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Abstract

It is a well-known result of T. Kato that given a continuous path of square matrices of
a fixed dimension, the eigenvalues of the path can be chosen continuously. In this paper,
we give an infinite-dimensional analogue of this result, which naturally arises in the context
of unitary spectral flow. This provides a new approach to spectral flow, which seems to be
missing from the literature. It is the purpose of this paper to fill in this gap.
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1. Introduction

By “operators” we always mean bounded linear operators on a separable Hilbert space H.

1.1. Motivation.

1.1.1. T. Kato’s finite-dimensional continuous enumeration. The task of continuous enumer-
ation is akin to tracking the individual movements of, for example, a swarm of bees. Our
“bees” are utterly identical, they pass through one another, and they can make instant changes
of direction infinitely many times per second (since we consider merely continuous paths), so
that we cannot know which is which after a collision. However, it still seems intuitive that
we should be able to assign (although not uniquely) a finite number of continuous functions
which completely describe the movement of the “swarm”.

Now, we give a rigorous formulation of finite-dimensional continuous enumeration due to
T. Kato. The following exposition is directly taken from [Bha, §VI.1]. Let Cnsym be the quotient
topological space obtained from Cn via the equivalence relation which identifies two n-tuples
of complex numbers, if they are permutations of each other. That is, Cnsym can be viewed as
the space of “unordered n-tuples” of complex numbers. Given an n-tuple (λ1, . . . , λn) ∈ Cn,
we denote its equivalence class in Cnsym by (λ1, . . . , λn)∗. The topological space Cnsym thus
defined inherits a metric

dist ((λ1, . . . , λn)∗, (µ1, . . . , µn)∗) := min
π

max
1≤i≤n

|λi − µπi |,

where the minimum is taken over all permutations π. The following result is Kato’s selection
theorem ([Kat2, Theorem II.5.2]):

Theorem 1.1. Let λ(·) be a continuous mapping from an interval I of R into the space
Cnsym. Then there exist n continuous complex-valued functions λ1(·), . . . , λn(·) on I, such that
λ(t) = (λ1(t), . . . , λn(t))∗ for all t ∈ I.

As is typical, although seemingly obvious, an existence theorem of this kind is not altogether
straightforward to prove. Furthermore, the following example shows that the domain I cannot
be replaced by a general metric space:

Example 1.2. Let Mn(C) be the set of all n × n matrices of complex entries equipped with the ordinary
uniform norm. In [Bha, §VI.1], it is proved that the mapping

(1) Mn(C) 3 A 7−→ (λ1(A), . . . , λn(A))∗ ∈ Cnsym,

where λ1(A), . . . , λn(A) are the eigenvalues of A repeated according to their algebraic multiplicities, is contin-

uous. Let us consider the case n = 2, and set A(z) :=

(
0 z
1 0

)
for all z ∈ C. The mapping A(·) is continuous

on any open subset I of C and the eigenvalues of A(z) are ±z1/2. Continuity of the mapping (1) implies that
I 3 z 7−→ (λ1(A(z)), λ2(A(z)))∗ ∈ Cnsym is continuous. However, if the domain I contains the origin, then this
continuous mapping cannot be represented by constituent continuous functions.

Given a square matrix A ∈ Mn(C), we may identify the spectrum σ(A) of A with the
unordered tuple as in (1). The following result is an immediate consequence of Theorem 1.1
and the continuity of the mapping Mn(C) 3 A 7−→ σ(A) ∈ Cnsym:

Theorem 1.3 (Kato’s finite-dimensional continuous enumeration). If A(·) is a continuous
path of square complex matrices of a fixed dimension n, then there exist continuous paths
λ1(·), . . . , λn(·) in C, s.t. σ(A(·)) = (λ1(·), . . . , λn(·))∗.
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In this paper, we give a certain infinite-dimensional analogue of Kato’s continuous enu-
meration of eigenvalues, which naturally arises in the context of the so-called unitary spectral
flow. This provides a new approach to spectral flow, which seems to be missing from the
literature. It is the purpose of this paper to fill in this gap.

1.1.2. Self-adjoint Fredholm spectral flow. The origin of spectral flow goes back to Atiyah-
Patodi-Singer [APS]. Spectral flow has since found many connections, famously for example
to the Fredholm index (see [RS]). Given a continuous one-parameter family {F (t)}t∈[0,1] of
self-adjoint Fredholm operators, we naively understand the spectral flow of the continuous
path F to be the number of eigenvalues of F (t) that cross 0 rightward minus the number that
cross 0 leftward as t monotonically increases from 0 to 1. The usual way of making this idea
rigorous involves the notion of intersection number: we precisely define the spectral flow of
the path F to be the intersection number of the graph

⋃
t∈[0,1] σ(F (t)) with the line λ = −ε,

where ε is any sufficiently small positive number. Spectral flow turns out to be a homotopy
invariant.

1.1.3. Unitary spectral flow. The notion of unitary spectral flow is discussed in [Pus]. Let
Up(H, I) be the set of all unitary operators U such that U − I is in the p-Schatten class
Sp(H) (see below for definition), where I denotes the identity operator. Throughout this
paper, we let p be a fixed number in [1,∞]. The collection Up(H, I) thus defined admits a
natural complete metric

dist (U,U ′) := ‖U − U ′‖Sp , ∀U,U ′ ∈ Up(H, I),

where ‖·‖Sp is the norm on Sp(H). It follows from Weyl’s theorem on the stability of essential

spectrum that the essential spectrum1 σess(U) of any unitary operator U ∈ Up(H, I) is {1}.
We can then understand the spectral flow of a continuous path U(·) of unitary operators in
Up(H, I) to be the integer-valued function sf (−;U) : (0, 2π)→ Z given by

sf (θ;U) := 〈the number of eigenvalues of U(t) that cross eiθ anticlockwise〉(2)

−〈the number of eigenvalues of U(t) that cross eiθ clockwise〉

as t monotonically increases from 0 to 1.

1.1.4. Unitary spectral flow and spectral shift function. In [Pus] the naive definition (2) is
made precise and is used to express the spectral shift function (SSF) as the averaged spectral
flow of a path of unitary operators. This path of unitary operators is obtained from the
scattering matrix by analytic continuation of the spectral parameter (energy) into the complex
plane: see [Pus, (4.9)] for details. Let us briefly recall the definition of SSF. If H,H0 are two
self-adjoint operators with a trace-class difference H−H0 ∈ S1(H), then the SSF ξ(−;H,H0)
of this pair, introduced by [Lif] and [Kre] (see also [GM], [Yaf], [Sim1]), is a unique real-valued
integrable function satisfying

Tr (φ(H)− φ(H0)) =

∫
R
φ′(λ)ξ(λ;H,H0)dλ

for all compactly supported smooth functions φ on R.

1 Recall that given a normal operator N , the discrete spectrum σdis(N) is the set of all those eigenvalues
of N which are isolated points of the spectrum σ(N) and have finite multiplicities. The complement of the
discrete spectrum in the spectrum is the essential spectrum σess(N).
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1.1.5. Calculating unitary spectral flow via continuous enumeration. Suppose for simplicity
that U(·) is a loop in Up(H, I) based at I. According to the naive definition (2), the spectral
flow sf (−;U) in this case assumes some constant value N ∈ Z independent of the angle θ :
the number N represents the net number of windings that the eigenvalues of U(·) make in
the anti-clockwise direction. Perhaps, it should be possible to continuously enumerate the
eigenvalues of U(·) as in the finite-dimensional setting. At this point, we recall the notion of
extended enumeration due to Kato:

Definition 1.4. Given a normal operator N , a sequence (λi)i∈N of complex numbers is called
an extended enumeration of the discrete spectrum σdis(N), if (λi)i∈N contains all eigenvalues
of N in σdis(N) taking into account their multiplicities, and in addition, may contain some
boundary points of the essential spectrum σess(N) repeated arbitrarily often.

We propose the possibility of selecting a sequence (λj(·))j∈N of loops in T based at the
boundary point 1 of the common essential spectrum, such that for each t ∈ [0, 1] the sequence
(λj(t))j∈N is an extended enumeration of σdis(U(t)). It is necessary to consider extended
enumerations by allowing λj ’s to take the boundary value 1. If such an enumeration is
possible, an intuitive understanding of the number sf U := N would be the formal sum

(3) sf U = [λ1]π1 + [λ2]π1 + . . . ,

where each [λi]π1 is the homotopy class in the fundamental group π1(T, 1) ∼= Z, representing
the net number of windings that λi makes in the anti-clockwise direction.

1.2. Infinite-dimensional continuous enumeration. The infinite analogue of a finite un-
ordered tuple is often called a multiset. Given a nonempty set X, a multiset in X is under-
stood naively as a subset of X, whose elements can be repeated more than once. For instance,
the multiset {x, x}∗ in X, where we are using ∗ to distinguish multisets from ordinary sub-
sets of X, is considered to be different from {x}∗ or {x, x, x}∗. Given any unitary operator
U ∈ Up(H, I), we may identify its spectrum σ(U) with the following multiset in T:

(4) σ(U) = σdis(U) ∪ {1} ≡ {z1, z2, z3, . . . , 1, 1, 1, . . .}∗,
where zi’s are the eigenvalues in σdis(U) taking multiplicities into account and 1’s are repeated
infinitely many times. The question which needs to be addressed next is the following: is there
a natural topology in the set of multisets which makes the mapping Up(H, I) 3 U 7−→ σ(U)
continuous? The answer is affirmative, and it is based upon the following estimates.

1.2.1. The Hoffman-Wielandt inequality. Hoffman-Wielandt proved the following well-known
matrix inequality (see [Bha, Theorem VI.4.1] for details):

Theorem 1.5 (Hoffman-Wielandt). If N,N ′ are two n × n normal matrices, then we can
enumerate the eigenvalues of N,N ′ as (λ1, . . . , λn), (λ′1, . . . , λ

′
n) respectively, so that[

n∑
i=1

|λi − λ′i|2
] 1

2

≤ ‖N −N ′‖S2 .

We are interested in infinite-dimensional analogues of the Hoffman-Wielandt inequality:
given a pair N,N ′ of normal operators with N −N ′ ∈ SΦ, can we choose a pair (λi), (λ

′
i) of

extended enumerations of the discrete spectra of N,N ′ respectively, such that

(5)

[ ∞∑
i=1

|λi − λ′i|p
] 1
p

≤ C ‖N −N ′‖Sp ,
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where C is a positive constant which does not depend on N,N ′? Kato ([Kat1, Theorem II])
proved (5) under the assumption that N,N ′ are self-adjoint operators and C = 1. Kato’s
result was extended to unitary N,N ′ with C = π/2 by Bhatia-Sinha ([BS]). Bhatia-Davis
([BD, Corollary 2.3]) proved (5) under the assumption thatN,N ′, N−N ′ are normal operators
and C = 1.

1.2.2. Summable multisets. Formally, a multiset in T is a mapping S : T → {0, 1, 2, . . . ,∞},
which assigns to each point z ∈ T a unique nonnegative integer or an infinity S(z) which is
understood as the multiplicity of the point z. A countable multiset in (T, 1) is a multiset S
in T with the following properties:

1. The fixed point 1 is the only point having infinite multiplicity in S.

2. The support of S given by suppS := {z ∈ T | S(z) > 0} is countable.

We shall make use of the trivial multiset O1 := {1, 1, 1, . . .}∗. A sequence (zi)i∈N in T is
called an enumeration of a countable multiset S, if it contains each point of T according to
its multiplicity in S. Evidently, S admits a representation S = {z1, z2, . . .}∗. Given countable
multisets S = {z1, z2, . . .}∗ and T = {w1, w2, . . .}∗ in (T, 1), we define their p-distance by

(6) dp(S, T ) := inf
π

[ ∞∑
i=1

|zi − wπi |p
] 1
p

,

where the infimum is taken over all permutations π. A countable multiset S in (T, 1) is said
to be p-summable, if dp(S,O1) <∞. In this paper it is shown that the set of all p-summable
multisets in (T, 1), denoted by Sp(T, 1), forms a complete metric space with the metric dp. In
fact, we have chosen the metric dp so that Bhatia-Sinha’s result ([BS]) immediately implies:

1. The spectrum of each unitary operator U ∈ Up(H, I) can be viewed as a member of
Sp(T, 1) through (4). That is, σdis(U) can be shown to be p-summable.

2. The mapping Up(H, I) 3 U 7−→ σ(U) ∈ Sp(T, 1) is continuous.

Indeed, we have

(7) dp(σ(U), σ(U ′)) ≤ π

2
‖U − U ′‖Sp ∀U,U ′ ∈ Up(H, I),

and setting U ′ := I ensures the p-summability of each σ(U) since σ(I) = {1, 1, 1, . . .}∗.

1.2.3. Continuous enumeration in the setting of unitary spectral flow. In this paper, it is
shown that any continuous path of the form S : [0, 1] → Sp(T, 1) admits a continuous enu-
meration (λi(·))i∈N in the sense that each λi is a continuous path in T with the property that
for each t ∈ [0, 1] the sequence (λi(t))i∈N is an enumeration of the multiset S(t). An immedi-
ate consequence of this result and (7) is the following unitary analogue of Kato’s continuous
enumeration:

Theorem 1.6. Let H be a separable Hilbert space. If U(·) is a continuous path in Up(H, I),
then there exists a sequence (λj(·))j∈N of continuous paths in T, such that

1. σ(U(·)) = {λ1(·), λ2(·), . . .}∗.
2. (λj(·))j∈N is an extended enumeration of σdis(U(·)) pointwise.

In fact, we obtain this result as a special case. More precisely, we generalise this setting by
replacing the identity operator I by any fixed unitary operator U0. Details are summarised
below.
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1.3. Main results.

1.3.1. Generalisation to symmetric norms. We have only considered the p-Schatten classes
Sp(H) so far, but they are only special types of the general Schatten-class SΦ(H), where Φ
is a so-called symmetric norm (see below for definition). In fact, the previously mentioned
theorems by Bhatia-Shinha and Bhatia-Davis are concerned with symmetric norms:

Theorem 1.7 ([BS]). Let H be a separable Hilbert space, and let Φ be a symmetric norm. For
any pair U,U ′ of unitary operators on H with U − U ′ ∈ SΦ(H), there exists a pair (λi), (λ

′
i)

of extended enumerations of the discrete spectra of U,U ′ respectively, s.t.

Φ(|λ1 − λ′1|, |λ2 − λ′2|, . . .) ≤
π

2
‖U − U ′‖SΦ

.

Theorem 1.8 ([BD, Corollary 2.3]). Let H be a separable Hilbert space, and let Φ be a
symmetric norm. For any pair N,N ′ of normal operators on H with N − N ′ being normal
Φ-Schatten class, there exists a pair (λi), (λ

′
i) of extended enumerations of the discrete spectra

of U,U ′ respectively, s.t.

Φ(|λ1 − λ′1|, |λ2 − λ′2|, . . .) ≤ ‖N −N ′‖SΦ
.

In this paper, we work with the general Schatten class SΦ(H) for completeness.

1.3.2. General multiset theory. Sections §3-6 are devoted to general multiset theory about
a metric space X and a fixed point x0 ∈ X. Given a symmetric norm Φ, the definition of
SΦ(X,x0) requires the obvious modification (see §3.2 and §3.3 for details). As before, we
make use of the multiset Ox0 := {x0, x0, x0, . . .}∗. The following are our main results:

1. Theorem 3.7 asserts that SΦ(X,x0) is metric space. In addition, it is shown in Theorem
3.20 that if X is complete and if Φ is a regular symmetric norm (see below for definition),
then SΦ(X,x0) is complete.

2. Theorem 5.1 asserts that any continuous path in SΦ(X,x0) has a continuous enumeration.

3. In §6, under the assumption that Φ is a regular symmetric norm, and that X is a path-
connected, locally simply connected metric space, we construct a group isomorphism

(8) ΨΦ : π1(SΦ(X,x0), Ox0) ' H1(X),

where π1(SΦ(X,x0), Ox0) is the fundamental group and H1(X) is the first singular ho-
mology group. The formal sum (3) is used to define ΨΦ.

1.3.3. Infinite-dimensional analogues of Kato’s continuous enumeration. One of our main
results is Theorem 1.6 with the identity operator I replaced by a fixed operator U0. To state
this result, we consider the metric space UΦ(H, U0) whose definition is obvious (see §7.2 for
details). Since the essential spectrum K := σess(U0) is no longer a point-set, we need to form
the quotient space T/K = {[z]K}z∈T via the equivalence relation which identifies points of K
and leaves other points as they are. Let K denote the equivalence class represented by points
of K. The topological space X := T/K is a metrizable space (see Theorem 7.1) with a fixed
point x0 := K, and so we may consider

SΦ(T,K) := SΦ(T/K,K).

As before, we can view the spectrum of each unitary operator U ∈ UΦ(H, U0) as a multiset in
T/K through (39). With the notations introduced above in mind, Theorem 7.5 is our main
theorem, which is an infinite-dimensional version of Kato’s continuous enumeration. We also
give an analogous result for self-adjoint perturbations (see Theorem 7.8).
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1.3.4. Unitary Spectral Flow. In §8, we give an alternative approach to the unitary spectral
flow. Note first that if we set (X,x0) := (T, 1), then the isomorphism (8) is of the form

ΨΦ : π1(SΦ(T, 1), O1) ' Z.
If U(·) is a loop of unitary operators in UΦ(T, 1) based at the identity operator I, then σ(U(·))
is a loop in SΦ(T, 1) based at O1. We define the spectral flow of the path U(·) to be

sf U := ΨΦ([σ(U)]π1) ∈ Z,
where [ · ]π1 denotes the homotopy class in π1(SΦ(T, 1), O1). This definition is indeed con-
sistent with the naive one (3), where the existence of each loop λi(·) in (T, 1) is asserted in
Theorem 1.6.

2. Preliminaries

Here, we briefly recall standard facts about symmetric norms and Schatten class operators.
Details can be found in [GK] and [Sim2].

2.1. Symmetric norms. Let c0 be the set of all real-valued sequences converging to 0, and
let c00 be the set of all real-valued sequences with a finite number of non-zero terms. Evidently,
c0 and c00 can be both viewed as vector spaces over R.

Definition 2.1. A norm Φ on c00, which assigns to each sequence ξ = (ξi)i∈N in c00 a
unique non-negative number Φ(ξ) = Φ(ξ1, ξ2, . . .), is called a symmetric norm, if the following
conditions are satisfied:

1. Φ(1, 0, 0, . . .) = 1.

2. Φ(ξ1, ξ2, . . .) = Φ(|ξπ1 |, |ξπ2 |, . . .) for any ξ ∈ c00 and any permutation π.

Let Φ be a symmetric norm. A sequence ξ ∈ c0 is said to be Φ-summable, if the limit

Φ(ξ) := lim
n→∞

Φ(ξ1, . . . , ξn, 0, 0, . . .)

is finite. The vector space of all Φ-summable sequences, denoted by `Φ, is called the natural
domain of the symmetric norm Φ. The pair (`Φ,Φ) turns out to be a Banach space (see
[Sim2, Theorem 1.16 (d)]). The symmetric norm Φ is said to be regular, if

lim
n→∞

Φ(ξn+1, ξn+2, . . .) = 0 ⇐⇒ lim
n→∞

(ξ1, . . . , ξn, 0, 0, . . .) = ξ ∀ξ ∈ `Φ.

Let `+Φ be the set of all those sequences in `Φ with non-negative terms.

Example 2.2. Given a fixed number p ∈ [1,∞], we define the regular symmetric norm Φp by

(9) Φp(ξ) =

{(∑∞
i=1 |ξi|

p
)1/p

, if p <∞,
supi∈N |ξi|, if p =∞,

where ξ ∈ c00. The natural domain `p := `Φp is known as the set of p-summable sequences in R. Evidently,
`∞ = c0. See [GK, §III. 7] for more details.

Given a sequence ξ = (ξi)i∈N of non-negative terms in c0, we define the sequence ξ↓ =

(ξ↓i )i∈N to be the non-increasing rearrangement of ξ1, ξ2, . . .. That is, we define ξ↓ through

ξ↓1 = max
i∈N

ξi, ξ↓1 + ξ↓2 = max
i 6=j

(ξi + ξj) , . . .

The non-increasing rearrangement of a finite sequence of non-negative terms can be defined
analogously.
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2.2. Schatten class operators. Let Φ be a symmetric norm, and let H be a separa-
ble Hilbert space. The singular numbers of a compact operator A on H, denoted by
s1(A), s2(A), . . ., are the eigenvalues of the positive operator |A| :=

√
A∗A, that are repeated

according to their multiplicities and arranged in the non-increasing order. The operator A is
said to be Φ-summable, if (si(A))i∈N ∈ `Φ: that is,

(10) ‖A‖SΦ
:= lim

n→∞
Φ(s1(A), . . . , sn(A), 0, 0, . . .) <∞.

The set SΦ(H) of all Φ-summable operators, known as the Φ-Schatten class, forms a Banach
space with the norm (10). Details can be found in [GK, §III.4]. The p-Schatten class is the
Banach space Sp(H) := SΦp(H).

2.3. Majorisation and inequalities. Here, we introduce the notion of majorisation which
allows us to develop useful inequalities involving symmetric norms. Let Rn+ be the set of all
finite sequences of length n whose terms are non-negative real numbers. Given two finite
sequences ξ, η ∈ Rn+, we say that ξ is weakly majorized by η, written ξ ≺w η, if

k∑
j=1

ξ↓j ≤
k∑
j=1

η↓j ∀k = 1, . . . , n,

A norm Φ on Rn is referred to as a finite symmetric norm, if the two conditions specified in
Definition 2.1 are satisfied. It is a well-known fact (see [Bha, Example II.3.13]) that a finite
symmetric norm Φ on Rn respects weak majorization. That is,

ξ ≺w η ⇒ Φ(ξ) ≤ Φ(η) ∀ξ, η ∈ Rn+.
We will make use of the following obvious lemma throughout this subsection:

Lemma 2.3. If Φ is a symmetric norm, then the following is a finite symmetric norm:

Rn ∈ (ξ1, . . . , ξn) 7−→ Φ(ξ1, . . . , ξn, 0, 0, . . .) ∈ R

To begin we consider the following standard facts (see [GK, §III.3] for details), which will
be freely used throughout the paper without any further comment:

Lemma 2.4. Let Φ be a symmetric norm, and let ξ, η ∈ `+Φ:

1. Φ(ξ1, ξ2, . . .) = Φ(ξπ1 , ξπ2 , . . .) for any permutation π. In particular, Φ(ξ) = Φ(ξ↓).

2. If ξi ≤ ηi for each i ∈ N, then Φ(ξ) ≤ Φ(η).

3. ξ↓1 ≤ Φ(ξ) ≤
∑∞

i=1 ξ
↓
i .

Note that the last assertion implies `1 ⊆ `Φ ⊆ `∞.

Proof. For the first assertion, observe that for each n ∈ N there exists a large enough index
Nn, s.t. ξπ1 , . . . , ξπn is among ξ1, . . . , ξNn . Since a finite symmetric norm respects weak
majorisation, we have Φ(ξπ1 , . . . , ξπn , 0, 0, . . .) ≤ Φ(ξ1, . . . , ξNn , 0, 0, . . .) for all n ∈ N. Taking
the limit as n → ∞ establishes Φ(ξπ) ≤ Φ(ξ). A similar argument shows Φ(ξ) ≤ Φ(ξπ), and
the firs assertion follows. The second assertion follows from (ξ1, . . . , ξn) ≺w (η1, . . . , ηn) for
all n ∈ N. The last assertion follows from Φ(ξ) = Φ(ξ↓) and

(ξ↓1 , 0, . . . , 0) ≺w (ξ↓1 , ξ
↓
2 , . . . , ξ

↓
n) ≺w

(
n∑
i=1

ξ↓i , 0, . . . , 0

)
∀n ∈ N.

�
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We will conclude this section by obtaining an infinite analogue of the following inequality:

Lemma 2.5. For any finite symmetric norm Φ on Rn, we have

(11) Φ(|ξ↓1 − η
↓
1|, . . . , |ξ

↓
n − η↓n|) ≤ Φ(|ξ1 − η1|, . . . , |ξn − ηn|) ∀ξ, η ∈ Rn+.

Proof. The claim follows from the following non-trivial majorization:

(|ξ↓1 − η
↓
1|, . . . , |ξ

↓
n − η↓n|) ≺w (|ξ1 − η1|, . . . , |ξn − ηn|) ∀ξ, η ∈ Rn+.

See [MO, Theorem 6.A.2.a] for details. �

We believe that an infinite analogue of this inequality must be a standard result, but were
unable to find an appropriate reference. Here, we will present our own proof for which we do
not claim the originality. We prove the following lemma first.

Lemma 2.6. Let Φ be a regular symmetric norm, and let ξ ∈ `+Φ. If we let ξ(n) :=

(ξ1, . . . , ξn, 0, 0, . . .) for each n ∈ N, then (ξ(n))↓ → ξ↓ as n→∞.

Note that (ξ(n))↓ 6= (ξ↓)(n) in general (otherwise this claim would be trivial).

Proof. Here, we consider the non-trivial case where ξ is a sequence with infinitely many non-
zero terms. For each n ∈ N, we set ξ(n) := (ξn+1, ξn+2, . . .). It follows from the regularity

of Φ that for any ε > 0 there exists an index n0 s.t. Φ(ξ(n0)) < ε/2 and Φ[(ξ↓)(n0)] < ε/2.

Furthermore, there exists an index N > n0 s.t. for all n > N we have Φ(ξ(n)) < ξ↓n0+1. It

follows that for all n > N the numbers ξn+1, ξn+2, . . . are all strictly less than ξ↓n0 : that is,
the first n0 terms of ξ↓, (ξ(n))↓ are identical. For all n > N we have

Φ(ξ↓ − (ξ(n))↓) = Φ(0, . . . , 0, ξ↓n0+1 − (ξ(n))↓n0+1, . . .)

≤ Φ[(ξ↓)(n0)] + Φ[((ξ(n))↓)(n0)]

<
ε

2
+ Φ[((ξ(n))↓)(n0)].

It remains to prove Φ[((ξ(n))↓)(n0)] < ε/2 for all n > N . Let n > N be fixed. Then there
exists a permutation π of {1, . . . , n} s.t. ξπ1 ≥ . . . ≥ ξπn . It is easy to observe that

((ξ(n))↓)(n0) = (ξπn0+1 , . . . , ξπn , 0, 0, . . .).

Since ξπn0+1 , . . . , ξπn are the smallest n− n0 terms of ξn, we have

Φ[((ξ(n))↓)(n0)] = Φ(ξπn0+1 , . . . , ξπn , 0, 0, . . .)

≤ Φ(ξn0+1, . . . , ξn, 0, 0, . . .)

≤ Φ(ξn0+1, . . . , ξn, ξn+1, ξn+2, . . .)

= Φ(ξ(n0)) <
ε

2
.

The proof is complete. �

We are now in a position to prove the following result:

Theorem 2.7. Given a regular symmetric norm Φ, we have

(12) Φ(|ξ↓1 − η
↓
1|, |ξ

↓
2 − η

↓
2|, . . .) ≤ Φ(|ξ1 − η1|, |ξ2 − η2|, . . .) ∀ξ, η ∈ `+Φ .

That is, `+Φ 3 ξ 7−→ ξ↓ ∈ `Φ is 1-Lipschitz continuous.
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Proof. Let Φ be a regular symmetric norm. It follows from Inequality (11) that for any
ξ, η ∈ `+Φ

Φ(|(ξ(n))↓ − (η(n))↓|) ≤ Φ(|ξ(n) − η(n)|) ∀n ∈ N.
By Lemma 2.6, taking the limit as n→∞ completes the proof. �

3. Summable Multisets

3.1. Countable multisets. Let X be a nonempty set with a fixed point x0 ∈ X. A multiset
in X is understood naively as a subset of X, whose elements can be repeated more than
once. For instance, the multiset {x, x}∗, where we use notation {. . .}∗ to distinguish it from
ordinary subsets of X, is considered to be different from {x}∗. We shall make use of the
following multiset throughout the paper:

Ox0 := {x0, x0, x0, . . .}∗,

where x0 is repeated infinitely many times. Formally, we define a multiset in X to be any
mapping S : X → {0, 1, 2, . . . ,∞} assigning to each point x ∈ X a unique non-negative
integer of infinity, S(x), which is understood as the multiplicity of x in S.

Definition 3.1. A countable multiset in (X,x0) is a multiset S in X s.t.

1. The fixed point x0 is the only point in S having the infinite multiplicity.

2. The support of S, defined by suppS := {x ∈ X | S(x) > 0}, is a countable subset of X.

Evidently, Ox0 is a trivial example of a countable multiset in (X,x0). Throughout this
paper, we will only consider multisets of this kind, and freely make use of the following
convention without any further comment. Given a finite or infinite sequence (s1, s2, . . .) in X,
we assume that the multiset {s1, s2, . . .}∗ contains the fixed point x0 infinitely many times,
so that it can always be viewed as a countable multiset in (X,x0).

Example 3.2. With the above convention in mind, the correct interpretation of the multiset S := {x1, x1}∗,
where x1 6= x0, is the mapping S : X → {0, 1, 2, . . . ,∞} given by S(x1) = 2, S(x0) = ∞, and S(x) = 0
whenever x 6= x0 and x 6= x1.

Let us introduce the following terminology:

Definition 3.3. Let S be a countable multiset in (X,x0):

1. A sequence (si)i∈N is called an enumeration of S, if the representation S =
{s1, s2, s3, . . . }∗ holds. If the enumeration (si)i∈N contains the fixed point x0 infinitely
many times, it is called a proper enumeration of S.

2. The rank of S, denoted by rankS, is the sum of the multiplicities of all points in suppS
except the fixed point x0.

Remark 3.4. Let S be a countable multiset in (X,x0). Any two proper enumerations of
S are identical up to a permutation. Furthermore, given an enumeration (si)i∈N of S, the
sequence (s1, x0, s2, x0, . . .) is a proper enumeration of S.

Given two countable multisets S, T in (X,x0), we agree to write T ≤ S if T (x) ≤ S(x) for
all x ∈ X. We define the sum S + T , and difference S − T in case T ≤ S, by

(S ± T )(x) =

{
∞, if x = x0,

S(x)± T (x), otherwise.


