

Dynamical (e,2e) Studies of Bio-Molecules

Joseph Douglas Builth-Williams

Submitted in partial fulfillment for the requirements of the degree of Masters of Science

March 2013

School of Chemical and Physical Sciences Flinders University of South Australia

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where reference has been made in the text. I give consent for this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Joseph D. Builth-Williams, March 1^{st} , 2012

i

Research is what I'm doing when I don't know what I'm doing. ~ Wernher Von Braun (1912-1977)

Abstract

As the basis of life, deoxyribonucleic acid (DNA) is an extremely important molecule and though, in many ways, it is a stable molecule, even the slightest damage can lead to potentially disastrous results. One such source of damage is high-energy ionising radiation and while this high-energy radiation can cause significant damage by directly interacting with DNA, a significant amount of damage is also caused by the low-energy secondary electrons it generates through ionisation. Previous attempts to model the effects of ionising radiation on DNA have been limited by the experimental data available at the time, and so have used water as a model for the biological medium. Thus a need to understand how these secondary ionising species, in particular electrons, interact with biomolecules exists.

In this thesis I report on original relative Triple Differential Cross Section (TDCS) measurements for the electron impact ionisation of pyrimidine, α -tetrahydrofurfuryl alcohol, tetrahydrofuran, tetrahydropyran and 1,4-dioxane. The TDCSs provide the probability that a bio-molecule will eject an additional electron, of a particular energy and at a particular angle, after being struck by an incident electron (that is subsequently scattered from the target molecule, at a specific angle and energy). In each case the Highest Occupied Molecular Orbital (HOMO) was probed, specifically the $7b_2$, 28a, 9b + 12a', 15a' and $8a_g$ orbitals for each respective molecule listed above. In addition, some measurements were also made on the $10a_1$ orbital of pyrimidine. Furthermore, all these TDCS measurements are compared to results from calculations using the Molecular Three-Body Distorted Wave (M3DW) model. Fair agreement is typically found between the M3DW results and the experimental data. All the present results were measured using coplanar asymmetric kinematics.

ii

Physics is imagination in a straight jacket. \sim John Moffat (1932-present)

Acknowledgements

First and foremost, I would like to both thank and acknowledge the help and mentor-ship of Dr. Susan Bellm - without your help over the past few years, I would have been lost many times. Thank you for the respect you extended towards me by treating me as an equal and for your companionship over the time we worked together: I wish you only the very best in your future endeavours.

Next I would like to thank my supervisor, Prof. Michael Brunger for believing in me enough to give me the opportunity to undertake this project; first as an honours student, and then as a masters student. Your help and guidance has been critical over the past couple of years and I have no doubt that it would have been impossible to get where I have without it.

I would also like to thank the support staff at Flinders University, in particular the efforts of Bill 'Derek' Drury and Andrew Dunn from the electronic workshop, who also provided great entertainment over the course of the year in their frequent visits to the lab. In addition, without Mark Ellis' generous loan of a glass ion gauge from the teaching labs, the experiment would surely have been delayed. I would also like to thank the guys at the Flinders Mechanical workshop who helped put the (e,2e) spectrometer together, in particular Chris Price, Bob Northeast and Mike Mellow. Finally, I would like to give thanks for the tireless efforts of Jacqui Hull and Chris Brooks in the school office, as well as the post-graduate coordinator Jennie Brand and the head of faculty Prof. Warren Lawrance.

I would like to give special thanks to Prof. Don Madison and his student Hari Chaluvadi, for braving Homeland Security and being mistakenly declared "A Threat To National Security" in order to produce the theoretical calculations presented in this thesis, in addition to explaining some of the intricacies of the M3DW model.

I would also like to acknowledge the help provided by various academics over the past year, ranging from preparing the chemical samples, to advice/support and even providing me with theoretical models. In no particular order, these academics were: Dr. Neil Trout, Prof. Igor Bray, Dr. Darryl 'ICE' Jones, Dr. Luca Chiari and Rebecca 'Jigglypuff' Norman.

A special thanks also goes out to my friends and family that helped me over the

year by providing me with advice, support and valuable feedback. Once again, in no particular order, these people were: Edwina Virgo, Christopher Maynard, Christopher Kalnins, Nicholas Kellett-Southby, Lily 'Legs' Ellis-Gibbings, Brian O'Niell, Toby Syj, my uncle Paul Memmler, my grandfather Derek 'Bill' Builth and my father John Williams. Additionally I would like to thank my mother, Linda Builth, who provided me with food and lodgings for the last year when the government decided, in it's infinite wisdom, that living independently of your parents for 5 years was insufficient to grant you 'independent' status.

Finally, I would like to give a special thanks to Alana Kerin, who believed in me and supported my work, even after our breakup.

Contents

Ι	Abst	tract	ii					
II	Ackı	nowledgements	iii					
Table of Contents vi								
\mathbf{Lis}	t of]	Figures	ix					
1	Introduction							
	1.1	(e,2e) Spectroscopy	2					
	1.2	Project Significance	9					
2	Defi	nitions and Theory 1	3					
	2.1	Introduction	13					
	2.2	Ionisation	14					
	2.3	Differential Cross Sections	15					
		2.3.1 Single Differential Cross Sections	15					
		2.3.2 Double Differential Cross Sections	15					
		2.3.3 Triple Differential Cross Sections	16					
	2.4	Kinematics	18					
		2.4.1 Symmetric Kinematics	19					
		2.4.2 Asymmetric Kinematics	20					
		2.4.3 Mutual Constant Angle Kinematics	21					
	2.5	Formal Scattering Theory	21					
		2.5.1 The Lippmann-Schwinger Equation	24					
		2.5.2 Born Approximations	25					
		2.5.3 Molecular 3-body Distorted Wave Approximation	30					
3	Exp	erimental Apparatus and Techniques	32					
	3.1	Apparatus	32					
		3.1.1 Overview	32					
		3.1.2 Vacuum Chamber	34					
		3.1.3 Electron Gun	37					
		3.1.4 Analysers \vdots	39					
		3.1.5 Molecular Beam Source	44					
		3.1.6 Racks	45					
	3.2	Experimental Techniques 4	19					
		3.2.1 Coincidence Method	19					
		3.2.2 Energy Resolution	55					
		3.2.3 Chamber Alignment	55					
	3.3	Calibration	57					
		3.3.1 Energy Calibration	57					
		3.3.2 Angular Calibration	59					
		3.3.3 (e,2e) Spectrometer Self-Consistency Checks 6	31					
4	Mea	surements on Pyrimidine	34					
	4.1	Introduction	34					
		4.1.1 Significance of this Molecule	34					
	4.2	Binding Energy Spectrum	35					
	4.3	Experimental Considerations	38					

	$4.4 \\ 4.5$	Results and Discussion	69 74	
5	Mea	Measurements on α -Tetrahydrofurfuryl Alcohol 7 ⁱ		
0	5.1	Introduction	75	
	-	5.1.1 Significance of this Molecule	75	
	5.2	Binding Energy Spectrum	76	
	5.3	Experimental Considerations	78	
	5.4	Results and Discussion	78	
	5.5	Conclusion	81	
6	Syst	ematic Investigation of Three Structurally Related Cyclic Ethers	s 83	
	6.1	Introduction	83	
	69	0.1.1 Significance of the Molecules	80 97	
	0.2	6.2.1 Binding Energy Spectrum of Tetrahydrofuran	01 87	
		6.2.2 Binding Energy Spectrum of Tetrahydropyran	89	
		6.2.3 Binding Energy Spectrum of 1.4 - Dioxane	90	
	6.3	Specialised Experimental Considerations	91	
	6.4	Results and Discussion	92	
	6.5	Conclusion	98	
7	Con	alucions	100	
'	7.1	Summary of Results	100	
	7.2	Future Directions	102	
8	Refe	erences	104	
8 A	Refe App	erences oendix A: Experimental Data	104 116	
8 A	Refe App A.1	erences endix A: Experimental Data Pyrimidine	104116	
8 A	App A.1 A.2	erences pendix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol	104116119	
8 A	App A.1 A.2 A.3	pendix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol Tetrahydrofuran	104 116 119 122	
8 A	App A.1 A.2 A.3 A.4	pendix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydrofuran Tetrahydropyran	104 116 119 122 124	
8 A	App A.1 A.2 A.3 A.4 A.5	pendix A: Experimental Data Pyrimidine α-Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydropyran 1,4 - Dioxane	 104 116 119 122 124 126 	
8 A B	App A.1 A.2 A.3 A.4 A.5 App	Pendix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydrofuran 1,4 - Dioxane B: GNUPlot Code	 104 116 119 122 124 126 128 	
8 A B	Refe App A.1 A.2 A.3 A.4 A.5 App B.1	pendix A: Experimental Data Pyrimidine α-Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydrofuran 1,4 - Dioxane Pyrimidine Pyrimidine	 104 116 119 122 124 126 128 128 	
8 A B	App A.1 A.2 A.3 A.4 A.5 App B.1	erences pendix A: Experimental Data Pyrimidine α-Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydropyran 1,4 - Dioxane Pyrimidine B: GNUPlot Code Pyrimidine B.1.1 Binding Energy Spectrum	 104 116 119 122 124 126 128 128 128 128 	
8 A B	App A.1 A.2 A.3 A.4 A.5 App B.1	perdix A: Experimental Data Pyrimidine α-Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydropyran 1,4 - Dioxane Pyrimidine B: GNUPlot Code Pyrimidine B.1.1 Binding Energy Spectrum B.1.2 Triple Differential Cross Sections	 104 116 119 122 124 126 128 128 128 130 	
8 A B	App A.1 A.2 A.3 A.4 A.5 App B.1 B.2	Perdix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydropyran 1,4 - Dioxane Pyrimidine B: GNUPlot Code Pyrimidine B.1.1 Binding Energy Spectrum B.1.2 Triple Differential Cross Sections α -Tetrahydrofurfuryl Alcohol	 104 116 119 122 124 126 128 128 128 130 133 	
8 A B	App A.1 A.2 A.3 A.4 A.5 App B.1 B.2	Perdix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydrofuran Tetrahydropyran 1,4 - Dioxane Pyrimidine B: GNUPlot Code Pyrimidine B.1.1 Binding Energy Spectrum B.1.2 Triple Differential Cross Sections α -Tetrahydrofurfuryl Alcohol B.2.1 Binding Energy Spectrum	 104 116 119 122 124 126 128 128 130 133 133 	
8 A B	Refe App A.1 A.2 A.3 A.4 A.5 App B.1 B.2	Perdix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydropyran 1,4 - Dioxane Pyrimidine B: GNUPlot Code Pyrimidine B.1.1 Binding Energy Spectrum B.1.2 Triple Differential Cross Sections B.2.1 Binding Energy Spectrum B.2.2 Triple Differential Cross Sections	 104 116 119 122 124 126 128 128 128 130 133 135 147 	
8 A B	Refe App A.1 A.2 A.3 A.4 A.5 App B.1 B.2 B.3	Perdix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydropyran 1,4 - Dioxane Pyrimidine Bill Binding Energy Spectrum B.1.2 Triple Differential Cross Sections α -Tetrahydrofurfuryl Alcohol B.2.1 Binding Energy Spectrum B.2.2 Triple Differential Cross Sections B.2.2 Triple Differential Cross Sections B.2.1 Binding Energy Spectrum B.2.1 Binding Energy Spectrum	 104 116 119 122 124 126 128 128 130 133 135 137 137 	
8 A B	Refe App A.1 A.2 A.3 A.4 A.5 App B.1 B.2 B.3	Perdix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydropyran 1,4 - Dioxane Pyrimidine B.1.1 Binding Energy Spectrum B.1.2 Triple Differential Cross Sections α -Tetrahydrofurfuryl Alcohol B.2.1 Binding Energy Spectrum B.2.2 Triple Differential Cross Sections B.3.1 Binding Energy Spectrum B.3.1 Binding Energy Spectrum	 104 116 119 122 124 126 128 128 128 130 133 135 137 137 137 130 	
8 A B	Refe App A.1 A.2 A.3 A.4 A.5 App B.1 B.2 B.3 B.4	Perdix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydrofuran Tetrahydropyran 1,4 - Dioxane Pyrimidine B.1.1 Binding Energy Spectrum B.1.2 Triple Differential Cross Sections α -Tetrahydrofurfuryl Alcohol B.2.1 Binding Energy Spectrum B.2.2 Triple Differential Cross Sections Tetrahydrofuran B.3.1 Binding Energy Spectrum B.3.2 Triple Differential Cross Sections Tetrahydrofuran Tetrahydrofuran Tetrahydrofuran	 104 116 119 122 124 126 128 128 130 133 135 137 137 139 140 	
8 A B	Refe App A.1 A.2 A.3 A.4 A.5 App B.1 B.2 B.3 B.4	Perdix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydropyran 1,4 - Dioxane Pyrimidine B: GNUPlot Code Pyrimidine B.1.1 Binding Energy Spectrum B.1.2 Triple Differential Cross Sections α -Tetrahydrofurfuryl Alcohol B.2.1 Binding Energy Spectrum B.2.2 Triple Differential Cross Sections B.3.1 Binding Energy Spectrum B.3.2 Triple Differential Cross Sections Triple Differential Cross Sections B.4.1 Binding Energy Spectrum	 104 116 119 122 124 126 128 128 128 130 133 135 137 137 139 140 140 	
8 A B	Refe App A.1 A.2 A.3 A.4 A.5 App B.1 B.2 B.3 B.4	Perdix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydropyran 1,4 - Dioxane Pyrimidine B.1.1 Binding Energy Spectrum B.1.2 Triple Differential Cross Sections α -Tetrahydrofurfuryl Alcohol B.2.1 Binding Energy Spectrum B.2.2 Triple Differential Cross Sections Tetrahydrofuran B.3.1 Binding Energy Spectrum B.3.2 Triple Differential Cross Sections B.3.1 Binding Energy Spectrum B.3.1 Binding Energy Spectrum B.3.1 Binding Energy Spectrum B.3.1 Binding Energy Spectrum B.3.2 Triple Differential Cross Sections B.3.2 Triple Differential Cross Sections B.3.1 Binding Energy Spectrum B.3.2 Triple Differential Cross Sections B.4.1 Binding Energy Spectrum B.4.2 Triple Differential Cross Sections	104 116 119 122 124 126 128 128 128 130 133 135 137 137 137 139 140 140	
8 A B	Refe App A.1 A.2 A.3 A.4 A.5 App B.1 B.2 B.3 B.4 B.5	PerencesPendix A: Experimental DataPyrimidine α -Tetrahydrofurfuryl AlcoholTetrahydrofuranTetrahydropyran1,4 - DioxanePendix B: GNUPlot CodePyrimidineB.1.1 Binding Energy SpectrumB.1.2 Triple Differential Cross Sections α -Tetrahydrofurfuryl AlcoholB.2.1 Binding Energy SpectrumB.2.2 Triple Differential Cross SectionsB.3.1 Binding Energy SpectrumB.3.2 Triple Differential Cross SectionsB.3.1 Dinding Energy SpectrumB.3.2 Triple Differential Cross SectionsB.4.1 Binding Energy SpectrumB.4.2 Triple Differential Cross SectionsI.4 - Dioxane	 104 116 119 122 124 126 128 128 130 133 135 137 137 139 140 140 142 143 	
8 A B	Refe App A.1 A.2 A.3 A.4 A.5 App B.1 B.2 B.3 B.4 B.5	Perences Pendix A: Experimental Data Pyrimidine α -Tetrahydrofurfuryl Alcohol Tetrahydrofuran Tetrahydropyran 1,4 - Dioxane Pyrimidine B.1.1 Binding Energy Spectrum B.1.2 Triple Differential Cross Sections α -Tetrahydrofurfuryl Alcohol B.2.1 Binding Energy Spectrum B.2.2 Triple Differential Cross Sections Tetrahydrofuran B.3.1 Binding Energy Spectrum B.3.2 Triple Differential Cross Sections B.3.1 Binding Energy Spectrum B.3.2 Triple Differential Cross Sections B.3.1 Binding Energy Spectrum B.3.2 Triple Differential Cross Sections B.4.1 Binding Energy Spectrum B.4.1 Binding Energy Spectrum B.4.2 Triple Differential Cross Sections I.4 - Dioxane B.5.1 Binding Energy Spectrum	 104 116 119 122 124 126 128 128 130 133 135 137 137 139 140 142 143 143 	
8 A B	Refe App A.1 A.2 A.3 A.4 A.5 App B.1 B.2 B.3 B.4 B.5	PerencesPendix A: Experimental DataPyrimidine α -Tetrahydrofurfuryl AlcoholTetrahydrofuranTetrahydropyran1,4 - DioxanePendix B: GNUPlot CodePyrimidineB.1.1 Binding Energy SpectrumB.1.2 Triple Differential Cross Sections α -Tetrahydrofurfuryl AlcoholB.2.1 Binding Energy SpectrumB.2.2 Triple Differential Cross SectionsTetrahydrofuranB.3.1 Binding Energy SpectrumB.3.2 Triple Differential Cross SectionsB.3.1 Binding Energy SpectrumB.3.2 Triple Differential Cross SectionsB.4.1 Binding Energy SpectrumB.4.2 Triple Differential Cross SectionsI.4 - DioxaneB.5.1 Binding Energy SpectrumB.5.2 Triple Differential Cross Sections	 104 116 119 122 124 126 128 128 128 130 133 135 137 137 139 140 142 143 146 	

List of Figures

1.1 1.2	A three dimensional model of a segment of DNA [46] An example of the output from a Charged-particle Track Structure Analysis simulation [62]. The straight black line represents the path of a 4MeV incident α -particle, the large red circles indicate ionisation events and the small purple circles are excitation events. The grey dashed lines indicate the paths of the secondary electrons that arise due to the ionisation events.	10 12
2.1	Vector diagram illustrating the transfer of momentum during an ioni- sation event. In this diagram, θ_a is the angle of the scattered electron, relative to the incident electron; $\theta_{\vec{k}}$ is the angle in which the momen- tum is transferred; and $\theta_{\alpha} = \theta_{\vec{k}} - \theta_b$, where θ_b is the angle of the ejected electron, matrice to the incident electron	17
2.2	Illustration of the various kinematic geometries most commonly em- ployed in (e,2e) measurements [15]: (a) coplanar symmetric, (b) non- coplanar symmetric, (c) non-coplanar asymmetric, (d) coplanar asym- metric, and (e) mutual constant angle. Furthermore it should be noted that: 1. for symmetric geometries $\theta_a = \theta_b$; 2. for the constant angle case it is θ_{ab} that remains constant; and 3. for the non-coplanar case either ϕ_0 or ϕ_b may be out of plane	18
2.3	A tetrahydropyran triple differential cross section, measuring a p-type orbital under coplanar asymmetric kinematics with an intermediate incident electron energy. All the major features have been labelled	21
3.1	Exterior photograph of the present $(e,2e)$ apparatus, illustrating its many external features as labelled	33
3.2	The Flinders University (e,2e) spectrometer chamber schematic [9]	35
3.3	Photograph of the inside of the scattering chamber. Important elements of the spectrometer are as labelled	36
34	Schematic diagram of the electron gun used in the present measurements	37
3.5	Schematic diagram of an analyser. The red line traces out the path that electrons of $E_p = eV_p$ take, the green dotted line traces out a possible path for electrons of energies $E < E_p$, while the blue dashed line traces out a possible path for the electrons of energies $E > E_p$. Insulation between the various elements is provided by 1 mm sapphire balls	40
3.6	A schematic diagram of the scattering region, as seen from above, high- lighting the manner in which binary and recoil measurements are taken given the limited angular range	41
3.7	Schematic diagram of a Channel Electron Multiplier and signal 'pick- off' circuitra	43
3.8	Photograph of the control racks, with the various important elements labelled as appropriate	46
3.9	Flowchart of the operational aspects of the control racks. The red dashed line follows the path of a signal from the scattered analyser,	10
	while the blue solid line follows that of the ejected analyser	47

vii

LIST OF FIGURES

3.10	A typical timing spectrum of helium, with the signal window ($\Delta t_c = 10$ ns, blue), containing the coincidence peak, and background windows ($\Delta t_{b1} = 72$ ns and $\Delta t_{b2} = 398$ ns, green) as labelled. Note: there is a 5 ns buffer between the signal window, background windows and the 'edges' (i.e. at $t = 0$ and 500 ns)	50
3.11	A schematic diagram of the scattering region as seen from above	56
3.12	The primary Auger lines of argon, measured by the scattered electron analyser, and fitted to a number of Gaussian peaks. This is com- pared to the accepted literature peak locations [93] in order to cor- rectly calculate the scattered electron energy offset. The Auger line as- signments are: A) $L_3M_{2,3}M_{2,3}(^1S_0)$ (201.09eV), B) $L_3M_{2,3}M_{2,3}(^1D_2)$ (203.47eV), C) $L_3M_{2,3}M_{2,3}(^3P_{0,1,2})$ (205.21eV), and D) $L_2M_{2,3}M_{2,3}(^3P_{0,1})$ (207.23eV).	,2) 58
3.13	A binding energy spectrum for the helium 1s orbital. This peak in particular is important, as it can also be used to define the binding energy resolution, ΔE_{BE} , of an (e,2e) spectrometer. In this particular example case, the binding energy resolution obtained was $\Delta E_{BE} =$ 1.5 eV. Full Width Half Maximum (FWHM)	50
3.14	Elastic DCS of argon at 60 eV, typically used for the angular calibra- tion of the ejected analyser. Note: the present measured values were normalised to Panajotovic et al. [91] at 30°	60
3.15	The experimentally measured DDCS using the scattered electron anal- yser, performed symmetrically around a nominal 0° on helium, with a fitted Gaussian also shown.	61
3.16	The measured TDCS of helium for 250 eV incident electrons, 20 eV ejected electrons, with the scattered electrons detected at -15° , com- pared to the experimental results found by Colyer [15], and with the DWBA calculations of McCarthy et al. [95] and the CCC calculations of Bray [96], all being conducted under the same kinematic conditions. The angular uncertainty of the experimental results is expected to be up to $\pm 2.5^{\circ}$, and as such does not encompass the offsets seen in the	
4.1	CCC and DWBA results.	63
4.1	and uracil. Various representations of pyrimidine can be seen in the top row.	64
4.2	The complete Binding Energy Spectrum of Pyrimidine in the range of $8-22eV$. The green dashed lines represent the individual Gaussians, while the solid red lines is the sum of the Gaussians	66
4.3	A spatial orbital representation of both the $7b_2$ orbital and the $10a_1$ orbital of pyrimidine. These models were produced using Avogadro [110] and GAMESS [111]	68
4.4	TDCS of the $10a_1$ orbital of pyrimidine, measured at scattered electron angles of -5° , -10° and -15° , where $E_0 = 250$ eV and $E_{ej} = 20$ eV. Also shown are the M3DW results when the molecular wave function is averaged (solid red line) and M3DW results when the absolute value of the molecular wavefunction is averaged (green dashed line). Note,	70
	the angular uncertainties on the experimental measurements is $\pm 2.5^{\circ}$.	70

4.5	TDCS of the 7b ₂ orbital of Pyrimidine. Note, the M3DW theory represented by the line in this figure involved averaging the absolute value of the molecular wave function.	73
5.1	The structure of THFA, and a segment of the sugar-phosphate backbone	-0
5.2	of DNA, highlighting the THFA molecule [38] The complete Binding Energy Spectrum of α -Tetrahydrofurfuryl Al- cohol in the range of 8-12eV. The HOMO (28a) and NHOMO (27a) are labelled, while the leading edge of the third Gaussian is associated	76
5.3	to the 26a orbital	77
	M3DW results, while the green dotted line represents the DWBA results.	79
6.1 6.2	Schematic diagram showing the structures of the three cyclic ethers. The complete Binding Energy Spectrum of tetrahydrofuran in the range of $7-19eV$. See information on figure for further details. In should be noted here that the 9b and the $12a'$ orbitals are from different conformation.	83
	mations (C_2 and C_s , respectively). See Table 6.1 for details on orbital assignments and their respective conformations.	88
6.3	The complete Binding Energy Spectrum of tetrahydropyran in the range of $7 - 18eV$. See information on figure for further details	89
6.4	The complete Binding Energy Spectrum of 1,4-dioxane in the range of	
6.5	7-19eV. See information on figure for further details	90
	represents the combined DWBA results for $9b + 12a'$	93
6.6	TDCS of the 15a' orbital of tetrahydropyran, measured at the scattered electron angle of -5° , where $E_0 = 250 \text{ eV}$ and $E_{ej} = 20 \text{ eV}$. The solid	
	red line represents the M3DW results	94
6.7	TDCS of the 8a _g orbital of1,4-Dioxane, measured at the scattered electron angle of -5° , where $E_0 = 250 \text{ eV}$ and $E_{ej} = 20 \text{ eV}$. The solid red	
6.8	line represents the M3DW results	95
	theoretical results. See the legends in each panel for further details.	97

 $\mathbf{i}\mathbf{x}$