

7. construct the matrix sum of this sparse adjacency matrix and the original mxm

adjacency matrix

8. plot the corresponding new graph and compare with the original to visually

identify affected nodes and new links
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9. compare the list of affected nodes with the nullspace (kernel) of the original

structure
10. repeat step 6 for a range of threshold values

In effect, this procedure demonstrates the operation of (B + B™!) in isolation, with
no new SRN term to obscure its behaviour, over a single iteration. The following
results are typical; here the seed tree contains 40 nodes and there are 10 additional
disassociated nodes. Figure 7.36 on the current page shows the original graph, while
figure 7.37 shows the modified graph after action by the binder mechanism. Every
affected node, highlighted in blue, is associated with the kernel of the original graph
and the binder has acted on those nodes indiscriminately, in the sense that no obvious

preference is given to vertices regardless of their situation.

Figure 7.36: Random tree graph (n = 40) plus 10 disassociated nodes
The kernel of this graph is associated with nodes {3, 6, 9, 10, 11, 13, 15, 16, 20, 21,
22, 26, 27, 29, 30, 31, 36, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}
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Figure 7.37: Binder-modified graph
Nodes {26, 30, 31, 36, 41, 43, 44, 45, 47, 48} and the 9 edges highlighted in blue
have been acted upon by the binder using a large-link threshold of 70%.

new | i nks %

threshold %

Figure 7.38: Histogram: binder-generated edges versus large-link threshold
The number of new links is given as a percentage ratio of edges in the original graph.
Category values for threshold are centred in the range.



261

Figure 7.38 provides a histogram showing the percentage of additional links gen-
erated by the binder for threshold values ranging from 45% to 95% of the maximum
link magnitude. Inspection of the raw data shows that for threshold values of about
50% and above, the only vertices affected are those that are associated with the null
space or kernel of the original graph. Cross-linking of vertices within the tree compo-
nent is not observed until the threshold is made sufficiently small, where ‘sufficiently
small’ is to be interpreted as meaning that most, if not all, former kernel nodes have
been excised from the null space.

While this is strong behaviour, its impact within the iterator as a whole is tem-
pered by the binder strength parameter, a. Nonetheless, this attribute of the binder
demonstrates that within an HPS there exist nodes that receive preferential treatment
in attracting new links — one might say that such nodes are ‘sticky’ [361].

Proceeding now to examine the case where a matrix comprising two large com-
ponents is presented to the binder, essentially the same method was again employed
but with two random tree subgraphs, rather than one, planted within a larger empty
matrix. Figure 7.39 on the following page shows the initial set up for a typical trial
and figure 7.40 on page 263 shows spring-embedding representations of the graph be-
fore and after the intervention of the binder. As with the preceding case, the binder
targets kernel nodes in the original graph and preferentially introduces new links to
those nodes with the extent of that activity governed by the large-link threshold,
which was set at 75% in this example.

Figure 7.41 on page 264 illustrates the location of new links in the previously
vacant off-block-diagonal regions of the adjacency matrix, indicating that the two

original components are no longer disconnected but form a single giant component.
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(b) Full adjacency matrix

Figure 7.39: Combining two (24 x 24)-node random tree subgraphs
These are density plot representations of the respective adjacency matrices for the
two ‘seed’ trees (a) and the corresponding representation (b) of the total (48 x 48)
matrix incorporating the seed components. Note the block diagonal form of the

latter.

The kernel of the first component involves vertices {1, 2, 5, 6, 11, 12, 13, 14, 15, 16,
17, 19, 20, 21, 24} while the null space of seed 2 involves vertices {25, 28, 29, 31, 41,
42, 46, 47}. The set of kernel nodes for the entire graph is the union of these two

sets.
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(b) Binder-modified graph

Figure 7.40: Effect of the binder on two (24 x 24)-node components
The kernel of (a) is associated with nodes {1, 2, 5, 6, 11, 12, 13, 14, 15, 16, 17, 19,
20, 21, 24, 25, 28, 29, 31, 41, 42, 46, 47}. In (b), highlighted vertices and links show
where the binder has been active, introducing 10 new edges over nodes {11, 16, 19,
20, 25, 28, 29, 41, 42, 46}, all of which belonged to the kernel of the original full
graph shown at (a). The large link threshold here was set at 75%.
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Figure 7.41: Case: 2-components — density plot of the final adjacency matrix
Compare this with figure 7.39(b) to see the location of new links in the previously
vacant off-block-diagonal regions of the adjacency matrix.

After just one iteration, however, this is only a very weakly augmented tree graph
but, on the strength of results reported earlier, one would expect further iterations
with the SRN at work to complete the task of providing connectivity consistent with
the S® form.

Next, the procedure was extended to examine a graph with three block-diagonal
components, tree subgraphs all, comprising 36, 20, and 24 nodes respectively. The
results shown in figures 7.42-7.44, on pages 265-267, are consistent with previous
observations and, again, the binder is seen to unite previously disconnected com-
ponents, acting only on nodes in the null space of the original graph. This is not
always the case, as illustrated by a further example from the same procedure, shown
in figure 7.45 on page 269. Blue highlights in 7.45(b) demonstrate the binder acting

to connect two of the three components via 9 new links affecting 7 vertices, leaving
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Figure 7.42: Combining three random tree subgraphs
(a) shows density plot representations of the respective adjacency matrices for the
three ‘seed’ trees and the corresponding representation (b) of the total (80 x 80)
block-diagonal matrix incorporating the seed components.

The kernel of the first component involves vertices {4, 5, 6, 8, 14, 16, 17, 18, 19, 20,
21, 22, 23, 25, 26, 27, 29}, the null space of seed 2 involves vertices { 37, 38, 39, 41,
43, 46, 48, 50, 54}, and the null space of seed 3 involves vertices {62, 65, 74, 75, 77}.
The set of kernel nodes for the entire graph is the union of these sets.

265
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(b) Binder-modified graph

Figure 7.43: Effect of the binder on three disconnected components (i)
The kernel of (a) is associated with nodes {4, 5, 6, 8, 14, 16, 17, 18, 19, 20, 21, 22,
23, 25, 26, 27, 29, 37, 38, 39, 41, 43, 46, 48, 50, 54, 62, 65, 74, 75, 77}. Blue vertices
and links show the effect of the binder (threshold 75%) — 15 new links over 10 nodes
{17, 18, 22, 30, 37, 39, 41, 43, 50, 74, 77, 80}, all belonging to the original kernel.
This set is identical to the complement of the kernel of the matrix inverse.
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Figure 7.44: Case: 3 components — density plot of the final adjacency matrix
showing the location of new links in the previously vacant off-block-diagonal regions.

the third component disconnected. Analysis of the component adjacency matrices
reveals that the null space of the neglected subgraph involves just 4 of 24 vertices,
whereas the kernels of the other two components involve 15 of 36 nodes and 8 of
20 nodes respectively. It may be inferred, therefore, that the lone component con-
tributed least to the degeneracy of the whole graph and so escaped (for the time
being) the efforts of the binder to resist singular states. After the first step, the null
space of the whole graph has reduced in size from 27 to 18 nodes. A second pass
through the binder unifies the graph and the highlights in figure 7.45(c) identify the
binder activity that captures the third component via a further 4 links involving 5
nodes, which includes a new cross-link between nodes 59 and 63. Notice that node
59 does not appear in the kernel and this is the only instance, in this example, of

binder activity affecting a non-kernel vertex. After the second step, the null space
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has increased in size, now involving 31 nodes, {1, 2, 4, 11, 13, 14, 16, 18, 19, 20, 21,
22, 23, 38, 43, 48, 49, 51, 53, 55, 57, 58, 63, 65, 66, 70, 71, 72, 74, 75, 76}. Seven
of these ({58, 65, 66, 70, 71, 74, 75}) were not previously associated with singular
states, indicating that the change in connectivity has caused these nodes to acquire
a configurative similarity with other nodes that was previously lacking. This is to
be interpreted as indicating that the unified graph remains very active, or wvolatile,
in the sense that it will attract more new links when next exposed to the action of
the binder. That is, if this network was but a part of a larger system then, in the
absence of similarly conditioned components, it would likely acquire new cross-links,
further augmenting the tree structure and taking the graph closer to the expected
S3 form. On the other hand, if other volatile components were present, links with
those components would be highly likely within just a few iterations, as would the
appearance of cross links, with the behaviour occurring selectively according to the
extent to which the components or their constituent nodes take the whole network

towards a singular state.

7.3.3 Distribution of active (‘sticky’) nodes

Having ascertained that vertices associated with singular states or degenerate ten-
dencies — that is, nodes involved in the actual or latent null space or kernel — attract
the attention of the binder mechanism, thus appearing more active in the network
than other vertices, it became germane to examine their distribution in terms of the
distance measure defined on the HPS. At each of 100 iterations of a 150-node HPS
that had first been allowed to reach its equilibrium plateau, the pair-wise shortest

paths between active nodes in the largest connected component of B’ (obtained from
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Figure 7.45: Effect of the binder on three disconnected components (ii)
The kernel of (a) is associated with nodes {1, 2, 4, 11, 12, 13, 14, 16, 17, 18, 19, 20,
21, 22, 23, 38, 43, 48, 49, 51, 53, 55, 56, 57, 63, 72, 76}. Blue vertices and links in
(b) and (c) show the effect of the binder (threshold 75%) in two passes. After the
first step (b), one component remains disconnected and the kernel has reduced to
nodes {1, 2, 11, 13, 16, 18, 19, 20, 21, 38, 43, 48, 53, 55, 57, 63, 72, 76}. The second
step (c) incorporates the third component.
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coarse-graining the HPS matrix as before) were computed. Concurrently, so too were
the pair-wise shortest paths between all nodes. The respective path lengths were
recorded, after normalization with respect to the longest path in each instance, and
counted in aggregate to produce the histograms in figures 7.46 (n = 150) and 7.47
(n = 400).

(a) Active nodes (b) All nodes

Figure 7.46: Histograms: normalized vertex distance distributions (i)
with normalized counts on the vertical axis against normalized pair-wise ‘distances’
on the horizontal. (a) shows the distribution of distances between active (‘sticky’)
nodes, while (b) gives the distribution of distances between all nodes. Data were
collected from a HPS with n = 150 over 100 iterations after the system had attained
its equilibrium plateau.

In each of these cases, the pair-wise distances are approximately normally distributed
(the approximation being stronger in the second figure, where the size of the underly-
ing B-matrix is substantially greater) and, in particular, the distribution of pair-wise
distances between active nodes (a) is not significantly different from the distribution
between all nodes (b). That is, it may be inferred that the new links created by
the binder mechanism (whether serving to internally cross-link components or to ex-
tend and connect components) are, by virtue of their most frequent association with

active nodes, essentially randomly distributed across the network. This is a highly
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(a) Active nodes (b) All nodes

Figure 7.47: Histograms: normalized vertex distance distributions (ii)
for comparison with the preceding figure 7.46. Data were obtained by the same
procedure and under the same conditions except that here n = 400.

significant feature, for reasons that will be revealed in due course.

7.3.4 Embeddability testing — S3 in E*

Previous tests for emergent intrinsic geometrical structure, in both HQS and HPS,
have involved the examination of the depth structure of the graphs obtained by coarse-
graining samples of the B-matrices and, of course, the ideas on ‘embeddability’ put
forward in §6.8.5 are as relevant to HPS theory as they were to HQS theory. That is,
the theoretical analysis provided the expectation that the simplest and most probable
global structure that arises should be consistent with the geometry of the hypersphere
S3, in that the dominant links define a structure that is strongly embeddable in S®
whereas weaker links tend to diffuse that embedding, with the hypothesis that gebits
have a ‘fuzzy’ embeddability in S3.

While the results of earlier tests were suggestive, the interplay between ‘strong’

and ‘weak’ links is too subtle for the fuzzy embeddability hypothesis to be tested
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adequately via the coarse-graining procedure. To test this hypothesis by other means
required a method to allow the link variables to determine an ordering of a gebit’s
constituent monads in terms of a known yet independent mathematical construct and
thereby reveal any geometrical or topological properties inherent to the gebit.
Consider: the surface of a (m — 1)-sphere of radius r in m-dimensional Euclidean

space defines a locus of points satisfying the generalized Pythagorean theorem

S () —a) 2=, (7.3.4

where X! = {xgi), . ,xg)} defines the coordinates of the i** point and X is the
centre of the (m — 1)-sphere. Hence, just as an ordinary 2-sphere® is precisely em-
beddable in three dimensions (illustrated by figure 7.48 on this page), a 3-sphere is

precisely embeddable in four (or more) dimensions.

Figure 7.48: Representation of §2 in E3
illustrating the embedding of points with a near-S? signature in a higher dimensional
Euclidean space (in this case, E3).

One may consider the link variables B;; as defining an n-dimensional network

3Here, the terminology of topologists is adopted — geometers, following Coxeter (generally re-
garded as the greatest geometer of the 20" Century), call an ordinary sphere a ‘3-sphere’.
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of ‘springs’ between ¢,j pairs of monads, so that the spring between monad ¢ and
monad j has spring constant £ = Bj; and natural length 1/|B;;|. Then, with X* as

the coordinates of monad ¢ in the m-dimensional Euclidean space E™, let

dij = d(XP, X7) = i (x(;" - x&j’)2 (7.3.5)

a=1

be the Euclidean distance between monad ¢ and monad j in that E™ and define
2
V(X) = ZB% (dij - |B}—|> (7.3.6)
i>j Y

so that V(X) is an embedding measure corresponding to a ‘spring embedding’ model
such that the measure is zero if and only if (since singular B;; are not permitted
by the iterator) the coordinates of each monad provide separations that correspond
precisely to the respective natural spring lengths.

An arbitrary assignment of coordinates stores ‘energy’ in the network and V(X)
is minimized by a procedure that lowers the energy by attempting to place strongly
linked monads at short separations, whilst allowing greater separations for weaker
links (represented by weaker and longer springs that have less influence and which, in
effect, diffuse the E™ embedding). As a result, this provides a means of embedding
gebits in Euclidean spaces (being known yet independent mathematical constructs)
with no constraints other than those imposed by the information carried by the link
variables. The ensuing mapping of coordinates may be searched for the hypothesized
hypersphere signature.

The following method was used for this analysis:

1. choose a dimension for the embedding (m = 2, 3, or 4)
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. initialize a n X n HPS B matrix and apply the iterator procedure through the

start-up phase

. after the start-up phase, to each of the n monads, randomly assign Euclidean

coordinates zz, (k=1...m)

. compute the ‘centre of mass’ (cm) position (i.e. the origin in the Euclidean

n .
space) of the network defined by ™ = (1/n) > 2
i=1
. compute the pair-wise Euclidean distances between all monads

. compute the total spring ‘force’ on each monad and the corresponding compo-

nent force in each coordinate by
(3) (4)

() 2 1 (:va ~ T )
FO=)"|B} (dij = Bm) i (7.3.7)

J#i

. iteratively, compute the total energy in the network (using equation 7.3.6) and
perturb the network by applying micro-adjustments to the coordinates of each

monad so that .
a.

() _y 00 _
v v FMaw

87 87

(7.3.8)

(where a is a control parameter such that a/Fy,, dynamically scales the reposi-
tioning of the monad) while the energy gradient is negative, indicating reduction
in total energy; stop when the sign of the gradient changes, indicating the ex-

istence of a (local) minimum

. compute the distance of each monad from z ™ by

TS (z&“ _ xcam)2 (7.3.9)
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9. extract the radial distribution of the monads in E™

10. analyze the distribution of radial distances, looking for evidence of a preferred

or most likely, radius — that is, evidence of a S™! signature

11. repeat the analysis for randomly assigned coordinates without perturbations

and the energy minimization; compare with previous results

Minimization procedure trials

To test the minimization procedure and to illustrate ‘ideal’ signatures, trial B-matrices
were constructed such that their entries satisfied (dij - ﬁ) = 0 when the d;; ob-
tained from assigning to each monad coordinates corresponding to a unique position
on an exact (m — 1)-sphere for the cases m = 2,3,4. In each trial, the coordinate
set was then randomized and, with the corresponding idealized B-matrix, passed as
input to the minimization procedure.

Figure 7.49 on page 277 provides an example of a trial for S in E? with n = 200
vertices and shows the progressive relocation of monads from their initial randomized
locations over the course of ~ 1000 iterations. Figure 7.50 shows the corresponding
analysis. In 7.50(a) the initial coordinates were obtained by assigning random z and
y values from a uniform distribution in the range (—1.2,1.2) — thus the linear increase
in radial density up to the maximum radius and subsequent drop off. Figure 7.50(b)
shows the cumulative effect of micro-adjustments to coordinates according to the sum
of the spring forces experienced by each monad, effectively lowering the ‘energy’ of the
system, which falls rapidly over the first ~ 300 iterations as the vertices are attracted
toward the centre-of-mass position (c/f figure 7.49(c)); the steep descent is followed

by a gradual further decline in energy as the S' shape ‘inflates’, leading finally to the
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signature histogram of figure 7.50(c), where all nodes share a common radius from
the centre-of-mass position.

Figures 7.51 and 7.52 on pp.279, 280 show the corresponding results from a trial
for S? in E3 with n = 418 monads. Because of the greater number of monads required
for a reasonable density of point in E*, and hence the greater computational overhead,
the repositioning of monads was effected in larger increments than the previous trial
and the energy minimization thus achieved within 125 iterations. In this trial, the
random assignment of coordinates was undertaken in spherical form. Radii were
drawn from a uniform distribution in the range (0,2) and angles 6 and ¢ drawn from
uniform distributions in the ranges (0,27) and (0,7) respectively, resulting in the
relatively flat distribution of radii shown in figure 7.52(a). As the figures show, the
coarser adjustments were not detrimental to the success of the procedure and, again,
a clear signature for S? in E3 was obtained (see figure 7.52(c)).

Figures 7.53 and 7.54 on pp.281, 282 provide results from a trial for S? in E* with
n = 800 monads. As with the lower-dimensional cases, the single radial value in the
final histogram reveals the desired signature, corresponding to the presence of S* in

this case, of course.

Minimization procedure results on actual gebits

Figures 7.55 and 7.56 (on pages 283 and 284) show typical results when the minimiza-
tion procedure is applied to HPS B-matrices generated by the iterator and extracted
after running the system beyond the start-up phase. Figure 7.55 obtained from a
modest set of 100 monads after running the iterative map with the SRN term biased

to produce a greater number of large B;;. Minimization was then undertaken with



277

1.5

-1.5
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(g) k=600 (h) k = 700 (i) k = 940

Figure 7.49: Trial embedding: S! in E?
showing how the randomly placed nodes are progressively repositioned by the energy
minimization procedure according to the information content of the B-matrix, which
was constructed explicitly to contain an unambiguous S! signature — the ‘target’
shape represented by the lighter circle.
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Figure 7.50: Trial embedding: S' in E? — analysis
(a) is a relative frequency histogram of radii from the initial randomized coordinates;
(b) shows the effect of the energy minimization with respect to each iteration of the
procedure; (c) is a relative frequency histogram of the final radii — the single radial
value demonstrates the ‘ideal’ signature of S! in E2.
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(f) k=125

Figure 7.51: Trial embedding: S? in E3
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Figure 7.52: Trial embedding: S? in E® — analysis
(a) is a relative frequency histogram of radii from the initial randomized coordinates;
(b) shows the effect of the energy minimization with respect to each iteration of the
procedure; (c) is a relative frequency histogram of the final radii — the single radial
value demonstrates the ‘ideal’ signature of §? in E°.
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(e) k = 110 (f) k = 145

Figure 7.53: Trial embedding: $° in E*
with fourth coordinate suppressed to permit plotting. The hyperspherical geometry
is indicated by the ‘sphere within a sphere’ roughly visible in the final projection,

(f).
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Figure 7.54: Trial embedding: §3 in E* — analysis
(a) is a relative frequency histogram of radii from the initial randomized coordinates;
(b) shows the effect of the energy minimization with respect to each iteration of the
procedure; (c) is a relative frequency histogram of the final radii — the single radial
value demonstrates the ‘ideal’ signature of §% in E*.
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respect to £?, E3 and E*.

1. 1.00 1.00
0. 0.75 0.75
0. 0.50 0.50
0. 0.25 0.25
0. 0.25 0.25
0.50 0.50 0.50
0.75 0.75 0.75
1.00 1.00 1.00

Figure 7.55: Gebit embeddings: S% in E®, n = 2,3,4
showing density of monads plotted above the horizontal axis against radial distance;
plots below the axis show the randomly generated cases for the same gebit. Note the
clear peak and diminishing right tail for the E* case demonstrating the presence in
B of 83 structure with strong yet fuzzy embeddability whereas the E? and E? cases
have relatively ‘flat’ radial distributions, essentially no different from the random
embeddings.

The key result from this study is the signature peak for the radial distribution
in the E* case, showing the presence of an intrinsic S® structure, in contrast to the
distributions in the E? and E3 cases, which are essentially no different from the
distributions of the randomized embeddings. The finite width of the peak in the E*
distribution indicates links that are outside the S3 geometry and thus non-local with
respect to that geometry. The extent of that departure is, however, extreme in this
instance due to the bias introduced to the SRN.

Figures 7.56, 7.56, and 7.58 give results from three further trials that looked solely
at the E* case with n = 120, 200, and 1000 respectively. In these, the B-matrices

obtained after 1000 iterations of the HPS systems and with no bias given to the SRN
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term. Generally, the signature is stronger and more consistent for larger gebits, yet
still indicating ‘fuzzy embeddability’ by the non-zero density for neighbouring radii.
In figure 7.56, the histograms again show the density of monads plotted above the
horizontal axis against radial distance, with randomly generated cases for the same

gebits plotted below the axis for comparison.
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40
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(a) n =120 (b) 7 = 200

Figure 7.56: Gebit embeddings: S3 in E*
again showing density of monads plotted above the horizontal axis against radial
distance, with randomly generated cases for the same gebits plotted below the axis
for comparison.

The randomized case is omitted in figure 7.57 in favour of showing the radial scale.
In particular, note the very strong S® signature indicated by the dominant peak at
r = L/2 ~ 12, consistent with the theoretical L = 26 for n = 1000. Figure 7.58
shows the energy minimization for the last example. Equilibrium was reached when
the nett forces had gone to ~ 0 yet the final energy was non-zero, indicating that the

S3 geometry remains under some residual tension.
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Figure 7.57: Gebit embeddings: S% in E*, n = 1000

In particular, note the very strong S signature indicated by the dominant peak at
r = L/2 ~ 12, consistent with the theoretical L = 26 for n = 1000.

Energy wrt iterations

100 200 300 400 500 600

Figure 7.58: Energy minimization: S% in E*
pertaining to the previous figure 7.57 with 1000 monads. The initial ‘energy’ was
~ 8.5 x 10% and the final energy ~ 35000 with the system in equilibrium after nett
forces have gone to ~ 0.

285
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7.4 Concluding remarks for HPS

HPS theory began where HQS theory left off. Utilizing recursion and stochasticity
via a form of Wiener process, the HPS iterator of equation 7.2.1 generates successive
HQS-like states, constructed from abstract entities dubbed monads via pair-wise rela-
tions driven by the SEN and the behaviour of the binder term in the iterator. These
successive states rise above the fundamental condensate to an equilibrium plateau
where order and disorder combine to synthesize dynamical structure in the form of
gebits — networks of information possessing an intrinsic and inevitable dominant geo-
metrical property: the signature of a closed, three-dimensional space, the hypersphere
S3. The spontaneous appearance of such structure is entirely relational; it does not
arise within any a priori geometrical background yet it introduces an endophysical
notion of locality in the sense of having position. By construction, it is the most
robust structure but with the further, richer quality that within the gebits lesser
and more transient relations introduce non-local connections that distort and diffuse
the S° embedding, making it ‘fuzzy’ and imbued with softer emergent quantum-like
modes of behaviour. In the behaviour of this iterative process, there are striking

parallels with ‘natural hermeneutics’, as defined by Kampis [362]:

The most fundamental ingredients of a hermeneutic scheme will be pos-

tulated as this (and nothing else):

e there is an iterative unfolding of information content and a subse-

quent continual change of what is already unfolded;

e there is an historical element in this process;
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e the key elements of the situation have a qualitative rather than quan-

titative nature;

e 3 certain degree of circularity is present.

It should be clear that a HPS exhibits each of these characteristics. The parallels will
be seen to extend even further as HPS theory is developed into the theory of Process

Physics (see Chapter 8).

7.4.1 Topological defects and fuzzy homotopy

The mechanism for this has not been discussed explicitly up to this point, but it
follows both intuitively and inductively from the various analyses and results that
have been described thus far: by coarse-graining the B-matrix at an appropriate
threshold, one is left with a matrix B’ the corresponding graph of which, when its
depth structure is analyzed, is such that the most likely arrangement of vertices in
a connected component follows a sin® distribution (per §6.6.2). In earlier discussion
pertaining to catastrophic events and the threshold problem, it was indicated (§7.3.1
on page 221) that a sub-maximal cut would resolve the threshold problem while
suggesting fractal structure, implying that an extreme value is merely an instance
of a higher level set the other members of which reside outside the sample under
consideration. Thus the large components of the sub-maximal cut may be seen as just
one of many classes having the property of sparse large (relative to that class) links.
Inductively, then, a still lesser cut may be taken and so provide a lower level class
that likewise possesses the same universal property of sparse (relatively) large entries
and thus satisfies the conditions required for the sin? result. Hence the lesser and

more transient links within a gebit have, themselves, the connectivity and embedding
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geometry of all gebits (since this is an intrinsic property). But, in the context of
what might be called the ‘base’ gebit, the adjacency relations so defined will, with
near certainty, be inconsistent with those of the ‘parent’ — that is, they have a fuzzy
and non-local embedding in the base gebit. To put it another way, these extra links
act as topological defects that provide an indication of fuzzy homotopies* The results
on embeddability testing presented in the previous section lend support to this picture
by the appearance of a dominant peak in the radial distribution of monads occasioned
by large-valued link variables and lesser adjacent peaks occasioned by the presence

of weaker links.

7.4.2 Interpreting monads, ‘bootstrapping’, and the end-game

The base gebits g1, g2, . .. arising from the SRN together with their embedded topo-
logical defects have another remarkable property: the binder mechanism responds
vigorously to counter singular or degenerate tendencies in the network so that prefer-
ential treatment is given to monads associated with the (potential) kernel — what have
been referred to as active nodes — and new large values are generated by the binder to
cross-link new and existing gebits (see §7.3.2, from page 257). It was shown in §7.3.3
on page 268 that the distribution of pair-wise distances between active nodes is not
significantly different from the distribution between all nodes and thus the new links
created by the binder are distributed randomly across the network. Since this cross-
linking is random, base gebits might be treated as abstract unit entities themselves,
that is, without regard for their internal monadic constituents, and the whole anal-

ysis repeated from this new perspective. One must then conclude that the resulting

4Simply put, a homotopy is an embedding of one space into another.
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network of base gebits has, itself, the same intrinsic geometrical property and forms a
higher-level S® with embedded topological defects. Now, finally, it becomes possible
to do what could not be done in §6.6 — to give meaning to, and better define, monads
via their functional relationship to this larger scheme rather than by objective defini-
tion: for, if gebits may be viewed and treated as if they were monads, then monads
may be viewed and treated as if they were, themselves, networks of connected gebits.
That is, the distinction is entirely arbitrary — the functional relationships between
units are identical and it becomes a matter of choice to employ the label ‘gebit’ when
one wishes to acknowledge interior relations, or the label ‘monad’ otherwise. For
this reason, an HPS, being a process that is both self-initiating and self-sustaining,
is a bootstrap system (i.e. the start-up components and emergent components are
identical in form). Here, then, is further support for the fractal nature of HPS, a
required condition for hiding, via universality, the details of the particular HPS real-
ization. Moreover, it may now be seen that the HPS scheme resolves the ‘end-game’
problem because there are neither lower nor upper levels to impose bounds: the act
of investigating the system is akin to cutting a circle — the location of the cut is an
arbitrary and externally imposed condition that, while serving the investigator, is yet

independent of the system under examination.

7.4.3 Process space and the essence of time

In the course of ongoing iterations, the existing gebits acquire more cross-links until
their latent null space has diminished to the point where they escape the attention
of the binder mechanism, losing their ability to undergo further linking. That is,

they eventually lose their ‘stickiness’ and decay. Hence, the space defined by HPS
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theory is 3-D, with the characteristics of S3, but the structure is independent of its
component gebits, which are continually undergoing replacement: in stark contrast
with static continuum geometrical spaces, the emergent space of HPS theory is dy-
namic and fractal — HPS realizes what Kampis terms a ‘self-modifying network’ [363],
whereby the self-modification of the system occurs as a consequence of the higher or-
ganization (here, self-organization) that integrates its constituent parts. This notion
of an emergent fractal process space is depicted by the artist’s impression presented
in figure 7.595. It is a dissipative relational information process space driven by the
noise of self-referencing. If the SRN is turned off, the emergent structure subsides

into the condensate and ceases to exist.

Figure 7.59: Artist’s impression: fractal process space
with linked and embedded gebits forming a 3-D fractal process space characterized
by a ‘quantum foam’ behaviour. The magnifying glass view, in which monads are
seen as gebits and vice versa, emphasizes the fractal nature of the network.

SThis picture, by the author, was first published as the cover graphic of [364].
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The fundamental and essential insight that brought about the development of
HPS theory from the precursor HQS theory was the recognition that time is funda-
mental, that there is nothing ltke time with which to construct a model such that the
phenomenology of time is an emergent property. The introduction of process and the
stochasticity of self-referential noise imbues HPS theory with vitae essentia both by
the creative spontaneous generation of spatial structure and by the capture of what
may be called the ‘present moment effect’. In §7.3.2, figures 7.30 to 7.35 demon-
strated how the history of the system could be recorded and replayed precisely, but
if one intervenes at some point in that history then, even in the presence of identical
SRN values, the effects of that intervention ripple forward as the binder responds
as an active and creative generator of reactive phenomena that propagate along the
forward time line. While it is important to note that the iterations of the map do
not constitute, a priori, the phenomenon of time (their function is to produce the
needed fractal structure), HPS theory nevertheless captures the essence of empirical
or experiential time in two distinct ways: firstly as a consequence of its stochastic
properties — there is an inescapable ‘arrow of time’ that points inexorably from that
which has gone before to that which is yet to be and one cannot run the system in
reverse to recover an earlier state because the map is unidirectional (owing to the
noise term, there is no way to define an inverse mapping); and secondly as a conse-
quence of both the SRN and the non-local action of the binder — the system evolves
a history (a recordable past) that, in principle, may be broadly inferred from the
presence of persistent relational forms, in which sense the mapping shows a natural
partial memory phenomenon, but the present moment is entirely contingent on both

the SRN and the specific detail of that history, while the future awaits creation — it
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is completely unknowable without performing the iterations.®

HPS theory demonstrates how the nature of space and the nature of time are
deeply related to the ‘logic of the limitations of logic’ [364] and that, contrary to
convention, both space and time are to be understood as process rather than labelled
and treated as objects. Yet endophysical experiential time is only predicted in HPS
theory if there is an emergent ordered sequencing of events at the level of universality
— that is, above the level of details that are purely incidental to a particular realiza-
tion: it might be that the iterative map fails to produce change at a high level, in
which case there would be no intrinsic temporal phenomenology, a view consistent
with, for example, that expressed by Kampis: “the new ontology suggested by the
‘endo’ logic ... acknowledges that every moment of time has a real value in that
it produces, or may produce, something genuinely new, using the already available
elements in a novel relation” [171]. To proceed, and to demonstrate the viability of
the HPS model of reality, it is necessary to consider how such a system generates
emergent quantum-like behaviour, including the important but often ignored process

of objectification.

8This is very unlike the conventional time-symmetric differential equations of traditional physics,
which is not to say that the convention in physics of modelling time as a geometric construct is not
a useful device but, rather, to suggest that the simplicity and appeal of the geometric model of time
may detract from a full appreciation of the richness of that which is being modelled. Moreover, the
geometric model seductively admits a regress of temporal arguments and paradoxes, spawning much
speculation and debate that does not appear to have been fruitful in furthering our understanding
of the universe.



Chapter 8

Process Physics

We are The Matriz. We create Order from Chaos.

— The Matrix, Gargoyles: Episode 46

8.1 Introduction

Figuratively, the HQS formulation provided the building blocks of a nascent universe,
while HPS theory provided a mechanism by which those building blocks — emergent re-
lational structures dubbed gebits — arise and self-assemble to form a three-dimensional
fractal process space. Both analytical and numerical studies have indicated that
this process space, driven by SRN, is a complex dynamical network that expands
rapidly and self-organizes, behaving essentially as a dynamical Prigogine-like dissipa-
tive order-disorder system [66] that is now to be associated with the phenomenon of
cosmological space.

This chapter outlines and sketches the further developments that extend HPS

theory to what is now known as Process Physics [364], the fundamental nature and

293
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richness of which is such that a fully detailed and complete account lies well beyond
the scope of the present work. The aim here is to indicate, as a first step, the key
concepts whereby the theory connects with, and motivates, the central higher level
descriptions of the standard model of particle physics and of gravitation, and to also

illustrate the potential for Process Physics to reach beyond those models.

8.2 Modelling gebits and their topological defects

In [18], Cahill described the development of a Quantum Homotopic Field Theory
(QHFT) for Process Physics by first considering the special case of the iterator when
the SRN is artificially fixed at a particular w. Then, the iterator is equivalent to the

minimization of ‘energy’ expression,
E[B;w] = gTr[B2] — oTrLn[B] + Tr[wB]. (8.2.1)

For disconnected gebits g;, g; this energy is additve, so that E[g; & g;] = E[g;] +
Elg;]. Suppose now that the fixed w has the form of a single disconnected gebit
approximating an S® network but containing one embedded defect that also has the
S3 signature: that is, the frozen SRN gebit is decomposed into base gebit, defect
gebit, and the linkings between the two. The rest of the network may be ignored
since this gebit is disconnected. In the case that det(w) > 0 then this gebit is non-
sticky and, for small ¢, the iterator will converge to B = éw, merely an enhancement
of the gebit. On the other hand, if det(w) is small — the most likely scenario, since the
most probable configuration is that of rare large w;; forming tree structures within a
background of lesser valued w;; — then the gebit attracts the attention of the binder

via the inverse, B~!, and new links are generated to counter degenerate tendencies
? ? ?



295

with the consequence that the embedded defect ‘relaxes’ with respect to the base
gebit and the energy measure. Such relaxation is an example of a non-linear elastic
process [365]. The gebit has the form of a mapping from a base space to a target
space, m : S — X. The continuum form for the elastic energy of such an embedding

was constructed by Manton [366, 367] and for 7 : S — S® it is the Skyrme energy
1 1
ElU] = / [_QTI (GUUTtaUU) - T [UU, auu?|, (8.2.2)

where U = U(z) is an element of SU(2). Via U(z) = o(x) +i7(x) - 7, where the 7; are
Pauli matrices, o(z)? + 7(z)? = 1 parameterizes S* as a unit hypersphere embedded
in E*. Non-trivial minima of E[U] are a particular form of topological solitons, called
Skyrmions, having Z = +1,42, ..., where Z is the winding number of the mapping,

given by
1
7 =
2472

/ > ETr (QUU'Q,UU UU™). (8.2.3)

Cahill points out that “the first key to extracting emergent phenomena ... is the
validity of this continuum analogue, namely that E[B;w] and E[U] are describing
essentially the same ‘energy’ reduction process. This should be amenable to detailed
analysis.” [18]

The time evolution of the full iterator is, of course, far richer than this analysis
with fixed SRN suggests. When driven by ongoing noise, the iterator produces an
endless flux of pattern creation, linkage, and then, for most patterns, subsequent
decay!. The task is to identify particular patterns that are resilient, surviving the
flux despite the transience of their constituent components, and then to attempt
to categorize their modes of behaviour. The ‘giant components’ described in §7.3.1

on page 223 are examples of such resilient, or persistent, patterns and there is some

L4Ta panta re — all is flux” (Heraclitus).
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indication that they may drift through the system, even displaying ergodic tendencies
with respect to the available monadic resources. From HPS theory, gebits emerging
from the SRN have active nodes and embedded topological defects, which themselves
have active nodes. From the fractal nature of the system, even the defects will likely
possess embedded defects and all of the defects, whatever their classification, will have
associated winding numbers. The energy analogy suggests that defects at the same
fractal depth and possessing opposite winding numbers may annihilate by drifting
together and merging. Furthermore, consistent with the fuzzy embeddability that
appears to be a generic property of the system, it seems unlikely that the embedding
of defects would be ‘classical’ in the sense of being described by a mapping 7(z) but,
rather, would also exhibit fuzziness requiring description by some functional form F'[r]
that would correspond to a classical embedding only if F[7] possesses a supremum at
a specific T = Tagsical -

The emergent hierarchical fractal behaviour of HPS theory is a generic property
that is suggestive of a quantum space foam, but containing topological defects that
will be preserved unless annihilation events occur. If the defects are sufficiently rich
in fractal structure as to be preserved (one might think of these as ‘knots’) then their
formation most likely occurred as the process space arose from its initial, essentially
random, state?. Once trapped, such defects (knots) must inevitably undergo constant
renewal by self-replication — the process of replacing constituent components while

retaining the characteristic pattern® — and so traverse the greater process space. The

20ne might speculate that this phase corresponds, at least analogously, to early stages of the Big
Bang.

3Metphorically, consider a closed loop of knotted string: as the string ages, replace small sections
with new string; eventually, all of the string will be replaced yet the structure of the loop and
embedded knot remain — the topology of the system, the pattern, is preserved though its constituents
be transient. There are many such metaphors in complex systems: eddies in a river; patterns of
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conjecture is that these residual preserved topological defects correspond to matter
in a very fundamental sense, most likely being sub-quantum in the form of preons.
Moreover, the same schema determines the behaviour both of the process space and its
defects (in a real sense, the distinction is artificial, albeit conceptually convenient) and
so the further conjecture is that Process Physics provides a unification of space and
matter phenomenology in a manner that suggests an appropriate generic descriptor

for higher-level network activity is the QHFT introduced in the next section.

8.3 Quantum Homotopic Field Theory

SRN is the dominant resource available to the iterator. Large-valued w;; provide
‘sticky’ gebits to be assembled, via the binder mechanism, into the 3-D process space.
Topological defects within these gebits, and within the process space as a whole,
require a subtle description. Recall that the most significant behaviour for those
defects that are sufficiently large (in terms of the number of constituent components),
and topologically non-trivial, is that of persistence, which manifests by topological
self-replication. As indicated in the previous section, continuum homotopy theory
may be applied to identify non-trivial topology. QHFT is a form of quantum field
theory developed to track the coarse-grained behaviour of such a system by modelling
both the process space and the defects. It has the form of a functional Schrodinger

equation for the discrete time evolution of a wave-functional W:

..., Tag, oyt + At] = V..., Mg, ooy t] — iHY..., Tag, ..., t]AL + QSD*terms, (8.3.1)
B B 5

traffic flow; flocking and herding behaviour; social organizations; even the human body — the essence
of a given individual persists though the cells of the body undergo continual replacement.
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where the configuration space is provided by the set of all possible homotopic map-
pings so that m,s maps from Sg to S,, with S, € {S},S5,,S5;,...}, the set of all
possible gebits (the topological defects are not necessarily of the S® form). Since this
configuration space is prescribed by the fractal depth of gebits under consideration,
the time step At in (8.3.1) is to be chosen relative to the scale of the fractal processes
being explicitly described (i.e. at smaller scales, smaller A¢ would be required), in-
voking a (finite) renormalization scheme. In conventional terminology and in the
absence of the QSD term, equation 8.3.1 represents a ‘third quantized’ system [368],
considered as perhaps capable of generating a quantum theory of gravity. In Process
Physics, this is the emergent behaviour of the network and the conjecture is that
it does, indeed, lead to quantum gravity and also quantum matter. Moreover, the
origin of (8.3.1) is understood and it will lead first to quantum gravity and then to
the classical theory as a higher level abstraction, rather than attempting the deeper
theory via some heuristic quantization procedure.

Depending on the maxima of ¥ and the connectivity of the resulting dominant
mappings, such mappings may be interpreted either as embeddings or as links; in this
sense, revisiting figure 7.59 on page 290 reveals the picture to be indicative of the
dominant process space form within ¥ and showing both embeddings and links; the
original configuration of nodes and links at start-up is irrecoverable. Of course, the
picture is purely for illustrative purposes and must not be taken too literally — the
process space cannot actually be embedded in a finite dimensional geometric space
while preserving the emergent metric since it is composed of infinitely nested (fractal)

finite-dimensional closed spaces.

4QSD’: Quantum State Diffusion; see 8.3.1 on page 300.
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In the previous section, it was proposed that Manton’s non-linear elasticity inter-
pretation of the Skyrme energy provides an appropriate form for the analysis. This
then suggests that the hamiltonian H should be the functional operator

H=>"h [i, waﬂ] : (8.3.2)
oy 0T
where h[%, 7] is the quantum Skyrme hamiltonian operator for the system, based on
making fuzzy the mappings 7 : S — X by having h act on wave-functionals of the form
U[n(z);t]. Then H is the sum of pairwise embeddings or homotopy hamiltonians and
the corresponding functional Schrédinger equation would describe the time evolution
of quantized Skyrmions in a fixed base space and with X € SU(2).

Again from [18], Cahill showed that, in the absence of the QSD terms, the time

evolution in equation 8.3.1 can be written formally as a functional integral

¥ ({ras};#] = [ [T Dtos 510 0 [ 1), (5.3

atp

where the action is the sum of pairwise actions

S{Fap}l =D Sap [fas], (8.3.4)

atp

Sus [7] = / " / o [%Tr(auljﬁ_la"ﬁ[j_l)
t ) - o (8.3.5)

+ T [3MUU‘1, a”UU—l] ] ,

and the (now) time-dependent (indicated by the tilde symbol, per the continuum limit
notation) mappings 7 are parameterized by U(z,t), with U € S,. Each homotopic

mapping appears in both orders, namely 7,3 and mg,, and the metric g,, is that of

the n-dimensional base space, Sg, in mas : Sg — So. The functional derivatives in



300

the quantum hamiltonian of equation 8.3.2 now manifest as the time components J,
in equation 8.3.5, as is usual in the functional integral formalism, and so now (8.3.5)
has the form of a ‘classical’ action, providing the emergence of classical fields, though
the emergence of classical phenomena is a more complicated process. Equations 8.3.1
and 8.3.5 describe an infinite set of quantum Skyrme systems coupled in a pairwise

manner.

8.3.1 Quantum State Diffusion

Quantum State Diffusion (QSD) [127, 129] theory is an alternative quantum theory
from which classical dynamics, quantum dynamics and localization dynamics are
derived. Dissipation of coherence is distinguished from destruction of coherence —
the state diffusion destroys coherence and produces the localization or reduction that
makes classical dynamics possible. The theory is a development of the environmental
quantum state diffusion theory of Gisin and Percival [76] and particularly resembles
earlier proposals by Gisin and by Milburn. It is also related to the spontaneous
localization theories of Ghirardi, Rimini and Weber [67], of Diosi [68] and of Pearle
[125, 126]. Diosi, Gisin, Halliwell, and Percival [131] demonstrated a close connection
between the decoherent histories approach to quantum mechanics and the quantum
state diffusion picture, for open quantum systems described by a master equation of
Lindblad form.

The additional QSD terms in equation 8.3.1 involve summation over the class of
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Linblad® functional operators L., specifically [18]:

1
QSD terms = » <<LTY> Ly = 5Li Ly~ <L,Ty><L7>> VAL
v (8.3.6)
4+ (Ly— <Ly>) TAE,,

Y

where the A&, are complex statistical variables with means M (A&,), M(A&,A&,) =0
and M (A& +)AE,) = 8(y — v')At. The QSD terms are up to 5th-order in ¥ as, in

general,

<A>,= / T Dras® [{as}: 1 AT ({70} 1], (8.3.7)
a#B

and have the remarkable property that the unitary time evolution of equation 8.3.1 is
maintained. These QSD terms are non-linear, stochastic, and ultimately responsible
for the emergence of classicality via an objectification process but, in particular, they
result in the collapse of the wave function(al) during quantum measurements by
tending to ‘focus’ the fuzzy homotopies towards ‘sharp’ classical homotopies.

The formalism and interpretation of decoherence usually rely implicitly on the
invocation of the Born quantum measurement rule, whereas here decoherence derives
from a density matrix formalism, obtained from employing, in place of equation 8.3.3,
a functional integral representation when the QSD terms are retained. As residual
SRN effects, these QSD terms lead to the random behaviour of the Born quantum
measurement postulate but here the behaviour arises explicitly from Process Physics
rather than from some meta-rule. That is, decoherence arises naturally in Process
Physics from the limitations of self-referencing®.

In the foregoing, there are two key aspects:

SIdentification of the forms of the Linblad operators is beyond the scope of the present work.

8Self-referencing blurs the artificial exophysical distinction between object and environment; it
is of at least passing interest that, for example, Zurek [369, 370, 371] has suggested a derivation of
Born’s rule that is based on the inclusion of the environment.
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e there is a deterministic and unitary evolution that tracks and preserves topo-

logically encoded information; and

e there are stochastic QSD terms, the form of which protects the topologically
encoded information during localization events and, in QHF T, matches process
time to real time, providing an ordering of events, an intrinsic temporal direction

or ‘arrow of time’, and a modelling of the contingent present moment effect.

Emergent classicality

As the schematic in figure 8.1 illustrates, the topologically encoded information may
have more than one ‘footprint’ in the process space and, in the induced approxi-
mate standard quantum theory, these correspond to superpositions 1 (z) + 1o(z)
representing quantum non-locality such as that found, for example, with the two-slit

experiment for photons and also by EPR entanglement. The localization of such

Figure 8.1: Non-local embedding of topologically encoded information
illustrating two ‘footprints’ in the process space (drawn as 2-D with thickness and
modulo gebit structure).

states is caused by the QSD terms acting non-locally — Process Physics generates a
theory of quantum measurement because it generates both the ‘objectification’ as-

sociated with classical apparatus and the actual process of (partial) wave-functional
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collapse as the quantum modes interact with macroscopic detectors, which are them-
selves permanently localized by QSD effects. Indeed, many aspects of the quantum
measurement problem are resolved if one recognizes that the collapse is actively pro-
voked by the measuring instrument itself and this occurs because the QSD process
is most active when the system deviates strongly from its dominant mode, which is
the ongoing relaxation to a 3-D process space, with matter surviving only because of
its topological form 7. This non-local collapse mechanism is equivalent to a contin-
ual sharpening of the homotopic mappings towards what one might consider to be a
‘classical’ configuration, providing what is ordinarily recognized as 3-D space.

The mappings 7, are related to group manifold parameter spaces, with the group
determined by the dynamical stability of the mappings, and gauge symmetry leads to
the flavour symmetry of the standard model. Quantum homotopic mappings behave
as fermionic or bosonic modes for appropriate winding numbers, thus Process Physics
predicts both fermionic and bosonic quantum modes — not as ‘objects’ or ‘particles’
but as relational topologically encoded information. Moreover, QHFT has fractal em-
bedded fermionic/bosonic modes and is thus much richer than conventional quantum
field theory. If one introduces a meta-colour dynamics, the solution of the functional
Schrédinger equation modulo QSD terms can be expressed as functional integrals that
may be deconstructed, using the techniques of functional integral calculus, down to
fermionic functional integrals for preons (with colour necessarily ‘confined’, as there

are no topological defects corresponding to the preons).

"In essence, this matches the suggestion by Penrose [372] that quantum measurement is a mani-
festation of quantum gravity. Demonstrating the validity of that view, however, could only eventuate
when quantum gravity is shown to derive from deeper considerations rather than ad hoc arguments
such as quantization of classical spacetime.
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8.4 Quantum Field Theory

QHFT is a highly complex accounting system for emergent properties of the stochastic
network that, at an appropriate scale, should be amenable to approximation by a more
familiar conventional quantum field theory (QFT), relating the deeper theory to the
standard model of particle physics.

An effective QHFT should reproduce the emergence of the process space aspect of
the quantum foam; the QSD processes have a key role in this by tending to enhance
classicality, leading to the emergence of a wave-functional system ¥[U(z);t] where
the configuration space is that of homotopies mapping a 3-space to U(z) € G, where
G is some group manifold space that describes ‘flavour’ degrees of freedom [18]. Thus

the Schrodinger wave-functional equation for this QFT will have the form
U[U;t+ At] = O[U; t] — iHY[U; t| At + QSD terms, (8.4.1)

where the general form of H is known and where the QSD terms appear as a new
residual instantiation of the SRN. This system describes Skyrmions embedded in a
continuum spacetime and it is significant that such Skyrmions are stable (at least, in

flat space and for static Skyrmions) only if that space is 3-D.

8.4.1 Emergent ‘flavour’ and hidden ‘colour’
As before, modulo the QSD terms (8.4.1) may be expressed by the functional integral
W[U;#] = / DU exp(iS[T])U[U: ). (8.4.2)

In a sense, Process Physics theory now turns full circle because to make sense of,

and gain insight into, the phenomenology contained in equation 8.4.1 or 8.4.2, it is
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convenient to recognize that functional integrals having this Skyrmionic form may be
written in terms of functional integrals employing Grassmann variables, although this
requires the introduction of an extra degree of freedom as a fictitious ‘meta-colour’
and associated fictitious coloured vector bosons — essentially, this is the reverse of
the Functional Integral Calculus hadronization technique employed in the GCM of
QCD ([345, 346, 373] and see §6.3 on page 153). For flat spacetime, the action for

the Grassmann and vector boson part of the system has the form

— a — - )\a a 1 a auy
Sl 451 = [ d'a (G0, + o ADp - JFLAF™A)), (849)

where the Grassmann variables ps.(z) and p;.(z) have flavour and meta-colour labels.
The Skyrmions are then the low energy Nambu-Goldstone modes of this Grassmann
system (other emergent modes are of higher energy and may be neglected). These col-
ored and flavoured but fictitious fermionic fields, p and p, correspond to the proposed
preon system [374, 375]. As they are purely fictitious, in the sense that they have no
corresponding excitations in the system, the meta-colour degree of freedom must be
hidden or confined. At this point, Process Physics manifests the general feature of the
standard model: the existence of ‘particles’ with flavour and confined colour degrees
of freedom, with the advantage now that with this preon form the states of the system
may be more easily determined by using the more familiar language of fermions and
bosons rather than working with the Skyrmionic system, with the proviso that only

colour singlet states are finally permitted.®

8Consistent with remarks in the introduction to this chapter, it is important to note that equation
8.4.3 and the action in equation 8.4.2 are certainly not the final forms and further analysis will be
required to fully extract the induced actions for the emergent QFT.
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8.5 Gravity

8.5.1 Expansion and the Cosmological Constant

The principal coarse-grained large scale feature of Process Physics is a growing three-
dimensional process space with the characteristics of the hypersphere S* (predictively,
one of the forms permitted by Einstein’s model) embedded in a random background
with no metric structure. This is essentially equivalent to the ‘giant component’ of
random graph theory demonstrated in the previous chapters and such a structure is
expected to exhibit growth, as previously disconnected gebits are acquired, and decay
as gebits lose their ‘stickiness’. Such growth/decay behaviour is described, to first
order, by the simple rate equation

62—7; =an(t) —bn(t), a>b>0 (8.5.1)
where the parameters ¢ and b (most certainly dynamic variables with constraints in
any realistic implementation) respectively determine the growth and decay rates and
n(t) is the size of the hypersphere as measured by its gebit number density. The first
term arises because, ignoring the topological defects associated with quantum ‘mat-
ter’, success in randomly attaching new gebits is proportional to the number of gebits
present (the ‘stickiness’ effect). Topological defects, having different stickiness, intro-
duce second-order effects and also affect the decay rate, slowing the rate of expansion.
The activity of the binder mechanism, the resource of SRN, an inexhaustible supply
of disconnected gebits, and the existence of the hypersphere all ensure that a > b.
Thus n(t) will show exponential growth and so Process Physics predicts a positive

cosmological constant, consistent with recent observations of far distant supernova

counts [376, 377]. Moreover, this is unrelated to the phenomenon of gravity but is to
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be interpreted as deriving from the order/disorder interplay intrinsic to the dynamics

of the process system.

8.5.2 Gravity, the Equivalence Principle, and Black Holes

That which is ordinarily called ‘matter’ is, in Process Physics, synonymous with
topological defects embedded in the process space and such defects are expected
to have a higher connectivity than the substratum - indeed, as was indicated in
HPS theory, they distort the S3 signature of the space. For this reason, fields were
introduced to emulate this extra non-spatial connectivity. Now, because of the extra
connectivity, gebits in the region of the matter fields are less sticky and so decay at
a faster rate; they are more transient and also less effective in attracting new gebits.

This suggests an interpretation whereby matter-occupying regions of the process
space act as nett sinks for gebits so that in the neighbourhood of such sinks, the
process space will undergo a diffusion/relaxation procedure in which space, in effect,
moves towards the matter — matter acts as a sink for space (but never as a source).
That is, the diffusion/relaxation behaviour induced by the presence of matter pro-
duces an in-fall or flow effect that in turn acts on all surrounding matter. The
phenomenology of this in-fall effect corresponds to, and explains, that which is called
gravity, and the independence of the in-fall from the nature of the surrounding matter
provides the analogue of the Equivalence Principle. Further, if the flow rate exceeds
the rate at which ‘motion’ with respect to the process space is possible, an event
horizon must result, leading to the formation of an inescapable sink — the black hole
scenario. A logical conjecture is that a black hole singularity is comprised of a tangle

of topological defects with effective dimensionality so high that the process space is
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folded in upon itself, maintaining the in-flow of quantum foam. Since the in-flowing
‘material’ is nothing more than topologically encoded information, the in-flow rep-
resents a loss of information and so gravity itself is seen to be an information loss

phenomenon.

8.6 Motion, inertia, and relativistic effects

In the 3-D process space of topologically encoded information, persistent patterns at
all fractal levels abide by virtue of ongoing self-replication and it was suggested in §8.2
on page 295 that patterns may “drift through the system”. This was not to suggest
motion but, rather, that the patterns are independent of their specific components —
there is no mechanism in Process Physics for a fixed pattern (corresponding, say, to
a topological defect) to ‘slide’ through the quantum foam. So what could it mean for
a topological defect, or indeed a vast bound collection of defects, to be ‘in motion’?

Recall that the discussion concerning the réle and attributes of the binder (§7.3.2
on page 243) indicated that the most common situation whereby active nodes arise is
the case where a parent node to leaf nodes has degree greater than one (it matters not,
of course, whether the nodes are taken to be monads or gebits). This is important
because it means that most active nodes are located peripherally rather than being
situated ‘internally’ and so the newest (and hence the stickiest?) gebits in a topological
defect tend to be peripheral. Statistically, active nodes are randomly distributed
so the self-replication process is statistically homogeneous and the defect may be

considered to be stationary relative to the (background) quantum foam in which it

9The greatest probability for the topology of new gebits is that they be minimally connected i.e.
tree- or augmented-tree structures with many active nodes.
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is embedded. Suppose now that a situation arises — some ‘event’ — to disrupt this
homogeneous self-replication — say, as a result of interaction with another defect, or
simply as a result of local random deviations — such that gebits are preferentially
replaced on one ‘side’. Older gebits on the opposing ‘side’, in the meantime, continue
to lose their stickiness, becoming still less active and decaying. The nett result is
a translation, with respect to the process space, in the direction of the preferential
self-replication. That is, the defect structure undergoes relative motion as a result
of a simple self-consistency argument. Moreover, once begun, the procedure is self-
perpetuating and must necessarily continue until the topological defect is subject to
a new event. That is, uniform motion — inertia — is persistent self-replication of gebit
connectivity patterns in a set direction, behaviour that is consistent with the iterator
mechanism and essentially no different to the means by which stable emergent forms
arise in the first place.

A further conjecture is the expectation in Process Physics that such motion also
yields time-dilation effects because self-replication of the defect structure has two com-
ponents — self-replication associated with any internal oscillations and self-replication
strictly associated with motion — resulting in ‘competition for resources’ that slows
down the internal processing, a notion discussed by Toffoli [378]. There is a long
history of such effects in various non-relativistic continuum systems (see, for example
Unzicker [379] for an interesting account, including a collection of ideas published
by various authors over many years) and, in particular, emergent Lorentz relativistic
effects have been observed in the modelling of dislocations in crystals, where so-called
‘breather modes’ arise as solitons [380].

The moral seems to be that the occurrence of Lorentz relativistic effects is a
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generic feature in the unification of substratum systems and their embedded excita-
tions — here, the embedded excitations are solitons, seen as a dynamical emergent
feature within some dynamical background rather than as a construct ‘pasted’ onto
some structureless a priori geometrical background. This dynamical interpretation
of Lorentz symmetry was argued by Bell [94] and, indeed, by Lorentz. More recently,
similar ideas have appeared in the analysis of sound waves in classical fluids [381, 382]
and it appears reasonable to assume that QHFT also will display the time dilation

and length contraction effects of generic Lorentzian dynamics.

8.7 Concluding remarks for Process Physics

Fittingly, Process Physics is both an end and a beginning. The commentary in this
chapter marks the culmination of the present work while concurrently signalling the
genesis of a major development in the modelling of reality. Proceeding from the
early insights from HQS theory, Process Physics obtains from the introduction, via
HPS theory, of non-geometric time as process by way of a stochastic, self-referential
information theoretic bootstrap system, and has been shown capable of generating a

rich phenomenology, including;:

1. the emergence of primitive geometric structures (gebits) bearing the signature

of the three-dimensional hypersphere, S3

2. the self-linking of these gebits so as to form a fractal processing space with

embedded topological defects driven by self-referential noise
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. the appearance of persistent topological defects within the substratum space in-
terpreted, via the development of an appropriate encoding formalism, as emer-
gent quantum ‘matter’ displaying flavour and hidden colour degrees of freedom

and with spin 1/2 formalism also emergent

. the self-organisation of this topologically encoded information so as to manifest
quantum foam behaviour involving both space and quantum matter embedded
in that space: that is, emergent quantum behaviour that derives as a logical

necessity of the information theoretic stochastic process

. fundamental non-locality of the quantum matter and of the substratum space
yielding an explanation for the collapse mechanism of measurements on quan-

tum systems, whereby the collapse is seen to be a manifestation of SRN

. the on-going non-local collapse of that quantum structure, yielding a higher
level effective classical 3-D space that undergoes expansion consistent with the

observed behaviour of the universe

. the emergence of classical behaviour, where reality at the macroscopic level
appears discrete and ‘hard’ in contrast to the ‘soft’ and ‘fuzzy’ underlying fractal

substratum of relational information

. unification of space and the quantum leading to an explanation of gravity (dis-
playing the equivalence principle), where matter serves as an effective sink for
the information patterns that provide spatial degrees of freedom of the quantum

foam, and gravity is then seen as a nett in-flow of space into matter.

. motion, inertia, and Lorentzian relativistic effects of time dilation and length
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contraction, appearing as intrinsic emergent features of the Process Physics

schema

The unification!®

of gravity and the quantum theory that has so long eluded
physics, and the explanation of classicality, motion, and inertia — similarly elusive
concepts — are made possible here only by abandoning long held ‘fundamental’ ax-
ioms and assumptions in favour of a minimal stochastic information process system
in which the fundamental properties must emerge from the system without prescrip-
tion. That they appear to do so is remarkable. Certainly, these are big claims and
it is acknowledged that the ideas put forward in this chapter are more suggestive
than definitive — rigorous development will likely require considerable future research
effort. Nonetheless, the key concepts have been outlined and they appear to point the

way to a deeper, even profound, understanding of physics as it is presently ‘known’

and of Nature itself, which doubtless has considerably more secrets yet to reveal.

10G¢trictly, in Process Physics, gravity and the quantum are not unified in the usual sense — that
objective is rendered redundant by the deeper description that obviates the need to force those two
distinct measurement theories into an unhappy union.



Summary and Conclusion

Arising from dissatisfaction with the long-standing impasse confronting the physics
community, this thesis has described the development of a very different view of
physics at the deepest level, concluding with the presentation of the fundamentals of
the theory of Process Physics, a radical alternative in the modelling of reality.

The work began with a review, presented in Part I, of the historical development
of physics from the time of the Ancient Greeks to the present day, with particular
emphasis given to the philosophic and metaphysical foundations embodied by schools
of thought and specific developments that led to the mathematization of physics and
the prevailing geometrical continuum model of space-time. As a result, it has been
shown that this conventional, ‘mainstream’ approach differs little in its conception
to the néive ‘container plus hard atom’ model of Antiquity and, moreover, that the
dominance enjoyed by this approach to modern physics has arisen more by historical
accident than overt scientific design.

The subsequent examination of a range of current research activities having im-
plications relevant both to physics at the deepest level, generally, and to space-time,
more specifically, identified distinct, unequivocal, and intractably problematic flaws

and limitations in the paradigms of the geometric continuum model and standard
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formulations. This, then, strongly suggested that the prevailing models are not fun-
damental, thus demonstrating the validity of pursuing a radically different approach.
Indeed, many eminent researchers share this perception and have turned their at-
tention to devising alternative formulations (particularly in quantum gravity and
quantum cosmology) the most notable of which involve some variety of pregeometry.

Insights gained from contemplating the disparate views of GR and quantum theory
and their resonance with the confrontation over the duality of description between the
static view of classical dynamics and the evolutionary view associated with entropy,
served to highlight the essentially discrete nature of plausible pregeometric notions.
Sharing Rosen’s view that contemporary physics treats of simple systems whereas
natural systems are invariably anything but simple, recognition of the combined as-
pects of discreteness and the nature of problems associated with complex systems led
to a consideration of the essential features and phenomenology associated with the
science of complexity. From this, it was concluded that the Universe is the quintessen-
tial autopoietic complex adaptive system, the vitally self-referential nature of which
dictates the primacy of stochasticity and randomness, apparently echoed by the crisis
in mathematics first identified by Godel.

To comprehend the implications of this deep insight, the work of Gédel, Turing,
and Chaitin was investigated. The inevitability of self-referencing in sufficiently rich
systems was found to be intimately tied to the distinction between syntax and seman-
tics, between exophysics and endophysics. Moreover, it was noted that randomness,
or noise, follows as a direct consequence of self-referencing in accordance with the
degree to which self-referencing is complete. This observation provided the key to

discovering the concept of self-referential noise (SRN), which puts the process into



315

Process Physics, giving rise to the completely self-referential, self-modifying entity
that Kampis refers to as a “Leibnizian monad” [335] — the seed exposed by breaking
the cycle hierarchy of this essentially bootstrapped system to peer within, thus to see
that, indeed, in the succinct and very apt words of Manthey, “outside is as inside”
[270].

Proceeding from these contemplations, the various threads were drawn together to
weave a cloth of a different kind, a prescription for Process Physics as a pregeometric
theory describing a minimal, autopoietic complex adaptive system that is necessarily
discrete, relational, stochastic, self-referential, self-modifying, and devoid of a prior:
constructs. To overcome the limitations of logic inherent in traditional approaches,
the distinction was drawn between syntactical information systems — the language of
mathematical physics — and the autopoietic semantic information systems that cap-
ture the fundamental complementarity between function and structure. The concept
of a Gdédelian boundary was introduced in the description of the means by which a
self-referential syntactical information system could be bootstrapped to yield an emer-
gent induced formal system, corresponding to conventional syntactical modelling, and
the associated accessible ensemble truths of quantum statistical measurement proto-
cols. In this, it was indicated how self-organized criticality (SOC) would act as a filter
for the seeding syntax of the autopoietic SRN process.

In Part II, that prescription was put into practice by first adapting current Quan-
tum Chromodynamics (QCD) technology to provide a foundation for modelling the
developing new theory. The initial formulation, dubbed Heraclitean quantum sys-
tems (HQS), employed Grassmann algebra to construct a precursor theory that was

free of classical structures or concepts in its axioms. It was shown that the algebraic
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form of the theory had a corresponding representation in random graph theory and,
in particular, coarse-graining the relational information between monads resulted in
the most probable random graphs having connectivity that revealed an intrinsic hy-
perspherical signature; that is, the most probable forms emerging from a HQS were
shown to have characteristics of the three-dimensional hypersphere, S3. These forms
were dubbed ‘gebits’ (geometrical bits).

For all that HQS theory displayed some very interesting properties, it could not
produce the phenomenon of time. That failure was found to lie in the fallacy of having
assumed time to be an emergent phenomenon. Recognizing, then, the truly funda-
mental nature of time, provided the key to further progress in the development of the
successor theory of Heraclitean process systems (HPS), which recognized the iterative
character needed to model reality as a self-referential, self-organizing, self-modifying
information system, where the meaning of information is entirely endophysical and
notions of both information and structure are purely relational constructs. HPS
theory gained time-like phenomenology and witae essentia with the introduction of
process and the stochasticity of self-referential noise (SRN) by which the creative and
spontaneous generation of spatial structure became possible, generating the ‘present
moment effect’ customarily associated with experiential time. HPS theory demon-
strated how the nature of space and the nature of time are intimately related to the
‘logic of the limitations of logic’.

Finally, HPS theory was shown to extend to the theory of Process Physics by an
introduction of the key concepts whereby Process Physics connects with and motivates
the higher level descriptions of the standard formulations of particle physics and

gravity. Further, the potential for the new theory to go beyond the old was illustrated.
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Recall, from Chapter 7 (page 286), the noted parallels between HPS theory and
natural hermeneutics. In the context, now, of Process Physics, Kampis’s further
generalization in his ‘molecular hermeneutics’ hypothesis provides a prophetic insight
when extended beyond the biological framework for which it was originally conceived

— in [362], he wrote:

This metaphysics [‘molecular hermeneutics’] grasps the essence of the few
examples we have presented so far: it suggests that structure is subordi-
nated to function (while not forgetting that there are interesting aspects

of structure). We propose these statements:

e ‘Properties’ of biological compounds are a posteriori and relational
rather than a priori or structural. Structures can be used in in-
definitely many ways; in particular, old structures can be reused in

different new functions.

e Information content is evoked by the embedding context, and does

not exist before or after.

e Instead of isolated components, the units of analysis are situation-

dependent chunks of co-existing components.

In other words, instead of assuming built-in properties, we postulate in-
teractions that bring forth what in a permanent context would be thought
of as a property. This has far-reaching consequences for the entire con-

ceptualization.

By reading, say, ‘of objects’ rather than “of biological compounds” or, better, strik-

ing those words altogether, the consequences are indeed “far-reaching” — in such
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manner, recognizing the priority of process, the old paradigms describing a deter-
ministic Universe governed by dynamical laws are supplanted by a new paradigm:
that of a ‘Biological Universe’, revealed as Process Physics bootstraps reality from

the limitations of logic.



