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Abstract

This thesis argues the case for the use of a pattern language based on the ba-

sic features of the programming language used in instruction for the teaching of

programming. We believe that the difficulties that novices are known to have

encountered with the task of learning to program ever since the inception of com-

puters derive from a basic misfit between the language used to communicate with

a computer, the programming language, and the way that humans think. The

thrust of the pattern language idea is that patterns are the essential element in

understanding how the mind words in that they are the source of that relation-

ship that we call ‘meaning’. What an entity or event ‘means’ to us derives from

the effect that it has on us as living biological beings, a relationship that exists

in the ‘real world’, not from any linguistic relationship at the symbolic level.

Meaning, as a real world relationship, derives from the patterns of interactions

that constitute being. The meaning that an entity has for an individual is more

than can be expressed in a formal definition, definitions are matters of agree-

ment, convention, not the pattern of experience that the individual has acquired

through living. What is missing for a novice in any skill acquisition process is

meaning, the pattern of experience. All that we can give them using a formal lin-

guistic system like a programming language is definitions, not meaning. Pattern

language is the way that we think because it exists at that fundamental level of

experience as living beings. The patterns of experience become the patterns of

thought through recurrence, not through definition. But this takes time, so in

presenting new material to a person trying to learn, we have to present it in the

form of a pattern language, the “cognitive map” that drives the problem soving

process. Creativity is always a function of combining ideas, what is really being

created is new meaning, not a program, or a house, or a poem, or a sculpture

- these things are mere implementations of meaning. Ultimately meaning can

derive only from experience, the pattern of life around us, so creativity is the

language of experience, pattern language. The mind is the product of experience,

creativity its modus operandi.
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Preface - Scope and Outline

The thrust of this dissertation is that learning to program, indeed learning any

skill, involves the use of a pattern language either explicitly or implicitly. This

is because any skill depends on the conceptual structure in the mind, a cognitive

map, as this is the only way that creative potential can be expressed. However,

there is actually nothing new in this, as humans we spend our lives from day

one building such knowledge structures in our mind in every field of endeavour, a

process that can only be based on patterns of experience, the things that are the

same for all of us, and the connections between them, in short, a pattern language.

The trouble is that we do this in a largely unconscious fashion, such as in the way

that we ‘pick up’ the grammar of our first spoken language. This unconscious

development of cognitive structure, however, becomes inefficient in fields of great

complexity or where practice is difficult without a reasonably developed cognitive

structure already in place. Programming is such a field because it is based on

the strict symbolic logic of the machine which is not familiar from the everyday

cut and thrust of life experience that drives many other disciplines, and so there

is no obvious pre-existing relevant knowledge structure.

In other words, we cannot rely on the ‘natural’ resonance of experience in the

programming field with everyday experience as can be done, to some extent, in

other fields. Therefore the aim of this thesis is to demonstrate how an evolving

pattern language can provide the sort of resonances that take advantage of the

connections that already exist in the mind, missing in instruction based on pure

logic. This is not an entirely unique problem, many fields such as mathematics,

philosophy, science and so on, indeed reasoning in general, involve elements of

logical thinking. So, it is possible to find, in other areas, methods of driving the

acquisition of creative skill that illustrate the power of the pattern process that

we are advocating. Therefore, we touch on many strands which may appear at

first to be only loosely connected. This is true, in some respects, but the factor

common to all of them is that they demonstrate, in some way, the fundamental

correspondence between evolution as design for life through patterns of experience

and learning as design for life through patterns of experience. Just as evolution

involves a codification of experience in the strict ‘logic’ of DNA sequence, so

too does programming involve a codification of experience in the strict ‘logic’ of

machine instruction sequence. It follows, therefore, that cognitive development,

learning in short, as design for life through patterns of experience, should provide

1



2 Preface - Scope and Outline

the means to enable people to learn to program.

So what we are attempting to show here is that pattern language, as an ex-

plicit rather than implicit factor in instruction, is the way forward in crossing the

gap between general thinking based on everyday experience and that required for

dealing with a strict symbolic logic. This attempt necessarily involves exploring

many areas of knowledge to illustrate our argument, and from this exploration

it is clear that the cognitive structure involved in any task must reflect the ob-

jective conceptual structure (the pattern language) of the field concerned, and

this applies in every human skill. While we concentrate our attention in the

programming domain on the imperative-procedural-OO paradigm, we do this for

the sake of clarity, not because the pattern process applies only here. Ours is a

philosophical task, an exploration of the issues involved in acquiring a skill, not

a technical one, so, inevitably, the dissertation involves a conceptual (philosoph-

ical), even a narrative, flow rather than a logical (technical) one. That such a

non-technical and non-reductionist approach is necessary is shown by the moral

core of the pattern language idea, the proposition that order and coherence are

properties of the whole, not the parts of which it is made.

In Chapter 1 we establish the scope of the issue dealt with in this disserta-

tion - the use of pattern languages to address the problems that novices exhibit

in learning to program - and the thrust of our argument is that it is the dif-

ference between how humans think and the logical rigor and mechanical nature

of programming languages that lies at the heart of the matter. As Christopher

Alexander’s pattern language concept is directed at the process of designing so-

lutions to problems in the ‘real world’, we introduce it as a means of providing a

cognitive map for novices in the programming domain.

Chapter 2 provides an overview of prior work in the fields opened up for

discussion in the introduction in an attempt to provide a broad philosophical

basis for the project. Although the idea of a language of patterns is relatively

new, patterns themselves have long been recognised as a significant factor in

human thinking processes. We examine their use in terms of the learning process

and educational practice, and, more particularly, in introductory programming

where we find that ideas such as ”chunks” and ”schemas” which resonate with the

pattern concept predate the explicit use of patterns in programming pedagogy.

The main aim of this chapter is to introduce pattern theory in both its classical

and Alexandrian forms so that we can set the context for its place in pedagogical

theory.

As designing any artefact, including a program, is a creative act, we explore,

in Chapter 3, the roots of creativity in everyday human experience. Again we

are attempting to establish the problem in its widest context, so the discussion

here is mostly philosophical in spirit, leaving the psychological and educational

aspects to be dealt with elsewhere.

Chapter 4 argues that the source of the difficulties exhibited by novices stems

from the fact that instead of attempting to adjust our pedagogies to better fit
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how the mind actually works, we have persisted in trying to modify the mind to

fit the programming system, to ‘make people think like computers’, in effect.

A designed artefact of any complexity requires generativity, the combination

of multiple concepts to a unity of purpose, and Chapter 5 attempts to demon-

strate that the fundamental function of language is generation not communica-

tion. Before we can communicate any complex idea, we have to have generated it

out of the simpler ideas that constitute its components. Language-as-conceptual-

understanding, therefore, is the factor that underlies the human condition, that

drives all creativity.

Having explored the role of patterns and of language in human thinking sep-

arately, we attempt, in Chapter 6, a synthesis based on the pattern language

concept developed by Christopher Alexander. Here we are concerned with the

use of pattern languages in education, so our examination is mainly confined

to the pedagogical implications of Alexander’s theory, which means that there

are significant differences with pattern practice as it has developed in software

engineering.

In particular, we emphasise the use of pattern language diagrams, an aspect

of Alexander’s thinking that has not caught on in the software field, and Chapter

7 uses a simple programming exercise as a work-through to demonstrate how the

language generates the solution. This is not a logical or mechanical process, the

programmer still needs to make creative decisions along the way, but the pattern

language diagram clarifies the points at which such decisions are needed and the

arrows between the nodes in the network point to the various options available

at each of these junctures. As the purpose of our example is to illuminate the

actual process involved in using a pattern language to generate the design of a

program, we have, of necessity, had to simplify - almost to the point of absurdity

in terms of their own domains - all aspects, the patterns, the language, and the

programming example itself. But our purpose is not to analyse these aspects,

but to illuminate the complex interaction between them. So everything in this

chapter is constrained by the necessity for clarity in exposing the dynamics of

process, an undertaking that we found to be almost impossible in fact.

Because programming is an activity that occurs in the human mind there are

psychological implications, and these are the subject of Chapter 8. Here we are

concerned with how novices acquire meaning, so our examination is mainly con-

cerned with the problem of meaning, what it means for an element of thought to

mean something, as this, we believe, is the major implication of Alexander’s ideas

- it is always meaning, conceptual order, that is being designed, no matter which

‘material’ domain is involved. This is somewhat of a divergence from the more

conventional psychological investigations of programming undertaken elsewhere

in the literature, particularly by the Psychology of Programming Interest Group,

but our investigation, as always, is coloured by its concentration on the devel-

opment of what might be termed the ‘programming mind.’ Most psychological

research is driven by empirical concerns that fail to address our fundamentally
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philosophical approach.

Again, in Chapter 9, our investigation of the psychology of learning to pro-

gram, we diverge somewhat from more conventional treatments, as we base our

analysis on the process of developing expertise in general. The case study of

the apparently ‘trivial pursuit’ of reciting large sequences of digits from memory

demonstrates how a pattern language is developed and used to drive expert, even

world record, performance of a task.

Chapter 10 outlines the three attempts we made to measure the effectiveness

of using pattern languages in teaching people how to program. Although our

experiments foundered on the difficulty of balancing the motivation of attendance

at ‘special’ pattern sessions and the need of students to maintain progress in

their normal non-pattern programming coursework, we felt that our efforts were

of value, both in directing any future attempts, and in illustrating the difficulties

involved in measuring performance in any mental activity such as programming.

Any investigation that attempts to cover as much ground as we do in this

dissertation, inevitably leaves many loose ends dangling in the breeze. The main

task of the conclusion is therefore to gather as many of the threads together as

possible, and to demonstrate that the unifying principle is the correspondence

between pattern language as a basis for programming-as-design and the function-

ing of evolution in the derivation of complex natural form, evolution-as-design.

Like evolution, programming proceeds on the basis of patterns of experience, not

the logical progression of formal symbolic systems such as DNA or programming

languages, and it is pattern language rather than logical rigor that drives it.


