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Research is what I’m doing when I don’t know
what I’m doing.

∼ Wernher Von Braun (1912-1977) I
Abstract

As the basis of life, deoxyribonucleic acid (DNA) is an extremely important
molecule and though, in many ways, it is a stable molecule, even the slightest
damage can lead to potentially disastrous results. One such source of dam-
age is high-energy ionising radiation and while this high-energy radiation can
cause significant damage by directly interacting with DNA, a significant amount
of damage is also caused by the low-energy secondary electrons it generates
through ionisation. Previous attempts to model the effects of ionising radiation
on DNA have been limited by the experimental data available at the time, and
so have used water as a model for the biological medium. Thus a need to un-
derstand how these secondary ionising species, in particular electrons, interact
with biomolecules exists.

In this thesis I report on original relative Triple Differential Cross Section
(TDCS) measurements for the electron impact ionisation of pyrimidine, α-
tetrahydrofurfuryl alcohol, tetrahydrofuran, tetrahydropyran and 1,4-dioxane.
The TDCSs provide the probability that a bio-molecule will eject an additional
electron, of a particular energy and at a particular angle, after being struck by
an incident electron (that is subsequently scattered from the target molecule,
at a specific angle and energy). In each case the Highest Occupied Molecular
Orbital (HOMO) was probed, specifically the 7b2, 28a, 9b+ 12a�, 15a� and 8ag
orbitals for each respective molecule listed above. In addition, some measure-
ments were also made on the 10a1 orbital of pyrimidine. Furthermore, all these
TDCS measurements are compared to results from calculations using the Molec-
ular Three-Body Distorted Wave (M3DW) model. Fair agreement is typically
found between the M3DW results and the experimental data. All the present
results were measured using coplanar asymmetric kinematics.
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Physics is imagination in a straight jacket.
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