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That theory is worthless. It isn’t even wrong!

∼ Wolfgang Pauli (1900-1958)

2
Definitions and Theory

2.1 Introduction

An (e,2e) experiment involves the collision of an incident electron with a target

atom or molecule. After this collision, one or more electrons are removed from

the target particle, resulting in a process which is known as electron impact

ionisation. Electron impact ionisation is one of the many potential scattering

processes that can occur. It is classed as an inelastic collision: a collision event

in which the target particle’s internal structure is changed. Other collision pro-

cesses are super-elastic scattering (e.g. a laser excites the target particle, which

is then de-excited by the incident electron that scatters with increased energy),

and elastic scattering (no internal structural change to the target particle due

to the collision). While inelastic scattering also covers discrete excitation events

(e.g. rotational, vibrational or electronic-state excitation), this thesis focuses

on the inelastic ionisation process.

The ionisation process may be catagorised in a number of different ways:

• Direct versus resonant

Direct ionisation occurs when one or more electrons are removed from the

target particle with minimal interaction with the target core. Resonant

ionisation occurs via a resonant process followed by the ionisation (eg

autoionisation).

• Single versus multiple

Single ionisation occurs when only a single electron is ejected from the

target particle as a result of the collision. During multiple ionisation,

many electrons can be ejected (eg the Auger effect).

• Inner shell versus outer shell
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CHAPTER 2. DEFINITIONS AND THEORY

During the ionisation process, an electron is usually ejected from either

the inner electron shell of the target particle or the outer electron shell.

However, if the incident projectile has a high enough energy then core-

electron ionisation can also occur.

2.2 Ionisation

The direct single ionisation of a target particle (A), by an electron collision

event, can be described by the following equation:

e− +A → A+ + e− + e−,
✞✝ ☎✆2.1

where A+ represents the positive ion produced by the collision. The most likely

result of this event is the ejection of an electron (e−) from the valence shell of

the target.

The motion of the target can be neglected as its mass is much larger than

that of the electron. Therefore, Equation 2.1 can be rewritten as:

e−(E0,�k0) +A → A+ + e−(Ea,�ka) + e−(Eb,�kb),
✞✝ ☎✆2.2

where E0, Ea, Eb are the kinetic energies, and �k0, �ka, �kb are the momenta of

the incident, scattered and ejected electrons, respectively.

For the ionisation process to comply with the law of conservation of energy:

E0 = �i + Ea + Eb,
✞✝ ☎✆2.3

where �i is the ionisation potential of an electronic orbital in the target species.

As the recoil energy of the resultant ion is small compared to that of the elec-

trons, it is neglected.

Furthermore, for the process to comply with the law of conservation of mo-

mentum the momentum imparted (�q) to the ionised target particle is:

�q = �k0 − �ka − �kb.
✞✝ ☎✆2.4

As the system is comprised of three free moving particles, four types of cross

section can be defined: the single, double and triple differential cross sections

and the total cross section.
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2.3 Differential Cross Sections

A cross section measures the probability that a given collision process will occur

under specific kinematic conditions [65]. Of the four cross sections that will be

discussed in this thesis, the Total Ionisation Cross Section (TICS) yields the

least information. It is represented by the symbol σ(E0). Unlike other cross

sections, the TICS is dependent only upon the incident electron energy (E0). It

provides a measure of the total number of ions produced by the collision process.

The TICS can simply be calculated by integrating each of the single differential

cross sections and then summing them together [66].

2.3.1 Single Differential Cross Sections

The Single Differential Cross Section (SDCS) is a measure of the energy distri-

bution of the two outgoing electrons after the collision process. The SDCS is

represented by:
dσ

dE

✞✝ ☎✆2.5

Since, from a quantum mechanical perspective, the two outgoing electrons are

indistinguishable, a specific naming convention is necessary. The “fast” out-

going electron, i.e. the electron that has energy close to the excess energy

(E = E0 − �i), is referred to as the scattered electron. The “slow” outgoing

electron with an energy relatively closer to zero is referred to as the ejected

electron.

The SDCS cannot usually be measured directly, unless specific techniques are

used. It must be obtained by numerical integration of the double differential

cross section with respect to all angles of emission of the outgoing electrons [67].

Another form of SDCS can be obtained by numerically integrating the double

differential cross section with respect to all energies [66]. However, this latter

form has little physical meaning and so is rarely used.

2.3.2 Double Differential Cross Sections

The Double Differential Cross Section (DDCS) is a measure of the energy and

angular distribution of either the ejected, or scattered, electron after the col-

lision event. The DDCS can be measured using what is known as a “crossed

beam experiment”; an experiment in which a beam of electrons, of a specified

energy, cross a target atomic (or molecular) beam at an angle of 90◦. After

interaction, a single outgoing electron is detected according to either its energy

or angle.
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The DDCS is represented by the following formula:

d2σ

dΩdE
.

✞✝ ☎✆2.6

High energy incident electrons tend to scatter from the target in a narrow angu-

lar range centred around the unscattered electon beam. Lower energy incident

electrons tend to scatter from the target isotropically in all directions [67]. High

energy ejected electrons can reveal information about the target’s electronic

structure in the cross section, due to a binary collision between the incident

electron and an electron from the target.

In the DDCS there is significant uncertainty in the observed ionisation process

and state, for a given energy. Hence the theories that are are used to describe

the DDCS must include all processes and states that could possibly contribute

to the cross section. This makes them very awkward to employ. However, they

can be simplified by determining the energies and momenta of the outgoing

electrons. This allows a specific process to be selected. Such information can

be obtained using the triple differential cross section.

2.3.3 Triple Differential Cross Sections

The Triple Differential Cross Section (TDCS) is a measure of the probability

that an incident electron of energy E0 and momentum �k0 will produce two

electrons, of energies Ea and Eb, momenta of �ka and �kb and at solid angles dΩa

and dΩb, upon undergoing a collision with a target species [2]. The TDCS is

represented by:
d5σ

dΩadΩbdEa
.

✞✝ ☎✆2.7

A useful feature of the TDCS is its ability to fully determine the ionisation pro-

cess, excluding the spin of the electrons involved. Hence theories formulated to

describe the process do not have to be summed over unobservable parameters.

This allows a good comparison to be easily drawn. This remarkable feature

of the (e,2e) technique arises because the scattered and ejected electrons are

measured in temporal coincidence. The electrons can therefore be connected to

a specific ionisation event.

The momentum imparted to the ion, and the momentum transfer vector, are

two of the most important kinematic parameters required in understanding the

ionisation collision process. The amount of momentum imparted to the ion is
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Figure 2.1: Vector diagram illustrating the transfer of momentum during an ionisation
event. In this diagram, θa is the angle of the scattered electron, relative to the incident
electron; θ�κ is the angle in which the momentum is transferred; and θα = θ�κ − θb,
where θb is the angle of the ejected electron, relative to the incident electron.

easily calculated using the conservation of momentum equation (Equation 2.4).

The momentum transfer vector is defined as the momentum change between the

incident electron and the outgoing scattered electron [67] (refer to Figure 2.1),

and is given by:

�κ = �k0 − �ka.
✞✝ ☎✆2.8

The amount of momentum that is transferred during the collision event is of

particular importance. If a TDCS is performed with a high incident electron

energy, and small momentum transfer (i.e. κ < 1a.u.), the collision process

behaves like a photoionisation event [68]. Thus the final cross section produced

is dependent upon the configuration of the ejected electron, prior to the ionisa-

tion event. Furthermore, structural details of the target molecule (e.g. orbital

ionisation potentials, orbital momentum distributions, target and ion correla-

tions and orbital-specific momentum densities) can be determined when mea-

suring the TDCS of this kinematic configuration. By measuring such a TDCS, a

clear picture of the electron momentum distribution around the target’s nucleus

emerges [69].

However, when the kinematics are arranged to collect such structural infor-

mation, the ionisation process acts merely as a tool for this purpose alone.

Little, or no, information about the dynamics of the ionisation process can be

obtained [67, 70]. If a TDCS is performed with a medium to large momentum

transfer (κ > 1a.u.), information relating to the dynamics of the collision event

can be obtained. This information includes any distortion effects which relate to

the process, and details of the interaction that occurs between the particles. In

summary, the cross section is dependent upon the configuration of the electronic

structure of the target particle, prior to ionisation [67].
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2.4 Kinematics

There are a number of different kinematic parameters that can be varied when

measuring a TDCS; each of which can provide information about different phys-

ical properties of the electron ionisation process. The differing configurations of

the kinematic parameters are collectively known as kinematic geometries and

can be categorised into five major groups: coplanar symmetric, non-coplanar

symmetric, coplanar asymmetric, non-coplanar asymmetric and coplanar mu-

tual angle (refer to Figure 2.2).

Figure 2.2: Illustration of the various kinematic geometries most commonly employed
in (e,2e) measurements [15]: (a) coplanar symmetric, (b) non-coplanar symmetric, (c)
non-coplanar asymmetric, (d) coplanar asymmetric, and (e) mutual constant angle.
Furthermore it should be noted that: 1. for symmetric geometries θa = θb; 2. for the
constant angle case it is θab that remains constant; and 3. for the non-coplanar case
either φ0 or φb may be out of plane.

A coplanar kinematic geometry is one in which the incident, scattered and

ejected electrons are all detected in the same plane, commonly referred to as

the scattering plane. A non-coplanar kinematic geometry on the other hand, is

one in which one of the types of electrons is detected outside of the scattering

plane, or originates from outside the scattering plane, at an angle of φ. These

two kinematic geometries provide ‘different’ TDCS measurements due to the
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influence of the recoil momentum, �q, acting in a plane perpendicular to the in-

cident electron momentum, �k0.

A symmetric kinematic geometry represents the least probable ionisation pro-

cess, as the outgoing electrons have equal energies and angle (i.e. Ea = Eb

and θa = θb) [9]. Asymmetric geometry, however, is a kinematic geometry in

which the scattered electron is detected at a fixed forward angle (relative to the

incident electron beam) while the ejected electron is detected over multiple dif-

ferent angles within the scattering plane. In a mutual constant angle geometry,

the angle between the ejected and scattered electrons being measured remains

constant.

2.4.1 Symmetric Kinematics

As mentioned above, the symmetric kinematic geometry is the least probable

ionisation process, due to an equal energy sharing between the two outgoing

electrons (i.e. Ea = Eb). While this in practice makes measuring that cross sec-

tion difficult, the effort is worthwhile as it provides unique information about

the target’s valence electronic structure. Note, however, that in certain circum-

stances dynamical information (e.g. distortion effects) can also be extracted

from this geometry [71]. Symmetric kinematic geometry has also been used

recently in low energy incident electron experiments, in order to study the dy-

namics of the (e,2e) collision [33, 34]. As almost half of the incident electron’s

momentum is transferred to the bound electron, the momentum transfer vector

(�κ) is large. The momentum transfer, in this case, is defined as:

�κ2 = �k20 +
�k2a − 2|�k0||�ka| cos(θa).

✞✝ ☎✆2.9

Three main factors determine the observed behaviour of a TDCS measured

under symmetric kinematic geometry [72]:

i) the Coulomb density-of-state factors,

ii) binary collisions, and

iii) quantum interference between different contributions to the total transition

amplitude.

Electron Momentum Spectroscopy (EMS) experiments are generally measured

in non-coplanar symmetric kinematic geometries [2] (see Figure 2.2.c).
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2.4.2 Asymmetric Kinematics

TDCSs measured under asymmetric kinematic geometry can be broken down

into three incident electron energy regions, the lower, the intermediate and the

higher energy regimes. Depending on the energy region utilised, either struc-

tural or dynamical information may be obtained [67]. The low incident electron

energy region lies within the range 1.5�i ≤ E0 ≤ 5�i. In this region the exchange

process plays an important role, because the individual particles involved have

time to interact [67]. When the incident electron energy lies within the range

5�i ≤ E0 ≤ 20�i, it is referred to as the intermediate energy region. Although

the exchange processes are now negligible, the higher order terms in the inter-

action potential still have relevance [73]. The high energy region is defined by

E0 ≥ 20�i, where the relatively high energy results in particles with little time

to interact with one another during the collision process [67].

A TDCS measured under the asymmetric kinematic geometry typically com-

prises two distinct peaks [36], located around the momentum transfer direction,

�κ and −�κ. The first peak (the binary peak) is located near �κ. It is produced by

binary collisions involving only the incident and bound electrons. Such binary

collisions can also occur under what is known as the Bethe ridge condition, un-

der which all momentum is transferred to the ejected electron (i.e. |�κ| = |�kb|)
[69]. The second peak (the recoil peak) is located near −�κ. It is caused by an

initial binary collision followed by a secondary collision with the target nucleus

[69]. Figure 2.3 shows a typical example of an asymmetric kinematic TDCS,

with the binary and recoil peaks being highlighted [15].

The shape of the TDCS is determined by the target valence electronic structure

and/or the dynamical conditions of the collision process [67]. A TDCS measure-

ment of an atomic s or p electron shell, that uses high energy incident electrons

(in a low magnitude momentum transfer regime), will produce binary and recoil

peaks that are symmetric around �κ and −�κ, respectively [67]. However if the

incident electron has an intermediate energy, and interacts with an s orbital

electron, the recoil peak will be smaller than the binary peak [67]. That said,

under these same kinematics a p-shell orbital electron will produce a double peak

in the binary region, the resolution of which is dependent upon how close those

kinematics conform to the Bethe ridge condition. Intermediate energy incident

electrons also appear to cause a shift in both the binary and recoil peaks, thus

removing the symmetry around �κ and −�κ [67]. Low incident electron energies

generally lead to TDCSs that are symmetrical around the momentum transfer

directions, yet retain the single and double binary peak formations of the s-shell
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Figure 2.3: A tetrahydropyran triple differential cross section, measuring a p-type
orbital under coplanar asymmetric kinematics with an intermediate incident electron
energy. All the major features have been labelled.

and p-shell orbital electrons, respectively [67].

2.4.3 Mutual Constant Angle Kinematics

As with the symmetric case, in a mutual angle kinematic geometry the outgoing

electrons each have the same energy (i.e Ea = Eb). It consequently possesses

some of the physical properties of the symmetric regime. However, unlike the

symmetric regime, the angle between the two outgoing electrons, θab, remains

constant. When that angle is chosen such that �k0 · �kb = 0, the contributions of

the singlet and triplet two electron states to the TDCS are enhanced and the

Coulomb density-of-state factors are no longer dependent upon the angle of the

outgoing electrons, θab. Thus the dynamical collision effects are highlighted by

this particular kinematic geometry [72].

2.5 Formal Scattering Theory

Much of science relies on theoretical modelling that attempts to predict exper-

imental outcomes from a set of input parameters. Scattering theory provides

a model for collisions occurring between incident projectiles and target species

within an interaction region. At present a complete theoretical description for

all the possible kinematic parameters is unavailable [9]. However, more simpli-
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fied models that provide an understanding of the ionisation process do exist.

The rules that govern the dynamics of collision systems are quantum mechanical

in nature. The Hamiltonian, H, is the observable parameter of the system. It

corresponds to the total energy, and is described by:

H = K + V,
✞✝ ☎✆2.10

where K is the kinetic energy and V is the interaction potential.

Every free moving particle has an associated wavefunction, ψ, that in turn

has associated eigenstates, |Ψ�. These are the quantum states of the system.

The Schrödinger equation is the eigenvalue equation for the Hamiltonian. It is

given by:

(E −H)|Ψ� = 0,
✞✝ ☎✆2.11

where E is the energy state of Ψ. The asymptotic wavefunction, Φ, which is an

eigenstate of the kinetic energy, K, can be obtained from:

(E −K)|Φ� = 0.
✞✝ ☎✆2.12

The cross section for a collision system can in principle be calculated by us-

ing the time-independent Schrödinger equation, which assumes that the system

has reached a stationary state. Furthermore, in a standard scattering exper-

iment, the incident electron beam can be considered to be continuous, as the

electron gun (see Section 3.1.3) usually runs for an extended period of time and

produces a stable electron current over that time. Thus the time-independent

Schrödinger equation is given by:

�
− �2

2m
∇2 + V (r)

�
ψ(r) = Eψ(r),

✞✝ ☎✆2.13

where V (r) is the scattering potential, and E is the energy of the electron,

classically defined as:

E =
1

2
mv2,

✞✝ ☎✆2.14

where v is the velocity.
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The stationary scattering wave function is a solution to Equation 2.13. It sat-

isfies the asymptotic boundary conditions: V (r) tends towards zero faster than
1
r , as r → ∞. The stationary scattering wave function can be described by:

ψ(r)r→∞ = A

�
ei

�ki·�r + f(k, θ,φ)
eikr

r

�
,

✞✝ ☎✆2.15

where A is a normalisation constant (independent of r and the angles θ and φ),

and the function f is the scattering amplitude.

In theory the differential cross section is proportional to the scattering am-

plitude (f) (i.e. dσ
dΩ ∝ |f(k,Ω)|2), which in turn is dependant upon the energy

of the particle, E, and the scattering angles θ and φ.

The asymptotic behaviour of the scattering wave function (Equation 2.15) is

related to the magnitude of the scattering in a particular direction by the scat-

tering amplitude, f . Using Dirac notation, the scattering amplitude may be

defined as:

f = −2π2�Φkf
|V|Ψki

�,
✞✝ ☎✆2.16

where Ψki is the incident wavefunction, Φkf
is the final wavefunction and V is

the scattering potential describing the interaction between the incident electron

and the target.

Equation 2.16 can be written in terms of a collision matrix, which relates the past

and future states of the wavefunction (Ψki
and Φkf

, respectively) [65]. There are

several forms of the collision matrix, including the S-matrix, R-matrix, K-matrix

and T-matrix; the latter of which will be employed in our further discussion in

this section of the thesis.

Otherwise known as the transition matrix, the T-matrix element (Tif ) is repre-

sentitive of the transition between the past and future states of the wavefunction,

and is defined as:

T |Φkf
� = V|Ψki

�.
✞✝ ☎✆2.17

Using Equation 2.17, Equation 2.16 can be expressed in terms of the T-matrix

thus:

f = −2π2�Φkf
|T |Ψki�.

✞✝ ☎✆2.18
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The TDCS (measured in atomic units) can be calculated by applying this same

approach to the specific case of electron impact ionisation:

d5σ

dΩadΩbdEa
= (2π)4

�ka �kb
�k0

Λ|Tif |2,
✞✝ ☎✆2.19

where Λ is the average over all spin orientations and magnetic sublevels for the

final state of the target.

As a complete and practical theoretical description of the ionisation process

does not yet exist, one of a number of available approximations must be used

to evaluate the T-matrix. Two that are worthy of further discussion, in the

context of this thesis, are the Distorted Wave Born Approximation and the

Molecular 3-body Distorted Wave approximation. Fundamental to an under-

standing of these approximations is the Lippmann-Schwinger equation, which

we now briefly describe.

2.5.1 The Lippmann-Schwinger Equation

The wavefunction Ψ may be solved using the Lippmann-Schwinger equation,

which takes the boundary conditions of the scattering problem into account

[74]. The time-independent Schrödinger equation can be rewritten as:

[∇2 + k2]Ψ(r) = V (r)Ψ(r),
✞✝ ☎✆2.20

where the general solution to this equation is:

Ψ(r) = Φ(r) +

�
GO(r, r

�)V (r�)Ψ(r�)dr�.
✞✝ ☎✆2.21

Here Φ(r) is a solution to the homogeneous equation:

[∇2 + k2]Φ(r) = 0,
✞✝ ☎✆2.22

and GO(r, r
�) is the Green’s function for the incoming and outgoing waves (sym-

bolised by + and - respectively). The Green’s function can be rewritten in Dirac

notation:

G
(±)
O (r, r�) ≡ �r | G(±)

O | r��,
✞✝ ☎✆2.23

24



2.5. FORMAL SCATTERING THEORY

where the Green’s function operator (G(±)
O ), otherwise known as the resolvent

operator, is defined as:

GO(E
(±)) :=

1

E(±) −K .
✞✝ ☎✆2.24

By making use of the resolvent operator, G(±)
O , the wavefunction can be rewritten

as:

Ψ(r) = Φ(r) + G(±)
O VΨ(±),

✞✝ ☎✆2.25

This is the Lippmann-Schwinger equation, a formalism which can be used in-

stead of the Schrödinger equation [74]. This substitution will be employed in

the later discussion of the various theoretical TDCS approximations, that are

relevant to the experiments described later.

2.5.2 Born Approximations

Calculation of a general solution to the Schrödinger equation (Equation 2.21),

begins with a zero-order approximation. The number of orders in the approxi-

mation is then increased to produce a series of functions:

Ψ0(r) = Φ(r)

Ψ1(r) = Φ(r) +

�
GO(r, r

�)V (r�)Ψ0(r
�)dr�

...

Ψn(r) = Φ(r) +

�
GO(r, r

�)V (r�)Ψn−1(r
�)dr�.

✞✝ ☎✆2.26

Assuming that this sequence of functions converges to an exact solution, the

Born series can be derived. The Born series is defined as a perturbation type

expansion of the wavefunction (or scattering amplitude) in powers of the inter-

action potential [74]. The Born series is thus represented by:

Ψ(r) = Φ(r) +

�
GO(r, r

�)V (r�)Ψ0(r
�)dr� +

�
GO(r, r

�)V (r�)Ψ1(r
�)dr� + . . . .✞✝ ☎✆2.27

Hence, by substituting the Lippmann-Schwinger equation into the Born series,

we produce an expression for the scattering amplitude:

f = −2π2�Φkf
|V + VG(±)

O V + VG(±)
O VG(±)

O V + . . . |Φki
�.

✞✝ ☎✆2.28
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First Born Approximation

An approximate quantum mechanical prediction for the differential cross sec-

tion, for a particle scattered in three dimensions by a potential V (r), can be

calculated using the First Born Approximation (FBA). The FBA scattering am-

plitude (and thus ultimately the cross section) is the first term of the Born series

(Equation 2.28). Id est :

fFBA = −2π2�Φkf
|V|Φki

�.
✞✝ ☎✆2.29

The elastic scattering process is very illustrative in regard to the FBA, as here

the incident and scattered electrons can be described using plane waves:

Φki(r) = ei
�ki·�r

✞✝ ☎✆2.30

and Φkf
(r) = ei

�kf ·�r,
✞✝ ☎✆2.31

where Φki
is the incident wave and Φkf

is the scattered wave. Thus the scat-

tering amplitude (Equation 2.29) may be written as:

fFBA = 2π2

�
ei(

�ki−�kf )·�rV (r)dr

= 2π2

�
ei�κ·�rV (r)dr,

✞✝ ☎✆2.32

where �κ is the usual momentum transfer vector (see Equation 2.8). Equation

2.32 indicates that the fFBA is proportional to the Fourier transform of the

potential. Furthermore the scattering amplitude is proportional to differential

cross section (i.e. |fFBA|2 ∝ dσ
dΩ , refer to Section 2.5), so that this equation

provides a mechanism for calculating the elastic scattering cross section (note

this can be generalised for inelastic processes). However, the FBA is only able to

reproduce experimental cross section results at high incident electron energies,

as it does not include all of the possible interactions that can occur during the

collision event.

Plane Wave Born Approximation

Since the (e,2e) system now contains three bodies rather than two, the FBA

must be modified to make it applicable to the (e,2e) reaction. That modifica-

tion, known as the Plane Wave Born Approximation (PWBA), involves redefin-

ing the Hamiltonian to suit a three body system. As previously defined, the
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Hamiltonian for a two body system is given by Equation 2.10:

H = K + V.

However, in the case of the (e,2e) process, the kinetic energy of the system, K,

is made up of three bodies, and is now given by:

K = (K1 + U1) + (K2 + v2),
✞✝ ☎✆2.33

where K1 and K2 are the kinetic energies of the incident/scattered and

bound/ejected electrons respectively, U1 is the distorting potential of the target

particle and v2 represents the interaction between the incident/scattered elec-

tron and the target particle.

Likewise, the potential energy of the system, V, must be modified to accomodate

for three bodies. Thus:

V = v1 + v3 − U1,
✞✝ ☎✆2.34

where v1 and v3 are the interactions between the bound/ejected and incident/s-

cattered electrons and the target particle respectively. By substituting Equa-

tions 2.33 and 2.34 into Equation 2.10, we arrive at the Hamiltonian for a three

body problem:

H = K + V
= (K1 + U1) + (K2 + v2) + v1 + v3 − U1

∴ H = K1 +K2 + v1 + v2 + v3.
✞✝ ☎✆2.35

In the PWBA the incident wavefunction, Φi, describes the incident electron

and target particle, while the final wavefunction, Φf , describes the scattered

and ejected electrons as well as the ionised target particle. They are defined as:

|Φi� = |ψi
�k0�,

✞✝ ☎✆2.36

and

|Φf � = |ψf
�ka�kb�.

✞✝ ☎✆2.37
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In Equations 2.36 and 2.37, ψi and ψf represent the target particle in it’s elec-

tronic ground state and final target state, respectively. �k0, �ka and �kb represent

the incident, scattered and ejected electron plane waves, respectively. Substitu-

tion of Equations 2.36 and 2.37 into the FBA scattering amplitude (Equation

2.29), produces the scattering amplitude for the PWBA:

fPWBA = −2π2�ψf
�ka�kb|V|ψi

�k0�.
✞✝ ☎✆2.38

If it is assumed that the ion (the final target state) is in its ground electronic

state, ψf can be omitted. The theoretical TDCS for the PWBA then becomes:

d5σ

dΩadΩbdEa
= (2π)4

�ka�kb
�k0

Λ|��ka�kb|V|ψi
�k0�|2,

✞✝ ☎✆2.39

where, as noted earlier, Λ is the average over all spin orientations and magnetic

sublevels for the final state of the target.

As the PWBA only includes the first term of the Born series (see Equation

2.28), it is only capable of yielding the binary peak of the TDCS. The higher

order terms of the Born series account for possible multiple scattering processes,

such as the interaction that must occur for a recoil peak to form.

Distorted Wave Born Approximation

Introducing higher order terms from the Born series into an approximation,

greatly increases the complexity of the functions and therefore the degree of dif-

ficulty in calculating them. A far simpler approach is to describe the initial and

final wavefunctions with distorted waves; a technique known as the Distorted

Wave Born Approximation (DWBA). A local central potential U , called the

distorting potential, is selected and the scattering amplitude (Equation 2.16)

is reformulated in terms of the distorting wave eigenstate of U , rather than

in terms of plane waves. Starting with the Hamiltonian (Equation 2.10) and

partitioning it as follows:

H = (K + U) + (V − U),
✞✝ ☎✆2.40

and now substituting Equation 2.40 into the Schrödinger equation (Equation

2.13), gives an inhomogeneous equation:

(E(±) −K − U)|Ψ(±)� = (V − U |Ψ(±)�.
✞✝ ☎✆2.41
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Here K = K0 + Ht, where K0 is the kinetic energy operator of the incident

electron and Ht is the Hamiltonian of the target particle. Thus the homogenous

equation, using distorted waves, is:

(E(±) −K0 − U −Ht)|jχ(±)
j � = 0,

✞✝ ☎✆2.42

where |jχ(±)
j � is the distorted wave channel state. Furthermore |χ(±)

j � represents
the distorted waves for the incident or outgoing waves, which replace the plane

waves �kj in Equations 2.36 and 2.37 [66]. Finally, j in an index that represents

particular channels, namely j = 0, a, b corresponds to the incident, scattered

and ejected electron channels, respectively. As such, Equation 2.42 can then be

further separated into projectile and target operators:

(E(±) −K0 − U)|χ(±)
j � = 0,

✞✝ ☎✆2.43

and (�i −Ht)|j� = 0.
✞✝ ☎✆2.44

For the electron impact ionisation of a target particle, the one-electron distorted

waves are defined as:

(E0 −K1 − U1)|χ(+)(�k0)� = 0,
✞✝ ☎✆2.45

(Ea −K1 − U1)|χ(−)(�ka)� = 0,
✞✝ ☎✆2.46

(Eb −K2 − v2)|χ(−)(�kb)� = 0,
✞✝ ☎✆2.47

and (�i −K2 − v2)|α� = 0,
✞✝ ☎✆2.48

where α is the state or orbital of the bound electron, i.e. the target state.

By substituting the plane waves for distorted waves in Equations 2.36 and 2.37,

the T-matix element becomes:

��ka�kb|Tif |ψi
�k0� = �χ(+)(�ka)χ

(−)(�kb)|U1|αχ(+)(�k0)�.
✞✝ ☎✆2.49

The ground state average of the projectile-target potential forms the optimum

choice for the distorting potential U1. Id est :

U1 = �α|v1 + v3|α�.
✞✝ ☎✆2.50

It is important to note that v1 − U1 and the states |α� and |χ(−)(�kb)� of the

bound/ejected electron are orthogonal, i.e. the central potential does not con-

tribute to the aforementioned states [66]. Hence, the DWBA uses a first order
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two-body Coulomb potential,

v3 =
1

�ra − �rb
,

✞✝ ☎✆2.51

where �ra and �rb are the position vectors of the scattered and ejected electrons,

respectively. Finally the TDCS, under the DWBA, is:

d5σ

dΩadΩbdEa
= (2π)4

�ka�kb
�k0

Λ|�χ(+)(�ka)χ
(−)(�kb)|v3|αχ(+)(�k0)�|2.

✞✝ ☎✆2.52

2.5.3 Molecular 3-body Distorted Wave Approximation

While the Molecular 3-body Distorted Wave (M3DW) approximation shares

many properties with the DWBA, it differs in one particularly significant way.

Specifically, the M3DW approximation contains a term describing the Post-

Collision Interaction (PCI) between the scattered and ejected electrons to all

orders of perturbation theory [75]. By contrast, the DWBA merely calculates

the PCI to first order [21]. Consequently, TDCSs computed using M3DW cal-

culations show a greater promise in describing the ionisation process than other

existing approximations.

As with the DWBA, the scattering amplitude in the M3DW needs to be re-

formulated in terms of the distorting wave eigenstate of U rather than plane

waves. The reformulated homogeneous Schrödinger equation is thus given by:

�
K + Ui −

k2i
2

�
χ
(+)
0 (�k0) = 0.

✞✝ ☎✆2.53

Substituting the plane waves in Equations 2.36 and 2.37 with distorted waves,

gives the scattering amplitude for M3DW as:

fM3DW = �χ(−)
a (�ka)χ

(−)
b (�kb)Cscat−eject|V − Ui|χ(+)

0 (�k0)�,
✞✝ ☎✆2.54

where Cscat−eject is the Ward-Macek average Coulomb distortion factor between

the two final electron states [76]. Cscat−eject is explicitly given by:

Cscat−eject = e
−πγ

2 Γ(1− iγ)1F1(iγ, 1,−i(kabrab + �kab · �rab)),
✞✝ ☎✆2.55

where γ is the Sommerfeld parameter (a measure of the strength of the Coulomb

interaction between two electrons), Γ(1 − iγ) is the gamma function, 1F1 is a

confluent hypergeometric function, and �kab is the product of the reduced mass

for two electrons (µ) and the relative velocity between the two electrons (vab).

30



2.5. FORMAL SCATTERING THEORY

Thus the TDCS under the M3DW formulation is written as:

d5σ

dΩadΩbdEb
=

1

(2π)5

�ka�kb
�k0

Λ|�χ(−)
a (�ka)χ

(−)
b (�kb)Cscat−eject|V − Ui|χ(+)

0 (�k0)�|2✞✝ ☎✆2.56

The proper way to average over molecular alignment is to calculate cross sections

for different molecular alignments and average the cross sections [77]. However,

due to the limited processing power available, such a method has not been

possible to achieve until quite recently [78]. As such, Gao et al. suggested

the Orientation Averaged Molecular Orbital (OMAO) method, in which the

molecular wavefunction is averaged, rather than the cross sections [79]. Ana-

lytically, this can be shown to work for highly symmetric sigma gerade states

(i.e. “s-type” orbitals), if the angular momentum transferred to the nucleus is

less than one [77]. However, in the case of asymmetric sigma gerade states (i.e.

“p-type orbitals”), the average can be zero, and so it is necessary to instead av-

erage the absolute value of the molecular wavefunction, so that the asymmetric

contributions don’t cancel each other out [77]. This does mean that the result-

ing wavefunction requires renormalisation after, as the norm is not conserved

through the calculation [77].

It should be noted at this time, that none of the theoretical results presented

later in Chapters 4 - 6 were undertaken as part of this Masters thesis. Rather,

these results were generated by Professor Don H. Madison and his group at the

Missouri Science and Technology University in the U.S.A. Nonetheless, so this

document could be self-contained, a brief introduction to the relevant theoretical

formulations has been given here in the latter part of this chapter.
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