HERITABLE INFLUENCES IN EXPERIMENTAL RETINOPATHY OF PREMATURITY

Melinda Tea

Bachelor of Laboratory Medicine (Hons)

Thesis submitted for the degree of

Doctor of Philosophy

February 2012

Faculty of Health Sciences

School of Medicine

Department of Ophthalmology

Flinders University of South Australia

Adelaide, Australia

TABLE OF CONTENTS

HERITABLE INFLUENCES IN EXPERIMENTAL RETINOPATHY OF
PREMATURITYi
TABLE OF CONTENTSii
SUMMARY OF THESIS xiv
PUBLICATIONS ARISING FROM THIS THESIS xvii
PRESENTATIONS ARISING FROM THIS THESIS xvii
DECLARATIONxix
ACKNOWLEDGEMENTSxx
ABBREVIATIONSxxiii
CHAPTER 1: INTRODUCTION1
1.1. OVERVIEW
1.2 RETINAL ANATOMY2
1.3 BLOOD SUPPLY TO THE RETINA
1.4 RETINAL VASCULAR DEVELOPMENT
1.4.a Growth factors involved in retinal vascular development5
1.4.a.1 Vascular endothelial growth factor8
1.4.b Hypoxia-inducible factor-1α8
1.4.b.1 HIF-1 α and HIF-2 α in the retina9
1.4.b.2 HIF-α degradation in normoxia10
1.4.b.3 Transcriptional activity of HIF in hypoxia10
1.5 RETINOPATHY OF PREMATURITY12

1.5.a	Clinical and genetic risk factors of ROP	14
1.5.b	Oxygen-induced retinopathy as an animal model of	ROP17
1.5.	b.1 Strain-related differences in susceptibility to OIR	in the rat
1.6	MICRORNAs	19
1.6.a	Discovery of microRNAs	19
1.6.b	Biogenesis of microRNAs	20
1.6.c	Formation of the RISC and mechanism of microRN.	A action
		22
1.6.d	MicroRNA expression in the eye	23
1.6.e	MicroRNAs and hypoxia	26
1.6.f	MicroRNA and angiogenesis	27
1.6.	f.1 Pro-angiogenic miRNAs	
1.6.	f.2 Anti-angiogenic miRNAs	
1.6.g	Role of microRNAs in a mouse model of oxyg	en-induced
retin	opathy	29
1.6.h	MicroRNAs as therapeutic drugs	29
1.7	ROP: WHAT WE KNOW AND WHERE TO NOW	
1.8.	HYPOTHESIS AND AIMS	
СНАРТЕ	R 2: MATERIALS AND METHODS	34
2.1	MATERIALS	35
2.1.a	Water	35
2.1.b	General chemicals	35
2.1.c	Enzymes	35
2.1.d	PCR primers	

2.1.e	Experimental animals	41
2.1.	.e.1 Ethical treatment of animals	41
2.1.	.e.2 Rats	41
2.1.f	Miscellaneous materials	42
2.2	BUFFERS AND SOLUTIONS	43
2.2.a	DEPC-NaCl	43
2.2.b	Chrome alum-subbed microscope slides	43
2.2.c	Phosphate Buffered Saline (PBS 10 x)	43
2.2.d	Sodium Hydroxide stock 10M	44
2.2.e	Phosphate buffers 0.2M (pH 7.4)	44
2.2.f	Paraformaldehyde (4%) in 0.1M phosphate buffer	44
2.2.g	Electrophoresis gel DNA/RNA loading buffer	45
2.2.h	EDTA Buffer (0.5 x)	45
2.2.i	Tris Borate EDTA buffer (TBE 10 x)	45
2.3	ANIMAL AND TISSUE TECHNIQUES	46
2.3.a	Oxygen-induced retinopathy	46
2.3.	.a.1 Oxygen chamber	46
2.3.	.a.2 Exposure of neonatal rats to cyclic hyperoxia	48
2.3.b	Retinal dissection and histochemistry	50
2.3.c	Image analysis of isolectin-labelled retinae	52
2.3.	.c.1 Avascular area analysis of isolectin-labelled retinae	53
2.3.	.c.2 Retinal vessel tortuosity analysis of isolectin-labelled	retinae
		54
2.4	MOLECULAR TECHNIQUES	55
2.4.a	RNA collection time line	

2.4.b	Collection of rat retinae for microarray analysis56	
2.4.c	Collection of rat retinae for real-time RT-PCR analysis58	
2.4.d	Total RNA extraction from rat retinae59	
2.4.e	Quantification and determination of RNA integrity61	
2.4.f	Preparation of test RNA samples for mRNA microarray	
analys	is62	
2.4.g	Affymetrix mRNA microarrays64	
2.4.h	DNase treatment of RNA extracts	
2.4.i	Preparation of the standard mRNA sample67	
2.4.j	cDNA synthesis of the standard mRNA sample68	
2.4.k	cDNA synthesis of test samples69	
2.4.1	PCR primer design for gene expression70	
2.4.m	Agarose gel electrophoresis72	
2.4.n	Agarose gel PCR product purification72	
2.4.0	PCR product sequencing73	
2.4.p	General precautions for PCR73	
2.4.q	Quantitative real-time RT-PCR for gene expression73	
2.4.r	Relative quantification of retinal gene expression75	
2.4.s	Exiqon microRNA microarrays75	
2.4.t	Preparation of the standard microRNA sample79	
2.4.u	Quantitative real-time RT-PCR for microRNA expression79	
2.4.v	Determination of primer amplification efficiencies and optimal	
template concentration for quantitative real-time RT-PCR82		
2.4.w	Selection and validation of a small RNA reference gene82	
2.4.x	Relative quantification and normalisation of retinal microRNA	
expres	sion	

2.4.y	microRNA	databases	and	microRNA	target	prediction
progra	ms		•••••			86
2.5 5	TATISTICAL	ANALYSIS	5			87
2.5.a	Retinal avas	cular area a	nd vas	cular morpho	ology	
2.5.b	Affymetrix g	gene express	sion m	icroarrays		
2.5.c	Exiqon micro	oRNA micro	oarray	S		
2.5.d	Real-time PC	CR data				
CHAPTER	3: RESULTS	5 - INHER	ITAN	CE OF STR	AIN-DE	PENDENT
DIFFEREN	CES IN	EXPERI	MENT	AL RET	NOPAT	'HY OF
PREMATU	RITY	•••••	•••••	•••••	••••••	90
3.1 ABST	RACT					91
3.1a In	troduction					
32 1	RESULTS					94
0.2 1		•••••				······································
3.2.a	Strain comp	parisons of	retinal	vascularisat	tion in 1	response to
cyclic	nyperoxia					94
3.2.a.	1 Retinal vasc	cularisation	in F34	4 x SD rats in	respons	e to cyclic
hype	roxia	•••••	•••••		•••••	96
3.2.b	Criteria for c	letermining	susce	ptibility to O	IR	97
3.2.b	1 Retinal ava	ascular area				97
3.2.b	2 Retinal blo	ood vessel to	ortuosi	ty		101
3.2.b	3 Determini	ng susceptil	oility t	o OIR in cycli	ic hypero	oxia-
expo	sed F344 and	SD rats				
3.2.c	Cross-breed	ing experim	ents			
3.2.c.	1 Susceptibi	lity of F344	x SD o	ffspring to O	IR	104
3.2.c.	2 Susceptibi	lity of backc	cross o	ffspring to O	IR	

3.2.c.2.a Susceptibility of F1 x F344 backcross offspring to OIR
3.2.c.2.b Susceptibility of F1 x SD backcross offspring to OIR107
3.2.c.3 Genetic modelling of susceptibility to OIR109
3.3 DISCUSSION
3.3.a Summary of findings111
3.3.b Ocular pigmentation and susceptibility to OIR112
3.3.c Genetic modifiers in disease114
3.3.d Genetic modifiers in ROP and OIR115
3.3.e CONCLUSION120
CHAPTER 4: RESULTS - ALTERED GENE EXPRESSION IN OXYGEN-
INDUCED RETINOPATHY121
4.1 ABSTRACT
4.1a Introduction122
4.1.a.1 HIF- α and the response to hypoxia
4.1.a.2 Specific aims and overview of approach
4.2 AFFYMETRIX MICROARRAY RESULTS126
4.2.a Statistical analysis of microarray data
4.2.a.1 Principal Components Analysis of microarray data129
4.2.a.2 Number of genes which reached statistical significance133
4.2.b Identification of candidate genes involved in susceptibility to
OIR
4.2.b.1 Identification of candidate genes at day 3137
4.2.b.1.a Fold change analysis of differentially regulated genes at
day 3140

4.2.b.2 Ident	ification of candidate genes at days 5 and 6	.146
4.2.b.2.a Io	dentification of candidate genes at day 5	.146
4.2.b.2.b I	dentification of candidate genes at day 6	.150
4.2.c Selectio	n of gene candidates for validation at days 3, 5 and	6
		.156
4.2.c.1.a P	rolyl hydroxylases EGLN3 and EGLN1	.157
4.2.c.1.b N	Ionocarboxylate transporter SLC16A3	.158
4.2.c.1.c B	CL2/adenovirus interacting protein BNIP3	.159
4.2.c.1.d C	Glucose phosphorylation enzyme HK2	.159
4.2.c.1.e Ir	nsulin-like growth factor binding proteins IGFBP2 a	nd
IGFBP3		.159
4.3 STRAIN	DIFFERENCES IN RETINAL GENE EXPRESS	ION
FOLLOWING EX	POSURE TO CYCLIC HYPEROXIA	.160
4.3.a Confirm	nation of PCR primer specificity and determinatio	n of
primer PCR am	plification efficiencies	.161
4.3.a.1 Confirm	nation of PCR primer specificity	.161
4.3.a.2 Determ	vination of primer PCR amplification efficiencies	.165
4.3.b Confirm	nation of gene expression in pooled RNA	.168
4.3.b.1 EGLN	N3 mRNA expression at day 3 in pooled RNA	.168
4.3.b.2 EGLN	N1 mRNA expression at day 3 in pooled RNA	.170
4.3.b.3 SLC1	6A3 mRNA expression at day 3 in pooled RNA	.172
4.3.b.4 HK2	mRNA expression at day 3 in pooled RNA	.173
4.3.b.5 BNIP	3 mRNA expression at day 3 in pooled RNA	.175
4.3.b.6 IGFB	P2 mRNA expression at day 3 in pooled RNA	.176
4.3.b.7 IGFB	P3 mRNA expression at day 3 in pooled RNA	.178
4.3.c Confirm	nation of gene expression in individual rats	.179

4.3.c.1 EGLN3 mRNA expression180
4.3.c.1.a EGLN3 mRNA expression at day 3
4.3.c.1.b EGLN3 mRNA expression at day 5
4.3.c.1.c EGLN3 mRNA expression at day 6182
4.3.c.2 EGLN1 mRNA expression
4.3.c.2.a EGLN1 mRNA expression at day 3
4.3.c.2.b EGLN1 mRNA expression at day 5
4.3.c.2.c EGLN1 mRNA expression at day 6185
4.3.c.3 IGFBP3 mRNA expression186
4.3.c.3.a IGFBP3 mRNA expression at day 3186
4.3.c.3.b IGFBP3 mRNA expression at day 5187
4.3.c.3.c IGFBP3 mRNA expression at day 6
4.3.d Summary of EGLN3, EGLN1 and IGFBP3 expression in
individual rats at days 3, 5 and 6189
4.3.d.1 Summary of EGLN3 expression at days 3, 5, and 6
4.3.d.2 Summary of EGLN1 expression at days 3, 5, and 6
4.3.d.3 Summary of IGFBP3 expression at days 3, 5, and 6193
4.4 DISCUSSION
4.4.a Summary of findings195
4.4.b. Microarray analysis of differential gene expression in the early
stages of OIR197
4.4.c Biological interpretation of strain-dependent differences in
gene expression in response to cyclic hyperoxia and susceptibility to
OIR199
4.4.c.1 Expression of SLC16A3, HK2 and BNIP3 in response to
cyclic hyperoxia199

4.4.c.2 Strain-dependent differential expression of EGLN3 and
EGLN1 in response to cyclic hyperoxia and the HIF- α oxygen
sensing pathway200
4.4.c.3 Strain-dependent differential expression of IGFBP3 in
response to cyclic hyperoxia204
4.4.d CONCLUSION
CHAPTER 5: RESULTS - ALTERED miRNA EXPRESSION IN
OXYGEN-INDUCED RETINOPATHY208
5.1 ABSTRACT
5.1a Introduction210
5.1.b Specific aims212
5.2 EXIQON MICROARRAY RESULTS
5.2.a Analysis of microarray data213
5.2.b Identification of candidate microRNAs215
5.2.b.1 Identification of microRNA candidates at day 3218
5.2.b.2 Identification of microRNA candidates at day 5221
5.2.b.3 Identification of microRNA candidates at day 6224
5.2.b.4 Summary of microRNA candidates chosen for confirmation
by quantitative real-time RT-PCR226
5.3. SELECTION AND VALIDATION OF SMALL RNA
REFERENCE GENES FOR NORMALISATION OF MICRORNA
EXPRESSION
5.4. INVESTIGATION OF MICRORNA EXPRESSION IN
INDIVIDUAL RATS
5.5 SUMMARY OF MICRORNA EXPRESSION IN INDIVIDUAL
RATS FOLLOWING EXPOSURE TO CYCLIC HYPEROXIA

5.5.a.	miR-30e expression in individual rats at days 3, 5, and 6
5.5.b	miR-338 expression in individual rats at days 3, 5, and 6
5.5.c	miR-210 expression in individual rats at days 3, 5, and 6
5.6 DIS	5CUSSION
5.6.a S	Summary of findings242
5.6.b. N	Aicroarray analysis of differential microRNA expression in
the early	stages of OIR
5.6.c E	Biological interpretation of strain-related differences in
microRN	IA expression in response to cyclic hyperoxia and
susceptil	pility to OIR245
5.6.c.1	Strain-dependent differential expression of miR-30e and the
HIF-α c	oxygen sensing pathway247
5.6.c.2	Strain-dependent differential expression of miR-338 and the
HIF-α c	oxygen sensing pathway248
5.6.c.3	Strain-dependent differential expression of miR-210 and the
HIF-α c	oxygen sensing pathway249
5.6.c.4	Summary of strain-dependent differential microRNA
express	sion in susceptibility to OIR250
5.6.d C	CONCLUSION252
CHAPTER 6:	DISCUSSION
6.1 OV	ZERVIEW
6.2 FIN	NDINGS FROM THESE STUDIES
6.2.a I	nheritance of susceptibility to OIR in albino F344 and SD rats.

6.2.b	Changes in retinal gene expression and susceptibility to OIR	
	2	55
6.2.b.1	Prolyl hydroxylase expression and susceptibility to OIR2	:55
6.2.b.2	2 Insulin-like growth factor binding protein 3 expression and	t
suscej	ptibility to OIR2	58
6.2.c	Changes in retinal microRNA expression and susceptibility	to
OIR	2	58
6.2.c.1	Biological interpretation of strain-dependent changes in	
miR-3	30e expression and the HIF- α oxygen sensing pathway2	59
6.2.c.2	2 Biological interpretation of strain-dependent changes in	
miR-3	338 expression and the HIF- α oxygen sensing pathway2	61
6.2.c.3	Biological interpretation of strain-dependent changes in	
miR-2	210 expression and the HIF- α oxygen sensing pathway2	:63
6.2.d	Synthesis: strain-dependent changes in gene and microRN	JA
express	sion in susceptibility to OIR2	:66
6.2.e	A note on the bioinformatics approach2	:69
6.3 AN O	VERVIEW OF RELATED STUDIES2	71
6.3.a	Role of genetic modifiers in inheritance of susceptibility to O	IR
		71
6.3.b	Role of prolyl hydroxylases in susceptibility to OIR2	73
6.3.c	Role of IGFBP3 in susceptibility to OIR2	78
6.3.d	Role of microRNAs in susceptibility to OIR2	80
6.3.e	Temporal gene and microRNA expression in different	ial
suscept	ibility to OIR2	81
6.4 CONC	CLUDING REMARKS2	87

data in individ	lual rats	
A1. Cano	didate microRNA expression in individual rats	289
A1.1	miR-30e expression	290
A1.1.a	miR-30e expression at day 3	290
A1.1.b	miR-30e expression at day 5	291
A1.1.c	miR-30e expression at day 6	293
A1.2 1	miR-338 expression	294
A1.2.a	miR-338 expression at day 3	294
A1.2.b	miR-338 expression at day 5	296
A1.2.c	miR-338 expression at day 6	297
A1.3 1	miR-210 expression	299
A1.3.a	miR-210 expression at day 3	299
A1.3.b	miR-210 expression at day 5	300
A1.3.c	miR-210 expression at day 6	302
BIBLIOGRAI	РНҮ	

APPENDIX 1: - Quantitative real-time RT-PCR microRNA expression

SUMMARY OF THESIS

Retinopathy of prematurity (ROP) is a potentially blinding eye condition of premature infants exposed to oxygen therapy. Different inbred rat strains exhibit differential susceptibility to oxygen-induced retinopathy (OIR), a robust animal model of ROP which mimics the pathophysiology seen in human disease. Susceptibility to OIR has previously been shown to segregate with ocular pigmentation, and is inherited in an autosomal dominant fashion in pigmented rat strains. The mode in which susceptibility to OIR is inherited in albino rat strains has not previously been determined. Using genetic cross, and backcross analysis, it was determined that susceptibility to OIR is inherited in the same autosomal dominant manner in albino rats, making it likely that genetic modifiers other than ocular pigmentation contribute to disease susceptibility. These modifiers could potentially be involved in the oxygen sensing pathway, which is central to the development of OIR and ROP.

Differences in retinal gene expression are likely to underlie the differential susceptibility to OIR that is exhibited by the two inbred strains of albino rats used in this study. MicroRNAs (miRNAs) may also contribute to the OIR phenotype by regulating these changes in gene expression. To test this hypothesis, RNAs from the retinae of two different rat strains exposed to oxygen therapy for 3, 5 or 6 days were analysed for gene and miRNA expression using Affymetrix and Exiqon microarrays, respectively. A bioinformatics approach using the freely available online database, Database for Annotation, Visualisation and Integrated Discovery (DAVID), was used to assist in functional grouping of differentially regulated genes, many of which were found to be associated with response to hypoxia.

Candidate genes were identified from the gene expression microarray data based on their regulation by oxygen and on a search of the literature. The gene candidates EGL nine homolog 3 (EGLN3) and EGL nine homolog 1 (EGLN1) belong to a class of oxygen-dependent prolyl hydroxylases which are responsible for regulating levels of hypoxia-inducible factor- α (HIF- α) in normoxia. HIF- α is a master transcription factor which upregulates the expression of target genes in response to hypoxia. An additional candidate, insulin-like growth factor binding protein 3 (IGFBP3) was also chosen based on evidence from the literature showing that early expression of IGFBP3 was protective against the disease in a mouse model of OIR. Expression of candidate genes was confirmed using relative quantification real-time RT-PCR analysis.

miRNAs are non-coding RNAs which regulate gene expression at a posttranscriptional level and have been associated with a wide variety of physiological and pathological conditions including retinal development and OIR. Initial analysis of microarray data from all 3 time points showed a total of 15 miRNAs to be differentially expressed after correction for multiple comparisons. miRNAs were identified as candidates if they targeted oxygen-related genes, were regulated by both oxygen and strain or had significant adjusted p values (p<0.05). miRNAs which are differentially regulated by exposure to oxygen therapy in a strain-dependent manner may contribute to differences in the disease phenotype that is exhibited by these two albino rat strains. Three miRNAs of interest, miR-30e, miR-338-3p and miR-210, were chosen for confirmation by real-time RT-PCR analysis. These miRNAs are predicted to target elements of the HIF- α oxygen sensing pathway.

Identifying the molecular basis of susceptibility to OIR may help to identify infants at risk of developing ROP and identify new therapeutic targets for treatment.

PUBLICATIONS ARISING FROM THIS THESIS

Tea, M., Fogarty, R., Brereton, H.M., Michael, M.Z., Van der Hoek, M.B., Tsykin, A., Coster, D.J., and Williams, K.A., Gene expression microarray analysis of early oxygen-induced retinopathy in the rat. J Ocul Biol Dis Infor, 2009. **2**(4): p. 190-201.

PRESENTATIONS ARISING FROM THIS THESIS

Tea MN, van Wijngaarden P, Michael M, Brereton HM, Coster DJ, Williams KA. Altered mRNA and miRNA expression and genetic susceptibility to experimental Retinopathy of Prematurity (Poster). Lorne Genome 2011, Lorne, February 13-15.

Tea MN, van Wijngaarden P, Michael M, Brereton HM, Coster DJ, Williams KA. Altered miRNA and gene expression and genetic susceptibility to experimental Retinopathy of Prematurity (Poster). RNAi and miRNA Europe 2010, Dublin, September 14-15.

Tea MN, van Wijngaarden P, Michael M, Brereton HM, Coster DJ, Williams KA. Altered gene expression and genetic susceptibility to experimental Retinopathy of Prematurity (Poster). Lorne Genome 2010, Lorne, February 14-16.

Tea MN, van Wijngaarden P, Michael M, Brereton HM, Coster DJ, Williams KA. Genetic susceptibility to experimental Retinopathy of Prematurity: The role of microRNAs (Presentation). **53rd Annual Conference of Australian Society for Biochemistry and Molecular Biology** (ComBio) 2009, Christchurch, December 6-10.

Tea MN, van Wijngaarden P, Michael M, Brereton HM, Coster DJ, Williams KA. Genetic susceptibility to experimental Retinopathy of Prematurity: The role of microRNAs (Presentation). ASMR SA Division: Annual Scientific Meeting 2009, Adelaide, June 2.

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Signed:

Date: _____

Melinda Tea

ACKNOWLEDGEMENTS

I am greatly indebted to many people for their knowledge, expertise and assistance over the course of my PhD. In particular I would like to thank:

Keryn Williams for the many opportunities she has given me since she gave me my first job as a graduate. As a mentor, I could not have asked for anything more. Her unwavering confidence in me has made me the researcher I am today, and for that I am especially grateful.

Helen Brereton for passing on her knowledge of molecular biology, which has been invaluable, and for always finding time for me. I also thank her for the many enjoyable conversations on food, wine and travel we have enjoyed over the years.

Michael Michael for his never ending enthusiasm for microRNAs and my new found appreciation for the world of non-coding RNAs.

Peter van Wijngaarden whose previous findings laid the foundation for the work presented in this thesis.

Rhys Fogarty for his assistance with the Affymetrix microarray analyses.

Kirsty Kirk for her great source of knowledge and excellent technical skills, as without her, my retinal flat-mounts would have left a lot to be desired. I'm lucky to have known at a professional level as well as a personal level. No one in the lab knew me quite as well as she did.

Lauren Mortimer for her assistance in the preparation of RNA and cDNA and for keeping me company in the PCR clean room. Her constant support and encouragement throughout the writing process, as well as the endless cups of tea and baked goods, made it all that much easier.

Gemma Lowe and Fran Angerstein for their assistance with animal handling.

Miriam Keane for her assistance with statistical analyses.

The administration staff within the Department of Ophthalmology for their kind words of encouragement over the last few months, in particular Deb Sullivan, Lyn Harding, Lynda Saunders, Anne Cazneaux and Marie Lowe.

All lab staff and students, past and present, in the Department of Ophthalmology including Alison Clarke, Alex Colella, Madi Helm, Margaret Philpott, Sonja Klebe, Paul Badenoch, Yazad Irani, David Dimasi, Kate Laurie, Alpana Dave, Sarah Martin, Abraham Kuot, Kathleen Dowell, Mona Awadalla, Shiwani Sharma, Kathryn Burdon and Claire Jessup. Their expertise, feedback and friendship have been invaluable.

Stuart Lisk, Theresa Fischer, Jasmine Scottney-Turbill and *Minetta* Hedger-Smith at the animal house facility for their assistance in animal breeding.

Anne-Louise Smith and staff of the Department of Biomedical Engineering for constructing the oxygen chamber and for providing ongoing support and maintenance.

Mark van der Hoek, Rosalie Kenyon and Anna Tsykin at the Adelaide Microarray Consortium for their assistance in experimental design, performing the arrays and statistical analyses.

Oliver van Wageningen for sequencing PCR products.

A special mention to Sarah and Richard Appleby, who have been through it all before. Their friendship, support and most of all, understanding, made it much easier to keep going. They will be missed very much when they embark on their overseas adventure.

To my closest friends, Simone and Alex, who have seen less and less of me over the course of my PhD, but still consider me a friend.

To Ché, who has put up with what I affectionately called the "PhD crazies" and never complained once. It mustn't have been easy and words can't begin to explain how lucky I've been to have his love and support throughout it all.

Finally, heartfelt thanks to my family who have supported me in every way possible throughout the course of my PhD. I could not have done it without their love and encouragement, for which I am eternally grateful.

ABBREVIATIONS

\leq	less than or equal to
≥	more than or equal to
~	approximately
°C	degrees Celsius
μg	microgram (10 ⁻⁶ g)
μ1	microlitre (10 ⁻⁶ l)
μM	micromolar (10 ⁻⁶ M)
μm	micrometer (10 ⁻⁶ m)
AAKT	apoptosis-associated tyrosine kinase
AE	amplification efficiency
Aga	Anopheles gambiae
AGO1-4	argonaute 1/2/3/4 protein
ANG1	angiopoietin 1
ANG2	angiopoietin 2
ANOVA	analysis of variance
ARBP	acidic ribosomal phosphoprotein
ARVO	Association for Research in Vision and Ophthalmology
BEAT ROP	Bevacizumab Eliminates the Angiogenic Threat of Retinopathy of
DEAT-ROI	Prematurity
bFGF	basic fibroblast growth factor
BN	Brown Norway rat strain
BNIP3	BCL2/adenovirus E1B 19 kDa-interacting protein 3
bp	base pairs
CA	California
CBP	creb-binding protein
cDNA	complementary DNA
CI	confidence interval
cm	centimetre
CO ₂	carbon dioxide
COX 2	cyclooxygenase 2
Ct	cycle threshold
DA	Dark Agouti rat strain
DAVID	Database for Annotation, Visualisation and Integrated Discovery
ddH ₂ O	double distilled water

DE	Delaware
DEPC	diethylpyrocarbonate
DMOG	dimethyloxalylglycine
DNA	deoxyribonucleic acid
dNTP	dinucleotide triphosphate
DOPA	dihydroxyphenylalanine
DTT	dithiothreitol
dTTP	deoxythymidine triphosphate
EC	endothelial cell
EDTA	ethylene-diamine-tetraacetic-acid
EFNA3	Ephrin-A3
EGLN1	EGL nine homolog 1/PHD2
EGLN2	EGL nine homolog 2/PHD1
EGLN3	EGL nine homolog 3/PHD3
EPO	erythropoietin
EtOH	ethanol
F _(x,y)	F statistic (degrees of freedom, error)
F344	Fischer 344 rat strain
FDR	false discovery rate
FEVR	familial exudative vitreoretinopathy
FIH-1	factor-inhibiting HIF-1
FRA	F344 room air-exposed rat
FO ₂	F344 cyclic hyperoxia-exposed rat
g	gram
g	gravity
GEO	gene expression omnibus
GO	gene ontology
GS-IB4	<i>Griffonia simplicifolia</i> type I isolectin B4-Alexa 488™ conjugate
h	hour
HK2	hexokinase 2
HIF-α	hypoxia inducible factor-α
HIF-1	hypoxia inducible factor-1
HIF-1/2 α	hypoxia inducible factor- $1/2\alpha$
HPRT	hypoxanthine guanine phophoribosyl transferase
HRE	hypoxia response element
Hsa	Homo sapien
HUVEC	human umbilical vein endothelial cell

xxv

HW	Hooded Wistar rat strain
ICROP	International Classification of Retinopathy of Prematurity
IGF-1	insulin-like growth factor-1
IGFBP2/3	insulin-like growth factor binding protein 2/3
IL	Illinois
Kb	kilobases
1	litre
LE	Long Evans rat strain
LNA	locked nucleic acid
log	logarithm
М	molar
m	metre
MA	Massachusetts
mg	milligram (10 ⁻³ g)
min	minutes
miRNA	microRNA
ml	millilitre (10 ⁻³ l)
mm	millimetre(10 ⁻³ m)
mM	millimolar (10 ⁻³ M)
Mmu	Mus musculus
MNE	mean normalised expression
Мо	Missouri
mRNA	messenger ribonucleic acid
MW	molecular weight
n	number/sample size
NaCl	sodium chloride
ND	not determined
NE	normalised gene expression
ng	nanogram (10 ⁻⁹ g)
NJ	New Jersey
nm	nanometre (10 ⁻⁹ m)
NSW	New South Wales
O ₂	oxygen, cyclic hyperoxia exposure
OIR	oxygen-induced retinopathy
OR	Oregon
PBS	phosphate buffered saline
p300	creb-binding protein homolog

PCA	principal components analysis
PCR	polymerase chain reaction
PDGF-β	platelet derived growth factor-β
PEDF	pigment epithelium derived factor
PHD	Prolyl hydroxylase
PHD1	PHD1/EGLN2
PHD2	PHD2/EGLN1
PHD3	PHD3/EGLN3
pre-miR	primary precursor microRNA transcript
pri-miR	precursor microRNA transcript
R ²	coefficient of determination of a linear regression
RA	room air
Ref	reference
RIN	RNA integrity number
RISC	RNA-induced silencing complex
RNA	ribonucleic acid
RNA Pol II	RNA polymerase 2
Rno	Rattus norvegicus
ROP	retinopathy of prematurity
RPE	retinal pigment epithelium
rpm	revolutions per minute
RT	room temperature
RT-	reverse transcriptase-free; negative control cDNA
RT-PCR	reverse transcription-polymerase chain reaction
sec	second
SA	South Australia
SCD	sickle cell disease
SCF	stem cell factor
SD	Sprague Dawley rat strain. Note that in the context of statistical
50	analysis, standard deviation is also abbreviated to SD.
SDRA	Sprague Dawley room air-exposed rat
SDO_2	Sprague Dawley cyclic hyperoxia-exposed rat
SLC16A3	Solute carrier family 16, member 3
snRNA	small nuclear RNA
snoRNA	small nucleolar RNA
SV40	Simian Vacuolating Virus 40
TBE	tris borate EDTA

TGF-β	transforming growth factor-β
Tie2	tyrosine kinase with Ig and epidermal growth factor homology
	domain receptor 2: receptor for angiopoietin-1 & -2
T _m	melting temperature
TRBP	TAR RNA-binding protein
ТХ	Texas
TYR	tyrosinase
U	units
Ub	Ubiquitin
UK	United Kingdom
UNG	Uracil-DNA glycosylase enzyme
USA	United States of America
UV	ultraviolet light
V	volt
v	version; volume
v/v	unit volume per unit volume
VECE	vascular endothelial growth factor (VEGF A unless otherwise
VEGI	specified)
VEGFR-2	vascular endothelial growth factor receptor-2
VHL	von Hippel-Lindau protein
VIC	Victoria
w/v	unit weight per unit volume
WA	West Australia
WF	Wistar-Furth rat strain
WI	Wisconsin
х	times / multiplication factor