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Abstract

For all the successes of the two edifices of modern physics, quantum theory and Ein-
stein’s relativity, a fundamental description of the Universe as a whole — a theory that
informs as to the true nature of reality — has continued to elude science. This thesis
describes the development and evolution of a new paradigm called Process Physics,
a radical information-theoretic modelling of reality. It is argued that the failure of
the extant approaches in physics is the direct consequence of limitations stemming
from the mathematization, language and methodology of theoretical physics: the
limitations of the postulated background spatial concepts and geometric modelling of
time, the limitations of quantum theory in its failure to account for the measurement
process and classicality; and the limitations of formal systems. In contrast, Process
Physics utilizes the limitations of logic first identified by Gddel and asserts the priority
of process and relational endophysics, realized via a stochastic, autopoietic bootstrap
system whose properties emerge a posterior: rather than being assumed a priori.
The work is arranged in two parts. Part I discusses the historical, philosophi-
cal, and metaphysical foundations of physics to consider how the prevailing views in
modern physics arose and what this revealed and contributed to the development of
Process Physics. Part II describes the fundamentals of the new theory and its imple-
mentation, and demonstrates the viability of looking outside the current paradigms
by showing that Process Physics yields unified emergent phenomena that permit an
understanding of fundamental processes and penultimately motivate both quantum
theory and relativity as relevant higher-level descriptors within their respective do-

mains.
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Introduction

For all the undeniably great successes of the two edifices of modern physics, quantum
theory and Einstein’s relativity, a fundamental description of the Universe as a whole
— a theory that informs as to the true nature of reality — continues to elude science.
As Geoffrey Chew wrote, “Despite the glorious achievements of 20" century physics,
obscurities persist. Each successive triumph has sharpened awareness of unresolved
mysteries” [1]. For decades, researchers have sought that fundamental description
in the domain of quantum cosmology, endeavouring to unify quantum theory and
gravity, yet to no avail. The research reported here was motivated principally by
dissatisfaction with that state of affairs, the desire to understand why it should be
so, and the hope that the insights so gained could lead to a fresh and more optimistic
approach to the resolution of the many deep problems.

This work describes the evolution of a new paradigm from the early investigations
through to the development of the foundations of what is now called Process Physics,
a radical information-theoretic modelling of reality. It is the contention of this thesis

that:

1. the failure of the extant approaches in physics is the direct consequence of
limitations inherent in the language and methodology of theoretical physics,

leading to a construct of assumptions and rigid mathematization that have



blocked further efforts to attain a full understanding of Nature at its deepest

levels;

2. close examination of the historical developments of the mathematization of
physics reveals its circumscription, principally: the limitations of the a pri-
ort background spatial concepts and geometric modelling of time in the physics
of Galileo, Newton, and Einstein; the limitations of quantum theory in its fail-
ure to account for the measurement process and classicality; and the limitations

of formal systems discovered by Godel, Turing, and Chaitin;

3. insights gained by the analysis of those limitations and leading to the alternative
approach of Process Physics demonstrate the viability of looking outside the

current paradigms; and

4. Process Physics yields emergent phenomena that are unified, permitting an un-
derstanding and linking of fundamental processes that penultimately motivate
both quantum theory and relativity as relevant higher-level descriptors within

their respective domains.

To elucidate and support this contention, the present work is arranged in two
parts: the first addresses points 1. and 2., above, by considering the historic, philo-
sophic and metaphysical foundations of the prevailing views in modern physics; the
second part addresses points 3. and 4. by describing the fundamentals of the theory
of Process Physics and its implementation in the development of modelling constructs
to examine, test, and develop various aspects of the theory and thereby demonstrate

the viability of Process Physics as “an ultimate theory that can be formulated as a



finite number of principles” [2] — a goal formerly held by Stephen Hawking. In a strik-
ing reversal, Hawking changed his position on the attainability of such a pre-eminent

theory. Citing Godel’s theorem, he said (ibid.)

In the standard positivist approach to the philosophy of science, physical
theories live rent free in a Platonic heaven of ideal mathematical models.
That is, a model can be arbitrarily detailed, and can contain an arbitrary
amount of information, without affecting the universes they describe. But
we are not angels, who view the universe from the outside. Instead, we
and our models, are both part of the universe we are describing. Thus
a physical theory, is self referencing, like in Gédels theorem. One might
therefore expect it to be either inconsistent, or incomplete. The theories

we have so far, are both inconsistent, and incomplete.

Rather than accept Gddelian arguments as an impediment to progress, with an infi-
nite regress of ever deeper principles in the manner suggested by Hawking, Process
Physics instead embraces them to reveal that Goédel’s theorems provide the oppor-
tunity to re-evaluate the status of conventional modern physics. The vital insight is
that the limitations of logic imposed by Go6del (and those who followed) furnish the
key to achieving a profound, if not ultimate, understanding of Nature at its most

fundamental level.



