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Abstract

It is a well-known result of T. Kato that given a continuous path of square matrices of
a fixed dimension, the eigenvalues of the path can be chosen continuously. In this paper,
we give an infinite-dimensional analogue of this result, which naturally arises in the context
of unitary spectral flow. This provides a new approach to spectral flow, which seems to be
missing from the literature. It is the purpose of this paper to fill in this gap.
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1. Introduction

By “operators” we always mean bounded linear operators on a separable Hilbert space H.

1.1. Motivation.

1.1.1. T. Kato’s finite-dimensional continuous enumeration. The task of continuous enumer-
ation is akin to tracking the individual movements of, for example, a swarm of bees. Our
“bees” are utterly identical, they pass through one another, and they can make instant changes
of direction infinitely many times per second (since we consider merely continuous paths), so
that we cannot know which is which after a collision. However, it still seems intuitive that
we should be able to assign (although not uniquely) a finite number of continuous functions
which completely describe the movement of the “swarm”.

Now, we give a rigorous formulation of finite-dimensional continuous enumeration due to
T. Kato. The following exposition is directly taken from [Bha, §VI.1]. Let Cnsym be the quotient
topological space obtained from Cn via the equivalence relation which identifies two n-tuples
of complex numbers, if they are permutations of each other. That is, Cnsym can be viewed as
the space of “unordered n-tuples” of complex numbers. Given an n-tuple (λ1, . . . , λn) ∈ Cn,
we denote its equivalence class in Cnsym by (λ1, . . . , λn)∗. The topological space Cnsym thus
defined inherits a metric

dist ((λ1, . . . , λn)∗, (µ1, . . . , µn)∗) := min
π

max
1≤i≤n

|λi − µπi |,

where the minimum is taken over all permutations π. The following result is Kato’s selection
theorem ([Kat2, Theorem II.5.2]):

Theorem 1.1. Let λ(·) be a continuous mapping from an interval I of R into the space
Cnsym. Then there exist n continuous complex-valued functions λ1(·), . . . , λn(·) on I, such that
λ(t) = (λ1(t), . . . , λn(t))∗ for all t ∈ I.

As is typical, although seemingly obvious, an existence theorem of this kind is not altogether
straightforward to prove. Furthermore, the following example shows that the domain I cannot
be replaced by a general metric space:

Example 1.2. Let Mn(C) be the set of all n × n matrices of complex entries equipped with the ordinary
uniform norm. In [Bha, §VI.1], it is proved that the mapping

(1) Mn(C) 3 A 7−→ (λ1(A), . . . , λn(A))∗ ∈ Cnsym,

where λ1(A), . . . , λn(A) are the eigenvalues of A repeated according to their algebraic multiplicities, is contin-

uous. Let us consider the case n = 2, and set A(z) :=

(
0 z
1 0

)
for all z ∈ C. The mapping A(·) is continuous

on any open subset I of C and the eigenvalues of A(z) are ±z1/2. Continuity of the mapping (1) implies that
I 3 z 7−→ (λ1(A(z)), λ2(A(z)))∗ ∈ Cnsym is continuous. However, if the domain I contains the origin, then this
continuous mapping cannot be represented by constituent continuous functions.

Given a square matrix A ∈ Mn(C), we may identify the spectrum σ(A) of A with the
unordered tuple as in (1). The following result is an immediate consequence of Theorem 1.1
and the continuity of the mapping Mn(C) 3 A 7−→ σ(A) ∈ Cnsym:

Theorem 1.3 (Kato’s finite-dimensional continuous enumeration). If A(·) is a continuous
path of square complex matrices of a fixed dimension n, then there exist continuous paths
λ1(·), . . . , λn(·) in C, s.t. σ(A(·)) = (λ1(·), . . . , λn(·))∗.
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In this paper, we give a certain infinite-dimensional analogue of Kato’s continuous enu-
meration of eigenvalues, which naturally arises in the context of the so-called unitary spectral
flow. This provides a new approach to spectral flow, which seems to be missing from the
literature. It is the purpose of this paper to fill in this gap.

1.1.2. Self-adjoint Fredholm spectral flow. The origin of spectral flow goes back to Atiyah-
Patodi-Singer [APS]. Spectral flow has since found many connections, famously for example
to the Fredholm index (see [RS]). Given a continuous one-parameter family {F (t)}t∈[0,1] of
self-adjoint Fredholm operators, we naively understand the spectral flow of the continuous
path F to be the number of eigenvalues of F (t) that cross 0 rightward minus the number that
cross 0 leftward as t monotonically increases from 0 to 1. The usual way of making this idea
rigorous involves the notion of intersection number: we precisely define the spectral flow of
the path F to be the intersection number of the graph

⋃
t∈[0,1] σ(F (t)) with the line λ = −ε,

where ε is any sufficiently small positive number. Spectral flow turns out to be a homotopy
invariant.

1.1.3. Unitary spectral flow. The notion of unitary spectral flow is discussed in [Pus]. Let
Up(H, I) be the set of all unitary operators U such that U − I is in the p-Schatten class
Sp(H) (see below for definition), where I denotes the identity operator. Throughout this
paper, we let p be a fixed number in [1,∞]. The collection Up(H, I) thus defined admits a
natural complete metric

dist (U,U ′) := ‖U − U ′‖Sp , ∀U,U ′ ∈ Up(H, I),

where ‖·‖Sp is the norm on Sp(H). It follows from Weyl’s theorem on the stability of essential

spectrum that the essential spectrum1 σess(U) of any unitary operator U ∈ Up(H, I) is {1}.
We can then understand the spectral flow of a continuous path U(·) of unitary operators in
Up(H, I) to be the integer-valued function sf (−;U) : (0, 2π)→ Z given by

sf (θ;U) := 〈the number of eigenvalues of U(t) that cross eiθ anticlockwise〉(2)

−〈the number of eigenvalues of U(t) that cross eiθ clockwise〉

as t monotonically increases from 0 to 1.

1.1.4. Unitary spectral flow and spectral shift function. In [Pus] the naive definition (2) is
made precise and is used to express the spectral shift function (SSF) as the averaged spectral
flow of a path of unitary operators. This path of unitary operators is obtained from the
scattering matrix by analytic continuation of the spectral parameter (energy) into the complex
plane: see [Pus, (4.9)] for details. Let us briefly recall the definition of SSF. If H,H0 are two
self-adjoint operators with a trace-class difference H−H0 ∈ S1(H), then the SSF ξ(−;H,H0)
of this pair, introduced by [Lif] and [Kre] (see also [GM], [Yaf], [Sim1]), is a unique real-valued
integrable function satisfying

Tr (φ(H)− φ(H0)) =

∫
R
φ′(λ)ξ(λ;H,H0)dλ

for all compactly supported smooth functions φ on R.

1 Recall that given a normal operator N , the discrete spectrum σdis(N) is the set of all those eigenvalues
of N which are isolated points of the spectrum σ(N) and have finite multiplicities. The complement of the
discrete spectrum in the spectrum is the essential spectrum σess(N).
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1.1.5. Calculating unitary spectral flow via continuous enumeration. Suppose for simplicity
that U(·) is a loop in Up(H, I) based at I. According to the naive definition (2), the spectral
flow sf (−;U) in this case assumes some constant value N ∈ Z independent of the angle θ :
the number N represents the net number of windings that the eigenvalues of U(·) make in
the anti-clockwise direction. Perhaps, it should be possible to continuously enumerate the
eigenvalues of U(·) as in the finite-dimensional setting. At this point, we recall the notion of
extended enumeration due to Kato:

Definition 1.4. Given a normal operator N , a sequence (λi)i∈N of complex numbers is called
an extended enumeration of the discrete spectrum σdis(N), if (λi)i∈N contains all eigenvalues
of N in σdis(N) taking into account their multiplicities, and in addition, may contain some
boundary points of the essential spectrum σess(N) repeated arbitrarily often.

We propose the possibility of selecting a sequence (λj(·))j∈N of loops in T based at the
boundary point 1 of the common essential spectrum, such that for each t ∈ [0, 1] the sequence
(λj(t))j∈N is an extended enumeration of σdis(U(t)). It is necessary to consider extended
enumerations by allowing λj ’s to take the boundary value 1. If such an enumeration is
possible, an intuitive understanding of the number sf U := N would be the formal sum

(3) sf U = [λ1]π1 + [λ2]π1 + . . . ,

where each [λi]π1 is the homotopy class in the fundamental group π1(T, 1) ∼= Z, representing
the net number of windings that λi makes in the anti-clockwise direction.

1.2. Infinite-dimensional continuous enumeration. The infinite analogue of a finite un-
ordered tuple is often called a multiset. Given a nonempty set X, a multiset in X is under-
stood naively as a subset of X, whose elements can be repeated more than once. For instance,
the multiset {x, x}∗ in X, where we are using ∗ to distinguish multisets from ordinary sub-
sets of X, is considered to be different from {x}∗ or {x, x, x}∗. Given any unitary operator
U ∈ Up(H, I), we may identify its spectrum σ(U) with the following multiset in T:

(4) σ(U) = σdis(U) ∪ {1} ≡ {z1, z2, z3, . . . , 1, 1, 1, . . .}∗,
where zi’s are the eigenvalues in σdis(U) taking multiplicities into account and 1’s are repeated
infinitely many times. The question which needs to be addressed next is the following: is there
a natural topology in the set of multisets which makes the mapping Up(H, I) 3 U 7−→ σ(U)
continuous? The answer is affirmative, and it is based upon the following estimates.

1.2.1. The Hoffman-Wielandt inequality. Hoffman-Wielandt proved the following well-known
matrix inequality (see [Bha, Theorem VI.4.1] for details):

Theorem 1.5 (Hoffman-Wielandt). If N,N ′ are two n × n normal matrices, then we can
enumerate the eigenvalues of N,N ′ as (λ1, . . . , λn), (λ′1, . . . , λ

′
n) respectively, so that[

n∑
i=1

|λi − λ′i|2
] 1

2

≤ ‖N −N ′‖S2 .

We are interested in infinite-dimensional analogues of the Hoffman-Wielandt inequality:
given a pair N,N ′ of normal operators with N −N ′ ∈ SΦ, can we choose a pair (λi), (λ

′
i) of

extended enumerations of the discrete spectra of N,N ′ respectively, such that

(5)

[ ∞∑
i=1

|λi − λ′i|p
] 1
p

≤ C ‖N −N ′‖Sp ,
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where C is a positive constant which does not depend on N,N ′? Kato ([Kat1, Theorem II])
proved (5) under the assumption that N,N ′ are self-adjoint operators and C = 1. Kato’s
result was extended to unitary N,N ′ with C = π/2 by Bhatia-Sinha ([BS]). Bhatia-Davis
([BD, Corollary 2.3]) proved (5) under the assumption thatN,N ′, N−N ′ are normal operators
and C = 1.

1.2.2. Summable multisets. Formally, a multiset in T is a mapping S : T → {0, 1, 2, . . . ,∞},
which assigns to each point z ∈ T a unique nonnegative integer or an infinity S(z) which is
understood as the multiplicity of the point z. A countable multiset in (T, 1) is a multiset S
in T with the following properties:

1. The fixed point 1 is the only point having infinite multiplicity in S.

2. The support of S given by suppS := {z ∈ T | S(z) > 0} is countable.

We shall make use of the trivial multiset O1 := {1, 1, 1, . . .}∗. A sequence (zi)i∈N in T is
called an enumeration of a countable multiset S, if it contains each point of T according to
its multiplicity in S. Evidently, S admits a representation S = {z1, z2, . . .}∗. Given countable
multisets S = {z1, z2, . . .}∗ and T = {w1, w2, . . .}∗ in (T, 1), we define their p-distance by

(6) dp(S, T ) := inf
π

[ ∞∑
i=1

|zi − wπi |p
] 1
p

,

where the infimum is taken over all permutations π. A countable multiset S in (T, 1) is said
to be p-summable, if dp(S,O1) <∞. In this paper it is shown that the set of all p-summable
multisets in (T, 1), denoted by Sp(T, 1), forms a complete metric space with the metric dp. In
fact, we have chosen the metric dp so that Bhatia-Sinha’s result ([BS]) immediately implies:

1. The spectrum of each unitary operator U ∈ Up(H, I) can be viewed as a member of
Sp(T, 1) through (4). That is, σdis(U) can be shown to be p-summable.

2. The mapping Up(H, I) 3 U 7−→ σ(U) ∈ Sp(T, 1) is continuous.

Indeed, we have

(7) dp(σ(U), σ(U ′)) ≤ π

2
‖U − U ′‖Sp ∀U,U ′ ∈ Up(H, I),

and setting U ′ := I ensures the p-summability of each σ(U) since σ(I) = {1, 1, 1, . . .}∗.

1.2.3. Continuous enumeration in the setting of unitary spectral flow. In this paper, it is
shown that any continuous path of the form S : [0, 1] → Sp(T, 1) admits a continuous enu-
meration (λi(·))i∈N in the sense that each λi is a continuous path in T with the property that
for each t ∈ [0, 1] the sequence (λi(t))i∈N is an enumeration of the multiset S(t). An immedi-
ate consequence of this result and (7) is the following unitary analogue of Kato’s continuous
enumeration:

Theorem 1.6. Let H be a separable Hilbert space. If U(·) is a continuous path in Up(H, I),
then there exists a sequence (λj(·))j∈N of continuous paths in T, such that

1. σ(U(·)) = {λ1(·), λ2(·), . . .}∗.
2. (λj(·))j∈N is an extended enumeration of σdis(U(·)) pointwise.

In fact, we obtain this result as a special case. More precisely, we generalise this setting by
replacing the identity operator I by any fixed unitary operator U0. Details are summarised
below.
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1.3. Main results.

1.3.1. Generalisation to symmetric norms. We have only considered the p-Schatten classes
Sp(H) so far, but they are only special types of the general Schatten-class SΦ(H), where Φ
is a so-called symmetric norm (see below for definition). In fact, the previously mentioned
theorems by Bhatia-Shinha and Bhatia-Davis are concerned with symmetric norms:

Theorem 1.7 ([BS]). Let H be a separable Hilbert space, and let Φ be a symmetric norm. For
any pair U,U ′ of unitary operators on H with U − U ′ ∈ SΦ(H), there exists a pair (λi), (λ

′
i)

of extended enumerations of the discrete spectra of U,U ′ respectively, s.t.

Φ(|λ1 − λ′1|, |λ2 − λ′2|, . . .) ≤
π

2
‖U − U ′‖SΦ

.

Theorem 1.8 ([BD, Corollary 2.3]). Let H be a separable Hilbert space, and let Φ be a
symmetric norm. For any pair N,N ′ of normal operators on H with N − N ′ being normal
Φ-Schatten class, there exists a pair (λi), (λ

′
i) of extended enumerations of the discrete spectra

of U,U ′ respectively, s.t.

Φ(|λ1 − λ′1|, |λ2 − λ′2|, . . .) ≤ ‖N −N ′‖SΦ
.

In this paper, we work with the general Schatten class SΦ(H) for completeness.

1.3.2. General multiset theory. Sections §3-6 are devoted to general multiset theory about
a metric space X and a fixed point x0 ∈ X. Given a symmetric norm Φ, the definition of
SΦ(X,x0) requires the obvious modification (see §3.2 and §3.3 for details). As before, we
make use of the multiset Ox0 := {x0, x0, x0, . . .}∗. The following are our main results:

1. Theorem 3.7 asserts that SΦ(X,x0) is metric space. In addition, it is shown in Theorem
3.20 that if X is complete and if Φ is a regular symmetric norm (see below for definition),
then SΦ(X,x0) is complete.

2. Theorem 5.1 asserts that any continuous path in SΦ(X,x0) has a continuous enumeration.

3. In §6, under the assumption that Φ is a regular symmetric norm, and that X is a path-
connected, locally simply connected metric space, we construct a group isomorphism

(8) ΨΦ : π1(SΦ(X,x0), Ox0) ' H1(X),

where π1(SΦ(X,x0), Ox0) is the fundamental group and H1(X) is the first singular ho-
mology group. The formal sum (3) is used to define ΨΦ.

1.3.3. Infinite-dimensional analogues of Kato’s continuous enumeration. One of our main
results is Theorem 1.6 with the identity operator I replaced by a fixed operator U0. To state
this result, we consider the metric space UΦ(H, U0) whose definition is obvious (see §7.2 for
details). Since the essential spectrum K := σess(U0) is no longer a point-set, we need to form
the quotient space T/K = {[z]K}z∈T via the equivalence relation which identifies points of K
and leaves other points as they are. Let K denote the equivalence class represented by points
of K. The topological space X := T/K is a metrizable space (see Theorem 7.1) with a fixed
point x0 := K, and so we may consider

SΦ(T,K) := SΦ(T/K,K).

As before, we can view the spectrum of each unitary operator U ∈ UΦ(H, U0) as a multiset in
T/K through (39). With the notations introduced above in mind, Theorem 7.5 is our main
theorem, which is an infinite-dimensional version of Kato’s continuous enumeration. We also
give an analogous result for self-adjoint perturbations (see Theorem 7.8).
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1.3.4. Unitary Spectral Flow. In §8, we give an alternative approach to the unitary spectral
flow. Note first that if we set (X,x0) := (T, 1), then the isomorphism (8) is of the form

ΨΦ : π1(SΦ(T, 1), O1) ' Z.
If U(·) is a loop of unitary operators in UΦ(T, 1) based at the identity operator I, then σ(U(·))
is a loop in SΦ(T, 1) based at O1. We define the spectral flow of the path U(·) to be

sf U := ΨΦ([σ(U)]π1) ∈ Z,
where [ · ]π1 denotes the homotopy class in π1(SΦ(T, 1), O1). This definition is indeed con-
sistent with the naive one (3), where the existence of each loop λi(·) in (T, 1) is asserted in
Theorem 1.6.

2. Preliminaries

Here, we briefly recall standard facts about symmetric norms and Schatten class operators.
Details can be found in [GK] and [Sim2].

2.1. Symmetric norms. Let c0 be the set of all real-valued sequences converging to 0, and
let c00 be the set of all real-valued sequences with a finite number of non-zero terms. Evidently,
c0 and c00 can be both viewed as vector spaces over R.

Definition 2.1. A norm Φ on c00, which assigns to each sequence ξ = (ξi)i∈N in c00 a
unique non-negative number Φ(ξ) = Φ(ξ1, ξ2, . . .), is called a symmetric norm, if the following
conditions are satisfied:

1. Φ(1, 0, 0, . . .) = 1.

2. Φ(ξ1, ξ2, . . .) = Φ(|ξπ1 |, |ξπ2 |, . . .) for any ξ ∈ c00 and any permutation π.

Let Φ be a symmetric norm. A sequence ξ ∈ c0 is said to be Φ-summable, if the limit

Φ(ξ) := lim
n→∞

Φ(ξ1, . . . , ξn, 0, 0, . . .)

is finite. The vector space of all Φ-summable sequences, denoted by `Φ, is called the natural
domain of the symmetric norm Φ. The pair (`Φ,Φ) turns out to be a Banach space (see
[Sim2, Theorem 1.16 (d)]). The symmetric norm Φ is said to be regular, if

lim
n→∞

Φ(ξn+1, ξn+2, . . .) = 0 ⇐⇒ lim
n→∞

(ξ1, . . . , ξn, 0, 0, . . .) = ξ ∀ξ ∈ `Φ.

Let `+Φ be the set of all those sequences in `Φ with non-negative terms.

Example 2.2. Given a fixed number p ∈ [1,∞], we define the regular symmetric norm Φp by

(9) Φp(ξ) =

{(∑∞
i=1 |ξi|

p
)1/p

, if p <∞,
supi∈N |ξi|, if p =∞,

where ξ ∈ c00. The natural domain `p := `Φp is known as the set of p-summable sequences in R. Evidently,
`∞ = c0. See [GK, §III. 7] for more details.

Given a sequence ξ = (ξi)i∈N of non-negative terms in c0, we define the sequence ξ↓ =

(ξ↓i )i∈N to be the non-increasing rearrangement of ξ1, ξ2, . . .. That is, we define ξ↓ through

ξ↓1 = max
i∈N

ξi, ξ↓1 + ξ↓2 = max
i 6=j

(ξi + ξj) , . . .

The non-increasing rearrangement of a finite sequence of non-negative terms can be defined
analogously.
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2.2. Schatten class operators. Let Φ be a symmetric norm, and let H be a separa-
ble Hilbert space. The singular numbers of a compact operator A on H, denoted by
s1(A), s2(A), . . ., are the eigenvalues of the positive operator |A| :=

√
A∗A, that are repeated

according to their multiplicities and arranged in the non-increasing order. The operator A is
said to be Φ-summable, if (si(A))i∈N ∈ `Φ: that is,

(10) ‖A‖SΦ
:= lim

n→∞
Φ(s1(A), . . . , sn(A), 0, 0, . . .) <∞.

The set SΦ(H) of all Φ-summable operators, known as the Φ-Schatten class, forms a Banach
space with the norm (10). Details can be found in [GK, §III.4]. The p-Schatten class is the
Banach space Sp(H) := SΦp(H).

2.3. Majorisation and inequalities. Here, we introduce the notion of majorisation which
allows us to develop useful inequalities involving symmetric norms. Let Rn+ be the set of all
finite sequences of length n whose terms are non-negative real numbers. Given two finite
sequences ξ, η ∈ Rn+, we say that ξ is weakly majorized by η, written ξ ≺w η, if

k∑
j=1

ξ↓j ≤
k∑
j=1

η↓j ∀k = 1, . . . , n,

A norm Φ on Rn is referred to as a finite symmetric norm, if the two conditions specified in
Definition 2.1 are satisfied. It is a well-known fact (see [Bha, Example II.3.13]) that a finite
symmetric norm Φ on Rn respects weak majorization. That is,

ξ ≺w η ⇒ Φ(ξ) ≤ Φ(η) ∀ξ, η ∈ Rn+.
We will make use of the following obvious lemma throughout this subsection:

Lemma 2.3. If Φ is a symmetric norm, then the following is a finite symmetric norm:

Rn ∈ (ξ1, . . . , ξn) 7−→ Φ(ξ1, . . . , ξn, 0, 0, . . .) ∈ R

To begin we consider the following standard facts (see [GK, §III.3] for details), which will
be freely used throughout the paper without any further comment:

Lemma 2.4. Let Φ be a symmetric norm, and let ξ, η ∈ `+Φ:

1. Φ(ξ1, ξ2, . . .) = Φ(ξπ1 , ξπ2 , . . .) for any permutation π. In particular, Φ(ξ) = Φ(ξ↓).

2. If ξi ≤ ηi for each i ∈ N, then Φ(ξ) ≤ Φ(η).

3. ξ↓1 ≤ Φ(ξ) ≤
∑∞

i=1 ξ
↓
i .

Note that the last assertion implies `1 ⊆ `Φ ⊆ `∞.

Proof. For the first assertion, observe that for each n ∈ N there exists a large enough index
Nn, s.t. ξπ1 , . . . , ξπn is among ξ1, . . . , ξNn . Since a finite symmetric norm respects weak
majorisation, we have Φ(ξπ1 , . . . , ξπn , 0, 0, . . .) ≤ Φ(ξ1, . . . , ξNn , 0, 0, . . .) for all n ∈ N. Taking
the limit as n → ∞ establishes Φ(ξπ) ≤ Φ(ξ). A similar argument shows Φ(ξ) ≤ Φ(ξπ), and
the firs assertion follows. The second assertion follows from (ξ1, . . . , ξn) ≺w (η1, . . . , ηn) for
all n ∈ N. The last assertion follows from Φ(ξ) = Φ(ξ↓) and

(ξ↓1 , 0, . . . , 0) ≺w (ξ↓1 , ξ
↓
2 , . . . , ξ

↓
n) ≺w

(
n∑
i=1

ξ↓i , 0, . . . , 0

)
∀n ∈ N.

�
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We will conclude this section by obtaining an infinite analogue of the following inequality:

Lemma 2.5. For any finite symmetric norm Φ on Rn, we have

(11) Φ(|ξ↓1 − η
↓
1|, . . . , |ξ

↓
n − η↓n|) ≤ Φ(|ξ1 − η1|, . . . , |ξn − ηn|) ∀ξ, η ∈ Rn+.

Proof. The claim follows from the following non-trivial majorization:

(|ξ↓1 − η
↓
1|, . . . , |ξ

↓
n − η↓n|) ≺w (|ξ1 − η1|, . . . , |ξn − ηn|) ∀ξ, η ∈ Rn+.

See [MO, Theorem 6.A.2.a] for details. �

We believe that an infinite analogue of this inequality must be a standard result, but were
unable to find an appropriate reference. Here, we will present our own proof for which we do
not claim the originality. We prove the following lemma first.

Lemma 2.6. Let Φ be a regular symmetric norm, and let ξ ∈ `+Φ. If we let ξ(n) :=

(ξ1, . . . , ξn, 0, 0, . . .) for each n ∈ N, then (ξ(n))↓ → ξ↓ as n→∞.

Note that (ξ(n))↓ 6= (ξ↓)(n) in general (otherwise this claim would be trivial).

Proof. Here, we consider the non-trivial case where ξ is a sequence with infinitely many non-
zero terms. For each n ∈ N, we set ξ(n) := (ξn+1, ξn+2, . . .). It follows from the regularity

of Φ that for any ε > 0 there exists an index n0 s.t. Φ(ξ(n0)) < ε/2 and Φ[(ξ↓)(n0)] < ε/2.

Furthermore, there exists an index N > n0 s.t. for all n > N we have Φ(ξ(n)) < ξ↓n0+1. It

follows that for all n > N the numbers ξn+1, ξn+2, . . . are all strictly less than ξ↓n0 : that is,
the first n0 terms of ξ↓, (ξ(n))↓ are identical. For all n > N we have

Φ(ξ↓ − (ξ(n))↓) = Φ(0, . . . , 0, ξ↓n0+1 − (ξ(n))↓n0+1, . . .)

≤ Φ[(ξ↓)(n0)] + Φ[((ξ(n))↓)(n0)]

<
ε

2
+ Φ[((ξ(n))↓)(n0)].

It remains to prove Φ[((ξ(n))↓)(n0)] < ε/2 for all n > N . Let n > N be fixed. Then there
exists a permutation π of {1, . . . , n} s.t. ξπ1 ≥ . . . ≥ ξπn . It is easy to observe that

((ξ(n))↓)(n0) = (ξπn0+1 , . . . , ξπn , 0, 0, . . .).

Since ξπn0+1 , . . . , ξπn are the smallest n− n0 terms of ξn, we have

Φ[((ξ(n))↓)(n0)] = Φ(ξπn0+1 , . . . , ξπn , 0, 0, . . .)

≤ Φ(ξn0+1, . . . , ξn, 0, 0, . . .)

≤ Φ(ξn0+1, . . . , ξn, ξn+1, ξn+2, . . .)

= Φ(ξ(n0)) <
ε

2
.

The proof is complete. �

We are now in a position to prove the following result:

Theorem 2.7. Given a regular symmetric norm Φ, we have

(12) Φ(|ξ↓1 − η
↓
1|, |ξ

↓
2 − η

↓
2|, . . .) ≤ Φ(|ξ1 − η1|, |ξ2 − η2|, . . .) ∀ξ, η ∈ `+Φ .

That is, `+Φ 3 ξ 7−→ ξ↓ ∈ `Φ is 1-Lipschitz continuous.
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Proof. Let Φ be a regular symmetric norm. It follows from Inequality (11) that for any
ξ, η ∈ `+Φ

Φ(|(ξ(n))↓ − (η(n))↓|) ≤ Φ(|ξ(n) − η(n)|) ∀n ∈ N.
By Lemma 2.6, taking the limit as n→∞ completes the proof. �

3. Summable Multisets

3.1. Countable multisets. Let X be a nonempty set with a fixed point x0 ∈ X. A multiset
in X is understood naively as a subset of X, whose elements can be repeated more than
once. For instance, the multiset {x, x}∗, where we use notation {. . .}∗ to distinguish it from
ordinary subsets of X, is considered to be different from {x}∗. We shall make use of the
following multiset throughout the paper:

Ox0 := {x0, x0, x0, . . .}∗,

where x0 is repeated infinitely many times. Formally, we define a multiset in X to be any
mapping S : X → {0, 1, 2, . . . ,∞} assigning to each point x ∈ X a unique non-negative
integer of infinity, S(x), which is understood as the multiplicity of x in S.

Definition 3.1. A countable multiset in (X,x0) is a multiset S in X s.t.

1. The fixed point x0 is the only point in S having the infinite multiplicity.

2. The support of S, defined by suppS := {x ∈ X | S(x) > 0}, is a countable subset of X.

Evidently, Ox0 is a trivial example of a countable multiset in (X,x0). Throughout this
paper, we will only consider multisets of this kind, and freely make use of the following
convention without any further comment. Given a finite or infinite sequence (s1, s2, . . .) in X,
we assume that the multiset {s1, s2, . . .}∗ contains the fixed point x0 infinitely many times,
so that it can always be viewed as a countable multiset in (X,x0).

Example 3.2. With the above convention in mind, the correct interpretation of the multiset S := {x1, x1}∗,
where x1 6= x0, is the mapping S : X → {0, 1, 2, . . . ,∞} given by S(x1) = 2, S(x0) = ∞, and S(x) = 0
whenever x 6= x0 and x 6= x1.

Let us introduce the following terminology:

Definition 3.3. Let S be a countable multiset in (X,x0):

1. A sequence (si)i∈N is called an enumeration of S, if the representation S =
{s1, s2, s3, . . . }∗ holds. If the enumeration (si)i∈N contains the fixed point x0 infinitely
many times, it is called a proper enumeration of S.

2. The rank of S, denoted by rankS, is the sum of the multiplicities of all points in suppS
except the fixed point x0.

Remark 3.4. Let S be a countable multiset in (X,x0). Any two proper enumerations of
S are identical up to a permutation. Furthermore, given an enumeration (si)i∈N of S, the
sequence (s1, x0, s2, x0, . . .) is a proper enumeration of S.

Given two countable multisets S, T in (X,x0), we agree to write T ≤ S if T (x) ≤ S(x) for
all x ∈ X. We define the sum S + T , and difference S − T in case T ≤ S, by

(S ± T )(x) =

{
∞, if x = x0,

S(x)± T (x), otherwise.
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Given a countable multiset S in (X,x0) and an arbitrary subset U of X, we define their
intersection, denoted by S ∩ U , to be the multiset

(S ∩ U)(x) :=


∞, if x = x0,

S(x), if x 6= x0 and x ∈ U ,

0, if x 6= x0 and x /∈ U .

Note that the multiplicity of the fixed point x0 in S ∩ U is always infinite, even if the fixed
point x0 does not belong to the set U . Thus, we can always view S∩U as a countable multiset
in (X,x0). We also define S \ U := S ∩ (X \ U).

3.2. Summable multisets.

Notation. We assume the following throughout the remaining parts of the current section:

1. Let Φ be a symmetric norm.

2. Let (X, d) be a metric space with a fixed point x0 ∈ X.

Let S be a countable multiset in (X,x0) with an enumeration (si)i∈N. The multiset S is
said to be Φ-summable, if (d(x0, si))i∈N ∈ `Φ. That is, d(x0, si)→ 0 as i→∞ and

dΦ(Ox0 , S) = Φ(d(x0, s1), d(x0, s2), . . .) <∞.
The set of all such multisets is denoted by SΦ(X,x0). The Φ-distance between any two
countable multisets S, T ∈ SΦ(X,x0) is defined to be

(13) dΦ(S, T ) := inf Φ(d(s1, t1), d(s2, t2), . . .),

where the infimum is taken over all pairs of enumerations (or equivalently over all pairs of
proper enumerations2 ) (si)i∈N, (ti)i∈N of S, T respectively. Note that (d(si, ti))i∈N ∈ `Φ by
triangle inequality.

Remark 3.5. Let S, T be multisets in SΦ(X,x0) with enumerations (si)i∈N, (ti)i∈N respec-
tively. Since the sequence (d(si, ti))i∈N ∈ `Φ is Φ-summable, we have

(14) sup
i∈N

d(si, ti) ≤ Φ(d(s1, t1), d(s2, t2), . . .) ≤
∞∑
i=1

d(si, ti).

Furthermore, if Φ is a regular symmetric norm, then we have

(15) lim
i→∞

Φ(d(x0, si+1), d(x0, si+2), . . .) = 0.

We will prove that SΦ(X,x0) forms a metric space with (13) using the following lemma:

Lemma 3.6. If S ∈ SΦ(X,x0), then the following assertions hold true:

1. suppS can have one and only one accumulation point x0.

2. suppS is a compact subset of X.

Proof. For the first part, assume that suppS is infinite. If suppS had an accumulation point
other than x0, then the sequence (d(x0, si))i∈N could converge to zero. This is a contradiction.
The second part is now an immediate consequence. �

Theorem 3.7. SΦ(X,x0) forms a metric space with the distance function (13).

2 This immediately follows from the second part of Remark 3.4.
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Proof. The symmetry dΦ(S, T ) = dΦ(T, S) is obvious. For the non-degeneracy, let dΦ(S, T ) =
0. We assume S 6= T and derive a contradiction. Without loss of generality, we may assume
that there exists a point x′ 6= x0, s.t. S(x′) < T (x′). Since x′ cannot be an accumulation
point of suppS by Lemma 3.6, we can choose a small enough open ε-ball Bε(x

′) around x′,
whose intersection with suppS is either the empty set ∅ or the singleton {x′}. In either case,
this leads to a contradiction dΦ(S, T ) ≥ ε > 0 by (14).

To prove the triangle inequality dΦ(S, T ) ≤ dΦ(S,U) + dΦ(U, T ), we let (si), (ti) be proper
enumerations of S, T respectively, and let (ui)i∈N, (u

′
i)i∈N be two proper enumerations of U .

Then there exists a permutation π satisfying u′πi = ui for each i ∈ N. Now,

Φ[(d(si, ui))i∈N] + Φ[(d(u′i, ti))i∈N] = Φ[(d(si, ui))i∈N] + Φ[(d(ui, tπi))i∈N]

≥ Φ(d(s1, u1) + d(u1, tπ1), d(s2, u2) + d(u2, tπ2), . . .)

≥ Φ(d(s1, tπ1), d(s2, tπ2), . . .)

≥ dΦ(S, T ),

where the the second inequality follows from the triangle inequality w.r.t. d. Since all the
proper enumerations (si)i∈N, (ti)i∈N, (ui)i∈N, (u

′
i)i∈N were chosen arbitrarily, taking the infi-

mum over these sequences establishes the triangle inequality. In particular, selecting U := Ox0

ensures dp(S, T ) <∞ for all S, T ∈ SΦ(X,x0). The proof is now complete. �

Example 3.8. Let Φp be the symmetric norm in Example 2.2. In this case, we use the short hand
(Sp(X,x0), dp) := (SΦp(X,x0), dΦp). The metric dp is then given by

dp(S, T ) = inf

{(∑∞
i=1 d(si, ti)

p
)1/p

, if p <∞,
supi∈N d(si, ti), if p =∞,

where the infimum is taken over all pairs of enumerations (sj), (tj) of S, T respectively. It follows from (14)
that S1(X,x0) ⊆ SΦ(X,x0) ⊆ S∞(X,x0) for any symmetric norm Φ.

Lemma 3.9. If Φ is a regular symmetric norm, then the mapping

SΦ(X,x0) 3 S = {s1, s2, . . .}∗ 7−→ (d↓(x0, si))i∈N ∈ lΦ,
where (d↓(x0, si))i∈N is the non-increasing rearrangement of the sequence (d(x0, si))i∈N, is a
1-Lipschitz continuous mapping.

Proof. Let S, T ∈ SΦ(X,x0), and let (si), (ti) be arbitrary enumerations of S, T respectively.
For notational simplicity, we let ξ := (d(x0, si))i∈N and η := (d(x0, ti))i∈N. It follows that

Φ(d(s1, t1), d(s2, t2), . . .) ≥ Φ(|d(x0, s1)− d(x0, t1)|, |d(x0, s2)− d(x0, t2)|, . . .)
= Φ(|ξ1 − η1|, |ξ2 − η2|, . . .)

≥ Φ(|ξ↓1 − η
↓
1|, |ξ

↓
2 − η

↓
2|, . . .),

where the last inequality follows from (12). Taking the infimum over (si)i∈N, (ti)i∈N establishes
the 1-Lipschitz estimate Φ(ξ↓ − η↓) ≤ dΦ(S, T ). The proof is complete. �

3.3. Some estimates.

3.3.1. Estimates involving sum.

Lemma 3.10. dΦ(S + S′, T + T ′) ≤ dΦ(S, T ) + dΦ(S′, T ′) for all S, S′, T, T ′ ∈ SΦ(X,x0).

Proof. Let (si)i∈N, (s
′
i)i∈N, (ti)i∈N, (t

′
i)i∈N be enumerations of S, S′, T, T ′ respectively. Since

(s1, s
′
1, s2, s

′
2, s3, s

′
3, . . .) and (t1, t

′
1, t2, t

′
2, t3, t

′
3, . . .)
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are two enumerations of S + S′, T + T ′ respectively, we have

Φ[(d(si, ti))i∈N] + Φ[(d(s′i, t
′
i))i∈N] = Φ(d(s1, t1), 0, d(s2, t2), 0, . . .) + Φ(0, d(s′1, t

′
1), 0, d(s′2, t

′
2), . . .)

≥ Φ(d(s1, t1), d(s′1, t
′
1), d(s2, t2), d(s′2, t

′
2), . . .)

≥ dΦ(S + S′, T + T ′).

Since the enumerations (si)i∈N, (s
′
i)i∈N, (ti)i∈N, (t

′
i)i∈N were chosen arbitrarily, taking infimum

over these enumerations establishes the claim. �

3.3.2. Estimates involving difference. In general, an estimate analogous to Lemma 3.10,

(16) dΦ(S − S′, T − T ′) ≤ dΦ(S, T ) + dΦ(S′, T ′),

where S, S′, T, T ′ ∈ SΦ(X,x0) with S′ ⊆ S and T ′ ⊆ T , fails to hold as below:

Example 3.11. Let N be a natural number > 1. Here, we consider the space S2(R+, 0), where R+ is equipped
with the standard metric ρ(x, y) := |x− y|. We define multisets S, S′, T, T ′ through

S = S′ = T =
{

1
N
, 2
N
, . . . , 1

}∗
and T ′ = T − {1}∗ =

{
1
N
, 2
N
, . . . , N−1

N

}∗
.

Then S−S′ = O0 and T −T ′ = {1}∗, and so ρ2(S−S′, T −T ′) = ρ2(O0, {1}∗) = 1. On the other hand, since(
1
N
, 2
N
, . . . , 1, 0, 0, 0, . . .

)
,
(
0, 1

N
, 2
N
, . . . , N−1

N
, 0, 0, 0, . . .

)
are enumerations of S′, T ′ respectively,

ρ2(S, T ) + ρ2(S′, T ′) ≤ 0 +

(∣∣∣∣ 1

N
− 0

∣∣∣∣2 +

∣∣∣∣ 2

N
− 1

N

∣∣∣∣2 + . . .+

∣∣∣∣1− N − 1

N

∣∣∣∣2
) 1

2

≤
(

1

N2
+ . . .+

1

N2

) 1
2

≤ 1√
N

< 1 ≤ ρ2(S − S′, T − T ′).

That is, Inequality (16) fails to hold in general.

Nevertheless, the following weaker version turns out to be sufficient:

Lemma 3.12. Let S, S′, T, T ′ ∈ SΦ(X,x0) be multisets satisfying S′ ⊆ S and T ′ ⊆ T . If
S′, T ′ are finite-rank multisets and if n := rankS′ + rankT ′, then

dΦ(S − S′, T − T ′) ≤ 3n
(
dΦ(S, T ) + dΦ(S′, T ′)

)
.

This result will be proved with the aid of the following lemma:

Lemma 3.13. If S, T, U ∈ SΦ(X,x0) and if n := rankU <∞, then

dΦ(S, T ) ≤ 3n · dΦ(S + U, T + U).

Proof. (A) Let us first prove the claim for U = {u}∗. Let (s′i)i∈N, (t
′
i)i∈N be enumerations of

S +U, T +U respectively, s.t. s′i0 = u and t′j0 = u for some i0, j0 ∈ N. If i0 6= j0, we can then

simultaneously renumber (s′i)i∈N, (t
′
i)i∈N, so that

(s′i)i∈N = (s1, u, s2, s3, . . .) and (t′i)i∈N = (u, t1, t2, t3, . . .)
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for some enumerations (si)i∈N, (ti)i∈N of S, T respectively. It follows that

dΦ(S, T ) ≤ Φ(d(s1, t1), d(s2, t2), . . .)

≤ Φ(d(s1, t1), 0, 0, . . .) + Φ(0, d(s2, t2), d(s3, t3) . . .)

≤ d(s1, u) + d(u, t1) + Φ(0, d(s2, t2), d(s3, t3) . . .)

= Φ(d(s1, u), 0, 0, . . .) + Φ(0, d(u, t1), 0, . . .) + Φ(0, d(s2, t2), d(s3, t3) . . .)

≤ 3Φ(d(s1, u), d(u, t1), d(s2, t2), . . .)

= 3Φ(d(s′1, t
′
1), d(s′2, t

′
2), . . .).

Note that the same estimate dΦ(S, T ) ≤ 3Φ[(d(s′i, t
′
i))i∈N] also holds trivially in the case

i0 = j0, and so taking the infimum over (s′i)i∈N, (t
′
i)i∈N establishes the claim for U = {u}∗.

(B) For the general case, suppose U = {u1, . . . , un}∗. It follows from (A) that

3n · dΦ(S + U, T + U) ≥ 3(n− 1) · dΦ(S + {u1, . . . , un−1}∗, T + {u1, . . . , un−1}∗).

Continuing this way establishes the claim. �

Proof of Lemma 3.12. The multiset S′ + T ′ has finite rank n. By Lemma 3.13 we have

dΦ(S − S′, T − T ′) ≤ 3n · dΦ(S − S′ + (S′ + T ′), T − T ′ + (S′ + T ′))

≤ 3n · dΦ(S + T ′, T + S′)

≤ 3n
(
dΦ(S, T ) + dΦ(S′, T ′)

)
,

where the last inequality follows from Lemma 3.10. �

3.3.3. Estimates involving finite-rank multisets. We shall make use of the following estimates:

Lemma 3.14. Given s0, s1, . . . , sn ∈ X and t1, . . . , tn ∈ X, we have

dΦ({s1, . . . , sn}∗, {t1, . . . , tn}∗) ≤
n∑
i=1

d(si, ti),(17)

sup
1≤i≤n

d(s0, si) ≤ 2 dΦ({s0, . . . , s0︸ ︷︷ ︸
n times

}∗, {s1, . . . , sn}∗).(18)

Proof. Inequality (17) immediately follows from Lemma 3.10: indeed,

dΦ({s1, . . . , sn}∗, {t1, . . . , tn}∗) ≤ dΦ({s1}∗, {t1}∗) + . . .+ dΦ({sn}∗, {tn}∗) ≤
n∑
i=1

d(si, ti).

For (18), it follows from the triangle inequality w.r.t. d that

d(s0, si) ≤ dΦ({s0, . . . , s0}∗, {s1, . . . , sn}∗) ∀i = 1, . . . , n.

�

3.3.4. Estimates involving intersection. Given S, T ∈ SΦ(X,x0) and a subset U of X, the
following inequality does not hold in general:

(19) dΦ(S ∩ U, T ∩ U) ≤ dΦ(S, T ).

Here, we establish a criterion under which estimate (19) holds true.

1. Given a subset U of X, we set SUΦ(X,x0) := {S ∈ SΦ(X,x0) | suppS ⊆ U}.
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2. A finite tuple (U0, . . . , Un) of non-empty subsets of X is called positively separated, if

dist (Ui, Uj) := inf
(ui,uj)∈Ui×Uj

d(ui, uj) > 0 ∀i 6= j.

By convention, whenever we speak of a positively separated tuple (U0, . . . , Un), we will
always assume that the fixed point x0 belongs to the first component U0.

Lemma 3.15. Let (U0, . . . , Uk) be a positive-separated tuple of subsets of X. Let δ :=

mini 6=j dist (Ui, Uj), and let U :=
⋃k
i=0 Ui. If S, T ∈ SUΦ(X,x0) satisfy dΦ(S, T ) < δ, then:

1. dΦ(S ∩ Ui, T ∩ Ui) ≤ dΦ(S, T ) for all i = 0, . . . , k.

2. rank (S ∩ Ui) = rank (T ∩ Ui) for all i = 1, . . . , k.

Proof. Suppose that S, T ∈ SUΦ(X,x0) satisfy dΦ(S, T ) < δ, and that (si)i∈N, (ti)i∈N are
arbitrary enumerations of S, T respectively satisfying Φ[(d(si, ti))i∈N] < δ. That is,

(20) sup
i∈N

d(si, ti) < δ.

It follows that each neighborhood Uj has the property that si ∈ Uj ⇐⇒ ti ∈ Uj for all
i ∈ N. The second assertion follows. The first assertion follows by taking the infimum over
(si)i∈N, (ti)i∈N. �

The following result is an immediate corollary:

Corollary 3.16. If (U0, . . . , Uk) is a positively separated tuple of subsets of X with U :=⋃k
i=0 Ui, then each mapping

SUΦ(X,x0) 3 S 7−→ S ∩ Ui ∈ SΦ(X,x0), i = 0, . . . , k,

is continuous. Furthermore, the following function is locally constant:

SUΦ(X,x0) 3 S 7−→ (rank (S ∩ U1), . . . , rank (S ∩ Un)) ∈ Zn

Lemma 3.17. If U is an open subset of X, then SUΦ(X,x0) is an open subset of SΦ(X,x0).

This lemma will be used frequently with Corollary 3.16 under the assumption that
(U0, . . . , Un) is a positively-separated tuple of open subsets of X, and that U := U0∪ . . .∪Un.

Proof. Given S ∈ SUΦ(X,x0), we set δ := dist (suppS,X \ U) > 0. Let T ∈ SΦ(X,x0) be
a multiset satisfying dΦ(S, T ) < δ. Then then there exist enumerations (si), (ti) of S, T
respectively, s.t. (20) holds. It follows that ti ∈ U for all i ∈ N, and so T ∈ SUΦ(X,x0). That
is, the open δ-neighborhood of S is included in SUΦ(X,x0). Thus, SUΦ(X,x0) is open. �

3.4. Canonical Lipschitz mappings. Let (Y, ρ) be a metric space with a fixed point y0 ∈ Y ,
and let f : X → Y be an L-Lipshiz continuous mapping s.t. f(x0) = y0. It is easy to see that
f naturally induces an L-Lipschitz mapping

(21) SΦ(X,x0) 3 {s1, s2, . . .}∗ 7−→ {f(s1), f(s2), . . .}∗ ∈ SΦ(Y, y0).
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3.5. Separability. The aim of the current subsection is to prove the following result:

Theorem 3.18. If Φ is a regular symmetric norm and if X is a separable metric space, then
SΦ(X,x0) is a separable metric space.

This is an immediate consequence of the following lemma:

Lemma 3.19. If Φ is a regular symmetric norm, then the set of all finite-rank multisets in
(X,x0) is a dense subset of SΦ(X,x0).

Proof. If S = {s1, s2, . . .}∗ belongs to SΦ(X,x0), then Inequality (15) implies

lim
i→∞

dΦ(S, {s1, . . . , si}∗) ≤ lim
i→∞

Φ(0, . . . , 0, d(x0, si+1), d(x0, si+2), . . .) = 0.

Since each {s1, . . . , si}∗ is a finite-rank multiset, the claim follows. �

Proof of Theorem 3.18. Let S0(X,x0) be the set of all finite-rank multisets in SΦ(X,x0). By
Lemma 3.19, it suffices to construct a countable dense subset of S0(X,x0). Let A be a
countable dense subset of X. Without loss of generality, we may assume that x0 ∈ A. Let

SA0 (X,x0) := {S ∈ S0(X,x0) | suppS ⊆ A},
which is a countable set3. We show that SA0 (X,x0) is a dense dense subset of S0(X,x0). Let
S = {s1, . . . , sn}∗ be in S0(X,x0). Since A is a dense subset of X, there exist n sequences

(s
(1)
i )i∈N, . . . , (s

(n)
i )i∈N in A converging to s1, . . . , sn respectively. It follows from (17) that

{s(1)
i , . . . , s

(n)
i }∗ → S as i→∞. The claim follows. �

3.6. Completeness. The aim of the current subsection is to prove the following result:

Theorem 3.20. If (X, d) is a complete metric space and if Φ is a regular symmetric norm,
then SΦ(X,x0) is a complete metric space.

Throughout the current subsection, we will assume that (X, d) is a complete metric space
and that Φ is a regular symmetric norm. We will first prove the following special case:

Lemma 3.21. SΦ(R+, 0) is a complete metric space.

Proof. Let ρ be the standard metric on R+, and let (Sn)n∈N be a Cauchy sequence in

SΦ(R+, 0). Each Sn has an enumeration ξn := (s
(n)
i )i∈N, s.t. s

(n)
1 ≥ s

(n)
2 ≥ . . .. It fol-

lows from Lemma 3.9 that (ξn)n∈N is a Cauchy sequence in `Φ. Since `Φ is a Banch space,
(ξn)n∈N converges to a limit ξ0 := (ξ0

1 , ξ
0
2 , . . .). Now,

ρΦ(Sn, {ξ0
1 , ξ

0
2 , . . .}) = ρΦ({s(n)

1 , s
(n)
1 , . . .}∗, {ξ0

1 , ξ
0
2 , . . .}∗)

≤ Φ(|s(n)
1 − ξ0

1 |, |s
(n)
2 − ξ0

2 |, . . .)
= Φ(ξn − ξ0)→ 0.

That is, the Cauchy sequence (Sn)n∈N has a limit S0 := {ξ0
1 , ξ

0
2 , . . .}∗. Note that the Φ-

summability of the multiset S0 is equivalent to ξ0 ∈ `Φ. �

3 To see why this is true, we can take the following approach. Let A be the set of all finite subsets of A,
which is clearly a countable set. We can then write

S
A
0 (X,x0) =

⋃
A′∈A

{S ∈ S0(X,x0) | suppS = A′},

where each set {S ∈ S0(X,x0) | suppS = A′} is countable. It follows that SA0 (X,x0) is countable.
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An immediate consequence of this lemma is as follows. Throughout this subsection, we let
(Y, y0) := (R+, 0) and ρ(x, y) := |x− y|, and define f : X → R+ by f(x) := d(x0, x). Since f
is a 1-Lipschitz continuous mapping, it induces the 1-Lipschitz continuous mapping (21). We
shall also make use of the shorthand

f({s1, s2, . . .}) := {f(s1), f(s2), . . .}∗ ∀{s1, s2, . . .} ∈ SΦ(X,x0).

Evidently, if (Sn)n∈N is a Cauchy sequence in SΦ(X,x0), then (f(Sn))n∈N is a Cauchy sequence
in SΦ(R+, 0). Since SΦ(R+, 0) is complete, the sequence (f(Sn))n∈N has a limit in SΦ(R+, 0).
With this fact in mind, we will prove Theorem 3.20 with the aid of the following two lemmas:

Lemma 3.22. If (Sn)n∈N is a Cauchy sequence in SΦ(X,x0) with the property that each term
of it has a constant finite rank k, then it converges.

Proof. Before we proceed to the induction on k, let us first observe that if the union A :=⋃
n∈N suppSn is a finite subset of X, then the Cauchy sequence (Sn)n∈N will eventually be

constant, and so the claim follows. Suppose that A is an infinite subset of X. For the base
step k = 1, there exists a sequence (sn)n∈N of points in X, s.t. Sn = {sn}∗ for all n ∈ N. It
follows from (18) that (sn)n∈N is Cauchy sequence in X, and so (sn)n∈N converges to some
point s0 ∈ X. It follows from Inequality (17) that (Sn)n∈N converges to S0 := {s0}∗. This
completes the base step.

For the induction step, we will assume that the claim has been proved for k replaced by any
smaller number. Since (Sn)n∈N is a Cauchy sequence, the infinite set A is totally bounded4.
It follows that the closure A is a compact subset of X, and so A contains a limit point s0 ∈ X.
For each n ∈ N, we choose a point sn 6= x0 in suppSn that is closest to s0. If (sn)n∈N does
not converge to s0, there exists a δ > 0 such that d(sn, s0) ≥ 2δ for infinitely many n’s. At
the same time, since s0 is a limit point of A, the open ball Bδ(s0) contains infinitely many
points of A. This contradicts the fact that (Sn)n∈N is Cauchy, and so sn → s0 as n → ∞.
Now, (Sn−{sn}∗)n∈N is a Cauchy sequence of the constant finite rank k− 1 by Lemma 3.12,
and so the claim follows by induction. �

Lemma 3.23. Let (Sn) be a Cauchy sequence in SΦ(X,x0) s.t. R := limn→∞ f(Sn), and let
(I0, . . . , Ik) be a positively-separated tuple of open subsets of R+ s.t.

suppR ⊆ I0 ∪ . . . ∪ Ik.

Let U0, . . . , Uk be the inverse images of I0, . . . , Ik under f . Then k + 1 sequences
(S(0)
n )n∈N, . . . , (S

(k)
n )n∈N given by S(i)

n := Sn ∩ Ui are all Cauchy sequences with the property
that there exists an index N satisfying the following properties:

1. Sn = S(0)
n + . . .+ S(k)

n for all n ≥ N .

2. dΦ(S(i)
m , S

(i)
n ) ≤ dΦ(Sm, Sn) for each i = 0, . . . , k and for each m,n ≥ N ,

3. rankS(i)
m = rankS(i)

n for each i = 1, . . . , n and for each m,n ≥ N .

4 To see why this is true, we let ε > 0 be arbitrary and assume Sn = {s(n)

1 , . . . , s(n)

k }
∗ for all n ∈ N. Since

(Sn)n∈N is Cauchy, there exists an index N , s.t. for all n ≥ N we have dΦ(Sn, SN ) < ε. That is,⋃
n≥N

suppSn ⊆ Bε(x0) ∪Bε(s(N)

1 ) ∪ . . . ∪Bε(s(N)

k ).

Since
⋃
n<N suppSn is a finite subset of X, A is totally bounded.
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Proof. Let I := I0 ∪ . . . ∪ Ik and U := U0 ∪ . . . ∪ Uk. Let us first observe that (U0, . . . , Uk) is
positively-separated tuple of open subsets of X. Indeed, if i 6= j, then

dist (Ui, Uj) = inf
(ui,uj)∈Ui×Uj

d(ui, uj) ≥ inf
(ui,uj)∈Ui×Uj

|f(ui)− f(uj)| ≥ dist (Ii, Ij) > 0,

Note that x0 ∈ U0. Since f(Sn)→ R as n→∞, there exists an index N s.t. for all n ≥ N we
have f(Sn) ∈ SIΦ(R+, 0) by Corollary 3.16 and Lemma 3.17. It follows that Sn ∈ SUΦ(X,x0)
for all n ≥ N . Since (Sn)n∈N is a Cauchy sequence, the claim follows from Lemma 3.15. �

Proof of Theorem 3.20. Let (Sn)n∈N be a Cauchy sequence in SΦ(X,x0), and let R :=
limn→∞ f(Sn). Suppose that suppR = {r1, r2, . . . , 0}, where r1 > r2 > . . . > 0, and that
each ri has the multiplicity mi in R. Let {Ii}i∈N = {(αi, βi)}i∈N be a countable family of
open intervals in R, s.t. ri ∈ Ii for each i ∈ N. We may assume that

⋂
i∈N[αi, βi] = ∅.

(A) Given an arbitrary index k ∈ N, we set I0 := [0, βk+1) and A0 := f−1(I0). It is easy
to see that (I0, . . . , Ik) is positively-separated open subsets of R+, and so Lemma 3.23 holds
true. It follows from Lemma 3.22 that the k sequences (S(1)

n )n∈N, . . . , (S
(k)
n )n∈N all converge

to some multisets S(1)

0 , . . . , S(k)

0 ∈ SΦ(X,x0). Now,

(22) f(S(i)

0 ) = lim
n→∞

f(S(i)
n ) = lim

n→∞
f(Sn ∩Ui) = lim

n→∞
(f(Sn) ∩ Ii) = R∩ Ii ∀i = 1, . . . , k,

where the last equality follows from Corollary 3.16 and Lemma 3.17. It follows that rankS(i)

0 =

mi for each i = 1, . . . , k. That is, each S(i)

0 admits a representation

rankS(i)

0 = {s(i)

1 , . . . , s
(i)
mi}∗

for some s(i)

1 , . . . , s
(i)
mi ∈ X. Evidently, f(S(i)

0 ) = {ri, . . . , ri}∗.
(B) Part (A) allows us to define the multiset S0 := {s(1)

1 , . . . , s(1)
m1 , s

(2)

2 , . . . , s(2)
m2 , . . .}∗, whose

Φ-summability follows from f(S0) = R. We show that Sn → S0 as n → ∞. Let ε > 0 be
arbitrary. Then there exists a large enough index k ∈ N, s.t.

(23) ρΦ(R ∩ I0, O0) = Φ(rk+1, . . . , rk+1︸ ︷︷ ︸
mk+1 times

, rk+2, . . . , rk+2︸ ︷︷ ︸
mk+2 times

, . . .) <
ε

4
,

where I0 := [0, βk+1) as in (A). We set S(0)

0 := S0 ∩ U0. Since the last equality in (22) is also
true for i = 0, it follows that there exists an index N s.t. for all n ≥ N we have

(24) ρΦ(f(Sn) ∩ I0, O0) <
ε

4
.

As in (A), we can always increase the index N , if necessary, so that for all n ≥ N

(25) Sn = S(0)
n + . . .+ S(k)

n and
k∑
i=1

dΦ(S(i)
n , S

(i)

0 ) <
ε

2
.
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It follows from (23), (24) (25) that for all n ≥ N

dΦ(Sn, S0) = dΦ(S(0)
n + . . .+ S(k)

n , S(0)

0 + . . .+ S(k)

0 )

≤ dΦ(S(0)
n , S(0)

0 ) + dΦ(S(1)
n , S(1)

0 ) + . . .+ dΦ(S(k)
n , S(k)

0 )

< dΦ(S(0)
n , Ox0) + dΦ(Ox0 , S

(0)

0 ) +
ε

2

= ρΦ(f(Sn) ∩ I0, O0) + ρΦ(R ∩ I0, O0) +
ε

2

<
ε

4
+
ε

4
+
ε

2
= ε,

where the first inequality follows from Lemma 3.10. Thus, Sn → S0 as n → ∞, and so the
proof is now complete. �

4. Continuity of Multiset-valued Mappings

Notation. We will assume the following throughout:

1. Let Φ be a symmetric norm unless otherwise stated.

2. Let I be a metric space unless otherwise stated.

3. Let (X, d) be a metric space with a fixed point x0 ∈ X.

The purpose of the current section is to establish several results about continuity of
multiset-valued mappings. We will make use of the following terminology:

Definition 4.1. The rank of a mapping S : I → SΦ(X,x0) is defined to be the smallest
non-negative number N such that rankS(t) ≤ N holds for all t ∈ I. The mapping S is called
a finite-rank mapping, if it has a finite rank.

4.1. Continuity of sums. Given S, T : I → SΦ(X,x0), their sum S + T : I → SΦ(X,x0) is
defined by (S + T )(·) := S(·) + T (·).

Theorem 4.2. If S, T : I → SΦ(X,x0) are continuous, then so is S + T : I → SΦ(X,x0).

Proof. Lemma 3.10 establishes the estimate

dΦ((S + T )(t), (S + T )(t′)) ≤ dΦ(S(t), S(t′)) + dΦ(T (t), T (t′)) ∀t, t′ ∈ I,

from which the continuity of S + T follows. �

4.2. Continuity of differences. Given S, T : I → SΦ(X,x0) with T (t) ⊆ S(t) for all t ∈ I,
their difference S − T : I → SΦ(X,x0) is defined by (S − T )(·) := S(·)− T (·).

Corollary 4.3. Let S, T : I → SΦ(X,x0) be two continuous mappings with T (t) ⊆ S(t) for
all t ∈ I. If each point t0 ∈ I has a neighborhood I0 s.t. the restriction T |I0 is a finite-rank
mapping, then S − T : I → SΦ(X,x0) is continuous.

Proof. Given an arbitrary point t0 ∈ I, there exist a neighborhood I0 of t0 and a nonnegative
integer n, s.t. rankT (t) ≤ n for all t ∈ I0. It follows from Lemma 3.12 that

dΦ((S − T )(t0), (S − T )(t)) ≤ 6n (dΦ(S(t0), S(t)) + dΦ(T (t0), T (t))) ∀t ∈ I0.

The continuity of S − T at t0 follows from that of S, T . �
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4.3. Continuity of intersections. Given a mapping S : I → SΦ(X,x0) and a subset U of
X, we define the mapping S ∩ U : I → SΦ(X,x0) by (S ∩ U)(·) := S(·) ∩ U. We also define
the mapping S \ U : I → SΦ(X,x0) by S \ U := S ∩ (X \ U).

Theorem 4.4. Let S : I → SΦ(X,x0) be a continuous mapping, and let t0 ∈ I be fixed.
Suppose that suppS(t0) ⊆ U0∪. . .∪Uk for some positively-separated tuple (U0, . . . , Uk) of open
subsets of X. Then there exists a neighborhood I0 of t0, s.t. the mappings S ∩U0, . . . , S ∩Uk
are all continuous on I0. Furthermore, the neighborhood I0 can be chosen in such a way that
the following function is constant:

(26) I0 3 t 7−→ (rankS(t) ∩ U1, . . . , rankS(t) ∩ Uk) ∈ Zn

Proof. This immediately follows from Corollary 3.16 and Lemma 3.17. �

4.4. Continuity of induced mappings. A finite collection ofX-valued mappings λ1, . . . , λn
on the metric space I naturally induce the mapping

I 3 t 7−→ {λ1(t), . . . , λn(t)}∗ ∈ SΦ(X,x0),

which will be denoted by {λ1, . . . , λn}∗ from here on. It is true in general that if λ1, . . . , λn
are continuous, then so is the induced mapping S := {λ1, . . . , λn}∗ by (17). The purpose of
the current subsection is to given an infinite-dimensional analogue of this result. We begin
with the following definition.

Definition 4.5. A sequence λ1, λ2, . . . of X-valued mappings on the metric space I is said
to be pointwise Φ-summable, if for each t ∈ I the multiset {λ1(t), λ2(t), . . .}∗ is Φ-summable.

The question we would like to address is the following. Given a pointwise Φ-summable
sequence (λi(·))i∈N of continuous mappings defined on I, is the induced mapping

(27) I 3 t 7−→ {λ1(t), λ2(t), . . .}∗ ∈ SΦ(X,x0),

which will be denoted by {λ1, λ2, . . .}∗ from here on, continuous in general? The following
counter example says otherwise:

Example 4.6. Let us consider the space S1(R+, 0), where R+ is equipped with the standard metric ρ(x, y) :=
|x− y|. We define a mapping g : R→ R+ by

g(t) =

{
sin(πt), if t ∈ [0, 1],

0, otherwise.

Let I = [0, 1] and consider the doubly-indexed sequence (λm,n(·))m,n∈N of continuous functions on I defined

by λm,n(t) = g(2mt)
2n . Let us first prove that (λm,n(·))m,n∈N is pointwise 1-summable. Indeed, for any t ∈ I,

∞∑
m,n=1

|0− λm,n(t)| =
∞∑

m,n=1

g(2mt)

2n
≤ Nt ·

(
∞∑
n=1

1

2n

)
= Nt,

where Nt denotes the cardinality of the set {m ∈ N | 0 ≤ 2mt ≤ 1}. However, the mapping S : I → S1(R+, 0)
induced by (λm,n(·))m,n∈N is not continuous at 0. This is because for any t0 ∈ (0, 1) there is a large enough
index m0 satisfying 2−m0 < t0, and this gives

(28) ρ1

(
S(0), S(2−m0)

)
= ρ1

(
O0, S(2−m0)

)
=

∞∑
m,n=1

g(2m−m0)

2n
≥
∞∑
n=1

1

2n
= 1.

Nevertheless, we have the following criterion:

Theorem 4.7. Let Φ be a regular symmetric norm, and let I be a compact metric space. Let
(λi(·))i∈N be a sequence of pointwise Φ-summable sequence of continuous X-valued mappings
on the metric space I. Then the following assertions are all equivalent:
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1. Φ(d(x0, λn+1(·)), d(x0, λn+2(·)), . . .)→ 0 uniformly as n→∞.

2. The mapping ξ0(·) := (d(x0, λi(·)))i∈N : I → `Φ is continuous.

3. The induced mapping S(·) := {λ1(·), λ2(·), . . .}∗ is continuous.

It is easy to observe that in Example 4.6 the mapping (d(x0, λm,n(·)))m,n∈N fails to be
continuous at 0 by (28).

Proof. We proceed as (1) ⇒ (2) ⇒ (3) ⇒ (1). As we shall see below, the assumption of I
being compact is only used in the last implication (3)⇒ (1). Before taking up the proof, let
us first introduce some notation. For each n ∈ N, we define

Sn(·) := {λ1(·), . . . , λn(·)}∗ and ξn(·) := (d(x0, λ1(·)), . . . , d(x0, λn(·)), 0, 0, . . .).

Note that each ξn is continuous, because for all t, t′ ∈ I we have

Φ(ξn(t)− ξn(t′)) = Φ(|d(x0, λ1(t))− d(x0, λ1(t′))|, . . . , |d(x0, λn(t))− d(x0, λn(t′))|, 0, 0, . . .)
≤ Φ(d(λ1(t), λ1(t′), . . . , d(λn(t), λn(t′)), 0, 0, . . .)

≤
n∑
i=1

d(x0, λi).

Since Φ is a regular symmetric norm, we have limn→∞Φ(ξ0(t)− ξn(t)) = 0 for all t ∈ I. Let
us first prove (1)⇒ (2). Suppose that the convergence

lim
n→∞

Φ(d(x0, λn+1(·)), d(x0, λn+2(·), . . .) = lim
n→∞

Φ(ξ0(·)− ξn(·)) = 0

is uniform. Since ξ0 is the uniform limit of the continuous mappings ξ1, ξ2, . . ., the mapping
ξ0 = (d(x0, λi(·)))i∈N is continuous. For (2)⇒ (3), we assume that ξ0 is continuous. Observe
that for each N = 0, 1, 2, . . . the “cut-off mapping”

`Φ 3 (ξ1, ξ2, . . .) 7−→ (ξN+1, ξN+2, . . .) ∈ `Φ

is obviously (1-Lipschitz) continuous, and so (d(x0, λN+1(·)), d(x0, λN+2(·)), . . .) is con-
tinuous. It follows from the continuity of the norm Φ that dΦ(Ox0 , (S − SN )(·)) =
Φ(d(x0, λN+1(·)), d(x0, λN+2(·)), . . .) is continuous. To prove the continuity of S, we let ε > 0
and t0 ∈ I be arbitrary. Since Φ is regular and (d(x0, λi(t0)))i∈N ∈ `Φ, there exists an index
N (depending on both ε and t0) such that

dΦ(Ox0 , (S − SN )(t0)) = Φ(d(x0, λN+1(t0)), d(x0, λN+2(t0)), . . .) <
ε

4
.

Since dΦ(Ox0 , (S − SN )(·)) is continuous at t0, there exists a neighborhood I0 of t0, s.t.

(29) dΦ(Ox0 , (S − SN ))(t) <
ε

4
∀t ∈ I0.

Since SN is continuous, we may shrink I0 if necessary, to ensure that

(30) dΦ(SN (t0), SN (t)) <
ε

2
∀t ∈ I0.
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It follows from (29), (30) that for all t ∈ I0 we have

dΦ(S(t0), S(t)) = dΦ((S − SN )(t0) + SN (t0), (S − SN )(t) + SN (t))

≤ dΦ((S − SN )(t0), (S − SN )(t)) + dΦ(SN (t0), SN (t))

≤ dΦ((S − SN )(t0), Ox0) + dΦ(Ox0 , (S − SN )(t)) + dΦ(SN (t0), SN (t))

<
ε

4
+
ε

4
+
ε

2
= ε,

thereby establishing the continuity of S. Finally, to prove (3) ⇒ (1), we assume that S
is continuous. Then S − Sn is continuous for each n ∈ N. It follows that each fn :=
dΦ(Ox0 , (S−Sn)(·)) : I → R is continuous. By construction, (fn)n∈N is a pointwise decreasing
sequence, and it converges to 0 pointwise. It follows from Dini’s theorem (see [Rud, Theorem
7.13] for details) that fn → 0 uniformly. �

Remark 4.8. Given a compact metric space I and a continuous X-valued mapping λ defined
on I, we define the radius of λ to be

R(λ) := sup
t∈I

d(x0, λ(t)).

If (λi(·))i∈N is a pointwise Φ-summable sequence of continuous X-valued mappings on I, then
the following are immediate consequences of the first part of Theorem 4.7:

1. For any ε > 0 there exists a large enough index N s.t. supn>N R(λn) < ε.

2. That is, no matter how small ε > 0 may be, all but finitely many of λ1, λ2, . . . have their
images completely included in the open ε-neighborhood of x0.

The following two assertions are immediate corollaries of Theorem 4.7:

Corollary 4.9. Let Φ be a regular symmetric norm, and let I be a compact metric space.
Let (λi(·))i∈N be a pointwise Φ-summable sequence of continuous X-valued mappings on I,
s.t. {λ1, λ2, . . .}∗ is continuous. If (λ′i(·))i∈N is a subsequence of (λi(·))i∈N, then the induced
mapping {λ′1, λ′2, . . .}∗ is continuous.

Proof. Since {λ1, λ2, . . .}∗ is continuous, Φ(d(x0, λn+1(·)), d(x0, λn+2(·), . . .)→ 0 uniformly as
n→∞ by Theorem 4.7. It follows that the convergence

Φ(d(x0, λ
′
n+1(·)), d(x0, λ

′
n+2(·)), . . .) = 0

is also uniform. By the same theorem, {λ′1, λ′2, . . .}∗ is continuous. �

Corollary 4.10. Let Φ be a regular symmetric norm, and let I be a compact metric space.
If (λi(·))i∈N is a pointwise Φ-summable sequence of continuous X-valued mappings on I s.t.
{λ1, λ2, . . .}∗ is continuous, then (λi(·))i∈N converges uniformly to x0.

Proof. Let ε > 0 and t0 ∈ I be arbitrary. Since S is continuous, it follows from Theorem
4.7 that Φ(d(x0, λn+1(·)), d(x0, λn+2(·)), . . .) → 0 uniformly as n → ∞. Then there exists an
index N ∈ N, s.t.

(31)
ε

2
> Φ(d(x0, λN+1(t)), d(x0, λN+2(t), . . .) ≥ sup

n>N
d(x0, λn(t)) ∀t ∈ I.

It follows that λi(·)→ x0 uniformly by triangle inequality. �
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5. Continuous Enumeration of Multiset-valued Mappings

Notation. We shall assume the following throughout the current section:

1. Let Φ be a symmetric norm.

2. Let (X, d) be a metric space with a fixed point x0 ∈ X.

We stress that Φ is not necessarily regular.

5.1. Introduction. Let us recall that in §4.4, we have developed a criterion under which a
given sequence λ1, λ2, . . . of continuous X-valued mappings induces a continuous SΦ(X,x0)-
valued mapping {λ1, λ2, . . .}∗. A different kind of continuity question is the following. Given
a continuous SΦ(X,x0)-valued mapping S, does there exist a sequence λ1, λ2, . . . of continuous
X-valued mappings, s.t. S = {λ1, λ2, . . .}∗? Such a sequence (λi(·))i∈N is called a continuous
enumeration of S. The ultimate purpose of the current section is to prove the following result:

Theorem 5.1 (existence of continuous enumeration). If S : [0, 1]→ SΦ(X,x0) is a continuous
mapping, then it admits a continuous enumeration.

This theorem is absolutely essential when we calculate the fundamental group of the metric
space SΦ(X,x0) in the next section. As we shall see below, the existence of a continuous
enumeration is a simple corollary of the following two technical results:

Theorem 5.2 (finite-rank continuous enumeration). Let I be an interval in R, and let S :
I → SΦ(X,x0) be a continuous mapping of a finite rank n. Then there exist n continuous
mappings λ1, . . . , λn : I → X s.t. S = {λ1, . . . , λn}∗ for all t ∈ I.

This theorem is a multiset analogue of Theorem 1.1.

Theorem 5.3 (theorem of finite separation). Let S : [0, 1] → SΦ(X,x0) be continuous, and
let ε > 0 be fixed. Then there exists a finite-rank continuous mapping Sε : [0, 1]→ SΦ(X,x0),
s.t. for all t ∈ [0, 1] we have Sε(t) ⊆ S(t) and supp (S − Sε)(t) ⊆ Bε(x0).

This theorem is motivated by the second part of Remark 4.8.

Proof of Theorem 5.1. We set εn := 1/n and proceed inductively. It follows from Theorem
5.3 that there exists a finite-rank continuous mapping S1 : [0, 1] → SΦ(X,x0), such that
for all t ∈ [0, 1] we have S1(t) ⊆ S(t) and supp (S − S1)(t) ⊆ Bε(x0). We can then apply
the same lemma with ε2 to the continuous mapping S − S1 and obtain another finite-rank
continuous mapping S2 : [0, 1] → SΦ(X,x0) satisfying the desired properties. Proceeding
this way, we can form a sequence S1, S2, . . . : [0, 1] → SΦ(X,x0) of continuous mappings,
s.t. each Si admits a finite-rank continuous enumeration λi1, . . . , λ

i
ni . By construction, S =

{λ1
1, . . . , λ

1
n1
, λ2

1, . . . , λ
2
n2
, . . .}∗, and so S admits a continuous enumeration. �

Before taking up proofs of Theorem 5.2 and Theorem 5.3, we introduce the notion of
“simple continuous enumeration” which will be used in later sections:

Definition 5.4. A continuous mapping λ : [0, 1] → X is said to be simple in (X,x0), if its
support given by suppλ := {t ∈ [0, 1] | λ(t) 6= x0} is an open sub-interval of [0, 1].

Theorem 5.5 (simple continuous enumeration). If S : [0, 1] → SΦ(X,x0) is a continuous
mapping, then there exists a continuous enumeration (λi)i∈N of S with the property that all
λ1, λ2, . . . are simple continuous mappings in (X,x0).
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Proof. Since S is continuous, it admits a continuous enumeration (λ′i)i∈N. Note that the
support each λ′i is an open subset of [0, 1], and so it admits an at most countable union of
pairwise disjoint intervals I1, I2, . . . that are open in [0, 1]. We can then define the continuous
paths λ1

i , λ
2
i , . . . in X by

λji (t) :=

{
λi(t), if t ∈ Ij ,
x0, otherwise.

By construction, each λji is simple in (X,x0). Now, the doubly-indexed sequence (λji )i,j∈N is
a continuous enumeration of S. The proof is complete. �

5.2. A sketch of proofs. The remaining part of the current section is devoted entirely
to proving Theorem 5.2 (existence of finite-rank continuous enumeration) and Theorem 5.3
(theorem of finite separation). As was mentioned, Theorem 5.2 is nothing but a multiset
analogue of Kato’s selection theorem, and we will simply replicate his proof. As for the
theorem of finite separation, the following “local version” is easy to obtain:

Lemma 5.6. Let S : [0, 1] → SΦ(X,x0) be continuous, and let ε > 0 be fixed. Then for any
t0 ∈ [0, 1] there exists a neighborhood I0 of t0 and a finite-rank continuous mapping Sε : I0 →
SΦ(X,x0), such that for all t ∈ I0 we have Sε(t) ⊆ S(t) and supp (S − Sε)(t) ⊆ Bε(x0).

Proof. We can always shrink ε to ε0, so that S(t0) ∩ Bε0(x0) = S(t0) ∩ Bε(x0) and for each
s ∈ suppS(t0) we have d(x0, s) 6= ε0. If we set U0 := Bε0(x0), then there exists an open set
U1 in X s.t. dist (U0, U1) > 0 and supp (S(t0) \ U0) ⊆ U1. It follows from Theorem 4.4 that
there exists a neighborhood I0 of t0, s.t. S ∩U0, S ∩U1 are both continuous on I0 and S ∩U1

has a constant finite-rank on I0. We set Sε := (S ∩ U1)|I0 . Then for any t ∈ I0, we have
Sε(t) ⊆ S(t) and supp (S − Sε)(t) ⊆ Bε(x0). The claim follows. �

As we shall see, the theorem of finite separation is obtained by extending this local property
to the global one by “patching” appropriately chosen neighborhoods finitely many times.

5.3. A proof of Theorem 5.2 (finite-rank continuous enumeration). Given a continu-
ous SΦ(X,x0)-valued mapping S(·), there is no natural way to select a continuous enumeration
even if S has a finite-rank. However, there are some trivial examples:

Example 5.7. Let S(·) be a continuous mapping of SΦ(X,x0)-valued mapping on a metric space I. Suppose
that S(·) has a finite-rank n and that S can be written as

S(t) := {λ(t), . . . , λ(t)︸ ︷︷ ︸
n times

}∗ ∀t ∈ I

for some λ : I → X. In this case, the continuity of λ : I → X is an immediate consequence of Inequality (18).
That is, S admits a continuous enumeration.

Proof of Theorem 5.2. For brevity, let us call the finite sequence λ1, . . . , λn in the premise of
Theorem 5.2 a finite-rank continuous enumeration of S.

(A) Let us develop one preliminary result beforehand. Let I1, I2 be two overlapping subin-
tervals of I, such that I1 is located to the left of I2. Suppose that the two restrictions S|I1 , S|I2
admit finite-rank continuous enumerations (λ1

1, . . . , λ
1
n) and (λ2

1, . . . , λ
2
n) respectively. For any

t0 ∈ I1∩I2, the two finite sequences (λ1
i (t0))ni=1, (λ

2
i (t0))ni=1 are identical up to a permutation.

It follows that a finite-rank continuous enumeration exists on I1 ∪ I2. It follows that if J is a
subinterval of I s.t. each point of J has a neighborhood on which a continuous enumeration
exists, then a continuous enumeration exists on the whole interval J .
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(B) Let us prove the claim by induction on n. The base step n = 1 is done in Example 5.7.
Suppose that the claim is proved for n replaced by a smaller number and for any interval I.
Let Γ be the set of all t ∈ I for which S(t) admits the representation S(t) = {x(t), . . . , x(t)}∗,
where a point x(t) ∈ X is repeated n times. It follows from Example 5.7 again that the x(t)
depends continuously on t ∈ Γ. Since Γ is a closed subset of I by Theorem 4.4, the open set
I \ Γ can be written as countable union of pairwise disjoint open subintervals I1, I2, . . . of I.
Given any such interval Ij and any point tj ∈ Ij , since suppS(tj) can be written as a union of
two nonempty finite subsets of X, it follows from the induction hypothesis and Theorem 4.4
that tj has a neighborhood on which a finite-rank continuous enumeration exists. It follows

from (A) that a finite-rank continuous enumeration (λj1, . . . , λ
j
n) exists on each Ij . Then we

define the mappings λ1, . . . , λn : I → X by

(32) λi(t) :=

{
x(t), if t ∈ Γ,

λji (t), if t ∈ Ij , j = 1, 2, . . . .

It remains to prove the continuity of each λi. If t0 /∈ Γ, then the continuity of λi at t0 follows
by construction. If t0 ∈ Γ, then Estimate (18) allows to establish

d(λi(t0), λi(t)) = d(x(t0), λi(t)) ≤ 2 dΦ(S(t0), S(t)) ∀t ∈ I.

The continuity of λi at t0 follows from that of S. �

5.4. A proof of Theorem 5.3 (theorem of finite separation). Let us first establish the
following technical lemma:

Lemma 5.8. Let I be an interval in R, and let S be a continuous SΦ(X,x0)-valued mapping
on I. Then for each t0 ∈ I and each s ∈ suppS(t0), there exists a continuous mapping
λ : I → X with the property that λ(t0) = s and λ(t) ∈ suppS(t) for all t ∈ I.

Proof. Given any X-valued mapping λ, we denote its domain by Iλ throughout. We will
proceed with Zorn’s lemma and consider the non-trivial case x 6= x0.

(A) Let A be the set of all those continuous X-valued mappings λ, s.t. Iλ is an open
subinterval of I containing t0 and λ(t0) = x. We define a partial order � on A by

λ1 � λ2 ⇐⇒ Iλ1 ⊆ Iλ2 and λ2 restricted to Iλ1 is λ1.

If A0 = {λα}α is a totally ordered subset of A, then it has an upper bound λ0 :
⋃
α Iλα → X

defined by λ0(t) = λα(t) ⇐⇒ t ∈ Iλα . Evidently, λ0 is a well-defined continuous mapping.
(B) By Zorn’s lemma, A contains a maximal element λ : Iλ → X. It remains to prove

Iλ = I. Assume the contrary that Iλ is a proper subset of I. Then there exists a boundary
point b of Iλ with b /∈ Iλ. Without loss of generality we assume that b is the supremum of
Iλ. Let us extend the domain of λ by setting λ(b) := x0. The extended mapping λ cannot be
continuous at b, as this would contradict the maximality of Iλ. It follows that there exists an
ε > 0, s.t. any neighborhood Ib of b in I contains at least one point tb ∈ Iλ satisfying

(33) ε ≤ d(λ(b), λ(tb)) = d(x0, λ(tb)).

It follows from Lemma 5.6 that there exist a neighborhood Ib of b and a finite-rank continuous
mapping Sε : Ib → SΦ(X,x0), s.t. for all t ∈ Ib we have Sε(t) ⊆ S(t) and supp (S − Sε)(t) ⊆
Bε(x0). As mentioned above, the neighborhood Ib contains a point tb satisfying (33). Applying
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Theorem 5.2 to Sb establishes the existence of a continuous mapping λb : Ib → X s.t. λb(tb) =
λ(tb). We define the mapping µ : Iλ ∪ Ib → X by

µ(t) =

{
λ(t), if t ≤ tb,
λb(t), if t > tb.

Since µ thus defined is continuous, this contradicts the maximality of λ. The proof is complete.
�

We are now in a position to prove the theorem of finite separation:

Proof of Theorem 5.3. We say that a closed subinterval I of [0, 1] has Property X, if there
exists a continuous SΦ(X,x0)-valued mapping S′ defined on I, such that for all t ∈ I we have
Sε(t) ⊆ S(t) and supp (S − Sε)(t) ⊆ Bε(x0). We have to prove that the closed interval [0, 1]
itself has Property X.

(A) We show that if two closed subintervals I1, I2 of [0, 1] have Property X, then so does
their union I1 ∪ I2. As we shall see shortly, we may assume that I1 is located to the left
of I2 and that I1 ∩ I2 is a point-set {t0}. Let S1, S2 be finite-rank continuous SΦ(X,x0)-
valued mappings defined on I1, I2 respectively satisfying the required conditions so that I1, I2

both have Property X. It follows from Theorem 5.2 that S1, S2 admit finite-rank continuous
enumerations:

S1 = {λ1
1, . . . , λ

1
n1
}∗ and S2 = {λ2

1, . . . , λ
2
n2
}∗.

We will proceed to the following three steps:

1. After a suitable rearrangement of the finite sequence (λ2
i )
n2
i=1, we may assume that

(34) (λ1
1(t0), . . . , λ1

n(t0)) = (λ2
1(t0), . . . , λ2

n(t0))

for some n ∈ N. We may assume that n is the largest natural number s.t. (34) holds.
For each i = 1, . . . , n, define the continuous mappings λ1, . . . , λn : I1 ∪ I2 → X by

λi(t) =

{
λ1
i (t), if t ≤ t0,

λ2
i (t), if t > t0.

2. We define the continuous mapping T2 : I2 → SΦ(X,x0) by T2(t) := S(t) − S2(t). It
follows from Equality (34) that

{λ1
n+1(t0), . . . , λ1

N1
(t0)}∗ ⊆ S(t0)− S2(t0) = T2(t0).

It follows from Lemma 5.8 that there exist n1 − n continuous mappings µ2
n+1, . . . , µ

2
n1

:

I2 → X, such that (µ2
n+1(t0), . . . , µ2

n1
(t0)) = (λ1

n+1(t0), . . . , λ1
n1

(t0)) and

{µ2
n+1(t), . . . , µ2

N1
(t)}∗ ⊆ T2(t) ∀t ∈ I2.

We can then define the mappings λ1′
n+1, . . . , λ

1′
n1

: I1 ∪ I2 → X by

λ1′
i (t) =

{
λ1
i (t), if t ≤ t0,

µ2
i (t), if t > t0.

3. Repeat the previous step with 2 replaced by 1.
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We can then define the finite-rank continuous mapping Sε : I1 ∪ I2 → SΦ(X,x0) by

Sε = {λ1
1, . . . , λ

1
n, λ

1′
n+1, . . . , λ

1′
n1
, λ2′

n+1, . . . , λ
2′
n2
}∗.

By construction, the mapping Sε thus defined satisfies the desired properties in order for
I1 ∪ I2 to have Property X.

(B) By Lemma 5.6 each t ∈ [0, 1] has a neighborhood It, such that every closed subinterval
of It has Property X. Let L > 0 be a Lebesgue number of the open cover N := {It}t∈[0,1].

We can then choose a large enough number N ∈ N such that 1
N < L. It follows that each of

I1 :=

[
0,

1

N

]
, I2 :=

[
1

N
,

2

N

]
, . . . , IN :=

[
N − 1

N
, 1

]
,

is contained entirely in some member of the cover N . That is, the intervals I1, . . . , IN have
Property X. It follows from (A) that [0, 1] = I1 ∪ . . . ∪ IN has Property X. �

6. The Fundamental Group of SΦ(X,x0)

The ultimate aim of the current section is to construct the following group-isomorphism:

Theorem 6.1. Let Φ be a regular symmetric norm, and let X be a locally simply connected,
path-connected metric space with a fixed point x0 ∈ X. Then there exists a group isomorphism

ΨΦ : π1(SΦ(X,x0), Ox0)→ H1(X),

where π1(SΦ(X,x0), Ox0) is the fundamental group of X and H1(X) is the first singular
homology group of X.

6.1. Preliminaries. Here, we recall standard facts in algebraic topology. The details can be
found in any standard textbook in the subject. See, for example, [Hat, §1,2].

6.1.1. Fundamental groups. Let X be a topological space with fixed points x0, x1, x2 ∈ X.
A path in X from x0 to x1 is any continuous mapping λ : [0, 1] → X with λ(0) = x0 and
λ(1) = x1, where x0, x1 are referred to as the end-points of λ. The inverse of a path λ in X,
denoted by λ−1, is the path in X defined by λ−1(t) := λ(1− t). If λ is a path from x0 to x1

and λ′ is a path from x1 to x2, we define their product λ> λ′ by

(λ> λ′)(t) =

{
λ(2t), if 0 ≤ t ≤ 1

2 ,

λ′(2t− 1), if 1
2 ≤ t ≤ 1.

Paths λ, λ′ from x0 to x1 are said to be path-homotopic or homotopic in short, if there exists
a continuous mapping H : [0, 1] × [0, 1] → X with H(·, 0) = λ(·), H(·, 1) = λ′(·), H(0, ·) ≡
x0, H(1, ·) ≡ x1. Such a mapping H is called a homotopy from λ to λ′.

A loop in (X,x0) is any path λ in X satisfying λ(0) = λ(1) = x0. Two loops λ, λ′ in
(X,x0) are considered equivalent, if there exists a homotopy from λ to λ′. Equivalence of
loops induces an equivalence relation on the set of loops in (X,x0), and the set of all the
equivalence classes, denoted by π1(X,x0), forms a group under the operation

[λ]π1 > [λ′]π1 = [λ> λ′]π1 ,

where [ · ]π1 denotes equivalence classes in π1(X,x0). The group π1(X,x0) is called the fun-
damental group of (X,x0). The identity element of the fundamental group π1(X,x0) is the
equivalence class represented by the constant loop [0, 1] 3 t 7−→ x0 ∈ X, and any loops in this
equivalence class are said to be null-homotopic. Let us recall the following basic terminology:
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1. The topological space X is said to be path-connected, if any two points in X can be
joined by some path in X. It is a well-known result that a path-connected space X
has a unique fundamental group in the sense that for any two points x0, x1 ∈ X, the
fundamental groups π1(X,x0), π1(X,x1) are isomorphic to each other.

2. The topological space X is said to be simply connected, if X is path-connected and if X
has the trivial fundamental group.

3. The topological space X is said to be locally simply connected, if every point of X has a
local base of simply connected open subsets of X.

6.1.2. Singular homology groups. Let X be a topological space. The standard n-simplex is

∆n :=

{
(t0, . . . , tn) ∈ Rn+1 |

n∑
i=0

ti = 1 and ti ≥ 0 ∀i = 0, . . . , n

}
.

A (singular) n-simplex in X is any continuous mapping of the form ∆n → X. The free
Abelian group generated by the set of all n-simplices in X is denoted by Cn(X). A member
of Cn(X), known as an n-chain in X, is a formal finite sum of the form

∑
i niσi, where ni

are integers and σi are n-simplices. We define the mappings d0, . . . , dn : ∆n−1 → ∆n by
di(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1). Given an n-simplex σ of X, its boundary ∂nσ
is the (n− 1)-chain

∂nσ :=
n∑
i=0

(−1)i(σ ◦ di) ∈ Cn−1(X).

We can then extend this formula in the obvious way to obtain a group homomorphism ∂n :
Cn(X) → Cn−1(X) known as the n-th boundary homomorphism. Members of ker ∂n are
referred to as n-cycles. It can be shown that im ∂n+1 ⊆ ker ∂n, and so we can form the
quotient group Hn(X) := ker ∂n/im ∂n+1, known as the n-th (singular) homology group. From
here on, by homology groups, we shall always mean singular homology groups.

6.1.3. The Fundamental group and first homology group. Let X be a topological space. We
will make use of the following notations:

1. Given two paths λ, λ′ in X having the same end-points, we write λ ∼ λ′ if λ, λ′ are
path-homotopic to each other.

2. Given two 1-chains σ, σ′ in X with σ − σ′ ∈ ker ∂1, we write σ ' σ′ if σ − σ′ ∈ im ∂2.

3. Let [ · ]π1 , [ · ]H1 denote equivalence classes in π1(X,x0), H1(X) respectively.

Note that paths in X can be viewed as 1-chains in C1(X). With this convention in mind,
we will freely use the following well-known result without any further comment:

Lemma 6.2. Let λ, µ be two paths in X.

1. λ−1 ' −λ.

2. If λ ∼ µ, then λ ' µ.

3. If λ(1) = µ(0), then λ> µ ∼ λ+ µ.

The following theorem shows that the first singular homology group H1(X) is the abelian-
isation of the fundamental group π1(X,x0) provided that X is path-connected:

Theorem 6.3 ([Hat, Theorem 2A.1]). The correspondence

(35) π1(X,x0) 3 [λ]π1 7−→ [λ]H1 ∈ H1(X)



A TOPOLOGICAL APPROACH TO SPECTRAL FLOW 33

defines a group homomorphism from π1(X,x0) into H1(X). Furthermore, if X is
path-connected, then (35) is surjective and its kernel is the commutator subgroup
[π1(X,x0), π1(X,x0)].

Recall that the commutator subgroup [π1(X,x0), π1(X,x0)] is the subgroup of π1(X,x0)
generated by elements of the form [λ> µ> λ−1 > µ−1]π1 where λ, µ are loops in (X,x0).

6.2. Isomorphism ΨΦ : π1(SΦ(X,x0), Ox0)→ H1(X).

Notation. We will assume the following throughout the remaining part of the current section:

1. Let Φ be a regular symmetric norm.

2. Let (X, d) be a locally simply connected, path-connected metric space, and let x0 ∈ X.

3. We identify the constant loops t→ x0 and t→ Ox0 with x0 and Ox0 respectively.

If S is a loop in (SΦ(X,x0), Ox0) admitting a continuous enumeration (λi)i∈N, then each
λi is a loop in (X,x0). Furthermore, since X has a simply connected neighborhood of x0, it
immediately follows from the second part of Remark 4.8 that all but finitely many λi’s are
null-homotopic. This allows us to understand the formal infinite sum

(36)

∞∑
i=1

λi = λ1 + λ2 + λ3 + . . .

as the 1-cycle in X formed by summing up all those λi’s that are not null-homotopic: if all
λi’s happen to be null-homotopic, then we set

∑∞
i=1 λi = x0. We will prove the following

technical theorem in the next subsection:

Theorem 6.4. If S, T are homotopic loops in (SΦ(X,x0), Ox0) admitting continuous enu-
merations (λi)i∈N, (µi)i∈N respectively, then

∑∞
i=1 λi '

∑∞
i=1 µi.

We are now in a position to introduce a mapping ΨΦ : π1(SΦ(X,x0), Ox0)→ H1(X):

Definition 6.5. Given S ∈ π1(SΦ(X,x0), Ox0), we select any loop S ∈ S and any continuous
enumeration (λi)i∈N of S. We define ΨΦ(S) := [

∑∞
i=1 λi]H1

.

We will prove that ΨΦ thus defined is a group isomorphism using the following two lemmas:

Lemma 6.6. The following assertions hold true:

1. If S, S′, T, T ′ are paths in SΦ(X,x0) with S ∼ T, S′ ∼ T ′, then S + S′ ∼ T + T ′.

2. If λ, λ′ are homotopic paths in X, then {λ}∗, {λ′}∗ are homotopic paths.

3. If λ, λ′ are homotopic loops in (X,x0), then {λ, λ′}∗, {λ> λ′}∗ are homotopic loops.

Proof. For the first part, if H,H ′ are homotopies from S to T and from S′ to T ′ respectively,
then H+H ′ is a homotopy from S+S′ to T +T . For the second part, if h is a homotopy from
λ to λ′, then {h}∗ is a homotopy from {λ}∗ to {λ′}∗. For the last part, it is easy to observe
that {λ > x0, x0 > λ′}∗ = {λ > λ′}∗. It follows from the second part that {λ}∗ ∼ {λ > x0}∗
and {λ′}∗ ∼ {x0 > λ′}∗. The claim follows by the first part. �

Lemma 6.7. If S is a loop in (SΦ(X,x0), Ox0) admitting a continuous enumeration λ1, λ2, . . .
all of which are null-homotopic loops, then S is also null-homotopic.

We shall make use of the notation R(·) introduced in Remark 4.8.
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Proof. (A) Since X is locally simply connected, for each m ∈ N there exists a pair of a simply
connected neighborhood Um of x0 and a positive number δm < 1/m satisfying Bδm(x0) ⊆
Um ⊆ B1/m(x0). That is, if we have a loop λ in (X,x0) satisfying R(λ) < δm, then there exists
a homotopy hλ from x0 to λ satisfying R(hλ) < 1/m. We may assume supi∈NR(λi) < δ1

without loss of generality5, and so for each loop λi there exists a unique mi ∈ N s.t. δmi+1 ≤
R(λi) < δmi . It follows that there exists a homotopy hλi from x0 to λi s.t. R(hλi) < 1/mi.
We renumber the sequence (λi)i∈N so that m1 ≤ m2 ≤ m3 ≤ . . .. As in the second part of
Remark 4.8, the sequence (mi)i∈N thus defined is necessarily unbounded, and so R(hλi)→ 0
as i→∞.

(B) Our idea is that instead of “continuously deforming” λ1, λ2, . . . at once, we do so one by
one. More precisely, we try to construct a homotopy H from Ox0 to S = {λ1, λ2, . . .} in such
a way that deformation of each λn takes place within the rectangular strip [0, 1] × [ 1

n ,
1

n−1 ].

For this purpose, we introduce the “reparametrisations” γn : [ 1
n ,

1
n−1 ]→ [0, 1], where n ∈ N:

γn(s) := n(n− 1)s− (n− 1).

We can then define a homotopy hn : [0, 1]× [0, 1]→ X from x0 to λn by

hn(t, s) =


x0, if s < 1

n ,

hλn(t, γn(s)), if s ∈
[

1
n ,

1
n−1

]
,

λn(t), if s > 1
n−1 .

For each (t, s) ∈ [0, 1] × [0, 1], we set H(t, s) := {h1(t, s), h2(t, s), . . .}∗. By construction, H
restricted to the rectangular strip [0, 1]× [ 1

n ,
1

n−1 ] is of the form

H(t, s) = {hλn(t, γn(s)), λn+1(t), λn+2(t), . . .}∗ ∀(t, s) ∈ [0, 1]×
[

1

n
,

1

n− 1

]
,

and the Φ-summability of each H(t, s) follows from that of S(t). It follows that the sequence
h1, h2, . . . : [0, 1]× [0, 1]→ X is a pointwise Φ-summable sequence in X. It remains to prove
the continuity of H by the first part of Theorem 4.7.

(C) Given arbitrary ε > 0, there exists a large enough index N s.t. for all n ≥ N

R(hλn) <
ε

2
and Φ(d(x0, λn+1(·)), d(x0, λn+2(·)), . . .) < ε

2
.

To prove the continuity of H by Theorem 4.7, it remains to prove

(37) Φ(d(x0, hN+1(t, s)), d(x0, hN+2(t, s)), . . .) < ε ∀(t, s) ∈ [0, 1]× [0, 1].

Let (t, s) be an arbitrary point in [0, 1]× [0, 1], and suppose s ∈
[

1
n ,

1
n−1

]
for some n ∈ N. If

n < N , then (37) trivially holds as

Φ(d(x0, hN+1(t, s)), d(x0, hN+2(t, s)), . . .) = Φ(d(x0, λN+1(t)), d(x0, λN+2(t)), . . .) <
ε

2
< ε.

5 Indeed, the first part of Remark 4.8 with ε := δ1 asserts the existence of an indexN s.t. supn≥N+1 M(λn) <

δ1, and we have S = {λ1, . . . , λN}∗ + {λN+1, . . .}∗ ∼ Ox0 + {λN+1, . . .}∗ ∼ {λN+1, . . .}∗ by Lemma 6.6.
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It remains to prove (37) for the case n ≥ N . Now,

Φ(d(x0, hN+1(t, s)), d(x0, hN+2(t, s)), . . .)

= Φ(d(x0, hN+1(t, s)), . . . , d(x0, hn−1(t, s)), d(x0, hn(t, s)), d(x0, hn+1(t, s)) . . .)

= Φ(d(x0, x0), . . . , d(x0, x0), d(x0, hλn(t, γn(s)), d(x0, λn+1(t)), . . .)

≤ d(x0, hλn(t, γn(s)) + Φ(d(x0, λn+1(t)), d(x0, λn+2(t)), . . .)

< R(hλn) +
ε

2
<
ε

2
+
ε

2
= ε,

thereby establishing (37). The proof is complete. �

Proof of Theorem 6.1. Let us first show that ΨΦ is a group homomorphism. Let S, T be
two homotopic loops in (SΦ(X,x0), Ox0) admitting continuous enumerations (λi)i∈N, (µi)i∈N
respectively. Since the sequence (λi > µi)i∈N is a continuous enumeration of the loop S > T ,

ΨΦ([S]π1 > [T ]π1) = ΨΦ([S > T ]π1)

= [λ1 > µ1 + λ2 > µ2 + . . .]H1

= [(λ1 + λ2 + . . .) + (µ1 + µ2 + . . .)]H1

= ΨΦ([S]π1) + ΨΦ([T ]π1),

where the third equality follows from the fact that all but finitely many loops in (λi > µi)i∈N
are null-homotopic.

Since the surjectivity of ΨΦ follows immediately from Theorem 6.3, it suffices to prove the
injectivity. Suppose that ΨΦ([S]) = 0 and that (λi)i∈N is a continuous enumeration of S.
Then there exists a large enough index N s.t. λn is null-homotopic for all n ≥ N . By Lemma
6.7 we have

S = {λ1, . . . , λn}∗ + {λn+1, λn+2, . . .}∗ ∼ {λ1, . . . , λn}∗ +Ox0 ∼ {λ1, . . . , λn}∗.
By assumption we have x0 ' λ1+. . .+λn ' λ1>. . .>λn. Then Theorem 6.3 asserts that there
exist [γ1], . . . , [γm] ∈ [π1(X,x0), π1(X,x0)] s.t. λ1>. . .>λn ∼ γ1>. . .>γm. Since {γi}∗ ∼ Ox0

for each i = 1, . . . ,m, it follows from Lemma 6.6 that {λ1, . . . , λn}∗ ∼ {γ1> . . .>γm}∗ ∼ Ox0 .
Thus S ∼ Ox0 . The injectivity of ΨΦ follows. �

6.3. A proof of Theorem 6.4 (well-definedness of ΨΦ). We now work towards proving
Theorem 6.4. As we shall see, we will need to deal with loops in SΦ(X,x0) that are not nec-
essarily based at Ox0 . Note that members of a continuous enumeration (λi)i∈N of such a loop
S may not necessarily be loops, and so the formal sum (36) requires a certain modification.
Let us begin our discussion with the following terminology:

Definition 6.8. Let U be a path-connected neighborhood of x0, and let λ be a path in X.
A path of the form λ> θ is called a U -right-extension of λ, if θ satisfies the following:

1. If λ(1) ∈ U , then θ is a path in U s.t. θ(0) = λ(1) and θ(1) = x0.

2. If λ(1) /∈ U , then θ is the constant path assuming λ(1).

The notion of U -left-extension is defined analogously. A path of the form θl>λ> θr is called
a U -extension, if the two paths θl>λ and λ> θr are a U -left-extension and U -right-extension
of λ respectively.

Let us consider basic properties of U -extension:

Lemma 6.9. Let U be a simply connected neighborhood of x0, and let λ, µ be paths in X:
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1. If λ′, λ′′ are two U -extensions of λ, then λ′ ∼ λ′′.
2. If λ′ is a U -extension of λ, then (λ′)−1 is a U -extension of λ−1.

3. If λ is a loop in X and if λ′ is an U -extension of λ, then λ ' λ′.
4. If λ(1) = µ(0) and if λ′, µ′ are U -extensions of λ, µ respectively, then λ′>µ′ is homotopic

to a U -extension of λ> µ.

Proof. Suppose λ′, λ′′, µ′ have the forms λ′ = θ′l>λ>θ′r, λ′′ = θ′′l >λ>θ′′r , and µ′ = θ′′′l >µ>θ′′′r .
For the first part, observe that θ′l ∼ θ′′l and θ′r ∼ θ′′r . It follows that

λ′ = θ′l > λ> θ′r ∼ θ′′l > λ> θ′′r = λ′′.

For the second part, we have (λ′)−1 = (θ′r)
−1>λ−1>(θ′l)

−1. Evidently, (λ′)−1 is a U -extension
of λ−1. The third part follows easily from the fact that U is simply connected. For the last
part, since λ(1) = µ(0), the path θ′r > θ′′′l is either a constant path or a null-homotopic loop.
Thus, λ′ > µ′ ∼ θ′l > (λ> µ) > θ′′′r , where the right hand side is a U -extension of λ> µ. �

Let U be a simply connected neighborhood of x0 and let S be a path in SΦ(X,x0) admitting
a continuous enumeration (λi)i∈N. A U -extension of (λi)i∈N is any sequence (λ′i)i∈N of paths
in X, s.t. λ′1, λ

′
2, . . . are U -extensions of λ1, λ2, . . . respectively. As before, it follows from

Remark 4.8 that all but finitely many paths in (λi)i∈N have their images entirely included in
the neighborhood U . That is, all but finitely many paths in (λ′i)i∈N are null-homotopic loops
in (X,x0). This fact allows us to consider the infinite formal sum

∞∑
i=1

λ′i = λ′1 + λ′2 + λ′3 + . . .

as the 1-chain in X formed by summing up all those paths in (λ′i)i∈N that are not null-
homotopic loops in (X,x0). It is always possible to choose a large enough index N ∈ N, so
that for each n > N the image of the path λn is in U . In this case,

∑∞
i=1 λ

′
i ' λ′1 + . . .+ λ′N .

Lemma 6.10. Let U be a simply connected neighborhood of x0, and let S be a path
in SΦ(X,x0) admitting a continuous enumeration (λi)i∈N. Let (λ′i)i∈N, (λ

′′
i )i∈N be two U -

extension of (λi)i∈N. Then:

1.
∑∞

i=1 λ
′
i '

∑∞
i=1 λ

′′
i .

2.
∑∞

i=1(λ′i)
−1 ' −

∑∞
i=1 λ

′
i.

3.
∑∞

i=1 λ
′
i =

∑∞
i=1 λ

′
πi for any permutation π.

4. If S is a loop in SΦ(X,x0), then
∑∞

i=1 λ
′
i is a 1-cycle in X.

Proof. The first and second parts follow from Lemma 6.9. The third part is obvious. For the
last part, suppose that S is a loop and that N is a large enough index s.t. for all n > N
the path λ′n is a null-homotopic loop in (X,x0). Since S(0) = S(1), it is easy to see that
the two sequences (λ′i(0))i∈N, (λ

′
i(1))i∈N are identical up to a permutation. It follows that the

two finite sequences (λ′i(0))Ni=1, (λ
′
i(1))Ni=1 are also identical up to a permutation. Now, since∑∞

i=1 λ
′
i ' λ′1 + . . .+ λ′N , the sum

∑∞
i=1 λ

′
i is a 1-cycle. �

This Lemma 6.10 allows us to introduce the following notation:
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Definition 6.11. Let U be a simply connected neighborhood of x0, and let S be a loop in
SΦ(X,x0) admitting a continuous enumeration (λi)i∈N. Then we define

ΨU
Φ((λi)i∈N) :=

[ ∞∑
i=1

λ′i

]
H1

,

where (λ′i)i∈N is any U -extension of (λi)i∈N.

We are now in a position to state and prove the following generalisation of Theorem 6.4:

Theorem 6.12. Let U be a simply connected neighborhood of x0, and let S0 ∈ SΦ(X,x0) be
fixed. If S, T are two homotopic loops in (SΦ(X,x0), S0) and if (λi)i∈N, (µi)i∈N are continuous
enumerations of S, T respectively, then ΨU

Φ((λi)i∈N) = ΨU
Φ((µi)i∈N).

Evidently, Theorem 6.4 is an immediate corollary. Theorem 6.12 will be proved with the
aid of the following two lemmas:

Lemma 6.13. Let U be a simply connected neighborhood of x0. Let S1, . . . , Sn be paths in
SΦ(X,x0) s.t. S1> . . .>Sn is a loop. Suppose that S1, . . . , Sn admit continuous enumerations

(λ1
i )i∈N, . . . , (λ

n
i )i∈N respectively, and that λji (1) = λj+1

i (0) for each i ∈ N and each j =

1, . . . , n − 1. Let (λ1′
i )i∈N, . . . , (λ

n′
i )i∈N be U -extensions of (λ1

i )i∈N, . . . , (λ
n
i )i∈N respectively.

Then
∑∞

i=1 λ
1′
i + . . .+

∑∞
i=1 λ

n′
i is a 1-cycle, and

ΨU
Φ((λ1

i > . . .> λni )i∈N) =

[ ∞∑
i=1

λ1′
i + . . .+

∞∑
i=1

λn
′
i

]
H1

.

Note that the left hand side of the above expression makes sense, because (λ1
i > . . .>λni )i∈N

is a continuous enumeration of the loop S1 > . . .> Sn.

Proof. For notational simplicity, we consider the case n = 2. Let N be a large enough index
s.t. for all n > N the two paths λ1′

n , λ
2′
n are both null-homotopic loops in (X,x0). It follows

that λ1′
n > λ2′

n is a null-homotopic loop in (X,x0) for each n > N . Note also that each path

λ1′
i > λ2′

i is homotopic to a U -extension of λ1
i > λ2

i as in the last part of Lemma 6.9. That is,

λ1′
1 > λ2′

1 + . . .+ λ1′
N > λ2′

N is a 1-cycle, and

ΨU
Φ((λ1

i > λ2
i )i∈N) =

[
λ1′

1 > λ2′
1 + . . .+ λ1′

N > λ2′
N

]
H1

.

The claim follows by

λ1′
1 > λ2′

1 + . . .+ λ1′
N > λ2′

N ' λ1′
1 + λ2′

1 + . . .+ λ1′
N + λ2′

N

' (λ1′
1 + . . .+ λ1′

N ) + (λ2′
1 + . . .+ λ2′

N )

'
∞∑
i=1

λ1′
i +

∞∑
i=1

λ2′
i .

�

Lemma 6.14. Let U be a simply connected neighborhood of x0, and let H be a continuous
SΦ(X,x0)-valued mapping on a metric space I. Then for each r ∈ I there exists a neighborhood
N(r) of r, s.t. for any loop γ in N(r) and for any continuous enumeration (λi)i∈N of the loop
H ◦ γ, we have ΨU

Φ((λi)i∈N) = 0.
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Proof. Let r ∈ I be fixed. We can choose an open ball U0 := Bε(x0), s.t. U0 ⊆ U and for all
x ∈ suppH(r) we have d(x0, x) 6= ε. Suppose that supp (H(r) \ U0) = {x0, . . . , xn}, where
x0, . . . , xn are distinct points inX. We can then choose neighborhoods U ′1, . . . , U

′
n of x1, . . . , xn

respectively, s.t. (U0, . . . , U
′
n) is positively separated. Since X is locally simply connected, we

can choose simply connected neighborhoods U1, . . . , Un of x1, . . . , xn respectively, s.t. Ui ⊆ U ′i
for each i = 1, . . . , n. By construction, (U0, . . . , Un) is also positively separated. It follows
from Theorem 4.4 that there exists a neighborhood N(r) of r, s.t. H ∩ U0, . . . ,H ∩ Un are
continuous and the following mapping is constant:

N(r) 3 t 7−→ (rank (H(t) ∩ U1), . . . , rank (H(t) ∩ Un)) ∈ Zn.

Suppose that γ is a loop in N(r) and that (λi)i∈N is a continuous enumeration of the loop
Sγ := H ◦ γ. By construction, Sγ admits a representation

Sγ = Sγ ∩ U0 + . . .+ Sγ ∩ Un.

It follows that the image of each path λi is included entirely in one of U0, . . . , Un, since
(U0, . . . , Un) was chosen to be positively-separated. Without loss of generality, we may assume
that λ1, . . . , λN are all those paths in (λi)i∈N whose images are not in U0. That is, Sγ \U0 =
{λ1, . . . , λN}∗. We can then relabel λ1, . . . , λN into λ1

1, . . . , λ
1
N1
, . . . , λn1 , . . . , λ

n
Nn

, in such a

way that for each j = 1, . . . , n, we have Sγ ∩ Uj = {λj1, . . . , λ
j
Nj
}∗. Note that each sum

λj1 + . . .+λjNj is a 1-cycle, as the path S∩Uj is a loop. Since U1, . . . , Un are simply connected,

λj1 + . . .+ λjNj ' x0 ∀j = 1, . . . , n.

Let (λ′i)i∈N be an U -extension of (λi)i∈N. Given each path λji , we let λj
′

i be the corresponding

U -extension of λji taken from (λ′i)
N
i=1. Since U is simply connected, we have λj

′

1 + . . .+λj
′

Nj
'

λj1 + . . .+ λjNj for each j = 1, . . . , n. Now,

ΨU
p ((λi)i∈N) = [λ′1 + . . .+ λ′N ]H1

= [λ1′
1 + . . .+ λ1′

N1
]H1 + . . .+ [λn

′
1 + . . .+ λn

′
Nn ]H1

= 0.

�

The following proof is seemingly standard. See, for example, [Phi, Proposition 3].

Proof of Theorem 6.12. (A) Let U be a simply connected neighborhood of x0, and let S0 ∈
SΦ(X,x0) be fixed. Let S, T be homotopic loops in (SΦ(X,x0), S0), and let H be a homotopy
from S to T . Then the square [0, 1]× [0, 1] has an open cover N := {N(r) | r ∈ [0, 1]× [0, 1]},
where N(r) is a neighborhood of r having the property specified in Lemma 6.14. Let L > 0 be
a Lebesgue number of the open cover N . Select a large enough positive number n satisfying
1
n <

L√
2
, and form n closed intervals

I1 :=

[
0,

1

n

]
, I2 :=

[
1

n
,

2

n

]
, . . . , In :=

[
n− 1

n
, 1

]
.

This allows us to partition the square [0, 1]× [0, 1] into a grid of n×n squares, {Ii×Ij}1≤i,j≤n.
By the choice of n, each square Ii × Ij has the diameter < L, and so each square Ii × Ij is
entirely included in some member of the open cover N .
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(B) Let us first consider the n squares

R1 := I1 × I1, R2 := I2 × I1, . . . , Rn := In × I1.

Let a1, . . . , an, b1, . . . , bn, c0, . . . , cn be the paths in [0, 1]× I1 as shown in the figure below:

t

s

1
n

1
n

2
n

n−1
n 1

a1 a2 an

b1 b2 bn

c0 c1 c2 cn−1 cnR1 R2 Rn

Figure 1. The boundaries of the squares are traced as above.

We will assume that all of the paths shown above trace the edges of the squares R1, . . . , Rn
at a “constant speed”. Let us introduce some terminology:

1. Sets of the form Ri,j := Ri ∪Ri+1 ∪ . . . ∪Rj−1 ∪Rj are referred to as rectangles.

2. The boundary loop of the rectangle Ri,j , denoted by Γi,j , is defined to be

Γi,j := (ai > ai+1 > . . .> aj) > c−1
j > (bi > bi+1 > . . .> bj)

−1 > ci−1.

3. The rectangle Ri,j is said to have Property Y, if for any continuous enumeration (λi)i∈N
of the loop H ◦ Γi,j we have ΨU

Φ((λi)i∈N) = 0.

Note that each square Ri = Ri,i has Property Y, as it is included entirely in some member of
the open cover N as in (A).

(C) We will show that if two rectangles Ri,j , Rj+1,k have Property Y, then so does their
unionRi,k = Ri,j∪Rj+1,k. For notational simplicity, we will consider the special caseRi,j = R1

and Rj+1,k = R2. Let (λi)i∈N be an arbitrary continuous enumeration of the loop

H ◦ Γ1,2 = (H ◦ a1) > (H ◦ a2) > (H ◦ c−1
2 ) > (H ◦ b−1

2 ) > (H ◦ b−1
1 ) > (H ◦ c0).

We can then choose continuous enumerations (λ1
i )i∈N, . . . , (λ

6
i )i∈N of the 6 paths H◦a1, H◦a2,

H ◦ c−1
2 ,H ◦ b−1

2 , H ◦ b−1
1 , H ◦ c0 respectively, s.t. for each i ∈ N we have λi = λ1

i > . . .> λ6
i .

Indeed, each λji is merely a “reparametrisation” of the restriction λi|[ j−1
6
, j
6

]
6. Let (θi)i∈N be a

continuous enumeration of H ◦c1, and let (θ′i)i∈N be an U -extensions of (θi). Then ((θ′i)
−1)i∈N

6 More precisely, we define each path λji : [0, 1]→ X by

λji (t) := λi

(
(j − 1)(1− t)

6
+
jt

6

)
.
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is a U -extension of (θ−1
i )i∈N by Lemma 6.9. By Lemma 6.13, we obtain

ΨU
Φ((λi)i∈N) = ΨU

Φ((λ1
i > . . .> λ6

i )i∈N) + 0

=

[ ∞∑
i=1

λ1′
i + . . .+

∞∑
i=1

λ6′
i

]
H1

+

[ ∞∑
i=1

θ′i +

∞∑
i=1

(θ′i)
−1

]
H1

=

[ ∞∑
i=1

λ1′
i +

∞∑
i=1

(θ′i)
−1 +

∞∑
i=1

λ5′
i +

∞∑
i=1

λ6′
i

]
H1

+

[ ∞∑
i=1

λ2′
i +

∞∑
i=1

λ3′
i +

∞∑
i=1

λ4′
i +

∞∑
i=1

θ′i

]
H1

= 0 + 0 = 0,

where the fourth equality follows from the fact that (λ1′
i )i∈N, ((θ

′
i)
−1)i∈N, (λ

5′
i )i∈N, (λ

6′
i )i∈N

and (λ2′
i )i∈N, (λ

3′
i )i∈N, (λ

4′
i )i∈N, (θ

′
i)i∈N can be renumbered to form continuous enumerations

of H ◦ Γ1,1, H ◦ Γ1,2 respectively. That is, we have shown that if two rectangles Ri,j , Rj+1,k

have Property Y, then so does Ri,k. Since each square has Property Y, it follows that the
rectangle [0, 1]× I1 has Property Y.

(D) Let (λi)i∈N, (µi)i∈N be continuous enumerations of H(·, 0), H(·, 1
n) respectively. We

show that ΨU
Φ((λi)i∈N) = ΨU

Φ((µi)i∈N). Suppose that S0 = {s1, s2, . . .}∗ and that θ1, θ2, . . .
are paths in X taking the constant values s1, s2, . . . respectively. Evidently, ΨU

Φ((θi)i∈N) = 0.
If (λ′i)i∈N, (µ

′
i)i∈N, (θ

′
i)i∈N are U -extensions of (λi)i∈N, (µi)i∈N, (θi)i∈N respectively, then

ΨU
Φ((λi)i∈N)−ΨU

p ((µi)i∈N) =

[ ∞∑
i=1

λ′i −
∞∑
i=1

µ′i

]
H1

=

[ ∞∑
i=1

λ′i +
∞∑
i=1

θ′i +
∞∑
i=1

(µ′i)
−1 +

∞∑
i=1

θ′i

]
H1

= 0,

where the last equality follows from the fact that (λi)i∈N, (θi)i∈N, (µ
−1
i )i∈N, (θi)i∈N can

be renumbered to form a continuous enumeration of the loop H ◦ Γ1,n. That is,
ΨU

Φ((λi)i∈N) = ΨU
Φ((µi)i∈N). The claim follows by applying the same argument to all of

H|[0,1]×I1 , . . . ,H|[0,1]×In finitely many times. �

Therefore, we obtain Theorem 6.4 as special case of this result.

7. Infinite-dimensional Analogues of T. Kato’s Continuous Enumeration

Notation. Throughout this section we will assume the following:

1. Let H be a separable Hilbert space.

2. Let Φ be a symmetric norm.

The purpose of the current section is to give certain infinite-dimensional analogues of
Kato’s finite-dimensional continuous enumeration (Theorem 1.3). We will first discuss one
preliminary concept, the notion of factor metric space.

7.1. Factoring metric spaces by compact subsets. Given a topological space X with
a subset K, we denote by X/K the topological quotient space formed by the equivalence
relation which identifies all points in K and leaves other points as they are. Equivalence
classes in X/K shall be denoted by [ · ]K .
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Theorem 7.1. If (X, d) is a metric space having a compact subset K, then the factor space
X/K is a metrizable topological space whose topology is given by the metric

(38) dist ([x]K , [y]K) := min

{
d(x, y), inf

k∈K
d(x, k) + inf

k∈K
d(k, y)

}
,

Furthermore, if X is a path-connected, separable, complete metric space, then so is X/K.

A proof of this theorem turns out to be technical, and so we will discuss it at the end of the
current section. Given a metric space X and a compact subset K, the quotient space X/K
contains the equivalence class K represented by points of K. Since X/K can be viewed as a
metric space with a fixed point K, we may consider the multiset space

SΦ(X,K) := SΦ(X/K,K).

If K happens to be a point-set {x0} for some x0 ∈ X, then there is a canonical identification
between SΦ(X, {x0}) and SΦ(X, x0), as X/{x0} and X are naturally isometric.

Lemma 7.2. Let X be either T or R, and let K be a compact subset of X. If λ′ is a
simple continuous path in (X/K,K), then there exists a continuous path λ in X satisfying
λ′(·) = [λ(·)]K with the property that λ assumes some constant value which is a boundary
point of K on each connected component of [0, 1] \ suppλ′.

Before taking up a proof, let us observe that this result does not seem to hold if X = C.
Indeed, a continuous path in C/K can be “absorbed into the compact set K with increasing
frequency”. Such a path can easily be constructed using a topologist’s sine curve for example.

Proof. Suppose suppλ′ = (0, 1] for notational simplicity. It follows that for each t ∈ (0, 1]
there exists a unique point, denoted by λ(t) ∈ X, satisfying λ′(t) = [λ(t)]K . This uniquely
defines a mapping λ : (0, 1] → X whose continuity follows from that of λ′. Since λ′ is
continuous at t = 0, we have

lim
t→0+

dist (λ′(t), λ′(0)) = lim
t→0+

dist (λ′(t),K) = lim
t→0+

inf
k∈K

d(λ(t), k) = 0.

Since X = R or X = T, there exists a unique boundary point k0 ∈ ∂K s.t. infk∈K d(λ(t), k) =
d(λ(t), k0) for any t sufficiently close to 0. It follows that

lim
t→0+

d(λ(t), k0) = 0.

Setting λ(0) := k0 continuously extends the domain of λ to the whole interval [0, 1]. Evidently,
λ(·) = [λ(·)]K still holds true on the whole interval [0, 1], and so the proof is complete. �

7.2. A unitary analogue of Kato’s continuous enumeration. Given a fixed unitary
operator U0 on the separable Hilbert space H, we define the set UΦ(H, U0) to be the collection
of all unitary operators U on H with U − U0 ∈ SΦ(H). The collection UΦ(H, U0) forms a
complete metric space with the metric

dist (U,U ′) := ‖U − U ′‖SΦ
∀U,U ′ ∈ UΦ(H, U0).

We will make use of the following assumption throughout:

Assumption 7.3. The unitary operator U0 has the property that UΦ(H, U0) contains at least
one unitary operator whose discrete spectrum is empty.
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Let us assume that the fixed unitary operator U0 satisfies Assumption 7.3. In this case,
the essential spectrum K := σess(U0) is nonempty. The spectrum of each unitary operator
U ∈ UΦ(H, U0) can then be identified with the following countable multiset in (T/K,K):

(39) σ(U) := {[z1]K , [z2]K , . . .}∗,
where (zi)i∈N is any extended enumeration of σdis(U) in the sense of Definition 1.4. The
following theorem holds true:

Theorem 7.4. If U0 is a unitary operator on the separable Hilbert space H satisfying As-
sumption 7.3, then the following mapping is a well-defined π/2-Lipschitz continuous mapping:

σ : UΦ(H, U0) 3 U 7−→ σ(U) ∈ SΦ(T, σess(U0)).

Proof. Let K := σess(U0), and let d be the metric on T/K given by (38). We need to show

(40) dΦ(σ(U), σ(U ′)) ≤ π

2
‖U − U ′‖SΦ

∀U,U ′ ∈ UΦ(H, U0).

Let us first derive estimate (40). Theorem 1.7 asserts that there exist extended enumerations
(λi)i∈N, (µi)i∈N of the discrete spectra of U,U ′ respectively, s.t.

Φ(|λ1 − µ1|, |λ2 − µ2|, . . .) ≤
π

2
‖U − U ′‖SΦ

.

Since (λi)i∈N, (µi)i∈N are enumerations of the multisets σ(U), σ(U ′) respectively, we have

dΦ(σ(U), σ(U ′)) ≤ Φ(d(λ1, µ1), d(λ2, µ2), . . .) ≤ Φ(|λ1 − µ1|, |λ2 − µ2|, . . .) ≤
π

2
‖U − U ′‖SΦ

,

thereby establishing estimate (40). Since U0 satisfies Assumption 7.3, there exists a unitary
operator U ′ whose spectrum, viewed as the multiset, is K. It follows that for each U ∈
UΦ(H, U0), we have σ(U) ∈ SΦ(T,K). It follows that σ : UΦ(H, U0) → SΦ(T,K) is a well-
defined π/2-Lipschitz continuous mapping. The proof is now complete. �

We are now in a position to give the following unitary analogue of Kato’s finite-dimensional
continuous enumeration.

Theorem 7.5. Let U0 be a fixed unitary operator on the separable Hilbert space H satisfying
Assumption 7.3, and let K := σess(U0). If U is a continuous path in UΦ(H, U0), then there
exists a sequence (λi)i∈N of continuous paths in T, s.t.

1. σ(U(·)) = {[λ1(·)]K , [λ2(·)]K , . . .}∗.
2. (λi(·))i∈N is an extended enumeration of σdis(U(·)) pointwise.

Proof. This is an immediate consequence of Theorem 5.5, Lemma 7.2, and Theorems 7.4. �

7.3. A self-adjoint analogue of Kato’s continuous enumeration. Given a fixed self-
adjoint operator H0 on H, we define the set HΦ(H, H0) to be the collection of all self-adjoint
operators H on H with H−H0 ∈ SΦ(H). The collection HΦ(H, H0) forms a complete metric
space with the metric

dist (H,H ′) := ‖H −H ′‖SΦ
∀H,H ′ ∈ HΦ(H, H0).

Assumption 7.6. The self-adjoint operator H0 has the property that HΦ(H, H0) contains at
least one self-adjoint operator whose discrete spectrum is empty.

As before, we identify the spectrum of any self-adjoint operator H ∈ HΦ(H, H0) to be
the multiset in the quotient space R/σess(H0). Since the following two theorems require the
obvious modifications, we omit their proofs:
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Theorem 7.7. If H0 is a fixed self-adjoint operator on the separable Hilbert space H satisfying
Assumption 7.6, then the following mapping is a well-defined 1-Lipschitz continuous mapping:

σ : HΦ(H, H0) 3 H 7−→ σ(H) ∈ SΦ(R, σess(H0)).

Theorem 7.8. Let H0 be a fixed self-adjoint operator on the separable Hilbert space H satis-
fying Assumption 7.6, and let K := σess(H0). If H is a continuous path in HΦ(H, H0), then
there exists a sequence (λi)i∈N of continuous paths in R, s.t.

1. σ(H(·)) = {[λ1(·)]K , [λ2(·)]K , . . .}∗.
2. (λi(·))i∈N is an extended enumeration of σdis(H(·)) pointwise.

7.4. A proof of Theorem 7.1 (metrizability of quotient space). Before taking up the
proof, we recall the following well-known result first. If (X, d) is a metric space and if ∼ is any
equivalence class on X, then the quotient set X/ ∼= {[x] | x ∈ X} admits a pseudo-metric

d∼([x], [y]) := inf

n∑
i=1

d(pi, qi),

where the infimum is taken over all pairs of finite sequences (pi)
n
i=1, (qi)

n
i=1 of points in X

with the property that [p1] = [x], [qn] = [y], [qi] = [pi+1] for each i = 1, . . . , n − 1. See [BBI,
Section 3.1.2] for details.

Proof of the first part of Theorem 7.1. Let dK be the metric (38), and let∼ be the equivalence
class used to form the factor space X/K. We will first prove first

(41) d∼([x]K , [y]K) = dK([x]K , [y]K) ∀x, y ∈ X.

Firstly, d∼ ≤ dK follows from the following two obvious inequalities:

d∼([x]K , [y]K) ≤ d(x, y) and d∼([x]K , [y]K) ≤ inf
k∈K

d(x, k) + inf
k∈K

d(k, y).

To prove dK ≤ d∼, we let (p1, . . . , pn), (q1, . . . , qn) be an arbitrary pair of finite sequences of
points in X with the property that p1 ∼ x, qn ∼ y and qi ∼ pi+1 for each i = 1, . . . , n − 1.
Note that qi ∼ pi+1 happens if and only if either qi, pi+1 both belong to K or qi = pi+1. In
the latter case, we have d(pi, qi+1) ≤ d(pi, qi) + d(pi+1, qi+1) by triangle inequality. That is,
without loss of generality, we may assume that for each i = 1, . . . , n − 1, the points pi, qi+1

both belong to K. This leads to

n∑
i=1

d(pi, qi) ≥ dK([x]K , [y]K)

Taking the infimum over (pi)
n
i=1, (qi)

n
i=1 gives dK ≤ d∼. It follows that dK is a pseudo-metric.

Note also that since K is a closed set, dK is non-degenerate. That is, dK is a genuine metric
on the quotient set X/ ∼.

It remains to show that the quotient topology τq on X/ ∼ agrees with the metric topology
τm induced by the metric dK . Recall that τq is defined to be the finest topology, s.t. the
quotient map q : X→ X/ ∼ is continuous. Since q is continuous with respect to τm, we have
τm ⊆ τq. It remains to prove τq ⊆ τm. Let U ∈ τq, and let [x]K ∈ U . Since q−1(U) is a
neighborhood of x, there exists a small enough ε > 0 s.t. Bε(x) ⊆ q−1(U). Let Bq

ε ([x]K) be
the open ε-ball centred at [x]K with respect to dK . We show that by shrinking ε appropriately
Bq
ε ([x]K) ⊆ U holds. We will consider the following two cases separately:
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1. Suppose x /∈ K. Shrink ε further, if necessary, to make sure that ε < infk∈K d(x, k)
holds. This implies Bε(x) ∩K = ∅. If [y]K ∈ Bq

ε ([x]K), then

ε > dK([x]K , [y]K)

= min

{
d(x, y), inf

k∈K
d(x, k) + inf

k∈K
d(k, y)

}
> min

{
d(x, y), ε+ inf

k∈K
d(k, y)

}
= d(x, y).

It follows that y ∈ Bε(x), and so Bq
ε ([x]K) ⊆ q(Bε(x)) ⊆ q(q−1(U)) ⊆ U .

2. Suppose x ∈ K now. In this case, K ⊆ q−1(U). Set F := X \ q−1(U). Since K,F are
disjoint, R := dist (K,F ) > 0. We shrink ε so that ε < R holds. If [y]K ∈ Bq

ε ([x]K), then

dK([x]K , [y]K) = inf
k∈K

d(k, y) < dist (K,F ) = inf
(k,f)∈K×F

d(k, f).

This immediately implies y ∈ q−1(U). It follows that Bq
ε ([x]K) ⊆ U .

�

Proof of the second part of Theorem 7.1. Let X be a path-connected, separable, complete
metric space. The path-connectedness and separability of the quotient X/K easily follows
from that of X. For the completeness, let dK be the metric (38), and let ([xn]K)n∈N be a
Cauchy sequence in X \ K. We consider the case where the sequence ([xn]K)n∈N does not
converge to the equivalence class K. In this case, we can choose an ε0 > 0 and a subsequence
([x′n]K)n∈N with dK([x′n]K ,K) ≥ ε0 for all n ∈ N. Let ε > 0 be arbitrary. Without loss of
generality, we may assume that ε < ε0. Then there exists an index N s.t. for all m,n ≥ N

ε0 > dK([x′m]K , [x
′
n]K)

= min

{
d(x′m, x

′
n), inf

k∈K
d(x′m, k) + inf

k∈K
d(x′n, k)

}
≥ min

{
d(x′m, x

′
n), 2ε0

}
= d(x′m, x

′
n).

It follows that (x′n)n∈N is a Cauchy sequence, and so it has a limit x0 ∈ X. It follows from
the continuity of the quotient mapping that [x′n]K → [x0]K as n→∞. Since ([xn]K)n∈N is a
Cauchy sequence having a convergent subsequence ([x′n]K)n∈N, it converges. �

8. Pushnitski’s Unitary Spectral Flow

Notation. We shall assume the following throughout:

1. Let Φ be a regular symmetric norm.

2. Let H be a separable Hilbert space.

8.1. The flow of paths in SΦ(T, 1). Let S be an arbitrary multiset in SΦ(T, 1) admitting
a representation S = {eiθ1 , eiθ2 , . . .}∗, where θ1, θ2, . . . are in [0, 2π]. Given θ ∈ (0, 2π), we
define the paths γ1(−; θ), γ2(−; θ), . . . : [0, 1]→ [0, 2π] by

γj(−; θ) :=

{
[0, 1] 3 t 7−→ θj(1− t) ∈ [0, 2π], if θj ≤ θ,
[0, 1] 3 t 7−→ θj(1− t) + 2πt ∈ [0, 2π], if θj > θ.
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The canonical θ-contruction of S, denoted by Γθ(S), is the mapping

(42) [0, 1] 3 t 7−→ {eiγ1(t;θ), eiγ2(t;θ), . . .}∗ ∈ SΦ(T, 1).

Proposition 8.1. Γθ(S) is continuous for any S ∈ SΦ(T, 1) and any θ ∈ (0, 2π).

Proof. Without loss of generality, we may assume that θ < π. Since eiθj → 1 as j →∞, there
exists a large enough index N ∈ N such that for all n ≥ N we have θn ∈ [0, θ] ∪ [2π − θ, 2π].
It is geometrically obvious that∣∣∣eiγn(t;θ) − 1

∣∣∣ ≤ ∣∣∣eiθn − 1
∣∣∣ ∀t ∈ [0, 1] ∀n ≥ N.

It follows that

Φ(|eiγN (t;θ) − 1|, |eiγN+1(t;θ) − 1|, . . .) ≤ Φ(|eiθN − 1|, |eiθN+1 − 1|, . . .) ∀t ∈ [0, 1].

Now, the claim follows from Theorem 4.7. �

Recall that we have defined the following group isomorphism in §6:

ΨΦ : π1(SΦ(T, 1), O1)→ H1(T) ∼= Z.

Definition 8.2. Given a path S(·) in SΦ(T, 1), we define the flow of S to be a function
µ(−;S) : (0, 2π)→ Z given by

µ(θ;S) := ΨΦ

(
[Γθ(S(0))−1 > S > Γθ(S(1))]π1

)
Theorem 8.3. Let S, T be two paths in SΦ(T, 1):

1. If S, T are homotopic paths, then µ(−;S) = µ(−;T ).

2. If S(1) = T (0), then µ(−;S > T ) = µ(−;S) + µ(−;T ).

Proof. Let us fix θ ∈ (0, 2π). For notational simplicity, we write

ΓS(t) := Γθ(S(t)) and ΓT (t) := Γθ(T (t)) ∀t ∈ [0, 1].

For the first part, let us assume that S, T are homotopic. Since S, T have the same end-points,
ΓS(0) = ΓT (0) and ΓS(1) = ΓT (1). It is now easy to observe that

µ(θ;S) = ΨΦ([ΓS(0)−1 > S > ΓS(1)]π1) = ΨΦ([ΓT (0)−1 > T > ΓT (1)]π1) = µ(θ;T ).

For the second part, we assume S(1) = T (0). That is, ΓS(1) = ΓT (0). Now,

µ(θ;S > T ) = ΨΦ([ΓS>T (0)−1 > (S > T ) > ΓS>T (1)]π1)

= ΨΦ([ΓS(0)−1 > (S > T ) > ΓT (1)]π1)

= ΨΦ([ΓS(0)−1 > S > ΓS(1) > ΓT (0)−1 > T > ΓT (1)]π1)

= ΨΦ([ΓS(0)−1 > S > ΓS(1)]π1) + Ψp([ΓT (0)−1 > T > ΓT (1)]π1)

= µ(θ;S) + µ(θ;T ).

�
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8.2. Unitary spectral flow.

Lemma 8.4. If U, V are two homotopic paths in UΦ(H, I), then σ(U), σ(U ′) are homotopic
paths in SΦ(T, 1).

In particular, this establishes a well-defined homomorphism (homotopy functor)

π1(UΦ(H, I), I) 3 [U ]π1 7−→ [σ(U)]π1 ∈ π1(SΦ(T, 1), O1).

Proof. If H is a homotopy from U to V , then spec ◦H is the required homotpy. �

Definition 8.5. Given a path U(·) in UΦ(H, I), we define the spectral flow of U to be a
function sf (−;U) : (0, 2π)→ Z given by sf (−;U) := µ(−;σ(U)).

Theorem 8.6. Let U, V be two paths in Up(I):

1. If U, V are homotopic, then sf (−;U) = sf (−;V ).

2. If U(1) = V (0), then sf (−;U > V ) = sf (−;U) + sf (−;V ).

Proof. The assertions follow by Theorem 8.3 and Lemma 8.4. �
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