
Design Patterns in Learning to Program

by

Ron Porter, B.A., Graduate Diploma in Computer Science,

B.Sc.(Comp.Sc)(Hons)

School of Informatics and Engineering,

Faculty of Science and Engineering

November 24, 2006

A thesis presented to the

Flinders University of South Australia

in total fulfillment of the requirements for the degree of

Doctor of Philosophy

Adelaide, South Australia, 2006
c© (Ron Porter, 2006)

ii

Table of Contents

Abstract xi

Certification xiii

Acknowledgements xv

1 Introduction 5

1.1 Why is Programming Difficult? 5

1.2 Rational versus Logical . 10

1.3 Logic and Creativity . 15

1.4 Programming as Rational Action 17

1.5 The Pattern of this Thesis . 26

2 Prior Art 33

2.1 The Philosophy of this Project . 33

2.2 Pattern Theory in Learning to Program 37

2.3 Patterns in Learning . 42

2.4 Patterns in Education . 49

2.5 Patterns In Introductory Programming 55

3 The Mythos (Mystic Intelligibility) of Experience 61

3.1 Creating the Mind out of Experience 61

3.2 The Pattern of Experience . 67

3.3 Programming is just Thinking . 75

3.4 Learning to Program . 79

3.5 Language . 82

3.6 On Creativity . 88

iii

iv TABLE OF CONTENTS

4 The Source of the Difficulties 93

4.1 Art and Science . 93

4.2 Programming as an Art . 98

4.3 Learning to Program . 103

4.4 Programming equals Designing a Program 109

4.5 The Programming Experience . 119

5 Language as Understanding 125

5.1 Programming and Problem Solving 125

5.2 Making Sense of the World . 131

5.3 Patterns and Concepts . 135

5.4 Why is Experience Rational, Ordered and Repetitive? 142

5.5 Subjectivity - A View of the Objective 147

5.6 Understanding . 153

5.7 Creativity . 159

5.8 Logic and Understanding . 162

5.9 Language and Understanding . 167

6 Pattern Language Fundamentals 175

6.1 Connectivity and Creativity . 175

6.2 Dealing with System Complexity 182

6.3 Coherence and Balance . 186

6.4 A Pattern Language for Novice Programming 194

6.5 Context - problem or pattern? . 200

6.6 The Dynamics of the Pattern-Problem Situation 202

6.7 Patterns and ‘Wholeness’ . 205

6.8 So what is a Pattern? . 208

6.9 Mind and Patterns . 213

6.10 Cognition in Programming . 217

7 The Pattern Process in Action 221

7.1 Learning to Program . 221

7.2 The Pattern Process . 226

7.3 Applying Patterns to a Problem 228

TABLE OF CONTENTS v

7.4 A Simple Example . 231

7.4.1 First iteration of ‘add pattern’ process 232

7.4.2 Second iteration of ‘add pattern’ process 232

7.4.3 Third iteration of ‘add pattern’ process 233

7.4.4 Fourth iteration of ‘add pattern’ process 233

7.4.5 Fifth iteration of ‘add pattern’ process 234

7.4.6 Sixth iteration of ‘add pattern’ process 235

7.5 Patterns and Teaching Material 236

7.6 The Evolution of a Pattern Language 237

7.7 The Pedagogy . 240

8 The Psychology of Programming 245

8.1 What is Programming? . 245

8.2 Theory and Practice . 248

8.3 The Problem of Meaning . 258

8.4 The Measurement Problem . 264

9 The Psychology of Learning Programming 275

9.1 A New Way of Thinking . 275

9.2 A Parallel Example in Mathematics 281

9.3 Memory and Meaning . 285

9.4 Pattern Language in this Context 291

9.5 Bridging the Gap . 295

10 Measuring Pedagogical Effectiveness 301

10.1 The Limits of Empiricism . 301

10.2 The Measurement Problem in Education 305

10.3 Concept Maps . 308

10.4 Objectifying Procedural Knowledge 315

10.5 Testing the Pattern Process . 317

10.5.1 The First Trial . 319

10.5.2 The Second Trial . 324

10.5.3 The Third Trial . 329

10.5.4 The Overall Results . 331

vi TABLE OF CONTENTS

11 Conclusion 335

11.1 The Pedagogical Problem in Programming 335

11.2 The Pattern Language Response 338

11.3 Knowledge and Process . 345

11.4 Moral Order . 357

11.5 Epilogue . 363

Appendices 364

A Example Patterns 365

Bibliography 369

List of Figures

2.1 Extract from CP1 lecture notes, Semester 2, 2000 52

4.1 The applied pattern brings its context with it. 113

4.2 The general form of the communication/computation relationship 120

6.1 A Language for a Garden. Adapted from (Alexander 1979, p. 314) 178

6.2 The patterns within a scene differentiate the raw detail. 184

6.3 Patterns in Chess carry meaning for the expert that they don’t for

the novice. (Figure from (Bransford) 2000) 185

6.4 The Pattern Language for Object Identification. 195

6.5 Simplified Pattern Language for Class detail. 196

6.6 Adding Flexibility to the basic Class Detail Language. 198

6.7 The initial problem sets up the context for the first pattern 203

6.8 The applied pattern brings its context with it. 204

7.1 Building the ‘pattern sequence’ 229

7.2 The Pattern Language . 230

7.3 Adding a pattern to the sequence 230

7.4 The Language for ”Hello, World!” 238

7.5 The Pattern Sequence for “Hello, World!” 238

7.6 The Language for the Variable Concept 239

7.7 The Merged Language . 239

7.8 The Pattern Sequence for Using an Instance Variable 240

7.9 The Pattern Sequence for Using a Local Variable 240

7.10 The Pattern Sequence for Using an Assignment Statement 241

9.1 Section of the running-time semantic network for encoding 3492

(adapted from (Chase & Ericsson 1981, p. 164)). 288

vii

viii LIST OF FIGURES

9.2 Hierarchical organisation of retrieval structure (adapted from (Chase

& Ericsson 1981, p. 171)). 290

9.3 Average digit-span over time (adapted from (Chase & Ericsson

1981, p. 144)). 291

9.4 Highly simplified portion of a Pattern Language for designing a

house. 292

10.1 The number of valid and invalid notions held by Instructed and

Uninstructed students in grades 2, 7, 10, and 12. (adapted from

(Novak 2004, p. 7)). 311

10.2 A concept map from an interview with a grade 2 instructed student312

10.3 The Pattern Language for Class detail. 321

10.4 Comparison of results with expected range. 323

10.5 Comparison of CP1 and CP2A results 326

10.6 Spread of Difference between CP1 and CP2A results 327

10.7 Comparison between CP1 and CP2A results 330

11.1 Gestalt Illusions . 343

List of Tables

5.1 Sequence of events between objects through time from a1 to c5. . 148

6.1 Analysis of Patterns as Metaphors and Moulds or Templates . . . 213

6.2 Bloom’s Categories in Programming Terms. Adapted from (Bloom

et al 1971) . 219

7.1 Bloom’s Categories in Pedagogical Terms. Adapted from (Bloom

et al 1971) . 241

8.1 Comparison of Programmer Performance 265

10.1 Expected range for the control group 322

10.2 Summary of individual results . 322

10.3 Attendance at Help Sessions . 325

ix

x LIST OF TABLES

Abstract

This thesis argues the case for the use of a pattern language based on the ba-

sic features of the programming language used in instruction for the teaching of

programming. We believe that the difficulties that novices are known to have

encountered with the task of learning to program ever since the inception of com-

puters derive from a basic misfit between the language used to communicate with

a computer, the programming language, and the way that humans think. The

thrust of the pattern language idea is that patterns are the essential element in

understanding how the mind words in that they are the source of that relation-

ship that we call ‘meaning’. What an entity or event ‘means’ to us derives from

the effect that it has on us as living biological beings, a relationship that exists

in the ‘real world’, not from any linguistic relationship at the symbolic level.

Meaning, as a real world relationship, derives from the patterns of interactions

that constitute being. The meaning that an entity has for an individual is more

than can be expressed in a formal definition, definitions are matters of agree-

ment, convention, not the pattern of experience that the individual has acquired

through living. What is missing for a novice in any skill acquisition process is

meaning, the pattern of experience. All that we can give them using a formal lin-

guistic system like a programming language is definitions, not meaning. Pattern

language is the way that we think because it exists at that fundamental level of

experience as living beings. The patterns of experience become the patterns of

thought through recurrence, not through definition. But this takes time, so in

presenting new material to a person trying to learn, we have to present it in the

form of a pattern language, the “cognitive map” that drives the problem soving

process. Creativity is always a function of combining ideas, what is really being

created is new meaning, not a program, or a house, or a poem, or a sculpture

- these things are mere implementations of meaning. Ultimately meaning can

derive only from experience, the pattern of life around us, so creativity is the

language of experience, pattern language. The mind is the product of experience,

creativity its modus operandi.

xi

xii

Certification

I certify that this thesis does not incorporate without acknowledgement any ma-

terial previously submitted for a degree or diploma in any university; and that to

the best of my knowledge and belief it does not contain any material previously

published or written by another person except where due reference is made in the

text.

As requested under Clause 14 of Appendix D of the Flinders University Re-

search Higher Degree Student Information Manual I hereby agree to waive the

conditions referred to in Clause 13(b) and (c), and thus

• Flinders University may lend this thesis to other institutions or individuals

for the purpose of scholarly research;

• Flinders University may reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

Signed Dated

Ron Porter

xiii

xiv

Acknowledgements

As with anything else in life, producing a dissertation involves the use of a pattern

language, and one of the patterns in that language is to reflect, at the very end of

the journey, on those who have been, knowingly or inadvertantly, fellow travellers,

to explore, as it were, the patterns of human connections that make you who you

are and the thesis what it is.

My original and enduring inspiration is Lel, who is responsible in ways that

she can never know, for this journey, and who, to this day, still whispers in my

ear whenever I need reminding of some pattern I have forgotten.

In the patterns of everyday life, family and friends make important contribu-

tions of which they are mostly unaware, but which are essential in making any

journey like this one possible, and a few friends who deserve particular mention

are Sok Kiang Lee, Gisela Bogdan, Lochie and Sam Davies, Jayne White for the

insights she gave me into educational and curriculum issues, and, latterly Morgan

and Jackie Stringer.

This probable lack of awareness of their vital contribution extends also to

many of one’s colleagues. Two such contributors that deserve special mention

are Denise de Vries and Aaron Ceglar whose input is incalculable. Most of the

material on the “epistemic cut” was honed in discussion with the latter, who,

much to his own surprise, turned out to be the most philosophically aware of my

colleagues, save only for my erstwhile room-mate, Scott Vallance, who was also

the source of many insights.

A more conscious contribution was made by Tiffany Winn and Lorraine Harker,

fellow travellers on the pattern language route. Tiffany, in particular, opened

many doors in the interesting discussions we had along the way.

Through one of those doors stepped Jim Coplien, who as well as contributing

to this dissertation directly, introduced me, somewhat unconventionally, to Joe

Bergin, whose idea it was to attempt to experimentally measure the effectiveness

of patterns in programming pedagogy.

Of course, the most vital contribution is made by one’s supervisor, and in in

my case I chose wisely. Paul Calder was the most constant of my fellow travellers,

and although some of the places I wanted to visit were, to say the least of it, a bit

‘weird’, he was always there for the ride. His guidance was the most significant

input into this journey.

xv

xvi

Many others contributed through their presence in the structure of academic

institutions like this one, and my thanks go to all who provide the means for such

explorations of unfamiliar territory.

Ron Porter

February 2003

Adelaide.

Preface - Scope and Outline

The thrust of this dissertation is that learning to program, indeed learning any

skill, involves the use of a pattern language either explicitly or implicitly. This

is because any skill depends on the conceptual structure in the mind, a cognitive

map, as this is the only way that creative potential can be expressed. However,

there is actually nothing new in this, as humans we spend our lives from day

one building such knowledge structures in our mind in every field of endeavour, a

process that can only be based on patterns of experience, the things that are the

same for all of us, and the connections between them, in short, a pattern language.

The trouble is that we do this in a largely unconscious fashion, such as in the way

that we ‘pick up’ the grammar of our first spoken language. This unconscious

development of cognitive structure, however, becomes inefficient in fields of great

complexity or where practice is difficult without a reasonably developed cognitive

structure already in place. Programming is such a field because it is based on

the strict symbolic logic of the machine which is not familiar from the everyday

cut and thrust of life experience that drives many other disciplines, and so there

is no obvious pre-existing relevant knowledge structure.

In other words, we cannot rely on the ‘natural’ resonance of experience in the

programming field with everyday experience as can be done, to some extent, in

other fields. Therefore the aim of this thesis is to demonstrate how an evolving

pattern language can provide the sort of resonances that take advantage of the

connections that already exist in the mind, missing in instruction based on pure

logic. This is not an entirely unique problem, many fields such as mathematics,

philosophy, science and so on, indeed reasoning in general, involve elements of

logical thinking. So, it is possible to find, in other areas, methods of driving the

acquisition of creative skill that illustrate the power of the pattern process that

we are advocating. Therefore, we touch on many strands which may appear at

first to be only loosely connected. This is true, in some respects, but the factor

common to all of them is that they demonstrate, in some way, the fundamental

correspondence between evolution as design for life through patterns of experience

and learning as design for life through patterns of experience. Just as evolution

involves a codification of experience in the strict ‘logic’ of DNA sequence, so

too does programming involve a codification of experience in the strict ‘logic’ of

machine instruction sequence. It follows, therefore, that cognitive development,

learning in short, as design for life through patterns of experience, should provide

1

2 Preface - Scope and Outline

the means to enable people to learn to program.

So what we are attempting to show here is that pattern language, as an ex-

plicit rather than implicit factor in instruction, is the way forward in crossing the

gap between general thinking based on everyday experience and that required for

dealing with a strict symbolic logic. This attempt necessarily involves exploring

many areas of knowledge to illustrate our argument, and from this exploration

it is clear that the cognitive structure involved in any task must reflect the ob-

jective conceptual structure (the pattern language) of the field concerned, and

this applies in every human skill. While we concentrate our attention in the

programming domain on the imperative-procedural-OO paradigm, we do this for

the sake of clarity, not because the pattern process applies only here. Ours is a

philosophical task, an exploration of the issues involved in acquiring a skill, not

a technical one, so, inevitably, the dissertation involves a conceptual (philosoph-

ical), even a narrative, flow rather than a logical (technical) one. That such a

non-technical and non-reductionist approach is necessary is shown by the moral

core of the pattern language idea, the proposition that order and coherence are

properties of the whole, not the parts of which it is made.

In Chapter 1 we establish the scope of the issue dealt with in this disserta-

tion - the use of pattern languages to address the problems that novices exhibit

in learning to program - and the thrust of our argument is that it is the dif-

ference between how humans think and the logical rigor and mechanical nature

of programming languages that lies at the heart of the matter. As Christopher

Alexander’s pattern language concept is directed at the process of designing so-

lutions to problems in the ‘real world’, we introduce it as a means of providing a

cognitive map for novices in the programming domain.

Chapter 2 provides an overview of prior work in the fields opened up for

discussion in the introduction in an attempt to provide a broad philosophical

basis for the project. Although the idea of a language of patterns is relatively

new, patterns themselves have long been recognised as a significant factor in

human thinking processes. We examine their use in terms of the learning process

and educational practice, and, more particularly, in introductory programming

where we find that ideas such as ”chunks” and ”schemas” which resonate with the

pattern concept predate the explicit use of patterns in programming pedagogy.

The main aim of this chapter is to introduce pattern theory in both its classical

and Alexandrian forms so that we can set the context for its place in pedagogical

theory.

As designing any artefact, including a program, is a creative act, we explore,

in Chapter 3, the roots of creativity in everyday human experience. Again we

are attempting to establish the problem in its widest context, so the discussion

here is mostly philosophical in spirit, leaving the psychological and educational

aspects to be dealt with elsewhere.

Chapter 4 argues that the source of the difficulties exhibited by novices stems

from the fact that instead of attempting to adjust our pedagogies to better fit

3

how the mind actually works, we have persisted in trying to modify the mind to

fit the programming system, to ‘make people think like computers’, in effect.

A designed artefact of any complexity requires generativity, the combination

of multiple concepts to a unity of purpose, and Chapter 5 attempts to demon-

strate that the fundamental function of language is generation not communica-

tion. Before we can communicate any complex idea, we have to have generated it

out of the simpler ideas that constitute its components. Language-as-conceptual-

understanding, therefore, is the factor that underlies the human condition, that

drives all creativity.

Having explored the role of patterns and of language in human thinking sep-

arately, we attempt, in Chapter 6, a synthesis based on the pattern language

concept developed by Christopher Alexander. Here we are concerned with the

use of pattern languages in education, so our examination is mainly confined

to the pedagogical implications of Alexander’s theory, which means that there

are significant differences with pattern practice as it has developed in software

engineering.

In particular, we emphasise the use of pattern language diagrams, an aspect

of Alexander’s thinking that has not caught on in the software field, and Chapter

7 uses a simple programming exercise as a work-through to demonstrate how the

language generates the solution. This is not a logical or mechanical process, the

programmer still needs to make creative decisions along the way, but the pattern

language diagram clarifies the points at which such decisions are needed and the

arrows between the nodes in the network point to the various options available

at each of these junctures. As the purpose of our example is to illuminate the

actual process involved in using a pattern language to generate the design of a

program, we have, of necessity, had to simplify - almost to the point of absurdity

in terms of their own domains - all aspects, the patterns, the language, and the

programming example itself. But our purpose is not to analyse these aspects,

but to illuminate the complex interaction between them. So everything in this

chapter is constrained by the necessity for clarity in exposing the dynamics of

process, an undertaking that we found to be almost impossible in fact.

Because programming is an activity that occurs in the human mind there are

psychological implications, and these are the subject of Chapter 8. Here we are

concerned with how novices acquire meaning, so our examination is mainly con-

cerned with the problem of meaning, what it means for an element of thought to

mean something, as this, we believe, is the major implication of Alexander’s ideas

- it is always meaning, conceptual order, that is being designed, no matter which

‘material’ domain is involved. This is somewhat of a divergence from the more

conventional psychological investigations of programming undertaken elsewhere

in the literature, particularly by the Psychology of Programming Interest Group,

but our investigation, as always, is coloured by its concentration on the devel-

opment of what might be termed the ‘programming mind.’ Most psychological

research is driven by empirical concerns that fail to address our fundamentally

4 Preface - Scope and Outline

philosophical approach.

Again, in Chapter 9, our investigation of the psychology of learning to pro-

gram, we diverge somewhat from more conventional treatments, as we base our

analysis on the process of developing expertise in general. The case study of

the apparently ‘trivial pursuit’ of reciting large sequences of digits from memory

demonstrates how a pattern language is developed and used to drive expert, even

world record, performance of a task.

Chapter 10 outlines the three attempts we made to measure the effectiveness

of using pattern languages in teaching people how to program. Although our

experiments foundered on the difficulty of balancing the motivation of attendance

at ‘special’ pattern sessions and the need of students to maintain progress in

their normal non-pattern programming coursework, we felt that our efforts were

of value, both in directing any future attempts, and in illustrating the difficulties

involved in measuring performance in any mental activity such as programming.

Any investigation that attempts to cover as much ground as we do in this

dissertation, inevitably leaves many loose ends dangling in the breeze. The main

task of the conclusion is therefore to gather as many of the threads together as

possible, and to demonstrate that the unifying principle is the correspondence

between pattern language as a basis for programming-as-design and the function-

ing of evolution in the derivation of complex natural form, evolution-as-design.

Like evolution, programming proceeds on the basis of patterns of experience, not

the logical progression of formal symbolic systems such as DNA or programming

languages, and it is pattern language rather than logical rigor that drives it.

